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Preface

Laymen and professionals alike tend to perceive programs as ‘mechanisms’
that are conceived, designed and then simply constructed, that is, ‘written’, to
solve some problem or to implement an application on a digital computer. It
is generally accepted that the program as first visualised and eventually written
will not be error free, that it will have to undergo a debugging process before
entering serious service. But once bug-free it should be available forever to fulfill
its purpose.

The facts are somewhat different. For one thing, with current programming
methods there generally does not exist any way in which a program can be shown,
known or made to be fault-free. Bugs will continue to surface as long as a
program continues to be used, and some of these, at least, will have been in
the program from its inception. Moreover, it has been the universal experience
that quite apart from the discovery, during commissioning and afterwards, of
errors in design or implementation, computer users come up with a continuing
demand for performance improvements, functional enhancement and new
capabilities. This occurs both before the program has been installed and after
it has entered into service. The consequent continuing program maintenance (as
it has come to be known) typically absorbs as much as 70% of the total activity
expended on the program during its initial development and subsequent service
life.

For a long time it was thought that the occurrence of such never-ending
maintenance activity was mainly due to lack of foresight on the part of planners,
designers, programmers and managers. Factors such as rapidly advancing
technology, the relative ineffectiveness of the software engineering process and
the demands of an ever widening market place were, however, also recognised.

None of these factors is, however, the prime cause of the problem. The work
of the editors of this book and of other people since the late 1970s has shown
that all these factors contributed to the development of a ‘Software Crisis’, the
universal experience that software systems are rarely completed on time, contain
a seemingly inexhaustable stock of faults and are excessively costly to create
and maintain. It is, however, now recognised that the problems stem from a more
fundamental source. Evolution is intrinsic to the very nature of computer usage
and of the associated programs (LEH80), that is, programs that are used and
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that exceed some minimal capability. As a consequence, programs must be
continuously adapted. They evolve in a manner that is reminiscent of the
evolution of biological organisms and of social groupings (LEHS80, 82b).

The evolutionary pressures on programs arise in several different ways.
Evolution first appears during the development process, the human activity, that
transforms a computer application concept into an operational system. The
concepts, algorithms and techniques that are to be used to implement the program
evolve as the design proceeds, as insight into the problem to be solved and
understanding of methods for its solution are gradually developed. Evolution
is also present in the continuing process that maintains system and cost-
effectiveness, adapting it to the needs of a changing environment through the
periodic release of modified versions of the code and documentation. Finally,
the entire system evolves. It is re-defined, re-designed, re-implemented and
replaced as it becomes too complex to maintain, or out of step with evolving
application needs and implementation technologies. It is continually being
adapted to the continuously changing environment.

By reproducing under one cover some of the key publications in this field
as produced over their gestation period, this book traces the gradual evolution
of the ideas and insights summarised above and of associated technologies. This
historical approach will facilitate the achievement of real understanding of the
concepts and issues that are revealed. One does not often have the opportunity
to document the history of a technology whilst it is in the making. This book
seeks to achieve this.

The book, however, is not aimed primarily at the historian. The collection
is important for all who develop or use software. It should also be of interest
to the general reader, who, as he follows the book, will be able to achieve the
understanding reached by the editors over an extended period as they developed
the subject.

The articles constituting this book have mostly been available for a number
of years. We hope, nevertheless, that their collection in a single volume will
encourage research and development in an area of computing science that is likely
to prove of increasing importance as mankind becomes more and more dependant
on correct and up-to-date software for operation and survival. As the world relies
ever more on computers it becomes vital that all those concerned with computer-
based systems, their design, construction, operation, exploitation or management,
fully understand the issues raised, the dangers that arise from failing to take
appropriate action and the opportunities offered by software engineering. We
hope that the readers of this volume will achieve these insights, discover at least
some of the answers and follow up appropriate pointers to fundamental topics
in this emerging discipline.

Issues discussed are presented almost exclusively in the context of software.
They are, however, also likely to prove relevant, following change of terminology,
to other artificial systems—even, with different time scale, to biological, social
or economic systems. Such wider significance must be further investigated.



Preface xiii

Increasing societal dependence on computers and the need for the software that
controls them to evolve in response to environmental changes and opportunities
make extension and generalisation of these concepts an urgent necessity.

In assembling these articles we have restricted harmonisation of content and
style to a unification of the reference listings originally printed at the end of
each. We have not sought to eliminate repetition, avoid redundancy or to remove
inconsistencies or contradiction between papers written at quite different times.
To have done so would have obscured the progress in our underlying
understanding and concept formation. At most we have added the occasional
footnote to draw the reader’s attention to some significant change. Such editorial
comments, made in 1984 and 1985, are distinguished by ‘(eds)’ from original
footnotes, indicated by ‘(orig)’

The final comment on our editorial policy relates to the acknowledgement
section at the end of each article. We have been associated with many colleagues
over the years as the subject matter has developed. Their individual and collective
contributions and their support have contributed significantly to the progress
made. They continue to deserve our grateful acknowledgement. The sections
have therefore been retained intact. It is appropriate at this point to add our
grateful and sincere thanks to Mrs. Jane Spurr for her patient typing, willing
amendment, layout planning and re-creation of plots and diagrams to provide
uniformity for the manuscript.

This book provides an historical record of developing insight and under-
standing. As insight and understanding increase, viewpoints and interpretations
change. The reader who follows the same intellectual evolution, albeit in much
less time than it has taken us, will surely benefit from the experience.

May we be permitted one final introductory remark. Preparation of this book
has caused us to re-read articles not looked at for many years. We cannot refrain
from expressing our surprise in finding so much of the material at least as relevant
today as it was at the time of writing. How little has changed since each of the
articles was first published. There clearly has been progress. The informed reader
will note that, for example, there is no reference to notions of verification and
program proving in the earlier articles. The emergence and wide acceptance of
such concepts exemplifies the progress that has been made. But, in general, the
observations reflected here and made in a period extending over more than a
decade continue to apply and to deserve urgent attention. We mention this, not
in a spirit of ‘We told you so’, but to urge the reader to take the entire book
seriously and not to treat it as of only historic interest. It is to be hoped that
republication of the material will, in conjunction with the many other initiatives
currently underway, help finally change the situation once and for all.

L. A. BELADY
M. M. LEHMAN



CHAPTER 1
INTRODUCTORY REVIEW

In late 1968, one of the editors of this book (MML) was asked
by Dr A Anderson, then Director of IBM's Research Division to
"undertake a study of programming in IBM and to propose
research projects that could seek ways to improve the
Corporation's capability in that area". The immediate
trigger for this study was an internal Bell Telephone
Laboratories report. This had indicated that introduction of
the 1IBM TSS/360 system as an interactive programming support
system - to use modern terminology - had produced a threefold
improvement in programmer productivity in the Electronic
Switching Systems division of the Laboratories.

Lehman accepted the assigmment. His immediately preceeding
experience in Project IMP [LEH66], had already resulted in a
direct, personal interest in the methodology and
effectiveness of program design and programming and provided
strong motivation. It probably also influenced the direction
and outcome of the subsequent study.

Project IMP, an attempt to develop a large multi and parallel
processing system had been initiated in 1964, passing
subsequently through three distinctive phases in a four year
history. The first sought to develop a multiprocessor
hardware system and to investigate its potential performance
[LEH68b]. At the end of the first year answers had been found
to many of the questions that faced the design team and
apparently adequate solutions to many of the identified
problems. The team became convinced, however, that they had
attacked the wrong problem. The main problem was not the
achievement of a satisfactory design for the hardware
configuration and elements but how to control and fully
exploit the workload, input, output and system resources
during system operation. One should establish design
criteria and seriously begin to development of hardware
facilities only after conception and design of an executive
system that provided the system management strategies and
mechanisms.

Phase two of the project was therefore initiated. This was
to study executive needs and strategies; to derive and
develop the design of an executive system. Work on this
aspect of the project proceeded for a further year by which
time a preliminary architecture and design for the IMP
Executive had been prepared. However once again the group
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felt that only the relatively simple problem had been solved.
The real problem lay not in the design of a specific system
but in the methods and methodology of design. Sof tware and
system designs were unlikely ever to be optimum or complete.
System application and system potential evolve (though that
term was not used). The principle problems were therefore how
to approach system specification and design; how one might
limit the time or number of iterations required to achieve a
satisfactory system; how, in a climate of rapidly advancing
technology, one might teach design and transfer experience
from one system to the next, from one team to the next, to
facilitate subsequent adaptation of the system to changing
needs and potential. The prime need was for the
identification or development of design methods and
methodology.

So Project IMP - phase three, a study of system design and
programming methodology was initiated. It soon led to a
number of reports and publications including a very
fundamental contribution [ZUR6T] that went largely
unrecognised at the time. The time was clearly not ripe for
methodological studies. The work of the group was neither
recognised nor appreciated, basically it was not understood,
and project IMP was disbanded.

The study of programming that followed made no apparent
impact within IBM. It had focussed mainly on IBM internal
practices, achievements and problems but also included
observation of experience outside the corporation. Its
findings were summarised in a confidential report [LEH69], in
a series of presentations at various IBM locations and in a
proposal to the IBM Director of Research for several research
projects that would address some of the problem areas
identified and explore potential solutions. And that was
that.

This is not the place to speculate on the failure of the
study to generate action within IBM, or to ask whether in a
different enviromnment there might have been a more positive
response, or even to speculate in detail on the relevance or
significance, then and now, of the conclusions presented. 1In
the preface we have already said that in our view most of our
observations are as relevant today as when first made. The
reader may wish to make his own judgement after reading the,
now declassified, report republished for the first time as
Chapter 3 of this book. In doing so he should bear in mind
that the report was generated before the Garmisch report
[NAU69] had become widely known, before establishment of the
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IFIP working group WG 2.3 on programming methodology and long
before the concepts of Structured Programming, Chief
Programmer Teams, Software Engineering and other universal
panacea, had become popular.

Completion of the study may not have made an impact within
IBM or on the wider community. It did, however, have
significant consequences for the author and, subsequently, on
a small number of colleagues. In particular, it yielded
observations which became the seed from which the study of
program evolution and the programming process developed. The
report had included a brief analysis of the programmatic
characteristics of 03/360, then in its 16th release. The
results summarised in its section 1.3 (see ch.3), led to the
recognition of phenomena whose analysis led slowly but surely
to the concepts of Program Evolution Dynamics. The intent of
this book is to trace the development of both the
interpretation of the observed phenomena and of the concepts.

A year or so before Lehman undertook the study referred too
in the previous paragraphs, Gerald Weinberg had written a
paper which was, however, not published till 1970 [WEI70] and
then in a relatively obscure journal. The present editors
did not see the paper till many years later, so that it did
not influence their work. Nevertheless it is, probably, the
first paper to seriously discuss evolution as applying to
individual artificial systems. As such it clearly deserves a
place in this volume and is reproduced as chapter 4. We
stress evolution of indvidual systems because Simon's Compton
lectures (1968) published in his 'Sciences of the Artificial!
[SIM69] did consider evolution as it applies to successive
generations of artificial systems. He does not appear to
have considered evolution of operational systems as treated
by Weinberg and ourselves.

After completion of the "Programming Process" report, its
author suggested to L A Belady that one might be able to
model some of the observations, by their analysis advance
basic understanding of the process and apply the resultant
insight to achieve improved processes. Subsequent results
undoubtably confirmed this conviction that further
investigation was both required and justified. Its pursuit
produced a productive and continuing partnership that has
already extended over one and a half decades; a partnership
that first recognised the intrinsic evolutionary nature of
software and that subsequently conceived and developed many
of the interpretations and implications of software life
cycle phenomena that have only recently become more widely
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recognised and accepted. In due course that study led to the
publication of a first report [BELT1].

That report, included here as Chapter 5, is not only of
historical interest. The phenomenological observations made
are still highly relevant even with today's much advanced
technology. In fact, the developments of VLSI and the
microprocessor, and the consequent increase in demand for
reliable and effective VLSI designs and for ever increasing
numbers of programs, will again bring into the foreground,
many of the issues and problems identified in the report;
issues which some (mistakenly) consider to have been largely
solved by recent advances in programming methodology and
programming languages. The emergence and widespread
application of very large data bases, of non procedural
languages (of various classes) and of artificial intelligence
techniques as applied, for example, in intelligent knowledge
based systems (IKBS) will result in a repetition of the
problems and history of the past twenty years, albeit in a
new form, unless principles and lessons that could and
should have been learned from the software experience of the
past are absorbed and applied [LEH82b].

The macro and micro models of the programming process that
are discussed in this report are also still relevant. Their
investigation and extension has, however, been neglected in

recent years. They are refered to again in our subsequent
publications but no further significant progress can be
reported. The very real progress that has been made in

strengthening, extending and interpreting the original
observations suggests, however, that the time may now be ripe
to follow up of some of this early work.

Chapter 6 is a reprint of a paper presented late in 1971 at a
conference on Statistical Computer Performance Evaluation
[BELT72]. It adds observations and conclusions additional to
those reported in chapter 5 and reflects definite, if small,
progress in some of the notions. It is included here because
it was the first public (non IBM) exposure of Evolution
Dynamics.

Early in 1972 the close partnership between the two editors
was relaxed when one (MML) was appointed to the Chair of
Computing Science at London University's Imperial College of
Science and Technology. Long distance collaboration
continued however, and intensified when the other (LAB) came
to London on a Science Research Council Senior Visiting
Fellowship. It was during this period, that the concept of
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continuing evolution was first verbalised; when the term
Program Growth Dynamics wused until then was replaced by
Program Evolution Dynamics.

During this period also, Professor Lehman delivered his
Inaugural Lecture chosing as his theme a generalisation of
some aspects and concepts of Evolution Dynamics. The text of
that lecture [LEHT4] is reproduced here as chapter 7. The
paper included the first published reference to 'Laws!',
presenting three in some detail. After a brief discussion of
the, then, current notions, concepts and models of program
growth, the lecture identified one specific phenomenon,
neglect of anti-regressive activity, and explored the
consequences of the same human attitudes in economic,
sociological and educational activities.

This six month London interlude was the only time during the
entire period of the continuing exploration of the software
evolution phenomena and its dynamics, that either of the
present editors (LAB) was able to devote himself exclusively
to the study. Throughout the remainder of the collaboration
and to this very day, the study could be given only 1low
priority, in relation to other, assigned, duties. The
results of the -all too few - discussions of this period were
Summarised in a report published in 1975 [BEL75], and in a
revised and edited version in 1976 [BEL76]. It is the latter
version that is included here as chapter 8 and that
represents the first reasonably complete published discussion
of the program evolution phenomenon as developed at that
time.

The Second International Conference on Software Engineering
marked a further milestone in the development of the subject.
A paper [LEHT6b] presented at that meeting expressed for the
first time, the 1ink between evolution, the programming
process and software engineering. The paper, reproduced here
as chapter 9, includes the seeds of concepts that are
developed more clearly in latter chapters of this book. It
also includes the first empirical data and data analysis of
systems other than IBM's 0S/360.

The next two chapters present material that is not in the
main stream of the development of Evolution Dynamics as an
evolving discipline. They are intellectual offshoots of the
main study, with practical implications. Chapter 10 [BEL77b]
discusses problems in the organisation and management of
software evolution and, in particular, the 'Parts Number' and
'Configuration Management' problems.
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Chapter 11 is a more philosophical work LEHT6] taken from the
Encyclopedia of Ignorance [DUN77] that, by implication,
discusses the very nature of the emerging discipline. It
identifies the intrinsic instability of any theory that
claims to describe or explain the behaviour of a system that
includes thinking people amomgst its constituent elements.
The paper therefore reports perceptions first mentioned in
chapter 9, that led to the definition of E-type programs, as
reproduced in chapter 19 [LEH80Db].

With chapter 12 we return to the consideration of program
evolution phenomena. The paper [LEH78] extended the
phenomenological data base both in terms of the number of
systems covered and of the amount of data available. These
extensions permitted significant advances in the
understanding of the nature and the process of evolution;
advances reflected in this paper by, for example, the
addition of two further laws. The stress on the significance
of the process, its structure, content and evolution, as
distinet from that of the product of that process, also
becomes more apparent in this paper.

The process is largely pursued by people. In the early and
mid seventies, methodology - more correctly 'methods' - was
already a popular word in the programming fraternity, but the
role and importance of tools and of integrated tool-kits was
not widely appreciated. Chapter 13 reflects this position
with a discussion of manning problems in 1large scale
programming [BEL78b].

In late 1977 a meeting at Brown University discussed
'Research Trends in Software Technology'. The editors'
contribution to that meeting is reproduced here in chapter 14
[BEL78]. The paper presents further significant advances in
their understanding, with emphasis on the breadth rather than
the depth of the topic. The stress on evolution in Zarge
systems indicates that, even at that stage, they still
thought of the phenomenon as one stemming, primarily, from
the complexity of the applications that such systems address
and of the resulting system. It is therefore very natural
that the following chapter 15 addresses that very issue.
That paper [BEL79c], however, was in the nature of a survey
paper and is included here to provide pointers to other
discussions then available. The reader who wishes to obtain
an up-to-date picture is referred to a more recent paper
[BEN83].
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Chapter 16 [W0079a] represents a variation on the main stream
developments described in the earlier chapters. It stems
from visits to Imperial College by Professor J S Riorden and
subsequently by his colleague Professor C M Woodside. Their,
then, main research interests lay in control theory and its
applications and they expressed a desire to study program
evolution from that viewpoint. Their observations and
generalisations suggest that further application of control
theoretic concepts to the study of program evolution could
prove beneficial to an understanding of the evolution of
artificial systems in general; a conclusion to be expected
since, at the very least, experience based feedback plays a
fundamental role in the evolution of such systems.

Chapter 17 [BEL80] develops the insight gained in the
Evolution Dynamics studies, to discuss the problem of
modifiability. It serves, therefore, as a natural transition
path to the final four chapters that reflect a redirection of
our investigations from consideration of the dynamics of
evolution to its mature. This redirection is seen in chapter
18 [LEH80b] which discusses the underlying meaning and
significance of the five laws. It continues in chapter 19
[LEH80c] with a final summary of the observed consequences of
the dynamics, an example of their application and a brief
introduction to the nature of programs, the programming
process and the software life-cycle.

The next chapter [LEH81] continues this theme, developing, in
particular, discussion of the software development and
adaptation process and of the consequent desirable properties
of programming support enviromments. This is followed in
chapter 21 [LEH81b] by an exploration of the characteristics
of the software 1life cycle, the process of sof tware
evolution, and the challenges and opportunities that arise
from the development of a software process seeking to master
it.

Finally, chapter 22 [LEH82b] attempts an assessment of the
societal significance of the notions, concepts and discipline
of software engineering, such as those presented in this
volume. Mankind relies increasingly on the correct and
timely operation of computers. The very fate of mankind and
its survival may, in the end, depend on the dynamic
characteristics of some program or other, on its having been
updated in time. The warnings implicit in this chapter
represent an appropriate conclusion to the book.
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But that is not the end of this survey. The observant
reader will have noticed that in this brief overview no
reference has been made to chapter 2. That chapter is, in
fact, the most recent [LEH82c] of the publications included
in this volume. Having, so far, appeared only in relatively
obscure proceedings, its inclusion provides the first wide
dissemination of its contents. It truly represents the
summation of the evolution dynamics studies; the foundation
of theories of Program Evolution and of the programming or
software development and evolution processes. The chapter
has been deliberately placed at the beginning of the book
rather than in its historical sequence at the end, to provide
the reader with motivation for following the historical
development.

We Dbelieve that the notions and concepts presented in this
book represent the beginning of a new and systematic approach
to the solution of the software engineering problem, by
redirecting attention to the total process of software
development; and by providing the conceptual base and
intellectual framework to motivate and facilitate the top-
down design of software processes and their <integrated
support. Even if the reader proceeds no further than the end
of the next chapter, but absorbs and builds on the notions
presented there, the book will have served a useful purpose.



CHAPTER 2
PROGRAM EVOLUTION*
1 Program Evolution
1.1 Historical Summary

Program evolution is now widely accepted as a fact of 1life.
The phenomenon was first recognised in the late 1960s as
continuing program growth [LEH69]. The growth then discussed
related to improvement in functional capability. For the
sequence of releases of a given system at least, this was
assumed to be related to program size as determined by counts
of program modules, lines of code or storage requirements.

Collection of relevant data and their interpretation
subsequently suggested the concept of Program Growth Dynamics
[BELT1,72]. Its refinement led to the realisation that
observed phenomena should be interpreted as program
evolution. This represented more than a change of name. It
produced, for example, the hypotheses that were later
formulated as Laws of Program Evolution [LEHTY4], [BEL76].
Continuing investigation has given rise to the beginnings of
a discipline, Program Evolution Dynamics; yielding insight
[BEL79], [LEH80ab], practical tools and management guidelines
[LEPT6], [LEH78,80b] and most recently a new view of the
programming process itself [LEH81a,b].

It must now be accepted that evolution is, wultimately, not
due to shortcomings in current programming processes. It is
intrinsic to the very nature of computer usage; computing
applications and the systems that implement them. This
perception has led to the SPE program classification [LEH80b]
and thence to the concept of continuous programming processes
supported by vertically integrated support environments.

1.2 The SPE Classification

In the SPE classification an S-type program or system is
defined as one for which the only criterion of success in its

Paper presented at Symposium on Empirical Foundations of Computer and Information
Sciences, 1982, Japan Information Center of Science and Technology, published in J.
Info Proc and Management, 1984, Pergamon Press.

9
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creation is equivalence, in some sense, to a specification.
The P-type is not considered here. An E-type is one embedded
in its operational enviromment, implementing an application
in that enviromment, as suggested by figure 1.

APPL | CAT [ON
IN THE
REAL  WORLD

CHANGE ——>
SPECIFICATION

1 VIEWS
REQUIREMENTS (PREDICTIVE)

I MODEL | <

Figure 1 E-Type Programs
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E-type systems have no intrinsic boundaries. The programs
that implement them cannot have permanent and demonstrably
satisfactory specifications since the variety of features
that can be built into such systems is unlimited, meani ngful
permutations unbounded. Selection of features must take into
account the perceived need, inter-related properties such as
performance and cost and the nature of the operational
envirorment once the system is installed. Moreover the very
act of system <nstallation changes that enviroment. And as
operational experience is gained, perception of the problem
and of possible solutions continuously advance, whilst
€xogenous pressures operate at all times to modify the
enviroment, the problem and solution technology still
further.

Now the acceptability of an E-type program relates to
satisfaction in wusage and it follows that the 1level of
satisfaction will change with time. The real test of
satisfaction occurs after installation. on the basis of
system usability, performance and adaptability. But
satisfaction of initial specifications is, at most, relevant
for a limited period whose duration will depend on the
foresight of the design team and the rate of change in the
operational enviromment. Clearly, a specification that
defines the ultimate E-type system cannot be conceived.

1.3 Evolutionary Traits

E-program correctness is determined by user-satisfaction
rather than by equivalence to a specification. If it can be
demonstrated equivalence is, therefore, merely a means to an
end. It indicates a high likelihood of initial satisfaction.
Continued satisfaction demands continuing change. The system
will have to be adapted to a changing enviroment, changing
needs, developing concepts and advancing technologies. The
application and the system should evolve. The human effort
to achieve this may, however, be witheld. Thus either the
system evolves or its effectiveness and that of the
application it supports will, inevitably, decline [LEHTY4 -
first law].

As a system evolves its complexity increases unless specific
complexity-control effort is applied [LEH7Y4 - second law].
Complexity growth occurs because managerial guidelines seldom
include its control as an objective. Instead they tend to
focus on deadlines and on the cost-effectiveness of the Zoeal
process or of the resultant system. No real cost is attached
to structural deterioration for which the penalty lies in the
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future. Complexity growth is therefore in part a consequence
of weaknesses in current process-management practice.
Advances in the process and in process-management can
overcome this.

When, however, system change reflects extension of an
application, it generally implies an increase in the
complexity of what <s being done [BEN82]. It leads,
inevitably, to increased system complexity; though such
increase may be hidden by the use of higher level (internally
more complex) primitives, VLSI components for example.

The preceding paragraphs have described evolution as a
phenomenon of functional and complexity growth. Current
programming practice actually exploits evolution to achieve
satisfactory levels of system attributes. Correctness,
reliability, performance, capacity are all achieved
iteratively. To the extent that their improvement reflects
developing human perception and ambition triggered by use of
the system or by change in the operational enviromment,

evolutionary development is inescapable. The lack of
adequate development technology, supporting engineering
science and of evaluation calculi is, however, a strong
contributing factor; in fact the wultimate cause. The

knowledge, understanding and techniques to permit ab initio
design and construction of a system with, at least, an
initially satisfactory level of all attributes, simply do not
exist. Their development, the emergence of a software
engineering discipline, could significantly reduce reliance
on iterative evolution of such function and quality factors.

Note that once the essential evolutionary nature of software
is appreciated one need not, indeed should not, distinguish
between initial development of a system and its subsequent
enhancement or extension in a maintenance process. Sof tware
does not, of itself, deteriorate and so need not be
‘maintained' in the traditional engineering sense. At most,
a system is seen as no longer achieving its full, perhaps
newly recognised, potential. Whether one begins with an
application concept or with an existing system, all work
undertaken to produce a system with more, less or different
attributes or characteristics, constitutes evolutionary
development. The term maintenance is, therefore,
inappropriate in the context of software. Use of the term
should be abandoned; replaced by evolution.
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1.4 Process Dependant and Intrinsic Evolution

The above summary of some aspects of program evolution
suggests that it is, in part, a consequence of the process of
programming. Thus 1its rate may perhaps be reduced through
the development and application of more advanced design and
implementation technologies. Significant evolutionary
pressure also arises, however, from the very nature of
computer application and therefore of computing systems and
programs [LEH80b]. Intrinsic evolution must be accepted as a
fact of life.

With current practice, an average of about 70% of the 1life-
time expenditure on a program is incurred after initial
intallation. The main cost of a program is not incurred in
its creation but in its subsequent evolution. To achieve an
appropriate balance between initial product quality,
continuing satisfaction and some desired life-time
expenditure distribution, requires improved understanding of
both intrinsic and process dependent modes of evolution; that
is, a clearer insight into the basic nature and dynamics of
the act of creation of a computing application through the
development or modification of system constituents. The
remainder of this paper analyses the evolution processes to
lay the foundations for the systematic development of a
systematic application and program development process; the
sof'tware technology process.

It should be stressed that the analysis to follow is as
relevant to VLSI 'hardware'! as it is to software. As element
numbers per chip increase, the latter will display all the
characteristics of complexity, invisibility, evolution and
uncertainty that have plagued software for over two decades.
The resultant problems add, of course, to those arising from
the technology itself. Moreover, as the manufacturing
process becomes automated, chip functionality will be defined
by its formal inputs as transformed by that process. It may
even be a design option whether a chip functional-
specification is used to control a manufacturing process or
as source code for a program subsequently to be stored in and
executed by a simpler chip. VLSI and software technologies
can, therefore, be expected to have much in common. Thus in
the remainder of this paper 'program' is to be interpreted as
including both soft and VLSI implementations.
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2 Systems Evolution

It is a truism to assert that all natural and artificial
[SIM69] systems evolve. It may therefore be asked why the
dynamics of program evolution (as distinet from its
mechanics) should prove of interest when similar concern has
not developed to any significant degree in the study of other
systems. The answer to this question is both simple and
revealing.

The time scale over which natural systems evolve is such that
significant change is observable only over many human
generations. The natural scientist cannot, therefore,
observe change and development as 1t occurs. He operates as
an archaeologist and historian, deducing the occurance,
mechanics and nature of evolution from static remains, relics
and records of past events.

Artificial systems fall into several classes that vary widely
in their characteristics. Consider first socio-economic
systems such as cities. These too evolve. Noticeable change
may occur in a matter of months, but developments that change
the structure and character of a city extend over a human
generation or more. The sociolgist, by and large, does not
monitor continuing change and evolution. He deduces it by
comparing his observations with historic records. Because
the rate of global change is relatively slow, its dynamics
are at most deduced, not experienced.

Engineering artifacts evolve more rapidly. The motor car
and the aeroplane, for example, have each seen eight to ten
generations in as many decades. New models incorporating
minor improvements are released periodically. Modifications
may be introduced at any time and even retro-fitted to
instances already operational. But the cost of total re-
design and re-tooling is such that an essentially new system
only appears once in ten years or so. Thus during his career
the average aeronautical engineer will, for example, be
involved with no more than three or four generations of
aircraft. And if he experiences that many, he does so as
apprentice, as mature engineer and as senior manager

respectively, say. His viewpoint, involvement and
responsibility is different for each generation. He
experiences and views successive generations as a sequence of
static instances, albeit of ever more advanced

characteristics.
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Finally, consider programs. These constitute the 'fruit fly!
of artificial systems, undergoing continuing change and rapid
evolution. The reasons are manifold [LEH80b]. The frequency
and speed with which programs are executed, draws almost
immediate attention to any shortcomings or mismatch and to
developing or emerging opportunities. This leads to a
constant stream of proposals for enhancements. That 1is,
change proposals emerge rapidly because of the intimate
coupling between the computing system in  execution,
operational personnel and the application environmment. Once
made, proposals for change are too easily accepted since
their implementation involves little physical effort. The
intellectual effort required is, 1in general, under-estimated
and under-rated. It takes much bitter experience to
demonstrate the cost of the effort subsequently required to
implement the associated changes.

In practice therefore, it has become generally accepted that
software systems evolve through the release of new versions
at intervals ranging from less than one month to some two
years. Mini-releases containing corrections and minor
modifications may also be interspersed between these. Users,
salesmen, executives and developers are all exposed to the
stream of releases. At every stage of their career they are
actively exposed to a sequence of system releases. They
experience system evolution as a dynamicprocess influenced
by and in turn influencing the enviromments in which it
exists. The Program Evolution Dynamics studies of the last
ten years have shown that the dynamics of that process may be
modelled; the models reflecting the discipline that underlies
and regulates human society and the effort that <implements
change .

3 The Current Programming Process and the Ideal

The software engineering and programming processes as
currently practiced have themselves evolved over some three
decades. As the state of the art in electronic computing
advanced, methods, techniques and tools were conceived,
developed, implemented and used to solve specific problems as
these arose in specific enviromments. Together these form an
ever-growing set of process primitives, from which total
processes have been created by ad hoe association. These
serve the needs of each individual production enviroment;
additional elements being created as necessary to achieve
local efficiency, effectiveness and cost-effectiveness.
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Current programming processes developed during the formative
years of a new technology. They had therefore to be assembled
by ad-hoc association of such methods, procedures and tools
as were available at any given time. Such bottom=up
development inevitably leads, for example, to process
discontinuities and to local rather than global optimisation.
Once an adequate primitive set of methods, techniques,
procedures and tools exists, one may, however, design a
process top-down by decomposition and successive refinement
guided by whatever criteria one chooses to adopt. One may,
for example, try to synthesize a process using only available
primitives. Alternatively one may seek to produce an ideal
process which is then approached as closely as possible.
Primitives may have to be defined and developed to fit needs
not otherwise satisfiable, or to achieve significant gains in
product quality or in process effectiveness or
responsiveness. The latter approach has been adopted here.
The paper seeks to identify an ideal process to serve as a
base from which practical processes may subsequently be
constructed.

y Levels of Evolution
4.1 The Feedback Controlled Evolutionary System

It has been argued that changes in the operational
envirorment constitute a significant source of evolutionary
pressure. In part such changes are due to evolution of the
envirorment itself in response to forces unrelated to the
application addressed by the system. In part they are due to
experience with system operation which, of itself, suggests
corrections and enhancements to, or enlargement of the scope
of, the application. That is, installation and operation of
a system modifies the operational enviromment. E-type
programs, as they have been termed, therefore include an
implicit model of their own operation. They must be designed
from a viewpoint of the application universe as it will be
when the system is installed. The process of specifying and
designing them is essentially predictive. It must be based
on foreseeing the new perceptions of application need and
system potential that will develop as a consequence of system
usage. However good that foresight it must be imprecise
[LEHTT] and pressure for corrective adaptation will
inevitably develop.

Computing systems, however, are not self-adaptive. Selection
and management of change is the responsibility of managers,
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who may well resist pressures and opportunities. But if a
system is not adapted to its evolving conceptual and physical
enviromment it becomes ever less satisfactory in the users'
eyes. Ultimately it must be abandoned and replaced. Thus
whether change is implemented continuously, by successive
modification, change upon change upon change, or whether it
is revolutionary, an outdated system being entirely replaced,
or whether these modes alternate, the system will evolve on
the basis of feedback provided, for example, by accumulated
learning experience.

The system comprising the application and computing systems
in their operational and system-implementation enviromments
constitutes a multi-loop feedback system with both change
reinforcing (positive) and change opposing (negative)
feedback paths. At worst, the feedback leads to instability;
always to continuing pressure for change. The rate of
evolution, even though subject to management decision, will
depend on the characteristics of the feedback paths. With
current practice, four major paths and hence four levels of
evolution may be identified. It will be shown that, of
these, the two higher levels (slower rates) are largely
intrinsic and unavoidable, though effective prognosis and
prediction can reduce the rate of change. The two lower
levels are largely process dependent. The development of
improved, systematic, software engineering practices based on
full understanding of why and how computing applications and
software evolve, can minimise the evolutionary element.

4,2 Evolution Over Generations

The highest of the four feedback levels, that currently drive
program evolution, arises from pressures that reflect changes

in the operational and technological enviromment. The
mechanism is similar to that which drives the evolution of
socio-economic systems and engineering artifacts. As

suggested in section 2 these evolve at a rate expressable in
terms of decades or human generations. The increasing use of
computers may tend to accelerate the process, but will be
counterbalanced by an increasing need for stability and
increasing system malleability. Relevant time scales are
therefore wunlikely to change dramatically. System life-time
will continue to span ten to twenty years.

As indicated in section 2, evolution of a system over
Ssuccessive generations also covers successive generations of
the personnel associated with that system. The <ndividual
thus experiences evolution as a statie phenomenon
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recognisable from separate instances of the system. Its
dynamics are only observable by the historian. The impact of
this mode of evolution on process technology is therefore
minimal.

4.3 Evolution Through Successive Releases

During the life-time of each generation, the program release,
at present, provides a mechanism for the controlled
implementation of changes and their transmission to many
users. That mechanism has been evolved and refined to a form
peculiar to the software industry. Its special nature is due
to the fact that software requires intellectual, rather than
physical, effort to change. Software releases are therefore
created by modification and change to the implementation
itself, that is the code and the documentation, rather than
by the creation of new instances as is the case for other
artificial systems. A release may consist of a single change
or of a number of unrelated corrections, enhancements and
additions. Whatever the mix, observation suggests that the
average work content of a sequence of releases, stabilises to
a constant level. This consequence of the feedback nature of
system evolution is linked to the effort required for each
involved individual to regain and retain familiarity with the
system [LEH80a - fifth law].

When setting release content and interval objectives,
managers can apply alternative strategies [LEH80D]. But
increasing societal dependence on computers implies a need
for fast response to error reports and design deficiencies.
In the early operational life of a system, release intervals
of order one month are common. As the system ages,
complexity and complexity control effort increase and with
average release content constant, the release interval
eventually stretches to two or three years. The determinants
include the work to be achieved, user resistance to
installation of a new system and delays in their mastering
and appraising its new characteristics. In any event, the
loop-delay in release-based evolution is conveniently
expressed in months.

This second level of the current modes of evolution has been
extensively studied, measured and modelled [LEH80Db]. It is
not further considered in the present paper.
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4.4 Decimal or Sub-releases

Sub-releases are sometimes interposed between main releases
to achieve fast response for the fixing of minor faults or
blemishes or to provide urgently desired enhancements. This
practice has some impact on the evolution dynamics of the
system to which it is applied and to the parameters of the
resultant process. The latter is, however, not qualitatively
different to one in which releases of this category are not
used. Nor is a sub-release Sequence ever long enough to
define an evolutionary level. Sub-releases may therefore, in
general, be treated as part of the release process.

4.5 Developmental Evolution
4.5.1 The Ideal Process

Consider the process whereby an isolated change, a sub-
release or even the release of a completely new version is
taken from conception to eventual operation. Present
industrial practice is the outcome of ad hoc evolution driven
by expanding demand for computer applications, and for the
programs to implement them. Its limitations provide the
motivation and justification for seeking to unify and advance
sof tware technology so as to achieve an economical process
that can be planned and controlled.

At initiation of an E-type development project, the picture
of what is to be achieved and how, is, at best, fuzzy.
Specification and design evolve iteratively as a consequence
of feedback via various paths. The latter are often ad hoc
and poorly defined, making analysis difficult if not
impossible. To be amenable to analysis, the process should
have well defined structure. This may be obtained by first
identifying an Ideal process; @ contiguous and coherent, non-
iterative, sequence of orthogonal Sub-processes, a set of
sub-transformations, necessary and sufficient for the
transformation of a computer application concept into an
operational system. An analysis in terms of current process
concepts, exemplified by figure 2a, that yields such a
process, has been given elsewhere [LEH81a,b]. The time
required for each of the activities indicated will typically
be in the order of weeks and the process is third in the
schema proposed in section 2.1.

The programming process, illustrated by figure 2a, is
expressed in terms of activities that are widely recognised
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and pursued in the current industrial process. More
generally, one should view the process as a sequence of
linguistic  transformations [TUR82] with each model a
representation of both the problem to be solved and of the
system to be constructed. This is illustrated by figure 2b.

From either viewpoint (2.1) the process may be described as
the transformation of a computer application concept into an
operational system and its continuing adaptation to evolution
of the operational envirorment. This transformation is
complex. To achieve a practical process it must be decomposed
into a series of sub-transformations. These define a
structure of sub-processes, execution of which defines a
system implementing the application concept. The system 1is
represented as 'a model of a model Of «eeee. a model of a
computer application concept in its operational enviromment'.
Each of the constituent models represents an abstraction of
both the application concept from which it derives and of the
system to which it is advancing by a process of reification.
The models are double abstractions, a fact that has important
bearing on the concept of a coherent software process
supported by an integrated support enviromment.

The above reflects the dynamic view of the process. Its
static counterpart regards each step of the development
process as producing a theory for which the neighbouring
steps provide models. In particular, the real world at one
extreme and the operational system at the other are each
models of the theories provided by the intermediate steps
[TUR81].

Note that the term 'ideal' must be understood in the sense of
the thermo-dynamicist's 'ideal cycle', in that it is believed
not to be attainable in practice. Exogenous change in the
operational enviromment and the consequent pressure for
software adaptation is essentially unpredictable and cannot

be accomodated without iteration. The following sections
will suggest that iteration is also inescapable in specific
sof tware development. For example, total understanding of a

problem and creative development of the best, in some sense,
design for a computing-based solution can, in general, only
be achieved iteratively [LEHTTI. A linear process with only
orthogonal activity cannot be achieved.

2.1 (Eds) For more recent viewpoints see [(LEH83], [LEH84],
[pspsul, [PSP85].
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4.5.2 Iteration

Even the linear ideal process suggested by figures 2 is not
unique. Any orthogonal set of steps that together cover the
necessary and sufficient activity required to produce the

target system serves the same purpose. But the sequential
process is an idealisation that, in practice, cannot actually
be achieved. Thus the detailed role of each step is not

significant. It is the structure that provides the starting
point for the development of a practical process.

The desire for a programming process that is linear is not
new. Such an objective has been implicit in the search since
programmed computers were first invented for improved
programming methods. The development of high-level
languages, for example, could be interpreted in those terms.
The trend towards formal specification and the search for
techniques that automate the transformation required to
convert a program specification into an operational program
[DAR79], [KOW79] contains similar implicit objectives.

The specification of any system embedded in an application
enviromment 1is, however, inherently incomplete. A linear
process without evaluation based human decision is, thus at
best, only possible when the Structural model has been
defined; that is, when the evolving E~-type design has been
decomposed into a structure of S-type elements. It has been
hypothesised that the latter decomposition is always possible
[LEH80b]; in fact a programmer should never be required to
commence a programming task until elements to be created have
been fully specified. Nevertheless, the fact that a
selection must be made between meaningful alternatives
indicates that, to some extent at least, iteration must be
used. In fact, with presently available software process
technology, it will occur at three distinct levels in any
practical implementation of processes based on the ideal
illustrated by figures 2. These levels correspond to the
three lowest of the levels of evolution identified above.
From the outlines that follow it will be seen that they
reflect the organisational feedback paths involved in the
various activities.

Section 4.3 discussed system evolution via the release
mechani sm. The pressures that drive this process, and the
Jjustification of any changes undertaken, arise from
continuing information exchange amongst technical personnel,
from similar exchanges with users and from exogenous change.
This may be reflected in a model derived from that of figure
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2a, by means of a feedback connection over the entire process
as shown in figure 3 by the outer loop. The information fed
back reflects the experience and insight accumulated during
development, implementation, installation and usage of the
system.

No calculus is readily available to support linear
progression from model to model over the steps that derive
the succession of models that collectively capture and embody
the output of the software process in the form of evolving
design detail. Nor is there a calculus that permits forward
evaluation of a design over that process. Validation of
design decisions at each step, based on assumptions about the
remaining process and about the primitives available to
implementors, is ad hoc [LEH82]. 1In the absence of adequate
methods, errors, weaknesses and ommissions are uncovered only
as the process proceeds. Thus every now and again earlier
decisions must be reviewed; the models that embody them
revised. Such review is currently, and in general, casual
little attempt being made to update any but the most recent
documentation. In the future, increasing emphasis will have
to be placed on explicit review of all models affected by a
change, by explicit backtracking over the feedback paths
encompassing one or more steps, as indicated in figure 3.

The third level of iteration occurs in that portion of each
sub-transformation concerned with design of the new features
to be added to the model at each stage. It arises because no
analytical design method is available. An iterative approach
based on intuitive trial and evaluation must therefore be
used. This is discussed further in section 4.8.

The above discussion has suggested that iterative design and
implementation (the evolutionary programming process based,
at least in part, on trial and error) is the consequence of
inadequate design theory. An adequate theory is essential if
a systematic technology to cover the total software process
is ever to be achieved. There exists, however, a fundamental
dilemma that complicates the development of such a theory and
may well frustrate it. It stems from the fact that system
design is two dimensional; creative design must be explored
in, at least two directions.

On the basis of figures 2 and 3, one may hypothesise
processes in which each model in the sequence is completed
before proceeding to the next. A specification, for example,
can be considered as being developed by a question and answer
process that produces a tree-like structure. When the tree
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has been developed down to leaves about which all questions
have been directly and uniquely answered, specifically or by
tdon't care', the specification is complete and provides the
input to the next transformation. Were such a process
possible at each stage of the overall process, if the human
questioners and decision takers were all-wise, then this
procedure could define a sequential macro-process, but with
iterative loops for tree development.

Al ternatively one may visualise a procedure that limits the
descent at each step to one level of refinement; it being
recognised that the optimum decomposition may well be a
function of decisions still to be taken in future steps. One
proceeds, therefore, along several steps of the
transformation sequence, before returning to advance the
design further by additional decomposition.

4.5.3 A Practical Process

At the present time there does not exist a method of
programming based exclusively on one or other of these
alternative approaches. Whether either can yield such a
method remains an open question [LEH7TI. Strong grounds
exist, however, for believing that they do not; that a non-
iterative, linear, process cannot be achieved. Any practical
process must represent a compromise between the two extreme
methods, a development from the abstract ideal including, at
the very least, several levels of iteration.

Which direction to pursue, and how far to proceed in the
refinement process at any given stage of the development, is
probably one of the most difficult and critical decisions of
the software design process. The software engineer must
decide when to bacltracl. to which model in the sequence of
process models to return and which of many alternative design
paths to explore. The decisions taken determine the future
course of the process. Process design is thus itself a
critical process activity, an activity that cannot be
concentrated in an initial, or any, process step. It must be
accepted as an ongoing consideration distributed over the
entire life of the software.

In summary, the total programming process is inherently an
iteration of iterative steps. Their execution implements
evolutionary development, progress towards the final goal by
refinement and by resolution of imprecision or incompleteness
in original concepts and in individual design and
implementation decisions, by gradual selection from the
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variety of options that are open to the designer; by
exploitation of system permissiveness [MAIS4]. As progress
is made through the process, the full set of models which
collectively constitute the system model must be maintained
consistent each in itself and with one another [BEN82].

4.6 The Role of the Ideal-Process Concept in a Theory of
Program Evolution

Despite the fact that the 'ideal process' is almost certainly
not attainable in practice, the search for an integrated,
maximally mechanised (tool supported), software development
process can still benefit from the concept; identification of
its structure, components and properties. The concept
constitutes a useful abstraction to aid formulation of a
theory of program evolution. Such a theory is regarded as
essential as a precursor to the establishment of a coherent
pbrocess for software development. The concept of a coherent
process 1is, in its turn, vital if the much used term of
'integrated programming support enviromment' is to assume
real meaning; if such systems are to be constructed. It
should be noted that the term 'development' is here used in
its fullest sense to include continuing evolution of the
software to adapt it to the needs and opportunities of a
changing operational enviromment. Programs must not only be
good in the first place, they must be adapted to remain good
despite exogenous changes.

Is it meaningful to seek to develop a theory of program
evolution? The fact that programming processes 'yield
development via a series of changed steps', satisfies both
the  Oxford [0XF33] and Webster [WEB59] definitions of
'evolution'. But is this all? Can similarities with other
evolutionary phenomena be identified and prove helpful in
achieving understanding of that process or conversely of the
evolution of other forms of complex systems?

Consider the steps of an E-type application development.
These involve selection between alternatives, natural
selection with survival of the best. The process relies
heavily on human perception for injection of the consequences
of exogenous change analogous to mutation. Adaptation to
envirommental changes plays a key role. These facts suggest
that software evolution may have much in common with that
occuring in other artificial and in biological systems. The
significant difference may lie, primarily, in its reliance on
iteration rather than on parallel development and hence on
the rate of evolution.
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In any event one may conclude that the overall theoretical
structure, regarded as key to significant advances in the
emergence of a discipline of software engineering, may be
developed from the postulate of an 'ideal process' and its
instantiation as in figures 2.

Its practical approximations will be based on iteration.
However, with advances in technology, the dependence on
iterative development for the lower levels of the total
process will decrease as analytic design and validation
techniques are developed for guiding and controlling the
selection process. Examination of the process step, lowest in
the levels, of the evolutionary hierarchy will further
clarify this issue and provide additional insight into
program evolution.

4.7 The Step Paradigm (2.2)
4.7.1 Its Core

A recent publication [LEH81b] presented a paradigm describing
the activity required in each of the steps that together
realise the release development process. After a brief
discussion of the paradigm, the present paper will isolate
its evolutionary component to determine the degree to which
such evolution is intrinsic or technology dependent.

The core activity of an elementary step is illustrated by
figure U, At the highest level of abstraction it represents
a transformation of an Input (model) into an output (model).
The transformation may implement changes in representation
but is primarily directed at achieving some refinement to
advance transition to the object system. The process of
notational change, restructuring and refining of the input
model, in ways to be discussed in section 4.7.3, 1is termed
design.

Input and output models also provide a means of communication
between designers and between them and their clients. The
models must therefore be accessible in a structure and
notation that makes them comprehendable to humans, who have
to base decisions on their understanding and appreciation of
them. A suitable representation for human comprehension may,
however, not be the most appropriate for optimum
decomposition and refinement. It is therefore appropriate to

2.0 (Eds) For more recent work that describes the canonical
step paradigms see [LEH83].
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present the first 1level description of the core of the
paradigm as a sequence of three sub-steps. The first
transforms a communication oriented representation to an
internal, manipulation oriented, form. The third, if needed,
produces a form appropriate for the output interface. In
between there is the Design step.

Design is achieved by the application of human judgement and
decision, on the basis of defined immediate objectives and
long-range goals. It must consider all potential inputs to
and the desired output from the current step and the total
process, the constructs or primitive elements available for
the current step, the nature and power of the remaining
process and the primitives available to it.

Structuring at each step facilitates intellectual mastery of
the total complex. If interfaces and interconnections
between the identified parts can be completely specified, it
also permits division of further design activity, amongst
participants or groups, for that step or for the remaining
process. The potential activity split is indicated in figure
4 by the dotted lines out of the design box.

The preceeding discussion has indicated the role of the
design step. Its own design, to produce a practical process
in a specific context for example, requires systematic
decomposition, structuring and refinement of the basic
concept; that expressed above for example. A preliminary
anlysis aimed at determining a 1lower level paradigm, is
outlined in section 4.7.3. Discussion of the step paradignm
must, however, first be completed.

4.7.2 The Complete Paradigm (2.2)

In the absence of precise design calculi, the activity
outlined by figure 4 must be supported by activities that
address questions such as, ‘'are we building the system
right?', and 'are we building the right system?' [BOE81].
Ideally, each step of the design process must, in the most
general sense, be validated. The complete first level
description of the step paradigm, illustrated by figure 5,
indicates how this might be achieved.

Each step-transformation produces a model that, if
satisfactory, represents the input to the next step of the
development process. What is 'satifactory' in this context?
The input and output transformations are purely
representational in nature. They involve no changes arising
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from design decisions. Hence the requirement is equivalence,
in some sense, between each pair of inputs and outputs.

Demonstration of such equivalence is, here, termed Vertical
Verification. One could achieve it by proving equivalence, by
a demonstration that each constituent sub-step of the
transformation is correct (comstructive correctness [D1J68])
or by demonstrating once and for all that the transformer is
corrects all in the context of the current step and its
primitives.

On completing a design step (2.3) it must be shown that the
resultant model is, itself, consistent and that it is
complete in relation to the features that were to have been
added or the problems that were to have been resolved in the
current step. Such a demonstration is, here, termed
Horizontal Verification.

When an acceptable model, in this sense, has been achieved it
should be determined whether that model, as an intermediate
step in the total design process, is likely to lead to an
acceptable, or even optimum, operational system. In the
absence of appropriate calculii, this judgement is imprecise,
but should be based on an assessment of the current model, on
where additional detail is required and how it might be
developed, on implications of precursor models as to further
generalisations or features that must be achieved, on the
capability of the remaining process and on the primitives
available for implementation of the remaining steps and the
final system. The process of developing this assessment is
termed Validation. In the absence of methodology that leads
to a satisfactory design in a single step, the design step
becomes iterative. Each iteration requires validation to
determine completion of the sub-process. Horizontal
verification is, of course, also desirable, obligatory in
fact, in each iteration.

The above discussion has outlined the direct, first-level,
elements of a paradigm covering the many steps of a practical
sof tware process. Though the issue cannot be explored here,
it will be self-evident that the process as described,
demands simple access to extensive records that contain the
state and histories of the various models and of the
processes that produced them. Perceptions and decisions that
underlie design decisions, and the reasoning that produced

2.3 (Eds) Horizontal verification will, of courses normally
precede vertical verification.
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them, must also be preserved. Finally information relevant
to the planning, management and evaluation of the entire
process and its relationships to the enviromments in which it
is executed, must also be recorded. The whole of this
requirement is indicated in Figure 5 by the lines converging
on 'Repository'.

4.7.3 A Preliminary Design Sub-step Paradignm

The present paper is intended to address the 1issue of
evolution in the programming process and to develop, at
least, the outlines of a theory of program evolution. It is
therefore appropriate to pursue further refinement of the
step paradigm only to the extent that identification of
further detail assists its development. The specific
objective must be to pin down and to clarify more precisely
the origin of true evolution, as distinet from technology
dependent evolution, in the design process.

The discussion of earlier sections presented the process of
program design or development as a sequence of transfor-
mations. This view is particularly appropriate when consider-
ing the mechanistic aspects of the process. However, in so
far as the transformations include a creative element that
requires human involvement, it is more appropriate to decribe
it as one of refinement, as in section 4.7.1. The develop-
ment of a lower level design paradigm may therefore be based
on decomposition and refinement of the refinement process.

In his original paper [WIR71], Wirth defined refinement as
the addition of detail. In his introduction he states that
'...the program is refined in a sequence of refinement steps.
In each step, one or several instructions of the given
program are decomposed into more detailed instructions'. In
his conclusion this is expressed as 'In each step a given
task is broken up into a number of subtasks'. As Wirth
clearly recognised, this process requires human decision.
The way in which an element is decomposed will affect, at
least some, attributes of the final product of the refinement
process.

Wirth also discussed the need to define and structure
associated data. More generally, structuring is, in fact, an
integral part of the refinement process. As detail is added,
the internal elemental structure will expand in a way that is
dependent both on the original or higher level structure and
on the process of refinement. At some stage, it may be
advantageous to restructure the emerging element, by
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associating its primitives in a different pattern without
changing its internal semantics. Such restructuring may, for
example, improve representational clarity and pave the way
for further refinement, though it does not add detail in the
Wirthian sense. Whatever the reason for undertaking 1it,
refinement by restructuring is a futher element of the design
process.

As the process is followed, it will be convenient, occasion-
ally, to focus on an aspect of the emerging design, even to
the exclusion of others. Aspects that are then temporarily
ignored will subsequently have to be re-introduced. This too
is an element of the refinement process.

The above forms of refinement involve evolution because no
calculus exists to implement them without iteration. Their
evolutionary content is strictly process dependent. However,
as refinement proceeds, new insights will inevitably develop
into the nature of the application, the properties of
possible solutions and potential extensions of both. This
developing insight may lead to actual change of one or more
of the models, or even to change of the original application
concept. It is a mode of refinement that represents
evolution in the fullest sense of the term.

4.8 Evolution in the Process Step

The previous section outlined a standard paradigm that
describes the stepped activities that, together, achieve the
transformation of an application concept into an operational
systemn. The key elements of the constituent steps are the
transformations that, Jjointly, achieve abstraction of the
application concept and its reification into an operational
system. They reflect the design activity that successively
refines individual models to achieve the incremental
development that the step is to provide.

After, at most, a representational transformation of the
output of the previous stage, each input model is modified
and extended by refinement to add detail, modify structure or
impose change. This yields a new model sequence, with
consistent and compatible elements, that represents progress
towards the target system. The process is guided by the
objectives of the current step and by knowledge of the
remaining development process and the primitives in terms of
which it is to be accomplished. It involves creative
thinking; judgements and decisions based on knowledge,
understanding, experience and intuition.
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It is the design sub-step which drives system evolution.
Refinement decisions impose verification obligations. They
must also include consideration of the remaining process and
its primitives, that is evaluated by validation procedures.
Ideally, these should provide the best assessment possible,
at the current stage, of the degree of satisfaction that can
be expected from the system Iikely to emerge. Because of the
imprecise nature of current technology, progress is
iterative. That is, there exists, in general, no precise
method for selecting the form or content of refinement to be
applied. There 1is no systematic linear technique for
selection between alternative structures, algorithms and
primitives. In the absence of appropriate methods, or if
insight develops in a way that suggests benefit can be
derived by a change propagated across the sequence of models,
iterative refinement must be applied possibly across several
steps.

In summary, where appropriate (formal or analytic) techniques
exist, a single application of the design sub-step can
produce an acceptable output model. In the absence of such
techniques, the design will evolve over several passes
through a design and validation loop. Where validation
methods are adequate, iteration and lowest level evolution
may be confined to the internal step concerned. Where they
are insufficiently refined or when changes affecting higher
level models are introduced so that true evolution occurs,
iteration must span several steps or extend evolution over
two or more releases.

In any event, evolution clearly features at the step level of
the programming process. At this lowest level the real times
involved are of the order of days or weeks. It represents a
lower level of evolution than that of the release-development
process. At Dboth these levels, however, evolution arises
from processes tending to one or other of the alternatives
identified at the end of section 4.5.2. There is some hope
that in the future, development of adequate design and
validation techniques will permit refinement of the design
process to reduce reliance on evolution at the lowest levels.
Whether they can ever be made sufficiently precise to confine
evolution to the Release Sequence and Generation levels
remains to be seen.
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5 The Structure of the Evolution Process

The above discussion has briefly introduced a concept of
hierarchical evolution and identified natural levels of a
process implementing it. Table 1 summarises facts relevant
to an associated theory of software evolution.

Table 1 Levels of Evolution

1
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Urgency may, occasionally, force an ad hoc system change to
be implemented outside the established process. In general,
however, system evolution will be constrained, so that change
is achieved within processes set up at each level. Table 1
suggests orderly progression, a property that is highly
desirable if a related theory is to be palatable.

The pattern has a simple interpretation. It reflects the
fact that evolution is achieved by human action in a societal
framework. Intervals that represent natural time constants
in that framework, in the life and activity of individuals,
groups, organisations and society at large, must have an
impact on the programming process. The paper demonstrates
that they appear naturally from an analysis of that process,
both current and abstract. Their appearance is a hopeful
sign that that analysis may bear further fruit. What are the
immediate implications, particularly on the process and its
support?



2. Program Evolution 37

6 Software Process Support

One of the important conclusions of this study follows from
the demonstration that the software process is a phenomenon
that can be studied systematically in the context of the
enviromments within which it is pursued. This view has
always been implicit in Belady and Lehmans' Evolution
Dynamics studies. It reflects the tight linkage with the
society within and for which computers operate. Many of its
properties are a consequence of that relationship. We ignore
the relationship at our peril [LEH78,80 - third law].

The notion of software evolution as a partially natural
phenomenon leads to the concept of an ideal coherent process
extending over the system life-cycle. During the last twenty
years, ad hoc processes have evolved, assembled from equally
ad hoc methods and tools. Each process has been adapted to
the development enviromment in which it is to operate. What
is now known and available as a result of this process
evolution provides a rich set of primitives. These, in
conjunction with the understanding achieved, yield the target
implementation primitives for a top-down analysis that can
determine a structured process approaching the ideal; and a
basis for its practical implementation.

It is now widely realised that an effective programming
process must be supported by an adequate set of tools. Such
a tool kit must be coherent and integrated. The coherent
view of the total programming process based on a theory of
program evolution, provides a conceptual framework for the
development and implementation of a methodology, a set of
compatable methods and an integrated tool kit for their
support. Space constraints prevent further exploration here.
Preliminary discussion may be found with rapidly increasing
frequency in the 1literature [DOL76], [HUTT79], [BuUx80],
[RID80], [LEH80,81]. There is clearly much to be done. The
present paper together with the referenced literature
provides the concepts and a systematic and unified base fer
such an effort. The practical implementation of these
concepts could rapidly follow.

7 Acknowledgements

The author has developed the concepts presented over many
years in collaboration with a number of colleagues. The
continuing and creative association with L A Belady is well
known. More recently, Professor W M Turski has acted as a
sounding board and constructive critic, contributing insight,



38 M. M. Lehman and L. A. Belady

concepts and refinements. Most recently, Dr V Stenning has
joined us in regular and productive discussions. The author
is also deeply indebted to Drs G Benyon Tinker, P G Harrison
and C Potts. Acknowledgement is also due to ERO and its
Director of Information Sciences, Mr G M Sokol, for
continuing encouragement and support, including that under
contract number DAJA-37-80-C0011.



CHAPTER 3
THE PROGRAMMING PROCESS*

1 Growth
1.1 Expenditure

Any view of the IBM (3.1) or of the US programming scene
today leaves an overwhelming impression of growth. Thus, for
example, in the 1last decade the IBM System Development
Division's (SDD) annual expenditure for programming
development has increased more than an order of magnitude.
Up to 1964/65 SDD programming expenditure was in fact growing
exponentially at a rate averaging a doubling every one and a
half years. Since that time the rate of increase has been
linearised by holding its programming development budget at a
fixed percentage of a linearly increasing divisional budget.

Expenditure patterns in other IBM divisions correspond to
those of SDD. Figure 1 summarises annual expenditures for DP
Market Development and SDD Type 1 programming. It is
estimated that the total IBM expenditure on programming is
several times more than that of SDD alone.

Projections see SDD programming development budgets
continuing to grow, as will the total IBM programming
expenditure. Thus even small improvements in the programming
process can make substantial contributions to IBM's
profitability. On the other hand, failure to control growth
can lead to expenditure levels that will strain or even
exceed IBM resources.

1.2 Manpower

Level of staffing is mainly controlled by the availability of
funds. Thus the growth of programming manpower in IBM has

3.1 (Eds) This paper was written while the author was an
employee of IBM. Hence the constant references to IBM.
One must stress that precisely the same comments that
appear here, could have equally been made about he
programming activities of any of the manufacturers or
software houses.

IBM Research Report RC2722, 1969, reprinted with kind permission of International
Business Machines Corporation.
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followed a pattern similar to that of expenditure growth, as
in Figure 2. Estimates of IBM's present programming
population vary, as do the predictions of its growth.
Clearly this growth represents a major source of increasing
expenditure for the Corporation. Since it must be achieved
in the face of increasing demand for programmers on a
national scale, it will also increasingly create problems of
supply, education and training.

The national picture is clouded by an absence of reliable
statisties. The US Bureau of Labor has estimated that the
year-end 1968 figure was in excess of 100,000 system analysts
and 280,000 programmers. Various estimates have assessed the
annual increase and training needs of the industry. These
are not examined here but the yearly intake and training
needs of personnel by the EDP industry is approaching 100,000
people and increasing as in Figure 3. Equally significant is
the gap between demand and supply of personnel. A 1968
stimate [BRA68], for example, predicted a shortage of
100,000 programmers by 1970. This people-shortage does not
yet appear to have affected IBM-internal recruitment of
untrained personnel. Difficulties in the recruitment of
experienced programmers are, however, already apparent.

There is also another impact on the Corporation. 1In a recent
survey, [AMM69], one-third of EDP users stated that their
number one problem was a shortage of programmers; for more
than half, it was one of three major problems. Shortage of
programming capability restricts customer satisfaction and
therefore impacts IBM sales and expansion. That is these
customer shortages must be regarded as an IBM shortage.

There may be no need for alarm at the present time within IBM
about the supply of manpower. There is certainly no room for
ccmplacency. The problems need to be viewed from several
points of view. Those particularly relevant to the present
report relate to the selection, training and utilisation of
programming staff. We return to these questions again in
discussing productivity and education.

1.3 Systems

The cause of the growth discussed in the preceding sections
is not a Parkinson effect. It originates in the development
of new applications, demand for new systems and new function,
and the support of new hardware. In addition programming
personnel have also to deal with clean-up problems of
existing systems and products.
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The overall growth in demand is, of course, in the industry's
best interests. It is largely created by aggressive sales
efforts, and is a sign of a healthy, expanding industry. The
resultant expanding workload has, however, to be handled in
the face of decreasing returns from the individual as systems
become more and more complex. This complexity is partly due
to the increasing size of programming systems, the increase
in functional content and capability. Equally it is related
to a need for generality, systems that must run on many
configurations of the same basic equipment, on a growing
range of machines; systems that must be upward compatible
over generations of equipment, of languages and of
programming systems.

0S/360 represents an example of increasing size and
complexity as in Figure 4. Release 1 of March 1966,
consisted of 14 components, divided into 1152 modules and
400,359 source statements. Release 16 of September 1968
consisted of 40 components, 3819 modules and some 1,740,364
source statements. Notice that a less than three-fold growth
in the number of modules, has required a more than four-fold
growth in the number of source statements. Similar growth
rates are projected for future releases. Release 20 for
example scheduled for shipment December 1970, is expected to
contain over 53 components, 4635 modules and 2,200,000
instructions.

The clearest indicator of the rapid growth in the complexity
of 0S/360, however, is the number of modules that have
required some change between successive releases. Increase
in size associated with the progressive elimination of bugs,
should relate the number of modules handled per release to
the number changed in several previous releases. Thus it
should remain approximately constant, decreasing as a
percentage of the total number of members in the system.
Comparison of individual neighbouring releases shows large
fluctuations but the trend is clear. Successive releases
tend to require ever more modification of an ever larger
system as in Table 1 and Figure 5.

The average number of modules handled per release is
increasing rapidly both absolutely and as a fraction of the
system. The instruction growth per module handled is
decreasing rapidly. There is no a priori reason to suppose
that programmers are making more small, module internal,
errors that require minor corrections in subsequent releases.
Hence these trends are indicators of growing complexity. The



3. Programming Process 45

2
o
5
o >
o E
=
5600 2.8}
5200 26} Components ®
4800 2.4t é ®
Total
4400 2.2r Modules T
4000 20f l S
, 3600 18 @@ e
1%;’,) 3200 1.6+ Source Statements
2 &
..2_ 2800  1.4r Change in
o I
5 2400 12 Algorithm
o et
§ 2000 1.0f e Instructions
100 08
14)
1200 0.6 <+—Modules Handled
800 04
400 02
0 0 it u_."i-nT.G L 68_’1‘_69—*—70—’, Year

3 6810122 5 810 1 9 Month
1 2968951 1213 14 15/16 17 18 19 20 Release Number

Figure 4 0S/360 Growth



M. M. Lehman and L. A. Belady

46

pajpubH 8|NPo Jad Ymoi9 uolonisu) aboieay
o

o

0

<
T

—400

—1350
—250
—200
—{150

o
[\2)
T

—{100
a

17-21
(PREDICTED)

12-16

7-1

~
// /
~ \
X0 S+ g —
/y
//
< o + A\ —
< x o'+ —
~
L | R_u | | | [ 1 1
0 0
3 < 2 " 3 « IS 0+
PaIPUDH SBINPOW 4O JuddIad aBDIBAY
I | | L | | | | 1 ]
o] [) (o) o o) ] o (o3
o] o o o} S 3 o) o]
© i N Q © © < §
PSIPUDH SNPO 10 JaquinN abBDIaAY
| — A_U n_U A_U 1 1 | | | J
o o) o]
s 8 § § £ 8§ g ¢
< < 0 o) Y] ~ - .nlv

S9INPON JO saquinN abbiany

Release - Groups

03/360 Average Growth Rates

Figure 5



3. Programming Process 47

Table 1 Growing Complexity of 0S/360

Releases
2 thru 6 7 thru 11 12 thru 16

No of
A | Modules 1451 2450 3752
V | Instructions/

Modules 406 4aT 438
E

No of Modules
R | Handled 220 567 1151
A % of Modules

Changed 14.6 22.5 31.9
G

Instruction
E Growth/Mod

Handled 356 141 80

effects of error and of change are spreading ever further
through the system. It is this increasing difficulty of
change that will soon force the initiation of an 0S/360
successor.

By extrapolation it has been estimated that the successor
will contain over 30 million lines of code and will cost
accordingly. Successors to other programming systems will be
required and will grow in similar fashion. These predictions
are based on a fundamental assumption that the programming
process will continue to be based on the same procedures as
in the past. They suggest that the time has come %o develop
a new approach to the entire process, to change the way of
seeing and doing things (3.2). It is this possibility that
was examined in the present study, that formed the basis of
project proposals that were made, and that constitutes the
main topic of discussion in the latter sections of this
report.

3.2 (Eds) Italicised 1984
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1.4 Cost

Past patterns clearly point to a continued growth in
Corporate expenditure on the production of new programming
systems. In terms of the present way of programming, we also
expect significant increases in the cost of each individual
programming system. For present day systems which are, at
best, only superficially structured, cost will tend to
increase more rapidly than linear - since complexity and
hence difficulties of design, implementation, integration and
testing all increase rapidly with size. For example the
number of potentially interacting modules in an n-module
system is (1/2n(n-1)). The number of potential interactions
and their interdependence is much larger. The designer, the
test and the modification procedures must all consider the
need or the presence of such interactions.

The number of users of a particular system will tend to grow
linearly with the growth of the sales force. Thus according
to the present pattern, we may expect the cost of programming
products per user to increase with time. This occurs at a
time when the gradual introduction of LSI technologies has
led to predictions of significant decreases in the cost of
hardware. It has been suggested that in the face of these
trends it will become profitable to implement more software
functions in hardware. This argument is, however, misleading.

The difference in cost trends is partly due to differences in
the technologies of hardware and software design and
production. In particular there is an order of magnitude
difference in the mechanisation and tool support provided in
the two areas. But the underlying cause of software cost
trends is increasing complexity. The problems that are
encountered are due to the difficulties of system behaviour.

In the absence of any real understanding of complex systems,
transferring implementations from soft to hard technologies
will merely transform the hardware systems from relatively
simple structures into the amorphous assemblies that are
found in the programming area. The main problem of large
systems is unintentional interaction between components, that
require changes to the components for their elimination.
Hardware changes in LSI technology are far costlier to
implement than software changes. Thus the net result of a
change from soft to hard implementation, that proceeds at a
pace more rapid than an improved understanding of system
structure and performance will be to cause still further
increases in cost.
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1.5 Cost Distribution

The cost of developing, implementing and marketing a
programming system is spread over many different activities
and components as in Table 2. There is no clear-cut
borderline between many of these activities and the precise
cost distributions are not known. Implementation and
testing, however, each represent major elements in the total
process; manpower and machine costs reach equal orders of
magnitude.

1.6 Lead Times

The cost and the cost growth of programming systems should be
of concern to the Corporation despite an accompanying revenue
growth since the large sums involved imply that any savings
that can be achieved can make significant contributions to
Corporate profitability.

Equally significant, or perhaps even more so, is the total
time that it takes to implement and deliver a reliable
system. This time too can be expected to increase with size
and complexity. If this growth is not controlled, individual
customers may prefer and find it profitable, to satisfy their
programming requirements by means of tailored or less general
purpose systems than those that IBM must produce. 1Ie, while
IBM cannot discontinue its production of general purpose
software systems an increasing number of customers will use
their own resources or utilise the many software firms now
offering services, forcing price increases on IBM software.

The causes of long lead time cannot be accurately ascribed
amongst the individual activiiies. It is clear however that
control and improvement demands improvements in all phases of
the programming process.

1.7 The Programming Process

The programming process is the total collection of
technologies and activities that 'Transform the germ of an
idea into a binary program tape' (3.3). At the present time
there is little quantitative knowledge how costs, time delays
and difficulties are distributed over that process. If
improvements are to be made, the first priority must be the
collection, assimilation, analysis, correlation and
interpretation of data so as to achieve a better under-

3.3 (Eds) R Bevier's definition of Programming Methodology
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The apparent ineffectiveness of rate of code-generation as a
measure of productivity may also be viewed from a slightly
different point of view. A recent survey of various IBM
programming locations has revealed that programmers spread
their action over more than twenty classes of activity
spending no more than some 25% to 33% of their time
'Programming'. The nature of the survey raises questions
about the precise value of this result. There is, however, a
strong correlation with Bardain's estimate [BAR64] that a
programmer 'Programs' 27% of his time, whereas an engineer
'Engineers' 45% of his time. Thus the survey suggests that
the programmer is used as a tJack-of-all-trades'. Increased
effectiveness of the programming process may well be obtained
through more effective utilisation of professionals, aided by
support from programming technicians and machines.

In summary it appears that questions of productivity require
investigation of three related areas, the effectiveness of
the total process itself, the utilisation of human and
machine capability and resources in that process, and the
productivity of the programmer when he is actually
programming. All these questions are discussed briefly later
in this report.

1.9 Education

The EDP-education needs of the Corporation and of the country
are also growing at an alarming pace. That growth is needed
to support recruitment and retraining as new soft and hard
systems become available and as tools and support are
developed for the programming process.

It has been claimed that IBM trains half a million people a
year. Other estimates suggest a training need for over one-
hundred thousand raw recruits annually on a national scale.
A high percentage of these receive some of their education
from IBM. Thus education forms a major activity within IBM,
one that appears as an increasing drain on resources. It
may, however, also be viewed as possessing profit potential
and as offering hope for improved productivity and
effectiveness through more discriminating training.

The apparent absence of programming technicians drawn from
high school and two-year college graduates is related in part
to the form of the programming process and the lack of
management experience in the use of this labour source.
Equally, however, it may be related to the programmer
educatioal process. That process is discussed in a latter
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section. At this point the availability, content and quality
of EDP education courses is recognised as a major factor in
the effectiveness of the programming process and in
supporting the growing market.

1.10 The New World

The preceding discussion has been in the most general terms.,
The data on which it was based was all derived in the old,
pre-unbundling, World. It is, of course too early to measure
the effects of the New-World (3.4) environment on growth
rates. However, it may well accentuate the effects of
growth.

When a customer pays for a product or a service he is likely
to attempt an assessment of its value to himself. Some
program products will quickly demonstrate and Jjustify their
cost. Thus encouraged by program charges to evaluate
programs, customers will discover their profitability and
will be encouraged to ask for more. That is the New World
Will tend to increase demand, and hence growth in all the
areas we have considered.

Moreover, to the extent that there is a relationship between
cost and price and in view of emerging competition, it will
be more than ever important to know and control programming
costs in IBM. In this sense the New World posture will
encourage development of appropriate evaluation and valuation
techniques. The resultant pressures can only be beneficial
to the effectiveness of the programming process.

1.11 Summary

In the preceding sections we have concluded that there is a
high rate of growth in programming demand, manpower,
expenditure, complexity and cost. Manpower is already a
limiting resource for IBM customers and therefore for IBM.

The growth-control problems relate not only to the
productivity of programming personnel but to improving the
effectiveness of the entire programming process. Examination
of the productivity question in isolation can even be
misleading. It could lead to the ineffective transfer of

3.4 (Eds) the terms unbundling and New-World were in common
use in IBM in the late 1960s in relation to the IBM
policy decision to charge for software, and its
implementation,
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activities not directly related to programming, but essential
to the release of a reliable product. Similarly, a tool
developed to support the programmer rather than the process,
may render him immediately more effective, but may be less
than efficient or even harmful when viewed in relation to the
total process

Thus, after a brief discussion on the control of growth, this
paper will examine the total programming process; the
function of structure, of men and of machines within that
process. Improvements must bring about reduction in
expenditures, cost, human effort, and the lead-time between
statement of a requirement and delivery of a reliable
porogram. In essence this must be achieved through increased
effectiveness, and interaction for all those involved in the
process.

2 Control of Growth
2.1 Form of Growth

The previous section has indicated the unabated growth of the
programming area. This growth will continue into the future.
In fact, an examination of the programming environment
reveals all the ingredients of exponential growth. Thus, for
example, new function and new system demand, the maintenance
requirement and the impact of complexity all increase as a
function of both the number of systems and the number of
copies of these systems in the field.

Examination of IBM programming population and expenditure
data clearly reveals such exponential growth for the period
up to about 1966. Beyond that time, however, further growth
tends to be linear. It is the purpose of this section to
discuss the mechanisms that have controlled the natural
tendency for unabated growth in the past and to propose
alternatives for the future.

2.2 Environmental Control

Any increase of expenditure in a particular area of IBM's
activity must compete for funds within the totality of IBM's
expenditure. Thus, once the rate of growth of expenditure in
programming exceeds the rate of budget growth of the
environment, such growth can occur only be restricting growth
or even decreasing expenditures in other areas.
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As a business, with an almost infinite potential market for
its product, IBM itself could also grow exponentially. 1In
fact, however, it is controlled in its growth by the national
economy and its own financial resources. Thus the
Corporation has had to control, to linearise, budgetary
allocations to each division. These in turn, have been
unable to give free rein to various growth areas. Thus
despite long queues of work awaiting the allocations of funds
as typified by SDD's 'Outplan' and DP's 'Development Beyond
Target', each division has applied a linearisation to its
programming development activity.

In SDD, for example, the expenditure on programming
development was set at a fixed percentage of the divisional
budget some years ago. This rate was considered reasonable
in relation to other calls on divisional resources and was
not based on an estimate of value. Nor could it be, since
reliable forecasting techniques were not available in the
software area.

2,3 Open-Loop Control

In summary then, the growth control necessitated by resource
limitations has been applied to programming expenditure and
manpower growth through the medium of open-loop, budget,
control. In the 0l1d World the concept of profitability did
not exist. Budget allocations did not and could not reflect
the quality, value or profit potential of a program or
programming system. Market needs and demands as determined
by forecasting activities, were expressed exclusively in
terms of impact on hardware sales. the concepts,
technologies and tools required to establish sof'tware 'value'
and hence to control the programming process by means of a
self-regulating feedback procedure did not exist. Nor was
there any incentive for their development in an environment
where business policy regarded investment in software as an
overhead cost.

2.4 Closed-Loop Control

The New-World pressures following unbundling create a visible
need and the state-of-the-art should now progress, permitting
a gradual transition to closed-loop control. Under such
control, feedback derived, for example, from the potential
'value' of a program must play a major part in the decision
procedure that determines its initiation and managment of its
development. 1In this context 'value' is ultimately measured
by the direct and indirect profit potential of the program.
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It will be related to functional content, implementation
cost, performance, flexibility, changeability, reliability
and the market needs that exist or can be created.

The incentive comes from the new requirement for controlled
costs of programming products. Thus control must cause more
selective and profitable development, the abandonment of
unsuccessful programming efforts. This represents a major
step forward over a control technique dependent primarily on
human intuition and viewpoint. These may be objective but
equally often will be parochial; coloured by local needs,
prejudices and interests.

2.5 Base Control

Applying 'value' feedback will not significantly impact that
part of the overall trend to growth caused by justifiable
demand and increased complexity. An additional mechanism is
therefore required. This lets the output of the programming
process grow at its natural pace, while limiting excessive
growth in expenditure, manpower and cost. It requires a
change in the relationship between the input and output of
the programming process. In terms of a mathematical model,
the alternative to forcibly changing the form of a transfer
function by constraints and feedback is to retain the
exponential form but to change its coefficients. This may be
achieved by changes in the environment and in the level and
training of personnel (labour costs), changes in education,
training and management (individual and group productivty)
and changes in methodology and support (process structure,
tooling, and mechanisation).

This potential has been recognised within IBM. The 1level of
expenditure dedicated to programming support, however, falls
far below the support level provided in other areas. Thus
techniques and tools development in the Components and
Manufacturing Divisions are funded at a level and order of
magnitude larger in relation to the respective divsional
development budgets, than the Corporate programming-support
strategybudget in relation to SDD programming development
expenditure in 1969. In fact Corporate expenditure on
programming methodology and support represents a minute
fraction of expenditure in the programming area as a whole.
This already low relative expenditure is to be still further
reduced as in Figure 6.

At this low level of expenditure, the main thrust has, in the
past, been directed to the solution of local problems of
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immediate urgency. Attempts to structure, mechanise and
support the total process, using computer technology wherever
appropriate, have not been carried through. No examination
has been made of the programming process itself so that
modern technologies of data translation, manipulation,
storage, display and communication, can be exploited to the
fullest extent. (3.5)

The present programming process is a linear sequence of
events, some of which have been individually improved.
Improving some of these however, need have, and has had, no
dramatic impact on the level of activity or rate of growth.
Hence external controls have had to be invoked.

2.6 The Present Study

In the preceding sections we have outlined three approaches
that individually or in combination can control the
programming environment and render the programming process
more effective. The first two force the linearisation of a
growth potential that is naturally exponential.

At the present time control is essentially open-loop with
budget allocations and managerial negotiation the main
forces. It would clearly be desirable to replace such
procedures by a self-regulating economic mechanism. This
requires the development of insight into the programming
process and market needs and the development of forecasting,
evaluation, measurement, and management procedures,
techniques and tools.

These very problems must have been widely discussed over the
past few months in connection with the unbundling process.
Their solution can make a fundamental contribution jto
improving the effectiveness and profitability of the
programming process. Considerable effort will, however, be
required to collect, analyse, correlate and interpret data
and to learn how to use the resultant insight to the best
advantage.

Ultimately, however, satisfaction of the demand that exists
or that can be created for IBM software systems and products,
demands modification rather than linearisation of the

3.5 (Eds) We emphasise once again that this paragraph (that
is, the entire paper) was written in 1970. Only now
(1984) are these points beginning to be widely
understood and accepted.
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exponential growth, despite its explosive trend. Such
modification will result from an accelerated introduction of
structured mechanisation to the total programming process.
In the past the approach to mechanisation has been piecemeal.
To determine whether there exists an alternative, what such
an alternative might require and what projects and activities
might be initiated at the present time, we now choose to
discuss the programming process under the five headings of
methodology (3.6), tools, languages, management and
education.

3 Methodology
3.1 The Basic Need

Methodology is required wherever there is an involvement with
the design or control of interacting systems. In the case of
software products, systems of people interact over an
extended period of time, within a business system, to produce
a computer system based on a hardware subsystem. The total
system will be judged in the real world by comparison with
pre-set objectives and competitive products. The methodology
must aim to produce decision taking and optimisation
procedures that are system-oriented. This despite their
localisation in space, time and people; despite the lack of a
s0lid theoretical base.

An appropriate methodology will also yield all the advantages
of' structure for the process and for the resultant system.
In particular it yields understanding and hence control of
the development process itself. Only through such insight
can one hope to transfer experience effectively from one
system-implementation to the next.

3.2 Extremes in Methodology
3.2.1 Simple Programming Methodology

There is no single methodology of programming. Clearly there
is a distinction between the procedure for writing a simple
program fulfilling a specific need and that needed to produce
a programming systems that is to address the potential
requirement of an entire application area.

3.5 (Eds) The correct word here and in all that follows
should be 'Methods'. Methodology is 'the science of
methods"' .
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The former case is typified by a well-defined problem,
limited objectives, an obvious algorithm, self-evident
program structure, an appropriate language, and a one-man or
small group effort. These conditions are realised because of
the nature of the problem and because of limited expected
usage and life. Thus, the methodology is straightforward.
Select an algorithm for the solution and an appropriate
programming language. This will probably be high level and
machine independent. If the choice 1is available, decide
whether to proceed interactively using a conversational
system or under batch mode. Write, debug and run the program
according to the simplest possible flow diagram and using the
most readily available compiler.

3.2.2 The Real World Problem-Systems

This simple picture changes with the intrusion of real-world
complexities. The objectives of a programming effort that is
to serve a general purpose function cannot be uniquely
determined. Even when a particular set has been adopted they
are not usually formally defined. Over the period of
development and implementation they are likely to change (in
particular to increase in number and complexity). Thus
programmers are essentially aiming at a moving target.

The size of the effort and the lead time that can be
permitted are too large for one individual alone to be
assigned. The work becomes a team effort which brings with
it problem of interfaces, communication, standards and
management. Program structure, sub-system assignments, and
algorithms will have to be selected. Many of the details
will not be pre-planned but will be left to bilateral
negotiation or to individual implementors. Since the program
is expected to be long-lived, its operating environment and
the demands on the program will inevitably change. Thus the
program will aim at a general purpose structure. Foresight
is, however, always inadequate and thus the program must be
changeable and expandable, often by others than the original
programmers (3.7).

The system will be required to be efficient in terms of
running time and storage space, since it is expected to be
large and will hopefully be in frequent use over a long
period of time. Thus a decision may be made to code in

3.7 (Eds) Notice here already the first roots of the 1981
SPE classification and of Evolutions concepts that nominate
the much later papers.
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assembly language, mistakenly in this author's Jjudgement,
The language problem is discussed in a latter section. We
remark here simply that using an assembly language removes
structure, discipline, clarity and readability, compounding
the opportunity for error and the difficulty of change.

The problems outlined are really typical of these that arise
in the design of any large system. A system assembled from
its constituent parts achieves a performance determined both
by the performance of individual subsystems and by the
interactions between them. Local optimisation of each
subsystem cannot ensure system optimisation. In fact
'Murphy's Law' (3.8) appears to guarantee that the final
system, when assembled, will be far from optimum.

In general a system is designed by starting with the basic
requirements and applying a breakdown or outside-in process
that ultimately yields a blueprint in terms of standard
components. Once the design has been completed, the
implementation, which pProcesses and assembles materials and
components in inside-out fashion, can commence. This system
design procedure cannot be presently applied to programming
systems for two main reasons. First, analysis, measurement
and evaluation techniques that permit such a design process
to be undertaken are only now beginning to be available.
Second, standard components of a sufficiently high-level to
make the concept meaningful, are not available. In
programming, the design process carries through to the
ccmposition of instruction sequences, coalescing the design,
implementation, and testing phases.

The sequence of activities that take the original concept of
a program down to its final tested and evaluated
implementation is thus, by its very nature, continuous. If
the process is to be improved it must be analysed and
structures as a whole . Only then may it be divided into
subactivities for the development of specialised support
tools, processes and management structure.

3.8 (0rig) We do not really meed to appeal to Murphy's Law.
If each subsystem has been individually optimised, by
definition it can perform no better than when operating
in tsolation. Thus interactions can only degrade
performance. Many subsystems degrading simultaneously
in pseudo-random fashion cannot be expected to produce a
near optimised system.
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3.3 Present Methodology
3.3.1 The Phase Review

Any programming methodology now existing has developed in ad
hoc fashion over the years. The simple case of Section 3.2.1
in which an informal problem statement is directly translated
into, say, a flow diagram and a FORTRAN or COBOL program and
then compiled on a machine-independent compiler, will not be
further discussed. We merely note the continuing need to
develop machine independent, expandable languages and their
processors, for ready adaptation to the needs of particular
applications.

The methodology of systems programming in the more realistic
environment outlined in 3.2.2 is conveniently discussed in
relation to SDD's development guide. This linear set of
procedures is based on a series of technologies;
architecture, design, implementation, test, and so on. In
particular the guide defines the details of the Phase Reviews
that governs the development, test, announcement and release
of quality hardware. The phase-review procedure has however
failed to fulfill the same function in the software area.

Part of this failure is undoubtedly due to the intrinsic
fusion of the design, implementation and testing processes in
programming. Equally, it is due to the absence of techniques
and tools that would permit technical evaluation of work
completed, in terms of performance and cost forecasts, and
accurate assessments of future resource requirement for
completion of a particular programming effort.

In the absence of such skills the Reviews cannot lead to
meaningful technical judgement of a programming project.
Perforce they become a management tool that records past
resource investments and determines a compromise between the
functional content, core requirement, announcement and
release dates, and the amount of resources to be committed to
a program at that juncture.

3.3.2 Methodology and Structure

The preceding implies the need to replace existing
unstructured technology-oriented programming methodology by
an overall total-process-oriented methodology. This is seen
as providing a structure to the process. This structure must
be designed to guide the programming process and enable it to
achieve any desired combination of performance, reliability



3. Programming Process 63

and cost for a minimum in human effort and maximum machine
support. After all the cost of human effort is on the
increase, the supply of human effort is limited and the
contrary is true for machines.

By creating an appropriate structure for the process itself,
complexity and cost are reduced, and human and machine
effectiveness simultaneously increased. These benefits are
important in their own right. They can also be expected to
lead to significant improvements in System reliability.

There is also a strong relationship between the structure of
a process and the structure of the system it produces. The
impact of system structure on performance, cost,
changeability and reliability is being increasingly
recognised. It is too large to be left to chance. The need
for restructuring the total manufacturing process follows, if
the system structure at all levels of detail is to be a prime
attribute and not an uncontrolled consequence of
environmental conditions. At the present time and for the
simple case of section 3.2.1, program structure is imposed by
the language used, any ancillary conventions, the algorithms
employed and the compiler. For the larger programming
system, any structure that exists is largely a reflection of
the management hierarchy that produced it.

3.3.3 Support Activity

In discussing methodology, reference must be made to current
programming support activity. Examples of support available
or under development are discussed in Section 4.2, In
general, under pressures of local priorities and budget
restriction, these develop into support for the status quo,
serving local needs within the framework of current
procedures. In the future, support activities will have to
be be system and total process-oriented, support pre-planned
system structure and provide maximum opportunity for
mechanisation.

3.4 Embryonic Methodologies

The previous section has outlined the case for the develop-
ment of a process-oriented programming methodology. Fundam-
entally that process may be viewed as the translation of an
application or function concept into a working program (3.9).

3.9 (Eds) 1984 Ital. Note the close correspondence between
this definition and the present day view. Current
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The urgent need for an integrated set of technologies that
will help in the solution of the problems posed by this
translation has been widely recognised. The various
approaches that have been proposed cannot be detailed here.
Table 3 lists some examples, and preliminary study of these
exploratory processes provides the conviction that it is
meaningful to discuss a total system process.

Management itself has taken a significant first step in the
development of a total process by the breakdown of the
development process into a series of missions. However, it
must be recognised that this by itself is insufficient. The
real problem lies partly in the formal and meaningful
definition of missions and mission interfaces. Even more,
the problems lie in their containment and management and in
the subsequent breakdown of missions so defined into
submissions, sub-submissions and so on. This breakdown
process into a tree-like structure can be generalised at
higher levels but must also be particularised for each
individual system. Thus the mission-concept initiates an
outside-in design process; it begins to develop both a
structured process and the structured system that it can help
to produce. This concept of a tree-like structure for both
process and system, arising from an outside-in design
procedure underlies most of the other system-oriented design
concepts of Table 3.

Another example of an embryonic software development
methodology is the multi-level modelling concept developed by
Zurcher and Randell of the IBM Research Division [ZUR6T].
Their work has already been repeated and expended [PAR6T,691.
The basic approach recognises the futility of separating,
design, evaluation and documentation processes in software-
system design. The design process is structured by an
expanding model seeded by a formal definition of the system,
which provides a first, executable, functional model. It is
tested and further expanded through a sequence of models,
that develop an increasing amount of function and an
increasing amount of detail as to how that function is to be
executed. Ultimately, the model becomes the systemn.

An even more significant contribution made by the Zurcher-
Randell concept was that such a model can simultaneously
contain several representations of the same function or set
of functions of a system at different levels of abstraction.

terminology woulds howevers use ‘transformation' rather
than 'translation'.
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Table 3 Embryonics Methodologies

Configuration Management Airforce/J Aaron FSD
Mission/submission Concept W S Humphrey SSD
CP 67 N Rasmussen DP
Syntax-oriented Documentation H Mills FSD
Architectureal Systematics H P Schlaeppi RES
Multi-level Modelling Zurcher & Randell RES
Sodas D Parnass Carnegie
Software Engineering Garmisch Conference NATO
NASA Project Engineering S —

There are a number of advantages to such multiple
representation, and it is they that really demonstrate the
major advance represented by the proposed methodology.
Suffice it here to say that the multi-level modelling concept
once again integrates the various activities that make up the
software system development process. Evaluation must proceed
step by step with design and documentation and the various
stages of design and implementation are replaceable and
repeatable.

Outside IBM there has been widespread recognition of the need
for a new discipline termed 'Software Engineering' [NAT68],
strongly related to systems engineering. The potential for

the development of such a discipline exists but awaits
intensive, directed research and development effort.

3.5 Further Work in Methodology

The common element of the embryonic methodologies listed in
Table 3, is integration of the technologies currently
employed in the programming process. They regard a program
as a system requiring to be developed from a formal statement
of its objectives and show a strong tendency to use modelling
and simulation as the main tool for achieving this end.
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In fact it is becoming recognised that the programming
process needs to become more and more like system design
activities in other fields. Thus there is a prima facie case
for supporting a study of general design procedures and
relating these to the particular requirements of the
programming process. In the set of project proposals arising
out of the present study it was suggested that an attempt at
formal description of the process, for example, could lead to
the improvement of the process. In addition many of the
listed methodologies and probably others available within and
outside IBM, are worthy of further development and exposure
in real development projects.

In view of the time period that must elapse before total-
process oriented procedures could be introduced it seems
important to improve present phase review procedures as
applied to programs. In particular as analysis, measurement
and simulation techniques for the software area become
progressively available, it must become a requirement that
the procedure includes not only resource-oriented data and
assessment. It must also produce judgements on the technical
attributes and expected performance of programming products
(3.10). Clearly the initial specification must thus also
include performance and test oriented data.

The need for development and standardisation of measurement,
analysis, evaluation, testing and forecasting techniques and
their associated tools cannot be over stressed. All play a
fundamental part both in the feedback control discussed in
section 2, and in the development of a meaningful system-
oriented methodology. In addition the availability of
standard components (or the logically equivalent systems
programming language) at a sufficiently high level will be a
significant element in the structuring of an effective
methodology.

4 Tools

4.1 Tool-Oriented Processes and Process-Oriented Tools

When first introduced computers did not make a significant
impact in the commercial world. The real breakthrough came
only late in the 1950's when institutions stopped asking,

'Where can we use computers?' and started asking, 'How shall
we conduct our business now that computers are available?!

3.10 (Eds) Now termed 'validation'.
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In seeking to automate the programming process the same error
has been committed. The approach has been to seek possible
applications of computers within the process as now
practiced. The Clear-Caster project which initially was an
exception, has in the course of time, had to develop in the
same fashion due to the day-to-day pressures encountered in
the programming effort. Thus the problem of increasing
programming effectiveness, through mechanisation and tooling
is closely associated with the overall problem methodology.
Its solution calls for a review of the process itself so that
maximum benefit can be had from the use of computers,

4.2 Present Tools

At present there exist many uncoordinated tools in many
different areas. Within IBM the Clear-Caster system
maintains the main thrust. Tt has concerned itself primarily
with problems of communciation and of programming-data entry,
storage, retrieval and display.

Other systems modelling, analysis and evaluation tools are
also available or under development [SIM68], [LAC68]. In
addition there exist various testing, documentation,
management and support systems which can make significant
contributions to the process as now practiced. The test case
generators under development at Hursley, for example, seek to
address the problem posed by the need to exhaustively test
every large system.

These many tools support each other functionally.
Unfortunately, however, their specification and development
has been essentially uncoordinated so that they cannot
communicate or pass data to each other. Often the data
generated by them cannot even be correlated. Moreover, use
of these tools is not universal but depends on the initiative
of local or sub-project management.

4.3 Tool Development
4.3.1 Integrated Families of Tools

Specification and development of a coordinated set of tools
supporting the total programming process must, as had been
seen, consider the structure of that process. The present
viewpoint of a long-range goal visualises a growing model,
that serves as its own progressive documentation. It is
seeded by a formal specification that develops as a result of
human and machine manipulation, into an evaluated system,
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possibly executing on a model of future hardware, and running
under an interactive, conversational system accessed via a
communication network.

The present report must of necessity be more modest in its
aims. It seeks no more than to provide a preliminary
judgement of what such a family could include and on what
technologies it would be based.

4.3.2 Interactive Programming

Even without having clearly fixed the methodology, and
structure of the total programming process, intuition and
practical experience both suggest that a major class of tools
arise from the use of a computer to provide or support the
functions that the process requires. Moreover, since in one
fashion or another, the system will have to communicate with
all the participants in the programming process, it is highly
probable that an interactive capability will increase
effectiveness. Thus the programming tool includes hardware
such as alpha-numeric terminals, printers and display units
and the software that links them to the computer, provides
appropriate function and integrates them into a total support
system.

The system will be used by many people sharing the
information that represents the developing design and
implemetation. These people will often be working in and
accessing the resultant data-base from widely separated
locations and connections in the system must be via a
communication network. Thus the programming tool visualised
belongs to the family of data-based, communication based,

conversational systems recognised widely as the systems of
the seventies and eighties.

A total-programming-process-oriented system will include
facilities for specification, structuring, development,
entry, filing and debugging of the program material (3.11).
Tt will provide for execution of program material and for
monitoring, measurement and analysis of its performance.
Execution of program elements must be possible in isolation

3.11 (Eds) The reader will notice the total absence here or
anywhere in the papers of any reference to
'‘verification; or 'correctness proving'. Clearly the
author had not encountered the concept anywhere in his
study, although Dijkstra's paper on constructive
correctness had already been published [DIJ68].
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or linked to other available elements and possibly running
under some system other than its intended host. 1In addition
the system must provide, communication between members of the
programming team, control by its management, detection of
deviation from Specifications, conventions or performance
objectives, and dissemination of the material within and
outside the programming group is provided by the system.
That is the machine has become the composing, editing,
documentation, display, control and communication centre of
the entire activity (3.12).

4.3.3 Languages

The languages used by the programmer during the programming
brocess can be considered as his most fundamental tool.
Specification, structural development and coding of program,
function and data sequences can all be considerably aided by
the provision of appropriate languages.

The topic of language development and its place in the
programming process is really the subject for an independent
study. Some aspects of the topic are treated in the next
section. We note here merely that the provision of tools and
support is closely related to the provision of languages.
Thus, for example, any computerised tool requires at least a
set of commands for its use.

4.3.4 Productivity Gains

The concept of an interactive programming system is, of
course, not new. Such systems exist already and have been
used. Most of the experimental data that is available
[GOL69] refers to one-man efforts in which communication
between people and management control are not prime factors.
All the published studies appear to indicate that in this
environment, variations between programmers are of far more
consequence to productivity than any improvement due to the
use of an interactive programming system. However these
conclusions are not relevant to the more complex systems
programming effort. In the latter sphere, the only available
numerical data comes from Bell Telephone Laboratory
observations on their use of TSS/360. They claim that over a
number of projects they have been able to observe gain
factors of two to three in lines-of-code generated and
debugged by programmers in unit time,

3.12 (Eds) 'Programming Support Environment' in today's
terminology.
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The particular gains that BTL claim may be disputed for a
number of reasons. We restrict ourselves, however, to two
comments. On the debit side one observes that the factor of
two or three is disappointing. What is needed is an
improvement of one or two orders of magnitude. On the credit
side however, we note that BTL have really been using TSS/360
in rather primitive fashion. Thus their results suggest that
a considerably greater improvement could be obtained from the
development of a system specifically oriented towards the
programming process.

4.4 Tools - Conclusion

In the long run there is much to be gained from the
development of a process-oriented programming system which
supports and is supported by a central processor, filing
facilities, terminals, communication and display hardware.
For the moment use can also be made of existing programming
systems such as Clear-Caster, TSS/360 or APL/360. Any such
efforts should be monitored and measured so as to obtain
much more data about both effectiveness and about the ways
that people use such systems.

In addition to a determination of the direct impact of
interactive programming on productivity, it is of
considerable interest to qualify and size its indirect
effect. For example, to what extent does use of an
interactive programming system lead to a tendency to replace
analysis by experiment? Does it cause the programmer to
plunge into composition and debugging rather than to adopt a
more carefully planned approach to these activities?

Equally significant 1is the effect, both positive and
negative, of time and of familiarity. As the novelty of the
terminal wears off how does the usage pattern and utility
change? Observation, measurement and analysis of human
behaviour in the programming process will enable
determination of these factors. Feedback can then be applied
to improve both the support tools and the process.

A major function of the interactive system is the capability
it gives for communication and management control. Thus any
controlled experiment which would attempt to measure the
effectiveness of programming support systems, must be carried
out on a large scale. That is it must be large enough to
ensure a requirement for communication at, at least, two
levels of management control. Such an experiment could, for
example, seek to implement the same system twice in two
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different groups each consisting perhaps of 30 to 50 people.
One group would employ traditional batch method of computer
usage, the other would access the computer interactively and
have functional support available,

We note here that there can be no doubt that machines will be
increasingly used in the pProgramming process. The question

system used in batch processing mode with remote job entry.
The alternative, of course, is to let the individual
programmer spend all or most of his time at a computer
terminal,

The answers to some of these breliminary questions will
determine the magnitude and nature of the resources that
could and should be applied to the development of a total-
process-oriented programming support system.

5 Language
5.1 The Aspects Discussed

This section addresses briefly three further aspects of the
relationship between the programming process and the
languages used in that process. It discusses in general
fashion the language-level at which system-programmers can
work and the formal specification of programming systems. It
also comments on the semantic wealth of most formal languages
and the impact this has on the structure and activities of
the programmer population.

The merits and demerits of specific languages and the
relationship between programming, command and job control
languages are not considered here. Nor do we discuss the
single versus multiple language concept or the properties of
expandability and changeability. It is clear, however, that
in a rapidly changing and growing environment the latter must
be attributes of any formal language, much as they are
attributes of all natural languages.

5.2 Language Level
5.2.1 Present Practice and Experience
Up to the present time most systems programming has been done

in assembly language, though the use of BSL [MEL67] has begun
to spread in IBM. This is contrary to the trend in
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applications programming where FORTRAN, COBOL and, to a
lesser extent, PL/1 have effectively taken over the field.
Outside of IBM some high-level systems programming experience
has been obtained both in universities and in industry.
OQutstanding among those are Multics at MIT using PL/1, and
the operating systems for the B5500 and B8500 computer. The
latter were entirely based on the use of a Burroughs
derivative of ALGOL.

Success in the MIT experiment was limited largely Dbecause
PL/1 was selected at a time when appropriate processors were
not yet available. The participants in the Multics
experiment are nevertheless convinced that any future system
would again use PL/1 [COR69].

The Burroughs experience in the use of ALGOL for systems
programming was an unqualified success. Some of this may be
attributable to the fact that their hardware architecture was
related to the structure of ALGOL. On the other hand, that
argument may be reversed. Accepting the desirability and
inevitability of using high level languages for systems
programming suggests changes in hardware architecture and
design so as to expedite those high level instructions or
instruction sequences that are frequently executed. This is
a trend which is complementary to and in accordance with the
trend toward systems-programming languages, standard
components and LSI technology.

5.2.2 Advantages and Disadvantages

Opposition to the use of high-level languages has been based
on the principle of conservation of execution space/time. It
has been argued that programs written in other than assembly
language require more core-space and run more slowly. But
storage and hardware costs are going down, machine speeds are
going up, and the possibilities of hardware implementations
of system function has become very real. In addition skilled
human resources are becoming scarcer and more expensive.
Thus this arguemnt appears fatuous.

Table 4 presents some potential advantages to be expected
from the use of higher level languages. Many of these have
been demonstrated in practice.
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Table 4
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Advantages of High-level Systems-programming
(see note 3.10)
PRODUCTIVITY Rate of code generation

substantially independent
of language level.

SIMPLICITY OF LEARNING

At least of usable subset

IMPOSITION OF STRUCTURE

CONFORMITY OF STYLE

Through language conven-
tions

READABILITY Consciseness, clarity,
standardisation of style.
DEBUGGABILITY Through structure and

readability

ERROR GENERATION

Whole classes of error
removed

ERROR DETECTION

During preprocessing

CHANGEABILITY

Readability, spreading
change, structure.

HARDWARE INDEPENDENCE

In~-range compatibility

ARCHITECTURAL INDEPENDENCE

Generation compatibility

SELF DOCUMENTATION

Through increased

readability

RELIABILITY

Consequence of all the
above.
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5.2.3 BSL

Within IBM various independent efforts have sought to develop
and introduce high level or systems-programming-oriented
languages. In particular BSL [MEL67], has now been in use
for some two years in a number of groups, where it has been
enthusiastically received and effectively used by those who
have made the effort to learn and use it. Thus the language
could represent a significant step forward for IBM.
Conceptually intended as a systems programming derivative of
PL/1, it has, however, developed more into a superset of
assembly lanuage with PL/1-like Macros. In particular the
language facilitates the descent into assembly language and
thereby obviates many of its potential advantages.

BSL has not yet been widely accepted within IBM. The
principle objections are seen as essentially invalid at a
time when human resources, the lead time of progranm
production, and the growth of expenditure, costs and
programming load are critical problems of IBM programming
activity. Thus as a first step it would seem that the use of
BSL as the main system programming language should be made
mandatory for all programming activity as quickly as adequate
support can be provided and as quickly as the necessary
educational training facilities make its general adoption
feasible.

5.2.4 Advanced Systems-Programming Language

BSL is not the be-all and end-all of systems programming
languages. There is room for the development of machine
independent languages at a higher level than BSL, possibly in
association with developments in machine architecture. Such
languages are being developed in various places. For
example, seven such languages are being developed in Japan
[KEN69]. Six of these are augmented-subsets of PL/1, some
with, some without, the facility for descent into assembly
language segements.

Once again there exists the alternatives of a specific
systems-oriented language, or the use of a general language
like PL/1. As a first step in this determination more
insight is required into the content and structure of
operating systems so as to determine what the oft recurring
elements are, how they are related, and their interconnection
and communication patterns. Thus one needs to analyse
existing programming systesm functionally and structurally.
This can help determine the semantic and syntactic facilities
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that are required of a systems-programming language and their
functional and primitive content.

The isomorphism that appears between programming languages,
standard components and hardware mechanisms has already been
mentioned. It is in fact merely a reflection of the design
choice which has always been recognised as being possible
inprinciple, and which, in this age of LSI, is becoming a
practical reality., This makes implementation of almost any
function feasible, though not necessarily economical, in
software, hardware or in some intermediate firmware
technology. Hardware realisation is essentially
interpretative. Thus the isomorphism Yields the further
insight that software realisation may be executed
interpretively or by means of a compilation activity.

5.3 Linguistic Wealth

From generation of a functional concept through to the
production of machine-controlling code, the programming
process consists of a Sequence of text compositions,
interpretations and translations. A design decision is taken
whenever or wherever in this process, a choice is made
between alternatives. This choice may be made explicitly by
a human designer, but can equally be implieit in, for
example, the selection of a compiler. Such alternatives
occur in the selection of languages, primitives, names,
structures, Sequences, algorithms and so on which, in various
combinations, may dynamically achieve superficially
identical functional capability confirming to the stated
objectives, Cost-performance-wise, and even functionally,
the resultant implementations may, however, be very
different, for example, in the interpretation of unstated or
ambiguous objectives.

Richness is a feature of present languages. They all possess
many synonyms, near synonyms and synonymic syntactic
structures.. It is the wealth in this and the algorithmic
area that makes automation of the software design process so
difficult. Equally it turns each participant in the process
into a designer.

Hence the reduction of lingusitic redundancy is a
brerequisite to the extension of automation in the
programming process. Equally it is required for the
development and utilisation of technician-like skills in an
area now almost exclusively populated by professionals.
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In summary the total programming process is rich and
redundant. There are alternative formulations, languages,
algorithms, Dprocessors, implementations, structures,
sequences and expressions. Functional and performance
objectives are rarely self evident, unique or completely
defined. Thus every programmer becomes a coder and every
coder a designer. This is an encumberance when the prime
need is to get an acceptable program running and out into the
field. Imposition of linguistic conventions and restrictions
is one of the steps that can improve the situation.

5.4 Formal Specification (3.13)

The third topic to be addressed in the language area is that
of formal specification languages. This too is a topic which
nas been widely discussed over the past few years [cop6T]
though progress has been disappointing. It would appear that
one of the main resons for the relative failures has been
that the specifications so produced were not, in general,
machine processable. In other words formal specification was
viewed as means for communication between humans rather than
as an input to a machine process.

A specification must address function, perfomance, structure,
algorithm, test procedures and test-cases. Development is
needed in all these areas. Languages such as PL/1 and
APL/360, and techniques such as decision-table functional
definition [DRI68] and program algorithm specifications must
be evaluated in relation to the specification and initiation
of a programming activity and its ultimate objective. In
terms of the total automated processs formal specification is
the first step (3.14) and represents an area for research and
development activity.

5.5 Languages - Summary

The linguistic area is clearly one that plays a major part in
the development of the programming process. Many areas of
potential research and development activity have been
considered in the course of this study. A common starting
point for all areas of development is the creation of
program-system-models that aim to reveal the semantic and

3.13 (Eds) Formal specification is one of the buzz-words of
today's search for advance in Information Technology.
Yet the need and potential though not its role in
verification was recognised over 15 years ago.

3.14 (Eds) Italicised 198L.
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syntactic structure and primitive content of existing
programming systems at various levels. The analysis would
aim to identify primitive elements and syntax for programming
systems and languages and future hardware structures,
components and their interfaces.

As an interim measure it also appears desirable to define
restricted sub-sets of existing languges, for use by high
school graduates and non-professional personnel. The
objective here is the development of a class of specialist
skills identified with programming technicians and support
personnel.

There exists also a need to develop manipulatable, machine
executable, specification languages that permit the complete,
formal, specification of programming systems, performance
objectives, test procedures, and test cases.

The processors that compile and otherwise manipulate the
programming texts are themselves an intimate part of the
area. Thus one must also include the development of
translation techniques and the relationship between languages
and the hardware on which they run as an area of concern
within the present framework. In particular with the ever
growing trend away from using machine (assembly) languges for
program composition, a prima facie case can be developed for
a total re-examination of machine language attributes.

Present machine languages are relics of an age when the main
requirement was related to usability. 1In the future the
fundamental qualities of machine languages will relate to the
ease and reliability of design and change of both languages
and compilers or other processors, the efficiency of
execution of the processors, and run-time efficiency. At the
other extreme machine language designers must consider
implementation technologies such as LSI within a total system
environment. The latter makes table-look-up for example, as
primitive and vital a function as division, say, and hence a
candidate for implementation as a machine instruction.

6 Management
6.1 Present Practice
In view of the magnitude, complexity, duration and changing

objectives of large scale programming activities,
hierarchical project managment plays a vital role. The first
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attribute of the present procedure is its linearisation. The
sequence inludes market justification, architecture,
specification, design, implementation, integration, test and
so on. Each of the sub-processes has assigned to it a
manager or management group which takes over from preceding
groups, initiating activity which at that stage becomes their
responsibility. Overlapping responsibilities do occur and
the need for communication between groups is recognised but,
even so, often left to chance contacts.

When a new system is being planned, the first step tends to
be the assignment of prime management responsibility to one
individual. In the case of a large system, an initial
breakdown into a number of partitions or subsystems is
followed by the appointment of managers to each of these.
This is followed by the allocation and structuring of the
total resources to be applied to the project in accordance
with the judgement of the management heirarchy that has been
created.

In this procedure the emphasis is on the creation of a
management system structure and of subsystem interfaces. The
content and boundaries of the activities of a group will be
controlled by the manager's interpretation and judgement, and
as a direct consequence of his negotiation with the
management hierarchy and his peers. Moreover as the various
phases of a total activity are completed, the management node
responsible for each particular phase is dissolved and its
personnel reassigned. This removes continuity and assignable
responsibility from the process.

The consequences of this procedure are apparent.
Communications within a group, and more importantly, between
different groups, tend to be random and a matter of chance.
Personal relationships between individuals exert a strong
influence on final system structure, distribution and
content. Optimisation, if any, is local within each group.
Thus the system becomes an assembly of its parts, amorphous,
redundant and with random, largely invisible, communication.
Attempts to debug, improve or enlarge the system become very
difficult tending to cause its collapse. Moreover, since
reasons for decision are not normally documented and the
organisational structure is constantly changing, corrective
action following the appearance of weaknesses or faults is a
major organisational and technical problem. All decisions
will be primarily based on time and space-local
considerations.
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The preceding analysis may appear pessimistic and
exaggerated. Some details may be wrong, others omitted. The
history of IBM software projects, the fact that systems have
had to be massaged into shape over a series of releases,
rather than designed and implemented as a finished project,
suggests that in overall effect the analysis is reasonably
accurate.

6.2 Dynamic Management Structure

There exists an alternative to the above procedure. Within
the framework of the total programming process the
responsibility for a total system through all the phases of
its specification, production and tests may be given to one
management node. Initially it will be given to one
individual who initiates a dynamic breakdown procedure that
identifies, develops and evaluates system function and
implementations at ever greater detail. As the content and
peotential activity increases, personnel are added. As
system structure is created, managers take over the
reponsibility for subsystems, sub-subsystems and so on.

As each group completes its assignment, continuation of the
activity is assigned to the same group or to others more
expert in that particular area. The process becomes the
driving force with managers allocated to the nodes of a tree-
like structure as the possibility and need arises. Thus all
human and automation resources, including the managers, are
seen as active elements of the process. They are allocated
specific tasks and at the appropriate time leave the
operation or receive new assignments. Notice that the tree
structure grows and shrinks only by changes at its
extremities. Thus while individuals will join and leave the
project, structural continuity with the past is maintained.

This idealised description of dynamic management remains to
be developed and demonstrated in practice. We believe that
it can lead to a structured system whose elements and sub-
elements are likewise structured. Interfaces can be
standardised and communications between the subsystems and
sub-subsystems forced into the general structure through the
adoption of appropriate conventions. The consequent system
may be redundant since any structure requires additional
components to shape and support it. This redundancy,
however, is the price paid for the advantages of structure,
particularly in the areas of continuity, changeability,
growth power, teachability and reliability.
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This approach to management depends for its implementation on
the development of a total-system oriented methodology. A
related problem is the development of a superstructure that
correlates the management hierarchy of a particular project
with other projects going on simultaneously within the same
organisation. Direct extension of the dynamic concept
appears possible. Clearly, however, the present discussion
represents an initial indication of the preferred direction
of thrust in developing systems-development management. It
does not in itself present a solution to all the problems
which will be encountered and resolved through practical
experience.

T Education

The concepts and problems of education permeate this entire
report. The first section suggested that shortages of both
manpower and educational resources are important consequences
in IBM customer offices and, therefore, by IBM. Thus IBM
must examine the possibility and consequences of expanding
its educational facilities and the reservoir of people from
which it draws its supply of programming associated
personnel. Equally it requires an examination of student
selection mechanisms, to ensure a much higher level of
success in basic programming courses. Currently the dropout
rate may be as high as 33%. An examination of course content
is needed both to achieve a higher percentage of student
survival and so that students may in their subsequent
activity apply a far higher proportion of that content. The
last comment refers to an observation in real life that many
programmers use no more than, say 10% of the total
capabilities of the systems or languages to which they have
been exposed. Moreover their colleagues and management have
no way of knowing or controlling which 10% they use.

The practical absence of programming technicians is closely
related to these educational problems. The recruiting,
education and absorption of people who may not have had the
same breadth of education at the college level but who, as
demonstrated in practice can acquire programming skills, has
a very definite place in the process as now practiced. It
will find more a