

Program Evolution

Processes of Software Change

Academic Press Rapid Manuscript Reproduction

This is volume 27 in A.P.1.C. Studies in Data Processing

General Editors: Fraser Duncan and M. J. R. Shave

A list of recenttitles in this series appears at the end of this volume

Program Evolution

Processes of Software Change

Edited by

M. M. Lehman

Department of Computing
Imperial College of Science and Technology

London, England

L. A. Belady

Software Technology
MCC

Austin, Texas, USA

1985

ACADEMIC PRESS
Harcourt Brace Jovanovich, Publishers

London Orlando San Diego New York
Austin Montreal Sydney Tokyo Toronto

COPYRIGHT © 1985 BY ACADEMIC PRESS INC. (LONDON) LTD.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR

TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC

OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT

PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road

LONDON NWI 7DX

United States Edition published by
ACADEMIC PRESS, INC.
Orlando, Florida 32887

BRITISH LIBRARY CATALOGUING IN PUBLICATION DATA

Program evolution : processes of software change. —

(APIC studies in data processing)

1. Programming (Electronic computers) — History

I. Lehman, M.M. II. Belady, L.A.

001.64'2 QA76.6

ISBN 0-12-442440-6

LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA

Main entry undertitle:

Program evolution.

(APICstudies in data processing)

Includes index.

1. Electronic digital computers— Programming—

Addresses, essays, lectures. 2. Software maintenance—

Addresses, essays, lectures. I. Lehman, M.M.

II. Belady, L. A. (Laszlo A.) Date

III. Series: A.P.I.C. studies in data processing.

QA76.6.P751175 1985 005.1 85-48036

ISBN 0-12-442440-6 (alk. paper)
ISBN 0-12-442441-4 (paperback)

PRINTED IN THE UNITED STATES OF AMERICA

85 86 87 88 987654321

Wededicate this book to our wives Chava and Gizella and our children Machla,

Benny, Jonathan, Rafi, Christian, Esti and Petra. Without their continuing interest

and support, their patient forbearing of our involvement in our work and our
continuous travel, we could never have undertaken the work or achieved the

results that have made this work possible and, we hope, worthwhile.

Contents

Preface

1. Introduction

2. Program Evolution

M. M. Lehman

3. The Programming Process

M. M. Lehman

4. Natural Selection as Applied to Computers and Programs

G. M. Weinberg

5. Programming System Dynamics or The Metadynamics of

Systems in Maintenance and Growth

L. A. Belady and M. M. Lehman

6. An Introduction to Growth Dynamics

L. A. Belady and M. M. Lehman

7. Programs, Cities, Students—Limits to Growth

M. M. Lehman

8. A Model of Large Program Development

L. A. Belady and M. M. Lehman

Xl

39

85

99

123

133

165

Vili

9.

10.

11.

12.

13.

14.

15.

16.

17,

18.

19.

Program Evolution and its Impact on Software Engineering

M. M. Lehman and FN. Parr

Evolving Parts and Relations—A Model of System Families

L. A. Belady and P M. Merlin

Human Thought and Action as an Ingredient of System
Behaviour

M. M. Lehman

Laws of Program Evolution—Rules and Tools for
Programming Management

M. M. Lehman

Staffing Problems in Large Scale Programming

L. A. Belady

The Characteristics of Large Systems

L. A. Belady and M. M. Lehman

On Software Complexity

L. A. Belady

A Mathematical Model for the Evolution of Software

C. M. Woodside

Modifiability of Large Software Systems

L. A. Belady

On Understanding Laws, Evolution and Conservation in

the Large-Program Life Cycle

M. M. Lehman

Programs, Life Cycles and Laws of Software Evolution

M. M. Lehman

Contents

201

221

237

247

275

289

331

339

355

375

393

Contents ix

20. The Environment of Program Development and

Maintenance Programs, Programming and Programming
Support 451

M. M. Lehman

21. Programming Productivity—A Life Cycle Concept 469

M. M. Lehman

22. The Role of Systems and Software Technology in the Fifth
Generation 491

M. M. Lehman

References 501
Index 523

Preface

Laymen andprofessionals alike tend to perceive programs as ‘mechanisms’

that are conceived, designed and then simply constructed, that is, ‘written’, to

solve some problem or to implement an application on a digital computer. It

is generally accepted that the program asfirst visualised and eventually written

will not be error free, that it will have to undergo a debugging process before

entering serious service. But once bug-free it should be available forever to fulfill

its purpose.

The facts are somewhat different. For one thing, with current programming

methodsthere generally does not exist any way in which a program can be shown,

known or madeto be fault-free. Bugs will continue to surface as long as a

program continues to be used, and someof these, at least, will have been in

the program from its inception. Moreover, it has been the universal experience

that quite apart from the discovery, during commissioning and afterwards, of

errors in design or implementation, computer users come up with a continuing

demand for performance improvements, functional enhancement and new

capabilities. This occurs both before the program has been installed and after

it has entered into service. The consequent continuing program maintenance(as

it has come to be known) typically absorbs as much as 70%of the total activity

expended on the program during its initial development and subsequentservice

life.

For a long time it was thought that the occurrence of such never-ending

maintenanceactivity was mainly due to lack of foresight on the part of planners,

designers, programmers and managers. Factors such as rapidly advancing

technology, the relative ineffectiveness of the software engineering process and

the demands of an ever widening market place were, however, also recognised.

Noneof these factors is, however, the prime cause of the problem. The work

of the editors of this book and of other people since the late 1970s has shown

that all these factors contributed to the development of a ‘Software Crisis’, the

universal experience that software systems are rarely completed on time, contain

a seemingly inexhaustable stock of faults and are excessively costly to create

and maintain. It is, however, now recognised that the problems stem from a more

fundamental source. Evolutionis intrinsic to the very nature of computer usage

and of the associated programs (LEH80), that is, programs that are used and

xii Preface

that exceed some minimal capability. As a consequence, programs must be

continuously adapted. They evolve in a manner that is reminiscent of the

evolution of biological organisms and of social groupings (LEH80, 82b).

The evolutionary pressures on programs arise in several different ways.

Evolution first appears during the developmentprocess, the humanactivity, that

transforms a computer application concept into an operational system. The

concepts, algorithms and techniquesthat are to be used to implementthe program

evolve as the design proceeds, as insight into the problem to be solved and

understanding of methodsfor its solution are gradually developed. Evolution

is also present in the continuing process that maintains system and cost-

effectiveness, adapting it to the needs of a changing environment through the

periodic release of modified versions of the code and documentation. Finally,

the entire system evolves. It is re-defined, re-designed, re-implemented and

replaced as it becomes too complex to maintain, or out of step with evolving

application needs and implementation technologies. It is continually being

adapted to the continuously changing environment.

By reproducing under one cover some of the key publications in this field

as produced overtheir gestation period, this book traces the gradual evolution

of the ideas and insights summarised above and of associated technologies. This

historical approach will facilitate the achievement of real understanding of the

concepts and issues that are revealed. One does not often have the opportunity

to documentthe history of a technology whilst it is in the making. This book

seeks to achieve this.

The book, however, is not aimed primarily at the historian. Thecollection

is important for all who develop or use software. It should also be of interest

to the general reader, who, as he follows the book, will be able to achieve the

understanding reached bythe editors over an extended period as they developed

the subject.

The articles constituting this book have mostly been available for a number

of years. We hope, nevertheless, that their collection in a single volume will

encourage research and development in an area of computingsciencethatis likely

to prove of increasing importance as mankind becomes more and more dependant

on correct and up-to-date software for operation and survival. As the worldrelies

ever more on computers it becomesvital that all those concerned with computer-

based systems, their design, construction, operation, exploitation or management,

fully understand the issues raised, the dangers that arise from failing to take

appropriate action and the opportunities offered by software engineering. We

hope that the readers of this volume will achieve these insights, discover at least

some of the answers and follow up appropriate pointers to fundamental topics

in this emerging discipline.

Issues discussed are presented almost exclusively in the context of software.

They are, however, also likely to prove relevant, following change of terminology,

to other artificial systems—even, with different time scale, to biological, social

or economic systems. Such wider significance must be further investigated.

CHAPTER 1

INTRODUCTORY REVIEW

In late 1968, one of the editors of this book (MML) was asked
by Dr A Anderson, then Director of IBM's Research Division to

"undertake a study of programming in IBM and to. propose

research projects that could seek ways to improve’ the

Corporation's capability in that area", The immediate

trigger for this study was an internal Bell Telephone

Laboratories report. This had indicated that introduction of

the IBM TSS/360 system as an interactive programming support
system - to use modern terminology - had produced a threefold

improvement in programmer productivity in the Electronic

Switching Systems division of the Laboratories.

Lehman accepted the assignment. His immediately preceeding

experience in Project IMP [LEH66], had already resulted ina
direct, personal interest in the methodology and

effectiveness of program design and programming and provided

strong motivation. It probably also influenced the direction

and outcome of the subsequent study.

Project IMP, an attempt to develop a large multi and parallel

processing system had been initiated in 1964, passing
subsequently through three distinctive phases in a four year

history. The first sought to develop a multiprocessor

hardware system and to investigate its potential performance

[LEH68b]. At the end of the first year answers had been found
to many of the questions that faced the design team and

apparently adequate solutions to many of the identified

problems. The team became convinced, however, that they had

attacked the wrong problem. The main problem was not’ the

achievement of a satisfactory design for. the hardware

configuration and elements but how to control and fully

exploit the workload, input, output and system resources

during system operation. One should establish design

criteria and seriously begin to development of hardware

facilities only after conception and design of an executive

system that provided the system management strategies and

mechanisms.

Phase two of the project was therefore initiated. This was

to study executive needs and strategies; to derive and

develop the design of an executive system. Work on this

aspect of the project proceeded for a further year by which

time a preliminary architecture and design for the IMP

Executive had been prepared. However once again the group

2 M. M. Lehman and L. A. Belady

felt that only the relatively simple problem had been solved.

The real problem lay not in the design of a specific system
but in the methods and methodology of design. Software and
system designs were unlikely ever to be optimum or’ complete.

System application and system potential evolve (though that

term was not used). The principle problems were therefore how

to approach system specification and design; how one might

limit the time or number of iterations required to achieve a

satisfactory system; how, ina climate of rapidly advancing

technology, one might teach design and transfer experience

from one system to the next, from one team to the next, to

facilitate subsequent adaptation of the system to changing

needs and potential. The prime need was for the

identification or development of design methods and

methodology.

So Project IMP - phase three, a study of system design and

programming methodology was initiated. It soonled to a

number of reports and publications including a very

fundamental contribution [2ZUR67] that went largely
unrecognised at the time. The time was clearly not ripe for

methodological studies. The work of the group was’ neither

recognised nor appreciated, basically it was not understood,

and project IMP was disbanded.

The study of programming that followed made no apparent

impact within IBM. It had focussed mainly on IBM internal

practices, achievements and problems but also included

observation of experience outside the corporation. Its

findings were summarised in a confidential report [LEH69], in
a series of presentations at various IBM locations and in a

proposal to the IBM Director of Research for several research

projects that would address some of the problem areas

identified and explore potential solutions. And that was

that.

This is not the place to speculate on the failure of the

study to generate action within IBM, or to ask whether in a

different environment there might have been a more positive

response, or even to speculate in detail on the relevance or

Significance, then and now, of the conclusions presented. In

the preface we have already said that in our view most of our

observations are as relevant today as when first made. The

reader may wish to make his own judgement after reading the,

now declassified, report republished for the first time as

Chapter 3 of this book. In doing so he should bear in mind

that the report was generated before the Garmisch report

[NAU69] had become widely known, before establishment of the

1. Introduction 3

IFIP working group WG 2.3 on programming methodology and long
before the concepts of Structured Programming, Chief
Programmer Teams, Software Engineering and other’ universal
panacea, had become popular.

Completion of the study may not have made an impact within
IBM or on the wider community. It did, however, have
Significant consequences for the author and, subsequently, on
a small number of colleagues. In particular, it yielded
observations which became the seed from which the study of
program evolution and the programming process developed. The
report had included a brief analysis of the programmatic
characteristics of 0S/360, then in its 16th release. The
results summarised in its section 1.3 (see ch.3), led to the
recognition of phenomena whose analysis led Slowly but surely
to the concepts of Program Evolution Dynamics. The intent of
this book is to trace the development of both the
interpretation of the observed phenomena and of the concepts.

A year or so before Lehman undertook the study referred too
in the previous paragraphs, Gerald Weinberg had written a
paper which was, however, not published till 1970 [WEI70] and
then ina relatively obscure journal. The present editors
did not see the paper till many years later, so that it did
not influence their work. Nevertheless it is, probably, the
first paper to seriously discuss evolution as applying to
individual artificial systems. As such it clearly deserves a
place in this volume and is reproduced as chapter 4, We
Stress evolution of indvidual systems because Simon's Compton
lectures (1968) published in his 'Sciences of the Artificial!’
[SIM69] did consider evolution as it applies to successive
generations of artificial systems. He does not appear’ to
have considered evolution of operational systems as’ treated
by Weinberg and ourselves.

After completion of the "Programming Process" report, its
author suggested to L A Belady that one might be able to
model some of the observations, by their analysis advance
basic understanding of the process and apply the resultant
insight to achieve improved processes. Subsequent results
undoubtably confirmed this conviction that further
investigation was both required and justified. Its pursuit
produced a

_e

productive and continuing partnership that has
already extended over one and a half decades; a partnership
that first recognised the intrinsic evolutionary nature of
Software and that subsequently conceived and developed many
of the interpretations and implications of software life
cycle phenomena that have only recently become more widely

4 M. M. Lehman and L. A. Belady

recognised and accepted. In due course that study led to the

publication of a first report [BEL71].

That report, included here as Chapter 5, is not only of

historical interest. The phenomenological observations made

are still highly relevant even with today's much advanced

technology. In fact, the developments of VLSI and

_

the

microprocessor, and the consequent increase in demand for

reliable and effective VLSI designs and for ever increasing

numbers of programs, will again bring into the foreground,

many of the issues and problems identified in the report;

issues which some (mistakenly) consider to have been largely

solved by recent advances in programming methodology and

programming languages. The emergence and widespread

application of very large data bases, of non procedural

languages (of various classes) and of artificial intelligence

techniques as applied, for example, in intelligent knowledge

based systems (IKBS) will result ina repetition of the

problems and history of the past twenty years, albeit in a

new form, unless principles and lessons that could and

should have been learned from the software experience of the

past are absorbed and applied [LEH82b].

The macro and micro models of the programming process’ that

are discussed in this report are also still relevant. Their

investigation and extension has, however, been neglected in

recent years. They are refered to again in our subsequent

publications but no further significant progress can be

reported. The very real progress that has been made in

strengthening, extending and interpreting the original

observations suggests, however, that the time may now be ripe

to follow up of some of this early work.

Chapter 6 is a reprint of a paper presented late in 1971 ata

conference on Statistical Computer Performance Evaluation

[BEL7 2]. Tt adds observations and conclusions additional to

those reported in chapter 5 and reflects definite, if small,

progress in some of the notions. It is included here because

it was the first public (non IBM) exposure of Evolution

Dynamics.

Early in 1972 the close partnership between the two editors

was relaxed when one (MML) was appointed to the Chair of

Computing Science at London University's Imperial College of

Science and Technology. Long distance collaboration

continued however, and intensified when the other (LAB) came

to London on a Science Research Council Senior Visiting

Fellowship. It was during this period, that the concept of

1. Introduction

continuing evolution was first verbalised; when the term
Program Growth Dynamics used until then was replaced by
Program Evolution Dynamics.

During this period also, Professor Lehman delivered his
Inaugural Lecture chosing as his theme a generalisation of
some aspects and concepts of Evolution Dynamics. The text of
that lecture [LEH74] is reproduced here as chapter 7. The
paper included the first published reference to 'Laws',
presenting three in some detail. After a brief discussion of
the, then, current notions, concepts and models of program
growth, the lecture identified one specific phenomenon,
neglect of anti-regressive activity, and explored the
consequences of the same human attitudes in economic,
sociological and educational activities.

This six month London interlude was the only time during the
entire period of the continuing exploration of the software
evolution phenomena and its dynamics, that either of the
present editors (LAB) was able to devote himself exclusively
to the study. Throughout the remainder of the collaboration
and to this very day, the study could be given only low
priority, in relation to other, assigned, duties. The
results of the -all too few - discussions of this period were
Summarised in a report published in 1975 [BEL75], andin a
revised and edited version in 1976 [BEL76]. It is the latter
version that is included here as chapter 8 and that
represents the first reasonably complete published discussion
of the program evolution phenomenon as developed at that
time.

The Second International Conference on Software Engi neering
marked a further milestone in the development of the subject.
A paper [LEH76b] presented at that meeting expressed for the
first time, the link between evolution, the programming
process and software engineering. The paper, reproduced here
aS chapter 9, includes the seeds of concepts that are
developed more clearly in latter chapters of this book. It
also includes the first empirical data and data analysis of
systems other than IBM's OS/360.

The next two chapters present material that is not in the
main stream of the development of Evolution Dynamics as an
evolving discipline. They are intellectual offshoots of the
main study, with practical implications. Chapter 10 [BEL77b]
discusses problems in the organisation and management of
software evolution and, in particular, the 'Parts Number' and
"Configuration Management! problems.

1. Introduction 7

Chapter 16 [W0079a] represents a variation on the main stream

developments described in the earlier chapters. It stems

from visits to Imperial College by Professor J S Riorden and

Subsequently by his colleague Professor C M Woodside. Their,

then, main research interests lay in control theory and its

applications and they expressed a desire to study program

evolution from that viewpoint. Their observations and
generalisations suggest that further application of control

theoretic concepts to the study of program evolution could
prove beneficial to an understanding of the evolution of
artificial systems in general; a conclusion to be expected
Since, at the very least, experience based feedback plays a
fundamental role in the evolution of such systems.

Chapter 17 [BEL80] develops the insight gained in the
Evolution Dynamics studies, to discuss the problem of
modifiability. It serves, therefore, as a natural transition
path to the final four chapters that reflect a redirection of
our investigations from consideration of the dynamics of
evolution to its nature, This redirection is seen in chapter
18 [LEH80b] which discusses the underlying meaning and
Significance of the five laws. It continues in chapter 19
[LEH80c] with a final summary of the observed consequences of
the dynamics, an example of their application and a brief
introduction to the nature of programs, the programming
process and the software life-cycle.

The next chapter [LEH81] continues this theme, developing, in
particular, discussion of the software development and
adaptation process and of the consequent desirable properties
of programming support enviroments. This is followed in
chapter 21 [LEH81b] by an exploration of the characteristics
of the software life cycle, the process’ of software
evolution, and the challenges and opportunities that arise
from the development of a software process seeking to master
it.

Finally, chapter 22 [LEH82b] attempts an assessment of the
societal significance of the notions, concepts and discipline
of software engineering, such as those presented in this
volume. Mankind relies increasingly on the correct and
timely operation of computers. The very fate of mankind and
its survival may, in the end, depend on the dynamic
characteristics of some program or other, on its having been
updated in time. The warnings implicit in this chapter
represent an appropriate conclusion to the book.

8 M. M. Lehman and L. A. Belady

But that is not the end of this survey. The observant

reader will have noticed that in this brief overview no

reference has been made to chapter 2. That chapter is, in

fact, the most recent [LEH82c] of the publications included
in this volume. Having, so far, appeared only in relatively

obscure proceedings, its inclusion provides the first wide

dissemination of its contents. It truly represents’ the

summation of the evolution dynamics studies; the foundation

of theories of Program Evolution and of the programming or

software development and evolution processes. The chapter

has been deliberately placed at the beginning of the book

rather than in its historical sequence at the end, to provide

the reader with motivation for following the historical

development.

We believe that the notions and concepts presented in this

book represent the beginning of a new and systematic approach

to the solution of the software engineering problem, by

redirecting attention to the total process of software

development ; and by providing the conceptual base and

intellectual framework to motivate and facilitate the top-

down design of software processes and their integrated

support. Even if the reader proceeds no further than the end

of the next chapter, but absorbs and builds on the notions

presented there, the book will have served a useful purpose.

CHAPTER 2

PROGRAM EVOLUTION*

1 Program Evolution

1.1 Historical Summary

Program evolution is now widely accepted as a fact of life.

The phenomenon was first recognised in the late 1960s as
continuing program growth [LEH69]. The growth then discussed
related to improvement in functional capability. For the

sequence of releases of a given system at least, this was

assumed to be related to program size as determined by counts

of program modules, lines of code or storage requirements.

Collection of relevant data and their interpretation

subsequently suggested the concept of Program Growth Dynamics

[BEL71,72]. Its refinement led to the realisation that

observed phenomena should be interpreted as program

evolution. This represented more than a change of name. It
produced, for example, the hypotheses that were later

formulated as Laws of Program Evotutton [LEH74], [BEL76].
Continuing investigation has given rise to the beginnings of

a discipline, Program Evolutton Dynamics; yielding insight
[BEL79], [LEH80ab], practical tools and management guidelines
[LEP76], [LEH78,80b] and most recently a new view of the
programming process itself [LEH81a,b].

It must now be accepted that evolution is, ultimately, not

due to shortcomings in current programming processes. It is

intrinsic to the very nature of computer usage; computing

applications and the systems that implement’ them. This

perception has led to the SPE program classification [LEH80b]

and thence to the concept of continuous programming processes

supported by vertically integrated support envtronments.

1.2 The SPE Classification

In the SPE classification an S-type program or system is
defined as one for which the only criterion of success in its

Paper presented at Symposium on Empirical Foundations of Computer and Information
Sciences, 1982, Japan Information Center of Science and Technology, published in J.
Info Proc and Management, 1984, PergamonPress.

9

10 M. M. Lehman and L.A. Belady

creation is equivalence, in some sense, to a spectftcatton.
The P-type is not considered here. An E-type is one embedded
in its operational environment, implementing an application
tn that environment, as suggested by figure 1.

APPL | CAT 1ON
IN THE

REAL WORLD
CHANGE ———>

SPECIFICATION
t VIEWS

REQUIREMENTS (PREDICTIVE)

| MODEL| <

Figure 1 E-Type Programs

2. Program Evolution 11

E-type systems have no intrinsic boundaries. The programsthat implement them cannot have permanent and demonstrablySatisfactory specifications Since the vartety of features
that can be built into such systems is unlimited, meaningful
permutations unbounded. Selection of features must take into
account the perceived need, inter-related properties such as
performance and cost and the nature of the operational
environment once the system is installed. Moreover the very
act of system tnstallation changes that enviromment. And as
Operational experience is gained, perception of the problem
and of possible solutions continuously advance, whilst
exogenouS pressures operate at all times to modify the
enviroment, the problem and_ solution technology still
further.

Now the acceptability of an E-type program relates’ to
Satisfaction in usage and it follows that the level of
Satisfaction will Change with time. The real test of
Satisfaction occurs after installation, on the basis of
sy stem usability, performance and adaptability. But
Satisfaction of initial Specifications is, at most, relevant
for a limited period whose duration will depend on theforesight of the design team and the rate of Change in theOperational enviroment. Clearly, a specification thatdefines the ultimate E-type system cannot be conceived.

1.3 Evolutionary Traits

E-program correctness is determined by user-satisfactionrather than by equivalence to a Specification. If it can bedemonstrated equivalence is, therefore, merely a means to anend. It indicates a high likelihood of initial Satisfaction.Continued satisfaction demands continuing change. The systemwill have to be adapted to a changing environment, changingneeds, developing concepts and advancing technologies. Theapplication and the System should evolve. The human effortto achieve this may, however, be witheld. Thus either thesystem evolves or its effectiveness and that of theapplication it supports will, inevitably, decline [LEH74 -first law].

AS a system evolves its complexity increases unless Specificcomplexity-control effort is applied [LEH74 - second law].Complexity growth occurs because managerial guidelines seldominclude its control as an objective. Instead they tend tofocus on deadlines and on the cost-effectiveness of the loeqalProcess or of the resultant system. No real cost is attachedto structural deterioration for which the penalty lies in the

12 M. M. Lehman and L. A. Belady

future. Complexity growth is therefore in part a consequence

of weaknesses in current process-manageme nt practice.

Advances in the process and in process-management can

overcome this.

When, however, system change reflects extension of an

application, it generally implies an increase in the

complexity of what its being done [BEN82]. It leads,

inevitably, to increased system complexity; though such

increase may be hidden by the use of higher level (internally

more complex) primitives, VLSI components for example.

The preceding paragraphs have described evolution as a

phenomenon of functional and complexity growth. Current

programming practice actually exploits evolution to achieve

satisfactory levels of system attributes. Correctness,

reliability, performance, capacity are all achieved

tteratively. To the extent that their improvement reflects

developing human perception and ambition triggered by use of

the system or by change in the operational enviromment,

evolutionary development is inescapable. The lack of

adequate development technology, supporting engineering

seience and of evaluation calculi is, however, a strong

contributing factor; in fact the ultimate cause. The

knowledge, understanding and techniques to permit ab initio

design and construction of a system with, at least, an

initially satisfactory level of all attributes, simply do not

exist. Their development, the emergence of a software

engineering discipline, could significantly reduce reliance

on iterative evolution of such function and quality factors.

Note that once the essential evolutionary nature of software

is appreciated one need not, indeed should not, distinguish

between intttal development of a system and its subsequent

enhancement or extension ina matntenanee process. Software

does not, of itself, deteriorate and so need not be

‘maintained! in the traditional engineering sense. At most,

a system is seen as no longer achieving its full, perhaps

newly recognised, potential. Whether one begins with an

application concept or with an existing system, all work

undertaken to produce a system with more, less or different

attributes or characteristics, constitutes evolutionary

development. The term matntenance is, therefore,

inappropriate in the context of software. Use of the term

should be abandoned; replaced by evolution.

2. Program Evolution 13

1.4. Process Dependant and Intrinsic Evolution

The above summary of some aSpects of program evolution
suggests that it is, in part, a consequence of the process of
programming. Thus its rate may perhaps be reduced through
the development and application of more advanced design and
implementation technologies. Significant evolutionary
Pressure also arises, however, from the very nature of
computer application and therefore of computing systems’) and
programs [LEH80b]. Intrinsic evolution must be accepted as a
fact of life.

With current practice, an average of about 70% of the life-
time expenditure on a program is incurred after initial
intallation. The main cost of a program is not incurred in
its creation but in its subsequent evolution. To achieve an
appropriate balance between initial product quality,
continuing satisfaction and some desired life-time
expenditure distribution, requires improved understanding of
both intrinsic and process dependent modes of evolution; that
is, a clearer insight into the basic nature and dynamics of
the act of creation of a computing application through the
development or modification of system constituents. The
remainder of this paper analyses the evolution processes to
lay the foundations for the Systematic development of a
Systematic application and program development process; the
software technology process.

It should be stressed that the analysis to follow is as
relevant to VLSI 'hardware' as it is to software. As element
numbers per chip increase, the latter will display all the
characteristics of complexity, invisibility, evolution and
uncertainty that have plagued software for over two decades.
The resultant problems add, of course, to those arising from
the technology itself. Moreover, as the manufacturing
process becomes automated, chip functionality will be defined
by its formal inputs as transformed by that process. It may
even be a design option whether a chip functional-
Specification is used to control a manufacturing process or
aS source code for a program Subsequently to be stored in and
executed by a simpler chip. VLSI and software technologies
can, therefore, be expected to have much in common. Thus in
the remainder of this paper 'program' is to be interpreted as
including both soft and VLSI implementations.

14 M. M. Lehman and L. A. Belady

2 Systems Evolution

It is a truism to assert that all natural and artificial

[SIM69] systems evolve. It may therefore be asked why the

dynamics of program evolution (as distinct from its

mechanics) should prove of interest when similar concern has

not developed to any significant degree in the study of other

systems. The answer to this question is both simple and

revealing.

The time scale over which natural systems evolve is such that

significant change is observable only over many human

generations. The natural scientist cannot, therefore,

observe change and development as +t occurs. He operates as

an archaeologist and historian, deducing the occurance,

mechanics and nature of evolution from static remains, relics

and records of past events.

Artificial systems fall into several classes that vary widely

in their characteristics. Consider first socto-economtc

systems such as cities. These too evolve. Noticeable change

may occur in a matter of months, but developments that change

the structure and character of a city extend over a human

generation or more. The sociolgist, by and large, does not

monitor continuing change and evolution. He deduces it by

comparing his observations with historic records. Because

the rate of global change is relatively slow, its dynamics

are at most deduced, not experienced.

Engineering artifacts evolve more rapidly. The motor car

and the aeroplane, for example, have each seen eight to ten

generations in as many decades. New models incorporating

minor improvements are released periodically. Modifications

may be introduced at any time and even retro-fitted to

instances already operational. But the cost of total re-

design and re-tooling is such that an essentially new system

only appears once in ten years or So. Thus during his career

the average aeronautical engineer will, for example, be

involved with no more than three or four generations of

aircraft. And if he experiences that many, he does so as

apprentice, as mature engineer and as_ senior manager

respectively, say. His viewpoint, involvement and

responsibility is different for each generation. He

experiences and views successive generations aS a sequence of

static instances, albeit of ever more advanced

characteristics.

2. Program Evolution | 15

Finally, consider programs. These constitute the 'fruit fly'
of artificial systems, undergoing continuing change and rapid
evolution. The reasons are manifold [LEH80b]. The frequency
and speed with which programs are executed, draws almost
immediate attention to any Shortcomings or mismatch and to
developing or emerging opportunities. This leads to a
constant stream of proposals for enhancements. That is,
change proposals emerge rapidly because of the intimate
coupling between the computing system in execution,
Operational personnel and the application environment. Once
made, proposals for change are too easily accepted since
their implementation involves little physical effort. The
intellectual effort required is, in general, under-estimated
and under-rated. It takes much bitter experience to
demonstrate the cost of the effort subsequently required to
implement the associated changes.

In practice therefore, it has become generally accepted that
software systems evolve through the release of new versions
at intervals ranging from less than one month to some two
years. Mi ni-releases containing corrections and minor
modifications may also be interspersed between these. Users,
Salesmen, executives and developers are all exposed to the
Stream of releases. At every stage of their career they are
actively exposed toa Sequence of system releases. They
expertence system evolution as a dynamicprocess influenced
by and in turn influencing the environments in which it
exists. The Program Evolution Dynamics studies of the last
ten years have shown that the dynamics of that process may be
modelled; the models reflecting the disctpline that underltes
and regulates humansociety and the effort that tmplements
change.

3 The Current Programming Process and the Ideal

The Software engineering and programming processes as
currently practiced have themselves evolved over some three
decades. As the state of the art in electronic computing
advanced, methods, techniques and tools were conceived,
developed, implemented and used to solve spectftc problems as
these arose in spectfie enviroments. Together these form an
ever-growing set of process primitives, from which total
processes have been created by ad hoe association. These
Serve the needs of each individual production enviroment;
additional elements being created as necessary to achieve
local efficiency, effectiveness and cost-effectiveness.

2. Program Evolution 17

who may well resist pressures and opportunities. But if a

system is not adapted to its evolving conceptual and physical

environment it becomes ever less satisfactory in the users'

eyes. Ultimately it must be abandoned and replaced. Thus

whether change is implemented continuously, by successive

modification, change upon change upon change, or whether it

is revolutionary, an outdated system being entirely replaced,

or whether these modes alternate, the system will evolve on

the basis of feedback provided, for example, by accumulated

learning experience.

The system comprising the application and computing systems

in their operational and system-implementation enviroments

constitutes a multi-loop feedback system with both change

reinforcing (positive) and change opposing (negative)

feedback paths. At worst, the feedback leads to instability;

always to continuing pressure for change. The rate of

evolution, even though subject to management decision, will

depend on the characteristics of the feedback paths. With

current practice, four major paths and hence four levels of

evolution may be identified. It will be shown that, of

these, the two higher levels (slower rates) are largely
intrinsic and unavoidable, though effective prognosis and
prediction can reduce the rate of change. The two lower
levels are largely process dependent. The development of
improved, systematic, software engineering practices based on
full understanding of why and how computing applications and
Software evolve, can minimise the evolutionary element.

4.2 Evolution Over Generations

The highest of the four feedback levels, that currently drive
program evolution, arises from pressures that reflect changes
in the operational and technological environment. The
mechanism is similar to that which drives the evolution of
socio-economic Systems and engineering artifacts. As
Suggested in section 2 these evolve at a rate expressable in
terms of decades or human generations. The increasing use of
computers may tend to accelerate the process, but will be
counterbalanced by an increasing need for Stability and
increasing system malleability. Relevant time scales’ are
therefore unlikely to change dramatically. System life-time
will continue to span ten to twenty years.

As indicated in section 2, evolution of a system over
Successive generations also covers successive generations of
the personnel associated with that system. The wtndtvitdual
thus experiences evolution as a static phenomenon

18 M. M. Lehman and L. A. Belady

recognisable from separate instances of the system. Its

dynamics are only observable by the historian. The impact of

this mode of evolution on process technology is therefore

minimal.

4.3 Evolution Through Successive Releases

During the life-time of each generation, the program releases

at present, provides a mechanism for. the controlled

implementation of changes and their transmission to many

users. That mechanism has been evolved and refined to a form

peculiar to the software industry. Its special nature is due

to the fact that software requires intellectual, rather than

physical, effort to change. Software releases are therefore

created by modification and change to the implementation

itself, that is the code and the documentation, rather than

by the creation of new instances as is the case for other

artificial systems. A release may consist of a single change

or of a number of unrelated corrections, enhancements) and

additions. Whatever the mix, observation suggests that the

average work content of a sequence of releases, stabilises to

a constant level. This consequence of the feedback nature of

system evolution is linked to the effort required for each

involved individual to regain and retain familiarity with the

system [LEH80a - fifth law].

When setting release content and interval objectives,

managers can apply alternative strategies [LEH80b]. But

increasing societal dependence on computers implies a need

for fast response to error reports and design deficiencies.

In the early operational life of a system, release intervals

of order one month are common. As the system ages,

complexity and complexity control effort increase and with

average release content constant, the release interval

eventually stretches to two or three years. The determinants

include the work to be achieved, user resistance to

installation of a new system and delays in their mastering

and appraising its new characteristics. In any event, the

loop-delay in release-based evolution is conveniently

expressed in months.

This second level of the current modes of evolution has been

extensively studied, measured and modelled [LEH80b]. It is

not further considered in the present paper.

2. Program Evolution 19

4.4 Decimal or Sub-releases

Sub-releases are sometimes interposed between main releases
to achieve fast response for the fixing of minor faults’ or
blemishes or to provide urgently desired enhancements. This
practice has some impact on the evolution dynamics of the
System to which it is applied and to the parameters of theresultant process. The latter is, however, not qualitatively
different to one in which releases of this category are notused. Nor is a sub-release sequence ever long enough to
define an evolutionary level. Sub-releases may therefore, ingeneral, be treated as part of the release process,

4.5 Developmental Evolution

4.5.1 The Ideal Process

Consider the process whereby an isolated change, a sub-release or even the release of a completely new version istaken from conception to eventual operation. Presentindustrial practice is the outcome of ad hoc evolution drivenby expanding demand for computer applications, and for the
programs to implement then. Its limitations provide the
motivation and justification for Seeking to unify and advance
software technology so as to achieve an economical processthat can be planned and controlled.

At initiation of an E-type development project, the pictureof what is to be achieved and hows is, at best, fuzzy.Specification and design evolve iteratively as a consequenceof feedback via various paths. The latter are often ad hocand poorly defined, making analysis difficult if not
impossible. To be amenable to analysis, the process should
have well defined structure. This may be obtained by firstidentifying an Ideal process; @ contiguous and coherent, non-iterative, sequence of or thogonal Sub-processes, a set ofsub-transformations, necessary and sufficient for thetransformation of a computer application concept into anOperational system. An analysis in terms of current processconcepts, exemplified by figure 2a, that yields such aProcess, has been given elsewhere [LEH81a,b]. The timerequired for each of the activities indicated will ty picallybe in the order of weeks and the process is third in the
Schema proposed in section 2.1.

The programming process, illustrated by figure 2a, isexpressed in terms of activities that are widely recognised

20
M. M. Lehman and L. A. Belady

and pursued in the current industrial process. More

generally, one should view the process as a sequence of

linguistic transformations [TUR82] with each model a

representation of both the problem to be solved and of the

system to be constructed. This is illustrated by figure 2b.

From either viewpoint (2.1) the process may be described as

the transformatton of a computer application concept into an

operattonal system and its continuing adaptatton to evolution

of the operational enviroment. This transformation is

complex. To achieve a practical process it must be decomposed

into a series of sub-transformations. These define a

structure of sub-processes, execution of which defines a

system implementing the application concept. The system is

represented as ‘a model of a model Of «see@ model of a

computer application concept in its operattonal environment’.

Fach of the constituent models represents an abstraction of

both the application concept from which it derives and of the

system to which it is advancing by a process of reification.

The models are double abstractions, a fact that has important

bearing on the concept of a coherent software process

supported by an integrated support enviromment.

The above reflects the dynamic view of the process. Its

static counterpart regards each step of the development

process as producing a theory for which the neighbouring

steps provide models. In particular, the real world at one

extreme and the operational system at the other are each

models of the theories provided by the intermediate steps

[TUR81].

Note that the term 'ideal' must be understood in the sense of

the thermo-dynamicist's ‘ideal eycle', in that it is believed

not to be attainable in practice. Exogenous change in the

operational environment and the consequent pressure for

software adaptation is essentially unpredictable and cannot

be accomodated without iteration. The following sections

will suggest that iteration is also inescapable in specific

software development. For example, total understanding of a

problem and creative development of the best, in some sense,

design for a computing-based solution can, in general, only

be achieved iteratively [LEH77]. A linear process with only

orthogonal activity cannot be achieved.

2.1 (Eds) For more recent viewpoints see [LEH831], (CLEH84],

[PSP84], LPSP85].

2. Program Evolution 21

VIEWPOINT ACTIVITY MODELS

APPL | CATION
CONCEPT

/ |
/------

/ VIEWPOINT
/--- / |

/ PROBLEM / /---
/ STATEMENT / 1

/ \ / REQUIREMENTS ABSTRACT ION/ \ / FROM/ \/ { APPL | CATION/ /\ GLOBAL SPECIFICATION CONCEPTAPPLICATION / \
CONCEPT { / \-----

SOLUTION L
}DENTIFICATION PHE NOME NOLOG! CAL

\/--------
/\

/ \ {
L / \. COMPUTATIONAL RE IFICATION{ SOLUTION \ TOOPERATIONAL STRUCTURING \---- |MPLEMENTEDSYSTEM \ /--- SYSTEM\ \ / 1

\ \ STRUCTURAL
\ \-/------
\ /
\ / 1 L\ IMPLEMENTATION LOCAL SPECIFICATION

\
\ t
\ SYSTEM
\
\---

Figure 2a An Ideal Process In terms of
Current Process Concepts

ssoo0ugTeeplyoedIsqyuyqzeun3Ty

(LNASNOdWOD)-WSLSAS
t

Ni\

1-Ny}\\
NIAant L-N)NOILVINSW31dNI\

't\ .\
\

-
~
-
-
-
-
-
-
—
>

WALSAS
CNWTN|

NOLLV914138

ONIYNLONYLS
NOI|LN10S

t

NOILVD141LN30I
NOILN70S

t

1d39NO9,!

ce
e
e

e
e
O
E
O
S

/
/ WOuSt

tINAWALVIS—//
LWJWA18d0Nd= /

YN

Lda9N00“7
NOTIVOIIdd,

x

STSGOWCNV

SNO|LYWYOISNVYL-GNSALIATLOV

Apepg“Vv“JpueuewyoTWW

\
\

WALSAS
WNO!LVYsd0

t

Ld39NOD
NOTLYDIIdd¥
/
NOILVIIddV

NO]LOVaLSeV

INIOdM41A

CC

2. Program Evolution 23

4.5.2 Iteration

Even the linear ideal process suggested by figures 2 is not
unique. Any orthogonal set of steps that together cover the
necessary and sufficient activity required to produce the
target system serves the same purpose. But the sequential
process is an idealisation that, in practice, cannot actually
be achieved. Thus the detailed role of each step is not
Significant. It is the structure that provides the starting
point for the development of a practical process.

The desire for a programming process that is linear is not
new. Such an objective has been implicit in the search Since
programmed computers were first invented for improved
programming methods. The development of high-level
languages, for example, could be interpreted in those terms.
The trend towards formal specification and the search for
techniques that automate the transformation required to
convert a program specification into an Operational program
[DAR79], [KOW79] contains similar implicit objectives.

The specification of any system embedded in an application
environment is, however, inherently incomplete. A linear
process without evaluation based human decision is, thus at
best, only possible when the structural model has been
defined; that is, when the evolving E-type design has been
decomposed into a structure of S-type elements. It has been
hypothesised that the latter decomposition is always possible
[LEH80b]; in fact a programmer should never be required to
commence a programming task until elements to be created have
been fully specified. Nevertheless, the fact that a
selection must be made between meaningful alternatives
indicates that, to some extent at least, iteration must be
used. In fact, with presently available software process
technology, it will occur at three distinct levels in any
practical implementation of processes based on the ideal
illustrated by figures 2. These levels correspond to the
three lowest of the levels of evolution identified above.
From the outlines that follow it will be seen that they
reflect the organisational feedback paths involved in the
various activities.

Section 4.3 discussed system evolution via the release
mechanism. The pressures that drive this process, and the
justification of any changes undertaken, arise from
continuing information exchange amongst technical personnel,
from similar exchanges with users and from exogenous’ change.
This may be reflected in a model derived from that of figure

4 M. M. Lehman and L. A. Belady

2a, by means of a feedback connection over the entire process

as shown in figure 3 by the outer loop. The information fed

back reflects the experience and insight accumulated during

development, implementation, installation and usage of the

system.

No calculus is readily available to support linear

progression from model to model over the steps that derive

the succession of models that collectively capture and embody

the output of the software process in the form of evolving

design detail. Nor is there a calculus that permits forward

evaluation of a design over that process. Valtdatton of

design decisions at each step, based on assumptions about the

remaining process and about the primitives available to

implementors, is ad hoc [LEH82]. In the absence of adequate

methods, errors, weaknesses and ommissions are uncovered only

as the process proceeds. Thus every now and again earlier

decisions must be reviewed; the models’ that embody them

revised. Such review is currently, and in general, casual

little attempt being made to update any but the most recent

documentation. In the future, increasing emphasis will have

to be placed on explicit review of all models affected by a

change, by explicit backtracking over the feedback paths

encompassing one or more steps, as indicated in figure 3.

The third level of iteration 9¢ceurs in that portion of each

sub-transformation concerned with design of the new features

to be added to the model at each stage. It arises because no

analytical design method is available. An iterative approach

based on intuitive trial and evaluation must’ therefore be

used. This is discussed further in section 4.8.

The above discussion has suggested that iterative design and

implementation (the evolutionary programming process. based,

at least in part, on trial and error) is the consequence of

inadequate design theory. An adequate theory is essential if

a systematic technology to cover the total software process

is ever to be achieved. There exists, however, a fundamental

dilemma that complicates the development of such a theory and

may well frustrate it. It stems from the fact that system

design is two dimensional; creative design must be explored

in, at least two directions.

On the basis of figures 2 and 3, one may hypothesise

processes in which each model in the sequence is completed

before proceeding to the next. A specification, for example,

can be considered as being developed by a question and answer

process that produces a tree-like structure. When the tree

2. Program Evolution

APPL | CATION
CONCEPT

‘
VIEWPOINT<

/
REQU I REMENTS<

/
GLOBAL SPECIF|CAT!ON<-—————

/
PHENOMENOLOG I CAL <

 /
COMPUTAT I ONAL<

/
STRUCTURAL<

——_———->
LOCAL SPECIFICATION<-—————- /

SYSTEM
ad

Figure 3. Iteration on the Ideal Process

25

26 M. M. Lehman and L. A. Belady

has been developed down to leaves about which all questions

have been directly and uniquely answered, specifically or by

‘don't care', the specification is complete and provides the

input to the next transformation. Were such a= process

possible at each stage of the overall process, if the human

questioners and decision takers were all-wise, then this

procedure could define a sequential macro-process, but with

iterative loops for tree development.

Alternatively one may visualise a procedure that limits the

descent at each step to one level of refinement; it being

recognised that the optimum decomposition may well be a

funetion of decisions still to be taken in future steps. One

proceeds, therefore, along several steps of the

transformation sequence, before returning to advance the

design further by additional decomposition.

4.5.3 A Practical Process

At the present time there does not exist a method of

programming based exclusively on one or other of these

alternative approaches. Whether either can yield such a

method remains an open question [LEH77]. Strong grounds

exist, however, for believing that they do not; that a non-

iterative, linear, process cannot be achieved. Any practical

process must represent a compromise between the two extreme

methods, a development from the abstract ideal including, at

the very least, several levels of iteration.

Which direction to pursue, and how far to proceed in the

refinement process at any given stage of the development, is

probably one of the most difficult and critical decisions of

the software design process. The software engineer must

decide when to bacltracl. to which model in the sequence of

process models to return and which of many alternative design

paths to explore. The decisions taken determine the future

course of the process. Process design is thus itself a

critical process activity, an activity that cannot’ be

concentrated in an initial, or any, process step. It must be

accepted as an ongoing consideration distributed over the

entire life of the software.

In summary, the total programming process is inherently an

iteration of iterative steps. Their execution implements

evolutionary development, progress towards the final goal by

refinement and by resolution of imprecision or incompleteness

in original concepts and in individual design and

implementation decisions, by gradual selection from the

2. Program Evolution 27

variety of options that are open to the designer; by
exploitation of system permissiveness [MAI84]. As progress
is made through the process, the full set of models which
collectively constitute the system model must be maintained
consistent each in itself and with one another [BEN82].

4.6 The Role of the Ideal-Process Concept ina Theory of
Program Evolution

Despite the fact that the ‘ideal process! is almost certainly
not attainable in practice, the search for an integrated,
maximally mechanised (tool supported), software development
process can still benefit from the concept; identification of
its structure, components and properties. The concept
constitutes a useful abstraction to aid formulation of a
theory of program evolutton. Such a theory is regarded as
essential as a precursor to the establishment of a coherent
process for software development. The concept of a coherent
process is, in its turn, vital if the much used term of
"integrated programming Support environment! is to assume
real meaning; if such systems are to be constructed. It
Should be noted that the term ‘development! is here used in
its fullest sense to include continuing evolution of the
Software to adapt it to the needs and opportunities of a
changing operational environment. Programs must not only be
good in the first place, they must be adapted to remain good
despite exogenous changes.

Is it meaningful to seek to develop a theory of program
evolution? The fact that programming processes ‘yield
development via a series of changed steps', satisfies both
the Oxford [OXF33] and Webster [WEB59] definitions of
‘evolution’. But is this all? Can similarities with other
evolutionary phenomena be identified and prove helpful in
achieving understanding of that process or conversely of the
evolution of other forms of complex systems?

Consider the Steps of an E=type application development.
These involve selection between alternatives, natural
selection with survtval of the best. The process’ relies
heavily on human perception for injection of the consequences
of exogenous change analogous to mutation. Adaptation to
environmental changes plays a key role. These facts suggest
that software evolution may have much in common with that
occuring in other artificial and in biological systems. The
Significant difference may lie, primarily, in its reliance on
iteration rather than on parallel development and hence on
the rate of evolution.

28 M. M. Lehman and L. A. Belady

In any event one may conclude that the overall theoretical

structure, regarded as key to significant advances in the

emergence of a discipline of software engineering, may be

developed from the postulate of an ‘ideal process! and its

instantiation as in figures 2.

Its practical approximations will be based on iteration.

However, with advances in technology, the dependence on

iterative development for the lower levels of the total

process will decrease as analytic design and validation

techniques are developed for guiding and controlling the

selection process. Examination of the process step, lowest in

the levels, of the evolutionary hierarchy will further

clarify this issue and provide additional insight into

program evolution.

4.7 The Step Paradigm (2.2)

4.7.1 Its Core

A recent publication [LEH81b] presented a paradigm describing

the activity required in each of the steps that together

realise the release development process. After a brief

discussion of the paradigm, the present paper will isolate

its evolutionary component to determine the degree to which

such evolution is intrinsic or technology dependent.

The core activity of an elementary step is illustrated by

figure 4. At the highest level of abstraction it represents

a transformation of an Input (model) into an output (model).

The transformation may implement changes in representation

but is primarily directed at achieving some refinement to

advance transition to the object system. The process of

notational change, restructuring and refining of the input

model, inways to be discussed in section 4.7.3, is termed

design.

Input and output models also provide a means of communication

between designers and between them and their clients. The

models must therefore be accessible in a

_

structure and

notation that makes them comprehendable to humans, who have

to base decisions on their understanding and appreciation of

them. A suitable representation for human comprehension may,

however, not be the most appropriate for optimum

decomposition and refinement. It is therefore appropriate to

2.2 (Eds) For more recent work that desertbes the canonical

step paradigm, see [LEH83].

2. Program Evolution 29

present the first level description of the core of the
Paradigm as a sequence of three sub-steps. The first
transforms a communication oriented representation to an
internal, manipulation oriented, form. The third, if needed,
produces a form appropriate for the output interface. In
between there is the Design step.

Design is achieved by the application of human judgement and
decision, on the basis of defined immediate objectives and
long-range goals. It must consider all potential inputs to
and the desired output from the current step and the total
Process, the constructs or primitive elements available for
the current step, the nature and power of the remaining
process and the primitives available to it.

Structuring at each step facilitates intellectual mastery of
the total complex. If interfaces and interconnections
between the identified parts can be completely specified, it
also permits division of further design activity, amongst
participants or groups, for that Step or for the remaining
Process. The potential activity split is indicated in figure
4 by the dotted lines out of the design box.

The preceeding discussion has indicated the role of the
design step. Its own design, to produce a practical process
in a specific context for example, requires systematic
decomposition, Structuring and refinement of the basic
concept; that expressed above for example. A preliminary
anlysis aimed at determining a lower level paradigm, is
outlined in section 4.7.3. Discussion of the step paradigm
must, however, first be completed.

4.7.2 The Complete Paradigm (2.2)

In the absence of precise design calculi, the activity
outlined by figure 4 must be supported by activities that
address questions such as, ‘are we building the system
right?', and ‘are we building the right system?! [BOE81].
Ideally, each step of the design process must, inthe most
general sense, be validated. The complete first level
description of the step paradigm, illustrated by figure 5,
indicates how this might be achieved.

Each step-transformation produces a model that, if
Satisfactory, represents the input to the next step of the
development process. What is 'satifactory' in this context?
The input and output transformations are purely
representational in nature. They involve no changes arising

30 M. M. Lehman and L. A. Belady

step 1-1

output

model

input

transformation

internal

model

frame-

work

 internal

model

output

transformation

Figure 4 The Step Paradigm Core

2. Program Evolution 31

from design decisions. Hence the requirement is equivalence,
in some sense, between each pair of inputs and outputs.

Demonstration of such equivalence is, here, termed Vertical
Vertftcation. One could achieve it by proving equivalence, by
a demonstration that each constituent Sub=step of the
transformation is correct (constructive correctness [DIJ68])
or by demonstrating once and for all that the transformer ts
Correct, all in the context of the current step and its
primitives.

On completing a design step (2.3) it must be Shown that’ the
resultant model is, itself, consistent and that it is
complete in relation to the features that were to have been
added or the problems that were to have been resolved in the
current step. such a demonstration is, here, termed
Horvtzontal Vertfteatton.

When an acceptable model, in this Sense, has been achieved it
Should be determined whether that model, as an intermediate
step tn the total design process, is ttkely to lead to an
acceptable, or even optimum, operational system. In the
absence of appropriate calculii, this judgement is imprecise,
but should be based on an assessment of the current model, on
Where additional detail is required and how it might be
developed, on implications of precursor models as to further
generalisations or features that must be achieved, on the
Capability of the remaining process and on the primitives
available for implementation of the remaining steps and the
final system. The process of developing this assessment is
termed Validation. In the absence of methodology that leads
to a satisfactory design ina Single step, the design step
becomes iterative. Each iteration requires validation to
determine completion of the sub=process. Horizontal
verification is, of course, also desirable, obligatory in
fact, in each iteration.

The above discussion has outlined the direct, first-level,
elements of a paradigm covering the many steps of a practical
software process. Though the issue cannot be explored here,
it will be self-evident that the procesS as described,
demands simple access to extensive records that contain the
State and histories of the various models and of the
processes that produced them. Perceptions and decisions that
underlie design decisions, and the reasoning that produced

2.3 (Eds) Hortzontal verification will, of courses normally
precede vertical vertficatton.

32 M. M. Lehman andL. A. Belady

them, must also be preserved. Finally information relevant

to the planning, management and evaluation of the entire

process and its relationships to the enviroments in which it

is executed, must also be recorded. The whole of this

requirement is indicated in Figure 5 by the lines converging

on 'Repository'.

4.7.3 A Preliminary Design Sub-step Paradigm

The present paper is intended to address the issue of

evolution in the programming process and to develop, at

least, the outlines of a theory of program evolution. It is

therefore appropriate to pursue further refinement of the

step paradigm only to the extent that identification of

further detail assists its development. The specific

objective must be to pin down and to clarify more precisely

the origin of true evolution, as distinct from technology

dependent evolution, in the design process.

The discussion of earlier sections presented the process of

program design or development aS a sequence of transfor-

mations. This view is particularly appropriate when consider-

ing the mechanistic aspects of the process. However, in so

far as the transformations include a creative element that

requires human involvement, it is more appropriate to decribe

it as one of refinement, as in section 4.7.1. The develop-

ment of a lower level design paradigm may therefore be based

on decomposition and refinement of the refinement process.

In his original paper [WIR71], Wirth defined refinement as

the addition of detail. In his introduction he states that

'...the program is refined in a sequence of refinement steps.

In each step, one or several instructions of the given

program are decomposed into more detailed instructions’. In

his conclusion this is expressed as 'In each step a given

task is broken up into a number of subtasks'. As Wirth

clearly recognised, this process requires human decision.

The way in which an element is decomposed will affect, at

least some, attributes of the final product of the refinement

process.

Wirth also discussed the need to define and structure

associated data. More generally, structuring is, in fact, an

integral part of the refinement process. As detail is added,

the internal elemental structure will expand in a way that is

dependent both on the original or higher level structure and

on the process of refinement. At some stage, it may be

advantageous to restructure the emerging element, by

2. Program Evolution

HUMAN

JUDGEMENT

AND
DECISION

33

\

SELECTION INPUT

NTERNALVERTICAL
MODELVERIFICATION FRAME-CATION|” WORK

STEP i

DESIGN

HORIZONTAL INTERNAL
VERIFICATION | MODEL

 VERTICAL

ERIFICATION

OUTPUT

TRANSFORMATION

 = 4 SELECTION

» REPOSITORY

SYSTEM

CONCEPTS

AND

PRIMITIVES

Figure 5 The Full Step Paradigm

z. Program Evolution 35

It is the destgn sub-step which drives system evolution.
Refinement decisions impose verification obligations. They
must aiso include consideration of the remaining process and
its primitives, that is evaluated by validatton procedures.
Ideally, these should provide the best assessment possible,
at the current stages of the degree of satisfaction that can
be expected from the system Z¢keZy to emerge. Because of the
imprecise nature of current technology, progress is
iterative. That is, there exists, in general, no precise
method for selecting the form or content of refinement to be
applied. There is no systematic linear technique for
selection between alternative structures, algorithms and
primitives. In the absence of appropriate methods, or if
insight develops in a way that suggests benefit can be
derived by a change propagated across the Sequence of models,
iterative refinement must be applied possibly across’ several
steps.

In summary, where appropriate (formal or analytic) techniques
exist, a single application of the design sub-step can
produce an acceptable output model. In the absence of such
techniques, the design will evolve over several passes
through a design and validation loop. Where validation
methods are adequate, iteration and lowest level evolution
may be confined to the internal step concerned. Where’ they
are insufficiently refined or when changes affecting higher
level models are introduced so that true evolution occurs,
iteration must span several steps or extend evolution over
two or more releases.

In any event, evolution clearly features at the step level of
the programming process. At this lowest level the real times
involved are of the order of days or weeks. It represents a
lower level of evolution than that of the release-development
process. At both these levels, however, evolution arises
from processes tending to one or other of the alternatives
identified at the end of section 4.5.2. There is some hope
that in the future, development of adequate design and
validation techniques will permit refinement of the design
process to reduce reliance on evolution at the lowest levels.
Whether they can ever be made sufficiently precise to confine
evolution to the Release Sequence and Generation levels
remains to be seen.

36 M. M. Lehman and L. A. Belady

5 The Structure of the Evolution Process

The above discussion has briefly introduced a concept of

hierarchical evolution and identified natural levels of a

process implementing it. Table 1 summarises facts relevant

to an associated theory of software evolution.

Table 1 Levels of Evolution

! 1
I

Involvement |Feedback via |Time UnitiMainly
I

I !
I {

‘Level !
1

leosessseaae } SSseresea2eazeea2 ! Srresesrzazazarzaaica i =s=s==2=2s22=222 } Ss=s2sse22>=2 !

'Step-local {Individual {Designer's ‘Days to {Process |

'Design 'Perception ‘weeks ‘Dependent|
{ { 1 ! |

VJ“| reir =m om |

'Release 'Project 'Subsequent ‘Weeks to {Process |

'Group 'Process Step |Months ‘Dependent|
| ! { ! | {

t t ! I I !

{Release '‘OrganisationiUsers and ‘Months to}{Intrinsic|

'Sequence 'Developers ‘Years
! ! i ! J 1

tel aI ~ -_
'Generations!Society at {Real World 'vears to |/Intrinsic|

iLarge ‘enviroment {Decades |
| |
| |

Urgency may, occasionally, force an ad hoc system change to

be implemented outside the established process. In general,

however, system evolution will be constrained, so that change

is achieved within processes set up at each level. Table 1

suggests orderly progression, a property that is highly

desirable if a related theory is to be palatable.

The pattern has a simple interpretation. It reflects the

fact that evolution is achieved by human action ina societal

framework. Intervals that represent natural time constants

in that framework, in the life and activity of individuals,

groups, organisations and society at large, must have an

impact on the programming process. The paper demonstrates

that they appear naturally from an analysis of that process,

both current and abstract. Their appearance is a hopeful

sign that that analysis may bear further fruit. What are the

immediate implications, particularly on the process and its

support?

2. Program Evolution 37

6 Software Process Support

One of the important conclusions of this study follows from
the demonstration that the software process is a phenomenon
that can be studied systematically in the context of the
environments within which it is. pursued. This view has
always been implicit in Belady and Lehmans' Evolution
Dynamics studies. It reflects the tight linkage with the
society within and for which computers operate. Many of its
properties are a consequence of that relationship. We ignore
the relationship at our peril [LEH78,80 - third law].

The notion of software evolution as a partially natural
Phenomenon leads to the concept of an tdeaZ coherent process
extending over the system life-cycle. During the last twenty
years, ad hoc processes have evolved, assembled from equally
ad hoc methods and tools, Bach process has been adapted to
the development environment in which it is to operate. What
is now known and available as a result of this process
evolution provides a rich set of primitives. These, in
conjunction with the understanding achieved, yield the target
implementation primitives for a top-down analysis that can
determine a structured process approaching the ideal; anda
basis for its practical implementation.

It is now widely realised that an effective programming
process must be supported by an adequate set of tools. such
a tool kit must be coherent and integrated. The coherent
view of the total programming process based on a theory of
Program evolution, provides a conceptual framework for the
development and implementation of a methodology, a set of
compatable methods and an integrated tool kit for their
Support. Space constraints prevent further exploration here.
Preliminary discussion may be found with rapidly increasing
frequency in the literature [DOL76], [HUT79], [BUX80], ~
[RID80], [LEH80,81]. There is clearly much to be done. The
present Paper together with the referenced literature
provides the concepts and a systematic and unified base fer
Such an effort. The practical implementation of these
concepts could rapidly follow.

T Acknowledgements

The author has developed the concepts presented over many
years in collaboration with a number of colleagues. The
continuing and creative association with L A Belady is well
known. More recently, Professor W M Turski has acted as a
sounding board and constructive critic, contributing insight,

38 M. M. Lehman and L.A. Belady

concepts and refinements. Most recently, Dr V Stenning has

joined us in regular and productive discussions. The author

is also deeply indebted to Drs G Benyon Tinker, PG Harrison

and C Potts. Acknowledgement is also due to ERO and its

Director of Information Sciences, Mr G M_ Sokol, for

continuing encouragement and support, including that under

contract number DAd A-37-80-C0011.

CHAPTER 3

THE PROGRAMMING PROCESS*

1 Growth

1.1 Expenditure

Any view of the IBM (3.1) or of the US programming scene

today leaves an overwhelming impression of growth. Thus, for

example, in the last decade the IBM System Development

Division's (SDD) annual expenditure for programming
development has increased more than an order of magnitude.

Up to 1964/65 SDD programming expenditure was in fact growing
exponentially at arate averaging a doubling every one and a

half years. Since that time the rate of increase has been

linearised by holding its programming development budget at a

fixed percentage of a linearly increasing divisional budget.

Expenditure patterns in other IBM divisions correspond to

those of SDD. Figure 1 summarises annual expenditures for DP

Market Development and SDD Type 1 programming. It is

estimated that the total IBM expenditure on programming is

several times more than that of SDD alone.

Projections see SDD programming development budgets

continuing to grow, as will the total IBM programming

expenditure. Thus even small improvements in the programming

process can make substantial contributions to IBM's
profitability. On the other hand, failure to control growth
can lead to expenditure levels that will strain or even
exceed IBM resources.

1.2 Manpower

Level of staffing is mainly controlled by the availability of
funds. Thus the growth of programming manpower in IBM has

3.1 (Eds) This paper was written while the author was an
employee of IBM. Hence the constant references to IBM.
One must stress that precisely the same comments that
appear here. could have equally been made about he
programming activities of any of the manufacturers or
software houses.

IBM Research Report RC2722, 1969, reprinted with kind permission of International
Business Machines Corporation.

39

40

M$

Figure 1

M. M. Lehman and L. A. Belady

SDD — Type 1

DP —- Development £3

SDD and DP Programming Development Expenditure

M. M. Lehman and L. A. Belady42

UUTETTEETOTTA
T
T
T
TTTT
E

e
o
n
s

RXxXKXxTSSSSSS
O

N
Q
D
V
A
M
O
n
n

T
U
T
T
E
e
e

S
T

©
S
S
S
R

o
O

aN
selececentatsersrnresesteeeedtasimsmisinaneeneeeotasanananetes

a
c
e
)

2
<

—
_

§
E

S
c
o
g

=
7

O
F

EC
Q
o

2
a
g
o

2
~

OO
Ee

Nea
2

t
-

5
6

o
&

®

1
w
a

a
0

5
M

S
8
4
4
.

e
n

”)
te

a

Ato

Y/7E Manpower

Year

IBM Divisional Programming Manpower GrowthFigure 2

3. Programming Process 43

700 --

Total

600f-

=

< 500r
oO
”)

3
£ 400h
Cc

2
& 300-
> _7Programmers

a 2O0Or- es=—analysts

—Operators

100K —f aeManagers and
— supervisors

———~ l L
64 66 68 70

Year

1968/9 Growth Between 22% & 29%

Figure 3 US Programming Population Growth

3. Programming Process 45
N
u
m
b
e
r

of
M
o
d
u
l
e
s

5600

5200

4800

4400

4000

3600

3200

2800

2400

2000

1600

1200

800

400

i
n
s
t
r
u
c
t
i
o
n
s

M
e
g
a

-

L Components (S)

Total

Modules

Change in

Algorithm

--"-*

Instructionso
O

p
o

H
h

D
W

@
W
O

n
m

f
p

O
o

W@
W

q
q

\
@

®)
<
q
—
_
—
_
-

p
—

=

|
Oe
) ‘

«Modules Handled

r—*teee Year

3. 6810122 5 810 1 g Month
1 2%6895 11 1213 14 15/6 7 8 '9 20 Release Number

Figure 4 OS/360 Growth

Figure 5 OS/360 Average Growth Rates

Release - Groups

(PREDICTED)

tii

b
e
e

12-16
|

17-2)

 1000;- 200
X °

15
+

A
v
e
r
a
g
e
N
u
m
b
e
r

of
M
o
d
u
l
e
s

O
o

©

3500

3000}-

1500;-

oO
f- @

A
v
e
r
a
g
e
N
u
m
b
e
r

of
M
o
d
u
l
e
s
H
a
n
d

D
go

O

1200+

000

O

0

400+

1
|

|

A
v
e
r
a
g
e

Pe
rc

en
t

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

n
m

o
O

O
n

©
oO

O
|

|
|

|
|

4000;- 1400 45-

4500r 1600-F SOF

| Ol O oO

A
v
e
r
a
g
e

In
st
ru
ct
io
n
G
r
o
w
t
h

pe
r
M
o
d
u
l
e

H
a
n
d
l
e
d

|

o
O
o
O

4350

4250

+200

4400

+450

46 M. M. Lehman and L.A. Belady

3. Programming Process 47

Table 1 Growing Complexity of OS/360

Releases

2 thru 6 7 thru 11 12 thru 16

No of
A Modules 1451 2450 3752

V Instructions/

Modules 406 HUT 438
E

No of Modules

R

|

Handled 220 567 1151

A % of Modules

Changed 14.6 22.5 31.9
G

Instruction

E Growth/Mod

Handled 356 141 80
effects of error and of change are Spreading ever further
through the system. It is this increasing difficulty of
change that will soon force the initiation of an OS/ 360
successor.

By extrapolation it has been estimated that the successor
will contain over 30 million lines of code and will cost
accordingly. Successors to other programming systems will be
required and will grow in similar fashion. These predictions
are based on a fundamental assumption that the programming
process will continue to be based on the same procedures as
in the past. They suggest that the time has come to develop
a new approach to the enttre process, to change the way of
seeing and dotng things (3.2). It is this possibility that
was examined in the present study, that formed the basis of
project proposals that were made, and that constitutes the
main topic of discussion in the latter sections of this
report.

3.2 (Eds) Italtetsed 1984

48 M. M. Lehman and L. A. Belady

1.4. Cost

Past patterns clearly point to a continued growth in

Corporate expenditure on the production of new programming

systems. In terms of the present way of programming, we also

expect significant increases in the cost of each individual

programming system. For present day systems which are, at

best, only superficially structured, cost will tend to

increase more rapidly than linear - since complexity and

hence difficulties of design, implementation, integration and

testing all increase rapidly with size. For example the

number of potentially interacting modules in an n-module

system is (1/2n(n-1)). The number of potential interactions
and their interdependence is much larger. The designer, the

test and the modification procedures must all consider the

need or the presence of such interactions.

The number of users of a particular system will tend to grow

linearly with the growth of the sales force. Thus according

to the present pattern, we may expect the cost of programming

products per userto increase with time. This occurs at a

time when the gradual introduction of LSI technologies has

led to predictions of significant decreases in the cost of

hardware. It has been suggested that in the face of these

trends it will become profitable to implement more software

functions in hardware. This argument is, however, misleading.

The difference in cost trends is partly due to differences in

the technologies of hardware and software design and

production. In particular there is an order of magnitude

difference in the mechanisation and tool support provided in

the two areas. But the underlying cause of software cost

trends is increasing complexity. The problems that are

encountered are due to the difficulties of system behaviour.

In the absence of any real understanding of complex systems,

transferring implementations from soft to hard technologies

will merely transform the hardware systems from relatively

simple structures into the amorphous assemblies that are

found in the programming area. The main problem of large

systems is unintentional interaction between components, that

require changes to the components for their elimination.

Hardware changes in LSI technology are far costlier to

implement than software changes. Thus the net result of a

change from soft to hard implementation, that proceeds at a

pace more rapid than an tmproved understanding of system
structure and performance will be to cause still further

increases in cost.

52 M. M. Lehman andL. A. Belady

The apparent ineffectiveness of rate of code-generation as a

measure of productivity may also be viewed from a slightly

different point of view. A recent survey of various IBM

programming locations has revealed that programmers spread

their action over more than twenty classes of activity

spending no more than some 25% to 33% of their time

'Programming'. The nature of the survey raises questions

about the precise value of this result. There is, however, a

strong correlation with Bardain's estimate [BAR64] that a

programmer 'Programs' 27% of his time, whereas an engineer

'rngineers' 45% of his time. Thus the survey suggests that

the programmer is used as a 'Jack-of-all-trades'. Increased

effectiveness of the programming process may well be obtained

through more effective utilisation of professionals, aided by

support from programming technicians and machines.

In summary it appears that questions of productivity require

investigation of three related areas, the effectiveness of

the total process itself, the utilisation of human and

machine capability and resources in that process, and the

productivity of the programmer when he is actually

programming. All these questions are discussed briefly later

in this report.

1.9 Education

The EDP-education needs of the Corporation and of the country

are also growing at an alarming pace. That growth is needed

to support recruitment and retraining as new soft and hard

systems become available and as tools and support are

developed for the programming process.

It has been claimed that IBM trains half a million people a

year. Other estimates suggest a training need for over one-

hundred thousand raw recruits annually on a national scale.

A high percentage of these receive some of their education

from IBM. Thus education forms a major activity within IBM,

one that appears as an increasing drain on resources, It

may, however, also be viewed as possessing profit potential

and as offering hope for improved productivity and

effectiveness through more discriminating training.

The apparent absence of programming technicians drawn from

high school and two-year college graduates is related in part

to the form of the programming process and the lack of

management experience in the use of this labour source.

Equally, however, it may be related to the programmer

educatioal process. That process is discussed in a latter

3. Programming Process 53

section, At this point the availability, content and qualityof EDP education courses is recognised as a major factor inthe effectiveness of the Programming process and inSupporting the growing market.

1.10 The New World

The preceding discussion has been in the most general terms.The data on which it was based was all derived in the old,pre-unbundling, World. It is, of course too early to measurethe effects of the New-World (3.4) environment on growthrates. However, it may well accentuate the effects ofgrowth.

When a customer pays for a product or a service he is likelyto attempt an assessment of its value to himself. someprogram products will quickly demonstrate and justify theircost. Thus encouraged by program charges to evaluatePrograms, customers will discover their profitability andwill be encouraged to ask for more. That is the New Worldwill tend to increase demand, and hence growth in all the
areas we have considered.

Moreover, to the extent that there is a relationship between
cost and price and in view of emerging competition, it will
be more than ever important to know and control programming
costs in IBM. In this sense the New World posture will
encourage development of appropriate evaluation and valuation
techniques. The resultant pressures can only be beneficial
to the effectiveness of the programming process,

1.11 Summary

In the preceding sections we have concluded that there is a
high rate of growth in Programming demand, manpower,
expenditure, complexity and cost. Manpower is already a
limiting resource for IBM customers and therefore for IBM,

The growth-control problems relate not only to the
productivity of programming personnel but to improving the
effectiveness of the entire programming process. Examination
of the productivity question in isolation can even bemisleading. It could lead to the ineffective transfer of

3.4 (Eds) the terms unbundling and New-World were in commonuse tn IBM in the late 1960s in relatton to the IBM
poltcy decision to charge for software, and its
implementation,

54
M. M. Lehman and L. A. Belady

activities not directly related to programming, but essential

to the release of a reliable product. Similarly, a tool

developed to support the programmer rather than the process,

may render him immediately more effective, but may be less

than efficient or even harmful when viewed in relation to the

total process

Thus, after a brief discussion on the control of growth, this

paper will examine the total programming process, the

function of structure, of men and of machines within that

process. Improvements must bring about reduction in

expenditures, cost, human effort, and the lead-time between

statement of a requirement and delivery of a reliable

porogram. In essence this must be achieved through increased

effectiveness, and interaction for all those involved in the

process.

2 Control of Growth

2.1 Form of Growth

The previous section has indicated the unabated growth of the

programming area. This growth will continue into the future.

In fact, an examination of the programming environment

reveals all the ingredients of exponential growth. Thus, for

example, new function and new system demand, the maintenance

requirement and the impact of complexity all increase as a

function of both the number of systems and the number of

copies of these systems in the field.

Examination of IBM programming population and expenditure

data clearly reveals such exponential growth for the period

up to about 1966. Beyond that time, however, further growth

tends to be linear. It is the purpose of this section to

discuss the mechanisms that have controlled the natural

tendency for unabated growth in the past and to propose

alternatives for the future.

2.2 Environmental Control

Any increase of expenditure ina particular area of IBM's

activity must compete for funds within the totality of IBM's

expenditure. Thus, once the rate of growth of expenditure in

programming exceeds the rate of budget growth of the

environment, such growth can occur only be restricting growth

or even decreasing expenditures in other areas.

3. Programming Process 55

As a business, with an almost infinite potential market for
its product, IBM itself could also grow exponentially. In
fact, however, it is controlled in its growth by the national
economy and its own financial resources. Thus the
Corporation has had to control, to linearise, budgetary
allocations to each division. These in turn, have been
unable to give free rein to various growth areas. Thus
despite long queues of work awaiting the allocations of funds
as typified by SDD's 'Outplan' and DP'ts "evelopment Beyond
Target', each division has applied a linearisation to its
programming development activity.

In SDD, for example, the expenditure on programming
development was set at a fixed percentage of the divisional
budget some years ago. This rate was considered reasonable
in relation to other calls on divisional resources and was
not based on an estimate of value. Nor could it be, since
reliable forecasting techniques were not available in the
software area.

2.3 Open-Loop Control

In summary then, the growth control necessitated by resource
limitations has been applied to programming expenditure and
manpower growth through the medium of open-loop, budget,
control. In the Old World the concept of profitability did
not exist. Budget allocations did not and could not reflect
the quality, value or profit potential of a program or
programming system. Market needs and demands as determined
by forecasting activities, were expressed exclusively in
terms of impact on hardware Sales. the concepts,
technologies and tools required to establish software 'value!
and hence to control the programming process by means of a
self-regulating feedback Procedure did not exist. Nor was
there any incentive for their development in an environment
where business policy regarded investment in software as an
overhead cost.

2.4 Closed-Loop Control

The New-World pressures following unbundling create a visible
need and the state-of-the-art should now progress, permitting
a gradual transition to closed-loop control. Under such
control, feedback derived, for example, from the potential
'value' of a program must play a major part in the decision
procedure that determines its initiation and Managment of its
development. In this context "'value' is ultimately measured
by the direct and indirect profit potential of the program.

56 M. M. Lehman andL. A. Belady

It will be related to functional content, implementation

cost, performance, flexibility, changeability, reliability

and the market needs that exist or can be created.

The incentive comes from the new requirement for controlled

costs of programming products. Thus control must cause more

selective and profitable development, the abandonment of

unsuccessful programming efforts. This represents a major

step forward over a control technique dependent primarily on

human intuition and viewpoint. These may be objective but

equally often will be parochial; coloured by local needs,

prejudices and interests.

2.5 Base Control

Applying 'valuet feedback will not significantly impact that

part of the overall trend to growth caused by justifiable

demand and increased complexity. An additional mechanism is

therefore required. This lets the output of the programming

process grow at its natural pace, while limiting excessive

growth in expenditure, manpower and cost. It requires a

change in the relationship between the input and output of

the programming process. In terms of a mathematical model,

the alternative to forcibly changing the form of a transfer

function by constraints and feedback is to retain the

exponential form but to change its coefficients. This may be

achieved by changes in the environment and in the level and

training of personnel (labour costs), changes in education,

training and management (individual and group productivty)

and changes in methodology and support (process structure,

tooling, and mechanisation).

This potential has been recognised within IBM. The level of

expenditure dedicated to programming support, however, falls

far below the support level provided in other areas. Thus

techniques and tools development in the Components and

Manufacturing Divisions are funded at a level and order of

magnitude larger in relation to the respective divsional

development budgets, than the Corporate programming-support

strategy budget in relation to SDD programming development

expenditure in 1969. In fact Corporate expenditure on

programming methodology and support represents a minute

fraction of expenditure in the programming area aS a whole.

This already low relative expenditure is to be still further

reduced as in Figure 6.

At this low level of expenditure, the main thrust has, in the

past, been directed to the solution of local problems of

Figure 6 IBM Programming Development Support

Year

Di
vi
si
on
al

P
r
o
g
r

as
fr
ac
ti
on

of
I
B
M

pr
og
ra
mm
in
g

po
pu
la
ti
on

q

 |
|

P
r
o
g
r
a
m
m
i
n
g

Ex
pe
nd
it
ur
e

a
s

fr
ac
ti
on

of

di
vi
si
on
al

ex
pe
nd
it
ur
e

|
r
r

US
$

~ f
-

3. Programming Process
57

58 M. M. Lehman and L. A. Belady

immediate urgency. Attempts to structure, mechanise and

support the total process, using computer technology wherever

appropriate, have not been carried through. No examination

has been made of the programming process itself so that

modern technologies of data translation, manipulation,

storage, display and communication, can be exploited to the

fullest extent. (3.5)

The present programming process is a linear sequence of

events, some of which have been individually improved.

Improving some of these however, need have, and has had, no

dramatic impact on the level of activity or rate of growth.

Hence external controls have had to be invoked.

2.6 The Present Study

In the preceding sections we have outlined three approaches

that individually or in combination can control the

programming environment and render the programming process

more effective. The first two force the linearisation of a

growth potential that is naturally exponential.

At the present time control is essentially open-loop with

budget allocations and managerial negotiation the main

forces. It would clearly be desirable to replace such

procedures by a self-regulating economic mechanism. This

requires the development of insight into the programming

process and market needs and the development of forecasting,

evaluation, measurement, and management procedures,

techniques and tools.

These very problems must have been widely discussed over the

past few months in connection with the unbundling process.

Their solution can make a fundamental contribution jto

improving the effectiveness and profitability of the

programming process. Considerable effort will, however, be

required to collect, analyse, correlate and interpret data

and to learn how to use the resultant insight to the best

advantage.

Ultimately, however, satisfaction of the demand that exists

or that can be created for IBM software systems and products,

demands modification rather than linearisation of the

3.5 (Eds) We emphastse once again that thts paragraph (that

is, the entire paper) was written in 1970. Only now

(1984) are these points beginning to be widely

understood and accepted.

3. Programming Process 59

exponential growth, despite its explosive trend. Such
modification will result from an accelerated introduction of
Structured mechanisation to the total programming process,
In the past the approach to mechanisation has been piecemeal.
To determine whether there exists an alternative, what such
an alternative might require and what projects and activities
might be initiated at the present time, we now choose to
discuss the programming process under the five headings of
methodology (3.6), tools, languages, management and
education.

3 Methodology

3.1 The Basic Need

Methodology is required wherever there is an involvement with
the design or control of interacting systems. In the case of
software Products, systems of people interact over an
extended period of time, within a business system, to produce
a computer system based on a hardware Subsystem. The total
System will be judged in the real world by comparison with
pre-set objectives and competitive products. The methodology
must aim to produce decision taking and optimisation
procedures that are system-oriented. This despite their
localisation in space, time and people; despite the lack of a
Solid theoretical base,

An appropriate methodology will also yield all the advantages
of structure for the process and for the resultant system.
In particular it yields understanding and hence control of
the development process itself. Only through such insight
can one hope to transfer experience effectively from one
system-implementation to the next.

3.2 Extremes in Methodology

3.2.1 Simple Programming Methodology

There is no single methodology of programming. Clearly there
is a distinction between the procedure for writing a Simple
program fulfilling a specific need and that needed to produce
a programming systems that is to address the potential
requirement of an entire application area.

3.5 (Eds) The correct word here and in all that follows
should be ‘Methods’, Methodology is 'the setence of
methods',

60 M. M. Lehman and L. A. Belady

The former case is typified by a well-defined problem,

limited objectives, an obvious algorithm, self-evident

program structure, an appropriate language, and a one-man or

small group effort. These conditions are realised because of

the nature of the problem and because of limited expected

usage and life. Thus, the methodology is straightforward.

Select an algorithm for the solution and an appropriate

programming language. This will probably be high level and

machine independent. If the choice is available, decide

whether to proceed interactively using a conversational

system or under batch mode. Write, debug and run the program

according to the simplest possible flow diagram and using the

most readily available compiler.

3.2.2 The Real World Problem-Systems

This simple picture changes with the intrusion of real-world

complexities. The objectives of a programming effort that is

to serve a general purpose function cannot be uniquely

determined. Even when a particular set has been adopted they

are not usually formally defined. Over the period of

development and implementation they are likely to change (in

particular to increase in number and complexity). Thus

programmers are essentially aiming at a moving target.

The size of the effort and the lead time that can be

permitted are too large for one individual alone to be

assigned. The work becomes a team effort which brings with

it problem of interfaces, communication, standards and

management. Program structure, sub-system assignments, and

algorithms will have to be selected. Many of the details

will not be pre-planned but will be left to bilateral

negotiation or to individual implementors. Sinee the program

is expected to be long-lived, its operating environment and

the demands on the program will inevitably change. Thus the

program will aim at a general purpose structure. Foresight

is, however, always inadequate and thus the program must be

changeable and expandable, often by others than the original

programmers (3.7).

The system will be required to be efficient in terms of

running time and storage space, since it is expected to be

large and will hopefully be in frequent use over a long

period of time. Thus a decision may be made to code in

3.7 (Eds) Notice here already the first roots of the 1981

SPE classification and of Evolutton, concepts that nominate

the much later papers.

3. Programming Process
61

assembly language, mistakenly in this author's judgement.The language problem is discussed in a latter Section. Weremark here simply that using an assembly language removesstructure, discipline, clarity and readability, compoundingthe opportunity for error and the difficulty of change.

The problems outlined are really typical of these that arisein the design of any large system. A System assembled fromits constituent Parts achieves a performance determined bothby the performance of individual Subsystems and by theinteractions between them. Local optimisation of eachSubsystem cannot ensure System optimisation. In fact"Murphy's Law! (3.8) appears to guarantee that the finalSystem, when assembled, will be far from optimum.

In general a system is designed by Starting with the basic
requirements and applying a breakdown or outside-in process
that ultimately yields a blueprint in terms of standard
components. Once the design has been completed, the
implementation, which processes and assembles materials and
components in inside-out fashion, can commence. This system
design procedure cannot be presently applied to programming
Systems for two main reasons. First, analysis, measurement
and evaluation techniques that permit such a design process
to be undertaken are only now beginning to be available.
Second, standard components of a sufficiently high-level to
make the concept meaningful, are not available. In
programming, the design process carries through to the
composition of instruction sequences, coalescing the design,
implementation, and testing phases.

The sequence of activities that take the original concept of
a program down to its final tested and evaluated
implementation is thus, by its very nature, continuous. If
the process is to be improved it must be analysed and
Structures as a whole. Only then may it be divided into
Subactivities for the development of specialised support
tools, processes and management structure.

3.8 (Orig) We do not really need to appeal to Murphy's Law.
If each subsystem has been tndividually optimised, by
definttton it can perform no better than when operating
tn tsolation. Thus interactions can only degrade
performance. Many subsystems degrading simultaneously
tn pseudo-random fashton cannot be expected to produce a
near optimtsed system.

62
M. M. Lehman and L. A. Belady

3.3 Present Methodology

3.3.1 The Phase Review

Any programming methodology now existing has developed in ad

hoc fashion over the years. The simple case of Section 3.2.1

in which an informal problem statement is directly translated

into, say, a flow diagram and a FORTRAN or COBOL program and

then compiled on a machine-independent compiler, will not be

further discussed. We merely note the continuing need to

develop machine independent, expandable languages and their

processors, for ready adaptation to the needs of particular

applications.

The methodology of systems programming in the more realistic

environment outlined in 3.2.2 is conveniently discussed in

relation to SDD's development guide. This linear set of

procedures is based on a series of technologies;

architecture, design, implementation, test, and so on. In

particular the guide defines the details of the Phase Reviews

that governs the development, test, announcement and release

of quality hardware. The phase-review procedure has however

failed to fulfill the same function in the software area.

Part of this failure is undoubtedly due to the intrinsic

fusion of the design, implementation and testing processes in

programming. Equally, it is due to the absence of techniques

and tools that would permit technical evaluation of work

completed, in terms of performance and cost forecasts, and

accurate assessments of future resource requirement for

completion of a particular programming effort.

In the absence of such skills the Reviews cannot lead to

meaningful technical judgement of a programming project.

Perforce they become a management tool that records past

resource investments and determines a compromise between the

functional content, core requirement, announcement and

release dates, and the amount of resources to be committed to

a program at that juncture.

3.3.2 Methodology and Structure

The preceding implies the need to replace existing

unstructured technology-oriented programming methodology by

an overall total-process-oriented methodology. This is seen

as providing a structure to the process. This structure must

be designed to guide the programming process and enable it to

achieve any desired combination of performance, reliability

3. Programming Process
63

and cost for a minimum in human effort and maximum machineSupport. After all the cost of human effort is on theincrease, the Supply of human effort is limited and thecontrary is true for machines,

By creating an appropriate structure for the process itself,complexity and cost are reduced, and human and machineeffectiveness Simultaneously increased. These benefits areimportant in their own right. They can also be expected tolead to significant improvements in System reliability.

There is also a Strong relationship between the structure ofa process and the structure of the System it produces. Theimpact of System structure on performance, cost,
Changeability and reliability is being increasingly
recognised. It is too large to be left to chance. The need
for restructuring the total manufacturing process follows, if
the system structure at all levels of detail is to be a prime
attribute and not an uncontrolled consequence of
environmental conditions. At the present time and for the
Simple case of section 3.2.1, program structure is imposed by
the language used, any ancillary conventions, the algorithms
employed and the compiler. For the larger programming
system, any structure that exists is largely a reflection of
the management hierarchy that produced it.

3.3.3 Support Activity

In discussing methodology, reference must be made to current
programming support activity. Examples of support available
or under development are discussed in Section 4.2. In
general, under pressures of local priorities and budget
restriction, these develop into support for the status quo,
serving local needs within the framework of current
procedures. In the future, Support activities will have to
be be system and total process-oriented, support pre-planned
System structure and provide maximum Opportunity for
mechanisation.

3.4 Embryonic Methodologies

The previous section has outlined the case for the develop-
ment of a process-oriented programming methodology. Fundam-
entally that process may be viewed as the translation of an
application or funetion concept into a working program (3.9).

3.9 (Eds) 1984 Ital. Note the close correspondence between
thts definition and the present day view. Current

64
M. M. Lehman and L. A. Belady

The urgent need for an integrated set of technologies that

will help in the solution of the problems posed by this

translation has been widely recognised. The various

approaches that have been proposed cannot be detailed here.

Table 3 lists some examples, and preliminary study of these

exploratory processes provides the conviction that it is

meaningful to discuss a total system process.

Management itself has taken a significant first step in the

development of a total process by the breakdown of the

development process into a series of missions. However, it

must be recognised that this by itself is insufficient. The

real problem lies partly in the formal and meaningful

definition of missions and mission interfaces. Even more,

the problems lie in their containment and management and in

the subsequent breakdown of missions so defined into

submissions, sub-submissions and so on. This breakdown

process into a tree-like structure can be generalised at

higher levels but must also be particularised for each

individual system. Thus the mission-concept initiates an

outside-in design process; it begins to develop both a

structured process and the structured system that it can help

to produce. This concept of a tree-like structure for both

process and system, arising from an outside-in design

procedure underlies most of the other system-oriented design

concepts of Table 3.

Another example of an embryonic software development

methodology is the multi-level modelling concept developed by

Zurcher and Randell of the IBM Research Division [ZUR67 J.

Their work has already been repeated and expended [PAR67 ,69].

The basic approach recognises the futility of separating,

design, evaluation and documentation processes in software-

system design. The design process is structured by an

expanding model seeded by a formal definition of the systen,

which provides a first, executable, functional model. It is

tested and further expanded through a sequence of models,

that develop an increasing amount of function and an

increasing amount of detail as to how that function is to be

executed. Ultimately, the model becomes the system.

An even more significant contribution made by the Zurcher-

Randell concept was that such a model can simultaneously

contain several representations of the same function or set

of functions of a system at different levels of abstraction.

terminology would, howevers use ‘transformation’ rather

than 'transtlation'.

3. Programming Process
65

Table 3 Embryonics Methodologies

Configuration Management Airforce/J Aaron FSD

Mission/submission Concept W S Humphrey SSD

CP 67 N Rasmussen DP

Syntax-oriented Documentation H Mills FSD

Architectureal Systematics H P Schlaeppi RES

Multi-level Modelling Zurcher & Randell RES

Sodas D Parnass Carnegie

Software Engineering Garmisch Conference NATO

NASA Project Engineering — —

There are a number of advantages to such multiple
representation, and it is they that really demonstrate the
major advance represented by the proposed methodology.
Suffice it here to say that the multi-level modelling concept
once again integrates the various activities that make up the
software system development process. Evaluation must proceed
step by step with design and documentation and the various
Stages of design and implementation are replaceable and
repeatable.

Outside IBM there has been widespread recognition of the need
for a new discipline termed 'Software Engineering' [NAT68],
Strongly related to systems engineering. The potential for
the development of such a discipline exists but awaitsintensive, directed research and development effort,

3.5 Further Work in Methodology

The common element of the embryonic methodologies listed inTable 3, is integration of the technologies currentlyemployed in the programming process. They regard a programas a system requiring to be developed from a formal statementof its objectives and show a Strong tendency to use modelling
and simulation as the main tool for achieving this end.

66
M. M. Lehman and L. A.Belady

In fact it is becoming recognised that the programming

process needs to become more and more like system design

activities in other fields. Thus there is a prima facie case

for supporting a study of general design procedures and

relating these to the particular requirements of the

programming process. In the set of project proposals arising

out of the present study it was suggested that an attempt at

formal description of the process, for example, could lead to

the improvement of the process. In addition many of the

listed methodologies and probably others available within and

outside IBM, are worthy of further development and exposure

in real development projects.

In view of the time period that must elapse before total-

process oriented procedures could be introduced it seems

important to improve present phase review procedures as

applied to programs. In particular as analysis, measurement

and simulation techniques for the software area become

progressively available, it must become a requirement that

the procedure includes not only resource-oriented data and

assessment. It must also produce judgements on the technical

attributes and expected performance of programming products

(3.10). Clearly the initial specification must thus also

include performance and test oriented data.

The need for development and standardisation of measurement,

analysis, evaluation, testing and forecasting techniques and

their associated tools cannot be over stressed. All play a

fundamental part both in the feedback control discussed in

section 2, and in the development of a meaningful system-

oriented methodology. In addition the availability of

standard components (or the logically equivalent systems

programming language) at a sufficiently high level will be a

significant element in the structuring of an effective

methodology.

4 Tools

4.1 Tool-Oriented Processes and Process-Oriented Tools

When first introduced computers did not make a significant

impact in the commercial world. The real breakthrough came

only late in the 1950's when institutions stopped asking,

‘Where can we use computers?’ and started asking, 'How shall

we conduct our business now that computers are available?!

3.10 (Eds) Now termed ‘vattdattion'.

3. Programming Process
67

In seeking to automate the Programming process the same errorhas been committed. The approach has been to seek possibleapplications of computers within the Process as nowpracticed, The Clear-Caster project which initially was anexception, has in the course of time, had to develop in theSame fashion due to the day-to-day pressures encountered inthe programming effort. Thus the Problem of increasingprogramming effectiveness, through mechanisation and toolingis closely associated with the overall problem methodology

4.2 Present Tools

At present there exist Many uncoordinated tools in manydifferent areas. Within IBM the Clear-Caster systemMaintains the main thrust. It has concerned itself primarilywith problems of communciation and of programming-data entry,Storage, retrieval and display.

Other systems modelling, analysis and evaluation tools are
also available or under development CSIM68], [LAC68]. In
addition there exist various testing, documentation,
Management and support systems which can make Significant
contributions to the process as now practiced. The test case
generators under development at Hursley, for example, seek to
address the problem posed by the need to exhaustively test
every large system.

These many tools Support each other functionally.
Unfortunately, however, their specification and development
has been essentially uncoordinated So that they cannot
communicate or pass data to each other. Often the data
generated by them cannot even be correlated. Moreover, use
of these tools is not universal but depends on the initiative
of local or sub-project management.

4.3 Tool Development

4.3.1 Integrated Families of Tools

Specification and development of a coordinated Set of toolsSupporting the total programming process must, as had been
Seen, consider the structure of that process. The present
viewpoint of a long-range goal visualises a growing model,
that serves as its own Progressive documentation. It is
seeded by a formal specification that develops as a result of
human and machine manipulation, into an evaluated systen,

68
M. M. Lehman andL. A. Belady

possibly executing on a model of future hardware, and running

under an interactive, conversational system accessed via a

communication network.

The present report must of necessity be more modest in its

aims. Tt seeks no more than to provide a preliminary

judgement of what such a family could include and on what

technologies it would be based.

4.3.2 Interactive Programming

Even without having clearly fixed the methodology, and

structure of the total programming process, intuition and

practical experience both suggest that a major class of tools

arise from the use of a computer to provide or support the

functions that the process requires. Moreover, Since in one

fashion or another, the system will have to communicate with

all the participants in the programming process, it is highly

probable that an interactive capability will increase

effectiveness. Thus the programming tool includes hardware

such as alpha-numeric terminals, printers and display units

and the software that links them to the computer, provides

appropriate function and integrates them into a total support

system.

The system will be used by many people sharing the

information that represents the developing design and

implemetation. These people will often be working in and

accessing the resultant data-base from widely separated

locations and connections in the system must be via a

communication network. Thus the programming tool visualised

belongs to the family of data-based, communication based,

conversational systems recognised widely as the systems of

the seventies and eighties.

A total-programming-process-oriented system will include

facilities for specification, structuring, development,

entry, filing and debugging of the program material (3.11).

It will provide for execution of program material and for

monitoring, measurement and analysis of its performance.

Execution of program elements must be possible in isolation

3.11 (Eds) The reader will notice the total absence here or

anywhere in the paper, of any reference to

‘verification; or ‘correctness proving’. Clearly the

author had not encountered the concept anywhere in hts

study, although Dijkstra's paper on constructive

correctness had already been published [DIJ68].

3. Programming Process
69

Or linked to other available elements and possibly runningunder some system other than its intended host. In additionthe system must provide, communication between membersof theprogramming team, control by its Management, detection ofdeviation from Specifications, conventions or performanceobjectives, and dissemination of the material within and

That is the machine has become the composing, editing,documentation, display, control and communication centre ofthe entire activity (3.12).

4.3.3 Languages

The languages used by the programmer during the programmingprocess can be considered as his most fundamental tool.Specification, structural development and coding of program,function and data sequences can all be considerably aided bythe provision of appropriate languages.

The topic of language development and its place in theprogramming process is really the subject for an independentStudy. Some aspects of the topic are treated in the nextSection. We note here merely that the provision of tools andSupport is closely related to the Provision of languages.Thus, for example, any computerised tool requires at least aset of commands for its use,

4.3.4 Productivity Gains

The concept of an interactive Programming system is, ofcourse, not new. Such systems exist already and have been
used. Most of the experimental data that is available
[GOL69] refers to one-man efforts in which communicationbetween people and management control are not prime factors.
All the published studies appear to indicate that in thisenvironment, variations between programmers are of far moreconsequence to productivity than any improvement due to theuse of an interactive Programming system. However theseconclusions are not relevant to the more complex systemsprogramming effort. In the latter Sphere, the only availablenumerical data comes from Bell Telephone Laboratoryobservations on their use of TSS/360. They claim that over anumber of projects they have been able to observe gainfactors of two to three in lines-of-code generated anddebugged by programmers in unit time.

3.12 (Eds) 'Programming Support Envtronment' in today's
terminology.

70
M. M. Lehman and L. A. Belady

The particular gains that BTL claim may be disputed for a

number of reasons. We restrict ourselves, however, to two

comments. On the debit side one observes that the factor of

two or three is disappointing. What is needed is an

improvement of one or two orders of magnitude. On the credit

side however, we note that BTL have really been using TSS/360

in rather primitive fashion. Thus their results suggest that

a considerably greater improvement could be obtained from the

development of a system specifically oriented towards the

programming process.

4.4 Tools - Conclusion

In the long run there is much to be gained from the

development of a process-oriented programming system which

supports and is supported by a central processor, filing

facilities, terminals, communication and display hardware.

For the moment use can also be made of existing programming

systems such as Clear-Caster, TSS/360 or APL/360. Any such

efforts should be monitored and measured so as to obtain

much more data about both effectiveness and about the ways

that people use such systems.

In addition to a determination of the direct impact of

interactive programming on productivity, it is of

considerable interest to qualify and size its indirect

effect. For example, to what extent does use of an

interactive programming system lead to a tendency to replace

analysis by experiment? Does it cause the programmer to

plunge into composition and debugging rather than to adopt a

more carefully planned approach to these activities?

Equally significant is the effect, both positive and

negative, of time and of familiarity. As the novelty of the

terminal wears off how does the usage pattern and utility

change? Observation, measurement and analysis of human

behaviour in the programming process will enable

determination of these factors. Feedback can then be applied

to improve both the support tools and the process.

A major function of the interactive system is the capability

it gives for communication and management control. Thus any

controlled experiment which would attempt to measure the

effectiveness of programming support systems, must be carried

out on a large scale. That is it must be large enough to

ensure a requirement for communication at, at least, two

levels of management control. Such an experiment could, for

example, seek to implement the same system twice in two

3. Programming Process
71

We note here that there can be no doubt that machines Will beincreasingly used in the Programming process. The questionthat really needs to be decided at the present time iswhether the Support system is merely a management informationSystem used in batch Processing mode with remote job entry.The alternative, of course, is to let the individualProgrammer spend all or most of his time ata computerterminal.

The answers to some of these preliminary questions willdetermine the magnitude and nature of the resources thatcould and should be applied to the development of a total-process-oriented Programming support systen.

5 Language

5-1 The Aspects Discussed

This section addresses briefly three further aspects of therelationship between the programming process and thelanguages used in that Process. It discusses in generalfashion the language-level at which System-programmers canwork and the formal specification of programming systems. Italso comments on the semantic wealth of most formal languagesand the impact this has on the Structure and activities ofthe programmer population.

The merits and demerits of Specific languages and therelationship between programming, command and job controllanguages are not considered here. Nor do we discuss theSingle versus multiple language concept or the properties ofexpandability and changeability. It is clear, however, thatin a rapidly changing and growing environment the latter mustbe attributes of any formal language, much as they areattributes of all natural languages.

52 Language Level

5.261 Present Practice and Experience

Up to the present time most systems programming has been donein assembly language, though the use of BSL [MEL67] has begunto spread in IBM, This is contrary to the trend in

72
M. M. Lehman and L.A. Belady

applications programming where FORTRAN, COBOL and, to a

lesser extent, PL/1 have effectively taken over the field.

Outside of IBM some high-level systems programming experience

has been obtained both in universities and in industry.

Outstanding among those are Multies at MIT using PL/1, and

the operating systems for the B5500 and B8500 computer. The

latter were entirely based on the use of a Burroughs

derivative of ALGOL.

Success in the MIT experiment was limited largely because

PL/1 was selected at a time when appropriate processors were

not yet available. The participants in the Multics

experiment are nevertheless convinced that any future system

would again use PL/1 [COR69].

The Burroughs experience in the use of ALGOL for systems

programming was an unqualified success. Some of this may be

attributable to the fact that their hardware architecture was

related to the structure of ALGOL. On the other hand, that

argument may be reversed. Accepting the desirability and

inevitability of using high level languages for systems

programming suggests changes in hardware architecture and

design so as to expedite those high level instructions or

instruction sequences that are frequently executed. This is

a trend which is complementary to and in accordance with the

trend toward systems-programming languages, standard

components and LSI technology.

5.2.2 Advantages and Disadvantages

Opposition to the use of high-level languages has been based

on the principle of conservation of execution space/time. It

has been argued that programs written in other than assembly

language require more core-space and run more slowly. But

storage and hardware costs are going down, machine speeds are

going up, and the possibilities of hardware implementations

of system function has become very real. In addition skilled

human resources are becoming scarcer and more expensive.

Thus this arguemnt appears fatuous.

Table 4 presents some potential advantages to be expected

from the use of higher level languages. Many of these have

been demonstrated in practice.

3. Programming Process
73

Table 4 Advantages of High-level Ssystems-programming(see note 3.10)

PRODUCTIVITY Rate of code generation
Substantially independent
of language level,
 SIMPLICITY OF LEARNING

IMPOSITION OF STRUCTURE

At least of usable subset

 CONFORMITY OF STYLE Through language conven-
tions

READABILITY Consciseness, Clarity,
Standardisation of style.

DEBUGGABILITY Through structure and
readability

 ERROR GENERATION Whole classes of error
removed

 ERROR DETECTION During preprocessing

CHANGEABILITY Readability, Spreading

change, structure.

 HARDWARE INDEPENDENCE

ARCHITECTURAL INDEPENDENCE

In-range compatibility

Generation compatibility
 SELF DOCUMENTATION Through increased

readability

RELIABILITY Consequence of all the

above.

14
M. M. Lehmanand L.A. Belady

5.23 BSL

Within IBM various independent efforts have sought to develop

and introduce high level or systems-programming-orie
nted

languages. In particular BSL [MEL67], has now been in use

for some two years in a number of groups, where it has been

enthusiastically received and effectively used by those who

have made the effort to learn and use it. Thus the language

could represent a significant step forward for IBM.

Conceptually intended as a systems programming derivative of

PL/1, it has, however, developed more into a superset of

assembly lanuage with PL/1-like Macros. In particular the

language facilitates the descent into assembly language and

thereby obviates many of its potential advantages.

BSL has not yet been widely accepted within IBM. The

principle objections are seen as essentially invalid at a

time when human resources, the lead time of program

production, and the growth of expenditure, costs and

programming load are eritical problems of IBM programming

activity. Thus as a first step it would seem that the use of

BSL as the main system programming language should be made

mandatory for all programming activity as quickly as adequate

support can be provided and as quickly as the necessary

educational training facilities make its general adoption

feasible.

5.2.4 Advanced Systems-Programming Language

BSL is not the be-all and end-all of systems programming

languages. There is room for the development of machine

independent languages at a higher level than BSL, possibly in

association with developments in machine architecture. Such

languages are being developed in various places. For

example, seven such languages are being developed in Japan

[KEN69]. Six of these are augmented-subsets of PL/1, some

with, some without, the facility for descent into assembly

language segements.

Once again there exists the alternatives of a specific

systems-oriented language, or the use of a general language

like PL/1. As a first step in this determination more

insight is required into the content and structure of

operating systems so as to determine what the oft recurring

elements are, how they are related, and their interconnection

and communication patterns. Thus one needs to analyse

existing programming systesm functionally and structurally.

This can help determine the semantic and syntactic facilities

3. Programming Process
75

that are required of a Ssystems-programming language and theirfunctional and Primitive content.

The isomorphism that appears between programming languages,Standard components and hardware mechanisms has already beenmentioned. It is in fact merely a reflection of the designchoice which has always been recognised as being possibleinprinciple, and Which, in this age of LSI, is becoming apractical reality. This makes implementation of almost anyfunction feasible, though not necessarily economical, insoftware, hardware Or in some intermediate firmwaretechnology. Hardware realisation is essentiallyinterpretative. Thus the isomorphism yields the furtherinsight that software realisation may be executedinterpretively or by means of a compilation activity.

5.3 Linguistic Wealth

From generation of a functional concept through to theProduction of machine-controlling code, the programmingProcess consists of a Sequence of text compositions,interpretations and translations. A design decision is takenwhenever or wherever in this Process, a choice is madebetween alternatives. This choice may be made explicitly bya human designer, but can equally be implicit in, forexample, the selection of a compiler. Such alternativesoccur in the selection of languages, primitives, names,Structures, sequences, algorithms and so on which, in variouscombinations, may dynamically achieve Superficiallyidentical functional capability confirming to the statedobjectives, Cost-performance-wise, and even functionally,the resultant implementations may, however, be verydifferent, for example, in the interpretation of unstated orambiguous objectives.

Richness is a feature of present languages. They all possessmany synonyms, near Synonyms and synonymic SyntacticStructures.,. It is the wealth in this and the algorithmicarea that makes automation of the software design process sodifficult. Equally it turns each participant in the processinto a designer.

Hence the reduction of lingusitiec redundancy is a4prerequisite to the extension of automation in theProgramming process, Equally it is required for thedevelopment and utilisation of technician-like skills in anarea now almost exclusively populated by professionals.

716
M. M. Lehman and L.A. Belady

In summary the total programming process is rich and

redundant. There are alternative formulations, languages,

algorithms, processors, implementations, structures,

sequences and expressions. Functional and performance

objectives are rarely self evident, unique or completely

defined. Thus every programmer becomes a coder and every

coder a designer. This is an encumberance when the prime

need is to get an acceptable program running and out into the

field. Imposition of linguistic conventions and restrictions

is one of the steps that can improve the situation.

5.4. Formal Specification (3.13)

The third topic to be addressed in the language area is that

of formal specification languages. This too is a topic which

has been widely discussed over the past few years [COD67]

though progress has been disappointing. It would appear that

one of the main resons for the relative failures has been

that the specifications so produced were not, in general,

machine processable. In other words formal specification was

viewed as means for communication between humans rather than

as an input to a machine process.

A specification must address function, perfomance, structure,

algorithm, test procedures and test-cases. Development is

needed in all these areas. Languages such as PL/1 and

APL/360, and techniques such as decision-table functional

definition [DRI68] and program algorithm specifications must

be evaluated in relation to the specification and initiation

of a programming activity and its ultimate objective. In

terms of the total automated process, formal specification ts

the first step (3.14) and represents an area for research and

development activity.

5.5 Languages - Summary

The linguistic area is clearly one that plays a major part in

the development of the programming process. Many areas of

potential research and development activity have been

considered in the course of this study. A common starting

point for all areas of development is the creation of

program-system-models that aim to reveal the semantic and

3.13 (Eds) Formal specification ts one of the buaz-words of

today's search for advance in Information Technology.

Yet the need and potential though not its role win

vertfication was recognised over 15 years ago.

3.14 (Eds) Italtctsed 1984. |

3. Programming Process 77

Syntactic structure and primitive content of existing

programming systems at various levels. The analysis would

aim to identify primitive elements and syntax for programming

systems and languages and future hardware structures,

components and their interfaces.

As an interim measure it also appears desirable to define

restricted sub-sets of existing languges, for use by high

school graduates and non-professional personnel. The

objective here is the development of a class of specialist

skills identified with programming technicians and support

personnel.

There exists also a need to develop manipulatable, machine

executable, specification languages that permit the complete,

formal, specification of programming systems, performance

objectives, test procedures, and test cases.

The processors that compile and otherwise manipulate the

programming texts are themselves an intimate part of the

area. Thus one must also include the development of

translation techniques and the relationship between languages

and the hardware on which they run as an area of concern

within the present framework. In particular with the ever

growing trend away from using machine (assembly) languges for
program composition, a prima facie case can be developed for

a total re-examination of machine language attributes.

Present machine languages are relics of an age when the main

requirement was related to usability. In the future the

fundamental qualities of machine languages will relate to the

ease and reliability of design and change of both languages

and compilers or other processors, the efficiency of

execution of the processors, and run-time efficiency. At the

other extreme machine language designers must consider

implementation technologies such as LSI within a total system

environment. The latter makes table-look-up for example, as

primitive and vital a function as division, say, and hence a

candidate for implementation as a machine instruction.

6 Management

6.1 Present Practice

In view of the magnitude, complexity, duration and changing

objectives of large scale programming activities,

hierarchical project managment plays a vital role. The first

78 M. M. Lehman and L. A. Belady

attribute of the present procedure is its linearisation. The

sequence inludes market justification, architecture,

specification, design, implementation, integration, test and

so on. Each of the sub-processes has assigned to it a

manager or management group which takes over from preceding

groups, initiating activity which at that stage becomes their

responsibility. Overlapping responsibilities do occur and

the need for communication between groups is recognised but,

even so, often left to chance contacts.

When a new system is being planned, the first step tends to

be the assignment of prime management responsibility to one

individual. In the case of a large system, an initial

breakdown into a number of partitions or subsystems is

followed by the appointment of managers to each of these.

This is followed by the allocation and structuring of the

total resources to be applied to the project in accordance

With the judgement of the management heirarchy that has been

created.

In this procedure the emphasis is on the creation of a

management system structure and of subsystem interfaces. The

content and boundaries of the activities of a group will be

controlled by the manager's interpretation and judgement, and

as a direct consequence of his negotiation with the

management hierarchy and his peers. Moreover as the various

phases of a total activity are completed, the management node

responsible for each particular phase is dissolved and its

personnel reassigned. This removes continuity and assignable

responsibility from the process.

The consequences of this procedure are apparent.

Communications within a group, and more importantly, between

different groups, tend to be random and a matter of chance.

Personal relationships between individuals exert a_ strong

influence on final system structure, distribution and

content. Optimisation, if any, is local within each group.

Thus the system becomes an assembly of its parts, amorphous,

redundant and with random, largely invisible, communication.

Attempts to debug, improve or enlarge the system become very

difficult tending to cause its collapse. Moreover, since

reasons for decision are not normally documented and the

organisational structure is constantly changing, corrective

action following the appearance of weaknesses or faults is a

major organisational and technical problen. All decisions

will be primarily based on time and space-local

considerations.

3. Programming Process 79

The preceding analysis may appear pessimistic and

exaggerated. Some details may be wrong, others omitted. The

history of IBM software projects, the fact that systems have

had to be massaged into shape over a series of releases,

rather than designed and implemented as a finished project,

suggests that in overall effect the analysis is reasonably

accurate.

6.2 Dynamic Management Structure

There exists an alternative to the above procedure. Within

the framework of the total programming process the

responsibility for a total system through all the phases of

its specification, production and tests may be given to one

management node. Initially it will be given to one

individual who initiates a dynamic breakdown procedure that

identifies, develops and evaluates system function and

implementations at ever greater detail. As the content and

peotential activity increases, personnelare added. As

system structure is created, managers take over the

reponsibility for subsystems, sub-subsystems and so on.

As each group completes its assignment, continuation of the

activity is assigned to the same group or to others more

expert in that particular area. The process becomes the

driving force with managers allocated to the nodes of a tree-

like structure as the possibility and need arises. Thus all

human and automation resources, including the managers, are

seen as active elements of the process. They are allocated

specific tasks and at the appropriate time leave the

operation or receive new assignments. Notice that the tree

structure grows and shrinks only by changes at its

extremities. Thus while individuals will join and leave the

project, structural continuity with the past is maintained.

This idealised description of dynamic management remains to

be developed and demonstrated in practice. We believe that

it can lead to a structured system whose elements and sub-

elements are likewise structured. Interfaces can be

standardised and communications between the subsystems and

sub-subsystems forced into the general structure through the

adoption of appropriate conventions. The consequent system

may be redundant since any structure requires additional

components to shape and support it. This redundancy,

however, is the price paid for the advantages of structure,

particularly in the areas of continuity, changeability,

growth power, teachability and reliability.

80 M. M. Lehman and L. A. Belady

This approach to management depends for its implementation on

the development of a total-system oriented methodology. A

related problem is the development of a superstructure that

correlates the management hierarchy of a particular project

with other projects going on simultaneously within the same

organisation. Direct extension of the dynamic concept

appears possible. Clearly, however, the present discussion

represents an initial indication of the preferred direction

of thrust in developing systems-development management. It

does not in itself present a solution to all the problems

which will be encountered and resolved through practical

experience.

T Education

The concepts and problems of education permeate this entire

report. The first section suggested that shortages of both

manpower and educational resources are important consequences

in IBM customer offices and, therefore, by IBM. Thus IBM

must examine the possibility and consequences of expanding

its educational facilities and the reservoir of people from

which it draws its supply of programming associated

personnel. Equally it requires an examination of student

selection mechanisms, to ensure a much higher level of

Success in basic programming courses. Currently the dropout

rate may be as high as 33%. An examination of course content

is needed both to achieve a higher percentage of student

survival and so that students may in their subsequent

activity apply a far higher proportion of that content. The

last comment refers to an observation in real life that many

programmers use no more than, say 10% of the total

capabilities of the systems or languages to which they have

been exposed. Moreover their colleagues and management have

no way of knowing or controlling which 10% they use.

The practical absence of programming technicians is closely

related to these educational problems. The recruiting,

education and absorption of people who may not have had the

Same breadth of education at the college level but who, as

demonstrated in practice can acquire programming skills, has

a very definite place in the process as now practiced. It

will find more application in the more developed process

visualised in this report. Reference has been made in the

language section to the need to develop subsets of existing

languages. This too is implied by the need to recruit, train

and successfully employ programming technicians.

3. Programming Process 81

This report will not discuss the nature or content of

syllabuses, the problem of recruiting and selection, the

transition from training to productive activity, continued

on-the-job training and education, morale problems, and so

on. However a discussion of the programming process would be

incomplete without reference to the very fundamental part

that education plays both in solving present problems and in

future planning and development.

8 Conclusion

The preceding sections have ranged far and wide over the

problems and the potential of the programming process. The

discussion has been in terms of IBM's internal position and

has tended to concentrate on those areas in which, in the

author's judgement, the Research Division might make a

contribution in the future. It can, however, be generalised

for the world at large.

The programming area is clearly one of growth in terms of

complexity, the resources it absorbs, the amount and nature

of the work that needs to be done, the critical performance

judgement applied to products and the increasing reliance

that society places on its output. The problem has been

brought to the fore by a rapid increase in expenditures,

manpower requirements, and in the cost of producing programs.

The growth which is potentially exponential in nature has so

far been controlled essentially by brute force.

As one indicator of growth, Table 1 in section 1.3 referred

to the growth of OS/360. Figure 5 represents a plot of this
data extrapolated over the next five releases (3.15). This
projection suggests that OS/300 will reach 5000 modules by

release 21. Forty-three percent of these modules will be

changed, on the average, in each of these five releases so

that in going from release 20 to 21, for example, a total of

over 2200 modules will have to be handled. More precise

prediction is not possible since linear, eyeball and

quadratic extrapolation yield different trends. However we

may expect this indicator of complexity not to further

decrease significantly.

3.15 (Eds) The reader may wtsh to compare these 1969
forecasts wtth actual observattons reported
subsequently, as reproduced in later chapters and in
particular in Chapter 18.

82 M. M. Lehman and L. A. Belady

The solution of the programming problem is seen in the
development of a total system-oriented methodology and the
associated support technologies and tools. The reality of
today's situation is that support activity in the programming
area is woefully lacking as in Figure 6, despite the
Company's traditional encouragement of such activity in other
areas. To some extent this may be due to a lack of
conviction that success is around the corner. Equally,
however, lack of support is also due to a failure to
appreciate the very real need for research and development in
this area, the very real potential that exists, and the very
real payoffs that will result when the work meets with
success.

The present study has resulted in some practical proposals

for programming process oriented R and D projects and some

recommendations for further action. Their implementation

will require active management recognition of the needs,

potential and possibilities that now exist.

The impact and profitability of support activities is always

harder to appreciate than development work expended ona

marketable product. The manager faced with the daily

problems of meeting a deadline will always first abandon

methodology and systematics. It thus requires a very real

and demonstrated conviction by management to achieve an

‘industrial revolution’ in the programming area.

Moreover, we should comment that any work in the methodology,

tool and language area has a direct impact on the market

place. We have implied that reduction of costs and of lead-

times, and increased functional capabilities are the user-

observable consequences of activity in the support areas.

More directly IBM must be concerned with evaluation of other

organisations! measurements on IBM products) and

configurations, and the provisions of its own data. It must

refine its ability to accurately predict the user observable

performance of announced products. Finally, it has already

been demonstrated that the tools themselves are marketable,

and that these in turn open up large new industry areas for

hardware products.

The entire computer-community and the nation as a whole has

as deep an interest as IBM, in progress, in systems and

programming engineering (3.16). However, the problems that

3. Programming Process 83

arise are of individual systems, the concurrent development

of several large systems, or the matching of much software

with much hardware, IBM's problems are by far the largest.

Thus it is only right, as well as being in the Corporation's

self interest, that IBM make a major attempt to achieve a

breakthrough in the technology to which the Company owes its

prosperity. In the long run computers without software are

practically useless outside the universities. Only a major

breakthrough will permit this company to continue to offer

and expand the functional and software support to its

hardware products. There are strong indications from the

state-of-the-art that the area is ripe for such a break-

through. What is now required are resources and dedication.

9 Acknowledgements

In the course of the study on which this report is based, I

consulted with more than 50 people within IBM and a number of

people outside the Corporation. It is a pleasure to

acknowledge the unfailing courtesy and eagerness to help

experienced in all these many contacts. While I accept

entire responsibility for the viewpoints expressed, it is

clear that I could not have learned so much about the

programming process, nor could I have made my proposals,

without the many contacts and suggestions received in the

course of my conversations (3.17).

3.16 (Eds) This report was written after the Garmtsch
conference, but the author was not aware of the

conference, had not seen its proceedings [NAT68] and had
not heard of the then newly cotned term ‘Software
Engtneering'.

3.17 (Eds) On re-reading this paper 15 years after it first
appeared, one can only express regret that tt did not
even ratse a ripples a modtcum of tnterest at the time
of tts publication. Its observations and conclustons
are as timely and relevant today (1984) as when written
tn 1969.

CHAPTER 4

NATURAL SELECTION
AS APPLIED TO COMPUTERS AND PROGRAMS* (4,1)

0 Introduction

From time to time, a programmer decides to rerun an old job

and finds it will no longer run. Computing centers sometimes

discover that the older its computer gets, the more difficult

it is to get new jobs to run properly. One person tries to

run another's programs and finds that they just do not work

in a different installation. All of these well-known

difficulties, and many lesser known ones, spring from a

Single source - Natural Selection taking its unswerving and

irresistible course, just as it does in the kingdom of living

things. In this paper, I propose to show how Natural

Selection produces these undesirable effects and to suggest

what can be done to diminish some of then.

1 Conditions for Natural Selection

In 1859 Charles Darwin started a scientific earthquake whose

after tremors are still being felt today. In 'On the Origin

of Species', he set forth the conditions under which living

systems undergo changes which adapt them to an extraordinary

diversity of environments. To quote his words [DAR64],

‘Owing to this struggle for life, any variation, however

Slight and from whatever cause preceeding, if it be in

any degree profitable to an individual of any species,

in its infinitely complex relations to other organic

beings and to external nature, will tend to the

preservation of that individual, and will generally be

inherited by its offspring. The offspring, also, will

thus have a better chance of surviving, for, of the many

individuals of any species which are periodically born,

4.1 (orig) This article was submitted for publicatton in
1967; was lost. and rediscovered two years later. The
author has stated that he was able to resist the
temptation to modify what he satd a few years ago. - The
Editors.

Reprinted with permission from General Systems, Volume 15, 1970. Copyright © 1970
by the Society for General Systems Research.

85

86 M. M. Lehman andL.A. Belady

but a small number can survive. I have called this

principle, by whitch each slight vartation, if useful. is
preserved, by the term of Natural Selection, in order to
mark its relation to man's power of selection!' (p 61;

emphasis added).

In the tumultuous development of Darwin's ideas in the

following century, Natural Selection has been revealed as a

phenomena not confined to ‘'living' systems, but explainable

in purely abstract terms. All that is necessary is that a

population exists under the following three conditions:

(1) Its individuals are capable of making reasonably exact

copies of themselves.

(2) A certain amount of inexactitude is present in the

copying process.

(3) An environment exists which selectively favours certain

variations.

Requirement (1) is called 'reproduction'; (2) is called
'variation'; (3), 'selection'. All three must be present for
Natural Selection to take place; and when all three are

present, Natural Selection must take place. The population

must increase in 'fitness' - and at a rate which can be

determined mathematically if the parameters are known. That

variation is a 'chance' process has nothing to do with the

inevitability of Natural Selection. As R A Fisher [FIS58] so

ably put it:

'The income derived from a Casino by its proprietor may,

in one sense, be said to depend upon a succession of

favorable chances, although the phrase contains a

suggestion of improbability more appropriate to the

hopes of the patrons of his establishment. It is easy

without any profound logical analysis to perceive the

differnce between a succession of favorable deviations

from the laws of chance, and on the other hand, the

continuous and cumulative action of these laws. It is

on the latter that the principle of Natural Selection

relies' (p 40).

We must note, however, that increase of fitness of a

population is not always a ‘'good' thing for Man. The rat

population is constantly increasing its fitness with respect

to a largely human environment, and the progressive

adaptation of certain bacteria to penicillin and other drugs

is an unending source of potential disaster to Man. Thus,

although Man participates in Natural Selection of rats and

4. Natural Selection as Applied to Computers and Programs 87

bacteria, he does not, in a certain sense, ‘'direct' the

process. In order to distinguish this process from the

process directed by Man for his own benefit (Selective

Breeding or Artificial Selection), Darwin coined the term

'Natural' Selection, About the relative power of two

methods, Darwin went on to say:

"But Natural Selection, as we shall hereafter see, is a

power incessantly ready for action, and is as

immeasurably superior to man's feeble efforts, as the

works of Nature are to those of Art' (Darwin, p 61).

We can abstract from the literature on Natural Selection two

laws which we can use in their qualitative form to predict

certain consequences of the ways we use our computers. The

first of these laws is the existence theorem of Natural

selection:

'Given the conditions of Natural Selection, the fitness

of the population will increase with time.!

The second law comes under various names, but we shall refer

to it as the Law of Evolutionary Potential. Because a

population must show variation in order to undergo Natural

selection while at the same time it must reduce variation in

order to be well adapted to particular environment, the

second law results:

'The more adapted a population becomes to a particular

environment, the less adaptable it is when faced with

other environments.!

2 The Computer as the Adaptive Population

For our first case, the population undergoing Natural

Selection will be the population of components in a single

computer. ‘Components!’ can be taken to mean the lowest level

units which are subject to replacement. In some cases these

might be individual relays, vacuum tubes, resistors,

capacitors, or transistors; while in other cases they may be

coordinated sets of such parts, as are found in circuit cards

and integrated circuits generally.

The first difficulty we face in applying the theory of

Natural Selection to this 'population' is that it does not

"'reproduce' in the ordinary biological sense of that word.

We overcome this difficulty in the following way.

88 M. M. Lehman and L. A. Belady

1 We pick an arbitrary time interval, T, which will be
thought of as the generation time of the population.

2 At the end of each interval, T, each element of the

population is imagined to ‘reproduce’. If T is short,

virtually all of the ‘offspring' will be identical with

their 'parents' - for, indeed, they will be the same

component.

3 The other way, in which an offspring may differ from its

parent, is by 'spontaneous! change in the performance of

a component. This change may be entirely undetectable

from outside the computer, but we know that such changes

are always taking place.

4 Selection takes place because not all changes in the

components (point 3) are equally detectable by the
engineers who are trying to 'maintain' the machine.

When a component passes into a state ('produces an

offspring') which is both detectable and undesirable, it
is replaced ('dies'). Thus, the engineers and their
diagnostic programs provide a selective environment

which is constantly at work to remove certain types of

individuals from the population. The environment is,

indeed, selective, because all changes in states of

components are not equally detectable by the diagnostic

procedures of the engineers.

Viewed in this way, the evolution of the population of

components in a computer is truly governed by Natural

Selection - 'Natural' because the engineer is not trying to

favour the errors his diagnostic programs do not detect any

more than the doctors are trying to favour certain bacterial

varieties over others through the use of penicillin.

Once modelled in this way, the qualititive behaviour of the

system is entirely predictable by our first law:

'Fitness of the population will increase with time.'

In this case, however, fitness of the population is measured

by the ability to escape the probings of the diagnostic

procedures. From one point of view, this result says that

the computer will remain fit = insofar as fitness of the

whole is related to the fitness of the parts - to perform the

diagnostic programs correctly. Our second law of Natural

selection, however, says that the computer will become

increasingly adapted to just that environment, through the

4. Natural Selection as Applied to Computers and Programs 89

accumulation of undiscovered states which will not affect the

current set of programs but which might affect some other

set.

Some specific instances will be useful here. The first case

of this type with which I ever became involved is typical of

many situations reported to me by my students. A certain

petroleum company had been using a computer for approximately

four years on one rather complex application - oil royalty

accounting. At that time, a group of chemical engineers in

their laboratory became interested in using the computer for

matrix calculations. After studying the manuals, they wrote

their programs, punched their cards, and wired their control

panels (as was necessary on this machine). Nobody was too

Surprised when their programs did not work immediately, for

even in those days it was known that programs could have

bugs. Eventually, however, the engineers were able to

demonstrate that the reason their programs were not working

was that certain relays in the computer were not performing

according to the specifications in the manual. They were

proved correct when, after the customer engineers spent two

days bringing the machine up to specifications, their

programs ran correctly.

Another example of this type of trouble was the case of an
installation (A) which was endeavouring to use a system
supplied by another installation (B). As commonly happens in
Such cases, the new system would not run successfully in the
new installation. In most cases like this a modest amount of
effort is made to find the trouble, after which the whole
project is dropped with some mumbling about 'bugs in the
program’. In this case however one programmer was determined
to find out explicitly where the trouble was and by much
diligent effort eventually discovered a number of machine
errors which had accumulated in the computer over the years.

It may help clarify matters if two of these errors are
examined in detail. The first involved the magnetic tape
error routines. At installation B, the common procedure in
the case of tape reading errors was to make 20 retrials,
while in installation A only 3 retrials were ordinarily made.
Over the years, the tape units in A had not been subject to
as stringent a diagnostic environment as had B's,
Consequently they behaved in unpredictable ways when Bts
system attempted to backspace and reread them 20 times
instead of the accustomed 3. A more eareful adjustment of
the tape units might have solved this problen, though it was
actually done by modifying B's error routines.

90 M. M. Lehman and L. A. Belady

Errors in tape units, like errors in relays, are essentially

"mechanical! errors. It might be tempting to imagine that

the electronic components of computers are not subject to

Natural Selection in the same way, because they are

intrinsically more reliable. Unfortunately, Natural

Selection is a universal law, and applies whenever the three

conditions are met. To be sure, the rate of Natural

Selection may be altered = as in this case when the rate of

variation is reduced - but the process inevitably takes

place. Indeed, even though the variation in individual

components may be less with electronic components, the

situation in general could be well worse since there are many

more components. This increase in the number of components

not only increases the total amount of variation, but it

increases the total amount of variation, but it increases the

number of components which are not effectively tested by the

diagnostic programs.

The second error found by this enterprising programmer will

illustrate that electronic components are equally subject to

Natural Selection. In this case, the error involved the

failure of the circuit driving one bit of all the words ina

particular portion of memory. In all of the programs of

Installation A - including the diagnostic programs - this

segment of memory was never occupied by anything for which

this failure made a noticeable difference. In most

instructions, this bit was always zero anyway, and, in fixed

point numbers, it was a high order, non-significant zero.

The new system, however, happened to have one number for

which this bit could be significant and which lay in the

erroneous segment of memory. Consequenly, whenever that bit

of the critical number was supposed to be a one = which was

fairly rare - an error resulted.

We are usually not as aware of Natural Selection in computers

as we might be, for the troubles it gets us into are often so

diffcult that we never trace them down. In this last case,

for instance, installation A had been experiencing, as most

installations do, unexplained difficulties when modifying

certain large programs. We can see that an error such as the

one bit memory failure could cause inexplicable problems if

an instruction in a completely different section of memory

were added or deleted, therby bringing a critical instruction

or number into the damaged region. In all likelihood, such

an error would not be found directly, but rather eliminated

by an equally accidental compensating modification in the

course of trying to find it. such an error remains in the

machine but not in the programs.

4. Natural Selection as Applied to Computers and Programs 91

Through the lifetime of a particular computer, such errors

continue to accumulate. As long as no new programs are

tried, things may function well. Eventually, however, even

Slight modifications to existing programs become increasingly

difficult to make. Furthermore, newly introduced errors,

because there are now so many residual errors to combine

with, become increasingly difficult for the engineers to

find. Finally, the costs and irritations of using the

machines grow to the point where it is simpler to replace

with a fresh, unadapted machine - thereby pushing the

problems of Natural Selection a few more years into the

future.

3 The Program as the Adaptive Population and the Computer

as Environment

Whenever two different populations are in interaction so that

each forms a part of the environment of the other, they

participate in a form of mutual Natural Selection. Bats, for

example, develop their hearing best at the frequencies most

commonly emitted by the species of moths on which they feed;

while the moths develop receptors which are sensitive to the

echolocation frequencies of the bats which feed upon then.

Nor is it necessary for the relationship to be one of

predator and prey; symbiotic and parasitic relationship show

precisely the same type of mutual adaptation. Formally, it

is easy to see that this must be so, for in such cases, it is

entirely a matter ofarbitrary choice as to which population

is system and which is environment.

With computers, it is probably more conventional to think of

the machine as the environment in which the program is run,

rather than considering the programs as the environment in

which the machine evolves, as we did in the last section.

Considering the machine as the environment of the programs,

in the conventional way, we get some additional insights.

In this case, we may consider each program as a population of

instructions - or microinstructions.

Here, reproduction is taken care of by the successive

versions of the programs, and variation is introduced either

by intentional or unintentional program modifications. As we

have just seen, the computer itself provides as environment
in which the programs are developed and which tends to select
against program variants which encounter some of the more
Subtle machine errors present. If the program does not work,

we make some changes. If the trouble then goes away, we may

92 M. M. Lehman and L. A. Belady

not question further; thus, the program gets even better

adapted to the machine on which it is run.

It might seem that no harm can come from this type of Natural

Selection because the programs will always be able to run on

a machine which does not have an accumulation of errors. An

interesting contradiction to this argument is provided by our

earlier example of the petroleum company. After the computer

was brought up to specifications, the matrix calculations

worked perfectly, but the oil royalty programs no longer

worked at all! Furthermore, all the king's programmers and

all the king's engineers never did succeed in getting that

Humpty Dumpty set of programs working again! The eventual

result was the replacement of the machine by a new model.

Such extreme cases are not aS rare as one might imagine. The

most typical situation, reported by many of my students,

occurs when some new piece of peripheral equipment is

installed on an existing computer. The ensuing difficulties

are inevitably attributed to the new equipment, but in those

cases where the actual cause is tracked down, it is equally

likely to be some error residing in the machine which

previous programs had avoided.

4 The Program as the Adaptive Population and the Data as
Environment

Programs adapt not only to the computers on which they are

run, but to the data which is given to them. I do not mean,

of course, the Artificial Selection caused when modifications

are made to take care of new data cases which arise, but the

Natural Selection which takes place because of the data cases

which do not arise.

Although program-to-data adaptation takes place in ordinary

data processing programs, the most interesting - and most

troublesome - cases occur in programs which use other

programs as data. Such programs - compilers, for instance -

ordinarily encounter a data environment which is potentially

several orders of magnitude more complex than that of

ordinary programs. Thus, there are many more unexplored data

cases - cases which have never been tried by the program, and

many more complex cases = cases which are circumvented rather

than analysed and eliminated.

Let us look at some examples. All programmers have had the

experience of trying to run a program that once ran and now

does not because of a new bug in the operating system. I

4. Natural Selection as Applied to Computers and Programs 93

recall one occasion in which the interval was six months, and
where an error had been introduced into one of the three

binary card loading routines available in the system. By the
time I encountered the trouble, nobody in the installation
could recall that this change had been made. Furthermore,

when I had narrowed down the trouble to this particular
routine, I was repeatedly advised not to try to find anything
wrong with the routine but rather to switch to one of the
other two routines. Unfortunately (or fortunately) I could
not use the other routines because my data cards were not in
acceptable formats; thus, I had to investigate the loading

routine itself.

What I found was quite simple. Since the three routines
shared some common parts, certain switches were set upon
entry to discriminate among them. For the option I was
using, one of the switches was never set, and the program
thus made a wild transfer of control whenever that entry was
used. The existence of such a bug in the system could only
mean one of two things: either nobody else had used this
routine in six months (this installation claimed to have 3000
users) or those who had used it had been successfully steered
away from it by helpful advice.

How many other such bugs were accumulating in this system I
have no way to estimate. Programmers who have worked with
large systems, however, will recognise the experience of
tracing through the wild execution path of one bug and
finding one or more other bugs that had never been made
manifest before. This kind of experience tends to verify the
force of the Natural Selection processes on programs, and
long ago led me to formulate the law governing the number of
errors, n, remaining in a large program at time t:

'For all t, n= 1!

or, informally, n equals ‘one more’,

Compilers, of course, are particularly susceptible to the
accumulation of special cases which they cannot handle
correctly. I especially recall one assembly language system
we were using for writing a large real-time systen. Every
week we would collect a list of the things that did not seem
to be assembling properly and send it to the maintenance
crew. Every week we would get back a reply which said in
effect that nobody else seemed to be having this particular
trouble so it was not worth investigating. They were always
helpful, however, in suggesting ways of avotding difficulty -

94 M. M. Lehman and L. A. Belady

generally by not using the available language in its full

power. Eventually, the accumulation of such cases to be

avoided became unbearable, and we undertook the maintenance

of the system ourselves. The straw that broke our backs, I

recall, was a modification which unwittingly placed a limit

on the number of characters of comments at 6 x 2 ~. Since we

had already far surpassed that number, our system would no

longer compile, though 'nobody else seemed to be having that

trouble'. We quickly learned that by keeping the size of the

sytem down we could avoid trouble, but it took two months to

discover the source of difficulty so that we could really

proceed with our work. If we had not persevered, it might

have been years before somebody else encountered the trouble;

and at that time they would no longer have had the slightest

clue about where to look.

5 Speciation

Although Darwin's great work was entitled 'On the Origin of

Species', Mayr [MAY63] has pointed out that:

'Tt is a familiar and often-told story how Darwin

succeeded in convincing the world of the occurrence of

evolution and how - in natural selection - he found the

mechanism that is responsible for evolutionary change

and development. It is not nearly so widely recognised

that Darwin failed to solve the problem indicated by the

title of his work' (p 12).

This is not the place to present the modern view of the

origin of species, but it is interesting to us to note that

the weight of evidence now points to the splitting of one

species into two or more non-breeding parts (usually

geographic accident) as the initial event in speciation. The

parts then proceed to evolve in their own (somewhat

different) environments until they are sufficiently
differentiated that they will no longer interbreed even if

they are brought together again.

Since we have no process analogous to sexual reproduction in

our evolutionary models of computers and their programs, we

cannot extend the modern species concept directly. We may,

however, utilise the idea of isolating mechanisms, leading to

progressively more differentiated populations. Thus, we may

predict that different versions of the same system - a

FORTRAN operating system, for instance - used in different

installations not exchanging programs with one another will

become more and more widely separated as time passes. The

4. Natural Selection as Applied to Computers and Programs 95

Separation will be both explicit (through the addition of new

features and the deletion of old) and implicit (through the

evolutionary mechanisms we have discussed). Thus, the

chances that one system will run on the other's computer, or

that both systems will compile the same program to do the

Same things, diminish with time. Rather than moving toward

Standardisation, then, we are moving toward the state where

every computer installation will be an isolated species -

unless, that is, some intelligent efforts are expended.

6 Retarding the Rate of Natural Selection

The foregoing arguments and examples have shown how the force
of Natural Selection can work against the successful
Operation of a computer installation. (We do not concern
ourselves with advantageous applications.) We cannot
eliminate Natural Selection entirely in any of these cases,
because we cannot eliminate the necessary conditions which
inevitably bring it about. We can, however, do a number of
things to slow the rate at which Natural Selection destroys
the usefulness of a computer or system of program.

Some of the things we can do are quite obvious. In the case
of machine errors, we can reduce the rate of variation by
reducing the failure or degradation rate of the components.
We can only go so far in this, however, for, as we have seen,
this variation is constantly being reintroduced by increasing
the number of components in our machines. Furthermore, with
more reliable components we get a change in the 'environ-
ment', for the maintenance engineers have more difficulty
getting experience in finding particular bugs, and diagnostic
programs have to be much more complicated just to keep up.
Consequently, it becomes more and more tempting to modify the
programs so that they will avoid the bugs rather than
eliminate them. this amounts to buying present convenience
for future disaster - a sort of anti-insurance policy.

Another policy which can be adopted to retard the rate of
undesired Natural Selection is to refer to external
Standards. For instance, rather than using tapes written in
the installation to test the tape reading mechanism, tapes
from a standard outside source should be used. If this is
not done, the installation is in danger of having its tape
readers adapt to its tape writers - drifting further and
further away from compatibility with any other installation.

The external standards, of course, are not limited to
mechanical ones. For compilers, for instance, there should

96 M. M. Lehman and L. A. Belady

be a large set of standard programs which they must compile

and execute to produce standard results. The mere existence

of such standard programs is not enough, however, for as long

as they are not the installation's own programs, errors they

reveal are not likely to be treated with the proper respect.

Getting the day's work done always takes precedence over

keeping the ‘equipment! in good working order. Only by

determined inculcation of certain values can programmers come

to the state where they view errors in test programs with the

Same panic they now use for errors which halt daily

production.

Another way in which the progress of Natural Selection may be

retarded is by making the diagnostic programming a continuing

process, not merely a one-shot job to be done before a

machine is ftrst delivered. A continuing stream of new

diagnostics will have the effect of constantly shifting the

environment in which the components have been evolving,

ensuring on a dynamic basis that each machine remains rather

close to the 'standard' machine in the diagnostic programming

shop. Again, however, the maintenance engineers are likely

to revert to the old diagnostics if the new ones cannot be

made to run without undue difficulty.

The avoidance of diagnostics may be prevented, in some

Situations, by pushing the diagnostic programming to a

microprogrammed level, which cannot be reached by the

ordinary problem programs at an installation. In this way,

error states of the system with respect to the diagnostic

programs are automatically more numerous than error states

with respect to the problem programs. Thus many errors may

be detected before they reach the problem program level.

Such errors may be removed before they become part of the

environment to which the problem programs adapt. For

instance, if the storage devices of the machine have built-in

error-correcting codes, the engineers become aware of

component failures before they can affect the programs of the

installation. Under such a system, and undetected bit

failure in some small section of memory could never be

retained.

One modern trend in computer use should have a beneficial

effect on reducing the rate of accumulation of deleterious

states in both software and hardware, namely, the trend to

multiprogramming and multiprocessing. For instance, in a

multiprogramming environment using dynamic relocation, a

problem program would not always occupy the same locations in

memory. Thus a portion of memory would not be likely to

4. Natural Selection as Applied to Computers and Programs 97

become partly inoperative for a long time without detection
by some program or other. The same argument would apply to
the use of peripheral components, which would be dynamically
assigned by the supervisory program and thus subject toa
wider variety of environments in a given period of time.

These observations lead us to one final Suggestion for
Slowing down the rate of Natural Selection. This Suggestion
has a paradoxical aspect which is familiar enough to
biologists, but which might give computer specialists a hard
time. Natural Selection causes most difficulty in computer
installations because the computer and its programs become
adapted to a narrow environment. Thus, when some new thing
is finally introduced, the installation is unlikely to be
adequately prepared. Indeed, it has most likely been
accumulating debilities which will sudeently all become
manifest at once - perhaps to the destruction of the
installation. The lesson here is the lesson of the Law of
Evolutionary Potential.

But the Law of Evolutionary Potential gives us another way of
delaying the very death it predicts. By keeping up the
variation in the system's environment, we make it less likely
that it will get locked onto too narrow an environment. This
observation leads us to expect that in those installations
Supporting the most diverse uses of the computer (not just
those with the most users, who may be doing the same type of
thing) the buildup of Natural Selection difficulties will be
less severe than in those which Support only a few relatively
Stable applications. Furthermore, it even suggsts that those
frolicksome programmers who sneak in and try insane things
with the computer at night are really doing the installation
a great service. Perhaps they should be encouraged - if
encouragement will not discourage them. Perhaps with
computers - as with people - the way to stay young is through
play.

CHAPTER 5

PROGRAMMING SYSTEM DYNAMICS
OR

THE META-DYNAMICS OF SYSTEMS
IN MAINTENANCE AND GROWTH*

1 Growth Dynamics

Any large and .complex system possesses two separate and

distinct dynamics. That most commonly studied is Acttvutty
Dynamics. In the context of programming systems this

represents the behaviour of the programs in executton. We

shall demonstrate that one may also usefully consider’ the

Growth Dynamics of a system, its change with time. For a
programming system, this meta-dynamics studies the body of

code with its statements, variables and structure, and the

people and organisation maintaining it. Note that in growth

dynamics, the code, which in activity dynamics is viewed as

the active component and the source of change, becomes static

with the active role being taken over by the (human)
environment.

It is common experience that large programming systems

continue to need correction and to grow. Repairs are made,

existing function is modified, new function defined and

added, implementation changed to improve performance and

reduce resource requirements. In general, such systems never

achieve stability, certain freedom of bugs and of the need

for addition or change.

Faults that are uncovered in successive generations fall into

various classes. There will be faults or weaknesses’ that

have been in the system since time immemorial but have

remained undetected because the particular circumstance

required for their activation have not occurred. There are
those in the most recent additions in the code. There are
bugs in all parts of the system due to changes (or omission
of changes) necessitated by repairs or by additions to the
code.

There will be errors that remain undetected because they have
been hidden (eg a fault in a section of code that could not

IBM Research Report RC3546, 1971, reprinted with kind permission of International

Business Machines Corporation.

99

100 M. M. Lehman and L. A. Belady

be entered as a consequence of a bug that prevented branching

to that section of code). Faults will appear when new system

configurations are used, new hardware connected or new

applications are run. Finally, for each of these classes

there will be descendant faults arising from mistakes in the

earlier re-definitions, fixes and changes.

The term 'fault' and its various synonyms are used here in

their widest sense to include anything that causes the system
to deviate from what its required or desired for acceptable
performance. Faults may be due to a semantic or syntactic
errors in the code, misinterpretation of hardware or system

Specifications, logically inconsistent specifications, poor

design or implementation, environmental mismatch, changes in

usage or environmental objectives, operational inexperience

and so on. Fach fault will in general be a cause, at some

later date, for corrective effort. Thus the number and rate

of appearance of faults and the amount of work required to

maintain a system are directly related.

The present paper assumes these facts of life to develop a

model of system change, a macro-model in the thermodynamic

or economic sense. It represents the system as a growing

body of code within the human environment that changes it.

The model portrays the growth trends of system measures of

size and complexity as functions of the effort or work that

must go into the system for its maintenance and further

development. We shall also outline, but not formalise here,

a mtcro-model that is to relate work required for system

maintenance to its content, structure and complexity.

The models discussed have already been related to the

observed growth statistics of some present systems. They may

thus be used as a planning tool and to test the viability of

maintenance and development strategies. They also yield

considerable insight into the way that the consequences of

change spread through the system, so as to ultimately cause

an ever increasing amount of work to be required for’ system

maintenance. The maintenance workload appears as one that

decreases during early releases but then suddenly increases

explosively. Interpretation of the models suggests how this

phenomenon may be brought under’ control. In particular,

appropriate structuring of the system, its documentation, the

project, its management and all communication would greatly

enhance maintainability and growth properties and extend the

lifetime of large, complex programming systems.

5. Program Systems Dynamics 101

Most of the discussion in this paper does not make any use of

concepts specifically related to programming systems. Thus

the phenomena discussed and the models developed, when re-

interpreted, apply equally to other large systems of people

and/or machines, underlying the progressive decay that may be

observed in many areas.

2 The Axiom of Distributed Effort

When a system is first implemented, it already contains many

of the seeds of future effort (and ultimate decay). As
stated in section 1, the need for continuous effort arises in

many different ways. Faults will appear and require repair.

Re-design or improved implementation will be required to

remove operational inefficiency. Shortcomings that make the

system difficult to learn or clumsy to use must be overcome.

The need for the necessary corrective action will not appear

at once. Intrinsically it cannot all be detected and

corrected in the first period of system development and

usage, if only because certain faults shield one another.

Others become apparent only as the sophistication of system

usage increases with time or as hardware changes. Hence we

state that from the original implementation of any system

there arises the need for a (partially ordered) sequence of

activities that can only be carried out over a long, perhaps

infinite, period of time. That is, a software system will

age, with new faults appearing, apparently as a function of

time.

The resultant activity sequence to repair the faults will, in

practice, be partitioned so as to produce a series of

releases or system generations. Each release defines the end

of a time period during which a manageable amount of

corrective activity has been designed, implemented, tested

and documented.

We represent the contents of the system and the effort

involved in its original implementation (release one) by Sy
and define the corrective action, the amount of work executed

on the ftrst release during the first time interval to
achieve release two, by:

that is some fraction f of the original effort. This is

indicated in figure la and 1b by the ordinate at one. The

assumption here is that the amount of activity undertaken is

102 M. M. Lehman and L. A. Belady

proportional to the size of the undebugged portion of the
system, yielding a geometric distribution of effort. Hence,
the amount of work or effort between releases 2 and 3 to
correct for the work S, ortginally undertaken in release 1
is:

being proportional to the size and content of the system
remaining faulty in release 2. Similarly, for release 4, the
amount of work due to the original implementation, Sq) can be
represented as:

Way = P43 (1-f45)(1-f,,) Sy (3)

and, in general, the work executed in the ith interval is:

i-1

This process may be pictured as in figures 1a and 1b. The

convex down curve of 1b constructed as in figure 1a

represents the decreasing amount of work per release

resulting from correcting and amending the ortgtnal
tmplementatton. The vertical lines indicate the arbitrary
release points and the area under the curve measures’. the

effort or work required in the following release interval.

The concave down curve of 1b on the other hand, is

interpreted as representing the health of the system; the

extent to which its contents are fault free and do not

require change relative to the ortginal definition of the
system. Without loss of generality we have, for the moment,

assumed that releases are equispaced.

From section 5 it will become apparent that it is reasonable

to consider the fraction Pas that determines the work in the

ith release period to be constant, that is:

ry i= f, for i>1 (5)

Hence, in the it) interval from the ith to the (i+1) 8

release,the work to be done due to the upgrading of the

original implementation S, is:

i-1 .
W541 7 f(1-f) Sy for i21 (6)

5. Program Systems Dynamics 103

 Geometric decay

S4

0D @\@ f(1-f)i-t ®

Y j-—_—-_» + (Release
| 2 3 os i itl sequence number)

Figure la Geometric Decay

AL

Da 1 a RRR

XS oNHealth

4

_Ds WLLL 2 [=~er»+Zi Dr r erence cr cvees i+]

Fibure 1b Corrective Activity on Release 1

104 M. M. Lehman and L. A. Belady

Recursive decay

Figure 2 Binary Activity-Tree

5. Program Systems Dynamics 105

Each Wag represents a programming effort of the same nature

as the original effort 5,, though smaller in magnitude.

Hence it too contains faults and therefore generates a new

sequence of corrective activity. This will be true for all

activity on the system. Thus there arises a binary activity

tree as in Figure 2. In general in the i release interval

there will be 2%*7! independently rooted activities. We
define a measure Wa of total activity required in the i

interval to represent the sum of these terms. Applying

assumption (5) to (6) and summing we obtain:

-1 4 a
W, =f L CT) te ety tk sy, cect (7)

j
-

=

= PS,

Since the value of the binomial sum is ‘tone! for all values

of f as from Table 1.

Figure 3 illustrates the fact that the activity is composed

of rapidly increasing number of activities with distributed

paths and roots. We shall return in section 6 to consider

the effects of the resultant stratification of what has been

shown here to comprise a constant level of activity PS, -

3 The Effects of Experience

In practice the people implementing and maintaining a system

continuously improve their skills and their familiarity with

the system. There will therefore, be some gain in efficiency

over a series of releases, a reduction in the effort required

to complete the repair work selected for each release

interval. If, despite the resulting greater productivity,

the amount of repair activity (arbitrarily) selected for a
given release, is not increased, the sequence of Pas in

equation (4) would then be monotonically decreasing. The

consequences of experience may, however, equally be imposed

on the total work defined by (7) by means of a negative
exponential, two parameter, multiplier, so that (7) becomes:

W,, = Aete s, (8)

as in Figure 4. Values for the parameters will be determined

by the average rate at which experience and familiarity with

the system is acquired (L), by the degree and any changes in

tooling and other automation (A) and by the fact that we are
dealing not with a continuum but with discrete activities.

Table 1

Interval Simple term Additional terms for release i (i >O) due to repair efforts in Sum W;/S,
(sequence (equation (6)) all preceding intervals. (Equation (7)). (# (terms)=2!~!)

number)

1 f } f

2 f(1-f) fe | f[(1-f)+f] =f

(
3 £(1-£)2 f2(1-) #2(1-#) £9 4 t[(1-f) +4] =¢

4 f(1-£)5 f2(1-#)2] £2(1-#)2| F2(1-£) F501-F) F-F) FSC1-F) r+ (f[U-f)+t] =F

i f(1-f)I f2(4-f)!"2 4 + f((1-f)+4]
i-1 i-1 ,

=f[X (k)FR(1-f)ic tok
k=O

5. Program Systems Dynamics 107

f = Constant

Figure 3 Constant but Stratified Activity

f = Monotonically decreasing

Figure 4 Decay due to Experience

108 M. M. Lehman and L. A. Belady

Thus effort fragments falling below some activity threshold

disappear, and the number of strata is reduced below gi-1,

4 New Function

The repair activity considered so far has all been a

consequence of the original implementation S4 and subsequent

repairs. In practice one invariably also wishes to add

additional capability to the system as it ages. The

resultant programming activity is of the same nature as’- the

original and can be represented by a series of curves similar

to Figure 4, but of reduced amplitude, superimposed to yield

the activity pattern suggested by Figure 5. Thus we now

redefine W; to represent the total activity in the i
interval including that required for the addition of new

function and the repair of all function created in the first

i releases. That is:

i .
Wy = x aebk (t-K) ps, (9)

It is gasily seen that this total activity is stratified into

o¢(i-1) elements.

5 The Management Environment

In the real world the work requirement outlined in the

previous section is performed under manpower and budget

constraints. The workload of a succession of releases,

including both fixes and addition of new function, is planned

to fully and continuously utilise anticipated available

resources, human and machine. This effect smooths’ the

sawtooth representation (Figure 5) and produces a work curve

which will either stay constant or change to follow the

contours defined by budget allocations B(i) (Figure 6).

The time integral of Figure 6 can now be interpreted as' the

expended effort or cost (of people plus computers) with the

area under the curve between ordinate pairs representing the

cost (eg in dollars) of the release. Furthermore, the
abscissa or time axis does not represent real time, since

efforts on various releases (unfortunately) overlap,
resources may be moved around to cope with the most urgent

tasks irrespective of their release asssociation and releases

are intentionally not equi-spaced. Thus we relax the

previous assumption of equally spaced releases. In fact, it

is well known from practical experience that release dates

5. Program Systems Dynamics

 INGA
‘Sy

ry
.

|— New work(features)
S1 Ue added to those on Fig. 4

 i

109

t

ih / ii

eee
TLLL _,

Figure 6 Budget Controlled Work Curve

110 M. M. Lehman and L. A. Belady

cannot, in general, be precisely predetermined because of the

unpredictability of a rapidly growing work-load.

6 The Effect of Complexity

The previous sections have developed a model of the primary

effort required to develop and maintain a_ system. It is

determined by the need to fix faults and provide new function

that will enhance the system. In practice the level of

effort that can be applied is determined by available

manpower and budget appropriations. The latter must cover

the cost of people and of their support, including computer

costs for testing, for programming support and for

documentation. Since a single budget covers the cost of both

repair and enhancement, unforseen growth of the former must

lead to retrenchment in the latter.

The total effort required is stratified. The roots and root

paths of the various activities undertaken in any release are

dispersed in time over previous releases, in space over the

systen, managerially over many different groups and

individuals and geographically over different locations. That

is, the generations of people that implemented the system and

the records that document the original design, its subsequent
history, its functional content and underlying structure, the

nature of each fault, the proposed repair and so on, are also

scattered geographically and over the lifetime of the systen.

Nevertheless, for each separate activity, any relationship to

other activities must be noted and acted upon. This

correlatton requires communication between the people

executing the various pieces of work wherever and whenever

they do it. In addition, it requires each group to. check

major portions of the system, its documentation and its

plans. That is, it introduces effort additional to that

considered so far, to avoid the introduction of new faults

due to interference effects between different repair and

growth activities. If this cross correlation work is not

executed, new sequences of faults and correction activity

will be started up due to the fact that changes, required in

one activity or area of the system as a consequence of

activity executed in another area, are not’ being carried

through.

The extra effort required for this cross-correlation relates

at least to the level o Stratification of total activity,

We have recognised 22 1-1 activity-elements in the i h

interval. The additional work load will be proportional to

the number of interconnections between the various’ records,

5. Program Systems Dynamics 111

that is approximately oi (i-1) (5.1). Thus the total effort
Ws in the i release interval contains an additional term
which we shall refer to as the secondary or exponential term
Ey and which may be represented by:

E; - cok i-1) - D(i) (10)

C represents the average magnitude of the effort required for
cross—-correlation between two activities. Its value is a
function of the average content of an activity, the structure
and content of the system and the extent to which tools to
automate the correlation activity are available. D(i)
represents the fact that individual sequences can in fact
decay to zero. More specifically it expresses the extent to
which the total activity (particularly the documentation) of
the ith release is accurate and complete in terms of the
total state or content of the system at that time, and not
merely a reflection of the changes and additions completed
during the preceding release interval.

The preceding derivation has assumed that the activity
required in one stratum during one release interval is
homogeneous in terms of the function and region of the system
to which it relates. In practice activities will consist of
subactivittes, relating to separate fault reports, functional
Specifications, system components and so on. The micro-model
will show how this sub-stratification further increases the
magnitude and rate of growth of the secondary exponential
term. That is (10) represents a lower bound on the required
correlation effort, more generally represented by:

EB, = co#Gi-D(i) (11)

where G is related to the average number of substrata in each
activity. D has been modified for simplicity. Combining
expressions (8) with (11), we obtain the total effort in the

interval as:

i , . .
=f D> aA, eklik)s, 4 cotGi-D(4) (12)

5.1 (Orig) The number e activity
will actually be g2(t-ih(,2(4"21corresponding
to ghe number of edges in a complete directed graph
of 22t-1 nodes.

112 M. M. Lehman and L. A. Belady

as a measure of the work required to maintain and grow the

system. Assuming that experience gained on one system change

applies to all activity, and that we may ignore differences

between individual changes and functional additions, (12)

reduces to:

2 L(i-k) 4Gi-D(i)W, = AP Spe MNATK’s, + CoTETENS (13)
k=1

Applying the environmental (management and budget)

constraints, (13) reduces to:

Wi = W(B(i)) + c2*Gi-D(i) (14)

D(i) may be further expanded to represent the completeness

and correctness of documentation (D), its accessibility (A),

and the consequences of increasing experience and familiarity

with the system (L), yielding:

Wi = W(B(i)) + cotGi-D(i)ACi) LCi) (15)

W(B(i)) represents an appropriate function of the release

budget allocation (plus supplementary appropriations) B(i)

that covers the cost of all activity except that included in

the second (exponential) term.

The term W(B(i)) represents the cost of primary activity,

that is activity undertaken to improve the cost, performance

and other ratios of the system. The secondary term Ej on the

other hand represents the cost of communication, correlation

and secondary repairs. That is it accounts for activity that

must be undertaken as a consequence of the primary change,

because of subsystem interactions, the sharing of variables

and so on, but that does not directly relate to the

functional enhancement of the system.

We observe parenthetically that these two terms, and the

behaviour of our model conform closely to a model suggested

by Baumol ina recent paper [BAU67]. That is, activity

represented by W(B(i)) is progressive (in Baumol's sense) in

that its cost may be expected to be amortised in cost and

performance improvements. The activity represented by Ey on

the other hand is non-progressive and appears as a necessary

evil. Much of the communication and correlation effort, for

example, will lead to the conclusion that certain sections of

the system need “ot be changed. On the other hand, if the

work is not undertaken, faults will subsequently appear and

5. Program Systems Dynamics 113

lead to all the effort associated with fault detection,
analysis and repair. In the following sections we show that
despite its tendency to unmitigated growth, productivity
improvements are possible for the non-progressive activity.

This supports counter arguments by C S_ Bell and others

[BEL67] in their comments on Baumol's hypothesis.

The present theory has been developed only for a system after

its first implementation, that is for i> 1. The special

case of i = 0 has not been considered through it is clear

that a model could also be developed for that case, that is

to a system during its initial development. For i> 0O the

exponential term of [14] and [15] can nevertheless assume,
algebraically, any value between infinity and zero.

A perfectly structured system, for example, in which any

changes were completely localised would have G equal zero and

hence a negative exponent. We assert, however, that G does

not remain zero as the system grows. The addition of any

function not visualised in the original design will

inevitably degenerate structure. Repairs also, will tend to

cause deviation from structural regularity since, except

under conditions of strictest control, any repair or patch

will be made in the simplest and quickest way. No search

will be made for a fix that maintains structural integrity.

The parameters D(i) A(i) L(i) really quantify these effects,
the accuracy and accessability of documentation, the

consequence of increasing experience and familiarity with the

system (ie documentation and its accuracy less vital) and the

degree to which separate activities have been coalesced or

merged. Thus we may visualise a system in its early life in

which the structure is still relatively pure (G small) and

documentation is relatively complete. As familiarity with

the system increases D(i) may be larger and increasing faster
than G*i with the result that the exponent actually becomes

more negative and the correlation (maintenance) effort

appears to decrease with time.

However, as already observed, G will ultimately increase as

does i. It is also common experience that documentation

inevitably lags the maintenance effort, that is, it becomes

incomplete and/or inconsistent. As the system grows and

personnel change, familiarity with the system also decreases.

Thus we assert 1tn practice, D(i) ultimately decreases
relative to G°i, the exponent cannot be held negative or

small and the exponential term grows rapidly. This

corresponds to the algebraic truth that the difference

114 M. M. Lehman and L. A. Belady

between two large numbers cannot indefinitely be held

absolutely small as the numbers grow. Equally it relates to

the observed phenomena that system complexity grows with time

while accuracy of documentation and familiarity with the

total system decrease with time.

That is, the total work planned and undertaken to maintain

and expand the system will be supplemented by an amount which

is initially small relative to the overall level of activity.

Thus it will not be separately identified and the system will

give all appearances of settling down, beingmanageable and

stable. However, at some time, the effects of complexity

will begin to be felt, ultimately becoming dominant.

The exponential growth in effort which will be required to

maintain and grow the system can express itself in a need to

apply more and more resources to system maintenance and

development. Alternatively, or in general simultaneously, it

will be reflected in increasing dtfftculty in making changes,
in keeping schedules, in getting items of work completed on

time. That is, we may represent the effect as in Figure 7a

on a constant time-interval base by a rapidly and

exponentially increasing work requirement. This is held

within budget limits only by abandoning or delaying the

addition of planned function. More often the workload is

maintained at an approximately constant level as in Figure

7b, but with releases spread at increasingly large and

unpredictable intervals of time. In either case the

exponential growth is devastating to plans for further system

growth. Sooner or later it will dominate and ultimately

destroy system stability.

Note that, in part at least, there exists a choice in the

implementation of any change. One may (in theory and given

suffictent documentation) make an exhaustive check on the
entire system to uncover all the relationships and consequent

changes arising from any local change that is made. If this

is done successfully redundant effort will, as indicated

above, be expended. However the effects of the changes have

been localised in time. Alternatively, one may make a more

cursory determination but must then expect to set up a

primary and subsequent secondary fault sequences whose impact

(on performance and schedules) will be felt during later
releases. Whatever compromise is made between the extreme

limiting strategies, the ultimate consequences of complexity,

sooner or later, will be an explosive increase in required

effort. |

5. Program Systems Dynamics 115

*]
Exponential term~

 TN pa
ah

1 2 3 4 5 6 | i+1

Figure 7 Increasing Complexity

Exponential growth
replaced by interval
stretching

1 2 3 4 5 6 | i+1

Figure 8 Lengthening Release Intervals Because of
Increasing Complexity

116 M. M. Lehman and L. A. Belady

T Deductions from the Macro=model

From the structure of the macro-model (15) one may draw

conclusions about certain aspects of programming methodology

and system structure. To prevent the effort represented by

the exponential term from growing too rapidly the interval

between releases should, paradoxically, either be stretched

to the maximum or reduced to a minimum. The former strategy

holds down the rate of growth of i. By completing a_ given
amount of repair and functional enhancement and releasing it

to the user in the smallest numbers of releases, one obtains

more complete correlation between documentation and code and

decreases the probable number of errors released. One may

conjecture that software development for the Apollo space

program was in fact forced into this mode of operation with

releases defined by the individual flights. There, a priori,

existed wtdely spaced and well defined points in the
development program at which the entire system and its

documentation had to be stabilised and checked for

completeness and consistency. Each flight-release

establishes a new, well tested, base system from which one

may move forward, almost ignoring all previous releases.

Alternatively, one may make the release interval so small

that the quantum of activity in each is reduced to the level

where it can be most completely defined, implemented,

documented and distributed. That is D(i) increases as
rapidly as 4Gi and their difference remains small. To be
successful this strategy must however, include a high degree

of automation to keep documentation, code changes and

functional changes in step (5.2). Intuitively one may

suppose that it will work best for a system of which only one

copy is extant, which is being written ina sufficiently high

level language, and is ina well structured form. Thus the

code itself can be directly read and therefore compose the

primary system documentation; the authoritative source of

system definition.

This strategy relies on the difference 4Gi-D(i)A(i)L(i)
remaining small. Thus one would expect the smooth growth of

the system to be disrupted every now and then by instability

(4Gi and D(i)A(i)L(i) growth out of step). There is storng
corroborative evidence, which must however be further

investigated, that this is precisely what has happened in the

5.2 (Eds) A concept that must have been considered far-
fetched when wrttten becomes plaustble now that the role
and importance of IPSES has been recognised.

5. Program Systems Dynamics 117

past in at least two major system projects that followed a
strategy of almost daily releases.

Small G will also delay the onset of serious exponential

growth problems. G is a measure of system size, structure,

and complexity, in short, of system entropy. Its detailed

analysis must await more complete development of the micro-

model to be discussed in the next section. It is however

abundantly clear that it may be kept small by system

Structuring, appropriate partitioning of function and code

amongst sub-elements of the system, the definition and

control of interfaces between these sub-elements, the

complete testing of sub-elements before integration, and

reduction of free system-internal communication via global

objects. We have already recognised, however, that however

well structured a system is in its initial implementations,

the structure will inevitably degrade as new function is

added. Thus G will tend to increase with time. We note that

the problem of initially small Gis, in part at least,

strongly related to hardware partitioning problem that seeks

to distribute logic circuits on chops and chips on ecards’ so

as to minimise pin and interconnection requirements.

Finally the coefficient C relates the total activity required

to human and machine effort. The magnitude of the

exponential term as it relates to total dollar costs, man-

days and computer hours, can be reduced through the

application of a total system development methodology based

on an integrated family of tools for specification, design,

documentation, testing, measurement, activity and system

growth monitoring and project management [LEH69] (5.3). From
the model tt follows directly (5.4) that, for extended
programming projects, the main emphasis for tooling and

automation should be in the area of project communication and

documentation.

8 The Basis for a Micro-model

In the preceding sections we have developed an intuitively

appealing, but nevertheless heuristic, macro-model.

superficially at least, its functional characteristics appear

to explain the long term behaviour of some large programming

projects. Specifically, exponential growth trends in some

5.3 (Eds) Another example of forestght. It has taken
till now for thts concept, now termed an IPSE. to have
become generally recognised and accepted.

5.4 (Eds) Italics inserted 1984.

118 M. M. Lehman and L.A. Belady

measures of system maintenance effort have recently been

observed for a number of systems. The observations and their

interpretation will be separately documented.

It is however common experience that not all large

‘programming projects are equally sensitive to these growing

pains. To some degree at least this may be due to all

aspects of the respective projects; to all of the factors or

parameters in our macro-model. But it is generally agreed

that specific attributes of the systems themselves play a

Strong role in the rate of exponential growth. Thus a micro-

theory is required that explains the relationship between a

system's content and structure and its Growth Dynamics. The

present sections outlines such a microthoery, on a

phenomenological basis. When expressed analytically the

theory should provide underpinning for the macro-model;

structure and magnitude for the parameter G of (14).

A programming system may be viewed as a space in which

objects such as variables, control blocks, tables, queues and

so on are defined. The objects act as communication links

between the different elements of the system. Their number

and individual structures are a measure of the 'mass' of the

system, its resistance to change. This is invariant in a

static system, that is one that is not betng changed.

Any change in the system represents at least a change in the

status or definition (meaning) of one existing object or the

creation of a new one. A change may also impact the meaning,

Significance or structure of other objects in the system not

directly involved the change. Whenever a change is made

locally in some part of the system, it is necessary to locate

all of the other places in the system in which the value or
the form of a related object or its dependents are specified,

re-specified or used. Then one may determine whether’ the

change that has already been planned, demands some change in

these other regions of the system. To compound the effort

required, the procedure for this may have to be iterative.

Thus work must be performed on the system to achieve change

and its magnitude is related to system mass and to the degree

of interconnectivity between the elements of the system.

That is, the number and pattern of the communication links

(and hence the probability of spreading change or faults)
determine the complexity of the system. As they increase the

entropy or disorder of the system also increases and changes

are increasingly arduous to implement. These concepts

reflect the accepted viewpoint that a well structured

system, one in which communication is passed via parameters

5. Program Systems Dynamics 119

through defined interfaces, is likely to be mre growable and

require less effort to maintain than one making extensive use

of global or shared variables.

The total functional capability of a static system in a

static environment, its 'free energy', is also invariant. It

is a direct outcome of the functional relationship between

the objects as defined by the system code. The total free

energy, its power to do work in or on its environment, will

grow if work is performed on the system to add or improve

function or to repair faults. It will diminish through the

appearance of faults from whatever cause. The work needed to

maintain and grow the system is also clearly related to. the

total function or energy of the system since the number and

average number of instances of objects will be related to the

total amount of code in the system.

Finally we may consider the (average) probabilities Pay that

the interconnection between regions i and k, as determined by

a shared object j, is overlooked or misinterpreted, or that a

required change is incorrectly implemented. The number of

faults initiated is proportional to these probabilities, and

to the number of system-internal interconnections, the

internal communication of the system. For a system in which

the average number of iterconnections per object involved in

a change exceeds the reciprocal of the probability of error

Pa ates any change in the system causes, on the average, (1 +e)

further faults. That is the system has reached a critical

mass and may have become unstable. On purely theoretical

grounds stability cannot be restored without a fundamental

change in methodology. One might argue that because of the

discrete nature of the phenomena, an environment could be

created in which by halting all further system expansion and

by the expenditure of a large amount of effort, the situation

could be brought under control. However, we suggest that

this is likely to prove an unsound strategy whether from a

technical or business point of view.

9 Summary

It has been shown that programming systems change with time.

As a consequence of their size and complexity, and that of the

organisations that produce them, such systems are always

limited in their ultimate growth potential. Ultimately the

maintenance effort required must increase exponentially. At

that stage the system becomes, at best, unprofitable to

maintain or expand, and at worst, unstable.

120 M. M. Lehman and L. A. Belady

The magnitude of the effort arises from the need for those

that implement the changes to be aware of the total internal

state of the system at all times, and for numerous

implementors working in parallel to communicate with one

another. It is also related to the number of shared or

global objects in the system or to the extent and topology of

communication between them. Thus the latter represents a

measure of the disorder or entropy of the system; the degree

to which the system and/or its documentation is unstructured.

In short, the exponential increase in maintenance and

development effort that appears in ageing systems (after they

appear to have settled down to comfortable middle-aged

maturity) is a consequence of the need for increasing

communication, both that internal to the system and that

between the people and groups (over spatial and temporal

gaps) implementing, maintaining and using the system.

Further development of these models should yield more insight

into the phenomena they represent. Thus it will be possible

to provide a formal theoretical basis on which to develop

project and system structural rationale. this must be done

for the system's internal structure, for system

communication, for project and programming process structure

and for documentation and other tools which are required to

implement and control the development and growth of the

system. That is development of the models relates directly

to the development of a programming system development
methodology. This should and would structure a= system
project, so as to exend the viable lifetime of the resultant

system and delay the possible onset of mass criticality.

There will, however, always be growth and an economic limit
to permissible growth. We conjecture that the exponential
term in our model must always exist and ultimately dominate.
Thus the objective can only be to delay explosive cost growth

and/or the critical mass situation beyond the other economic

and technical life-time limits for the system. The presnt

primary requirement must however be to quantify complexity of
growth measures. Then one will be able to plan precisely for

the development, maintenance, growth and ultimate termination

of a system, and its replacement by a successor built up from

ground level.

Finally it may be observed that the phenomena discussed here

are largely independent of the specific function and

structure of programming systems. thus the models will also

find more general interpretation in other large system areas.

We have already indicated the close relationship between our

5. Program Systems Dynamics 121

model and the macro-economic model of Baumol [BAU67]. We are
also able to demonstrate such a relationship in at least one

sociological situation relating to the increasing dominance

of miiddle management in industrial organisations [LEH68].
Thus the phenomena discussed here appear to represent a

fundamental growth attribute of systems and society.

10 Acknowledgments

We wish to acknowledge the many helpful discussions with our

colleagues, too numerous to list individually. Special

thanks are however due to Dr DN Streeter for his consistent

support and encouragement during the birth and development of

these ideas and also to him and to Dr H Freitag and J

Pomerene for specific contributions.

11 Afterthought

On rereading this paper in 1984, the editors were struck by
the continuing relevance of its models and observations. At

the time of its publication the report did not achieve wide

exposure nor did the authors receive much reaction, true, in

fact, for most of the chapters of this book. The subject

matter was simply not percieved to be of real consequence at

that time when the principle objective was to get more and

more programs writen more and more quickly.

Nor did the authors pursue any further the process models

they had developed or their implications. On now reviewing

the material it does seem that it is worthy of further

investigation and development, now that more and more people

are recognising the central importance of understanding and

controlling the Programming Process [SWP84].

CHAPTER 6

AN INTRODUCTION TO GROWTH DYNAMICS*

1 Project Statistic

The lifetime of any large programming system normally extends

over a series of releases. Each such release represents an

improvement on its predecessors as regards faults that have

been repaired, performance weaknesses that have been removed,

functional capability that has been improved and new function

that has been added.

The history of a programming project is, in part, contained

in the statistics (if recorded) of these releases. Thus

typically there could be data available on the number of

instructions and/or components (modules) added, removed and

modified during the release, the number and reporting rate of

previous repair work, the man-days, machine hours and dollar

cost of each release, the time interval between releases and

so on.

Examples of such data for a major system are given in figures

1 = 3. Figure 1 is a plot of the number of instructions in

the system as a function of release number. It displays

clearly the linear growth of the system. In the present

paper we shall not analyse the deviations from linearity,

except to observe that the ripples on the data are typical of

a self-stabilising process with both positive and negative

feedback loops (6.1). That is, from a long-range point of

view the rate of system growth is self-regulatory, despite

the fact that many different causes control the selection of

work implemented in each release, with varying budgets,

increasing number of users desiring new functions or

reporting faults, varying management attitudes towards system

enhancement, changing release intervals and improving

methodology.

Figure 2 shows, as a further example, a plot of the net

instruction growth of the system per release-interval day.

The points are fairly widely dispersed as would be expected

for any project stretching over several years. Surprisingly,

6.1 (Orig) Thts observation was suggested to us by G Prada.

Copyright © 1972 by Academic Press, Inc. From W. Freiberger, Statistical Computer

Performance Evaluation, pp. 503-511.

123

124

DEC.

H <= CHN[B;4]
A FPLOT (H VS B)WITH(BS LIN H LSQ2 B)VS BS

5000

4000

3000

2000

N
u
m
b
e
r

of
m
o
d
u
l
e
s

1000

|

14 1971/101

M. M. Lehman and L. A. Belady

Release sequence number

Figure 1. Normalised component growth per release

6. Introduction to Growth Dynamics 125

H <= (CHN[B;7]-CHN[B-1;7])+#CHN[B;10]
A FPLOT H VS B

600-

500

400} e

300+ e

N
u
m
b
e
r
o
f

in
st

ru
ct

io
ns

200K e

100 ° e e

Release sequence number

DEC. 14 1971/104

Figure 2. Normalised net instruction growth per day.

126 M. M. Lehman and L.A. Belady

however, if these same data are smoothed, for example by

averaging as in figure 3, the resultant points lie on a very

smooth curve. The points of figure 3 can in fact be least-

square fitted to a straight line and the logarithm of the

points to the exponent of an exponential, with a chance

probability of less than 0.1% and 0.01% respectively.

An extensive study of the total project statistics for this

system has consistently displayed the same phenomenon. That

is, inmost cases, the raw data showed large variations from

release to release. smoothing or averaging, however,

resulted in points that clearly lie on very smooth curves.

In general these curves were of three classes - linear,

exponential and bell-shaped. Linear fits appeared for

measures reflecting the growth in size of the system.

Exponentials appeared to fit well to points related to

measures of system complexity. Data which reflected the

effort (men, machine-power, cost, etc) going into successive
releases appeared to lie on a bell-shaped curve that

represented an effort at first decreasing and subsequently

increasing continually. This last observation corresponds to

the common experience of many projects that a settling-in

period during which maintenance becomes progressively easier

is followed by increasing maintenance problems that

ultimately cause the replacement of the system.

2 Growth Dynamics

The behaviour of smoothed data, as discussed in the previous
Section, suggests that there is a self-regulating dynamics

that underlies the growth of the system. That is, we may

consider a system that comprises the body of code (consti-

tuting the programming system) together with the programmers

that implement change and enhancement, their managers and

executives and the user population. The dynamics of this

system (the code, the programmer population, the

applications, the hardware) as its internal state changes

with time is governed by laws that cause it to be self-

regulatory. In Simon's terms [SIM69] we may view this total
system as an artificial system and search for the laws that

govern its behaviour.

3 The Macro-model

In two recent papers [LEH69], [BEL71], the present authors
presented studies of the programming process. They showed

6. Introduction to Growth Dynamics 127

that the effort required to take a system from the yeh to the
(i+1)8* release could be represented by

We = W(B(4)) + c22G(4)4-D(4)A(4)L(4) (1)
1

In this expresion W(B(i)) is a function of the budget
allocated to the it? release. G(i) measures the lack of
structure in the system. That is, a programmig system
perfectly structured would have G(i) equal to zero while for
a system totally unstructured (every element connected to
every other element) G(i) would approach infinity. The two
parameters D(i) and A(i) measure the degree of knowledge that
exists and is avialable about the internal state of the
programming system. That is, D(i) represents the
completeness and accuracy of both present and archival system

documentation, while A(i) measures the accessibility of that
documentation. L(i), on the other hand, represents the
experience and knowledge about the system, of the programmers

working on the system in the i release. The greater’ the

awareness, the less important is the existence and/or

accessibility of the documentation.

We have not at this time exhaustively validated this macro-

model, nor are we able to assign numerical values to the

parameters. Qualitative and corroborative evidence of the

general form of the model is, however, seen in the bell-

Shaped curves previously mentioned. Figure 4 represents an

example from the same system referred to above, measuring

components handled per day (smoothed data). The increased
productivity indicated during the early days of the release

resulted from the dominance of the first term of (1). Thus,
during this period, budget and manpower allocated to the

project was increasing, as were familiarity and experience

with the system. At a later point in time, however,

excessive rates of raw growth were attempted, documentation

(as is quite usual) slipped behind, faults from earlier

releases were reported as the number of users increased, new

programmers were introduced and the second term began to

dominate, leading to a falling-off of productivity.

Interpretation of the model also fits many of the concepts

for improved programming effectiveness and quality that have

evolved heuristically over the past few years. Thus, we see

the macro model as a conceptual framework that explains many

previously-known observations. G(i), for example,
corresponds to Dijkstra's concept of structured programming

[DIJ70]. Similarly, the nature of the exponent as the
difference of two numbers shows why the use of high-level,

128 M. M. Lehman and L. A. Belady

H <= (CHN[B;7]-CHN[B-1;7)+CHN[B;10]
A FPLOT(C42 RDC H)VS C42 RDC B

400 --

350 F-

300 /-

200 }-

150;

A
v
e
r
a
g
e

n
u
m
b
e
r

of
in

st
ru

ct
io

ns

100 5O >

Release-group sequence number

DEC. 14 1971/102

Figure 3. Normalised net instruction growth per day,

N-point average

6. Introduction to Growth Dynamics 129

Self-documenting, error-avoiding programming languages makes

a system more long-lived. It tends to keep the difference

between the two terms of the exponent small, however large

the terms may be individually.

As another example, we note that the exponent, as a

difference between two numbers, would tend to grow with time

even if it was initially small or even negative. However, at

any time it can be made small again by spending sufficient

effort (aside from the main enhancement/repair effort

represented by W(B(i))) to update the documentation, to make
it more accessible (increase D(i), A(i)) and/or imporve the
structure of the system (reduce G(i)).

This last observation suggests that we may postualte a

"second law' analogous to the second law of thermodynamics.

This would state that the complexity or unstructuredness -

the entropy - of a programming system increases with time

unless more effort specifically directed to its reduction is

executed. That is, in our model G(i) grows with time.

y The Micro-Model

We have also proposed a phenomenological micro-model of

programming systems [BEL71]. This relates to the propensity

of the system to spread change and faults. G(i) is in fact

an abstraction of the micro-model which attempts to represent

the lack of structure, the entropy, of a programming system

by measuring the topology of interconnection between its

elements. These interconnections relate to the sharing of

objects (variables, parameters, tables, etc) by the
elements.

We do not here elaborate on this model. It will, however, be

observed that it also conforms to heuristic observations.

For example, it confirms that parameter-sharing through

defined programming-element interfaces is to be preferred to

sharing of global variables, that goto statements (which

represent spurious linkages between elements) should be

avoided [DIJ68]. The micro-model is also consistent with the
postulated 'second law' in that almost any change to a system

will increase the number of elemental interconnections, by

increased sharing of objects or adding branch instructions to

inserted code sequences.

130 M. M. Lehman and L. A. Belady

H <= +/CHN[b;5 10]
RPLOT C30

800 -

700 --

600[-- e

SOOr

400--

300 F- Av
er

ag
e
n
u
m
b
e
r

of
m
o
d
u
l
e
s

fo
r

re
le

as
e

in
te

rv
al

d
a
y

e e

200 >
Release - group sequence number

DEC.14 1971/106

Figure 4. Normalised components handled per release-interval
day, N-point average

6. Introduction to Growth Dynamics 131

5 Cities and other Systems

In a recent paper [BAU67] Baumol discussed the implications
of unbalanced productivity growth on the macroeconomics of
cities. The present authors suggest that there is a strong
link between Baumol's model explaining city decay and the
decay of programs as suggested by our macro-model (1). They
have further suggested that a similar phenomenon can explain
the increase of bureaucracy in government, the rise of middle
management in large corporations and hence the decay trends
in such institutions [LEH68].

These topics remain to be more fully studied. The authors,
however, do not consider it premature to suggest that a
common mechanism underlies all the above phenomena. They
Suggest that the observations reflect a decay trend present
in all large systems. Thus, if the systems are left to

follow their own dynamics they will tend to decay. Under-

Standing the process can, however, lead to control of this

decay process. Thus the authors recommend the study of this

new and intrinsically statistical topic of growth dynamics to

the participants in this conference.

CHAPTER 7

PROGRAMS, CITIES, STUDENTS - LIMITS To GROWTH*

1 The Battlefield of Programming

In an invited lecture to the 1971 IFIP Congress, [RAN71]
Professor Brian Randell of the University of Newcastle

typified the situation current in the design, implementation

and maintenance of computer software systems by showing a

Slide (Plate I) (7.1) of a medieval battlefield with ranks
aligned but carnage abounding and devastation everywhere.

The situation today is really very little different. The

programming systems world is a little older, perhaps a little

wiser, but has in its practice not learnt much from the

experiences of the last ten years. Many still ride bravely

into battle (Plate IIa) determined to master the system that

they wish to create or maintain. Most in one way or another

fall by the wayside (Plate IIb). And programming expenditure
goes up and up and up.

The total picture is however not completely bleak. some

dragons have been slain (Plate III). The need for a
discipline of software engineering is recognised [NAU69].
The formulation of concepts of programming methodology

exemplified by Dijkstra's concept of structured programming

[DIJ72] strikes at the roots of the problem. The realisation
that a program, much as a mathematical theorem, should and

can be provable and proven correct as it is developed and

maintained [DIJ68] and before its results are used will
ultimately change the nature of the programming task and the

face of the programming world.

7.1 (Ortg) My thanks are due to the management of the Alte
Pinakothek Museum tn Muntch for permtsston and
factlittes to produce the first three sltdes, Mr P Young
of the Vietoria and Albert Museum for the loan of slide
four and to the Directors of both museums for permtssion
to reproduce the slides in the published verstons of the
lecture. Also to Professor G Seegmuller for his
asststance tn the preparation of the slides.

First published 1974 as Inaugural Lect Ser., Vol 9 Imperial College of Science and Tech-

nology, London, also in ‘Programming Methology’ D. Gries (ed), Springer Verlag, New

York, 1978 with permission from IFIP.

133

134 M. M. Lehman and L. A. Belady

Plate I: Randell's depiction of the software crisis. (Detail
from [te Alexanderschlacht, Albercht Altdorfer, by courtesy of
the Alte Pinakothek Museum, Munich).

7. Limits to Growth 135

Plate Ila: Ride into Battle. (Detail from Dte Alexander-
sehlacht, Albrecht Altdorfer, by courtesy of the Alte Pinakothek
Museum, Munich).

 PlateIIb:
F
a
l
l
e
n

b
y

t
h
e

W
a
y
s
i
d
e
.

(
D
e
t
a
i
l

f
r
o
m
B
e
l
a
g
a
r
u
n
g

V
o
n

A
l
e
x
t
a
,

F
e
s
e
l
e
n
,

b
y

c
o
u
r
t
e
s
y

o
f

t
h
e

A
l
t
e

P
i
n
a
k
o
t
h
e
k

M
u
s
e
u
m
,

M
u
n
i
c
h
)
.

7. Limits to Growth 137

Plate III: Some Dragons Slain. (Panel from Altar-ptece with
scenes from the ltfe of St George attributed to Marzal de Sas,
by courtesy of the Victoria and Albert Museum, London).

 Plate IV: left
:

T
h
e

T
o
p
-
d
o
w
n

A
p
p
r
o
a
c
h
.

A
l
t
d
o
r
f
e
r
,
b
y
c
o
u
r
t
e
s
y

o
f

t
h
e
A
l
t
e

P
i
n
a
k
o
t
h
e
k

M
u
s
e
u
m
,
M
u
n
i
c
h
)
.
r
i
g
h
t
:
T
h
e

A
n
t
i
-

(
P
h
o
t
o
-
m

P
e
a

e
e

R
e
a
e
l
e
a
t
e
n
P
e
r
n
e
l

P
R
O
V
E
R
B
S

s
u
e
.

b
o

a
e
s we
n

P
O
O
N
e
n

a

 c
oc

na
ne

an
ne

dl

P
O
S
E
S

st
o

Ste
eE
N

n
e
r

See
e

R
e
R
e

h
i
l
e
t
H

e
e
e
G
e
S
e
m
e
e
k
f
y

W
h
i
c
h
ha

vi
ng

n
o
ch

ie
f,

j

m
s
c

am
{

*P
ro

vi
de

th
he
r
hr
ea
d
in

th
e
S
t
a

P
e
e
r
e
n
e
e
C
E
e

e
o

c
h
a
L
e
r
S
i
e
}
c
e
c
a
l

t
g

P
o

ra

O
E

AR
E
S
E
S
S
S
S
I

HE
S
s

etetat teni ! | |

S
I
O
N

EEc
d

h
c

r
n

w
e
e

2s
as

o
n
t
a
g
e

o
n
D
i
e

A
l
e
x
a
n
d
e
r
s
c
h
l
a
c
h
t
,
A
l
b
e
r
t

r
e
g
r
e
s
s
i
v
e

A
n
t

7. Limits to Growth 139

Clearly, these developments are of fundamental importance.
They offer the only long-term solution to the creation of the
masses of programming material that the world appears’ to
require; or at least that computer manufacturers and software
houses think the world requires. Nevertheless, we must face
the fact that progress in mastering the science of program
creation, maintenance and expansion will be painful and slow.

2 The Systems Approach

Such progress as is currently being made stems primarily from
the personal involvement of the researchers and the
developers in the programming process at a detailed level.
Often they only tackle one problem area: algorithm
development, language, structure, correctness proving, code
generation, documentation, testing. Others view the process
aS a whole but are still primarily concerned with the
individual steps that, together, take one from concept to
computation. And this type of study is clearly essential if
real insight is to be gained and progress made.

But application of the scientific method has achieved

progress in revealing the nature of the physical world by

also pursuing a course other than studying individual

phenomena in exquisite detail. A system, a process, a

Phenomenon, may be viewed in the first place from the

outside, observing, clarifying, measuring and modelling

identifiable attributes, patterns and trends. From such

activities one obtains increasing knowledge and understanding

based on the behaviour of both the system and its. sub-

systems, the process and its sub-processes. Following

through developing insight in structured fashion, this

outside-in approach in due course leads to an understanding

of, and an ability to control, the individual phenomena but

in the context of their total environments.

In terms of the previous analogy one may overfly (Plate IV) a
battle, study it using all available observational tools.

Thereby one would observe its ebb and flow identifying the

location, global characteristics and, on closer and closer

inspection, nature of the main points of advance, or of chaos

and destruction. Having succeeded in this, one may hope

better to understand, and hence modify and control what is
going on.

In my present area of interest and concern I have adopted
Such a structured analysis approach to study the programming
process. I shall be showing you samples of data that support

140 M. M. Lehman and L. A. Belady

this systems approach to the study of the process. One need

not search too hard for its conceptual justification. A

programming project can involve many hundreds of people and

many tens of managers. Many millions of pounds or dollars

may be spent on it. Thus individual decisions of almost any

kind make very little impact on the overall trend. It is

really the inertia of people and habits, the momentum of

practices and budgets, the general smoothing effect of

organisations, that determine the rate of progress and the

fate of a project.

3 The Roots of the Study

Some years ago I undertook a study of the programming process

in one particular environment (see Chapter3). As part of the
study I obtained project statistics of a programming system

which had already survived a number of versions or releases.

The data for each release of the system included measures of

the size of the system, the number of modules added, deleted

or changed, the release dates, information on manpower and

machine time used and costs involved in each release. In

general there were large, apparently stochastic, variations

in the individual data items from release to release. but

overall the data indicated a general upward trend in the

size, complexity and cost of the system and the maintenance

process (Figure 1).

INSTRUCTIONS

{
-
\

MODULES HANDLED

TIME

Figure 1 Early Data

7. Limits to Growth 14]

As a first step in my study of this data I averaged the

various parameters. The intent was of course to expose any

specific trends. And expose them it did. When the averaged

data was plotted the previously erratic data had become

strikingly smooth (Figure 2).

Some time later additional data (Figure 3) confirmed previous

Suspicions of non-linear, possibly exponential, complexity

growth. Moreover, extrapolation of the plots’ suggested

further growth trends significantly at odds with the then

current project plans. The data was also highly erratic

(Figure 4) with major but apparently serially correlated
(Figure 5) fluctuations from release to release. Never-

theless almost any form of averaging led to the display of

very clear trends (Figure 6). Thus it was natural to apply

uni- and multi-variate regression and auto-correlation

techniques to fit approriate regression and time-series

models to represent the process for purposes of planning,

forecasting and improving it in part or as ae whole. In

general the data suggested that one might consider a software

maintenance and enhancement project as aé_e self-regulating

organism subject to apparently random shocks, but overall

obeying its own specific conservation laws and internal

dynamics.

All in all, these first observations encouraged me to search

for laws that governed the behaviour, the dynamics, of the

meta-system of organisation, people and program material

involved in the creation and maintenance process, in the

evolution of programming systems.

I/

C
O
U
N
T
S

C
O
U
N
T
S

FORECAST
AND
ULTIMATE
ACTUAL x

+ x

©
PLAN

A
V
E
R
A
G
E

A
T
T
R
I
B
U
T
E

S
Y
S
T
E
M

A
T
T
R
I
B
U
T
E

RELEASE -GROUP

°
LEGEND: SEQUENCE NUMBER

© SIZE IN MODULES
* MODULES HANDLED

+ RELEASE INTERVAL
RELEASE - GROUP

LEGEND: SEQUENCE NUMBER

O SIZE IN MODULES
X MODULES HANDLED
+ RELEASE INTERVAL

Figure 2 Initial Data Figure 3 Later Data
Averaged

142 M. M. Lehman and L. A. Belady

> ' e

600 & °
e : o —

e500 z .

e oT
2 Cc

S 400 e -

2 0 .
pS ® e
= 300 a
° e ©

2 = — ee

as 200 e +. e e

Zz e . e . a Ne 74 [*

100 ° ° + \ °
e Ss e

° “LL? l an l |
oe Release sequence rumber > Release Sequence Number

30/82

Figure 4 Scattered Data Figure 5 Serial Correlation

400

350

”

5 300

oO
2
w
£ 250 °
‘S

®
Q

E 200
Cc

@

o e
2 150
at

@

100

50 —
Release-group sequence number

Figure 6 Overall Smoothness

7. Limits to Growth 143

4 Laws of Programming-system Life Dynamics

It is perhaps necessary to explain here why I repeatedly

refer to the continuous creation, maintenance and enhancement

of programming systems. It is the actual experience of all

who have been involved in the utilisation of computing

equipment and the running of large multiple-function programs

the the latter demand continuous repair and improvement.

Thus I postulate as a First Law (Figure 7) of Program
Evolution Dynamics:

THE LAW OF CONTINUOUS CHANGE

Software does not face the physical decay problems’ that

hardware faces. But the power and logical flexibility of

computing systems, the extending technology of computer

application, ever-evolving hardware and the pressures for the

exploitation of new application areas all make users demand,

and manufacturers encourage, continuous adaptation of

programs to keep in step with increasing skill, insight,

ambition and opportunity. Thus a programming system

undergoes never-ending maintenance and development, driven by

the potential difference between current capability and the

demands of the environment.

As a system is changed it inevitably becomes more complex and

unmanageable. Hence I also postulate a Second Law:

THE LAW OF INCREASING ENTROPY

This law too is supported by universal experience and in

conjunction with evidence deduced from such programming

project data as has been available and studied, has led me to

the formulation of a Thtrd Law:

THE LAW OF STATISTICALLY SMOOTH GROWTH

The system and its metasystem, the project organisation

developing it, constitute an organism constrained by

conservation laws. These may be locally overcome, but they

direct, constrain and control the long-term growth and

development patterns and rates. It is the study of one

aspect of this third law, and its generalisation, that forms

the underlying theme of the remainder of my talk.

144 M. M. Lehman and L. A. Belady

I Law of continutng change

A system that is used undergoes continuing change until

it becomes more economical to replace it by a new or

restructured system.

II Law of tnereastng entropy

The entropy of a system increases with time unless

specific work is executed to maintain or reduce it.

III Law of stattsttcally smooth growth
Growth trend measures of global system attributes may

appear stochasite locally in time and space but are

self-regulating and statistically smooth.

Figure 7 Laws of Program Evolution Dynamics

5 Statistical Models of System Growth

These laws, as formualted now, have gradually evolved as we

have pursued our study of the programming task. In the first

instance my observations simply led to the conception of an

area of study which, at the time, we termed Programming

Systems Growth Dynamics [BEL71], but which we now prefer to
refer to as 'Evolution Dynamics'. In close association with

a colleague, L Belady (who I am happy to say is here this

evening as an SRC=-sponsored Senior Visiting Research Fellow)

it has also led to the development of statistical and

theoretical models, such as those that I shall discuss, and

to an ever-increasing understanding of the nature and

dynamics of the programming process.

Let me give just one, very significant, illustration of the

Statistical models. Figure 8 plots the size of the system as

measured in modules. Clearly the growth measured as a

function of release numbers has been strictly linear. This

growth is really very steady. However closer examination of

the plot reveals a superimposed ripple (Figure 9). To
control engineers this may suggest a self stabilising multi-

loop, feedback system. Positive feedback arises, for

example, from the desire of users to get more function, more

quickly. This creates the pressures that cause the rate of

systems growth to increase.

But a compensating negative feedback every now and again

causes a decline (Figure 10). As attempts are made to speed

up the growth process, design and implementation may become

sloppy, short cuts are adopted, testing is abbreviated,

7. Limits to Growth 145

documentation falls behind, errors are made and the fault
rate builds up. Changes to the code become progressively

more difficult. Project and system entropies have become
large, their structures have become hazy. The net result is
that the growth rate declines. Both systems must be cleaned
up, their structures improved, their entropy reduced, before
enhancement of the program can be resumed.

T [—~

w” ey — e

® | et ®
3 —_ @

2 ae 8r ov=t- ee? = e ee_ eo” e
° “ne ‘Oo [- 7
i e L
8 = a 3 a . ee

5 we E ee °

= tes’? > Loea

i | L | | | |
Release Sequence Number Release Sequence Number

17/1 17/1

Figure 8 Linear Growth Figure 9 Growth Cycles

e

a © as

2 . 3 °
= oO 7
S — e° 9S °

+ ‘oO ° e
~T “ON s|
® ee BD @’

Q Ee e

Er e 5 t
2 e @

= °

< =) ° ‘
k

,
l | 1 J ett i | yy

Release Sequence Number Days

17/1

Figure 10 Clean-up Points Figure 11 Limit to Growth?

146 M. M. Lehman and L. A. Belady

Incidentally it may appear strange that apparently valid

statistical models are obtained using an arbitrarily assigned

"Release Number' as_ one of the variables. Its use as a

‘pseudo-time' varible can be justified by the 'Principle of

Parsimony' [BOX70], the simplicity and regularity of the
models that its use yields. A more fundamental justification

follows from a fuller understanding of the role of the system

release point as a stabilising or anchor point in the

programming process and for the programming organisation. In

fact what we have termed the 'release number' must really be

viewed as the release '‘sequence' number, which may well

differ from the former and which, quite naturally, forms a

basis for the time series type of analysis [COX66]. And
there can be no question that results to date fully

substantiate the claim that release-based project data

provides a useful and powerful planning tool. Used in

conjunction with real-time based models (Figures 11 and 12)

it is also beginning to yield insight into the programming

process, insight that will eventually permit its improvement.

C
u
m
u
l
a
t
i
v
e
N
u
m
b
e
r

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

\
,

 om; | | fy | Yy
Days

Figure 12 Constant rate of work-output

7. Limits to Growth 147

6 The Macro Models

The Yorktown Model

The statistical analysis represents, at most, a tool to guide

our understanding and hence mastery of the intellectual and

organisational effort that really underlies the programming

process. In parallel with that analysis, Belady and I looked

at fundamental aspects of the programming process, searching

for representative theoretical models. It is not possible to

elaborate on the details of the resultant sequence of models

in the present lecture. I will nevertheless show you’ the

forms of two of the earlier ones, without however

interpreting all their terms, to give some idea of the

approach taken.

At first approach [BEL67] we developed a model to represent
the communication cost of such a project. We showed [BEL72]

that in general the cost Waay of taking a programming system

from release 1 to release ($41) can be represented as:

2G,.i - DAL;Wi4, = W(B,) + wHg.2 (1)i+]

Briefly the coefficient H represents the entropy, the degree

of unstructuredness, of the program itself. G represents the

entropy of the project. It measures the communication effort

required at all times for coordination between the groups and

individuals maintaining and updating the system. Finally the

factor DAL represents the state of knowledge of systems and

meta-system capability, structure and content, the

correctness, completeness and accessability of system and

project documentation.

This macro model is static and does not express any

controlling feedback relationships. It merely indicates that

one source of exponential cost growth is the ever increasing

difficulty of ensuring that changes to the code are

compatible with its past definition and behaviour. Changes

to the system today must not undo yesterday's work or prevent

a repeat of yeterday's usage. Nor must they conflict with

activities occurring elsewhere in the organisation, today.

Any tendency to diverge may be minimised and controlled by

creating and maintaining a well-structured system (H_ small)

and/or by having a wel-structured, strongly communicating,

project organisation (G small). Additionally, specification

and documentation accuracy and program clarity must be

148 M. M. Lehman and L. A. Belady

maintained, so as to ensure that all questions about’ the

meaning, intention or effect of code can easily and

unambiguously be answered and, ideally, so that the code can

be proven correct. The exponential growth trend would be

suppressed given perfect system structure, perfect project

structure or perfect documentation but in practice these

cannot be achieved or maintained.

The Berkeley Model
We now leave this primitive model and turn to one_ that

displays the dynamics of the process. A dynamic macro model

may be developed directly [BEL76b], applying the techniques
of structured analysis, to yield as a simple example at’ the

highet level and where all parameters are assumed to be

functions of time:

W = u.F + M.v.K.F. + Now. E. + P.x.R. (2)

In any programming project there will be activity related to

the design and creation of new code and the modification of

exisiting code. This is represented in (2) by a factor of F.

All such activity must be accompanied by additional activity,

K.F, to document and record it, and both activity measures

must be multiplied by expenditure rates or factors, u, v say,

to yield the actual cost rate or cost terms.

There is also the acitivity represented by the exponential

term in the previous model and now abbreviated to E, yielding

a model term w.E. Finally, in any project there should be

concern to improve the quality of the product and the

productivity of its participants. The expenditure rate or

expenditure of such activity is modelled by a term x.R. This

therefore represents that part of the budget applied to

methodology improvement and tool development.

We observe that the level of productive activity F and its

division between, for example, repair (F,),; functional

improvement (F5) and the creation of new capabilities (F,5) is
a management judgement based on fault rates, business

considerations, and pressures from users. But once their

average rate or level has been set, the necessary activities

represented by the other terms to maintain the system health

- that is, usable, maintainable and enhanceable - is

predetermined.

In practice, however, under the pressures of continuous

demand and imminent completion dates, the work whose neglect

has no immediate consequence is pushed aside. Thus the

7. Limits to Growth 149

average level of activities represented by the last three

terms will often fall below the level required to match

program creation and modification. This reduction, a

consequence of conscious or unconscious management decisions,

is reflected in the model by the addition of management

factors M, N, P that are, in general, less than 1.

The inter-parameter relattonshtps
We have noted that all the variables and parameters in (2)

are themselves time dependent. Additionally there will be

time-dependent relationships between then. A complete model

must express these relationships. Thus, aS an example, if

documentation is neglected (M<1), the cost term u will
increase in the future as knowledge of the state of the

system declines and it becomes increasingly difficult to

understand the content, intention or meaning of a piece of

code. Moreover errors or defects in the system will

increase, that is the ratio of repair activity (F,) to

enhancement (F., and F5) will increase, an effect which is
critical (and observable) in the dynamics of the process.
Possible sets of relationships, the families of differential

equations they lead to and the relationships between the

solutions of these equations, available project and program

data and our understanding of the programming process, are

now being studied in our SRC supported research project under

the title Systems Engineering (Growth Dynamics), and in a

project ‘Program Evolution Dynamics' led by L Belady at’ the

IBM Yorktown Heights Research Laboratories.

Progressive activities
Much more could be said about this family of models. For

“now, however, I draw attention to just one of its

characteristics. If we examine the four terms of (2) we find

that the first is concerned with activity undertaken because

of its assessable value to the organisation and the user. It

produces code, hopefully usable code We have added as it

were to the store of potential energy in the system, to its

power. We have increased the value of the system. I term

activity of this type progressive.

Anti-regresstve activities
The other three terms on the other hand do not, by and large

have a direct or immediate effect on the power or value of

the system. System documentation, for example, must. be

undertaken while the work is being done or shortly

thereafter. But it will be used only at some future time

when it becomes necessary to modify the system. If it is

there, well and good. If not trouble lies ahead. The system

150 M. M. Lehman and L. A. Belady

Will be difficult to repair, to change. It may not be

possible to keep the system in harmony with a changing

environment. felative to tts environment, it will have begun
to decay.

The prime purpose of the expenditure represented by the E

term is to prevent the insertion or perpetuation of a fault

in the system that will, at some future time, result in
undesirable or incorrect operation. Ideally it relates to

the activity that would be required to re=prove correctness

of the system each time it is changed. Since in the present

state of the art this cannot, in general, be done, the term

can equally be interpreted to represent testing activity

which serves as a poor, but as yet essential, substitute.

Thus all in all the term models the effort to minimise the

number of undiscovered faults in the system. It too

represents an investment in the future.

Finally the fourth term, modelling the cost of methodology

and tool development, also represents a long-range

investment. It is concerned with maintaining a capabiltiy to

cope with system development and maintenance despite

increasing size and complexity.

In general, these three elements of the model represent the

cost of effort that I term antt-regresstve. They are
concerned not with immediately increasing the value of the

system but with the investment of activity today to prevent

system unmaintainability, and hence decay in the future.

T Unbalanced Productivity Growth

Baumol's Prinetple and its Generation
It is my thesis that the complementarity of progressive and

anti-regressive activity is fundamental to all human

activity.

In 1967 Baumol [BAU67] discusssed the consequences of
unbalanced productivity growth. His principle conclusion was

that human activities in areas where there is an intrinsic

barrier to productivity increases must ultimately be priced

out of commercial existence. But is this effect limited to

instances where the obstacle to productivity increases is

intrinsic? Any politician, administrator, manager, or even

individual will be prepared to make an investment or an

effort now, if the return is immediate or at least

demonstrable. However to invest now so that in the future

decay can be avoided or some other activity will be more

7. Limits to Growth 151

efficient is quite a different matter. Thus there is

inherent psychological pressure for productivity to increase

faster in progressive than in the anti-regressive areas. I

suggest now that a Baumol-like effect will occur also in this

case despite the fact that there is no intrinsic barrier to

productivity growth.

What is the consequence of this? In general all progressive

activity must be accompanied by some anti-regressive

activity. As progressive activity and productivity grow so

does the need and demand for anti-regressive activity. But so

does the cost of labour in both areas. Therefore more and

more anti-regressive activity, costing more and more, is

required and until something is done about productivity in

the anti-regressive area one of two things may happen.

Either resources may be diverted from the progressive to anti

regressive area. Progressive activity must then fall, growth

rates decline and ultimately actual recession may set in.

Alternatively anti-regressive activity may be neglected. In

that event, inevitability sooner or later further growth

grinds to a halt. Ina programming system, for example, this

occurs when the fault rate becomes so high that the system

must be cleaned up before further developments can proceed,

an effect clearly visible in Figures 10 and 11.

The London Model
The preceding discussion suggests a further abstraction of

our dynamic model. We may in fact model the dynamics of the

programming process as a function of the interaction between

progressive and anti-regressive activity, work output and

system growth or evolution. By presenting a higher level

view of the process, such a model may provide a more concise

summary of its time-behaviour. oo

Also by abstracting in appropriate terms, the model may yield

a wider interpretaion, and therefore be used to describe a

more universal phenomenon.

It is unfortunately not possible to present here a precise

definition of the concepts of Progressive (P) and Anti-

regressive (AR) activities, as would be required to develop
such a model. Instead I shall simply outlne, in terms of

more primitive concepts, a model that results from some

simple assumptions about the relationships between them and

suggest one consequence that appears to relate to Growth and

the Limits to Growth.

152 M. M. Lehman and L. A. Belady

The primary assumption will be that productivity increases
more rapidly in the progressive areas than it does in the
anti-regressive.

With an additional assumption of linear productivity growth,
the resultant models of manpower allocation and work output
take the form of rational polynomial functions in the time
variable t (Figure 13). We cannot examine these models fully
here, but a sample system output shows clearly that, at best,
under a set of rather unlikely conditions, the output grows
to an asymptotic limit. In practice however output can
ultimately be expected to decline. This is entirely due to
the progressive and anti-regressive productivity imbalance
and can therefore only be mastered by careful control of that
balance. And this effect is very real, as can be seen from
the behaviour of a derived rate-of-work measure taken from
actual programming project data (Figure 14).

Effort

A

Figure 13

7. Limits to Growth 153

~~

2
ww

5 bones @

” \
2
Ss _——

Oo e

S ° ° NN

S —

e °—~ « —e—

- e

BL.
=
za

0 | | | l J

0 Days

Figure 14 Average work-output rates

8 Generalization

Progressive and anti-regressive activittes in city life

The high-level model that has been outlined was suggested by

the earlier model of the programming process. I now suggest

that it may also be interpreted within the context of

sociological and economic systems. In a city, for example,

we may identify as progressive (as previously defined) work

output that contributes positively to the growth of the

standard of living and the quality of life of the community.

But a community also undertakes anti-regressive activities.

Collecting garbage, for example, does not increase the value

of life in the city, it merely maintains the status quo. It

is the neglect of that activity that leads to decay.
Similarly police action is primarily directed to the

prevention of deterioration of life in the city as a result

of increasingly disordered traffic, breakdown in communi-

cation, criminal activity. It is strictly anti-regressive.

Unless the problem of productivity imbalance between these

progressive and anti-regressive activities is mastered, the

154 M. M. Lehman and L. A. Belady

previous model suggests that sooner or later the economics of

a city will be dominated by the cost of the latter. And once

again the underlying, psychological, cause for the resultant

consequences is clearly understandable. Unless an electorate

is very far-sighted, very sophisticated, the city fathers,
the politicians who face re-election, the managers who seek
promotion are concerned with short-range profitability, not
long-range preservation. They will, in general, tend to
favour progressive expenditure and investment over the anti-
regressive. But any such consistent bias will ultimately but
inevitably lead to slowed growth and then to decay. Indeed,
as we have so recently seen, only immediate chaos and decay
forces the adoption of adequate levels of anti-regressive
measures.

Non-uniqueness of the P and AR assignation
To avoid confusion I should perhaps stress here that the
distinction between progressive and anti-regressive activity
is not always clear cut.

De-pollution activity, for example, is progressive and
officials can support, even encourage, it without fear of
losing their office in the next election or the next share-
holders meeting. The control and prevention of pollution
however before its effects are felt (or, I fear, when its
effects are no longer felt) is a very different matter. This
is something for next year, for the next generation, to worry
about. This is something for the future. The same activity
is progressive when it cleans up Something that has already
occurred and accumulated but is strictly anti-regressive when
it is directed towards preventing the same thing from
occurring.

Progresstve-Anti-regressive conflict and balance
The preceding discussion can have given only the barest
outline of the concepts and phenomena we are investigating.
In fact we hypothesize that the life cycle of any complex,
dynamic system is, at least in part, governed by the
conflicting resource demands of progressive and anti-~
regressive activities. There will be an ever-increasing
demand for the latter ata cost per unit of work that
increases relative to the cost of the former.

There are three classical ways to deal with this problem.
One may bring in resources from outside. In the United
States, for example, an increasing number of State and City
preservation projects are requesting and receiving Federal
aid. But then the external source and the old system become

7. Limits to Growth 155

one, enlarged system, which too must ultimately limit,

possibly decline. Alternatively one may divert resources

from the progressive to the anti-regressive. This too

implies a constraint on growth. A third alternative simply

ignores the need for anti-regressive activity. But this is

decay, even if it is not immediately visible. Thus

individually or in combination these approaches all

inevitably lead to a limitation to growth and hence to decay.

The way out exists. We must recogize that systems have

content, structure and complexity. Consequent inertial and

momentum effects result in limits on the rate of growth and

of change, but not necessarily to growth itself. If one part

of a system is caused to grow too fast another must grow more

slowly or even decline. If at one time a system grows’ too

fast, that must be followed by a standstill or even a

decline. So the average growth rate is best restricted to

its 'natural' value. Even more importantly the integrals of

P and AR activity and their productivity growth must, on the

average, be relatively balanced, however tempting it may be

to leave the latter for future generations.

Antit-regressive acttvity tn organizations
Before passing to the final theme of this evening's talk I

would briefly mention two further points. First let me

describe this same conflict as seen in the life of almost any

organization. Ina large business, for example, there are

basically three levels of activity. The progressive rank and

file engage in the activity that yields the revenue’ that

enables the business to exist and grow. Executive management

develops and initiates the policies and strategies that

enable the business to prosper. This is also progressive.

Finally one has middle management. The function of middle

managment is to act as a communication link, vertically and

horizontally. They transmit, interpret, coordinate, protect

and generally prevent the development of misunderstandings,

harmful competition and internal conflicts between different
sub-organisations and products.

Middle management is a strictly anti-regressive,
communications, responsibility. As such it will tend to grow

more rapidly than the progressive sectors of the organsiation

in both activity and unit cost. Moreover feedback analysis

of the mechanisms of promotion, demotion and resignation
from an organisation shows that the average level of

competence in the middle management ranks of an organisation

may be expected to decline with time [LEH68]. Unless
carefully and consciously controlled, middle management will

156 M. M. Lehman and L. A. Belady

tend to be a growing but increasingly mediocre organism. Thus

a business, a government, even an educational institution,

will get choked by its bureaucracy, the anti-regressive

middle management, unless structure, function and

productivity are carefully balanced. In particular it is

vital that adequate resources for productivity development

are correctly allocated over the organisation, so that at all

times productivity in the middle management area balances

that of the remainder of the organisation.

The Club of Rome
Let me also make very brief reference to the Club of Rome

report on the Limits to Growth [MEA2]. In their summary
(Figure 15) of the problems whose solution would help conquer

the problems of growth limitation, all except one would be

Classified by me as anti-regressive. The fundamental

oversight of the team was, perhaps, identification of

resource exhaustion as the the primay cause of the immediate

danger. In my judgement it is, in fact, primarily a symptom.

The phenomena which they discuss appear to represent just

another special case of my general rule.

The problem in this instance is that mankind has, by and

large, not been willing to invest sufficiently in the anti

regressive activity of long-range research and development,

to find materials and techniques to replace curently

conventional sources of energy and raw materials when these

are exhausted. The disasterous consequences of the exhaustion

of specific resources is a direct consequence of the

universal tendency to neglect apparently unprofitable anti-

regressive activity, to prefer immediate profit to long-term

security.

The sun, the atmosphere, the tides, for example, form an

almost inexhaustible but as yet barely exploitable energy

source. And given energy and mankind's ingenuity and

creativeness, material shortages can always be overcome,

provided that there is no practical limit to the growth of

mankind's collective intellect. And that is the topic to

which we now turn.

7. Limits to Growth

ANTIREGRESSIVE—

Figure 15

157

THE LIMITS TO GROWTH

The State of Global Equilibrium

Technological advance would be both

necesary and welcome in the equilibrium

state. A few obvious examples of the

kinds of practical discoveries’ that

would enhance the workings of a_ steady

state society include:

* new methods of waste collection, to
decrease pollution and make dis-

carded material available for re-

cycling;

more efficient techniques for re-

cycling, to reduce rates of resource

depletion;

better product design to increase

product lifetime and promote’ easy

repair, so that the captial de-

preciation rate would be minimised;

harnessing of incident solar energy,

the most pollution-free power

source;

methods of natural pest control,

based on more complete understanding

of ecological interrelationships;

* medical advances that would decrease

the death rate;

* contraceptive advances that would
facilitate the equalisation of the

birth rate with the decreasing death

rate.

The true limiter of growth

158 M. M. LehmanandL. A. Belady

9 Limits to growth through the educational process

Knowledge or understanding (7.2)
In education too there is the progressive and the anti-

regressive. And, in my judgement, the same error, the

analagous unbalance exists and unfortunately increasingly so.

But let me explain. The global objectives of an educational

system are rarely stated or even recognised. One may hear

talk of local or immediate objectives but the really

fundamental goal is not discussed. In my wanderings through

the world I have experienced various educational systems, as

a student, as a parent, aS amanager, as a teacher. some

have stressed knowledge, others understanding. The

implications of this difference reach down into the very

structure and heart of the society in which these systems

operate. Educational systems may, in fact, be classified by

the extent of their orientation to knowledge and to
understanding.

In the limit, the objectives implied by these orientations

are orthogonal, at times even contradictory, in terms of the

methodology they imply andthe results that they yield.

Orthogonality does not, of course, imply exclusion. Most

systems contain, and need to contain, elements oriented to

and supporting both knowledge and understanding. But what we

are seeking here is correct balance between them, for’ the

individual and for society.

Knowledge

An educational system may primarily seek to transfer to its

students some selected portion of the reservoir of human

knowledge, as well as the means whereby this reservoir may be

further accessed. Thus the knowlege which has been

accumulated over millenia will be explicitly carried forward

into the future.

7.2 (Eds) These few paragraphs provide an indication of one
reason why we are concerned about the current (1983)
trend to the exploitation of Expert Systems. As their
alternative name. ‘Intelligent Knowledge Based Systems',
tndicatess such systems exploit the tnformatton
(knowledge) tna data base and - at least with current
artificial intelligence inference techniques - cannot
demonstrate or exploit ‘understanding’ - the creatton of
new tnsight. Exeesstve reltance on such systems
represents a real threat to soctety. See Chapter 22 for
further comment. |

7. Limits to Growth 159

The drift to knowlege-oriented education occurs because its

pay-off is immediate. The child comes out of kindergarten,

is ready to go into school to absorb more knowlege there. It

comes out of school and is able either to take a job and earn

its living or to go forward to higher education and then earn

its living. This is progressive. Each quantum of knowledge

that is gained becomes the basis for further learning or for

other activities as required by society. Moreover in this

era of democracy and human equality a common standard of

knowledge acts as the great leveller; it provides a definable

standard against which egalitarianism can measure its

success.

Understanding

At the other extreme, the pure understanding-oriented system

seeks to instil insight; not so much the facts themselves as

the relationships between the facts, valid analogies, cause

and effect. An essential ingredient of this educational

process is the development of analytic powers, self-

expression and creative thinking, with the ability to seek

out and elucidate new knowledge as required. Assessment of

the degree of success achieved in the process is a matter of

judgement, even viewpoint and opinion.

An understanding-oriented system is primarily anti-

regressive. Its graduates cannot normally apply their

insight and creative skills directly. Real life requires

facts. But only a person with understanding ean discard

surplus or outdated knowledge. Only he or she can replace

large repositories of knowledge by algorithms for’ their

retrieval. It requires true understanding to develop new

methodologies and to guide the knowledgable to new horizons

when the old ones become outdated or exhausted.

Attributes of the two systems
What are the attributes and hallmarks of these alternative

educational systems? How does one determine in which

direction a particular system is oriented? How can one

structure a system and adopt appropriate methodologies to

achieve a best balance between understanding and knowledge

for the individual, for a community and for mankind at large?

The knowledge-oriented system is typified by excessive

emphasis on self-learning and homework, grades and credits.

It relies heavily on frequent examinations that test the

extent of a student's knowledge on the completion of each

quantum of study. High pass-marks and high scores’ result

from a precise definition of what was to have been learned,

160 M. M. Lehmanand L.A. Belady

and from the statistical reliability of large numbers of

multiple choice questions.

In the understanding-oriented system on the other hand

emphasis must be quite different. self-study and home

learning start much later and the emphasis in marking will be

on how a complex question was approached, not only on the

correctness of the final solution. The award of a degree is

not the sum of alarge number of credits in different

subjects each of which has been obtained immediately after a

course has been taught. It follows from the completion of a

course of study, for a demonstration of the nature and extent

of the understanding that has been gained, of the meaning and

the significance of what has been learnt. Multiple choice

questions are of no use at all here. A student cannot

express his understanding by marking a square black. His

insight and ability is revealed by his choice of words, by

the way in which he approaches a problem. We are interested

to see how he has understood the facts and the concepts’ to

which he has been exposed, what he can do with them, not so

much in his ability to reproduce them.

Consequences of knowledge ortentation
In a society in which education is knowledge-oreinted the

teacher adjusts his rate of teaching to the average

absorptive capability of the class. Thus there will emerge a

group of people clustered around a level of knowledge

determined by their average absorptive capacity. The weaker

ones will have been helped forward and this indeed is a good

feature of the system. Those with more powerful intellects,

a greater potential for creative thinking, will have been

held back. They will not have been taught to express their

own ideas but merely to repeat what they have heard from

their teachers.

The consequences will be a society in which achievement must

be obtained through teamwork. A knowledge=-oriented society

will be a technology-based society in which known facts are

produced from the joint encyclopaedic memories of a team and

applied to achieve specified and known to be achievable

objectives, great works of technology. In themselves these

works do not foster creative inventiveness or the development

of new concepts or deeper insights.

Such a society must possess the capability to get people to

work together, the ability to manage teams of people and

guide them towards a common objective. It is knowledge

orientation that leads to the need for management’ science.

7. Limits to Growth 161

Thus it is not in the least suprising that the USA with its

'melting-pot' society and, as a consequence, its knowledge-

based, materialistic, orientation is the undoubted world

leader in Technology and in Management.

And those of understanding
When we now consider the understanding-oriented system, the

first thing to be noticed is that one needs more gifted

teachers. Each student will interpret the teacher somewhat

differently. If the teacher in turn understands’ the

educational process, he can take each student to the limits

of his individual ability. Inevitably some people will be

left behind because they do not have the motivation or’ the

ability to understand. Higher education will be more

restricted and in the output of the overall educational

system one finds a wide spectrum of knowledge, skills and

creative ability, rather than the cluster produced by the

knowledge-oriented system.

At one end of the spectrum will be highly motivated,

creative, thoughtful individuals able to express themselves,

to develop and to exploit new concepts. They will not

require to interact strongly and intimately with others to

achieve their inspiration because they have learnt to achieve

results on their own or in very small groups. The demand for

strong, effective management, and the ability to provide it,

will not be so well developed and ultimately that may prove

to be to the detriment of that society. It will, for

example, tend to be scientifically creative rather than
technologically productive: able to produce concepts, fresh

viewpoints, new inventions and methodologies, but less able

to develop and control their mass exploitation.

Mankind's intellectual growth
I should not like these remarks to be in any way

misunderstood. Mankind needs both systems. The challenge

today is not which way to go but how to provide the correct

balance between the progressive and anti-regressive in

education, as elsewhere. Knowledge alone will not suffice to

ensure survival of humanity. Nor can we hope to retain all

the knowledge that humanity has gathered over the last five

thousand years. What must be done is to ensure that

forgotten knowledge can be reproduced when requires. New

ideas must be produced faster than the older ones may be

forgotten. Understanding-oriented education is an investment

in the future. It ensures that there will always exist those

creative minds that can think for themselves, that produce

and explore new concepts, that provide a sense of direction,

162 M. M. Lehman and L. A. Belady

creative inspiration and action, possibly even a little bit

of sanity, in this fact-oriented, technology-based, profit-

seeking world. But knowledge is also required. At any given

moment in time ony a knowledge-oreiented technological

society can solve the immediate problems that face a

community, a nation and mankind as a whole.

We have analysed education in terms of the progressive and

anti-regressive system concepts. If the same laws of growth

apply, we can ensure continued growth only by achieving the

correct balance between progressive and anti-regressve

education. Thus I would like to think that we here at

Imperial College will help counter-balance a worldwide trend

to knowledge-oriented education, by maintaining and

emphasising the traditional understanding~-orientation of

British education. The new Computer Science course that we

have set up has been carefully designed and structured to

yield a student who understands and not just knows his

subject. Thus I trust that we shall be playing our part in

ensuring the continued intellectual growth of mankind and

through that also its physical progress - progress in which

computer systems and computer science will play a major role.

10 Conclusion

Finally may I be permitted to follow ancient Jewish practice

and conclude my talk with a biblical viewpoint of the

concepts I have presented. The author of Proverbs’ also

recognised the potential conflict between progressive

temptation and anti-regressive needs [Proverbs 6-8] (Plate
IVb):

"Go to the ant, thou sluggard, consider her ways and be

wise. Though having no officer, overseer or rule, she

prepareth her bread in the summer, gathereth her food in

the harvest.'!

One might ask why the author here places bread preparation in

summer before food gathering in the harvest when in fact in

the Middle East the harvest is gathered in spring. The

Malbim, a 19th Century commentator, remarks that the meaning

of this text is that the ant eats in the winter because she
has previously prepared her food in the summer. This she can

do because during the spring harvest she is willing to store

her collection rather than to eat it all. She works for a

future that she may never live to see and this voluntary

action occurs despite the absence of pressure from ruiers or

overseers. The anti-regressive is so integrated into the

7. Limits to Growth 163

progressive that the two remain balanced and in step at all

times.

There is clearly no need to add anything further to these

ancient words of wisdom except a final overall summary:

Programs and Cities and Students

All have the potential to grow.

With P and AR action balanced

There need be no Limit to Growth.

11 Acknowledgements

I would like to acknowledge the loyal support, the patience

and the constructive criticism that I have received from my

colleagues in the Computing Science section of the Department

of Computing and Control over the last two years and during

the preparation of this paper. In particular I single out

the many thought-provoking discussions with A L Lim. Equally

I must mention and gratefully acknowledge all I have learned

and am continuing to learn from my colleagues in the IFIP

working group WG2.3. Above all, however, I want to

acknowledge the close and continuing association with L A

Belady who, but for the nature of this paper, would surely

have been a co-author. Last, but certainly not least, I want

to thank my wife Chava for her artistic contributions to this

lecture and for her constant and continuing support and

encouragement which have made my work and this lecture

possible.

CHAPTER 8

A MoDEL OF LARGE PROGRAM DEVELOPMENT™*

1 The Process of Programming (8.1)

1.1 Introduction

As a need for a discipline of software engineering has become

recognised, the design, implementation, and maintenance of

computer software has come into. the forefront. The

formulation of concepts of programming methodology,

exemplified by Dijkstra's structured programming [DIJ72]
strikes at the roots of the problem. The realisation is that

a program, much as a mathematical theorem, should and can be

provable. Recognition that a program can be proved correct

as it is developed and maintained [DIJ68b], and before its
results are used, may ultimately change the nature of the

programming world. Clearly, these developments are of

fundamental importance. They appear to point to long-term

solutions to problems that will be encountered in creating

the great amount of program text that the world appears’ to

require. But even though progress in mastering the science

of program creation, maintenance and expansion has also been

made, there is still a long way to go.

1.2 The System Approach

such progress as is currently being made stems primarily from

the personal involvement of researchers and developers in the

programming process at a detailed level. Often they tackle a

Single problem area: algorithm development, language,

structure, correctness proving, code generation,

documentation, or testing. Others view the process as a

whole, yet they are primarily concerned with the individual

steps that, together, take one from concept to computation.

Still this type of study is essential if real insight is to

be gained and progress made.

The scientific method has made progress in revealing the

nature of the physical world by pursuing courses other than

8.1 (Eds) The original paper did not contain numbered
sections and subsections. We have added numbers and,
where necessay, titles to correspond to the standard
format tn this book.

Copyright 1976 International Business Machines Corporation. Reprinted with permission
from the IBM Systems Journal Volume 15, No. 3 (1976).

165

166 M. M. Lehman and L. A. Belady

studying individual phenomena in exquisite detail.

Similarly, a system, a process or a phenomenon may be viewed

from the outside, by acts of observing; clarifying; and by

measuring and modelling identifiable attributes, patterns and

trends. From such activities one obtains increasing

knowledge and understanding, based on the behaviour of both

the system and its subsystems, the process and its

subprocesses.

Starting with the initial release of O0S/360 as a base, we
have studied the interaction between management and the

evolution of O0S/360 by using certain independent variables of

the improvement and enhancement (ie maintenance) process. We

cannot say at this time that we have used all the key

independent variables. There is undoubtedly much more to be

learned about the variables and the data that characterise

the programming process. Our method of study has been that

of regression - outside in - which we have termed 'structured

analysis'. Starting with the available data, we have

attempted to deduce the nature of consecutive releases of

OS/ 360. We give examples of the data that support this

systematic study of the programming process. Again, however,

we wish to emphasise that this study is but the beginning of

a new approach to analysing man-made systems.

STATEMENTS

INSTRUCTIONS

{
-
\
_
_
.

MODULES HANDLED
TIME

Figure 1. Growth Trends of System Attribute Counts with Time

8. Model of Large Program Development 167

1.3 The Programming Process

The authors have studied the programming process [LEH69] as

it pertains to the development of OS/360, and now give a

preliminary analysis of some project statistics of this

programming system, which had already survived a number of

versions or releases when the study began. The data for each

release included measures of the size of the system, the

number of modules added, deleted or changed, the release

date, information on manpower and machine time used and costs

involved in each release. In general there were large,

apparently stochastic, variations in the individual data

items from release to release.

All in all, the data indicated a general upward trend in

size, complexity and cost of the system and the maintenance

process, as indicated by components, modules, statements,

instructions, and modules handled in Figure 1. The various

parameters wree averaged to expose trends. When the averaged

data were plotted as shown in Figure 2, the previously

erratic data had become strikingly smooth.

ui Y)

52
a5 i)
eS
. FORECAST
< AND

ULTIMATE
O x
e ACTUAL Re

2 eo 23
+ -O

E
O =

tad

PLAN r
>
”

O x

RELEASE - GROUP RELEASE-GROUP
LEGEND. SEQUENCE NUMBER LEGEND: SEQUENCE NUMBER

© SIZE IN MODULES © SIZE IN MODULES
x MODULES HANDLED x MODULES HANDLED
+ RELEASE INTERVAL + RELEASE INTERVAL

Figure 2 Average Growth Figure 3 Average Growth
Trends of System Attributes Trends of System Attributes

Compared with Planned Growth

168 M. M. Lehman and L. A. Belady

Some time later, additional data were plotted as shown in

Figure 3 and confirmed suspicions of nonlinear - possibly

exponential - growth and complexity. Extrapolation suggested

further growth trends that were significantly at odds with

the then current project plans. The data were also highly

erratic with major, but apparently serially correlated,

fluctuations shown in Figure 4 by the borken lines from

release to release. Nevertheless, almost any form of

averaging led to the display of very clear trends as shown by

the dashed line in Figure 4. Thus it was natural to apply

uni- and multivariate regression and time-series models’ to

represent the process for purposes of planning, forecasting

and improving it in part or as a_ whole. As the study

progressed, evidence accumulated that one might consider a

software maintenance and enhancement project as ae self-

regulating organism, subject to apparently random shocks, but

- overall - obeying its own specific conservation laws and

internal dynamics.

Thus these first observations encouraged the search for

models that represented laws that governed the dynamic

behaviour of the metasystem of organisation, people, and

program material involved in the creation and maintenance

process, in the evolution of programming systems.

TREND
AVERAGE

\

N
U
M
B
E
R

O
F
M
O
D
U
L
E
S

H
A
N
D
L
E
D

P
E
R

D
A
Y

RELEASE SEQUENCE NUMBER

Figure 4 Serial and Average
Growth Trends of a Particular

Attribute

8. Model of Large Program Development 169

1.4. Laws of Program Evolution

It is perhaps necessary to explain here why we allege

continuous creation, maintenance, and enhancement of

programming systems. It is the actual experience of all who

have - been involved in the utilisation of computing equipment

and the running of large multiple-function programs, that

such systems demand continuous repair and improvement. Thus

we may postulate the First Law of Program Evolution Dynamics

[LEH74].

I Law of Continuing Change

A system that is used undergoes continuing change until it is

judged more cost effective to freeze and recreate it.

Software does not face the physical decay problems’ that

hardware faces. But the power and logical flexibility of

computing systems, the extending technology of computer

applications, the ever-evolving hardware and the pressures

for the exploitation of new business opportunities all make

demands. Manufacturers, therefore, encourage the continuous

adaptation of programs to keep in step with increasing skill,

insight, ambition, and opportunity. In addition to such

external pressures for change, there is the constant need to

repair system faults, whether they are errors that stem from

faulty implementation or defects that relate to weaknesses in

design or behaviour. thus a programming system undergoes

continuing maintenance and development, driven by mutually

Stimulating changes in system capability and environmental

usage. In fact, the evolution pattern of a large program is

Similar to that of any other complex system in that it stems

from the closed-loop cyclic adaptation of environment to

system changes and vice versa.

As a system is changed, its structure inevitably degenerates.

The resulting system complexity and reduction of

manageability are expressed by the Second Law of Program

Evolution Dynamics.

II Law of tnereasing entropy
The entropy of a system (its un-structuredness) increases

with time, unless specific work is executed to maintain or
reduce it.

This law too abstracts vast experience, in part reflected by
data to be presented later in this paper. This, in turn,
leads to the formulation of the Third Law of Evolution

Dynamics.

170 M. M. Lehman andL. A. Belady

III Law of statistically smooth growth

Growth trend measures of global system attributes may appear

to be stochastic locally in time and space, but,

Statistically, they are cyclically self-regulating, with

well-defined long-range trends.

The system and the metasystem - the project organisation that
is developing it - constitute an organism that is constrained
by conservation laws. These laws may be locally violated,
but they direct, constrain, control, and thereby regulate and
smooth, the long-term growth and development patterns and

rates. Observation, measurement, and interpretation of the

latter can thus be used to plan, control, and more precisely
forecast the product of an existing process and to improve
the process so as to obtain desired or desirable

characteristics.

The 'laws' that we are expounding upon have gradually evolved

aS we have pursued our study of the programming task. When

we began our studies, observations led to the concept that we

termed ‘programming systems growth dynamics! [BEL71]. We
have now renamed this subdiscipline ‘programming evolution

dynamics'.

The remainder of this paper describes some of the statistical

and formal models of the programming process that we have

been able to develop by pursuing the consequences of the laws

of programming evolution dynamics. It is our conviction that

the extension of these studies can lead to an increasing

understanding of the nature and dynamics of the programming

process. Hence, studies such as these may yield significant

advances in the ability to engineer software, ie, to plan and

control program creation and maintenance.

2 The Process Observed - A Statistical Model

2.1 The Basis of the Study

The basic assumptions of programming evolution dynamics

spring from viewing the program being implemented, enhanced,

and maintained and its metasystem ~- the organisation that

generated and undertook the development of OS/360 - as

interacting systems. The evolutionary process and life cycle

of a program are at least partially governed by the

structural and functional attributes of both the program and

the human organisation. Their size, complexity, and numerous

internal interactions suggest the use of statistical

techniques for interpreting observed behaviour.

8. Model of Large Program Development 171

Detailed studies of available data in conjunction with the
almost universal experience of the programming communi ty
indicate that a large programming project has many of the

properties of amultiple loop, self-stabilizing feedback

system. The overall trend has been summarised in the
previously discussed three laws that underlie the dynamics of
evolution of large programs. The present section presents
Some of the accumulated numerical evidence derived from
experience with OS/360 - one model of one system from one
enviromment.

2.2 Available Data

The project data presented here originate from 0S/360, which
is now some twelve years old. This system has been made
available to an increasing number of users ina series of
over twenty user-oriented releases. These releases have
extended the capability of the operating system by correcting
faults, improving performance, supporting new hardware, and
by adding newly conceived functions.

These and other intermediate releases were assigned names or
numbers as identifiers. Fach release may, however, also be
identified as a program that - with its documentation - forms
an identifiable and stable text in an otherwise continuously
changing environment. Assigning Release Sequence Numbers
(RSNs) to versions receiving the same degree of exposure,
yields a sequence of integers that forms a pseudo time
measure in the sense of Cox and Lewis, [COx66], that may
be used to describe the time-dependent behaviour of program
evolution.

Of the releases considered, the first represents the
culmination of the basic design and build (ie, system
integration) process. The iterative process that yields the
Specification, architecture, design and the first
implementation of a large program system differs
Significantly from subsequent maintenance and enhancement
activity. In particular, there is at this stage no feedback
of fault reporting or performance assessment by independent
users, Hence data relating to that first release are not
included in this analysis. The build process itself may,
however, be studied by using data obtained periodically
during the development activity.

Data from a second release were also unused because they were
Shown to represent a component development somewhat off the
main stream. In the final analysis, the model and the plots

172 M. M. Lehman and L.A. Belady

to be presented are based on twenty-one sets of observations.

This relatively small number of data points implies’ that

extreme care must be exercised in interpreting the results of

the statistical analysis. Subsequent data from the

OS/ 360 environment, augmented by data from other
environments, have generally confirmed our observations and

conclusions.

2.3 Observables of System Evolution

The release sequence number (RSN) is taken as the first of

the system evolution parameters. The second is the age of the

system Dp at release with RSN = R. Equivalently, Dp is the

inter-release interval Ip; in other words, the interval in

days between releases with RSN = R-1 and R, respectively. A

third available parameter Mp measures the size of the system

in modules. We present the results of our analysis in terms

of modules, though other size measures - such as numbers of

components or instructions in the system - could also have

been used. The suitability of the module stems from the fact

that in 0OS/360 the concept of module - though imprecisely

defined - represents at one and the same time a function and

implementation entity and, for execution, a unit of system

generation and storage allocation. A fourth parameter MH p

records the number of system modules that have received

attention, ie, those that have been handled during the

release interval and, more specifically, during the

integration process. We have used this as an initial

estimator of the amount of activity undertaken in each

release. The measure is imprecise, but represents the best

available information over the entire sequence. From MH

and Ip, in turn, we determine an estimate of the handle

rate HRp for the activity that produced the release

with RSN = R.

From the very first beginnings of this study of the

programming process [BEL71b], it has been clear that the

changing complexity of a system, as it is modified, plays a

vital role in the aging process. Unfortunately, there is no

clear or unique understanding of what complexity is and how

it can be defined and measured. The choice of complexity

definition cannot, in fact, be disassociated from the use to

which it is to be put. But complexity of the system, of the

organisation, and of each particular series of changes is

fundamental to the maintenance and to the resultant aging

process. Hence some measures of complexity must be

established.

8. Model of Large Program Development 173

For the purpose of the present analysis, complexity Cp has

been defined as the fraction of the released system modules

that were handled during the course of the release with

RSN = R. This definition is clearly inadequate. It

does not separately measure’ the various independent

complexity factors involved. It does not discriminate

between system organisation and the nature of the work

undertaken. Nor does it measure the amount of activity

involved. But at least it is a measure for which real data
exist. Moreover the data give interpretable results. Hence

Cp = MH /Mp will suffice until better measures become

available (8.2).

2.4 The Present Model

We have just identified five observable and measureable

parameters of the programming process. Our hypothesis

implies that these parameters do not vary independently, at

least when viewed over a relatively long period of time. In

fact, we have been able to determine, for example, four

bivariate relationships among them. _ The complexity

parameter, however, is derived from two of the others.

hence, on the basis of present data, we are entitled to fit

only three independent functions. The fourth relationship,

then, must be derived from the other three and tested for

fit. As in all data fitting, the forms selected must also

pass a test for conceptual reasonableness.

We stress that, in general, any statistical goodness of fit

test is insufficient to establish any relationship as an

element of the total model - as an expression of causal

relationships - unless it can be convincingly interpreted in

the light of one's insight into the process. Ultimately, it

is only through the interplay and iteration of observation,

modelling, and interpretation that real progress can be made

in understanding and mastering the large-scale programming
process (8.3).

8.2 (Eds) We note that even now, in 1984, no real
progress has been reported on defining adequate
software complexity measures. A full dtseussion will
appear in [BEN84].

8.3 (Eds) It ts perhaps this realisation of the essenttal
role of «interpretation in terms of more fundamental
phenomena that distinguishs this study from other
phenomenological studies Software Physics, for example.

174 M. M. Lehman and L. A. Belady

2.5 Nature of the Relationships

The statistically derived relationships to be presented here

comprise a model of the programming process with respect to

this system's life cycle. The relationships represent a

Simple, but recognisably incomplete, model of what is

happening. In practice, the statistical model has been used

to improve the planning for this particular system. With the

insight gained from the model's development, further

Statistical and analytic models have been and will continue

to be developed that may explain the process and eventually

lead to the insight that permits improvement of process

Planning, control and cost/effectiveness.

In the first instance, we must identify the global nature of

the process as expressed in the relationships to be, or that

have been, developed. The previously stated Third Law

suggests that smooth long-term trends can be seen in the

measures even if short-term behaviour tends to be erratic.

This is supported by the fact that we have been able to

construct statistically significant relationships consisting

of three parts; the first expresses’ the long-tern,

deterministic trend; the second describes short-term cyclic

effects; and the third part expresses any system-relative

stochastic influences on the process. |

The stochastic influences arise, in part, from a certain

arbitrariness in the selection of the new function and,

therefore, new code to be included in any given release. it

is influenced to a significant degree by the user and

management pressure, the availablility of new hardware

devices, and by business considerations that are not directly

related to the internal dynamics of the process. Equally,

the release target date, and hence the age of the system at

the release point, is strongly influenced by factors external

to the programming process.

The cyclic trends that we have observed in the data, and that

have long been accepted on a heuristic basis by managers and

observers of programming practice, may well contain the clue

to current limitations of the process. In part, at least,

inter-release effects arise from the interaction of repair

and enhancement activity, particularly when they share common

resources and are undertaken in parallel. It is probably the

interplay between the levels and rates of the various

activities and, in particular, their divisions at any given

time between repair, functional improvements’) and new

capability additions that charts the fate of a programming

8. Model of Large Program Development
175

systen. Long-term trends, however are Perhaps of greatestSignificance in understanding the process and in foreseeingand influencing the future, It is this effect that we shallMainly stress in our analysis.

Figure 5 shows the Size of OS/360 in modules plotted withrespect to release sequence numbers. Relative to the non-uniform time measure, growth in size is more or less linear.Indicated by arrows around the linear trend line is a visibleripple. This cyclic effect can be understood if the totalorganisationis viewed as a Self-stabilising feedback system.That is, the design-programming-distri bution-usage system hasa feedback-driven and controlled transfer function and input-
output relationship.

Some feedback results, for example, from constant pressure to
Supplement system capability and power. As the growth rate
and work pressures build up, thereby increasing the size and
complexity of the Operating system, reduced Quality of
design, coding and testing, lagging documentation, and other
factors emerge to counter the increasing growth rate. Sooner
or later, as indicated by the segments marked C, these lead,
at best, to a need for a system consolidation, a release that
contains little or no functional enhancement and in which
correction, restructuring, and rewriting activities
predominate. As a result, the System size does not grow
Significantly during such a release and may even shrink. At
the worst a fission effect F may occur, as at RSN = 20 to 21
where excessive prior growth has apparently led to a break up
of the system.

Figure 6 presents the net growth of OS/360 in each release.
Analysis confirms the cyclicity of the growth process as
indicated in the Figure. A second observation may, however,
be of even greater significance in estimating the limits of
growth. With three exceptions, the net growth points may be
seen to lie in a band bounded at about the 400-module level,
a level that does not appear to have changed significantly in
size during the lifetime of the system. Moreover, in the
three instances where this growth level of OS/360 was
exceeded, the record shows that, in the first case, the
release was of such quality that it had to be followed by an
unplanned clean-up release. The later two cases had equally
unplanned consequences, significant schedule slippages,
relatively disappointing performance, and - in the case of
release 20 =- the previously unplanned division of the
Operating system into at least two independent systems.
Moreover, note that releases with net growth near or in

M. M. Lehman and L. A. Belady

176

D [PERFORMANCE PROBLEMS “a

™

<

|

CAUSE SLIPPED RELEASE

a
ed

~
labed
Qa.

:
©

VY)
w

Le
Oo

= E UNPLANNED

5 z y RELEASE

= i
iow

©

we

Mad

—-

co
— — — _— — —_— | —

=
>

? a
am
1]

11

RELEASE SEQUENCE RELEASE SEQUENCE NUMBER
NUMBER

Figure 5 History of Growth Figure 6 Cyclic Nature of

in Number of Modules. Net Growth of Operating

C: Consolidation effect; System Releases

F: Fission Effect

excess of the indicated bound tend be followd by one or more

releases with a much reduced net growth.

If we may generalise our conclusion, it is that a a large

system grows through the addition of new and modified code,

the system requires the regular establishment of a unique

base reference to both code and documentation, such as is

attained when the system is to be released for significant

usage outside the development and maintenance group.

Also, in the present state of the art, complete and

unambiguous specifications of changes or additions to be

made are not normally achieved or even achievable. Nor is it

possible to continuously prove the specifications to be

consistent, and their subsequent implementation to be correct

with respect to the new program behaviour desired (or even

with respect to previous program behaviour). Hence the code

and the system are tested. But tests can reveal only

deviations from desired or exepected behaviour [DIJ72b], they

do not demonstrate absolutely correct behaviour or the

absence of faults. Furthermore, the extent to which testing

8. Model of Large Program Development 177

reveals deviations or faults is limited by both the resourcesthat can be consumed to conduct them and by the view thattest designers and interpreters have of the total program,the changes, and the intended behaviour of both.

Thus, a further intrinsic Consequence of a system release isthat the Program is suddenly exposed to an environment inwhich both the expected behaviour and the actual uSage may -and usually do - differ from that to which the system wasexposed in the development, maintenance, and testenvironments. Inevitabley, therefore, release of the coderesults in the discovery of new faults. We conclude that
Sufficiently early release to users of stabilised code and
documentation prevents a build-up of undiscovered faults. On
the other hand, too many code changes that are undertaken
without exposure to a wider usage pattern than can be
generated in any test shop causes an accumulation of
interrelated faults and System weaknesses, such as poor
performance, that are far more complex to unravel. The data
On which Figure 6 is based Suggest that there existed a
nonlinear effect with a critical growth mass in the operating
system we are discussing of some four hundred modules.

This critical growth mass had been essentially invariant in
almost a decade of OS/360 project and System life, despite
methodological and technological improvements: increasing
use of high-level languages and programming support tools;
and increasing experience of designers, implementors, and
management. Thus the characteristic is likely to be an
attribute of the entire organisation that relates to this
system. That is, we appear to have identified a combined
system and metasystem invariance. In view of the posited
multiloop feedback nature of wie process, one can expect to
change and improve this characteristic growth rate only when
one begins to understand the structure of the process and its
relationship to the organisation and to the system.

Without speculating further about the nature of the process,
we may represent its invariance as observed in the present
data by the following relationship:

or by

Here, ¥*M represents the net growth of the system between
(RSN) = ER - 1) and (RSN) = R. A least-squares fit to the
available data yields values of 760 and 200 for Ki0 and Ky4)

178
M. M. Lehmanand L.A. Belady

respectively. The S and Z terms represent the cyclic and

stochastic components whose nature and magnitude can be

determined using statistical techniques, such as those

described in the literature [BOX70]. The small number of

available data points, however, restricts the possible

significance. We note that Equations (1) and (2) reflect

directly the First and Third Laws proposed in the

introduction of this paper.

In the absence of a more satisfactory measure, Wwe represent

the complexity of the activity required during the interval

preceding release R by the fraction Cp (of modules of the

total system) handled. Figure 7 shows this measure plotted

against RSN.

One possible (and least square-wise significant) fit is by a

quadratic in R. Other functional forms (particularly an

exponential fit) are also significant. Both the quadratic and

exponential representations appeal to our need for models and

limitations on the program development process, but more data

will have to be obtained to determine the one that more

closely reflects a particular process. On the basis of the

principle of parsimony [BOX70] select the following quadratic

form for the current model:

- 2
Cp = Koo + Ko4R + KooR + So + Zo (3)

For the present data, K50: Ko4 and Koo are respectively

0.14, 0, and 0.0012.

We note immediately that the monotonic growth trend implied

by Equation 3 supports the Second of our three Laws. The

Third Law is once again supported by the identification of a

significant trend.

Notice that the residuals for this quadratic fit, and equally

those for an exponential fit, are generally rather large for

R = 2 through, say, R= 14. This variation is, of course,

absorbed by the cyclic and stochastic terms, but in fact the

residuals correlate very strongly with the handle rate HRp.

This correlation is not statistically conclusive, since both

measures are in the present instance derived from related

parameters. Nevertheless, it suggests a more complete

representation of the following form.

Cp = KS + K4,R + K3oR° = K3gHRp + S$ + 23 (4)

where a least squares fit to the present data yields the

8. Model of Large Program Development 179

values 0.037, 0, 0.0013, and 0.008 respectively, forcoefficients Ko K54> Ko» and K53°

An interpretation of this model suggests that more rapid workleads to greater Pressures on the team, and hence to moreerrors - which, in turn, require greater repair activity.The data indicate that this is mainly incurred in the samerelease rather than discovered and undertaken thereafter,Furthermore, since it appears to lead to an increase in thefraction of the system handled, it suggests that themaintenance teams tend to remove the symptoms of a faultrather than to locate and repair its cause. This deduction
has been confirmed independently by a number of observers of
- and participants in - the process, a fact that strengthens
one's confidence in Equation 4 as a more complete
representation of one aspect of the process.

2
p
<
w
e
e
e
e

=
r

F
R
A
C
T
I
O
N
O
F
M
O
D
U
L
E
S
H
A
N
D
L
E
D

C
U
M
U
L
A
T
I
V
E
S
U
M

O
F
M
O
D
U
L
E
S

H
A
N
D
L
E
D

\

\

SYSTEM AGE IN DAYS

RELEASE SEQUENCE NUMBER

Figure 7 Complexity Growth
during the interval prior

to each release

Figure 8 Handle Rate of
Modules over System Lifetime

180
M. M. Lehman and L.A.Belady

3.6 Work Rate

The work associated with each release is measured in this

instance by modules handled MH p- This measure is, in

each case, associated with a particular release and also

with the release interval that separates the release from its

predecessor. However, many releases overlap - particularly

those releases that include major functional growth -

and a new release may be integrated successively against two

or even more predecessor releases.

Data on the degree of overlap between the various releases

were not available to us. Therefore we first examine the

cumulative sum of modules handled (CMH) as compared with the

age of the system, in an attempt to neutralise the overlap

effect in determining the handle rate. Figure 8 shows

these data fitted, as a first approximation, by a straight

line. Such a fit suggests that the major changes that have

occurred during the lifetime of the operating system in

methodology, tooling, and staffing levels have had no

significant impact on handle rate. This has stayed

essentially constant over the period at some eleven modules

per day.

The data at the extremes of Figure 8 suggest that in the

early life of the system, and in the most recent two

releases, the handle rate may have been a little lower. This

can no longer be confirmed for the older data. As far as

present trends are concerned, however, since the handle

fraction is approaching unity, we expect the scope of the

cumulative handle plot versus system age to drop off

from its previously constant value. It appears that even

though the straight line fit is adopted as an initial

model, an S-curve provides a more faithful representation

over the life to date of the operating system.

We may now usefully examine the handle rate HRp as determined

by the ratio of the handle-to-release interval for each

release, as shown in Figure 9. Because of the effect of

release overlap, the range of rates achieved is exaggerated,

but it is indeed centered around an average of about eleven

modules per day. Also note that where the release rate has

exceeded this average the figure for the next release is

lower. We conclude from the data for Figures 8 and 9 that

the handle rate is stationary with cyclic and stochastic

components that are confirmed by analysis to be significant

and have a three-release cycle.

M
O
D
U
L
E
S

H
A
N
D
L
E
D

P
E
R

D
A
Y

B
Y
R
E
L
E
A
S
E

8. Model of Large Program Development 181

Thus we adopt as our third relationship an expression of the
following form:

HRp = KS, + S$ + Zs (5)

or

CMHy = K20 + K4D + S3 + 22 (6)

CMHy counts the total number of modules handled between the
first release of the system and day D, that is, when its age
from release 1 is D days. HRp represents the module handle
rate in the Rth release interval. The S and Z terms once
again represent the cyclic and stochastic components. For
the present system, K 0 and K 1 are 1100 and 11 respectively.
The statistically significant’ determination of a long-range
trend with cyclic and stochastic components once again
confirms the proposed Third Law.

M
O
D
U
L
E
S

-

— —
_

RELEASE SEQUENCE SYSTEM AGE IN DAYS

NUMBER

Figure 9 Handle Rate Figure 10 system Size

as a function of as an indication of

Release Number Declining Growth Rate

182
M. M. Lehman and L. A. Belady

2.7 System Size

We must now consider the data of Figure 5 which we have

presented as a function of system age in days. As indicated

earlier in this paper, the relationship developed to

represent this thrd trend must be compatible with those

already expressed in Equations 1 through 6. of the

alternative forms that can be significantly fitted we have

selected the following expression:

My = Kg = Ky, log (1+D/Kyo) +Sy + 2y (7)

Here, a least squares fit yields Ky, Kyo and Ky5 as 89,

1350 and 51 respectively. The value of the intercept is not

significant because the representation is not meaningful

where D approaches zero. In reality, of course, system age

was not zero at the time of R= 1, which is the assumed

origin of our time scale. Nor, in view of the assumption

that the build and maintenance processes are intrinsically

different, may we expect to express the actual system age at

first release in the same terms, even if this were known.

We note that the logarithmic representation is not

asymptotic. Nevertheless, it suggests unlimited growth

potential, though at a decreasing rate. This corresponds to

our intuitive understanding that, as a system ages, it is

always possible to change another instruction or add another

module. However, the time required to do this tends to

increase, unless the system is restructured and cleaned up.

One further observation of interest follows from the

logarithmic representation selected. This representation is

compatible with the constant incremental growth implied by

Equation 1 provided that the release interval is growing

polynomially or, in the limit, exponentially. But this is

precisely the behaviour of interval growth, as shown in

Figure 11. As it so happened, the earliest and very

successful forecasting undertaken by us was based on this

very observation and on the resultant exponential fits to the

data.

2.8 Summary

Equations 1 through 7 provide a model of the maintenance

process for the operating systen, OS/360, based on five

parametric concepts, but with only four available measures.

The model would be complete with the determination of the

statistical parameters of the cyclic and stochastic terms.

8. Model of Large Program Development 183

The small number of data points, however, precludes the
determination of significant values.

Recognising the essential interdependence of the various
parameters, one can also gain in descriptive power by
determining compatible multivariate relationships such as are
Shown in Equation 4, These relationships could, of course,
involve additional or lower-level breakdowns of existing
parameters.

The number of basic relationships presented has been
deliberately restricted to the number that is necessary and
sufficient with respect to the existing degrees of freedom.
Equations (1) through (4) have been selected because they
bring out apparent invariants of the porcess. The
recognition of invariances is fundamental to the application
of the scientific method. As such invariant detection in an
analysis of the programming process not only strengthens our
basic assumption of regularity in the process development,
but it also provides hope that the analysis can be further
developed and eventually permit improvement of the process.

Y

x f
> I
2 ‘
>

ti /
> | w
ws =
w” uJ

: fi
c } e

07 =
/ Z

id =.

°, wy
AY“wy @ 90 a” a

RELEASE SEQUENCE NUMBER SYSTEM AGE IN DAYS

Figure 11 Increasing Figure 12 Constant Growth
Release Interval Rate Exhibited by a

Second Operating System

N
U
M
B
E
R

O
F
C
H
A
N
G
E
S

184 M. M. Lehman and L. A. Belady

Although the present model represents the observed behaviour

it does, however, not explatnit. Moreover, the

representations break down at the extrema of observation. We

have commented on this in the case of Equation 8 when D

approaches zero from above. Similarly, Equations 3 through 6

are seen to be invalid representations as the fraction

handled approaches its intrinsic limit of one. In fact, the

expected nonlinear trend is visible in Figure 8. Good

reasons have been given, however, for expecting a constant

handle rate to be valid over the major portion of the

interval considered. Thus it is not surprising that

forecasting and planning techniques based on these

representations have been useful in providing accurate data

to improve planning in this particular environment.

It now appears that further development of statistical

process models should be directed toward an examination of

the behaviour of other systems from both IBM and from other

program development organisations, so as to determine the

range of applicability of the observed phenomena. First

confirmation has come from data on a second though smaller

operating system that originated in the same organisation.

With minor differences, this operating system shows the same

characteristics and trends, though with markedly different

parameters. Preliminary data from a totally different

organisational environment have also been examined [MOO75].

As indicated in Figures 12 through 14, the smaller operating

system confirms the basic observations of constant growth

C
U
M
U
L
A
T
I
V
E
C
H
A
N
G
E
S

RELEASE SEQUENCE NUMBER SYSTEM AGE IN DAYS

Figure 13 Number of Figure 14 Declining Work

Changes as a Function of Rate Exhibited by a Second

Release Number of a Second Operating System

Operating System

8. Model of Large Program Development 185

trends, cyclicity, overall smoothness, and declining work
rates. The confirmation that this implies is of particular
interest because the source is a programming organisation
outside IBM that created structured programs in ALGOL for
execution on non-IBM machines. Thus the organisational
environment is quite different, but the phenomena are visibly
present.

Clearly, these data - especially the invariants - should be
Studied further, for example by examining actual work rates
within a release interval. With further study, one hopes to
discover the reasons for the phenomena and ultimately to
remove the limitations that they imply.

In parallel with the study of invariants, one should also
proceed with the development of abstract models that
represent and formalise our perception and understanding of
the large-program development process itself or of aspects of
the process. We describe examples of our earliest approaches
to this problem in the following section.

3 Formal Modelling of the Program Development Process

3.1 Program Faults

Since our goal is to understand and to learn to control the

programming process, one view of the process is to see it as

the interaction between two entities. On the one hand,’ the

large program in all its representations and with its

documentation we call the 'object'. On the other hand, the

human organisation that implements the process in its

manipulation of the object is termed the '‘'team'. The
function of the team is to execute changes in the object.

In conjunction with user-provided data, the object enables a
computing machine to perform useful work. During its
lifetime, all kinds of changes to the object are necessary.
The (hardware) machine, or some of its components may be
changed or replaced. New devices may be added. Computing
requirements may be redefined to serve new users. New ways
of using the system may be devised. In general, the behaviour
of the system deviates from that anticipated or desired
because of faults in the system. We term faults related to
changes in the environment defects, whereas an error relates
to the difference between actual and anticipated behaviour.
When faults manifest themselves, the team is required to
undertake corrective action, to perform changes on the
object.

186 M. M. Lehman and L. A. Belady

Observations related to those discussed in the previous

section suggest that system evolution is to some

considerable extent influenced by fault repair activity.

Our earliest formal models, therefore, have been

designed to examine fault distribution in the system.

These models were based on the following assumptions:

% Changes, that is, object handlings, are, in general,

imperfect. When changes are performed, errors are

injected by the team with probability greater than zero.

This by itself would imply a continuous need for change,

even if the environment were fixed.

* There is a delay between the injection of an error and

its first detection and recording, and another delay

exists between recording the error and its final

elimination.

% Some errors are ordered in that one of them must be

repaired before the other can be detected. That is,

there is a layering of errors in the object that is

representable by a directed graph.

% The team creates and uses documents, which are kinds of

representations of the object, to study faults and

possible courses of action. The documentation may be

viewed as an integral part of the object.

* Team members, while involved with changes, communicate

with each other in the language of these documents.

* Team members have to be educated in the documentation;

moreover, the team has the additional task of updating

the documentation to reflect changes performed on the

remainder of the object.

Deficiencies in documentation influence the

effectiveness of the process and, therefore, cause

deficiencies in the object.

From these assumptions, we have developed two classes of

models. The first emphasises the internal distribution and

propagation of errors in the object. The role of the team is

Simply to eliminate observed faults.

The second class of models gives the team a more active role.

Management is free to make decisions as to those particular

tasks, error repair, documentation, or other activities

to which the team should turn The object responds to

these actions by manifesting different error generation

rates.

8. Model of Large Program Development 187

3-2 Model of Fault Penetration

The model of fault penetration that we now discuss is ameasure of complexity due to aging. Consider an elementaryChange activity in the time interval (i,i+1). This isdepicted in Figure 15, where the width of each arrow band maybe interpreted to be proportional to the number of faults itrepresents.

At time i, a number of faults is assumed to exist. Asaresult of team activities, the following occurences are
likely:

% A fraction E of the total faults is removed (extracted).
New faults G are injected (generated) due to

imperfection in the activity.

Thus at time i+1 a new composition of faults appears that
consists of residual R and newly generated errors.

Preserving the distinction between residual and newly
generated errors is fundamental to an understanding of the
evolutionary process, A system cannot be effectively
maintained if that distinction is not understood. And
complete understanding demands a knowledge of the history as
well as of the state of the object at all times.

E
EXTRACTED R

RESIDUE

G
GENERATED

i i+]

Figure 15 Primitive Model of Fault Penetration

188
M. M. Lehman andL.A.Belady

The primitive change activity of Figure 15 spans the network

of Figure 16, where iis a discrete measure of age (or

release number) and j is a variable used to introduce the

tree structure. For each node, the residual design faults R

and the generated faults G may be expressed as follows:

- . one 8
Riia,5 = Rijoget * Fi,oje1 (8)

or

and G; 54_, and G; 94 are to be defined for each node by the

following additional~ assumptions:

% G5 j > 0 (imperfection hypothesis)

% We’*define C, = 2°" fault classes for every i. Each

class has a unique label that consists of a two-valued

{R,G} character string of length i, with the first

element always R, meaning residual design faults. For

example, RRGRGGR represents a node or fault class

at i=7. More specifically, faults in this class are

the:=-

residue (... R) of
faults generated (... G R)
while extracting faults generated (... GG R)

while extracting the residue (... RGGR) of
faults generated (.. G RGG R)
while extracting the residue (.RG

faults in the original design (R

RGG R) of

RGRGG R)

The model as described represents an increasingly large and

complex network of fault trajectories or histories, even

though the total number of faults present may have been

stable or even declining as a consequence of non-zero Es.

Faults are identified in terms of unexpected or undesired

system behaviour in execution. Thus we have excluded from

consideration here simple faults that manifest themselves

locally in a single element of the system. That is, we may

omit from consideration those faults that may be detected or

removed by operating with or on any one element alone, and

consider those situations where rectification of a fault

requires coordinated changes in two or more system elements

and in their interfaces. Interactions among inter-element

and inter-generation effects represent the conceptual

complexity of the fault pattern. And it is the increasingly

complex fault structure that underlies increasing object

complexity.

8. Model of Large Program Development 189

ee al

Ey4 Eo,

i

Go}

Ej2j-4

an @

Eno

i-1j

Ris2;

Goo

Gj.2;

Gi-tk
1<jck

k =o2(/-1)

Figure 16 Network Showing Faults Extracted
and Faults Generated

Thus periodic restructuring of the object is necessary to
reduce complexity because increasing object complexity is
itself a fault that impinges on the maintainability of the
system.

The connection between the relational complexity of errors
and the structural complexity of the system implies that
relational complexity may be a measure of communication
requirements for the team and the underlying cause of fault
extraction and generation over the entire lifetime of the
object.

We now give a quantitative interpretation of the fault
penetration model, which is a simplified view of structural
aging. To analyse the above fault generation model so as to
obtain even a simplified view of the resultant ageing,

190
M. M. Lehman andL.A. Belady

additional assumptions must be made about’ the fault

extraction and generation variables E and G.

The simplest hypothesis is that, for each node,

E=G (10)

that is, as many faults are extracted as are generated.

Under this assumption the system appears to be in a_ steady

state.

Let us consider the number of fault classes C, as a measure

of complexity of the system. Analysis has shown that

complexity increases even in steady state, that is, when the

number of faults in the system remains constant.

A degree of freedom can be eliminated by establishing a

relation between fault extraction and the fault content of a

given class. A reasonable assumption could be taht Ei 25-1

is in fixed proportion to Ry4 -, and no new errors are

generated. Thus we have the folldwing fault elimination-to-
fault residue ratio: |

Es 2j-1
 = (1-p) (11)

Rint, j

and fault decay follows a geometric distribution with

parameter p which is constant such that 0 < p< 1. After i

intervals, and having started with a given collection of

faults S, the remaining number of faults in the original

collection is S(1-p)+, whereas S(1-(1-p)*) faults must have
been extracted. Since Gs = 0 for all nodes, the system

approaches an error-free state asymptotically (approximately

exponentially). Thus in all cases considered, the geometric

distribution reflects the reasonable assumption that the

smaller the fault content the fewer the faults there are to

be discovered and extracted. This, however, still implies a

monotonically increasing Cs until, if ever, a fault-free

state is reached.

More elaborate relations between E and G may be required, so

as to represent currently observed situations.

It is important to note that E and G at each node are not

independent, but are coupled via the team and the

process.

8. Model of Large Program Development 191

3.3 Qualitiative Interpretation of Fault Penetration

As already indicated, even with decreasing fault content(E >G), the complexity measure C increases monotonically.
This results from and reflects the increasing stratification
or the system because of the increasing hetrogeneity of
aults.

The resultant structural deterioration experienced as an
increasing difficulty in executing change alerts the team to
the need to counteract the aging process. On the basis of
our previous assumptions, the latter may be considered
proportional to 2st’, where G(i) is a monotonically
increasing function of i that reflects higher-order
variations not considered here, aswell as the complex
relationship between fault and system structure.

To cope with the situation, the state of the system has to be
precisely defined. Documentation must be accurate, complete
and accessible. In addition, the administrative organisation
or responsibility of team members must be well defined.
Finally, team members must be aware of the state of the
sy stem by learning. Fulfillment of these needs can
effectively reduce the effect of growing complexity, and can
be represented symbolically as follows:

5G(i)

C. dified = = 2; (modifie SDALCi)

where DAL means "Documentation, Accessability, and
Learnability' which are constructive factors. Equation 12 is
a qualitative one, and one that is closely related to
our earlier fault penetration model [BEL76], [LEH74]. Real-
life situations are much more complex. Communication
complexity required to overcome system stratification may,
for example, be further increased by geographic scattering of
the team activity. Nevertheless, the model enables one to
address some very real questions about the program
maintenance process. For example, since the model mirrors a
domain that is discrete (indexed with i), the model suggests
that perhaps increasing the number of intervals i (ie,
decreasing the inter-release time) should permit faster
extraction of faults. This would occur if such an increase
were to imply an increase in the frequency of restructuring
and of providing adequate team knowledge of the state of the
system. That is, G(i) and DAL(i) must be kept in step.

192 M. M. LehmanandL. A. Belady

by no means clear. AS a consequence of one of our early

assumptions, namely, that faults are layered and manifest

themselves ina partially ordered fashion, one has to go

through the process of gradually repairing the system, with

the inevitable result of generating complexity. In addition,

short intervals provide less opportunity to exercise the

system in actual use for fault manifestation, thus reducing

the number of faults that can be extracted. The size of the

optimum interval is, therefore, undecided. A more detailed

model is required if this is to be formally explored with the

objective of helping solve a problem that arises in real

system development.

3.4 Management Decision Model

We now discuss our management decision model, which reflects

our earlier formulation [BEL72, 72b], [LEH74] and which is

based on the following assumptions

Budget B. the available budget, bounds the total activity.

During the change process, every unit of fault extraction

(termed 'progressive' P) activity, measured by G(i) in the

model given by Equation 12, is associated with a certain

amount of documentation, administration, communication, and

learning activity (termed 'antiregressive' A) as measured by

DAL(i) in Equation 12.

Neglect of A activity results in the accumulation of
additional work demand to cope with increasing complexity C.

This cumulative demand can be removed only by a (temporary)

increase in the intensisty of A, which, as a result of the

limited budget B, causes a (temporary) decrease in

progressive activity P.

Management is assumed to have full control of the allocation

of its resources and the division of effort between P- and A-

type activities. Management cannot, however, directly

control the growth in complexity that accumulates, except by

utter concentration on complexity control through

restructuring. This is an activity that is strictly

antiregressive and, as such, is psychologically difficult to

inspire, since it yields no direct, short-term benefits

[LEH74].

To examine these concepts further, we now present an

alternative formulation of the model. In a somewhat

simplified fashion, we assume that resources are fixed (by

budget) and that they are equally applicable to either P or A

8. Model of LargeProgram Development 193

activity. B and activities P, A and C can be measured incost per unit of time, which express the budget rate and itsexpenditure rate on progressive, antiregressive, and complexcontrol activities, respectively. In addition, we use thefollowing relationships:

k = A/P represents the inherent A activity required for each
unit of P activity so that complexity does not grow.

m= management factor, which is the fraction of progres kP
that is actually dedicated by management to A activity

At any time, the total expenditure on all activities must be
equal to the budget, hence the formula for the budget is
given as follows

B=P+A+C (13)

The formula for antiregressive activities is

A = mkP (14)
and

1

Cy = (1-m)kPdt (15)
0

where

Ca(ty) = 0

The expression C, or complexity reflects the cumulative decay
caused by the neglect of A activity.

Since the values k and m are left free to vary with time, the
model can be used for the investigation of the consequences
of various possible managment strategies in controlling the
maintenance process. Further freedom can be introduced by
inserting variable-length delays among the three major
expenditure components, A large problem space thus results
that can be explored by interactive modelling for increased
insight. In this environment, real-life observed phenomena
can be approached in the model by stepwise changes in model
parameters.

3.5 Management Simulation

A graphic modelling facility has been used by the authors.
This system was essentially an analog computer that was
implemented on a digital machine such that the analog

194
M. M. Lehman and L. A. Belady

components (delays, adders, integrators, etc) could be

connected into a network on a cathode ray tube by the use of

a lightpen. Upon request, the computer accepted the network

and numerical parameters as inputs for a stored program. The

system then computed the response, as described in [BAS68]

and [IBM]].

During the numerous experimental sessions with this facility,

many real-life phenomena were successfully reproduced. One

example was the cyclic pattern of object growth for the

statistical model discussed earlier. The network consisted

of a nested two-loop feedback systen; present threshold

values for k simulated the management decisions.

More precisely, in our simulation, after a period of

persistent neglect of A-activities (m < 1), management

becomes alarmed by the rapid reduction of P due to increasing

C. Consequently, an increase in A is scheduled (m > 1) until

the situation noticeably improves. At this point, managment

again becomes optimistic and relaxes k to a lower level. In

the long run however, C grows monotonically. A sample output

of a run is presented in Figure 17.

The authors are convinced that this type of interactive

modelling is perhaps the most fertile, and certainly the

fastest, way of developing a feel for the interactions

involved, and gradually developing a more complex model that

has the power of predicting real-life behaviour.

In contrast to previous models, management decision modelling

yields an optimistic prognosis, since it includes parameters

that reflect management discretion. Thus it permits the

counteraction to remove the consequences of growing

complexity, action that occurs in real-life situations.

On the other hand, of course, the model does not

reflect the internal structure of the object. In our earlier

models, internal structure was modelled by combining the

management model with an extension of the fault penetration

model.

3.6 Model of Limited Growth

Suppose that management is free to allocate resources to grow

the object, as well as to extract faults as in the previous

model. Of course, both activity classes are essentially

imperfect in that, while performing them, errors are injected

into the object.

8. Model of Large Program Development
195

EXPENDITURE

A
(TEAM EFFORT SIZE)

(FAULT (WORK| AL
BALANCE)—m i— BALANCE)

Rs E
B |Res

RSeS C/adtp

Be TIME (OBJECT SIZE)

Figure 17 Example Output Figure 18 Model of Growthof a Budgeting Simulation in the Presence of Error
Generation that is

Proportional to Effort

As the simplest case, we would like to show how the size m of
the object, measured, for example, by the number of modules
it contains, develops in the presence of error generation
that is proportional to growth activity. In signal-flow-
graph form, the linear relations can be represented by Figure
18. Here E and R convert growth rate and error repair to
work demand (measured in man-hours). F is the error
generation rate (the number of errors per man hour) and r is
the number of errors,

The corresponding equations are

h = Rr + E dm/dt (16)

r= Fh (17)

Assuming a constant work force h, the solution is given as
follows:

1-RF

m= My + = ht (18)

where growth is a linear function of time. The greater thework force and the smaller the error generation, the morerapid is the growth, which is, in principle, unlimited. Thereason is that, on the basis of our previous assumptions, theeffort not used for repair is available to grow the object at
a rate that is independent of its size.

196
M. M. Lehmanand L.A. Belady

Observations on our previous models, however, have suggested

that larger and older objects are more complex and receive

more errors as they evolve, as a result of growth and of

fault removal. Retaining the linear character of the

relationships, the flow graph given in Figure 19 representes

the modified assumption, namely, that increasing size causes

more errors to be generated, with gain D per unit size. The

somewhat modified equations appear as follows:

h = Rr + E dm/dt (19)

and
r = Fh + Im (20)

where Equation 19 represents a negative feedback to control

size. The solution now becomes the following:

_RD,
_ ~~Em= Mp (1 - --- e (21)

Mor

h(1 =— FR)

Mer = ToTTTeee (22)

Equations 19 through 22 indicate that under the assumptions

of this section growth is limited to m,,. This critical size

can only be reached asymptotically. The reader may be wise

to compare this result with the real-life observations

previously reported.

Figure 19 Model of Limited Growth in which Increasing Size

Generates Increasing Errors

8. Model of Large Program Development 197

The critical size can be increased by increasing the size ofthe work force. However, this means that a subsequentreduction of the work force Can create a new critical sizethat is smaller than the one already reached. Thus aSituation of monotonically increasing error. content iscreated.

This model has been studied under differing assumptions. Themain conclusion remains, however, that object size is limitedwith even the slightest negative feedback of size. |

This section has presented Several models each throwing a
different, though related, light on the program maintenance
or enhancement process. Our aim has not been to present
completed models. Rather, we have wished to illustrate how
the modelling may be approached, and how interpretation of
the may be used to Study and to improve the programming
process.

4 Concluding Remarks

Currently, the process of large-scale program development and
maintenance appears to be unpredictable; its costs are high
and its output is a fragile product. Clearly, one should try
to reach beyond understanding and attempt to change the
process for the better.

As a first step toward ultimate improvement, we are studying
the process as it is, and as it is evolving, much as’ the
physicist studies nature. Our immediate goal is an organised
quantised record of observations that formalises the
perception of what is happening and what is being done. With
Such global studies, one may hope to identify specific points
or sources of trouble and perhaps identify areas of the
Process that are major causes of concern. When what is
happening is understood in the context of the procesS as a
whole, one may attempt to understand why it is happening.
Only then should one attempt to change the process without
risking local optimisation that is very likely to reduce
Significantly the degree of global optimisation. At the
present time, for example, it is not clear to what extent
improvements should be Sought by attention to the human
organisation, management, or by emphasis on the product side
of the process, in order to achieve the most Significant gain
in and from the process.

We do speculate that communication is a major problem. If
this can be confirmed then, for example, a design methodology

198
M. M. Lehman and L. A. Belady

that expresses the understanding and intention of the

designer unambiguously and completely might eliminate many

difficulties (8.4). One may also hope to avoid problems in

the perfomance area aS a consequence of overspecification.

thus one might equally consider that a reduction in product

complexity, by better partitioning, for example, could lessen

the need for communication and, at the same time, improve

performance potential. To do this effectively, however,, we

must be able to identify those parts of the product that are

most interlaced in their logical structure.

Our data so far have been largely limited to that of a few

rather large operating systems that were produced within the

same large administrative organisation, Even these data are

meagre. Since the initial design phase, no one anticipated

the long series of chages that was to follow the initial

development. We now know much better and are able to specify

the kinds of data that are necessary for future analysis of

the development, implementation and maintenance processes.

We are also enlarging our scope beyond the environments

studied so far. It is already clear that qualitative

observations similar to ours have been made at other places

where large-scale programming has been undertaken. This

suggests an urgent need for the definition and

standardisation of process measures to facilitate meaningful

comparisons between dissimilar systems, processes and

organisations.

Clearly, we still must test the generality the hypotheses

presented in this paper. It will, for example, be of major

interest to determine the degree of generality and the range

of validity of the various invariants discovered so far,

after filtering new data to remove noise due to environmental

factors. This should improve the usability of program

evolution dynamics concepts and techniques as planning tools,

an improvement much needed by manager who are, in general,

not very successful in assessing, predicting and controlling

schedules and resources in the software process.

It is important for an emerging discipline, such as program

evolution dynamics, to summarise its most essential concpets

into unambiguously defined and measureable quantities at each

stage in its development. This makes it possible to use

8.4 (Eds) Recognition of this point has, itn recent years

led to advocating the general adoption of format

spectfication

8. Model of Large Program Development
199

appropriate techniques and tools from establisheddisciplines, Mathematics, for example, facilitatiescomparisons between derived results and real life, and mayeven help the development and communication of new ideas.

One of the most frequently used - but as yet undefined -concepts encountered in our Studies is that of complexity.Particular definitions that have been established in theSomewhat narrow content of Computational magnitude do notappear to be useful or applicable for the Study of structureand interaction. After some preliminary Studies, we haveconcluded that a measure of complexity, applicable to thelarge scale Programming environment, could be developed byusing established concepts that are related to information,uncertainty, and entropy. Further investigation in this
direction forms an Ongoing activity in the authors! groups.

Given a measure of complexity expressed in terms of Simple
Structural properties - such as the number of interactions
between product or organisational elements - normalised
measures for programming effort, productivity, system
reliability, and security can be derived and comparisons
between different products or methodologies made meaningful.
Without such a measure, many of the essential parts of the
developing discipline remain unconnected and phenomena are
easily misunderstood. An early result inthe study, for
example, suggests the consideration of complexity of software
and its documentation in a unified fashion. In this case,
the total project workload can be better Quantified, and
Plans and schedules made more accurate, provided that the
manpower need is strongly related to complexity.

Many the directions pursued in our exploration of evolution
dynamics appear to relate to the global properties of complex
systems rather than to properties that result specifically
from the software environment.

Thus we assume that the results of our Studies may be
generalisable to other complex technological projects, and to
the study of sociological, economic, and biological systems
or organisms. In the immediate future, however, we shall
concentrate our studies on the evolution of large programs,
Since in this area change is observable over a relatively
Short period of time, and experimentation is possible without
the serious penalties that could be incurred in other fields.
Thus program evolution dynamics may be interpreted as a
Suitable prototype or test bed for the Study of more general
system evolution dynamics.

200 M. M. Lehman and L.A. Belady

5 Acknowledgement

The authors appreciate the contributions of their many

colleagues in IBM and in the Imperial College, and in

particular their discussions with Heinz Beilner and Lip Lin.

The CSMP modelling was a contribution made by Steve Morse.

CHAPTER 9

PROGRAM EVOLUTION
AND ITS IMPACT ON SOFTWARE ENGINEERING*

1 Introduction

Recent international conferences on Software Engineering
[ICSE1] and Reliable Software [CRS75] considered many of the
fundamental issues facing the programming community.
Languages and specification, design and implementation
techniques, correctness and program validation, operational
reliability, programming team organisation and management all
received attention.

One cannot question the immediate relevance of these topics
or the validity of this basic emphasis. The absence however
of any consideration of the ever changing environment within

which all practical programming activity is undertaken and

its impact seems an unfortunate omission. With perhaps only

one exception [CIC75], the papers presented at these
conferences appear to have ignored the sad but indisputable

fact that unless a program remains unused, it will undergo a

continuing sequence of changes, additions and deletions. And

unless the greatest care is exercised these will inevitably

adversely affect its structure, its correctness and all other

program quality attributes. A proof of correctness, or any

other means of program validation, is relevant only as long

as the environment it assumes and the code it examines remain

unchanged. Similarly a program must remain well structured

through most of its life time. Having a sound structure

initially is clearly necessary. But it is insufficient if

the program is to be economically maintainable to remain

functionally effective throughout its operational life. The

inevitable structural decay during the normal maintenance and

enhancement process must therefore be compensated by

restoration activity. But such work yields, in general, no

immediate performance or functional improvements. It merely
prevents functional, performance, reliability and
maintainability degradation. As a consequence, it attracts

no high management priority when resources are limited and

the emphasis is on quick economic returns.

Copyright © 1976 IEEE. Reprinted with permission from Proc. 2nd Int. Conf. on Software
Engineering, San Francisco, October 1976, IEEE Prod no. 76CH—1125—4C, pp. 350-357.

201

202 M. M. Lehman and L. A. Belady

The fact remains however that a program and the environment

within which it operates both undergo continuing change and

evolution. This phenomena is in practice so inescapable that

after reliability, changeability is perhaps the most

desirable attribute of large, widely used, multi-function

programs (9.1). The profession and the literature has

however largely ignored, or at least underplayed, the nature

and significance of the continuing evolutionary maintenance

process. Thus the first objective of the present paper is to

provide quantitative evidence that throws some light on

evolutionary patterns; on program evolution dynamics. The
presentation includes a brief discussion of the nature and

some attributes of the growth process. We shall then

indicate how an understanding of the process can be exploited

in programming project management, and why it is important

for and in the future development of software engineering.

2 Program Evolution

Evolutionary growth of functional capability, in particular,

is intrinsic to the life cycle of large, widely used programs

such as operating systems. The continuing growth reflects a

continuous increase in the potential power of a system. It

may be approximately measured by, for example, the quantity

of its code and documentation.

In its most general terms, the unending development of

programs is exactly analogous to the evolutionary process

that governs the life cycle of any complex system [LEH76].
The system interacts and interplays with its enviroment in

mutual reinforcement approaching, rather than being initially

implemented with, the desired characteristics. One cause of

this is the fact that the state of the art does not, in

general, facilitate a precise, unique and complete

specification of a system and its functional capability.

Hence the programming process cannot yield a first version

that is perfect for the intended application. Subsequently

as users exploit the capability of a system they discover or

invent new ways of using it and new applications. This in

turn suggests and encourages the provision of still newer

facilities. When these are implemented, their use, in turn,

Suggests still other applications and suage patterns. In

addition, advances in application and usage technology

9.1 (Eds) These two concepts are, in fact, unified by a
concept of ‘Dynamic Reliability': a system must not only
be correct in the first instance, but must be maintained
correct as the operational environment changes.

9. Program Evolution and its Impact 203

Encourage and support hardware development and make it
economically viable. Advances in hardware technology, in
turn, bring with them new devices and advanced, more cost
effective versions, of old devices. All this leads, once
again, to usage advance and expansion. And all these
developments bring calls for continuing revision and
development of software support (9.2).

In general systems (ie, not software) the evolutionary trend
of necessity effects successive generations of system
elements. That is during each redesign phase, changes
are made to the specification and design of what would
otherwise have been a Straight reproduction of ancestor
systems. These changes are then implemented in a new
tnstance of the System or element. In program systems on the
other hand the irresistible temptation is to modify and
augment extsting code rather than to restructure, recode and
hence recreate entire sections of the system. This despite
the fact that programs in execution are most complex; totally
unforgiving in the face of Sloppiness or any logical
inexactitude over the combinatorially large number of
alternative input conditions and execution sequences to which
its segments are repeatedly exposed at high speed. The need
for program correctness, however defined, is absolute, yet we
perturb, change and generally maul programs and code with
reckless abandon.

The above broad outline identifies the phenomenon. Its
consequences are familiar to anyone who has had program
development, maintenance, marketing or usage responsibility
or experience,

3 Program Evolution Data

For some years the present authors and their colleagues have
been measuring and Studying the evolutionary pattern of one
large operating System, here identified as System T (9.3),[BEL71b], [BEL72], [BEL76], [LEH76b]. System Tis typified
by its size, by the richness of its function, by the variety
of hardware devices and system configurations Supported, by
the enormous variety of users and application enviroments
which it serves, by its major use of assembly level language

9.2 (Eds) All the insights which later led to the programclasstfication that identified E-type programs [LEH80c]
are already present in this paragraph.

9.3 (Eds) Identtfied in [BEL76] as IBM operating system
0S/360.

204 M. M. Lehman and L. A. Belady

and by the size and geographic dispersion of its development

and maintenance teams.

As reported in the above references and elsewhere, this

system has displayed an almost continuous growth in

functional capability, in size and in complexity. But

despite the fact that there is a continuing pressure for the

addition of new capabilities to the system, its rate of

growth has shown an equally persistent decline.

The question has been raised as to whether these observations

throw light on the programming process itself, or whether

they reflect a peculiarity of the particular program studied

and the environment in which it was developed. More recently

data has become available from quite different organisational

enviromments which reinforces’ the view that many of the

phenomena observed in the development of system T do occur

more generally.

One new source of data [H0075] comes from the executive

system here identified as system P. This system is an order

of magnitude smaller than T, is written as a structured

program in an Algol-like language and is being developed by a

small, highly disciplined and well managed group under’ the

executive direction of the organisation which is the sole

user of the program. Operation is confined to two

installations for basically a single purpose. In summary,

the program and the enviroment in which it is being used and

maintained are in almost all respects the total antithesis of

T and its environment.

Similar phenomena may also be observed in data relating to

transaction system A. This system, together with its

maintenance and usage environments, lies midway between the

other two in size and diversity of purpose. System A is

being developed by a major computer manufacturer and is used

by only a limited number of customers. Most significantly,

data on this system was available only for a phase of the

project during which time, according to the project managers,

no 'major enhancements! of the system were undertaken. Thus

the alleged maintenance phase for which quantitative data is

available was preceded by a development phase during which

the system was designed and implemented by a different team

at a different site. System A like system T is coded in an

assembly language.

The data collected from systems A and P is rather limited

in extent. Neither set of information presented on its own

9. Program Evolution andits Impact 205

would provide a very sound basis for Quantitative theories
about the development Process of software systems. But
compared and contrasted with the data from System T a general
picture of software evolution begins to emerge in which
peturbations from a basic pattern correspond very naturally
to particular features of the individual systems (9.4).

4 System Size

The most directly useful (and often most easily available)
Source of quantitative information about the development of a
Software project is a record of how system size has changed
over time. Clearly there is a choice of measures of size -
lines of code, bits of store, numbers of modules or
components. In practice, it was not possible to present the
data in terms of a standard size unit appropriate to all
three systems studied. However, this failure did not seem
critical since, (i) probably all size metrice appear strongly
correlated, (ii) it is the pattern of size change which is of
prime interest in this context rather than considerationof
the absolute size of the systems and projects.

Plots 1 (a), (b), (c) illustrate the size histories of the
three systems. All three Systems display a clear tendency to
increase in size; more Significantly growth has occurred in
each case long after the system was first released for use by
its customers. The proportional system Sgrowth ‘after
release' is smallest in the case of system A. But even there
the number of components making up the system has increased
by 16% over the period observed; and that at a time when both
management and the participants viewed their activities as
maintenance with only minor enhancements.

9.4 (Eds) WNote here the assumption, underlying much of the
development of the evolutton dynamics theory that the
search for baste phenomena and supporting theory may be
gutded by observed data and statistical analysis even if
the former ts sparse and the latter does not yetld
statistically significant results. It ts the resultant
theory that must satisfy the accepted tests of any
setentifie theory. It 28, we believe, failure to
apprectate this viewpoint that has generated and
underltes eritictsm such as that found tn [CHO80] and
[LAW82].

206

Figure 1

N
u
m
b
e
r

of
S
t
a
t
e
m
e
n
t
s

M. M. Lehmanand L. A. Belady

400

350)ge

300

250

200

150
N
u
m
b
e
r

o
f

M
o
d
u
l
e
s

100

50

°% 100 200 300 400 500 600 700 800 900 {000

Days

System A

50 000--

45 000F-
—_—_—s

40 000 °
L —

35 OOO;

30 O00

25 OOO-

20 OOO

15 OOO--

10 OOOF

5000; pb titritititiitiiittitin

0 100 200 300 400 500 600 700 800 300 1000 1100

Days

System P

8000

7000
°

6000

5000

4000 °

3000 J

2000 /;

i
1000

|etchant
0 500. 1000 1500 2000 2500 3000 3500 4000

Days

N
u
m
b
e
r

of
M
o
d
u
l
e
s

System T

a, b, ec System Size as a function of Age

9. Program Evolution and its Impact 207

This record of persistent growth provides further support for
one of the most fundamental postulates [LEH74] of a study of
software evolution: that the construction of a large soft-
ware system cannot be a straightforward implementation of
Some preconceived design. Rather it is of necessity a
process that continuously modifies and improves parts of the
code to reflect changes in the environment, shifts in object-
ives and advances in technology.

Passing over the basic growth trends displayed by these
Systems one may go on to consider the rate of growth. Both
systems P and T show a very clear falling off of the rate of
growth as the system evolves. System T, for which the long-
est sequence of data is available, has a size which increases
approximately logarithmically with age.

Several explanations for this Slowing down of the growth
process present themselves. Firstly it might be caused by a
reduction in the level of demand for enhancements to the
system. This explanation seems untenable in view of the fact
that the managers of both systems P and T were adamant in
asserting that there was no significant reduction in the pool
of waiting requests for new capabilities. A second
possibility is that the reduced rate of system growth
represents a reduction in the resources made available for
system development. It is known that the peak manpower and
budgetary allocations for the development of system T
occurred some time after the reduction in growth rate becomes
apparent. Hence it was concluded that the diminishing growth
rate could not be accounted for by a reduction in the resou-
rees applied. Rather the system must be becoming innately
more difficult to enlarge. System P corroborates this obser-
vation by showing a diminishing rate of growth during a
period of observation for which a weighted manpower index of
team size fluctuated without any definite trend (Fig 2).

i

|ee

on
Dd OWM

a
n
p
o
w
e
r

Un
it
s

Nh

l L 1 i 1 | i 1 J

0 200 400 600 800 1000

Days

OQ

System P

Figure 2 System P Resources

208 M. M. Lehman andL.A. Belady

System A appears to fall outside this pattern, showing a

slightly increasing growth rate over the recorded period.

This is of itself rather anomalous since the system was

specifically avoiding major enhancements and also had

experienced a steady attrition in the size of the maintenance

team. However, a satisfactorily simple interpretation of the

effect is that it is a peturbation of the same type that can

be clearly discerned in system T growth (Fig 1c) [BEL76];

[LEH76b] (9.6). It is known that the 'maintenance phase’ of

the project for which we have presented data was preceded by

a ‘development phase’. Although sadly no quantitative

information was available for this phase, growth must have

been faster in view of the size of the system at the

beginning of the observational period and the indicated life

time of the system. So it does appear that the net rate of

growth has been slowing down in accordance with the

intentions of the project's managers. We note that in the

ease of A and also, the rate of growth has not reduced aS a

consequence of the fact that the maintenance team was reduced

in size by about half over the period of observation. One

might even conjecture as others have done before us [BRO7T5]

that a reduction in team size actually leads to an increased

growth rate, an improvement in programming effectiveness.

To summarize this section: The combined evidence extracted

from systems A, P and T, support the conclusion that’ the

products of the software projects undergo a steady expansion

over their lifetime. The rate of growth falls off in a way

which cannot be fully explained by a lack of demand for

further enhancements or by reductions in the resources

available for development. The implication is that as a

software system evolves it becomes increasingly difficult to

modify or to add new functions to it; its complexity, in some

sense, increases.

5 The Effective Rate of Work

In the preceding section it was argued on rather qualitative

grounds that fluctuations in the level of resources available

for development and maintenance play only a minor role in

determining the long term rate of growth of a software

9.6 (Orig) It may be due to increasing familiarity with the

system anda sense of urgency on the part of both

maintenance personnel and users/customers, to attach

additional capability to the system before supplter

support ts finally withdrawn and the system ws

effectively frozen.

9. Program Evolution and its Impact 209

system. In this section we bolster this claim with more
quantitative evidence that the effective rate of work on such
systems is much more stable than a superficial inspection of
changes in project team size and budget would indicate.

For systems A and T a count had been kept of the number of
their elements which had been worked on during each release -
we shall refer to this as 'modules handled' data. This count
may be interpreted as providing a measure of the difficulty
in achieving a given release. For, naively speaking,
modification of say 10% of a system is likely to be a more
Straightforward task than coordinating changes, inevitably
interacting, to say 30% of the system elements.

For system P, module handling data was not appropriate in
view of that system's table driven design and higher level
language implementation. The most comparable information
available was a record of 'changes made'. Each such change
corresponds to a unit enhancement of the system rather than
to an amendment of a particular code element. In using such
a measure one must also then assume that there has been no
gross change in the programming team's understanding of what
constitutes a unit change over the system lifetime.

Figures 3a, 3b, and 3c are cumulative plots of the work
achieved (as represented by modules handled or changes made)
on systems A, P and T respectively. The primary observation
to be drawn from these graphs is that in all three caases
these cumulative plots closely correspond to points lying on
a straight line. In other words, the data from all three
systems confirms the conjecture of the opening paragraph of
this section, that the organisation is completing work at an
approximately constant rate.

some justification is perhaps required for considering
comulative measures of the amount of work achieved. Figures
4a, 4b, and 4e illustrate the actual work rates per day
computed from the same data as Figure 3. The 'rate of making
changes! information from system P shows no obvious pattern.
However, the other measure of work rate - modules handled per
day - shows considerable fluctuations in both systems A and
T. More particularly both graphs have a Zigzag shape with
peaks being shortly followed by troughs. Unfortunately there
is insufficient data to support this qualitative appraisal
with a negative autocorrelation measure. On the available
evidence, it appears that, despite this, the apparently
Steady work rate implied by the cumulative data conceals
Short term fluctuations about a well defined, average trend.

210

TOO

600

400t-

300}-

200+-

C
u
m
u
l
a
t
i
v
e

N
u
m
b
e
r

o
f

M
o
d
u
l
e
s

H
a
n
d
l
e
d

100}-

M. M. Lehmanand L.A. Belady

 0

System A

900

veal

700}

600

500t-

400

300

200/-

Cu
mu
la
ti
ve

N
u
m
b
e
r

of
C
h
a
n
g
e
s
M
a
d
e

J

 100

| !

5 200

System P

40 000

35 000

30 000

25 000

20 000

15 OOO

10 000

C
u
m
u
l
a
t
i
v
e

N
u
m
b
e
r

o
f

M
o
d
u
l
e
s

H
a
n
d
l
e
d

System T

{| | 4

0 800

tt ttityy yj jp pp it tt ji

6 100 200 300 400 400 600 700 800 900 1000

Days

1 —
400 600 800

i
1000

Days

! | jt I [Lt i jft
2400 3200 4000

Days

| |

1600

Figure 3 (a, b, ¢c)

Cumulative Work Achieved as a Function of Age

9. Program Evolution and its Impact 211

This is entirely consistent with the authors! basic view of
the programming process as a self Stabilising feedback system
being constantly perturbed by management decisions affecting
the level of inputs driving the system.

We must also note that to some extent the fluctuations as
observed, particularly in 4c, exaggerate the differences
between handle rates achieved in different releases. The
rates plotted here are computed from the inter-release
interval whereas they should have been based on the period of
the time over which the work was’ executed. This release-
overlap effect is of course largely removed when cumulative
data is plotted,

6 The Distribution of Development Work

The two preceding sections discussed project size histories
and work rates acheived respectively. In particular the
cumulative count of work achieved was shown to be a lkinear
function of system age despite release by release variations
in the actual amount. In this section we relate these two
sets of measurements and use them to Study the distribution
of dvelopment work though the system, in particular whether
it is localised or widely scattered. It is intended that
this should (i) clarify and justify the use of ‘modules
handled' records, (ii) display a relation between system
size, release interval and modules handled count which
refines the previous hypothesis of constant modules handled
rate, and (iii) introduce a hypothesis about the distribution
of development work which provides a basic framework for
direct measurements of system complexity.

A measure of system complexity useful to software project
management Should be able to indicate when structural
redesign has become essential in order to facilitate fur ther
developmentor to forestall ultimate ummanageability. such a
measure is expected to relate closely to the way in which
maintenance and development work is scattered through the
program text rather than being localised in particular
sections. The justification is that the process of
repeatedly modifying a system without redesign will tend to
obscure its conceptual structure and introduce logically
redundant entities with scattered interconnections.
Consequently, logically simple alterations to the system may
require physically scattered changes to the program text,
making enhancement difficult, error prone and ever more
likely to increase the destructing effect.

212 M. M. Lehmar and L. A. Belady

N
u
m
b
e
r

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

P
e
r
D
a
y

01

! |oL ttt it |i | iiiiit | ijtitii

O 100 200 300 400 500 600 700 800 900 1000

Days

System A

09

ose ON

O7

O6 °

05 a

04

O03

N
u
m
b
e
r

of
C
h
a
n
g
e
s

Pe
r
D
a
y

0 \ \ | | t | \ | | |
0 200 400 600 800 1000

Days

System P

a NV

4
!

—
i
.

N
u
m
b
e
r

of
Mo
du
le
s

Ha
nd
le
d

Pe
r
D
a
y

nD T
T

e
e
e
o
t

ger 1 1 tii 1 itt

0 800 1600
 i 1a i | 4

2400 3200 4000

Days

System T

Figure 4 (a, b, c)
Work Rate as a Function of Age

9. Program Evolution and its Impact 213

The fact that system P is written ina high level language,
is table driven and is only coarsely divided into components,
makes it difficult to determine from available data the
extent to which the work done for each release was ocalised.
However, for systems A and T, since system size in modules
and the number of modules handled are both known, a simple
calculation determines the fraction of the system actively
involved in each release. This is plotted in Figures 5a and
5b. Although both these graphs exhibit an upward trend, this
should not be interpreted as a direct indication of
increasing system complexity. It will be shown that it is
more completely explained in terms of a_ static assumption,
itself of some interest, about the scatter of maintenance and
development work,

The main reason for not using 'fraction of system active! in
each release as a measure of system complexity is that this
Statistic is rather sensitive to the length of the release
interval. Now in this study we have assumed that al though
the rate of system growth is regulated by evolutionary
effects, the actual choice of release points is made by
management to conform to business requirements. Thus release
dates reflect information about the state of the software
being developed only indirectly, being strongly influenced by
factors rather outside the scope of this report. So, without
further discussion, we can observe empirically that the
release intervals have lengthened in both systems A and T
(and also in system P). Since the release time represents an
exogenously chosen point at which the state of the system can
be sampled, it can be argued that longer release intervals
Will involve work on a larger fraction of the system even for
a program which has maintained perfectly clean structure.

In order to analyse quantitatively the effect of lengthening
release intervals, we must refine our model of the system
enhancement process. Our previous assumption was that the
effective work achieved on systems A and T was measured by
the number of modules handled. This is an approximation and
is effective only when the fraction of the system active in
each release remains small. A more accurate description is
that the standard unit of work is a module handling. One
module may receive several handlings in the course of one
release (each for an essentially different reason). The
postulate of constant modules handled rate, argued for in
section 4 can now be replaced with its refinement: the
number of module handlings in a release is a linear function
of the release interval. Finally, if one makes the simple
and mathematically convenient assumption that these handlings

214

Fr
ac
ti
on

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

Fr
ac

ti
on

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

0.50 /-

0.45

0.40--

0.35

0.30;--

0.25—-

0.20/-

0.15

0.10f-

ost

of 1

M. M. Lehman and L. A. Belady

| | { | |

0 100 x00 300 Z00 500 500. 700 500 500"7000

Days

System A

1.0

| Co

0.8 on

f
0.6 Yo

Zo= a e

or”
0.4-r f

a

O.2¢

ot Lt | py yyy | | tf f piy 4
O 500 1000 1500 2000 2500 3000 3500 4000

Days

System T

Figure 5 (a, b)

Fraction of Modules Handled as a Function of Age

9. Program Evolution and its Impact 215

are uniformly independently distributed among all the modules
in the system, then it becomes possible to predict the
expected fraction of the system handled in each release and
hence to validate our assumptions. The actual prediction
relies on the combinatorial result that if m handlings are
uniformly independently distributed among n modules, the
expected fraction of the modules receiving at least one
handling is 1 = (1 = 1/n)®,

This validation procedure has been carried out for system T.
In that case it is known that on average eleven modules were
handled per day. Allowing for multiple handlings, the average
handling rate must have been somewhat larger than this.
Figure 6 compares the predicted fraction handled with that
observed, on the basis of eleven handlings per day and using
actual system sizes and release intervals. The estimate is
in general low (a handling rate of about fifteen per day is
probably more realistic), but despite this followed the
actual observations quite closely. So this model is’ both
conceptually clearer and more accurate than that following
from our earlier hypothesis that the number of modules
handled in a release was proportional only to the release
interval.

During this validation procedure we made, on grounds of
Simplicity, the hypothesis that work was uniformly
independently distributed throughout the system. Now in
fact this corresponds toa System whose development is
completely unorganised and uncontrolled. Put another way,
this distribution of work would be achieved if management
merely told each programmer to go away and work on the module
of his choice. Now it is the mark of a well structured
system that management can choose to concentrate development
in certain sections of the program leaving the remainder
unaltered. This would correspond to a more concentrated non-
independent distribution of work around the system, eg 2/3
handlings are concentrated on 1/3 modules. In principle it
Should be possible to adjust the "degree of concentration' of
the distribution and the average rate of module handlings to
obtain a best fit to the observed fraction of system handled.
The indicated degree of concentration would then be a useful
measure of the quality of system organisation.

Technically, this curve fitting procedure seems rather
difficult without arbitrarily selecting particular families
of concentrated work distributions. The authors havenot yet
attempted to obtain a definitive best fit to the system T
data. Nevertheless, it seems that the present discussions

216 M. M. Lehman and L. A. Belady

provide one useful viewpoint of complexity and how (with

increasing experience) one could hope to measure it more

directly. We shall propose a further viewpoint and measure

in a later section.

T Further Comments on System T

Of the three systems considered in this paper it is system T

which has been under study for the longest time and on which

the richest records are available. It is therefore

reasonable to examine the growth pattern of that system in

considerably more detail. This has been done in referneces

[BEL71b] through [BEL74].

It will suffice here to note that the most definitive feature

of T, not directly observed in systems A or P, is the

oscillatory nature of its size growth. In T every spurt of

growth was followed by a period of retrenchment in which the

system grew only slowly or, in several cases, was actually

reduced in size. These recovery periods were the result

either of a major redesign or of complete sub-systems being

discarded as they became incompatible with further

development.

1.0-
Po een observed

Ook expected .

L__ o* \

aN
0.8 ° \

_—. 4 pPp———___

0.7L ‘

0.6

a .
0.5- ern

Fr
ac
ti
on

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

0.44 . / Yo
° \ /

e

moi?03 1a \/

 1O.2rl ii e

on)
o1H

!
O | | | | | | | | | | | | | | jd

O 500 l\OOO I500 2000 2500 £3000 3500 4000

Age in Days

System T

Figure 6

Expected vs Observed Handles as a Function of Age

9. Program Evolution and its Impact 217

The resultant ripple effect has been used by Riordon [RI076],
following work initiated by Belady (done in 1971, reported in
[BEL76]) to develop continuous system models of the growth of
all three systems. Riordon's analysis shows that the

observed growth patterns of all three systems are in fact

compatible with a single continuous model. This despite the

fact neither system A nor P show any of the oscillatory

trends or have undergone an absolute reduction in size. In

fact the different pattern of behaviour can be observed ina

Single non-linear model according to the values of one or

other of its parameters. Thus further analysis of this type

could throw considerable light on the nature of each

programming process and could indicate how these might be

modified to change their characteristics.

8 The Application of Evolution Dynamics Studies

In the past the implications of the observed trends patterns

and invariances have been used primarily for forecasting

purposes. The resultant prediction about the expected fate

of specific projects or the long range trends in a_ system's
growth have, in general, been unexpectely accurate. Thus
they have served as a verification of the basic concepts and
the general conclusions drawn from the overall observations.
Care must however be exercised since under certain
circumstances such forecasts become self fulfilling or self
negating prophecies.

Objective fecasting in the software area is mostly an
unrewarding pastime nor is it very often seen as
constructive. The 'Gloom and Doom' nickname acquired by one
of the authors is perhaps indicative of the forced role when
one contrasts the linear extrapolations of the planners with
the non-linear trends of reality.

A far more constructive role follows from the application of
ever increasing insight and knowledge to the planning
process. Taking into account all three factors, trends,
cyclicity and invariances plus some specific knowledge about
the particular system, past releases and work requiring to be
done, one can come up with a very precise assessment of e
time required to achieve the enhancement/repair normally
incorporated into a single release. Similarly, the past
patterns suggest, independently of business considerations,
how much work should be incorporated into a future release,
by how much one should plan to grow in a particular time
interval if quality and delivery problems are to be avoided.
From extrapolation of the fraction of modules handled trend,

218 M. M. Lehman andL.A. Belady

as modified by other knowledge about the system and work

planned, one can assess the validity of plans in relation to

the amount of rework required. As a final example, we may

cite the use of the data to indicate when a system

restructuring is desirable; is likely to prove advantageous

tn the tong run.

The above represent examples of how management can use (and

has used) such data as wasS available in the three
environments discussed. Equally our experience has suggeted

other parameters which if monitored over a long period could,

perhaps, permit even more precise analysis of progress,

potential and trends. To give just one example where we have

been unsuccessful with presently available data, we mention
development and maintenance complexity measures as determined

by 'the average number of old module handlings per new module

added' and ‘per fault fixed' respectively. On the basis of

our experience we suggest that such definitive trends are

likely to exist. If such average ratios can be determined,

their value over any one period, the long range trend,

anddeviations from it, all provide very clearly indicators

and warnigns of developing trouble, of local difficulties and

of the successes and achievements of a programming project,

group or systen. .

Finally, though we have not discussed this in the present

per, there is no doubt in the minds of those who have actively

pursued these evolution dynamics studies, that they have

yielded significant insight into the programming process, its

management and planning. As these studies are pursued, they

will make further significant contributions to the ability to

undertake, manage and control large scale programming; to

produce timely code of better quality, more efficiently and

more economically. (9.6) The techniques do not and cannot

replace the more direct studies of programming and of

software engineering and the improvements that such studies

produce. But they do compliment them and provide a yardstick

whereby their effect and long range effectiveness may be

measured.

9.6 (Eds) The expertence of the last six years since the

above was written, and the progress made has evidenced,

for example, by subsequent papers as reproduced in thts

book provide, we belteve, evidence to support this

clatm,

9. Program Evolution and its Impact 219

9 Epilogue

Research and Development time and resources devoted to the
study of program evolution have been small. We believe that
increased participation in this type of work, more widespread
recognition of the system-like behaviour of large programs
and of programming organisations can make a positive
contribution to the advance of software engineering and large
scale programming management.

Equally however it appears that the style of measurement and
analysis here adopted can throw significant light on the
nature of programs and of programming. By quantifying such
concepts as size and complexity, by addressing the meaning
and measurement of program power and quality and by studying
the programming process, its nature and its output, we have
already achieved and expect to continue to achieve a deeper
understanding of communication with and the controlled use of
computers; surely the central theme of Computing Science.

One last word must be added. Evolution dynamics follows one
of the approaches to modern study of the physical world, by
Studying programming and the programming process as they are.
Given this, then that follows. Particularly in view of our
identification of process invariances and program size
bounds, one may conclude that perhaps the man problem is that
the large, general purpose software we have studied should
not be allowed to exist. Maybe one should adopt quite
different approaches to the provision of multiple function
systems. We have not addressed this point here though we
have our own judgements and viewpoints. But our presentation
of what happens when such systems are created, used and
maintained, may perhaps help to resolve this more fundamental
question in the future, or at least cause it to be seriously
considered.

10 Acknowledgements

Our grateful thanks are due to our colleagues at Imperial
College and associates at IBM for many interesting discussion
and observations. In particular we are happy to acknowledge
the contribution of D R Hooton for his painstaking collection
and analysis of the P data. We also wish to acknowledge the
willing, indeed, enthusiastic, support of the A, Pand T
organisations and in particular of those individuals who
assisted us in collecting and interpreting the data.

220 M. M. Lehman and L.A. Belady

The Science Research Council has and is continuing to provide

support to the evolution dynamics project. In particular

they enabled L A Belady, who has been associated with the

evolution dynamics studies from their inception to spend one

half year period with us as a Senior Visiting Fellow. [To him

also our grateful thanks are due for his continuing

collaboration and criticism. If not for the geographical

separation he would surely have been a_ co-author of this

paper. One of ous (MML) must also acknowledge the

contribution of his colleagues in IFIP WG 2.3 who by

advancing his understanding of programming and by providing

specific comments on the evolution dynamics concepts

presented here have also made significant contributions to

the concepts and insights presented. Finally our very

grateful thanks are due to Miss J Taplin for her unending and

cheerful patience and support in the preparation of the

paper.

CHAPTER 12

EVOLVING PARTS AND RELATIONS -
A MODEL OF SYSTEM FAMILIES*

1 Introduction

It has been recently noted that due to constant error repair
and functional enhancement software systems continuously
evolve [BEL76]. This evolution is characterised by change of
code, addition of new modules, and sometimes restructuring of
the system. Other researchers [PAR76] have studied the
concept of software familtes, ie groups of similar systen,
evolving from the same generic program, but each member
meeting different operational requirements.

Much work has been devoted to the process of constructing
programs: design methodologies proposed [FRE76], supporting
tools devised [DEJ73] [KER76]. Most of these efforts are
mainly directed towards the construction of programs - from
conception to delivery of the software product. In contrast,

this paper is concerned with a more general view of the

software development process, in that it focusses on the

aspects of controlling the evolutton of large software
families. (Family as defined here somewhat differs from that

of Parnas). A particular model of a class of software

families is presented, some of the difficulties in

controlling the evolution of families are described, and

possible solutions offered. We also discuss methods of

expressing the relattons which exist between the parts of a
system, and how these methods influence the amount of ork
required to maintain, enhance and install such a system. We
do not deal with programs in detail, but study the problem at

the level of parts: untts and modules. This paper opens a

wide research area and we hope others will be motivated to

continue investigations.

2 A system of units

Let us assume that a software family is spanned by a set of
units Up, U,, Us, «--, U, of instructions and data. A
configuration is a subset of the units which includes UR:

IBM Research Report RC6677, 1977, reprinted by kind permission of International
Business Machines Corporation.

221

222 M. M. Lehman and L. A. Belady

The unit U, is called the basis of the family, ie it includes

all that is common to all family members. Each unit U; may

implement some function and/or repair other units. Different

configurations can be chosen to meet different (and sometimes

contradictory) operational requirements. For illustration,

let us assume that U, and Us are different implementations

of, say, memory management and U. is a fix to errors in Up.

Then URU, could be a configuration particularly suited for

general purpose applications and Ups for a picture

processing application, while UpUoU3 is similar to the latter

but repaired by U2.

Clearly, not all combinations of units are permitted. In the

previous example, a configuration having U, makes sense only

if also U, is included, and similarly, U, and Us could be

mutually exclusive. In general, we call combinations which

are useable as real systems 'permitted configurations’.

The set of permitted configurations can be represented in

canonical form as a relation over the set of units. Figure 1

shows such a relation -- each row corresponds to a permitted

configuration, '1' denotes the presence of the unit in the

configuration and '0' its absence. Since Up is assumed to be

included in all configurations, its column is omitted for the

sake of simplicity. The relational notation allows any

arbitrary set of configurations to be permitted, ie, the

notation is universal in the sense that it does not constrain

the expression of permitted configurations.

Iquy Db ee
! n !
| I

| 1 0 0 . 0

| O 1 0 . 0

| O 1 1 . 0 |
I I
I I

Figure 1: Relational representation

of Permitted Configurations

There are practical examples of configurable families of

systems as defined above. For example, the maintenance of

OS/360 and 370 [IBM73] is effected by applying Program

Temporary Fixes (PIF) to the systen, ie, a permitted

configuration includes a system release as basis and a subset

of PTF's. In order to reduce the frequency of sometimes

unnecessary changes of installed systems, the user is not

10. A Model of System Families : 223

required to install all PTF's and he may choose a subset of
them. Obviously, not all subsets of PTF's form permitted
configurations. This is because some PTF's assume the
existence of other PTF's in the configuration. In our
notation a system release corresponds to Up and each PTF to a
unit U,.

A second example is provided by the recently announced
OS370/MVS Selectable Units (SU) [NEW76]. In this systen,
there is a basic MVS (a master release) to which different
SU's can be added. Bach SU corresponds to some functional
addition or enhancement. In order to accommodate
maintenance, PTF's are also included in the scheme. That is,
each SU as well as each PTF corresponds to a unit U5 of our
notation. As far as we know, similar schemes are being used
to update other large software systems.

The number of rows in the relational representation of the
permitted configurations (ie, the number of permitted
configuration) can grow exponentially with the number of
units. Therefore, a family of several dozens or hundreds of
units (orders of magnitude for PTF's or SU's) may lead to a
relation spanning many millions of rows. Thus, there are
practical cases in which the canonical representation is
impractical.

The size of the relation is reduced by treating each unit as
a Boolean variable (ie, given a configuration S, U; = 0 if U;
is mot included in S and U; = 1 if U; is included in S) and
expressing the whole relation as a Boolean function

F(U,, Us, eoey U,?

having value 'TRUE' (or '1') if and only if the values of Uy,
U,, -- UL correspond to a permitted configuration. Function
f could be expressed using the usual AND, OR, NOT operations
and minimised by applying well established techniques for
hardware [MIL65].

Usually, however, AND, OR, NOT do not suit best the nature of
evoltionary configurable software. In such a family there is
a constant creation of new units (new function or
maintenance), and when a unit is created function f should be
updated to reflect the permitted configurations which include
the new unit. The usual constraint of these configurations
is that a new unit requires the presence of some older units
and precludes the presence of others. In this case, a
natural Boolean operation would be

924 M. M. Lehman and L.A. Belady

IF U; THEN (Uas Up» ee Ug) AND NOT (Ug; Ue: eoeeoy Ur)

(a, b, c, ... denote arbitrary indices)

which is '1' if and only if

U; + Un-Upn es cee Ua Uge Ug s eee > Up

where + is logical OR and . is logical AND.

Similarly, there may be different constructs which are

advantageous in representing the relations existing in other

family types.

In practice, the relations which define the collection of

permitted configurations (ie, function f) is constantly used.

At different computer centres, units are added to (or removed

from) a configuration to meet changing functional and

maintenance requirements. In typical installations PTF's are

added almost every day. For each change, function f should

be checked to insure that the resulting configuration is

permitted. At the software factory (the development shop),

new units are constantly designed and constructed to respond

to detected errors and new functional requirements. In this

process too, function f is constantly consulted and updated.

It is therefore important that function f be expressed in a

way which makes during modification work local relationships

between units easy to understand. Furthermore, since f may

be a very complex relation (in practical cases f may have

thousands or millions of basic operations), it is important

that the user understand the structure of f such that

manipulations on f can be done routinely. This is achieved

by representing f in a ftxed format.

For illustrative purposes, the PTF system uses the following

fixed format representation of f:

f= f, fo . f3 os f. . fn

in which

f, = IF U; [(THEN (----) . NOT(----)) +
+(THEN(----) . NOT(----)) +

+(THEN(----) NOT(--==))]

where ---= stands for arbitrary units.

10. A Model of System Families 225

That is, each fs States the set of all possible alternatives
of required and precluded units for configurations that
include U.. This format has the advantage that, in order to
check whether a configuration is permitted, it is necessary
to. check only the fs's of units participating in the
configuration. This format also neatly distributes the
relations among the unit, by pairwise associating each Ps and
U; (possibly as a header of the program code), thus making
easy the shipment of new units, along with the corresponding
update of f, to user installations.

Clearly, when a fixed format representation of f is used, the
format should be chosen as to fit the nature of the program
family at hand. For example, let us assume a family having
many large groups of units such that at least one unit of
each group is required in any permitted configuration. If
such a relationship is expressed in the format used by the
PTF system, then function f will be extremely complex and the
basic local relationships between units will be difficult to
find and grasp. On the other hand, if the format includes
the construct

(U, + Upte. e+ U,)- (Uy +...+ U (Up +eocet Us)»e e eee

the relationships are much more clear and concise.

The fixed format used for the PTF system is logically
universal: any Boolean function f is representable. Since
in evolutionary families there is a fair degree of
unpredictability of the structure which the system may take
by successive modifications, a logically universal format is
Superior, even if initially unnecessary. This will
accommodate possible exception cases and avoid dramatic
modification of the data base that stores the function f or
the accessing programs.

3 A system of module versions

A unit may implement a fairly large and complex subsystem.
Therefore, each unit is usually subdivided into several sub-
units called modules. The module is considered the basic
atomic entity and it is usually of such a size that it can be
fully grasped and handled by a single programmer. In
practical systems the size of units in number of modules may
vary greatly. For example, a PTF usually comprises a Single
module or just a few; a selectable unit may have a few dozens
or hundreds of modules; while a base unit often Spans several
thousands.

226 M. M. Lehman andL.A. Belady

There may be modules which are required to behave differently

while participating in different configurations. This

results in having different verstons of the module. As an

illustration, let M, be a module of U,; with two versions

M,(1) and M, (2). We may assume that U, uses M,(1) whenever

Un or Us are included in the configuration, but uses M, (2)

otherwise.

Some units (eg PTF's) are created for the sole purpose of

updating other units. These cases create overlapping modules

of different units. For example, let

U, = M(1)M,(1)M,(1)Mg(1)

and Us be created as a PTF to repair errors in Mp and Ma}

then

Thus the module versions used by configuration (10.1) (U, U5)

will become:

M, (1M, (2)M,(2)Mg(1) -

In other cases a more subtle overlap between units may exist.

For example, a new unit, U,, could be created such that, when

Uz is running with U,, a change to M461) is required

resulting in a new version:

Uz = Mg(2)Mo(1)Mp(1)

Thus, for configuration (U, U3) the following module versions

are to be used:

M,(1)M, (1M, (1)Mg(2)Mo(1)Mp(1).

In practice the size of overlap may vary greatly. All PTF

modules also belong to other units, while Selectable Units

overlap earlier modules and add new (generic) modules.

Most of the units have only a single version of each of their

modules. However, there are units with several versions of

some of their modules, introduced by differences in

configurations in which they participate. The number of

these units may increase with the increasing variety of

functions performed and environments supported.

10.1 (Orig) Strictly speaking each configuration must

contain Up as well.

10. A Model of System Families 227

Formally, a model of the software family can be defined as
follows:

1 The family is a set of m+1 units:

f = <UpU, U5, eee Un?

(a set is indicated by a list between <>)

A subset of F containing Up is called a configuration.

Bach unit consists of a set of generte modules:

Where i1, i2, ..., ik <1, 2, «.., Q>, assuming that
the family has q generic modules.

The set of generic modules of a configuration is the
union of the (generic) modules of each unit in the
configuration:

MOD(U, U, -.. Up = MOD(U,) MOD(U,) ...

—

MOD(U,)

Each unit actually has a set of module verstons for each
one of its generic modules

<<My 1 (G)Mj 7 Ce) oe May (£)>...<MyE(B) oe. My (h)>>
where M,,(d), M.,(e), ... are distinct versions of_ Lt i .generic module M4 (usually, most generic modules have
a Single version).

The totality of module versions of a configuration UU,
. Un is

VER(U,U,...U) =
<M(PY vee Myq(r)> 2. <M, (8) 22M, (t)>>

a set in which each element is the union of those
elements of VER(U,) VER(U,) wee VER(U,) which correspond
to the same generic module. Clearly, for any set Q of
units, the number of elements in MOD(Q) and VER(Q) is
the same, and there is a one to one correspondence
between them.

228 M. M. Lehman and L. A. Belady

T An actual system of a given configuration <U,U, ... U,>

is the set of unique module versions, one from each

element of VER(U,U, --- U,?- Again, there is a one to

one correspondence between the elements of an actual

systemets of MOD(.) of the same configuration. The set

of actual systems (ie, the set of all possible actual

systems for a given configuration) is denoted by

SYS(VER(U,U,.--UQ))

and it is actually the cross-product of the elements of

8 If <U,U,.-.-U.> is a permitted configuration, then the

set of permitted actual systems for this configuration

is a subset of its set of actual systems:

PSYS(U,U,)---U,Q) SYS(VER(U,U,.--U,))-

In practice this is a proper subset and usually much smaller

than the totality of actual systems. In many cases only one

actual system is permitted for each configuration.

In the next section we turn our attention to the problem of

representing PSYS.

4 Permitted actual systems

4.1 Definition

The set of permitted actual systems can be described in a

canonical form by a relation similary t the relation of

Figure 1. Such a description is exemplified in Figure eé.

The leftmost columns stand for the units and, as in Figure 1;

they describe the permitted configurations. One or more rows

exist for each permitted configuration, and each row

describes a unique permitted actual system as a realization

of a configuration appearing in the same row. In the columns

for modules, '0' means that the module is not included in the

configuration while a non-zero integer identifies the

corresponding module version.

In the example, there are two (optional) permitted actual

systems for configuration U,U5U3:

, <M, (1)M5(2)M3(2)My (1)M5(1)>
an

<M, (1)Mo(2)M3(2)My(1)M5(2)>.

10. A Model of System Families 229

F = SU, UzU3>

MOD(U,) = M, Ms M3

MOD (U5) = My M), Ms

MOD(U3) = M3

VER(U,) = <<My (1) ><M5 (1) ><M3(1)>>

VER(U5) = <<M5(2)> <M, (1)> <M5(1)M,(2)>

VER(U3) = <<M3(2) >>

| U, Us U2 M, M5 M3 My, Me

=
O

|
+
4

O
m
m
a
a
o

=
O
3
0
0

=
O
—

o
r
2

o
r

—
~
r
m
r
w
r
y
w
h
=

M
O
N
M
M
4
>
=

O
o
m
s

-3
3
0

O
-
M
-
3
0

Figure 2: Relational Description of Permitted Actual systems

4.2 Universal Fixed Formats

The previous representation has problems of enormous
dimensions, similar to that of Figure 1, but amplified. The
already millions of rows for permitted configurations of
practical systems are further increased by the often multiple
occurrence of permitted actual systems. This multiplicity
arises because of 'don't care! situations, as M5 (1) or M,.(2)
for configuration U,U5U of Figure 2. The relational
description of permitted actual systems can be transformed
into a functional form in the same way as Figure 1 can be
expressed by function f. Here too, for clarity of structure,
a fixed format representation is preferable. The table of
Figure 2 can be functionally represented by

H(U,U, ee UM, Mo eee M.)

with U5 = 1 or U5 = 0 according to whether Us is or is not a
member of the configuration; also M; = j if version j of M;
is in the actual system and M. = 0 if M; is not in the actual
system.

230 M. M. Lehman and L. A. Belady

H = 1 if and only if the values of U,Us --- Un correspond to

a permitted configuration for which the values of M, Ms -o- M,

are a permitted actual system, otherwise H = 0. Function H

can be decomposed into

H=f(U,U5. e Uy) -g(U,U5. ° -U,M,M- ° -M,)h(U, U5. -- UM, M,- --M,)

in which f is the same function as discussed in Section 2, §&

- 1 if and only if the values of MM -o-M, correspond to an

actual system for this configuration Cie, are included in the

SYS(VER) of this configuration), and h is ‘don't care! for

nonpermitted configurations of units. Usually f is given in

one of the forms discussed in Section 2, and g is easy to

check from the total set of modules of the configuration.

Thus, we concentrate next on the problems of representing h.

The following format of h could be useful in some practical

cases

h = hy. Ny . eee « Ne w wee FA

in which

h,; = IF u; THEN (vy + Vo +.--+ Vz teeet Vig)»

where u; is a Boolean function of units U,, Uo,---, Uy and v:

(j=1,2,..-k;) is a set of module versions collected from

distinct generic modules. If the configuration makes u, to

be ‘'1', then h;=1 (or TRUE) if and only if at least one of

the v.'s is included in the actual system. In this format,

the example of figure 2 will be

h = (IF Uz THEN M,(2)) . (IF Up THEN Mo(2) . (IF U, THEN
M5(2)) . (te U,.U3° THEN M,(1))

Clearly, this format is logically universal, for any relation

between configurations and actual systems can be expressed.

However, ina highly evolutionary family, it is expected that

new units will be continually created and often new units

will have new module versions which will replace old ones in

overlapping areas. If, when adding a new unit, previously

permitted actual systems must remain permitted, h;'s

describing modules in the area of overlap must be changed, as

well as new h,'s generated for the new configurations. For

illustration, suppose tt a PIF, Uy; is added to the system in

Figure 2, such that it will replace M51) or Ms (2) of U5 by a

new version of Ms (3) in all configurations in which U, is

included. This requires:

10. A Model of System Families 231

1 The addition to h of

and also, in order to keep previously permitted actual
systems,

2 The changing of hg and hy into

hy = IF U,.U3.Uy THEN M,(1).
Changing parts of h can be very tedious, especially with
complex families of long Standing and with those having a
high rate of additions of this type. The PTF system provides
an example of a real life family of this type. Frequent
changes of h;'s can be avoided by a small modification to the
formula of hy as follows:

h; = IF u; NOT (v, + Vo +...4 Vi teeet Vig)»

in which, if the configuration makes u; to be '1', then
h; = 1 if and only if all cited v.-'s are excluded from the
configurations. The v.'s are colléctions of module versions
precluded by configuration u;. In this format the h function
for the example of Figure 2 is:

h = (IF U3 NOT M3(1)) . (IF Up NOT Mj(1)) . (IF U, NOT M;(1))
and the addition of PTF U » described above will only require
the addition of

he = IF Uy NOT (Me (1) + M5(2)).

4.3 Non-Universal, More Efficient Constructs

Clearly, families with different Structures or with different"idiosyncrasies' of evolution may have different best formatsof function h. We describe below two additional contructswhich are useful in many practical situations. Theseconstructs are not logically universal by themselves, butthey can be used either in conjunction with one of theformats previously described or in families having certainrestrictions in permitted actual systems. If in allconfigurations having units U; and U. and in which the moduleversions of U5 in the Overlapping area of U; and U5 are

232 M. M. Lehman and L. A. Belady

excluded from the actual system, the previous format yields

the following:

h; = IF Uy NOT Vq

where v is an enumeration of all module versions of U. in

the overlap. This situation appears very frequently in real

systems (eg, the PIF system), and wherever the overlap is

very large (in some practical cases there may be hundreds of

modules). Thus it is convenient to express this situation by

the construct below which is shorthand for the previous

expression:

Us PREV AIL-ON U;

or, if U; prevails on more than one unit, by

U; PREV AIL-ON (U54 Uso cee Ujm)-

Using this construct, the example of figure 3 will be

h = (Us PREVAIL-ON U,) . (U., PREVAIL-ON U) . (CIF U
3 1 2 1 1

NOT Me (1) . (IF U,-U3 NOT Me(2)).

As shown by this example, the PREVAIL-ON construct does not

differentiate between choices of module versions supplied by

the same unit. Nevertheless, this construct is useful in

many practical situations.

The following construct is based on PREVAIL-ON, but’ the

relation is implicitly given by a naming scheme. suppose

first that a family is evolving in such a way that units are

added completely ordered and that the module versions of a

newer unit always prevails on those of old ones. In other

words, for all i, j

i>j -> UFZ PREV AIL-ON U (=> meaning 'implies')j°

In such a family it is not necessary to state explicitly the

relation, since this is implied by the ordered names (ie the

indices) of the units. This can be extended to the case in

which groups of units are added simultaneously, and the units

of new groups PREVAIL-ON those of older groups, but inside

the group the units are unrelated by the scheme (or they can

be explicitly related by one of the methods explained

earlier). In this case we could use a two-dimensional

indexing scheme as follows:

10. A Model of System Families
233

(1,a,) (2,a,) ceee (q,a,)(1,a5) (2,a5) eees (q,a5)

(i,a,) .

(1,a,4) (2, a5) eecee (ds apg)

in which for all 1, j, as, and an

i>j -> UCi,a,) PREVAIL-ON U(j,a,)

In other words, the first index Sives the ordering, while theSecond has no ordering implications, it just provides adistinguishing label. This Scheme can be further generalisedto the case in which each group there are ordered subgroups.This will be done by a three dimensional indexing scheme

(1,a5,1) (2,a,,1) cee. (q,a,1)
(1,a5,1) (2,a,,1) see (q,a,2)(1, a, ,3) .

(1,8, 5244) (2,8) 5P45) coe. (G54 »PyQq)

(1,a5,1) . cee
(1,a5,2) . cess

(1,a5, Po) e eeee e

(158K 4 »Pyy) (2, ay55Pyo) see. (4) Ay» Pig)
In this case the first and third indices are used to implyordering, while the Second is used as an arbitrary labelwhich only implies @rouping. For all i, j, 1, mn, a, and an

i>j -> U(i,a,,1) PREVAIL-oN U(j,a,,m)

and for all i, J, 1, Ass

1>j -> U(1,a,,i) PREVAIL-ON U(1l,a,, j)

In the same way, this method can be generalised to alabelling scheme of arbitrary dimension. It can be shownthat ordering and nonordering indices Strictly alternate.

234
M. M. LehmanandL. A. Belady |

Then, the structure of a label will be

(44, 85,24o2aj
areee dy)

where the its describe the grouping of units at the same

level into subgroups. In general, these schemes create a

nested partial ordering over the units. In practical cases

of this nature, the above implicit method will give the

relations in a clear form, and may save hundreds of explicit

relations. Many practical systems are decomposable by a

nested partial order; for example, the combined SU and PTF

system can be viewed as a two dimensional scheme of this

type. Other systems could be 'nearly-decomposable' [SIM69]

into a nested partial order. In this ease, the implicit

method could be used in conjunction with one of the formats

described earlier, or with any other representation of the

exceptions, whichever is a most efficient for a particular

situation.

5 Discussion

In the configurable family model there are two levels of

relations between entities. The first level (given by

function f of Section 2) defines the set of permitted

configurations of units and the second level (function H of

Section 4) spans the set of actual modules (ie the module

versions) which implement such a configuration. Program

parts - code and data forming the units - become useful only

if meaningfully interconnected by relations. Furthermore, at

the system level, there is a duality between the concept of

evolving program parts and the concept of their relations.

Whenever an addition, a repair or any other modification is

made to the program, a corresponding change must be made on

the relations. As illustrated by the examples given in this

paper, for large and highly evolutionary families the

relations as well as the manipulation of these relations

could be of significant complexity. Indeed, we hope to have

shown that the predominant and most challenging design

problems presented by an evolving large system are those of

maintaining the internal consistency of tts numerous

verstons. It, therefore, pays to give special attention to

understandability and conciseness.

The relations are regularly used at many locations.

Installations at each distinct site should check the

relations before a new system configuration is loaded.

Questions like ‘is this a permitted configuration?' or ‘if we

want certain function (ie unit) what other units are

10. A Model of System Families
235

required?; which alternatives do we have?', ete, should beanswered. Therefore, easy ways to access’ the relationsShould be provided. For example, in the PTF system,relations could be distributed as headers to PTFs and at eachinstallation a program called SMP (System ModificationProgram) [IBM73], use the relations for applying the fixes,

In a broad sense the relations, together with the programutilities using them, act as a System Generator (SYSGEN). Ina traditional SYSGEN program, relations are imbedded in theprogram. In contrast, the above scheme offers a cleanSeparation of relations and the program that uses them. Thisis a noteworthy advantage, especially in situations offrequent and continuous change.

Relations are also used in the development Shop whilemanipulating (designing, testing, maintaining) the family,and they are updated whenever a change is made. Thismanipulation is Presumably done by a team of programmers,where communication and synchronisation of human activitiesare required, As already Stated, there may be hundreds ofunits, thousands of configurations and many thousands ofmodule versions. All these point to the need for anintegrated (computerised) facility, similar to the programdevelopment aids CHAN76] already proposed, but also includingthe evolutionary aspects of configurable families.

As already noted, new units and modules are constantlycreated to respond to Maintenance and further functionalneeds. This variety explosion can be reduced, in part, bytwo types of counteractions. Units which are seldom used, orwhich have a proper replacement, can be discontinued, andCompatible units can be merged together (this is called"coagulation'), However, there is certain amount of work(and cost) associated With both of these Operations,Coagulations should be performed and relations properlyupdated in the central software factory. Unfortunately,installations using only parts of the coagulating units, orusing discontinued units, perturb this Scheme (for example,an installation which keeps a configuration even if it isdeclared not permitted), The feasibility of performingcoagulations, or of discontinuing units, and how often, orwhat units, are all open questions for further exploration.

In this paper we Studied mainly the problems of relationsbetween entities of a configurable software family. FurtherProblems not discussed here are the functional and Structuralaspects of the actual code (or programs), ways of minimising

236
M. M. Lehman andL. A. Belady

dependencies between units, and ways of defining ‘'good'

interfaces between entities, etc, in the context of

configurable and evolutionary software.

CHAPTER 11

HUMAN THOUGHT AND ACTION AS iN INGREDIENT
OF SYSTEM BEHAV 1OUR* 1)1,

1 systems Science

Significant sections of the scientific community are

increasingly becoming involved in Systems Science, though

they often do not recognise this subject as an independent

discipline. Biologists, computer scientists, economists,

engineers, mathematicians, sociologists and many others are

realising that in many instances one cannot hope to master

the systems studied by adopting the classical approaches’ to

science.

The latter are largely based on a bottom-up approach.

Individual elements are first studied and mastered. When

these are at least partially understood, one proceeds to

examine the properties and behaviour of more complex

assemblies of these elements. Conceptually at least the

methodology may be indefinitely extended to study ever larger

and more complex systems as built up in more or less

structured fashion from sub-systems and primitive elements.

In practice, however, the mathematical and other descriptive

tools used for such studies rapidly become unwieldy. They

tend to break down unless ae system is effectively

homogeneous, as in physics for example, or has a_ simple,

regular structure, as in crystallography. In general, the

properties of a system observed as an entity are not readily

discernible, nor do they follow easily from one's knowledge

and understanding of the attributes and behaviour of its

componenets. Despite the fact that one may be concerned with

global characteristics, these cannot be directly or totally

related to or inferred from elemental behavioural patterns.

11.1 (Eds) The Encyclopaedia of Ignorance was intended as a
guide to unanswered, but possibly answerable questions.
Invited econtrtbutions were asked to address a_ problem
area of thetr own chotce and to outline a problem to
whitch they did not know the answer.

First published in Encyclopedia of Ignorance, R. Duncan and M. Weston Smith (Eds),

PergamonPress, Oxford, 1977. Reproduced by kind permission of PergamonPress.

AXA

238 M. M. Lehman andL. A. Belady

Thus progress in revealing the nature of the physical world

has necessitated the development of newer methodologies’ that

do not rely on the study of individual phenomena in exquisite

detail. A system, a process, a phenomenon may be viewed in

the first place from the outside, observing, clarifying,

measuring, modelling identifiable attributes, patterns and

trends. From such activities one obtains increasing

knowledge and understanding based on the behaviour of both

the system and its sub-systems, the process and its. sub-

processes. Following through developing insight in

structured fashion, this top-down, outside-in approach leads,

in due course, to an understanding of, andan ability to

control, the individual phenomena but in the context of their

total environments.

The global, systems, viewpoint has been fruitfully

applied, directly or indirectly, in many areas of the natural

sciences. Epidemology, Genetics, Thermodynamics, and

Information Theory are typical areas of applied science where

the approach has yielded important results of both

theoretical and of practical significance.

In recent years, however, interest has had to increasingly

focus on, in Simon's words, [SIM69] the 'sciences of the
artificial', on the behaviour of systems created by man. And

people invariably constitute sub-systems or elements of the

artificial systems, if only by virtue of the fact that they

design, build and use them.

Naturally one has sought to develop a theory of and for these

systems in terms of the concepts, the techniques, the

languages, the mathematical tools of the epidemologist, the

geneticist, the thermodynamicist, or the information

theorist, for example. Further, after abstractions that

remove dependencies on the specifics of the original system

studied, one could expect to deduce observations or

hypotheses about systems in general. Thus a discipline of

Systems Science is developing and with it the sytems
scientist. His ultimate objective will be to isolate and
reveal those attributes of system behaviour that arise by

virtue of their being a system or some specific system.

2 systems

But what are systems? Many alternative definitions have been

proposed [ALE74]. For our purpose a system may be viewed as

a structure of interacting, intercommunicating componenets

that, as a group, act or operate individually and jointly to

11. Ingredient of System Behaviour | 239

achieve a common goal through the concerted activities of the

individual parts. We note that, in general, the partitioning

of a system into components is by no means unique. selected

components may be viewed as elemental or atomic but under

further scrutiny each will, in general, be seen to be itself

structured and to contain components that together satisfy

the definition of a system in their own right. The component

will constitute a sub-system of some other system or systems;

of its environment.

The Concorde is clearly a system in the sense of the above

definition. So are the total grouping of people and

equipment that co-operatively ensure the safe transportation

of the craft and its passengers, or of successive loads of

passengers, between points of departure and destinations. A

computer installation with its equipment and its staff

represents another class of systems; one in which the

perceived attributes and characteristics will be as much

dependent on the attitudes, skills and managerial decisions

of the staff as on the technical capabilities of the

equipment. Equally each of its sub-systems, the central

computer for example, is a system in its own right. Its sub-

systems, inturn, include storage, arithmetic, control and

peripheral access units.

3 system Measurement and System Models

Attempts to measure and express the performance of computer

installations in general terms have not been very successful

so far. Any measures must not refer directly to detailed

workload or machine characteristics. The sheer variety and

quantity of available data would quickly make the data and

its analysis unmanageable. Moreover, measures are often

desired to facilitate the comparison of alternative machines

or workload environments, or the installation at different

times and when some components will have inevitably changed.

Inclusion of detailed characteristics of the installations

and/or environments to be compared in the measures would, in
practice, invalidate the measure. Differences in measure

will in fact often be due to differences in characteristics

and/or to changes in the system that cannot be uniquely or

meaningfully quantised or ordered.

Thus we require to define system measures that are global in

nature. For example, we might determine the average turn

around time (interval between submission of a job request and

receipt by the requestor of the result of its execution) for

all jobs or for jobs of a particular class or type. This

440 M. M. Lehman and L. A. Belady

measure would depend both on machine capability and on the

performance of installation personnel. Given some further

measures that relate system performance to job stream and

environmental characteristics, one might then produce a model

of the installation of system behaviour at some point in

time. And given several such models one might arrive at a

generalised installation model and theory.

4 The Fmergence of a Problem

There is, however at least one snag to the meeting of this

objective. Both the environment that generates the workload

and the installation that executes it include people. Their

behaviour pattern (in relation to each other and the’ system)

depends on observation, interpretation of system behaviour,

and also on less tangible factors. The more complete their

understanding of apparent system behaviour becomes the more

will they modify the system or adjust their behaviour in

relating with and to the system, so as to obtain the closest

possible approximation to what is considered optimum

performance.

In general, as knowledge and understanding of an artificial,

man changeable, system increases we attempt individually and

collectively to modify the behaviour os that system. We

attempt to make it behave in some other, preferred, fashion.

The modification is obtained by changes to the system, to

usage protocol and so on. The resultant configuration is and

must be treated as a different system which requires a new

model to represent it. Thus artificial systems and their

models appear to be essentially transitory, continuously

evolving. Does this constitute anintrinsic barrier to
complete understanding and mastery of the system?

5 First Attempted Solution and its Critique

One might of course argue that in order to study the system

all change proposed in response to observed behaviour’ be

inhibited. Ina system model this would be represented as an

opening up of the representation of the feedback path that

permits humans to modify the system in response to observing

or experiencing its behaviour. However, if this is done, one

is now studying a different system. And this is not just a

superficial difference. This same feedback loop underlies

both system improvement and its adjustment to an ever-

changing environment. And adaptability, if it exists, is

perhaps one of the most important properties of a system.

11. Ingredient of System Behaviour 241

System adaptation and evolution reflects and results from the

mutual reinforcement of the system and its environment. In
non=-biological systems human observation, thought. action and
reactton play amajor role in forcing and guiding system

development and evolution. Thus, for example, a computer

installation in which procedures, the components or the

structure may not be modified in response to experience is an

essential part of managerial responsibility. An installation

in which all change is inhibited is in fact a dead or dying

installation. (11.2)

6 A Further Example

A further example may make the basic dilemma even clearer.

One of the biggest problems occupying the attention of

computer scientists is that of programming methodology. The

majority of those studying it, investigate the primary

problem of how programs should be created in the first place

[DIJ72b], [CTUR75], [CWIR71], [PAR72]. Others note the fact
that programs undergo a continuous process of maintenance and

change [BEL71b], [LEH74] driven by the evoltionary pressures
mentioned above. The dynamics of the resultant program

evolution can and are being studied [BEL76] for a variety of
environments and programs.

In these studies there have been a number of instances where

detailed numeric data has been available relating to the

progress of a programming project and the growth of the

subject program system [BEL76], HOO75]. In each case a
similar pattern of evolution has been observed, and

interpreted as a reflection of program evolution dynamics

[LEH76c]. This has permitted the construction of conceptual
and statistical models that reflect increased understanding

of the characteristics of program development and maintenance

and of the process whereby this is achieved. Consequently,

it has proved possible to develop techniques based on these

models for more precise planning and prediction of the

programming process in relation to a specific system.

In parallel with this development the insight gained from

these global, system-like studies of the programming process

has permitted the development of proposals for improvement of

programming methodology in general. But implementation of

these proposals immediately invalidates the models of system

11.2 (Eds) Thts ts, of courses the continuing theme of thts
book, but see particularly Chapters 2 and 4.

242 M. M. Lehman and L. A. Belady

behaviour since the system, the process, has changed, and

since it has changed in response to deductions that were made

from these very models. Similarly application of the

forecasting and planning data derived from a set of models to

modify the output of the system invalidates these same models

as representations of the programming organisation, its tools

and its activities that together constitute the system. If

the output of the models are accepted as essentially correct,

activities are reorientated and adjusted to conform to model-

based forecasts. The outputs from the models become a self-
fulfilling prophecy of the behaviour of a new. system. The
latter includes the old system together with some new

elements, namely the models, the model implementors, its

interpreters and so on. But paradoxically the models are

based on data generated from a system that excludes’ the

models.

At the other extreme, the output of the models may incite

activity to prove them wrong. This also leads to change in

the system and negation of the models. In practice the

stratagem adopted falls between these two extreme responses.

But the consequence is the same. The mere act of studying

the system leads to a change in the system which

paradoxically invalidates the earlier models. (11.3)

T Introduction to the Area of Ignorance

One may, of course, create a new model of the new system, a

model that includes the system model as an element of itself.

But, at best, this can only be achieved by applying an

iterative procedure. Will such a procedure converge? Can

it? Must it? Therein lies the problem, a problem that will

force an ultimate admission of ignorance. And we shall see

that this ignorance is not just due_ to insufficient

knowledge, understanding or wisdom. We have here an area of

11.3 (Eds) Ocecastonally one also observes the oppostte
effect, where belief and appltcatton of the model re-
tnforces tt. Thts ts likely to cause stagnatton, act as
a block to progress, as the models appear, more and
mores to be cast tn concrete, to represent a 'law of
nature'. A good example of thts ts to be found tin cost
models for software projects. If untntelltgently applied
they can become a total block to productivity growth by
setting false, unambittous targets, or by concentrating
effort on the tmprovement of factors that, witha new
technology orenvtronment are really untmportant or even
trrelevant.

11. Ingredient of System Behaviour 243

uncertainty and indeterminacy that has its roots in the
freedom of thought, of interpretation, of choice and of

action of mankind, individually and collectively. As such it

appears to be absolute and unbreachable.

8 The Relevance of Goedel's Theorem

An initial attempt to resolve the issue of convergence can be

based on Goedel's theorem. In simple terms the latter states

that one cannot prove the consistency and completness of an

axiomatic system using only the axioms and the rules of

inference of that system. Informally one can state that an

assertion about a system (and a model of a system represents

an assertion about the system) cannot be shown to be

absolutely true from within the system; by using only known

facts about the system.

Suppose now that we assume that there exists an absolute

theory for some artificial system. The latter could be

represented by an axiomatic model in which each part and

activity of the system reflects either an axiom or a theorem.

From Goedel's theorem it follows that the correctness of the

model cannot be demonstrated from within itself. That is,

the behaviour of the system cannot be predicted absolutely

from within the system. But demonstration of the validity of

the model, of comparing the predictions of the model with the

behaviour of the system, is an essential ingredient of

artificial-system behaviour. By its very nature such

activity is a part of the behaviour of the system as

represented in the model. Hence there does not, in this

respect exist an 'outside' to the model. Thus one cannot

obtain an absolute theory, a demonstrably correct model.

Attempts to include the model in itself must lead to non-

convergence. Ignorance about the total behaviour of

artificial systems is intrinsic to their very existence.

9 Uncertainty

In the above discussion we have gone one step beyond Goedel.

We have aserted that the very activity of proving its model

correct is itself part of artificial-system activity. Thus

there exists no environment external to the system from which

its total and absolute behaviour may be observed. Hence

exact system science is not knowable, is meaningless, does

not exist.

Over and above this theoretical limit there exists an even

more significant barrier to total knowledge of the state and

244 M. M. Lehman and L. A. Belady

behaviour of an artificial system. There is an essential

uncertainty which at all times implies some degree of

ignorance about the system. The situation can be formulated

in an Uncertainty Principle, analogous to that of Quantum

Physics. By measuring and modelling an artificial system we

increase the extent and precision of our knowledge and

understanding of its mode of operation. In general this

causes the system, the environment and/or the interactions

between them to be changed. Thus the more accurately we

measure the artificial system the less we know about its

future states, if we believe, as I believe, that in the

final analysis the humans or groups of humans that change the

system are unpredictable.

The parallel is of course not complete. Heisenberg's

principle arises from the fact that the mere act of

observation must affect the position and momentum of the

object being observed. Measurement, knowledge and change of

state come together, they are inextricably bound. In our

case, on the other hand, knoweldge appears to come first.

The system change occurs subsequently, after the information

gained has been digested and applied to 'improve' the system.

But the difference is a delusion. People are components of

the system. Complex artificial systems cannot be designed

absolutely correctly ab <tinitto (11.4). Observation and
modification are, in practice, intrinsic ingredients of

system operation. Therefore the very act of observation that

gives the humans in the system additional information about

the system changes the state of the system, ultimately causes

the system to be changed.

In the uncertainties of the exact sciences we observe paired

indeterminacies. Thus conjugate parameters such as, for

example, the position and momentum of a particle cannot, by

the very nature of things, be simultaneously determined with

absolute precision. But the product of the indeterminacies

can be bounded precisely. We know just how close to exact

knowledge we can get.

In the cae of the artificial system on the other hand, one

cannot (at the present time) predict with precision, what

will be observed, how it will be interpreted, what action

11.4 (Eds) In fact, in most tnstances the concept of
correctness, ts not strictly defined, the concern will
be with the behavtour of the system in the ‘real world'
and the satisfaction that it gives. See Chs 2, 18 - 22.

11. Ingredient of System Behaviour 245

Will be taken as a result. One cannot even determine the
State of the total system with any certainty by applying
probabilistic judgements as in Game Theory [NEU53]. After
all each situation, each sequence of events, will occur only

once. Thus for our case the uncertaintly is of a different

order of magnitude. To talk of absolutely conjugate

variables as measures is not meaningful. One cannot even

identify with absolute certainty, the totality of system

measures that are involved in any given measurement

activity. Far less can one determine an absolute and general

limit to the accuracy with which even the known measures can

be observed.

Are these uncertainties absolute? I think 'yes', but I do

not Know.

10 Continuous Evolution

It has already been observed that a system can in general be

considered as a sub-system of some other system. Amongst its

several implications the discussion of the last section

Suggests that every artificial system with its environments

forms such a family of super-systems in which the system

boundary cannot be clearly defined or confined.

Observation of system state, behaviour and performance by

humans in the environment leads to changes in the system, in

environmental-system interactions or in system usage. All of

these represent changes in the system itself, changes’ that

result from the unpredictable interpretation of the human

observer (11.5)

In fact as humans in the system and its environment observe

system behaviour they adjust their own responses, behaviour

and objectives to optimise utility in some sense. This

represents a change in system state. It also leads

inevitably to imposed changes in system mechanisms,

implemented in order to achieve more cost-effective operation

in the changed human environment. These changes also,

provide new opportunities for interface and envirommental

changes, that, for example, modify system behaviour and/or

11.5 (Orig) Note the tntrinste ectreularity here (as
elsewhere tn the paper). Unttl an exact model ts known,
observed behaviour must be interpreted and the system is
strictly unpredtctable. But wtf the system its
unpredictable, no exact model can extst. Hence no exact
model can be found by the Scetenttfie Method.

246 M. M. Lehmanand L. A. Belady

usage patterns. These in turn suggest and ultimately cause

renewed system state changes and so on. Thus we observe the

‘mutual reinforcement of system and environment', previously

referred to. It is the major cause of continuous’) system

evolution.

It may be true that there exists an optimum strategy for

system improvement, as we find with the minimax strategy of

von Neumann and Morgernstern [NEU53]. But such a_ strategy

merely maximises the minimum benefit. It can in no way lead

to an exact system theory, totally predictable behaviour, a

forseeable evolutionary path to a final state.

11 The Role of Human Thought and Action

Thus we arrive at a recognition of the fundamental factor

that appears to make an inexact science of the science of

systems, created, used and controlled by men. The evolution

of such systems depends on people's observations, thoughts,

interpretations and actions. Man's ingenuity to invent new

rules, new twists, new interpretations, new objectives, is as

unbounded as the language in which he expresses his thoughts.

[KOE71]. Total knowledge, the final state, can never’ be
reached. Ignorance must always be present.

This observation penetrates the core of the problems’ and

exposes an ultimate area of ignorance. If mankind's ability

and expression of ability were bounded, then perhaps’ there

could be an exact Science of the Artificial, despite some

difficult questions that remain unanswered and are perhaps

unanswerable. But if, as I believe (but cannot know), such a

bound does not exist [LEH74], then the theory of man-made
systems, of systems including people or operating in an

enviornment that involves people, can never be complete or

precise. How good can it get? That too I do not know.

CHAPTER 12

LAWS OF PROGRAM EVOLUTION -
RULES AND TOOLS FOR PROGRAMMING MANAGEMENT*

1 Program Evolution

1.1 Process and product dynamics

A basic assumption underlies current practice in software

engineering; the design, development, Maintenance and

enhancement of large computer programs and the management of

the groups of humans that undertake these activities. Though

seldom stated explicitly, planning and control techniques

implicitly assume that decisions, plans, project standards

and so onmay be based on an assessment or on measures of

current project, product and enviromental states. It is

assumed that, as for most other engineering activity, the

direction and rate of progress are a direct consequence of

management decisions in the light of current enviromental

conditions.

Recent work ([BEL76], [BEL77], [LEH77d], [LEH77e]) has,
however, shown that this is not, in general true for large

software projects, except possibly in their early stages when

the groundwork is being laid and project and product

characteristics determined. Once under way the overall

progress of such projects, whilst still subject to management

decision, is increasingly shaped by intrinsic project factors

that become ever more firm and dominant as the system ages.

Managers appear free to decide specific, local, issues in

ways which may in the short term guide system development in

the desired direction. But globally the pattern of progress

of the project tends to return to an historic trend whose

nature is largely determined by product and organisational

characteristics. The parameters of this trend are normally

not controlled and, in the current state of knowledge and

understanding, often not controllable. Thus for maximum

cost-effectiveness, management consideration and judgement

should include the entire history of the project with the

current state having the strongest, but not’ exclusive,

influence.

Reprinted with kind permission from ‘Why Software Projects Fail’, Infotech State of the

Art Conference. Copyright 1978, PergamonPress.

AA”

248 M. M. Lehman and L. A. Belady

We may, indeed must, regard the organisation developing and

maintaining a large program asa system in the system

theoretic sense [SUT75]. Its subsystems include both the

organisation of personnel comprising the project groups and

the program with its accumulated documentation. The former

is subject in its behaviour to human decision taking and can

be modelled only stochastically. The latter represents a

rapidly growing inertial mass and smoothing influence. The

combined system is itself a subsystem of the organisation

that provides the pressures and directives controlling

program evolution and use, andthe resources that make

evolutionary maintenance possible.

Observation has shown that the system behaves as ae self-

stabilizing feedback system. The practical implications of

this will be discussed later. At this point we merely assert

that being such a system implies the existence of a system

dynamics. Indeed it is the reality of such a dynamics

applicable to a wide class of project that constitutes our

most fundamental observation. It is its discovery through

measurement that has formed the subject matter of a previous

publication [RI0O76]. It is its formalisation in a series of
laws that we consider here.

1.2 Largeness

The laws to be discussed have emerged from a quantitative and
phenomenological study of the life history of a number of
large computer programs. Thus formulation of the laws has
had to be in terms of a property of Jlargeness.

This property is not intended to reflect the numbers of
instructions or modules comprising the program. Nor do we
refer to the quantity of documentation required or to the
program's resource requirements during execution. We do not
even intend to emphasise the wealth of function contained
within it. There is always a level of description at which
the function is recognised as an entity, a payroll program,
an operating system.

All the above mentioned measures of program size can be
expected to increase as a program grows larger in the’ sense
to be defined. But the defining property of 'largeness', the
root cause if the characteristics that large programs possess
and from which large programming projects suffer [BEL78], is

the attribute of vartety. A program is large if its code

makes provision for such varied, manifold, conditions that

the execution sequence may adapt itself to the actual

12. Laws of Program Evolution 249

condition of its variable operational environment whilst

running; ie, the requested output and the enviromental

condition, both in the execution system and in the user

environment.

A- program is large if it reflects within itself a variety of

human interest and activities. And if it does it is likely

to lie outside individual intellectual grasp. It will

require an organised group of people to design, implement,

Maintain and enhance its many parts. It is the connections

between the various parts of a program reflecting the

communtcatton between the variety of activities initiated and

controlled by the program in execution, the communication

within the implementing organisation, the communication

between the implementors and their product and finally the

communication between all these and the operational

environment that lead to the emergence of the ‘largeness'

characteristics.

The preceding discussion has related the attribute of

largeness to intangibles. We cannot measure or even define

the amount of variety ina system or the extent to which the

system lies within the intellectual grasp of a single

individual; or of a small group of individuals who are in

total harmony with one another. We cannot even measure the

extent to which a group or groups of people working jointly

on a program, a system or a system of programs, communicate,

or how adequately they communicate. To make the laws

meaningful, an operational definition must be devised that

delimits the range of systems to a class for which they can

be shown to apply.

The working definition currently adopted defines a program as

"large' if it requires, or is given, an organisation of at

least two levels of management for its development or

maintenance. When such a project organisation exists, the

phenomena associated with largeness will appear. A

management aware of the trend may however, be able to

mitigate against it, for example by adequate definition,

specification and control of the objectives, activities and

projects of individual groups and the interfaces between

groups. If only one level of management operates, appearance

of the phenomena may perhaps be avoided altogether. But that

is another story. Nor do we know whether and to what extent

a dynamics and laws exist for programs outside this class,

that is for programs that are not large in the sense of our

definition.

250 M. M. Lehman and L. A. Belady

2 The First Law

2.1 Statement - law of continuing change

A targe program that ts used undergoes continuing change or
becomes progresstvely less useful. The change process
continues until tt ts judged more cost-effective to replace
the system wtth a recreated verston,

2.2 Explanation

Any program is a model of some part or aspect of the real

world or of activity within it. The real world changes

continuously. A program that is to remain useful must

therefore be adapted to the environment it is intended to

model and serve. It must be continuously changed to keep
pace. The changes may be repairing faults, providing new
facilities or usage modes, supporting new application areas
or exploiting more cost-effective hardware. But be changed
it must or it will decay into obsolescence.

2.3 Consequences

The unending sequence of enhancement that software systems
undergo is thus not necessarily or primarily due to short
Sightedness or lack of planning. It is intrinsic to the very
being of a program. Therefore the need for change must’ be
taken into account at all stages of specification, design and
development. Changeability is, in the long runs as crucial a
factor in the total cost-effectiveness of a program as are
attributes such as its resource usage, speed or freedom from
faults.

2.4 Rules, tools and technological implications

The relationship of program structure to the verifiability of
programs and the attainment of correct programs is, by now,
widely understood. Structure is equally crucial for
changeability, and for the same reason. It makes a program
understandable by breaking it and the processes it controls
into meaningful parts and ina meaningful pattern. Each
partition as an entity and the pattern as a whole must be
comprehnendable by an individual [DIJ74]. If this is
achieved, the corresponding program text ceases to constitute
a large program since the individual may understand the whole
in a progressive manner, and understanding the whole program
and its parts is a prerequisite for successful change.

12. Laws of Program Evolution 251

But structure, whilst necesary for changeability, is not

sufficient. ‘Structure! in the sense used here relates’ to

the topological relationships - the general connectivity -

between substructures. It does not define the precise nature

of the link. From the point of view of changeability it is

essential that the links, as the tnterfaces between
Subsystems, (the pieces of the program), be completely
defined and their properties fully specified. Equally the

subsystems, as functtonal components of the program, must
also be fully specified. It is not, in general, sufficient

to rely on the fact that the code of each portion of the

program completely determines its effect during execution

subject only to the value of parameters at its defined

interfaces. Fach component must be explicitly specified to

express its transfer function, the intent of the designer and

implementor and the need of the application.

If a complete and correct specification of all parts of the

system is not available, it becomes impossible to foresee

fully the effect of any local change on other parts of the

program and therefore on the detailed behaviour of the

program in execution. It thus becomes difficult and

expensive, if not impossible, to change the program without

side effects that modify its behaviour in unplanned fashion.

To be useful specifications must however also be accesstble.
The purpose of a complete specification is to permit one to

answer ina cost-effective manner any relevant question about

the object specified. Thus to achieve general changeability

of a program as a whole one requires a structured

spectftcatton that permits ready location of all parts of a

program requiring modification so as to be able to implement

a required change without any side effects.

A true and complete method for developing and documenting

structured specifications does not yet exist. But the

techniques of successive refinement [WIR71] represent a

Significant step towards its evolution. Any such methodology

will provide an tmpltctit record of the internal connections
in a program. Interactions between two parts of a program

can arise only if there exists an explicit program object,
data, table, control variable, label, queue, and so on, that

acts aS a communication link between them. Therefore a

concordance explicitly listing all occurrences of all objects

represents an important tool to aid in the achievement of

full change control [LEH69] particularly if it is provided

with data for each level of refinement and a mechanism for

inquiry and search.

252 M. M. Lehman and L. A. Belady

Once the inevitability of continuing change is accepted a

further implication follows. Financial management of the

process must be based on life-cycle costs. Opportunities for

trade offs between the various stages of the process will

alwayS exist. It will always be tempting for the low level

manager to cut corners, saving time or resources to achieve

immediate results. subsequent penalties are overlooked or

ignored in favour of more immediate benefit but may be costly

in terms of product adaptability, project costs and the

achievement of organisational goals and profitability

targets. Only true life-cycle management can hope to avoid
this, and software life-cycle management techniques [SLC77]
are essential to successful long term software effectiveness.

2.5 Additional note

One might of course comment that this property of continuing

evolution is not peculiar to software systems. All

artificial systems [SIM69] must, like biological systems,

undergo adaptive evolution or gradually become obsolescent.

But software systems do so more rapidly in general and with

more marked consequences.

The reasons for this have been discussed elsewhere [LEH77c]

in detail. Here we merely note that the intellectual effort

required to design and plan a change is often not rated very

highly. Nor are the successive costs which are incurred from

inception to final, correct, implementation totally

attributed to the change which caused them. Thus the

apparent ease with which a change may be initiated,

implemnted in one instance of a program and then apparently

with ease extended to all other instances, leads to the

Situation in which change is superimposed upon change to

yield an ever more stratified and complex system.

That is, of course, in strong contrast to physical systems in

which changes are implemented via a re-design process in the

creation of new instances of successive generations. Thus

the problem of managing change needs perhaps more careful and

immediate attention in the software field than is required in

other areas of human enterprise. The experiences of the last

two decades amply supports this view.

12. Laws of Program Evolution 253

3 The Second Law

3.1 Statement - law of increasing complexity

As a large program ts continuously changed, its complexity,
whieh reflects deteriorating structure, tncereases unless work
ts done to maintain or reduce it.

3.2 Complexity

The concepts of structure, complexity and entropy are closely

related and, in the context of software engineering, all

imprecisely defined. There do not, in fact, exist generally

accepted definitions and measures such that one may, for

example, state the complexity of a program absolutely,

relative to an earlier version of itself or relative to

another program.

Within the context of Computer Science the term complextty
(of an algorithm or program) has been used with reference to
the number of steps required for a computation [RAB77].
Computational complexity undoubtedly has a relationship to

the complexity concerns of the software engineer. But it

does not adequately reflect all of the attributes of a

program that contribute to the difficulty of working on and

with a program so as to achieve required operational

characteristics. For example, measures of complexity of

computation weight the contribution of a looped or recursive

procedure according to the number of steps in the procedure

and the number of times it is executed. But from the point

of view of the engineer its complexity relates to the

semantics of the loop, its input/output relationship(s).

Once it or they are understood completely the number of

traversals is, in general, largely irrelevant. What is then

important is the static and dynamic relationship of each

procedure to the remainder of the program.

In other words, from the engineering point of view complexity
relates strongly to the macro and micro structures of a

program. The programmer and the user must be able to

visualise and understand the linkages between the various

parts of the program and of its code. Functional connections

will exist that represent, or (during execution) cause,
interactions between various aspects of the entity or process

being modelled or controlled. There will be relationships

that arise from programming convenience or a desire for

economy. Calls for the execution of a coincidentally

(almost) identical sub-sequence from different procedures, or

254 M. M. Lehman and L. A. Belady

repeated use of the same name for different semantic

purposes, represent examples of structural degradation that

increase the difficulty of understanding a program. Yet

computational complexity concepts do not involve these or

Similar system structural aspects at all.

The above discussion suggests that in a software engineering

context the term complexity is used to express the degree to

which a program is intelligible. It reflects the effort

required to deduce its transfer function, the totality of the

consequences of its being executed under any one of all

possible environmental circumstances. And we claim that this

effort depends primarily, though not exclusively, on the

extent and pattern of program interconenctivity; on program

structure.

With this view-point we may make a number of general
observations as follows:

% Program complexity is relative. An absolute measure of
understandability cannot be formulated.

% Program complexity is relative to a level of perception.
A program may be studied at, say, functional, subsystem,
component, module and instruction levels. The topology
or pattern of interconnections at each level will be
largely formed from a subset of the interconnections at
the next lower level. Fach will be a representation of
SsyStem complexity. Which one is selected will depend on
the objective of the study.

% Program complexity is relative to prtor knowledge about
the program and its use. In particular we may
distinguish between the tnternal, intrinsic and external
complexity of a program. The former we define as that
which reflects only the structural attributes of the
code. It expresses inversely the relative ease with
which a program may, Without prior knowledge, be
understood directly from the object text. A formal
definition would add the assumption that comprehension
of the semantic intent of individual statements requires
no effort.

For a well structured program the internal complexity
will be related to an tntrinste complexity that reflects
the variety, extent and interconnectedness of the

various aspects of the application; all parts of the

problem addressed by the program.

12. Laws of Program Evolution 255

External complexity is seen as an inverse measure of the

ease with which a program text may be understood when

read in conjunction with its documentation. In the

limit it would measure the difficulty of understanding

the code when accessible, complete and consistent

documentation that describes the intent of individual

code sections and their joint action in unambiguous

terms, is readily available. External complexity really

measures the remnant difficulty of understanding when

the program and its documentation are read and absorbed

sequentially. With well structured documentation,

however, the external complexity measure at one level is

likely to be closely related to the internal complexity

at a (the next) higher level.

3.3 Explanation

On the basis of this somewhat extensive definition we may now

explain the second law which is seen as an analogue, if not

an instance, of the second law of thermodynamics.

When a system change, a repair, a performance improvement or

a functional enhancement is planned and authorised, the

instructions to the implementors will include qualifications

that address objectives other than the raw functional

requirements. The directives could require the work to be

achieved at minimum cost, by a certain date, with minimum

performance degradation, maximum performance gain, minimal

use of additional resources during execution, or some

combination of these factors.

The one directive rarely, if ever, included is one requiring

minimisation of structural degradation or even just its

restriction to a specified amount. The latter can in fact

not be done since measures of structure do not exist. But

why should the former be so rare? The ultimate prupose of

all software change is economic gain, gain that can be

assessed on completion of the change in terms of increased
cost-effectiveness. The value of good structure is, however,

long-tern. It is an anti-regressive property [LEH74] whose

benefits are apparent only ina negative sense, in that’ the

system does not deteriorate, or that there is a comparative

absence of problems when the system is changed. As a long-

term investment,structural maintenance does not, and cannot,

figure very high on the priority list of the line or project

manager responsible for some specific implementation within

system evolution. Hence it tends to be forgotten or ignored

until it can no longer be overlooked.

256 M. M. Lehman and L. A. Belady

Only occasionally when decay has reached the point where lack

of structure makes further maintenance difficult, costly and

unresponsive, will so-called system clean-up be initiated to

restore system maintainability. During other changes,

especially those that implement features not considered when

the basic desing was laid down, structure will inevitably

deteriorate, and the system will decay.

Other effects are also present. In any enhancement process

the larger or more revolutionary changes will be delayed.

Often the need for them will arise only late in the life of

the system and when more subtle changes have taken place in

the environment. The liklihood that a desired change matches

system structure naturally or can be designed to fit it

without serious degradation, decreases with system age. This

effect is further aggravated by the superimposition of

changes on one another. The net result is reflected in the

second law.

3.4 Consequence

The direct consequence of the law is a continuous increase in

the difficulty of maintenance and enhancement; a sequence

that is broken only by specifie action to restructure. The

cost and time per unit of work, the number of remnant faults,

all increase. Measures of attributes such as performance and

quality are likely to deteriorate. Management may, of course

be able to counteract and avoid deterioration through the

application of additional resources, but cost and time over-

runs will inevitably result [BRO75].

Sooner or later the rectification of the problem will require

structural restoration through re-design of at least the

worst components or through recreation of the entire system.

In either event further system evolution will be delayed

while the structure oriented work is undertaken. And this
work must address both the code and its documentation. The
second law applies to both in equal measure.

3.5 Rules, tools and technical consequences

The rules that follow from the second law must now be self

evident. It is not sufficient to create a program using the

techniques of structured programming. Structure must not

only be created but most also be maintained.

It does, however, remain a matter of managemnt choice whether

to follow a strategy of continuous or discrete structural

12. Laws of Program Evolution 257

maintenance. That is, one could demand that each and every
change to the system must be so designed that no. structural
deterioration results. Where this is impossible some other
additional change would be desirable just to improve the
Structure in some respect such that the net Change is zero or
even positive. Such a strategy could perhaps be viable but
will certianly be difficult to plan and control under
economic and user pressures and while structure is neither
well-defined nor adequately and readily measureable.

Alternatively one may ignore the structural consequences’) of
individual changes and plan for or accept the necessity for
periodic restructuring. The latter will then represent a
time during which progress and even response to urgent user
needs will be difficult and costly.

It is not possible to demonstrate that either of these two
Strategies is in general to be preferred from the economic or
the technical point of view. We note, however, that
irrespective of the strategy or combination of strategies
followed, the net proportion of resources needing to be
applied to structural maintenance increases with time

[LEH74]. Thus it leads inevitably to a limitation of system
size and a need for total system recreation. It also

provides one more reason for emphasising the need for life

eycle oriented maintenance.

The observations and models of evolution dynamics [BEL77a]
provide a tool for the monitoring of complexity that can act
as a guideline for the planner. Measures that have been

derived and others that are under investigation can be used

as indicators of complexity growth [LEH77a]. They define
planning objectives and can assess the degree to which a
prepared plan conforms or transgresses complexity limits.

4 The Third Law

4.1 Statement - law of statistically regular growth

Measures of global project and system attributes are
eyeltcally self-regulating with statistically determinable
trends and tnvartances.

4.2 Explanation

It is of course this law which, without the benefit of
hindsight, is so unexpected; perhaps even unreasonable.
After all, the power to take decisions that determine the

258 M. M. Lehman and L. A. Belady

course of the project, the content and frequency of new

releases, the sequence in which repairs, changes and

additions are made, the rate at which they are to be under-

taken, the resources applied to system maintenance and growth

are all subject to management planning and control, albeit

with some dependency on one another and on external facotrs.

All this is true. Yet measurement of more than six large

programs of different types, treated and maintained by quite

different organisations reveal, in general, the same pattern

of behaviour. Well defined long range trends of various

parameters, regular cyclic variations about the trend line

and certain invariances can be clearly identified and

determined. Much of the data has been discussed elsewhere

(eg, Ch 19, this book). Thus here we only refer to the
observations ina general way.

The characteristics of the data have directly led us_ to

postulate the third law. In addition the data provides

qualitative and quantitative support for the other laws.

Each of the systems observed has grown, and therefore changed

Significantly, ina fashion totally consistent with the first

law and the concepts outlined. Continuous change as asserted

by the first law has occurred in all the systems observed,

despite major differences in environmental circumstances and

the period of its life cycle over which each system was

observed. It has also proven possible to identify and

evaluate an approximate complexity measure. The fraction of

modules changed or handled in each release is seen as an

indication of system interconnectivity, a complexity measure.

For three of the systems the available data clearly supported

the second law. It showed a dominant trend of increasing

complexity though with a strong two to three release-cycle

period as in Figure 1. The same measure applied to a fourth

system strengthened the earlier conclusion. The architecture

of this system was significantly different from that of the

other three,in a way that makes the complexity measurre as

conceived irrelevant. It is therefore (with hindsight) not
Surprising that for this system the complexity measure did

nots. in fact, show an increasing trend [LEH77e]. On the
contrary it yielded a cyclic variation around a constant or

slightly decreasing fraction, as in Figure 2. We now realise

that this is precisely what should have been expected with

this measure for this architecture. For the two remaining

systems for which detailed data is available, the complexity

measure as defined could not be evaluated and no alternative

measure has yet been formulated.

12. Laws of Program Evolution 259

F
r
a
c
t
i
o
n

o
f

m
o
d
u
l
e
s

h
a
n
d
l
e
d

F
r
a
c
t
i
o
n

o
f

m
o
d
u
l
e
s

h
a
n
d
l
e
d

0,50 =

0.45 —

0.40

0.35 4

a a?

a7
0.30 + A” ao UY

f ‘ od 7

/ . “ 4

_ / \ “ Y

/ ‘\ “7 y
0.25 = 7 ‘ 2 4

, \ a ‘ ~e /
/ ‘e oo / ~~ Sy’

—_ / ” ,

/ 7 \ /

0,20 ~ / a ‘. f

4 , “7 ‘

~” J \ ad ®

, \ a“;
0.15 = (x7 7

= & \ /

\/

0.10 + . System A

0.05 -

—_

0.00 TTT Tt ti

0 100 200 300 400 500 600 700 800 900 1000

Age in days

1.04

-_ —

V- lm

0.8 + po

9
~ Lo

“ay
4

0.6 = Yd
ao

a“
onl wv

L

0.4 = . a

ie /

4oetha\ / System T
vith uy
eur tov,

LGUNS Y0m
towel

qi°3
:

o

0.0 TTT TT TOT 4
6] 500 1000 1500 2000 2500 3000 3500 4000

Age in days

Figure 1 Increasing Complexity

260 M. M. Lehman and L. A. Belady

1,07

0,87

3 : System B
3
S
%
“< t
uM 0.6 7 h
u f
~ i
5 ly
oS i
Q - !
E 1 !

Ww ry i I

° | it | t Ic 0.4 + i V\ \ 1 ft N ‘
5 . v\ ry en i \\“4 ii fo Prody oy a Hy i!
v eto 8 Pyort gy WN \O , tf \ i riya ty EA ami , tf \ ; 3 I i} 1 \ 1
G 2 | yy ; ! Pyy i \ 1is sop 4g Voy Vb yp vl y \ {

,! Vy \/ yt i \! \ rtan Vy re

7 Moor ap
O.2- | boy a \! i |

\ sy \ Vi
‘ J : Vy

» 6

0.0 v 1 ¥ J v J ¥ 1 v y u

0 10 20 30 40 50

Release sequence number

Figure 2 Inappropriate application of

the complexity measure

The fourth and fifth law to be discussed later are similarly

Supported by the avialable data. We should in fact’ stress

that each of the laws so far formulated was first suggested

by study of the available data. Only afterwards was each law

given a phenomenological interpretation and seen to be

reasonable in the light of our growing understanding of the

programming process.

4.3 Interpretation

The third law is unexpected because it is counter-intuitive

in terms of general understanding of the management process,

and of the power of the individual manager. But, once

observed, it is easily explained in terms of several

complementary phenomena. Using terms from other areas of

science, we identify them as the ‘inertial, momentum and
feedback effects.

12. Laws of Program Evolution 261

Space does not here premit a full explanation and we must

restrict ourselves to a brief outline.

Inerttal effect

As a program increases in size its complexity (by the second

law) and the probability of error also increase. But program

code is unforgiving. Any error will cause incorrect

behaviour when encountered in execution since for a given set

of executing mechanisms the program has a unique

interpretation. Moreover because of the high rate of

execution, any error is likely to be encountered sooner or

later. They should therefore be avoided, or eliminated as

early as possible in the change process’ [FAG76]. But the

implications of any change are often widespread and often

obscure. Major effrt must therefore be exerted and applied

to avoid or eliminate all error and to implement and complete

a change in such a way that the sytem settles down once again

to satisfactory behaviour.

Once a program exceeds some minimal size it therefore reacts

to change like an inertial mass. It imposes a pattern of

behaviour that can be locally modified but that offers great

resistence to major change. We suppose that it is this

inertial effect of the code that makes a programming project

behave somewhat more like a process following the laws of a

natural science than do other socio-economic systems.

The momentum effect

A program that satisfies our definition of largeness will be

supported by a significant organisation with a substantial

budget. Moreover it will itself play a major role in the

organisational pursuits of its users. All of these together

constitute economic and sociological investment and a

behavioural pattern and trend that can generally be changed

only slowly.

In addition a program is changed only through the actions of

people. The identification of potential for change, the

management decision process, the design of change, its

implementation, integration and verification are all human

activities. All engaged in these activities form habits and

practices that strengthen both the inertial and momentum

components of project and program evolution.

262 M. M. LehmanandL. A. Belady

The feedback effect

Both the inertial and momentum effects play a significant

role in determining program evolution dynamics. But it is

the feedback effect that is most directly observable and

gives each system its characteristic features. The

management and implementation of change in the programming

process leads to an organisation and a process dominated by

feedback. In one organisation that we analysed in some

detail we were able to identify at first glance some twelve

major feedback paths that maintained and controlled the

direction and momentum of the process.

We suppose that such feedback loops exist in any large

project. The majority are negative in that they tend to

Stabliise the process, to implement checks and balances. As

a result, the main tendency is towards the appearance and

maintenance of stable long range trends, as is indicated, for

example, by the emergence of invariances as discussed under

the fourth and fifth laws. Such stability is, of course, not

surprising. Most large programs are owned and managed by

large organisations. By their very nature such organisations

are dedicated to stability. They wil inevitably develop

control procedures that generate corrective action to ensure

long range stability that helps attainment of corporate

goals. |

Other negative feedback influences also exist. Suppose for

example, that programmer productivity is increased. This

might be achieved by the use of programming tools; terminals,

higher level languages, on-line program files and immediate

execution facilities, for example. Each of these will appear

to make it easier for the programmer to generate code.

Unfortunately, unless carefully trained and rigorously

controlled, this will tend to cause the programmer to think
less about the program being generated, and to use trial and

error rather than intellectual effort. The net result will

be more code, but also more errors, less documentation and

less structure. And all that in turn will slow down the

integration and validation process in the factory or in the

field. That is, the net contribution to overall, life-cycle

productivity is likely to be minimal or zero. Many other

such examples of stabilizing feedback could be cited. The

one must suffice.

But all is not stable. Positive feedback loops also exist.

Change generates change, improvements lead to the need for

more improvements. Poor structure leads to obscure code

12. Laws of Program Evolution 263

which in turn leads to even poorer additional code. This

effect, if overlooked or left uncontrolled, can lead to an

explosive situation that may ultimately cause the project to

fail.

4.4 Rules, tools and technologies

The law we have stated simply asserts that certain regular

trends exist ina large program project. It is based on

detailed study of a number of very different systems stemming

from widely separated points in the implementation

environment and usage spectrum. This latter fact, in

conjunction with our interpretation of the law as expressing

natural properties of the implementation enviromment as a

self-stabilising feedback system, leads to certain rules for

successful project management. These include recognition of

the fact that the trends may be overcome temporarily by

management action. Once appreciated and understood, they can

perhpas also be permanently changed. But responsible

management demands that the possible consequences of

deviation from process and system trends be considered and

allowed for if a successful project is to be achieved and

maintained.

By a successful project we mean one that produces’ the

required product with predetermined properties by application

of predetermined and controlled resources according to a pre-

planned schedule. In other words, a successful project has

two distinct phases or a sequence, possibly overlapping, of

such phases. The first phase is that in which the project is

planned and evaluated in both a technical and economic sense.

In the second phase the plan is implemented. For example, a

program is written or changed. The results of the evolution

dynamics studies as expressed in all our laws, but most

generally in the third, have relevance to both phases.

In the firt instance management should accept as a fact that

its project and product has, or will develop in the course of

time, certain natural parameters and trends [LEH76b], LEH77].

secondly, they should attempt to understand why the’ trends

occur and how they may be overcome. They will observe, for

example, a growth trend that can be modelled by some function

of time or of a pseudo-time variable such aS a sequence-

number. The model will be an accurate predictor of the long

range growth trend unless management can take informed and

successful action to modify the system parameters. Even in

the absence of such positive action the system may be made to

deviate temporarily from the trend curve with deviation that

264 M. M. Lehman and L. A. Belady

consists of both a cyclic and noise component. But then the

inherent feedback effects will soon restore the status quo.

Unfortunately, for most systems, there will not be sufficient

data points to permit a rigorous statistical analysis and the

estimation of a complete model. But in all our experience

the trends have been clear and the cyclic variations have

shown measurable regularity. In such circumstances’ the

trained observer wishing to check a current project or to

determine a reasonable growth target for some future change

sequence may do so with confidence that he has been neither

under-ambitious nor over-confident. This is of course

subject to the condition that enough life-cycle history on

the particular system has been collected so that the trend

model and the variation about it has been established and

numerical guidelines determined.

Similar measures have been observed for complexity change

patterns, for incremetal growth per release and for work

rate. Other parameters relate, for various types of changes,

to such factors as numbers of existing system elements’ that

need to be examined and the number requiring change per

system element added. Still others provide a numerical

assessment of global fault appearance rates.

The parameters develop during the early stages of project

establishment and system development. They can be determined

with increasing confidence using statistical analysis as_ the

evolutionary maintenance process continues and can be used in

the manner outlined above for project planning and control.

They act as checks on management estimates of work and time

required and as a guide to the development of an achtevable
plan.

It will now be asked why management must ever accept the

limitations implied by the identified parameters. should

they not be seen as a challenge to be overcome? Cannot

normal management practice steer a project in any desired

direction at any required rate?

The history of many major software projects provides’ the

answer [BRO75] (12.1). But it is nevertheless our conviction
that the evolution dynamics studies will lead to an

understanding of the process that will permit its significant

and permanent improvement.

12.1 (Eds) The reader ts referred to Chapter 18 for a more
complete discussion of the answers to this question.

12. Laws of Program Evolution 265

One of the properties of a multiple loop feedback system is

that any local change of forward or feedback characteristics

is unlikely to produce any significant change in the

externally observed performance. Feedback via the other,

unchanged, paths will ensure that. However, if by chance a

Significant change is nevertheless achieved it is likely to

be experience either as a decay process or as instability.

Both of the latter responses to process change are generally

not cost-effective and are highly undersirable. Thus real

improvement can only follow understanding. In the first

instance we must accept the system as it is.

In summary then we may assert that the intrinsic non-linear

feedback structure of any programming organisation and

process together with their inertial and momentum properties

Suggest the following:

1 Apply the techniques of specification and structuring as

recognised by the wider programming community.

2 Measure project and system parameters such as_ those

described in the published evolution dynamics literature

and estimate project models, modifying them as new

information comes to hand.

3 Use the models to plan further evolutionary maintenance

using both long range and cyclic trends (but see the

next point below). Where technical or business
considerations make it appear desirable to exceed

the identified bounds, allowance must be made for

deterioration in quality and/or time and cost over-runs.

It may however be possible to avoid these effects by

appropriate preparation such as clean up, or overcome

them by subsequent corrective action.

4 The activity of model identification and interpretation

should yield increased insight into and understanding of

the programming process as practised locally. If this

is achieved, it may be used to improve the process

gradually, to yield more cost-effective parameters,

increased productivity for example.

In summary, organisational and project characteristics cannot

for long be forced along arbitrary directions or at arbitrary

rates if these happen to be counter to intrinsic trends

[BRO75]. Wishful thinking and management edict can never be

more than temporary panacea. In the first place facts must

be accepted as they are. Measurement and analysis can then

266 M. M. Lehman and L. A. Belady

provide a guide to attainable commitment and also the insight

subsequently to permit permanent improvement of the process.

5 The Fourth Law

5.1 Statement - law of invariant work rate

The global activity rate in a large programming project ts
tnvartant.

5.2 Explanation

This most surprising of results is in fact the best founded

of all our observations made for each of the systems. To

make it meaningful, however, the terms 'programming activity

rate! ('twork rate') and ‘invariance’ must first be clarified.

We state right away that measures of the resources, for

example man-hours, applied to the system do not yield a

measure of the rate at which work is executed on the program.

One of the surprising results is, infact, that none of the

growth or change rates observed correlate in any way with

manpower or other resource expenditure rates. This suggests

that large programming projects tend to operate in a

Saturation mode where a change of resource or of staffing

level, while still keeping everyone busy, has no perceptible

long range impact on evolutionary characteristics. The

evidence to hand does not yet permit us to postulate a law

that adequately abstracts this observation. But confidence

in its reality is strengthened by the success of the so-

called chief-programmer team concepts for project

organisation [BAK72], [IL76].

What then are the measures of global activity and activity

rates to which the law refers? For several of the observed

systems, data has been available for each dated release of

the number of modules changed or handled to achieve the new

release. For another system the number of changes

incorporated in each release has been recorded. Some of this

data is shown in Figure 3 as a cumulative plot of modules

changed or handled, or of changes made as a function of time.

The overwhelming impression of these plots, confirmed by

Statistical analysis, is one of linearity. That is, the

average rate of activity as measured by these parameters has

remained constant despite changes in definition, programming

and management experience, tool support, staffing and

resource levels and so on.

12. Laws of Program Evolution 267

This constancy is the invariance to which the law refers. We
note that it is an average rate since the rate from release
to release or from period to period varies Significantly.
But such a periodic variation where a high rate release,
higher than average, has a high probability of being followed
by a low rate release, lower than average, iS precisely what
could be expected (with hindsight) from a self-stabilising
feedback system. Too high a rate of work will probably cause
less careful design, sloppy implementation, more errors, less
documentation, tired programmers. The inevitable consequence
is a period of difficulty with some attempt at clean up,
during which time the work emphasis is on the rectification
of errors, shortcomings and structural and documentation
deficiencies. Hence it prepares the system for a further
period of high-rate working. And so on.

such a cyclic pattern is clearly present in the data. We
have also observed that module based measures show a more
consistent pattern than do trends based on either
instructions or on changes. This too is not Surprising since
on the one hand individual statements, unlike modules, have
little logical independence. Absolute changes on the other
hand represent a much more variable work load than do modules
changed or handled. It is these module-based activity units
that have given the most consistent results so that we now
use them exclusively in our planning applications. We have
accepted the observed cyclic invariance as reasonable,
interpreting it as the reflection of a self-stabilising work
rate. The net invariance then indicates a highly stable
system. The question still arises, however, of why the
global rate should have remained invariant over a period of
technological advancement and major system growth. As we
have already stated, the answer to this lies in the very

nature of the large organisations that develop when large

programs are produced, maintained and used. In particular we

assume that the main drive is always for increased production

and profitability of one sort or another. Increased

productivity in one programming area is, however, often most

easily achieved at the expense of decreased productivity in
another, at another time [LEH77f], with the connection
between them escaping notice. It is precisely this type of
relationship that leads to long term stabilisation or even
decline. However, when higher management becomes aware of
Such a decline, it will divert funds from progressive invest-
ment in product development to anti-regressive investment in
technology and tool improvement [LEH74]. But however well
intentioned such investments are at the time they are made,
to whatever extent they are then seen as necessary and

M. M. Lehman and L. A. Belady

Cumulative modules handled Cumulative modules handled

-
14000 -

a
700 y

JZ
7 ”7

wr
é 12000 = “600 =

/?

x7
7/ a

7 7
500 « 7 10000 ~ ,

yo
,

c 8000 as400 4 7 »
¢

¢

ra ve300 ~ 6000 = ?
yf Wal

7 A/ f
* 4000 uf200 iV s

/ Y
Z

7y
”

1004 3% System A 2000 + yh System B
wy” ,

/

0 CTO 0 T rT T T T co.
0 100 200 300 400 500 600 700 800 900 1000 0 400 800 1200 1600 2000

Age in days Age in days

Cumulative modules handled
Cumulative changes 35000 = vid

”
7

30000 ~ fo
4

7
800 =

a
, <

7 25000 3 7:JZ
AO

a”

vo ”600 aan 20000 7 yt
7 7

as °
/

oo
yo

. oo“ 15000 + y
400 = v7 vw

a”

“” «4
7 2Ue 10000 > 4. ?a“

?,°
a” “ rf200 = Ut‘ System P «yste 5000 - 2 System T

fe

y’

0 Ott OPT root TTT
0 200 400 600 800 1000 1200 0 800 1600 2400 3200 4000

100 300 500 700 900 1100 400 1200 2000 2800 3600

Age in days Age in days

Figure 3 Invariance of global work rate

12. Laws of Program Evolution 269

expedient in maintaining - or improving - productivity, the

time will come when the status quo has been restored. Then

all methodological work is seen to absorb funds that could be

"better' invested in product development. so the work is

stopped, funds are switched and the cycle proceeds.

This phenomenon has been observed in at least two programming

organisations. We feel certain that it explains the overall

constancy of the work input rate for all our’ measured

Systems. Nevertheless, we cannot explain precisely why the

result should be a simple invariance rather than some other

well defined trend.

5.3 Consequence

As observed above, one should expect that sufficient

understanding of the program evolution process as a feedback

network will permit a permanent change of work rate.

However, the fourth law based on our observations suggests

that wise management with a desire to meet planned objectives

would, tn the first instance, accept the limitations implied
by the invariance with possible variations as determined by

the cyclic pattern. From time to time business or other

strategic considerations might make it exepedient to force a

pace outside the rates identified by the historic trend. But

this would then be done with a full awareness of the

infringement and its likely consequences. Now any competent

manager planning a spurt of activity to reach some specified

target would plan for ae subsequent period of lower

productivity to allow for corrective action; for the recovery

of both system and personnel. What the evolution dynamics

investigations have achieved is to measure and to size the

net effect, taking into account all the influences, known and

unknown. Thus it provides a technology and a tool.

5.4 Rules, tools and techniques

Any manager will intuitively resist the suggestion that there

exist limitations to what can be achieved, particularly where

additional resources are available for application to the

system. But when managing the maintenance and enhancement of

large programs, experience as now formalised in this fourth

law denies him this possibility, except perhaps in spurts

that must then be compensated for. Thus the guiding rule

must be to live within the possibilities established by an

analysis of project history.

270 M. M. Lehman and L. A. Belady

Evolution dynamics studies have developed a technology that

permits one to measure and to size the stabilisation effect

in any project. It yields planning constants and guidelines

whose observances will permit the setting of functional goals

that can be met without cost or time over-shoot. The rules

and limitations arising from this and the other laws, if

consistently followed over the project and product life-

eycle, will extend product life and prevent sudden project

failure. Once again we may emphasise that they will also

lead to developing insight that must eventually lead to and

permit improvement of the process, the achievement of a

consistently higher work-rate for example.

6 The Fifth Law

6.1 Statement - law of incremental growth limit

For reltable, planned evolutions, a large program undergoing
change must be made avatlable for regular user executton

(released) at maximum intervals determined by tts net growth.
That ts, the system develops a characteristic average
tnerement of safe growth whtch, tf exceeded» causes quality
and usage problems, wtth time and cost over-runs.

6.2 Explanation

This law cannot yet be formulated as precisely or concisely

as the earlier ones. The system behaviour and data on which

it was based is amongst the earliest identified. Yet only

recently have we begun to understand its significance and

generality. Available space permits only a brief summary of

the previously published data [BEL76] [LEH76b], [LEH77e].
This has enabled us to demonstrate the phenomenon for’. the

three systems for which the appropriate measures were

available.

Each displays a steady average growth rate (different for

each system) of say N, modules per release. The actual

growth increment Noi has varied cyclically from release to

release. That is, an above average growth in one release is

almost invariably followed by a below average increment in

the following release. The actual levels are subject to

management decision and therefore contain a stochastic

component. However, management must clearly be influenced in

the planning process by feedback effects reflecting both the

pressure for additional growth and the inevitable

consequences of changes and additions implemented in previous

releases.

12. Laws of Program Evolution 271

The most striking feature of the data is, however, not the

well defined average increment N, and the regular cyclic

pattern. Detailed behavioural records are so far available

for only one of the systems studied. But for this system

each release with incremental growth exceeding eN., suffered

from serious reliability, performance, delivery and cost

problems. Moreover each such release was followed by a

fission process during which part of the system was removed.

This produced a negative growth increment for the following

release. The net result was that the average incremental

growth remained essentially unchanged.

Just as previously noted for the invariant work rate factor,

management disregard of the intrinsic growth rate limitation

may be temporarily successful, permitting a release whose

incremetal growth exceeds the recommended maximum. But

subsequent events force a restoration to the historic

pattern. And as in the previous case we see the pattern as a

consequence of feedback effects, represented in this case

primarily by environmental reaction to the consequences of

excessive growth.

How may the overall effect be explained? Why do we have such

confidence in its generality to feel able to formulate and

propose it as a law?

The first four laws have been seen as the net consequence of

many individual decisions and actions. They lead to

statistically regular behaviour whose detailed parameters are

determined by inertial and feedback effects. The fifth law,

on the other hand, is seen as a direct reflection of the role

of the individual in the design, implementation, usage, and
change of large programs. Naturally, however, observation at

a global level tends to reveal the average individual

response.

When encountering a system change, each individual, whether

as designer, implementor, salesman or user must understand

that change in the context of the system and of system

behaviour as a whole. The absorptive ability of people

varies. But each incividual can only absorb a limited amount

of new infomation unless, and until, he achieves’ the

familiarisation that results from running and using the

progran. That is, the degree of understanding and

appreciation by each individual involved, of the full

significance and consequences of the changes and addition to

a system, will decline rapidly once it exceeds his absorptive

limit, unless an opportunity exists for using the system;

072 M. M. Lehman and L. A. Belady

working with it as a living entity. We believe that’ the

facts observed and described by the fifth law are the

consequence.

6.3 Consequences, rules and tools

It may be that in future more complete understanding will

permit determination of the quantum growth limit for an

organisation and a system. It could be expected to depend on

the nature of the large program application, on detailed

system function and structure, on the languages used, on the

level of experience and So on. One would hope to be able to

estimate the optimum increment froma knowledge of the

environment and to improve it through use of appropriate

design and implementation techniques.

But at the present level of knowledge and understanding, it

becomes desirable and advantageous for both long range

strategic and immediate tactical planning to monitor and

measure a project during its early releases and to establish

a de facto factor. Once estimated it would then be used as a

guide for release planning.

It is of course not necessary to restrict individual releases

to an incremental growth of Ng. A growth exceeding 2N

Should, however, not be permitted unless there are soli
Strategic considerations for doing so and accepting the
consequences - at the very best a greatly extended release

interval. The time allowance that is needed may, in fact, be

determinable out of a historically established, statistically

determined, unfortunately non-linear, relationshop between

required release interval (stabilisation time) and

incremental growth. Moreover, even where the increment can

be held to be less than aN, one must accept the fact that the

following release Should be restricted to a growth

proportionally smaller than Ny if major problems are to be

avoided.

In summary, study of the per-release growth history of a

system can produce a set of indicators that play a direct

role in determining release content. In conjunction with the

other indicators they can help to make the evolutionary

maintenance process more manageabel and more predictable.

12. Laws of Program Evolution 273

T Conclusion

In the above we have summarised a seven year study by

proposing a set of five laws. These abstract and express the

common set of phenomena and behavioural patterns observed on

seme six large programs whose history has been studied.

These programs together span the spectrum of application,

usage and implementation environments. Clearly they

represent only a small sample. But taken in conjunction with

universal experience in the development, maintenance and

application of large programs it seems highly probable that

our observations and the conclusions therefrom represent a

class of fundamental truths. The behaviour is a complex

consequence of programming methodology, software engineering

and economic and sociological factors. Presentation of our

interpretation and of the data that supports it has had to be

condensed so as to achieve a reasonably complete coverage.

Some of what has been written is conjecture rather’ than

established fact, but if that serves to stimulate observation

and discussion that is all to the good.

We believe that the existence of program code provides a

smoothing effect on the socio-economic structure represented

by a large program project. This results in the regular

behaviour that we have observed, measured, modelled,

interpreted and described. By extending the study to more

systems and parameters we may hope to devleop a more complete

theory. The latter would in turn increase the number and

accuracy of the management tools available to plan and

control the programming process. Perhaps more improtant

still it would increase insight and understanding of the

process and so permit its significant improvement.

Finally, we must briefly ask 'What of the future?'. Do these

laws represent a fundamental block to system size and to

programming productivity or can they be overcome? The

question has been discussed elsewhere [LEH74], [LEH77b],
[LEH77¢c] and the conclusions reached can only be summarised

here.

Basically it is likely that the laws as postulated will apply

to all large systems that are structured and integrated like

present day large programs. However, application of improved

programming and management methodologies including those that

follow from the evolution dynamics study, should yield

greatly improved system parameters. LSI and microprocessor

technologies, together with effective program and interface

specification and control will yield large systems

274 M. M. Lehman and L.A. Belady

constructed out of well specified active elements

interconnected via standard interfaces. In this way the

large program problem will disappear at the level at which it

is presently encountered. Whether it will re-emerge at a

higher level is a matter for future generations. We may help

to prepare the ground now for its avoidance or for a more

Simple solution.

CHAPTER 13

STAFFING PROBLEMS IN LARGE SCALE PROGRAMMING*

1 Introduction

In all software projects, whether operating systems or large
application packages, the following phases of distinct
activities can be identified: firming up the requirements,
translation into system specifications and decomposition into
major components, design of components, programming and
debugging, system integration and test, operation, and never
ending maintenance. :

It seems fairly obvious that people of different backgrounds,
expertise, temperament and expectation should populate the
distinct phases. For instance, bold creativity and keen
curiosity may be essential for system design, but could be
detrimental in negotiating requirements with a demanding but

naive customer, or in performing routine maintenance.

The above sequence of expert activities appears reasonably

Simple. However, matters become somewhat more complex if one

considers that some specification or design choices cannot be

made without an exploratory implementation (13.1) or

rudimentary programming. In this case results obtained ina

later phase must be fed back to an earlier one, and this

cycle may repeat itself.

Phases thus do not form a simple 'top-down' sequence of work

activities in increasing detail; first global decisions, last

the code. Rather, the process seems inherently iterative,

eventually converging on a final structure in which the basic

parts, ie, program modules, gradually take shape. After this

point the inverse of decomposition follows: pieces become

collected into ever larger units, interspersed with

intermediate and final system tests, from which occasional

warnings are fed back to the design decision makers. And the

last phase, maintenance, becomes the perennial source of

request for modifying original requirement, design and

implementation.

13.1 (Eds) 'Prototype' in current parlance.

Reprinted with kind permission from ‘Why Software Projects Fail’, Infotech State of the

Ast Conference. Copyright 1978, Pergamon Press.

275

276 M. M. Lehman andL. A. Belady

The complexity of this process may be expressed in terms of

the normalised cost of a 'debugged' piece of software, which

now stands at around $120 per statement. Since this cost,

except for the computer-time-consuming test phase, is almost

entirely that of human effort, proper staffing is of primary

importance in reducing cost by eliminating waste. Waste is

generated by the wrong match of job and people; whenever

people are idle due to unexpected delay in another phase or

to poor planning; whenever an extra iterative cycle is

induced by too hasty decisions; whenever unnecessary

complexity slows down an otherwise routine project activity.

Many models and methods have been published, some claimed to

be universally valid in predicting the manpower need

distribution over the entire life-cycle. Instead of

describing these methods here, we simply recommend that

organisations carefully analyse their own past project

activities or learn from similar projects, and then use the

gathered data to predict and improve future projects. Even

if precise values may not be carried over from one project to

another, trends often can. The Program Evolution Dynamics

work by L A Belady andMM Lehman is an example of

systematic project monitoring. But let us now turn our

attention to the first major problem of manpower

specialisation.

2 Decomposition of Software Systems

We wish to distinguish between large collections of programs

and large software systems. Programs of a collection serve a

Single purpose, yet communicate with each other infrequently

while running on a machine, as do parts of a program support

package, eg a set of compilers, simulators, editors and other

utilities. In contrast, the components of a large software

system, while running, make frequent use of each other's

services and data. Often the software is the only means of

coordinating otherwise independent hardware apparatus: an

operating system is an example. Our interest here is limited

to such software systems.

Against a fixed environment and given enough time, an expert

could perhaps construct and gradually debug singlehanded even

the largest of known programs. Time soon becomes a problem

though and, as can be shown by extrapolating productivity of

complex one-man projects, the job would take decades or more.

In a realistic situation, however, requirements are not fixed

and more than a couple of years' development time is rarely

tolerated. More people are thus employed following the time

13. Staffing Problems in Large Scale Programming 277

Proven principle of subdivision of labour (13.2). In what
follows we shall consider systems whose development keeps
organisations of at least two levels of management busy for
years. In these organisations heavy demand to coordinate
activities, constant changes in the environment and
commitment to tight schedules are the way of life and appear
to dominate the process. The result is the increasing
formalisation of many procedures and plans whose
documentation is considered utterly unnecessary in a small
team. In order to control the exploding bureacracy, the
independence of components, ie, the conversion of a software
system to a collection of programs, becomes the acknoweledged
goal: the less communication between system components, the
more independently can they be developed (13.3).

Nevertheless, the association of system components and

branches of the human organisation must be done painfully

early, when the system hardly exists. There is no time later

to adjust the component boundaries which by then are firmly

established among organisational groups and product parts.

3 Specialisation of Knowledge

Programs written by individuals or by small teams are, more

often than not, manifestations of widely known computations,

Sometimes riddles, or other procedures. Examples are sorting

algorithms, the eight queens problem inventory control.

These problems can often be related to document’ studies:

relevant understanding and even solutions exist prior to

programming. The programmer then acts as the translator of

human thinking to computer procedures, much like an artist

capturing projections of reality on some medium.

In contrast, during software devleopment and largely due to

the strong tie between man and project, new information is

generated: the exclusive product knowledge. While creating

Operating systems, for instance, entirely novel problems must

be solved quickly. The result is that the solutions remain

known only to the designers who, lacking time for

documentation as usual, keep this knowledge for themselves,

13.2 (Ortg) Fred Brooks [BRO75] expertly discusses the
phenomenon of why doubling manpower does not halve
development time. We wtll not cover this non-linearity
here. |

13.3 (Ortg) With respect to the problems of system
decomposition, see the studtes of DL Parnas, GJ Myers,
L L Constanttne and others.

278 M. M. Lehman and L. A. Belady

inaccessible to others. Even worse, knowledge may become

further fragmented and restricted to non-communi cating

individuals. Only the development and subsequent teaching of

software system science and methodology, as opposed to

programming technology can solve the major problem of large-

scale software: understanding and clear representation of

solutions should precede system construction.

Decomposition of the product as described earlier is not

always sufficient, and an extra dimension of labour

subdivision is necessary. This is the assembly line

approach, which has been so. successfully employed in

manufacturing processes. In software terms the rationale

appears as follows: system architecture, or high level

design, is a speciality: detail design thus becomes the task

of another team which subsequently passes the specified

system building blocks or modules to the coders. Machinable

modules then become recollected, and integrated into

increasingly large units by separate teams at each stage, and

finally the entire system is tested by the experts of this

particular activity. Everybody is specialised in a given job

and several systems or system versions flow along this human

chain at a high rate. By the time of integration the

designers have long forgotten the product being tested and

are busy creating and learning the next. The fallacy of the

assembly line is that it works only where product knowledge

is irrelevant to quality, independence of elementary

operations is possible and processes are unambiguously

specified. Furthermore, only local skill is needed to

perform the activities well, and no choices are to be made,

no relationships to be observed; these problems must be

resolved prior to the set-up of the assembly line which then

works well.

In software, process knowledge is about designing, coding,

testing, and integrating programs, as well as managing these

activities, while product knowledge is the understanding of

how programs work individually and in cooperation with each

other. Broadly applicable methods have been developed for

the former, while product knowledge remains very difficult to

generalise, teach, communicate, or even preserve, due to lack

of easy 'externalisation', ie representation of ideas. This

makes the accumulation and subsequent application of past

experience also difficult. Literally, we have to rely on

‘internal! knowledge residing in the heads of project

participants. The quality of important system attributes,

such as performance or usability, instead of being expressed

as requirements against which the evolving system can be

13. Staffing Problems in Large Scale Programming | 279

checked at different stages of the process, remain only hopes
based on past excellence of the team. Given this situation
it is doubtful that the assembly line is the right approach.

4 ‘Staff Requirements of Maintenance and Redesign

We have thus far discussed that development manpower must be
subdivided if rapid development is essential. The
Subdivision has been shown to be effected by the combination
of the early decomposition of the software into workable
components and of the specialisation of process functions.

The coordination of activities, which are thus fragmented

along two dimensions, presents serious management problems,

further aggravated by the fact that development continues

beyond the first customer shipment date: an endless system

evolution follows which is a mixture of further development

and repair-like activities. We shall call all product

modifications which occur after first system delivery,

maintenance, as distinguished from design, even if

maintenance has the flavour of design. We list below the

major constituents of this perpetual maintenance process.

First, the system is far from being perfect and its use in

real life soon gives rise to a never ending stream of

malfunctions, observed and then reported back to where it was

generated. second, the inventive spirit is always alive,

resulting in constant attempts to improve by system

developers, and in introduction of new apparatus by hardware

designers. There is ample evidence that product enhancement

continues virtually forever. Finally, the very use of the

system enlightens customers to present the manufacturer

additional requiremnts for convenience, capability and

function. The ultimate software product is the bit string on

the tape from which it is loaded into the machine, in order

to bring the computing system into dynamic execution. As we

can now see, the string itself is not static either:

maintenance as defined above keeps it ina constant flux

indefinitely. |

Product flux is not unique to large software. For example,

we could view the development of the automobile, at least

confined to one manufacturer, the evolution of a single

system over several decades. An already well developed

tanker aircraft actually evolved into the first successful

commerical jet liner which has since been continuously

improved. The history of computer hardware might be

Similarly characterised. These cases demonstrate, in

general, that new desing is considered a major investment and

280 M. M. Lehman and L. A. Belady

it seems cheaper to change something than create it from

scratch.

Software is perhaps too easy to change but, paradoxically,

very difficult to change predictably. While modification of

a piece of hardware is quite visible and usually requires the

cooperation of several persons plus often massive equipment,

software modifications are hard to monitor: usually paper

and pencil suffice in the privacy of a single programer.

Moreover, changes may make necessary additional changes

elsewhere in the system which frequently remain undone. This

appears even more serious since, following observations made

on several large systems, the extent to which the

modification spreads tends to increase as the system ages.

For systems consisting of modules as building blocks’ each

modification will, on the average, involve more modules than

its predecessor did.

Another special software problem is that repair is actually

not repair at all. While hardware physically deteriorates

due to wear, corrosion or fatigue, and repair is then defined

as the replacement of the component in order to bring the

system back to its original state, the elimination of

software malfunction is performed by changing away from

designed or constructed state. This often leads to redesign,

further reducing product stability, and brings up the next

problem: who should maintain software?

As we have seen, a stream of change requirements is

continuously generated during the entire life of a piece of

software. Since repair is actually a series of engineering

Changes, the designers are the best candidates to perform the

corresponding modifications. They can then select the best

fix such that it be the most localised. If secondary changes

are introduced, the designers' intimate knowledge of the

product is indispensable to make the original system

structure prevail. Unfortunately, employing designers for

redesign is a luxury which cannot be afforded.

The system maintenance period is so long that the spirit of

the original staff cannot be sustained by the often trivial

modification activities: people need more challenge.

furthermore, system designers represent a valuable resource

needed to design next generation products. The experience,

the acquisition of product knowledge which is not formally

teachable, makes the designers of the old the architects of

the new. This double candidacy creates an expert bottleneck,

leaving maintenance often unstaffed.

13. Staffing Problems in Large Scale Programming 281

Eventually, however, the maintenance crew must be staffed.

Since its members cannot possibly have as high a level of
product knowledge as the designers do, the system should be

kept simple and clearly documented: the more unstructured

the system, the more deterioration of structure will take

place during maintenance. Lacking the necessary product

knowledge, maintainers usually select those changes which are

the easiest to implement and, under’ schedule pressure,

disregard preservation of clarity and structure.

5 Productivity in Programming

By classical definition, productivity is the useful output

per unit cost of human activity. The (at least approximate)

estimation of productivity is obviously useful for planning

purposes. But even more important, measuring productivity to

compare groups or individuals, or as a basis for reward, is a

significant motivator.

Fred Brooks in his book 'The Mythical Man-Month' [BRO75]

points out in some detail the problems related to

productivity, centered around the observation that in

software projects, as in many other human endeavours,

productivity decreases as the size of the team increases.

In other words, the next member's contribution to team

productivity will be lower than the average of the original

team. The usual explanation is that a large part of team

work is communication and that intra-group communicatin

demand increases more than linearly with group size.

This points to two potential remedies: the reduction of the

information necessary to communicate and the improvement of

communication efficiency. To achieve the first, one should

be able to identify pieces of work, ie software components,

which can keep individual designers,implementors and testers

busy without the need to exchange information among each

other. Relying too much on independence could be dangerous

though, as available error statistics testify (13.4) the
majority of design faults are omissions, which suggest that

vital information could be missing or not available to

designers.

The most important contributing factor to efficiency of

communication is the right selection of people. The era of

the isolated whizz-kids in programming is fading; openness in

revealing solutions, even problems and difficulties and total

13.4 (Orig) Sees for example, M E Fagan's work

282 M. M. Lehman and L. A. Belady

visibility of all components, documentation and sketches to

anyone for the asking are absolutely esential. Accordingly,

formal inspections, exposing large structural charts on the

wall, or hiring extroverts all reduce the intra-group

communication problem.

The most frequently used dimension to measure programmer

productivity is the amount of finished code produced per unit

time (or unit cost). The associated problem is widely
recognised: although productivity mesures are supposed to

motivate for cheaper programs, clever programmers invented

the other method of increasing the productivity as a_ raito,

namely by increasing the numerator. More code for the same

software function appears as good as a smaller module

produced faster.

This has disastrous effects; not only do we have a_ larger

product, and one which consumes more space and perhaps

execution time, but we msut carry into’ the endless

maintenance phase a bulkier and certainly more complex

program, with a probably more than linear cost increase. The

productivity measure, originally meant to be a motivator,

becomes counterproductive.

An interesting proposal, at least for program modification,

is to reward the removal of instructions more than the

addition of new ones. This scheme recognises the extra

intellectual effort needed to replace, rather than simply

add, program pieces, And it also conforms with the advice:

hire people who love simplicity; reward any reduction of

complexity, even if this contradicts traditional productivity

measures.

6 Additional Challenges

We have seen earlier that, for large software such as

operating systems, maintenance is separated from development,

and another distinct organisation responds to error reports.

Many such errors are expected to be reported, requiring

immediate action, and the size of the organisation is

comparable to that of the developers. We have discussed that

the maintainers often lack system expertise.

Nevertheless, right after system or new release delivery,

service, ie maintenance, actually performs a task which

appears to be the extension of the system test phase. At

present, testing is a rather sparse sampling process, since

real life use patterns are hard to predict and, even if

13. Staffing Problems in Large Scale Programming 7 283

known, cannot be represented by a test load of manageable

size. Real operation becomes then the test run and the

maintainers become the crew which must bring the system into

its final shape.

The major problem with this way of testing a young system in

particular is that a significant portion of the discovered

errors have their origin in design, thus spanning a long

iterative development loop. The teams and their work

involvement are widely separated in time and space, even on

the organisation tree. The already mentioned lack of clear

system representation methodology, so indispensable in the

maintenance of complex machinery as, for instance, aircraft,

further aggravates the situation. Nonetheless the system

must be fixed at all cost, though fixes, like the original

system, are not perfect. It was observed that, as time

passes, an increasing portion of errors is traceable to

earlier fixes. Fixes become thus more complex and diffused,

impacting a greater number of modules. Accordingly, more

people become involved and interference between fixers

increases.

As in the case of executing programs concurrently, several

concurrent fixing processes during system evolution require

careful synchronisation, which should be based on product

knowledge. But synchronisation of widely separated teams is

difficult, so the attempted solution is another system test

to find how coexisting fixes influence system behaviour.

This brings us back again to the problem of the

insufficiently representative test load. Nevertheless’ the

changed system will be delivered to the customer's shop where

residual erros will interfere with regular operations.

It is therefore not surprising that the customer is selective

when offered another version with new fixes. While he

experiences a reasonably smooth operation, why should he give

up satisfaction for uncertainty? In a multi-customer

Situation, for example, the new fix could be a response to

error discovered by another customer’ while, due to

differences in use pattern, the same error may never surface

elsewhere. This general reluctance to accepting new versions

creates a variety of distinct systems and extra headache for

the service organisation.

Consider modules as basic building blocks, perhaps’. several

thousands in number. For the manufacturer’ the ideal

Situation is that of well-spaced releases and ready

acceptance of fixes. In this case, there is only a single

284 M. M. Lehman and L.A. Belady

version for each module at any given time, even ina system

with many installations. With selective customers, however,

who occasionally reject the incorporation of new fixes, some

modules must have several valid versions: the most recent

one, as well as one or more predecessors which may still be

actively used at some installations. The predecessors cannot

be invalidated, documentation and bookkeeping thus

Simplified, since the old versions still participate in the

environment against which further errors could be reported

and their repair requested.

It is easy to demonstrate the explosion in the number of

module versions. Assume that an error is discovered, say in

module A, in the presence of module B. Under some

circumstances it may happen that module A cannot be fixed

such that its single new version satisfies two or more

systems each having a distinct version of B. Note that

multiple versions of A must be offered even if only one

installation reported the error. Every customer wants to be

prepared against erroneous system behaviour discovered

elsewhere, even if he rejects the corresponding fix.

The manufacturer wishing to control complexity will therefore

try to force customers to accept unwanted fixes, by

constructing a dependency network which contains all fixes

made to the system. He can declare, for example, that a fix

may be added to the system only if accompanied, or preceded,

by a given set of other fixes. The additional task of

creating and updating this network, which also reflects

business considerations, presents an extra burden to the

fixers, ie the maintenance organisation. It is not clear

what kind of background of experience suits best this type of —

work.

T Customer Involvement

The need for good relations with the customer is not

restricted to maintenance. There is evidence that with the

best systems the customer participted in the early

requirement and specification phases of the project and

remained in close touch during the entire life cycle.

The 'man-on=-the-moon' project, for example, depended on the

cooperation of many subcontractors, some of them in

programming. It was soon learned to spend quite a period of

time, up toa year, on the requirements and specification

phases of large software packages, in the form of a dialogue

between the parties involved. Eventually, the so-called

13. Staffing Problems in Large Scale Programming 285

"base-line' system was reached, with an associated agreed-

upon cost. Any subsequent deviation from the agreement,

whether induced by unforseen factors or mutual alignment

among several subcontractors, was always formally treated:

original docuemnts updated, extra cost, if any, negotiated.

This method worked so well that it was suggested that for

projects without an obvious, easily identifiable customer, -

often the case for operating systems - at least a '‘'virtual'

customer should be appointed to play the role of ae real

customer with 'need, money, and authority’.

It was also observed that system programmers, quite remote

from the marketplace, often feel uneasy about their lack of

'feel' as to what, ina developing product, is consisered by

the customer improtant and what is not. Slow rotational

exchange of field and maintance personnel with in-house, and

often isolated, developers more than likely helps to

alleviate this problem and eventually everybody will have had

the chance to work closely with the customer.

8 Experience and Education

Experts agree that the single most important characteristic

of a team programmer or professional software engineer is

love of simplicity. However, the most capable and brightest

programmers often love complexity, perhaps to exercise their

cleverness; and if there is not enough complexity present,

they create some artificially. This results in non-

modifiable, impossible to maintain programs; and to make the

situation even worse, by the time the system is in operation

our creators are already busy to build the next generation

monument.

The solution is not to exclude the bright but gently blend

them into the team of all professionals, to create an

atmosphere of balanced inventiveness. Every project presents

a wealth of tough and juicy problems anyway, asking for

decent solutions. But the spirit must be that of

engineering: innovative application of already tested ideas.

Another frequent mistake is the rapid promotion into

leadership, based purely on technical capability. Excess

curiosi ty of the very bright often leads into virgin

territory, away from established methods which are required

to refine the product and to increase systematically its

quality. The best way to use the ‘whizz-kids' is in

advisory, consulting and trouble-shooting positions.

286 M. M. Lehman and L.A. Belady

At present there is not enough evidence as to which academic

discipline serves best the staffing of large software

projects. Since programming is difficult to teach, and team

programming even more so, the best policy seems to be the on-

the-job training of the college educated, preferably from an

engineering school. But even more important is the

preservation of know-how which can be acquired only by doing

actual system work. Promote those who are willing to

transfer, and utilise their experience by moving them with

the product, into sometimes less glamorous jobs, eg, putting

the system into operation, redesign and tuning. However,

resistance to this is likely since it is easier to abandon

the just created fragile system and then to turn to the next

challenge than to be involved in a somewhat more repetitious

activity.

At the other end of the quality spectrun are the '‘error-

prone’ programmers. If they fail ina series of projects,

they should be reassigned, away from the positions of easy

access to design or modification. Remember: modifying

software is easy, but difficult to do well.

The major message is that experience with novel, complex

systems is an investment, which must be preserved and

rewarded, in order to help the product survive its required
life cycle. It is wrong to think about programmers as

general purpose, interchangeable components of a development

and maintenance process.

However, formal education must also be continuous.

Programming, as other crafts, is habit forming. New tools or

techniques are then ignored, their acquisition resisted.

Management should not be too parsimonious with the education

budget. Courses on programming and system technology must be

offered, otherwise old mistakes, bad structures, wasteful

programs become perpetuated. And the mandatory formal

courses should be complemented by slow rotation of personnel,

thus introducing into the experienced team the young who

learned new methods without the burden of first having to

unlearn the old.

10 Team Spirit and Communication

As we have seen earlier, some software projects contain a

large component of novelty: new problems are answered by

fresh solutions; new methods employed, and all these

summarised into new concepts. Not surprisingly, new words

solidify into a jargon, spoken and understood only by . the

13. Staffing Problems in Large Scale Programming. 287

team, whose members are in daily contact with each other and

with their work.

This furthers intra-team communication and warms the spirit

to the benefit of the project: a more efficient process and

a better quality product are likely to result. The great

problem is, however, that 'externalisation' of the newly

created knowledge is almost impossible. The novel methods

and the innovative aspects of the product will be fully

understood and appreciated by team members only.

While within-team communication is efficient and half-words

exchanged suffice, describing the product to the user, for

example, becomes an immense problem. But communication

within the project also suffers: other teams of documentors,

implementors, testers and maintainers remain essentially

ignorant about the system. The only obvious cure is to move

knowledge with the people: let some developers work with the

designers, testers with implementors, etc, to help

individuals feel at home in more than one ‘subculture’.

This people transfer often seems the only viable method of

coping with the even more difficult situation of

geographically dispersed projects. Given the present

Situation of lack of adequate design representation

methodology, we must move people who can solve problems and

fix the system if necessary, even if unable to explain it to

an ‘outsider’. It is therefore important to have staff who

are willing to travel on short notice. In cases of

international operations familiarity with foreign languages

and customs is also an asset, particularly if combined with

planned rotational assignments.

In a rapidly changing, high technology field, there is

perhaps never enough time to decode, formalise and translate

the adhoc jargon developing locally; we have no choice but

to live in this Tower of Babel and transmit knowledge not

from skull to skull but by infusion into the team, and mixing

the very people who develop both product and jargon.

CHAPTER 14

THE CHARACTERISTICS OF LARGE SYSTEMS*

1 Scenario: The Nature of Largeness

In his survey paper on software engineering [BOE76], Barry
Boehm observes that "... as we continue to automate many of
the processes which control our lifestyle - medical
equipment, air traffic control, defense systems, personnel
records, bank accounts - we continue to trust more and more
in the reliable functioning of this proliferating mass of
software", :

This very brief statement summarises the intrinsic

environmental circumstances that have given rise to the
large-program phenomenon and the associated software crisis.
Mankind today, as individuals, as nations, asa_ society
places more and more reliance on the mechanisation, using
computers, of an increasing variety of applications. The
latter interface with, control and are controlled by, ever
more complex human organisations and activies; and all
interact with one another within the operational

enviroments, often in an unpredictable manner [LEH76]. The
computing mechanisms are embodied in an increasing variety of
equipment of ever greater power and speed. The resultant

complexes of machines and their application-oriented and
System-oriented programs or software, are conceived, created
and maintained by people increasingly remote from the
application, from the operational environment, from the
mathematical and progamming skills demanded of early
practitioners, and from the management skills required by the
controllers of human activity in the days before automation.

In the early days of computers a programmer, usually a
mathematician, scientist or engineer, was presented with a

problem. He was able to identify algorithm(s) for its
solution. The details of the program subsequently written
would depend on his choice of algorithm, on his skill as an
analyst and programmer and on the particular set of
constraints arising out of the environment in which the
program was written and out of that in which it was
subsequently to be executed.

Reprinted with kind permission from Research Directions in Software Technology. Copy-
right 1978. MIT Press.

289

290 M. M. Lehman and L. A. Belady

The application developer might recognise that in certain

circumstances the preferred solution and its program

embodiment would fail; would produce a result that was at

best less than optimum, at worst incorrect. Failing such

programmer perception one would expect that, at best, the

machine would detect the circumstances in execution (for
example an out-of=-bounds number). At worst the computation

might complete and the error would be detected subsequently,

with consequences that could range from the inconsequential

to the very costly. Whatever the case the exceptional was

taken care of by human intervention.

With one problem solved the individual or group pursuing some

responsi bility would encounter other areas ripe for

computerisation. Thus in appropriate instances (and some-

times in not so appropriate instances) programs would be

written with even more of the overall activity becoming

computer based. But the human remained as the link between

the separate computations. Still other humans were

responsible for administrative tasks such as scheduling the

various runs, the allocation of computing and other resources

to successive applications.

All those involved in the processes described above soon

realised the potential for expansion through encapsulatton;

the binding of the separate activities into a single larger
program. The potential benefit was clear: less human effort

(man is a lazy animal); tncreased speed and cost-
effecttveness through the elimination of human intervention
which must inevitably involve loss of machine resources;

increased reliability (sic) of the machine and of machine
processes. So why not let the program take care of all

exceptions; why not let the program recognise and sequence

the succession of activites; why not let the computer handle

the administrative problems of language transformation,

resource scheduling and allocation, information storage,

communication? Eneapsulate as much as possible within a

Single program structure. Create comprehensive programs.

Add bells and whistles. And so it was done. More and more

was included. The large program had arrived.

The adjective large as used here, the concept and attribute

of largeness that we now develop and characterise, is not
intended to reflect the number of instructions or modules

comprising a program. Nor do we refer to the size of its

documentation, or to the program's resource demand during

execution. We do not even intend to emphasize the wealth of

function contained within it. There is always a level of

14. Characteristics of Large Systems 291

description at which the function is recognised as an

entity, a payroll program, an operating system. The amount

of functionality is relative to a level of discourse.

All the above indicators of program size can be expected to

increase aS a program grows larger in the sense to be

described, but the root cause of the characteristics we shall

identify is related to the concept vartety. A program is

large if its code is so varied, so all-embracing that the

execution sequence may adapt itself to the potential variety

of its operational environment: the specific input, the

requested output, and the enviromment during execution. A

program ts large if it reflects within itself a variety of

human interests and activities. And if it does then it will

essentially lie beyond the intellectual grasp of a single

tndividual . It will require an organised group of people to
design, implement, maintain and enhance it. And it is the

communication between the variety of activities implemented

in the program, the communication within the implementing

organisation, the communication between the implementors and

their product and finally the communication between all these

and the operational environment that lead to the emergence of

the largeness characteristics which we discuss in much of the

remainder of this chapter.

2 Phenomenology: Measurement in Software Engineering

The preceding section has related largeness to variety, the

degree of largeness to the amount of variety. The variety is

that of needs and activities in the real world and their
reflection in a program. But the real world is continuously

changing. It is evolving. So too are therefore the needs

and activities of society. Thus large programs, like all

complex systems, must continuously evolve. Alternatively,

they can only fall into obsolescence and uselessness [BEL76],
[LEH74].

We discuss the continuous evolution of large programs,

perhaps the most fundamental of their characteristics, in a

later section. It is introduced here to provide a focus for

the data and data interpretation that is first presented to

demonstrate that our discussion represents reality and not

abstract philosophical musings that have little relevance in

the hard-nosed world of applied software engineering.

Moreover, we hope to convincingly demonstrate that the

identified characteristics are intrinsic to the use of

computers. If this is accepted, two important conclusions

292 M. M. LehmanandL.A. Belady

follow: firstly, until it can be changed, we must accept the

world - in this case the programming environment - as it ts

and not treat it as we would like it to be. Limitations that
arise from characteristics we do not fully understand, far

less control, must be accepted unless and until they can be

changed. Secondly, we can only hope to change and

fundamentally improve the software engineering enviroment -

the world we work in and the products we create and maintain

- when it is understood; when its characteristics and the
causes or mechanisms that underlie them are identified.

This problem of system understanding and mastery is not new.

All of the natural sciences have been built and continue to

develop on the basis of a common methodology. The universe

or system of interest is observed. Gross entities, patterns

of behaviour, are recognised and global measurements made,

until regularities, patterns, trends, invariances are

observed. Only then are models and supporting hypotheses

created. These in turn form the starting point for a

developing theory that relies on prediction, experimentation

and further observation for the gradual evolution of the

theory. In parallel, there will emerge an experimental and

applied science which, in response to societal needs and

efforts, leads to an engineering technology.

That is, the initial development of any science is

phenome nology-based. It is not in the first place built, as

is mathematics, on abstract concepts, axioms, that are
gradually developed into a total structure of models’ that
pass tests of reasonableness and elegance. A formal
framework and axiomatic theory follow when basics are clear,

when it is known what is fundamental or critical, and what is

fortuitous. Indeed, even mathematics itself has developed

from observation of relations in the real world. Thus the

study of software engineering too can benefit from

phenomenological studies. The topic has arisen because of

bitter experience in developing and maintaining large
systems. Hence, we are concerned about a more precise

characterisation of large systems. We must begin by

providing some initial data that can set the scene.

3 Some Data: Traditional Indicators

A first indication of the magnitude of the phenomenon may be

obtained from data and forecasts on programming expenditure

and the programmer population. Table 1 presents a fairly

recent projectton of trends in the software industry [SILT].
It projects an expenditure growth by a factor of two every

14. Characteristics of Large Systems

Projected Programming Expenditures

293

Table 1:

DP INDUSTRY GROWTH

USA! % of GNP World!» % of GWP-

1970 21 2 28 9
1975 44 3 56 1.4
1980 82 5 111 2.2
1985 164 8 223 3.5
1990 328 13 44s 5.6
1995 656(?) 21(?) 890(?) 8.8(7)

1 1970 US dollars in billions
2 Understated because Eastern Europe and USSR not included

Table 2: Projected Programmer Population

US COMPUTER & PROGRAMMER CENSUS

Computers Programmers p/c!

1955 1,000(?) 10,000(?) 10(?)
1960 5,400 30,000 5.6
1965 23,000 80 ,000 3.5
1970 70,000 175,000 2.51975 175,000 20 ,000 1.81980 275,000 80 ,000 1.74
1985 375,000 640,000 1.71

294 M. M. Lehman and L. A. Belady

five years from 2% of the United States GNP in 1970 to over

20% by 1995. Table II from the same source indicates the

expected growth in programmer population. Note the implied

decline in the number of programmers per installed computer

as indicated in column 4. We question however whether’ the

projection really takes into account the proliferation of

microcomputers or the large program characteristics that form

the theme of this chapter. Thus the actual growth of the

programmer population may well be larger than that projected

in the table. In any event, the magnitude of the educational

and organisational problems in the management of programming

projects arising from even the indicated growth is clear.

We have been unable to uncover statistics that indicate how

expenditure and programming effort have been divided up

between small individual programs - whether application or

system - and what we shall classify as large programs or

program systems.

Table III provides data for a series of systems that are

typical of their respective functional areas. The reader

will be well aware from his own experience that this small

list of 'large' programs could be multiplied many hundreds of

times. For each system we give a size measure in statements

(instructions plus comments) for one release where each

release corresponds to a version of the system as it is made

available to the end-user community. The age of the system

at release time is measured from first release to the end-

users.

Manpower data is notoriously difficult to obtain. Moreover,

data definitions and mode of collection differ from

organisation to organisation. Yet it seems desirable to

provide some indicator of the effort that goes into software

development and maintenance [BEL71b]. We found on several

systems data pertinent to the number of modules modified

between consecutive releases. This number divided by the

length (measured in days) of the inter-release interval
yields then a convenient normalised measure of effort: the
modules handled per day. In earlier publications [BEL76],
[LEH77], we have shown how maintenance effort remained
constant at about 11 modules per day handled, over the life
time of the IBM 0S/360 (370) opeating system. The
corresponding figure for DOS (also constant) was about six.

A major military stock control system, intermediate in size

between OS/360 and DOS/360, for which we have recently been
able to study data, experienced a constant module handle rate

of about eight per day. For another manufacturer's OMEGA

System age # (Statements) Language
System Release # (years) x 10° 2 (Modules) Used

OS 360 21 6.5 3460 6300 Assembly

DOS 360 27 6.0 ~900 2300 Assembly

A Banking System 10 3.0 45 - Algol

Electronic Switching

System SPI 20.4 4.0 178 - Assembly

Electronic Switching

System SPC-X3 18 3.0 . 212 - Assembly

Building Society

Accounting * § 150 SOO Assembly
Table III: Size indicators of different software systems.

* In this case, there is only one installation serving 80 users.
concept is not applied and instead changes are incorporated as developed
or tested. About 150 have been incorporated in the system per year over
its lifetime.

The release

296 M. M. Lehman and L. A. Belady

operating system a rate of about 0.8 modules (of a different

size) handled per day was observed over a period of four

years. Finally, in the banking application system of Table

III the rate of making changes appears to have been constant

at about 0.75 changes per day over a three-year period. We

hypothesise that this essentially stable work-input rate,

which in each instance appears not to have changed despite

improvements in languages and methodologies used and changes

in resources applied, will be found to be an almost universal

feature of the programming enviroment.

With this observation it becomes clear why productivity is so

difficult to define or measure in software engineering. It

does not represent a meaningful, controllable parameter in

the classical, industrial sense, but is determined by global

system and environmental properties that, at present, lie

outside our experience, understanding, or control.

Nevertheless, in Table IV we provide an illustration of the

programming rates achieved. The variability as a function of

program type is also well illustrated by the data which shows

that the programming rate for the structured and relatively

Simple language processor is some four times as high as it is

for the much more complex control programs. We do not here

attempt to analyse this data further. Clearly, the

methodology of global observations we have outlined in the

previous section must be applied systematically over a wide

data space to achieve understanding and meaning in the

definition, measure and prediction of programmer

productivity.

More varted data about a collection of independent programs

developed in a large softgware house is given in Table V. We

draw particular attention now to the large volume of

documentation and to the varied ratio of pages of

documentation per kiloline of code. A similar variability is

found in the size of the project as measured by the average

number of personnel, and in project duration. The table thus

illustrates the difficulty of making general statements about

any aspect of programs and the programming process. This

impression is reinforced by Table VI which shows the ranges

of some project and program parameters for the products of a

different software organisation involved in contract

programming over a period of several years.

The present section has concentrated on providing raw data

that is intended to give the reader a feel for the numbers

that arise when large programs and large programming

projects are observed and measured. This data does not

14. Characteristics of Large Systems 297

Table IVa: Programming rates observed on different projects

New New

Instructions Instructions

Project x10® Man-months Per Man Mouth Comments

Apollo Control 1.45 ~3800 381 Real Time

Apollo

Ground Support 0.53 ~1800 294 Simulator

Skylab Control 0.35 ~1700 205 Real Time

Skylab

Ground Control 1.00 ~1100 909 Simulator

A Soft- up to up to from a collection

ware House 0.5 12000 - of ~ 40projects

Electronic

Switching 0.166 2500 66
System

Table IVb: Data

Prog.}) Number of Muan- Program Words

Units|) programmers Years years words man-yr.

Operational 50 83 4 Od 52,000 SIS

Maintenance 36 | 60 4 8 | StL.OO00 - 630
Compiler 13 9 21/4 17 38.000 2230

Translator

(Data assembler) 1S 13 21/2 | 25,000 2270
Data from Bell Labs indicates productivity differences between problems involving

a high degree of variety (the first two are basically control programs with many modules) and

those that have better defined specific function. No one is certain how much of the difference

is due to complexity, how much to the number of people involved.

298 M. M. Lehman and L. A. Belady

Table V: Statistics for Programs developed by a large
software house

— - PRODUCT — — RESOURCES] AVERAGE DURATION
PRO- DELIV. DELIV. TOTAL '# OF (MONTHS)
GRAM CODE DOCUM. EFFORT PERSONNEL

(SOURCE (PAGES) (MM) (#)
LINES)

l 30000 200 77 6 12
2 11164 350 51 6 8
3 17052 450 46 5 9
4 140000 1900 462 15 31
5 47377 78261 241 19 13
6 229000 6100 1665 46 36
7 401099 138016 1022 42 24
8 712362 44000 2176 77 28
9 58540 7650 723 26 28
10 - 187400 186 18 11
11 80990 6000 527 42 12
12 94000 4670 673 16 42
13 76200 6520 - . - 42
14 18775 2000 199 6 32
15 14390 1200 227 13 17
16 35057 60 71 4 19
17 11122 1000 43 5 8

18 6092 427 47 6 8
19 5342 600 14 3 4
20 12000 3000 60 7 8

21 19000 120 50 6 10
22 25271 4500 169 15 12
23 20000 2000 106 8 14
24 12000 1000 57 6 9
25 7000 2000 195 21 9
26 13545 2021 112 7 17
27 14779 400 67 10 7
28 30000 3800 1107 16 68
29 69200 9700 852 24 35
30 486834 41000 11758 174 67
31 220999 15900 2440 40 61
32 57484 8000 - - 19
33 128330 20880 673 67 10
34 32026 400 136 4 36
35 15363 700 37 5 7
36 4747 200 10 3 3

14. Characteristics of Large Systems 299

Table VI: Variation for Program statistics within a software
organization

Type of Data Range

(1) Number of Machine Language Instructions

(2) Number of Cumulative Trouble Reports

(3) Number of Releases

(4) Time Span of Releases

(5) Average Error Rate:

Errors Per Month Per 1,000 Instructions

(6) Length of Time in Test Mode

(7) Duration of Use Per Release

(8) Percent of Compiled Code

(9) Percent of Assembler Code

(10) Percent of Code Increase/Decrease From
Release to Release

(11) Percentage of System Disabling Errors

(12) Number of Users

15,000 to 3,600,000

1 to 1685

1 to 7

6 to 80 Months From

First to Last Release

.016 to .276

| to 5 Months Per Release

1 to 31 Months

0 to 100

100 to O

-27 to +67

0 to 20

1 to over 1,000

300 M. M. Lehman and L. A. Belady

appear to provide any general measures of the programming

process, or of large system characteristics. We now proceed

to analyse more systematically the nature of large programs

and of the process by which they are created and, as we shall

see, continuously maintained and enhanced.

4 Variety: Change and Growth

There does not, at present, exist a general system theory or

design methodology for complex systems. There is in fact

some doubt whether a complete theory can ever be totally

developed or discovered [LEH76]. Nor are there, at least in

the realm of computer software, systematic and complete

methodologies for system specification and design. Even with

the most meticulous requirements analysis, design and

implementation process, the product as first released to its

users will not, in general, possess precisely those

functional characteristics and properties expected or desired

in the application and user environment. The systems will

require correction and modification after installation.

Moreover, once installed, the user invariably finds it

opportune to use the system differently or for a different

purpose than that originally conceived. That is, use of the

system will suggest functional modification. Meanwhile

hardware technology will be developing. Manufacturers are

continuously able to develop new or improved processors and

devices that offer the opportunity for cost reduction or

performance improvements, for greater cost-effectiveness.

But exploitation of new usage patterns, new application

technologies, new hardware, all require the further

modification and development of program support. And once

operational the modified hardware/software complex can again

not be entirely satisfactory, while once again offering still

more opportunities for development. So the programs are

again changed and the evolutionary cycle goes on. Continuing

evolution, the outcome of the mutual stimulation of system

and environment, is an tnutrinste property of large systems:

a property that may be formalised as a Law of Continuing

Change [BEL76]; [LEH74]; [LEH78]: A system that ts used

undergoes continuing change until it ts judged more cost

effective to freeze and recreate it.

4.1 Variety Generated by the Desire to Perfect:

Continuing Enhancement

The property of continuing evolution is possessed by all

complex systems, more particularly all artificial systems

14. Characteristics of Large Systems 301

[SIM69] created and manufactured by man. Software systems,

however, suffer one attribute that complicates the process

and leads to a further property, that of continuing modifi-

cation of the old. Physical systems implemented in hardware,

an automobile, an airplane, an atomic reactor evolve through

the emergence of newly constructed entities that are

redesigned, hopefully improved, versions of older creations.

While attempts may be made to modify an existing artifact for

experimental purposes, completion of the redesign process

leads to the construction of an entirely new instance. The

system, much as biological systems, evolves over successive

generations. With software systems on the other hand (and to

some extent in socio-economic systems such as cities or a

transportation system), it is possible and appears more

economical, simpler, faster, and in general more expedient,

to change and evolve the system gradually through the

addition, modification and deletion of code or other system

entities. Indeed, it may seem impossible to do otherwise.

Modification appears more economical because it requires a

smaller immediate capital investment than would recreation.

But this assessment is likely to be based on ignorance or

inaccurate assessment of total life cycle costs. It appears
simpler because study of a part of a program in its local

enviromment and the paper and pencil (or interactive terminal

input) exercise of code modification and augmentation seems

to require a relatively small physical and organisational

effort. But this is so only if the intellectual (and
physical) effort of ensuring completeness and correctness of

the change over the entire system and system behavioural

spectrum, in ttself and in relation to all other’ changes
being made concurrently or being planned, is not taken into

account. And it normally is not; perhaps because we do not

know how to or perhaps because we do not rate intellectual

effort very highly. It appears faster because it is

‘obviously' quicker to change 'a few lines of code' than to

re-create an entire system or subsystem in which a major

fiscal, temporal and human investment has already been made.

But basic appearances are fallacious. The fallacy stems from

the fact that for any tndividual change (repair, modification
or enhancement) these assessments are generally correct.

They become tragically wrong when the unending sequence of

changes is considered; when the actuality of an evolving

usage and maintenance environment is imposed, when it is

realised that system structure must degenerate and entropy,

as a measure of disorder, increase under ae series of,

conceptually mostly unconnected, changes.

302 M. M. Lehman and L. A. Belady

4.2 Variety Generated by Imperfection:
Continuing Maintenance

The preceding sections have discussed the continuing

evolution, functional and performance-wise, that a software

system undergoes. Definition of system requirements,

development of a specification, design and creation of code

that implements that design are all human, intellectual

activities not yet subject to the rigor of mathematical

analysis, physical laws or the accumulated, ad hoc and

pragmatic, but nevertheless definitive, guidelines of

engineering practice. Thus the emerging product must

inevitably contain faults, design bugs as well as

implementation errors. It must, therefore, be validated,

either on completion, or repeatedly throughout the entire
process, (14.1) so that faults may be detected and corrected.

Ideally such validation should be based on constructive
proofs that guide the design process [DIJ72] or on a proof of
the identity (in some sense) of the output of each Stage of
the total process with that of its predecessor stage [HOA69].
However, at the present time applicable techniques have only
been developed for relatively Simple, self-contained,
programs. Extension of such techniques to large multi-
function, multi-element systems is, at best, likely to be a
Slow process.

For the foreseeable future, therefore, validation must
continue to rely on inspection [FAG764] and on testing.
Effectiveness of the former, however formalised, depends
heavily on the system overview, observation and understanding
of the inspectors. The effectiveness of the latter will
depend on the insight and understanding of the test designers
who cannot possibly view the system from all futgure user
perspectives. Moreover, the test designers must cope with a
changing, combinatorially large, set of program boundary and
environmental conditions, and hence with an impossibly large
number of system states and execution trajectories. system
validation activity based on these techniques can therefore
never expect to locate ald faults, can in fact not possibly
demonstrate that the system is faultless [DIJ72b]. In
Summary, both inspection and testing are likely to be useful
in ensuring elements, modules and components, that are

14.1 (Eds) 1985 ttalies but used here in the sense that it
ts now referred to as verification. The concept of
validation through prototyping and similar techniques is
elearly absent from the remainder of this section.

14. Characteristics of Large Systems 303

relatively clear of localised faults. They become

increasingly costly and ineffective in the search for

problems stemming from global interactions and dependencies;

in ensuring correct system operation.

The faults that are discovered before the product is declared

ready for customer delivery will generally be fixed

immediately. However, particularly for multi-site, multi-

configuration systems, users will, after release, subject the

integrated system to configurations and execution patterns to

which it has not previously been exposed. Thus new faults

will inevitably be discovered and will continue to require

fixing.

And the cost of this continuing maintenance is high: Figure

1 summarises the fraction of programming effort spent in

maintenance for a large sample of installations [GO0OL73]

around 1970. An elaborate organisation is often required to

implement the system change activity. We discuss this in the

next section.

25

22

20
”

5
= 17o
6 15
c 14 14

‘O
= 10
© 9

é
6 6 6

5|—

3 3

O

O 10 20 30 40 50 60 70 80 90 100

Percent of Time Devoted to Software Maintenance

Figure 1: Percent of Time Devoted to Software Maintenance

304 M. M. Lehman and L. A. Belady

We note that this so-called fix or repair activity is not

really repair at all. Hardware physically deteriorates

because of wear, corrosion or fatigue. Its repair consists

of replacement of one or more components to restore the -
system to its original state. The elimination of software

malfunction, on the other hand, requires a change away from

its designed or constructed state. software repair and

maintenance mostly involves redesign which in turn may

introduce further error and is very likely to further
increase complexity. For the emphasis of a maintenance team

will be on speed, on cost minimisation, or just simply on

obtaining a correct fix. It will not generally include

structural maintenance or improvement. And if imperfect

repair or structural deterioration is likely when a single

fault is fixed, the effect is likely to be compounded when

Several faults must be cured in the same period possibly by

different groups or individuals; possibly concurrently with

enhancement and development. Thus, inevitably, repair
activity will be imperfect, will cause the creation of new
problems. .

4.3 The Result of Continued Evolution:

Structural Complexity

Some programs, or parts of the same program system, may be
more complex than others, as discussed in Section 3. What is
important is that increasing system complexity leads to a
regenerative, highly non-linear, increase in the effort and
cost of system maintenance and also limits ultimate system
growth [BEL71b]; [LEH74]; [LEH76b]: The trend may be
Summarised ina Law of Increasing Unstructuredness (Entropy)
[BEL76]; [LEH74]; [LEH78]: The entropy of a system
increases with time, unless specific work is executed to
maintain to reduce tt. This, our second law, is analogous
to, perhaps even an instance of, the second law of
thermodynamics.

For our present purpose its Significance is not that
complexity increases with age. That is universal experience.
What is fundamental to achievement of better software
management and minimal life-cycle costs is the recognition
that complexity grows unless and until effort is invested in
restructuring. Some part of one's resources must be invested
in restructuring periodically or continuously. The
alternative is to reach such a level of complexity that
further evolutionary progress can only be made through re-
creation; total abandonment of the system and its replacement
by a new system structured, redesigned and implemented to

Rel.

Sys- Lang- Pur- Size Config- Impl. Mang.j| Age* Seq.

tem |Srce. Type uage pose Inst. Users Hdwr. uration Env. Ctrl. Days No.

Ome4 Manu-| Trans-| Assem-] Limi- ? 25 Var Var. Prg. Conc. 1000 10

ga fact. action

urer OS bly ted Centre

BankjBank DB Algol Single} 45k l Fxd. Single One Unifd.}| 1000 1]
Syst. syst (H.L.) Group

OS/-|Manu.

360 jfact- {OS Assem-| Uni- >2M > 1000 Range Mult. Distr. Distr. 3500 23
VS2 Jurer bly versal} (L.L.)

*Age refers to period over which data is available. the first two systems have a prehistory.

Table VII: Three large systems whose evolution has been studied

306 M. M. Lehman and L. A. Belady

Satisfy the most recent operational requirements. In fact,

the technhological aim must be to achieve the most economic

balance between continuous or periodic restructuring and

periodic recreation.

Clearly then it is not sufficient for a system to be

initially correct. It must remain correct under an unending

sequence of changes. To achieve and demonstrate continuing

correctness, it is not sufficient that the system be

initially well structured. Well structuredness must be

maintained despite that sequence of never-ending change. And

our studies of analytic models of the programming process

[BEL71b]; [BEL76]; [LEH74]; [LEH76b] indicate that strucutral
maintenance as the system grows is likely to require an ever-
increasing proportion of maintenance resources. Thus
maintenance must ultimately become uneconomical, making re-
implemntation of the system inevitable. Is this point
predictable? Is it possible to forecast the point in time at
which recreation of the system is required, far enough in
advance to ensure completion of the new system before the old
One has collapsed, has become unmmaintainable?

4.4 An Empirical Study: The Dynamics of Evolution

Rather surprisingly, since every aspect of system
development, implementation and maintenance is to some degree
planned, and is managed by people for people, the growth
patterns of a system as measured by various critical
parameters are statistically predictable. This general
property is reflected ina third law [BEL76]; [LEH74];
[LEH78]: Measures of global system attributes may appear
stochastte locally in time and spaces, but statistically are
cyclically self-regulating, with identifiable invariances and
recognisable long-range trends.

Recent studies [BEL76]; [LEH76b]; [LEH77] have reported on
the gross growth patterns of a number of very different
software systems. Table VII lists some of these differences.
The studies demonstrate quantitively what participants in
such projects have long known heuristically, that there is a
continuous growth in the functional content, the size, the
need for repair and the complexity of each system. Figures 2
Show the growth of two systems, measured in number of
Statements and modules, respectively. Notice the increase in
the size trends, and the declining growth rates.

From the same studies, Figures 3 capture the work rates
during evolution. The measures, changes made and modules

14. Characteristics of Large Systems 307

4500+ O oo

” °o
5 °

S 4000 °
3
£
‘O

®
2 3500 fe

= D
=

3000 | l | l |
O 200 400 600 800 1000

Days

Figure 2a: Growth of the banking system

5000+ ee-_

“e
, 4000+ oe
® . ve

3 e,”
2 3000; 3’

S r

£ '
3 r
= 1000

0 oo 14 4 a LJ
O 500 1000 2000 3000 4000

Days

Figure 2b: Growth of OS 360/370

Figure 3b

OS/ 360
Days

|
2000

F
r
a
c
t
i
o
n

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

o
oO

O
mM

BS
S

P
e
U
e

|

a
e

e
v
e
s

e

=
o
\
_
_
.
,

e
<
c
i
N

-
~
~

0 1000

b
e
e
s

_
_ !

3000

 |
4000

oO ®
r
T

T

e

\
=

N\

Figure 3a

System Omega
Days

200 400 600 800 1000

 F
r
a
c
t
i
o
n

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

|

Oo O ol l

308 M. M. Lehman and L. A. Belady

14. Characteristics of Large Systems 309

handled are plotted cumulatively as functions of system age
to eliminate the effects of release overlap. The slopes of
these plots are effectively and unexpectedly constant,
implying a constant work rate despite improving methodology,
tools and changing resources. The invariance of work input
reflects the stabilising influence of the many organisational
feedback loops controlling system evolution.

An approach to the measurement of complexity is by the
fraction of total units (ie modules) impacted by some unit
change: the more units impacted the more diffused the

change, the more complex the system. Conversely, ina well

Structured system changes tend to remain localised. Figure 4

indicates the trend for two systems’ studied: increasing

Spread of changes as the systems age.

An aspect of the interaction between the evolving system and

the human organisation which drive this evolution is depicted

in Figure 5. This shows the linear growth trend of two
systems as a function of release sequence numbers. Closer

examination shows a cyclic subpattern of increasing period.

This cyclicity is the manifestation of the conflict that

arises in large system managment, between the pressures for

an increasing enhancement rate (positive feedback) and the
resultant increasing resistance to change, increasing

difficulty of the work, as structure and quality,

organisational integrity and knowledge decline (negative

feedback).

We deduce that an organisational, as distinct from an

individual, programming project behaves like a self-

stabilising feedback sytem. This is of course quite contrary

to the view that managers have. They see it aS a process

whose progress is determined by local and global decisions as

these are made. Theoretical models of the process [BEL76],

[RI076] suggest that the observed behaviour is consistent

with our developing view and understanding of the process as

a complex, feedback=-system-like activity.

That is, gross, historical, software project data of a

variety of systems and project attributes can be used to

generate project models that represent or measure the

evolution process. The models provide statistical

invariances, patterns and trends that are interpretable in

terms of theoretical models of the programming process. All

that may be used directly to better plan and control system

development, maintenance and enhancement. Equally, their

study leads to a deeper understanding of the nature and

310

C
u
m
u
l
a
t
i
v
e
N
u
m
b
e
r

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

M. M. Lehman andL. A. Belady

700 0

600 /

500 }- 6’

400+ e

300+ Yo

200 v

100F- 7 7

Yilitlittit ttt iti itys
O 200 400 600 800 1000

Days

O

System A

Figure 4a

900

800

700

600

500

400

300

200

100

O

T
T
T

P
P
P

r
i
r

ri
b
i
g
e

\

r
T

I

Cu
mu

la
ti

ve
N
u
m
b
e
r

of
C
h
a
n
g
e
s
M
a
d
e

 [| | | J | jf | fj | tJ
O 200 400 600 800 1000

Days

System P

Figure 4b

14. Characteristics of Large Systems 311

40000-

| \35 000 °

30 OOO ;- re
| ‘e25 000

| x20000 ,

15000 -

10 OOO}- oe"

S000}-

Mitt siitiiiiyy
0 800 1600 2400 3200 4000

Days

e
o

C
u
m
u
l
a
t
i
v
e
N
u
m
b
e
r

of
M
o
d
u
l
e
s

H
a
n
d
l
e
d

System T

Figure 4c

17000

I6000

SOO0O;-

4000

3000

N
u
m
b
e
r

of
M
o
d
u
l
e
s

|

\ \
5 IO 15 20. 25

1000'——|—|
O

Release Sequence Number

System T

Figure 5

312 M. M. Lehman and L. A. Belady

attributes of the programming process and of the systems that

the process produces. The increasing understanding can be

applied to direct and guide software engineering practice and

the programming process so that the latter may yield higher

quality and improved life-cycle properties for programming

systems [LEH78].

4.5 The Life-Cycle Cost Pattern

The previous discussion has been largely system and

programming oriented, directly addressing software system

attributes. Quantitative global cost studies have also been

undertaken and have produced useful models. These reflect

the fact that avery high percentage (50% - 90%) of life
cycle costs of a large software system may be incurred in

post-first-release maintenance and enhancement [ARO7T4],
[BOE76], [PUT76]. This data provides dramatic confirmation
of the reality of the phenomena discussed above. It

indicates that the initial assessment of large software

systems, the decision to implement or not, must be based on

an accurate projection of JUltfe-cycle costs not on the

estimated cost of development and first implementation. But

that in itself is a problem since the expenditure pattern is

certainly very non-linear, with shape parameters being a (not

well understood) function of the requirements of the systen,

the implementation and the usage environments. But in this

area too, global system observation [PUT76] leads to models

that can be most effectively applied in the planning and

control enviromment. Their further development should lead

to specifiable and controllable life-cycle characteristics.

5 Large Systems: Complex Interactions

In the preceding section we have concentrated on a

description of the global macro-properties of large systems.

As the thermodynamicist does in physics or the macro-

economist in economics, we have summarised observations,

measurement and interpretation of the phenomenology of

evolution of the total system and the programming process in

their development and maintenance enviroment.

We have, however, only briefly indicated how large a system

must be before it can be expected to display characteristics

aS described. A precise measure is likely to depend at least

on the nature and structure of the organisation controlling

the system, the programming methodology employed, and the

nature of the usage enviromment. But the general indicator

mentioned in Section 1 ean be deduced from a clearer

14. Characteristics of Large Systems 313

understanding of the underlying causes of the phenomena

described. The basic problem is understanding; understanding

the environmental requirements so that the system can be

specified, designed and implemented; understanding the design

and implementation so that the system may be validated,

proven to provide the requirements, all the requirements and

preferably nothing but the requirements; understanding the

system's properties, capabilities and limitations so that it

may be learned and effectively used; understanding the system

structure and content so that it may be maintained and

enhanced.

5.1 Program Systems

The degree of understandability of a system depends on its

structure and its content, the internal interconnectivity

between its parts; on its complexity.

More specifically, structure represents the degree to which,

and the way in which, the system may be viewed as a set of

interconnected subsystems, the way in which the subsystems

themselves may be decomposed, and so on. Decomposition aids

understanding to the extent by which it enables system

behaviour to Be understood in terms of, or deduced from, the

behaviour of its constituent parts. The degree to which this

is possible depends on the regularity of the structure and

the interpretability of the parts as well-defined primitive

operators or transformers. Furthermore, the

comprehensibility of the system will be heavily dependent on

the actual or implied interconnectivity, interaction and

dependence between parts, particularly where the related —

lines of communication deviate from the regular system

structure. That is, the understandability and therefore the

complexity of even the most well-structured system will

depend additionally on the nature and extent of internal, ie

intra-system communication.

We may now restrict ourselves to such programs where the

structure and internal communication links or dependencies

are sufficiently rational to make the system understandable

and manageable. As requirements grow and ever larger

programs are considered, the point will come where it is

judged necessary to employ two (or more) people for program

definition, design, implementation and validation. The

program is too large to fall fully within the intellectual

grasp of a single individual. This might weli be the

critical characteristic that identifies a large system. The

new factor that arises at that stage is of course the need

314 M. M. Lehman and L. A. Belady

for human communication, intraprocess communication between

two (or more) people. And this is a process whose
effectiveness will deteriorate rapidly as the number of

communicants increases.

A further quantum jump in the complexity of human

communication, in the probability of distortion and error,

occurs when the number of communicants reaches say eight,

when the need for at least two levels of management first

emerges. The nature and degree of communication between the

members of each of the individual groups is then radically

different from that between members of different groups.

Comprehension of the total system has certainly slipped from

the grasp of any one individual or of an informal team. The

system will rapidly become a large system with all its

characteristics and problems.

5.2 Program Collections

The preceding discussion has outlined the development of a

Single program into a large system. Such large systems are
met today in the form of operating systems, transaction
systems, weapons systems and so on. The components of such
systems make frequent use of each other's services and data
and exploiting what are otherwise independent hardware
apparatus. Under certain circumstances, a set of programs
may develop into a large collection of programs. The
Structure of such a_ collection, a set of alternative
compilers or a number of independent application programs,
may be depicted by a wide-span, two-level hierarchy in which
a Single calling element, a scheduler for example, selects
for execution one of a number of alternative programs. such
a collection typically serves a common purpose yet the parts
do not, in general, communicate directly with each other
while in execution on a machine. In the sense that the word
"system' is used, such a collection of non-interacting
programs does not form a system. During the development and
maintenance phases, loose coupling may exist in the form of
decisions about the placement of some sub-capability in one
or other program or in a new independent program. But during
execution, coupling arises only from the calling sequence.

It may, of course, be that this collection of programs is
sharing, in some sense, a common data base. In that case the
structure and internal dependencies of the latter will act as
the communications linkage that causes’ evolution and
degeneration. That is, the total collection of programs with
the data base out of which and on which they operate will now

14. Characteristics of Large Systems 315

form a system. And that system may be expected to
demonstrate all the system-like characteristics discussed
(14.2).

6 The Software Process: Knowledge, Skill and Communication

The most natural fashion by which groups of people
collaborate in a programming project [BEL80] is through
decomposition of the total product into separately designable

and implementable components [MYE75]; [PAR72]; [STE74]. To
be considered a system, such components must nevertheless

interact and communicate. Ideally, the details of protocol,

paths, structure and content will be agreed by the designers.

In practice, their decisions will be modified during the

development process. Additional linkages may be introduced

through unintended, often unperceived, side effects. 'The

evil that these do live after them' [Julius Caeser,
Shakespeare]. In any even the agreement reached by the

collaborators as to the exact details of the interface

between their components must be faithfully recorded and

strictly adhered to. Subsequent modification must similarly

be agreed and recorded.

That is, documentation must be created and updated

continuously to record system features, individual design and

implementation decisions, the considerations on which they

were based, and the details of interfaces between individual

system elements. The documentation, ideally a faithful

record of the entire process and product, of all internal

communication, itself provides a communication link between

all process participants and between them and system users.

More generally it should provide a permanent, accessible,

complete and correct record of innumerable, transient yet

possibly significant interhuman communications. In practice

it is of course rare that any of this is done completely and

correctly.

6.1 Specialisation of Human Activities

At some stage of the process the components, the parts of the

system created by separate groups, oor by the same group at

different times, must be linked together, integrated. As

already remarked, no technology yet exists’ that will

guarantee correct functioning of the resultant system. Hence

14.2 (Eds) A prediction subsequently confirmed by our study
of a major stock control system as described, for
example tn [].

316

Field

Engineering

Programming

Services
Provides Fix

to Customer

PTF Program Temporary Fix

M. M. Lehman andL. A.Belady

Customer

Has Problem

a

|

BM | Resources
Calls | |

|

| EWS Microfiche |
Program

Systems

t
Representative ae2. Field Tech. Support Center

| 3. Regional Specialist
Determine |4FE Field Support

if New

Problem y

Logs APAR Retain / 370

into ACRE

*Daily

Recreates update
Problems

if Necessary ACRE

Temporary '
Fix & Test Mgmt info

System

Builds / Tests

PTFs
= —eeeeeeeh ee

!
PTF |

Control & Mgmt
logs PTF | Reports

|
_]

v

Merges Fix
into Next
Release

Figure 6

Distributes

PTFs to all

Customers

The Software Services Process

14. Characteristics of Large Systems 317

the newly assembled system must be tested. The test

responsibility will be delegated to one or another of the

original groups, to a new group created out of the original

groups, or to an entirely new, perhaps specialist, group.

The process changes once again. From being in the domain of

a Single individual or group from start to finish the process

transforms into a sequential, assembly-line-like activity.

Of course in the very small 'large' program the analogy is

hardly relevant. But when an organisation develops to any

size, when systems become really large, expensive and

therefore long-lived, division of labour, specialisation and

the programming analogy of the industrial assembly line may,

Superficially at least, appear as the most cost effective

design and manufacturing process. Architecture, design,

programming and coding, data base management, documentation,

component tests, integration and system test, quality

assurance, each activity becomes the domain of a group of

specialists. A variety of system elements pass sequentially

among them. New programmers, taken on as the more

experienced are promoted, must gain knowledge of the system

and experience of the process. What better way can there be

of gaining that knowledge and experience than assigning to

them responsibility for fault fixing, clearing up the many

problems reported by users and project teams alike from day

to day?

6.2 Product vs Process Knowledge (14.3)

There is unfortunately a fundamental fallacy in this

approach. The assembly line can work where local processes

do not require knowledge of the total product, and the entire

process; when individual activities and parts can be totally

specified and described, so that elementary operations are

essentially independent. Above all a successful line operation

requires that total product quality is the summation of the

quality with which the individual operations of the process

have been performed.

In software, process knowledge relates to methodologies,

techniques and tools for specifying, designing, coding,

testing, and integration of programs, as well as to. the

Planning and management of these activities. Product

knowledge relates to the understanding of program elements,

structure, algorithms and operation, individually and

14.3 (Eds) See previous chapter [BEL78] for more complete
discussion,

318 M. M. Lehman and L. A. Belady

collectively, and their interactions. It demands a constant

awareness of the major objective and requirements, of the

multitude of program interactions that occur through common

use of program names of objects, such as procedures, tables,

labels, variables, and so on.

Product and process knowledge and awareness can be obtained

by the individual only from the documentation and by word of

mouth. Total assimilation is impossible. Hence the assembly

line approach cannot be fully effective; is infact highly

fallible. Since no individual can have total knowledge or

comprehension, errors are unavoidable and some must remain

undiscovered till the product is in regular use possibly for

all time.

Assigning repair responsibility to the 'greenhorns' is of

course the greatest fallacy of all. They cannot, and cannot

be expected to have assimilated, the product knowledge, or

for that matter the process knowledge, that is essential for

effective structural maintenance, performance maintenance,

and functional modification. Clearly repair activity should

be the responsibility of those with the maximum system over-

view and insight. But these are generally the most

experienced, the most senior, the highest paid individuals.

As such they will often have been promoted into, or out of

reach of, the project management. Even if still within the

project, they will have architectural or design

responsibility, will be working on more advanced system

elements, will probably have forgotten much of the detail

required for repair.

6.3 The Part-Number Explosion

An additional dimension of complexity in repair arises as

follows: consider modules as basic building blocks, perhaps

thousands in number. In a release scheme, there is at any

given time only one single valid version for each module. In

a multi-installation system, however, repairs (fixes) will
often be rejected by users who decide that they are not

affected by the fault being fixed. The result is’ that

multtple and valid versions of the same generic module
evolve; the most recent version, as well as one or more

predecessors which will still be actively used at some sites.

The predecessors cannot be invalidated to simplify

documentation and bookkeeping, since they still exist in the

environement against which further errors could be reported

and their repair requested [H0OA69].

14. Characteristics of Large Systems 319

6.4 Documentation

The key to system control is system comprehension. One

cannot hope to understand the purpose, the mode of

functioning and the details of operation of a software system

by visual inspection alone, though this might well be

possible in a hardware system. One certainly cannot expect

understanding of software systems to be discernible from the

exquisite level of detail represented by present-day machine

level or micro-code. Comprehension of the system and its

parts requires knowledge of total system objectives, of their

partitioning into individual capabilities or function and of

their mapping onto a systems structure and its structural

elements. Equally, at least minimal explanation is required

of the algorithms used in implementing the system and its

subsystems at various levels.

Clearly then a large software system must be accompanied by

documentation. Moreover, the documentation must be readily

aecesstble according to the particular needs or interests of
the inquirer. And the documentation must keep pace with the

changing system, remaining correct and complete.

In practice, of course, this is very difficult. The concept

of '‘'self-documentation' of high level programming languages

is important but it is insufficient. For machine level

languages it does not apply. Thus documentation is

necessarily an activity that runs parallel to, and must be

interwoven with, the design, system implementation and

maintenance activities. As such there is an inherent problem

of coordination. When projects begin to lag and to fall

behind schedule, when resources run short, the documentation

activity, representing as it does a long-term investment that

shows no immediate return, being essentially anti-regressive

[BEL71b]; [LEH74] in nature, is amongst the first to fall
victim to the inevitable axe. Hence divergence between the

system, instructional documentation and descriptive

documentation is another very typical characteristic of large

systems.

6.5 Communication as the Key to Large System Mastery

The analysis so far has identified 'communications' as_ the

key in determining the pattern of development of system

characteristics. It must be considered at several levels.

system-internal communication links join its separate parts

and make it aie system. Understanding of the sytem and

effectiveness of execution are both heavily dependent on the

320 M. M. Lehman andL. A. Belady

internal structure as determined by these links. One cannot

hope to comprehend the system as a whole unless one is aware

of the dependencies and interactions, static and dynamic as

determined by both explicit and implicit internal

communications. And comprehension of the system as a whole

is essential to its effective application and its effective

maintenance.

Application and maintenance are essentially the domain of

people. These are themselves involved in three further

levels of communication between the people that jointly

collaborate to build and maintain the system. There is also

the communication between them and the operators and users of

the system. Finally, there is the communication between all

of these and the executive management of the producer

organisation. It is, of course, the latter which controls

the ultimate fate of the system [COM76], together with that
of many other artifacts and activities controlled in support

of organisational objectives and making a call on

organisational resources.

The resultant flow of documentation and verbal communication

is enormous and, in general, not clearly structured. Yet for

total mastery of the system it must be integrated and

comprehended.

Why is this total comprehension so vital for successful long-

range exploitation and control, for continuing control of a

system? In general, any interaction with the system, whether

for usage or for modification, requires a view of the system

as a whole, as an entity. It demands a knowledge of the

reaction of the system in its entirety as well as that of

each of the parts. The intending user must know and be aware

of the total consequence of each system access, and of each

of the separate individual responses of which that totality

is comprised. Even more strikingly, the individual changing

the system in any way must tamper with the code at the lowest

level of detail, but be fully aware of the global implication

of his action over the entire system.

This need for simultaneous awareness, at both the global and

the lowest levels of detail, is brought about by the complex

and largely invisible structure of system-communication, the

totally unforgiving nature of system execution in the

presence of logical error or even imprecision, the rapidity

with which the system executes and, therefore, the high

probability that any fault, any weakness, will be revealed

sooner or later. The need is addressed by system structure

14. Characteristics of Large Systems 321

and documentation, by system intelligibility, supported by

collective human knowledge and understanding of the system.

It is to these areas that we must look for major advances in

software engineering, in the development and maintenance of

large systems.

6.6 Structure as a Reflection of the Manufacturing Process

Delineation of function and definition of interfaces must

occur before autonomously managed groups can begin design and

implementation activity. Since the theory of computing

System design has not been adequately developed, these

definitions and divisions cannot be perfect or complete. In

the presence of an evolving environment they cannot remain
near perfect or complete. Thus modification must be made as
the work progresses, as the emerging system, its function and
its structure, is more clearly understood, as the design
coalesces and as the system takes shape. Strictly, each such

modification should require a total review of all previous
decisions. In practice, many modifications appear to be
clearly (sic) localisable, to remain within the judgment and
domain of a single group. Sometimes they clearly cannot be.

But in the interest of cost effectiveness, review and

negotiation is then limited to those groups most clearly and

most directly involved. Implementation of modifications is

largely forced into the constraints of the initial structure.

Similarly, when new requirements) are identified and

subsequently when responsibility for the implementation of

Supporting code is assigned, management decisions must be

based on the existing structure, on the availability of

resources, on the existence of localised product knowledge

and process experience. In curent industrial practice it is

largely based on inter-managerial negotiation and bargaining.

System structure cannot constantly be reviewed and redesigned
to take cognisance of the new features that may well cut
right across existing divisions.

Thus gradually, as the design and implementation proceeds, as
the system ages, its structure will not only degenerate.
Increasingly the relationship to requirements and functional
structure will be obscured. The system structure will begin
to reflect the organisational structure and process sequence
that created it. And this is, of course, not helpful from
any point of view. It cannot make the system more
understandable, more maintainable, more fault-free. Nor can
it be expected to improve system performance.

322 M. M. Lehman and L. A. Belady

Possibly the clearest example of arbitrary structural

dichotomy is the division of most organisations into hardware

and software groups. Ironically, even with the emergence of

new technologies, microprogramming as a replacement for

earlier hardware logic design has in many instances been seen

as belonging to the hardware dominion. Thus the most basic

implementation decision, the selection of an implementation

technology, the partitioning of a system into its hard, mushy

and soft parts is taken in almost ad hoc fashion at the most

primitive stage of system definition.

These approaches may have been correct in the early days of

computing systems. It cannot be correct in today's world.

And the greatest sufferers are likely to be sy stem

changeability, growth flexibility and system performance.

Perhaps the most important contributions to the solution of

these problems has, however, already been made. We refer to

the extension and generalisation of the dual concepts of

standard I/0 interfaces and of channels. Invention of the

latter condcepts has made possible the individual design,

optimisation and system attachment of several generations of

new 1/0 and storage devices. Performance did not’ suffer

because of the incipient potential for device autonomy and

system parallelism. We see the generalisation of these

concepts in the form of a functional channel or Funnel

[LEH77c], as offering the way to a solution to the problems
we have identified as discussed briefly in Section 8.

T System Behaviour: The Optimisation Problem

Like most other artifacts, software systems are developed and

enhanced with particular objectives in mind. The objectives

are often formalised into optimisation of system attributes,

such as function, capability, cost, reliability, security,

size, modifiability, ete. All of these attributes cannot be

discussed here, so we Single out just one quality indicator:

performance. In software this is often considered to require

an appropriate balance between execution time of a given sub-

program which executes a sequence of functions, and the

resource usage required to achieve this execution sequence

and speed. The following presents some of the difficulties

which software performance optimisers must face.

7.1 System Performance - Execution Dynamics

The factors considered so far have been viewed in relation to

the programming process, the development and maintenance

14. Characteristics of Large Systems 323

dynamics of the large program, its evolution dynamics. When

passing to its execution dynamics, its behaviour during

execution, not surprisingly we observe the consequences of

the same pressures, reflection of these same characteristics.

System performance objectives can also not be precisely

specified, implemented and achieved in the first instance,

and for precisely the same reasons. After all a program is,

by its very nature, a complex system of interacting

subprograms, subprograms executing on and interacting with

shared hardware resources. Performance is not’ simply

predictable [LEH76] and the desired characteristics must be

approached via an iterative modification procedure. The

endless growth in function, size and complexity tends to

degenerate performance. Hence further changes must be

undertaken to maintain it. In fact, in the face of

application, user and device evolution, performance

characteristics normally need to be wtmproved, not just

maintained. Thus the execution dynamics of a system, desired

and achieved, is a further factor in establishing and

maintaining the characteristics we have identified, and

itself comprises a further characteristic attribute, evolving

performance.

7.2 Local and Global Optimisation

The question thus arises as to the extent to which system

performance can be optimised, at least relative to

requirements and to the enviroment or at some identified

point in time [BRO76].

A problem is immediately apparent. Do we optimise performance

under the requirements, environmental conditions and system

state as they are now? Then by the time optimisation has

been completed and implemented, because of continuing

evolution, neither system nor enviroment will be the same.

Optimisation will turn out not to have been optimisation

after all. On the other hand, one might attempt to forecast

the direction and rate of the various evolutionary processes

and optimise to some future expected state. Then the problem

may well be that because of changing environmental conditions

the expected state is never reached. Alternatively, the

forecast may become self-fulfilling, achieving optimum

performance relative to an anticipated system state that is

itself no longer optimum because of unanticipated

envirommental changes.

324 M. M. Lehmanand L.A. Belady

The resultant dilemma may appear worse than it is in
practice. It is certainly one that may be largely resolved
if the optimisers are conscious of the dynamic environment in
which they operate. There is, however, a more fundamental
constraint on optimisation that, in the present state of
Software engineering, is far more difficult to overcome.

The essential nature of a software system as a set of highly
interacting parts has been repeatedly stressed. The parts
interact structurally in that they use common program
objects. Certain aspects of optimisation, storage space mini-
misation for example, dictate maximisation of sharing
objects. Other interactions come about dynamically during
execution. Procedures use each other's services, they share
information, they sequentially share hardware. All of these
interactions should be taken into account during optimis-
ation. In practice, however, such global optimisation is
very difficult, to say the least. Moreover, designers and
programmers have at any given moment an essentially local
view of the system in terms of the flow diagram or the code
they have in front of then. They have an essentially static
view of program flow. A very intensive intellectual effort
would be required to convert this to, and assess, the action
in terms of the coexistence of concurrent, interacting
processes sharing resources. Thus, optimisation will unfort-
unately often tend to be local. And it is well known that
local optimisation almost invariably leads to global sub-
optimisastion.

There is also a third aspect to the optimisation problem ina
multirequirement, multifunction system: it is unlikely that
all capabilities can be simultaneously optimised. Require-
ments are likely to be contradictory and while an acceptable
compromise must be reached, true optimisation may not be
meaningful. Even where requirements do not intersect
functionally it is difficult if not impossible, as a conse-
quence of data or resource sharing for example, to achieve
Simultaneous optimisation. A data structure that is best for
the execution of one function will be suboptimal from the
point of view of the other. Optimising with regard to
Storage usage is very likely to increase time requirements
and vice versa.

Summarising then we find that optimisation for large system
performance is a delusion, one that is likely to eat up large
amounts of human resources if nevertheless pursued too
diligently. In its place, a statement of performance
expected and required must form an integral part of the

14. Characteristics of Large Systems 325

system statement of requirements and of the system

specification at its various levels.

8 The Future

The methodological trends stemming from the movements’ toward

structured programming certainly satisfy many of the process

and system desiderata arising from the characteristics we

have identified for large program systems. The block

structure concept first conceived for ALGOL [BAC60], the
undesirability of the GOTO construct [DIJ68] and its
replacement by sequence control structures that are related

to the semantic structure of algorithms, the more general

movement to high level languages, the channeling of

communication via parameter-passing rather’ than global

variables, the single entry-single exit subroutine or

procedure, all these are ultimately directed towards

increasing the clarity of code structure, its initial

intelligibility and therefore its veracity.

But, while necessary, they are not sufficient. If all the

rules are understood and observed in their spirit as well as

their letter, good structure, healthy code will have been

created. But structure must not only be created, it must

also be maintained. structural maintenance, which is

strictly anti-regresive, bringing no immediate return, must

nevertheless form an integral objective and part of hte

maintenance process.

By and large none of the concepts or techniques mentioned

above help in strucutral maintenance under the conditions

encountered in the industrial and commerical world. Even if

they can be enforced during program development, the

pressured development of fixes for field-discovered faults,

or software support for new devices, is very likely to lead

to their infringement, and hence system pollution, during

maintenance activities.

Moreover, as base systems get ever larger, structure will

tend in any case to deteriorate more rapidly during

maintenance. Thus the level at which the problem needs’ be

solved is itself rising dramatically. Solutions which may

have appeared adequate just a few years ago, now no longer

suffice.

One approach to the solution to these problems, program units

or components, has been talked about for many years[MCI72]

but is only now becoming technically feasible. Moreover, it

326 M. M. Lehman and L.A. Belady

is only now that manufacturers and users alike recognise the
necessity to bypass the problems created by attempts to build
assemble large software systems from self-contained software
units much as hardware systems are configured out of a
variety of 'black box' units. The recent announcement by IBM
[IBM76] of selectible software units highlights the practical
emergence of this trend (14.4). De facto the announcement
implies the abandonment of the large, integrated, system.

The basis of the unitised approach is that defined
Capabilities or functions are implemented, packaged and
offered to users as a unit. Each such unit will (in theory)
have been totally tested as an entity against its defining
specification. Since in practice the specification will not
be absolutely complete, it must also have been tested against
other units with which it may interface, against some base
system which acts as a central connector for numbers of units
or against some standardised and complete interface. Thus we
elevate the problem of perception, comprehension and control
of the large system to a new and higher level. Software units
form the primitives of a new universe of discourse. Their
spectficattons and interface definitions define the semantics
and syntax of the design and implementation process. More

naively, the process of software system building is then

viewed simply as an extension of the standard practice of

hardware configuration.

Unfortunately the analogy to hardware configuration breaks

down [LEH77c]. The critical differences, those that lead
directly to the problem whose solution would effectively

overcome most, if not all, of the large system

characteristics we have identified, relate directly to the

two unit-descriptors referred to above, the spectftcatton and
the tnterface definitton.

For the unitised system to be viable, growable and

maintainable over a long period the specification of each and

every unit must be completes relative to stated requirements,

14.4 (Eds) But has, as forseen below, only provided a
temporary resptte. The untts and collection of units
must themselves evolve, be adopted and all the old
problems reappear. Now, in 1985, we recognise that only
formaltsatton of the process and its strict control can
hope to contain the problems, to permit the continued
development, continuous apaptatin ands hence, reliable
usage of ‘large programs'.

14, Characteristics of Large Systems 327

correct, ie self-compatible, accesstble and compatible with
the specifications of a significant subset of other units,

and ideally with all of them. Each unit must be 'pluggable',

imposing a known ‘'loading' in terms of its use of system

objects. There may be no unidentified side effects,

preferably no side effects at all, asa result of unit

connection. In Parnas' terms [PAR72] the assumption made by

the unit and its environment about others must be completely

correct and completely known.

It is one thing to recognise the need for satisfactory

specification. It is quite another to achieve it. For the

unit concept to work in practice we require a unit specifi-

cation which is as complete and as accessible as, say, that

of a standard bolt or nut. This need was’ specifically

recognised in the emphasis placed at a recent conference on

Software Engineering [ICSE2] on requirements analysis. But

it goes further. The need is not purely for the identifi-

cation of requirements. Nor will all problems be solved with

the development of the specification language that has’ been

the main objective of specification technology for so long.

A specification must have structure as well as content. A

limited number of candiate structures can perhaps be deduced

by identifying system attribute classes and sub-classes, and

the relationships between them, that together may constitute

the specific character of a piece of software. These classes

must then be structured and their alternative interrelations

formatted into a very small number of specification skeletons

that form possible frameworks into which a specification may

be developed. After initial exploration of alternatives, one

framework must be selected and a specification developed to

fill and cover the entire skeleton. The resultant specifi-

cation can and should be as complete as the framework. It

can then form the definition against which the unit itself is

developed, validated, modified - wtth stmultaneous modifi-
cation of the spectftcatton - marketed, taught, used and
maintained. The structured specification form, of course, is

the first step in the development of software engineering

than is structured programming.

The need for firm and total identification of each unit

interface is also clear. The problems raised are more

pragmatic. The problem arises from the fact that there is no

apparent physical limit to the size of the interface

analogous to the surface area and pin limitations arising in

a hardware interface. software communication is volumetric

unless constrained by such rules as that of block structure.

Even the latter, and certainly any ‘agreed' interface, can be

328 M. M. LehmanandL. A. Belady

violated ‘'merely' by a programmer changing the point of
declaration of an object, more generally simply by
referencing some system object external to his unit, using
Simple and direct communication as agreed between two
programmers. Thus we face two problems: software interfaces
are likely to come in an enormous variety of shapes and
Sizes; even if successfully established, they are very likely
to be violated. It is extremely difficult to control then.

The inherent flexibility of the software interface, plus the
sociological and managerial problems of maintaining their
integrity in the face of three or more generations of
managers and programmers brought up without the concept of an
impregnable interface standard has led recently to the
Suggestion that the interface between software units, at
least in any one enviornment, be standardised and
implemented in hardware [LEHT77c]. The Funnel concept is
based ona generalisation of the channel concept [PAD64] to
the point where it is seen as the interface between any two
functional units, not just a central processor and an I/O
device. It standardises interfaces by restricting and
Channeling all communications through hardware links, with
the definition of each message on each link being contained
within a message header according to a standard grammar.

At first sight such an artificial constraint on inter-
Software unit communication might appear as a crippling
penalty that would seriously degenerate system performance.
However, we may recognise that the advancing mini-computer
and micro-processor technologies make the whole concept not
Only feasible but even advantageous. Funnels can be
implemented in micro-processor form. Equally, each software
unit can execute on its own microprocessor. This in turn
leads to a potential for parallel execution which means that
the performance limitations of standard hardware interfaces
are more than overcome. Thus the large software systems of
today will gradually evolve into the distributed systems of
tomorrow. But we stress again that such distributed systems
cannot become a reality without fundametal solutions, such as

those outlined, to the specification and interface problems.

Their complete solution on the other hand, provides’ the

potential for further major functional evolution and growth.

9 Concluding Remarks

The characteristic of continuing evolution that involves

growth, maintenance and increasing complexity is intrinsic to

the very being of large software systems. The resultant

14. Characteristics of Large Systems 329

indeterminacies of system state, system function and system

capability make them costly to implement, even more costly to

maintain and could prove disastrous in certain applications.

As a consequence, there is a limit to the size and functional

content of software and software controlled systems in their

present form. However, the developing technology of micro-

processors, together with the concepts of total, structured

specification and standard hardware interfaces between self-

contained software units is seen as leading to the gradual

evolution and future development of large software systems in

the form of distributed, highly parallel, systems.

Finally we note that large software systems display all the

features characteristic of large systems in general: static

and dynamic properties and behaviour patterns that are being

increasingly discovered and described by an emerging systems

science (eg [SUT75]). But they also display peculiar
properties that are a direct consequence of the

implementation technology - programming - used in creating,

maintaining and enhancing these systems [LEH78].

In discussing the characteristics of large systems in the

present context, we do not attempt to specifically identify

the more general systems properties. It is, however, well

worth drawing attention to the contribution that systematic

application of systems thinking, the ‘systems approach', can

be expected to make to the future development of software

engineering concepts: software systems engineering.

CHAPTER 15

ON SOFTWARE COMPLEXITY*

A survey of complexity measures

1 Introduction

In 1974 there was very little known work on complexity in

general, and even less on the complexity of programming. At

that time Professor Beilner (now at the University of

Dortmund) and I shared an office at Imperial College and,
according to our mutual interest, discussed problems of

‘complex' problems and of large scale programming. Sometimes

we asked: what is complexity? Is it possible to come up

with a reasonably precise definition? Is the intuitive

concept of complexity quantifiable? Since we could not

answer these questions, we turned to the literature. And

soon, among the many rather philosophical essays on

complexity, we hit upon a very interesting doctoral thesis by

van Emden [EMD71], 'An Analysis of Complexity'. In addition,
we also found a sizable body of work on computational

complexity.

The thesis work was based on the concept of conditional

probabilities and on the formalism of information theory, and

appeared suitable to model complexity of interconnected

systems, such as programs built of modules. The

computational complexity work was, however, only marginally

relevant to the problems of designing, understanding and

manipulating programs: program complexity was expressed as

the measure of memory space and execution time demand of a

coded algorithm. This measure is more or less independent of

the program's development history, and of the difficulty to

understand its workings, and thus says very little about

them.

From these early readings it was clear that we faced a very

difficult task (five years later this paper still claims that

measuring the complexity of programming is far from being a

usable method). But we also learned that complexity can be

perceived in at least two different ways: sometimes it

appears aS a measure of uncertainty oor surprise (the

Copyright © 1979 IEEE. Reprinted with kind permission from, Workshop on Quantitative

Software Models, Kiamesha Lake, New York, October 1979, pp. 90-94.

331

332 M. M. Lehman and L. A. Belady

information theoretical formulation), and sometimes it is

deterministic and defined as a count or magnitude (as the

amount of storage cells or the number of instructions

necessary to execute an algorithm).

Since that time the literature search has continued and by

now my complexity file, still growing, contains about eighty

reasonably relevant papers. The objective of the present

paper is to give a brief and a little bit organised survey of

this ‘complex' repertoir of approaches, which all try to

capture the elusive program attribute called complexity.

2 Categories

As the publised material became large, classifying it became

necessary and fortunately possible. Firstly, afew quite

distinguishable approaches to model complexity appeared to

emerge, and most papers fell naturally into one of four

categories. secondly, and more or less independently of the

approach taken, the objects or processes under study varied

from programs to interconnected systems to human perception.

These two independent views of classification then led to a

two-dimensional tabulation of the collected papers.

The first of the four approach categories is labelled

‘informal', contains some delightful but in practice not

directly usable philosophy, and some advise as to how to cope

with complexity - while the term itself remains undefined.

Papers in this category appeal to intuition and their only

foundation is the common meaning of the word ‘complicated’.

The approaches of the second category are deterministic, with

the objective of precise quantification. Typically, some

countable property of the studied object or situation is

selected and then the count is asserted to be proportional to

complexity. Underlying this approach is the belief that

meaningful cost and other estimates can be based on counts;

analyses can then be performend to predict programming

workload, or to aid design or similar selection processes.

An example is the mentioned analysis of algorithms.

Perhaps the most exciting approach is that taken by papers of

the third category. Here, complexity is perceived as’ the

measure of uncertainty - under closer examination a quite

reasonable assumption about real life situations. Consider a

person involved ina complex intellectual task. You may

visualise him sitting at a desk, rapidly scanning available

and relevant information in his head, as well as’ spreading

15. Software Complexity 333

out notes on the desk in front of him. The larger the desk

and the more it is covered, the greater variety of

information may be needed at any time in his work. It must

be uncertain, ie only probabilistically specifiable, which

piece of information is needed next; where it certain, then

notes and other sources could be produced and ordered in

advance, and then put on the desk one by one, with the result

of having but a few notes exposed at a time. Notice that in

the alter case the required work would still be significant,

but less complex, because of its being more predictable and

more organised.

A notion closely related to uncertainty is vartety. If, in

doing some task, the variety of information and other

necessary equipment is large, then the task is complex.

Conversely, a large number of essentially identical items or

tools, or their repetitious use, present less. problems,and

matters are generally simpler. It happens that infomation

theory is founded on a similar notion of uncertainty which is

mathematically formalised as entropy. Approaches within this

third category are therefore strongly influenced by informa-

tion theoretical concepts: complexity grows with the variety

of objects, states of processes under consideration, as well

as with the lack of a priori information about the relative

relevance of the objects to the next task. For the host the

composition of a menu iS more complex, the more choices are

available and the more uncertainty exists as to avialability,

custom, taste and other preferences of the guests. Equal,

unguided, possibilities present the greatest challenge.

In the most frequently used sense, the word complexity

characterises some human activity, such as_ understanding,

producing, putting things together, solving problems, ete.

Complexity can thus be measured directly as the time taken by

the activity, under the assumption that, with other factors

being equal, a complex task takes proportionately longer

time. In the fourth category of approaches we collected such

empirical work on complexity. Here, in most cases

comparative measurements are employed to find relative

complexity.

In the second (vertical) dimension of the matrix, papers are

lassified by the object or situation under study. Most of

the collected papers are, of course, limited to programs and

programming, but we have also found quite a few relevant

articles which are also applicable to the domain outside of

programming. Accordingly, we labelled the two major

categories as software and non-software.

334 M. M. Lehman andL.A. Belady

SOFTWARE

| Informal ; Counts | Probabilistic | Empirical
! | t j
I | t !

Algorithms | Chaitin ; Aho | Rabin

| Traub | Chaitin
i Pippinger

I ! { 1
' ! { !

Control | Chapin | McCabe i Chen | Savage
Structure | | Farr

| Myers
| Cobb
| Woodward

t ' t !
l ' I {

Data | Valiant | McKeeman | Basili

{| Yin | Lehman
J ! t t
1 I I I

Composite | Hoare | MeClure | Walston/
| Rugaber | Felix
| Halstead | Feuer
| Knuth | Elshoff
| Mills | Kolence

| Gileadi/ | Uhrig
| Ledgard | Weissman

| Stucki

NON=SOFTWARE

Sy stems | Parnas | Belady/ |! Belady/Beilner {| Ferdinand
| Simon | Lehman | Haney
{ Myers ' Basili | Williams
i Jones | Gilb | van Emden

| Belady/ H
| Evangelisti

' ! ! !
i l ' t

| Considine
I | | !
I ' t |

Tools | Halstead | Laemmell/ | Symes

| Lawson | Shooman
i | | !
i (t i

Under- | Weaver i Schorer | Klare |} van Gigch
Standing | | McKee | Curtis/

{ Love
| Weissman

Table 1: Categories

15. Software Complexity 335

Within the software category we distinguish between four sub-

categories: algorithmic complexity (the least related to the

programming process), measures based on program control,

measures based on data-structure (or flow), and measures of

composite program attributes (control and data flow may or

may not be included).

In the nonsoftware category, we listed the complexity studies

of interconnected systems (often immediately applicable to

large software systems), complexity studies of hardware (ie

logic circuits), measures of complexity of tools (such as

language) and of comprehension, understanding.

Table I is the two-dimensional matrix, with references to

major papers appropriately indicated. In the next section we

discuss quite briefly some prepresentative work on the

quantification of complexity.

3 Some Examples

In the category of deterministic control flow complexity the

best known work is McCabe's [MCC76]. With the control flow

graph of the program given, he proposes as complexity measure

the number of distinct execution sequences which are possible

along the directed graph. The application of this matrix has

become quite widespread, because the number of paths is easy

to extract automatically from existing (and machine stored)

programs. This approach also appeals to intuition: a person

reading a program must mentally follow all control paths in

order to fully understand the program. Unfortunately the

even more complex activity of following data reference paths

is completely neglected in this model.

Another control flow based measure was proposed by Woodward

et al [wW0079]. The basis of their approach is program text,

amended by lines with interconnect statements where control

may be passed between them. These lines occasionally cross

each other and thus create ‘knots’. The complexity then is

assumed to be proportional to the knot-count. Indeed, well-

structured, easy-to-read programs have less knots, but again

data references are not included here (although the knot

method could include graphs as well).

Also related to the above approaches are Cobb's

'reachability' measure [COB78], Myer's [MYE77] extension to
McCabe's model, and an early paper by Farr and Zagorsky

[FAR65] proposing the density of IF statement as a measure of

complexity.

336 M. M. Lehman and L.A.Belady

Significantly different is the approach taken by Yin and
Winchester [YIN78]. Here data flow complexity is considered
basic, and the associated graph's departure from its spanning
tree is defined to be the measure of complexity. The
rationale is that ina tree a unique path leads to each node
- a sort of minimum complexity.

The most comprehensive of the deterministic approaches’ based
on Program object counts is unquestionably Halstead's
software science [HAL77]. It is based on the four counts of:
distinct operators, Operands and total occurrences of
Operators andoperands in the program. From these numbers
bounds and estimates of program Size, programming effort,
etc, are derived. The approach has received considerable
attention (15.1). Often, experimentalists summarise their
own results in terms of Halstead measures, or test and verify
the claims of software science. Such work has been reported
for example by Curtis [CUR78].

There are too many other deterministic proposals to mention
them all. Due to its originality, however, we cite here
Mill's proposal [MIL] to measure complexity of a program by
the length of text necessary to prove its correctness. (Will
this motivate for simplicity?)

For modular systems an example is the Belady/Lehman [BEL76]
model in which complexity of system modification is captured
as the ratio of modified to total number of system components
(modules). Clearly, if modification gets diffused into a
larger protion of the system, then it must have been more
intertwined and complex than a system in which modifications
remain confined and localised. The approach has’ been
Successfully used to predict modification workload of a large
operating system which has been evolving over a ten year
period.

However interesting and promising, information theory based
approaches are rather rare in the literature and appear
concentrated either around the study of probabilistic
algorithms or of interconnected systems in general. More
Specifically for program systems Belady and Beilner attempted
to capture the complexity of program evolution by introducing
distributions over the set of modules of the probability that
(a) a change hits a given module and (b) that another module
becomes impacted by the change. The scheme is formally quite
close to the entropy approach of van Emden's [EMD7 1]

15.1 (Eds) But by now (1985) largely discredited.

15. Software Complexity 337

mentioned in the introduction. Another, earlier, effort by

Haney [HAN72] models the change propagation along a graph of

edges labelled by probabilities and spanned by modules as

nodes. Unfortunately, very little experience exists with

these approaches and at present they are subjects of

research.

There are numerous papers in the literature on readability,

complexity of comprehension, frequency distributions of words

and symbols in natural languages as compared to program

symbols, many based on probability theory. But again,

experience with respect to their usability is practically

nil.

Much more promising are the empirical approaches. In one of

the ealiest studies L Weissman [WEI74] at the University of
Toronto identified a number of program constructs) and

attributes and ranked them according to the associated

relative difficulty which a group of students encountered

while programming. By implication, a construct is more

complex the more difficult it is to apply and understand ina

progran. Encouraged by earlier results, recently more

professional psychologists turned their attention to the

empirical evaluation of programming complexity. They usually

conduct joint efforts with computer scientists, with the

objective to understand human factors of programming tools

and techniques and to test in practice the measures arrived

at by speculation, which would otherwise be doomed to

oblivion. Some such work is presented in Bill Curtis'

[CUR78] accompanying tutorial on complexity.

Surprisingly, many people have something to say about’ the

unsettled subject of complexity. Many thought-provoking

papers are listed in the first column of Table 1. Anyone

interested should read them since, due to the variety of the

ideas, it would be very difficult to give a summary here.

However, itis hard to resist the temptation to quote Herbert

Simon [SIM69] for conclusion: '... complexity in the
computer program was, to a considerable extent, complexity of

the environment to which the program was seeking to adapt its

behaviour’.

y Summary

Quantification of programming complexity is far from being

mature. Only experimentation will be able to bring about

slow but steady progress, eventually enabling us to predict

338 M. M. Lehman and L. A. Belady

program quality and programmer productivity, by inference
from only a few factors which are available at the Start of a
software project.

5 Acknowlegement

I collected the material for this paper with H Beilner. His
insight was essential for the above presentation.

CHAPTER 16

A MATHEMATICAL MODEL
FOR THE EVOLUTION OF SOFTWARE* (16.1)

1 Introduction

Evolution dynamics is a theory describing the growth over
time of large computer programs. It has been developed by
Lehman and others ([BEL72]; [BEL76]; [LEH76b]; [LEH78a] and
other papers) to explain certain features of the evolution of
large programs, such as limitations in the average growth
rate and difficulties which commonly follow growth spurts.
The theory distinguishes between progressive work to
introduce new features, and anti-regressive work to make the
program well-structured, documented, understandable, and
capable of further development. Overly rapid growth often
leads to partial neglect of this latter component. Both
types of work are needed together in order to make progress
in developing the program.

To apply evolution dynamics, we must be able to make
quantitative statements about the balance of the two types of
work, That is, we need a mathematical model. Our need is
well summarised by Harvey M Wagner [WAG75], page 7:

Constructing a model helps you put the complexities and
possible uncertainties attending a decision-making
problem into a logical framework amenable to
comprehensive analysis. Such amodel clarifies the
decision alternatives and their anticipated effects,
indicates the data that are relevant for analysing the
alternatives, and leads to informative conclusions. In
Short, a model is a vehicle for arriving at a well-
Structured view of reality.

The purpose of this Paper is to find a model for’ evolution
dynamics.

16.1 (Orig) This work was done while the author vas visiting
_the Department of Computing and Control, Impertal
Colleges London, England.

Reprinted with kind permission from Journal of Systems and Software, Volume 1, No. 4,
1980, Elsevier, New York.

339

340 M. M. Lehman and L. A. Belady

The model should:

1 embody the qualitative ideas of evolution dynamics

(summarised in the next section,
2 explain the data observations in the literature, and

3 be as small and simple as possible, consistent with (1)
and (2); a simpler model is easier to fit, to
understand, and to use and thus (paradoxically) may be
more powerful than a more complex model.

Starting with the model of Riordon [RIO77], this work has
simplified the number of model variables from five to two and

reduced the number of parameters as well (though not so

greatly), without sacrificing effectiveness under (1) and

(2).

The paper is concerned with the mathematical model; some

questions of data measurement (such as the measure of the

size or power of a program) are not addressed here. Our

measure of size is that adopted in references [BEL72];

[BEL76]; [LEH76b]; [LEH78a], namely, the program ‘module’,

which must then be defined in specific cases. We use the

same kind of complexity measure as in [RI077], for which
there is as yet no objectively measured variable. This does

not invalidate the definition; complexity is fully specified

indirectly by its effect on program growth.

The model is not intended as a magic formula. In its present

state it requires a good understanding of the application,

particularly as regards the consistent definition of program

size, the relationship between size and power (this is an

estimatton step - estimation of lines of code, or modules,

needed for particular functions), and the particular forms

taken by complexity. Allowance must also be made for random

variations from the model predictions, and the size of these

depends on the case.

2 Program Growth Dynamics

This section describes the types of program growth that an

evolution dynamics model must explain, and then defines the

model equations. We begin with some of the data on which

evolution dynamics is based, shown in Figures 1 and 2.

16. Mathematical Model for the Evolution of Software 341

Notice that:

the average growth rate [the slope of M(t)] stays near a
certain average value, but declines as the program gets
larger;

the growth rate in Figure 2 oscillates over the early portion
of the curve. This was a series of ambitious releases
alternating with 'cleanup' releases. Thus the two types
of work identified in the introduction alternated in
this period.

o
l oO
| a © a —

>
x @ 2 a

‘ \ \ \ \ 4 +

M
P
r
o
g
r
a
m

Si
ze

(t
ho

us
an

ds
of

st
at
em
en
ts
)

f O
o |

A >

 3
Oo o
l
O
r

o o O
r

o

Figure 1 Growth Data for System P

A series of laws of evolution dynamics have been formulated
[LEH78a] to explain these and other observations. For our
purposes we can summarise them in two observations about
growth.

Observation 1: Each project has a certain maintainable
average growth rate which is very difficult to alter.
Attempts to exceed it lead to problems and subsequent
cleanup work, as in system T (Figure 2). As the program
becomes larger, the average maintainable rate declines
and the release interval tends to increase. (The third,
fourth and fifth laws in [LEH78a] elaborate on this
observation.)

342 M. M. Lehman and L.A. Belady

Observation 2: Growth introduces disorder, entropy, or
complexity (mismatched and unmet specifications,
undetected errors, inadequate and incorrect

documentation, and new internal connections) which

reduce the efficiency of further work. The disorder or

complexity can be reduced only be effort directly

expended on it. This leads to the aforementioned

distinction between progressive and antiregressive work.

(The first and second laws in [LEH78a] bear on this

observation.)

6000 --

uct

Oe

» 4000 M(data) aye
8 ONpee

2 @

S a aN

iF ft M(fitted trend)
So /
& peet

3 [B
E 2000~y#
=z a

i

r x 500
x / x WN

; J\ | a. YeXX Scale ——>- AM

olxX Xx | \,Z |

O 500 {000 1500

Days

Figure 2 Growth data for system T:

Size Mand increment A M(k) = M(k) - M(k-1).

Seale for AM at the right

16. Mathematical Model for the Evolution of Software 343

2.1 Model Variables

Program M(k) at release k is measured in "modules', following
[BEL72]; [BEL76]; [LEH76b]; [LEH78a]. We assume that a
logically consistent modularity is imposed so that 'more
modules' implies 'more functions implemented in the program’,
and that implementation targets can be coverted into 'number
of module' targets.

To represent the growth-limiting effects of disorder
described in observation 2, we introduce an efficiency
function Poe Relative to a desirable standard level of
order, the output rate of the project team is multiplied by
Pre which is less than 1 for disorder above the standard
level. The actual disorder level itself will be defined as a
variable U such that

efficiency f, is a function of U, PRU) ;

the 'standard' value is U = 0 at 100% efficiency,

usually U > 0; and

Ofp/ 0U < 0

The function f is the inverse of Riordon's complexity
function [RIO77], and just as he chose an exponential forn,
for the same reasons we shall suppose that fp(U) = exp(-
U/Kp). This form meets the requirements ebove and is
mathematically simple. The constant K, determines the slope
of the function f,(U) as -1/K, at the standard level U = 0.

This paper assumes that the many forms of complexity listed
in observation 2 can be meaningfully lumped together in a
Single index variable U. Small values of U are associated
with such terms as 'good structure', ‘good software quality',
and so on; however, the defining property of our variable U
is its productivity-reducing effect on efficiency. Thus our
definition of U is precise even though it is not yet obvious
how to measure it directly.

The term ‘software complexity! usually has a_e stricter,
narrower meaning than our variable U and implies an
objectively measureable property of the program code and
data. The definitions of McCabe [MCC76], Chen [CHE78], and
Benyon-Tinker [BEN84] are in this spirit and are based on
graphs of the program and measures of their inter-

344 M. M. Lehman and L.A. Belady

connectedness. Chen did an experiment to relate his

complexity measure to programmer productivity, but because he

studied only novice programmers working on small programs,

his results are not directly usable here. Work is continuing

in this area and eventually may produce a measureable version

of the U variable.

2.2 New vs Structural Work

The effort exerted on the kth release is regulated by a

budget B(k). We shall assume that the rate of expenditure

per unit time is fixed at B and that the budget for release k

is related to the time interval At(k) spent on it by B(k) =

B A t(k). The effort B(k) is divided between new

(progressive) work By(k) and structural (antiregressive) work

Bo(k), where the latter covers effort expended on

structuring new code, on old code, and on the overall system

structure. The division is made by an allocation function

gg(k), 0 < Bg(k) < 1.03 thus

Bo(k) = B= (k)gg(k), By(k) = B(k)(1 - gg(k)).

The effectiveness of By and By are both decreased by disorder

U through the efficiency factor Pre

By(k) is directed to producing|new modules of program, and

each unit of By(k) leads modules if U(k-1) = 0,

fo(U(k-1)) = 1, or to Kyfp(ule1¥ new modules in general.

Ba(K) is directed to controlling U(k).

The time evolution of U(k) is made up of two opposing

components at each release: a 'potential increase’ UT(k)

and a reduction U™(k), so

U(k) = U(k - 1) + AUT(k) = U"(k).

The potential increase arises whenever new work is done

because the new modules affect the rest of the program in

ways that are unforeseen, so it is jointly proportional to

the amount Byok) of new work and to the size M(k - 1) of the

pre-existing brogram through a function fy (M(k - 1)). It is

also greater in a more disordered program and it is proposed

here that A U*t(k) is proportional to U(k - 1). With Ky as a
constant of proportionality,

A Ut(k) = KyU(k - 1) fy(M(k = 1))By(c), dfy(M)/dM>0 (1)

16. Mathematical Model for the Evolution of Software 345

This product form is merely a plausible and simple form of
the more general form

UT(k) = f(M(k - 1), U(k -1), b(k)).

Bo(k) includes all the extra effort expended on understanding
the pre-existing system and properly integrating the new
modules, and has its effect through A U7™(k).

2.3 Reduction of Disorder by Structural Work

Potential new disorder A U* and previously existing disorder
U(k - 1) are together reduced by allocating effort to Ba(k).
Using similar reasoning, the effectiveness of Bo(k) is
proportional to U (since problems are more easily found if
there are more of them) but there is a counter-effect due to
reduced efficiency, a diordered program being harder to work
on. With proportionality constant Ky» these considerations
give a reduction.

A U(k) = KgU(k = 1)f,(U(k - 1))Bo(k). (2)
In defining (2), we have for simplicity used the same
efficiency factor f, as for production of new modules; these
might in fact be different functions since the activities are
quite different. The counterproductive effect often
observed, where structural work produces new errors, is
implicitly taken in account in (2) by reducing the value of
Ka.

2.4 The Model Variables and Equations

As a summary the variables defined above are listed for
convenience:

M(k) = program size in modules

U(k) = Index of the disorder, or complexity state, of
the program (per module) in arbitrary units.

f2(U) = relative efficiency of work. We shall use
f.(U) = exp(-U/K,). Then K; is the value of U
that reduces efficiency to e7! ~ 37%.

346 M. M. Lehman and L. A. Belady

fy(M) = Impact of program size on the growth of

disorder. Supposing the growth of U to be

promoted by interactions between modules, the

function f,(M) = Mis used in this paper to
model homogeneity of interactions between old

modules and new. fu = 1 would model a

constant number of interactions per module,

independent of program size.

Bylk) = budget value for work on new modules
(arbitrary units, possibly money).

Bo(k) = budget value for work on structure.

B(k) = By(k) + Bo(k) = B At(k), which defines B as a
constant rate of expenditure over time.

A t(k) = time interval between releases k - 1 and k.

Ky = conversion factor, disorder units per unit of

UMBy, if fy = M.

Ky = conversion factor, disorder units per unit

(UBg).

Ky = productivity in modules per budget unit at

100% efficiency.

2.5 The Model Equations are now

M(k) = M(k - 1) + Kyf,(U(kK - 1))By(k),
U(k) = U(k = 1)[1 + Kyfy(M(k - 1) }By(ke)

- Kofp(U(k - 1) Be (k)] (3)
fo(U(k - 1) = exp ~H(k - 1)/Ky)s
fy (M(K - 1)) = M(k - 1).

2.6 Parameter Values

The parameters Ky» Key Ky are different in each application,

but several commonsense statements can be made about’ their

values. for example, kK, modules per budget unit is the

maximum possible productivity of the programmers, given well-

structured existing code and minimal effort to maintain tne

structure, ie, for fr = 1.0 and Bo = 0. Release policies

will probably limit the amount by which complexity U can

change in one release, since any set of quality standards

wili tend to keep U consistent. Suppose that even with g

1.0 and f, = 1.0 U is never decreased by more than 50%; then

16. Mathematical Model for the Evolution of Software 347

0 < KgB(k) < 0.5. (4)

On the other hand, suppose it is never increased more than

50% either, even with By = 0;

O < KyM(k - 1)B(k) < 0.5. (5)

The range of disorder U will be controlled by reasonable

standard practices in order to retain efficiency Pe might be

14% < Pr < 100%,

which in our exponential function gives

0 < U/Kp < 2. (6)

Although some cases may differ, these ranges give a rough

guide to the parameter magnitudes. Deviations, if they

occur, will have some obvious symnptoms.

This section has left the function Es undefined except for

the limits 0 <¢ Ey £1, since go. is a management factor,

reflecting the importance attached to good structure and to

complaints about structure.

3 Behaviour and Validation

Validation of the above model depends on the reasonableness

of its behaviour (sometimes called ‘face validity') because
the data are too limited for definitive statistical studies.

Within this limitation, the model passes three tests:
1 It bears out observations 1 and 2, in predicting growth

paths with ultimately decreasing growth rate if B(k) is

constant.
2 Parameter values satisfying the reasonable ranges in the

previous section can be found for systems T and P in

Figures 1 and 2; the resulting model prediction curves

(dashed lines in the figures) are close to the average

paths of the data. |

3 A managment strategy g. can be found which explains the

oscillation in the growth rate in system T. The

strategy is described in the section on responsive

management.

To examine the model behaviour, we shall first consider some

errno.kK. parameter values Ky = 1 module/budget unit, K

10 Kg = 1073, M(o) = 1000 modules to start, and f.(U(0))
0.5, so that U(O) = 0.693K,.

348 M. M. LehmanandL. A. Belady

3.1 Decreasing Growth Rate: Model Predictions

Figure 3 shows some model trajectories with constant budget
and Ss, that is, a fixed amount of effort on new and
Structural work over time. Many other sets of parameters
also give similar declining growth rates. The upper curve
represents going all out for rapid implementation, so that
after five releases further growth is totally impeded by bad
structure (remember this rapid growth includes poor
documentation, badly planned code, and all sorts of "quick
and dirty' work). The lower curve represents overkill on
Structure, with very careful work, but a low growth rate; the
middle curve is a compromise at a 50-50 division of effort,
and is still capable of further development although its
Structure is somewhat degraded after five releases. A
constant release interval At(k) = 100 is used in Figure 3.
Varying it changes the curves very little.

e—°
1500F

a e

e a

e

1400+ .
g, =O0.2

=
=
~~ e

®
2 1200+ uLo
wo

= e e= . 9,709

e oe

——

1000e

| 1 | | _|

1 2 3 4 5 6

Release Number k

Figure 3: The effect of the allocation fucntion 8, = const.

Model trajectories for parameter values: M(1) = 1000 modules,
U(1) = 0.693, Ky = 1-0, Bz=5.0, At(k) = 100 days/release,

B(k) = 500, Ky = 107°, and K, = 1073,

16. Mathematical Model for the Evolution of Software 349

A second reasonable managment strategy is to maintain a

constant U, representing some standard of software quality.

It can easily be shown that this implies

KyM(k - 1) |
g.(k) = ’ 7)
. KyM(k - 1) + Kg exp(-U/Kp

b(k)Ky exp(-U/K,)
M(k) - M(k - 1) = ~ (8)

1 + KyM(k - 1)/(Kg exp (-U/K,))

Figure 4 shows some trajectories using (8) for three values

of U; smaller U gives enhanced productivity but the decline

in growth rate is still evident. That is, even with constant

U the effect of a larger program is to absorb resources and

reduce the growth rate.

1500

U=0.A

1900

U=

oF

l

1300+
=
=
~ °JZvo"

8 1200 . a .
wT

Va
a

®

® 100 Yom

e

10006 | | | __}

1 2 3 4 5 6

Release Number k

Figure 4: The effect of various constant values of U. Model
trajectories for Bs chosen to keep U = const and other

parameters as in Figure 3.

350 M. M. Lehman andL.A. Belady

3.3 Parameter Values

Equation (8) is equivalent to the following curve for the
program size;

M(k) = M(k = 1) + aA t(k)/(1 + bDM(k - 1)). (9)

When U = const is a reasonable assumption, this could be
fitted as a regression curve. This was done for systems P
and T, giving the dotted lines in Figures 1 and 2 and the
following equations:

system P M(k) = M(k - 1)

+ 36.4A t(k)/(1 +5 x 107°M(k - 1)), (10)

system T M(k) = M(k - 1)

+ 9At(k)/(1 + 8 x 1074M(k = 1)). (11)

These fits were made by eye, to see how closely they matched
the data; with these few points, statistical fitting would
not be meaningful. We conclude that a good average fit can
be obtained, but the oscillations in growth rate of system T
are unexplained. They arise due to manipulation of &,(k) by
feedback effects, as explained in the next secion.

Notice that constant U (which is related to consistent and
Successful software management) simplifies the model to one
equation and two parameters; this seems eminently reasonable.
The data on system P did not justify further investigation of
parameters beyond the condensed form of (10), but system T
was investigated further.

3.4 Responsive Management

The system T data shows an oscillation in the growth rate of
releases 4 ~- 11 in Figure 2, which is not explained by the g
policies of the previous section. This section relates such
oscillations to the sensitivity of management feedback.

First, we roughly calibrate the model (3) for system T,
consistent with the simpler model function (11) and with the
commonsense ranges of values (4) - (6). The budget unit is
chosen so B(k) = 1 and the complexity unit so Kp = 1.

Over releases 1 - 13, system T grows by an average of about
230 modules per release, so on average KyfpBy (Kk) ~ 230. We
Shall take average values of Pr = 0.5, Bs = 0.5, making
Ky(0.5)(0.5) ~ 230 and Ky Close to 1000. With M in the range

16. Mathematical Model for the Evolution of Software 351

1000 = 4000, (4) and (5) suggest Ky ~1074 and Ky » 0.25.
These values are consistent with (11). The model is now

M(k) = M(k - 1) + 1000 exp(=-U(k - 1))(1 = go(k)),
U(k) = U(k - 1)[1 + 10°°M(k - 1)(1 - gg (ke)) (12)

-0.25 exp(-U(k - 1))go(k)].

From the data, it is clear that Eg (k) varies widely over
releases 4 - 11. Our explanation, like that in [RI077], is
that the variation is due to responsive management reacting

to users! and programmers' complaints about bad structure

when U(k) exceeds a satisfactory level U. The manager
increases gg(k) when U(k = 1) > U, but decreases it when U(k
-~ 1)< U; Pp managerial response is sharp enough, the one-

release delay in information can cause an oscillation as seen

in Figure e2. In control systems terminology, the ‘gain' is

too high.

Mathematically we express Bs in the feedback form

Bo(k) = go(U(k - 1), M(k - 1)).

At U=U, Ey is given by (7) to keep U = U, but its slope
98s/ 9U is determined by the manager's reactions. Further,

ths equation for U(k) in (3) will be linearised about average

values for M for M(k), fy = fu(M) ; f, =fn(U), B for B(k),
and go for go(U, M) to give theMPOLLOWLHE likearised model for

U(k):
U(k) = U+ 9U(k), (13)

sU(k) = ay 9U(k_-- 1),

ay = 1 - UBL(fyKy + Ppks) (38o/ 3 U)-F_KgBg]. (14)

For system T with Pu =- M~ 2000 modules over releases 1 —- 13,

ay ~ 1 - 0.693[0.325(dg,/9U) - 0.125g.]. (15)

The linearised coefficient ay includes the manager's

sensitivity 9g./ 2 U. Equation (13) will give an
approximation to (3) ina neighbourhood of the average
values, and will give damped oscillations (such as observed

in Figure 2) if |

The actual oscillations are probably initiated by components

in the planning process not included in the model, such as

changes in specifications or demands for more productivity,

perturbing the underdamped closed loop.

352 M. M. Lehman and L. A. Belady

Using (15) and ignoring the small term 0.1258, (since we do
not know ,), we have for system T

0 impliesay mp » Bs!
-1 implies 3 Eo/ 9ay

The reality over releases 4 - 11 is in between; reflection

shows that this is a very steep slope for the reaction

function. The range of values taken by U [see (6) above] is
expected to be about 0 - 2, and the range of Es is strictly 0

- 1 (or less, more probably less), so a value of 9 Eo/ 9 U as
high as 5 indicates that Eg(u) is almost a_ switching
function.

Thus we have demonstrated that the model can plausibly

explain the behaviour of system T. At the same time we have

derived a caution not to respond too sharply to feedback

information from users or higher management. To avoid these

unsettling oscillations, 3 Eo/ 3 U should be small enough to

make ay, > 0. Here the condition is 32 Bo 39U < 4.4, and for
other systems, by taking the extremes of the ranges (4) and

(5) and using U= 0.693 again, we obtain? B/ 3U < 1.9
(approximately) for avoiding oscillations.

4 Applications of the Model

Although this paper is mainly concerned with determining the
model and testing it, it is informative to see what light the
model can cast on planning questions.

4.1 Release Timing

The content and timing of releases determine a growth path.
The model will predict that a certain addition to the program
(implying a certain number of additional modules) requires a
certain length of time. Figure 4 shows how, if the increment
in M is the same from release to release and a certain
Standard U is maintained, the release interval must lengthen
aS the program grows larger (the curves follow the same path
over time for different release timings). In broad terms
this bears out part of the observation 1 that were mentioned
earlier.

4,2 Planning Two Releases

A sophisticated question may be asked about two consecutive
releases: Supposing the initial U and M to be known and the
final U to be specified, and budgets for both releases to be

16. Mathematical Model for the Evolution of Software 353

known, how is the work divided over the releases? In

particular, is it better to go for growth and new modules in

one release and to clean them up in the other, or is one to

follow a plan that keeps the quality as constant as possible?

Figure 5 shows a state-plane with trajectories of (M,U) for
k = 1,2,3 and U(1) = U(3) = 0.693, B(2) = B(3), and

M(1) = 2000. In choosing Byl2), Bo(2), By(3); Bo(3) there
turns out to be only one free variable, which is chosen to be

U(2) to simplify the equations. The lower part of Figure 5
displays M(3) as a figure of merit against U(2), since in our
formulation more modules mean more functions programmed, so a

larger M(3) is better.

Third Release

2800F STATE PLANE Planned Value of U(3)

(U,M)

 2600 f-
U(3),M(3)

 2400 f-

2200 Range of feasible
Trajectories

P
r
o
g
r
a
m

Si
ze

M
(
m
o
d
u
l
e
s
)

2000 LSS°

U(1), M(1) : Initial Release
l 1 L

0.6 0.7 0.8

Disorder Index U

(a)

2700 -

FINAL SIZE
2
non

Es ’.£3 2600;

gE N ® By(3)<0oa ™ e7; ON

gs By (2) <0 *“~s [>
re \ i ! 1 |

200006 0.7 0.8
Decision Variable U (2)

(b)

Figure 5: Optimal management of structure (disorder = U)
over time. For two successive releases with equal budget,
what growth pattern gives the greatest final size? (a)
Stateplane trajectories over two releases; (b) optimality -

final size M(3) vs desision variable U(2)

354 M. M. Lehman and L. A. Belady

The results, however are contrary to the author's
expectations. Consistently well-structured growth with U(2)
equal to U(1) and U(3) is nearly the worst case, and either
of the feasible extremes is preferable. The same result was
found for several other sets of parameter values,so the
conclusion is not sensitive to the model parameters.

The model therefore shows a clear preference for alternating
growth and cleanup. It places the sequence ‘cleanup, growth!
above the sequence 'growth, cleanup' but that seems less
Significant. Note that 'release' in the model can mean any
milestone, so each release could be divided into two phases
and planned this way, to give actual releases of consistent
quality.

This is a tantalising result (16.1), but it would be
premature to build too much on it. Altogether different
lines of research may be needed to tell finally whether
software development should be 'smooth' or "jerky'. The
author has found on reflection that personally he preaches
the former and practices the latter.

5 Conclusions

The model described above represents a theory for software
evolution at avery macroscopic level. It has satisfied
various tests against the data, and fits the observations of
evolution dynamics. It is a simpler model than previous
attempts, which makes it a more useful conceptual tool.

Using the model, two management issues have been examined:
the sensitivity of a responsive manager to feedback (which
may cause oscillating behaviour over several releases) and
the allocation of effort between progressive and cleanup work
over two successive releases. In the latter issue, the mode
favours an alternating allocation over a smooth and
consistent one, which may be a significant result in software
planning.

16.1 (Eds) But conforms to the concluston reached in other
chapters of thts books: and common de facto tndustrial
practice, based on practical expertence.

CHAPTER 17

MODIFIABILITY OF LARGE SOFTWARE SYSTEMS*

1 Introduction

Modifiability of procedures and artifacts is an increasing

problem in modern civilization. On one hand, social progress

brings about an increase in freedom of choice and action.

This would mean that, as individuals or members of

communities, we are free to change that part of the world

over which we have legitimate control. Yet, as we all know,

it has become increasingly difficult to exercise this right

for many of the changes have unpredictable or predictably

unpleasant side-effects.

Changes are often results of choices made of alternatives.

The availability of alternatives is of course made possible

by the recent massive increase in productivity, due to social

cooperation in modern societies. But this is unfortunately

coupled with a growing interdependence of all participants -

producers and consumers. It is this interdependence which

makes choices risky and the often unavoidable changes

painfully expensive. Let us look at a few examples.

The woman scientist with a heavy publication record gets

married, and if she chooses to change her family name to that

of her husband's she may lose, at least for a while, the

continuity of her professional reputation. (We don't even

mention problems of mailing address, driver's license, bank

accounts, etc., which almost all marrying women must face).

This problem is that of ‘information tnvestment' in the minds
of fellow scientists.

Or take the architect of the beautiful medieval cities, for

example the ones which surround the Mediterranean. The

streets are too narrow for automobile traffic - whom can we

blame for not having foreseen the 20th century? Modification

of the streets would be difficult because we want to

preserves not destroy and replace them just to accommodate a

new function for which the original setting was not designed.

My final example is the current changeover to the metric

system in the U.S. In this case the consequences are

predictable but, as most of us know quite well, the cost of

First published in Proceedings—The 14th IBM Computer Science Symposium, October

1980. Reprinted with kind permission of International Business Machines Corporation.

355

356 M. M. Lehman andL. A. Belady

replacing the many tools and instruments of one of the most
advanced industries in the world is horrendous, not to
mention the tnertia in people's mind, which acts against the
development of a new 'feel' for guessing, comparable to the
one within the old system.

Investment, preservation, cost - these are some of the issues
which must be considered whenever we contemplate
modification. The main question is then how to reduce the
impact on the different issues of a_ change. Clearly, the
smaller the domain and the shorter the expected time of the
impact the better we are off. Localttys in space and time,
of the impact of modification seems to be the central
concept. The narrower the field and the shorter lived the
scientific results, the less unpleasant is the name change;
the more primitive the society the easier the changeover to
new standards.

We are also interested, aS mentioned earlier, in the
predictability of the effects of change: we would like to
easily locate the consequences of planned modifications. It
is intuitive to accept that modifiability increases with the
ease of indentifying and locating its consequences, and
increases with locality, with its ‘impact size’.

It seems that large software too displays the mentioned
characteristics of modifiability. After all, programs are
representations of real life procedures and artifacts:

banking, manufacturing, flight dynamics, airplanes. And

Since they are models, ie abstractions of reality, they are

better bounded than parts of the complex real world and thus

easier to study. They too must be constantly modified, as

was shown almost a decade ago in Evolution Dynamics [BEL71B]
[BEL76] the study of ever changing large programs.

These studies distinguish between two entirely different

dynamics of computer programs. The first and traditional

subject is that of executton which takes place when a

computer, guided by a program, processes data by changing the

State of variables stored in the memory. This dynamics is

the domain of computational complexity and of the many

efforts collectively called performance modelling and

evaluation.

The other, and the perhaps more challenging, dynamics is that

of program evolution which takes place when the program is

not running on the machine at all - in fact is itself

subjected to changes, enhancements and modifications

17. Modifiability of Large Software Systems 357

continually performed by developers and maintainers. There
is not enough space here to give much detail on program
evolution dynamics and only one of its major observations is
reviewed herewith.

Large operating systems, such as OS-360/370, whose evolution
was first studied, are built of modules - components’ small
enough to understand and worked upon by one programmer,
relatively independently of, and with little need to
communicate with, others. OS-360/370 consists of several
thousands of these modules.

During the first ten years of its history the system had
about twenty releases. The amount of modification = change
and enhancement in each release - was more or less the same
over the entire period. At release changeover, some modules
remained identical, some others were new versions of old
modules, while a third category consisted of brand new
modules. It was interesting to observe that for the entire
observation period the fraction of modified modules was
monotonically and faster than linerarly increasing, and
towards the end of this twenty- release period actually
approaching saturation point at which all modules must be
modified to make the next release (Figure 1).

Complexity

A (Fraction of modules
impacted by change)

100%

 (Sequence of system ' releases "
In roughly equal increments)

Figure 1

358 M. M. Lehman and L. A. Belady

This observation was interpreted as clear indication that

repeated modification of software systems is increasingly

difficult - each modification creates an extra bit of

obstacle to the next one. The reasons for this is that’ the

original structure which was deduced from and well matched to

the original requirements is gradually deteriorating as more

recent requirements induce changes which do not fit the old

structure. Since one must live with an ever’ changing

enviroment, one must explore methods which at least reduce

this deterioration of structure during unavoidable program

evolution.

Another way of looking at modifiability is to observe what

kind of work is being done by programmers. Following many

surveys [GOL73], [BOE76], it is safe to say that
significantly more than half of the world's programmer

population works with existing programs, and only the

minority is involved in developing programs from scratch. It

appears that 'modify we must', and our paper is founded on

this premise. For the time being we do not question the

wisdom of modifying rather than replacing the old program in

response to new requirements, nor do we consider’ the

development of techniques for deciding whether modification

or replacement is more economical.

2 The Modification Process

First, we must examine what classes of modifications are

usually performed on software. The obvious number. one

category is that of repair, ie, the elimination of faults

found during development and subsequent operation in the

field. The important issue here is that while hardware

repair is not modification but replacement of parts or sub-

assemblies to get the product back to its original designed

state, software repair is always changing away from the

original state because it is found faulty.

This leads us to the important observation that the so-called

maintenance activity is actually redesign, corresponding

roughly to engineering changes in hardware. If we assume

that in product development even low level detail decisions

must have been deduced from requirements, then we must also

expect that changes at the same level, but now under the name

of maintenance, may cause perturbation of higher level

choices, or even of the initial requirements.

17. Modifiability of Large Software Systems | 359

But in reality maintenance ignores the redesign aspects of
its task and actually much less skilled people than software
designers are employed for performing modifications. The
maintainers' knowledge of the original design is marginal.
In addition to this, documentation of design is not only too
Sketchy, but usually rapidly loses its validity, thanks to
long Series of earlier (sic - later?) modifications.
Moreover, maintainers focus on individual building blocks,
the modules, of the system instead of studying the
interaction of the components before effecting a change. The
top-down approach, if practiced at all in the first place, is
replaced by low level patching, whose consequences,
uncontrolled and unpredictable, propagate into the systen,
and thus affect clarity of the entire structure.

But repair is not the whole story. Driven by expanding
market requirements for new function and, inthe case of
operating systems, by the introduction of new, advanced,
pieces of hardware, enhancement becomes. the other large
category of continuing changes. And if performance is
critical and the desire to save machine resources is great,
system tuning becomes another source of modification
because, in practice, modifications introduced by tuning
raely observe clarity of structure or understandability of
program text.

But what is usually modified in software? After all,
software is a fiction, Simply information to guide a
machine's operation. At the same time it appears to humans
in form of documents - either printed text or projection ona
VDU. In fact, several levels of documents must be prepared
for developing and maintaining software if it is large enough
and employs many people organised into specialist groups:
architects, designers, testers, ete. In fact, one way of
veiwing the process or life cycle is aS a sequence of
documents, that of requirements, specifications, programs,
etc, and transformations from one document into the next. It
happens that only the last of these transformations - program
text into machine code - is fully automatic and done by a
compiler. The other transformations - design out of
Specifications, or programs out of design - are manual.

We can then make two important observations. The first is
related to the labour intensiveness of the process. This
leads to high cost which is further amplified by low
reliability of human beings in contrast to reliability of
machines. Moreover, iteration in the process is also often
hnecesary to iron out errors introduced by fuzzy and noisy

360 M. M. Lehmanand L. A. Belady

communication between development and maintenance groups, who

work under schedule and cost pressure. In this enviroment

only machine processed documents (compiled text) are modifed

and be promptly updated, namely the ones which comprise the

end-product to be delivered, while the asociated higher level

design documents re left unchanged, reflecting the state in

which the software was, and not is. It would cost extra money

to keep these documents aligned with code. Of course, this

neglect makes the next generation of modifications again a

bit more difficult and forces the crew to work with the only

trustworthy document, namely the one which runs on the

machine: the low level code itself.

3 Research in operating systems

Up to about three years ago the problems of software

modifiability did not seem to be appreciated much by the

software engineering community. This was indicated by the

fact that no exploration - research or other - was conducted

at all on maintainability or modifiability. Rather, most

efforts were directed to the problems of designing software

from scratch. Our software engineering group in Yorktown

thus found it first necessary to invent how one should do

research in software modifiability.

It was felt that modifiability would most directly impact the

world of maintenance - excluding major enhancements. We

learned from IBM's maintenance organisation that the major

cost contributor was labour, and most of this was spent on

the actual definition and implementation of the modification.

From this and other observations made earlier in this paper

we reached the following conclusions:

- There would be little chance for success if we just

speculated and theorised about maintenance. Hence we

decided to make our hands dirty by working on an

existing software system, in order to build a more

modifiable version of it.

- We should have a double objective:

- Improved methods and tools for modifying existing

systems - with good or bad structure.

- Methods and tools to construct new software which

is easter and safer to modify

17. Modifiability of Large Software Systems 361

- We should not invent and introduce new tools; rather
Select and, in the process of exploration, test andrefine the already proposed and promising tdeas which
help achieve the above objectives.

Let us elaborate a little bit on the last point. For adecade or so the concept of abstraction has been in the focusof programming methodology. Recently this concept has gone
well beyond, and become broader than, the traditionalprocedural abstraction implemented by a subroutine.Abstraction has been manifested for example by informationhiding [PAR72], or abstract data types [LIS74]. Common tothem is the following rationale:

the task of working with complex systems isSignificantly simpler if one explicitly separates the
relevant from the irrelevant while modifying or
maintaining the system.

This fits well the many formal or intuitive models of com=
plexity, which is regarded as synonymous to uncertainty or
variety (variety, since repetitive occurrence of the samething does not add to complexity) (17.1). Following this
idea, simplification in working with software can be achieved
by decreasing the uncertainty, either by reducing the infor-mation (ie, the number of items to examine) necessary to
correctly perform the modification, or by Prescribing, asa
recipe, with certainty, the steps to be taken (or objects to
consider) when modification is performed.

Let us illustrate this by examples. It seems intuitively
obvious that modification is simpler if we know that

a) it does not impact the interface, ie, the calling
pattern and associated Parameter definitions are left
unchanged, and

b) there is no way but through call invocation that the
module is ever accessed from other parts of the system.

In the same vein, of one finds on a Single page or at least
on adjacent pages in the documentation all data structures
which are potentially accessed by a_ single module, the
verification of the impact of a changing module is much
Simpler than performing a frantic search through the entire
Program documentation for direct or indirect references
issued by the module.

17.1 (Eds) See Chapter 15.

362 M. M. Lehman and L. A. Belady

Let us now put the pieces together. Our reading into then

current technical literature and discussions with members of

the software engineering community led us to the adoption of

data abstraction, a concept which intergrates information

hiding, structural simplification and advanced language ideas

into a tool. This tool we thought could have the potential

to enforce a particular design in which locating and

localizing changes are easier to perform.

Relatively soon we opted for VTAM as a research vehicle. It

is an 0S370 component of reasonable complexity, a good

balance between a perhaps impossibly large operating system

(too large for a small research team) and a small 'toy'

example which would not help us to validate the experiment.

The result was a firm plan of experimentally redesigning

parts of VTAM specifically for modifiability, using data

abstration [LIS74]. |

Soon we learned also that our project would have two major

phases: the first to work with the existing, offical, version

of VTAM to extract its funtional content, and the second to

redesign it anew. We found later that these two phases

already predetermined the final output of the effort: on one

hand we would develop tools and techiniques of ‘scoping',

i.e. studying, existing systems, and on the other construct

facilities to aid the design of new, more modifiable systems.

Based on our discussions and cooperation with several |

development and maintenance organizations, we have become

convinced that current conditions in both domains - work with

the old and constructing the new - demand a great deal of

substantial improvement. In the following we will describe

the tools developed so far for working with existing systems,

then turn our attention to problems of constructing

modifiable software.

3.1 Work with existing systems

The first obstacle which we encountered was the great

diffficulty to understand and accurately redocument' the

actual functional content of VTAM. But this difficulty

created just the right milieu: we were in fact playing the

role of maintainers who were given a piece of software to

work with - debug or update. As already mentioned, if you

really want to know what the program does during evolution,

you cannot trust manually produced documents, which are not

automatically coupled to the compilable program text. (17.2)

17. Modifiability of Large Software Systems 363

We found the reading and understanding of the PL/I (17.3)
written VTAM code quite slow, in spite of the ample comments

supplied in the program text. We therefore started

experimenting with different, mostly graphical, program

representations, as a possible enhancement of the text

proper. After long considerations we rejected the number one

contender, the Nassi-Scneiderman (NS) diagram, mostly because
of the complications of displaying it on a, say IBM- 3270,

terminal. We remind the reader that NS-charts are nested

representations of program segments which then appear to

shrink indefinitely if surrounded by repeatedly nested

constructs. Obviously, a simple alphanumeric terminal, or a

line printer, cannot easily cope with this, and the increased

complexity of image construction would severely limit

widespread applicability. :

We were, therefore, literally forced to invent another

program notation which we later designated GREENPRINT (in
contrast to engineering 'blueprints', programmers use VDU

terminals with green phosphorous’ images). At present

GREENPRINTs are generated as follows: a program, developed

by us, takes the (PL/1) text as its input and then produces

as output an enhanced listing. In the process the program

text and the order of statements are left unperturbed, while

along the left margin the program tree, ie the control flow,

is displayed as indicated in Figure 2. Procedures, loops and

decisions are distinguished by the different vertical column

types. Detailed information on GREENPRINT can be obtained

from [BEL79a].

In addition to our own positive experience with GREENPRINT -
aided program 'scoping', an increasing number of co-workers
have become interested in using this inexpensive and machine
generated scheme. Current work is in the direction of making
GREENPRINT interactive, the idea being to permit editing the
graph and thus using it as a design tool for efforts from
scratch.

The second major obstacle to working with VTAM was the small
size of our research team: the already mentioned difficulty
of rapidly learning this operating system component, and its
size (in excess of 100K lines of code) made a complete
redesign prohibitive and we had to satisfy ourselves with re-

17.2 (Eds) Hence the importance of the new concepts of
integrated programming support envtronments.

17.3 (Orig) Actually it ts based on a dtalect of PL/I used
internally by IBM to write system programs.

364 M. M. Lehman andL. A.Belady

A GREENPRINTwith indented text

— SUFFSET: PROCEDURE OPTIONS ‘MAIN) REORDER;
Leas

po] DECLARE MIN SUFFIX FREQUENCY FIXED BIN(31,16) INIT(.001
j j WORD _NEXT (WORDSCOUNT) =0;
i J FIRST WORD=1;

— CALL GENTREE‘1);

——; DO S_INDEX=1 TO SUFFIXESCOUNT;
|——

jee |

|
V——_— DO W_COUNTER=1 TO SUFFIX_SPAN(S_INDEX) ;
j iI——
T !

< ny IF LENGTH!STEM)>2 THEN
< I!——+
< bl |

< |
« — DO W_INDEX2=W_INDEX BY-1 TO 1 WHILE‘
< ' {—— WORD_STRING_LENGTH (W_INDEX2) >=L

< < |
< ¢ eG" S_INDEX2=1;
< < 1 !
< < a
¢ < |
< « ny DO I=1 TO WORD_STRING_LENGTH(
¢ ¢ |I—— W_INDEX2) -LENGTH (STEM) WH

< < |
< < cc C=SUBSTR (WORD. STRIN
< < { | S_INDEX2=SUFFTX_LOW
< < be
< < |
< C c——_ IF S_INDEX2=0 &SUBSTR(
< < | i—— WORD_STRING_PTR(R
¢ < -—-! |
¢ < «1 | |
¢ < C1 ec S_INDEX2=0;
< « «il | |
< < hemes —_] —

< ¢ |
< < rer IF S_INDEX27=0) THEN
< < | 1——
< < -— |
< < qi |
§ $ | ! — SUFFIXPOTENTIAL (S_

< —o Merced Ccererevaconal reel

¢ |
‘ — W_INDEX=RWORD_NEXT(W_INDEX) ;

bearer ——! |

i
— RETURN;

Cel

eo GEN TREE: PROCEDURE‘S_INDEX()) RECURSIVE;
! f..... ~ ~
—

: —- DO W_COUNTER=1 BY 0 TO SUFFIX_SPAN(S_INDEX0);
i——_,

boned |

|
— IF SUFFIX _COUNT>=MIN_SUFFIX_ FREQUENCY *

|—— WORDSCOUNT THEN
bel |

l
eo SUFFIXESCOUNT=SUFFIXES_COUNT+1;
| |
|

|
—— IF S_INDEX=0 THEN

iI——_
eed |

- 11 |
lI — SUFFIX_LOWER(S_INDEXO) =SUF
li { !

i
ny ELSE

i——
jl |

II |
lI — SUFFIX_NEXT(S_INDEX) =SUFFI
14

Semanal

|
— S_INDEX=SUFFIXES_COUNT
t | SUFFIX_LENGTH(S_TNDEX) ts LENGTH;
| | RWORD_TNDEX(S INDEX) “W__ INDEX;

od kd CALL GEN_TREE(S_INDEX) ;
|
e— W_INDEX=W_INDEX2;
| |

beenasel Caceres

|
0V—_— RETURN;
! |

17. Modifiability of Large Software Systems 365

designing only selected sub-components of VTAM. But the sub-

components, the ones identified by the original design

documents, appeared quite intertwined at the code level.

Again, due to size, it seemed impractical to search manually

for reasonably self-contained chunks, namely those having

relatively sparse communication or little shared information

with the rest of VTAM. To do this automatically, we had,

once again, to find or invent a new tool.

At this point we must describe the notion of interconnected

control blocks and modules wheh span the basic structure of

most operating systems. Control blocks hold the state

information - of the machine and its resources, relating to

jobs, tasks, users, messages and other data stored for

processing - while modules are the ‘actors' - programs which

induce state transitions. After having gathered information

out of some control blocks, a small set of modules typically

updates one or more control blocks. The operating system

functions as an aggregate of these individual actions, hence

a module has access to many control blocks, while a_ control

block is accessible by several modules and thus becomes a

shared object serving as the main communication link between

modules.

In the original design the set of modules and the set of

control blocks are neatly laid out: modules grouped by

function, control blocks by meaning. But during subsequent

maintenance and enhancement, clarity of interfaces suffers by

ad hoc extensions of the crisply defined control blocks.

Extensions become necessary to accommodate new and originally

unforseen functions. The long chain of these modifications

results in the already mentioned and observed increase in

Change penetration into the system, as the number of modules

accessing a control block, and the number of control blocks

accessed by a module, increase during program evolution.

Figure 3 displays this interconnectedness by a two=-

dimensional matrix. A matrix provides for the most general,

indeed most generous, pattern with which elements of two sets

can be connected: m modules and n control blocks may have up

to (mxn) two-way connections. Clearly only a sparse sub-set

of this is desirable for a neatly structured system, if we

expect not only the reasonably independent development of

individual components, but also predictable maintenance

during which the number of potentially impacted elements is

not too large.

366 M. M. Lehman and L. A. Belady

SOO Ti. my >i ,
CO, it

4507. ce et

O24 -

apoEne
. : "1 . br: | fs -

350 Fie Ee.
wey : e | 3,

a , td |: |

SOOT: :, . othe.t
M . — af: t9 hin. ong PRI

D 25ay . 4 |
U i ee
L oe
5 2007 : (ae

fo. [sie
say :' ¢ Lian

th
100 Ewe . >

so tlh Wa
a ptf pp tt —

B 19a 202 502 422
SQ 152 250 3552

CONTROL BLOCKS

Figure 3

In order to carve out well isolated sub-components, we first

machine-stored the connectivity matrix of VTAM. After that

we were fortunate enough to find within our building an

already existing and immediately usable heuristic program

which, although originally developed for the placement of

circuit elements on chips, was directly applicable to our

problem of identifying relatively twndependent clusters of
modutes and control blocks. . The detail of this work was
reported in [BEL79]. This is how our short term action of
looking for a tool of this type to master the complexity of

VTAM, led to the supply of a generally useful tool for others

to work with evolving software and for control of its

complexity. (Incidentally, we also made some attempts’ to

formalise complexity on the basis of the connectivity matrix

as given in [BEL79].

17. Modifiability of Large Software Systems 367

3.2 Design for Modifiability

As mentioned earlier, we selected data abstraction as our

approach to software modifiability. Data abstraction can be

applied immediately as a design principle: structure

programs (modules) and data (control blocks) such that the
access code is packaged with the data rather than

interspersed with the actual logic of the programs.

Paraphrased, data should interface programs in behavioural,

operational terms, rather than in terms of implementation.

This would result in the much desired hiding of the detail of

the chosen data structure implementation.

A simple analogy is a team of several office workers sharing

a file cabinet of several drawers. The particular

arrangement of the files in the cabinet is a matter of

implementation; what is really wanted is to store certain

documents such that they be easy to retrieve later. This

means just two fundamental operations: store and retrieve.

Yet, in order to perform them, each person in the office must

know the rituals of how to get access to any required file.

If someone, perhaps in order to optimise, perturbs the order

in which the drawers, and the files within, are organised,

the others must also be retrained - their knowledge

"modified' - if efficient office operation is to be retained.

The alternative is chaos.

A possible solution is to hire another agent who then

personally stores and retrieves the requested files. He can

optimise the process by using any desired implementation or

reshuffling of the files, without the need to reveal this to

the actual users who will be quite happy as long as the files

become stored and retrieved rapidly and as requested. This

is actually the case of isolating the implementation

(physical storage) from the usage of the documents.

Similarly, while writing or reading a program, we usually try

to concentrate on the program's real function - perhaps some

algorithmic procedure or mimicking a physical process - and

do not like to be distracted by occasionally having to read

unimportant yet complex data-access code. It would be like

reading a book intensely, but getting occasionally

interrupted with the description of the type setting

processes which were used in the production of the book.

If several programs share the same data, then it is even more

important that data be associated with its own access’ code,

otherwise each program using these data must contain the

368 M. M. Lehman and L.A.Belady

access code individually. Thus, if the implementation of the

data structure changes, this must be reflected in each

program - a certainly error prone process.

Experience with large software indicates that new design and

programming principles are rarely followed readily and

rapidly, due to inertia in the programmers! mind, and to the

usual schedule and cost pressures which force the choice of

methods offering the shortest time to put the program

together, an not of schemes making modification easier in the

future. Indeed, optimising development and optimising the

entire life-cycle (development plus the long period of

maintenance and enhancement) are far from being coincidental.

This is why we thought that short of a tool which enforces
the use of data abstraction, we would probably not improve

modifiability too much.

Accordingly, we decided to develop a language which

encourages, in fact enforces, the use of data abstraction.

The language was made to be strongly typed, one which permits

the user to define abstract data types in addition to the

usual built-in types such as integers, characters, Boolean,

etc, along with operations associated with each type (as the

four arithmetic operations defined on integers). This we did

by designing a languaged called XPL/I, an extended PL/I (see
footnote earlier). The design was guided by the existing
language CLU developed at MIT. In order to avoid the burden

of writing a new compiler, we wrote a preprocessor which

accepts XPL/I programs and generates PL/I code for a_ run-of-

the-mill compiler, which in turn produces executable machine

code.

Two kinds of modules can be written in XPL/I: procedure (a
la PL/I) and capsule which is an abstract data type. Figure
4 displays an example for procedure and capsule in the syntax

of the language.

Having a new language, we were ready to write new, more

modifiable operating systems ~ or were we? The new language

indeed helped us only to construct individual modules, and

the compiler helped to establish the internal consistency of

a Single module, but left open the even more important issues

of how the modules are interconnected, and of machine aided

checking and intermodule consistency. So we put forward an

effort to develop a tool for machine atded design based on
data abstraction.

17. Modifiability of Large Software Systems 369

PROC MSG_QUEUE_BUILD(BUFFER<<MESSAGE>>, MOD QUEUE<<MESSAGE>>)

USES (BUFFER<<MESSAGE>> (OBTAIN, GETVAL} ,
QUEUE <<MESSAGE>> { OBTAIN, ADD},
MESSAGEC > ,
LOCK< >)

TYPE QUEVE<<T: TYPE>>

DEFINES
(e

OBTAIN (QUEUE<<T>>, MOD LOCK) -—> BOOL ,
ADD(MOD QUEUE<<T>>, T, LOCK),
°)

USES (°
BOOL,
LOCK,
e)

TYPE BUFFER<<T: TYPE>>

DEFINES
(e

OBTAIN (BUFFER<<T>>, MOD LOCK) ~ BOOL,
GETVAL(BUFFER<<T>>, LOCK) > T,

USES (°
BOOL,
LOCK,
e)

TYPE MESSAGE

Figure 4

On closer examination it became clear that the structure of
an operating system, redesigned with data abstraction in
mind, could become significantly different than that
resulting from a traditional composition by modules and
control blocks. Indeed, the experimental redesign of VTAM
resulted in a Single set of quite similar objects:
procedures and capsules, which are implemented in terms of
each other.

370 M. M. Lehman andL.A.Belady

In order to explain this better, let us examine Figure 5
which is a VTAM function after redesign. Arranged from
‘northwest to southeast' are the modules: procedures and
capsules. Lines between them indicate the direction of
‘uses! relations. For example the capsule 'RPH' (module A)
uses for its implementation 'DVT', 'QUEUE', 'MEL' and some
primitive types. We call the interconnected set on Figure 5
the external structure (ES) of the software design.

There are several important attributes of ES which we would
like to emphasise. First, a line represents the set of
operations used by the module originating this line, and is
performed on the module forming the end point of the line.
The operations in the set must be consistent with the 'type
rules', and can thus be checked by the compiler, which is now
extended into the world of intermodule communication. This
world is that of 'programming in the large', in contrast to
the implementation of individual modules - 'programming in
the small' [DER75].

Visualise a community of software designers - or maintainers

- who share and view at their individual display terminals

the machine stored single copy of the evolving design, the

interconnected objects. They can recall at will the detail

specification of the operations defined on capsules. In the

future the semantics of individual modules will also be added

such that the participants understand rapidly what the

programmed function is and how it is implemented. When a
function must be extended, the designers may easily become

familiar with the already implemented components, some of

which could be included in the extension; reuse of parts is
thus encouraged. Once, for example, a generic queue is

built, it can be used as a template at other places in the

system, or even in other systems, by properly 'wiring it'

into the external structure. preservation of consistency

will of course be checked by the extended compiler.

Or consider maintenance. Each module has two faces: its

‘left profile' is the specification, ie, its functional

capabilities, while the "right profile! is the

implementation. If one modifies the specification of say

module A, the lines to the left (and up) clearly identify the

domain of impact within the set of higher level modules - the

modules which rely on module A's definition. Changing module

B's implementation, on the other hand, can be followed along

the lines leading to its ‘building blocks’. Figure 5

illustrates the ‘limited domain't impact sets and clearly

contrasts the new structure's simplicity against the

17. Modifiability of Large Software Systems 371

CHAR

FMCB

Modules impacted
by redesigning A

PSS

PSS TPQ

MODULE

STRING

Domain of
impact of Bs
reimplementation

Figure 5

372 M. M. Lehman and L. A. Belady

generality of the two-dimensional matrix with its rich

connectivity.

We consider the external structure a machine aided design

tool which is particularly well suited to the construction of

large software systems, for which a human organisation is

employed, in contrast to the informal development and

modification process by small teams. In our own experience

in redesigning VTAM, consequences of changes, even during the

design process, are easier to follow, exploring alternatives

is more rapid, and the compiler's typechecking superior to

manual testing in catching bugs early. Our current efforts

are now in the direction of enriching the external structure

to contain formal specifications of capsules wherever

possible (17.4).

4 Conclusions

Tools are useful for both the maintenance of existing systems

and the design of new modifiable software. The experimental

approach taken by our research team turned out to

_

be

productive since certain problems of design and maintenance

can be understood and appreciated only be experiencing them.

Also, the actual use of the newly developed tools led to

their further refinement and consequent increase in usability

and credibility for successful technology transfer.

The project's current emphasis is two-fold (17.4). First,

modifiability must be evaluated by comparing the new version

to the old. This we plan to do by employing two groups of

programmers performing the same set of modifications, one

group on the new and the other on the old version.

Difficulty of the modification, the time it takes, and the

performance of the resulting programs, will all be used in

quantitative comparison. Second, we will extend both the

language and the external structure, the former to facilitate

concurrent processing and the latter to accommodate all

formal and informal specification for the entire duration of

a software's life cycle.

17.4 (Rds) ALL references in this chapter to work tn

progress or planned wer valid at the time of writting in

1981, but should now be interpreted as work still

needing to be undertaken.

17. Modifiability of Large Software Systems 373

5 Acknowledgments

The project mentioned here was headed by Hamed Ellozy. He and
the other members: Jerry Archibald, Carlo Evangelisti, Burt
Leavenworth and Leigh Power, aS well as many visitors from
the United States and other universities abroad, have been
doing the creative work which lead to the presented results.

CHAPTER 18

ON UNDERSTANDING LAWS, EVOLUTION AND CONSERVATION
IN THE LARGE-PROGRAM LIFE CYCLE*

1 Large Programs

Various published papers ([LEH79] and its bibliography), have
discussed the characteristics and dynamics of evolution of
large programs and the laws that have emerged from the
Studies of Belady, Lehman, and others over the past 7 years.
The main objective of the present contribution is to discuss
one specific aspect of these laws - conservation. However,
some general introductory remarks are desirable.

In the first place it must be stressed that the discussion
here is limited to large programs. Until recently these were
defined as programs of which at least some part has been
concurretly implemented and/or maintained by at least two
Separately managed jzroups [LEH78a]. Such programs will
certainly display the characteristics of largeness [BEL78].
They will, for example, inevitably have the property of
variety; they will also be outside the intellectual grasp of
any individual; above all, they will undergo a_ continuous
process of maintenance and evolution, generally in somewhat
undisciplined fashion.

The above definition ::s, however, not very satisfying. For
One thing, programs not satisfying it may also display some
or all of the other characteristics of largeness. Moreover,
the definition tends to focus attention on management or
Sociological issues, whereas the fundamental concern here is
with programming methodology and the engineering of software.
In particular. one must seek to recognise and learn to
control the circumstances that lead to the ill effects. so
often associated with largeness. Will not the adoption of
appropriate attitudes, algorithms, methods, and programming
techniques yield large programs that are well disciplined?
such questions are being addressed by our current research,
which includes attempts to formulate more acceptable and
useful definitions.

Reprinted with kind permission from Journal of Systems and Software, Volume 1, No. 3,
1980, Elsevier, New York.

375

376 M. M. Lehman and L. A. Belady

2 The Nature of Laws of Program Evolution

2.1 Their place within the spectrum of scientific laws

The evolution of large frograms, software systems, is clearly

not a natural process governed by immutable laws of nature.

Changes to a program are neither initiated nor occur

spontaneously. People do the work: amend or emend the

requirements. the specification, the code, the documentation;

repair the system; improve and enhance it. They do this in

response to fault reports. user requests, business or legal

requirements, managerial directives, or their own

inspiration. Human thought and judgement play a decisive

role in driving and executing the process that results from

(and in) a seemingly continuous sequence of exogenous inputs

(18.1).

Thus. we should not expect to discover laws of program

evolution that yield the precision and predictability of the

laws of physics [LEH76]. If laws governing large-program

evolution can be formulated at all, they must certainly be

weaker than even those formulated in the biological sciences,

where regularity stems from the collective behaviour of

cellular systems that. even though alive, are nonintelligent.

that is, are not influenced by conscious thought processes,

at least at the level of human understanding. Program

evolution should not even be expected to display the

regularity that has been abstracted into laws in the social

and economic sciences, for example, the Law of Supply and

Demand. After all, the programming process is planned and

controlled by an organisational and management structure that

is sensitive and reactive to the demands, pressures,

circumstances. and contingencies of each moment. Thus,

superficially. it would seem reasonable to expect the progam

evolution process to be totally irregular, a reflection at

each instance in time of the pressures of the moment.

One of the first and most surprising, yet most fundamental,

results of our observations and of the resultant analysis of

the dynamics of evolution of some eight programs ranging over

a wide spectrum of implementation and usage enviromments. has

been that this is not so. Regularities, trends, and patterns

appear and dominate large-program evolution. The common

18.1 (Orig) We may regard the tnputs as exogenous even

though some of them wtll have been generated whtle, or

as a result of, working on, or using, the system.

18. The Large-Program Life Cycle 377

features and patterns of behaviour reflect common

characteristics [BEL78] from which laws can be deduced; laws
that, within the spectrum outlined, lie closer to those that

describe the time behaviour of biological organisms than

those that emerge from the study of socio-economic systems.

Moreover, these laws find very practical application. They

provide a basis for large-program life cycle management

tools, as well as insight and understanding for improvement

of the programming process. As we increasingly rely on the

laws for guidance in the development of programming

methodology and on a software engineering discipline with its

techniques and tools, it becomes vital to develop also a

deeper understanding; of these laws and the fundamental

phenomena or truths that they reflect.

2.2 The Underlying Cause of Regularity

Once the phenomena have been recognised, the mechanisms
underlying them are not difficult to understand. As a
totally unintelligeritt machine. the computer executing a
program impacts its environment in away that is precisely
and completely determined by the code in association with any
input data. The ccde is unforgiving; there is no room for
logical error or imprecision. Thus any deviation from the
required semantic and syntactic structure creates a need for
corrective action. Good intentions, hopes of correctness,
wishful thinking, even managerial edict cannot change the
Semantics of the code as written or its effect when executed.
Nor can they a posteriori affect the relationship between the
desires, needs, and requirements of users and the program
Specification as presented to the programmers; nor. that
between the specification and its implementation; nor between
any of these and operational circumstances - the real world.

Additionally, the program and its documentation in all their
versions - the system - has a damping effect analogous to an
ever-increasing mass. It is precisely the freedom to
implement changes or additions required for obtaining desired
program behaviour which is increasingly constrained by
existing accumulted code and documentation. past program
application and behaviour, acquired habits, and implementer
and user practices.

The development and implementation of change and of any
Subsequent corrective action is strongly influenced by the
fact that. initself. program code is also not malleable.
Internal coupling, interconnections, and dependencies cause
even changes that. superficially. appear localised, to impact

378 M. M. Lehman and L.A. Belady

and modify the semantic consequences of code elsewhere in the

program. Thus when changes are made to the code, deviations

from absolute correctness will occur and unexpected side

effects will appear; these are very likely to lead to a need

for further corrective action. The more intensive’ the

pressure for change, the higher the rate of its

implementation. the larger the group of people involved, the

more likely it is that maintenance must subsequently be

diverted from progressive enhancement to repair and clean-up

(that is to redesign, restructure and re-implement).

These dependencies may be viewed as feedback connections over

the entire sy stem and application processes and

organisations. The resultant interplay of forces for change

and expansion of the code on the one hand and the inertia of

accumulted code, documentation, and habits on the other. and

the interplay over the various processes and the

organisational structures implementing them, are believed to

be major factors in causing the observed regularity,

determining its statistical characteristics and parameters.

These facts alone suffice to explain the consistency of the

observations. Recognition of other factors merely

strengthens belief in the reality of the phenomena. In

particular. large programs are. as arule, created within

large organisations and for large numbers of users; otherwise

they could not be economically justified or maintained. But

size causes inertia, and inertia smoothes behaviour’ that

might otherwise prove highly irregular. Moreover. the size

and complexity of both the program and the application for

which the program is intended mean that decisions take time

(sometimes considerable) and large numbers of people to

implement. Resultant delays provide exogenous pressures and

endogenous opportunities for change. The overall

circumstances and enviromment act as a filter. smoothing out

the global consequences of individual decisions but,

paradoxically. also adding the occasional random disturbance.

They also act as an economic and social brake that inhibits

or softens decisions that would have too drastic an impact.

For example, large budgets can, in general, be neither

suddently terminated nor drastically increased; in practice

they can only be changed by fractional amounts. Similarly, a

work force cannot be instantaneously hired, retrained,

relocated, or dismissed; at best a task force can be sent in,

and can cause a local peturbation.

In summary. large-program creation and maintenance occur in

an environment with many levels of arbitration, correction,

18. The Large-Program Life Cycle 379

smoothing and feedback control. A large number of

superficially independent (ie, almost random) inputs are
concurrently and successively superimposed to yield time

behaviour that may be statistically modelled (eg discribed by

parameters that have normal distributions). Many, if not

all. of the inputs arise from organisational checks and

balances, from feedback often also involving users of the

system. The feedbacks in general ensure long-term stability;

negative feedback dominates. The alternative, of course,

would be instability and disintigration of the system. The

existence of regularity, and therefore of laws abstracting

that regularity, becomes reasonable and understandable.

2.3 The Gross Nature of the Laws

The detailed behaviour of the programming process and of the

system that is the object of process activity is the

consequence of human decision and action. Specific

individual events in the lifecycle of the system, the system

development and maintenance process, cannot therefore be

predicted more precisely than can the specific acts of

participating or interacting individuals [LEH76]. Any laws
can only relate to the gross (statistical) dynamics of large-
program systems over a period of time, but as such they yield

insight and understanding that should permit improvement of

the programming process and advance the development of

software engineering science and practice.

2.4 Feedback Consequences of Increasing Understanding of the
Process

Increasing understanding of the dynamics of the large-program
life cycle raises another problen: to what extent will the
discovery and acquistion of knowledge and understanding of
the laws that regulate the programming process, by an
environment previously unaware of or insensitive to their
existence, lead to changed behaviour and thus invalidation of
the laws? How Will managerial awareness of and conscious
reaction to the laws affect the very nature of these laws?
Since they reflect the joint behaviour of people, the laws
are unlikely to immutable. Surely they may be expected to
change as understanding of system behaviour increases
[LEH76].

Space does not permit detailed discussion of this question.
We merely assert that the present laws reflect deeply rooted
aspects of human and organisational behaviour. Associated
with the mechanistic forces that define, control, and execute

380 M. M. Lehman and L. A. Belady

the automatic computational process. they are sufficiently

fundamental to be treated as absolute, at least in our

generation. As knowledge of them is permitted to impact the

programming process, and as programming technology advances,

the laws may require restatement or revision. Perhaps’ they

will become irrelevant or obsolete. But for the time being,

we must accept and learn to use them. To ignore them is

foolish and costly.

3 The Laws

The following brief comments on the laws summarised in Table

1, are intended to expose some of the more fundamental truths

that they reflect. These laws have been fully discussed in

earlier publications ([LEH69] and its bibliography).

L The Law of Continuing Change

This first law reflects a phenomenon intrinsic to the very

being of large programs. It arises, at least in part, from

the fact that the world (in this case the computing
enviromment) undergoes continuing change.

All programs are models of some part or aspect of, or process

in the world. They must therefore be changed to keep pace

with the needs and the potential of a changing environment.

If they are not. the programs become progressively less

relevant. useful, and cost effective.

Of course, all complex systems evolve. Living, social and

artificial systems [SIM69] all respond to reactions and
pressures from their environments by changes in operational

pattern. function. and structure. Software is distinguised

not by the fact that evolution occurs, but by the way in

which it occurs.

The pressure for change with respect to any large program is

felt almost daily. A widely held view is that the details of

the desired change need ‘only' be written down and then

applied without further real effort (or so it would seem) to

all instances of the system. As a consequence, changes are

super-imposed (change upon change) in a current embodiment.

This contrasts strongly with normal industrial practice where

conceptual changes are inputs to a redesign and recreation

process that ultimately produces a new tnstance of the

system. Moreover, any repairs to software are a departure

from the original conceived design and/or implementation

rather than the replacement of a worn-out part. In addition

18. The Large-Program Life Cycle | 381

Table 1: Five Laws of Program Evolution

II

Tit

CONTINUING CHANGE

A program that is used and that. as an implementation of
its specification, reflects some other reality,
undergoes continuing change or becomes progressively
less useful. The change or decay process continues
until it is judged more cost effective to replace the
program with a recreated version.

INCREASING COMPLEXITY

As an evolving program is continuously changed, its
complexity, reflecting deteriorating structure,
increases unless work is done to maintain it or reduce
it.

THE FUNDAMENTAL LAW
(of Program Evolution)

Program evolution is subject to a dynamics which makes
the programming process, and hence measures of global
project and system attributes, self-regulating with
Statistically determinable trends and invariances.

CONSERVATION OF ORGANISATION STABILITY

(Invariant Work Rated)

The global activity rate ina project Supporting an
evolving program is statistically invariant.

CONSERVATION OF FAMILIARITY

(Perceived complexity)

The release content (changes, additions. deletions) of
the successive releases of an evolving program is
Statistically invariant.

382 M. M. Lehman and L. A. Belady

there is, in software. absolutely no decay or death process

through which older parts of the system wear out and are

replaced, or disintegrate and disappear out of the system.

Removals. with replacements and additions, occur as a result

of system-extraneous pressures and effort, and then only as

the result of conscious and directed effort on the part of

people.

The evolution of software differs from that of other systems

in many other ways, but it is not our concern here to prove

that software is different to or to state in detail how it is

different. We ask the reader to accept that difference and

then to ponder the practical implications.

These implications are, we assert, strongly influenced by the

fact of continuing evolution, recognised and formalised by

the first law. The causes of continuing change are seen as

stemming, at least in part. from the continuing evolution of

the operational enviroments, in combination with the 'soft'

nature of programming technology. Hence changeability and

all it implies must be accepted as a basic requirement for

software systems. The degree to which it is achieved and

maintained may make all the difference, in the development,

application. and cost effectiveness of a system between

success and failure, profitability and loss.

II The Law of Increasing Complexity

Our second law may be seen as an analogue of the second law

of thermodynamics. More correctly, both of these laws should

perhaps be viewed as descriptions of instances of a still

more fundamental and natural phenomenon. In the case of

software. the law is a consequence of the fact that a system

is changed to improve its capabilities and to do so in a

cost-effective manner. Specific change objectives develop

from a consideration of factors that indicate immediate or

measurable benefit. They are expressed in terms of

performance targets, system resources required during

execution. implementation resources, completion dates, fiscal

objectives and constraints, and so on.

In cases with multiple objectives, it is generally impossible

to meet all of them optimally. Hence the completed project

and system must represent a compromise that results from

judgments and decisions taken during the planning and

implementation processes, often on the basis of time and

group or management-local optimisation.

18. The Large-Program Life Cycle 383

Structural maintenance is rarely mentioned in objectives.
Being anti-regressive [LEH74], it yields no immediate or
visible benefit but merely (stc) prevents deterioration.
Thus structure, being excluded from stated project
objectives, will inevitably suffer; each change will degrade
the system a little more. The resultant accumulation of
gradual degradation ultimately leads to the point where the
system can no longer be cost effectively maintained and
enhanced unless and until redesign and clean-up or

re-implementation is undertaken and successfully completed.

The law suggests that large-program structure must not only be

created but must also be maintained if decay is to be avoided

or postponed. Planning and control of the maintenance and

change process should seek to ensure the most cost-effective

balance between functional and structural maintenance over
the lifetime of the program. Models, methods and tools are
required to facilitate achieving such balance.

III The Fundamental Law of Large-Program Evolution

This was previously called the Law of Statistically Smooth
Growth [LEH78]. It expresses the observation already made
above that large-program evolution does not simply reflect,

at each instant and in each period, the decisions and actions
of the people in the enviroment in which it is maintained
and in which it is used. The law states that. at least in
the current state of the art, there extsts a dynamics whose
characteristics are largely determined during the conception
and early life of the system, of the maintenance process and
of the maintenance organisation. The characteristics of this
dynamics increasingly determines the gross trends of the
maintenance and enhancement process. system, project and
organisational history play an important role in the program
evolution process, while feedback provides a self-stabilising
control process, itself evolving. Thus cyclic effects
emerge, though not necessarily with pure periods.

This law is particularly important in guiding our under-
Standing of the software creation and maintenance process.
However its tacit acceptance (for the time being) also helps
the manager and the planner to remain realistic. We are not
free to set and achieve arbitrary design. performance, and
work targets [BRO75]. Project constraints are at present not
all under our control. Thus one must accept any limits they
imply until they can be or have been changed. Moreover. the
law implies that models of large-program evolution can be
created and exploited as planning and control tools.

384 M. M. Lehman and L. A. Belady

IV The Law Of Organisational Stabtltty

This was previously referred to as the Law of Invariant Work

Rate [LEH78]. It reflects the fact that, in general, human
organisations seek to achieve and maintain stability with

Stable growth. As suggested above, sudden substantial

changes in such managerial parameters as staffing, budget

allocations. manufacturing levels and product types are

avoided; as arule, such changes are not even possible. A

variety of managerial. union, and govermmental checks,

balances, and controls ensure smooth overall progress to the

ever changing, ever-distant objective of the organisation (or

its eventual collapse). In addition. the fourth law also
reflects the organisational response to the limitation that

will be shown underlies the fifth law.

With hindsight it becomes clear that the discovery of an

invariant activity measure (statistically invariant. as when

its parameters are always normally distributed with constant

mean and variance) could have been anticipated. What is not

really understood is why. in large-program maintenance

projects, measures of work input rate should be_ the

quantities to display such invariance (18.2). However, the
fact remains that for the systems observed, the count of

modules changed (handled) or changes made per unit of time,

as averaged over each release interval, has been

statistically invariant over the period of observation. The

limitations implied by this invariance can only be

temporarily overcome. If they need to be overstepped, the

consequences should be identified and must be accepted.

V The Law of Conservation of Familiarity (Perceived

Complexity)

In [LEH78] this law was referred to as the Law of Incremental
Growth Limits. Its discovery was based on data from three

systems, each of which was made available to users release by

release. In each case the incremental growth of the program

varied widely from one release to the next, but the average

18.2 (Eds) It really ts not that difficult to explain. At
the organtsational level feedback with production and

activity targets and budget control is gutded by

organisational perceptions and goals and by executive
decitston. Theses in turn, are couched in terms of human

and other implementation resourcess production

capability whitch ts reflected in work targets and work

rates. QED.

18. The Large-Program Life Cycle 385

over a relatively large number of releases remained
remarkably constant; that is, a high-growth release would
tend to be followed by one with little or not growth, or even
by system shrinkage; or two releases, each displaying near
average growth, would be followed by one with only slight
growth. Moreover, releases for which the net growth exceeded
about twice the average proved to be minor disasters (or
major ones, depending on the degree of excess) with poor
performance, poor reliability, high fault rates, and cost and
time over-runs.

The evidence suggests that initial release quality is a
nonlinear function of the incremental growth. From a more
complete phenomenological analysis along the lines outlined
below, it is hypothesised that quality is exponentially
related to the release content, that is, to the amount of
change implemented in the release.

It should perhaps be added that at this time no prectse way
is known how to define or measure release content per se, or
how to take into account the size, complexity, and inter-
relationships of system and code changes, additions, and
deletions. It is not even clear that a metric can be found.
If it can, then such a universal measure must also be
Sensitive to the characteristics of the systems and the
environments involved in or affected by the changes.

The absence of adequate definitions and measures is no reason
for ignoring observed phenomena and their implications. The
gradual clarification and evolution of concepts, definitions.
and measures is fundamental to the very nature of the
phenomenological approach we have adopted, an approach that
is considered essential for significant progress in mastering
the problems of software engineering. One first observes and
measures some phenomenon, then seeks models, interpretations,
and explanations in more fundamental terms; subsequently, one
can seek measures and devise experiments that confirn,
reject, modify. and/or extend the original hypotheses,
interpretations, and explanations; and so on.

4 Interpretation of the Fifth Law

4.1 Change and Refamiliarisation

The phenomenon abstracted by the fifth law was detected ata
very early stage of the evolution dynamics studies and was
featured in the earliest model [BEL71b]. It has been applied
as a planning and control parameter for a number of years.

386 M. M. Lehman and L. A. Belady

The explanation, however, has only recently become apparent.

The release process has always been understood as fulfilling

a stabilisation role [BEL71b]. Once a large program is in

general use, its code and documentation are normally in a

state of flux. A fault is fixed locally; in other

installations it is perhaps fixed differently or not at all.

Minor or major changes and local adaptations are made. Code

is changed without a corresponding change to documentation.

Documentation is changed to correspond to observed behaviour

without a full and detailed analysis of the precise semantics

of the code, within the context of the total system, under

all possible envirommental conditions. Only at the moment of

release does there exist an authoritative version of the

program, the code, and its documentation. Even this may

include multiple versions of modules, say, for more or less

clearly defined alternative situations.

Some time after the release of a program or program version,

each designer, implementer, tester, salesman, and user that

has been exposed to or worked with the system will have

become thoroughly conversant with, at least, those of its

attributes and characteristics that are considered at all

relevant. The resultant familiarity will have bred some

degree of relaxation, of ability to work with the program in

order to accomplish specific objectives. The program will

be manipulated without undertainty or concern and used

without (apparent) need for concentrated thought. External

perception of a program's intrinsic complexity will be at a

minimum. For people working consistently on or with the

program. its perceived complexity may be said to approach

zero.

As changes are introduced, as the new release is gradually

created and becomes available, new and unfamiliar code

appears. The program behaves differently in execution. in

its interaction with and impact on the enviromment.

Pagination in the previously familiar documenation has

changed and any need for reference entails a major search.

The system has become uncomfortably unfamiliar. the degree of

unfamiliarity depending on the magnitude and extent of the

change.

A major intellectual effort is now required by each person

involved before any completely successful and cost-effective

interaction with the new system can occur. The system has

suddenly become strange. Its perceived complexity is high.

18. The Large-Program Life Cycle 387

Even those who participated in the preparation of the new

release will normally have been included directly with only

a small part of the changes, a small portion of the system.

They too must now learn to understand the new system in its

totality. Moreover. until the complete system is available,

all acquisition of knowledge and understanding of the changes

and of the new system must be based on reading of code and

documentation text. or on partial execution of system

components on test cases or system models. At least some

part of system-internal interactions or dependencies will be

absent in such an environment. Only with final integration

of the new system does the full executable program become

available. Therefore. when the release content exceeds some

critical amount. only operational experience with the

complete system can restore the degree of knowledge and

familiarity, the global viewpoint. that is essential for

subsequent cost-effective maintenance, enhancement. and

exploitation of the large program.

Thus, in general, at the moment of release or shortly before

that time a major learning effort will begin. This must

involve all those associated with the system, not just the

users, All changes and additions must be identified,

understood, and experienced, their significance appreciated

within the operational context of the total system. Once

this has been done, the old degree of comfort with the system

will return and its perceived complexity once again will

approach zero; the level of familiarity has been restored.

The amount of work that must be invested, the intellectual
effort required to achieve this, depends among other factors,
on the attitudes of people, on the organisation, and on the
number, magnitude. and complexity of changes introduced.
Because changes to the system interact with one another.
because changes implemented in the same release must be
understood in the context of all other changes being
concurrently implemented as well as in the context of the
unchanged parts of the system and of past and future
applications, the relationship between the release content
and the amount of intellectual effort needed to absorb the
changes introduced by a new release fully is at least
quadratic, probably exponential. But whatever the precise
relationship between the difficulty of restoring familiarity
with the program and the magnitude of the release content.
it will be of the general form indicate in in Figure 1.

388 M. M. Lehman and L. A. Belady

Threshold region

Average
absorptive
capacityDi

ff
ic

ul
ty

of
Re

fa
mi

li
ar

iz
at

io
n

+_—-—---—— B---=

_—

__
Release content

Figure 1: Difficulty - Release-contnet relationship.

A, above threshold; B, below threshold

The axes of the curve are not calibrated since at present

neither concept nor suitable measures are well defined. The

concept of 'difficulty' introduced here. relates to that of

Norden and Putnam [NOR77]; [PUT77]. They, however, are
concerned with difficulty of implementation. whereas’ the

present concern is with understanding the changes within the

context of the total system; their implications with regard

to its operational behaviour. Although related, since one

cannot (should not?) implement without understanding, the

concepts are clearly not identical.

18. The Large-Program Life Cycle 389

4.2 The Averaging of Ability Through Human Interactions

It must be left to the future to identify or define measures
and provide an improved formulation of the fifth law.
Meanwhile the basic concepts must be clarified, and under-
Standing of, at least the phenomenology increased. A basis
for ultimate formalisation is thereby provided.

Everyone's ability to master a new or changed object is
limited, though people clealy differ in their ability to

absorb new knowledge (eg to achieve full understanding of the

changed program). Thus the impact of changes will vary from

person to person according to many factors that will include,

but are not limited to, their learning ability and absorptive

capacity. For a given large program with which many people

are inevitably involved, the direct and indirect costs of

familiarisation (delays incurred, mistakes made,
destructuring, etc) relate to the average ability of all the

people involved. This average will not change significantly

with time, or, with the detailed composition of the group.

In the implementation environment. for example, although the

above-average person will regain mastery more quickly, make

fewer mistakes, and achieve a temporary advantage (which

might lead to promotion or transferral to another project),

the below average person will fall behind, perhaps lose

contact, make more mistakes, and do more damage. This person

may well be reassigned to a less demanding role, one with

less impact, or even be fired. But the damage will have been
done; others will have to do additional work or apply
corrective action. Since hiring policies are related to teh

already established make-up of the project, the average
capacity to understand will, at best, remain unchanged; more
probably it will decline [LEH78].

In the application and user. enviroment. the capable
individual will master the changes relatively quickly and
carry on with assigned responsibilities, experience minimal
perturbation. and cause no impact on others. The less
capable, on the other hand, will have to discuss with others
their difficulties in fully appreciating the changes. They
will even misinterpret documentation or system behaviour and
report difficulties or faults that are in fact, non-existent.
Such discussions or reports will cause delays or disruptions
in the project, and may even lead to erroneous repair. Once
again the presence of persons with greater than average
difficulty in refamiliarisation has an impact that ranges
beyond the immediate bound of responsibility of these

390 M. M. Lehmanand L.A.Belady

individuals. It results inan overall slow-down in the
return to normalcy after change, the time required being

determined by average ability.

For different organisations, systems, structures, methodol-

ogies, and processes. the average level will, of course, be

different. This implies that any model will contain

parameters reflecting exogenous variables. These variables

point to a potential for improving the average absorption

level. once the phenomenon, the organisation, and the

programming process are understood.

4.3 Conservation of Familiarity and Statistically Invariant

Release Content

Given the above insights firstly into the increased diffic-

ulty of understanding changes and their implications as

release content increases and secondly into the mechanism of

the slowdown of both utilisation and further evolution as

system structure deteriorates. the number of faults increas-

es. documentation lags, and performance declines, we are now

in a position to appreciate the fifth law.

If the release content, the magnitude of changes and/or the

incremental growth. is less than some threshold region T

(Figure 1). the integration and operational installation of

the new system should be fairly straightforward. No major

problems should be experienced in mastering the new release;

it may well be that the change may be absorbed and

familiarity restored without actual operational disturbance.

The very ease of the re-familiarisation process in conjunc-

tion with the never-ending search for productivity growth

will, however, create a managerial climate in which more

ambitious releases that will challenge organisational

capability and may flout its natural parameters, will be

attempted. Pressures are created that tend to move subse-

quent releases from B region into the threshold T region.

When the release content lies inT (which may not be

precisely delineable), quality, performance, completion. and

installation problems are to be expected. Slippage and cost

overrun will probably occur. A subsequent release may be

required to clean up the system and restore it to a_ state

that permits further cost-effective evolution. This

experience will certainly not encourage management to demand

an increase in release content. The next release will tend

to be in the same threshold region or even below it.

18. The Large-Program Life Cycle 391

of the T region and moves into A, serious problems will be

encountered. Slippage and cost overrun must occur’ unless

plans take account of the greatly increased difficulties that

will be experienced. If not properly planned, such an

attempt may lead to the effective collapse of the system or,

as observed in at least two instances, to an effect that we

have termed system fisston. Since only release of the system
to end users and to the developers provides full exposure.

even when adequate resources and time have been provided,

such a release will still have to be followed by a

restoration or clean-up release. This results in one or more

Successor releases in the B region of the characteristic

curve of Figure 1.

It was the repeated observation of the above patterns of

release behaviour that suggested the analysis and led to the

insights summarised in the preceding paragraphs. Our

analysis suggests that the consequences of feedback in the

process. in conjunction with nonlinear characteristics

indicated in Figure 1, lead (over several releases) to

Stabilisation of release content in or just below’ the

threshold region. No attempt has yet been made to create an

analytic model of this phenomenon. but it should not prove

too difficult to build and validate [WO0079a].

The fifth law abstracts both the observations and their

interpretation, including the emergence of invariant average

incremental growth of release content. The latter is also a

consequence of the additional exogenous pressure for

accelerated functional growth that is characteristic of

large-program applications and, in genral, of organisational

enviroments. Once again the law suggests that managers and
planners take note of project and system invariances; when
formulating plans. they must respect the limitations the
invariances imply or accept the inevitable consequences.

5 Final Comments

The first recognition of the laws discussed was. based
entirely on an examination and analaysis of data from a
variety of programs and systems, both large and not so large.
To make the transisition from phenomenology to science,
however. the laws, once formulated, must be examined in their
Own right. The laws of large-program development and
evolution are now beginning to be understood in this. way.
They are seen to express very basic attributes of computing,
of the programming development. maintenance and usage

392 M. M. Lehman and L. A. Belady

processes, of programs themselves, and of the organisations

and environments in which these activities are carried out.

Once this interpretation of the laws in terms of more

fundamental phenomena has been achieved, the old data must be

re-examined and new information examined in the light of the

laws as understood. Deviations must be explained and
interpreted; contradictions may require reformulation and re-

interpretation of a law, or even its rejection.

There is, of course, nothing new in these comments: they

form the very basis of the scientific method. They are added

here, however, to assert the belief that the laws as

formulated have been substantiated by experience and by

experimental data to the point where they can stand in their

own right until accumulating evidence and developing insight

and understanding demand their change - or until we can so

change system structure, process methodology and

characteristics, and programmer and user practice and habits,

that the laws as formulated no longer apply.

CHAPTER 19

PROGRAMS, LIFE CYCLES AND LAWS OF SOFTWARE EVOLUT!ION*

1 Background

1.1 The nature of the problem

The 1977 US expenditure on programming is estimated to have

exceeded $50 billion and may have been as high as_ $100
billion. This figure, more than 3% of the US GNP for that

year, is itself an awsome figure. It has increased ever

Since in real terms and will continue to do so as the micro-

processor finds ever wider application. Programming effect-

iveness is clearly a significant contributor to national

economic health. Even small percentage improvements in

productivity can make significant financial impact. The

potential for saving is large.

Economic considerations are, however, not necessarily the

main cause of widespread concern. As computers play an ever

larger role in society and the life of the individual, it

becomes more and more critical to be able to create and

maintain effective, cost-effective and timely software. For

more than two decades, however, the programming fraternity,

and through them the computer-user community, has faced

serious problems in achieving this [GOL73]. As the
application of micro-processors extends ever deeper into the
fabric of society the problems will be compounded unless very
basic solutions are found and developed.

1.2 Programming

The early fifties had been a pioneering period in
programming. The sheer ecstasy of instructing a machine,
Step by step, to achieve automatic computation at speeds
previously undreamed of completely hid the intellecutally
unsatisfying aspects of programming; the lack of a gutding
theory and discipline; the largely hit or miss nature of the
process through which an acceptable program was finally
achieved; the ever present uncertainly about the ACCUPaACY »s
even the validity, of the final result.

Copyright © 1980 IEEE. Reprinted with permission from Proc. IEEE Spec. Issue on
Software Engineering Volume 68, No. 9, Sept 1980, pp. 1060-1076.

393

394 M. M. Lehman and L.A.Belady

More immediately, penetration of the computer into the

academic, industrial and commercial worlds led to. serious

problems in the provision and upkeep of satisfactory

programs. It also yielded new insights. Programming as then

practised required breakdown of a problem to be solved into

steps far more detailed than those in terms of which people

thought about it and its solution. The manual generation of

programs at this low level was tedious and error prone for

those whose primary concern was the result; for whom program-

ming was a means to an end and not an end in itself. This

could not be the basis for widespread computer application.

It was, however, observed that such programs contained

instruction sequences that occurred again and again. These

sequences represented primitive concepts in the programmer's

view of the problem. Surely these at least could be

mechanically generated. Thus there was born the concept of

high level, problem oriented, languages and automatic program

compilation. Starting with Fortran, then Cobol, Algol, Algol

68, PL/1 and countless non-mainstream languages, most

recently Pascal and Ada, languages were created to simplify

the development of computer applications.

These languages did not just raise the level of detail to

which programmers had to develop their view of the automated

problem-solving process. They also removed some of the

burden of procedural organisation, resource allocation and

scheduling, burdens which were further reduced through the

development of operating systems and job control languages.

Above all, however, the high-level language trend permitted a

fundamental shift in attitude, a shift whose potential was

not always recognised or exploited. To the discerning, at

least, it became clear that it was not the programmer's main

responsibility to instruct a machine by defining a_ step-by-

step computational process. His task was to state an

algorithm that correctly and unambiguously defines a

mechanical procedure for obtaining a solution to a given

problem [LEH80], [LEH79]. The transformation of this into
executable and efficient code sequences could be more safely

entrusted to automatic mechanisms. The objective of language

design was to facilitate that task.

Languages had become a major tool in the hands of the

programmer. Like all tools they sought to reduce the manual

effort of the worker and at the same time improve the quality

of his work. They permitted and encouraged concentration on

the intellectual tasks which are the real province of the

19. Programs, Programming and the Software Life Cycle 395

human mind and skill; in this case defining both the problem

and an algorithm for its solution. Thus ever since’ the

search for better languages and for improving methods for

their use, has continued [WUL77].

There are those who believe that the development of

programming methodology, high level languages and associated

concepts, is by far the most important step for successful

computer usage. That may well be, but it is by no means

sufficienty. There exists a need for additional methods and

tools, one that arises primarily from program maintenance.

1.3 Program Maintenance

The sheer level of programming and programming-related

activity makes its disciplining important. But a_ second

Statistic carries an equally significant message. Of the

total US expenditure for 1977, some 70% was spent on program
matntenance and only about 30% of program development. Even
higher ratios of maintenance to development costs have been

reported for a variety of enviroments and the ratio may be
accepted as characteristic of the state of the art in the

software community, at least in the developed countries of

the western world.

Some clarification is, however, necessary. For software the

term matntenance is generally used to describe aZlZ changes
made to a program after its first installation. It there-

fore differes significantly from more general usage which is

concerned with restoratton of a system or system component to

its former state. Deterioration that has occurred as a

result of usage or with the passage of time, is corrected by

repair or replacement. But software does not deteriorate
Spontaneously or by interaction with its operational
enviroment. Programs do not suffer from wear and tear,
corrosion or pollution. They do not change unless and until
people change them, and this is done whenever the current
behaviour of a program in execution is found to be wrong,
inappropriate or too restricted. So called repair actually
involves changes away from the previous implementation.
Faults being corrected during maintenance can originate in
any phase of the program life-cycle.

Moreover, in hardware systems major changes to a product are
generally achieved by redesign, retooling and the
construction of a new instance. With programs, the code
itself is continually being altered and extended to implement
a sequence of tmprovements and adaptations to a changing

396 M. M. Lehman and L.A. Belady

enviromment. New capability, often not recognised during the

earlier life of the system is superimposed on an existing

structure without redesign of the system as a whole. The

program becomes a quicksand of ever-changing code, document-

ation and structure.

Since the term software maintenance covers such a wide range

of activities, the very high ratio of maintenance to develop-

ment cost does not necessarily have to be deprecated. It

will, in fact, be suggested that the need for continuing

change is tntrinsic to the nature of computer usage. Thus
the question raised by the high cost of maintenance is not

exclusively how to control and reduce that cost by avoiding

errors or by detecting them earlier in the development and

usage cycle. The untt cost of change must initially be made
as low as possible, and its growth, as the system

ages,minimised. Programs must be made more alterables, and
the alterability maintained throughout their life-time. The
change process itself must be planned and controlled. Asses-

ment of the economic viability of a program must include

total life-time costs and their life-cycle distribution, and
not based exclusively on the initial development costs. We

must be concerned with the cost and effectiveness of the

life-cycle process itself and not just that of its product.

The remainder of this paper examines the nature of this

continuing change process and the support it demands.

Methods and techniques that have evolved to cope with the

associated problems are discussed elsewhere [BEL80].

The opening paragraph highlighted the high cost of software

and software maintenance. The economic benefit and potential

of the application of computers is, however, so high that

present expenditure levels may well be acceptable, at least

for certain classes of programs. But we must be concerned

with the fact that correctness, performance, capability,

quality in generals cannot at present be designed and built

into a program ab initio. They can only be achieved by
gradual refinement. Moreover, when needed or desirable

changes are authorised, they can usually not be implemented

on a time scale fixed by external need. Responsiveness is
poor. And as mankind relies more and more, collectively and

individually, on software that controls computers that in

turn guide society, it becomes crucial that people remain in

ultimate control of the change and adaptation process. To

achieve this requires insight, theory, models, methods,

tools; a discipline. That is what software engineering is

all about [BOE76], [TUR78], [BOE78].

19. Programs, Programming and the Software Life Cycle 397

2 Programs as Models

2.1 Programs

Program Evolution Dynamics [BEL78 and its bibliography] and
the laws [LEH74], [LEH80], [LEH79], [LEH80a], discussed in
the next section have always been associated with a concept

of largeness, implying a classification into large and non-

large programs. Great difficulty has, however, been exper-

ienced in defining these classes. Even the definition that

was finally adopted [LEH80], [LEH79] does not satisfy since
it is based on management rather than programmatic concepts

and on sufficiency but not necessity.

Recent discussions [TUR79], have produced a more satisfying

classification. This follows from recognition of the fact

that, at the very least, any program is a model of a model of

-» amodel of some portion of the world or of some universe

of discourse. The classification categorises programs into

three classes, S, Pand£E. Since programs considered large

by our previous definition will generally be of class E, the

new classification represents a broadening and firming of the

previous viewpoint.

2.2 S-Programs

S-programs are programs whose function is formally defined by

and derivable from a spectfication. It is the programming
form from which most advanced programming methodology and

related techniques derive, and to which they directly relate.

We shall suggest that as programming methodology evolves
still further, all large programs (software systems) will be
constructed as structures of S-Programs.

A specific problem is stated: lowest common multiple of two
integers; function evaluation in a specified domain; Eight
Queens; Dining Philosophers; generation of a rectangle of a
Size within given limits on a specific VDU type. Each such
problem relates to its universe of discourse. It may even
relate directly and primarily to the external world, but be
completely definable as is the travelling salesman problem.

As suggested by Figure 1, the specification, asa formal
definition of the problen, directs and controls the
programmer in his creation of the program that defines the
desired solution. Correct solution of the problem as stated
in terms of the prgramming language being used, becomes the
prgrammer's sole concern. At most, questions of elegance or
efficiency may also creep in.

398 M. M. Lehman and L. A. Belady

The problem statement, the program and the solution when

obtained may relate to an external world. But it is a

casual, non-causal, relationship that defines the area of

intrest. If that changes the problem may be re-defined. But

then it requires a “ew program for its solution. It may be

possible and time saving to derive the new program from the

old. But it is a dtfferent program that defines a solution
to a dtfferent problem.

When this view can be legitimately taken the resultant

program is conceptually static. One may change it to improve

its clarity or its elegance, to decrease resource usage when

the program is executed, even to increase confidence in its

correctness. But any such changes must not effect’ the

mapping between input and output that the program defines and

that it achieves in execution. The output remains invariant

even under program transformation [BAU77], [DAR79]. Whenever
program text has been changed it must be shown that either

the input-output relationship remains unchanged, or that the

new program satisfies a new specification defining a solution

to a new problem. We return to the problem of correctness-

proving in section 2.4.

PROBLEM

FORMAL STATEMENT

PROGRAM SPECIFICATION
controls the

/ production of

. 7

relating to ”
7

UNIVERSE

OF DISCOURSE

possibly oS
wii a

interest within ~

PROGRAM

~

SOLUTION

Figure 1: S-Programs

19. Programs, Programming and the Software Life Cycle 399

2.3 P=Programs

Consider a program to play chess. Its universe of discourse

is largely defined and the program may, in theory, be

completely specified in terms of the rules of chess. and

procedure rules. The latter must indicate how the program is

to analyse the state of the game and determine possible

moves. It must also provide a decision rule to select a next

move. The procedure might, for example, be to form the tree

of all games that may develop from any current state and

adopt an evaluation strategy to select the next move. Such a

definition, while complete, is naive, since the tree

structure at any given stage is simply too large, by many

orders of magnitude, to be developed or to be scanned in

feasible time. Thus the chess program must introduce approx-

imation to achieve practicality, judged as it begins to be

used, by its performance in actual games.

A further example of a problem that can be precisely form-

ulated but whose solution must inevitably reflect an approx-

imation of the real world is found in weather prediction.

In theory, global weather can be modelled as accurately as

desired, by a set of hydrodynamic equations. In the actual

world of weather prediction, approximate solutions of

modified equations are compared with the weather events and

patterns that occur. The results of such comparisons are

interpreted and used to improve the technology of prediction

to yield ever more usable programs.

Finally consider the travelling salesman problem as it arises

in practice, for example from a desire to optimise contin-

uously in some vaguely defined fashion the travel schedule of

salesmen picking up goods from warehouses and visiting

clients. The required solution can be based on known sol-

utions to the classical problem. It must also involve value

judgements relating, for example, to cost, time, schedules,

timetables, and even salesmens' idiosyncracies.

The problem statement can now, in general, not be precise.

It is an abstraction of a real world situation, containing

uncertainties, arbitrary criteria, continuous variables. To

Some extent it must reflect the personal viewpoint of the

analyst. The problem statement and outline solution

approximate to the real world.

Programs such as these we term P-programs (real world

problem solution). The process of creating such programs is

modelled by Figure 2. Despite the fact that the problem to

400 M. M. Lehman and L. A. Belady

be solved can be precisely defined, the acceptability of a

solution is determined by the enviroment inwhich it is

embedded. The solution obtained will be evaluated by

comparison with the real environment. That is, the critical

difference between S and P-programs is expressed by the

comparison cloud in Figure 2. In S-programs judgements about

the correctness, and therefore the value, of the programs

relate by definition only to tts spectfications the problem
statement that the latter reflects. In P-programs the concern

is not centered on the problem statement, but on the value

and validity of the solution obtained tn tts real-world
context. Differences between data derived from observation

and from computation may cause changes in the world view, the

problem perception, its formulation, the model, the program

specification and/or the program implementation. Whatever

the source of the difference, ultimately it causes’ the

program, its documentation or both to be changed. And the

effect or impact of such change cannot be eliminated by

declaring the problem a “ew problem, for the real problem has

always been as now perceived. It is the perception of users,

analysts and/or programmers that has changed.

The model of Figure 2 shows the intrinsic feedback loop that

is present in the P-situation. Program changes stem from an

explicit or implicit comparison of program output with real-

world data that directly or indirectly form part of the input

to the system-defining abstraction. Feedback implies a

possibility of instability experienced as a loss of effective

Management control. Control may be retained by controlling

the '‘'Gain/Delay' characteristics of the change-analysis,

development and application process. Amongst other factors,

gain is here related to user and organisational benefit

deriving from change implementation in relation to the cost

of the total work involved over the sytem life. The meaning
and significance of delay is self evident. Release of the

program to the end users and its execution in the user

enviroment plays a vital role. It facilitates control by

offering opportunities for discrepancy evaluation, change

design, benefit-assessment and the planning of content and

timing (section 4). Given an awareness of the situation and
good control of the process, stability with ultimate

availability of a satisfactory program, can be achieved,

though several cycles through the loops may well be required.

Unfortunately, however, there is another fact of life that

needs to be considered. Dissatisfaction will arise not only

because information received from the program is incomplete

or incorrect, or because the original model was less’ than

19. Programs, Programming and the Software Life Cycle 401

perfect. These are imperfections that can be overcome given

time and care. But the world too changes and such’ changes

result in additional pressure for change. Thus P-}{programs

are very likely to undergo never-ending change or to become

steadily less and less effective and cost effective.

REAL WORLD

UNIVERSE OF

DISCOURSE

Y
A PROBLEM

ABSTRACTION

/ (A VIEW) |
/

/

/ \

REQUIREMENTS

Y
SPECIFICATION

CHANGE

COMPARISON

INFORMATION j-—=€ PROGRAM

Figure 2: P-Programs

402 M. M. Lehman andL. A. Belady

2.4 E-Programs

The third class, E-programs, are inherently even more change

prone. They are programs that mechanise a human or societal

activity and that are, therefore, embedded in the

application.

Consider again the travelling salesman problem but in a

Situation where several persons are continuously en route,

carrying products that change rapidly in value as a function

of both time and location, and with the pattern of demand

also changing continuously. One will inevitably be tempted

to see this situation as an application in which the system

is to act as a continuous dispatcher, dynamically controlling
journeys and calls for each individual. The objective will
be to maximise profit, minimise loss, expedite deliveries,

maintain customer satisfaction or achieve some combination of

such success criteria. How does this situation differ from

that discussed previously?

Activiation of the program and its associated system, radio

links to the salesmen for example, changes the very nature of

the problem to be solved. The program has become a part of
the world tt models; it is embedded in it. Conceptually, at
least the program as a model contains elements that model

itself, the consequences of its execution.

The situation is depicted in Figures 3 and 4. Even before

program execution and its in the operational environment, the

E-situation contains an intrinsic feedback loop as in Figure

3. Analysis of the application to determine requirements,

specification, design, implementation now all involve

extrapolation, prediction of the consequences of system

introduction and the resultant ever increasing potential for

application and system evolution. Prediction inevitably

involves opinion and judgement. In general, several views of

the situation will be combined to yield the model, the system

Specification and, ultimately, @ program. Once the program

is completed and begins to be used, questions of correctness,

appropriateness and satisfaction arise as in Figure 4 and

inevitably lead to additional pressure for change.

Examples of E-programs abound, computer operating systems,

air-traffic control, stock control. In all cases the

behaviour of the application system, the demands on the user

and the support required will de pend on program

characteristics as experienced by the users. As they become

familiar with a system whose design and attributes depend, at

19. Programs, Programming and the Software Life Cycle 403

least in part, on user attitudes and practice before system
installation, users will modify their behaviour to minimise
effort or maximise effectiveness. Inevitably this leads’ to
pressure for system change. In addition, system exogenous
pressures will also cause changes in the application environ-
ment within which the system operates and the program
executes. New hardware will be introduced, traffic patterns
and demand change, technology advance and society itself
evolve. Moreover the nature and rate of this evolution will
be markedly influenced by program characteristics, with a new
release at intervals ranging from one month to two years,
Say. Unlike other artificial systems [SIM69] where, relative
to the life-cycle of process participants, change is
occasional, here it appears continually. The pressure for
change is built in. It is due to the feedback-linked process
that converts system concept into an operating application.
It is intrinsic to the nature of computing systems and the
way they are used.

 APPLICATION IN

THE REAL WORLD
 PROGRAM

REQUIREMENTS VIEWS

(PREDICTIVE)
SPECIFICATION

MODEL

Figure 3: E-Programs - the basic cycle

404 M. M. Lehman and L. A. Belady

APPLICATION IN

THE REAL WORLD

CHANGE DISSATISFACTION

PROGRAM

|
|

|
|
|
|
|
|
|

! OUTPUT

| 7

REQUIREMENTS
views

COMPARISON
(PREDICTIVE)

SPECIFICATION

CHANGE

MODEL

Figure 4: E-Programs

19, Programs, Programming and the Software Life Cycle 405

P and E programs are clearly closely related. They differ
from S-programs in that they represent a computer application
in the real world. We shall refer to members of the union of
the P and E clases as A-type programs.

2.5 Program Correctness

The first consequence of the SPE program classification is a
clarification of the concepts of program correctness. The
meaning, reality, and significance of related concepts has
recently been examined at great length [DEM79]; [HOAT79].
Many of the viewpoints and differences expressed in that
discussion become reconcilable or irrelevant under an
adequate program classification scheme.

For the SPE scheme, the concept of verification takes on
Significantly different meanings for the S and A classes. If
a completely specified problem is computable, its
Specification may be taken as the starting point for’ the
creation of an S-program. [In principle a logically connected
Sequence of statements that demonstrates the validity of the
progam as a solution of the specified problem can always be
found. Detailed inspection of and reasoning about the code
may itself produce the conviction that the program satisfies
the specification completely. A true proof must satisfy the
accepted standards of mathematics. Even when the correctness
argument is expressed in mathematical terms, a lengthy or
complex chain of reasoning may be difficult to understand,
the proof sequence may even contain an error. But that does
not invalidate the concept of program correctness proving,
merely this instance of its application.

We cannot discuss here the range of S-programs for which
proving is a practical or a valuable technique, the range of
applicability of constructive methods for Simultaneous
construction of a program and its proof [DIJ68b]; [HOA69];
whether confidence in the validity of an S-program can always
be increased by a proof. We simply note that since, by
definition, the sole criterion of correctness of an S- program
is the satisfaction of its Specification, (correct) S-
programs are always demonstrably correct.

This is not purely philosophical observation. Many important
components of a large program, mathematical procedures for
example, in conjunction with specified interface rules
(calling and output) are certainly S-type. It becomes part
of the design process to recognise such potential constit-
uents during the partitioning process and to Specify and

406 M. M. Lehman and L. A. Belady

implement them accordingly. In fact it will be postulated in

section 2.6 that an A-program may always be partitioned and

structured so that alZ its elements are S-programs. If this

is indeed true, no tndtvtdual programmer should ever be
permitted to begin programming until his task has been def-

ined and delimited by a complete specification, against which

his completed program can be validated.

In summary, for S-programs it is meaningful to talk about

correctness. There is a program specification that totally

determines the accepted requirements. We may verify that the

program satisfies the specification and thereby prove the

program correct. And once correct, always correct, since by

definition the program cannot change.

For an A-program on the other hand, validity depends on human

assessment of its effectiveness in the intended application.

Correctness and proof of correctness of the program aS a

whole, are, in general, irrelevant in that it may be formally

correct but useless or incorrect in not satisfying some

stated specification, yet quite usable. Formal techniques of

representation and proof have a place in the universe of A-

programs but their role changes. It is the detailed
behavtour of the program under operational conditions that is

of concern.

Parts of the program that can be completely specified should

be demonstrably correct. But the enviromment cannot’ be

completely described without abstraction, and therefore,

approximation. Hence absolute correctness of the program @&

a whole is not the real issue. It is the uability of the
program and the relevance of its output in a changing world

that must be the main concern.

2.6 Program Structures and Structural Elements

The classification created above relates toprogram entities.

A program will, in general, consist of many parts variously

referred to as sub-systems, components, modules, procedures,

routines. The terms are, of course, not synonymous but carry

imputations of functional identity, level, size and so on.

The literature discusses criteria [PAR72] and techniques

[WIR71], [DIJ72], [JAC75] for partitioning systems into such

elements. Related design methods and techniques seek to

achieve optimum assignment, in some sense, of element content

and overall system structure. In the present context we

consider only one aspect of partitioning using the term

19, Programs, Programming and the Software Life Cycle 407

module for convenience. The discussion completes the

presentation of the SPE classification and provides a link to

other current methodological thinking [WIR79].

Consider the end result of the design process for an A-

program to be constructed of primitive elements we term

modules. The analysis and partitioning process will identify

functional elements that can be fully specified and therefore

developed as S-program modules. Any specification may of

course be less than fully satisfactory. It may even prove to

be wrong in relation to the remainder of the design. For

example the specification may not mention input validity

checks, the specified output accuracy may be insufficient or

the specified range of an input variable may be wrong. But

each of these represents an ommission from or an error in the

spectftcatton. Thus it is rectified by first correcting the

spectfications and then creating, by one means or another, a
new program that satisfies the new specification.

At any stage of the decomposition process there will remain

required system functions that are at least partly heuristic

or behavioural in nature and therefore define A-elements. It

is suggested that it is always possible to continue the

system partitioning process until all modules are

implementable as S-programs. That is, any imprecision or

uncertainty emanating from model reflections of incomplete

world views will be implicit or, if recognised when the

Specification is formulated, explicit in the specification

statement. The final modules will all be derived from and

associated with precise specifications, which for the moment,

may be treated as complete and correct.

The design may now be viewed and constructed as a_ data flow

structure with the inputs of one module being the outputs of

others (unless emanating from outside the system). Each
module will be defined as an abstract data type ([LIS77],
[JON80], [SHA80] defining in turn, one or more input-to-
output transformations. Module specifications include those

of the individual interfaces, but for the system as a whole,

the latter should in some sense be standardised [LEH77c].

Given appropriate system and interface architecture and

module design, each module could be implemented as a program

running on its own micro-processor and the system as a

distributed system. The potential advantages for both
execution (parallelism) and maintainability (localisation of
change) [LEH77c], [BEL78], [WIR79] cannot be discussed here.

408 M. M. Lehman and L. A. Belady

For the system as a whole, of course, some uncertainty or

incompleteness remains as the root cause of further

evolution (19.1). The methodology will have constrained that
uncertainty to lie enttrely and vtstbly in the module
specifications. When the program proves unsatisfactory the

analysis may in the first instance concentrate exclusively on

them. When any must be changed to correct a fault or to

enhance the systen, modules’ that implement affected

specifications will have to be replaced. Once the

specification-based change~analysis has been completed,

implementation of each detail of the change will have been

restricted to lie within individual modules.

Many problems in connection with the design and construction

of such systems need still to be solved. Adequate solutions

will represent a major advance in the development of a

process methodology (Section 5.3). We observe, however, that
the concepts presented follow directly from our brief

analysis and classification of program types. Interestingly

the conclusions are completely compatible with those of the

programming methodologists [DAH72], [LIN77], [WIR79].

3 #4xLaws of Program Evolution

3.1 Evolution

The meta-system within which a program evolves contains many

more feedback relationships than those identified above.

Primitive instincts of survival and growth result in the

evolution of stabilising mechanisms, implemented as'- checks,

balances and controls, in response to needs, events and

changing objectives. The resulting pseudo-hierarchical

structure of self-stabilising systems includes the products,

the processes, the environments and the organisations

involved. The interactions between and within the various

constituents, and the overall pattern of behaviour must be

understood if a program product and its usage are to be

effectively planned and maintained.

The organisational and environmental feedback, links,

focusses, and transmits the evolutionary pressure to yield

the continuing change process. A similar situation holds, of

course, for any human organised activity, any artificial

system. But some Significant differences are operative in

the case of software. In the first instance there is no room

19.1 (Eds) Due to the tnherent permisstveness of the
application [MAI84].

19. Programs, Programming and the Software Life Cycle 409

in programming for imprecision, no malleability to

accommodate uncertainty or error. Programming is a

mathematical discipline. In relation to a spectfic

objective, a program is either right or wrong. Once an

instruction sequence has been fixed and unless and until it

is manually changed, its behaviour in execution on a_ given

machine is determined solely by its inputs.

Secondly a software system is soft. Changes can be

implemented using a pencil and/or keyboard. Moreover once a

change has been designed and implemented on a development

system its installation in the field does not require welding

guns, sledge hammers or heavy machinery. In theory it can be

applied mechanically to any number of instances of the same

system without further significant physical or intellectual

effort using only computing resources. Thus the temptation -

economic and in the interest of speed - is to implement

changes in the existing system, change upon change upon

change, rather than to collect changes into groups and

implement them ina totally new instance. As the number of

Superimposed changes increases, the system and the meta-

system become more complex, stiffer, more resistant to

change. The cost, the time required and the probability of

an erroneous or unsatisfactory change all increase.

Thirdly, the rate at which a program executes, the frequency

of usage, usage interaction with the operating enviroment,

economic and social dependence of external process on program

execution, all cause deficiencies to be exposed. The

resultant pressure for correction and improvement leads to a

system rate of change with a time scale measured in days and

months rather than in the years and decades that separate

hardware generations. To study and model system evolution,

whether biological or artificial, requires the passage of

many generations. For artificial systems implemented with

physical components, hardware, the life time of a generation

is of the order of magnitude of the professional life of the

observer. He has no opportunity to measure, model or exper-

iment with the evolutionary process. In fact, he does not

normally perceive or experience it as a process. The rate of

Change in software, however, causes the individual to be

exposed to many versions of a system. He experiences it as a

sequence whilst also coping with individual instances.

Program evolution can be studied as a dynamic process.

Programs play the role of fruit fltes in the study of
artificial system evolution.

410 M. M. Lehman and L. A. Belady

With fruit fly, however, the evolutionary process is, at

least at the level of human perception, purely mechanistic.

The changes, perturbed at most by very rare and transient

events (mutations) show a statistical regularity that permits

quantitative modelling and statistically significant

prediction. Software evolution on the other hand would

appear to be driven and controlled by human decision,

managerial edict and programmer judgement. The frequency of

random transient events, of mutation, is high.

Measures of software evolution and the associated process

could therefore be expected to be erratic, reflecting at each

instant and for each release, the pressures of the moment.

The Program Evolution Dynamics studies, however, have shown

that this is not so [LEH69], [BEL71b], [LEH74a], [BEL76],
[R1077], [LEH77e], [WO0079a], [CHO80]. Instead such measures
display patterns, regularity and trends that suggest an
underlying dynamics that may be modelled and used for

planning, for process control and for process improvement.

3.2 Program Evolution and Dynamics

Once observed the reasons for this unexpected regularity is

easily understood. Individual decisions in the life cycle of

a software system generally appear localised in the system

and in time. The considerations on which they are based

appear independent. Managerial decisions are largely taken

in relative isolation, concerned to achieve local control and

optimisation, concentrated on some aspect of the process,

some phase of system evolution. But their aggregation,

moderated by the many feedback relationships, produces

overall systems response which is regular and often normally

distributed.

In its early stages of development a system is more or less

under the control of those involved in its analysis, design

and implementation. As it ages those working on or with the

system become increasingly constrained by earlier decisions,

by existing code, by established practices and habits of

users and implementors alike. Local control remains with

people.- But process and system-internal links, dependencies

and interactions cause the global characteristics of system

evolution to be determined by organisation, process and

system parameters. At the global level the meta-system

dynamics have largely taken over.

19. Programs, Programming and the Software Life Cycle 411

3.3 Measures of Program Evolution

The discussion, so far, has been entirely phenomenological in

nature. The conclusions have, however, not been reached just

by philosophising about the nature of software and the

programming process. They have followed from the measurement

of a number of programs and programming projects. The

resultant observations have led to modelling, interpretation,

prediction and the development and refinement of theories

that describe the programming process and program evolution.

This in turn has led to a deeper understanding of the nature

and implication of computing itself.

Since the original observation [LEH69], studies of program
evolution have continued based on measurements obtained from

a variety of systems. Program and process’ characteristics

such as size, growth-rate, work rate, fault content and fault

rates were obtained for successive releases of various

systems. The data was then analysed and, surprisingly,

produced statistically regular patterns and trends. Typical

examples of the resultant models have been reported in the

literature [BEL71b], [LEH74a], [BEL76], [LEH77e], [CHO80].

Examples of the data, though not of the statistical analysis,

will be presented as part of the case study given in Section

uu,

It was repeated observation of such phenomenologically

Similar behaviour and the common interpretation of

independent phenomena, that led to the conclusions presented

here; toa set of five laws, that have themselves evolved as

insight and understanding has increased. The laws as

currently formulated are given in Table 1 and briefly

discussed in the next sections; their practical implications

in the section following. It is perhaps important to stress

that the laws are abstractions of observed behaviour based on

statistical models. They have no meaning until a system, a

project and the organisational meta-system are well

established.

412

IT

LIL

M. M. Lehman and L. A. Belady

Table 1: Laws of Program Evolution

Continuing Change

A program that is used and that as an implementation of

its specification reflects some other reality, undergoes

continual change or becomes progressively less. useful.

The change or decay process continues until it is judged

more cost-effective to replace the system with a re-

created version.

Increasing Complexity

As an evolving program is continually changed its

complexity, reflecting deteriorating structure,

increases unless work is done to maintain or reduce it.

The Fundamental Law of Program Evolution

Program evolution is subject to a dynamics which makes
the programming process, and hence measures of global

project and system attributes, self-regulating with

Statistically deteminable trends and invariances.

Conservation of Organtsational Stability
(Invartant Work Rate)

During the active life of a program the global activity
rate in the associated programming project is

statistically invariant.

Conservatton of Famtliarity
(Perceived Complexity)

During the active life of a program the release content

(changes, additions, deletions) of the successive

releases of the evolving program is statistically
invariant.

19. Programs, Programming and the Software Life Cycle 413

3.4 Laws of Program Evolution Dynamics

The first law, Continuing Changes originally [LEH74],
[LEH78], [LEH79] expressed the universally observed fact that
large programs are never completed. They just continue to

evolve. Following our new insight, however, reference to

largeness is now replaced by the phrase ... ‘that reflect
Some other reality ...'. In theory this modification changes

the scope of the law. In practice it widens it since with

current methods large programs are, in general, economically

feasible only if they relate to and have value in the outside

world. Large programs can, in general, be expected to be

evolving programs.

The law must not be interpreted as defining evolving

programs. It points to the link with reality as a sufficient

condition for evolution and therefore includes both P and E

programs. Evolution of the former can, however, be more

easily controlled since it is not a part of the external

reality; merely compared with, and therefore influenced by,

it.

The second law, Jnecreastng Complexitys could be seen as an

instance of the second law of thermodynamics. It would seem

more reasonable to regard both as instances of some more

fundamental natural truth. But from either viewpoint its

message is clear.

The third law, the Fundamental Law of Program Evolution, is
in the nature of an existence rule. It abstracts’ the

observed fact that the number of decisions driving the

process of evolution, the many feedback paths, the checks and

balances of organisations, human interactions in the process,

reactions to usage, the rigidity of program code, all combine

to yield statistically regular behaviour such as that

observed and measured in the systems studied.

The fourth law, Conservation of Organisational Stabilitys and
the fifth Conservatton of Familtarttys represent instances of
the observations whose generalisation led to the third law.

They express truths about the evolution process, that in turn

are interpreted as reflecting more basic truths about human

organisations and about individuals in those organisations,

respectively.

The fourth law and the phenomenon from which it derives

(exemplified by Figure 5a), is interpreted as a reflection of

organisational aspirations for stability. The management of

Figures 5a - 5d System Characteristics

Days

|
1000

|
9300 1500

 Fr
ac

ti
on

of
M
o
d
u
l
e
s
C
h
a
n
g
e
d 0.6b

0.4b

RSN

Days

1
1000

|
10

L
15

SOOr-(c)

RSN

|
500

L
1500

1000}

2000};-

M
o
d
u
l
e
s

3000;-

4000;-

3000F-

SO00O0r-

!
10

|
15

 J
20

(b)

4000;-

S000; (q)

414 M. M. Lehman and L. A. Belady

19. Programs, Programming and the Software Life Cycle 415

well established organisations avoid dramatic change and

particularly discontinuities in growth rates. Moreover, the

number of people, the investment involved, the unions, the

time delays in implementing decisions all operate together to

prevent sudden or drastic change. Wide fluctuations may lead

to instability and the break-up of an organisation.

Why the particular measure (changed modules per day) plotted

in Figure 5e should prove to be statistically invariant is

not well understood. There can be little doubt that it

represents the steadiness of an external varialbe in a multi-

loop self-stabilising system.

The reader may find it difficult to accept the implication

that the work output of a project is independent of the

amount of resources employed, though the same observation has

also been recorded by others [BRO75]. The underlying truth

is that activitis of the type considered, though intiated

with minimal resources, rapidly attract more and more as

commitment to the project, and therefore the consequences of

success or failure, increase. Observations as formalised in

the fourth law imply that the resources that can be prod-

uctively applied becomes limited as a software project ages.

The magnitude of the limit depends on many factors including

attributes of the total enviroment. But the pressure for

success leads to investment to the point where it is ex-

ceeded. The project reaches the stage of resource saturation

- further changes have no visible effect on overall output.

The fourth law springs from a pattern of organisational

behaviour. The fifth, on the other hand, reflects the collec-

tive consequences of the characteristics of the many individ-

uals within the organisation. It is discussed at length in

[LEH80a]. Suffice it to say here that the law arises from
the non-linear relationship between the magnitude of a system

change and the intellectual effort and time required to

absorb that change. A system cannot be used or further

maintained effectively until there is full awareness of all

system interactions and responses, and each of the current

changes is fully understood in the context of all the others.

Until full familiarity is restored any involvement with the

system will produce a feeling of strangeness and disconfort,

further changes will inevitably lead to problems. Moreover,

our observations indicate that the consequences of the (at

least) quadratic relationship between the content of a

release and the effort required to master it leads in the

feedback environment of the programming and usage processes

to the statistical invariance of the release content (Fig 5c).

Figures 5e -— 5g system Characteristics

RSN

R
e
l
e
a
s
e

In
te
rv
al

in
D
a
y
s

430—_+—

350-——__+—
320355

200}-

100;--

0
e
al
10

f

15

 20

RSN

10 15 20

 M
o
d
u
l
e
s

C
h
a
n
g
e
d

pe
r
D
a
y

O

15;-

10

5

_
—
a
n
—

—
_
w
m

—
_

Days

C
u
m
u
l
a
t
i
v
e

M
o
d
u
l
e
s

C
h
a
n
g
e
d

15000;

10000;--

SOO0O;-

@
¢

400 800

/
/

|

1200

1600

20000 -
(e)

416 M. M. Lehman and L.A. Belady

19. Programs, Programming and the Software Life Cycle 417

In summary, the complex hierarchical system in and through
which a software system is created, used and maintained
itself evolves to be self-stabilising. If it did not, it
would disintegrate and disappear - as so many software
organisations and software systems have done. Reviewing the
rapid development of the software industry and the software
process over the last thirty years, it should be no surprise

to discover that the survivors are highly stable.

5.3 The Nature of the Laws

The laws, as discussed above, were derived from observations

on systems as they evolved over a series of releases. They

therefore represent an abstraction and approximation, with

measures at the point of release taken as representative of

the entire release. A program may, equally, be viewed as

having evolved over a time period terminated by its release,

from initial identification of content or properties to the

final usable program. Equally one may consider (Section

5.2) the evolution of sequences of release sequences. These

become significant when one accepts the need for periodic

total system replacement.

Measures at the two latter levels would provide quite

different data. We cannot consider here the form of laws -

if any - that might emerge from such studies. Clearly,

however, the laws based on release-related phenomena, also

reflect phenomena more meaningful at the other levels. They

must be viewed as an approximation to more detailed models

that might be developed.

There is also a further more direct approximation in the

present formulation. The laws have been presented without

supporting data or statistical assessment [CHO80]. We have,
however, clearly indicated (eg Section 3.2) that the dynamics
and its parameters evolve as a system with its supporting

organisation and process, develops. Equally, when a series

of releases approaches the point where a total replacement -

the next generation - begins to emerge, there must be

transfer effects that impact the release oriented dynamics

and its parameters. Consider, for example, the fourth law.

As formulated it implies a linear fit to the data of figure

5f. This brief analysis indicates, however, that strictly
Speaking, the curve must be S-shaped, modelled by at least a

cubic. Thus, for greater precision the laws should be qual-

ified to indicate that they describe phenomena that, from the

point of view of successive releases, dominates much of the

life cycle of a release generation.

418 M. M. Lehman and L. A. Belady

Whatever the precision of the laws, as stated, our main

conclusion is clear. As it ages, a software project - at

whatever level observed - is increasingly constrained by its

internal characteristics and those of the meta-systen. The

freedom of choice and manoeuvrability of the individual

manager is progressively restricted.

The arguments presented here may not convice the reader that

he is not in total control of his program development; that

to some degree the process controls hin. This despite the

fact that the same phenomenon can also be observed in, say,

economic or social systems. One additional fact must, how-

ever, be considered. We are examining man-made systems,

processes designed, directed and largely controlled by human

decision and activity. The present laws are derived from

data emanating from enviromments managed and conducted in

ignorance of the laws. Recognitton of laws itself changes
the envtronment. It should lead, for example, to methodol-

Ogical and technological advances that invalidate the laws as

presently formulated. That is the laws, as presently form-

ulated, may become irrelevant to the way programs are created

and maintained [LEH76], [LEH80a]. From our viewpoint, the
trend towards distributed microprocessor systems as described

briefly in Section 2.6 is an example of this, stemming as it

does at least partly, from our analysis of programs and

programming and the properties of ‘large’ programs [BEL78].

It remains to be seen whether with new methodologies and

system structures, regularities such as those observed will

once again appear. For the present, however, in their

representation of the programming process, the set of laws

reflects the very basic attributes and attitudes of people

and organsiations. As such, they are likely to remain

Significant for some time, certainly as long as large

Software systems structured, as those currently widespread,

are created and maintained. For the present generation of

planners, managers, programmers and users, the laws carry a

message which in the long run proves costly to ignore. The

practical implications are discussed in the next section.

4 Applied Dynamics

4.1 Introduction

The previous sections have emphasised the phenomenological

basis for the laws of program evolution, indicating how they

are rooted in phenomena underlying the activity of

programming itself.

19. Programs, Programming and the Software Life Cycle 419

The origin of the laws in individual and societal behaviour
makes their impact on the construction and maintenance of
software more than just descriptions of the evolutionary

process. The laws represent principles in Software

Engineering. They are, however, clearly not immutable as

are, for example, the laws of physics or chemistry. since

they arise from the habits and practices of people and

organisations, their modification or change requires one to

go outside the discipline of computer science into the realms

of sociology, economics and management. The laws therfore

form an environment within which the effectiveness of

programming methodologies and management strategies and

techniques can be evaluated, a backdrop against which better

methods and techniques can be developed.

4.2 Methodological Implications

The development of programming methodology over the last

twenty years has been largely experimental in nature, guided

by experience of the actual process. Where thought has been

given to the nature of the act of programming it tended to

concentrate on specific aspects, specification, programming

per se or testing for example, rather than the process of

converting an applictions concept into the executable binary

code sequence that controls its implementation. Nor, until

recently, has much consideration been given to the

maintenance process that seeks to ensure that the implement-

ation remains effective and cost effective as operational

experience is gained andas the operational environment

changes.

What are the methodological implications of the laws? The

inevitability of continuing change asserted by the first law

implies that, like correctness, alterability is an essential

attribute of program quality. To be alterable a program must

be comprehendable. This demands accessible, complete and

consistent specification, design records and code. All must

be well structured and express clear concepts in intelligible

and unambiguous language. The meaning and domain of all

terms must be explicitily declared and preferabley suggested

by the allocation of appropriate descriptors. Since under-

standing of a program depends not only on its static

description but also on the order of execution, each

sequencing control mechanism must provide the human reader

with a clear indication of its function. In short, all

unnecessary complexity must be avoided. Moreover

partitioning of the programs into small elements and control-

ling the interfaces between them is also essential [STE74],

420 M. M. Lehman and L. A. Belady

[MYE78], [yYou68]. As far as possible the system must be
designed so that changes relating to a specific function can

be localised, with changes to code and/or documentation

restricted to, at most, a small group of related elements.

Insofar as a change must be more widespread its flow and

impact should be discernable. There must be no invisible

links between elements, for example through access to a

global name. There should be no side effects, no incidental

consequences of the execution of any code sequence.

Assumptions should not have to be made about individual

elements or relationships beweeen pairs. In general, it must

be possible to localise change within the system. When more

widespread impact is indicated, a procedure must be definable

so that all necessary changes are readily identified.

All of the above needs are recognised and addressed by

current developments in programming methodology; high level

language, structured programming, system and module

specification, information hiding, procedure protocol, scope

rules, declaration, strong typing, parameter passing,

functional sequence control (if ... then... else ..., while

~-. do... ete.) and so on. What has been achieved in this

paper is to associate these techniques through the concept of

alterability, a concept viewed as complementary to, and

essential for, dynamic correctness.

The second law reinforces the conclusion that unnecessary

complexity must be avoided from the start. A program can

never be simpler than the abstraction of the application or

problem that it models. It should not be allowed to exceed

that complexity by more than is absolutely necessary. Even

then complexity will increase with time, unless work is

expended to control or reduce it. Therefore it is always

profitable to start from a point of minimum complexity. As

the system is changed, the designer and the programmer must,

subject to other constraints, minimise complexity growth over

the period of concern. It is therefore essential to be able

to define and establish measures of complexity so as to be

able to make quantitative assessments [MCC76], [LEH77g],
[BEL77a], [CHE78], [MUS80], [BEL77c].

The third and fourth laws are most usefully discussed in the

Management context and are therefore considered in greater

detail in the next section. However, in the case of the

fifth law there are also aspects that are specifically

methodological. oystem release permits all those associated

with a program that has been modified or extended to adapt to

its new content and toits new behaviour in execution.

19. Programs, Programming and the Software Life Cycle 421

Through the intellectual effort involved in the process of

adaptation, developers and users alike achieve once again

that degree of unconscious appreciation of all apsects of the

program's attributes that enables them to develop it further

or to use it successfully as a tool in their real pursuit.

Thus each system release should provide a base from which

further system evolution can reliably occur. Releases play a

Stabilisation role and must be planned and managed

accordingly.

There is a further interesting interpretation of the fifth

law that requires the anthropomorphic extension of the

concept of familiarisation. The new program must 'become

familiar' with its operational enviroment. In the relative

isolation of the development and maintenance environment, it

will have been validated by a series of tests. But these

cannot be all-embracing oor cover all operational

eventualities. It is impossible to foresee or create even

all likely environmental conditions in the test laboratory.

Thus, inevitably when a program is released to the user

enviroment, new situations will be encountered and new

faults discovered. Only adequate exposure to actual usage by

a range of users can determine the extent to which a program

version represents a meta-stable plateau in the evolutionary

growth process. If this is to be achieved smoothly and

without major upheaval, the change selection and test process

must be designed to expose the entire system to execution

under conditions of actual usage and to stress it in every

way. The release process must be designed to minimise the

chance that a defect can survive undetected beyond the

release in whose implementation it was embedded. The set of

changes to be implemented over an extended time period must
be clustered and allocated to individual releases so as to
achieve optimum early actual usage pattern and exposure.
This point is illustrated by aspects of the case study of

section 4.4,

4.3 Management Implications

The modern industrial manager generally regards himself as
totally in control of the activity under him, subject only to
management edicts emanating from his superiors and physical
limitations arising from the laws of nature. The latter fall
into two classes. There are basic invariants expressed by
conservation laws, for example, and there are the properties
of the materials, the machines and the people through which
he achieves project objectives.

422 M. M. Lehman and L. A. Belady

Not unnaturally such physical limitations have not been

recognised as being operative in software development or

maintenance activity. Physical and material limitations do

not, in general, impress themselves directly or explicitly on

a manager in his management of software project planning and

execution, except insofar as budget, people and computing

resources are concerned. But the laws assert that

constraints do exist. They arise partly from purely physical

limitations but mainly from the feedback properties of the

software processes and organisations. Their consequences

limit the software manager just as purely phy sical

constraints limit his colleagues.

It is difficult enough to convey the existance of limitations

and constraints in the software production process. To

obtain general acceptance of the implications has so far not

proved possible. Yet the existence of constraints on soft-

ware projects and on the power of software managers is the

first and most fundamental management implication of the five

laws.

The concept of alterability arising from the first law

implies the need to dedicate a part of project resources to

the creation and maintenance of system and code structure to

ensure continuing comprehendability and localisation of

change [STE74], [MYE78], [BEL78]. It also requires the
maintenance of a complete and accessible history of the

system, its design and implementations and of the concepts,

assumptions and decisions that underlie then. The record

must also include the same detailed information about all

subsequent changes so that any series of events in system

maintenance, and the resons and reasoning behind them, can be

reconstructed.

The amount of information to be maintained is no more than

exists, de facto, in the set of blueprints that are
maintained in any well managed organisation to control the

manufacture and marketing of almost any product that is

itself an assembly of more than a few separate parts. Only

if such information is readily available can a system be

maintained correctly, efficiently and responsively. If this

is so in an enviromment in which physical constraints limit

the maintainer in his work on the system and in which

physical properties and interconnections are visible, how

much more must it apply where the structure, dependencies and

constraints are intangible; where the system is inflexible,

with zero tolerance relative to the unanticipated event?

19. Programs, Programming and the Software Life Cycle 423

Blueprint technology in association with micro-filming has
just about proved able to cope with the needs of modern
industry, though projects which involve many millions of
prints stretch the concept somewhat. Such a paper-based,
technology is completely inadequate for coping with any but
the smallest software projects. The volume of records needed
is simply too great. Furthermore the technology for
generating written records is, to all intents and purposes,
precisely the same as that required to record the code but
often requires equal or even greater effort if completeness
and clarity is to be achieved. Yet the code is seen as the
reals immediately useful and therefore valuable, product.
From the point of view of the developer who must’ generate
both code and long-term documentation, the latter, containing
information well understood at the time of design and coding,

has only nusiance value. No wonder it is so often neglected.

The short-term psychological pressure for neglecting documen-

tation is significant. Only the manager can have the long-

term view that accepts complete documentation as a necessity

in maximising the lifetime benefit from a system. It becomes

a major element in the manager's responsibility to ensure
that motivation is provided and that facilitttes are available
in every project to maintain the documentation at the same

state of readiness as the code, at all times. Once documen-

tation has fallen behind, it can never catch up if only

because the facts needing to be recorded will have been

forgotten.

Thus it is insufficient to provide a programmer with an

adequate programming language [BUX80], even if that language
is so readable that programs written in it can be considered

self-documented. The first law implies that if the problem

to be solved is of any size, is of continuing interest or is

connected to some external reality to which it must relate

satisfactorily over an extended life period, a programming

support environment must be provided. The enviromment can be

seen aS a tool kit composed as a set of programs implementing

many different support capabilities. Its nucleus must be a

recording system that automatically maintains all the infor-

mation that may eventually be required if further changes in

the future are to be made correctly and expeditiously. The

Speed at which the volume of information is generated during

the programming process necessitates an automatic, computer

based, data collection facility to guarantee the complete-

ness, correctness and accessibility of the information. That

is why a language design project like Ada is so closely

coupled to the Stoneman programming support environment

424 M. M. Lehman and L. A. Belady

project [BUX80]. Top management must accept the need to
provide resources for the development or acquistion and

maintenance of methods and tools as an essential part of

cost-effective computer usage, even if the related investment

shows no immediate and no measurable return. In fact the

cost figures quoted in Section 1 suggest that initial expend-

iture for non-progressive [BAU67] investment in technique
development and support tools may pay off handsomely over the

product life cycle.

This need to invest in anti-regressive [LEH74] activities
follows also directly from the second law. Complexity

control and complexity reduction yields no immediate benefit.

Thus the manager whose performance is judged by his profit

yielding output has no incentive to concern himself with any

aspect of complexity. It is a management responsibility to
provide such incentive. After all, over the life time of any

evolving system the direct and indirect cost of insidious

complexity growth can exceed the alternative cost of

controlling it, many times.

In practice, of course, the decision as to the fraction of a

development or maintenance budget to be dedicated

to complexity control and reduction cannot be based on cost

comparison. If adequate control is exercised, the subsequent

cost does not arise and the saving cannot be assessed. If it

is not, it will not, in general, be possible to determine how

much of the subsequent effort and cost of maintenance could

have been avoided, had minimal complexity been maintained.

This is the inherent paradox of all anti-regressive activity.

Its value lies in that it forestalls subsequent problems and

costs. So its return can never be evaluated.

The second law implies a management responsibility to

dedicate resources to the management of complexity and to the

development of methods to achieve this. Furthermore

definitions of complexity must be created to permit

quantitative assessment and the development of appropriate

models that predict complexity growth. Thus activity and

success in any of these areas must attract the same

management encouragemnt, support and recognition as does the

development of a marketable product.

The implications of the third law are clear. Management must

learn to accept the same sort of limitations for software

projects as it does in other areas. For example, the rate at

which a system can be changed, depends on many factors other

than just the resources applied [BRO75]. It is therefore

19. Programs, Programming and the Software Life Cycle 425

necessary to measure characteristic parameters and to
construct process models that provide planning parameters.
The example of the next section will demonstrate what can be
achieved.

The fourth law provides a specific instance of the third.
Though observed on atl projects monitored by us, the
invariance can at the moment only be interpreted in broad
phenomenological terms. That is the maintainable rate can
only be determined by extrapolation from measurements of an
activity over a period. It cannot yet be established or even
estimated from other project or organisational parameters.

Nonetheless, it is very real and implies that one should not
plan for long periods of activity at work rates exceeding the
average achieved over the life time of the system to that
point. If the nature of external requirements and the
changes to be made are such that the average work rate must
be exceeded for a release or two, plans should be so
formulated that the following releases are achieved at a
lower work rate. The decline will occur in any case and it
is always better that it should happen as a consequence of
formulated plans, rather than forced by events.

Questions of productivity are not specifically addressed in
this paper. We may, however, just note that invariances such
as those implied by the fourth and fifth laws, provide
measures that over a sufficiently long period can indicate
whether productivity improvements have really been achieved.

The implications of the fourth law may be summarised as
follows:-

% Do not plan long periods for work rates exceeding
the average

* If the work rate must exceed the average over one
or two releases, plan to reduce it for the next one
or two.

Use measures of the work rate to test for genuine
(maintainable) productivity growths.

Analogous comments apply also the the implications of the
fifth law, except that the latter relates to release content
rather than work rate. That is the following management
principles may be established:-

Plan content of successive releases so that average
system growth fluctuation is minimised.

426 M. M. Lehman and L. A. Belady

% If growth has to exceed the average substantially

for one or two releases, plan for a clean-up or

minimal growth release.

% Fix release dates (intervals) to yield constant

average growth.

* Use measured average to check for genuinely

improved methods, productivity and release control.

4.4 A Case Study - System X

i | The System and its Characteristics

System X is a general purpose batch operating system running

on a range of machines. The eighteenth release (R18) of the
system is operational in some tens of installations running a

variety of work loads. The nineteenth release (R19) is about

to be shipped.

Table 2 and figures 5a to 5g present the system and release

data available for the purposes of the present exercise.

Details of statistical analysis and model validation, based

on this data and that from other systems, that provides

confidence in the conclusions and predictions cannot however

be provided here.

Examining the system dynamics as implied by models derived

from the data and as illustrated by the figures, Figure 5a

shows the continuing growth of the system (first law) albeit
at a declining rate (demonstrably due to increasing

difficulty of change, growing complexity - second law).

Figure 5b indicates that, as a function of release sequence

number (RAN) the system growth (measured in modules) has been
linear but with a superimposed ripple (a strong indicator of

feedback stabilisation).

Figure 5c shows the net incremental growth per release (fifth

law).

For system architectures such as that of system X, the

fraction of system modules that are changed during a release

may be taken as a gross indicator of system complexity.

Figure 5d shows that system X complexity, as measured in

this way, shows an increasing trend (second law).

Figure 5e is an example of the repeatedly observed constant

average work rate (fourth law).

19. Programs, Programming and the Software Life Cycle

Table 2: System X Statistics

Release 19 Statistics

size

Incremental Growth

Modules Changed*

Fraction of Modules Changed

Release Interval

system Statistics

Age

Change Rate

Average Incremental Growth

Maximum Safe Growth Rate

Most Recent Releases

4800 Modules
1.3M Assembly Statements

410 Modules

2650 Modules

~55

275 Days

4.3 Years

10.7 Modules/Day

200 Modules/ Release

400 Modules/ Release

Release 15 16 17 18

Incremental Growth (Mod) 135 171 42.183 354

Fraction Changed 33 43 48 50

Change Rate 12.5 12 9.6 9.9

Interval (Days) 96 137 201 221

Old Mods. Changed/Mod 7.9 8.6 10 5.1

Modules that are changed in any way in release i

427

19

410

56

9.6

275

5.4

1
relative to release i are counted as one changed module,

independently of the

magnitude.

number of changes or their

428 M. M. Lehman and L. A. Belady

Figure 5f illustates how the average work rate achieved in

individual releases, as measured by the rate of module change

(changed modules per release interval day, m/d) oscillates, a

period of high rate activity being followed by one or more in

which the activity rate is much lower (third law).

Finally, figure 5g plots the release interval against release

sequence number. It might be argued that release interval

depends purely on management decision that is itself based on

market considerations and technical aspects of the release

content and environment. Data such as that of Figure 5g

indicates, however, that the feedback mechanisms that amongst
other process attributes also control the release interval,

while including human decision taking processes are

apparently not dominated by then. As a consequence,’ the

release interval pattern is sufficiently regular to be

modellable, and is statistically predictable once enough data

points have been established.

4.4.2 The Problem

Already prior to the completion (and relase) of R19, work has

begun on a further version, R20, whose main component is to

be the addition of interactive access to complement current

batch facilities. This new facility 'ITS' together with

other changes and additions summarised in Table 3, are to be

made available in R20 to be shipped eighteen months after

first customer installation of R19.

For each major nlanned functional change the table lists the

number of new modules to be added (NM), the number of R19
modules that are to be changed in any way in the course of

creating R20 (OMC), the total number of modules changed (NM +
OMC), and the ratio of OMC to NM (the interconnectivity ratio

(IR), an indicator of complexity). No modules are planned

for removal in the creation of R20 hence the planned net

system growth is 1021 modules.

Management has also accepted that a further release R21 will

follow twelve months after R20, to include any leftovers from

R20. It may also include additional changes for which a

demand develops over the next two years. The current

exercise is to endorse the overall plan, or if it can be

shown to be defective, to prepare an alternative

recommendation.

19. Programs, Programming and the Software Life Cycle

No

10

No

3a

3b

3c

3d

Table 3:

Description

Release 20 = Planned Content

Functional Enhancement

Identified Faults

(Pre Rls 19)

Expected Faults

(Rls 19)

New Mods Old Mo

(NM) Ched
(OMC)

2 380

0 600

Interactive Terminal

Support (ITS) 750 1783
Dynamic Storage

Management (DSM) 170 1500
Remote Job Entry

(RJE) oT 462
New Disc Support

(NDS) 17 124

Batch Scheduler

Improvements (BST) 3 29
File Access System

(FAS) 8 74
Paper Tape Support

(PTS) 12 80
Performance

Improvements 2 157.

1021 5189

'ITS' Detail

Description New Mods Old

Terminal Support yyy 1
Scheduling 127

Telecom support 58
Misc 121

ds Mods
Ched
(NM+OMC)

382

600

2533

1670

519

141

32

82

92

159

6210

Mods Chgd

032

293
232
226

750 1783

429

OMC/NM

(IR)

2.4

8.8

8.1

7.3

9.7

9.3

6.7

OMC/NM

—
£

N
M

P
P

w
o
O
W
W

430 M. M. Lehman and L.A. Belady

44.3 Process Dynamics

44.3.1 Work Rate

From Figure 5e the work rate has averaged to 10.4 m/d (19.2)
over the life time of the system. Figure 5f indicates that

the maximum rate achieved so far has been 27 m/d. Evidence

that cannot be detailed here reveals, however, that that data

point is misleading and that a peak rate of about 20 m/d is a

better indicator of the maximum achievable with current

methods and tools. Moreover, there is strong circumstantial

evidence that releases achieved with such high work rates

were extremely troublesome and had to be followed by consid-

erable clean-up in a follow-up release, as also implied by

figure 5c. Thus if R20 is planned so as to require a_ work

rate in the region of 20 m/d, it would be wise to limit R20
to at most 10 m/d, the system average. If on the other hand

the process is further stabilised by working on R20 at near

average rate, one could then, with a high degree of

confidence, approach R21 with a higher work rate plan.

4.4.3.2 Incremental Growth

The maintained average incremental growth for system X has

been around 200 modules per release. Once again

circumstantial evidence indicates that releases for which, in

this case the growth rate (incremental growth per release)
has exceeded double the average, have slipped delivery dates,

a poor quality record and a subsequent need for drastic

corrective activity. Figure 5c and Table 2 indicate that R19

will lie in this region and that R18 had high incremental
growth. That is, R19, once released, is likely to prove a

poor quality base. The first evidence emerges that maybe R20

should be a clean up release.

4.4.3.3 Growth Rate Cyclicity

The same indication follows from figures 5a and 5b where the

ripple periods are seen to be three, four and five intervals

respectively over the first three cycles. In the fourth

cycle, six intervals of increasing growth rate have passed

with the R18 - R19 growth the largest ever. Without even
considering the planned growth to R20 (point X), it seems
apparent that a clean-up release is due.

19.1 (Orig)
modules per day = number of modules changed in release

release interval in days

19. Programs, Programming and the Software Life Cycle 431

Woy R20 Plan Analysis

44.4. Initial Analysis

The first observation on the plan as summarised by Table 3
stems from the column (6) of IR factors. It has not’ been
calculated for items 1, 2 and 10 since these represent

activities that only rarely require the provision of entirely

new (non-replacement modules). For items 4 through 9 the
ratio lies in the range 8.2 + 1.5, a remarkably small range

for widely varying functional changes. Yet the predicted

ratio for ITS is only 2.4. One must ask whether it is
reasonable to suppose that the code implementing an

interactive facility is far more loosely coupled to. the

remaining system than, for example, a specialist facility

such aS paper tape support? Is it not far more likely that

ITS has been inadequately designed; viewed perhaps as an

independent facility that requires only loose coupling into

the existing system? Thus when it is integrated with the

remainder of the system to form R20, may it not require many

more changes to obtain correct and adequate performance?

From the evidence before us the question is undecidable.

Experience based intuition, however, suggests that it is

rather likely that the number of changes required has_ been

under-estimated. Thus a high-priority design re-appraisal is

appropriate. If the suspicion of incomplete planning proves

to be correct it would suggest delaying R20, so that’ the

planning and design processes may be completed. An

alternative strategy of delaying at least ITS to R21. should

also be evaluated.

Wey.2 Number of Modules to be Changed

The situation may of course not be quite as bad as direct

comparison of the present estimate of the ITS interconnection

ratio IR with that of the other items, suggests. In view of

the 750 new modules involved, its IR factor could not exceed

6.4 even if all 4800 modules of R19 were affected by the ITS
addition. Such a 100% change is, in fact, very unlikely, but

the IR factor of 2.4 remains suspect.

Moreover even with the low ratio for ITS the sum of the

individual OMC estimates for the entire plan exceeds’ the

number of modules in R19. This suggests that there is a new

Situation. Multiple changes applied to the same module have

become a significant occurrance. Even ignoring the fact that

even independent changes applied in the same release to. the

same module generally demand significantly more effort than

432 M. M. LehmanandL.A.Belady

Changes applied to independent modules, the total effort and
time required must clearly increase with both the number of
Changes implemented and the number of modules changed. The
presently defined measure 'modules changed' is inadequate.
The new situation demands consideration of more sensitive
measures such as ‘number of module changes' and ‘average
number of changes per module'.

These cannot be derived from the available data. One may,
however, proceed by considering a model based on the data of

Figure 5d. Extrapolating the fraction changed trend, reveals

that R20 may be expected to require a change of, say, 64% or
3725 changed modules (19.3). Comparing this estimate with
the total of 6210 obtained if the estimates for individual

items are summed it appears that the average number of chan-

ges to be applied to R19 modules according to the present

plan is at least of order two. We have already observed that

multiple changes cause additional complications. Hence any

prognosis made under the implied assumption of single changes

(or of a somewhat lower interconnection ratio) will lead to

an optimistic assessment.

WY .3 Rate of Work

The current plan calls for R20 with its 3725 module changes

to be available in 18 months, that is 548 days. This implies
a change rate of less than 6.8 m/d. This relatively low
rate, following a period of average rate activity suggests

that work rate pressures are unlikely to prove a source of

trouble, even with multiple changes to many of the modules.

Woy Growth Rate

In Figures 5a and 5b the position of R20 as per plan has been

indicated with an x. Both models indicate that the planned

growth represents a major deviation from the previous

history. Thus confirmation that the plan is realistic

requires a demonstration that the special nature of the

release or changes in methods makes it reasonable to expect a

19.3 (Orig) Htstorical Note: In the system on which this
example ts based the release including the interactive
factlity ultimately involved some 58% of modules
changed. Moreover the first release was stgntficantly
delayed, and was of limtted quality and performance.
More than 70% of tts modules had subsequently to be
changed again to attain an acceptable product. Our
estimate ts clearly good.

19. Programs, Programming and the Software Life Cycle 433

Significant change in the system dynamics. In the absence of

such a demonstration, the suspicion that all is not well is

strengthened.

HAAS Incremental Growth

The current R20 plan calls for system growth of over 1000

modules. This figure which is five times the average and two

and a half times the recommended maximum, must be interpreted

as a danger signal.

It has already been suggested that the low interconnection

ratio for ITS suggests that the planners saw the new

component as a stand alone mechanism that interfaces with the

remainder of the system via a narrow and restricted inter-

face. If this view proves justified, the large incremental

growth need not be disturbing. But it seems reasonable to

question it. With the architecture and structure that system

X is known to have, such a relatively narrow interface is

unlikely to be able to provide the communication and control

bandwidth that safe, effective and high capacity operation

must demand. This is apparent from comparisons with, say the

paper tape or disc support changes or the RJE addition. The

onus must be put onto the ITS designers to demonstrate the

completeness of their analysis, design and implementation.

Without such a demonstration one must conclude that’ the

present plan is not technically viable. Marketing or other
considerations may, of course, make it desirable to stay with

the present plan even if this implies slipped delivery dates,

poor and unreliable performance of the new release, limited

facilities and so on. But if such considerations force

adoption of the plan, the imrlications must be noted and

corrective action planned. Ways and means will have to be

created to enable users to cope with the resultant system and

usage problems and the inevitable need for a major clean-up

release. It might, for example, be wise to set up

specialised customer Support teams to assist in the

installation, local adaptation and tuning of the system.

44 4.6 Release Interval

Figure 5g indicates two possible models for the prediction of

the most likely (desirable?) release interval for R20 and

R21. Linear extrapolation suggests a release period of under

one year for each of the two releases. If this is valid, the

apparent desire for a release after the 18 months is of

itself unlikley to prove a source of problems. On the basis

434 M. M. Lehman and L.A. Belady

of evidence not reproduced here, however, the exponential
extrapolation is likely to be more realistic and this yields

an R20 release interval forecast of about 15 months and an

R21 interval of some 3 years.

HUT Recommendation - Summary

On the basis of the available data it has been concluded

that:

1 To proceed with the planas it stands is courting

serious delivery and quality problems for R20.

2 A clean-up release appears due in any case.

3 Failure to provide it will leave a weak base for the

next release. At the very least the number of expected

faults (Table 3 - item 2) is likely to prove an
underestimate.

4 The absolute size of the ITS component and the related

incremental system growth represents a major challenge

even on a clean base.

5 There are indications that he ITS aspect of the release
design is incomplete.

6 Change rate needs for R20 are not likely to prove a
source of problems.

T Nor is the demand for attainment of a next release in

eighteen months.

The following recommendations follow:-

8 Initiate immediately an intensive and detailed re-
examination of the ITS design and its interaction with

the remainder of system X.

9 From the integration records of R19 and by comparison

with the records of earlier releases, make quality and

error rate models and obtain a prognosis for R19 and an

improved estimate for R20 correction activity.

(Integration and error rate models have not’ been

considered in the present paper but have been

extensively studied by the present author and by others

[MUS80].

19. Programs, Programming and the Software Life Cycle 435

10 Assess the business consequences of, on the one hand, a

slippage of one or two years in the release of ITS and

on the other, a poor quality, poor performance release

with a slippage of, say some months (due to acceptable

work rate but excessive growth).

11 In the absence of positive indication of a potential for

major deviations from previous dynamic characteristics

or the existence of a genuine business need that is more

pressing than the losses that could arise from a poor

quality product, abandon the present plan.

12 Instead redesign release 20 to yield R20; a clean, well-

structured, base on which to build an ITS release, R21'.

13 Tentatively release intervals of 9 months and 15 months

are proposed for R20! and R21' respectively.

14 R21' should be a restricted release for installation in

selected sites.

15 It would be followed after one year by a general release

R22'.

44 4.8 Recommendations - Details

Assuming that the further investigation as paragraphs 8 to 10

of 4.4.4.7 re-inforces the conclusions reached, three
releases would have to be defined. Proposals for R20'& Rei!

are outlined here. The third, R22' will be a clean-up but

its content cannot be identified in detail until a feel for

the performance and general quality of R21' has developed.

The detailed analysis is left as an exercise to the reader.

The inherent problem in the design of the ITS release is the

fact that the component has a size almost twice the maximum

recommended incremental growth. Moreover, with the possible

exception of its telecommunications support (Table 3, item

3c), none of the component sub-systems would receive usage

exposure in the absence of the others. Thus a clean ITS

release cannot be achieved except by releasing the component

in one fell swoop. Similarly, Dynamic Storage Managemnt

(DSM) is exposed to user testing only when the ITS facility
is operational. One may, however, consider whether the tele-

communciation facility (3c) will be usable in conjunction
with the RJE facility, item 5. If it is, there will be some

advantage to be gained by releasing 3c and 5 before the

remainder of ITS and DSM.

436 M. M. Lehman and L. A. Belady

Strictly speaking, Figure 5c suggests that R20' should be a
very low content release dedicated to system clean-up and re-
structuring. But the six preceeding releases were achieved
with average change rates and, from that point of view, did
not stress the process. Thus if R20' is also an average rate
release it should not cause problems and it would seem a low
risk strategy to include in R20' all those items as in Table
4, that will simplify the subsequent creation of the
excessively large ITS release.

The list, in priority order, of the new proposal shows a
maximum incremental growth (159) well under average. Itisa
matter of some judgement and experience whether it would be
wiser to delay item 3c with 58 new modules and item 5 with 57
to R21' thereby achieving the very low content release
mentioned above. With the information before the reader it
is not possible to resolve this question since additional
information, at the very least answers to the questions
raised in 4.4.4.7, would be required. However, the desire to
minimise R21' problmes suggests the adoption of the complete
plan as in Tables 4 and 5.

Table 4: Modified Release 20 Content

Class Reason Items

Fault Repair Clean-up of base 1, 2

Hardware Support Revenue Producing 6, 9

Performance Prove = but do not T, 10

Improvement announce. Will be

available to counteract

ITS perforamnce deter-

ioration in R21',

ITS Related Components To receive early user 3e, 5, 8

exposure

19. Programs, Programming and the Software Life Cycle 437

Table 5: Modified Release 20 Statistics (from Table 3)

Item New Mods Running Total Changes Running Total

1 2 2 382 382

2 0 2 600 982

6 17 19 141 1123

9 12 31 92 1215

1 3 34 32 1247

10 2 36 159 1406

8 8 Ay 82 1488

5 57 101 519 2007

3c 58 159 522 2529

In assessing achievable release intervals for these releases,

we base our estimates only on the module change count and

change rate. The constraints on the present example do not

permit the full analysis which would consider models based on

Figure 5g, and take into account additional data. At 10

modules per day change rate, implementation of the complete

plan appears to require 253 days, say 9 months, whereas

exclusion of 3c and 5 would reduce the predicted time

required to some 7 months. This recommendation cannot be

taken further without more information of both a_ technical

and a marketing nature, and an examination of other interval

models. But the need for a clean base for R21' suggests

adoption of the maximum acceptable release interval. R21!

will now include, at the very least, ITS (except 3c) and DSM.

This involves at least 920 new modules, an excessive growth

that cannot usefully be further split between two or more

releases. Assuming a change fraction of, say, 70% (figure

5d), of a system that is expected to contain 5911 modules, a

total of some 4200 changed modules in the release, many with
multiple changes must be expected. Since there will now

have been seven near average change-rate releases, it seems

possible to plan for a change rate of 15-20 m/d, yielding a

potential release interval of under 9 months. That is, it

would appear that, by adopting the new strategy, all of the

438 M. M. Lehman and L. A. Belady

original changes and additions could be achieved in about the

same time, but much more reliably. More complete analysis,

however, based on additional data, other models and taking

into account the special nature of the releases might well

lead to a recommendation to increase the combined release

interval to, say, two years.

A further qualification must also be added. As proposed in

the revised plan, R21' will still be a release with excessive

incremental growth and is therefore likely to yield signif-

icant problems. The additional fact that the evidence ind-

icates incomplete planning, reinforces concern and expect-

at on of trouble ahead. It is therefore also recommended

that R21' be announced aS an experimental release for

exposure to usage by selected users in a variety of environ-

ments. It would be followed after an interval of perhaps one

year by an Re2', a cleaned up system, suitable for further

evolution.

YoY.g Final Comments

The preceeding section has presented a critique of a plan,

and outlined an alternative which is believed technically

more sound. The case considered is based on a real

Situation, though in the absence of complete information

details have had to be invented. But details are not imp-

ortant since the objective has been to demonstrate a method.

Software planning, can and should be based on process’ and

system measures and models, obtained and maintained as a

continuing process activity. Plans must be related to

dynamic process and system characteristics and to statistics

of change. By rooting the planning process in facts, figures

and models, alternatives can be quantitatively compared,

decisions can be related to reality and risks can be

evaluated. software planning must no longer be based solely

On apparent business needs and market considerations; on

management's local perspective and intuition.

5 The Life Cycle

5.1 ##=‘The General Case

The preceeding sections have explored the causes, the

dynamics and the direct implications of continuing program

evolution. In recent years the phenomenon has given rise to

a concept of a program life cycle and to techniques for life

cycle management. The need for such management has, in fact,

been recognised in far wider circles, particularly by

19. Programs, Programming and the Software Life Cycle 439

national defence agencies and other organisations concerned

with the management of complex artificial systems. In

pursuing their responsibilities these must ensure continuing

effectiveness of systems whose elements may involve many

different and fast developing technologies; often they must

guarantee utterly reliable operation under harsh, hostile and

unforgiving conditions. The outcome is an ever increasing

financial commitment. Only life time oriented management

techniques applied from project initiation can permit’ the

attainment of life time effectiveness and cost effectiveness.

The problems in the more general situation are essentially

those we have already explored, except that the time interval

between generations is perhaps an order of magnitude greater

than in the case of pure software systems. In briefly

examining the nature of the life cycle and its management in

this section the terminology of programming and software

engineering are used. The reader will be able to generalise

and to interpret the remarks in his own area of interest.

5.2 Software Life Cycles

Section 3.5 showed that program evolution, and the cyclic

effects that define a program life cycle can be identified on

different time scales representing various levels of abstrac-

tion. The highest level concerns successive generations of
system sequences. Each generation is represented by a

sequence of system releases. This level corresponds most

closely to that found in the more general systems situation,

with each generation having a life span of, from, say five to

twenty years. Because of the relatively slow rate to change

it is difficult for any individual to observe the evolution

phenomenon, measure its dynamics and model it as a life cycle

process, since in the relevant portion of his professional

career he will not observe more than two or three generat-

ions. It might therefore be argued that this level should

not be treated as an instance of the life cycle phenomenon.

The present author has, however, had at least one opportunity

to examine program evolution at this level and to make mean-

ingful and significant observations [LEH76d]. These
indicated that much could be gained in cost effectiveness in

the software industry if more attention were paid to the

earlier creation of replacement generations; something that

can be achieved effectively only if the appropriate

predictive models are available.

The second level is concerned as we have been, with a

sequence of releases. The latter term is also appropriate

440 M. M. Lehman and L. A. Belady

Sequence of releases. The latter term is also appropriate
when a concept of continuous release is followed; that is
when each change is made, validated and immediately installed
in user instances of the system. In the most extreme
instances the user will find himself with a changed system
almost every day.

Figure 6 shows one view [BOE76] of the lowest level, if it is
assumed that 'maintenance' in the seventh box refers to on-
site fixes and repairs implemented as the system is used.
The diagram indicates the sequence of acttvtttes or life
cycle phases that take a system instance from first
identification of a need or opportunity, through the
application of the completed program in its operational
environment, to its final withdrawal. Such withdrawal, not
explicitly indicated by Boehm, may of course be preceeded by
its replacement with an improved version, a new release. If
maintenance is taken to refer to permanent Changes, affected
through new releases by the system originator, then the
Structure becomes iterative with each maintenance phase
comprised of all seven indicated phases. With this
re-interpretation the single model reflects the composi te
life cycle structure of all the above levels.

System
requirements <+— |

Validation Software
requirements < |

Validation Preliminary Boehm's
} design ‘ | structure

Validation / Detailed
design

Uf

Validation Code and

debug < |
Lehman's
top-level Development) Test and |
description preoperations rq |

 Validation Operations
Ltest and

maintenance

Revalidation

Definition Implementation Maintenance

+—><}— >

Figure 6: The Software Life Cycle According to Boehm

19. Programs, Programming and the Software Life Cycle 441

5.3 Assembly Line Processes

In strong contrast to the programming process considered

above, an assembly line manufacturing process is possible

when a system can be partitioned into sub-systems that are

simply coupled and without invisible links. Moreover, the

process must be divisible into separate phases without

significant feedback control over phases and with relatively

little opportunity for trade-off between phases.

If all these conditions exist the sub-processes of the total

system development and construction process will not in

general require knowledge of the total product or total

process [BEL78]. Each part of the system and each phase of

the process can be designed, implemented, evaluated and main-

tained more or less independently. Present day software

technology is not like that. For example, at least some

aspects of the specification and design processes are left

over, usually implicitly, to the implementation (coding)

phase. Fault detection through inspection [FAG76] is not yet

universal practice and by default is often delayed till a

system integration or system testing phase. When faulty

behaviour is observed, the symptom is often removed by a

local patch, leaving the real error to be located and

repaired at some later time. Moreover, if at one stage

inadequate attention is paid to structure, clarity, correct-

ness, completeness, documentation or any other aspect of the

process or of the attributes of its product, the consequences

may not be felt till months or even years later when the code

is to be modified or executed in an unexpected manner. And

when some sub-system has to be changed, visible and invisible

linkages and side-effects spread change requirements widely

over the system.

In general, present day programming is constituted of tightly

coupled activities that interact in many ways. One of the

main concerns of life cycle process methodology research must

be to develop techniques and tools and new system

architectures (section 2.6). Programming support
environments [DOL76], [HUT79], [BUx80] that permit
partitioning of the program development and maintenance

process into separated activities, coupled only by the

program and its accompanying documentation are now recognised

as essential for successful program development and

maintenance.

442 M. M. Lehman and L.A. Belady

5.4 The Significance of the Life Cycle Concept

For assembiy line processes the life cycle concept is not,
generally, of prime importance. For software and other
highly complex systems it becomes critical if effectiveness,
cost-effectiveness and long life are to be achieved. At each
moment in time a manager's concern concentrates on the
successful completion of his current assignment. His success
will be assessed by immediately observable product
attributes, quality, cost, timeliness and so on. It is his
success in areas such as these that determine the furtherance
of his career. Managerial strategy will inevitably be
dominated by a desire to achieve maximum local pay off with
visible short term benefit. It will not often take into
account long term penalties, that cannot be precisely
predicted and whose cost cannot be assessed. Top-level
managerial pressure to apply life-cycle evaluation is
therefore essential if a development and maintenance process
is to be attained that continuously achieves the overall
objectives of the organisation. Neglect will inevitably
result in a life time expenditure on the system that exceeds
many times the assessed development cost on the basis of
which the system or project was initially authorised.

To overcome long time lags and the high cost of software, one
may also seek to extend useful system lifetime. The decision
to replace a system is taken when maintenance has become too
expensive, reliability too low, change responsiveness too
Sluggish, performance unacceptable, functionality too
limiting; in short, when it is more satisfactory to replace
the system than to maintain it. But its expected life time
to that point is determined primarily during conception,
design and the initial implementation stages. Hence
management planning and control during the formative period
of system life, based on life time projections and assessment
can be critical in achieving long life software and life time
cost effectiveness. This represents an additional gain to the
benefit gained from the continuing joint optimisation of
expenditure, value received and cost per unit output over the

lifetime of the system [GOL73].

19. Programs, Programming and the Software Life Cycle 443

rm Pragmatic analysis(purpose)

, 1 7 J.
> Requirements == Specification == Design probe

~ Whatinformation /action/data is - needed as output ?

- needed /available as input ? —

- What are implied / required / possible transformations ?

. | y ¥
topdown =Specification == Design == Implementation probeJ

design - The structuring process- identification of elements and their

relationships

« data- flow structure

« possible elemental decomposition

« associated transformations

« possible algorithms

- Provisionally select one set

Design == Initial implementation== Evaluation probe 4

- Correctness

- Performance

- Resources

v

Implem
entati

on
== Validati

on
(incl. perform

ance
swisati

on)
—_J

- Define each elemen
t

- functio
nal

specifi
cation

- data abstraction (abstract data types)

- \dentify and fix interface between them

/ - Validate against specification

v Iteration ; ; ; . ;
to next Directly implementable primatives achieved ?
level NO YES

down
STOP

Figure 7: The Current-Idealised Model

444 M. M. Lehman and L. A. Belady

5.6 Life Cycle Phases

5.6.1 The Major Activity Classes

At its grossest level a life cycle consists of three phases;

definition, implementation and maintenance (19.4). As
indicated in Figure 6, these three phases correspond approx-

imately to the activities in the first three, the second

three and the seventh box respectively of Boehm's model. In

practice, however, many of these activities are overlapped,

interwoven and repeated iteratively as suggested by the model

of Figure 7. The details will vary with the enviromment, the

methods employed and whether the project is concerned with

the creation of a system to address an entirely new

application, the preparation of a new release for an existing

system, or the development of a replacement system for one

that is reaching the end of its useful life. For simplicity

the first of these cases is assumed in the brief discussion

of the main activity areas.

5.6.2 System Definition

For E-Class systems in particular the development process

begins with a pragmatic analysis leading into a_ systematic

Systems Analysts to determine total system and program
Requirements [BELT7c], [ALF78], [HEN79], [YEH80]. The
analysis may examine manual techniques whereby the same

purpose is currently achieved or, where appropriate, may be

based on formal analysis. Whatever the approach, it has now

been recognised that the analysis must be dtsctplined and
structured [DAH72], [LIN77], the term structured analysis now
being widely used [BEL78], [ROS77], [ROS77a].

By their very nature initial requirements, being an

expression of the user's view of his needs, are likely to

include incompatibilities or even contradictions. One would,

for example, be most unlikely to be able to meet requirements

that call for the creation within months of an utterly

reliable, low-cost, system implementing a wide variety of

related facilities that have not before been mechanised.

Thus the analysis and the negotiation process by and between

analysts and potential users, that produces requirements,

must identify a balanced set that, in some sense, provides

the optimum compromise between conflicting desires.

19.4 (Eds) Today we would use the term evolutton instead of
maintenance.

19. Programs, Programming and the Software Life Cycle 445

The requirements set will be expressed in the concepts and

language of the application and its users. It must then be

transformed into a technical specification. The

Spectftcation process [DEM78], [LIS79] must aim to produce a
correct technical statement, complete in its coverage of the

requirements and conststent in its definition of the

implementation. It may include additional determinations or

constraints that follow from a technical evaluation of the

requirements in relation to what is feasible, available and

appropriate in the judgment of the analyst and designer in

agreement with the user.

It has long been the aim of computer scientists to provide

formal languages for the expression of specifications so as

to permit mechanical checking of completeness and

consistency [BUX70], [VAN76], [TEI77], [YEH77], [COX80], but
a widely accepted language does not yet exist. Given a

machinable specification it is conceptually possible to

reduce it mechanically to executable [ZUR67] and even
efficient [DAR79] code but these technologies too are not yet
ready for general exploitation.

Thus, for the time being the specification process will be

followed by a design phase [COX80], [PET80]. The prime
objective of this activity is to identify and structure data,

data transformation and data flow [JACT5]. It must also

achieve, in some defined sense, optimal partitioning of

system function [PAR72], select computational algorithms and

procedures, and identify system components and the

relationships between them. It is now generally accepted

that iterative top down [SWA] analysis and partitioning
processes, as, for example, in figure 7, are required to

achieve successive refinement [WIR71] of the system design to
the point where the identified objects, procedures and

transformations can be directly implemented.

5.6.3 Implementation

Following the completion of the design, system tmplementation

may begin. In practice, however, design and implementation

overlap. Thus as the hierarchical partitioning process

proceeds, analysis of certain system elements may be

considered sufficient to permit implementation, whilst others

clearly require further analysis. Ina software project,

time always appears to be at a premium. A workforce

comprising many different abilities is available and must be

kept busy. Thus, regrettably, implementation of syb-systems,

components, procedures or modules will be initiated despite

446 M. M. Lehman and L. A. Belady

the fact that the overall or even the local design is not yet

complete.

As the implementation proceeds code must be validated
[MIL78], [GOO80]. Present day procedures concentrate
primarily on testing [G0075], though in recent years
increasing use has been made of design walkthrough and code
tnspectto [FAG76]. These later procedures are intended to
disclose both design and implementation errors before

their consequences become hidden in the program code. The

ratio of costs of removing a fault discovered in usage as

against the cost of removing the same fault if discovered

during the design or first implementation phase is sometimes

two or three orders or magnitude. Clearly it pays to find
faults early in the process.

In any case, testing by means of program execution is

generally achieved bottom up, first at the unit (module or

procedural) level, then functionally, component by component.

As tested components become available they are then assembled

into a system in an tnutegratton process and system test is

initiated. Finally, after some degree of independent

certification of system function and performance the system

is designated ready for release.

The above very brief summary has identified some of the

activities in the current industrial system development

process. Individual activities as described may overlap, be

iterated, merged or not undertaken at all. As suggested in

Figure 7 design of an element, for example, may be followed

immediately by a test implementation and preliminary

performance evaluation to ensure feasibility of a design

before its implications spread to other parts of the system.

Clearly there should be a set of overall controlled

procedures to take a concept from the first pragmatic

evaluation of the potential of an application for

mechanisation to final program product executing in defined

hardware or software and hardware environment(s).

5.6.4 Maintenance

Once the system has been released the maintenance process

begins. Faults will be observed, reported and corrected.
Where appropriate, repairs to the code, to the documentation

or both will be authorised. If user progress is’ blocked

because of a fault, a temporary by-pass of the faulty code

may be authorised. In other circumstances a temporary or

permanent fix to the code may be applied in some or all user

19. Programs, Programming and the Software Life Cycle 447

locations. The permanent repair or change to the program can

then be held over for a new release of the system. In other

cases a permanent change will be prepared for immediate

installation by all those running the system. The particular

strategy adopted in any instance will depend on the nature

and severity of the fault, the size and difficulty of the

change required, the number and nature of the program

installations and user organisations, and so on. The actual

strategy will have a profound impact on the rate of system

complexity growth, on its life cycle costs and on its life

expectancy.

The faults that are fixed in the maintenance process may be

due to changes external to the systen, incorrect or

incomplete specification, design or implementation errors,

hardware changes or to some combination of these. Since each

user exposes the system in different ways, all installations

do not experience all faults, nor do they automatically apply

all manufacturer-supplied fixes or changes. On the other

hand, installations having their own programming staff may

very well develop and install local changes or system

modifications to suit their specific needs. These patches,

insertions or deletions may in turn cause new difficulties

when further incremental changes are received from the

manufacturer, or at a later date when a new release is

received. The inevitable consequences of the maintenance

process applied to systems installed for more than one user,

is that the many installed instances of a system drift apart.

Multiple versions of system elements develop to encompass the

variations and combinations [BEL77b]. System conftguratton
management becomes a major. task. Support environments
[DOL76], CLHUT77], [BUX80] that automatically collect and
maintain total activity records become an essential tool in

programming process management.

5.7 Life Cycle Planning and Management

Section 4 considered one aspect of the planning process. The

preceeding discussion, while presenting a simplified view of

the life cycle, will have made clear’ the difficulty

associated with life-time planning. In recent years’ the

problem has received much attention, for example, two

meetings dedicated to the theme of Software Life Cycle

Management [LEH77b], [BAS78]. A variety of techniques have

been developed to improve estimation of cost, time and other

resources required for software development and maintenance

[[FEL77], [PUT77a], [BOE78a], [PAR80], [ARO80]. These
techniques are based on extrapolation of past experience and

448 M. M. Lehman andL. A. Belady

tend to be a self-fulfilling prophecy. In general, it has
not yet proved possible to develop techniques a priori

project resource estimation on the basis of objective

measurement of such attributes as application complexity and

of the work needed to create a satisfactory system.

Techniques such as software science [HAL77], [FIT78] seek to
do just this but to date lack substantiation [JOH67] and
interpretation. Major research and advances are required if

software engineering is to become as manageable as are other

engineering disciplines, though fundamentally the peculiar

nature of software [LEH77c] will always leave its engineering
ina class of its own.

6 Conclusion

This paper has presented the concepts and implications of

evolving programs, dynamics of evolution and the program life

cycle. Through this it has supported the view, first

expressed in Garmisch [NAU68], but still as valid, that there
is an urgent need for a discipline of Software Engineering.

This should facilitate the cost-effective planning, design,

construction and maintenance of effective programs’ that

provide, and continue to provide, valid solutions to stated

(possibly changing) problems or satisfactory implementations

of (possibly changing) computer applications.

Recognising the intrinsic nature of program change, the laws

that appear to describe the dynamics of the evolution process

and their technical and managerial implications were out-

lined, and their application to the planning process

illustrated. In then reviewing the concepts, significance

and phases of the program life cycle details of life cycle

planning and managment models were omitted. In particular,

cost, resource and reliability models [BOE76a], [PAR77]
[MUS80] have not been examined. Nor have examples from’ the
many systems, other than system x, that have been studied,

been provided. Approaches to process modelling based on

continuous models [RI077], [W0O0O70a] have aslo not’ been
included, nor has the vital topic of software complexity

(MCC76], [LEH77a], [BEL77a], [CHE78], [MUS80], [BEL77c].

Despite this limited coverage of relevant material it is

hoped that the reader's interest and concern has_ been

aroused. Understanding of the underlying concepts’ and

recognition of the implications should make him pursue

further details in the works listed in the references. Hope=-

fully he will then be encouraged and enabled to apply the

concepts to achieve more effective software projects, system

19. Programs, Programming and the Software Life Cycle 449

Management and implementation. Through this his clients will

also achieve more effective, cost-effective and continuing

computer usage.

It would seem that many of the concepts and techniques

presented in this paper could find wide applications outside

the specific area of software systems, in other industries

and to social and economic systems. Clearly they could not

be pursued here.

T Acknowledgements

First and foremost my thanks must be extended to L A Belady,

my close collaborator for almost 10 years. Many others,

particularly associates and colleagues at ALMSA, IBM,

Imperial College and WG2.3 have contributed through their

comments, questions, critique and original thoughts. All of

them deserve and receive my grateful acknowledgements and

thanks for their individual and collective contributions.

May I be permitted to single out Professor W M Turski for the

major contribution made on his recent visit to London. My

Sincere thanks also to him, Drs G Benyon-Tinker, P G Harrison

and C Jones for their detailed and constructive criticism of

an early draft of this paper, R Bailey for his artistic

Support and Miss W Huxtable for the patient typing and

retyping of the manuscript. Finally, may I acknowledge the

constant support of my wife without which neither the work

itself nor this paper would have been possible.

CHAPTER 20

THE ENVIRONMENT OF PROGRAM DEVELOPMENT AND
MAINTENANCE - PROGRAMS, PROGRAMMING AND

PROGRAMMING SUPPORT*

1 Programs

A computer program may be defined as:-

we. a Statement of data attributes and associated

algorithms that completely defines a mechanical

procedure to implement a computer application or to

obtain a solution to a problem by execution in a

prescribed environment.

This definition has limitatins. It does not. for example,

address the question of whether a program that is incorrect

or incomplete in relation to some problem statement is to be

considered a program. This alone suggests that a more

complete definition must be developed. There is, however, a

more fundamental weakness. As formulated, the definition

provides a basis for deciding whether a given symbol sequence

is a program. In no way. however, does it help in the

creation of a new program or show how to modify an existing

instruction sequence such that it becomes a correct program

in relation to some problem statement. Yet the prime problem

faced by the computing community today is to discover methods

and to develop tools that facilitate the creation and
matntenanee of functionally satisfactory and cost effective

programs. .

A more satisfactory definition may perhaps be achieved by

first defining the activity of programming and then defining
programs as the output of that process [LEH69]. To be able
to do this pre-supposes that one knows how best to approach

the total programming process in general, or the creation of

a program for a specific application, in particular. But,

precisely this has been recognised as the basic problem of

the programming community for at least twelve years [NAU69].

Reprinted with kind permission from ‘Systems Architecture’, Proc. 6th ACM European

Regional Conference, ICS81, IPC, Butterworths, 1981.

451

452 M. M. LehmanandL.A. Belady

Current programming methodology has evolved dynamically from
the experiences of the past thirty years and represents a
motley collection of relatively isolated methodologies.
methods and techniques. associated through an experienced-
based, but otherwise arbitrary, Sequence of much discussed
process phases [BOE76]. There does not exist at present even
a heuristic understanding of what is really required to
transform an application concept into a correct, usable and
cost-effective program. A systematic total process (20.1)
based on a scientific theory of programming appears remote.

The present paper represents the beginnings of an attempt to
understand and describe the process as a whole on the basis
of the intrinsic work that must be done in creating a
program. As a first step we consider a program
classification scheme named SPE, recently introduced [LEH80].

An S-program isa program for which the absolute criterion of
process completion and program acceptability is satisfaction
of a given specification. For a program to be of class S, a
problem statement from which a complete and authoritative
Specification of a program for its solution must be possible
and can be derived. In the past success in creating programs
even such as these. has been determined exclusively through
test executions of the program and its components. under
conditions for which the computational result can be
precisely predicted [GOO80]. More recently testing has been
preceeded by formally organised program and code inspections
[FAG76]. Industry in general and the majority of programmers
Still rely primarily on such procedures to determine the
acceptability of a program. If a specification exists at all
it is. at most. used to determine the set of tests that are
to be applied. The process as briefly described is
illustrated in Figure 1.

In the last decade it has been increasingly recognised that
for a variety of reasons. testing is an unsatisfactory basis
for demonstrating the veracity of a program. As Dijkstra
puts it '... testing can only show the presence of faults
never their absencet [DIJ72]. Thus the concept of program
vertficatton has been introduced. Techniques are. slowly
being developed for proving a program correct, that is
demonstrating that it completely satisfies its specification.

20.1 (Eds) Wow referred to as a ‘coherent process".

20. Program Development and Maintenance Programs 453

Techniques for achieving and demonstrating correctness

progressively during the process of program development

[D1IJ78] using for example techniques such as_ program
assertion, [HOA69] will prove even more significant in the
future.

In essence any program correctness’ proof demonstrates

equivalence. in some sense, between the program and its

specification; no specification. no proof. Thus since by

definition an S-program must have a formal specification, the

property of "correctness' (if present) is inherently
demonstrable, though the proof may not be known. The S-

program process may be represented as in Figure 2. The

striking change in comparison to Figure 1 is that’ the

compartson of data derived from the problem description with
that from program execution is replaced by calculable

verification of the program text by its derivation from the
authoritative specification.

PROBLEM

! FORMAL STATEMENT

 PROGRAM SPECIFICATION

UNIVERSE

OF

 DISCOURSE

PROGRAM

 | SOLUTION

Figure 1: S-Program Traditional Approach

454 M. M. Lehman and L. A. Belady

poocean4 PROBLEM
/

/ Y
FORMAL STATEMENT

 i PROGRAM SPECIFICATION

UNIVERSE

OF

DISCOURSE

 _
PROGRAM

 y
SOLUTION

Figure 2: S=Program Verification

It may happen that the problem to be solved is not just of

intellectual interest, but relates to some real world

phenomenon. In that event the solution may be found to be

unsatisfying, even after the program has been proven correct.

When this happens the problem statement must be incorrect in

some aspect or, assuming no derivation errors, inappropriate.

It does not represent the situation of current concern. Thus

a new problem statement and specification must be produced

and from them a new program derived. It may be that these

are all achieved by peturbation or extension of the original

versions, but nevertheless they represent the implicit

definition and derivation of a new program.

The process of evaluating a program in relation to the users'!

needs is termed valtdatton, and we may now view the general
process as in Figure 3. Verification and validation and

their relationship, to one another and to the programming

process are further discussed below.

P-programs are defined to differ from S-programs in that

their satisfying a specification can ultimately not be

accepted as the criterion of validity. This occurs when, for

example, solutions to the problem that they define are to be

20. Program Development and Maintenance Programs 455

CHANGE ———_—reo

| FORMAL STATEMENT

 PROGRAM SPECIFICATION

UNIVERSE

DISCOURSE

Y |

PROGRAM

VALIDATION

SOLUTION

Figure 3: Full S=-Program Process

CHANGE} PROBLEM
Y

4 FORMAL STATEMENT

 PROGRAM SPECIFICATION

LY
PROGRAM

UNIVERSE

OF

DISCOURSE

VALIDATION

SOLUTION

Figure 4: P-program Process

456 M. M. Lehman andL. A. Belady

used in some application. It is the relevance of the
computational output in the domain of concern that is
decisive. Provable satisfaction of a specification, whilst
encouraging for the programmer, may well be irrelevant if the
Specification is inadequate.

In this situation, illustrated by Figure 4, one cannot expect
to achieve an acceptable program without some iteration. The
problem analysis will almost certainly be incomplete; will
for example make unjustified assumptions or approximations in
its abstraction of the environment. One may also wish or
need to change the program implementation to achieve more
effective or cost-effective problem solution. Changes will
Suggest themselves as the program is executed, that is, as it
is validated in test executions or in actual use; as a better
understanding ts acqutred of the real problem to be solved.
The consequent adaptations are applied iteratively and must

take time. As the process proceeds the universe to which the

problem statement refers is itself likely to change. That

change too is likely to demand or provide opportunity for

change to the problem statement and hence to the program.

The program will tend to undergo extensive, if not

continuing, change.

In this case one might also take the view that successive

programS are mew programs reflecting problems different to

that originally stated. However, since the basic problem

belongs to a class that relates to actual needs as ultimately

experienced in practice, rather than being primarily of

intellectual interest, it is more realistic to see the

process as ae gradual approach to the identifications and

formulation of the problem and its solution. The resultant

P<program is best viewed as evolving rather than as a

sequence of new programs.

Finally we consider the defining characteristic of E-

programs. These implement applications that in some sense

control activities and or events in the environments within

which they are embedded and executed. That is, an E-program

is itself a part of the universe that it both models and

controls. Implicitly at least, it contains a model of itself

or rather of its iteractions with its operational

environment. Figure 5 illustrates the basic closed loop that

is intrinsic to the development and use of E-programs.

In order to specify the properties of an E-program that is to

be developed or modified, one must therefore predict its

impact on its operational environment and on the people who

20. Program Development and Maintenance Programs

COMPUTER

APPLICATION

PROGRAM

VIEWS

(PREDICTIVE)

MODEL

REQUIREMENTS

 SPECIFICATION
[|

Figure 5a: E-program Basic Loop

COMPUTER

APPLICATION

Co PROGRAM _

VALIDATION

OUTPUT

VIEWS
--e- loon>

(PREDICTIVE)

Y

I-}—-—- -----—> MODEL

 {
REQUIREMENTS

}—-- |------> |

 SPECIFICATION

P|

Figure 5b: Full E-Program Process

457

458 M. M. Lehman and L. A. Belady

are to work with it. The designer must perceive the
application activity and the enviroment within which it
occurs as they wtll be once the system has been implemented
and installed. The perception cannot be precise, the
prediction cannot be perfect and system validation will
inevitably result in a series of changes to the systen. The
system must evolve, changing the operational enviroment as
it does so by virtue of its being embedded in and therefore a
part of that environment. That change in turn, generates
further evolutionary pressure. The process of change and
evolution is never ending, the alternative being increasing
ineffectiveness and ultimate obsolescence.

In passing we note that in fact all natural and artificial
systems evolve [SIM69]. However, because of the tight
coupling of computer applications and of software with
humans, society and their activities, and because of the
Superficially apparent simplicity of the process of program
change, the rate of software evolution is very high,
absolutely and relative to the professional life-time of
practitioners. Hence there arises the impression and reality
of continuing change with all its implications on

effectiveness, reliability and cost.

A programming manager's principle function is, in a very
general sense, the management of evolutionary change. The
characteristics of program evolution ahve been extensively

Studied in recent years, [LEH80], [BEL77] and they are not
further discussed here. Instead we recognise that program

evolution is the visible response of a closed-loop feedback

system. The stability and rate of change of that evolution

is a consequence of the phenomenological nature of that loop,

of the characteristics of program creation and the processes

whereby this is achieved. All of these need to be better and

more fundamentally understood than is presently the case. We

pursue this understanding in the remainder of the paper.

2 The State-of-the-Art in Programming Support;

Foreseeable Developments

Continuing evolution must in practice, be achieved by a

sequence of activities as discussed below. To direct and

control the resultant process over the lifetime of a system

requires abilities and facilities above and beyond those

needed for the design and implementation of data structures,

program structures and code sequences. It is recognition of

this fact that has generated the wide current interest in

programming support tools and environments - PSE's.

20. Program Development and Maintenance Programs 459

The state of the art in programming support systems sees them
as having two prime functions. In the first palce they
provide documentation capability equivalent to the records,
blue prints, card indexes, filing cabinets, typists and
filing and retrieval clerks found in every conventional
engineering project. The special power of the computer is
then to be able to provide additional capabilities for
relating entries to each other, for automatic searching,
sorting and selection and for. selective presentation.
Secondly, it can include a variety of software tools for
creating, checking, editing, converting (compiling,
interpreting, assembling) and linking system requirements,
Specifications and program text and submitting the latter for
execution. That is, the environment can contain, integrate
and associate with its data collection and filing capability
all those programming tools previously seen by the programmer
as isolated aids to program definition, construction,
validation, submission, documentation and maintenance.

There exist proprietory systems that provide additional
facilities [DOL76], [HUT79]. Basically, however, the
published work on programming environmmets reflects only a
limited advance in programming methodology, systems
engineering and project planning. In addition to the
provision of data-base facilities that provide a permanent
record of all activities in relation to evolving programs,
environments are now viewed as integrated tool kits that
automate and relate what were previously regarded as
individual manual methodologies and tools; facilities such as
program entry, editing, translation and loading, previously
viewed as largely independent.

The new Stoneman proposal [BUX80] collects, consolidates and
harmonises current concepts to present an enviroment
definition that is meaningful and realistic in the context of
the state of the art. It does not, however, call for major
extensions of current techniques or for the invention and
practical development of new concepts or of old concepts
applied in new ways or ona new scale. That is as it should
be. The Ada requirement for the next years is for
methodologies and support systems that work and work
effectively. They must achieve more effective, responsive
and cost-effective development and maintenance of software
for embedded systems even if, for the moment, they do not
attain the maximum advance that technology could offer.

But there already exist much broader views of the potential
for and of programming and software engineering development

460 M. M. Lehman and L. A. Belady

methods, techniques and tools and their integration into a

support system or environment [LEH80]. The views represent a
conceptual generalisation which sees the environment as

providing all the support and fulfilling all the functions

that are provided by the total industrial complex in

manufacturing industries. Design and drawing offices, tool

rooms, machine shops, component stores, test laboratories,

for example, provide essential yet unobtrusive support for

the production line that produces the marketable artifact.

In many industries these indirect support facilities absorb a

major part of corporate expenditure. They may be set up as

separate, semi-independent, entities because interaction

between them occur at intervals measured in days and weeks.

For software production, the level and rate of human

interaction with the process is less material, more frequent

and less visible. The only effective way for the provision

of analogous support is, therefore, through the creation of

an integrated, computerised system that automatically records

all events and provides immediately accessible support

facilities and tools as required.

Some aspects and implications of this new view are discussed

below. They include at the one extreme, technologies that

are currently being explored in isolation but that may be

visualised as being integrated into, and applied within, the

framework of a programming support environment. At the other

extreme, there are the concepts and the methodological

potential that arises from a recognition of the inadequacies

of the current software engineering process and of the

current view of the role of the computer as a programming and

software engineering support tool. This leads to an

integrated view of the total process as the transformation

and continuing adaptation of an application potential with

stated requirements into a system that is maintained

satisfactorily as the operational and technological

environment and the experience base change. It leads

directly to to recognition of the computer as the basic

support tool and development environment.

3 Computing Application Development

The process of implemnting a computer application by creating

or enhancing a software system consists of several overlapped

and iterative phases that include activities such as

requirements analysis, specification, design, implementation,

component test, integration and system test [LEH80]. The

sequential activities when iteratively executed ultimately

produce the executable code and the accompanying

20. Program Development and Maintenance Programs 461

documentation that comprise the initial product.

Subsequently, a maintenance phase directs and controls system

evolution.

A common view of these phased processes sees each as a

discrete entity having output produced by an appropriate

methodology. That output then forms part of the input to the

next phase. The application concept as detailed by the

potential user constitutes the input to the first phase.

In addition each phase should result in documented records

that provide a factual historic record of the objectives,

considerations, decisions and actions that underlie the
design and construction of phase-products. In practice, of
course, there will be considerable deviation from this ideal,
in particular, overlap and iteration between phases.

There exists, however, an alternative viewpoint; first
expressed by Zurcher and Randell in 1968 [ZUR68]. The total
programming process is, or is equivalent to, a series of
transformations of representattonal models. These
transformations involve distinct conceptual levels as
exemplified in Figure 6. Degenerate cases with less than
that number of levels do occur but the precise number is of
no consequence for present considerations.

The model at any one conceptual level will essentially
contain all the detail relevant at that level. Often one
will wish to examine models with much of the detail obscured,
displaying only those aspects that are of interest at that
moment. Subsequently, one will wish to display or add
further detail. Thus, the representational models should
themselves be constructed to reflect levels of detail. The
Support environment may then contain the equivalent of a zoom
lens to permit an overview of any of the conceputal levels
and then the addition of details as these are desired.

With current and forseeable methods the transformation
process must involve iteration. In the absence of a theory
Spanning the total process, reversions to higher level models
must occur as the development and evaluation of lower level
ones identifies changes in or additions to them and thence to
higher level models. The resultant iterations may span any
number of models from neighbouring pairs to the entire
sequence. Figure 7 tries to illustrate this generality by
Suggesting that alternative versions of each model are
conceivable at each level. The iterative design process
consists of achieving an optimum trajectory for the total
transformation process. With present methods this involves

\
\
\
\
\

462 M. M. Lehman and L. A.Belady

real world r~~~"APPLICATION CONCEPT continuous

|
I /

| / N ,
users | i v discrete

salesmen ry! VIEWPOINT MODEL objects

analysts 1 ‘i events
If \

conerete in realj/ \ y information
world, abstract |; REQUIREMENTS transformations
in system |

|
|

abstract in real || oN Vv functional

world, concrete |! f SPECIFICATION performance
in system ly | quality

i | time, cost
ty Y
il

| PHENOMENOLOGICAL THEORY continuous
ly \

\ \
\

1 \ \ | Y

| COMPUTATIONAL MODELS discrete

|
|
|
{
|
|
I
|
|
|
|
|
|
|
{
Louie

An E-program is, at least, a model of a model of a model

of a model of a model of a model of a model of an

application in its evolving environment

Figure 6: Levels of the Development Process

successive perturbations to neighbouring models; horizontally

at any one level or diagonally between levels, as illustrated

in Figure 7.

In the long term it seems likely that, at least for certain

classes of applications, that once the requirements model has

been established, subsequent transformations can be linked

and mechanised. At most they should require only occassional

20. Program Development and Maintenance Programs 463

Figure 7:

<+— Potential Application Concept ———>

“IN
“7

Ma >

y<«——— Viewpoint Model(s)

 + Requirements

 A YSpecification(s)

\
\
‘

~<—— Phenomenological Theory(ies) ——>
\
\
\
\

Y
—+—— Computational Model (s) ————>-

~ Design(s) >

~ Program seat
|

— | oer

Hoe?NY?

Development Trajectory

464 M. M. Lehman andL.A. Belady

human intervention. Indeed limited transformation systems

LDAR79] or, systems that produce executable code from
specifications expressed in predicate logic [KOW79] already
exist.

For the general case, however, human assessment,

interpretation, guidance and decision will be required during

most, if not all, of these transformations. This requires

the person(s) involved to fully understand system and process

objectives. Satisfaction in this context will have many

aspects; structure, correctness, understandability,

performance, reliability, projected costs, ease (or

otherwise) of further continuation of process and so on.

That is, progress through the process must be guided by the

feasibility, and functional and economic acceptability, of

what has been created so far, and its protential for future

development.

Two classes of activity are involved in this assessment of

each representational model; vertficatton and validation. We
note that these separate concerns replace the unified

concepts of, for example, inspection of a design or testing

of a program.

Verification will address the consistency and completeness of

each model both in itself and in relation to its parent or

source models; that is the correctness of the transformation
process and the detail that has been added, and therefore of

the model itself. Such verification will, in the future, be

increasingly based on formal techniques requiring formal

representation of the models’ and the transformation

processes. Moreover, tools to support this activity will

become an important component of PSEs.

Validation, on the other hand, isa dudgemental activity
based on measurement and human assessment of expected
effectiveness, usability, value ang cost effectiveness in the

operattonal environment. Thus it is intrinsically
predictive,having to be based on incomplete and imprecise

metric models of the future operational environment as it
will be after installation and during use of an, as yet non-

existent system [LEH80]. Key questions to be answered must
address the extent to which metric models may be implemented

as executable models embedded in a PSE, other purposes for
which such models may then be exploited and how they may be

interfaced and integrated with representational models to

achieve a tool-supported total process.

20. Program Development and Maintenance Programs 465

4 Executable Models

The previous section introduced representational and

executable models as concrete embodiments of stages that an

application concept has to pass through as it is’ converted

into a usable, acceptable and cost-effective system. The

former @ré stages of developmental evolution; indeed in their

original paper [ZUR68] Zurcher and Randell wrote of ‘the
model becoming the system'. The latter are entities that

permit assessment at each stage, of what has been achieved

and a prognosis for the future.

The two classes of model need not, however, be implemented as

separate entities. For example, it may be possible to

construct a simulation model that includes a complete and

faithful representation of the design as developed to some

level. This system model will be embedded in a

(parameterised) driver that also includes models of the

anticipated operational computing system and external
enviromments and interfaces. Thus execution of the
representational model under desired environmental test
conditions permits its, at least partial, validation.

Nor are models restricted to representation and validation of
the system product and its operational environments. From
the point of view of the project manager, process models for
the estimation, planning and control of resources, time and
cost are equally vital to success. Such models, whether
analytic, statistical or simulation, must be based both on an
understanding of the process and on historic system, project
and organisation data [LEH80]. Clearly programming
environments may include tools for the collection and storage
of such data and for the const.uction and interrogation of
derived models.

The role of organisational structure in the determination of
System characteristics must also not be ignored. It is
generally accepted that the structure of at least one major
operating system was a direct reflection of the organisation
that created it. That system's structure was undoubtably a
major contributing factor to the very high cost and the Iajor
difficulties encountered in its subsequent maintenance. In
any event, in a large project, it may be profitable to
maintain and relate models of the system and organisational
structures. Their usage and support constitutes a
potentially rewarding technology that must be explored in the
context of PSE design.

466 M. M. Lehman andL. A. Belady

Some examples of possible uses of executable models follow.

Exercising and Training
One of the problems in Requirements development and

computing system specification is that both must be

developed from a view of the operational enviroment

that will exist after system tustallation. The
installation and use of the system, however, changes

that environment. For this reason, and because human

reactions to system characteristics are unpredictable,

indeterminacy and evolution are intrinsic properties of

computing applications and software systems [LEH77].
Clearly an appropriate up-to-date system model that

provides a feel for ultimate system behaviour, an

exercisor, can reduce developmental instability and

speed up convergence to a_ satisfactory system. such

models will also be usable for training purposes’ both

during and after commissioning, much as simulators are

used in pilot training.

Performance Evatuatton
The potential role of simulation for predictive

performance assessment during design has been perceived

for some time [SCH66], [LEH68]. It has, however, not
been widely adopted. One reason for this is that,

despite Zurcher and Randell [ZUR68], the simulation
model was seen as strictly separated from the

representational model. In practice its development

demanded a resource investment often larger than that

needed for the latter. Thus, it becomes important to

develop and investigate techniques and tools that will

facilitate the development of performance assessment

models and their integration with those for development

and implementation.

Project and Process Planning

Investigations of the dynamics of software system

evolution have shown that this is strongly influenced by

historical factors [LEH80]. For effective management

control, data relating to systen, process and

organisation must be collected, and made available for

modelling and interogation. The phenomena to be

measured are reflected in programmer and managerial

interactions with enviroments, even as currently

conceived. It is however necessary to determine to what

extent construction and interogation of such models may

be tool-supported within a PSE.

20. Program Development and Maintenance Programs 467

Organtsattonal Grouping

A project involving more than about five people must be

structured into separately managed groups. Each of

these is then allocated a sub-objective, that is a sub-

project within the main project. As the project

progresses, however the group products must increasingly

interface and be capable of communicating with one

another during system operation. Each linkage between

sub-systems necessitates human communication between, at

least, the groups responsible for implementing them

during system design, construction and modification. If

the system is to be successfully and economically

integrated and maintained, all such communication must

be precisely and accessibly recorded. The complexity of

these records relates to that of both system-internal

and organisational communication structures. Mismatch

will cause rapid complexity growth with all the

penalties that such growth implies.

It is important to attempt to keep system and organis-

ation structures aligned. The latter should develop

dynamically and be modified or changed as design pro-

ceeds and the project grows, to minimise misalignment

and the need for inter-group communication. It is

suggested that models of the two structures can be used

to develop system structure and control organisational

structure to approach the desired degree of

optimisation.

The data from which the above models can be derived,

will be available in the PSE data base. In part, at

least, they will have been captured during human inter-

actions with that system. What models are possible,

and/or required, how they are to be constructed, how

their construction itself may be tool-supported and how

they might be used, requires further study.

5 Summary

Programs may be classified into those that are inherently
Static, those that are likely to evolve and those that must

inevitably evolve. The paper suggests tha, as stated in the
first law of software engineering [LEH80], programs that are
used will evolve or decay into uselessness. Recognition of
the inevitability of change is sufficient to demand that the
programming process be supported by an integrated
computerised support system providing a data base facility
and an extendable tool kit.

468 M. M. Lehman and L.A. Belady

Programming support environments currently in operation

[DOL76], (CHUT79], under development [PEA79], or as perceived
[RID80] do not provide tools that explicity address the
process as described. In particular, they do not include or

propose integrated facilities for model transformation,

verification and validation. The Stonemen document [BUX80]
also omits major reference to these issues since DoD's

principle concern must have been to ensure that a_ state-of-

the-art system is available when Ada enters into full service

in the mid-eighties. Just as recently the European Space

Agency issued a call for tenders [GOE80] to study its
specific programming process and to determine the degree to

which it might be automated. That call makes’ specific

reference to '... verify completeness and consistency of

requirements ... that the design satisfies them ... tools

integrated into a single system ...'. But basically current

proposals have been restricted to providing a system and

design data base and the now classical tools for preparing,

editing, and loading program text and documentation.

In the long term, current concepts of PSE properties are too

limiting. To fully support the total program development and

maintenance process over a system's life cycle, to increase

the responsiveness of the programming process and to reduce

the high cost of software, the capabilities of advanced

evolutionary programming support environments’ should be

Significantly extended. They should support the methods used

to design a sequence of representational system models.

Equally they should address methods and provide techniques

and tools that permit and facilitate verification and

validation, and that support project management, process

planning and control. There is good reason to suppose that

executable metric models will have a significant role to play

in the programming process.

6 Acknowledgements

The author gratefully acknowledges the continuing and

critical support of his immediate coileagues Drs G Benyon-

Tinker and PG Harrison, and of his close associates L A

Belady and Professor W M Turski. Also the support of the

European Research Office under grant DAJA-37-80-C0011 adn the

encouragement of Mr GM Sokol, its Chief of Communications

Engineering and information Sciences.

CHAPTER 21

PROGRAMMING PRODUCTIVITY - A LIFE CYCLE CONCEPT*

1 Introduction

1.1 Productivity and Productivity Measures

Productivity is primarily an economic concept. It addresses
the problem of optimisation of return on <tinvestment in
connection with activity on or with some artifact.
Investment and return are themselves concepts with many
connotations and interpretations. Thus the focus of any
concerned individual must be on that aspect of productivity
that relates to his area of responsibility or interest;
production rate, financial performance, resource utilisation,
time, people and so on. These alternative foci can
inherently not be unified. In general, productivity cannot
be maximised simultaneously in every dimension of the multi-
dimensional space in which it could be defined, though gains
achieved in one will often be beneficial in others.

The problem is compounded when a multi-step process is
considered; even more so when iteration is present. In
fact, meaningful definition of productivity over an activity
requires that the product and its associated process are

_

so
defined and structured that the effectiveness of the activity
does not depend significantly ona predecessor activity.
Equally the quality of the output of any activity must not
Significantly affect the effectiveness of a successor
activity. Where these conditions hold, an assembly line
process can be said to exist [BEL79b] and overall
productivity may well be a linear combination of that
obtained on individual steps. If, on the other hand, some
characteristic on one step strongly influences a subsequent
Step, productivity concepts must relate to and be defined
over the entire activity within and over which interactions
occur. Over that activity at least, the process may be said
to be non-linear.

Moreover absolute, quantitative productivity measures are, to
a first order, meaningful only when the output from an

Copyright © 1981 IEEE. Reprinted with permission from Proceedings CompCon 81,
IEEE Cat. No. 81CH—1702—0, September 1981, pp. 232-241.

469

470 M. M. Lehman and L. A. Belady

activity does not depend on external factors, unless

definition of the measure specifically takes input attributes

into account. Furthermore, the quality of a product and the

productivity of the process that produces it are, in fact,

inter-dependent and cannot, in general, be optimised

independently. If productivity measures are to be

meaningful, either output attributes are so controlled that

there exists no unacceptable variability in product quality

or compound measures of both can be defined to take inter-

dependencies into account.

1.2 Productivity in the Software Process

The theme of this conference is productivity in relation to

the conception, development, construction, application,

maintenance and evolution of computing systems; systems of

which software forms a significant part. This paper will

not, however, address productivity and quality issues in the

engineering of such systems. Nor does it discuss’ the

specific properties of software systems that make

consideration of these issues an urgent but elusive area of

concern. Instead it considers the nature of the Programming
Process, the process whereby software systems are developed

and maintained. As implied above, understanding its nature

and role is crucial for productive consideration of

productivity in the computer industry in general and in

computer applications development through increased

programming productivity in particular.

Statistics indicate that of the total lifetime expenditure on

a software system, some 70% (+20%) is spent after first
installation in the operational enviromment. In practice

there is considerable opportunity for trade-off between the

various phases of the total life-cycle. The individual

manager seeking to meet time targets or to reduce expenditure

attributable to him may cause a significant decrease of the

quality or productivity associated with subsequent work on

the system or increased cost of that work, for example by

permitting the introduction of unnecessary complexity or

through careless fault eradication. The present day software

process over the system's life time is, in fact, highly non-

linear. Decisive comprehendable specification may, for

example, simplify the design process that follows.

Incomplete or inconsistent requirements selection or

specification will make the subsequent design and also

coding, testing and integration more difftcult. Design

weaknesses or omissions may be detected and eliminated early

in the design process or may be left for detection during

21. Programming Productivity 471

testing, integration or after the system becomes operational.

Attention paid to system structure during design, will

determine the ease or difficulty of subsequent modification

of the system and the rate at which that difficulty will

increase. In all these instances the policy pursued will

have a strong but distributed influence on maintenance |

characteristics, on life-cycle cost and on productivity,

however defined.

Process trade-offs are, however, not often evaluated in terms

of their life-cycle impact on product quality or process

productivity. Instead they are based on local perspectives.

Planners and managers allocate time allotments and divide

other resources to achieve local or personal optimisation.

Productivity measures within the existing process must

therefore be treated with some suspicion. Nevertheless one

may ask whether the process, as currently practiced, may be

made more effective. Discussion of this issue is posponed to

Section 4 where it can be addressed in terms of the
viewpoints developed in the earlier sections. That

discussion will conclude that productivity studies can assess

time-local gains only if they relate to matural process

functions that are, in some sense, orthogonal. It demands

full understanding of sub-processes, their interactions and

the way they interface and integrate to form a total process.

This contribution therefore concentrates on analysis of the

total process required for evolution of a software systen,

seeking to determine fundamental activities and structures.

The resultant understanding may be expected to provide a

framework for further study of the systems process’) and

elements of a future process theory. It will facilitate

development of more effective and efficient procedures. To

focus ideas concepts are expressed specifically in terms of

the programming process. Many of the conclusions will,

however, also apply to the development of larger systems

within which software is embedded and which, in some sense,

it controls.

1.3 The Approach

Current practice in software design and maintenance has

evolved gradually over the past thirty years. Methods) and

tools have been developed gradually and individually for

specific aspects of the process in specific environments.

Only afterwards have they been adapted, combined and used,

iteratively and sequentially, within some global imple-

mentation envirorment to achieve a target system within that

472 M. M. Lehman and L. A. Belady

environment. This ad hoc, bottom-up, synthesis of a total
process cannot be expected to achieve a separation of con-
cerns or simple, defined, interfaces between process steps.

It tends to destroy local information, not to hide it. It

does not yield a homogeneous process. It is no wonder that
progress towards an integrated engineering science and dis-
cipline of software systems engineering has been so painfully

Slow. There is no reason to suppose that a bottom-up approach

in this area is likely to be any more effective than it is in

creating or maintaining correct programs.

A top-down analysis is presented as an alternative approach.

It seeks to separate concerns by identifying and isolating

the concepts, representations and transformations that are

intrinsically part of the process of converting a computer

application concept into an operational system. Given such

Separation, information relevant only to an individual step

of the process may be hidden within the methods tools. and

information storage facilities of that step. Information

relevant to neighbouring steps must be made available via

totally defined interfaces to establish the communication
that is necessary to drive and guide the process and to

transmit the information that will eventually define the

operational system.

This approach to process destgn can be expected to yield a

reliable and effective process that may be doubly integrated;

over the development cycle from system, or system-change

conception, to its operational installation and over system

life-time evolution as the application environment and the

user perception of system potential evolve. When formulation

and formalisation of an integrated and complete process is

achieved, vertically integrated programming support

environments become feasible. Moreover when adequate

separation and definition of process sub-objectives is

achieved, one may attain an essentially sequential process.

In such a process, the ¢tdeal process; there should rarely be

a need to repeat or amend the output of an earlier activity

or step. Productivity concepts relating to individual steps

may be expected to be meaningful, in that the achievement in

any one is largely independent of and buffered from the

others. No greater contribution to the search for increased

productivity in the development and maintenance of software

can be visualised than that which results from complete

understanding of the necessary and sufficient activities

required to transform a computer application concept into an

effective operational system; and to maintain it in that

state as the environment changes.

21. Programming Productivity 473

2 Programming Process Models

2.1 Basic Model

The most abstract view of the program development process may

be described as "The Transformation of a Computer Application

Concept into an Operational System (Program)". This is
illustrated in figure 1.

APPLICATION
CONCEPT

OPERATIONAL
SYSTEM

Figure 1 Most Abstract Model of Programming Process

2.2 Alternative Process Decompositions

Many alternative decompositions of this model are possible.

The so called waterfall model [BOE76] and its derivatives are

representative of the most common current view. They des-

cribe the process that has evolved over the years, expressing

the broad pragmatics of the learning experience of mankind's

first steps in software engineering. They therefore provide

a phenomenological base from which a science and engineering

discipline can develop. Because they represent a bottom-up

synthesis of evolving practice, they are however unlikely to

prove adequate as a direct base for the disciplined develop-

ment of an ideal process or of a close approximation to it.

An alternative approach could partition the process on the

basis of the various distinct levels of formal, programming,

languages that have been developed over the years. Require=

ments definition, specification, design, high-level program-

ming and assembly languages each reflect a process objective.

They mirror and facilitate human intellectual involvement in

the transformation process and, as such, elementary and

possibly fundamental ingredients of the process of program

creation. But these languages have also evolved as a
Consequence of mankind's increasing understanding of the

nature and process of problem solving with the aid of

computers. Using existing languages as the base for a

process analysis also constitutes a bottom-up approach that

puts the cart before the horse.

474 M. M. Lehman and L. A. Belady

In a paper describing the development of THE system [DIJ68c],
Dijkstra already recognised the need for a disciplined, step
by step, approach to software system development. That
system was in fact developed from a recognition of six
levels, differentiated primarily by the time scale needed to
measure and discriminate between events and actions at each
level. Thus, for example, at the lowest level the system
clock must discriminate between events, interrupts for
example, separated by a micro-second or less. On the other

hand at the highest level, the level concerned with operator

actions, events are separated by, at least, tens of seconds.

Dijkstra's layering of THE system and the process by which

its final structure evolved certainly involved a partitioning

of the total design and implementation process. What he

really contributed, however, was to demonstrate, as did

Zurcher and Randell at about the same time [ZUR67], that one
may conceive of many levels of primitives in which to express

a design. In fact a process of stepwtse refinement [WIRT71]
leads one via successively more basic primitives to that

level at which the primitives can be implemented as actual

executable mechanisms. If the gap between successive levels

is not too wide, if the structure of the system at each

level and the primitives from which it is to be constructed

are fairly self-evident, if in general the system is not too

complex, one may perhaps achieve the descent between

neighbouring levels directly with a simple transformation as

suggested by figure 1. In the general case however, this

transformation is itself compound, a succession of the

process elements that we seek.

For the reasons given ineach case, none of the three

approaches outlined above can serve as a basis for process

analysis. In by=-passing them their application at a later

Stage in the analysis is not ruled out The proposed

decomposition must, however start from a_ search for

fundamental constituents of the process; process steps’ that

derive from basic intellectual and human contribution. In

doing this one must accept that the resultant process model

will almost certainly be an idealisation remote from current

attainability. some of the activities or steps that are

identified may be superficially similar to elements of

current practice. The latter, however, are diffuse, lack

precise definition, discipline and interfaces. When

activities are identified by means of a disciplined analysis,

appropriate definiticn can circumvent such weaknesses.

21. Programming Productivity 475

2.3 A Primitive Decomposition

We proceed therefore with a decomposition of the model of

figure 1 into more primitive actions.

The programming process is generally initiated by an

apparently simple concept statement, ‘'A Payroll Program', 'A

Set of Statistical Programs for the Social Sciences', ‘An Air

Traffic Control System', 'A Programming Support Enviroment'.

Many people may be involved in further clarification of the

intent and objectives at this point, end users, executives,

analysts and programmers for example. Fach will have a

different understanding of the stated concept, a different

vision of the ultimate systen. Thus the first step of the

ideal process must be to reach a consensus, an agreed view-

point as to the proposed application and its objectives in

its domain of operation. This understanding should be

represented in a problem statements an abstraction that

provides a model of the intended and expected operational

enviroment. The model must include representations of the

entities, structures, relationships, events and processes

that are or may be relevant to the proposed application. It

will also include representations of all relevant theories

that relate to the domain of interest and all procedures that

have been laid down to regulate activity within the domain.

These theories and procedures must be sufficient to provide a

definitive framework within which the desired mechanisation

can be achieved.

Given aggreement on the application one may proceed to

identify and define a solution described by a solution model.
The initial representation of that solution constitutes an

abstraction of the system ultimately to be constructed,

installed and used, [BEN81]. Development of the appropriate

model constitutes the next basic and intrinsically necessary

step of the process.

Once the solution has been defined, the intended system may

be designed. The design process is required to create a

structure of primitive mechanisms, a design model. Primitive
in this context means that the designer is able to specify

each mechanism or object in terms of its tmputs, outputs and

transfer functton, leaving it to others or to a later time to

determine how the mechanism is to be constructed. This is,

in fact, precisely the method adopted by Dijkstra in his

design of each level of the THE system. That is, Dijkstra's

methods cover just one step of the more complex process

required when a larger system than THE system is to be

476 M. M. Lehman andL. A. Belady

constructed; requiring more people working over a longer
period to produce a long life system usually intended to
Operate in more than one installation or location.

Note that in terms of current terminology each object in the
design model may, if suitably defined, may be viewed as an
abstract data type. Such descriptions may be interpreted as
an ‘Application Concept! as defined above. Thus their
individual design and implementation will, in turn, demand
performance of the activities we are outlining. In this
Secondary recursive application of the process, however, the
concept and the viewpoint model are represented by the ouput
of the previous steps. If these are designed to provide a
formal and therefore precise output, the need for. the
defining steps disappears in the lower level iterations.
Moreover the system specification implicitly carried over
from stage to stage, may be seen as the invariant of the
iterative or recursive process (21.1). This provides a
potential for verifiable integration of the total process.

Some of the productivity implications of this viewpoint will
be discussed in section 4. For now we merely comment that
one of the challenges of process destgn must be to achieve
the, in some sense, most effective number of process
iterations or of levels of process recursion.

In any event, the design model in all its detail must now
guide and control implementation of the desired system
through the construction of the program model to complete the
process. Thus the process model may be further developed as

illustrated by figure 2.

2.4 The Process as a Sequence of Model Transformations

The above analysis, suggests that the programming process may

be viewed as a series of transformations of representational

models. A program is a model of a model of a model of

an application concept [LEH80]. Each such model constitutesa
double abstraction. Looking 'upwards', it abstracts’ the

application domain, the Real World. Looking ‘downwards! it

is an abstraction of the ultimate system.

Several implications follow. In particular model construc-

tion, transformation, verification and validation methods and

tools are seen to constitute elements of an effective and

21.1 (Orig) hts observation was suggested to me by Jd D
Lehman.

21. Programming Productivity 477

PROBLEM
/STATEMENT

}

/
Yo |

/ Y
J SOLUTION

/ IDENTIFICATION

/ !
Yo |

APPLICATION
CONCEPT

y y
OPERATIONAL SYSTEM

SYSTEM STRUCTURING
™Y. i
NL !

~
—

“—~ IMPLEMENTATION

Figure 2 A Second Level of the Process Model

cost-effective programming process. They are therefore pot-

ential ingredients of a vertically integrated programming

Support environment; a means for achieving increased product-

ivity. Furthermore since each model is a double abstraction,

the process, and therefore the methods and tools, must be

reversible so that a change to any model in the sequence, for

whatever reason, can be reflected through appropriate adjust-

ments to other models of the sequence. Maintenance of all

the models is of course essential if the system is to be

effectively and cost-effectively maintained in a changing

enviroment over a long period. Extending the time period

over which a system can be so maintained is clearly a major

potential source of increased productivity.

The view of the process aS a sequence of model

transformations also suggests that the adoption of suitable

structures and notations for the formal representation of

these models can yield, at least, a semi-automatic process in

which human intellect guides the process of transformation by

providing the new information and decisions required at each

level, with other structural and functional transformations

left to verified mechanisms. The work of Darlington [DAR79]

and of the TUM group [BRO80] is beginning to demonstrate what
can be achieved.

478 M. M. Lehman and L. A. Belady

2.5 <A Third Level

2.5.1 Introduction

In continuing the development process decomposition, we
consider a single transition of the, possibly multi-level,
process, assuming a perfect process that is purely sequential
from concept statement to final implementation of each level.
The state of the art in problem solving and in programming
certainly does not permit this. Moreover it has recently
been shown, that P- and E-type programs [LEH80], by their
very nature, when finally operational can never be entirely
satisfactory. Such programs will always undergo evolution,
Since their development must be based on a prediction of the
Operational enviromment as it will be after installation.
Iteration is therefore tnevttable over the entire process
and, at least for moment, is also highly likely over the
internal steps. Nevertheless, even at this time, identifica-

tion of the ideal process must yield insight and unde-

rstanding that may then be applied to modify and improve the

current process and to support the further development of

programming methodology and technology. In the long run one

would hope to be able to implement a process approaching the

ideal, and to support it with the appropriate tools.

2.5.2 The Viewpoint Model

Referring back to the process model of figure 2, problem

identification and statement really consists of two separate

parts. A viewpoint common to users, developers and the
appropriate managers must be agreed and reflected in a

vtewpotnt model. The extent to which this representattonal

model can be formalised will determine the degree to which
its subsequent transformation into a more refined model can

be mechanised and formally verified. Additional facilities

for validation of this model using, for example, an
executable metrie model [LEH81], [ZAV81], (which ideally
would be the viewpoint model itself) would be a powerful

additional tool to ensure optimum decisions at this stage.

2.5.3 The Requirements Model

Following the development of an authoritative and documented

viewpoint of the application in its operational environment

and on the basis of this first model, a complete set of

application objectives, that is system requirements, must be

developed and agreed. Even if the viewpoint model was

informally described, the requirements model should certainly

21. Programming Productivity 479

be so structured and formalised that, at the very least, its

self consistency may be verified and the development process

more easily continued. This second model may be regarded as

being concrete in real world application terms, abstract in

terms of the object system. Its purpose is to express what

the system and its mechanisms are intended to do; not how

they are to be realised or constructed.

2.5.4 The Specification Model

Requirements address and state real world needs. That model

therefore completes the 'problem statement! but does not

need to reflect those system properties required for problem

solution. A spectficatton model expresses the identified
needs in terms of system components, or primitives that are

known to be, or can reasonably be expected to be, ultimately

realizable in physical mechanisms. The specification model

is, in fact, conjugate to the requirements model, in that it

is concrete in systems terms, abstract in terms of the

application domain, the Real World.

2.5.5 The Phenomenological Model

Design of the specification model represents the transition

from problem statement to solution identification. Together

the requirements and the specification record the objectives

that have been adopted and the system characteristics that

are proposed to achieve then. These must now be recombined

with the theories and laws that are part of the viewpoint

model and have thereby been accepted as adequate to describe

and govern phenomena in the real world, and therefore the

behaviour of the solution model. Thus the next step is' the

transformation and re-combination that leads to the

appropriate phenomenological models that includes in the
developing system description, the constraints arising from

the attributes of the real world system that it abstracts and

the operational objectives that have been adopted.

2.5.6 The Computational Model

The phenomenological model provides the necessary and

sufficient constraints to define a mechanism that supports

the desired application. In the general case it will not,

however, define mechanisms and procedures implementable by

computers and other devices. For example, if the application

involves moving bodies, the model may include differential

equations. If the application involves humans, the model may

include rule books, collections of laws or procedure

480 M. M. Lehman and L. A. Belady

descriptions. All these must now be cast into a form which
can be mechanised in the intended technology. Differential
equations for example may be replaced by difference
equations, rule books by decision tables or finite state
machines [HAR81].

Furthermore, the structured or unstructured description
provided by the phenomenological model, will include only
Such time and sequencing constraints as are implied by the
ordering of events in the real world. Additional constraints
must arise in the computational process, for example because
of information and resource sharing, because of the
Sequential nature of devices and because of limitations on
the numbers of concurrently operating devices. The phenome n-
ological model must therefore be further transformed into a
computattonal model to achieve a design that is mechanisable
using digital computer technology.

2.5.7 System Design and the Structure Model

Once the computational model has been developed, it must be
transformed and re-structured to provide a partitioning into
available or implementable primitives. This is the process
generally called system design. However, we prefer to term
it the system structuring process since, as_ stated above,
"design', the process of applying intellectual power to add
the fresh ingredients to a model, is required in the
development of each abstract model. However, only at’ the
Step now reached is it precisely the structure properties
that represent that new ingredient. The preceding develop-
ment has repeatedley stressed the need for structuring the
models identified. One of the functions of structure is to
make the model it constitutes understandable» not only to the
designer but to all who subsequently need to work with it.
At the step of the total process. now reached, system
Structure must be sufficiently developed to make the system
implementable, learnable, usable and maintainable; character-
istics that demand that the mode of operation of the system
and its constituent parts be comprehended to the level of
detail required to complete relevant tasks effectively.

The structure models developed to the appropriate level of
detail identifies the primitive mechanisms from which the
system is to be constructed, and the intercommunication
between them. Fach such primitive may be regarded as a unit

for which an input set, an ouput set and a transfer function

or unit semantic is defined. Current concepts such as

abstract data types, Modula 2 modules [WIR78] and Ada pack-

21. Programming Productivity
481

ages [ADA80] are special instances of the primitive concepts

presented. However, on the basis of the development process

described, the primitive units which we envisage would be

completely specified, semantically as well as syntactically.

2.5.8 The Program Model

Following the development of the fully specified structure

model, one reaches the final transformation of the system

process, the implementation; in the case of a software

system, the program model. The total transformation process

as now visualised is illustrated by figure 3, which also

indicates how this process model related to

_

the more

elemental models of figure 2 and 1.

PROCESS MODELS

VIEWPOINT
|

/ |
a Y

_- PROBLEM REQUIREMENTS
_-—7 STATEMENT |

— | NX l
_— |

APPLICATION — YY

CONCEPT | SPECIFICATION
| I / »~ |

| Y YO |

| SOLUTION Y
Y IDENTIFICATION PHENOMENOLOG ICAL

OPERATIONAL | \ |
| |

\ | “4
\ Y aa \COMPUTATIONAL
\ SYSTEM |
\ STRUCTURING |

\ | v'
‘NY | a STRUCTURAL

Y 4 |
IMPLEMENTATION <_

~~ y

PROG RAM

Figure 3 The Basic Steps of the Programming Process

482
M. M. Lehman and L. A. Belady

3 Step Structure

3.1 The Step Paradigm

The previous section has outlined an idealised seven step
program development structure. Each of its steps encompasses
a fundamental human intellectual contribution that is
orthogonal to those contained in the other steps though the
extent of potential mechanisation increases as one proceeds
down the process. It is now suggested that there exists a
common structure for the steps, as illustrated by figure 4,

i-2 STEP i-l

OUTPUT OUTPUT

MODEL MODEL

SELECTION

VERIFICATION

REPOSITORY

HUMAN

JUDGEMENT DESIGN

AND

“ . X
ff a

INTERNAL

MODEL

VALIDATION

STEP i

SELECTION OUTPUT

MODEL SYSTEM

CONCEPTS

AND

PRIMITIVES

Figure 4 The Ideal Step Structure

21. Programming Productivity 483

It is the totality of the transformation described by the

above figure, the design, the mechanical part, and the

accompanying verification and validation, that comprises the

model transformational=step paradigm. Space does not permit

a detailed discussion of this model or its relationship to

the individual steps and representational models. Brief

comments on structure, notation, verification and validation

are however desirable. It is convenient to discuss’ these

with reference to the requirements and specification steps

~ but the remarks are relevant to all aspects of the total

process,

3.2 Structure and Notation

The critical properties of any model are its structure and

the notation in which its content is described. A

spectftcatiton models for example, should serve as a mechanism
for users, designers and implementors, to provide answers to

questions about the intent, the completed system or the

current state of its design. For any question asked about

the system, the model must either lead the enquirer to the

answer or it must demonstrate that no answer exists; that is

that the feature in question has not been defined. In the

latter case, the mechanism must also indicate where any

definition now formulated is to be recorded so that the next

enquirer asking the same question, or rather asking any

question requiring the newly formulated attribute as, at

least, part of its answer, will indeed be guided to that

answer.

This view of specification suggests that the most fundamental

property of a specification is its structure. Notatton that

ensures an entry, when located, is unambiguous, complete and

formally maniputable is important but secondary to structure.

As already observed, this comment applies more generally.

3.3 Vertical Verification

Each step is initiated by verifiable mechanistic translation.
This transforms the structure and notation of the input model

from a form suitable for conveying understanding about’ the

previous step of the process into a framework in which, for

the current step, the design decisions and model refinements

may be made and precisely, retrievably and understandably

expressed. If the source and object models of this transfor-

mation are both formally described and if a verified mechan-

ical transformation is used, then the precise correspondence

between the representations may be guaranteed. Alternatively

484 M. M. Lehman andL. A. Belady

the results of the transformation can be verified. In either
case this type of verification is termed vertical
vertftcatton of the transformation process.

3.4 Design, Horizontal Verification and Validation

Once the requirement framework has been created through
transformation from the viewpoint model, the requirements may
be destgned and their structured, formal or informal,
description embedded in the framework. This produces’ the
requirements model. Use of the word 'design' here is quite
deliberate. The construction of each of the models discussed
in the current analysis involves design; selection between
alternative model elements - in this instance requirements -
and their structuring into a complete and cohesive system of
minimal complexity that reflects a final system that could be
operationally satisfactory and cost-effective. It is this
design activity that demands human creative intellect to
identify needs and opportunities; benefits and costs; to
recognise relationships, dependencies abd commonalities; in
general, to exercise judgement, choice and discrimination.

The design portion of the transformation process adds and
"colour' and detail and calls for a second form of verifi-
cation, hortzontal verification. This must demonstrate that
the set of decisions that have been taken are consistent and,
in some sense, complete; covering at the very least all the
requirements implied by the source model.

Any model constructed by the application of choice and
decision, is one of many that could have been selected at
that level during the associated step. It is therefore
appropriate to judge the effectiveness of the decisions taken
in a valtdatton process using, for example, the executable
metric models referred to above. One would hope to determine
whether, in terms of one's knowledge and expectation of the
remainder of the total process and of the implementation
technology, the successive design activities at each step can
reasonably be expected to ultimately lead to a_ satisfactory
operational system. Moreover for operational characteristics
that have been left unspecified, validation should provide an

estimate of what they are likely to be, or at least that they
are in an acceptable range. The further one proceeds in the

total process, the more precise these forecasts should and

can be.

21. Programming Productivity 485

3.5 The Common Step Structure

This common step structure, like the process structure of the

previous section, cannot be achieved with present methodology

and technology. It is however, considered attainable over

the next decade (21.2). If achieved and duly supported with
a vertically integrated programming support enviroment, that

is a complete set of homogeneous methodologies and tools, it

should result in a process significantly more effective and

cost-effective than exists at present. In addition it will

be possible to improve the, essentially linear, process by

stepwise refinement, both over sets of steps and within steps

to achieve incremental productivity improvements.

4 Productivity Implications and the Current Process

The absence of significant productivity increases in

programming over the last twenty years is a direct

consequence of the history and resultant make-up of the total

process that is followed today. On the other hand it appears

that a total replacement process, even one only remotely

approaching the ideal, is probably a decade away. Thus one

must still seek to increase productivity in today's

enviroment, accepting any gains as a palliative until a more

fundamental breakthrough can be made.

For a true study of productivity issues the total life-cycle

process must be considered. For both the current and

conceptually ideal process this may be represented by a four

tiered structure. A major cycle encompasses the entire level

and step process to provide the framework and mechanism for

system adaptation to a changing environment; that is system

evolution. The potential for increased productivity during

evolutionary maintenance arises from the availability of a

structured linear process that can consistently yield and

maintain a well structured, comprehendable system with

formally documented function and properties. The comprehen=

sive historical archive (information repository) whose

existence is indicated in figure 4 must maintain the inforn-

ation required to make effective changes to the system and to

make them cost-effectively. Complete and, at all times up-

to-date, information is essential to achieve a long-life

system that can be responsively and economically maintained

21.2 (Eds) An IPSE conceptually based on the concepts and on
tnstghts developed since then [LEH84] ts currently under
development at Impertal Software Technology Limited
(IST).

486 M. M. Lehman and L. A. Belady

as the application environment and available technology

evolve. Where the means for its provision exist, the

consequent increase in the time over which the investment in

the software may be depreciated must represent a significant

increase in effective productivity. Moreover, the additional

maintenance investment during the extended life period will

be minimised.

The step structure illustrated by figure 4 constitutes the

other extreme of the process structure visualised. It has

been widely recognised that adoption of formal

representation, where applicable, is a clear productivity

aid. It must facilitate human understanding, avoid

imprecision and ambiguity, forestall errors due to misunder-

standing. It also opens up the potential for automatic

transformation of the model structure and content from step

to step; to recast the model into a form suitable for

analysis, design and the addition of the new detail relevant

to each step.

Furthermore, formal representation facilities verification.

More general, the detection and correction of errors,

weaknesses or deviations from optimum, because progressively

and rapidly more difficult and costly as one proceeds through

the process. Thus the maximum degree of verification and

validation at each step, leading to early discovery of

faults, must make a major contribution to productivity growth

both in their own right and because their application must

simplify the subsequent development of a system as a

consequence of the reduced error. content. Many issues,

methodological, structural and notational must be resolved if

the maximum benefit is to be reaped from the concepts

outlined; particularly if full advantage is to be taken of

the fact that a structurally similar process (21.3) is
executed within each step. This is true for the ideal

process and even more so for the current process. Neither

investigation can be pursued here.

Finally, productivity growth potential at the middle tiers of

the total process must be examined. At the higher of the

two, the process of stepwise refinement develops a sequence

of levels of description in terms of primitives,

progressively more abstract with reference to the real

application in its environment; progressively closer’ to

implementable and executable system primitives. The main

21.3 (Eds) As demonstrated by the LST canonical step
CLEH84).

21. Programming Productivity
487

productivity issues in this process relate to selection of
the optimum number of levels and the optimum set of
primitives in terms of which the levels are described or
constructed. The step procedure described in 2.5 in relation
to progress through a single level, is highly relevant to a
closer study of this optimisation problen.

The second of the two middle tiers is the step process
between neighbouring levels as described in section 2.5. The
process structure provides a framework within which the
potential of various techniques for improving productivity
may be examined for the inter-level activities and intra-
level sub-activities.

For example consider the use, as first proposed by McIlroy

[MCI68], of standard software packages. Evaluation of this
concept requires one to identify which step of which level,

within the total process it relates to and what technologies

must be mastered if it is to be at all effective. In doing

this one may, of course, approach the evaluation from the

viewpoint of the current process or one may base it on

'jdeal' models such as those developed above. Since the

steps identified are considered, in some sense, fundamental

and orthogonal to one another, they provide a suitable frame-

work for a productivity analysis; even with reference to a

process not precisely based on those steps, since the

consequences of a change in the context of a step, may be

evaluated independently of other steps.

The existence of various approaches to productivity growth

has been widely recognised. The recent IEEE Software

Engineering Productivity Workshop, [SEP81], for example
identified a variety of such techniques. These and others

like them cannot be examined more closely in the present

paper. But we re-affirm our conviction that the

opportunities they offer must be examined tm relation to the
process within which they are applied. That analysis must be
applied over all steps of what we have termed the four tier

process, or its equivalent in current methodology. This may

be done by setting up a five dimensional array, ora lower

dimensional sub-array. The potential scope of each technique

in relation to the fundamental activities of the process may

then be determined and their potential contribution to

productivity growth in the relevant activity, estimated. An

outline two dimensional array that served to guide the

discussion at the above referenced workshop is given in

figure 5.

488 M. M. Lehman and L. A. Belady

PHASE 1 2 3 4 5 6 t

ASPECT

SIMPLE F F F F

SOLUTIONS

RE-USE F F F

EFFORT Tatefeee >T >T

REDUCTION

FAILURE Va Va Ve Va Ve Va Ve

AVOIDANCE

USER F F F

PARTICIPATION Va Va

ITERATION F F Va Ve

REDUCTION

COMPLEXITY F F Fo -q—-—>T F ---->T

REDUCTION

LOCALISATION F F F F

OF CHANGE

POTENTIALLY MOST REWARDING PHASES UNDERLINED

F=formulation 1=Viewpoint

T=transformation 2=Requirements

Ve=verification 3=Specification

Va=validation 4=Phenomonological

5=Computational

6=Structural
7=Program

Figure 5 Process Based Productivity Approach

Evaluation

21. Programming Productivity 489

5 Conclusion

The present paper has not made a direct contribution to the
exploration of productivity improvements in the programming
process. It was not intended to do so. Instead attention
has been drawn to the underlying reason for the lack of
Significant growth in programming productivity in recent
years. Only by linearising the total process to the point
where local actions can be implemented without impact on
other parts of a system or on a later stage of the design,
implementation and maintenance process, can one expect to
make real progress. The correct approach to achieve this is
to consider the total process and to analyse it top-down in

order to ontain a purer process’ structure within which

appropriate methods can be devised, formalised and supported.

The time is now ripe for such exploration and development.
Moreover this is the real implication of the now widely

accepted, but not fully understood, concept of the vertically

integrated programming support enviromment. The next decade

should see such systems emerge and take their place

operationally, to achieve ever more productive computer usage

through the availability of software that is correct and can

be maintained correct; software that continually provides

effective and cost-effective function in an ever evolving

environment.

6 Acknowledgements

I gratefully acknowledge the many creative discussions I have

had with Professor W M Turski, with my close associates Drs G

Benyon-Tinker and P G Harrison, with Mr G M Sokol of ERO and

over many years with L A Belady. All have helped in no small

measure to develop the understanding and the concepts’ that

this paper has tried to present. Thanks are also due to ERO

for the support so generously given under contract number

DAJ A~37-80-00011. Finally, my grateful thanks to Miss S
Warren for her uncomplaining willingness to cope with the

stepwise refinement process needed to produce this. paper.

CHAPTER 22

THE ROLE OF SYSTEMS AND SOFTWARE TECHNOLOGY

IN THE FIFTH GENERATION*

1 Introduction

This paper will not discuss the virtues or potential of the

Japanese Fifth Generation Plan (FGCS) [JIP81] or of the
‘primitive' concepts and sub-systems that are to be used in

the implementation of the systems proposed. The potential of

knowledge-based expert systems, functional languages,

abstract data-types, logic programming, data~flow

architecture, distributed systems and VLSI is’ clear. The

increasingly widespread use of these terms may give them the

appearence of buzzwords. In fact they represent important

and potentially valuable concepts and technologies that will

have significant impact on future generations of computer

systems; and therefore on a society increasingly reliant on,

even dominated by, such systems.

Nor will the paper consider the realisability of the plan in

terms of the maturity of the technologies proposed, the

technological challenges arising from changes of scale of

several orders of magnitude or the time scale envisaged for

system implementation. Instead the paper will draw attention

to some issues and problems which must be considered in

parallel with pursuit of the objectives set out in the FGCS

plan, if the 'Dawn of the Second Computer Age' is not to lead

to 'Sunset for Civilisation’. The content may seem to sound

a discordant note, even alarmist. That is not the intention.

There is every reason to believe that the concepts presented

by the Japanese plans will only be realisable when solutions

have been obtained to the problems to be outlined. Moreover,

if solutions are not found and plans such as this are pursued

remorselessly, it will lead, at the very least, to a

repetition and intensification of the 'Software Crisis'. At

worst, it could develop into a= serious threat to

civilisation. Thus a search for such solutions becomes a

matter of the highest priority.

Reprinted with kind permission from ‘The Fifth Generation: Dawn of the Second

Computer Age’, proceedings of an international conference, July 1982, SPL Insight,

Abingdon, UK.

491

492 M. M. Lehman andL.A. Belady

2 VLSI

It is of interest to first note that the analysis to follow

is as relevant to VLSI 'hardware' as it is to software. As

element numbers per chip increase, the latter will develop

the complexity, invisibility, evolution and uncertainty

characteristics of software on top of the inherent problems

of the technology itself. As the manufacturing process

becomes automated, chip functionality will be defined by that

process and its formal inputs. Often it may even be a design

option whether a chip functional-specification is used to

control a manufacturing process or as source code for a

program subsequently to be stored in and executed by a

Simpler chip. Thus in the remainder of this paper, 'program'

is to be interpreted as including both soft and VLSI

implementations. In fact, the use of VLSI makes many of the

problems to be discussed more critical. In connection with

the issue of correctness, for example, an error, once etched,

can, in general, not’ be corrected without repeating the

entire manufacturing process.

3 The Problem Areas

3.1 Identifiers

The problems which may be receiving insufficient emphasis in

the FGCS community can be indicated by words such as
Requtrements, Evotuttons Complexity» Understanding s
Correctness, Responsiveness, Cost. These point to problems
that have plagued the software community for nearly two

decades. Yet, to the author's best knowledge, published
material on the FGCS plan makes no significant reference to
the implied problem areas, to their likely impact during
development and after installation of FGCS systems or to
their implications on R & D in the concepts, methodology and
software tools areas. The remainder of this paper briefly
examines their significance and implications.

3.2 Requirements

The analysis of a proposed new computer application or of af

change to an existing one is one of the most critical

activities in the computing system life cycle. It is required

SO as to determine and specify the attributes of the system

to be implemented and the criteria by which it is to be

judged. Errors or omissions at this stage are likely to

prove most disturbing to the end user and are certainly the

22. Role of Systems and Software Technology 493

most expensive to rectify. Methods and tools to support the
requirements definition process and to make it more reliable,
are under widespread development. But at the present time it
is still more of an art than an engineering discipline.

There is no reason to believe that the problem of determining
and fixing requirements will be simpler for the new
generation of systems, even if a more precise and concise
notation is available for their representation. The problem
may well prove more difficult and critical because of
increasingly ambitious and complex applications, larger
systems and the ever-growing interweaving of automated

systems with the very fabric of society. The consequences of

ignoring it will inevitably result in repetition and

compounding of the earlier experience with von Neumann

software. The plan appears to neglect the problem and its

implications.

3.3 Evolution

The evolutionary nature of computer applications and,

therefore computing systems, is now generally accepted;

recognised as intrinsic and not merely a weakness of the

development process [LEH80,82]. The implications of this on
the process, on system architecture and on the relative

strengths and weaknesses of different implementation

primitives has not been widely considered. But past

experience in the software world indicates’ the likely

consequences of a research and development plan that ignores

these issues. It is one thing to design and implement an

initial system. It is quite another matter to eliminate

weaknesses, to provide improved or new facilities, to adapt

an operational system to new circumstances and external

change.

In the present state of the art, even minor changes to. the

clauses of a Prolog program or to the structure or content of

a data base demand, for example, consistency checks that may

cause serious problems of verification. It may even require

a complete re-creation of the system. The published work to

date on examining and controlling the consequences of

continuing change in an operational system based on these

technologies is insufficient. The problems must be

successfully addressed before the proposed technologies may

safely play a major role.

494 M. M. Lehman and L. A. Belady

3.4 Complexity

A likely consequence of evolutionary pressure on a system not

designed with evolution inmind, is a rapid increase in

system complexity, or a need for increasing effort to control

it. This will be accompanied by corresponding decreases in

reliability and in the ability to respond in timely fashion

to external (user) requirements for change. Either way there

will be a rapid and continuing increase in maintenance costs.

There has been no indication that a strategy for complexity

control has been seriously considered in the FGCS plan, or

even that there is an awareness of the problems and the

pitfalls. For a project of its size and imaginative extent,

this is a matter for serious concern.

3.5 Understanding

There are two separate issues to be addressed under this

heading. The first relates to human understanding of the

objectives and function of a computer application and the

system that implements it. If it is accepted that mankind

must remain in control of its own destiny, we may only

construct systems that, in the fullest sense of the word, are

understood. If, subsequently, they are to continue to be

adapted, reliably, responsivly and cost-effectivly, to more

and more ambitious application concepts in changing

Operational environments, total human understanding of the

systems is even more vital.

As computerisation increasingly penetrates every facet of

human activity, total understanding and control of the system

becomes essential if the visions of science fiction are not

to become reality. Thus systems development must be

paralleled by the development of technologies and structures

that ensure continued human comprehension of what the system

is, what it does and how it does it. The FGCS system is

conceived in terms that require the provision of support

methods and tools not currently available, but essential if

the system is to be and to remain under control. Once again

the plan shows no awareness of the problem; makes no

provision for its investigation and solution.

The second area of concern under the heading of

'Understanding' concerns basic assumptions that underlie the

technologies of artificial intelligence and expert, knowledge

based, systems. Human living and progress relies on the

application of knowledge and understanding, common sense. We

22. Role of Systems and Software Technology 495

all apply these to a greater or lesser extent. The expert is
one whose viewpoint, interpretation or prediction is percei-
ved as correct, say, 51% of the time. They also make mis-
takes, But the events that slowly unfold after judgement has
been made or decision given, usually permit timely feedback-

triggered corrective action based on developing understanding

of consequence, or on new information. It is foolish to act

on the assumption that the expert is always, or even almost

certainly correct. May one expect expert systems technology

to develop at a rate to cope adequately with uncertainty?

Current technology in knowledge based systems is just that.

The system is limited in its discerning powers by the infor-

mation that humans have stored in, or caused to be captured

by, the system before the moment of decision. It seems most

unlikely that the state of the art in AI will advance at such

a rate that knowledge based systems can display understanding
on the timescale envisaged by the FGCS plan. And when they

can be designed to do so initially, can that capability be

reliably maintained under continuing change? Can they be

expected to be capable of creative, understanding based,

concept development? If they cannot, what is the danger?

The doctor seeking support from an expert diagnostic system,

the military commander seeking interpreted information in a

defence application, can and will apply discrimination.

Viewpoints and judgements will be developed but then modified

by human experience and intuitive judgement. Creative

insight will be applied to refine and evolve the application

and its reliability. The output of the systems visualised in

the FGCS plan, based at present almost exclusively on

selective information retrieval, will in most instances be

incompletely understood but inadequately filtered because of

the faith in computers of the uninformed, the obscurity of

the derivation process and the volume and speed of that

output (22.1). Putting such systems into the public domain

prematurely is fraught with danger.

22.1 (Eds) The intention of IKBS tmplementors to accompany
the inferences that are presented as ouput. by the chatn
of reasoning that was used to reach them, ts trrelevant
in any real and major application, where the chain ts
likely to be tongs complex and cannot normally be
"understood completely' in a real-time context
particularly tf such inferences are generated at a high
rate. Moreover the human wtll have his attentton
focussed on what ts presented and will be unlikely to
nottce what ts missing in the chain of reasoning.

496 M. M. Lehman and L. A. Belady

3.6 Correctness

The published plan makes passing references to ‘simple

verification’ of programs (eg p 62, 78, 83) and to 'partial
verification' of knowledge based systems at ‘the meta-

knowledge level' (p63). Such limited references to issues of
correctness under the generic title '‘'‘Systemisation Tech-

niques', suggests that insufficient consideration has been

given by the planners to ensuring that systems to be

implemented are correctly defined or implemented or, indeed,

what correctness in the FGCS context means. There is no

expression of either the importance of these issues or how

far away and costly their solution is. The fundamental

requirement that a computing system must be demonstrably

correct in the first place and stay correct throughout the
life-time of the system will require much more emphasis than
it has so far received. The development of methodologies and

tools to satisfy it becomes a priority.

Specifically, references to concepts of verification and
validation in relation to the technologies to be exploited,
are conspicuous by their absence from the publicised FGCS R&D
plan. Nor can it be relying on work already done in the
technologies to be exploited. The problems of specification,
design and verification in the context of the ten million
transistor chip envisaged in the plan are, to say the least,
non-trivial. Published work in Expert Systems does not appear
to have given much attention to such matters. The position
in logic programming is a little better [CLA81] but much
remains to be done.

It appears that the logical basis of all these systems is
assumed sufficient to ensure the absence of error. Correspon-=
dence between a set of clauses ina Prolog program and the
real world model that they represent, may be self-evident.
But what is 'obvious' ina ten or even hundred clause
context, presents a major problem when the precise total
Semantics of a thousand clause system must be determined, and
demonstrated. The correctness of a thousand item "knowledge
base' may perhaps be relied upon. Increase that size to that
implied by the systems envisaged and no human mind can
comprehend what it contains, even at inception. Even with
chips of sizes currently manufactured, questions arise about
their ‘correctness! or prectse functionality.

To meet operational requirements the application de pendant
functional content of software implemented with non von
Neuman components or techniques will not be less than that of

22. Role of Systems and Software Technology 497

traditional software; nor will the pressure for evolution be
any less. Individual sub-systems implied under the FGCS plan
will have to exceed the size of present day implementations
in the same technologies, possibly by orders of magnitude.
When one considers the consequences of size, of evolution and

of the related growth in complexity the magnitude of the

problem of maintaining veracity and control becomes self

evident. Approprite process technology does not yet exist.

It may be argued that given ‘correct! transformation

procedures, the issue of correctness is restricted to

specifications. But that is merely shifting the problem one

level. Specifications for systems in actually implemented

examples of the FGCS primitive technologies, are small in

relation to what will be required in FGCS_ systems. With

available techniques, the work involved in demonstrating that

the latter satisfy the need for which they are intended, will

inevitably prove obscure and difficult, even if expressed in

first order logic, say. Even quite short published proofs of

program correctness in that logic have contained errors. The

fact is that for a specification or system description that

exceeds the intellectual grasp of a single individual, itis

the total structure rather than the form or language of its
content that is the more critical in the context of

understandability and correctness. The structuring of Prolog

and Expert systems and of their specifications requires

urgent investigation.

3.7 Responsiveness

The spreading application of computers makes it ever more

vital to keep the system in sympathy with changing and

evolving needs. Adaptation of the system to ensure

appropriate behaviour should be implementable on a time scale

determined by user needs. Limitations imposed by

technological capability can cause major problems. such

limitations exist with present systems. Responsiveness of

the software process, will become an increasingly critical

parameter in the next generation. Unless process technology
for the FGCS primitives can be developed and applied, serious

consequences must follow.

3.8 Cost

The problems of the high cost of software have been

recognised for almost a decade [GOL73]. Expenditure on

software development and maintenance in the USA in 1977

exceeded 3% of the GNP. That fraction is increasing every

498 M. M. Lehman and L. A. Belady

year. A recent DoD report [RED81] quotes an Electronic

Industries Association forecast that DoD expenditure on

embedded software alone will grow from $B2.82 in 1980 to
$B5.62 in 1982 to $B32.10 in 1990, ‘if we do nothing’.

Organisations making significant use of computing already

dedicate 10-15% of annual expenditure to that activity, an

increasing fraction of it being for software.

The greatest part of all such expenditure is incurred in

coping with problems of incorrectness, adaptation and

evolution. As already discussed, there is every reason to

question the availability of adequate technologies to cope

with these same problems as they will appear in FGCS.

"Something! must be done in all areas of Software Technology

and Engineering, to permit development of the proposed

systems and their continued evolution. Equally, the economic

implications of ever increasing expenditures that must be met

because of societal dependence on computer systems demands

urgent attention to the problems outlined above and to others

not discussed here because of space limitations.

4 Conclusions

The above comments do not imply that the long-term system

concepts of the FGCS plan are impractical or undesirable,

merely that Research and Development activity in broad areas

of Software Process Technology must be intensified and

extended. In practice, it means that the further development

of the technology and its tools, and their extension as

required by the new approaches to system architecture and
implementation, become an urgent priority. In view of the
under-developed State of process technology one must,

however, also question the FGCS timetable on the grounds of

both practibility and desirability.

Software Engineering includes the management of complexity

and change. Its objectives include meeting the needs of users

effectively and cost-effectively. It must also continue to

Support reliable and responsive satisfaction of those needs

aS they change and evolve and as advancing insight and

technology opens up new application potential and new

Opportunities. With ever growing use of computers, the

welfare, even survival, of society will increasingly depend

on correct and appropriate computer outputs. For this to be

achieved and maintained demands the availability of an

effective engineering discipline with its insights, models,

methods, procedures, tools and rules.

22. Role of Systems and Software Technology 499

Past experience has shown that a less than adequate
technology will prove time consuming, costly and painful.
The present focus provided by the plan does not appear to
have considered these factors. Total re-examination of the
Process whereby an application concept is transformed into an
operational system and then maintained in tune with its
Operational environment is urgently needed. The process as
it exists today has evolved in bottom-up fashion over two
decades in response to local needs and advancing technology.
As such it must now be reviewed and designed as an integrated
continuous process, taking advantage of primitive concepts
that already exist or that can be developed. Methods and
tools to support all aspects of the total process and to make
it reliable and responsive to societal needs, must be
explored, developed where necessary, and applied as
appropriate ina software technology process that is able to
justify the faith that society will put into its products.
If we fail to do this mankind will be gradually, insidiously,
undermined by an accumulation of incorrect or incomplete
information that could even lead to the destruction of
society as we know it. The dangers stemming from an all
pervasive but incomplete Information Technology are surely no
less than those posed by genetic engineering or biological
warfare. That suggests a risk we dare not take, a

responsibility that we must shoulder.

5 Acknowledgement

I am most grateful to Dr G Benyon Tinker, Mr R J Cunninghan,

Dr J Darlington, Miss V A Downes, Dr PG Harrison, DrRaA

Kowalski, Mr G M Sokol and Dr I Torsun for their constructive

criticisms of this paper. The opinions expressed are, of

course, my own.

500 M. M. Lehman andL.A.Belady

POSTSCRIPT

For purely pragmatic reasons selection of material for

inclusion in this book had to be completed in early 1982.

Much has happened since then. The reader who wishes to

achieve an overview of more recent developments is referred

to the proceedings of two recent meetings. The first

Software Process Workshop was held in Egham, Surrey in

February 1984, sponsored by ACM, BCS, ERO, IEE and TEEE and

its proceedings published by the IEEE under Catalogue number

B4ch2044=6. The second, with equally wide support, was held

at Coto de Caza, California in March 1985. Its proceedings

are to be published later this year. Their contents, with

references provided by the various authors and discussants,

presents an up-to-date picture.

It is worthy of note that a third Process workshop is planned

for November 1986, that the title for ICSE 8 (to be) held in

London in August 1985 is ‘Improving the ... Quality of

Software ... by improving the Software Engineering Process',

and that of ICSE 9 (Monterey, 31 March - 2 April, 1987) is

'Formalising and Automating the Software Process’. The

central role of process directed thinking and the related

phenomenon of program evolution are clearly becoming more

widely accepted.

LAB
MML

24 May 1985

References

[ADA80]

[AHO75]

[ALE74]

[ALF78]

[ALL77]

[AMA69]

[AROT4]

[ARO80]

[BAC60]

[BAK72]

[BAK75]

501

REFERENCES

"Reference Manual for the Ada ProgrammingLanguage’, Proposed Standard, US DoD, Jul 1980,

AV Aho, J E Hopcroft and J D Ullmann, ‘The Design
and Analysis of Computer Algorithms’, AddisonWesley, 1975, 470p. (Ch 15)

MJ Alexander, ‘Information System Analysis' SRA,
1974. Ten definitions are quoted on P 4, but, being
Slanted to information systems, do not represent an
exhaustive listing. (Ch 11)

M W Alford, "Software Requirements Engineering
Methodology (SREM) at the Age of Two', Proc COMPSAC
78, IEEE Cat No 78CH 1338-3 Nov 1978, pp 1-14. (Ch
19) |

J J Allen (Ed), "CAD Systems', North Holland,
1977, pp 361-364. (Ch 15)

American Management Association Report,
"Computer Based Management, - 1969'. (Ch 3)

J D Aron, 'The Program Development Process, Part
1: the Individual Programmer’, Addison Wesley
Reading Mass, 1974, 264p. (Ch 12, 14)

J D Aron, 'The Program Development Process, Part
If The Programming Team', Addison-Wesley 1981.
Reading, MA, 690p. (Ch 19)

J W Bacus et al, "Report on the Algorithmic
Language ALGOL 60', Comm ACM, 1960, pp 299-314.
(Ch 14)

F T Baker, "Chief Programmer Team Management of
Programming' IBM Systems Journal, Vol 11, No 1,
1972, pp 56-73 (Ch 12)

F T Baker, "Structured Programing in a Production
Programming Environment’, Proc Int Conf Reliable
Software, Los Angeles, CA, Apr 1975, pp 172-83,
IEEE Cat No 75CH O0904-7CSR. (Ch 12)

502 References

[BAR6 4} E F Bardain, ‘Research Studies of Programmers and

Programming', Unpublished studies, New York, 1964.

Quoted by D B Mayer and A W Stal nader. ‘Selection

and Evaluation of Computer Personnel', Proc 1968

ACM Nat Conf, pp 657-670. (Ch 3)

[BAS68] H B Baskin and S P Morse, 'A Multilevel Modelling

Structure for Interactive Graphic Design', IBM

Systems Journal, Vol 7, No 3/4, 1968, pp 218-228.

(Ch 8)

[BAS77] V R Basili and RW Reiter Jr, 'Selecting Automated

Measures for Software Development', U Maryland,

1977. (Ch 15)

[BAS77a] V R Basili et al, 'The Software Engineering

Laboratory', U Maryland, TR-535, SEL-1, 1977. (Ch

15)

[BAS78] V R Basili, E Ely and D Young (Eds), "Second

Software Life-Cycle Management Workshop, 21-22 Aug

1978', Atlanta, GA, IEEE Pub No 78CH1390-4C, Dec

1978, 220p. (Ch 19)

[BAU67] WJ Baumol, ‘'Macro-Economics of Unbalanced Growth:

The Anatomy of Urban Cities', Am Econ Rev, Jun

1967, pp 415-426. (Ch 5, 6, 7, 19)

[BAU7T] F L Bauer, H Partsch, P Pebber and H Wessner,

'Notes on the Project—CIP: An Outline of a

Transformation System’, TUM- INFO-7729, Tech U

Munich, 1977, 67p. (Ch 19)

[BEI75] H Beilner and L A Belady, ‘Speculations on Program

Complexity', Unpublished Paper, IBM Research 1975.

(Ch 15)

[BEL67 J C S Bell et al, ‘Macroeconomics of unbalanced

growth: comment’, Am Econ Rev, Vol 58, No 4, Sept

1968, pp 877-897. (Ch 5)

[BEL71] L A Belady and M M Lehman, 'Programming System

*Ch.5 Dynamics or the Metadynamics of Systems in

Maintenance and Growth', IBM Res Rep T J Watson Res

Centre, Yorktown Heights, NY 10598, RC 3546, p30,

Sept 1971. (Ch1, 2, 6, 7, 8, 9, 11, 12, 14, 17;

18, 19)

References

[BEL7 2]
*Ch.6

[BEL7 2b]

[BEL7 4]

[BEL75]

[BEL76]
*#ch.8

[BEL77]

[BEL77b]

[BEL77c]
*Ch.10

[BEL774d]

503

L A Belady and M M Lehman, "An Introduction to
Growth Dynamics’, From ‘Statistical Computer
Performance Evaluation’, W Freiberger (Ed),
fn Press, 1972, pp 503-11. (Ch 1,7, 8, 9,

L A Belady and MM Lehman, 'A Systems Viewpoint of
Programming Projects’, Imperial College,
Department of Computing and Control Research Report

72/31, 1972. Also Published in ‘Advances in
Cybernetics and Systems, I', Gordon and Breach,

London 1975, pp 15-28. (Ch 8, 9)

L A Belady and M M Lehman, ‘Programming Systems

Growth Dynamics’, Published in Computer

Reliability, Infotech State of Art Lecture No 20,

1974, pp 391-412. (Ch 9, 12)

L A Belady and MM Lehman, ‘The Evolution Dynamics -

of Large Programs', IBM Res Rep RC5615, T J Watson
Res Centre, Yorktown Heights, NY 13598, Sept 9

1975, 45p. (Ch 1)

L <A Belady andMM Lehman, ‘A Model of Large

Program Development', IBM Sys J, Vol 15, No 3,

1976, pp 225-252. (Ch 1, 9, 10, 11, 12, 14, 15, 16,

18, 19)

L A Belady and M M Lehman, ‘Large Programs and

Large Scale Programming’, Infotech State of the
Art Report 37, Software Reliability, 1977, pp 15-

27. (Ch 12)

L A Belady, "Software Complexity', In Working

Papers of the Software Life Cycle Management

Working Party, 1977, pp 371-84. (Ch 12, 19)

L A Belady and P M Merlin, "Evolving Parts) and

Relations - A Model of System Families', IBM Res

Rep RC 6677, TJ Watson Res Centre, Yorktown
Heights, NY 10598, August 1977, 14p. (Ch 12, 14,

19)

T E Bell, DC Bixler and ME Dyer, ‘An Extendable

Approach to Computer-aided Software Requirements

Engineering' IEEE Trans on Software Eng, Vol SE-3,

No 1, Jan 1977, pp 49-59. (Ch 19)

504

[BEL7 8]
*Ch.14

[BEL78b]
*Ch.13

[BEL79]

[BELT 9b]

[BEL7 9c]
#Ch.15

[BEL80]

[BEL80b]

[BEN81]

[BEN83]

[BLA76]

References

L A Belady and MM Lehman, ‘Characteristics of

Large Systems', Part 1, Ch 3, pp 106-142 in
"Research Directions in Software Technology',

Sponsored by Tri-Services Committee of the DOD, in

Proc Conf Research Directions Software Technology,

Oct 1978, Brown U, Providence, RI, and by MIT
Press, 1979. (Ch 1, 2, 12, 17, 19, 20, 21)

L <A Belady, ‘Staffing Problems in Large Scale

Programming', Proc Infotech State of the Art Conf,

‘Why Software Projects Fail', Apr 1978, pp 4/1-
4/12. (Ch 1, 14)

L A Belady and C J Evangelisti, 'System

Partitioning and Its Measure’, IBM Res Rep RC

7560, Mar 1979. (Ch 15)

L A Belady, C J Evangelisti and J Cavanagh,

"GREENPRINT - A Graphical Representation for

Structured Programs', IBM Res Rep, RC-7763, Jul
1979. (Ch 18)

L A Belady, 'On Software Complexity', IEEE NY Poly

Workshop on Quantitative Software Models for

Reliability, Complexity and Cost, Kianasha Lake,
NY, Oct 1979, IEEE Pub No Th0067-9, pp 90-94. (Ch
1, 2)

L A Belady, "Modifiability of Large Software
systems', Proc 14th IBM Comp Soc Symp Tokyo, Jan 8-
13, Oct 1981.

L ABelady, Ed, ‘Proceedings of the IEEE Special
Issue on Software Engineering', Vol 68, No 9, Sept
1980. (Ch 19)

G Benyon-Tinker, P G Harrison and M M_ Lehman,
"Complexity of Large Scale Software', Presented at
the 1981 Minnowbrook Conf. (Ch 21)

G Benyon-Tinker, P G Harrison and M M Lehman,
"Program Complexity’, ICST Res Rep DoC 83/23, Oct
1983. (Ch 1, 2, 8)

W W Black, 'The Role of Software in Successful

Computer Applications', Proc 2nd ICSE, IEEE Cat No

76CH1125-4C, San Francisco, CA, Oct 1976, pp 201-
205. (Ch 14) |

References

[BOE76]

[BOE7 6b]

[BOE7 8]

[BOE7 8b]

[BOX70]

[BRA68]

[BROT5]

[BRO76]

[BUX70]

[BUX80]

[CHE78]

505

B W Boehn, "Software Engineering', IEEE Trans on
Computers, Vol C-25, No 12, Dec 1976, pp 1226-
1241. (Ch 12, 14, 18, 19, 20, 21)

B W Boehm, J R Brown and M Lipow, "Quantitative
Evaluation of Software Quality’, Proc 2nd ICSE,
San Francisco, CA, Oct 1976, IEEE Cat No 76CH1125-
4C, pp 592-605. (Ch 19)

B W Boehn, ‘Software Engineering - As It Is',
Proc 4th ICSE, Munich, September 1979, IEEE Cat No
79CH1479-SC, Sept 1979, pp 11-21. (Ch 19)

B W Boehm and R W Wolverton, "Software Cost

Modelling - Some Lessons’ Learned’, in ‘Second

Software Life-Cycle Management Workshop, 21-22

August 1978', Atlanta, GA, IEEE Pub No 78CH1390-
NC, Dec 1978, pp 129-132. (Ch 19)

G E P Box and G M Jenkins, 'Time Series Analysis’,

Dick H Brandon, "Managing the Economics of

Computer Programming, The Problem in Perspective’,

Proc 1968 ACM Nat Conf, Pub P-68, pp 332-334. (Ch

3)

F P Brooks, "The Mythical Man Month’, Addison-=

Wesley, Reading, Mass, 1975, p206. (Ch 12, 17, 19)

J C Browne. 'A Critical Overview of Computer

Performance Evaluation’, Proc 2nd ICSE, San

Francisco, Oct 1976, pp 138-145. (Ch 14)

J oN Buxton and B Randell (Eds), 'Sof tware
Engineering Techniques', Report ona Conference

sponsored by the NATO Science Committee, Rome, Oct

1970, 164p. Pub Brussels, 1970. 164p. (Ch 19)

J N Buxton, "Requirements for ADA Programming

support Environment - STONEMAN', US DoD,

Washington DC, Feb 1980, 4Y4p. (Ch 2, 19, 20)

E T Chen, "Program Complexity and Programmer

Productivity', IEEE Trans Software Engineering, SE-

506

[CHO80]

[CIC75]

[CL1I69]

[COB78]

[COD67 J

[COM76]

[COR69]

[COx66]

[cox8o]

[CRS7T5]

[CURT8]

References

C KS Chong Hok Yuen, "Phenomenology of Programs

Maintenance and Evolution', PhD Thesis, ICST, DoC,

London, Nov 1980, 302 p. (Ch 1, 19)

A Cicu, M Maiocchi, R Polillo, A Sordini,

‘Organising Tests During Software Evolution', Proc

ICRS 75. (Ch 9)

T E Climis, 'Old Problems, New Directions and the

Art of the Practical', Proc IBM Symp on New

Directions in Computer Technology, Vol 1;

Poughkeepsie Laboratory Technical Rep TROO 1895,
Jul 14 1969, pp 23-31. (Ch 3)

G W Cobb, 'A Measurement of Structure for

Unstructured Programming Languages', Software Eng

Notes, Vol 3, No 5, Nov 1978. (Ch 15)

E F Codd, R T Burger and L L Lunde, 'An Approach

to software Specification and Design’, SDD

Technical Rep TROO 1588, Poughkeepsie, May 31 1967.

(Ch 3)

"Conference Report, 2nd International Conference on

Software Engineering’, Computer, Dec 1976, P 71.
(Ch 14)

F S Corbato, "PL/1 as a Tool for Systems
Programming’, Datamation, May 1969, pp 68-76. (Ch 3)

D R Cox and P A W_ Lewis, 'The Statistical

Analysis of Series of Events', Methuen, London

1966, p 38. (Ch 7, 8)

T A Cox (Ed), "Proceedings of the Symposium on
Formal Design Methodology', Cambridge, 1977, Pub
STL, Harlow, Essex, 1980, 350p. (Ch 19)

Proc Int Conf on Reliable Software, Los Angeles,

CA, IEEE Cat No 75CHO 940-7CSR, April 1975. (Ch

9)

B Curtis, S B Sheppard, M A Borst, P Milliman and T

Love, ‘Some Distinctions Between the Psychological

and Computational Complexity of Software', Second

Software Life Cycle Management Workshop, Atlanta,

GA, USA, 21-22 Aug 1978 (New York: IEEE 1978), p

166-71. (Ch 15)

References

[DAH7 2]

[DAR64]

[DAR7T9]

[DEJ73]

[DEM78]

[DEM79]

[DERT5]

[DIJ68]

[DIJ68b]

[DIJ68ec]

[DIJ70]

[DIJ72]

507

O J Dahil, E W Dijkstra and C A R Hoare,
'Structured Programming', Academic Press, New York,
1972. (Ch 12, 19)

Charles Darwin, ‘On the Origin of Species',
Cambridge, Mass: Harvard Univ Press, 1964,
facimille of the 1st edition. (Ch 4)

J Darlington, ' Program Transformation: An
Introduction and Survey', Comp Bull, Ser 2, No 22,
Dec 1979, pp 22-24. (Ch 2, 19, 20, 21)

S P DeJong, 'The System Building System (SBS)', IBM
Res Rep RC 4486, 15 Aug 1973. (Ch 10)

T Demarco, "Structured Analysis and system
Specification’, Yourdon Press, New York, NY, 1978,
352p. (Ch 19)

R A Demillo, RJ Lipton and AJ Perlis, "Social
Processes and Proofs of Theorems and Programs',
Comm ACM, Vol 22, No 5, May 1979, pp 271-280, and

No 11, Nov 1979, pp 621-630. (Ch 19)

F deRemer and M_ Kron, 'Programming-in-the-Large

versus Programming-in-the-Small', SIGPLAN Notices,

pp 114-121, Jun 1975 (Ch 18)

E W Dijkstra, 'The Structure of "THE"

Multiprogramming System', Comm ACM, Vol 11, No 5,

May 1968, pp 341-346. (Ch 21)

E W Dijkstra, "A Constructive Approach to the

Problem of Program Correctness', BIT, 8, 1968, pp
174-186. (Ch 7, 8, 19, 20)

EW Dijkstra, 'GOTO Statement Considered Harmful',

Letter to the Editor, Comm ACM, Vol 11, No 11, Nov

1968 pp 147-8. (Ch 6, 14)

E W Dijkstra, "Structured Programming', EWD247,
(Privately circulated), Techk Hochs, Eindhoven,
1970, (Ch 6)

EW Dijkstra, "Notes on Structured Programming’,
In Dahl, Dijkstra and Hoare, "Structured
Programming', Academic Press 1972, pp 1-82. (Ch
7T, 8, 14, 19)

508 References

[DIJ72b] E W Dijkstra, 'The Humble Programmer', ACM

Turing Award Lecture, Comm ACM, Vol 15, No 10, Oct

[DOL76] T A Dolotta and J R Mashey, ‘An Introduction to

the Programmer's Workbench', Proc 2nd ICSE, San

Francisco, CA, Oct 1976, IEEE Cat No 76CH=-1125-4C,

pp 164-168. (Ch 2, 19, 20)

[DRI68] G C Driscoll, 'A System for Processing Decision

Tables in APL/360', IBM Res Rep RC 2065, Apr 1968.

(Ch 3)

[EMD7 1] M H Van Emden, ‘An Analysis of Complexity',

Mathematische Centrum, Amsterdam, 1971. (Ch 15)

[FAG76] M I Fagan, "Design and Code Inspections to Reduce
Errors in Program Development', IBM Sys J, Vol 15,
No 3, 1976, pp 182-211. (Ch 12, 14, 19, 20)

[FAR65] L Farr and H J Zagorski, ‘Quantitative Analysis of
Programming Cost Factors: A Progress Report', Proc

ICC Symp, Rome, North Holland, 1965, pp 384. (Ch

15)

[FEL77] C P Felix and C E Walston, "A Method of

Programming Measurement and Estimation', IBM Sys J,

Vol 16, No 1, 1977, pp 54-73. (Ch 19)

[FIS58] Ronald A Fisher, ‘The Genetical Theory of Natural
Selection', New York: Dover, 1958, 2nd revised
edition. (Ch 4)

[FIT78] A Fitzsimmons and T Love, '‘'A Review and Evaluation
of Software Science', Computing Surveys, Vol 10, No

1, March 1978, pp 3-18. (Ch 19)

[FRE76] P Freeman and AI Wasserman, ‘Software Design
Techniques: A Tutorial’, TEEE Press, 1976, 277
pages. (Ch 10)

[GOL69] MM Gold, 'Time Sharing and Batch Processing, An
Experimental Comparison of their Value ina Problem

Solving Situation’, Comm ACM, Vol 12, No 5, May

1969, pp 249-259. This paper includes a list of
references to earlier studies. (Ch 3)

References

[GOL7 3]

[GO075]

[G0080]

[GUE80]

[HAL77]

[HAN7 2]

[HAN76]

[HAR81]

[HEN79]

[HER69]

509

J Goldberg (Ed), ‘Proceedings of the Symposium on
The High Cost of Software', Naval Postgraduate
School, Monterey, Sept 1973, Pub SRI, Menlo Park,
CA, 138p. (Ch 14, 18, 19)

J B Goodenough and S L Gerhart, ‘Toward a Theory
of Test Data Selection', IEEE Trans Software Eng,
Vol SE-1, No 2, Jun 1975, pp 156-173. (Ch 19)

J B Goodenough, "Software Quality Assurance
Testing and Validation', "Proc IEEE", (Special
Issue on Software Eng), Vol 68, No 9, Sept 1980.
(Ch 19, 20)

M Guerin, ‘Research Study in Software Engineering:
Tools for Requirements and Design Phases',
Appendix 1 to AO/1=1237/80/NL/PP(SC), ESA Nordwijk,
July 1980. (Ch 20)

M Halsted, 'Flements of Software science’,
Elsevier, 1977, 160pp. (Ch 15, 19)

F M Haney, "Module Connection Analysis - A Tool

for Scheduling Software Debugging Activities', Proc

Fall Joint Comp Conf, Anaheim, CA, 1972, pp 173-

179. (Ch 15)

S L Hantler and J C King, "An Introduction to

Proving the Correctness of Programs', Computing

Surveys, Vol 8 No 3, Sept 1976, pp 331-353. (Ch 10)

P G Harrison, 'The Finite State Machine as a

Software Engineering Tool', IBM Res Rep, RC 8861,
1981, 19p, 'Title Efficient Table-Driven
implementations of the finite State Machine' in J

Sys and Software, Vol 2, Ne 3, Sept 1981 pp 201-
212. (Ch 21) |

K Heninger, "Specifying Requirements for Complex
systems: New Techniques and their Application’,

Proc Specifications of Reliable Software Conf,
1979, Cambridge, Mass, IEEE Cat No 79CH1401—9C, Mar

1979, pp 1-14. (Ch 19)

P 6S Herwitz, ‘Programmer Evaluation and

Considerations of Productivity', IBM Corporation,
Armonk, Presented to Diebold Res Group, Chandler,
Arizona, Jan 28 1969. (Ch 3)

510

[HEY69]

[HOA69]

[HOA7T9]

[HOO75]

[HUM68]

[HUT79]

[IBM77]

[IBM7 3]

[IBM76]

[ICSE1]

L[ICSE2]

[JACT5]

References

IBM Confidential Report
(Ch 3)

N Heyer, on Manpower

Trends, 1969.

C AR Hoare, 'An Axiomatic Basis for Computer

Programming', Comm ACM 12, Vol 10, No 12, Oct 1969,

pp 147, 576-583. (Ch 14, 19, 20)

C AR Hoare, 'Review of a Paper by DeMillo, Lipton

and Perlis: "Social Processes and Proofs of

Theorems and Programs"', ACM Comp Rev, Vol 22, No

8, Rev No 34897, Aug 1979, p 324. (Ch 19)

D H Hooton, 'A Case Study in Evolution Dynamics’,

MSc thesis, ICST, CCD, London, Sept 1975, 61p. (Ch

7, 9, 11)

W S Humphrey Jr, ‘Address to R&E Conference', Oct

23 1968. (Ch 2)

A F Hutchings, RW McGuffin, AE Elliston, B R

Tauter, and PN Westmacott, 'CADES - Software

Engineering in Practice' Proc 4th ICSE, Munich,
Sept 1979, IEEE Cat No 79CH-1479-5C, pp 136-152.

(Ch 1, 2, 19, 20)

"1130 Continuous System Modelling Program’, Order

No H20-0209-1, IBM Data Processing Division, White

Plains, NY, 10504. (Ch 8)

OS/VS System Modification Program (SMP), IBM Corp
GC28-0673. (Ch 10)

"Selectable Unit Packaging and

Programming Announcement, IBM,

Plains, NY, May 1976. (Ch 14)

Distribution',

DP Division, White

Proc First International Conference on Software

Engineering, Washington, DC, 8/9 Sept 1975, IEEE
Cat No 75 Ch 0992-8c. (Ch 9)

Proc Second International Conference on Software

Engineering, San Francisco, Oct 1976, IEEE Cat No

76 Ch 1125-4e. (Ch 14)

M A Jackson,

Academic Press,

'Principles of Program Design',

London, 1975, 297p. (Ch 19)

References

[JOH67 J

[JON80]

[JON80b]

[KEN69]

[KER76]

[KOE71]

[KOP79]

[KOW79]

[LAC68]

[LEH66]

[LEH68]

[LEH68b]

511

DB Johnston and A M Lister, ‘Software Science and

Student Programs’, software : Practice and

Experience, Vol 10, No 2, Feb 1980, pp 159=160.

(Ch 19)

C Jones, ‘Software Development - A Rigorous

Approach', Prentice-Hall Ine, NJ, London 1980,
4OOp. (Ch 19)

C B Jones, 'The Role of Formal Specifications in

software Development', Proc Infotech State of the

Art Conf on Life Cycle Management, 1980, p 20. (Ch

19)

Kenzo-Inque, 'On the Development of Large Scale

Operating Systems in Japan', IRIA Colloquium on

High Powered Computing Systems, Paris 1969. (Ch 3)

B W Kernigham and P J Plauger, ‘Software Tools',

Addison-Wesley, Reading, Mass, 1976, 366p. (Ch 10)

A Koestler, 'The Act of Creation', Pan Books,

Chapter 7, final paragraph, beginning the bottom of

page 176. 1971. (Ch 11)

H Kopetz, F Ohnert and W Merker, ‘An Outline of

Project Mars - Maintainable Real-time Systems’,

Bericht 79-09, Technische U Berlin, July 1979, 19p.

(Ch 19) |

R A Kowalski, "Logic For Problem Solving', North

Holland Elsevier, 1979, 278p. (Ch 1, 20)

K L LaCroix, "Report on a Survey of Currently

Available Evaluation Tools', Proc SIMSYMP 1968,

IBM Res Div, Nov 1968, pp 3-1 - 3-22. (Ch 3)

MM Lehman, 'A Survey of Problems and Priliminary

Results Covering Parallel Processing and Parallel

Processors', Proc IEEE, Spec Iss on Computers, Vol

54, No 12, Dec 1966, pp 1889 - 1901. (Ch 1)

M M Lehman, ‘Mediocrity in Middle Management’,

Unpublished MSS 1968. (Ch 4, 5, 7, 17)

M M Lehman and J L Rosenfeld, ‘Performance of a

Simulated Multiprogramming System', Proc FJCC,

1968, p 1431-1442. (Ch 1, 20)

512

[LEH69]
*Ch.2

[LEH6 9a]

[LEH7 4]
*Ch.7

[LEH7 4b]

[LEH76]
*Ch.11

[LEH76b]
*Ch.8

[LEH7 6c]

[LEH7 6d]

[LEH77]

[LEH77a]

References

MM Lehman, '‘'The Programming Process', IBM Res Rep

RC 2722, Dec 1969, p 46. (Ch 1, 2, 4, 6, 7, 8, 12,

19)

Private communication, PS Herwitz, IBM, CHQ, to M

M Lehman, dated Jul 3 1969. (Ch 3)

M M_ Lehman, "Programs, Cities and Students -

Limits to Growth?', Inaugural Lecture Series, Vol

9, ICST, London, May 14, 1974, pp 211-229. Also
in ‘Programming Methodology', D Gries (ed),
Springer-Verlag, 1978, pp 42-69 (Ch1, 8, 9, 11,
12, 14, 17, 19) |

MM Lehman, ‘Programming Systems Growth Dynamics’,
Infotech State of the Art Lectures, No 20, 1974,
pp 391-412. (Ch 19)

M M

_

Lehman, ‘Human Thought and Action as an
Ingredient of System Behaviour’, In The
Encyclopedia of Ignorance, R Duncan and M Weston-
Smith (eds), Pergammon Press, London, 1976, pp 347-
354 (Ch 1, 9, 12, 14, 17, 19, 20, 21)

M M Lehman and FN Parr, "Program Evolution and
its Impact on Software kngineering', Proce 2nd
ICSE, San Francisco, 1976, IEEE Cat No 76 Ch 1125-
4e, pp 350-357. (Ch 1, 9, 12, 14, 16, 19)

M M Lehman, ‘Notes on the Evolution Dynamics of
Large Programs', MML-~138, Feb 1976. Privately
Circulated. (Ch 11)

M M_ Lehman, "OS-VS2-MVS-Long Range Prognosis’,
Private Comm, MML-104, Apr 15, 1975, 13p. (Ch 19)

M M Lehman and FN Parr, "Program Evolution
Dynamics and its Role in Software Engineering and
Project Management', Software Systems Rngineering,
Proc Eurocomp Conf, London, Sept 1977, pp 393-412.
(Ch 12, 14)

M M Lehman, "Complexity and Complexity Change of
a Large Applications Program', ERO Res Proposal,
Mar 1977. (Ch 12)

References

[LEH77b]

[LEH77¢]

[LEH77¢d]

[LEH77e]

[LEH77f]

[LEH77g]

[LEH77h]

[LEH7 8]
*Ch.12

[LEH7 8b]

513

M M_ Lehman, "Software Engineering Research
ee? ICST-CCD Res Rep 77/7, March 1977. (Ch
12

M M Lehman, 'The Funnel - A Functional Channel',

ICST, CCD Res Rep 77/29, Jul 1977, 14p. Also IBM

Technical DislosureBulletin, 1976. (Ch 12, 14,
19)

M M Lehman, "Evolution Dynamics: A Phenomenology

of Software Maintenance', In SLC77, 1977, pp 324-
323. (Ch 12)

M M Lehman and J Patterson, ‘Preliminary CCSS

system Analysis Using Techniques of Evolution

Dynamics’. In Working Papers of the (first)
software Life Cycle Management Workshop, Airlie VA,

1977. Published by ISRAD/AIRMICS, Computer Systems

Command, US Army, Fort Belvoir, VA, Dec 1977, pp

324~332. (Ch 12, 19)

M M_ Lehman, ‘On Productivity, Structured

Programming and all That', ICST CCD Res Rep 77/51,

Dee 1977. (Ch 12)

MM Lehman, ‘Complexity and Complexity Change of a

Large Applications Program', ERO Res Proposal, Mar

1977, 32p. (Ch 19)

M M Lehman and L H Putnam (Eds), in ‘Software
Phenomenology Working Papers of the (first)
Software Life Cycle Management Workshop, Airlie,

VA, August 1977', Published by ISRAD/AIRMICS,

Computer Systems Command, US Army, Fort Belvoir,

VA, Dec 1977, 682 p. (Ch 19)

M M Lehman, 'Laws of Program Evolution - Rules

and Tools of Programming Management’, Proc

Infotech State of the Art Conf, ‘Why Software

Projects Fail', Apr 1978, pp 11/1-11/25. (Ch 1,

M M_ Lehman, 'Laws and Conservation in Large

Program Evolution', Proceedings of the 2nd Software

Life Cycle Management Workshop, August 1978,
Atlanta, IEEE Cat No 78CH1390-4C, pp 140-145. (Ch

16, 17)

516

[MAI84]

[MAY63]

[MCC76]

[MCI68]

[MCI72]

[MEAT 2]

[MEL67]

[MIL65]

[MIL76]

[MIL73]

[MIL78]

References

T S E Maibaum and W M Turski, 'On What Exactly is

Going On When Software is Developed Step by Step',

Proc 7th ICSE, Orlando, FA. March 1984. Publ IEEE

Comp Soc, Silver Spring, MA, IEEE Cat No 84ch2011-

5, pp 525 - 533.

Ernst Mayr, ‘Animal Species and Evolution',

Cambridge, Mass: Harvard University Press, 1963.

(Ch 4)

T J McCabe, 'A Complexity Measure', IEEE Trans

Software Eng Vol SE-2, No 4, Dec 1976, pp 308-320.

(Ch 15, 16, 19)

MD Mellroy, 'Mass Produced Software Components’,

Software Engineering Rep on Conf supported by NATO

Science Committee, Garmisch, Oct 1968. Pub NATO
Scientific Affairs Committee, Brussels, Jan 1969,

pp 138-142 (Ch 21)

M D McIlroy and C Boon, 'The Outlook for Software

Components', Infotech State of the Art Rep No 11,

'Software Engineering', 1972, pp 243-252. (Ch 14)

D H Meadows et al, 'The Limits to Growth',

Signet, 1972. (Ch 7)

B F Melkun and W R Brittenham, ‘'BSL: A Basic

Systems Language', SDD Technical Rep TROO. 1600,
Proc Programming Symposium - 1967, Swamscott, Mass,
1967. (Ch 14)

R E Miller, ‘Switching Theory', John Wiley, 1965.
(Ch 10)

H D Mills, "Software Development', IEEE Trans
Software Eng, SE=-2, No 4, Dec 1976, pp 245-273.

(Ch 12)

M Mills, ‘The Complexity of Programs', in 'Program

Test Methods', WC Hetzel (Ed), Prentice Hall,

1973, pp 225. (Ch 15)

E Miller and W E Howden (Eds), 'Tutorial:
Software Testing and Validation Techniques', IEEE

Comp Soc, IEEE Cat No EHO 138-8, 1978, 423 p. (Ch

19)

References

CMUS80]

[MYE75]

LMYE77]

[MYE78]

[NAT69]

[NAU69]

[NEW53]

[NEW76]

[NOR77]

[OXF33]

[PAD64]

517

J Musa,'The Measurement and Management of Software
Reliability', Proc IEEE (Spec Iss on Software
Engineering, L A Belady (Ed)), Vol 68, No 9, Sept
1980, (Ch 19)

G J Myers, "Reliable Software Through Composite
Design', Petrocelli, NY, 1975. (Ch 14, 15)

GJ Myers, ‘An Extension to the Cyclomatic Measure
of Program Complexity', SIGPLAN Notices, Oct 1977.

(Ch 15)

G J Myers, "Composite/Structured Design', Van

Nostrand Reinhold, New York, NY, 1978, 134p. (Ch
19)

‘Software Engineering’, Rep on Conf sponsored by

NATO Science Committee, Garmisch, 1968. Scientific

Affairs Division, NATO, Brussels 39, Jan 1969. (Ch

3) -

P Naur andB_ Randell, ‘Software Engineering',

Rep on Conf sponsored by NATO Science Committee,

Garmisch, 1968, Proc Publ by Scientific Affairs
Division, NATO, Brussels 39, Jan 1969, 231p. (Ch
1, 3, 7, 19, 20) V3

J Von Newman and O Morgernstern, 'Theory of Games

and Economic Behaviour', Princeton U Press, 1953.

(Ch 10)

‘TBM seeks "selectable units" to solve huge

software tasks', New Scientist, Vol 71, No 1019,

Sept 23, 1976. (Ch 10)

P V Norden, "Project Life Cycle Modelling:

Background and Application of the Life Cycle

Curves', In Working Papers of the Life Cycle

Management Workshop, 1977, pp 217-306. (Ch 12,

17)

'The Oxford English Dictionary', Vol. III,
Clarendon Press, Oxford, 1933, p 354, definitions

1; 5, 7. (Ch 2) oe

A Padega, 'The Structure of System 360 - Channel
Design Considerations', IBM Sys J, Vol 3, No 2,

1964, pp 165-180. (Ch 14)

518

[PAR67]

[PAR69]

[PAR72]

[PAR7T6]

[PARTT]

[PAR80]

[PEA79]

[PET80]

[PUT76]

[PUT7T]

[PUT77a]

References

D L Parnass and J A Dorringer, "SODAS and a

Methodology for System Design’, AFIPS Conf Proc Vol

31, 1967 FJCC, Thompson Books, Washington, DC, pp

ynge474. (Ch 3)

D L Parnass, 'More on Simulation Languages and

Design Methodology for Computer Systems’, AFIPS

Conf Proc, Vol 34, 1969 SJCC, AFIPS Press,

Montvale, NJ, pp 739-743. (Ch 3)

D L_ Parnass, 'On the Criteria to be used in

Decomposing Systems into Modules', Comm ACM, Vol

15, No 12, Dec 1972, pp 1053-8. (Ch 11, 12, 14,

18, 19)

D L Parnass,'On the Design and Development of

Program Families', IEEE Trans on Software Eng, Vol

2, No 1, Mar 1976. (Ch 10)

F N Parr and M M Lehman, ICST, CCD Res Rep 77/15,
London, 102p. (Ch 19)

F N Parr, ‘An Alternative to the Rayleigh Curve

Model for Software Development Effort', IEEE Trans

on Software Eng, Vol 6, No 3, May 1980, pp 291-296.

(Ch 19)

D Pearson, "Software Engineering - A New

Approach', Telesis, Oct 1979, pp 23-27. (Ch 20)

L Peters, ‘Software Design Engineering', Proc IEEE,

(Spec Iss on Software Eng, L A Belady (Ed)), Vol
68, No 9, Sept 1980, pp 1085 - 1093. (Ch 19)

L H Putnam, "A Macro Estimating Methodology for

Software Development!, 13th IEEE Computer Society

Int Conf, 1976, Washington, DC, 7 - 10 Sep 1976, pp
138-43, IEEE Cat No 76CH1115=5C. Proc Compcon 76
fall, 1976. (Ch 14)

L H Putnam, "The Influence of the Time-Difficulty

Factor in Large Scale Software Development', In

Working Papers of the Life Cycle Management

Workshop, 1977, pp 307-312. (Ch 12, 17, 19)

L H Putnam and R W_ Woverton, ‘Quantitative

Management - Software Cost Estimating’, Comp Soc

77, IEEE Comp Software and Applications Conf

References

[RABT7]

[RAN7 1]

[RID80]

[RIO76]

[R1IO77]

[ROS7T7]

[ROS77a]

[SCH66]

[SDD69]

[SDD69b J

[SEP81]

[SILT]

519

(Tutorial), IEEE Cat No EHO 129-37, Nov 1977,
326p. (Ch 19)

M O Rabin, "Complexity of Communications', 1976
Turing Award Lecture, Comm ACM, Vol 20, No 9, Sept

1977. pp 625-633. (Ch 12)

B Randell, ‘Operating Systems - The Problem of

Performance and Reliability', Invited paper, Proc

IFIP Cong T1,; Information Processing T1;

Ljubljania, Yugoslavia (2 vols), pp 1.100-9. (Ch 7)

W E Riddle and Ff E Fairly, "Software Development

Tools', Proc Pingree Park Workshop, May 1979,

Springer Verlag, New York, 1980, 280p. (Ch 1, 20)
J S Riordan, ‘An Evolution Dynamics Model', ICST

CCD Res Rep 76/13, 22p. (Ch 8, 12, 14)

J S Riordan, ‘An Evolution Dynamics Model of

Software systems Development’, in ‘Software

Phenomenology - Working Papers of the (First) SLCM
Workshop', Airlie, Virginia, Aug 1977. Pub

ISRAD/AIRMICS, Comp Sys Comm US Army, Fort Belvoir,

VI, Dec 1977,pp 339 - 360. (Ch 16, 19)

D T Ross and K E Schoman, ‘Structured Analysis for

Requirements Definition', IEEE Trans on Software

Eng, Vol SE-3, No 1, Jan 1977, pp 6-15. (Ch 19)

D T Ross, ‘Structured Analysis (SA): A Language

for Communicating Ideas', IEEE Trans on Software

Eng, Vol 3, No 1, Jan 1977, pp 16-33. (Ch 19)

A Scherr, ‘Analysis of Main Storage Fragmentation’,

Proc Symp Storage Hierarchy Systems, TR OO 1556,
Dec 1966, pp 159-174. (Ch 20)

Programming Development Support Strategy, June 23

1969. (Ch 3)

"Consolidated Performance Activity Report’, No 3,

SDD, OS/360 Performance Analysis Department,
Poughkeepsie, July 1969. (Ch 3)

Proc Software Eng Productivity Workshop, San Diego,

March 1981. (Ch 21)

'SILT' presentation at SHARE XLM. (Ch 14)

520

[SIM68]

[SIM69]

[SHA80]

[SLC77]

[STE74]

[SUT75]

[SWwA]

[TEI77]

[TUR75]

[TUR78]

[TURT9]

References

Proc SIMSYMP 1968, IBM Res Div, Nov 1968. (Ch 3)

H A Simons, 'The Science of the Artificial', MIT

Press, 1969. 123p. (Ch 2, 6, 10, 11, 12, 14, 15,

17, 19, 20)

N Shaw, 'The Impact of Abstraction Concerns on

Modern Programming Languages', Proc IEEE (Spec Iss
on Software Eng, L A Belady (Ed)), Vol 68, No9Q,
Sept 1980. (Ch 19)

software Phenomenology: Working Papers of the

Software Life Cycle Management Workshop, Airlie Va,

Aug 1977; Pub ISRAD/ AIRMICS Comp Sys Comm, US
Army, Fort Belvoir, VA, Nov 1977.(Ch 12)

W P Stevens, G J Myers and L L Constantine,

"Structured Design', IBM Sys J, Vol 11, No 2, 1974,
pp 115-139. (Ch 14, 19)

J W Sutherland, ‘System: Analysis, Administration,

Architecture', Van Nostrand-Rheinhold, NY, 1975.
This book is a good reference source of the

literature in the field of systems’ science. (Ch
12, 14)

G H Swaum, ‘Top-Down Structured Design
Techniques', Petrocelli Books Inc, New York, NY,
14Op. (Ch 19)

D Teichroew and EA Hershey II, "PSL/ PSA: A
Computer-aided Technique for Structured
Documentation and Analysis of Information
Processing Systems’, IEEE Trans Software Eng, Vol
SE-3, No 1, Jan 1977, pp 41-48. (Ch 19)

W M Turski, "Software Engineering - Some
Principles and Problems', Mathematical Structures -
Computational Mathematics - Mathematical Modelling,
Paper dedicated to Prof L Tliev's 60th Anniversary,

Sofia, 1975. pp 485-91. (Ch 11)

W M Turski, "Computer Programming Methodology',

Heyden, London, 1978, 208p. (Ch 12, 19)

W M Turski, "Report on an SRC~sponsored Visit to

Imperial College', ICST CCD Res Rep, Oct 1979, 2p.
(Ch 19)

References

[TUR81]

[VAN76]

[WAG75]

[WEB59]

[WEI70]
*Ch.4

[WEI74]

[WEI77]

[WIR71]

[WIR78]

[WIR79]

[W0079]

521

W M_ fTurski, "Specification as a Theory in the
Computer World and in the Real World', Infotech
State of the Art Report ‘System Design', Se 9, No

6, Pergamon Infotech Ltd, Maidenhead, 1981, pp 363-
377. (Ch 1)

P Van Leer, ‘Top-Down Development Using an Orogram

Design Language’, IBM Sys J, Vol 15, No 2, 1967, pp
155-170. (Ch 19) .

H Wagner, "Principles of Operations Research’,

Prentice Hall, Englewood Cliffs, NJ, 1975, 2nd

Edition. (Ch 16)
"Websters New Collegiate Dictionary', 1959 Edition,

p 286, also Unabridged New International Edition
1979, p 789. GC Merriam Co, Springfield, Mass.
(Ch 2)

G M Weinberg. ‘Natural Selection as Applied to

Computers and Programs', General Systems, vol 15,

pp 145 - 150, 1970. Also in Tutorial on Software

Maintenance, published by IEEE Comp Soc Press,

Order No 453, IEEE cat no EHO201-4, 1982, pp 191-

198.

L Weissman. ‘Psychological Complexity of Computer

Programs', SIGPLAN Notices, Vol 9, No 6, June 1974.

(Ch 16)

L Weissman. ‘A Methodology for Studying the

Psychological Complexity of Computer Programs', U

Toronto, R77-230, pp 240. (Ch 16)

N Wirth. "Program Development by stepwise

Refinement', Comm ACM, Vol 14, No 4, Apr 1971, pp

N Wirth. '"Modula-2', ETH Institute for

Informatics, Dec 1978, 36p. (Ch 21)

N Wirth. 'The Module: A System Structuring

Facility in High-Level Programming Languages’, Proc

Symp Prog Languages and Methods, Sydney, Australia,

J Tobias AAEC (Ed), Lucas Heights, NSW, 1979. (Ch
18)

M R Woodward, M A Hennell and D Hedley, 'A Measure

of Control Flow Complexity in Program Text', IEFEE-

522 References

Trans Software Eng, Vol SE-5, Noi, Jan 1979, pp

45-51. (Ch 15)

[WOO79b] C M Woodside. ‘A Mathematical Model for’ the
Evolution of Software', ICST CCD Res Rep 79/55, Apr

1979. Also in J Sys and Software, Vol 1, No 4, Oct

1980, pp 337-345 (Ch 1, 17, 19)

[WUL77] W A Wulf, ‘Languages and Structured Programs', in

‘Current Trends in Programming Methodology', Edited

by RT Yeh, Prentice-Hall Ince, Englewood Cliffs,

NJ, 1977, pp 33-60. (Ch 19)

[YEH77] R T Yeh (Ed), 'Current Trends in Programming
Methodology', Vol 1 Software Specification and

Design, Prentice Hall Inc, Englewood Cliffs, NJ,

1977, 275 p. (Ch 19)

[YEH80 J R TT Yeh and P Zave, 'Specifying Software
Requirements', Proc IEEE, (Spec Iss on Software
Eng, L A Belady (Ed)), Vol 68, No 9, Sept 1980, pp
1077 - 1085. (Ch 19)

[YIN78] BH Yin and J W Winchester, 'The Establishment and
Use of Measures to Evaluate the Quality of Software

Design', Software Eng Notes, Vol 3, No 5, Nov

1978, pp 45 - 52 (Ch 15)

[You68] E Yourdon, ‘Structured Walk-throughs', (2nd
Edition), Yourdon Ine, New York, 1968, 137p. (Ch

19)

[ZAV81] P Zave and R T Yeh, "Executable Requirements for
Embedded Systems', Proc 5th ICSE, 9-12 March 1981,

IEEE Cat No 81 CH 1627-9, pp 295-304. (Ch 21)

[ZUR67] F W Zurcher and B Randell, 'Iterative Multi-Level
Modeling - A Methodology for Computer system

Design', IBM Res Div Rep RC - 1938, Nov 1967. Also
Proc IFIP Congr, 1968 Edinburgh, Aug 1968, pp
D138-142. (Ch1, 3, 19, 20, 21)

Index

A

Abstract ideal process, 22

Abstraction, 361

Academic world, computer use, 394

Accounting,oil royalty, 89, 92

Accuracy, 393

Achievable plan, 264

Action, human, 237

Activity

constant but stratified, 107

elements, 110

threshold, 108

total, 108

dynamics, 99

human, 302, 315, 333, 408

inter-level, 487

intra-level, 487

major classes, 444

phases, 275

repair, 318

targets, 384

- Actual system, 228

permitted, 228

set, 228

Ada, 394, 423, 468, 480

future requirements, 459

Adaptation, 20, 27

closed-loop cyclic, 169

continuous, 169

implementation by code, 395

intellectual effort involved, 421

relationships, mutual, 91

systems, 241

tool, 421

Addition of detail, 32

Advanced systems-programming language,

74

Age, 188, 206, 207, 304

cumulative work achieved, 210

expected v observed handles, 216

fraction of modules, 214

system, 172

parameter, 172

system x, 427

Aging, 189, 410

- process, 172

software project, 415

Air Traffic Control, 289, 402

system, 475

Aircraft, 279, 283, 356

ALGOL,68, 72, 185, 204, 325, 394

Algorithms

analysis, 332

development, 139, 165

large programs, 375

Altdorfer, Albercht, 134

Alte Pinakothek Museum, 133

Alterability

concept, 420

dynamic correctness, 420

Alternative process decompositions, 473

Analog, 193

Analysis, critical activity, 492

Ancestor systems, 203

AND, 223

Ant, 138, 162

Anti-regressive activities, 149-152, 154-157,

162, 192, 193, 325, 329, 424

city life, 153

Club of Romereport, 156

conflict and balance, 154

education, 158, 159

investment, 267, 319

middle management, 155

neglect, 156

non-uniqueness of assignations, 154

organizations, 155

APL/360, 70, 76

524

Apollo space program, 116

Application

concept, 461, 476

evolution dynamics studies, 217

mathematical model, 352

Applied dynamics, 418

Approach

informal, 332

measures, 471

Appropriate process technology, 497

Arbitrary units, 224

Architects, 355, 359

Architecture

new system, 441

system, 426

systematics, 65

Archival system, 127

Artifacts, 355, 356

Artificial

activity, 243

complex, 439

evolution, 458

parameter values, 347

sciences, 238

selection, 87, 92

system, 14, 243, 300, 380, 408, 409

Artist, 277

Assembling, 459

Assembly language, 71, 74, 203

Assembly line, 278

process, 442, 469

Atmosphere, 156

Attention, system module, 172

Attributes

identifiable, 166

input, 470

output, 470

Automatic

program compilation, 394

searching, 459

Automobile, 279

Availability, new hardware, 174

Average absorption level, 390

Average growth trends

particular attributes, 168

planned growth and, 167

system attributes, 167

B5500, 72

B8500, 72

Bacteria, 86

Index

Bank accounts, 289

Banking, 356

Banking application system, 296

Banking system growth, 307

Base control, 56

Base-line, 285

Basic steps, programming process, 481

Basis, family, 222

Bats, 91

Battle scene, 135, 139

Battlefield, 133

Baumol’s principle, 150

effect, 151

Behavior

mathematical model validation, 347

Beilner, Heinz, 200, 331

Belady, L. A., 220

Belagarung Von Alexia, 136

Bell-shaped curve, 126, 127

Bell Telephone Laboratory, 1

IBM Tss/360 use, 69, 70

Berkeley model, 148

Bevier, R., 49

Biblical viewpoint, 162

Binary

activity-tree, 104, 105

card loading routine, 93

Biological
organism, 377

sciences, 376

systems, 252, 301

Biologists, 237

Birth rate, 157

Bivariate relationships, 173

Black box units, 326

Blueprints, 422, 459

technology, 423

Boehm’s model, 440, 444

Bookkeeping, 318

Boolean, 368

function, 230

variable, 223, 225

Bottom-up synthesis, 473

Breeding, selective, 87

BSL, 71, 74

Budget, 192

control, 384

simulation example output, 195

value, 346

Bug, 89, 92, 93, 95, 99, 100, 372

Bureaucracy, 277

Burroughs, 72

Business

Index

considerations, 217

release slippage consequence, 435

Buzzwords, 491

Caesar, Julius, 315

Calculus, 24

Capability, 396

Categories, approach, 332

Cathode ray tube, 194

C, cross-correlation, 111, 112

total activity, 117

Cellular systems, collective behavior, 376

Chain of reasoning, 495

Challenges, programming, 282-284

Change, 186

propagation, 337

refamiliarization, 385

Changeability, multifunction programs,

202, 250

Characteristics of large systems

communication, 319

complex interactions, 312

continuing enhancement, 300

continuing maintenance, 302

documentation, 319

empirical study, 306

future, 325

life-cycle cost pattern, 312

local and global optimization, 323

measurement in software engineering,

291

nature of largeness, 289

part-number explosion, 318

product v process knowledge, 317

program collections, 314
program systems, 313

software: knowledge, skill and com-

munication, 315

specialization, human activities, 315

structure reflecting manufacturing pro-

cess, 321

system behavior, optimization, 322

system performance, execution, 322

traditional indicators, 292

variety, 300

Chess program, 399

Chief programmerteams concept, 3, 266

Clean-up, 426

points, 145

release, 430

Clear-Caster project, 67

525

Clerks, 459

Closed loop control, 55

CLU, 368

Club of Rome, 156

Coagulation, 235

COBOL,62, 72, 394

Code, 99, 126, 129, 176, 202, 203, 236,
253, 262, 263, 275, 282, 296, 320,
321, 377

changes, 177, 378, 385, 386

deletion, 301

efficient sequences, 394

existing, 410

generation, 139, 165

healthy, 325

low level, 360

machine, 359

repairs, 446

rigidity program, 413

source, 492

Structure, 422

supportable, 321

timely, 218

unfamiliar, 386

Coding, 317

reduced quality, 175

Coherent process, 452

Collection, programs, 314

Commercial computeruse, 66, 394

Complexity, 204, 253, 492, 494

activity required, 178

changing, 172

concept, 199

control, 284

definition, 172, 173, 331

external v internal v intrinsic, 254

fixed fault, 218

growth, 120

internal, 179

increasing, 115, 259, see also Release
interval

intuitive models, 361

measures, 218

minimum starting point, 420

parameters, 173

programming system dynamics, 110
reduction, 488

test text length correctness, 336

time, 114

Communication

cost, 147

interhuman, 315

inter-software unit, 328

526

Communication (continued)

intra-system, 313

key, 319

linkages, 314

v personalrelations, 78

programmingroles, 281

team spirit, 286

Comparative measures, complexity, 333

Compilers, 92, 93, 95, 276, 359, 368

type checking, 372

Compiling, 459

Complete paradigm, 29

Complex

large system interactions, 312

problems, 331

Components, 87, 123

independence, 277

numerical increase, 90, 95

partitioning, 239

peripheral, 97

release growth, 124

Computational

complexity, 253

model, 479

Computer

adaptive population, 87

environment, 91

science, 219, 253

scientists, 237, 445

Computer-user community, 393

Computing application development, 460

Concept, code conversion process, 419

Concepts

computer application, 473

operational system transformation, 473

program methodology, 133

reasonableness, 173

simple statement, 475

Concordance, 251

Concorde, 239

Conditions, natural selection, 85

Configurable family model, 234

Configuration, 221

management, 5, 65

permitted, 224, 230

Connection, program, 249

Consensus, 475

Conservation, large program life cycle

evolution

execution laws, nature, 376

feedback consequences, increasing

understanding, 379

gross nature, 379

Index

regularity cause, 377

scientific laws spectrum place, 376

fifth law interpretation, 385

ability averaging, human interactions,

389

change and refamiliarization, 385

familiarity and statistically invariant

release content, 390

laws, 380

continuous change, 380

familiarity, 384

increasing complexity, 384

large program evolution, fundamental,

383

organizational, 168, 170

stability, 381

Consolidation effect, 176

Constraints, software managers, 422

Constructive correctness, 31

Constructs

moreefficient, 231

non-universal, 231

Continuing

enhancement, 300

maintenance, 302

Continuous evolution, 240, 245

Contraceptive advances, 157

Control

base, 56

blocks, 365, 369

modules, 365, 366

closed loop, 55

environmental, 54

evolution, 221

growth, 54

open loop, 55, 58

Corrective activity, 103, see also Release
Correctness, 201, 301, 396, 398, 441, 453,

464, 492

absolute, 406

clarification of concept, 405

judgments, 400

mathematical terms, 405

proving, 68, 165

questions, 496

Correlation, 110, 111

serial, 142, 168

Corrosion, 395

Cost, 110, 148, 492

labor, 360

model problems, 242

over-runs, 265

programming systems, 48

Index

release, 123

structure, 50

activities, 50

components, 50

Cost-effective

maintenance, 387

parameters, 250, 265, 300

replacement, 412

usage, 449

CP 67, 65

Creativity, 275

Criminal activity, 153

Critical

growth mass, 177

size, 196, 197

Cross-correlation, 110, 111

Crystallography, 237

Cumulative

handle v system age, 180, 181

models handled, 268

work, 210

work count, 211

Current-Idealized model, 443

Current programming process, 15

Curves, three classes, 126

Customer, 285

delivery, 303

involvement, 284

support teams, 433

virtual, 285

Cyclic, 178

components, 181

effects, 383

invariance, 267

pattern, 267

terms, 182

trends, 174

Cyclically self-regulating, 170

Cyclicity, 185

growth process, 175

D

DAL,147, see Documentation, accessi-
bility, and learnability

Darwin, Charles, 85, 86, 94

Data, 140, 173

abstraction, 362, 367, 369

averaged, 141, 167

environment, 92

later, 141

models handled, 209

program evolution, 203

scattered, 142

smoothed, 141

527

variations, 167

Deadinstallation, 241

Death

process, 382

rate, 157

Debug, 276, 362

Decay, 143, 150, 154, 155, 169, 256, 381,

382, 383

cumulative, 193

trends, 131

Decision-table functional definition, 76

Declaration, 420

Decomposition, 234

primitive actions, 475

process, 407

software systems, 276

Defects, 185

detection, 421
v fault, 185

Defense agencies, national, 439

Defense systems, 289

Degenerate cases, 461

Degree of concentration, 215

Degrees of freedom, 183, 190

Delay, significance of, 400

Delivery

new release, 282

problems, 434

De-pollution activities, 154
Design, 28, 29

bugs, 302

horizontal verification and validation,

484 |

machine sided, 368

model, 475

modifiability, 367

process

simplify, 470

programming-distribution-usage system,

175

Designer, 359, 386

Destruction, local information, 472

Deterioration, 383

system, 395

Deterministic approach, 336

Development

beyond target, 55

distribution work, 211

model

evolution laws, 169

formal, 185

fault penetration, 187

interpretation, 191

limited growth, 194

528

Development (continued)

management decision, 192
managementsimulation, 193

program faults, 185

programming, 165

process, 167

statistical, 170

available data, 171

observables, 172

present, 173

study basis, 170

relationship, 174

work rate, 182

size, 182

system approach, 165

Diagnostic programming, 96

Diagram, Nassi-Scneiderman, 363

Differential equations, 479

families, 149

release content and relationship, 388

Digital, 193

Dining philosophers, 397

Discipline, 393

Disciplined analysis, activities, 474

Discomfort, unfamiliarity, 415

Disorder

introduction, growth, 342, 353

reduction, structural work, 345

Distributed

effort, axiom, 101

system, 407

Distribution, development work, 211

Division, operating system, 175

Documentation, 129, 145, 147, 165, 176,

191, 202, 315, 319, 320, 441, 468

accessible, 319

accessibility and learnability, 191

capability, 459

deficiencies, 186

logging, 175

system check, 114

testing, 139

DODreport, 468, 498

Domain, interest, 475

Dortmund, University of, 331!

DOS, 294

Double abstractions, 20, 476

DP

Development Beyond Target, 55

industry growth, 293

Dragons, 133

DSM,435

Duality, system, 234

Index

DVT, 370

Dynamic

reliability, 202

storage management, 435, 437

Dynamics, program evolution, 14, 15

E

Eastern Europe, 293

E-Class, systems analysis, 444

Ecological interrelationships, 157

Economic

concept, 469

factors, 273

sciences, 376

systems, 418

Economists, 237

Economy,national, 393

Education, 80, 81

Educational systems, 159, 162

knowledge v understanding, 158

Effective productivity increase, 486

Effects

feedback, 260, 262.

inertial, 260, 261

momentum, 260, 261

Effort reduction, 488

Eight Queens, 397

inventory control, 277

Electorate, 154

Electronic Industries Association, 498

Electronic Switching Systems Division, 1

Embryonic methodologies, 63, 65

Empirical approaches, 337

Encapsulation, 290

Encyclopedia of Ignorance, 6, 237

End-user community, 294

Energy sources, 156

Engineering, 14, 285

blueprints, 363

technology, 292

Engineers, 52, 237, 289

Entropy, 118, 129, 143, 145, 147, 169, 304,

333, 336, 342

Environment

computer, 91

data, 92

Environmental support, 460

Epidemology, 238

E-program, 397, 402, 404, 405, 413, 456

A-type formation, 405

basic loop, 457

feedback loop, 402

full process, 457

Index

model of a model, 462

pressure for continuous change, 403
properties, 456

P union, 405

Equipment, peripheral, 92

Error, 169, 185, 186, 226, 284

v fault, 185

Vv defect, 185

rate models, 434

repair, 195

residual, 283

types, 99

Errors, law of numbers, 93

test programs, 96

ES, 370

Estimation step, 340

E-type

application development, 27

program, 10, 16, 19, 23, 27, 478

European space agency, 468

Evil, 315

Evolution, 60, 408, 492

artificial system, successive generation, 3
complete paradigm, 29

controlling, 221

current programming process, 15

decimal, sub-releases, 19

dynamics, 3, 37, 144, 202, 339

application of studies, 217

feedback controlled system, 16

generation, 17

historical summary, 9

ideal process, 15, 19

concept role, 27

intrinsic, 13

iteration, 23

levels, 16, 36

life cycles

applied dynamics, 418
implications, 421

case study, system X, 426

problem, 428

process dynamics, 430

system characteristics, 426

laws, 408

dynamics, 410, 413

measure, 411

nature, 417

models, 397

correctness, 405

E-program, 402

P-program, 399

S-programs, 397

529

problem, 393

programming, 393

paradigm, 32

practical process, 26

preliminary design paradigm, 32

process, 13, 19, 34, 36

program, 356

software engineering impact, 201

data, 203

development work distribution, 211

dynamic studies application, 217

effective work rate, 208

system size, 205

system T, 216

software process support, 37

SPE classification, 9-11

step paradigm, 28

successive releases, 18

systems, 14, 15

time-dependent behavior, 171

Executable model, 466, 478

Execution dynamics, 323, 356

Existence rule, 413

Exogenousinputs and pressures, 376, 378

Expenditure, 39, 40

maintenance v development, 395

projected programming, 293

Experience, 285

programming system dynamics, 105

decay, 107

' Expert systems, 158, 496

Explicit program object, 251

Exponential growth, 126, 168

Externalization, 278, 287

External

complexity, 254

structure, 370

F

Face validity, 347

Factors countering increasing growth rate,
175

Factual historic record, 461

Failure avoidance, 488

Fallacy of basic appearances, 301
Family

configurable model, 234

first, 232

highly evolutionary, 230

real life, 231

restricted, 231
Fault, 99, 112, 119, 123, 129, 302, 303,

446, 447

530

Fault (continued)

absence, 197, 452

activity sequence to repair, 101

classes, 188, 190

corrected during maintenance, 395

correction, 171

decay, 190

v defect, 185

definition, 100

detection, 113

early discovery, 486

elimination-to-residue ratio, 190

v error, 185

expected, 434

field-discovered, 325

free state, 190, 250, 321

qualitative interpretation, 191

generation, 187, 188, 189

network, 189

pattern, 188

penetration, model of, 187, 189

primitive model, 187

program, 185

rate, 145, 148, 151, 385

removal of symptoms, 179

removed, 187, 189

repair, 436

reports, 376

residual, 187, 188

sources, 100

system repair, 169

Federal aid, 154

Feedback, 309

two-loop, nested, 194

organizational level, 384

positive loops, 262

structure, intrinsic non-linear, 265

system, 211

consequences, 377

Feselen, 136

FGCS, 494-498

Fifth generation technology, see

Technology

Fifth law, 260, 262, 270, 272, 341, 420, 425

First law, 88, 178, 250, 342

Fission effect, F, 175, 176

Fitness population, 86

Five dimensional array, 487

Five laws of program evolution, 381

Fixes, on site, 440

Forecasting, 168

Forecasts, 484

Foreign languages, 287

Formal language, 71

Index

Formal specification language, 76, 198

Format, logically universal, 225

FORTRAN,62, 72, 94, 394

Fourth law, 260, 262, 266, 341, 420, 425

Fraction

active system, 213

modular function of age, 214

Free energy, 119

Full step paradigm, 33

Function f, 223-225, 229

Function, new, 108, 109

Functional components, 251

Fundamental law of program evolution,

381, 412, 413

G

G, 127, 129, 147

structure, 127

system size measure, 117, 118

Gametheory, 245

Garmisch report, 2

General system theory, 300

Generic modules, 226, 227

Genetics, 238

Geometric decay, 103

Goedel’s theorem, 243

GOTO,325

GREENPRINT, 363

Growth, 151

alternating with cleanup, 354

control, 53, 54

data, 341

dynamics, 99, 118, 123, 126, 129, 131

incremental, 430

law ofstatistically smooth cycles, 145

limits, 133, 139, 140, 143, 144, 150, 151,

153, 157, 158, 163

normalized componentperrelease, 124

normalized net instruction, 125

rate, 1, 70, 183, 341, 348, 430

trends, 166, 168

H

Handle

expected v observed, function of age,

216

rates, 172, 178, 179, 180, 181, 184, 211,

213, 215

release interval, 180, 181

Hardware

repair, 358

support, 436

systems, 395

Index

technology, 203

Heisenberg’s principle, 244

High-level languages, 72, 73, 177, 209, 213,

420

Hooton, D. R., 219

Horizontal verification, 31, 484

IBB

TSS/360 system, 1

Yorktown Heights Research

Laboratories, 149

IBM, 1-3, 39-41, 49, 51-56, 66, 71, 72, 74,

79-83, 184, 185, 200, 219, 294, 363

Clear-Caster project, 67, 70

cost control, 53

director of research, 2

maintenance organization, 360

manpower growth, 42

research division, 64, 81

system development division, 39, 40,

55, 56, 57

IBR Research Division, 221

Ideal process, 15, 16, 19, 21, 25, 37, 472

cycle, 20

step structure, 482

IFIP working group, 3

IKBS, 4, 495

Imperial College, 7, 162, 200

Imperial Software Technology, Ltd., 485

IMPexecutive, 1

Index, 232, 233, 345

Industrial

assembly line, 317

revolution, 82

Information, 355, 499

theory, 238, 332, 336

Input, 28, 175, 376, 398, 407

Interconnection topology, 129

Interface definitions, 236, 251, 326, 472

Internal complexity, 254

Inter-parameter relationships, 149

Interplay effect, 174

Inter-release interval, 172

Interrupts, 474

Intra-system communication, 313

Invariance, 177, 183, 266, 268

Invariant

statistically, 384

work rate, 381, 412

IPSE, 117, 485

IPSES, 116

531

IR factors, 431

IST, 485

Iteration, 23, 171, 173

ideal process, 25

reduction, 488

ITS

delay, 431

facility, 428

low interconnection ratio, 433

release, 434, 435, 436

Japan, 51, 74

Japanese fifth generation plan, 491

K

Knowledge, 166, 277, 491

v understanding, 158

L

Language(s), 69, 71, 72, 74, 75, 77, 165,

296, 394, 423, 445, 473

Largeness, 248, 249, 261, 413

concept, 397

definition, 397

programs, 253, 258, 262, 290, 326, 356,

375, 413, 418

software, 279, 284

systems, 6, 273, 280, 289, 313, 321, 471

Law of conservation of familiarity, 381,

412-413

Law of continuity of change, 143, 250,

252, 412, 413, 380

Law of evolutionary potential, 87, 97

Law of increasing complexity, 253, 381,

412-413

Law of increasing entropy, 143

Law of incremental growth limits, 270,

272, 384, see also Law of conserva-

tion of familiarity

Law of invariant work rate, 266, 269, 384,

see also Law of organizational
stability

Law of organizational stability, 384,

412-413

Laws of program evolution, 169-170,

247-257, 260, 263, 266, 269, 270,

272, 408, 412

Lawofstatistically regular growth, 257,

260, 263

Law ofstatistically smooth growth, 143,

532

Law ofstatistically smooth growth (continued) —
170, 383, see also Fundamental law

of large program evolution

Law of supply and demand, 376

Lead times, programming systems, 49

Life cycle, 154, 174, 368, 393, 438

concept, 469

costs, 252, 301, 304, 312

distribution, 396

history, 264

management, 252, 438

methodology research process, 441

phases, 444

significance concept, 442

software, 372

Life-span system, 17

Localization of change, 488

Logically universal format, 225

London model, 151

London University, Imperial College of

Science and Technology, 4

Long life system, production, 476

LSI, 48, 72, 75, 77, 273

LST, 486

M

Machine aided design, 368

Machineerrors, 89

Macro-model, 100, 126, 131, 147

deductions, 116

dynamic, 148

Magnetic tape error routines, 89

Maintenance, 12, 275, 446

life cycle oriented, 257

phase, 461

process, 383

v redesign, 358

staff requirements, 279

teams, 179

Management, 77, 79, 108, 155, 156, 193,

289, 350, 351, 375, 421, 424, 458

Manufacturing, 356

process, 321, 492

Marketing

considerations, 433

requirements, 359

Mathematical model

equations, 345

mathematics, 292

parameter trajectories, 346, 348

proof standards, 405

software evolution, 339, 340, 343, 344,

346, 347, 348, 350, 352, 354

variables, 345, 346

Index

Matrix

calculations, 89

connectivity, 366

two-dimensional, 365
MEL,370

Meta-dynamics of systems in maintenance

and growth, 99, see also Program-

ming system dynamics

Meta-knowledge level, 496

Meta-stable plateau

evolutionary process, 421

Metasystem, 141, 143, 147, 168, 170, 418

dynamics, 410

invariance, 177

organization, 411

Methodology, 59, 62, 63, 65, 82, 148, 150,

180

Micro-code, 319

Micro-model, 100, 111, 117, 118, 129

Micro-processor, 322, 328, 329, 393, 407

distributed systems, 418

technologies, 273

Micro-theory, 118

Minimax strategy, 246

Mission concept, 64, 65

Modula 2, 480

Modules, 172, 211

changed, 432

fraction, 259, 260

function of age, 214

growth, 176

overlapping, 326

per day, 168

program measure, 343

specification uncertainty, 408

versions, 227, 228

Multi-dimensional space, 469

Multi-level model, 64, 65

Multiloop feedback, 177

Multiprocessing, trend, 96

Multivariate regression, 168

Mutations, 27

frequency, 410

Mutual adaptation relationships, 91

MVS,223

N

NASAproject engineering, 65

Nassi-Scneiderman diagram, 363

Natural language, 71

Natural selection, 85, 87, 90, 91, 95

Nested representations, 363

Node, 188, 190, 336

Non-linear growth, 168

Index

Non-universal constructs, 231

Notation, unambiguous, 483

N-point average, 128, 130

NS diagram, 363

O

Oil royalty accounting, 89, 92

Open loop control, 55

OMEGA,294

Optimal structure management, 353

Optimization, 322, 323

Optimum performance, 323
Organizations, 415

human, 277

Original implementation, 101, 102

Orthogonal, 482

natural process functions, 471

OS/360, 3, 5, 44, 166, 167, 170, 172, 175,

177, 182, 222, 294, 357

complexity, 47

growth, 81

average rates, 46

table, 45

OS/370, 222, 294, 357

selectable units, 223

VTAM component, 362

Oscillations

damped, 351

growth rate, 341

Output

accuracy, 407

growth limits, 152

Output model, 28, 242

Overlapping modules, 226

P

Perceived complexity, 386, 412

Peripheral equipment, 92

Permitted

actual systems, 228, 230, 231

description, 229

configurations, 222, 223, 224, 230

Phase-products, 461

Phase review, 62

Phenomena, 166

discussion, 411

interpretation, 260

law basis, 418

model, 479, 480

programming, 418

Phenomenology, 291

increased, 389

533

science: transition, 391

Phosphorous images, green, 363

PL/1, 72, 74, 76, 363, 368, 394

PL/1-like macros, 74

Positive feedback loops, 262

Potentially interacting modules, 48

P-programs, 397, 399, 400, 401, 405, 413,

454

A type formation, 405

E union, 405

process, 455

PREVAIL-ON,232, 233

Problems, 498

areas, 492

complex, 331

parts number, 5

requirements, 492

statement, 475

Procedure protocol, 420

Product dynamics process, 247

Productivity, 69, 127, 150, 469, 471, 485

increased, extending maintenance period,

477

programming, 68, 80, 281, 282, 312, 393,

409, 459

activity rate, 266

development support, 57

evolution dynamics, 170

Program, 91, 92, 165, 225, 314, 346, 406,

409, 444, 454, 460, 465

complexity, 245

development model, see Development

model

evolution, see Evolution program

execution rate, 409

growth dynamics, 5, 340, see also Pro-

gram evolution dynamics

maintenance, 165, 241, 395

methodologies, 395, 419

models, 397, 399, 402, 476

structures, 406

systems, 313

temporary fixes, 222, 223, 225, 226, 341

verification, 452, 454

Programmer, 41, 52, 80, 317

average, 389-390

productivity, 51, 52, 344

projected population, 293

Programming, 39, 48, 49, 51, 52, 165, 167,

470

growth, 39, 54, 55, 56

cost, 39, 48, 49, 51, 52

systems, 41

534

Programming (continued)
language, 71, 74

advantages, 72

aspects, 71

BSL, 74

formal specification, 76

level, 71

linguistic wealth, 75

present practice, 71

management, 77

dynamic structure, 79

methodology, 59, 60, 62, 63, 65

model, 473

tools, 66

development, 67-69

productivity

alternative process decomposition, 473

computational model, 479

current process, 471, 485

implications, 485

measures, 469

model, 473, 478-481

primitive decomposition, 475

third level, 478

transformations sequence, 476

Program-system-models as commonstarting

point, 76

Progressive activity, 149, 151, 152, 154,

155, 163

Vv anti-regressive work, 339, 342

city life, 153

complementarity, anti-regressive, 150

conflict and balance, 154

education, 158

Project

constraints, 383

IMP1, phase three, 2

planning, 459

statistics, 167

successful, 263

team, 343

Prolog program, 493, 496

Propriety systems, 459

PSE, 458

data base, 467

design, 465

executable models, 464

properties, 468

tool supported models, 466

Pseudo-hierarchical structure, 408

PTF, 222, 223, 226, 231, 232, 235, 341, see

also Program, temporary fixes

P-type program, 10, 478

Index

Q
Quadratic form, 178

Quantification, complexity, 335

Quantum

jump, 314

physics, 244

QUEUE,370

Quicksand, 396

R19, 434

R20, 429, 435

change rate needs, 434

plan analysis, 431, 436

R21, 433

experimental release, 438

R22, 438 |

general release, 435

Radio links, 402

Randomtransient events, 410

R and D, 82, 492

Reachability measure, 335

Real-life, 194, 196

family, 231

use patterns, 282

Real world, 60, 244, 291, 377, 478

approximations, 399

context, 400

phenomena, 454, 479

problem solution, 399

problem-systems complexity, 60

Recreated v dynamically changed program,

412

Recycling, 157

Redesign, 280, 304

Vv maintenance activity, 358

staff requirements, 279

Refamiliarization difficulty, 389

Refinement, defined, 32

Regression, 166

Relational description of permitted actual

systems, 229

Relationships

inter-parameter, 149

nature, 174

Relativity, program complexity, 254

Relays, 89

Release, 18, 44, 101, 116, 123, 141, 147,

167, 168, 171, 174, 175, 176, 177,

180, 188, 211, 217, 283, 295, 341,

353, 385, 386, 387, 417, 421, 434,
446

Index

budget allocation, 112

consecutive, 166, 294

continuous, 440

cyclic growth, 176

degree overlap, 180

extreme instance, 440

internal, 180, 182, 211

interval, 105, 111, 115, 183, 201, 272

modules handled, 213, 215

number, 146, 181, 184

planning two, 352

OS/360-370, 357

period, 433

overlap, 211

rate, 180

saturation point, 357

sequence, 439, 440

numbers, 168, 171, 172, 175, 179, 260

successive, 126, 353, 381

system, 420, 428

target date, 174

timing, 352

two, 353, 385

Release-cycle period, 258

Relevance

output, 456

program, 406

Reliability

dynamic managementstructure, 79

multi-function program, 202

Repair, 129, 148, 279, 318

Repository, 32

Representational model, 461, 476, 478

programming process, 476

Representation, nested, 363

Requirements, 492

contradictory, 324

development, 466

model, 478

Research and Development, 82, 219, 492

Research in operating systems, 360

Restoration system, 395

Restricted sub-sets, 77

Review, phase, 62

Reward, complexity reduction, 282

Right profile module, 370

RJE

addition, 433

facility, 435

Riordon’s complexity function, 343

RSN, 171, 175, see also Release sequence

numbers

535

S

Saturation point, 357

Scheduler, 314

Science Research Council, 220

Scope rules, 420

Scoping, program, 362, 363

S-curve, 180

Secondary repairs, 112

Selective breeding, 87

Self-documentation, 319

Self-stabilizing feedback system, 175, 267

Sequence of activities, 440

Sequence transformations model, 476, 477

Serial growth trend, particular attribute,

168

Short-term cyclic effects, 174

Signal-flow-graph, 195

Simulators, 276

pilot training, 466

Sledge hammers, 409

Slipped release, 176

Smooth data, 126, 141

Socio-economic systems, 14, 261, 301, 377

Software

change, 280

complexity

categories, 332

examples, 335

meaning, 343

measures, 173

summary, 337

creation, 383

engineering, 7, 65, 170, 201, 218, 254,

273, 296, 312, 321, 327, 329, 375,

377, 419, 439, 448, 459, 460, 473

applied, 291

community, 327, 360

concept, 3

discipline development, 473
industry, 439

measurement, 291

Yorktown, 360

factory, 224

families, 221, 227

industry, 417

interfaces, 328

maintenance, 280

manager responsibility, 423

normalized cost, 276

organization, 299

physics, 173

process

536

Software (continued)
knowledge, 315

technology, 498

repair, 358

services, 316

system, 301

development, 474

engineering, 472

nature, 324

properties, 470

technology, see Technology

tools, 459

S-shaped curve, 417
Solar energy, 157

Solution model, 475

defined, 475

identification, 477

Sorting, 459

Spanning tree, 336

SPE, 452

program classification, 405, 407

Speciation, 94

Specification, 326, 420

authoritative, 453

code, 464

error, 407

formal, 76

model, 479, 483

process, 445

system module, 420

S-program, 398, 400, 407

A-program elements, 406

code inspectors testing, 452

correctness, 405, 406

full process, 455

specification, 397

verification, 454

Stabilization time, 272

Staffing problems, 275, 287

Stateplane trajectories over tworeleases,

353

Steady state, 190

Step

paradigm, 28, 482

code, 28, 30

structure, 482

Stepwise refinement, 474

process, 489

Stochastic, 170, 174, 178

components, 180, 181, 270

locally, 170, 306

modelled, 248

terms, 182

Index

variations, 140, 167

growth trend measures, 144

Stock control, 402

system, 315

Stoneman

programming support, 423

proposal, 459

Street modification, 355

Strong typing, 420

S-type program, 9, 23

SU, 223

Subactivities, 111

Subdivision of labor principle, 277

Sub-releases, 19

Sub-step paradigm, 32

Sun, 156

Synchronization, 283

Syntax-oriented documentation, 65

SYSGEN program, 235

System

age, 182, 309

approach, 165

architecture, 258

behavior optimization problem, 322

characteristics, 414, 416

complexity measure, 211

configuration, 447

continuous dispatcher, 402

delivery, 282

design, structure model, 480

evolution observables, 172

families model, 221, 225, 228, 231

fission, 391

generator (SYNGEN), 235

integration, 171

management, 309

modification program (SMP), 235

module parameters, 172

performance execution dynamics, 322

pollution, 325

release, 222

restoration, 395

size, 205

age, 206

declining growth rate, 181

history, 205

indicators, 295

parameters, 172, 205

structuring process, 480

technology, see Technology

test, 446

totality, 387

tuning, 359

Index

ultimate, 475

Systemization techniques, 496

System-relative stochastic influences, 174

Systems-programming language, 74, 75

T

Table-driven design, 209
Target system, 471

Technology, fifth generation, systems

and software

problem areas, 492

complexity, 494

correctness, 496

cost, 497

evaluation, 493

identifiers, 492

requirements, 492

responsiveness, 497

understanding, 494

VLSI, 492

Technology-oriented programming

methodology, 62

Telecommunications support, 435

Test, 165, 419, 464

designers, 177, 302

fit, 173

programs, 96

run, 283

Tester, 386

Theory, program evolution, 27

Thermodynamics, second law, 129, 238,

255, 304, 382, 413

THE system, 474

construction method, 475

partitioning, 474

Three-dimensional indexing scheme, 233

Three-release cycle, 180

Time, 129, 166, 193, 304

behavior, 151

cost per unit, 193

dependentrelationship, 149

devoted, software maintenance, 303

integral, 108

interval, 88, 123, 346

Over-runs, 385

series models, 141, 168

Tools, 66, 242, 250, 256, 263, 269, 286,

471, 493, 498

accessible, 460

conceptual, 354

control, 383, 396

integrated families, 67

languages, 394

537

life cycle management, 377

maintenance, 395

management, 247

modifying, 360

new needs, VITAM,365

planning, 383

refine existing, 361

support, 460

Tool-oriented processes, 66

Tool-supported total process, 464

Top-down analysis, 472

Total-process-oriented methodology, 62, 68,

71

formal specification step, 76

Total-system oriented methodology, 80

Tower of Babel, 287

Traditional indicators, 292

Trajectories, stateplane, 353

Transformation

compound, 474

procedures, 497

sequence, 476

simple, 474

Transformational-step paradigm, 483

Transportation system, 301

Trends, 166, 178

cyclically self-regulating, 257

long-range, 170, 306

long-term, 174, 175

non-linear, 217

oscillatory, 217

present, and workrates, 180

projected, 292

systems, 140, 141

T-region threshold, 390

TRUE, 223, 230

TSS-360, 69, 70

Turn-around time, 239

Two-dimensional indexing scheme, 232

Two-level hierarchy, 314

Type rules, 370

U

U, constant, 349, 350

Ultimate system, 475

Unbundling, 53

Uncertainty, 243

complexity measure, 342

coping technology, 495

develop, 441

evolution cause, 408

principle, 244

Understanding, 166, 242, 493, 494

538

Understanding (continued)
- anti-regressive activity, 159
attributes, 159

demonstration, 160

insight, 159

need, 161

Orientation consequences, 161

total, human, 494

Unlimited growth potential, 182

Union controls, 384

Unit change, 209, 396

Unit cost, 282, 396

United States, 39, 43, 161, 355, 373, 497

computer and programmercensus, 293

GNP,393

1977 programming expenditure, 393, 395

Univariate regression, 168

Unplannedrelease, 176

USSR, 293

Vv

Validation, 31, 35, 66, 484

judgmentalactivity, 464

mathematical model, 347

based on measurement, 464

methods, 476

process, 454

Value judgments, 399

Variation, 86

program statistics, 299

Variety, 248, 291, 300

imperfection generated, 302

large program property, 375

perfection generated, 300

uncertainty related, 333

VDU, 359

specific type, 397

terminals, 363

Verification, 68, 76, 302, 464

consistency and completeness, 464

methods, 476

partial, 496

simple, 496

vertical, 31, 483, 484

Vertical verification, 31, 483

transformation process, 484

Victoria and Albert Museum, 133

Viewpoint model, 438

Virgin territory, 285

Index

VLSI, 4, 13, 491

hardware, 492
VonNeuman, 496

software, 493

techniques, 496

VTAM,362, 372

existing system, 362

experimental redesign, 369

function after redesign, 370

research vehicle, 362

subcomponents, 365

WwW

Walkthrough, 446

Waste, 276

Waste collection, 157

Waterfall model derivatives, 473

Weatherprediction, 399

Welding guns, 409 |
Western world, software community, 395

Wirth, 32

Work curve, 108

budget controlled, 108, 109

Work force reduction, 197

Work-input rate, 296

Work-output

average rate, 253

constant rate, 146

Workrate, 180, 209, 266, 268, 270, 425

function of age, 212

declining, 185

invariance, global, 268

peak, 430

present trends, 180

pressures, 432

process dynamics, 430

second operating system, 184

Worst case, 354

X

XPL/I, 368

Y

Yorktown model, 147

Z

Zero tolerance, 422

Zoom lens, 461

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A.P.I.C. Studies in Data Processing
General Editors: Fraser Duncan and M.J. R. Shave

Software Engineering

R. J. Perrott

Computer Architecture: A Structured Approach
R. W. Doran

Logic Programming

Edited by K. L. Clark and S.-A. Tarnlund

Fortran Optimization*

Michael Metcalf

Multi-microprocessor Systems

Y. Paker

Introduction to the Graphical Kernel System—GKS
F. R. A. Hopgood, D. A. Duce, J. R. Gallop and D.C.Sutcliffe

Distributed Computing

Edited by Fred B. Chambers, David A. Duce and Gillian P. Jones

Introduction to Logic Programming

Christopher John Hogger

Lucid, the Dataflow Programming Language
William W. Wadge and Edward A. Ashcroft

Foundations cf Programming

Jacques Arsac

Prolog for Programmers

Feliks Kluzniak and Stanislaw Szpakowicz

Fortran Optimization, Revised Edition

Michael Metcalf

PULSE: An Ada-based Distributed Operating System
D. Keeffe, G. M. Tomlinson, I. C. Wand and A. J. Wellings

. Program Evolution. Processes of Software Change
M. M. Lehman and L. A. Belady

*Out of print.

