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On the rheology of cats
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In this letter I highlight some of the recent developments around the rheology of Felis catus, with
potential applications for other species of the felidae family. In the linear rheology regime many
factors can enter the determination of the characteristic time of cats: from surface effects to yield
stress. In the nonlinear rheology regime flow instabilities can emerge. Nonetheless, the flow rate,
which is the usual dimensional control parameter, can be hard to compute because cats are active
rheological materials.

παντα ρει! Everything flows! This famous aphorism
used to characterize Heraclitus’ thought is also the motto
of rheology. “Everything flows and nothing abides; ev-
erything gives way and nothing stays fixed.” a recipe for
insubordination actually from Simplicius and Plato. Ev-
erything flows? Well, it depends on the definition of a
flow ; if sufficiently general, there is no doubt that there
are no exceptions to the rule! What is a flow? What is
a fluid? As pointed out from the start by Reiner, the
essential value of rheology is to recognize that states of
matter are a matter of time(s). The first time, is a time
of observation T . What is true today may not be true
tomorrow. Time over time, one day 49, the next 50.
Historically, the popular distinction between states of

matter has been made based on qualitative differences
in bulk properties. Solid is the state in which matter
maintains a fixed volume and shape; liquid is the state
in which matter maintains a fixed volume but adapts to
the shape of its container; and gas is the state in which
matter expands to occupy whatever volume is available.
Following these common sense definitions, a meta-study
untitled “Cats are liquids” was recently published on
boredpanda.com. I propose here to check if the panda’s
claim that the cats are liquid is solid, by using the tools
of modern rheology.
First of all, ‘maintains’, ‘adapts’ or ‘expands’ are verbs.

They describe actions unfolding with a characteristic
time scale τ , which we will call relaxation time. From
T and τ we can define the Deborah number as:

De ≡ τ

T
(1)

Usually T is just the duration of the experiment, but for
oscillatory flows it is the inverse of the frequency (and
thus De is analogous to a Strouhal number). The re-
laxation time τ can have a variety of origins. When one
seeks the difference between gas and liquid, ‘relaxing’ will
mean ‘expanding’ and so τ will be linked to the charac-
teristic rate of expansion of the material. The expansion
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FIG. 1: (a) A cat appears as a solid material with a consis-
tent shape rotating and bouncing, like Silly Putty on short
time scales. We have De � 1 because the time of observa-
tion is under a second. (b) At longer time scales, a cat flows
and fills an empty wine glass. In this case we have De � 1.
In both cases, even if the samples are different, we can es-
timate the relaxation time to be in the range τ = 1 s to
1 min. (c-d) For older cats, we can also introduce a charac-
teristic time of expansion and distinguish between liquid (c)
and gaseous (d) feline states. [(a) Courtesy of http://cat-
bounce.com, (b) http://www.dweebist.com/2009/07/kitten-
in-wine-glass/, (c) http://imgur.com/gallery/UuNSR, (d)
http://imgur.com/s7JtV ]

is a type of flow. In this case, we will say that we have
a gas if De � 1. When one seeks the difference between
liquid and solid, ‘relaxing’ will mean ‘adapting’ and so τ
will be linked to the characteristic rate of adaptation of
the shape of the material to its container. The adapta-
tion of the shape of the material is a type of flow. In this
case, we will say that we have a liquid if De � 1. Solids
‘maintain’ their shape and volume, i.e. they do not flow.
But solids can be deformed under stress. Note finally
that any flow is intrinsically made of deformations.

As illustrated in Fig. 1a, for De � 1 a cat appears
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FIG. 2: (a) Extensional rheology of a cat before capillary break-up. (b) Cat on a superfelidaphobic substrate showing
a high contact angle. (c) Tilted jar experiment showing the yield stress of a kitten. (d) Spreading of a cat on a very
rough substrate. (e) Low affinity between cats and water surfaces. (f) Sliding cat on smooth floor. (g) Adhesion of
a cat on a vertical wall. [Courtesy of (a) facebook.com, (c) http://metro.co.uk/2011/02/18/ksyusha-the-kitten-is-cat-in-a-
jar-639735/ , (d) http://www.theyfailed.com/cats-sleep-anywhere/, (f) http://www.mirror.co.uk/news/world-news/youtube-
watch-hilarious-viral-of-two-882779, (g) http://amazinghandpaintedmurals.com/picture gallery - page 3]

solid, whereas for De � 1 it seems liquid. From these
preliminary experiments, knowing T we can estimate the
relaxation time to be in the range τ = 1 s to 1 min,
for normal cases of Felis catus. Note that the samples
used in Fig. 1a-b are relatively young. Older cats may
have a shorter relaxation time, and thus become liquid
more easily than agitated kittens, for which τ can reach
values as high as a few hours. The assumption of incom-
pressibility may also fail for older cats, which can acquire
gaseous properties like in Fig. 1c-d. In this letter, we will
tend to ignore this thixotropic behavior. There’s an old
saying in investing: even a dead cat will bounce if it is
dropped from high enough. Where, of course, the dead
cat bounce refers to a short-term recovery in a declining
trend.

Overall, the Deborah number is the dimensionless ex-
pression of the concept of linear viscoelasticity. The
greater the Deborah number, the more elastic/solid the
material; the smaller the Deborah number, the more vis-
cous/fluid it is. Thus, rheology suggests only two states
of matter: solids that deform; and fluids that flow. Both
gases and liquids flow, they are fluids, the first compress-
ible, the other incompressible. In general, both the fluid-
like and the solid-like properties of a material can be
complex, in the sense that the solid part may not be
purely elastic, and the fluid part may not be purely vis-
cous. For simple incompressible and athermal molecular
fluids, the relaxation time will simply be the viscous dis-
sipation time τ = δ2/ν, where δ is the thickness of the
momentum boundary layer and ν is the kinematic vis-
cosity. For more complex fluids, τ can have a large range
of origins, which often require chemistry and/or biology
to be well understood.

In the first part of this letter I wish to highlight the
potential factors that have to be taken into account in
computing the value of τ for cats. Fig. 2a shows the cap-
illary bridge formed during extensional rheometry of Felis
catus. First, in the introduction, we assumed τ to be a
scalar, but it can have a higher dimensionality. Usually
the time scale is considered as a contribution to viscos-
ity, which in the most general case is a tensor of rank
2. For simple incompressible fluids symmetry considera-
tions reduce this tensor to a scalar. The extensional vis-
cosity is simply 3 times the shear viscosity. For complex

fluids, the extensional viscosity can be orders of mag-
nitude different, usually larger than the shear viscosity
for polymeric materials. For cats, the determination of
the Trouton ratio is complicated but the situation seems
opposite. In the absence of reliable extensional rheol-
ogy data, we can only point to the fact that when cats
are deformed along their principal axis, they tend to re-
lax more easily, suggesting that the extensional time is
smaller than the shear time. Transient strain-hardening
can nonetheless occur. Second, because, flows of cats are
usually free surface flows, the surface tension between the
cat and its surrounding medium can be important and
even dominant in the rheology, especially in CATBER
(Capillary thinning and breakup extensional rheometer)
experiments. The catpillary number becomes important
τ = f(Ca), with Ca ≡ ηU/γLV , where η is the shear
viscosity, U is a characteristic flow velocity and γLV is
the surface tension (not to be confused with the defor-
mation). Let us recall that even water droplets bouncing
on hydrophobic substrates can behave elastically, with a
response time τ =

√
ρR3

0/γ, where ρ is the density and
R0 the size of the drops. When the fluid is complex, the
situation can be even more entangled.

The wetting and general tribology of cats has not pro-
gressed enough to give a definitive answer to the capillary
dependence of the feline relaxation time. Fig. 2b gives
an example of a lotus effect of Felis catus, suggesting
that the substrate is superfelidaphobic. This behavior is
usually distinguished from the yield stress that cats can
also display, as shown in Fig. 2c, where the kitten cannot
flow because it is below its yield stress, like ketchup in
its bottle. It is still unclear what physical and chemical
properties generate superfelidaphobicity, but a Cassie-
Baxter-like model seems plausible. Here, the roughness
of the cat’s fur would be as determinant as the roughness
of the substrate, but probably with somewhat opposite
effects. Indeed, cats are often found to spread on rough
substrates as seen in Fig. 2d, but they have low affinity
for substrates that smooth their fur, like water in Fig. 2e.
Significant wall slip and shear localization can also be in-
volved in some experiments, like shown in Fig. 2f, where
there is a very significant relative velocity between the
substrate and the cat. Counter-intuitively, gravity seems

(continues page 30)
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FIG. 3: (a) A cat spontaneously rotates in a cylindrical jar.
(b) Normal forces and Weissenberg effect in a young sam-
ple of Felis catus. [Courtesy of (a) http://guremike.jp/, (b)
http://buzzlamp.com/10-weird-places-cats-get-stuck-in/]

to enhance adhesiveness, as shown in Fig. 2g.
In the last part of this letter, I wish to discuss the possi-

bility of flow instabilities in Felis catus. Linear viscoelas-
ticity conceptualizes the fact that if its Deborah number
is small a material is flowing. The physics of flow instabil-
ities warns us that, as the characteristic rate of deforma-
tion γ̇ increases, non trivial secondary flows emerge and
eventually become chaotic. Here, the important dimen-
sionless number will be the Reynolds-Weissenberg num-
ber (a sort of Péclet number):

Rw ≡ τ γ̇ (2)

The limit Rw � 1 defines the laminar base flow. Non-
trivial secondary flows will usually appear around Rw ∼
1. Finally, the flow will be turbulent if Rw � 1. For sim-
ple fluids, the relaxation time is the viscous dissipation
time, the driving force of instability is inertia and the
dimensionless number is just the usual Reynolds num-
ber Rw = Re. For more complex fluids in creeping flow
(Re = 0) recent progress on instabilities in viscoelastic
polymers and micelles solutions suggests that the rele-
vant dimensionless number is the Weissenberg number
alone, i.e. Rw = Wi if Re = 0. In this case elastic
turbulence can be achieved without inertia. We speak of
viscoelastic flow instabilities.

When taken in its philosophical form, “panta rhei” is
the theory of motion: the belief that everything is dy-
namic and that the state of rest is illusory. But for cen-
turies, this ontology was superseded by Aristotle’s view-
point. He posited that in the absence of an external mo-
tive power all objects would come to rest and that moving
objects only continue to move so long as there is a power
inducing them to do so. Modern physics started when
Galileo and his followers put an end to Aristotle’s dogma
by showing that, unless acted upon by a net unbalanced
force, an object will maintain a constant velocity. This
was key to the realization that motion is relative and
preceded by the more fundamental concept of frame of
reference, e.g. the train moves with respect to the frame
of the platform, but the platform moves with respect to
the frame of the train. Note that even if rheologists have
taken Heraclitus’ doctrine as their motto, they depart
from his thoughts by a paradoxical but useful conception

of motion or flow, alternatively faithful to Aristotle or
Galileo.

Simple fluids like water are “passive”, they continue
to move or deform so long as there is a power inducing
them to do so. In this case, the typical flow rate γ̇ is sim-
ply imposed by the operator and Rw is a natural control
parameter. For cats, assuming we have a well-defined
relaxation time τ , computing Rw is still challenging be-
cause defining γ̇ can be difficult since cats are “active”
materials. They have their own motive power. Like other
biologically active materials (acto-myosin gels, bacterial
swimmers, epithelium, packs, flocks, schools, etc.), they
can exhibit spontaneous rotation as shown in Fig. 3a.

Despite these difficulties, the question remains: are
cats prone to flow instabilities when Rw increases? In
a cylindrical flow geometry, instabilities in the purely in-
ertial case (i.e. Rw = Re) and in the purely elastic case
(i.e. Rw = Wi) lead to vortex flows. In the inertial
case, the centrifugal force drives this instability and is
also responsible for the deformation of the top free sur-
face, which climbs up the outer walls of the cylinder. In
the purely elastic case, the mechanism is opposite: cen-
tripetal normal forces (“hoop stresses”) drive the insta-
bility and are also responsible for the Weissenberg effect,
where the fluid climbs at the center of the free surface.
In general, both inertial and elastic effects can occur. In
flows of Felis catus, significant normal forces can occur
and they seem to be able to drive a Weissenberg-type
effect, as shown in Fig. 3b.

In conclusion, much more work remains ahead, but
cats are proving to be a rich model system for rheolog-
ical research, both in the linear and nonlinear regimes.
Standing questions include the potential implications of
the rheology of cats on their righting reflex, and whether
the nonlinear self-sustaining mechanism for turbulence
in pipe is applicable to streaks of tigers. Very recent ex-
periments from Japan also suggest that we should not
see cats as isolated fluid systems, but as able to transfer
and absorb stresses from their environment. Indeed, in
Japan, they have cat cafes, where stressed out customers
can pet kitties and purr their worries away.
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