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Abstract—We study optimal smart contract design for moni-
toring an exchange of an item performed offline. There are two
parties, a seller and a buyer. Exchange happens off-chain, but the
status update takes place on-chain. The exchange can be verified
but with a cost. To guarantee self-enforcement of the smart
contract, both parties make a deposit, and the deposits must
cover payments made in all possible final states. Both parties have
an (opportunity) cost of making deposits. We discuss two classes
of contract: In the first, the mechanism only interacts with the
seller, while in the second, the mechanism can also interact with
the buyer. In both cases, we derive optimal contracts specifying
optimal deposits and verification policies. The gains from trade
of the first contract are dominated by the second contract, on the
whole domain of parameters. However, the first type of contract
has the advantage of less communication and, therefore, more
flexibility.

Index Terms—Smart Contracts; Deposit Design; Costly State
Verification;

I. INTRODUCTION

Smart contracts offer a new way of implementing eco-

nomic mechanisms.1 A smart contract uses trust in distributed

consensus as a substitute for a trustworthy mediator that is

usually assumed in classical mechanism design. In a classical

mechanism, a trustworthy mediator enforces the rules of the

mechanism and calculates, based on the information provided

by the participants, an allocation of resources. The mediator

can be an auctioneer, an intermediary in a platform market,

a court that enforces rules. In contrast to this, a mechanism

encoded in a smart contract is hard-wired to perform the

rules of the mechanism. The rules of the mechanism are self-

enforcing. In particular, commitment can be encoded in the

protocol. In the case of an item exchange, a popular application

of smart contracts, commitment is achieved by paying deposits

in the contract.

We thank Robert M. Townsend, Dan Cao, Ariah Klages-Mundt and par-
ticipants of ECB P2P Financial Systems (2019) workshop for their valuable
feedback.

1Smart contracts are programs written in a Turing complete language and
executed in a blockchain environment. [8] describes the first implementation
of smart contracts in the Ethereum environment. Recent development allows
smart contracts to be fed a trustworthy data from public databases, to make
them more efficient for the usage, see [21].
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2 Smart contracts give rise to interesting design questions

that have not usually been considered in the mechanism

design literature. In classical mechanism design, information

is elicited, and allocation and transfers are implemented and

enforced by the mechanism designer. Any necessary transfers

are made immediately at zero transaction cost and are interme-

diated by the mechanism designer. In a smart contract, deposits

are made before the contract is executed and all transfers made

between the parties have to be taken from the initial deposits.

Collaterizing the contract reflects the concern that agents can

walk away from the contract at any time and commitment to

participate after having agreed to do so cannot be enforced.

On the downside, depositing involves an implicit cost for the

participants in the smart contract: This can be the opportunity

cost of not using the deposit while the contract is executed,

borrowing costs of the agent, risk of loss of the deposit if

the consensus protocol fails. In particular, mechanisms that

use punishment through huge negative transfers in case of

”miss-behavior” of agents would be impractical. Even though

the punishments are only executed off the equilibrium path,

sufficient deposits have to be made in order to make the threat

of punishment credible. This would make such mechanisms

very costly to implement as a smart contract.

In this paper, we study the design of optimal smart contracts

as a mechanism design problem. We study this question in

a context motivated by a practical problem. A file exchange

smart contract platform with deposits, such as FileBounty3, or

BitBay ,4 mediates the exchange of a file between a seller and a

buyer of a file, requiring deposits from both sides of the trade.

Sending the file is costly and the contract has to incentivize the

seller to send the file to the buyer. The smart contract uses (the

threat of) a costly verification procedure to incentive the file

exchange. Examples of such verification procedures include

revealing some contents of the file on a publicly available web

page, together with the magnet link to a file which can only

be downloaded by the buyer, or some physical (video, photo)

proof which is checked by some randomly chosen nodes of

2We are not claiming that a smart contract is the only way for contracting
parties to enforce actions. There might be other mechanisms to enforce the
contract in case of misbehavior (account suspension, reputation damage if the
identity is known, legal enforcement, etc.). However, smart contracts provide
mechanisms for enforcement when these other mechanisms are not readily
available or costly.

3https://chainsolutions.com/filebounty-protocol/
4https://bitbay.market/double-deposit-escrow
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the blockchain network in exchange for financial payoff (an

”oracle” in the blockchain parlance) to reach a consensus on its

validity, in a similar manner as consensus is achieved in proof

of stake blockchains. 5 We consider the size of the deposits as

part of the design problem and analyze optimal smart contracts

where the opportunity cost of deposits is taken into account

when designing a contract.

We provide a rigorous analysis of the problem as a mech-

anisms design problem. Social welfare is optimized subject

to incentive and participation constraints and characterize the

optimal contracts. We consider two possible scenarios that

differ in how much communication is feasible: in the first,

the contract only interacts with the sender of the item. In

this case, the seller can be monitored and be asked to prove

whether he has sent the item. Proving is costly. We derive an

optimal monitoring policy and optimal deposits. In the optimal

contract, the sender is monitored with a probability that is

increasing in the opportunity cost of depositing and decreasing

in the cost of monitoring. Payments to the sender can be condi-

tioned on whether he is monitored or not. There are two focal

contracts within the class of optimal contracts. In the seller

optimal contract, the payments when monitored and when not

monitored are the same. In the buyer optimal contract, the

seller is only paid if he is monitored and otherwise receives

no transfer. It is worth noting that the optimal probability that

the monitoring happens does not depend on the valuations of

the players. On the other hand, for the implementation of the

mechanism, we still need to know the valuation of the seller,

but not of the buyer.

In the second scenario, the contract can also interact with

the buyer and the contract uses the signals from both players.

If communication with the buyer is allowed, the threat of

monitoring is sufficient to induce truthful behavior. First, we

show that monitoring is required, at least with some positive

probability, to be able to distinguish between two states.

Otherwise, during the execution of the contract, multiple

equilibria can arise some of which do not induce exchange

of the item. In the monitoring equilibrium, the buyer reveals

whether the item has been sent or not. If the cost of verification

is low, the only deposit has to be made by the buyer, which

would be taken away by the seller if he is monitored and he

proves, or if he is not monitored. If the cost of verification is

high, both the seller and the buyer need to deposit an amount

such that the sum of deposits covers the cost of verification.

Again there can be different optimal contracts that are more

or less favorable for the seller or buyer. If the buyer deposits

more, then the seller receives a) a higher price and b) can

deposit less money, as the opportunity cost of forgoing the

price provides incentives for him to prove if monitored. With

a low cost of verification, though, there is just one optimal

5 [12] and [1] study the practical design of such a protocol on the
blockchain. The protocol in [12] includes deposits and a costly verification
procedure and [1] consider a dispute resolution procedure, an instance of what
we call costly verification procedure. We abstract away of the specifics of the
verification procedure and instead study the economic question of optimally
designing deposits and monitoring policies.

contract and favorable contracts for the seller and the buyer

separately can not be designed.

With this paper, we address a general question of ad-

ditional transaction costs of mechanisms coming from the

self-enforceability of payments. Another example of con-

tracts where off-equilibria payments are high compared to

on-equilibria payments is discussed in [9], in the context

of campaign fundraising. Special interest group offers one

political party some amount in exchange for a suitable policy

proposal. In case of disagreement, the group offers a much

higher amount to a competitor party. To make a threat cred-

ible, one can implement the whole payment structure as a

smart contract, and therefore, incur an opportunity cost for

putting a high deposit. Other examples of over-collateralized

mechanisms are smart-contracts for so-called stablecoins that

want to maintain a stable price relative to a fiat currency.

In these mechanisms, one party can issue new stablecoins

through a debt contract and deposits a collateral in a third

cryptocurrency (e.g., Ethereum). Control of the price is assured

since participants have an incentive to issue new loans if the

price of the stablecoin goes up, or repaying their loan if the

price goes down. For the survey of such mechanisms see [6].

Current paper, [15] studies a similar problem of dynamic

mechanisms with opportunity costs of putting deposits.

A. Related Literature

[19] initiated the study of optimal deterministic mecha-

nisms with costly state verification. [13] apply the approach

to the design of optimal debt contracts. [17] extended the class

of available mechanisms by considering random mechanisms

and studied optimal auditing contracts with costly verification.

The authors show that in the case of finitely many hidden

states of the insured person’s income, an optimal auditing

strategy randomizes between monitoring and not monitoring.

One difference between our paper and the earlier work is that

we consider the effect of deposits that lead to randomized

monitoring. In the earlier work, risk aversion induced ran-

domized monitoring.

The role of deposits in auctions has been studied in [10].

Sales techniques that makes returning a good harder (and that

can be interpreted as an implicit deposit policy) can deter

consumer search and yield to sub-optimal allocations [2].

[20] develop incentive compatible and individually rational

mechanisms using intermediary and buyer acknowledgment.

We can see smart contracts as such intermediary. Depositing

money from both the seller and the buyer in the file exchange

setting, and its game-theoretical analysis is a topic of recent

paper by [3].

[14] study optimal mechanism design under money burning

and show that in certain settings it improves the objective

function. Though the mechanisms developed in our paper do

not burn money in equilibrium state(s), money burning occurs

in the off-equilibria state(s). [4] study the optimal allocation

of one item among multiple agents with costly verification

and show that randomization is required. Commitment is
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not needed in smart contracts since deposits guarantee self-

enforcement of such contracts. The role of commitment and

evidence in mechanism design is the topic of [5].

Smart contracts attracted some attention in the law and eco-

nomics literature as well. [11] study the role of smart contracts

and decentralized consensus in the market organization and

asymmetric information environment. [16] study ways how

smart contracts can be used into solving holdup problem.

On a high level, our model is also related to mechanism

design for bilateral trade [7], [18]. However, our model focuses

on incentivizing exchange rather than the question to eliciting

private information about valuations for the exchange.

II. MODEL

There are two agents: a risk-neutral seller, denoted by S, and

a risk-neutral buyer, denoted by B. There is one item, denoted

by I , and two relevant dates, which we call ”today” and

”tomorrow”. Today a contract is agreed upon, which specifies

details about monitoring decisions, possible messages, and

transfers in the different states. Tomorrow the seller decides

whether or not he sends the item, the contract is executed and

transfers are paid out.

The seller can verify the act of sending the item on the

contract yet at the cost of verification c > 0. The contract can

monitor if the submission happened by asking the seller to

provide proof of this event. It can also randomize this process.

The utility is quasi-linear in transfers. Seller’s valuation for

sending the item is vS(s) and his valuation for not sending the

item is vS(s̄). Buyer’s valuation (today) for receiving the item

vB(s) and his valuation for not receiving the item is vB(s̄).
We normalize valuations such that vB(s) − vB(s̄) = v, and

vS(s̄)− vS(s) = 1. The time between today and tomorrow is

discounted with 1−δ for 0 < δ < 1, so that if an agent deposits

D today and gets paid out his entire deposit tomorrow, he has

incurred an opportunity cost of δD. Alternatively, we can think

of δ as other costs of depositing money (borrowing costs, the

volatility of the currency in which deposits are made, etc.) We

denote the deposit of the buyer by D(B) and the deposit of

the seller by D(S).
In a terminal state w, the contract pays out transfers tSw to

the seller and tBw to the buyer. For each final state w, it must

hold that tSw ≥ 0 and tBw ≥ 0 and the following budget balance

constraint: tSw+tBw ≤ D(B)+D(S). That is, the smart contract

can burn money, but it can not create money. We denote the

pair of transfers (tSw, t
B
w) with tw.

In the following, we are interested in contracts that max-

imize welfare (the sum of utilities), subject to incentive and

participation constraints.

A. One-sided communication

We first consider the situation, where only the seller ex-

changes information with the contract. Since there are only

two pay-off relevant states, we may assume without loss of

generality (by the revelation principle) that there are two

possible messages that the seller can send, which we denote

by {”sent”, ”not sent”}. The seller is required to notify the

smart contract about whether he has sent the item or not.

There is some timeout, during which the seller has to respond.

After having sent a message, the seller can be monitored.

Without loss of generality, we may assume that monitoring

only happens if the message ”sent” has been received. Thus

if the seller sends the message ”not sent”, the mechanism

ends and transfer ts̄ are realized. If the seller sends the

message ”sent”, the contract randomizes between monitoring

and not monitoring. Monitoring happens with probability α.

If monitoring does not happen, transfers ts,M̄ are realized. If

monitoring happens, the seller is asked to provide the proof

of sending. If the seller provides a proof, the transfers ts,M,P

are realized, otherwise, transfers ts,M,P̄ are realized.

There are 4 final states, w1 = (s,M, P ), w2 = (s,M, P̄ ),
w3 = (s, M̄) and w4 = (s̄). Note that messages to the contract

and actions are both part of a strategy set of a player.

Suppose we want to implement a contract where the seller

always sends the item. Such an optimal contract minimizes

the sum of the expected monitoring cost and the opportu-

nity cost of depositing, subject to the relevant incentive and

participation constraints. It is without loss of generality to

assume that the mechanism is strongly budget balanced. The

buyer can get paid out any remaining deposits after transfers

to the seller have been realized. As only the seller interacts

with the mechanism, this will not influence the incentive

constraints, the participation constraint of the seller and will

make satisfying the participation constraint of the buyer easier.

In the following for each 1 ≥ α ≥ 0, we define by

Eα[t
S
s ] := αtSs,M,P + (1 − α)tS

s,M̄
the expected transfer to

the seller, in case he has sent the item, assuming that he will

always provide a proof if he is asked to (as he will optimally

do) and analogously define Eα[t
B
s ] := αtBs,M,P +(1−α)tB

s,M̄
.

Then solving for the optimal contract such that the item is al-

ways sent, amounts to solving the following cost minimization

problem.

minα(1− δ)c+ δ(D(B) +D(S))

subject to Eα[t
S
s ]− αc ≥ 1 + tSs̄

tSs̄ ≥ αtS
s,M,P̄

+ (1− α)tS
s,M̄

v + Eα[t
B
s ] ≥

D(B)

1− δ

Eα[t
S
s ]− αc ≥ 1 +

D(S)

1− δ

0 ≤ tSw + tBw ≤ D(B) +D(S) for each w

tSw, t
B
w ≥ 0 for each w

D(B), D(S) ≥ 0

0 ≤ α ≤ 1

The first two constraints are incentive constraints of the seller.

He should send the item rather than not send the item and

truthfully reveal that he has not sent the item if he has not

done so. The other incentive constraints are implied by these

two, i.e. the seller will always reveal that he has sent the item

if he has done so, and he will prove that he has sent the item

Authorized licensed use limited to: University of New South Wales. Downloaded on November 01,2020 at 19:16:10 UTC from IEEE Xplore.  Restrictions apply. 



if he is monitored and has sent the item. The third and fourth

constraints are individual rationality constraints of the buyer

and the seller. Note that they include the opportunity cost of

depositing.

We first derive optimal deposits, given a particular monitor-

ing policy.

Proposition 1. If the seller is monitored with probability 0 <

α ≤ 1, then the problem is feasible if and only if

v − 1 ≥ αc+
δ

1− δ
(
1

α
+ c).

In that case, optimal deposits are D(S) = x and D(B) =
1
α
+ c− x for any 0 ≤ x ≤ (1− δ)(1− α)( 1

α
+ c).

Proof. First, we show that in any feasible contract for a given

monitoring probability α we have D(B) + D(S) ≥ 1
α
+ c.

We show that this holds for an optimal contract, and hence

for any feasible contract. First observe that it is without loss

of generality to assume that in an optimal contract tS
s,M,P̄

= 0

(for each feasible solution, decreasing tS
s,M,P̄

will not change

the objective value of the problem and will not change the

feasibility of the problem). Next observe that it is also without

loss of generality to assume that in optimal contract tSs̄ = (1−
α)tS

s,M̄
(as tS

s,M,P̄
= 0, for each feasible solution with tSs̄ >

(1 − α)tS
s,M̄

, decreasing tSs̄ without violating the constraint

will not change the objective value of the problem and will

not change the feasibility of the problem). Combining tSs̄ =
(1− α)tSsM̄ with the first constraint, we obtain

Eα[t
S
s ]− αc ≥ 1 + (1− α)tS

s,M̄

or equivalently

αtSs,M,P − αc ≥ 1.

Thus

D(B) +D(S) ≥ tSs,M,P ≥
1

α
+ c.

An immediate consequence is that the condition v−1 ≥ αc+
δ

1−δ
( 1
α
+ c) is necessary for a feasible solution, as otherwise,

the gains from trade do not exceed the monitoring and deposit

costs (which are at least δ( 1
α
+c) in each feasible solution). The

condition is also sufficient, since following class of contracts is

feasible and satisfies D(B)+D(S) = 1
α
+c: Let 0 ≤ x ≤ (1−

δ)(1−α)( 1
α
+c). Let D(B) = 1

α
+c−x,D(S) = x, tSs,M,P =

1
α
+ c, tS

s,M̄
= x

(1−α)(1−δ) , t
S
s̄ = x

1−δ
, tS

s,M,P̄
= 0. Note that

the IC constraints and IR constraint for the seller hold (with

equality). Moreover, if (1− δ)(v − 1) ≥ (1− δ)αc+ δD(B),
then the IR constraint of the seller holds, as:

v + (1− α)D(B) = v +D(B)− 1− αc ≥
D(B)

1− δ
.

Finally, we show that the optimal deposits have to be chosen

such that D(S) ≤ (1− δ)(1−α)( 1
α
+ c). As we have shown,

in an optimal contract, we have D(B)+D(S) = 1
α
+ c. Thus

tSs,M,P ≤ 1
α
+ c and tS

s,M̄
≤ 1

α
+ c. Therefore, by the IR

constraint of the seller, 1
α
+ c − αc = 1 + (1 − α)( 1

α
+ c) ≥

1 + D(s)
1−δ

, and therefore (1− δ)(1− α)( 1
α
+ c) ≥ D(S).

The proposition implies the following proposition:

Proposition 2. If the problem is feasible, in each optimal

solution the buyer is monitored with probability

α = min{

√

δ

(1− δ)c
, 1}.

Proof. By Proposition 1, we may assume that the sum of the

monitoring cost and deposit cost is

α(1− δ)c+ δ( 1
α
+ c).

Minimizing this expression over all 0 < α ≤ 1 yields the

desired α.

In general, there is a continuum of optimal contracts avail-

able that distribute the surplus differently between the seller

and buyer. The payments in the non-monitoring case and the

size of the seller’s deposit determine the surplus distribution.

We can characterize the seller optimal contract and the buyer

optimal contract among the optimal contracts.

Proposition 3. Let α = min{
√

δ
(1−δ)c , 1} and (1−δ)(v−1) ≥

(1− δ)αc+ δ( 1
α
+ c).

1) There is an optimal contract that is most preferred

among optimal contracts by the seller: The seller de-

posits D(S) = 0 and the buyer deposits D(B) = 1
α
+c.

The seller receives the full deposit D(B), if he messages

”sent” and he is not monitored or monitored and

provides a proof. He receives tSs̄ = (1 − α)D(B) if he

messages ”not sent” and nothing if he does not prove

if monitored.

2) There is an optimal contract that is most preferred

among optimal contracts by the buyer: The seller de-

posits D(S) = 0 and the buyer deposits D(B) = 1
α
+c.

The seller receives the full deposit, if he is monitored

and provides a proof, and nothing in all other states.

Proof. By Proposition 2, in each optimal contract, the seller

is monitored with probability α. Moreover, for the given α, in

both contracts, all constraints are satisfied. In the first contract

the IR constraint of the seller binds, as αD(B)−αc = α( 1
α
+

c)−αc = 1. Thus the contract is buyer optimal. In the second

contract, the buyer obtains the whole deposit in all states that

are reached with positive probability. Hence the contract is

optimal for him.

In both contracts, the seller does not make a deposit.

However, there also exist optimal contracts where he deposits

a positive amount. In these contracts, the payment in case of

non-monitoring to the seller cover his depositing cost.

If the seller is completely risk-neutral, as we have assumed,

the contract that pays him the deposit, if monitored, and

nothing if not monitored, appears focal. It yields the highest

pay-off for the seller, and only involves side-payments to

the seller if the item has been sent. If we would relax

the assumption of risk neutrality, an interior contract where
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payments in the monitoring and non-monitoring case are more

equal, becomes more sensible.

Hidden Cost: Our previous discussion assumed that the

monitoring cost is known. The analysis can be extended to the

case where the monitoring cost is private information of the

seller. As in a standard screening model, a menu of contracts

can be offered where different type sellers choose different

contracts. We briefly sketch the extension to the case with two

cost types. Suppose there are two possible costs 0 < cL < cH
and a fraction π of high-cost types and a fraction 1−π of low-

cost types. Similarly as in the proof of Proposition 1 for the full

information case, one can show that there is an optimal menu

where contracts are offered such that only the buyer makes a

deposit, the seller receives the full deposit if monitored and

nothing in all other states. However, the deposits (and thus the

payment to the seller) is different than in the full information

case. The (expected) cost minimization problem becomes

minπ((1− δ)αLcL + δDL(B))+

(1− π)((1− δ)αHcH + δDH(B))

subject to αLDL(B)− αLcL ≥ αHDH(B)− αHcL

αHDH(B)− αHcH ≥ αLDL(B)− αLcH

αLDL(B)− αLcL − 1 ≥ 0

αHDH(B)− αHcH − 1 ≥ 0

(1− δ)(v − αHDH(B)) ≥ DH(B)

(1− δ)(v − αLDL(B)) ≥ DL(B)

0 ≤ αH ≤ αL ≤ 1, DH(B), DL(B) ≥ 0

αX is the probability of monitoring, DX(B) and DX(S)
are deposits of the buyer and the seller, respectively, for each

type contract X ∈ {L,H}. It is straightforward to see that the

IR constraint of the high type binds and that the IC constraint

that the low-cost type should take up the low-cost contract

binds. Thus we obtain the conditions that

DH(B) =
1

αH

+ cH

DL(B) =
1

αL

+ cL +
αH

αL

(cH − cL)

Note that in comparison to the full information case, a larger

deposit and corresponding larger payments to the seller have

to be made in the low-cost contract. The optimal deposits lead

to the following expression for the cost function:

π((1− δ)αLcL + δ(
1

αL

+ cL +
αH

αL

(cH − cL)))+

(1− π)((1− δ)αHcH + δ(
1

αH

+ cH)).

The cost function is convex in the probabilities. Thus an

optimum can be characterized by the first order conditions:

δ

α2
L

+
δαH(cH − cL)

α2
L

= (1− δ)cL,

δ

α2
H

=
π

(1− π)αL

(cH − cL) + (1− δ)cH .

Risk Aversion: In our model the need for costly monitoring

arises through time preferences: More frequent monitoring is

a substitute for higher deposits that would otherwise induce a

high opportunity cost for the agents. Our optimal contracts

balance the cost of monitoring and the opportunity cost

of using deposits. In the extreme case where δ approaches

1, monitoring frequencies approach 1 and deposits become

vanishingly small, whereas in the other extreme case where

δ approaches 0, monitoring frequencies approach 0 and de-

posits become arbitrarily large. A similar trade-off arises if

risk preferences instead of time preferences are driving the

interaction. In that case, if the seller becomes arbitrarily risk

averse, monitoring frequencies approach 1, but approach 0 if

he becomes approximately risk neutral. The case of a risk

averse buyer without discounting is discussed in e.g. [17].

If both factors are present at the same time, then the two

effects of costly monitoring due to opportunity cost, and costly

monitoring due to risk aversion of the seller overlap. This will

lead to a higher monitoring frequency than in the risk neutral

case that we have studied.

B. Communication with both parties

Next, we consider the case where also the buyer exchanges

information with the contract. the contract requires the buyer

to confirm that he has received the item. As before, it is

without loss of generality to consider two messages, as there

are only two payoff-relevant states. We denote the two possible

messages by: {”received”,”didn’t receive”}. It is without loss

of generality, to only use messages by the buyer, since

a mechanism that also interacts with the seller cannot be

more efficient, as both of the players hold the same bit of

information.

The buyer is required to notify the smart contract about

whether he has received the item or not. There is some

timeout, during which the buyer has to respond. After having

sent a message, the seller can be monitored. Without loss of

generality, we may assume that monitoring only happens if

the message ”didn’t receive” has been received. Thus, if the

buyer sends the message ”received”, the mechanism ends and

transfers tr are realized. If the buyer sends the message ”didn’t

receive”, the mechanism randomizes with certain probability

between monitoring and not monitoring. If monitoring does

not happen, the mechanism ends and the transfers tr̄,M̄ are

realized. Monitoring happens with probability α, in which case

the seller is asked to provide a proof of sending. If the seller

provides a proof, the transfers tr̄,M,P are realized. If the seller

does not provide a proof, the transfers tr̄,M,P̄ are realized.

1) No Monitoring: There is a contract that achieves the

first-best outcome and does not monitor at all. Note that if the

mechanism does not monitor, the buyer will always choose

the message which has the higher transfer for him (this is a

form of cheap talk). Note that there are only two final states in

this case, (r) and (r̄). If the buyer plays the truthful response

in both cases, the seller can be incentivized to send the item

by receiving a sufficiently large positive transfer in the state

”received” and zero in the state ”didn’t receive”. Optimally,
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the transfer in the state ”received” will exactly compensate

the seller for sending the item.6 This mechanism satisfies all

incentive compatibility and individual rationality constraints.

The contract without monitoring relies on the seller be-

lieving that the buyer will be truthful. He will only sign the

contract if subsequently an equilibrium move, where the buyer

chooses the truthful strategy, is played. Similarly, the buyer

will only sign the contract if subsequently an equilibrium

move, where the seller sends the item, is played. Thus the

contract is only implemented if both parties believe that

subsequently an efficient equilibrium move is played. If the

players believe that an inefficient equilibrium is played, if

the contract is implemented, they might not want to sign it.

Monitoring allows to eliminate the inefficient equilibria and

hence guarantees implementation, but at a cost. Next, we

will discuss optimal contracts with a positive probability of

monitoring.

2) Monitoring: In this section, we consider the case, where

monitoring happens with probability 0 < α ≤ 1. Suppose we

want to implement a contract where monitoring happens with

probability α, the seller always sends the item and the buyer

always truthfully reveals whether the item has been sent.

As the buyer truthfully reveals the state, monitoring is off-

equilibrium, and such optimal contract minimizes opportunity

cost of depositing, subject to the relevant incentive and partic-

ipation constraints. Appropriate deposits have to be made in

order to make the threat of monitoring credible, even though

monitoring will not happen in equilibrium. Similarly, now

money burning can happen, but only off equilibrium. The cost

minimization problem is:

min δ(D(B) +D(S))

tSr̄,M,P − c ≥ tS
r̄,M,P̄

tSr ≥ 1 + αtS
r̄,M,P̄

+ (1− α)tS
r̄,M̄

tBr ≥ αtBr̄,M,P + (1− α)tB
r̄,M̄

tBr ≤ αtB
r̄,M,P̄

+ (1− α)tB
r̄,M̄

(1− δ)(v + tBr ) ≥ D(B)

(1− δ)(tSr − 1) ≥ D(S)

tSw + tBw ≤ D(S) +D(B) for each w

tSw, t
B
w ≥ 0 for each w

D(B), D(S) ≥ 0

The first and second conditions are IC constraints for the seller

to provide a proof if monitored and to send the item in the

beginning. The third and fourth constraints are IC constraints

of the buyer to truthfully reveal whether the item has been sent.

The fifth and sixth constraints are the individual rationality

constraints of the buyer and seller.

6If a larger transfer would be selected, inefficiently large deposits would
have to be made. Since the buyer is indifferent between sending two different
signals to the contract, the equilibrium is not ”trembling-hand” perfect.
However, there is a close to an optimal contract, where t

S
r is slightly above

the seller’s indifference value.

We first derive optimal contracts, given a particular moni-

toring policy.

Proposition 4. If the seller is monitored with probability 0 <

α ≤ 1, then the problem is feasible if and only if

v − 1 ≥
δ

1− δ
max{1, c}.

In that case optimal deposits for c ≤ 1 are

D(B) = 1, D(S) = 0,

and for c > 1 are

D(B) = x, D(S) = c− x, for any δc+ (1− δ) ≤ x ≤ c.

Proof. The following transfers incentivize sending in equilib-

rium:

tSr = max{1, c}, tSr̄,M,P = c, tS
r̄,M̄

= tS
r̄,M,P̄

= 0,

tBr = tB
r̄,M̄

= tBr̄,M,P = tB
r̄,M,P̄

= 0,

One readily checks that the IC constraints are satisfied.

For the IR constraints, we distinguish the case that c ≥ 1
and c ≤ 1. For c ≥ 1, the IR constraint for the buyer becomes:

(1−δ)(v+tBr ) ≥ x and the IR constraint of the seller becomes:

(1− δ)(c−1) ≥ c−x or equivalently x ≥ δc+(1− δ). Since

tBr ≤ c− tSr = c−1, we get that (1−δ)(v+c−1) ≥ x, which

implies that x ≤ c, from the feasibility condition. Thus, the

two IR constraints are satisfied by construction.

For c ≤ 1 we let D(B) = 1 and D(S) = 0. Seller’s

individual rationality constraint is satisfied by construction.

Buyer’s individual rationality constraint is (1− δ)v ≥ 1 or

equivalently (1 − δ)(v − 1) ≥ δ. Thus, by our feasibility

assumption it is satisfied.

Budget balance constraints are satisfied by construction.

Note that the objective function can not be improved:

Deposits need to cover at least the monitoring cost. Thus we

need total deposits of at least c. Furthermore, in the state r,

the seller needs to receive at least 1, to satisfy his individual

rationality constraint. Finally note that the feasibility condition

is necessary, as otherwise the gains of trade do not exceed the

depositing cost.

Remark 1. With deposits of exactly max{1, c}, we theoreti-

cally have the same problem as in our discussion of the no

monitoring case: Incentive constraints only hold with weak

inequality, and in particular the buyer is indifferent between

telling the truth and lying. However, this is a boundary case

and with deposits slightly greater than max{1, c}, we can

strictly incentivize truth-telling by the buyer, and sending and

proving by the seller.

Similarly, as in the previous section, there exist a continuum

of optimal contracts (for high cost) that distribute the surplus

differently between the buyer and the seller.

Proposition 5. Let 0 < α ≤ 1.
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1) For c ≤ 1, there is a unique surplus distribution in the

optimal contract with monitoring probability α where

the buyer extracts the whole surplus.

2) For c ≥ 1, there is an optimal contract that is most pre-

ferred among optimal contracts with monitoring prob-

ability α by the seller: The buyer deposits D(B) = c,

the seller deposits D(S) = 0. If the buyer confirms,

the seller receives the full deposit tSr = c, if the buyer

does not confirm, the seller receives the full deposit if

he proves and nothing if he does not prove. The buyer

receives no transfer in any state.

3) For c ≥ 1, there is an optimal contract that is

most preferred among optimal contracts with monitoring

probability α by the buyer: In the contract deposits

are D(B) = c and D(S) = 0. If the buyer confirms,

the seller receives tSr = 1, if the buyer does not

confirm, the seller receives the full deposit if he proves

and nothing if he does not prove. The buyer receives

tBr = tB
r̄,M̄

= tB
r̄,M,P̄

= c− 1 and tBr̄,M,P = 0.

The result of Proposition 4 holds for any α ∈ (0, 1] and

for each such α the contract achieves optimal welfare among

contracts that monitor with positive probability. Note however

that in the constructed optimal contract, money is burned in

3 states (r̄, M̄), (r̄,M, P ) and (r̄, M̄). If we require strong

budget balancedness (money is not burned in any state, even

off equilibrium), that is, tSw + tBw = D(S) + D(B) for each

state w, then we need to require α ∈ [α∗, 1] for some α∗ to

achieve the same optimal objective.

Proposition 6. Let α∗ := 1
max{1,c} . Then for any α ≥ α∗,

there are deposits and transfers that achieve the optimal

welfare without burning money and for α < α∗, there are no

deposits and transfers that achieve the optimal welfare without

burning money.

Proof. First, we show that for α < α∗, the optimal objective

can not be achieved. Combine the IC constraint of the seller

to send with the truth-telling constraint of the seller to confirm

sending if the buyer has sent the item with the strong budget

balancedness, we get the following chain of (in)equalities

D(S) +D(B) = tSr + tBr ≥

1 + αtS
r̄,M,P̄

+ αtSr̄,M,P + (1− α)(tS
r̄,M̄

+ tB
r̄,M̄

) =

1 + (1− α)(D(S) +D(B)).

Therefore, α ≥ 1
D(S)+D(B) . By Proposition 4, for an

optimal contract we have D(S) +D(B) = max{1, c}. Thus,

α ≥ 1
max{1,c} in an optimum.

On the other hand, for α ≥ α∗ we can design deposits

and transfers, that induce sending at minimal deposit costs.

We consider deposits as in Proposition 4. For c ≥ 1 we take

transfers as follows:

tSr = tSr̄,M,P = tS
r̄,M̄

= c, tS
r̄,M,P̄

= 0,

tBr = tB
r̄,M̄

= tBr̄,M,P = 0, tB
r̄,M,P̄

= c,

The proof that these transfers work is analogous to the proof

of Proposition 4.

For c ≤ 1, we take transfers as follows:

tSr = 1, tSr̄,M,P = 1, tS
r̄,M,P̄

= 0, tS
r̄,M̄

= 0,

tBr = 0, tBr̄,M,P = 0, tB
r̄,M,P̄

= 1, tB
r̄,M̄

= 1.

The proof that these transfers work is analogous to the proof

of Proposition 4.

Hidden cost

In contrast to the case of one-sided communication with the

seller, with hidden cost, there is an optimal menu of contracts

that achieves the first best and the seller cannot extract any

informational rent. Note that for each cost c > 0, there exists a

contract (see part c of Proposition 5) where the buyer deposits

D(B) = c and the seller is paid 1 independently of cost. In

these contracts, the depositing cost which is a function of the

monitoring cost is entirely borne by the buyer. Thus we can

ask the seller for the monitoring cost and the seller has no

incentive to report a different cost.

III. EVALUATION

Lets consider a numerical example. Suppose buyer’s differ-

ential valuation of the item is v = 1.5, that is, 50% more than

that of the seller. The cost of verification is c = 0.2 and the

discount factor is 1−δ = 0.95. Note that
√

δ
(1−δ)c ≈ 0.51 < 1.

That is, we take α, the monitoring probability, equal to
√

δ
(1−δ)c ≈ 0.51. Note also that the condition of proposition 3,

(1− δ)(v− 1) ≥ (1− δ)αc+ δ( 1
α
+ c), is also satisfied. Then

the gains from trade is approximately equal to 0.29. On the

other hand, the gains from trade of the second mechanism is

equal to 0.45.

The second mechanism dominates the first for any set of

parameters. This is not surprising, since the second mechanism

interacts with both parties. However, There are several reasons

why the participation of the buyer is not desirable. First,

the buyer might be reluctant to send such a signal of item

receipt for privacy reasons. Second, it requires the buyer to be

online at some point during the execution time of the contract.

Therefore, this procedure can not efficiently be automatized by

the seller to sell a large number of items.

IV. CONCLUSION

We initiate the study of smart contracts through the classical

mechanism design perspective. In particular, we model the

self-enforcing nature of smart contracts by taking deposits

as a design parameter into account. We discuss the optimal

design of contracts for item exchange. We compare the effects

of having only the sender communicating with the contract

versus both players doing so. As a future agenda of research,

we aim to study optimal smart contract mechanisms under

uncertainty, which may include the valuations of both players.

A similar approach developed in this paper can also be applied
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to insurance contracts, with costly state verification and risk-

averse players, if they are run as smart contracts. It may

suggest modification of existing contracts by adding deposits

for all possible state realizations.
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