KopperCoin — A Distributed File Storage
with Financial Incentives

Henning Kopp®™), Christoph Bosch, and Frank Kargl

Institute of Distributed Systems, Ulm University, Ulm, Germany
{henning.kopp,christoph.boesch,frank.kargl}@uni-ulm.de

Abstract. One of the current problems of peer-to-peer-based file stor-
age systems like Freenet is missing participation, especially of storage
providers. Users are expected to contribute storage resources but may
have little incentive to do so. In this paper we propose KopperCoin, a
token system inspired by Bitcoin’s blockchain which can be integrated
into a peer-to-peer file storage system. In contrast to Bitcoin, Kopper-
Coin does not rely on a proof of work (PoW) but instead on a proof
of retrievability (PoR). Thus it is not computationally expensive and
instead requires participants to contribute file storage to maintain the
network. Participants can earn digital tokens by providing storage to
other users, and by allowing other participants in the network to down-
load files. These tokens serve as a payment mechanism. Thus we provide
direct reward to participants contributing storage resources.

Keywords: Blockchain - Cloud storage - Cryptocurrency
Peer-to-peer - Proof of retrievability

1 Introduction

In recent years, cryptocurrencies have rapidly gained adoption. One of the pio-
neers and most successful e-cash system is Bitcoin [17], in which clients, called
miners, invest computational power to create units of a virtual currency. This
process of generating Bitcoins is called mining. Bitcoin’s mining process consists
in finding a pre-image of a hash function such that the resulting hash is small.
This is done via brute-forcing which may be seen as a waste of computing power
and ultimately energy.

Various cryptocurrencies try to replace the proof of work (PoW) performed
in the mining process with something more useful. Primecoin [10], for example,
utilizes the PoW to find Cunningham and bi-twin chains, i.e., special sequences
of prime numbers which are considered useful in cryptographic systems [24].

Recently, approaches to power storage systems as a by-product of maintaining
a cryptocurrency emerged. Permacoin [16] replaces the PoW with a proof of
retrievability (PoR), i.e., a proof of possession of a file. Clients mine Permacoins
by providing a PoR over parts of a global static file which cannot be modified
in any way. Thus, the system cannot be used as a flexible decentralized data
© Springer International Publishing AG 2016

F. Bao et al. (Eds.): ISPEC 2016, LNCS 10060, pp. 79-93, 2016.
DOT: 10.1007/978-3-319-49151-6_6

80 H. Kopp et al.

storage and the storage effort is essentially wasted. Filecoin [9] on the other
hand introduced a PoR in a way that allows flexible file upload and retrieval.
However, it still requires the energy consuming PoW mining process of Bitcoin
in its design. In addition, the system is not fair for small miners, due to the
design of Filecoin’s mining process, as will be explained in Sect. 4.

Current distributed storage systems like Freenet [5] or GNUnet [4] do not
offer incentives for users to contribute storage resources to other users. The
only incentive is reciprocity as one hopes that others likewise will contribute
storage. However, free-riding and churn are common problems in those systems,
substantially reducing their reliability [12].

In this paper, we propose KopperCoin, a distributed storage system where
peers can store and retrieve files and which includes a token system to reward
those contributing storage resources. It is based on the Bitcoin blockchain idea
but replaces the PoW mining process completely with a PoR. To encourage
users to participate in the network, clients who store files of other users are
able to mine on these files and consequently have the chance to generate tokens,
called koppercoins. In addition, participants can gain koppercoins by allowing
users to retrieve files. These tokens in turn can be spent to store more files.
This mechanism creates a big advantage over traditional distributed file storage
systems since in our system, users have valid incentives to contribute storage to
other KopperCoin users. Even commercial entities can base their business model
on mining, as in Bitcoin mining farms, but with the added benefit of contributing
to the decentralized file storage.

In the next section we provide an overview of Bitcoin and proofs of retriev-
ability, as basis to understand our KopperCoin scheme which is explained in
Sect. 3. We will continue to present related work in this area in Sect. 4 followed
by a discussion of our scheme in Sect. 5. Section 6 concludes our work.

2 Building Blocks

Since our system architecture is heavily based on technologies used in Bitcoin
and proofs of retrievability (PoRs), we will first provide a short overview of these
techniques.

2.1 Bitcoin

In 2009 Satoshi Nakamoto presented Bitcoin [17], the first truly decentralized
cryptocurrency. A common challenge in digital payment systems is to prevent
double-spending of coins. Since in previous e-cash designs coins were represented
as digital data they might simply be copied and spent multiple times. Bitcoin
tackles this problem by not storing the valid coins, but instead by storing all
valid transactions, i.e., changes of possession of Bitcoins in a publicly verifiable
ledger. All valid transactions are included in a global public sequence of blocks
in the peer-to-peer network called the blockchain which is stored by each miner.
This way, each participant in the network can check if the transaction is valid by

KopperCoin — A Distributed File Storage with Financial Incentives 81

verifying the history of ownership up to the point where the coins were generated
in the network.

If user Alice wants to send Bitcoins to Bob she creates a new transaction. In
the input of this transaction she references a previous transaction which included
her public key in the output. In the output of her newly created transaction she
includes the public key of Bob. To prove that Alice is authorized to spend the
funds of the previous transaction output she signs her transaction. This works,
because she is the only one possessing the private key corresponding to the public
key in the referenced transaction output. Finally she broadcasts her transaction
into the network, where it will be included in a block.

To save storage space, the transactions are aggregated in a Merkle tree
[14,15]. The root of the Merkle tree, which is comparable to a fingerprint of
all the transactions, is included in the block headers which are necessary for
verification of the blockchain. This is an important implementation detail which
provides scalability. A whole block consists of the block header and all the trans-
actions which are aggregated in it.

New blocks are generated through a process called mining and are appended
to the blockchain. In an abstract way, the mining process is a distributed con-
sensus protocol without pre-known identities. The miners receive blocks which
are challenges for proofs of work and vote with their computational power on
the validity of transactions. Thus they agree on the global state of the accounts.
Further, the problem of Sybil attacks is solved by binding the digital identities
to computational resources [2].

A simplified mining process works as follows: Let By, .. ., B, denote the block
headers in the blockchain. Each block-header contains:

— The Merkle root of the transactions aggregated in the block.

— A reference to the previous block realized as a hash value.

Other fields like a timestamp and the version number.

— Data relevant to the consensus: a nonce and a difficulty parameter.

Let ‘H denote a cryptographically secure hash function. To generate a new
block with header B,,1, participants try to find a nonce for B, 1, such that
H(Bpn+1) is below a certain threshold difficulty. The miner includes the transac-
tions he received previously via broadcast in his new block.

The new block is then broadcast to the other miners. Each receiving miner
checks the validity of the new block, i.e., whether

H(Bny1) < difficulty

and if the included transactions are correctly signed and valid. If the received
block is valid the miners append it to their local copy of the blockchain and
continue to mine the next block B, 2. Otherwise they reject the block and
instead go on to mine a valid B,,41.

The parameter difficulty is agreed upon dynamically by the miners. It is also
included in the respective blocks and adjusted every 2016 blocks to account for
fluctuations in the overall hash rate of the network. Thereby, the block generation

82 H. Kopp et al.

rate of the network remains around one block every ten minutes, independent of
the total hash rate. A stable block mining rate is necessary for the functionality of
the system due to the non-zero propagation delay in the network. If the difficulty
would not get adjusted, a rise of the overall computing power could lead to the
situation that block generation time is lower than the propagation delay. Then
some nodes would not be able to see the current block and thus would have no
chance to mine the next one.

To incentivize users to participate in the system, a mining reward in form
of Bitcoins is given to the miner who generates a new block. The first transac-
tion in each block is a special transaction called coinbase which grants a fixed
amount of Bitcoins to the miner of that particular block. These Bitcoins do not
have a previous owner, so they are freshly introduced into the Bitcoin system.
This compensates for the computational effort spent. In addition, the coinbase
transactions serve as an initial wealth distribution mechanism.

When multiple miners find a new block simultaneously both of them broad-
cast it. The other miners then have two possible valid blocks on which they
can continue to mine. This situation is called a fork. The miners mine on one
of the blocks until eventually one of the chains is longer. Bitcoin assumes that
the honest miners control the majority of the computational resources of the
network and thus try to extend the longest chain. With this assumption the net-
work converges to one blockchain and therefore one global state of the accounts.
If the assumption of an honest majority is not given, double-spending becomes
possible. An attacker with more than 50 % of the computational resources of the
network can buy goods with a transaction on the main chain, fork the chain
at some point in the past, and extend his fork beyond the main chain. When
the chain not containing his transaction is the longest one he effectively reverses
his transaction. An attacker with less computational resources cannot execute
this attack, since the main chain will always grow faster than his chain. At the
moment 50 %-attacks are ignored because they are considered to be expensive
and thus it is unlikely that a single attacker holds 50 % of the computational
power in the network. However there are effects leading to centralization, like
mining pools, such that 50 % attacks are not as infeasible as assumed. There is
research indicating that even an honest majority does not suffice to guarantee
stability of the Bitcoin system [7]. The strongest attacker model where Bitcoin
works is yet unknown and subject to research.

For a more detailed description of Bitcoin we refer to the original whitepa-
per [17], the survey by Tschorsch and Scheuermann [21], and the book by
Antonopoulos [1].

2.2 Proofs of Retrievability

A PoR is a challenge-response protocol which allows a storage provider to prove
possession of a certain file. It is related to proofs of knowledge where a prover
convinces a verifier that he has some knowledge. Our construction requires a
PoR that is publicly verifiable and of constant size. In addition, the PoR needs
to support an unlimited number of proofs over the same file. A scheme that

KopperCoin — A Distributed File Storage with Financial Incentives 83

satisfies our requirements is the one by Shacham and Waters [19] which we
briefly sketch in the following.

Let P be the prover and V a verifier. We denote the user who has uploaded
the file with Y. Let myq, ..., m, be chunks of a file over which retrievability has
to be proven. The chunks are chosen in such a way that m; € Z/pZ for all
i € {1,...,n}. Intuitively we use homomorphic authenticators ¢; for each chunk
m; in such a way that verifiers can be convinced that a linear combination of
blocks pu = Z(im) cq Vi - m; was correctly computed, where @ is a challenge set
chosen at random.

Let G be a group with support Z/pZ and generator g € G. Let e : G X G —
G be a computable bilinear pairing. The private key of the user &/ who has
uploaded the chunks of the file is an element x € Z/pZ chosen uniformly at
random. His corresponding public key is pk;, = (v,u), where v = ¢* € G and
u € G is another generator of G. The uploading party U creates and uploads
authenticators o; = (H(z)uml)m over each chunk m;, where H is a hash function.
A verifier V chooses a challenge set I C {1,...,n} and some random coefficients
v; € Z/pZ for i € I. The challenge consists of the set Q = {(i,v;), i € I'}.

P sends back the proof (o,), where o = []; ,)co 07" and u =3 . \cq
v; - m;. Verification is done by checking if

clo,9) =e| J[HO-w'v

(i,v:)€Q

If the equation holds, then P stores the chunks mq,...,m, with high proba-
bility. In particular it is computationally hard for P to convince a verifier that he
stores a file by providing a correct proof (o, 1) without actually storing the file
in question. Note that for verification one does not need any form of secret infor-
mation. Thus the scheme is publicly verifiable. For details and further discussion
of the security properties, we refer the reader to the original paper [19].

In our scheme we prove retrievability of chunks and not of files, so the m; in
KopperCoin are in fact subchunks of chunks of files.

Proofs of Space: In the literature there exists a similar notion of proofs of
space [3,6]. To compute a proof of space the prover needs to employ a specific
amount of memory. This is in contrast to a PoR where the storage provider
proves possession of a specific file and not that he is in charge of a specific
amount of memory.

3 KopperCoin Scheme

In this section we sketch our proposed construction of the KopperCoin scheme.
We will first provide an overview and then dive into the details from Sect. 3.2
onwards.

84 H. Kopp et al.

3.1 Overview

The KopperCoin scheme identifies each entity by its public key as in Bitcoin.
KopperCoin has its own blockchain as a global public transaction log. In con-
trast to Bitcoin, KopperCoin does not reward the miners proportionally to their
computational resources, but instead proportionally to how much data of other
participants in the network they store.

A file f is represented as a series of chunks f = (c1,...,¢p) of same length,
possibly padded. We always denote the pieces of a file by the term “chunk”,
whereas “block” always refers to blocks in the blockchain, to prevent ambiguity.
The chunks cannot be linked to files, since they have identical length. A client
application is needed for the splitting into chunks and reassembly on retrieval,
together with optional erasure encoding for recovery of files.

Mining a new block uses a publicly verifiable proof of retrievability (PoR)
over a data chunk which is close to a challenge value determined by the previous
block header in the blockchain. The distance acts like a quality parameter of the
block. It is computed in the address space of the chunks as will be explained later.
Blocks are considered valid if this distance is less than a difficulty parameter.
Invalid blocks are simply dropped as in Bitcoin. We compute the PoR over chunks
and not over files, i.e., each chunk ¢; is split into subchunks (m4, ..., m,) in order
to be able to create the PoR. Since all chunks c; have the same size, the number
of subchunks n is independent of the chunk.

Since the challenge for the PoR is not known in advance, a miner who stores
more chunks has a higher probability of possessing a chunk close enough to the
challenge to mine a new block. To encourage users to participate in the system, a
mining reward in form of koppercoins is given to the creator of a new valid block
as in Bitcoin. Thus the more chunks a miner stores the higher the probability of
earning koppercoins.

KopperCoin supports all transaction types that are supported by Bitcoin,
which makes it possible to transfer koppercoins to other parties in the network.
Furthermore, KopperCoin introduces a new transaction store with inputs ¢,
o, pky, and store_amount. With this transaction chunks can be uploaded into
the network. It includes the chunk ¢ = (mq,..., m,) consisting of n subchunks
to be uploaded, its authenticators ¢ = (o01,...,0,) for each subchunk and the
public key pk;, of the uploading user ¢ needed for verification of the PoR. The
store_amount is an amount of koppercoins which determines how long the chunk
should be stored. The koppercoins used in the store-transaction are removed
from the network and become unspendable as will be explained in Sect. 3.3.
Rewards for storing are gained through mining and providing files to others.

The PoR ensures integrity of the blockchain by making it prohibitively expen-
sive to change previous blocks, since this would require redoing many PoRs over
arbitrary files. In contrast to Bitcoin the block headers alone do not suffice
to check integrity of the blocks since the public key of the uploader, which is
included in the store-transactions, is required.

The exact time of expiration of a chunk depends on the amount of koppercoins
used in the initial store-transaction. In case a miner includes a PoR over an

KopperCoin — A Distributed File Storage with Financial Incentives 85

expired chunk into a new block, this block is considered invalid by the other
miners and discarded. Thus, miners have no incentive to store expired chunks
and rational miners will delete them from their local storage. Thus, the expiration
mechanism allows the network to regain storage space.

3.2 The Blockchain and Mining Process

The file storage in the KopperCoin network is designed as a key-value storage.
There is a global set of keys K and a corresponding set of chunks, ¢;, j € J C K.
Only a subset of the keys reference chunks, such that for many keys there exists
no according chunk.

A valid block header in the KopperCoin-network includes the following fields:

— The Merkle root of the transactions aggregated into the block, which we denote
by merkle_root.

— A hash of the previous block header.

— Data which is relevant for the consensus protocol: a timestamp, the difficulty,
as well as a PoR (o, 1) over a chunk ¢;, as well as a reference to the store-
transaction where c¢; was uploaded.

Algorithm 1 describes the mining process. This algorithm is executed by each
miner every time the timestamp advances or a new block is received. Newly
computed blocks are broadcast into the network. If a new block is received it is
checked for validity of the included transactions and correctness of the PoR. Let
address be the public key of the miner. This is not included in the block header
but can be retrieved from the coinbase transaction contained in the block. Then
valid blocks additionally need to fulfill the following difficulty property:

H(address||timestamyp|| merkle_root) - 2V¥H| < difficulty,

where timestamp is the timestamp when the block was mined, H is the hash
of the previous block, merkle_root is the root of the Merkle tree containing the
transactions, and j € J is the index of the chunk whose retrievability was proven.
The symbol & denotes bitwise XOR-~operation. The block is then accepted or
rejected accordingly.

We will now explain Algorithm 1 in detail. Let H,.; be a cryptographically
secure hash function assuming values in the set of keys K. The miner computes
the challenge H from block B,, by H,e:(B,,) in Line 1. In Line 2 he computes the
index j of the chunk over which he proves retrievability. This is the index of the
locally stored chunk which is nearest to the challenge H in the XOR-distance. In
Line 3 he retrieves the locally stored authenticators corresponding to the chunk
determined in the previous step. In Line 4 the miner tests if the index of his
chunk is near enough to H and thus if he can mine the next block. If this is the
case the PoR is created in Line 5 and 6, and the new block is broadcast into the
network. Otherwise the next block is currently not mineable for this miner and
he has to wait until the timestamp advances or until a valid block of another
participant is received.

86 H. Kopp et al.

Algorithm 1. The mining algorithm for computing new blocks in KopperCoin

Input: timestamp, newest block header B,,, difficulty, root of the Merkle tree contain-
ing the transactions merkle_root

Output: next block B, 41 if possible to compute

1: H «— Hret(Br) > hash of current block header

2: j « argmin, {H @ k | ¢ is stored locally} > index nearest to H where the
corresponding chunk is stored locally

3: ¥ « authenticators (o1,...,05) of ¢; = (m1,...,my)

4: if H(address| timestamp||merkle_root) - 2VPH! < difficulty then

5: Q — PRF(B,) > challenge set derived from a PRF applied to B,

6: (o, 1) < PoR of the chunk ¢ with challenge @ and authenticators X

T return new block with aggregated transactions and (o, i)

8: end if

9: return next block is not mineable

A PoR internally uses a challenge @ different from H as explained in Sect. 2.2.
This challenge Q contains some subchunks m; and corresponding coefficients
v;. Originally, PoRs are interactive, but can be transformed to non-interactive
PoRs by the Fiat-Shamir transformation [8]. This means that the challenge H is
generated by applying a pseudorandom function PRF, mapping from the space
of blocks to the space of challenges, to the block header B,, in Line 5. The PoR,
namely p and o is published in the header of the mined block B, 4.

Note that the challenges H and @ derived from blocks are all pairwise dif-
ferent, since otherwise there would exist two blocks B,, # B!, with the same
challenge, i.e., Hyet(Br) = Hye:(B,,). This is a collision of a cryptographically
secure hash function and thus will only occur with negligible probability.

It is impossible to change the transactions contained in a block after that
block is mined. If one changes a transaction in the Merkle tree the root
merkle_root changes unpredictably. Since this is included in a cryptographi-
cally secure hash function each bit of H(address||timestamp||merkle_root)- 2179
changes with probability 1/2. So it is infeasible to modify transactions which are
included in the blockchain and thus integrity of the transactions is guaranteed.

Like in Bitcoin occasionally it can happen that two blocks are mined simulta-
neously by different miners thus creating a fork in the chain. The miners then try
to extend the chain at the block where the value which is compared against the
difficulty parameter, i.e., H(address||timestamp||merkle_root) - 29%H| is smaller.
When the two chains differ in length they are mining on the longest chain by
KopperCoin protocol rules. Thus this chain grows faster, since it is backed by
more resources and eventually the miners abandon the shorter chain.

In Bitcoin, if some malicious miner controls the majority of computational
resources, he can extend both chains at the same speed, thereby preventing
consensus. In the KopperCoin system this situation can also happen, but the
attacker needs more than half of the storage resources of the network, instead
of computational resources. We assume that this is infeasible if our network is
big enough. Additionally, an entity controlling a majority of storage resources

KopperCoin — A Distributed File Storage with Financial Incentives 87

will perhaps prefer to comply with protocol rules, since otherwise trust in the
system will disappear and therefore the koppercoins, which he would be able to
mine, become worthless.

3.3 The Store Transaction

The store transaction allows participants to store chunks. store takes as input
a chunk ¢, its authenticators o1, ...,0, computed by the client, the public key
pky, of the client, as well as an amount of koppercoins.

The koppercoins included in the store transaction vanish from the network
and cannot be spent anymore. This payment is necessary to avoid denial-of-
service attacks, since an attacker could otherwise upload an arbitrary number
of chunks for free and thereby exceed the available storage in the network. The
payment is, in addition, a form of inflation protection. As the amount of available
koppercoins decreases the value of the remaining koppercoins increases, since
only a limited amount of koppercoins are in existence at any time.

Miners can choose to store the chunk together with its authenticators to
be able to create a PoR over this chunk and thus to generate a new block. In
addition, the miners need to store the public key pk;, of the transaction issuer
for verification purposes.

The miners do not need to store all files and are possibly not even able to do
so. The incentive to store files is of economical nature, since by storing one can
possibly mine a new block in the blockchain and collect mining rewards. The
storage guarantees can of course be increased arbitrarily by applying an appro-
priate erasure code on the file to be uploaded. Beyond these financial incentives
there are no further mechanisms to increase storage guarantees.

The storage period of the chunk is linearly dependent on the amount of
koppercoins spent when issuing the store-transaction.

After the storage period has passed, blocks which include a PoR over that
particular chunk are not considered valid any more. Assuming that the majority
of miners do not accept such blocks, there is no incentive to store the chunks
any longer. The blockchain already provides a loose synchronization of time and
thus all miners can agree on when the requested storage period has passed.

3.4 Fetching Files

In order to fetch a file the client application needs to know the identifiers of
the corresponding chunks. The file is restored by retrieving sufficiently many
chunks. For successful retrieval not all chunks have to be fetched, depending
on the erasure code that was applied before storing the file in the KopperCoin-
network. The erasure code solves the problem of missing chunks and storage
providers demanding unrealistically high prices for chunk retrieval.

Fetching chunks works with 2-2 multisignature transactions. These are trans-
actions which can be spent if and only if two out of two parties agree to spend
them. To our knowledge the mechanism was first used by NashX [23].

88 H. Kopp et al.

Let U be a user who wants to retrieve a chunk which is stored at the provider
P. Suppose U wants to pay the amount p for retrieving his file. Then ¢ and P
create a 2-2 multisignature transaction where the user U inputs 8 + p and P
inputs «. The amounts « and 3 are security deposits. In a next step P sends
the chunk to U. The user U checks if he has received the correct chunk. In that
case he signs a multisignature transaction with two outputs: The provider P gets
back his security deposit «, together with the price p for the chunk. In the other
output the user U gets back his security deposit 5. The process is illustrated in
Fig. 1. Above the arrows are the amounts and below the arrows are the owners
of the respective amounts.

/ \

Fig. 1. File retrieval

If U wants to cheat he cannot set his security deposit 5 to zero or otherwise
change the first transaction since this will be detected by the provider P who then
refuses to sign. Nevertheless the user U can refuse to sign the 2-2 multisignature
transaction after retrieving the chunk, thereby losing his security deposit 3.

If the provider P cheats he can either refuse to send the chunk or refuse to
sign the 2-2 multisignature transaction. In both cases he will suffer a financial
damage of his security deposit a and not receive the price p for retrieval of the
chunk.

4 Comparison with Related Cryptocurrencies

In this section we will present other cryptocurrencies which combine file storage
with payment and compare it to our scheme where possible.

As already mentioned in the introduction, there are other cryptocurrencies
which try to harness the computational effort of blockchains which is a conse-
quence of using Proof of Work as a countermeasure against Sybil attacks and as a
voting mechanism in the consensus protocol. Peercoin [11] for example exchanges
proof of work (PoW) by proving possession of another scarce resource, namely
the coins themselves. This approach is called Proof of Stake.

There were also some approaches before KopperCoin to include a proof
of retrievability (PoR) instead of a PoW in a bitcoin-style cryptocurrency. In
Permacoin [16] the miners prove retrievability of a large publicly valuable dig-
ital archive where single miners are unlikely to have the resources to store all
the data. This large digital archive is globally fixed and no changes are possi-
ble. Thus, Permacoin mainly guarantees integrity of a fixed file. Compared to

KopperCoin — A Distributed File Storage with Financial Incentives 89

Permacoin [16] we are able to store dynamic files chosen by the individual users
in contrast to one large static file chosen by the creator of the blockchain. There-
fore, KopperCoin provides a distinct utility advantage over Permacoin. Further,
Permacoin requires a trusted dealer for initial distribution of the file, in contrast
to our scheme.

Retricoin [18] offers efficiency improvements over Permacoin but suffers from
the same structural problems.

Filecoin [9] is another approach to incorporate a file system into a cryptocur-
rency. In Filecoin it is possible to store and fetch files chosen by the users. Files
stored in Filecoin have an expiry date, after which there is no reward for storing
them anymore.

Filecoin extends the classical hash-based PoW of Bitcoin with an additional
PoR. Thus they have two difficulty parameters to regulate the growth speed
of the blockchain. One difficulty parameter is from the hash-based PoW and
the second is from the PoR. In their paper it is not explained how those diffi-
culty parameters are designed to interact. Their difficulty parameter for the PoR
is realized by the amount of files of which miners need to prove retrievability.
Beyond a certain difficulty parameter, small miners are never able to mine new
blocks because they do not have the necessary storage. This leads to central-
ization pressure, since these small miners are unable to mine blocks beyond a
certain difficulty.

In contrast, the stochastic nature of Bitcoin’s PoW scheme ensures that even
small miners can mine blocks, albeit with proportionally less probability. In
KopperCoin we also encourage small miners to provide resources to the net-
work. KopperCoin uses the distance of a chunk of which retrievability needs to
be proven to a challenge predetermined by the blockchain as difficulty. Thus
small miners are always able to mine koppercoins proportionally to their storage
contribution to the network.

In particularly we defined

M(B,,, address) = H(address| timestamp||merkle_root) - 21787t (Bn)l

as the “quality” and therefore the difficulty of the PoR of the chunk c;. Recall
that tsmestamp is a timestamp with appropriate resolution, address is the public
key of the miner, and merkle_root is the root of the Merkle tree containing the
transactions.

This fulfills the following properties:

(i) The more chunks one stores, the higher the probability to store a chunk
whose address is close to H,et(B,). And the nearer the key of the chunk
whose retrievability is proven is to H,et(B,), the smaller the result of our
mapping M is. Therefore, M behaves like a difficulty parameter. Note that
the probability of mining a block is proportional to how many files the miner
stores:

Vaddress' # address : _ # files stored by address

P M(B,,, address) > M(B,,, address’) | ~ # files in the system

90 H. Kopp et al.

(ii) The mapping M depends on the miner. If two or more miners prove
retrievability of a chunk with the same distance to the key H,e:(By,), they
get different values since address is included in the hash function. If the
mapping would not depend on the miner such a situation would create a
fork of the blockchain.

(iii) It is impossible to end up with a block B, where no-one can successfully
append a next block B, 1, since the timestamp will change and thus also the
challenge. This provides liveness of the blockchain, i.e., it is always possible
to find a subsequent block after sufficient time has passed.

In particular, we have chosen the XOR-distance d(z,y) = = @ y as a metric
because it is unidirectional [13]. This means that for each distance § and each
fixed bit sequence z there is exactly one y satisfying d(x,y) = §. Thus we have a
unique distance to each chunk and therefore a clearly defined priority over which
chunk retrievability needs to be proven.

In Filecoin the files of which one has to prove retrievability are chosen deter-
ministically. Thus if one of these files is not available in the network anymore it
is impossible to mine a future block leading to the death of the network, since
no one can append blocks to the blockchain. KopperCoin solves this problem by
allowing files near a deterministically chosen index and by including a timestamp
in the index choosing mechanism.

KopperCoin further distinguishes itself from Filecoin in that we do not use
a Bitcoin-style PoW at all, since we consider this a waste of energy.

Another peer-to-peer cloud storage network offering incentivisation is
Storj [22]. In Storj the PoRs are not integrated into the blockchain but are
handled by a heartbeat protocol. The PoRs are done with Merkle trees and thus
their size depends on the size of the files. In contrast to our scheme the data
locations in Storj are included into the blockchain which could lead to efficient
censorship.

5 Discussion

In contrast to other cryptocurrencies, we use less computational resources since
in order to mine koppercoins it is not necessary to brute-force a hash function.
Instead we require storage resources which are used to power the underlying
distributed data storage.

Other distributed file storages like Freenet or GNUnet provide similar
advantages as KopperCoin, but are not very successful, since not many stor-
age providers participate. We believe that this can be changed if incentives,
financial or otherwise, exist for providing storage for other participants in the
network.

KopperCoin incorporates such incentives for joining the scheme. When con-
tributing storage to the KopperCoin network and thus storing files of other
parties, one can generate koppercoins and earn unclonable tokens. The gener-
ated value is directly proportional to the amount of storage provided. Thus we

KopperCoin — A Distributed File Storage with Financial Incentives 91

expect that commercial entities will engage in KopperCoin similar to commercial
Bitcoin miners.

One disadvantage of KopperCoin is the lack of deterministic storage guar-
antees, since currently we cannot know if a chunk is stored by any peer at all.
We can guard against losing a fraction of the chunks with erasure-coding of the
files, but this does not solve the problem completely. We remark that classical
peer-to-peer systems like BitTorrent or Freenet also do not enforce any storage
guarantees. We assume that participants in the system are aware of this issue
and thus the price of the koppercoins will adjust accordingly due to the market
mechanisms of supply and demand.

It could be conceivable, that the underlying P2P-network assigns files to
special nodes to store them like, e.g., in Chord [20]. This mechanism could be
included in the block verification procedure, such that blocks are only valid
if the proof of retrievability (PoR) is created by the node responsible for the
storage of the chunk. This could increase scalability and storage guarantees.
However this reveals which nodes store which files what could be seen as a privacy
problem.

Future work will address determining the optimal parameters like, e.g., size
of the chunks, maximum blocksize, and adjusting of the difficulty parameter of
the PoR.

6 Conclusion

This paper presented KopperCoin, a decentralized token system combined with
a peer-to-peer file storage system which provides direct reward for participants
contributing storage resources. It is based on the idea of a blockchain to manage
ownership and files. The mining process to maintain the network is realized by
a proof of retrievability (PoR) instead of a proof of work (PoW). Miners create
cryptographic proofs that they store files, thereby mining koppercoins, which are
unclonable tokens with an owner, managed decentrally by the blockchain of the
KopperCoin system. Koppercoins provide incentives to offer storage resources
for the peer-to-peer file storage system.

We outlined basic concepts and discussed benefits of KopperCoin in terms
of tight integration of the file storage system with the token system as a reward
mechanism.

For insight into the usability we need to tune the parameters by per-
forming large-scale experiments and investigate the performance in realistic
environments.

KopperCoin is a promising approach to implement a distributed peer-to-peer
file storage system that provides usability and offers incentives for participation.
Thus, participation could be improved beyond traditional peer-to-peer file stor-
age systems that rely on voluntary resources.

92

H. Kopp et al.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Antonopoulos, A.M.: Mastering Bitcoin, Unlocking Digital Cryptocurrencies.
O’Reilly Media, Sebastopol (2014)

Aspnes, J., Jackson, C., Krishnamurthy, A.: Exposing computationally-challenged
Byzantine impostors. Technical report YALEU/DCS/TR-1332, Yale University
Department of Computer Science (2005)

Ateniese, G., Bonacina, 1., Faonio, A., Galesi, N.: Proofs of Space: When Space is
of the Essence. Cryptology ePrint Archive, Report 2013/805 (2013)

. Bennett, K., Stef, T., Grothoff, C., Horozov, T., Patrascu, I.. The GNeT whitepa-

per, June 2002

Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: a distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46-66. Springer, Heidelberg (2001).
doi:10.1007/3-540-44702-4_4

Dziembowski, S., Faust, S., Kolmogorov, V., Pietrzak, K.: Proofs of space. Cryp-
tology ePrint Archive, Report 2013/796 (2013)

Eyal, 1., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436-454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5_28

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp- 186-194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7_12
filecoin.io: Filecoin: a cryptocurrency operated file storage network (2014). http://
filecoin.io/filecoin.pdf

King, S.: Primecoin: cryptocurrency with prime number proof-of-work (2013).
http://primecoin.io/bin/primecoin-paper.pdf

King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://peercoin.net/whitepaper

Ma, R.T.B., Lee, S.C.M., Lui, J.C.S.; Yau, D.K.Y.: Incentive and service differ-
entiation in P2P networks: a game theoretic approach. IEEE/ACM Trans. Netw.
14(5), 978-991 (2006)

Maymounkov, P., Mazieres, D.: Kademlia: a peer-to-peer information system
based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53-65. Springer, Heidelberg (2002). doi:10.
1007/3-540-45748-8_5

Merkle, R.C.: Method of providing digital signatures. US Patent 4,309,569, 5 Jan
1982. https://www.google.com/patents/US4309569

Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369-378. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2_32

Miller, A., Juels, A., Shi, E., Parno, B., Katz, J.: Permacoin: repurposing bitcoin
work for data preservation. In: Security and Privacy, pp. 475-490. IEEE (2014)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://
bitcoin.org/bitcoin.pdf

Sengupta, B., Bag, S., Ruj, S., Sakurai, K.: Retricoin: Bitcoin based on compact
proofs of retrievability. ICDCN 2016. ACM (2016). http://doi.acm.org/10.1145/
2833312.2833317

Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASTACRYPT 2008. LNCS, vol. 5350, pp. 90-107. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89255-7_7

http://dx.doi.org/10.1007/3-540-44702-4_4
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/3-540-47721-7_12
http://filecoin.io/filecoin.pdf
http://filecoin.io/filecoin.pdf
http://primecoin.io/bin/primecoin-paper.pdf
https://peercoin.net/whitepaper
http://dx.doi.org/10.1007/3-540-45748-8_5
http://dx.doi.org/10.1007/3-540-45748-8_5
https://www.google.com/patents/US4309569
http://dx.doi.org/10.1007/3-540-48184-2_32
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://doi.acm.org/10.1145/2833312.2833317
http://doi.acm.org/10.1145/2833312.2833317
http://dx.doi.org/10.1007/978-3-540-89255-7_7

20.

21.

22.

23.

24.

KopperCoin — A Distributed File Storage with Financial Incentives 93

Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Comput. Commun. Rev. 31(4), 149-160 (2001)

Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015)
Wilkinson, S., Buterin, V.: Storj: peer-to-peer cloud storage network (2014).
https://storj.io/storj.pdf

Yoo, S.Y.. How a NASHX transaction works (2013). http://nashx.com/
HowlItWorks

Young, A., Yung, M.: Auto-recoverable auto-certifiable cryptosystems. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 17-31. Springer, Heidelberg
(1998). doi:10.1007/BFb0054114

https://storj.io/storj.pdf
http://nashx.com/HowItWorks
http://nashx.com/HowItWorks
http://dx.doi.org/10.1007/BFb0054114

	KopperCoin -- A Distributed File Storage with Financial Incentives
	1 Introduction
	2 Building Blocks
	2.1 Bitcoin
	2.2 Proofs of Retrievability

	3 KopperCoin Scheme
	3.1 Overview
	3.2 The Blockchain and Mining Process
	3.3 The Store Transaction
	3.4 Fetching Files

	4 Comparison with Related Cryptocurrencies
	5 Discussion
	6 Conclusion
	References

