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Abstract Cannibalism refers to the action of con-

suming a member of the same species and is common

in many taxa. This paper reviews the available

literature on cannibalism in cephalopods. All species

of the class Cephalopoda are predators and cannibal-

ism is common in most species whose diet has been

studied. Cannibalism in cephalopods is density-

dependent due to their aggressive predatory and in

case of the octopuses territorial nature. It also depends

upon local and temporal food availability and of the

reproductive season. Cannibalistic behaviour is pos-

itively related to the size of both cannibal and victim.

It can affect population dynamics of cephalopods in

periods of low food availability and/or high popula-

tion abundance. Cephalopods are generally restricted

in their ability to store energy. It is thus assumed that

cannibalism is part of a population energy storage

strategy enabling cephalopod populations to react to

favourable and adverse environmental conditions by

increasing and reducing their number. Finally, we

propose five orientation points for future research on

cannibalism in cephalopods.

Keywords Cannibalism � Cephalopods �
Density-dependence � Food shortage �
Population cycles

Introduction

To kill and eat a member of the same species is

common in animals of various taxa and occurs for

different reasons. Cannibalism can provide a com-

petitive advantage among juveniles and/or adults and

may be beneficial for survival in periods of food

scarcity (Fox 1975; Polis 1981; Caddy 1983; Calow

1998). Cannibalism induced mortality can reach up to

95% of a particular age class (Fox 1975) and is often

dependent on the size of the predator (Polis 1981;

Amaratunga 1983; Sauer and Lipinski 1991; Claessen

et al. 2000, 2002). It constitutes an important link

between processes from the individual to the popu-

lation level (Claessen et al. 2002). The size range of

prey that a predator can capture has been defined as

the window of predation and in case of cannibalism

as the window of cannibalism (Claessen et al. 2000,

2002). Although cannibalism is size-specific, excep-

tions are known. Generally, the relative size differ-

ence between victim and predator is more important

than the absolute size. Species that pass through

ecdysis (the moult of the exoskeleton) periods, have

pupae stages or are able to attack in groups show

size-independent cannibalism that lead to the
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conclusion that cannibalism in general is the result of

physical dominance (Polis 1981).

Cannibalism is thought to be an important mech-

anism of density-dependent regulation in aquatic

animals as fish (Laevastu and Favorite 1988; Smith

and Reay 1991; Fortier and Villeneuve 1996; Wes-

pestad et al. 2000; Claessen et al. 2000, 2002, 2004),

cephalopods (Caddy 1983; Aronson 1986; Dawe

1988) and crustaceans (Fernández 1999; Moksnes

2004). It produces feedback mechanisms that can

lead the population towards a determined density and

in that way can be an important component of natural

mortality (Polis 1981; Caddy 1983; Smith and Reay

1991; Claessen et al. 2004; Jurado-Molina et al.

2006). Different effects on the dynamics of a

population can result: it may (1) force a population

into population cycles, (2) destabilize it and create

deterministic chaos, (3) stabilize it, (4) result in bi-

stability and/or (5) have effects on the size distribu-

tion resulting in bi-stability of size distribution (see

Claessen et al. 2004). Studies in marine fish have

shown that cannibalism can control recruitment and

produce cycles of different population densities

(Ricker 1954; Uzars and Plikshs 2000; Wespestad

et al. 2000; Claessen et al. 2000, 2002, 2004). In

general, the behaviour of the victim (as that of the

aggressor) can be the reason for cannibalism and as

behaviour often is density-related, the rates of

cannibalism are often related to the number of

encounters (Fox 1975).

Intra-cohort and inter-cohort cannibalism can be

distinguished (Wootton 1990). Intra-cohort cannibal-

ism occurs between conspecifics of approximately the

same age, and is common in fish and cephalopods

(Smith and Reay 1991; Wootton 1990; Hanlon and

Messenger 1996). Mortality caused by this type of

cannibalism reduces intra-cohort competition and

increases growth rates (Crowley and Hopper 1994;

Claessen et al. 2000). Together with inter-cohort

cannibalism that is inflicted by large specimens on

smaller ones of—usually—younger cohorts it gives

an opportunity to decrease competition by reducing

density (Claessen et al. 2000).

Both types of cannibalism are usually hetero-

cannibalism (i.e. cannibalism on unrelated conspecif-

ics) in contrast to filial cannibalism—a special form of

inter-cohort cannibalism—that relates individuals to

their own offspring. Filial cannibalism usually

reduces the fitness of an individual and this type of

cannibalism occurs only when the benefits of canni-

balism for the cannibal are high (Thomas and Manica

2003). A special form of intra-cohort cannibalism is

sexual cannibalism where often the female devours

the male (before, during, or after copulation) that in

many cases is smaller than its female counterpart

(Polis 1981; Elgar 1992). The benefits of this type of

cannibalism are especially pronounced when two

basic preconditions are met: (1) the females’ fecun-

dity increases with size or rather weight and (2) for the

males it is unlikely that they have more opportunities

to mate (Johns and Maxwell 1997). As cannibalism

often is associated with an asymmetry between

cannibal and victim, sexual cannibalism could be

more common in animals with strong sexual dimor-

phism in size (Elgar and Crespi 1992).

In cephalopods, the taxonomic group of interest of

the present review, both preconditions are met: fecun-

dity is size-coupled and most species are monocyclic,

i.e. senescence and rapid death strike after the first

reproductive season. Semelparity is also common

among cephaloods (Rocha et al. 2001). This and a

number of other characteristic life history traits found

in most cephalopod species make cannibalism espe-

cially beneficial for this taxon. They show high growth

and metabolic rates (e.g. Rodhouse and Nigmatullin

1996; Boyle and Rodhouse 2005) and all living coleoid

cephalopods (i.e. all modern cephalopods with the

exception of the Nautilidae) are voracious carnivorous

that consume a wide variety of available prey (Boyle

and Rodhouse 2005). Cannibalism has been reported

for many cephalopod groups of both octopus and

squids like e.g. such of the genus Illex, Octopus, Sepia,

Dosidicus, Onychoteuthis, Todarodes, Ommastrephes

and Loligo (Caddy 1983; Roper et al. 1984; Hanlon and

Messenger 1996; Boyle and Rodhouse 2005).

With the exception of short sections in Hanlon and

Messenger (1996) and Boyle and Rodhouse (2005), a

review on the subject does not exist and the effects of

cannibalism on individual cephalopods and their

populations are unknown. The present article reviews

the available literature on cephalopod cannibalism to

explore the patterns of different cannibal species and

possible causes for it. It examines population densi-

ties, mating seasons, food shortages and the hierar-

chies of body size and between sexes, which all can

be relevant factors in the cannibalistic strategies of

cephalopods or be related to it. Publications on the

diet of 34 species of cephalopods cannibals were
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reviewed. The reported cannibalism was ranked in

three arbitrary categories: (1) incidental with canni-

balistic proportion of less than 1% of the diet, (2)

common cannibalism with 1–10% of the diet, and

(3) high with more than 10% of cannibalistic diet

(Table 1). Where information was available canni-

balism was classified into intra-cohort and inter-

cohort predation of conspecifics. Further separation

of the observed cannibalism considering biological

and ecological reasons were made when possible.

Generalized patterns in cephalopod cannibalism

All cephalopods are carnivorous and they have

probably been active predators since their appearance

in the late Cambric as very early cephalopod fossils

reveal (Boyle and Rodhouse 2005). We found 34

cannibals species of cephalopods in the literature,

where 32.4% correspond to family Ommastrephidae,

26.5% Octopodidae, 20.6% Loliginidae, 8.8% Sepii-

dae, 5.9% Onychoteuthidae, 2.9% Nautilidae and

2.9% Architeuthidae (Table 1). In these 34 species

cannibalism is incidental in 17.6%, common in 58.8%

and high in 23.5% (Table 1). This pattern is unusual in

animal kingdom and could be related to their vora-

cious feeding behaviour, high metabolic demands,

high abundances, and the absence of social behaviour.

In case of the squids, cannibalism in parts was

thought be the result of stress rather than a result of

feeding habits only (Ibáñez et al. 2008) and such

stress-induced cannibalism has been described for a

number of species during fishing operations (Hanlon

and Messenger 1996; Markaida and Sosa-Nishizaki

2003). Starving experiments on Illex illecebrosus in

captivity where cannibalism was provoked after about

three days corroborate the view of stress-induced

conspecific predation (O’Dor and Dawe 1998).

Therefore, cannibalistic rates reported for commercial

species of squids must be analysed with caution.

Fishing inflicts stress and observed cannibalism or at

least its intensity may be an artefact rather than real

data (Table 1). An extreme example is Dosidicus

gigas, a nerito-oceanic squid where high rates of

cannibalism were observed (Ehrhardt 1991; Markaida

and Sosa-Nishizaki 2003; Markaida 2006; Markaida

et al. 2008; Ibáñez et al. 2008). Cannibalism in this

species showed temporal variations related to migra-

tion and in relationship of body size (Ehrhardt 1991;

Markaida and Sosa-Nishizaki 2003). Additionally,

fishing gear produces an artifact with respect to diet

and the rate of cannibalism. Squids captured with jigs

showed highest cannibalism, while squids captured

with nets were less cannibalistic (Table 2). The

observed bias is thought to be related with (1) the

predation opportunity and (2) the predator density. In

northern Chile in years of poor abundance of D. gigas

its cannibalism is very low (Table 2). For octopus

species such bias due to sample gear does not exist as

octopus is solitary and is usually taken one by one.

Effects of cannibalism on population dynamics

Years of high density of the schooling squid Illex

illecebrosus were associated with high rates of

cannibalism suggesting density-dependent relation-

ships (Dawe 1988). In contrast, the populations of

Loligo sanpaulensis that do not form dense aggrega-

tions show low incidence of cannibalism (Santos and

Haimovici 1998). Cannibalism has been observed for

the jumbo squid (Dosdicus gigas) in years of mass

strandings when its populations are forming large

aggregations (Wilhelm 1951). Ommastrephid squids

in general, show major abundance pulses related to

interannual variations in environmental conditions

(Anderson and Rodhouse 2001) and during episodes

of high abundances population density cannibalism

could be a regulating factor to reduce intra-specific

competition.

When population density increases in case of

octopuses (e.g. Octopus briareus) the territories must

become smaller and subsequently the frequency of

intra-specific encounters and the per capita rate of

cannibalism increase (Aronson 1986). Similarly, for

the octopus Enteroctopus megalocyathus and Octopus

vulgaris a higher frequency of cannibalism has been

reported in areas and periods where this species are

more abundant (Chong et al. 2001; Oosthuizen and

Smale 2003; Ibáñez and Chong 2008). Such situations

theoretically generate a pattern in the structure of

population sizes and/or impact stability of population

cycles (Claessen et al. 2004). During El Niño-events

the abundance of Octopus mimus increases in northern

Chile which reflects in the catches (Castilla and

Camus 1992; Defeo and Castilla 1998). This may

provoke cannibalistic behaviour as a strategy of

population regulation that can stabilize population
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Table 1 Intensity and categories of cannibalism of cephalopod species

Species Intensity Category Source

Order Nautiloida

Family Nautilidae

Nautilus sp. Incidental Inter-cohort Arnold and Carlson (1986)a

Order Sepiida

Family Sepiidae

Sepia officinalis Linnaeus (1758) Common Intra-cohort Castro and Guerra (1990)b, Pinczon du

Sel et al. (1997c, 2000)b

Sepia australis Quoy and Gaimard (1832) High Mqoqi et al. (2007)b

Sepia pharaonis Ehrenberg 1831 Common Roper et al. (1984)

Order Teuthida

Family Ommastrephidae

Todarodes pacificus Steenstrup (1880) Common Roper et al. (1984)

Todarodes sagittatus Lamarck (1798) Common Quetglas et al. (1999)

Todaropsis eblanae Ball (1841) Common Lordan et al. (1998)b

Ommastrephes bartrami Lesueur (1821) High Inter-cohort Roper et al. (1984), Lipinski and Linkowski

(1988), Ivanovic and Brunetti (2004)d

Sthenoteuthis pteropus Steenstrup (1855) Common Roper et al. (1984)

Nototodarus gouldi McCoy (1888) High Roper et al. (1984)

Dosidicus gigas d’Orbigny (1835) High Both Wilhelm (1951)e, Ehrhardt (1991)d, Markaida

and Sosa-Nishizaki (2003)d, Markaida (2006)d,

Markaida et al. (2008)d, Ibáñez et al. (2008)c

Illex coindetii Verany (1839) Common Inter-cohort Lordan et al. (1998)b

Illex illecebrosus Lesueur (1821) Common Both Dawe (1988)d, Dawe and Brodziak (1998)d

Illex argentinus Castellanos (1960) Common Inter-cohort Bazzino and Quiñones (2001)d, Santos and

Haimovici (1997b, 2000)b, Mouat et al. (2001)d

Martialia hyadesi Rochebrune and Mabile (1889) Incidental Inter-cohort Rodhouse et al. (1992), González and Rodhouse

(1998), Dickson et al. (2004)d

Family Loliginidae

Sepioteuthis australis Quoy and Gaimard (1832) Common Roper et al. (1984), Steer et al. (2003)

Uroteuthis duvauceli d’Orbigny (1835) Common Roper et al. (1984)

Doryteuthis opalescens Berry (1911) Common Roper et al. (1984)

Doryteuthis pealeii Lesueur (1821) Common Roper et al. (1984), Maurer and Bowman (1985)

Loligo forbesi Steenstrup (1856) Common Inter-cohort Roper et al. (1984), Rocha et al. (1994)

Loligo vulgaris Lamarck (1798) Common Inter-cohort Roper et al. (1984), Sauer and Lipinski (1991),

Rocha et al. (1994), Coelho et al. (1997)b

Loligo sanpaulensis Brakoniecki (1984) Common Both Santos and Haimovici (1998)

Family Onycoteuthidae

Onykia (Moroteuthopsis) ingens Smith (1881) Common Phillips et al. (2003)b

Onychoteuthis borealijaponica Okada (1927) Common Roper et al. (1984)

Family Architeuthidae

Architeuthis dux Steenstrup (1857) Incidental Bolstad and O’Shea (2004)e

Order Octopodida

Family Octopodidae

Octopus vulgaris Cuvier (1797) Common Both Guerra (1978)f, Smith (2003)f,

Oosthuizen and Smale (2003)f

Octopus californicus Berry (1911) Incidental Inter-cohort Hochberg (1997)f
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cycles (Claessen et al. 2004). However, in these

periods high densities of bivalves, the main food of

O. mimus (Cortez et al. 1995), were also found

(Castilla and Camus 1992) which could keep the rate

of cannibalism low.

It is assumed that cannibalism in case of cepha-

lopods in general occurs mostly in populations with

high densities. There the probability of conspecific

encounters is elevated and the consumption of a

member of the same species is more likely. However,

it is difficult to conclude on this topic due to the

limited number of studies and the fact of a bias due

to sampling gear in case of squids (Table 1 and

Table 2). Fluctuations in populations are the product

of a number of factors that are either density-

dependent or density-independent, and therefore it

is of little value to test the existence of one type of

factors exclusively (Lima 1995). Cannibalism could

be a strategy of population regulation that leads to

temporal fluctuations of this population (Fernández

1999; Claessen et al. 2004). Thus, the impact of

cannibalism on population dynamics can be studied

by comparing populations excluding cannibalism to

population dynamics that result from different levels

of cannibalism (Claessen et al. 2002).

The consideration of seasonal changes that occur

especially in temperate environments can help to

understand the mechanisms by which cannibalism

can regulate a population in terms of productivity.

The biomass of a population is determined by the

carrying capacity of its ecosystem and the cannibal-

istic rate; the carrying capacity again is influenced by

the varying productivity. In the months of increasing

productivity a population of pelagic squids will

increase its biomass. When productivity of the

ecosystem declines the starving individuals increas-

ingly feed on conspecifics that consequently

decreases the biomass and results in population

cycles (Fig. 1a). In summary, squids are cannibalistic

when the food is scarce and the population abundance

Table 2 Frequency of

occurrence of cannibalism

in the diet of Dosidicus
gigas in relation to method

of capture

Cannibalism (%) Sampling gear Location Year Reference

5–30 Jigging North Pacific 1980 Ehrhardt (1991)

1.3–26.3 Jigging North Pacific 1995–1997 Markaida and Sosa-

Nishizaki (2003)

0.3–22 Jigging North Pacific 1998–2000 Markaida (2006)

29.7–58 Jigging North Pacific 2005–2007 Markaida et al. (2008)

3.7–7.1 Jigging South Pacific 1993–1994 Chong et al. (2005)

7.8 Purse-seine South Pacific 2003–2004 Ibáñez et al. (2008)

34.3 Mid-trawl South Pacific 2003 Ibáñez et al. (2008)

3.3 Trawl South Pacific 2006 Ibáñez et al. (2008)

28.9 Jigging South Pacific 2006 Ibáñez et al. (2008)

Table 1 continued

Species Intensity Category Source

Octopus bimaculatus Verrill (1883) Incidental Intra-cohort Ambrose (1984)f

Octopus briareus Robson (1929) Common Inter-cohort Roper et al. (1984)

Octopus maorum Hutton (1880) High Both Grubert et al. (1999)f, Anderson (1999)f

Octopus mimus Gould (1852) Incidental Cortez et al. (1995)f

Octopus tehuelchus d’Orbigny (1834) High Inter-cohort Ré and Gómez-Simes (1992)f

Eledone massyae Voss (1964) Incidental Ré (1998)f

Enteroctopus megalocyathus
Gould (1852)

High Both Ibáñez and Chong (2008)f

Classification based on Sweeney and Roper (1998)
a Direct observation; b trawls; c several methods; d jig; e stranded specimens; f scuba
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is high. Cannibalism in this case acts density-

dependent and occurs with a lag to the productivity

of the ecosystem, i.e. in the example highest canni-

balistic rate would occur in autumn/winter.

Squids living in shoals or groups have to be

distinguished from the solitary and territorial octo-

puses as the different lifestyles lead to different types

of intra-specific interactions. In case of the benthic

octopuses, periods with increasing productivity will

lead to increasing biomass and an increasing rate of

encounters between conspecifics. This will lead to

more aggressive behaviour producing a higher per-

centage of cannibals due to territoriality. As a result

biomass will decrease immediately leading to popu-

lation cycles different from those of squids (Fig. 1b).

Here, cannibalism shows no lag to the environmental

conditions and highest cannibalistic rate occurs in the

period of highest productivity. It is assumed that

inter-annual environmental variability, like e.g.

observed during El Niño-event or the cool and warm

regimes in the Eastern Pacific, can have similar effect

on the cannibalistic rates as seasonal changes of

productivity.

A modelling approach on the general effects of

mortality on population dynamics showed that during

periods of a reduced carrying capacity an extreme

population reduction can be prevented by a rapid

increase of mortality or a strong mortality pulses at or

shortly after the appearance of adverse conditions.

The abundance of a population then persists at higher

levels than without the increased initial mortality

(Hallett et al. 2004), i.e. the increased mortality

stabilizes the population level. Cannibalism could be

such a mechanism that provides the necessary

mortality to stabilize a population during adverse

conditions.

Cannibalism as a strategy when food is scarce

Cannibalistic behaviour has been suggested to be an

indicator for limited food availability (Dawe 1988;

Calow 1998). Ommastrephids and other squids are

cannibalistic when they migrate in schools (O’Dor and

Wells 1987; Rodhouse and Nigmatullin 1996; Mouat

et al. 2001) and when food is scarce (Ennis and Collins

1979; O’Dor and Wells 1987). Cannibalism under such

conditions can provide a mechanism for survival of at

least parts of a school (O’Dor and Wells 1987) as it

reduces competition for the limited resources and

increases per capita consumption (Polis 1981; Calow

1998). Additionally, it can increase the ecosystem’s

carrying capacity (Polis 1981) by the indirect extension

of the food size spectrum (Fox 1975). Larger speci-

mens can access lower trophic levels when feeding on

smaller conspecifics as shown in a population model

for squids (Amaratunga 1983). This decreases the

mean trophic level of the population and in that way

makes it more efficient. Carrying capacity increases as

does the survival rate of the larger individuals under

otherwise insufficiently productive environments and

secures reproduction (Keyl et al. 2008). Cannibalism in

this sense has been coined life boat mechanism (van

den Bosch et al. 1988; van den Bosch and Gabriel

1997). It has been assumed that cannibalistic popula-

tions in such situations could apparently even grow

since the selective removal of small individuals leads

to an increase in average weight of the population even

without individual growth. A starving population with

a high cannibalistic rate could seem to grow faster than

one that is able to keep up a moderate consumption

(O’Dor and Dawe 1998).

Fig. 1 Effects of cannibalism and productivity on population

biomass over 3 years. a Pelagic squids; b Benthic octopuses;

dashed lines productivity of ecosystem; black lines rate of

cannibalism; grey lines squid/octopus biomass
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In Illex illecebrosus cannibalism was not related to

abundance and probably occurs according to the

availability of prey only (Maurer and Bowman 1985).

Moreover, no significant differences in cannibalism

of the squid I. argentinus for different size classes

exist (Bazzino and Quiñones 2001), suggesting that

in the study area food is sufficiently available. In

loliginid squids cannibalism generally has been

associated with limited food resources (Santos and

Haimovici 1998). Cannibalism in Loligo vulgaris of

the Saharan Bank is related to the high abundance of

juveniles that constitute an alternative prey when

other food is scarce (Coelho et al. 1997). In years of

food shortages higher cannibalistic behaviour were

observed also for I. illecebrosus (Maurer and Bow-

man 1985) and I. argentinus (Santos and Haimovici

1997). In the Gulf of California, cannibalism of

Dosidicus gigas can raise to over 30% of the diet in

months of prey scarcity (Ehrhardt 1991). Under

adverse environmental conditions where primary

productivity is reduced, the rate of cannibalism of

cephalopods is likely to increase with the conse-

quence of decreasing biomasses due to the elevated

level of cannibalism (Pecl and Jackson 2008).

Inter-cohort cannibalism

Adult cannibalism on juveniles is documented for

several species of squid (Amaratunga 1983; Dawe

1988; Lipinski and Linkowski 1988; Sauer and

Lipinski 1991; Rocha et al. 1994; Rasero et al.

1996; Santos and Haimovici 1997; Dawe and

Brodziak 1998; Mouat et al. 2001; Markaida and

Sosa-Nishizaki 2003) and octopus (Ré and Gómez-

Simes 1992; Cortez et al. 1995; Anderson 1999;

Grubert et al. 1999; Ibáñez and Chong 2008).

Generally, cephalopods go through dietary changes

during their ontogeny (Amaratunga 1983; Summers

1983; Rocha et al. 1994; Rodhouse and Nigmatullin

1996; Zuyev et al. 2002). From a crustacean diet

during paralarvae and juvenile stages they switch to a

diet consisting mostly fish and cephalopods in their

adult stage (Rocha et al. 1994). In teleosts the

ontogenic change from planktivorous to piscivorous

was suggested to be the result of the interplay

between size-dependent competition and cannibalism

(Claessen et al. 2000). Physiological and behavioural

restrictions make cannibalism inherently dependent

on the size of the victim and the cannibal (Claessen

et al. 2000), increasing with age and depending on the

size relation between both (Crowley and Hopper

1994; Claessen et al. 2000). In case of squids the

results of a population model lead to the conclusion

that cannibalism increases with age and promotes the

transfer of energy from small individuals to larger

ones (Amaratunga (1983).

Cannibalism is so common in adult squids that it

was assumed that they are unable to maintain their

daily consumption without a cannibalistic part in

their diet, due to their high metabolic rates (O’Dor

and Wells 1987). Juveniles and sub-adults of Illex

argentinus (\20 cm) also consumed conspecifics of

19–70% of their own mantle length but the highest

frequency of cannibalism occurred among individuals

of sizes larger than 20 cm ML (Santos and Haimovici

1997). Mouat et al. (2001) found that cannibalism in

I. argentinus squid occurs only in case of large

specimens and tends to increase with increasing squid

weight. The frequency of cannibalistic specimens of

Dosidicus gigas increases with size and a significant

positive relationship between the size of the cannibal

and the victim is reported for this species (Markaida

and Sosa-Nishizaki 2003). Todaropsis eblanae, an

ommastrephid cephalopod shows high incidence of

cannibalism in an area of high density of juveniles

(Rasero et al. 1996) and similar behaviour is known

for teleosts as e.g. Gadus morhua, Theragra chalco-

gramma and Merluccius gayi gayi (Uzars and Plikshs

2000; Wespestad et al. 2000; Cubillos et al. 2003).

As individuals of the first ontogenic stages do not

have the physical dominance, i.e. capacity to kill and

consume a conspecific, we propose that the relation

between size of the victim and the predator is

following a linear relationship and an upper and a

lower size limit (Fig. 2). The resulting predation

window (shaded area in Fig. 2) defines the size range

of prey for a specifically sized cannibal (Claessen

et al. 2000; 2002) that in case of cephalopods must be

bigger than that of e.g. fish. Cephalopods have the

capacity to prey on both relatively small and large

prey due to the skilfulness of their arms and tentacles

as well as the possibility to shred their food with their

beaks (see Rodhouse and Nigmatullin 1996; Boyle

and Rodhouse 2005).

As the cannibals increase in size the proportion of

cannibalism in the diet is assumed to be not linear.

Increasing size range of accessible victims together
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with the size-related increase of energy requirements

that additionally are augmented greatly during mat-

uration are supposed to result in non-linear increase

of the importance of cannibalism in the diet of the

cephalopod cannibal (Fig. 3). Senescence at the end

of a cephalopod’s lifecycle (Anderson et al. 2002) as

a consequence leads to lower energy intake of an

individual and the here proposed sigmoid-like func-

tion. The cannibalism observed during this period is

assumed to be primarily sexual (post-copulation) and

in case of the octopuses additionally filial.

In Octopus tehuelchus cannibalism is important

during the summer and autumn, when adults prey eggs

and juveniles (Ré and Gómez-Simes 1992). A notable

case of cannibalism is that of O. maorum in Tasmania,

where cannibalism on small conspecifics and egg

clusters (Anderson 1999) is second most important in

the diet and has the highest weight percentage of all

prey types (Grubert et al. 1999). Similarly, Enterocto-

pus megalocyathus, O. tehuelchus, O. mimus and

O. maorum feed on their juveniles and females

cannibalize their eggs (i.e. filial cannibalism) during

brood care (Ré and Gómez-Simes 1992; Cortez et al.

1995; Grubert et al. 1999; Ibáñez and Chong 2008). It

was assumed that the reason for the latter behaviour is

that they eat nonviable or sick eggs to prevent further

infections, as observed in Bathypolypus arcticus

(Wood et al. 1998). In other taxonomic groups like

fish, birds or mammals filial cannibalism is more

common (Fox 1975; Polis 1981) and a high intake of

eggs as e.g. reported for anchovy, can affect the

recruitment of juveniles and cause inter-annual or

intra-annual population fluctuations (Hunter and Ki-

mbrell 1980; Pájaro et al. 2007). Due to the monocyclic

life-history of most cephalopods this type of cannibal-

ism in cephalopods only occurs in case of brood-caring

species of octopuses and polycyclic nautiluses (Arnold

and Carlson 1986; Ré and Gómez-Simes 1992; Cortez

et al. 1995; Wood et al. 1998; Grubert et al. 1999;

Ibáñez and Chong 2008). It is not known how filial

cannibalism affects the populations of species of these

classes.

Intra-cohort cannibalism

Cannibalistic behaviour is affected by the sex of the

cannibal and that of its victim as well as breeding

related factors like e.g. the advance of reproductive

season and individual maturity. It has been observed

that adult females of Octopus cyanea try to kill and feed

on the male during courtship (Hanlon and Forsythe

2008) perhaps as a means of assessing the quality of the

male (Elgar 1992; Calow 1998). Sepia officinalis

shows cannibalistic behaviour only during the breed-

ing season and associated with fights during mating

(Pinczon du Sel et al. 2000) and cannibalism in case of

Loligo sanpaulensis intensifies during mating in sum-

mer and fall especially at night (Andriguetto 1989). In

Illex argentinus it intensifies in adults during autumn,

the pre-reproductive period (Koronkiewicz 1980;

1986). Cannibalism in general was thought to be a

phenomenon associated with the concentration of

squids in the spawning areas (Karpov and Caillet

1978; Ré 1998). In case of Illex illecebrosus an

alimentary hierarchy and population control results

from cannibalism as females usually reach larger sizes

than the males (Dawe 1988; O’Dor and Dawe 1998). In

octopuses similar consequences have been observed in

Fig. 2 Predation window; the relationship between cannibal

length and victim length

Fig. 3 Relationship between cannibal length and cannibalism

proportion
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the laboratory and field, since the female of Octopus

maorum and O. cyanea attack males after mating and

even cannibalize them (Anderson 1999; Hanlon and

Forsythe 2008). Small males of Octopus vulgaris are

vulnerable to cannibalism by large females under

laboratory conditions and the same was observed in

their natural habitat (Hanlon and Messenger 1996).

The squids I. illecebrosus and Dosidicus gigas

show marked sexual dimorphism with the females

being larger than their males (O’Dor and Dawe 1998;

Markaida 2001), a factor that can generate competitive

hierarchies in cannibalistic behaviour, especially in

mating season. In case of D. gigas cannibalism is

intensified during reproductive period and conse-

quently sex-ratios are changing, leading to a higher

dominance of females in the population (Markaida

2001; Ibáñez and Cubillos 2007; Ibáñez et al. 2008).

However, it was also proposed that changing sex-

ratios could be a direct, phenotypic response to food

availability in their ecosystems (Keyl et al. 2008;

Tafur et al. submitted). In myopsid squids cannibalism

occurs among males, while in oegopsid squid it is

inflicted by the females over males. This corresponds

to the observed sexual dimorphism of the two groups:

while in myopsid squids males are larger than females,

in oegopsid the females are larger (O’Dor 1998).

Other implications of cannibalism

Cannibalism has significant behavioural consequence

as it affects the benefits of sociality (Hamilton 1964;

Fox 1975; Polis 1981; Calow 1998). Cannibalistic

behaviour is often directed at non-related individuals

for this reason filial cannibalism and siblicide (i.e. to

kill brothers and sisters often combined with feeding

on them) may reduce inclusive the fitness of the

cannibal and have important impacts on fitness and

sociability (Hamilton 1964; Fox 1975; Smith and Reay

1991; Calow 1998; Thomas and Manica 2003).

Recognition of familiarity in cephalopods is possible,

but not certain (Boal 2006) and the possible lack of

recognition could promote non hetero-cannibalism in

cephalopods.

The existence of an individual storage organ of

cephalopods is still discussed and the capacity of the

digestive gland to store energy in the form of lipids was

generally accepted. However, a number of studies

found no evidence for this (Semmens 1998, 2002;

Moltschaniwskyj and Semmens 2000; Ibáñez et al.

2005) or found that the lipid metabolism of cephalo-

pods is restricted (e.g. Phillips et al. 2001, 2002). For

Dosidicus gigas a populational energy storage was

suggested (Keyl et al. 2008); a feature that would

enable the individuals of this species to shift energy

storing from the individual to the population. During

favourable conditions the population size increases

rapidly in numbers and individual size. The resulting

biomass could then be reduced again by cannibalism

during unfavourable conditions ensuring the largest

specimens (i.e. the reproductive part of the population)

to survive. This strategy would allow avoiding loco-

motory penalty due to large individual storage organs

(O’Dor 1998) and nevertheless provides provision

during fast migration (Bakun and Csirke 1998). Similar

behaviour was suggested for Illex illecebrosus (O’Dor

1998) and may be more generally applicable for all

cephalopods that are lacking a storage organ. Further

advantages of cannibalism in this context are the high

quality of the food and the fact that no energy is lost due

to conversion of ingested proteins to storable sub-

stances (fat, lipids) which is known to lead to losses of

over 30% of energy at least in case of ureotelic animals

(Millward et al. 1976; Wieser 1994).

All forms of cannibalism may increase the risk of

infestation with parasites reducing their fitness (Polis

1981; Calow 1998) although the transmission of

disease via cannibalism is thought to be rare in

natural populations due to more effective alternatives

infection mechanisms (Rudolf and Antonovics 2007).

Discussion

Generally, an individual of a cannibalistic species

that is physically more dominant or belongs to a

group that ensures its physical dominance will be the

cannibal. In many cannibalistic taxa an asymmetry

exists in age, size or life history between the cannibal

and its victim that generates the higher vulnerability

of the victim (Elgar and Crespi 1992; Crowley and

Hopper 1994; Claessen et al. 2000; 2002) and this

also true in case of the cephalopods (e.g. Markaida

and Sosa-Nishizaki 2003). The cannibalistic window

of cephalopods is wider than e.g. in fish because their

morphological adaptations to capture and kill prey—

their arms, tentacles and beaks—increase the oppor-

tunities to find cannibalistic prey.
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Cannibalism is not a rare and abnormal behaviour

that is only found in highly stressed populations, but is

a natural response to environmental factors and

conditions (Fox 1975). Clearly there are advantages

for cannibalistic individuals as e.g. reducing compe-

tition and access to food of high quality (Fox 1975;

Polis 1981; Calow 1998). In contrast, disadvantages

for cannibals also exist as it is more expensive to feed

on less abundant prey and this also implies the

elimination of individuals with a shared genotype

(Polis 1981). Cannibalism has evolved in many

different organisms—probably analogously—and

therefore must have an evolutionary benefit, such as

avoiding local extinction during resource scarcity

(Bobisud 1976; Nishimura and Isoda 2004). Popula-

tion regulation by cannibalism must base on the

process of group selection which can be inefficient

compared to individual selection even when food is

scarce (Reed and Stenseth 1984). Adopting cannibal-

ism for a population could convert to a mutant

strategy in the context of evolutionarily stable strat-

egies (ESS, Maynard-Smith 1982; Reed and Stenseth

1984). As cannibalism implies a high risk of reprisals

by the victims it was assumed that cannibalism cannot

be an ESS (Dawkins 1976) but considering that it is an

asymmetric interaction it might be an ESS neverthe-

less (Smith and Reay 1991). It may have a genetic

origin, since the occurrence of several adaptations that

inhibit or promote cannibalism implies the presence

of selection on genes that may regulate the expression

(Fox 1975; Polis 1981) but no studies exist for

cephalopods in this respect. However, not all types of

cannibalism need to be adaptive and the product of

natural selection. Cannibalistic behaviour is described

as response to stress, accidents and variable feeding

behaviour related to changing environmental condi-

tions (Polis 1981) and all these factors have been

assumed to be possible factors controlling cannibal-

ism in cephalopods (e.g. Dawe 1988; Markaida and

Sosa-Nishizaki 2003; Ibáñez et al. 2008).

The stabilizing effect of cannibalism on population

dynamics has been found for many species (see

examples in: Fox 1975; Polis 1981) and the under-

lying mechanism is supposed to be related to the

inflicted mortality (e.g. van den Bosch and Gabriel

1997; Hallett et al. 2004). However, destabilizing

effects are also possible (e.g. van den Bosch and

Gabriel 1997; Claessen et al. 2004) dependent of the

ecology and behaviour of a species. Although we

assume that among cephalopod species it is more

common that cannibalistic behaviour stabilizes pop-

ulation level further investigations would have to be

conducted to conclude on this topic.

In summary, to study cannibalism in cephalo-

pods—as in other taxa—possible environmental vari-

ations as well as population density, food availability,

body size and sexual dimorphism must be considered.

It is very important to work with time series and/or

simulations that can incorporate different rates of

cannibalism and variable environmental conditions.

Furthermore, laboratory experiments should be con-

ducted to study the behaviour of the cannibals in

relation to the variables mentioned. Future research on

cannibalism must be oriented on five points:

(1) Sampling should be carried out with different

gear to avoid biases on stomach contents

especially when relying on samples from fish-

eries. Methods like stable isotope, heavy metal,

and fatty acid signature analyses should be used

where possible.

(2) Cannibalism must be studied over longer peri-

ods to compare with environmental factors (e.g.

temperature, primary productivity) and ecolog-

ical factors (e.g. abundance, food availability).

(3) The asymmetry in size between cannibal and

their victim must be explored by the search of

cannibalistic window in an intra-cohort and

inter-cohort approach.

(4) DNA fingerprinting on victims from stomach

contents should be employed to understand the

role of sexual and filial cannibalism and if the

cephalopod cannibal is able to recognize closely

related member.

(5) In an evolutionary context the origin of canni-

balism in cephalopods must be identified by

mapping cannibalistic and non cannibalistic

species on phylogenies.
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Keyl F, Argüelles J, Mariátegui L, Tafur R, Wolff M, Ya-

mashiro C (2008) A hypothesis on range expansion and

spatio-temporal shifts in size-at-maturity of jumbo squid

(Dosidicus gigas) in the eastern Pacific Ocean. CalCOFI

Rep 49:119–128

Koronkiewicz A (1980) Size, maturity, growth and food of

squid Illex argentinus (Castellanos, 1969). ICES CM

18:1–18

Koronkiewicz A (1986) Growth life cycle of squid Illex ar-
gentinus from Patagonian and Falkland shelf and Polish

fishery of squid for this region, 1978–1985. ICES CM

27:1–16

Laevastu T, Favorite F (1988) Fishing and stock fluctuations.

Fishing Books Ltd, Farnham

Lima M (1995) Regulación poblacional, denso-dependencia y

métodos para su detección en series de tiempo. Rev Chil

Hist Nat 68:251–269

Lipinski MR, Linkowski TB (1988) Food of the squid Om-
mastrephes bartrami (Lesuer, 1821) from the Southwest

Atlantic Ocean. S Afr J Mar Sci 6:43–46

Lordan C, Burnell GM, Cross TF (1998) The diet and eco-

logical importance of Illex coindetii and Todaropsis ebl-
anae (Cephalopoda: Ommastrephidae) in Irish waters.

S Afr J Mar Sci 20:153–163

Markaida UA (2001) Biologı́a del calamar gigante Dosidicus
gigas Orbigny, 1835 (Cephalopoda: Ommastrephidae) en
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Rasero M, González AF, Castro BG, Guerra A (1996) Preda-

tory relationships of two sympatric squid, Todaropsis
eblanae and Illex coindetii (Cephalopoda: Ommastrephi-

dae) in Galician waters. J Mar Biol Ass UK 76:73–87
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