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a b s t r a c t

Self-training is a commonly semi-supervised learning Algorithm framework. How to select

the high-confidence samples is a crucial step for algorithms based on self-training frame-

work. To alleviate the impact of noise data, researchers have proposed many data editing

methods to improve the selection quality of high-confidence samples. However, the state-

of-the-art data editing methods have high time complexity, which is not less than O n2
� �

,

where n denotes the number of samples. To improve the training speed while ensuring

the quality of the selected high-confidence samples, inspired by Ball-k-means algorithm,

we propose a fast semi-supervised self-training Algorithm based on data editing (EBSA),

which defines ball-cluster partition and editing to improve the quality of high-

confidence samples. The time complexity of the proposed EBSA is

O t 2knþ n log nþ nþ k
2

� �� �
, where k denotes the number of centers, t denotes the num-

ber of iterates. k is far less than n, EBSA has linear time complexity with respect to n. A large

number of experiments on 20 benchmark data sets have been carried out and the experi-

mental results show that the proposed Algorithm not only ran faster, but also obtained bet-

ter classification performance compared with the comparison algorithms.

� 2023 Elsevier Inc. All rights reserved.

1. Introduction

Supervised classification methods need to train the classifier on the labeled data set. However, obtaining the labels for all

the data is a time-consuming and expensive job, especially in the era of big data. In practice, it is found that only a small part

of the data is labeled, which provides a promising application scenario for semi-supervised learning. Semi-supervised learn-

ing can use the information of unlabeled data to improve the performance of the classifier because it trains the classifier

using labeled data and unlabeled data simultaneously.

Researchers have proposed semi-supervised learning methods such as self-training [1–4], collaborative training [5–7],

and generative models [8,9]. Recently, researchers have proposed some semi-supervised learning algorithms in the direction

of deep learning[10–12]. [10] enables the model to overcome the interference of pseudo-labels when using unlabeled data

and taking the features applicable to the model as the research focus. [11] enhances the ability of classification models to
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distinguish accurate data from fake data by introducing task-conditioned adversarial generators. [12] uses the sparse repre-

sentation to evaluate whether pairs of pixels belong to the same class and construct a probability matrix to solve the prob-

lem of sample label scarcity.

Asemi-supervised learning Algorithm framework termed self-training is commonly used [13–16]. Self-training iteratively

trains the classifier until the Algorithm converges. The performance of self-training relies heavily on the selected high-

confidence samples. Once the selected high-confidence sample points contain noise points or abnormal points, they will

always exist in the iterative training, which will degrade the performance of the learned classifier. Therefore, how to select

the high-confidence points is very crucial. .

To deal with the problem, researchers have proposed many methods. One approach is using data editing techniques to

improve the quality of high-confidence sample selection. [17] proposed an Algorithm named SNNRCE, which builds a rela-

tive tangent neighborhood graph based on the nearest neighbor rule, and calculates tangent weights. Samples without trim-

ming are selected as high-confidence samples, and trimming weights are used to limit the number of samples in each class to

avoid extreme outputs. [18] proposed the MLSTE algorithm, which combines ENN (Edited Nearest Neighbor) data editing

technology to evaluate whether a sample point has high confidence by searching the label distribution of the k nearest neigh-

bors of the sample point. [19] proposed a semi-supervised classification Algorithm based on density peaks of data and dif-

ferential evolution termed STDP-DE, which uses differential evolution [20] to edit and optimize the attribute values of

‘‘previous” and ‘‘next” unlabeled data with labeled data in the self-training process, and takes the edited datas as high-

confidence samples.

There are other ways to select high-confidence samples, such as: changing the distance metric, combining with semi-

supervised FCM [21]. [2] proposed the SDTC algorithm, which uses the base classifier to classify the labeled data set into pos-

itive and negative classes, and then uses the Mahalanobis distance [22] to calculate the distance between each unlabeled

sample and the mean value of the positive p and negative samples q. The w ¼ p� qj j is used as the sample score, and the

first n samples with the highest scores are selected as high-confidence samples.

The Ball-k-means[23] Algorithm first selects the ball-cluster centers randomly, and then divides the samples into ‘‘stable

regions” and ‘‘active regions”. During each iteration, only the distances between the centers and the distances between the

centers and the samples in ‘‘active regions” need to be calculated, which reduces the amount of calculation and reduces the

time complexity of the algorithm.

Existing methods for selecting high-confidence samples have high time complexity. In order to reduce the time complex-

ity of the semi-supervised algorithm, inspired by the Ball-k-means algorithm, this paper proposes a fast semi-supervised

self-training Algorithm based on data editing termed EBSA. The main characteristics of the proposed EBSA Algorithm are

as follows:

(1) We propose a novel method termed as ball-cluster partitioning to divide the data set into the stable and the disputed

regions.

(2) The ball-cluster partition and editing Algorithm is proposed to improve the quality of high-confidence samples

through evaluates whether the samples in the stable region are mislabeled or not, and then edits the found mislabeled

sample points. As a result, the proposed method has the ability to deal with noise.

(3) Since only the distances between the samples and the centers of the ball-clusters need to be calculated in each iter-

ation, the proposed EBSA has lower time complexity compared with other semi-supervised learning algorithms based on

self-training.

(4) Furthermore, EBSA is non-parameter and the character makes this method have a wide application prospect. The

experimental results validate that the EBSA Algorithm not only has a low time complexity but also improves the perfor-

mance of the learned classifier compared with SETRED, STDPCEW, STDPNaN and STDPNF on 20 benchmark data sets.

The other parts of this article are described as follows: in the second part, some related algorithms are introduced. The

third part describes the proposed Algorithm EBSA in detail. The fourth part is the experimental setting. In the fifth part,

we conducted a large number of comprehensive experiments to verify the performance of the proposed Algorithm EBSA.

In the last part, we summarized the paper and discuss some research aspects in the future.

2. Related work

This section lists the important symbols and formulas that appear in this paper, and introduces some basic theoretical

knowledge and comparative algorithms.

2.1. Symbols and description

The important symbols and descriptions involved in this article are as follows:

� X ¼ x1; x2; x3; � � � ; xnf g denotes the data set containing n samples, and xi 2 R
d�1 denotes one sample.

� Y ¼ y1; y2; y3; � � � ; yKf g denotes the label set with K possible classes. yi represents the i-th label.
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� L ¼ x1; f 1ð Þ; x2; f 2ð Þ; � � � ; xl; f lð Þf g denotes the labeled samples set.

� U ¼ x1; x2; � � � ; xuf g represents the unlabeled samples set.

2.2. Self-training

Semi-supervised learning is performed by combining information from unlabeled and labeled data. Self-training[24] is

one of the typical semi-supervised learning framework. First, a base classifier is trained on the labeled data set, and then

the high-confidence samples are selected from the unlabeled set and added to the labeled set for iterative training. The

self-training Algorithm is described in Algorithm 1.

2.3. SETRED

SETRED [25] identifies mislabeled sample points from self-labeled data using a specific data editing method to eliminate

the effect of mislabeled sample points (noise points) during the iterative training. SETRED calls the edges connected between

points with different class labels tangent edges by constructing the related adjacency graph. CEW (Cut EdgeWeight) is added

to each iteration of self-training to evaluate whether the newly labeled sample points have high-confidence or not, and then

only the samples with high-confidence are added to the labeled data set L. The optimized classifier H is obtained iteratively.

Algorithm 1: Self-training Algorithm

Input Labeled set L, unlabeled set U

Output Classifier H

1. Initialize high-confidence set S ¼£

2. WHILE U –£DO

3. Train the classifier H on the labeled set L

4. Use classifier H to assign labels to unlabeled set U

5. Select some samples from the unlabeled set U to form a high-confidence set S, and give pseudo-labels by H

6. Update L L [ S, U  U � S

7. End Whlie

8. When classifier H is stable or U –£, output classifier H

2.4. STDPNF

Recently, a self-training method based on density peaks termed STDPNF [26] has been proposed. STDPNF proposes a new

local noise filter ENaNE that removes noise using both labeled and unlabeled data, which overcomes the technical shortcom-

ings of the local noise filter in existed self-training methods. STDPNF redefines the spatial structure of the data found by the

density peak clustering Algorithm (DPC) [27], uses the self-training method to label unlabeled samples and extend labeled

data, and adds the filtered samples to the training set L to obtain the classifier H.

2.5. STDPCEW

STDPCEW [28] discovers the underlying spatial structure of the data set using the density peak clustering Algorithm

(DPC) to find the ‘‘previous” sample set L0 and ‘‘next” sample set L00 of the labeled data set L. The ‘‘previous” and ‘‘next” unla-

beled samples of all the labeled samples in L are labeled, and the ‘‘previous” and ‘‘next” samples are evaluated with high-

confidence using hypothesis testing with cut-edge weights, and finally the samples with high-confidence are added to

the labeled data set L, and the optimized classifier H is iteratively obtained.

2.6. STDPNaN

STDPNaN [29] uses an integrated classifier to improve the label prediction capability of the self-training algorithm.

STDPNaN proposes a parameter-free density peak clustering Algorithm DPCNaN by introducing natural nearest neighbors.

DPCNaN discovers the spatial structure of the entire data set by making each sample point to its nearest sample with higher

local density. STDPNaN labels the ‘‘next” and ‘‘previous” unlabeled samples of all labeled samples in L on the basis of the data

space constructed by DPCNaN, adds the labeled sample points to the set of labeled samples L, and then iterates to derive the

optimized classifier H.

2.7. Summary

In this section, we summarize the advantages and disadvantages of the relevant algorithms, as shown in Table 1. Let n be

the number of samples and t denotes the number of iterations. As can be seen from Table 1, these state-of-the-art algorithms

have a common disadvantage, that is, the time complexity of the algorithms is very high.
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3. Fast semi-supervised self-training Algorithm based on data editing (EBSA)

The existing semi-supervised self-training algorithms, such as SNNRCE, MLSTE, SETRED, STDPCEW, STDPNaN and STDPNF

have high computational complexity. Therefore, improving the selection speed of high-confidence samples in self-training is

an important research topic. Currently, [23] proposed a novel and fast clustering Algorithm termed Ball-k-means, which only

calculates the distances between the samples in the active region and its center in each iteration. This method greatly

reduces the algorithm’s time complexity and improves the clustering’s speed. Inspired by this idea, to reduce the computa-

tional complexity of the semi-supervised learning algorithms based on self-training framework, this paper proposes a fast

semi-supervised self-training Algorithm based on data editing (EBSA). In each iteration, EBSA divides the data set into the

stable and the disputed regions and then evaluates whether the samples in the stable region are mislabeled. EBSA edits

the found mislabeled sample points. Since only the distances between the samples and the centers need to be calculated

in each iteration, the proposed method inherits the fast property of Ball-k-means.

3.1. Definitions

Definition 1. (Cluster center and cluster radius[23]) Let C0 denote a cluster, and xi is the i-th sample in C0. C0
�� �� represents the

number of samples in C0. Let 1 represent the cluster center, and r is the cluster radius.

1 ¼
1

C 0
�� ��

XC
0j j

i¼1

xi ð1Þ

r ¼max xi � 1k k2ð Þ ð2Þ

Definition 2. The cluster center 1is calculated by Eq. (1), and cluster radius r is the maximum distance between the sample xi
and the cluster center 1.

Definition 3. (Ball-cluster) The spherical region with cluster center 1as the center of the sphere and cluster radius r as the

radius is called a ball-cluster.

Definition 4. (Ball-cluster label) Let Cp denote the p-th ball-cluster, p 2 1;K½ �. K indicates the number of ball-cluster. The

label of ball-cluster Cp is the label with the largest number of samples within ball-cluster Cp.

kCp¼ argmax
i

Fpi

�� �� ð3Þ

lCp ¼ ykCp ð4Þ

where Fpi is the set with label yi in ball-cluster Cp. lCp is the label of ball-clusters Cp. kCp is the label of the most numerous class

labels in the ball cluster Cp.

Definition 5. (Neighbor of ball-cluster[23]) Let Cp and Cq denote two different ball-clusters, 1p and 1q are the centers of the

two ball-clusters respectively, and rp denotes the radius of the ball-cluster Cp.

The distance dpq between Cp and Cq is:

dpq ¼ 1p � 1q
�� ��

2
ð5Þ

Table 1

Advantages and disadvantages of the relevant algorithms.

Algorithms Advantages Disadvantages

SETRED Improves the selection quality of high-confidence samples with trim

weights. The effect of noise samples can be reduced.
Sensitive to unbalanced data, high time complexity O tn3

� �
.

STDPCEW Uses the statistically identifying cutoff weights to identify incorrectly

labeled samples. And solves the problem that the samples are incorrectly

labeled.

The cut edge proximity graph has a great influence on the

algorithm. The Algorithm has high time complexity and is

O tn3
� �

.

STDPNaN Parameter-free, suitable for working with spherical and non-spherical

data sets.
High time complexity O tn2

� �
.

STDPNF Proposes a new local noise filter to overcome the technical defects of the

existing local noise filters, and improves the classification accuracy of

KNN.

Not available for multi-label classification tasks. The time

complexity is O tn2
� �

, which is high.
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When dpq satisfies the following formula (6), Cq is the neighbor of Cp.

1

2
dpq < rp ð6Þ

Obviously, the neighbor relationship is asymmetric. Any two ball-clusters Cp and Cq may be related in the following three

relationships.

(1) Cp and Cq are neighbor mutually.

(2) Cp is a neighbor cluster of Cq, and Cq is not a neighbor cluster of Cp.

(3) Cp and Cq have no neighbor relationship.

Given four ball-clusters C1 ,C2;C3 and C4, let 11; 12; 13 and 14 denote the cluster centers of these four ball clusters, and

d12; d13; d14 are the distances between the centers of ball-clusters C1 and C2;C1 and C3;C1 and C4, respectively. r1; r2; r3
and r4 represent the radii of ball-clusters C1 ,C2;C3 and C4, respectively. The three neighbor relationships among them are

shown in Fig. 1:

From Fig. 1, the blue line, the yellow line and the red line are the vertical bisectors. It can be seen that 1
2
d13 < r1;

1
2
d13 < r3,

so C1 and C3 are neighbor clusters to each other, r2 <
1
2
d12 < r1;C2 is a neighbor cluster of C1;C1 is not a neighbor cluster of C2,

and 1
2
d14 > r1;

1
2
d14 > r4, then C1 and C4 have no neighbor relationship.

Definition 6. (Stable area and active area) Let NCp
denote the set of centers of the neighbor clusters of Cp. Cpw is the stable

area of the ball-cluster Cp.

br ¼ 1

2
min dpq

� �
1q2NCp

ð7Þ

When the sphere center 1q in Cq satisfies formula (7), the stable region Cpw of Cp is the spherical region formed with 1p as

the cluster center and br as the radius. The active area Cph of Cp is Cp � Cpw.

Definition 7. (Area to be demarcated) Given ball-clusters Cp and Cq;Cq is a neighbor cluster of Cp; 1p and 1q respectively

represent the centers of the two ball-clusters, and rp and rq are the radii of the two ball-clusters respectively.

er ¼ 1

2
dpq ð8Þ

The area to be demarcated Cpdh of the ball-cluster Cp is a spherical area with 1q as the cluster center and er as the radius.

Definition 8. (Disputed area) The disputed area Cpzy of ball-cluster Cp is:

Cpzy ¼ Cpdh \ Cp ð9Þ

�
�

�
�

�
�

�
�

Fig. 1. Neighbors of ball-cluster.
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Given ball-clusters Cp and Cq;Cq is a neighbor cluster of Cp; 1p and 1q respectively represent the centers of the two ball-

clusters, and rp and rq are the radii of the two ball-clusters respectively. 8xi 2 Cpzy; xi � 1p
�� ��

2
6 rp, xi � 1q

�� ��
2
6 rq. According

to the clustering assumptions, point xi can be classified into the ball-cluster Cp or Cq. Therefore, samples in the disputed area

are more likely to be misclassified. This misclassification is amplified during the iterative training of self-training, which

leads to a degradation of the classifier performance.

3.2. Ball-cluster partition and editing algorithm

Given the ball-clusters Cp and Cq;Cq is a neighbor cluster of Cp, the disputed area of Cp is Cpzy. Npq is the set of neighbor

clusters of ball-cluster Cp. Npzy is the set of disputed regions Cpzy of ball-cluster Cp. C is the set of all ball-clusters. Cpw is the

stable area of ball-cluster Cp. The ball-cluster partition and editing Algorithm is summarized in the following Algorithm 2.

Ball-cluster partition and editing Algorithm divides the clusters first and then edits the points in the stable region. Since

noisy points are inevitable in the self-training algorithm, we need to edit the samples in the stable region to reduce the influ-

ence of mislabeled samples and thus improve the classification performance of the learned classifier.

3.3. High-confidence samples selection algorithm

For self-training algorithm, how to select high-confidence samples is a crucial step. To improve the quality of the selected

high-confidence samples, a novel high-confidence sample selection Algorithm is proposed, which first divides the data set

into ball-clusters, and then calculates the stable area and disputed area of each ball-cluster, finally selects the high-

confidence samples based on data editing of the samples in the ball-clusters. In the Algorithm 3, S represents high-

confidence samples set. Algorithm 3 describes the proposed high-confidence samples selection algorithm.

Algorithm 2: Ball-cluster partition and editing algorithm(EC)

Input Data set X, ball-clusters set C

Parameters Npq;Cp

Output Cpw;Cpzy

1. Cp ¼£;Npq ¼£

2. For each Cp in C

3. Calculate the cluster center 1p by formula (1)

4. Calculate the ball-cluster radius rp by formula (2)

5. Calculate the ball-cluster label lCp
by formula (3)

6. End for

7. Calculate the distance dpq between 1p and 1q
8. For each Cp in C

9. If 1
2 dpq < rp

10. Npq ¼ Npq [ Cq

11. End if

12. End for

13. For each Cp in C

14. For each Cq in Npq

15. Calculate Cpw using formula (7)

16. Calculate Cpzy using formula (9)

17. End for

18. For each xi in Cpw

19. If yi – lCp

20. yi ¼¼ lCp

21. End if

22. End for

23. End for

24. Output Cpw;Cpzy
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Algorithm 3: High-confidence samples selection algorithm(SG)

Input Ball-clusters C;Npzy// Denotes the samples in Cpzy

Parameters S0;Xp //All samples with labels contained in ball-cluster Cp

Output High-confidence samples set S

1. S ¼£

2. For each Cp in C

3. S0 ¼ Xp � Npzy

4. S ¼ S [ S0

5. End for

6. Output S

The samples in the disputed area will affect the classification performance during the classification process. Therefore, we

delete the samples in the disputed area belonging to the cluster Cp, then we select the edited samples of the stable region and

the samples of the non-disputed region as high-confidence samples, which can reduce the impact of misclassification and

improve the classification performance in the subsequent iterations.

The following Fig. 2 illustrates the selection process of high-confidence samples: in Fig. 2, C1 , C2 and C3 represent ball-

clusters, 11; 12 and 13 respectively represent the centers of the three ball-clusters. r1; r2 and r3 are the radii of the three ball-

clusters respectively. C2 and C3 are the neighbor clusters of the ball-cluster C1.

In Fig. 2, (a) is the original samples, (b) is the plot after ball-cluster division of (a), and (c) is the plot after ball-cluster

editing. The sample points labeled as 1 in (c) are the high-confidence samples of ball-cluster C1. It can be seen from Fig. 2

that the original spatial sample distribution of sub-graph (a) is divided into sub-graph (b) by ball-cluster partition. In

sub-graph (b), rectangle 2 and hexagon 3 are located in the stable area of ball-cluster C1. According to the ball-cluster par-

tition and editing algorithm, the labels of samples with inconsistent labels in the stable region of ball-cluster C1 are changed

to label 1. In the proposed Algorithm EBSA, we do not need to calculate the distance between two sample points, but only to

calculate the cluster centers, and the distances between two cluster centers. We have divided the stable region and the dis-

puted region, and employed SG to select high-confidence samples. Thus the computational complexity is greatly reduced and

the performance of the learned classifier is improved at the same time.

In the following Fig. 3a, four different ball-clusters are denoted by C1 , C2;C3 and C4. Let 11; 12; 13 and 14 denote the cluster

centers of these four ball-clusters, and the radii of these four ball-clusters are denoted by r1; r2; r3 and r4. C2 and C3 are the

neighbor clusters of the ball-cluster C1.

The stable and disputed area of C1 are shown in Fig. 3a. The stable and disputed regions of the other spherical clusters are

divided in the same way as C1. The disputed area is the area enclosed by the green dotted line and the black solid line, and

the area enclosed by the purple dotted line and the black solid line.

The area to be demarcated of C1 is shown in Fig. 3b. C2 is a neighbor cluster of C1. Let 11 and 12 denote the cluster centers

of C1 and C2, and the radii of C1 and C2 are denoted by r1; r2, respectively. The blue line is the vertical bisector of the distance

d12 between the centers 11 and 12 of ball-clusters C1 and C2. The area within the green dotted line is the area to be

demarcated.

EBSA employs the decision tree [30–33] as base classifier to label all unlabeled samples and then divides stable areas and

disputed area of each ball-cluster. The samples within each ball-cluster are edited by the proposed ball-cluster division edit-

ing Algorithm and the high-confidence samples are selected at the same time. Finally, the optimized classifier is obtained by

the self-training framework. The proposed EBSA is summarized in Algorithm 4.

4. Experimental methodology

All the experiments in the paper were conducted with 32G RAM, 64-bit Windows 10 and Inter Core i9 processor. All the

codes are implemented with MATLAB 2019b. We use Accuracy and F-score as classification evaluation metrics, which can be

calculated from the confusion matrix [34]. The related SETRED, STDPCEW, STDPNaN and STDPNF are selected as the compar-

ison algorithms.

4.1. Data sets

In the experiments, the data sets used in the experiments are all public data sets. The details of these data sets are shown

in Table 2.
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Algorithm 4: EBSA algorithm

InputLabeled sample set L, unlabeled sample set U

Parameters High-confidence sample set S

Output Classifier H

1. S ¼£

2. Train the classifier H on the labeled set L

3. For each xi 2 U

4. yi ¼ H xið Þ

5. Cyi ¼ Cyi [ xi
6. End for

7. Calculate ball-clusters C

8. While not converges

9. Calculate Cpw;Npzy by Algorithm 1

10. Calculate high-confidence samples set S by Algorithm 2

11. Update the labeled sample set L L [ S

12. Train the classifier H on the updated labeled set L

13. End Whlie

14. Output H
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Fig. 2. Selecting the high-confidence samples.
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Among the 20 data sets, AR [35], COIL20 [36], MINIST2k [37], ORL,1 Palm,2 UPS[38] and YaleB [39] are all image data sets.

Isolet [40] is the spoken audio data set, the data set is relatively large, and Solar 3 is the solar flare data set. Sonar is the sonar

data set. Cleve, Solar and Sonar data sets are relatively small. The data set Yeast is a data frame of 112 observations of 50 vari-

ables: genotype data (genotype states at 12 SNP markers) and phenotype data (normalized and discretized expression values of

38 genes). MSRA25 [41] data set is a face data set consisting of 1799 images from 12 individuals of different genders. FERET32

has 1400 samples that is a subset of FERET [42], which contains 1564 sets of images for a total of 14,126 images. We used three

small data sets from UCI database.4 The BUPA data set is 345 values obtained from observations of 7 variables. Heart is the sin-

gle proton emission of the heart computed tomography (SPECT). Ecoli data set is a summary of protein location information.
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(a) Stable area and disputed area

�
�

�
�

�
�
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(b) Area to be demarcated

Fig. 3. Ball-cluster partition and editing.

1 http://www.uk.research.att.com/facedatabase.html.
2 https://www.gwern.net/Crops.
3 https://www.kaggle.com.
4 https://archive.ics.uci.edu/ml/datasets.
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4.2. Experimental settings

The running parameters of the comparison algorithms are set according to the original articles. Specifically, h ¼ 0:1 for

SETRED, a ¼ 2 and h ¼ 0:1 for STDPCEW. We set a ¼ 2 for STDPNF. It is worth mentioning that the proposed EBSA Algorithm

does not require hyper-parameters, which makes EBSA easy to be applied.

In order to keep consistent with the comparison algorithms, the decision tree of version C4.5 is chosen as the base clas-

sifier. The operating parameters of the decision tree are as follows: the Gini diversity index is used as the division criterion

for attribute division, the cluster name used in training and testing is consistent with the label of label set Y, and the priority

of each class is set according to the class frequency in label set Y. When the nodes are subdivided, the number of samples of

each node is required to be no less than 2. The number of all features is taken as the maximum number of features consid-

ered when dividing, and the maximum number of splits is the number of all samples in the data set minus one, that is, n� 1.

We conducted the Wilcoxon signed ranks test at the level of confidence of 95%. The symbol ‘‘+”, ‘‘�”, and ‘‘�” respectively

indicate that the Algorithm EBSA proposed is significantly better, worse or equivalent with the comparison algorithm.

5. Results and discussion

5.1. Classification performance and analysis

In the real world, labeled data often accounts for a relatively small proportion. Some of the state-of-art semi-supervised

learning methods use different ratio of labeled samples [43], but most of the papers use 10% labeled samples for experi-

ments. Therefore, we randomly selected 10% of the samples as training set for experiments. In order to avoid the random-

ness of the experimental results, all experiments in this paper were carried out 50 times. The experimental results are shown

in Table 3 and Table 4.

We can draw the following conclusions from the experimental results in Table 3 and Table 4:

(1) The classification accuracies(F-score) of the Algorithm EBSA on most of the data sets are higher than that of the other

four comparison algorithms. Obviously, the classification performances of the proposed EBSA are higher than that of

SETRED, STDPCEW, STDPNaN and STDPNF.

(2) On the 7 image data sets including AR, COIL20, ORL, Palm, YaleB, FERET32 and MSRA25, the classification perfor-

mances exceed 90%. Experimental results show that the proposed Algorithm is suitable for high-dimensional image data

sets.

(3) It can be seen from the results of statistical tests that the classification performance of EBSA is significantly better than

that of SETRED, STDPCEW and STDPNaN, and is almost the same as the STDPNF.

(4) The average classification accuracy standard deviation of the EBSA Algorithm on the 20 data sets is 1.39, which lower

than that of SETRED, STDPCEW, STDPNaN and STDPNF and the average F-score got the same result. The experimental

results prove the robustness of the proposed EBSA algorithm.

Table 2

Data sets details.

index data set samples features clusters

1 AR 1680 1024 120

2 Cleve 303 13 4

3 COIL20 1440 1024 20

4 Isolet 1560 617 2

5 UPS 2007 256 10

6 Heart 270 13 2

7 MINIST2k 4000 784 10

8 ORL 400 1024 40

9 Palm 2000 256 100

10 Sonar 208 60 2

11 Solar 323 12 6

12 YaleB 2414 1024 38

13 BUPA 345 6 2

14 uspst 2007 256 10

15 MSRA25 1799 256 12

16 Yeast 1484 1470 10

17 Ecoli 336 7 8

18 autouni 205 25 6

19 pendigis 3498 16 10

20 FERET32 1400 1024 200
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5.2. Impact of labeled sample ratio on classification performance

In order to estimate the impact of the proportion of labeled samples on the classification performance of the Algorithm on

a small number of labeled data sets. We randomly selected the proportion of samples with labels from 2% to 20% with the

step of 2%, and conducted experiments on 20 data sets. These experiments are conducted 50 times and the mean and stan-

dard deviation of the results were calculated. The experimental results are shown in Fig. 4 and Table 5.

(1) The proposed EBSA obtained higher classification performances on 12 data sets than SETRED, STDPCEW, STDPNaN and

STDPNF algorithms, which shows that the proposed Algorithm has better classification performance than the comparison

algorithms.

(2) The classification performances decrease on the image data sets from Fig. 4. This is because the base classifier is deci-

sion tree. For high-dimensional data, classification performance of decision tree will be affected by the dimensionality.

Table 3

Accuracy of each Algorithm on 20 data sets (mean ± std).

Accuracy EBSA SETRED STDPCEW STDPNF STDPNaN

AR 96.23 ± 0.61 81.58 ± 1.03 78.87 ± 0.95 96.18 ± 0.47 79.50 ± 1.52

Cleve 86.17 ± 2.13 79.94 ± 4.28 79.04 ± 5.62 84.38 ± 3.78 79.88 ± 5.64

COIL20 92.61 ± 1.07 83.70 ± 1.45 80.97 ± 2.23 90.89 ± 1.42 82.59 ± 1.93

Heart 74.55 ± 3.81 72.98 ± 3.82 74.88 ± 3.61 70.36 ± 7.52 69.56 ± 4.49

Isolet 72.36 ± 1.81 69.46 ± 3.53 70.01 ± 2.38 71.78 ± 1.88 67.87 ± 2.93

MINIST2k 85.94 ± 0.62 78.20 ± 0.95 77.08 ± 1.31 85.91 ± 1.28 77.64 ± 1.01

ORL 95.58 ± 0.66 83.19 ± 1.48 80.46 ± 0.76 94.79 ± 0.88 81.30 ± 1.27

Palm 95.46 ± 0.47 79.90 ± 1.30 75.98 ± 0.81 95.22 ± 0.55 77.80 ± 1.51

Solar 86.25 ± 1.54 81.35 ± 4.01 84.61 ± 2.06 81.30 ± 2.69 81.43 ± 3.20

Sonar 75.75 ± 2.81 65.63 ± 9.00 66.36 ± 4.95 73.91 ± 4.93 65.87 ± 4.30

UPS 88.23 ± 1.39 82.93 ± 1.46 82.33 ± 1.52 87.82 ± 1.70 82.60 ± 1.74

YaleB 91.93 ± 1.68 72.04 ± 1.45 67.51 ± 1.18 91.42 ± 1.93 68.73 ± 1.76

BUPA 67.41 ± 4.72 63.70 ± 3.60 61.22 ± 3.34 66.95 ± 3.12 62.71 ± 3.86

FERET32 97.75 ± 0.50 93.03 ± 0.18 86.86 ± 0.96 97.67 ± 0.38 88.13 ± 1.06

MSRA25 90.63 ± 0.87 87.53 ± 0.91 86.88 ± 1.62 90.40 ± 0.64 86.45 ± 1.18

Yeast 93.51 ± 0.02 80.22 ± 1.69 81.51 ± 2.21 93.42 ± 0.15 80.97 ± 2.60

uspst 88.34 ± 1.03 83.48 ± 1.65 82.58 ± 1.41 87.76 ± 1.12 82.90 ± 0.95

autouni 79.91 ± 1.36 76.67 ± 3.56 74.46 ± 4.63 79.68 ± 2.08 73.19 ± 6.14

Ecoli 93.03 ± 0.18 87.87 ± 2.09 88.26 ± 3.36 92.73 ± 0.73 89.77 ± 2.49

pendigits 90.37 ± 0.57 91.53 ± 1.23 91.55 ± 0.74 89.88 ± 0.97 91.68 ± 0.60

WSR-test N/A + + � +

Ave.ACC 87.1 79.59 78.57 86.12 78.53

Ave.std 1.39 2.48 2.28 1.91 2.51

Table 4

F-score of each Algorithm on 20 data sets (mean ± std).

F-score EBSA SETRED STDPCEW STDPNF STDPNaN

AR 92.20 ± 1.86 51.51 ± 3.80 39.85 ± 4.48 92.27 ± 1.11 42.90 ± 4.81

Cleve 75.68 ± 5.88 68.39 ± 8.23 68.50 ± 9.08 71.23 ± 9.30 68.45 ± 7.36

COIL20 92.20 ± 1.30 80.90 ± 2.00 76.98 ± 3.35 90.10 ± 1.76 79.32 ± 2.72

Heart 74.55 ± 3.81 72.98 ± 3.82 74.88 ± 3.61 70.36 ± 7.52 69.56 ± 4.49

Isolet 72.36 ± 1.81 69.46 ± 3.53 70.01 ± 2.38 71.78 ± 1.88 67.87 ± 2.93

MINIST2k 85.13 ± 0.74 73.60 ± 1.40 71.92 ± 1.96 85.08 ± 1.55 72.76 ± 1.49

ORL 91.44 ± 2.01 55.19 ± 8.16 42.59 ± 5.31 90.00 ± 2.11 46.39 ± 5.99

Palm 92.76 ± 0.65 62.21 ± 1.99 51.82 ± 2.66 91.86 ± 1.18 57.07 ± 4.30

Solar 75.92 ± 7.09 72.82 ± 3.86 77.63 ± 2.91 57.87 ± 11.47 72.14 ± 5.85

Sonar 75.75 ± 2.81 65.63 ± 9.00 66.36 ± 4.95 73.91 ± 4.93 65.87 ± 4.30

UPS 87.64 ± 1.64 80.19 ± 1.97 79.36 ± 2.10 87.25 ± 2.00 79.72 ± 2.35

YaleB 90.73 ± 2.07 61.70 ± 2.63 52.22 ± 2.67 90.32 ± 2.40 54.62 ± 3.42

BUPA 67.41 ± 4.72 63.70 ± 3.60 61.22 ± 3.34 66.95 ± 3.12 62.71 ± 3.86

FERET32 91.73 ± 1.99 89.66 ± 1.37 34.48 ± 3.92 91.63 ± 1.84 45.53 ± 5.45

MSRA25 90.39 ± 0.98 86.10 ± 1.13 85.25 ± 2.08 90.14 ± 0.73 84.72 ± 1.50

Yeast 93.00 ± 0.31 73.85 ± 5.18 76.74 ± 2.89 93.05 ± 0.46 75.42 ± 4.36

uspst 87.77 ± 1.21 80.91 ± 2.21 79.68 ± 1.91 87.19 ± 1.32 80.15 ± 1.29

autouni 73.79 ± 4.17 62.52 ± 8.84 59.58 ± 6.77 70.26 ± 8.22 61.69 ± 9.58

Ecoli 89.66 ± 1.37 79.61 ± 4.80 80.22 ± 6.74 89.69 ± 1.93 84.75 ± 4.29

pendigits 90.14 ± 0.63 90.91 ± 1.40 90.93 ± 0.85 89.70 ± 1.10 91.08 ± 0.69

WSR-test N/A + + � +

Ave.ACC 84.51 70.03 67.01 82.53 68.14

Ave.std 2.35 4.24 3.70 3.30 4.05
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Fig. 4. Classification performance of each Algorithm under different labeled sample ratios.
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Fig. 4 (continued)
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We conducted experiments on decision tree, and the results show that as the proportion of labeled samples increases, the

classification accuracy of decision trees decreases.

(3) The average accuracy of the EBSA Algorithm is 86.19%, which is higher than that of SETRED, STDPCEW, STDPNF and

STDPNaN. The average standard deviation of EBSA is 1.71, which is lower than that of SETRED, STDPCEW and STDPNaN,

which reflects the robustness of EBSA.
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Fig. 4 (continued)

Table 5

Accuracy of each Algorithm on 20 data sets (mean ± std).

Accuracy EBSA SETRED STDPCEW STDPNF STDPNaN

AR 94.77 ± 2.25 82.67 ± 5.84 79.26 ± 5.82 94.81 ± 2.26 80.62 ± 5.92

Cleve 85.38 ± 1.63 80.97 ± 2.08 80.47 ± 2.20 84.74 ± 2.45 80.25 ± 1.32

COIL20 92.45 ± 0.51 84.98 ± 3.54 82.36 ± 6.19 91.89 ± 1.10 82.87 ± 6.02

Heart 73.25 ± 4.23 71.94 ± 3.44 71.65 ± 6.02 72.72 ± 3.18 72.19 ± 4.20

Isolet 72.59 ± 0.94 70.19 ± 6.44 69.96 ± 5.71 72.26 ± 0.91 70.00 ± 6.26

MINIST2k 86.38 ± 0.81 77.43 ± 4.65 76.73 ± 5.38 86.03 ± 0.89 77.05 ± 4.93

ORL 94.51 ± 1.42 84.13 ± 5.96 81.55 ± 5.19 94.59 ± 1.52 82.57 ± 5.14

Palm 95.26 ± 1.77 81.47 ± 4.75 77.95 ± 3.97 95.18 ± 1.85 79.71 ± 4.60

Solar 84.40 ± 3.14 81.79 ± 2.76 82.36 ± 2.26 80.91 ± 3.06 81.31 ± 2.81

Sonar 73.52 ± 2.37 67.46 ± 5.17 66.64 ± 4.38 72.98 ± 3.49 65.64 ± 6.03

UPS 88.40 ± 0.69 82.89 ± 3.73 81.67 ± 5.31 88.22 ± 0.59 81.75 ± 5.38

YaleB 90.27 ± 2.59 75.00 ± 3.22 69.89 ± 3.71 90.51 ± 2.92 71.53 ± 3.65

BUPA 62.72 ± 5.63 61.72 ± 3.22 61.52 ± 3.37 66.04 ± 3.66 61.29 ± 4.31

FERET32 97.03 ± 1.74 88.93 ± 4.40 86.49 ± 4.53 97.09 ± 1.73 87.64 ± 4.56

MSRA25 90.67 ± 0.43 87.11 ± 4.39 84.99 ± 7.50 90.47 ± 0.27 85.73 ± 6.90

Yeast 93.00 ± 0.33 81.44 ± 1.68 82.17 ± 0.85 93.04 ± 0.27 81.60 ± 1.10

autouni 77.89 ± 1.90 78.35 ± 2.46 75.52 ± 1.54 78.03 ± 2.41 75.01 ± 1.35

Ecoli 92.70 ± 0.49 90.18 ± 1.10 88.89 ± 0.86 92.56 ± 0.58 89.76 ± 0.81

pendigits 90.27 ± 0.90 90.29 ± 4.49 90.28 ± 4.45 89.92 ± 0.48 90.36 ± 4.74

uspst 88.38 ± 0.38 83.19 ± 3.37 81.41 ± 6.02 87.87 ± 0.60 81.88 ± 5.57

WSR-test N/A + + � +

Ave.ACC 86.19 80.11 78.59 86.00 78.94

Ave.std 1.71 3.83 4.26 1.71 4.28

B. Li, J. Wang, Z. Yang et al. Information Sciences 626 (2023) 293–314

306



(4) From Fig. 4, the classification performance curves of the EBSA are smooth under different labeled proportions, which

shows the robustness of EBSA.

5.3. Noise experiment analysis

EBSA uses ball-cluster division to edit the data in the iterative training process, therefore, it has denoising ability and can

effectively correct the mislabeled data. In order to verify the denoising ability of EBSA, noise experiments were conducted. In

the real world, labeled data usually accounts for a small proportion of all data. Thus, 10% labeled data were chosen as train-

ing data [21,44]. Then, we randomly selected [1%, 10%] data from the training data and assigned error labels to them. Accu-

racy was chosen as the classification performance evaluation metric. These experiments were conducted 50 times and the

mean and standard deviation of the results were calculated. The results of the experiments are shown in Fig. 5 and Table 6.

From Fig. 5 and Table 6, we can draw the following conclusions:

(1) As the proportion of noise samples increases, the classification performance of the proposed Algorithm EBSA is higher

than 90% on AR, COIL20, ORL, Palm and FERET32 data sets, which is 17.06%, 10.01%, 12.89%, 19.04% and 10.07% higher

than the lowest performance of comparison Algorithm STDPCEW. The classification performance on Cleve, MINIST2k,

Solar, UPS, YaleB, MSRA25, Yeast, Ecoli and uspst data sets are all higher than 80%, compared with the lowest STDPCEW

increased by 7.4%, 8.9%, 4.57%, 5.88%, 22.48%, 3.76%, 11.07%, 2.29% and 5.27%. And the mean values in Table 6 are con-

sistent with the findings in Fig. 5, which proved the good denoising ability of EBSA.

(2) The average classification accuracy of the EBSA Algorithm is 84.64%. Compared with the comparison algorithms

SETRED, STDPCEW, STDPNaN and STDPNF, the performance is improved by 6.51%, 7.92%, 7.58% and 0.37%, respectively.

It can be seen that the EBSA Algorithm has data editing capabilities, which can reduce the impact of noisy samples on

classification performance.

(3) As can be seen from Fig. 5, the classification performance of the EBSA Algorithm on AR, COIL20, ORL, Palm, UPS, YaleB

and FERET32 data sets is not affected by the increase of noise ratio. As the noise ratio increases, the classification perfor-

mance curve fluctuates in the horizontal direction, which verifies the good data editing ability of the EBSA algorithm.

(4) The classification performances of the proposed Algorithm EBSA is much better than SETRED, STDPCEW and STDPNaN,

and slightly better than the STDPNF with local filters on 11 data sets including AR, COIL20, Cleve, Isolet, MINIST2k, ORL,

Palm, Solar, Sonar, UPS and YaleB. Theses results demonstrate that the excellent ability of EBSA for noise removal.

5.4. Experiment on different base classifiers

In order to study the influence of different base classifiers on the proposed high-confidence sample selection and editing

algorithm(SG), we conducted experiments on random forest, KNN(K = 1), SVM, and the decision tree. Let DT be the decision

tree. RF represents the random forest. All experiments were run 50 times, and we recorded the mean and standard deviation

of accuracies of the experiments, and listed the running time of each classifier. The experimental results are shown in Tables

7 and 8.

From Table 7 and 8, we can draw the following conclusions:

(1) SG + RF obtained the highest averge classification accuracy, SG + KNN is second only to SG + RF. The classification accu-

racy of SG + DT is similar to that of KNN, and slightly lower than that of random forest. SG + SVM has the lowest classi-

fication accuracy.

(2) The average running time of SG + DT is less than that of SG + KNN, and the running time of SG + SVM is the longest.

Because the random forest integrates multiple decision trees, the running time of SG + RF is much higher than that of

SG + DT and SG + KNN.

(3) To sum up, SG + DT runs faster than other tree algorithms. Although the classification accuracy of SG + DT is lower

than that of SG + RF, but the running time is much less than that of SG + RF.

5.5. Details of iteration process on UPS

The UPS was selected to describe the details of the EBSA Algorithm iteration process.

First of all, we randomly selected 10% of the labeled samples, there are 200 samples in total. The proposed EBSA con-

verged after three iterations. We described the details of each iteration as follows:

(1) After the first iteration, EBSA executed the proposed data editing on 62 samples to obtain 353 high-confidence

samples.

(2) After the second iteration, EBSA obtained 374 high-confidence samples with 14 edited samples.

(3) After the third iteration, EBSA obtained 387 high-confidence samples with 4 edited samples.
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5.6. Runtime analysis

The SNNRCE Algorithm mainly consists of constructing the edge-cut proximity graph, and then uses the nearest neighbor

(NN) rule for classification, the time complexity of computing the NN is O n3
� �

, and SNNRCE’s overall Algorithm complexity is
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Fig. 5. The influence of noise ratio on each algorithm.
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O tn3
� �

, where n denotes the number of samples, t denotes the number of iterations. The MLSTE Algorithm uses the nearest

neighbor editing technique(ENN) for data editing, the time complexity of computing the ENN is O n3
� �

, and then the K-

nearest neighbors(KNN) base classifier is used for self-training, and the overall complexity is O tn3
� �

. The above analysis

reveals that the current semi-supervised self-training algorithms need to calculate the distance between each pair-wise sam-

ple and have high time complexity, which limits the application of these algorithms in the area of big data.
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The time complexity of the decision tree of the base classifier is O n lognð Þ. EBSA needs O nð Þ to calculate the centers of the

ball-clusters and the time complexity of calculating the radii of the ball-clusters is O knð Þ, where k is the number of clusters.

Computing the distances between the samples and the centers of the clusters needs O knð Þ and calculate the pairwise dis-

tances of the centers needs O k
2

� �
. k� n, therefore, the total time complexity of the EBSA Algorithm is

O t 2knþ n lognþ nþ k
2

� �� �
.
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Fig. 5 (continued)

Table 6

Accuracy of each Algorithm on 20 data sets with noise (mean ± std).

Accuracy EBSA SETRED STDPCEW STDPNF STDPNaN

AR 95.19 ± 0.61 81.46 ± 0.46 78.13 ± 0.31 95.04 ± 0.61 79.27 ± 0.37

COIL20 90.26 ± 1.21 81.92 ± 1.20 80.25 ± 1.30 90.17 ± 1.25 80.40 ± 1.40

Cleve 84.42 ± 0.87 78.89 ± 2.40 77.02 ± 2.41 83.5 ± 1.96 76.89 ± 1.88

Heart 72.44 ± 2.16 70.50 ± 1.27 70.17 ± 1.80 71.41 ± 2.69 70.61 ± 2.04

Isolet 70.12 ± 1.36 67.26 ± 2.15 66.97 ± 2.07 69.94 ± 1.72 67.05 ± 1.28

MINIST2k 84.75 ± 2.70 76.54 ± 2.22 75.85 ± 2.31 84.78 ± 2.45 76.36 ± 2.23

ORL 94.06 ± 0.33 83.18 ± 0.43 81.17 ± 0.50 94.10 ± 0.42 82.10 ± 0.60

Palm 94.30 ± 0.43 78.98 ± 1.25 75.26 ± 0.55 94.47 ± 0.74 77.14 ± 0.83

Solar 84.68 ± 1.36 80.93 ± 1.38 80.11 ± 1.04 80.03 ± 1.35 80.58 ± 1.89

Sonar 70.38 ± 1.34 64.53 ± 2.87 64.33 ± 2.08 69.19 ± 2.63 64.40 ± 1.48

UPS 86.20 ± 1.37 81.48 ± 1.10 80.32 ± 1.35 85.59 ± 1.34 80.69 ± 1.61

YaleB 88.78 ± 0.84 70.90 ± 0.71 66.30 ± 0.68 88.90 ± 1.19 67.62 ± 0.71

BUPA 63.35 ± 2.25 60.12 ± 1.17 60.35 ± 1.48 65.13 ± 1.45 59.57 ± 1.10

FERET32 97.08 ± 0.35 89.80 ± 0.21 87.01 ± 0.25 97.22 ± 0.32 88.09 ± 0.28

MSRA25 88.46 ± 0.90 85.39 ± 1.67 84.70 ± 1.24 88.35 ± 1.34 85.00 ± 1.53

Yeast 87.24 ± 3.12 76.55 ± 1.89 76.17 ± 2.01 87.15 ± 3.47 76.10 ± 2.64

autouni 76.15 ± 1.16 75.60 ± 1.31 72.99 ± 1.93 77.07 ± 2.15 72.41 ± 1.09

Ecoli 89.04 ± 1.55 87.11 ± 1.16 86.75 ± 1.72 89.14 ± 1.82 86.30 ± 1.35

pendigits 89.68 ± 0.48 89.98 ± 0.77 89.71 ± 1.11 88.63 ± 0.74 89.79 ± 0.93

uspst 86.15 ± 1.06 81.50 ± 1.42 80.88 ± 1.10 85.51 ± 1.16 80.80 ± 1.22

WSR-test N/A + + � +

Ave.ACC 84.64 78.13 76.72 84.27 77.06

Ave.std 1.27 1.35 1.36 1.54 1.32
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EBSA has linear time complexity in terms of the number of samples, which is substantially lower than the comparison

algorithms. Given a data set with 10% labeled samples, each Algorithm was conducted the running time experiments 50

times and recorded the average running time. In Table 9, the numbers in parentheses indicate the ordering of the running

time of the Algorithm under the current data set among the five algorithms (ordered from the shortest time to the longest).

Runtime experiments were conducted on 20 data sets and the results are shown in Table 9.

From Table 9, we can draw the following conclusions:

(1)The running times of the proposed Algorithm EBSA are substantially lower than the comparison algorithms SETRED,

STDPCEW, STDPNaN and STDPNF on all 20 data sets. Table 9 also shows that EBSA has the shortest running time and

STDPCEW Algorithm has the longest running time. SETRED needs to construct related adjacency graphs and the overall

time complexity is O tn3
� �

. The time complexity of the STDPCEW Algorithm is O tn3
� �

. The STDPNaN Algorithm and

STDPNF find the spatial structure and the natural nearest neighbor using DPC with O n2
� �

and O n lognð Þ, respectively.

Therefore, the overall time complexity of STDPNaN is O tn2
� �

. The overall time complexity of STDPNF is O tn2
� �

. Therefore,

the time complexity of EBSA is the lowest.

Table 7

Experimental accuracy of different base classifiers on 20 datasets.

Accuracy SG + KNN(K = 1) SG + RF SG + SVM SG + DT

AR 99.12 ± 0.02 99.1 ± 0.06 99.09 ± 0.09 96.23 ± 0.61

Cleve 75.71 ± 4.19 87.29 ± 1.65 73.21 ± 6.76 86.17 ± 2.13

COIL20 95.94 ± 0.05 95.95 ± 0.02 95.97 ± 0.01 92.61 ± 1.07

Heart 70.79 ± 7.57 78.9 ± 1.05 57.79 ± 6.70 74.55 ± 3.81

Isolet 76.31 ± 0.07 76.31 ± 0.11 76.32 ± 0.14 72.36 ± 1.81

MINIST2k 91.37 ± 0.01 91.37 ± 0.01 91.37 ± 0.01 85.94 ± 0.62

ORL 97.01 ± 0.06 97.25 ± 0.04 97.31 ± 0.05 95.58 ± 0.66

Palm 99.06 ± 0.02 99.05 ± 0.02 99.04 ± 0.14 95.46 ± 0.47

Solar 83.13 ± 3.13 87.47 ± 2.11 83.22 ± 0.45 86.25 ± 1.54

Sonar 77.94 ± 0.36 78.03 ± 0.17 53.37 ± 0.01 75.75 ± 2.81

UPS 92.04 ± 0.02 92.64 ± 0.03 92.30 ± 0.19 88.23 ± 1.39

YaleB 96.57 ± 0.01 97.47 ± 0.21 97.46 ± 0.17 91.93 ± 1.68

BUPA 65.94 ± 3.12 71.73 ± 1.76 42.58 ± 1.67 67.41 ± 4.72

FERET32 98.97 ± 0.16 99.27 ± 0.12 98.99 ± 0.13 97.75 ± 0.50

MSRA25 92.87 ± 0.01 92.86 ± 0.01 92.86 ± 0.01 90.63 ± 0.87

Yeast 92.51 ± 0.04 93.23 ± 0.08 93.48 ± 0.06 93.51 ± 0.02

autouni 70.12 ± 4.56 83.00 ± 1.71 58.92 ± 4.80 79.91 ± 1.36

Ecoli 91.15 ± 0.15 92.40 ± 0.64 92.31 ± 0.51 93.03 ± 0.18

pendigits 92.15 ± 0.07 92.13 ± 0.06 89.03 ± 0.46 90.37 ± 0.57

uspst 92.65 ± 0.02 92.64 ± 0.01 92.26 ± 0.19 88.34 ± 1.03

Ave.ACC 87.57 89.90 83.84 87.1

Ave.std 1.18 0.49 1.13 1.39

Table 8

Running time on different base classifiers.

runtime SG + KNN(K = 1) SG + RF SG + SVM SG + DT

AR 23.45 26.25 691.56 22.53

Cleve 0.02 0.49 2.05 0.02

COIL20 2.58 6.76 116.84 3.43

Heart 0.03 0.41 0.44 0.01

Isolet 1.45 4.16 0.96 1.83

MINIST2k 12.58 9.78 109.21 2.87

ORL 0.20 3.46 28.98 0.95

Palm 1.09 21.07 314.27 8.11

Solar 0.04 0.57 0.16 0.03

Sonar 0.01 0.27 0.03 0.02

UPS 1.07 4.61 3.72 0.42

YaleB 6.11 15.08 255.71 9.86

BUPA 0.01 0.41 0.14 0.03

FERET32 12.28 17.19 943.54 11.14

MSRA25 0.76 4.11 3.71 1.03

Yeast 3.34 6.27 19.13 4.20

autouni 0.03 0.40 5.45 0.03

Ecoli 0.03 0.72 0.33 0.08

pendigits 0.15 4.26 38.83 0.24

uspst 1.12 4.58 3.45 0.44

Ave.time 3.36 6.54 126.93 3.32
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(2) On the 20 data sets, the average running time of the EBSA Algorithm is significantly smaller than the other four com-

parison algorithms. The running time of the EBSA Algorithm is 2.6%, 1.2%, 12.5% and 6.3% of that of the SETRED,

STDPCEW, STDPNaN and STDPNF algorithms, respectively. The running time order of the EBSA Algorithm is all 1, which

proves that the EBSA Algorithm is ahead of other comparison algorithms with respect to running time, and verifies the

correctness of the theoretical analysis.

(3) Since the Cleve, Heart, Solar, Sonar, BUPA, autouni and Ecoli data sets are relatively small compared to the other 13

data sets, the running time of the proposed Algorithm EBSA on these seven data sets don’t exceed 0.05s, which is consid-

erably faster than the other four compared algorithms.

(4) The running time of the EBSA Algorithm is only 16.67%, 15%, 14.29%, 30%, 32%, 11.11% and 27% on Cleve, Solar,

Sonar, autouni, Ecoli, Heart and BUPA of that of the second ranking algorithm, respectively. On the image data sets MIN-

IST2k and UPS, the running time of EBSA is 1.78% and 2.31% of that of the STDPNaN algorithm, respectively. Obviously,

the experimental results are consistent with the theoretical analysis.

6. Conclusion

The current semi-supervised machine learning algorithms with self-training Algorithm framework have high computa-

tional complexity and are not suitable for big data scenarios. To address this problem, we propose a novel data editing

method, which can not only handle noisy data conveniently, but also select high-confidence samples for iterative training

quickly. The proposed Algorithm divides the data set into stable and disputed areas by partitioning the ball-clusters. The

method requires less computational cost because only the distances between the sample points in the disputed area and

the centers need to be calculated in each iteration of self-training. Moreover, data editing is used to identify and delete

the mislabeled samples, which improves the quality of the selected high-confidence samples. The experimental results of

the Wilcoxon signed ranks test at the level of confidence of 95% indicate that the classification performance of EBSA is sig-

nificantly better than that of SETRED, STDPCEW and STDPNaN, and slightly higher than that of STDPNF.

In general, the proposed EBSA has the following advantages: (1) Compared with other related algorithms based on the

self-training framework, the training speed of the EBSA is significantly improved. Therefore, EBSA can handle largescale data.

(2) EBSA can edit noise data and select high-confidence samples with high quality. As a result, the performance of the learned

classifier is improved. (3) EBSA does not require hyperparameters, which makes it more convenient for practical

applications.

Our Algorithm has two main disadvantages: (1) The initial labeled data distribution significantly impacts the proposed

algorithm’s performance. (2) EBSA uses ball-cluster partition and editing Algorithm to edit noise data, making it unable to

deal with the non-spherical distribution data sets.

Because EBSA uses the euclidean distance to measure the distance between the samples, it does not apply to categorical

data and mixed numeric data. On the other hand, the EBSA Algorithm is not suitable for non-spherical distribution data sets.

In the future, we will expand our Algorithm from the following aspects: (1) By increasing the number of ball-clusters, we

will extend the EBSA Algorithm to the non-spherical distribution data sets. (2) For categorical and mixed-type data sets, we

Table 9

The running time of each Algorithm on 20 data sets.

time EBSA SETRED STDPCEW STDPNF STDPNaN

AR 22.53(1) 705.05(5) 320.15(4) 130.03(3) 52.29(2)

Cleve 0.02(1) 1.27(4) 0.55(3) 0.12(2) 0.12(2)

COIL20 3.43(1) 74.61(4) 145.03(5) 23.95(3) 17.99(2)

Heart 0.01(1) 1.24(4) 0.32(5) 0.09(2) 0.16(3)

Isolet 1.83(1) 26.86(4) 77.74(5) 53.75(2) 11.21(2)

MINIST2k 2.87(1) 380.67(4) 1965.18(5) 332.93(3) 161.29(2)

ORL 0.95(1) 28.24(5) 6.07(4) 6.60(3) 1.91(2)

Palm 8.11(1) 253.86(4) 281.93(5) 32.40(2) 33.15(3)

Solar 0.03(1) 2.14(4) 0.43(3) 0.20(2) 0.20(2)

Sonar 0.02(1) 1.29(5) 0.27(4) 0.23(3) 0.14(2)

UPS 0.42(1) 45.67(4) 208.04(5) 39.73(3) 18.18(2)

YaleB 9.86(1) 312.61(4) 446.26(5) 164.95(3) 57.53(2)

BUPA 0.03(1) 1.65(5) 0.62(4) 0.11(2) 0.26(3)

FERET32 11.14(1) 472.56(5) 111.73(4) 76.92(3) 20.88(2)

MSRA25 1.03(1) 35.15(4) 91.09(5) 9.37(2) 15.42(3)

Yeast 4.20(1) 55.19(5) 25.09(4) 11.44(3) 8.00(2)

uspst 0.44(1) 37.91(3) 201.14(5) 40.66(4) 18.55(2)

autouni 0.03(1) 1.67(5) 0.23(4) 0.13(3) 0.10(2)

Ecoli 0.08(1) 2.96(5) 0.98(4) 0.90(3) 0.25(2)

pendigits 0.24(1) 143.37(4) 1514.17(5) 9.45(2) 91.85(3)

Ave.time 3.36 129.20 269.85 52.63 26.8

Ave.rank 1 4.35 4.4 2.65 2.25
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will employ appropriate distance calculation methods to measure the distance of the samples so that our Algorithm can be

applied to these scenarios.
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