
Scaling Up the Accuracy of Naive-Bayes Classi�ers:a Decision-Tree HybridRon KohaviData Mining and VisualizationSilicon Graphics, Inc.2011 N. Shoreline BlvdMountain View, CA 94043-1389ronnyk@sgi.comAbstractNaive-Bayes induction algorithms were previouslyshown to be surprisingly accurate on many classi�-cation tasks even when the conditional independenceassumption on which they are based is violated. How-ever, most studies were done on small databases. Weshow that in some larger databases, the accuracy ofNaive-Bayes does not scale up as well as decision trees.We then propose a new algorithm, NBTree, which in-duces a hybrid of decision-tree classi�ers and Naive-Bayes classi�ers: the decision-tree nodes contain uni-variate splits as regular decision-trees, but the leavescontain Naive-Bayesian classi�ers. The approach re-tains the interpretability of Naive-Bayes and decisiontrees, while resulting in classi�ers that frequently out-perform both constituents, especially in the largerdatabases tested. IntroductionSeeing the future �rst requires not only a wide-anglelens, it requires a multiplicity of lenses|Hamel & Prahalad (1994), p. 95Many data mining tasks require classi�cation of datainto classes. For example, loan applications can beclassi�ed into either 'approve' or 'disapprove' classes.A classi�er provides a function that maps (classi�es)a data item (instance) into one of several prede�nedclasses (Fayyad, Piatetsky-Shapiro, & Smyth 1996).The automatic induction of classi�ers from data notonly provides a classi�er that can be used to map newinstances into their classes, but may also provide ahuman-comprehensible characterization of the classes.In many cases, interpretability|the ability to under-stand the output of the induction algorithm|is a cru-cial step in the design and analysis cycle. Some clas-si�ers are naturally easier to interpret than others; forexample, decision-trees (Quinlan 1993) are easy to vi-sualize, while neural-networks are much harder.Naive-Bayes classi�ers (Langley, Iba, & Thompson1992) are generally easy to understand and the in-duction of these classi�ers is extremely fast, requiring

only a single pass through the data if all attributesare discrete. Naive-Bayes classi�ers are also very sim-ple and easy to understand. Kononenko (1993) wrotethat physicians found the induced classi�ers easy tounderstand when the log probabilities were presentedas evidence that adds up in favor of di�erent classes.Figure 1 shows a visualization of the Naive-Bayesclassi�er for Fisher's Iris data set, where the task isto determine the type of iris based on four attributes.Each bar represents evidence for a given class and at-tribute value. Users can immediately see that all valuesfor petal-width and petal length are excellent deter-miners, while the middle range (2.95-3.35) for sepal-width adds little evidence in favor of one class or an-other.Naive-Bayesian classi�ers are very robust to irrele-vant attributes, and classi�cation takes into accountevidence from many attributes to make the �nal pre-diction, a property that is useful in many cases wherethere is no \main e�ect." On the downside, Naive-Bayes classi�ers require making strong independenceassumptions and when these are violated, the achiev-able accuracy may asymptote early and will not im-prove much as the database size increases.Decision-tree classi�ers are also fast and comprehen-sible, but current induction methods based on recursivepartitioning su�er from the fragmentation problem: aseach split is made, the data is split based on the testand after two dozen levels there is usually very littledata on which to base decisions.In this paper we describe a hybrid approach thatattempts to utilize the advantages of both decision-trees (i.e., segmentation) and Naive-Bayes (evidenceaccumulation from multiple attributes). A decision-tree is built with univariate splits at each node, butwith Naive-Bayes classi�ers at the leaves. The �nalclassi�er resembles Utgo�'s Perceptron trees (Utgo�1988), but the induction process is very di�erent andgeared toward larger datasets.The resulting classi�er is as easy to interpret as



Figure 1: Visualization of a Naive-Bayes classi�er for the iris dataset.decision-trees and Naive-Bayes. The decision-tree seg-ments the data, a task that is consider an essential partof the data mining process in large databases (Brach-man & Anand 1996). Each segment of the data, rep-resented by a leaf, is described through a Naive-Bayesclassi�er. As will be shown later, the induction algo-rithm segments the data so that the conditional in-dependence assumptions required for Naive-Bayes arelikely to be true.The Induction AlgorithmsWe briey review methods for induction of decision-trees and Naive-Bayes.Decision-tree (Quinlan 1993; Breiman et al. 1984)are commonly built by recursive partitioning. A uni-variate (single attribute) split is chosen for the rootof the tree using some criterion (e.g., mutual infor-mation, gain-ratio, gini index). The data is then di-vided according to the test, and the process repeatsrecursively for each child. After a full tree is built, apruning step is executed, which reduces the tree size.In the experiments, we compared our results with theC4.5 decision-tree induction algorithm (Quinlan 1993),which is a state-of-the-art algorithm.Naive-Bayes (Good 1965; Langley, Iba, & Thomp-son 1992) uses Bayes rule to compute the probabil-ity of each class given the instance, assuming the at-tributes are conditionally independent given the la-bel. The version of Naive-Bayes we use in our ex-periments was implemented in MLC++ (Kohavi etal. 1994). The data is pre-discretized using thean entropy-based algorithm (Fayyad & Irani 1993;Dougherty, Kohavi, & Sahami 1995). The probabil-ities are estimated directly from data based directlyon counts (without any corrections, such as Laplace orm-estimates).

Accuracy Scale-Up: the LearningCurvesA Naive-Bayes classi�er requires estimation of the con-ditional probabilities for each attribute value given thelabel. For discrete data, because only few parametersneed to be estimated, the estimates tend to stabilizequickly and more data does not change the underly-ing model much. With continuous attributes, the dis-cretization is likely to formmore intervals as more datais available, thus increasing the representation power.However, even with continuous data, the discretizationis global and cannot take into account attribute inter-actions.Decision-trees are non-parametric estimators andcan approximate any \reasonable" function as thedatabase size grows (Gordon & Olshen 1984). Thistheoretical result, however, may not be very comfort-ing if the database size required to reach the asymp-totic performance is more than the number of atomsin the universe, as is sometimes the case. In practice,some parametric estimators, such as Naive-Bayes, mayperform better.Figure 2 shows learning curves for both algorithmson large datasets from the UC Irvine repository1 (Mur-phy & Aha 1996). The learning curves show how theaccuracy changes as more instances (training data) areshown to the algorithm. The accuracy is computedbased on the data not used for training, so it repre-sents the true generalization accuracy. Each point wascomputed as an average of 20 runs of the algorithm,and 20 intervals were used. The error bars show 95%con�dence intervals on the accuracy, based on the left-out sample.In most cases it is clear that even with much more1The Adult dataset is from the Census bureau and thetask is to predict whether a given adult makes more than$50,000 a year based attributes such as education, hours ofwork per week, etc..
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C4.5Figure 2: Learning curves for Naive-Bayes and C4.5. The top three graphs show datasets where Naive-Bayes outperformedC4.5, and the lower six graphs show datasets where C4.5 outperformed Naive-Bayes. The error bars are 95% con�denceintervals on the accuracy.data, the learning curves will not cross. While it iswell known that no algorithm can outperform all othersin all cases (Wolpert 1994), our world does tend tohave some smoothness conditions and algorithms canbe more successful than others in practice. In the nextsection we show that a hybrid approach can improveboth algorithms in important practical datasets.NBTree: The Hybrid AlgorithmThe NBTree algorithm we propose is shown in Fig-ure 3. The algorithm is similar to the classical recur-sive partitioning schemes, except that the leaf nodescreated are Naive-Bayes categorizers instead of nodespredicting a single class.A threshold for continuous attributes is chosen us-ing the standard entropy minimization technique, as isdone for decision-trees. The utility of a node is com-puted by discretizing the data and computing the 5-

fold cross-validation accuracy estimate of using Naive-Bayes at the node. The utility of a split is the weightedsum of the utility of the nodes, where the weight givento a node is proportional to the number of instancesthat go down to that node.Intuitively, we are attempting to approximatewhether the generalization accuracy for a Naive-Bayesclassi�er at each leaf is higher than a single Naive-Bayes classi�er at the current node. To avoid splitswith little value, we de�ne a split to be signi�cant ifthe relative (not absolute) reduction in error is greaterthan 5% and there are at least 30 instances in the node.Direct use of cross-validation to select attributes hasnot been commonly used because of the large overheadinvolved in using it in general. However, if the data isdiscretized, Naive-Bayes can be cross-validated in timethat is linear in the number of instances, number ofattributes, and number of label values. The reason is



Input: a set T of labelled instances.Output: a decision-tree with naive-bayes categorizers atthe leaves.1. For each attribute Xi, evaluate the utility, u(Xi), ofa split on attribute Xi. For continuous attributes, athreshold is also found at this stage.2. Let j = arg maxi(ui), i.e., the attribute with the highestutility.3. If uj is not signi�cantly better than the utility of the cur-rent node, create a Naive-Bayes classi�er for the currentnode and return.4. Partition T according to the test on Xj. If Xj is con-tinuous, a threshold split is used; if Xj is discrete, amulti-way split is made for all possible values.5. For each child, call the algorithm recursively on the por-tion of T that matches the test leading to the child.Figure 3: The NBTree algorithm. The utility u(Xi) isdescribed in the text.that we can remove the instances, update the counters,classify them, and repeat for a di�erent set of instances.See Kohavi (1995) for details.Given m instances, n attributes, and ` label values,the complexity of the attribute selection phase for dis-cretized attributes is O(m � n2 � `). If the number ofattributes is less than O(logm), which is usually thecase, and the number of labels is small, then the timespent on attribute selection using cross-validation isless than the time spent sorting the instances by eachattribute. We can thus expect NBTree to scale up wellto large databases.ExperimentsTo evaluate the NBTree algorithm we used a large setof �les from the UC Irvine repository. Table 1 de-scribes the characteristics of the data. Arti�cial �les(e.g., monk1) were evaluated on the whole space of pos-sible values; �les with over 3,000 instances were evalu-ated on a left out sample which is of size one third ofthe data, unless a speci�c test set came with the data(e.g., shuttle, DNA, satimage); other �les were evalu-ated using 10-fold cross-validation. C4.5 has a complexmechanism for dealing with unknown values. To elim-inate the e�ects of unknown values, we have removedall instances with unknown values from the datasetsprior to the experiments.Figure 4 shows the absolute di�erences between theaccuracies for C4.5, Naive-Bayes, and NBTree. Eachline represents the accuracy di�erence for NBTree andone of the two other methods. The average accuracyfor C4.5 is 81.91%, for Naive-Bayes it is 81.69%, and

for NBTree it is 84.47%.Absolute di�erences do not tell the whole story be-cause the accuracies may be close to 100% in somecases. Increasing the accuracy of medical diagnosisfrom 98% to 99% may cut costs by half because thenumber of errors is halved. Figure 5 shows the ratioof errors (where error is 100%-accuracy). The shuttledataset, which is the largest dataset tested, has only0.04% absolute di�erence between NBTree and C4.5,but the error decreases from 0.05% to 0.01%, which isa huge relative improvement.The number of nodes induced by NBTree was inmany cases signi�cantly smaller than that of C4.5.For example, for the letter dataset, C4.5 induced 2109nodes while NBTree induced only 251; in the adultdataset, C4.5 induced 2213 nodes while NBTree in-duced only 137; for DNA, C4.5 induced 131 nodes andNBTree induced 3; for led24, C4.5 induced 49 nodes,while NBTree used a single node. While the complex-ity of each leaf in NBTree is higher, ordinary trees withthousands of nodes could be extremely hard to inter-pret. Related WorkMany attempts have been made to extend Naive-Bayesor to restrict the learning of general Bayesian networks.Approaches based on feature subset selection may help,but they cannot increase the representation power aswas done here, thus we will not review them.Kononenko (1991) attempted to join pairs of at-tributes (make a cross-product attribute) based on sta-tistical tests for independence. Experimentation re-sults were very disappointing. Pazzani (1995) searchedfor attributes to join based on cross-validation esti-mates.Recently, Friedman & Goldszmidt (1996) showedhow to learn a Tree Augmented Naive-Bayes (TAN),which is a Bayes network restricted to a tree topology.The results are promising and running times shouldscale up, but the approach is still restrictive. For ex-ample, their accuracy for the Chess dataset, which con-tains high-order interactions is about 93%, much lowerthen C4.5 and NBTree, which achieve accuracies above99%. ConclusionsWe have described a new algorithm, NBTree, which isa hybrid approach suitable in learning scenarios whenmany attributes are likely to be relevant for a clas-si�cation task, yet the attributes are not necessarilyconditionally independent given the label.NBTree induces highly accurate classi�ers in prac-tice, signi�cantly improving upon both its constituents



Dataset No Train Test Dataset No Train Test Dataset No Train Testattrs size size attrs size size attrs size sizeadult 14 30,162 15,060 breast (L) 9 277 CV-10 breast (W) 10 683 CV-10chess 36 2,130 1,066 cleve 13 296 CV-10 crx 15 653 CV-10DNA 180 2,000 1,186 are 10 1,066 CV-10 german 20 1,000 CV-10glass 9 214 CV-10 glass2 9 163 CV-10 heart 13 270 CV-10ionosphere 34 351 CV-10 iris 4 150 CV-10 led24 24 200 3000letter 16 15,000 5,000 monk1 6 124 432 mushroom 22 5,644 3,803pima 8 768 CV-10 primary-tumor 17 132 CV-10 satimage 36 4,435 2,000segment 19 2,310 CV-10 shuttle 9 43,500 14,500 soybean-large 35 562 CV-10tic-tac-toe 9 958 CV-10 vehicle 18 846 CV-10 vote 16 435 CV-10vote1 15 435 CV-10 waveform-40 40 300 4,700Table 1: The datasets used, the number of attributes, and the training/test-set sizes (CV-10 denotes 10-foldcross-validation was used).
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in many cases. Although no classi�er can outper-form others in all domains, NBTree seems to workwell on real-world datasets we tested and it scales upwell in terms of its accuracy. In fact, for the threedatasets over 10,000 instances (adult, letter, shuttle),it outperformed both C4.5 and Naive-Bayes. Runningtime is longer than for decision-trees and Naive-Bayesalone, but the dependence on the number of instancesfor creating a split is the same as for decision-trees,O(m logm), indicating that the running time can scaleup well.Interpretability is an important issue in data min-ing applications. NBTree segments the data using aunivariate decision-tree, making the segmentation easyto understand. Each leaf is a Naive-Bayes classi�ers,which can also be easily understood when displayedgraphically, as shown in Figure 1. The number ofnodes induced by NBTree was in many cases signi�-cantly smaller than that of C4.5.Acknowledgments We thank Yeo-Girl (Yogo) Yunwho implemented the original CatDT categorizer inMLC++. Dan Sommer�eld wrote the Naive-Bayes vi-sualization routines inMLC++.ReferencesBrachman, R. J., and Anand, T. 1996. The processof knowledge discovery in databases. In Advances inKnowledge Discovery and Data Mining. AAAI Pressand the MIT Press. chapter 2, 37{57.Breiman, L.; Friedman, J. H.; Olshen, R. A.; andStone, C. J. 1984.Classi�cation and Regression Trees.Wadsworth International Group.Dougherty, J.; Kohavi, R.; and Sahami, M. 1995.Supervised and unsupervised discretization of contin-uous features. In Prieditis, A., and Russell, S., eds.,Machine Learning: Proceedings of the Twelfth Inter-national Conference, 194{202. Morgan Kaufmann.Fayyad, U. M., and Irani, K. B. 1993. Multi-intervaldiscretization of continuous-valued attributes for clas-si�cation learning. In Proceedings of the 13th Inter-national Joint Conference on Arti�cial Intelligence,1022{1027. Morgan Kaufmann Publishers, Inc.Fayyad, U. M.; Piatetsky-Shapiro, G.; and Smyth,P. 1996. From data mining to knowledge discovery:An overview. In Advances in Knowledge Discoveryand Data Mining. AAAI Press and the MIT Press.chapter 1, 1{34.Friedman, N., and Goldszmidt, M. 1996. Buildingclassi�ers using bayesian networks. In Proceedings ofthe Thirteenth National Conference on Arti�cial In-telligence. To appear.

Good, I. J. 1965. The Estimation of Probabilities: AnEssay on Modern Bayesian Methods. M.I.T. Press.Gordon, L., and Olshen, R. A. 1984. Almost sure con-sistent nonparametric regression from recursive par-titioning schemes. Journal of Multivariate Analysis15:147{163.Hamel, G., and Prahalad, C. K. 1994. Competingfor the Future. Harvard Business School Press andMcGraw Hill.Kohavi, R.; John, G.; Long, R.; Manley, D.; andPeger, K. 1994. MLC++: A machine learn-ing library in C++. In Tools with Arti�cial In-telligence, 740{743. IEEE Computer Society Press.http://www.sgi.com/Technology/mlc.Kohavi, R. 1995. Wrappers for Performance En-hancement and Oblivious Decision Graphs. Ph.D.Dissertation, Stanford University, Computer Sciencedepartment.ftp://starry.stanford.edu/pub/ronnyk/teza.ps.Kononenko, I. 1991. Semi-naive bayesian classi�ers.In Proceedings of the sixth European Working Sessionon Learning, 206{219.Kononenko, I. 1993. Inductive and bayesian learningin medical diagnosis. Applied Arti�cial Intelligence7:317{337.Langley, P.; Iba, W.; and Thompson, K. 1992. Ananalysis of bayesian classi�ers. In Proceedings ofthe tenth national conference on arti�cial intelligence,223{228. AAAI Press and MIT Press.Murphy, P. M., and Aha, D. W. 1996. UCI repositoryof machine learning databases.http://www.ics.uci.edu/~mlearn.Pazzani, M. 1995. Searching for attribute depen-dencies in bayesian classi�ers. In Fifth InternationalWorkshop on Arti�cial Intelligence and Statistics,424{429.Quinlan, J. R. 1993. C4.5: Programs for MachineLearning. Los Altos, California: Morgan KaufmannPublishers, Inc.Utgo�, P. E. 1988. Perceptron trees: a case studyin hybrid concept representation. In Proceedings ofthe Seventh National Conference on Arti�cial Intelli-gence, 601{606. Morgan Kaufmann.Wolpert, D. H. 1994. The relationship between PAC,the statistical physics framework, the Bayesian frame-work, and the VC framework. In Wolpert, D. H., ed.,The Mathemtatics of Generalization. Addison Wesley.


