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Evolution is a blind fitting process by which organisms become adapted to their environment. Does the brain

use similar brute-force fitting processes to learn how to perceive and act upon theworld? Recent advances in

artificial neural networks have exposed the power of optimizing millions of synaptic weights over millions of

observations to operate robustly in real-world contexts. These models do not learn simple, human-interpret-

able rules or representations of the world; rather, they use local computations to interpolate over task-rele-

vant manifolds in a high-dimensional parameter space. Counterintuitively, similar to evolutionary processes,

over-parameterized models can be simple and parsimonious, as they provide a versatile, robust solution for

learning a diverse set of functions. This new family of direct-fit models present a radical challenge to many of

the theoretical assumptions in psychology and neuroscience. At the same time, this shift in perspective es-

tablishes unexpected links with developmental and ecological psychology.

Introduction

On a moment-to-moment basis, the brain is assimilating dy-

namic, multidimensional information about the world in order

to produce rich, context-dependent behaviors. Confronted

with such complexity, experimental neuroscientists traditionally

design controlled experiments to reduce the dimensionality of

the problem to a few factors conceived by the experimenter

(Fisher, 1935). This reductionist program relies on a core

commitment to the assumption that the neural computations

supporting many of our cognitive functions can be decontex-

tualized and decomposed into a handful of latent features,

that these features are human interpretable and can be manip-

ulated in isolation, and that the piecemeal recomposition of

these features will yield a satisfying understanding of brain

and behavior.

In parallel to the research in neuroscience and psychology

laboratories, artificial neural networks (ANNs; see Box 1) are at-

taining human-level behavioral performance across many

tasks, such as face recognition (e.g., Taigman et al., 2014), lan-

guage processing (e.g., Radford et al., 2019), complex game-

play (e.g., Jaderberg et al., 2019), and motor learning (e.g., Lev-

ine et al., 2018). This research program effectively abandoned

traditional experimental design and simple interpretable

models, instead putting a premium on behavior (i.e., task perfor-

mance) and embracing complexity. Such models learn how to

recognize faces or respond to natural-language inquiries

directly from the structure of the real world by optimizing mil-

lions of parameters (‘‘big’’ models) over millions of examples

(‘‘big’’ data; LeCun et al., 2015). Whereas the use of ANNs to

model cognitive processes can be traced back through connec-

tionism and parallel distributed processing (PDP), modern neu-

ral networks also substantially diverge from the tendency of

classical connectionist modeling to rely on relatively small-

scale, interpretablemodels with well-controlled inputs (e.g., Ru-

melhart and McClelland, 1986; McClelland and Rogers, 2003).

In this paper, we consider howANNs learn to perform complex

cognitive tasks and whether the solution is at all relevant to

cognitive neuroscientists. We use face recognition and language

processing as examples of cognitive tasks, which have been

extensively studied in cognitive neuroscience (see Box 2). Hun-

dreds of experimental manipulations have been used to probe

the neural machinery supporting face recognition and language

processing, each aiming to isolate a handful of relevant factors

underlying such functions. As a field, althoughwe have had great

success in identifying neural variables that covary with our

experimental variables, we are still far from understanding the

neural computations that support such behaviors in real-life con-

texts, and our toy models generally cannot compete with ANNs.

Cognitive neuroscientists traditionally advocate for a privileged

role of behavior in constraining models of neural information

processing (Krakauer et al., 2017). We agree with the caveat

that contrived experimental manipulations may not provide suf-

ficiently rich behavioral contexts for testing our models. We

contend that advances in ANNs are the result of a strict adher-

ence to the primacy of behavior and task performance, with

the ambition (and commercial incentive) of building models

that generalize to real-world contexts.

Similar to biological neural networks (BNNs), ANNs are trained

to perform meaningful actions on real multidimensional data in

real-life contexts. Across species and models, BNNs and ANNs

can differ considerably in their circuit architecture, learning rules,

and objective functions (Richards et al., 2019). All networks, how-

ever, use an iterative optimization process to pursue an objective,

given their input or environment—a process we refer to as ‘‘direct

fit’’ (inspired by Gibson’s use of the term ‘‘direct perception,’’ as

discussed below; Gibson, 1979). We draw on an analogy to the
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blind fitting processes observed in evolution by natural selection

and argue that ANNs and BNNs belong to the same family of

direct-fit models. Both produce solutions that are mistakenly in-

terpreted in terms of elegant design principles but in fact reflect

the interdigitation of ‘‘mindless’’ optimization processes and the

structure of theworld. This framework undercuts the assumptions

of traditional experimental approaches and makes unexpected

contact with long-standing debates in developmental and ecolog-

ical psychology. Although direct-fit optimization provides the

necessary foundations for many behaviors, current models still

fall short on some high-level cognitive tasks. In the last section,

we discuss the limitations of this framework and the implications

for high-level cognition.

Simple versus Multidimensional Models

As with any scientific model, neuroscientific models are often

judged based on their interpretability (i.e., providing an explicit,

formulaic description of the underlying causes) and generaliza-

tion (i.e., the capacity for prediction over broad, novel contexts;

e.g., von Neumann, 1955). However, in practice, interpretability

and generalization are often at odds: interpretable models may

have considerable explanatory appeal but poor predictive po-

wer, whereas high-performing predictive models may be difficult

to interpret (Breiman, 2001; Shmueli, 2010; Yarkoni and West-

fall, 2017).

This tension is particularly striking when modeling the brain

and behavior. The brain itself, in orchestrating behavior, is by

conventional standards a wildly over-parameterized modeling

organ (Conant and Ross Ashby, 1970). Each cubic millimeter

of cerebral cortex contains roughly 50,000 neurons that may

support approximately 6,000 adjustable synapses with neigh-

boring and distant cells. This yields a staggering number of about

300 million adjustable parameters in each cubic millimeter of

cortex and over 100 trillion adjustable synapses across the entire

brain (Azevedo et al., 2009; Kandel et al., 2012). This over-

parameterized modeling organ is an evolutionary solution for

producing flexible, adaptive behavior in a complex world.

In contrast, neuroscientists often reduce the complexity of the

task (or stimulus) by using low-dimensional experimental manip-

ulations in hopes of increasing the interpretability of observed

neural processes. By analyzing the neural responses in such

controlled situations, neuroscientists search the brain for simple

latent factors for describing the code that underlies a neural

computation. These experimental manipulations are often

inspired by our ‘‘folk’’ or phenomenological understanding of

the mind, brain, or world and, in turn, yield results reflecting

our own assumptions (Meehl, 1990; Rozenblit and Keil, 2002;

Jolly and Chang, 2019). That is, our simple models of the brain

often boil down to models of our experimental design.

We are entering a new era in psychology and neuroscience in

which over-parameterized models trained on big data are

increasingly more powerful and dramatically outstrip simple,

interpretable models in producing human-level ‘‘behavioral’’

performance across multiple cognitive tasks. Although the

Box 1. Artificial and Biological Neural Networks

Artificial neural networks (ANNs) are formal learning models inspired by the biological neural networks (BNNs) that constitute living

brains. ANNs, however, are an extreme abstraction of BNNs. Typically, biological neurons have three main structures: the cell

body, the axon, and dendrites. They come in a variety of shapes and functions, classified into unipolar, bipolar, and multipolar

groups, each further subdivided into a menagerie of different types. Each neuron in a BNN is modulated by a specific set of neu-

rotransmitters and embedded in a complex local neuronal circuit with different input and output units, inhibitory lateral connec-

tions, and a unique layout of interconnectivity. In addition to varying local circuit architecture, some biological nervous systems

include functionally specialized systems-level components, like the hippocampus, striatum, thalamus, and hypothalamus, which

are not generally included in current ANNs. Furthermore, the dynamic and biophysical properties of BNNs are vastly different from

ANNs. Finally, most ANNs are disembodied and do not interact closely with the environment in a closed-loop fashion (see Box 3).

This degree of abstraction has led many neuroscientists to dismiss ANNs as irrelevant for understanding biological brains.

Although we acknowledge that ANNs are indeed highly simplified models of BNNs, we argue that there are some critical similar-

ities: they belong to the same family of over-parameterized, direct-fit models that rely on dense sampling for learning task-relevant

structures in data. In many domains, ANNs are currently the only models that attain human-like behavioral performance and can

provide unexpected insights into both the power and limitations of the direct-fit approach.

LikeBNNs, ANNsare based on a collection of connected nodes called artificial neurons or units that loosely resemble the neurons in a

biological nervous system. Each connection, like the synapses in BNNs, links one artificial neuron to another, and the strength of

these connections can be adjusted by learning. Like their biological counterparts, an artificial neuron receives signals frommany neu-

rons, integrates their input, and sends a signal to artificial neurons connected to it. The output of eachartificial neuron is typically some

nonlinear function of its inputs. Similarly, biological neurons typically only transmit a signal if the aggregated input signals reach a

threshold. The connections between artificial neurons are assigned weights that are adjusted as learning proceeds (e.g., using the

backpropagation algorithm; Rumelhart et al., 1986) based on supervised feedback or reward signals. The weight increases or de-

creases the strength of a connection. Similar to BNNs, ANNs are sometimes organized into layers, and the network as a whole is

optimized to map the input to the desired output according to the objective function. For additional details on the parallels between

ANNs and BNNs, we point the reader to recent reviews (Botvinick et al., 2019; Cichy and Kaiser, 2019; Hassabis et al., 2017; Krie-

geskorte, 2015; Kumaran et al., 2016; Richards et al., 2019; Whittington and Bogacz, 2019; Yamins and DiCarlo, 2016).
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power of over-parameterized models in machine learning is

becoming apparent, there is fierce debate about whether they

provide any insight into the underlying neural code of biological

organisms (e.g., Lake et al., 2017; Marcus, 2018a).

We argue that neural computation is grounded in brute-force

direct fitting, which relies on over-parameterized optimization

algorithms to increase predictive power (generalization) without

explicitly modeling the underlying generative structure of the

world. We first differentiate two forms of generalization: extrap-

olation and interpolation. Traditionally, interpolation was viewed

as a weak form of generalization because of its local (non-gener-

ative) nature. Here we argue that in the context of direct fit and

big, real-world data, interpolation can provide a mindless yet

powerful form of generalization (potentially eschewing the need

for extrapolation).

Interpolation and Extrapolation

Statistics textbooks usually associate over-parameterized

models with overfitting and contrast them with ideal-fit (also de-

noted as ‘‘appropriate fit’’ and ‘‘just-right fit’’) and underfit models

(Figures 1A–1C). Anunderfitmodel is amodelwith too fewparam-

eters to capture the underlying structure of the observed data and

thus provides poor prediction or generalization (Figure 1A). An

overfit model is flexible enough to fit and/or memorize the struc-

ture of a training sample (including structureless noise and idio-

syncrasies specific to the training set) to the extent that it fails to

learn the structure needed for generalization (Figure 1C). An

ideal-fit model is a model that learns the underlying generative

or global structure of the data by exposing a few latent factors

or rules (Figure 1B). As opposed to the underfit and the overfit

models, the ideal-fitmodel iscapableofgeneralization: accurately

predicting new observations never seen during training.

We contend that this textbook view should be revised to ac-

count for the fact that in a data-rich setting, over-parameterized

models can provide a mindless yet powerful form of generaliza-

tion. Anymodel is designed to solve a particular type of problem,

and the problem to be solved changes drastically when we shift

from preferentially sampling a limited parameter space in a

controlled experimental setting to densely sampling a wide

parameter space using big data in a performance-oriented

real-life setting.

Generalization Based on Impoverished Data

When the scope of the data is narrow relative to the scope of

world’s possible states (Figure 1E), over-parameterized models

will tend to learn idiosyncrasies specific to the training data and

will not extrapolate beyond that scope. This well-curated, narrow

sampling aperture is what we have in mind when we teach intro-

ductory statistics using diagrams like Figures 1A–1C. For

example, only the ideal-fit model revealing the underlying gener-

ative parabola rule (y= q0+ q1x+ q2x
2) can be useful for predicting

the values of new observations in the extrapolation zone in

Figure 1E. In contrast, the underfit and overfit models will be use-

less in predicting the values of any new point in the extrapolation

zone. In otherwords, suchgenerative ideal-fitmodels provide the

ultimate model for generalization, which relies on a complete un-

derstanding of the underlying rules used to generate the observa-

tions. However, extrapolation-based generalization requires that

the generative rules hold outside of the training zone (e.g., simu-

lateddata). In cases inwhich there are complexnonlinearities and

interactions among variables at different parts of the parameter

space, extrapolation from such limited data is bound to fail.

(The validity of this assumption about the uniformity of parameter

space is difficult to empirically evaluate and may vary wildly

acrossdomains of inquiry; herewesample fromasimpledistribu-

tion for the purpose of simulation, but the world around us clearly

does not resemble such a simple generative process.)

The perspective of the narrow aperture (Figure 1E), from

which we can uncover the underlying generative rules needed

to predict observations in a wide variety of contexts based

on data collected during contrived and highly controlled ex-

periments, has a privileged role in the minds of scientists

across many disciplines, including physics, chemistry, neuro-

science, and psychology. Interestingly, many computational

neuroscientists, cognitive and developmental psychologists,

and psycholinguists adopt this narrow aperture image when

theorizing about the neural code. This creates a tension: ex-

perimentalists use contrived stimuli and designs to recover

elegant coding principles (e.g., Hubel and Wiesel, 1962), but

it remains unclear whether these principles actually capture

neural responses in naturalistic contexts (Felsen and Dan,

2005; Olshausen and Field, 2005; Hasson and Honey,

2012; Hamilton and Huth, 2018). This is not a flaw of experi-

mental design, per se; cleverly designed experiments can, in

fact, expose principles of direct fit. However, the limited

generalizability of experiments using contrived, non-represen-

tative manipulations is often glossed over (Brunswik, 1947).

Historically, these practices and tensions can in part be traced

to an argument from cognitive psychology that the brain is

not exposed to rich enough data from the environment to

navigate the problem space (Chomsky, 1965). Therefore, to

predict novel outcomes in novel contexts, the neural code is

assumed to rely on implicit generative rules (either learned

or inherent).

Generalization Based on Big Data

Dense sampling of the problem space (Figure 1F) can flip the

problem of prediction on its head, turning an extrapolation-based

problem into an interpolation-based problem. This is illustrated in

Figure 1G, when we add new observations (black triangles) not

seen during training to the interpolation (green) zone. Counterintu-

itively, within the interpolation zone, over-parametrized models

with sufficient regularization (Figure 1D), which we denote

as direct-fit models (see section below), can attain as good pre-

dictive performance as the ideal-fitmodel (if not better, under con-

ditions in which variability in the data is not due to random noise).

Interpolation is a local process that does not rely on explicit

modeling of the overarching generative principles. It uses simple,

local heuristics, like nearest neighbors or averaging, to place the

current observation within the context of past observations.

Furthermore, as will be discussed below, over-parametrized

models provide new computational tools to learn complex

multidimensional statistical regularities in big data, in which no

obvious generative structure exists.

To summarize this point, interpolation uses local computations

to situate novel observations within the context of past
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observations; it does not rely on explicit modeling of the over-

arching generative principles. Unlike extrapolation, interpolation

was thought to provide a weak form of generalization because

it can only predict new data points within the context of past ob-

servations. Thus, when we considered the brain, we have tradi-

tionally assumed that interpolation did not provide a sufficient

form of generalization to support complex behavior, as the task

of the brain is to extrapolate from a small number of examples

to a near-infinite range of possible observations (Figure 1E). But

this problem only arises if the scope of the training space is small

or impoverished (as in highly controlled experiments). However,

the move to big data reframes the problem (Figure 1F): if we

densely sample parameter space using millions of free parame-

ters to robustly fitmillions of examples, there is remarkable power

in simple interpolation-based predictions (see Box 2).

Direct Fit and Artificial Neural Networks

Not all over-parameterized models overfit the data. There are

two types of over-parameterized models: explosive overfit and

direct fit. In the case of explosive overfit (Figure 1C), the model

memorizes all training data points but otherwise strays wildly

from the underlying structure of the data and does not afford

interpolation or extrapolation. The direct-fit model also relies

on over-parameterization tomatch the data structure. In contrast

to explosive overfit model, however, the direct-fit model regular-

izes the process to avoid explosive overfit while optimizing the

alignment to the structure of the training data (Figure 1D). This

regularization may collapse redundancies, imposing priors for

sparseness or smoothness, but, critically, can be implemented

using generic, local computations and does not require any

explicit model of the latent features of the data.

As an example of a direct-fit procedure, we will use standard

ANN architectures to model two low-dimensional processes.

For a brief discussion of ANNs and their relation to BNNs, see

Box 1. We will use two architectures: a standard fully connected

ANN for testing interpolation and extrapolation over space and a

recurrent neural network for testing interpolation and extrapola-

tion over time.

Figure 1. Direct-Fit Learning with Dense Sampling Supports Interpolation-Based Generalization
(A) An overly simplistic model will fail to fit the data.

(B) The ideal-fit model will yield a good fit with few parameters in the context of data relying on a relatively simple generative process; in fact, this is themodel used

to generate the synthetic data (with noise) shown here.

(C) An overly complex (i.e., over-parameterized)model may fixate on noise and yield an explosive overfit. (A)–(C) capture the ‘‘textbook’’ description of underfitting

and overfitting.

(D) Complexmodels, such as ANNs, however, can nonetheless yield a fit that both captures the training data and generalizes well to novel data within the scope of

the training sample (see G and Bansal et al., 2018 for a related discussion).

(E) Traditional experimentalists typically use highly controlled data to construct rule-based, ideal-fit models with the hope that suchmodels will generalize beyond

the scope of the training set into the extrapolation zone (real-life data).

(F) Direct-fit models—like ANNs and, we argue, BNNs—rely on dense sampling to generalize using simple interpolation. Dense, exhaustive sampling of real-life

events (which the field colloquially refers to as ‘‘big data’’) effectively expands the interpolation zone to mimic idealized extrapolation.

(G) A direct-fit model will generalize well to novel examples (black triangles) in the interpolation zone but will not generalize well in the extrapolation zone.
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Generalization of ANNs in the Interpolation and

Extrapolation Zones

To illustrate the properties of direct-fit models, we first trained an

ANN on a set of 10,000 training examples of even numbers

(green dots) sampled with variance from a simple sine function

(Figure 2). The ANN was trained to predict the y axis values

from the x axis values (imitating a spatial task). The ANN was

composed of one input neuron, three fully connected hidden

layers, each with 300 neurons, and one output neuron. Even

such a small network of 902 neurons results in an over-parame-

terized model with approximately 180,600 adjustable parame-

ters (weights). The model was trained with simple backpropaga-

tion through stochastic gradient descent.

All training exampleswere sampled from a confined parameter

space (�5 < x < 5), which we denote as the interpolation zone.

After training, the model was used to predict the y value for

10,000 new examples (even x values; blue dots) sampled at a

wider range of values (�15 < x < 15) extending beyond the inter-

polation zone into the extrapolation zone. Our goal was to

measure the ability of the direct-fit model to interpolate and

extrapolate the values of the new test examples not seen during

the fitting process.

By construction, an ideal sine function (black line, Figure 2A), a

model with exactly one free parameter, will achieve optimal

prediction of all blue points in the interpolation and extrapolation

zones. The ANN, however, managed to predict new observa-

tions not seen during training (Figure 2A) only within the interpo-

lation zone. The ability of the direct-fit model to interpolate, but

not to extrapolate, is clearly seen when we look at the test

data points in Figure 2A. The direct-fit model does not produce

any clear rule for how the data should look outside the context

or ‘‘scope’’ of the interpolation zone, providing a poor prediction

for new examples in the extrapolation zone. However, within the

interpolation zone, the ANN is as good as the ideal-fit model in

predicting the values of new observations not seen during

training. This can be seen in the magnified portion of

Figure 2A. Note how the predicted values (blue points) overlap

with the sine function used to generate the data (black line).

The interpolation zone is closely related—but not identical—to

the training set. The interpolation zone corresponds to the region

of parameter space spanned by the training samples but can

contain an infinite number of novel samples not observed during

training.

In this case, although the ANN did not truly learn the ideal

sine function necessary for extrapolation, it was still capable

of optimizing the fit to achieve high prediction quality within

the interpolation zone. One could argue that the ANN has

implicitly ‘‘learned’’ the sine function within the interpolation

zone, but the critical distinction is that this implicit representa-

tion of the sine function is an incidental or emergent byproduct

of the structure of the input and the fitting procedure. We can

interrogate the ANN for representations resembling the sine

function, but these exist only because we injected them into

the training data; the ANN has simply learned how to interpo-

late new observations within the scope of the training set. By

analogy, it may be misleading to claim that the brain repre-

sents some experimental variable in any fundamental way,

even in experiments in which such a description can account

for a considerable amount of variance in the neural responses

(Marom et al., 2009).

We demonstrate similar behavior, but now over time rather

than space, when training a recurrent long short-term memory

Figure 2. ANNs Only Generalize within the
Interpolation Zone
(A) Interpolation over space: a simple ANN model with

three fully connected hidden layers was trained to

predict the output of sine function mapping x axis to

y axis values. Training examples (green markers) were

x values between �5 and 5 (comprising only even

values). Predictions for test x values ranging from �15

to 15 (comprising only odd values) are indicated using

blue markers. The ideal sine wave (from which the

observations are sampled) is indicated by the black

line. The model was able to generalize to new test

examples not seen during training within the interpo-

lation zone but not within the extrapolation zone.

(B) Interpolation over time: a simple recurrent ANN

(LSTM) was trained to predict the sequence of forth-

coming observations from a sine function. Training

examples were sampled from the first half of sine wave

sequences between 2.5 and 4.5 Hz. The trainedmodel

was supplied with test samples from the first half of a

sequence (green markers) and predicted the subse-

quent values (blue markers). The model was able to

generalize to new frequencies not seen during training

within the interpolation zone but not within the

extrapolation zone.

(C) Interpolation provides robust generalization in a

complex world; given a rich enough training set, the

advantage of direct-fit interpolation-based learning

becomes apparent, as the same ANN from (A) is able

to learn an arbitrarily complex function (for which there

is no ideal model).
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Box 2. Face Recognition and Language Models: Two Examples of Direct Fit

Weargue thatBNNsandANNsbelong to thesame familyofdirect-fit optimizationmodels.Nonetheless,acrossdifferentbiological and

artificial networks, there isconsiderablevariability incircuit architecture, learning rules,andobjective functions.Althoughnovelcompu-

tational motifs regularly emerge from the machine learning literature, the space of possible models is vast and largely unexplored.

Tomake the notion of direct-fit interpolation concrete, we briefly describe two different modern ANNs: a deep convolutional neural

network trained to recognize faces from images using an externally supervised objective function (Schroff et al., 2015) and a trans-

former network that learns a language model using a self-supervised objective function (Radford et al., 2019). In both cases, rather

than using engineered features, the models learn an embedding space by optimizing an objective function on densely sampled

training data. Note that in both the externally supervised case (FaceNet) and self-supervised case (GPT-2), the objective functions

are ultimately governed by human behavior.

FACE MODEL (FaceNet)

This face recognition model (Schroff et al., 2015) assumes that all facial identities in the world are embedded in a multidimensional

Euclidean space (a property of the external world). Although the precise number of dimensions is unknown, empirically we need the

embedding space to be of sufficiently high dimension to capture all variations across individual identities. The model is supplied

face images (cropped to isolate the face and represented as 2203 220-pixel images with three-color channels) and learns a map-

ping from the 145,200-dimensional pixel space to a compact 128-dimensional identity space. One of the best-performing variants

of themodel is a deep convolutional neural network with 22 layers (140million parameters in total) trained using stochastic gradient

descent with backpropagation. End-to-end learning is guided by an objective function (triplet loss) minimizing the distance

between faces belonging to the same identity and enforcing a margin between different identities in the embedding space. This

objective function effectively compresses all face images belonging to the same person into a common location in the 128-dimen-

sional embedding space while discounting uninformative dimensions in image space and the input layers.

According to the direct-fit framework, the generalization of this model (i.e., its capacity to correctly classify face images of both

familiar and novel identities) is bounded by the density and diversity of the training set (i.e., the interpolation zone in Figures 1E,

1F, and 4). If the training set spans the space of facial variability in the real world (including identity, expression, viewpoint, lighting,

occlusion, etc.) with sufficiently dense examples, themodel can learn an embedding space where effectively any face can be inter-

polated to the correct identity cluster. This superhuman, nearly perfect generalization is obtainedwhen the network is trained on an

exceptionally dense training set of 200 million face images with a diverse set of 8 million identities. Importantly, the model gener-

alizes to a test set of 1 million face images for novel identities not included in the training set and achieves 95%–99% accuracy on

common benchmark datasets. The exact same network, however, will exhibit the ‘‘other-race effect’’ (Malpass and Kravitz, 1969;

O’Toole et al., 2018) if we restrict the training set to, e.g., western faces, while systematically excluding East Asian face images from

the training set, thereby inducing a bias by contracting the interpolation zone. Along these lines, humans are not face experts but

rather experts in recognizing the roughly 5,000 faces they are familiar with (Jenkins et al., 2018; Young and Burton, 2018). We

predict that if we selectively trained the exact same network on a cluster of 5,000 identities and a few million examples (more real-

istic input for the human brain), the model will learn a sparse, restricted region of identity space and will display more human-like

performance. Training the same network on a restricted set of, e.g., 20 identities in a laboratory setting will result in a constrained

‘‘overfit’’ model capable of identifying new images sampled from within the narrow scope of this training set (Figure 4).

A few lessons become clear from this example: generalization is bounded by the interpolation zone, which is determined by prop-

erties of the training set (i.e., density and diversity). The difficulty of the learning task is constrained by the complexity of the task-

relevant manifold on which the data reside as approximated by the multidimensional embedding space (e.g., a continuous,

smooth, low-dimensional manifold may facilitate learning). Note that these are properties of the external world (as expressed in

the training set) and not strictly properties of the network. Focusing exclusively on interpreting the properties of the 128-dimen-

sional embedding layer can be misleading for several reasons. First, the embedding layer is the tip of the iceberg: the embedding

space is the result of an over-parameterized, direct-fit learning process, and the behavioral performance of the model is the joint

product of the architecture, objective function, learning rule, training set, and so on; we cannot ignore the training sample or the

computational motifs that yield the embedding space if we hope to understand how the neural network works (for related argu-

ments, see Jonas and Kording, 2017; Lillicrap and Kording, 2019; Richards et al., 2019). Second, in the context of direct-fit learning

with exhaustive sampling, the structure of the embedding space generally reflects the task-relevant structure of the external world.

We should exercise caution in interpreting particular structural properties of the embedding space as ‘‘intrinsic’’ properties of the

network. Finally, given the multidimensionality of real-life input (e.g., 145,200-dimensional pixel inputs for FaceNet) and the multi-

dimensionality of the face-space manifold in the world (e.g., 100+ dimensions), the program of running highly controlled experi-

ments in an attempt to find low-dimensional, psychologically interpretable neural response features may lead us astray.

(Continued on next page)

Neuron 105, February 5, 2020 421

Neuron

Perspective



neural network (LSTM; Hochreiter and Schmidhuber, 1997) to

learn sine wave sequences (Figure 2B). In this case, instead of

using a fully connected ANN to learn the spatial relationship be-

tween x and y values, we trained the LSTM to predict a future

sequence of y values based on the preceding sequence of 100

y values sampled within a 1 s input window (green). The network

was trained on sine functions cycling at different frequencies

from 2.5 to 4.5 Hz (training zone; excluding samples at exactly

3 and 4 Hz). To assess the network’s capacity for interpolation

and extrapolation, we tasked the trained network with predicting

the values of a forthcoming sequence of 100 y values at novel

frequencies not sampled during training, either within the inter-

polation zone (i.e., 2.5–4.5 Hz) or in the extrapolation zone (i.e.,

frequencies slower than 2.5 Hz or faster than 4.5 Hz). The

LSTM was able to predict the next 100 y values for new sine

waves not seen during training but only at frequencies within

the interpolation zone (e.g., at 3 and 4 Hz in Figure 2B). The

LSTM failed to extrapolate whenpredicting values for new se-

quences at frequencies outside the interpolation zone (i.e., 1,

2, 5, and 6 Hz in Figure 2B).

The ‘‘no free lunch’’ theorem demonstrates that optimization

for one task will necessarily deteriorate performance in another

(Wolpert and Macready, 1997). Here we see how introducing a

different architecture can improve prediction of a sine function

at a particular frequency. However, this will not solve the extrap-

olation problem in general, as the network still does not learn the

ideal, rule-based sine function required to extrapolate to all sine

waves but simply learns how to interpolate new observations

within the scope of the training set. Although increasingly sophis-

ticated models trained on rich data may eventually approximate

the human brain’s exceptional robustness to broadly distributed

spatial and temporal structures, both ANNs and BNNs are never-

theless subject to the no free lunch theorem. They learn ad hoc

solutions by optimizing for a narrow region of problem space,

and a single architecture cannot excel in every domain (Go-

mez-Marin and Ghazanfar, 2019). In the same vein, evolution

yields organisms that are optimized to fit the constraints of a

given ecological niche (e.g., the deep sea or the desert) but

does not find ‘‘well-designed’’ or globally optimal solutions that

survive everywhere on the globe.

The Robustness of Direct Fit

The ideal sine function allows us to extrapolate to infinite new

values. In contrast, the over-parameterized direct-fit model can

only be used to predict values of new observations within the

confined interpolation zone. Here we have artificially limited the

underlying structure of the data such that the process generating

observations can be captured in one parameter. To draw an

analogy with cognitive psychology, we have constrained the

experimental design to parametrically vary a single stimulus

feature (e.g., the spatial frequency of a Gabor filter), holding all

other environmental variables constant. We have started with a

simple model to generate observations in hopes of recovering

the original generative rule from which the training data were

sampled. In fact, when interrogating the over-parameterized

model under these conditions, we simply recovered the task di-

mensions by which we constructed the experimental paradigm

or training set (Gao et al., 2017; Stringer et al., 2019).

In contrast to ideal-fit models, which flourish in simulations

and well-defined experimental settings, direct-fit models can

provide powerful ways to model big data in which the latent

structure is multidimensional, complicated, and prohibitively

difficult to model using a handful of factors. For example,

consider a world (Figure 2C) in which the underlying sine function

only applies to a narrow range of training examples (�5 > x > 5),

but beyond that specific range, the sine function no longer

Box 2. Continued

LANGUAGE MODEL (GPT-2)

This language model (Radford et al., 2019) assumes that there are sufficient regularities in the way people use language in specific

contexts to learn a variety of complex linguistic tasks (Wittgenstein, 1953). Again, we emphasize that the quality of themodel will be

constrained by the density and diversity of examples provided during training. Specifically, the model uses an attention-based

‘‘transformer’’ architecture (Vaswani et al., 2017) with 48 layers and over 1.5 billion parameters to perform sequence transduction.

In simple terms, the transformer can be thought of as a coupled encoder and decoder where the input to the decoder is shifted to

the subsequent element (i.e., the next word or byte). Critically, both the encoder and decoder components are able to selectively

attend to elements at nearby positions in the sequence, effectively incorporating contextual information. The model is trained on

over 8 million documents for a total of 40 gigabytes of text. Despite the self-supervised sequence-to-sequence learning objective,

themodel excelled at a variety of linguistic tasks, such as predicting the final word of lengthy sentences, question answering, sum-

marization, and translation, approaching human performance in some cases. Contextual prediction is a cognitively appealing self-

supervised objective function, as it is readily available to learners at all stages of development. Furthermore, the self-supervised

objective function is still shaped by external human behaviors in real-life contexts, which provide a structured linguistic input to the

learner, exposing the entwined relationships between self-supervision and external supervision. As opposed to humans, however,

this model only learns to predict based on a relatively narrow behavioral context (the preceding words) and is deprived of actions,

corroborating visual cues (cf. Vinyals et al., 2015), and social cues available to humans (see Box 3). The capacity to learn temporal

dependencies over many words still does not compare to our ability to accumulate and integrate broadly distributed multimodal

information over hours, days, and years. Surprisingly, despite the limitation of the training set and objective function, models of this

kind (e.g., Devlin et al., 2018) may also implicitly learn some compositional properties of language, such as syntax, from the struc-

ture of the input (Linzen et al., 2016; Belinkov et al., 2017; Baroni, 2019; Hewitt and Manning, 2019).
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describes the data structure. That is, when the data are sampled

over a wider range of training examples (�15 > x > 15), they

behave in a consistent and stable manner, which is, however,

very different from the sine wave (to drive the point home, we

generated these samples using a simple random-walk algorithm,

which by construction generates an arbitrary function).

As in Figure 2A, we retrained the same over-parameterized

ANN to fit 30,000 even-valued observations (green points)

sampled from a wider parameter space (�15 > x > 15). Because

of its flexibility and adaptivity, the over-parameterized ANN

model can now interpolate to accurately predict the values of

30,000 new observations (blue points) not seen by the model

within the wider training zone. Note that in contrast to the

ideal-fit model, the direct-fit model does not catastrophically

fail at this wider range of training examples—the model is

expressive enough to fit whatever stable data structure it ob-

serves. Indeed, as presented schematically in Figures 1E and

1F, direct-fit models thrive in the context of big data, where the

interpolation zone increases with the scope of the training set.

By widening the interpolation zone, the model’s inability to

extrapolate becomes less and less of a liability (Feldman,

2019; Radhakrishnan et al., 2019). The same direct-fit proced-

ures can be expanded to fit arbitrarily complex data structures

(Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989; Raghu et

al., 2017). The ability of over-parameterized models to robustly

fit complex data structures provides unparalleled predictive po-

wer within the interpolation zone, making them uniquely suit-

able for multidimensional, real-life situations for which no sim-

ple, ideal model exists. Ultimately, as we develop new

architectures and learning rules, we predict that these models

will only be limited by the scope of their training observations

and the complexity of the task (Figure 1F). In other words,

when the data structure is complex and multidimensional, a

‘‘mindless’’ direct-fit model, capable of interpolation-based

prediction within a real-world parameter space, is preferable

to a traditional ideal-fit explicit model that fails to explain

much variance in the data.

The Black Box Argument

When applied to suitable data using the appropriate objective

functions, direct-fit optimization procedures can provide us

with powerful functional models that use interpolation to predict

the values of new observations in real-world contexts. As

demonstrated in Figure 2, these models do not explicitly encode

the generative structure of the data and lack the ability to extrap-

olate to previously unseen contexts.

Critics often refer to over-parameterized direct-fit models pejo-

ratively as ‘‘black-box’’ models: models that given the correct

input, generate the correct output, without any explanation of their

internal workings (Ashby, 1956; McCloskey, 1991). For example,

the human face network is comprised of millions of neurons and

billions of synaptic weights, which as an ensemble are capable

of recognizing the faces of thousands of individuals across

different views and contexts (Jenkins et al., 2018). Similarly, using

deepneural networks, andwithouthardwiringorevenendeavoring

to ‘‘explain’’ the latent facial featuresor rules bywhich theirmodels

perform, commercial face-recognition software can recognize

faces with (super)human accuracy (Taigman et al., 2014; Schroff

et al., 2015). Thus, one may argue, such ANNs have simply dupli-

cated the original problem by creating one more black box model

for face recognition, as if the brain wasn’t enough.

We argue that there is nothing opaque about ANNs—they

are fully transparent ‘‘glass boxes.’’ The physicist Richard

Feynman famously wrote on his blackboard, ‘‘What I cannot

create, I do not understand.’’ We build artificial networks ac-

cording to explicit architectural specifications; we train net-

works using explicit learning rules and finite training samples

with well-specified objective functions; we have direct access

to each weight in the network. Given their unprecedented level

of transparency, why do we deem ANNs black-box models?

We do so because we are deeply committed to the assumption

that the ANN must learn a set of human-interpretable rules

necessary for processing information. This is our classical cri-

terion for understanding. Since we do not readily find such

rules when interrogating the distribution of millions of adjust-

able weights within over-parameterized artificial (and biolog-

ical) neural networks, we demote such models to black-box

status (Lillicrap and Kording, 2019).

In contrast to the common black-box argument, which fixates

on the interpretability of the fitted model parameters, we argue

that the broad family of direct-fit neural network models actually

provides a concise framework for understanding the neural

code. ANNs can be understood in terms of three components:

network architectures, learning rules, and objective functions (Ri-

chards et al., 2019). AlthoughBNNsdiffer substantially fromANNs

in all three factors (see Boxes 1 and 3), both belong to the same

family of direct-fitmodels. BNNs, however, are the result of billions

of years of evolution in a complexworld,whereas ANNsare in their

infancy.Nonetheless, ANNsprovide a proof of concept that neural

machinerymay rely onmindless fitting over exhaustive samples to

enable powerful interpolation-based generalization performance.

There is a surprising simplicity in the design specifications of

direct-fit ANNs and BNNs, but this simplicity does not guarantee

the interpretability we initially sought.

Direct-fit models do not learn rules for extrapolation but

rather use local interpolations to determine the value of new

examples based on their proximity to past examples within a

multidimensional embedding space (see Box 2). BNNs and

ANNs, from this perspective, belong to a family of weakly

representational models capable of learning the mapping be-

tween input and output using direct-fit optimization proced-

ures while being effectively agnostic to the underlying struc-

ture of the world. We should exercise caution in cases in

which these models seem to ‘‘learn’’ simple, psychologically

interpretable variables. It can be tempting to impose our own

intuitive or folk-psychological interpretations onto the fitted

model, but this is misguided. If a generic network learns

such a rule, this rule is likely inherent in the training set and

is thus not so much a meaningful property of the network as

it is a property of the data (see Figure 2). These interpretable

rules arise incidentally, as an emergent byproduct of the fitting

procedure. The incidental emergence of such rules is not a

‘‘goal’’ of the network, and the network does not ‘‘use’’ the

rules to extrapolate. This mindset, in fact, resembles pre-

Darwinian teleological thinking and ‘‘just-so stories’’ in biology

(Gould and Lewontin, 1979; Mayr, 1992). Evolution provides
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perhaps the most ubiquitous and well-known example of a

biological fitting process that learns to act in the world while

being blind to the underlying structure of the problems and

their optimal solutions.

The Power of Adaptive Fit in Evolution

Most biological processes are not guided by the explicit objective

of understanding the underlying structure of the world. Evolu-

tionary theory aims to explain how complex organisms (ranging

from amoebae to plants, fungi, fish, and mammals) and complex

biological mechanisms (such as photosynthesis, gills, wings, and

retinas) evolved to fit their local ecological niches, without any

explicit comprehension of the problems at hand and without any

understanding of the solutions to overcome them (Darwin,

1859). Evolution is the study of ever-changing, blind, local pro-

cesses bywhich species change over time to fit their shifting local

environment (Fisher, 1930; Williams, 1966).

The theory of evolution tries to explain the blind, local fitting

processes by which all living creatures on Earth have evolved

(Figure 3). These organisms all share the same origin and their

evolution relies on a handful of basic processes (Lewontin,

1970; Gould, 1982): (1) ‘‘over-production with variation’’ via ge-

netic mutation, gene regulation and expression, genetic drift,

endosymbiosis, or hybridization; (2) ‘‘inheritance’’ via vertical

transmission of genetic material from parent to offspring and

horizontal transmission of genetic material between unicellular

and/or multicellular organisms; (3) ‘‘combinatorial power’’ of

the genetic code to support diverse morphologies and organ-

ismal complexity; (4) ‘‘selection’’ via natural and artifactual

external forces, sexual, kin, and group preferences; and (5)

‘‘time’’ necessary to support the iterative diversification and

refinement of the phylogenetic tree, which has been unfolding

incrementally over many generations for over 3.5 billion years.

The theory of evolution makes use of a few simple principles

to explain the tight connections between vast arrays of phenom-

ena. Thus, the theory of evolution is simple and parsimonious. At

the same time, evolution is inefficient and costly in its implemen-

tation, given that today’s organisms have evolved over billions of

years of local interpolations. Moreover, in contrast to the laws of

nature in physics, which provide us with the ability to extrapolate

and predict events in different corners of the universe, evolution

is a local process not easily used for extrapolation to the next

evolutionary step. Predicting the forthcoming ramifications of

the tree of life on Earth 1 million years from now is prohibitively

difficult. Similarly, we cannot easily predict the morphology of

an organism given a novel set of environmental constraints;

that is, the theory of evolution cannot be used to extrapolate

phylogenetic trees beyond planet Earth, in ecological niches at

different corners of the universe. Does the lack of extrapolation

undermine the explanatory power of the theory of evolution?

Should we admit that we simply do not understand evolution

because the fitting procedure does not yield a finite set of

Box 3. Embodiment and Objective Functions

Objective functions guide direct-fit optimization to generate mappings from input to output. The space of possible objective func-

tions is large, but only a subset of objective functions will yield meaningful actions and adaptive behaviors. Currently, many ANNs

are disembodied and cannot actively sample or modify their world. For example, seminal externally supervised image classifica-

tion networks (e.g., Krizhevsky et al., 2012) learn to map images to labels provided by human annotators. The affordances that

emerge when learning to classify images according to 1,000 labels are very simplistic relative to the affordances of complex or-

ganisms interacting with objects in the real world. Furthermore, the brain does not have strictly defined training and test regimes

as in machine learning. Although certain periods of development may be particularly critical for learning, the brain is constantly

readjusting synaptic weights over the lifetime. Although we do not discuss them in depth here, end-to-end reinforcement learning

models (e.g., Mnih et al., 2015) provide an appealing alternative to simplistic external supervision. In fact, the brain may adaptively

shift learning strategies (e.g., from externally supervised to self-supervised) over time.

Objective functions in BNNs must also satisfy certain constraints imposed by the body to behave adaptively when interacting with

the world. Examples of objective functions guided by action include learning to balance the body while walking across the room,

learning to coordinate hands and eyes to touch objects, and learning to coordinate hand and fingermovements to bring food to the

mouth. In all these cases, it is clear whether the brain succeeded or failed at each trial, and it is clear howminimizing cost functions

can provide the necessary feedback to guide the fit without appealing to an explicit, rule-based understanding of the physical

forces at work. Furthermore, analogous to the gradual innovation along the evolutionary tree, in which a new function is scaffolded

by prior advances, learning one objective function, such as standing, paves the way for learning a new objective function, such as

walking, which can further enable running, jumping, or dancing.

Another source of guidance for learning is the actions of other agents within the social network. Examples of objective functions

guided by other brains include learning to recognize individual faces, learning to name objects, learning to produce grammatical

sentences, and learning to read. In all these examples, the solution is provided by social others (Wittgenstein, 1953; Hasson et al.,

2012). Because social exchange provides a basis for external supervision, the brain can rapidly learn complex knowledge collec-

tively accumulated over generations. Therefore, adding to current ANNs a body that is capable of actively sampling and interacting

with the world (e.g., Levine et al., 2018) and adding means to directly interact with other networks (e.g., Goodfellow et al., 2014;

Jaderberg et al., 2019) may increase the network’s capacity to learn and reduce the gaps between BNNs and ANNs (Marblestone

et al., 2016; Baker et al., 2019; Leibo et al., 2019).
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intuitive, psychologically interpretable biological motifs and or-

ganisms?

Direct Fit to Nature

The critical and subversive advance of evolutionary theory was

to remove the need for an ‘‘intelligent’’ force to guide change

(Dawkins, 1986; Dennett, 1995). Similarly, direct-fit neural net-

works remove the need for intentional or interpretable rules to

guide learning (Dennett, 2017). The ANN does not require the

engineer to inject human-interpretable rules describing, e.g.,

face configuration into the network, nor should the engineer

impose these interpretations on the network’s solution. Evolu-

tion teaches us how endless iterations of the same blind pro-

cess of variation guided by natural selection can produce the

rich variety of organisms and biological mechanisms we

observe in nature. Similar to natural selection, the family of

models to which both ANNs and BNNs belong optimizes pa-

rameters according to objective functions to blindly fit the

task-relevant structure of the world, without explicitly aiming

to learn its underlying generative structure (Table 1). In fact,

evolutionary algorithms often find non-intuitive solutions to

complex problems, especially in the context of multiple over-

lapping or conflicting objectives (Holland, 1992; B€ack, 1996; Ei-

ben and Smith, 2015). An organism’s genome, analogous to a

given ANN architecture, implicitly encodes certain structural as-

sumptions about the statistics of the world and objective func-

tions (Maynard Smith, 2000; Godfrey-Smith, 2007; Adami,

2012; Zador, 2019). Both genome and neural network are highly

expressive, distributed encoding architectures (Quackenbush,

2001; Raghu et al., 2017). In this sense, network solutions

adapted to performing particular behaviors are analogous to or-

ganisms adapted to particular niches as guided by evolution. In

the same way that ANNs fail at extrapolation, an organism

transplanted outside the ecological niche to which its species

has adapted may perish.

Evolution does not have the luxury of operating in an ideal-

ized, highly controlled parameter space (like an experimenter’s

laboratory) and neither do biological learning organisms (An-

derson and Chemero, 2016). Therefore, much like optimization

in deep learning, evolution by natural selection puts a premium

on behavior and task performance; interpretability in the phe-

notypes it yields is only happy coincidence.

What Is Needed for Successful Direct Fit?

Over-parameterized models are notorious for being hyper-

expressive, prone to imposing imaginary structure on random

unstructured training sets. For example, it was shown (Zhang

et al., 2017) that ANNs can be trained to fully memorize arbitrary

associations between a set of object labels and a set of randomly

shuffled images that do not match the labels. In this case, the

network memorized the entire arbitrary training set, achieving

close to 100% classification accuracy on the training data but

with no generalization to a new unseen set of test images (i.e.,

poor interpolation). The exact same set of images and labels

were then used to train the same deep network, but this time

the images were matched with correct labels. Similar to the

random labels condition, the network achieved close to 100%

classification on the training set, but in this case, the model did

not overfit; rather, it was capable of generalizing and correctly la-

beling new test images not seen during training.

What is the difference between these two cases that relied on

the exact same stimuli, network architecture, learning rules, and

objective function but resulted in such different models? The so-

lution to this puzzle lies not in the features of themodel but rather

in the properties of the external world. There are five require-

ments for over-parameterized models to generalize: (1) they

Figure 3. Evolution Is an Iterative Optimization Process over Many Generations
Evolution by natural selection is amindless optimization process by which organisms are adapted over many generations according to environmental constraints

(i.e., an ecological niche). This artistic rendition of the phylogenetic tree highlights how all living organisms on earth can be traced back to the same ancestral

organisms. Humans and other mammals descend from shrew-like mammals that lived more than 150 million years ago; mammals, birds, reptiles, amphibians,

and fish share a common ancestor—aquatic worms that lived 600 million years ago; and all plants and animals derive from bacteria-like microorganisms that

originated more than 3 billion years ago. Reproduced with permission from Leonard Eisenberg (https://www.evogeneao.com).
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must be fit to a structured world; (2) the world must be sampled

densely and widely; (3) the model must support a high-dimen-

sional encoding space; (4) the model must have the correct

objective function(s); and (5) the model must implement effective

regularization during optimization to avoid explosive overfit.

The Structure of the World

The world is hardly random. It is structured according to laws of

physics, biology, sociology, and the mind reflects this structure.

However, unlike ideal-fit models, the nervous system does not

explicitly define some handful of relevant signal dimensions.

An over-parameterized direct-fit model with sufficient sampling

is flexible enough to integrate multidimensional signals for inter-

polation. For an illustrative example, consider the faces of people

around you. We carry our faces with us everywhere we go, and

although we slowly age, we retain enough features over time

for people to recognize us at around 97% accuracy across

different situations and across time (O’Toole et al., 2018).

When the signals are unstable, however, direct-fit models are

likely to fail. For example, in a world in which we sporadically

swap facial features or in which we share identical facial features

with all other people, the task of face recognition would be much

more difficult. Drastic, qualitative deviations from the structure of

our familiar world would likely result in a catastrophic failure in

interpolation-based generalization, but we hope to rarely, if

ever, encounter situations that would require such extrapolation

(the impending climate collapse notwithstanding).

Dense Sampling of the World

In real life, sensory signals are usually noisy and dynamic. For

example, although our facial features are relatively stable, we

may look very different under different lighting conditions, from

different angles, with different make-up and hairstyles, or when

occluded by different objects. For direct fit to work, we need to

densely sample a broad parameter space (Figure 4) to ensure

robust interpolation. For example, if we were to fit a model to

only forward-facing face images, generalization to profiles would

be poor because profile images fall outside the interpolation

zone along the dimension(s) of viewpoint (Srivastava and Grill-

Spector, 2018). If, however, we were to sufficiently sample im-

ages across different viewpoints, lighting conditions, and

different states of occlusion, we would be able to interpolate

across all these dimensions. Similarly, if we were to train a model

only on images of one face, it wouldn’t be able to recognize

anyone else in the world. If we were to train the model on millions

of western faces, it would likely recognize western faces but

extrapolate poorly to East Asian faces (Malpass and Kravitz,

1969; O’Toole et al., 2018). From this perspective, the brain is

not necessarily an expert in face recognition per se, but rather

it is expert in recognizing the faces it generally encounters (Ra-

mon and Gobbini, 2018; Young and Burton, 2018). That is, our

face recognition behavior does not necessarily imply that our

brain learns an ideal, low-dimensional model of faces that it

can use to extrapolate to new, unfamiliar faces. Rather, we

densely sample face space over a range of parameter values

broad enough to roughly circumscribe most of the faces we

encounter, thus enabling interpolation (see Box 2 for details).

High-Dimensional Encoding Space

For direct fit to work, we need to adjust millions of parameters to

accommodate the complex, multidimensional structure of the

world. In ANNs, these parameters correspond to the synaptic

Figure 4. The Interpolation Zone Is Bound by
the Training Set
The density and diversity of training examples deter-

mine the interpolation zone and allow ANNs to

approximate the regions of the face-spacemanifold to

which they are exposed.

(A) The scope of exposure may range from controlled

experimental stimuli (e.g., Guntupalli et al., 2017) to

typical human exposure (Jenkins et al., 2018) to a

biased sample of only western faces (O’Toole et al.,

2018) to the vast training sample supplied to FaceNet

(Schroff et al., 2015). All of these are subsets of the

entire face space. Note that the numbers of identities

and observations indicated are crude approximations

for illustrative purposes.

(B) All facial variation in the world can be represented

geometrically as locations on a manifold in an ab-

stract, high-dimensional ‘‘face space’’ constrained by

the physical properties of human physiognomy.

(C) A simple schematic depiction of an ANN, which

maps input images (e.g., pixel values for face images)

through many hidden layers into a lower-dimensional

embedding space. The network’s objective function

quantifies the mismatch between the model’s output

and the desired output (e.g., predicting the correct identity). Error signals are then propagated back through the network to adjust connection weights, incre-

mentally optimizing the network to better perform the task specified by the objective function within the boundaries of the training data (interpolation zone). Note

that modern ANNs have drastically more complex architectures than depicted in the schematic (e.g., convolutional layers).

(D) Training an ANN, such as FaceNet (Schroff et al., 2015), on a vast number of diverse face images yields an interpolation zone encompassing nearly all facial

variation in the world (yellow, superhuman performance). However, training the exact same model on only western faces will yield a constrained interpolation

zone (green), and the model will generalize poorly to faces outside this interpolation zone (the ‘‘other-race effect’’). When trained on a sparser sample repre-

sentative of typical human exposure, the network will yield human-like performance (purple). Finally, if trained on impoverished data, the model will nonetheless

interpolate well within the scope of this limited training set but will fail to generalize beyond. The interpolation zone is a result of the density and diversity of the

training sample.
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weights between numerous simple computing elements. In

practice, this high-dimensional multivariate encoding space typi-

cally captures the structure of the world in distributed embed-

dings. Any feature of the world is represented across many

computing elements and each computing element participates

in encodingmany features of the world. This distributed encoding

scheme has several useful properties, including high capacity

and expressivity, robustness to noise (e.g., graceful degradation),

and, critically, approximate continuity in vector space that

natively supports interpolation-based generalization (Hinton et

al., 1986). On the other hand, this encoding schememakes it diffi-

cult to interpret the functional tuning of any single unit or neuron

(e.g., Ponce et al., 2019). Modern ANNs have exposed the power

and versatility of this encoding scheme: a variety of seemingly

distinct ‘‘tasks’’ can be performed by interpolating over a single

high-dimensional embedding space (e.g., Eliasmith et al., 2012;

O’Toole et al., 2018; Radford et al., 2019; Raffel et al., 2019).

Ecological Objective Functions

Over-parameterized models are often hyper-expressive and can

fit essentially any dimension of the data or world. However, most

dimensions are likely to contain little, if any, functional advantage

for the organism. Objective functions drive optimization of the

model weights to fit to the desired dimensions (Marblestone et

al., 2016). There are two types of objective functions, internally

guided (which are sometimes referred to as unsupervised, but

we prefer the term ‘‘self-supervised’’) and externally guided

(referred to as supervised, but we prefer the term ‘‘externally su-

pervised’’). Only a small set of objective functions will yield

models supporting adaptive behavior, and such objectives

may propagate across brains and across generations (spreading

even faster among social organisms). On the other hand, uninfor-

mative objective functions may be useless or costly and less

rewarding overall. For example, a training set of 10,000 face im-

ages can be divided to 210,000 groups, but only a subset of these

subdivisions is functionally meaningful. Examples of useful sub-

divisions may include gender, identity, or age. Examples of less

useful subdivisions may include hairstyle, eye color, shape of the

nose, length of eyelashes, or the number and location of beauty

marks, blisters, freckles, and so forth. Most ANNs could be

trained to prioritize any of these features and perform remarkably

well were we to assign the network such an objective function

(Marblestone et al., 2016). By allowing the system to converge

on functional solutions while remaining largely blind to the global,

underlying structure of the world, adaptive objective functions in

learning are closely related to selection pressures in biology, as

discussed below.

Effective Regularizations Procedures

Regularization effectively imposes a prior on optimization

processes to prevent explosive overfitting. Again, we can draw

on the analogy to evolution, in which the predominantly incre-

mental nature of genetic variation, robustness to genetic

mutations, and constraints of physiology (imposed both

morphologically and because of limited resources) regularize

the fitting process. In fact, the genome may impose exception-

ally strong priors on learning (Zador, 2019).

Direct-Fit Models Contradict Three Basic Assumptions

in Cognitive Psychology

From its inception, cognitive science has argued against over-

parameterized direct-fit models, asserting that cognition materi-

alizes under three fundamental constraints. First, the brain’s

computational resources are limited, and the underlying neural

code must be optimized for particular functions (e.g., Chomsky,

1980; Fodor, 1983). Second, the brain’s inputs are ambiguous

Table 1. The Parallels between Direct-Fit Learning and Evolution by Natural Selection

Evolution Learning

Over-Production with Variation. Over-production is a driving force

in natural selection, increasing variation and facilitating adaptation.

Over-production with variation is the engine that drives organisms

to sample the space of feasible solutions for fitting to the

environment.

Over-Sampling with Variation. Dense sampling of the environment

is necessary for direct-fit learning that interpolates to new

observations. The denser and broader the sampling of the world,

the easier the interpolation and the better the fit (a broad interpolation

zone effectively mimics extrapolation).

Inheritence. Genes provide a stable substrate for accumulating

adaptations to the structure of the world over generations.

Mutations provide the necessary procedure of fine-tuning

(optimizing) the genes for improving the fit to an ever-changing

world across generations.

Plasticity. Neural circuits provide a stable substrate for accumulating

knowledge over the lifespan of an organism. Neural plasticity allows

the fine-tuning (optimization) of synaptic weights to learn adaptive

behaviors within the lifespan of an organism.

Combinatorial Genetic Code. The genetic coding scheme shared

by all organisms is sufficiently high dimensional to express

diverse organisms adapted to diverse ecological niches.

Combinatorial Neural Code. High-dimensional neural networks

support a broad solution space and can accommodate the

complex, multidimensional structure of the world. The encoding

capacity of such models underpins their expressivity.

Natural Selection. External forces and ecological constraints

guide evolution by punishing for maladaptive variations.

Objective Functions. Self-supervised and externally supervised

objective functions guide learning by differentially adjusting

synaptic weights to reinforce adaptive behaviors.

Iteration over Generations. Evolution is an iterative optimization

process across generations. The power of this process for evolving

a diverse and rich set of species lies in replication with variation

over trillions of generations across several billion years.

Iteration over Samples. Direct-fit learning is an iterative optimization

process over many percepts and actions within the lifespan of

each individual. The power of this process lies in the gradual

adjustment of synaptic weights for improving the fit of the organism

to behave adaptively within their ecological niche.
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and too impoverished for learning without built-in knowledge

(e.g., Chomsky, 1980). Lastly, shallow, externally supervised

and self-supervised methods are not sufficient for learning

(e.g., Pinker, 1994). Briefly, in the example of grammar learning,

both the linguistic input and feedback are claimed to be insuffi-

cient; therefore, language learning must rely on hardwired (i.e.,

not learned) computational modules to support our generative

capacity to extrapolate (Chomsky, 1965; cf. Pullum and Scholz,

2002; Ramscar and Yarlett, 2007; Christiansen and Chater,

2008). Considering the brain as a BNN using direct-fit optimiza-

tion challenges these three assumptions and proposes new

routes for learning.

Computational Resources Are Not Scarce

Each cubic millimeter of cortex contains hundreds of thousands

of neurons with millions of adjustable synaptic weights, and

BNNs utilize complex circuit motifs hierarchically organized

across many poorly understood cortical areas (Felleman and

Van Essen, 1991). Thus, relative to BNNs, ANNs are simplistic

and minuscule. Relative to the ideal-fit models, however, the

sheer size of ANNs, with millions of parameters, and biological

networks, with billions of parameters, seems overwhelming.

Although the brain is certainly subject to wiring and metabolic

constraints, we should not commit to an argument for scarcity

of computational resources as long as we poorly understand

the computational machinery in question (Levy et al., 2004).

Although the capacity to learn simple tasks from big data may

be practically unbounded given the expressivity of ANNs, other

architectural constraints may impose structural constraints on

the capacity of the system to learn and act in the world (either

chew or talk with your mouth). Such constraints may include

the need to integrate information across modalities and time-

scales while selecting and executing a small set of coherent

behaviors at each moment (Musslick et al., 2017).

The Input Is Not Impoverished

Direct-fit relies on dense and broad sampling of the parameter

space for gaining reliable interpolations. One of our main insights

is that dense sampling changes the nature of the problem and

exposes the power of direct-fit interpolation-based learning (Fig-

ures 1 and 2). Quantifying the input entering the brain is a compli-

cated and laborious task (Sivak, 1996). Recent measurements

suggest that the incoming input may be vast and rich (Zyzik,

2009). For example, we may be exposed to thousands of visual

exemplars of many daily categories a year, and each category

may be sampled at thousands of views in each encounter, result-

ing in a rich training set for the visual system. Similarly, with

regard to language, studies estimate that a child is exposed to

several million words per year (Roy et al., 2015). The unexpected

power of ANNs to discover unintuitive structure in the world

suggests that our attempts to intuitively quantify the statistical

structure in the world may fall short. How confident are we that

multimodal inputs are in fact not so rich?

Shallow Self-Supervision and External-Supervision Are

Sufficient for Learning

Supervision may be guided by external forces, such as other so-

cial agents. Even in examples of strict external supervision inma-

chine learning, the ‘‘correct’’ labels are typically provided by hu-

man annotators (i.e., BNNs). In the absence of external

supervision, the brain (and ANNs) can rely on self-supervised

objective functions, such as prediction across space (e.g.,

across image patches; Doersch et al., 2015; Pathak et al.,

2016), time (e.g., across video frames; Lotter et al., 2016;

Wang and Gupta, 2015), or relative to self-motion or action

(Agrawal et al., 2015; Pathak et al., 2017). In fact, in the context

of prediction, the body (including adjacent computing elements

in the brain) and the world itself provide abundant feedback

(see Box 3). This resonates with the notion of ‘‘predictive coding’’

in neuroscience, which has gained momentum over the past two

decades (Rao and Ballard, 1999) and is a central pillar of recent,

optimization-oriented theories of brain function (Friston, 2010;

Clark, 2013; Heeger, 2017).

Direct-Fit Models and the School of Ecological

Psychology

James Gibson led the school of ecological psychology,

providing an alternative account to visual perception, called

direct perception, which was rejected and ultimately forgotten

by many cognitive scientists. According to Gibson (1979), the

brain does not aim to reconstruct the world from noisy retinal im-

ages but rather directly detects the relevant information needed

for action from a rich array of input. The school of ecological psy-

chology did tremendous work in showing how rich the visual

input is and how actions guide the selection of relevant informa-

tion from the environment. However, the ecological psychology

school’s critique of the traditional, strongly representational,

computational approach evoked resentment and skepticism in

the field, which took the position that without workable compu-

tational models, the argument in favor of direct perception

seemed vague and unscientific (Ullman, 1980; cf. Pezzulo and

Cisek, 2016). Interestingly, in a strange twist of history, advances

in ANNs and the idea of direct fit provide the missing computa-

tional framework needed for the ecological school of thought.

Direct fit, as an algorithmic procedure to minimize an objective

function, allows neural networks to learn the transformation be-

tween external input to meaningful actions, without the need to

explicitly represent underlying rules and principles in a human-

interpretable way.

A major task taken up by the school of ecological psychology

was to characterize each animal’s objective functions, concep-

tualized as affordances, based on the information the animal

needs to behave adaptively and survive in the world (Gibson,

1979; Michaels and Carello, 1981). For cats, a chair may afford

an intermediate surface for jumping onto the kitchen counter,

whereas for humans, it may afford a surface on which to sit while

eating. Like in evolution, there is no one correct way to fit the

world, and different direct-fit networks, guided by different

objective functions, can be used in the same ecological niche

to improve fit to different aspects of the environment. Further-

more, as argued by the school of ecological psychology, infor-

mation is defined as the affordances that emerge in interactions

between the organism and its ecological niche. As opposed to

strongly representational approaches common in computational

neuroscience, the direct-fit approach learns arbitrary functions

for facilitating behavior and is capable of mapping sensory input
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to motor actions without ever explicitly reconstructing the world

or learning explicit rules about the latent structure of the outside

world. Marr (1982), for example, speaks favorably of Gibson’s

theory of vision but, unsatisfied with the theory’s vague treat-

ment of information processing, instead suggests that the goal

of vision is to recover a geometrical representation of the world.

In contrast to the representational stance, the direct-fit frame-

work is aligned with Gibson’s treatment of the goal of vision: to

recover information in the world that affords the organism its

adaptive behaviors.

Gibson believed that animals are entangled with their environ-

ment in a closed perception-action feedback loop: they perceive

to act and act to perceive. Furthermore, actions and affordances

are shaped and constrained by the structure of the environment

and the organism’s physiology. Similarly, from the direct-fit

perspective, neural networks implicitly learn the structure of

the environment as a means to an end, but this learning is ulti-

mately driven by internal objectives aligning perception to action

with an eye toward adaptive fitness (see Box 3).

Nature versus Nurture

The links between evolution and neural networks provide a fresh

perspective on the nature-versus-nurture debate. So far, we

have discussed how biological (and artificial) neural networks

learn the structure of the world directly from examples using

direct-fit optimization procedures. The ability to learn particular

functions, however, is highly constrained by (1) the structure of

the body, peripheral nervous system, and the properties of the

sensory receptors; (2) the architecture of neural circuits; and

(3) the balance between pre-wired networks and open-ended

plasticity. Therefore, no BNN can be considered a tabula rasa,

as all three factors differ across species and are mindlessly

tuned by evolution (Zador, 2019).

Bodily Structure

Each organism has a particularmorphology (e.g., skeletal system,

motor system, and sensory system) that constrains its affordan-

ces and theway inwhich it adapts to its ecological niche.Because

evolution proceeds incrementally, the current morphology of an

organism constrains the adaptations that may occur in subse-

quent generations (a form of regularization). Furthermore, the

properties of the sensory organs constrain the type of information

an organism can capitalize on. For example, bats have unique

skeletal and echolocation systems, which enable their neural

networks to learn how to navigate and hunt aerially in the dark.

The design of the network’s peripheral structures is optimized

through evolution and, though only minimally modifiable, is the

backbone that shapes learning.

Neural Circuit Architecture

In contrast to Marr’s distinction between hardware and software

(Marr, 1982), circuit architecture in BNNs and ANNs is tightly

coupled to computation. There are many different architectures,

each optimized for learning specific ad hoc tasks. For example,

adding convolutional filters allows the networks to learn patterns

across space (Krizhevsky et al., 2012); adding recurrent connec-

tions allows the networks to detect patterns across time (Graves

et al., 2013); adding short- and long-term controllers allows the

network to adjust the timescale over which it accumulates infor-

mation (El Hihi and Bengio, 1996; Hermans and Schrauwen,

2013); adding attentional mechanisms allows the network to

enhance relevant information (Luong et al., 2015; Xu et al.,

2015); and adding context-based memory storage, such as

differentiable neural computers, allows the network to both store

episodic contexts and generalize across examples (Graves et al.,

2016). Introducing novel architectural motifs is likely to improve

the performance of ANNs. In BNNs, the architecture of the neural

circuitry is optimized by evolution and ranges from largely diffuse

nerve nets in jellyfish to series of ganglia in insects to the com-

plex subcortical and cortical structures of mammals (Satterlie,

2011; Striedter, 2005). The detailed comparativemapping of bio-

logical neural circuit architectures, learning rules, and objective

functions is an active field of research, and we have much to

learn from evolution’s solutions across neural systems and

across organisms (Nieuwenhuys et al., 1998; Liebeskind et al.,

2016).

Evolutionary Hardwiring

Evolution can pre-train and optimize the synaptic weights of the

networks. The retina, for example, is a specialized neural circuit

optimized by evolution to convert light into neural signals and

performs fairly sophisticated preprocessing on the incoming

images (Carandini and Heeger, 2011). The architecture of retinal

circuits is fixed (Briggman et al., 2011), and since they do not

receive top-downmodulation signals from the cortex, the degree

of neural plasticity is relatively low compared to the cortex. Simi-

larly, many of the neuronal circuits in insect and mammalian

brains are pre-wired and ready to operate from birth (Gaier and

Ha, 2019). Unlike other species, much of human learning takes

place after birth, although some pre-trained optimization no

doubt facilitates learning (Zador, 2019). Interestingly, related

optimization processes, like overproduction and selection, may

also guide plasticity in development (Changeux and Danchin,

1976; Edelman, 1993).

The parallels between evolution and learning redefine the

debate on nature versus nurture. A prominent view in develop-

mental psychology (e.g., Spelke et al., 1992; Spelke and Kinzler,

2007; Marcus, 2018b) argues that learning relies on innate

knowledge about the structure of the world (e.g., knowledge

about grammar, object permanence, numerosity, etc.). In

contrast, the direct-fit perspective argues that there is little

need for domain-specific templates or innate, explicit knowledge

of these underlying rules for the brain to function in the world

(e.g., Arcaro et al., 2017). It would be inefficient to hardwire these

faculties if they can be extracted from the world during develop-

ment. Our affordances are constrained by our bodies and brains,

and there is an intimate relationship between howour bodies and

neural networks are wired and what we can learn. Framing both

evolution and learning in terms of highly related optimization pro-

cesses operating over different timescales mitigates the polem-

ical character of this debate.

At Which Level Does Psychology Emerge?

We generally assume that human cognitive capacity extends

beyond the ‘‘mindless’’ competence embedded in direct-fit

models. Although direct-fit models can interpolate, their
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competence seems ‘‘fake’’ and they lack any explicit under-

standing of the underlying rules and processes that shape the

world. In contrast, human cognition, at its best, provides us

with tools to understand the world’s underlying structure and

seek global rules: the type of understanding needed to extrapo-

late to qualitatively novel situations. Our minds can recombine

words into new sentences, aggregate memories, and invent

fictional stories. Although current language models (e.g., trans-

formers) arguably generate grammatically structured and

context-sensitive paragraphs using direct-fit methods, they still

seem to lack the capacity to thoughtfully generate semantically

meaningful text. Furthermore, our minds develop mathematical

and logical systems and mechanical tools to harness knowledge

and expand our capacity to understand and act in the world, ca-

pacities that seem out of reach for the direct-fit over-parameter-

ized models.

We think that cognitive and computational neuroscience has

erred in imposing extrapolation criteria and ideal-fit models

wholesale on the brain. This way of thinking leverages some of

the most marvelous capacities of the human mind (sometimes

referred to as ‘‘System 2’’; Evans, 1984) to explain how the brain

effortlessly performs many of its cognitive tasks (referred to as

‘‘System 1’’). Although the human mind inspires us to touch

the stars, it is grounded in the mindless billions of direct-fit pa-

rameters of System 1. Therefore, direct-fit interpolation is not

the end goal but rather the starting point for understanding the

architecture of higher-order cognition. There is no other sub-

strate from which System 2 could arise. Many of the processes

in System 1 are shared with other animals (as in perceptual sys-

tems), and some are unique to humans (as in grammar learning),

but all are executed in an automatic, fast, and often unconscious

way. The brute-force direct-fit interpolation that guides learning

in these systems, similar to evolution, can go further than we pre-

viously thought in explainingmany cognitive functions in humans

(e.g., learning syntax in natural text without imposing rule-based

reasoning; see Box 2).

We still do not know the extent to which the human cognitive

capacities attributed to System 2 go beyond the quick and

automatic procedures of System 1. Every day, new ANN archi-

tectures are developed using direct-fit procedures to learn and

perform more complex cognitive functions, such as driving,

translating languages, learning calculus, or making a restaurant

reservation—functions that were historically assumed to be

under the jurisdiction of System 2. At the same time, these

artificial networks, as opposed to humans, fail miserably

in situations that require generalization and extrapolation

across contexts (Lake et al., 2017). Instead of imposing effi-

ciency, simplicity, and interpretability wholesale across neural

systems, psychologists should ask how our uniquely human

cognitive capacities can extract explicit and compact knowl-

edge about the outside world from the billions of direct-fit

model weights. Although the ability to recognize faces, speak,

read, and drive may be grounded in a mindless fit to nature,

our ability to abstract and verbalize information from these em-

beddings allows us to develop social structures, discover laws

of nature, and reshape the world.

How high-level cognitive functions emerge from brute-force,

over-parameterized BNNs is likely to be a central question

for future cognitive studies. Such an understanding may be

necessary for developing the next generation of sentient

ANNs, capable of not only sensing and acting but also under-

standing and communicating the structure of the world on

our terms.

Conclusion

Historically, we have evaluated our scientific models accord-

ing to low-dimensional, psychologically interpretable criteria

and have thus underestimated the power of mindless, over-

parameterized optimization to solve complex problems in

real-life contexts. We have selectively searched for explicit,

low-dimensional knowledge embedded in the neural code.

The expressivity of ANNs as universal approximators should

be troubling to experimental neuroscientists. We typically

use controlled, low-dimensional stimuli and tasks to probe

brain-behavior relationships, seeking elegant, human-inter-

pretable design principles. The analogy with evolution (and

the historical argument for intelligent design) is incisive here:

although intuitive design principles may emerge from neural

data under experimental manipulation, these factors are inci-

dental properties of a flexible, direct-fit learning system for

modeling the natural world, and the ‘‘design’’ is that imposed

by the experimenter.

If we evaluated ecosystems produced by evolution in terms

of ideal design principles or the number of mutations, we

would find them inefficient and inscrutable. If we evaluate

BNNs (and ANNs) by the number of their fitted parameters or

training samples, we will similarly view them as inelegant and

uninterpretable. But interpretability is not strictly synonymous

with elegance or simplicity. Evolutionary theory has taught us

the power of mindless, iterative processes guided by natural

selection to construct organisms that can navigate the world.

And in fact, until fairly recently, evolution was the only such

mindless process known to create self-organizing, well-adapt-

ed models of the world (Langton, 1995; Bedau, 2003). Humans

have begun to create models and simulate organisms in some

cases that although still quite limited, can perform particular

behaviors surprisingly well. It should come as no surprise

that the processes required to create such models parallel

evolutionary processes. The importance of evolutionary theory

was in reorienting us to a previously unappreciated kind of

explanation and understanding in biology.

ANNs are beginning to reveal the power of mindless, over-

parameterized optimization guided by objective functions over

a densely sampled real-world parameter space. Despite their

relative simplicity, this achievement demands that we reorient

our criteria for understanding BNNs and may require us to

reevaluate the foundational assumptions of our experimental

method. Using contrived experimental manipulations in hopes

of recovering simple, human-interpretable rules or representa-

tions from direct-fit neural networks—both biological and artifi-

cial—may never yield the kind of understanding we seek. The

direct-fit perspective emphasizes the tight link between the

structure of the world and the structure of the brain. We see a

certain optimism in this view, as it provides a fresh window

onto the neural code. Evolutionary theory provides a relatively

simple framework for understanding an incredible diversity of
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phenomena; to claim that evolutionary theory is not parsimo-

nious would be misleading. Similarly, the neural machinery that

guides behavior may abide by simpler principles than our vast

taxonomy of piecemeal neural representations and cognitive

processes would suggest. We hope that the implications of

this perspective will shine a light on the inadequacies of the

reductionist approach and push the field toward more ecolog-

ical, holistic approaches for studying the links between organism

and environment.
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