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ABSTRACT

In this paper, we present GrokNet, a deployed image recognition

system for commerce applications. GrokNet leverages a multi-task

learning approach to train a single computer vision trunk. We

achieve a 2.1x improvement in exact product match accuracy when

compared to the previous state-of-the-art Facebook product recog-

nition system. We achieve this by training on 7 datasets across

several commerce verticals, using 80 categorical loss functions and

3 embedding losses. We share our experience of combining diverse

sources with wide-ranging label semantics and image statistics, in-

cluding learning from human annotations, user-generated tags, and

noisy search engine interaction data. GrokNet has demonstrated

gains in production applications and operates at Facebook scale.
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· Computing methodologies → Image representations; · In-

formation systems→ Online shopping; Image search.
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1 INTRODUCTION

Facebook Marketplace1 plays an important role for many people

across the globe to provide a platform for selling and buying prod-

ucts from Facebook members and businesses. Millions of products

are deployed for sale everyday and Marketplace provides ecosys-

tem for buyers to explore, find and buy what they need. Usually

product descriptions include limited information such as title, short

textual description, price, location, set of images, and rarely ś color,

1http://www.facebook.com/marketplace
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Figure 1: Product Recognition Service, useful for many ap-

plications: product tagging, visual search, łshop the look,ž

clustering, de-duplication, ranking, and recommendations.

material, brand, or year of production. Since every listing has pho-

tos, we can infer and augment missing information to improve

the Marketplace user experience. We use image classifiers to aug-

ment product descriptions with predicted attributes, categories, and

search queries, thereby improving the ability to find and browse

products. In our previous e-commerce image recognition system

(MSURU [26]), we used search log interaction data to train these

image classifiers with large-scale weakly-supervised data.

In this paper we present GrokNet, a unified computer vision

model, which incorporates a diverse set of loss functions, opti-

mizing jointly for exact product recognition accuracy and various

classification tasks. GrokNet is trained on human annotations, user-

generated tags, and noisy search engine interaction data. Our final

trained system analyzes images to predict the following:

• Object category: łbar stool,ž łscarf,ž łarea rug,ž ...

• Home attributes: object color, material, decor style,

• Fashion attributes: style, color, material, sleeve length, ...

• Vehicle attributes: make, model, external color, decade,

• Search queries: text phrases likely used by users to find the

product on Marketplace Search,

• Image embedding: 256-bit hash used to recognize exact prod-

ucts, find and rank similar products, improve search quality.

Figures 1 and 2 show some applications for product recognition.

Several challenges arose as we built GrokNet. The outputs of

our image recognition systems are used across various set of appli-

cations in Facebook Marketplace including Feed, Search, Visually

Similar Product Recommendations, and Marketplace Catalog. Some

applications like Search or Feed optimizes for increasing interac-

tions of buyers and sellers constrained on relevance of presented

results, while other applications like Marketplace Catalog optimizes

for finding duplicate product listings and requires exact product

recognition. Therefore, GrokNet was required to serve various

sets of optimization targets for different applications, which con-

stituted a challenge during development and deployment.

In practice, problem of building multi-task computer vision trunk

is challenged by the problem of combining different datasets

ranging fromhigh quality human rater annotations to user-generated
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Figure 2: Recognizing all products in a scene photo.

tags, and noisy search log interaction data. Additionally, different

datasets have various image properties from high quality imagery

of product catalogs to lower quality mobile photos. Datasets also

vary in sizes with biggest dataset coming from search log interac-

tion data of 56M images to the smaller datasets of human annotated

images with size in tens of thousands (described in ğ3.1).

Finally, with a single model, we aimed to reduce maintenance

and computational cost and improve coverage by removing

the need of separate models per vertical applications. From past ex-

perience we observed that strongly-supervised and vertical-specific

models can yield higher accuracy than general models. However,

specialized models only provide an output for in-domain products,

which is a problem for ranking or search applications that require

high coverage. In contrast, GrokNet is a single unified model with

full coverage across all products.

2 RELATED WORK

Visual recognition in the industry. In recent years, visual recogni-

tion technologies have been applied across the industry, including

systems developed by Facebook [26], Ebay [33], Microsoft [14],

Amazon [30], Pinterest [36], Alibaba [37] and Google [2]. As de-

scribed above, this paper presents a novel computer visionmodel for

fine-grained product recognition, trained with a massive multi-task

objective, achieving 2.1x improvement over prior systems.

Deep metric learning. Deep metric learning aims to learn a dis-

criminative feature space such that similar examples are nearby in

the space compared to dissimilar examples. This allows for open-

vocabulary recognition of new concepts not present in the train-

ing set (using nearest-neighbor search). Deep metric learning is

typically supervised by pairwise or triplet losses, which directly

supervise distances between elements in the training set.

A recent thread of research has explored using modified clas-

sification losses to supervise deep metric learning [35]. These ap-

proaches have been particularly successful in the face recognition

domain, where they typically outperform pairwise or triplet ap-

proaches [9, 17, 28, 29]. Similar techniques have been applied to

instance-level image identification for unsupervised feature learn-

ing [31]. Classification-based approaches maintain a weight vector

per labeled entity in the training set at training time (which is re-

moved for inference), which constrains the number of identities

that can be used for training. Techniques like negative sampling

and noise-contrastive estimation can extend this limit for softmax

cross-entropy losses [31], however training-time model storage

remains linear in the number of classes.

We combine both pairwise and classification-based losses into a

single model. We adapt ArcFace [9], a classification-based metric

loss, to visual product recognition. We combine it with a pairwise

Figure 3: Product Identities Data Collection. Annotators are

presented with a set of images that potentially contain the

same product identity. Their task is to draw tight bounding

boxes (shown in yellow) around all instances of the shown

product. Note that no box is drawn in the fourth image,

since it is a zoom and cannot be confidently associated with

the shown product. With this setup, we are able to collect a

dataset that contains multiple unique depictions of the ex-

act same product identity.

loss to supervise a single embedding space. This allows training on

more classes than is practical using ArcFace alone, while benefiting

from the improved retrieval performance that ArcFace provides.

We further extend ArcFace loss to the multi-label case.

Learning from noisy data. There is a line of work that demon-

strated the power of using large-scale, weakly supervised image

datasets for effective visual learning. For example, Joulin et al. [15]

trained convolutional networks to predict words on a collection of

100 million Flickr photos, [25] trained on the JFT-300M dataset of

300 million weakly supervised images. Within the search system of

Pinterest [34], the authors use millions of images with 20k classes

to train image classifiers using user annotated data from pin-boards.

At Facebook, Mahajan et al. [19] trained on hashtags from billions

of images, and Tang et al. [26] (MSURU) trained on Marketplace

search interaction logs, both achieving gains in accuracy from large

scale noisy data.

Multi-task learning. There has been multiple works exploring

joining multiple tasks into one computer vision model [16, 18, 21,

23, 36], where authors explore synergy across different datasets

to improve overall performance. In prior works [6, 16] authors

investigated to balance multiple loss objectives to optimize model

accuracy. The work of Zhai et al. [36] investigated joining multiple

datasets in the production setting of Pinterest deploying a unified

embedding to three user-facing applications.

3 MODELING

In this section, we describe how we combine several disparate large

datasets with different data types to train a single unified model,

how we combine many different loss functions with multi-task

learning, and finally, how we trained and compressed the resulting

float embedding by 50x, from 400D floats to 256-bit hashes.

3.1 Training Data

One of the goals of this project was to solve a large number of

computer vision tasks with a single model, by training on both

existing datasets as well as many new ones. For this project, we

combine 7 different datasets with wide-ranging label semantics and

image statistics. Our combined dataset contains 89 million public

images from Facebook Marketplace. Our diverse image statistics in-

clude user photos of Marketplace products for sale (łseller photosž),
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Dataset Num. Images Label Types
Pairwise

ArcFace
Multi-Label

Softmax
Multi-Label

Loss ArcFace Softmax

Object Categories ~4,400,000 Single-label ✓

Home Products ~390,000 Product IDs ✓ ✓

Home Attributes ~1,500,000 Multi-label ✓

Fashion Products ~1,100,000 Product IDs ✓

Fashion Attributes ~66,000 Single-label ✓

Vehicles ~25,000,000 Single-label, Product IDs ✓ ✓ ✓

Search Queries ~56,000,000 Multi-label ✓ ✓

Table 1: GrokNet training data (total: 89M images, 83 losses, see ğ3.1). Right 5 columns: which datasets affect which losses.
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Figure 4: Weakly supervised data augmentation ś we use a

prior embedding model to generate additional noisy Prod-

uct ID training data. See ğ3.1.4.

professionally photographed home and fashion scenes (łscene pho-

tosž), and catalog-like photos displaying products usually against

a simple background (łiconic photosž). We train both on human-

provided annotations and weak signals. We describe the datasets

in more detail in Table 1 and in the sections below.

3.1.1 Object Categories. We use object categories from an internal

human-annotated dataset of Marketplace images, with one of 566

labels such as łchairž, łbraceletž, and łbicycle.ž

3.1.2 Attributes (Fashion, Home, and Vehicles). We collect multi-

label annotations for attributes on home and fashion products,

and use public post metadata for vehicles. For home products, we

label attribute types such as color (e.g., łbeigež) and material (e.g.,

łmetalž). For fashion products, we label data for 68 attribute types

across 9 object categories (818 total), with attribute types varying

from high-level concepts (style, color, material) to fine-grained

details (dress waistline, shirt embellishments). For vehicles, we use

data for color, make, model, decade, and vehicle type (e.g., łsedanž).

3.1.3 Product Identities (Fashion, Home, and Vehicles). In addition

to the object categories and attributes, we leverage product identity

(ID) datasets for each of the fashion, home, and vehicle verticals.

These 3 datasets have several images of the same product in varying

contexts and from varying viewpoints. Different images of a car will
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Seller

Available?
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Responds

Available?

Yep!
Record
Image-

Query Pair

red dress (     , “red dress”)

Figure 5: Marketplace Search Queries. We create a dataset of

image-query pairs by filtering for the following sequence of

events: (1) a user searches for a query, (2) clicks on a product,

(3) messages aMarketplace seller, and (4) the seller responds

back. If all 4 events happen within a short time, it is highly

likely that the user found what they were looking for, and

thus the query is relevant. As described in ğ3.1.5, we do not

have access tomessage contents and only know the fact that

users interacted with each other.

have the same ID if they share the the exact samemake, model, color,

and decade (e.g., łGray Toyota Camry 2000sž). Different images of a

fashion or home product will have the same ID if they are the exact

same variation of the same product (matching color, dimensions,

etc.). Figure 3 shows the annotation task used to clean this data and

collect tight bounding boxes. For vehicles, we use an in-house object

detector to provide high-confidence łcarž detections for bounding

boxes instead of human annotations.

3.1.4 Weakly supervised data augmentation. Product IDs are the

most difficult data to collect, since there are millions of possible

IDs and it is not straightforward to ask humans to label. Here we

present a technique to automatically generate additional Product

ID examples using our model as a feedback loop. As illustrated

in Figure 4(a), we gather a large collection of unlabeled photos,

detect object boxes in each photo using our in-house object detector,

and compute embedding features for each box. These boxes are

candidates that might be useful training data. We then match each

candidate to our list of known products, take the closest match

(1-nearest neighbor), and consider it to be a correct match if the

distance is below a threshold. This becomes additional data to

augment our training set with no human-labeling cost.

In Figure 4(b), we experiment with different embedding distance

thresholds with separate held-out experiments. As we increase

the threshold, we collect more matches, but at the detriment of

adding noise and reducing precision of the training set. We find a

sweet spot around a distance threshold of 0.2, where we get a +27%

relative improvement in Precision@1, compared to not using this

data. Metrics such as Precision@1 are described later in ğ5.1.2.
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loader samples a fixed number of images per batch from each dataset, and the losses are combined with a weighted sum. At

inference time, we further compress the embedding (not shown here) from 400 dimensions to 256 bits (see ğ4.0.1).

3.1.5 Marketplace SearchQueries. Here we describe howwe create

a dataset of image-query pairs from search logs. Facebook Market-

place is a global-scale marketplace of items for sale, where buyers

can list items for sale along with photos, price, description, and

other metadata. Users can browse and search for products using

Marketplace Feed and Search. Once a buyer has found a product,

they can choose to message buyers about the product, such as ask-

ing questions about the product or its availability, or arranging a

sale. We do not have access to message contents and only know

the fact that users interacted with each other. We consider this

as a proxy for an add-to-cart action on an e-commerce website.

For this project, we use anonymized search log data from Mar-

ketplace Search to create a dataset of image-query pairs. Figure 5

describes how we create our dataset, following the same technique

as MSURU [26]. We further extend MSURU data collection with

dataset cleaning methods (described later in ğ5.2), which automati-

cally reject irrelevant image-query pairs and reduce noise in the

training set. The end result is a dataset of 56M images, with each

image having a list of text queries estimated to be relevant for that

image. We keep the top 45k most common queries, which improves

precision and ensures that we have at least 300 images per query.

3.2 Trunk Architecture

GrokNet is a large-scale unification of several datasets and machine

learning tasks ś in total we have 7 datasets (ğ3.1) and 83 differ-

ent loss functions (ğ3.3), as shown in Figure 6. In this section, we

describe the underlying convolutional neural network model that

forms the łtrunkž of the model. We build our system as a distributed

PyTorch [1] workflow in the FBLearner framework [11].

The trunkmodel forGrokNet uses ResNeXt-101 32×4d, which has

101 layers, 32 groups, and group width 4 (8B multiply-add FLOPs,

43M parameters) [32]. We initialize weights from [19], which was

pre-trained on 3.5B images and 17k hashtags. We then fine-tune

on our datasets using Distributed Data Parallel GPU training on

8-GPU hosts, across 12 hosts (96 total GPUs).

3.2.1 GeM Pooling. At the top of the trunk, we replace average

pooling with generalized mean (GeM) pooling [4, 10, 22, 27], which

is a parameterized pooling operation that is equivalent to average

pooling forp = 1, andmax pooling forp = ∞. Intuitively, this allows

the embedding to concentrate more of the network’s attention to

salient parts of the image for each feature. We follow the method of

[22], and learn the pooling parameterp directly for our experiments.

After training, our final model converges to a value p ≈ 3. In

separate held-out experiments on a single dataset, we found a +26%

relative improvement in Precision@1 compared to average pooling.

3.3 Loss Functions

GrokNet unifies several distinct tasks into a single architecture

(Figure 6), combining several loss functions and loss function types

in a weighted sum. To train the 80 category and attribute heads,

we use Softmax and Multi-label Softmax [19]. To train the unified

embedding head, we use 3 metric learning losses operating over

the same spaceÐArcFace [9], Multi-label ArcFace, and Pairwise

Embedding Loss. The latter two are new extensions on past work,

and we describe all losses in detail below.

3.3.1 Softmax Losses. We add categorical labels to our model us-

ing softmax with cross-entropy Loss, as is standard in the litera-

ture [12]. These labels are described in ğ3.1 and include object cate-

gories, home attributes, fashion attributes, and vehicle attributes.

We group together categories/attributes that are mutually exclu-

sive with respect to each otherÐfor example, łobject categoryž is a

single group, łdress colorž is another group. There are 80 groups

and thus 80 softmaxes. For multi-label datasets, we use multi-label

cross entropy, where each positive target is set to be 1/k if there

are k positive labels for the image [19]. Since there are so many

different losses, most gradients will be zero in most iterations.

3.3.2 Multi-Label ArcFace Loss. ArcFace loss [9] is a modified clas-

sification objective originally introduced for face recognition. Arc-

Face loss expects a single label per training example. However our

Marketplace Search Queries dataset (ğ3.1.5) often associates each

product image with multiple search queries. To address this, we

extend ArcFace loss to allow for multiple labels per image.

Multi-Label ArcFace uses cosine similarity between embeddings

xi and łclass centerž vectorsw j for each class, where each image is

pulled towards multiple class centers (vs. a single center in ArcFace).
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Weight Precision@1

CE Loss M-AF MSURU-700k

MSURU baseline [26] 1 0 -

Multi-Arcface Loss 0 1 -1.84%

Weighted Combined Loss 1 10 +11.15%

Table 2: Precision@1 trained on the Marketplace Search

Queries dataset (ğ3.1.5) after 100K iterations. A combined

loss with Multi-label ArcFace (weight 10) and softmax cross

entropy (weight 1) outperforms cross entropy loss andMulti-

label ArcFace loss respectively.

Arcface Weight Precision@1

Type CE Loss (M-)AF MSURU-700k

Single-label (rarest) 1 10 -

Single-label (commonest) 1 10 -1.79%

Multi-label 1 10 +1.68%

Table 3: Precision@1 trained on the Marketplace Search

Queries dataset (ğ3.1.5) after 20K iterations. A combined

loss with Multi-label ArcFace (weight 10) and softmax cross

entropy (weight 1) outperforms combined loss with single-

label (choose the rarest label) Arcfacewith the sameweights.

We compute class scores as zi , j = cos(θi , j ) =
xTi w j

∥xi ∥ ∥w j ∥
. We then

add an angular marginm to all of the image’s labeled classes. The

class scores are scaled by a constant factor s , before computing a

softmax cross-entropy loss with respect to a uniform distribution

over the labeled classes Yi . We define Multi-Label ArcFace loss as:

LM−AF (xi ,Yi ) = −
1

|Yi |

∑

j ∈Yi

log
es cos(m+θi , j )

∑

j ∈Yi e
s cos(m+θi , j ) +

∑

k ∈C\Yi e
s cos(θi ,k )

where Yi = {yi j }
Ni

j=1 is the set of Ni labeled classes for image i .

For theMarketplace Search Queries dataset (3.1.5), which is noisy

and multi-labeled, we apply a weighted combination of multi-

label Arcface loss and softmax cross-entropy loss. We find that

this combined loss outperforms our previous production system

MSURU [26] by +11.15% Precision@1 (Table 2). MSURU uses only

multi-label softmax cross entropy loss. Our evaluation uses the

MSURU-700k test set described in ğ5.1.2.

We also experimented with a single label Arcface loss (using the

most rare/common label in the case of multiple labels per image) in

the combined loss. We show that, with the same weight distribution,

using multi-label Arcface in the combined loss performs +1.68%

better, when training on the Marketplace Search Queries dataset

alone (Table 3).

3.3.3 Pairwise Double-Margin Loss. ArcFace has very high accu-

racy for exact product recognition on our data. However it limits

the number of products we can include in our training set, since

each product requires its own class vector. To resolve this, we in-

clude all products using a pairwise loss (described here), and only

Negative Loss
(push dissimilar apart)

m
p2

m
n2

m
p1

m
n1

Clipping to
suppress outliers

Positive Loss
(pull similar together)

Loss

Distance

Figure 7: Pairwise Double-Margin Loss.

supervise a subset of products using ArcFace loss. Note that both

losses supervise the same embedding space with a weighted sum,

as shown in Figure 6.

For our pairwise loss, we use a modified form of Contrastive

Loss [3, 13, 30], with the following differences: (1) we use an extra

margin on both positive and negatives to suppress outliers, (2) we

use a power parameter α to adjust the balance between hard and

easy examples, and (3) we train on every pair within the batch to

substantially increase the number of pairs. We define the loss as:

LPW =
1

Npα

∑

i , j

clamp
(

D(xi , x j ) −mp1, 0,mp2 −mp1
)α (

yi j
)

+

wn

Nnα

∑

i , j

clamp
(

mn2 − D(xi , x j ), 0,mn2 −mn1
)α (

1 − yi j
)

where xi are embedding points, yi j ∈ {0, 1} indicates whether each

pair of indices (i, j) is a positive (1) or negative (0) pair, D(xi , x j ) =

| |xi − x j | |
2
2 is the squared distance between two points, Np is the

number of positives, Nn is the number of negatives,wn is a weight

to control relative influence of positive and negative, α is a loss

power to increase the weight of harder examples,mp1,mp2 are pos-

itive double-margins, andmp1,mp2 are negative double-margins.

As illustrated in Figure 7, we include an extra margin to provide

resilience to outliers. If there is a false positive in our dataset, then

we will be adding a high-strength force pulling two very different

parts of the embedding together, distorting the space. The extra

margin protects against this. Further, we adjust the shape of the

curve with α . What matters for gradient descent is the gradient,

not the absolute value, so higher values of α put a higher weight on

harder examples with larger loss, and a value of α = 1 weights them

equally. Alternatively, we can see α as weighting each example with

a magnitude proportional to its own loss value.

We compute the loss efficiently by first pre-computing a full

pairwise distance matrix. Every example x with a Product ID con-

tributes to the loss. So, if there are B examples with Product IDs

per batch, then we have B2 total pairs and Np + Nn = B2. Any

examples without Product IDs (for example, categorical data) are

excluded from the loss. This gives us quadratically more examples

(B2 vs B) compared to some prior approaches [3, 7], which use each

example in the batch once.

Based on experimentation on our datasets, we use the following

values: loss power α = 1.5, marginsmp1 = 0.1,mp2 = 0.7,mn1 = 0,

mn2 = 0.7, and negative weightwn = 10000.

3.3.4 Distributed Pairwise Computation. We further extended our

loss by computing distances over all possible pairs across all GPUs

and all hosts. This requires a very large distributed łall gatherž over
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Figure 8: Distributed pairwise embedding computation. D:

embedding dimension, B batchsize, G: number of GPUs.

96 GPUs. With a global pairwise distance matrix, we get 96 times

more distance matrix entries compared to computing within a sin-

gle GPU (962 vs 96), and resulting in a +9.8% relative improvement

in Precision@1. As illustrated in Figure 8, we do not actually mate-

rialize the full pairwise matrix, rather each GPU contains a slice to

compare its set of local vectors with all other vectors.

3.3.5 Combining Losses and Datasets Together. As shown in Ta-

ble 1, we have different datasets supervise different losses due to

constraints in either memory or dataset format. For ArcFace, we

can only include about 188k products into memory since there are

so many other components to the model also held in memoryÐwe

select the 188k products with the most images per product. All

Product IDs are included in the Pairwise Loss. For the Search Query

data, which has multiple images per label, we include it both in

the embedding via a Multi-Label ArcFace Loss, and as a separate

Softmax prediction head. Tradeoffs are discussed more in ğ5.3.

4 TRAINING AND DEPLOYMENT

We train with SGD for 100, 000 iterations on 96 NVIDIA V100

GPUs with a batch size of 46 per GPU, learning rate 0.012 × 12 =

0.0144, momentum 0.9, and weight decay 1e-4. This is the largest

configuration that would fit in memory. Batch norm statistics are

synchronized across all GPUs, giving a +4% relative improvement,

which is important given our relatively small batch size.

4.0.1 Compressing Embeddings 50x to 256-bit. After training our

continuous embedding (400 dimensions), we quantize to a 256 bit

hash using Catalyzer [24]. We change the configuration to use a

residual block, which we find slightly outperforms the original

multi-layer perceptron architecture from [24]. We further tried

many configurations (2674 snapshots in total), including changing

the weights for the entropic regularizer, learning rates, bias, and did

not find a better result compared to the default parameters from [24].

Despite requiring 50x less storage and compute at runtime, our

binary accuracy is equivalent to the original raw embedding on

the Furniture test set (40.3% binary vs 40.1% continuous). Figure 9

shows a histogram of distances on our furniture test set, before and

after compression ś we can see that Catalyzer keeps the overlap

between positive and negative consistent.

4.0.2 Calibration. Once we are done training, the softmax heads

output scores in the range [0, 1] and sum to 1, so they behave

like a probability, but are not actual probability estimates. We can

transform the scores using a mapping from raw score to calibrated

probabilities, so that for predictions with score S , we expect that

approximately S% are correct [8]. This process is called łcalibration,ž

Figure 9: Compressing embeddings 50x using Catalyzer. We

plot histograms of positive (blue) and negative (red) dis-

tances. Left: 400D, right: 256-bit. We can see that the relative

ranking is maintained before and after compression.
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Figure 10: GrokNet Image Recognition Service. Images are

uploaded to a queue and scheduled to run on prediction ma-

chineswhich feed resized images through our convolutional

networks. We store outputs in distributed key-value stores,

and use them for applications such as Marketplace Search,

Feed, Catalogue which consume our signals within seconds

of new listings being created.

and we apply this technique to our attribute predictions, using

isotonic regression on held-out data.

4.0.3 Query Score Thresholds. Unfortunately we can’t easily cal-

ibrate our query prediction head, since we don’t know which of

the 45k queries are truly valid for each image, and this would not

be feasible to label with any reasonable scale. It would require 45k

binary labels per image. Instead, we estimate a single threshold per

query, using a combination of KNN search and k-means clustering.

We start with a class-balanced test dataset by selecting N positive

samples for each query. Then these positive examples are used as

KNN seed to retrieve 2N highest ranked neighbors within the same

dataset. We assume that the predicted probability for the 2N highest

ranked neighbors follows a bi-modal distribution where the positive

samples form one modality and the negative ones form the other.

We separately run one-dimensional k-means clustering among the

2N predicted scores for each search query and use the cluster cen-

troids to determine the final threshold considering precision/recall

trade-offs. We used N = 200 to determine the thresholds.

In production, when we run each image through the model,

we compare all 45k query scores against their corresponding 45k

thresholds, and keeping all queries above their thresholds and clip-

ping to the 10 highest-scoring queries.

4.0.4 Service Architecture. GrokNet is deployed in production and

is designed to operate on product images uploaded daily at Facebook

scale in a real-time fashion, as shown in Figure 10.
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Figure 11: Examples from our Furniture Mobile Photos test

set showing many challenging angles.

Figure 12: Precision@1 across 4 fine-grained datasets

(ğ5.1.1), demonstrating that GrokNet outperforms our previ-

ous system by 2.1x on exact product recognition tasks.

5 EXPERIMENTS

5.1 Evaluation

In this section, we describe our evaluation data and metrics, de-

tailing how we benchmarked our system against prior production

systems at Facebook. We provide evaluation results for both hold-

out training data (Table 1) and challenging mobile photographs.

5.1.1 Data. We benchmark our performance on several datasets:

Furniture - Mobile Photos. Our team manually took 2k mobile

photos of furniture in stores, with human-annotated ground truth

Product IDs and bounding boxes (Figure 11). During evaluation,

these crops are queried against 206k images with 62k Product IDs.

Fashion - Posts. We use 40k public posts tagged with fashion

products. We ask annotators to validate the tags and draw tight

bounding boxes around the product both in the post’s image and

the iconic image. During evaluation, every crop is used to query

against all other crops (excluding the query).

Vehicles - Marketplace Posts.We hold out 189k images from the

Vehicle Product IDs dataset described in ğ3.1, and search all crops

against all other crops.

Figure 13: Evaluation of data cleaning methods (rejecting

irrelevant query-image pairs from the training set, ğ3.1.5,

ğ5.2). Vertical axis: average human-rated relevance.Horizon-

tal axis: predicted similarity by the model. An ideal method

has monotonically increasing relevance from left to right.

The two plots are differentmethods for data cleaning andwe

use both, left: Siamese network, right: Query-specific SVMs.

Number of Noisy Precision@1

Photos Data % Rated-20k MSURU-700k

59M 37.2% - -

59M 27.1% +1.4% -0.3%

56M 0.0% +6.3% +9.1%

Table 4: Precision@1 relative improvement on Models

trained with clean and partly-noisy data. This experiment

uses the output of the last pooling layer in the trunk (some-

times called łpool5ž). Precision@1 scores are relative %.

Search Queries - MSURU-700k.We hold out 700k images from the

Marketplace Search Queries dataset described in ğ3.1.5. We include

all 45k search queries and use at most 15 photos for each query.

5.1.2 Metrics. We benchmark our model against our previous pro-

duction system (MSURU) across the above four challenging fine-

grained datasets. Both models use the same trunk architecture,

produce 256-bit hashes, and measure hamming distance. For the

product recognition datasets above (Furniture, Fashion, Vehicles),

we measure Precision@1, the percentage of the time we retrieve

the exact same Product ID in the top-1 position. For search query

evaluation (MSURU-700k), we consider a result correct if the top-1

retrieved photo and query photo share at least one text query.

As shown in Figure 12, GrokNet is 2.1x more accurate than

MSURU when averaging across our 3 product recognition datasets.

For search query prediction using our embedding (last dataset in

the plot), performance is the same as MSURU, despite training on

many conflicting tasks (GrokNet) vs. a single task (MSURU).

5.2 Dataset Cleaning to Improve Precision

In ğ3.1.5, we described our method for creating the Marketplace

Search Queries dataset. In this section, we describe how we further

improve the precision of these queries via dataset cleaning meth-

ods, which automatically identify irrelevant queries and discard

them from the dataset. We trained a Siamese network model to

predict {query, image} similarity and SVM models for each search
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query. To train the Siamese network that predicts cosine similarity

between the image and text, we used about 100M clicked {query,

image} pairs as positives, and used an existing 256-bit image hash

as one stream of input and internal 100-float word2vec [20] text

embeddings trained from product titles as the other stream of input.

To train the query-specific SVM models that predicts a similarity

score between image and text, we only use the existing 256-bit

image hash as input features, and trained them for all text queries

with more than 25 clicked photos. For both models, we used random

negatives as negative examples. We then remove the low-scored

pairs from our dataset based on predictions from both methods.

We evaluate the effectiveness of the automated dataset cleaning

with (a) human-rater evaluation and (b) KNN retrieval performance

of the model trained from Search query data with different levels of

noise.We collected ~3,500 human rated relevance scores for both the

Siamese-network method and the Query-specific SVM method and

found that they strongly correlate with the predicted model scores,

as shown in Figure 13. The Siamese network scores are split into

uniform buckets between [0,1] and same for Query-specific SVM

model scores between [-3, 5]. The relevance is rated at 5 different

levels between 0-off-topic, 1-somewhat, 2-reasonable, 3-primary and

4-vital. Based on Figure 13, we can see that by selecting the right

prediction thresholds, 0.95 for Siamese network and 1 for Query-

specific SVM model, we are able to select training data that are of

at least 2-reasonable relevance.

To quantify the benefit of dataset cleaning, we train models on

different versions of theMSURU dataset, replacing parts of the clean

data with the discarded data that had low similarity scores predicted

by either model, while keeping the same number of unique {image,

query} pairs. In addition to evaluating the results on MSURU-700k,

we collect another evaluation set, Rated-20k. It covers ~7k queries

and contains human-rated {image, query} pairs that are at least

of 2-reasonable relevance, as defined in the paragraph above. Ta-

ble 4 shows that on the Rated-20k dataset with ground truth labels,

we can improve Precision@1 by +6.3% relative; on the weakly-

supervised MSURU-700k dataset, we can improve by +9.1% relative.

5.3 Balancing Across 7 Datasets

When combining many different verticals and tasks into the same

network, there is an explosion of possibilities in number of con-

figurations to try. If each task has n parameters withm settings,

then there are (7n)m total configurations to try with 7 datasets. We

scoped down the design space by performing two-pair dataset abla-

tions to understand the relative balance of two datasets. Figure 14

illustrates such an experiment: łwhat fraction of each training batch

should be fashion, and what fraction should be vehicles?ž We train

the two-dataset system jointly and then separately evaluate Preci-

sion@1 on fashion and vehicle product recognition . We can see

that in this case, we want to evenly balance these datasets. We

applied similar experiments to pairwise-balance all 7 datasets. If we

noticed that for some datasets, accuracy is not sensitive to batch

size (i.e., it performs the same no matter how it is configured), then

this suggests that we can scope down that dataset’s contribution to

each batch, and use those slots for a more challenging task. We ap-

plied this insight with large-scale experiments to arrive at our final

batch size distribution: search queries: 20, furniture products: 12,

Figure 14: Tradeoff between datasets. In this experiment, we

train only with fashion and vehicle training data, and eval-

uate only on fashion and vehicle product recognition. We

vary the fraction of the batch that contains each dataset, and

normalize the losses by the number of examples so that they

have equal contribution to the gradient when training.

vehicle products: 4, fashion products: 4, object category: 4, fashion

attributes: 2, home attributes: 2.

5.4 A/B Experiments

We confirmed the effectiveness of GrokNet by running production

A/B test experiments and integrating with downstream applica-

tions. By leveraging GrokNet trunk to train new models and/or

leveraging GrokNet predictions directly (embedding, categories,

attributes, search queries) for Product Understanding, we observed

improvement in several applications for Commerce.

Marketplace Catalogue: within the Marketplace ecosystem,

many users are selling used items and thus are very likely to be

selling exactly the same products but photographed and described

differently. This creates a new large-scale deduplication and canoni-

calization challenge. With deduped listings, we can share properties

across listings such as: likely queries each product can be retrieved

by, or engagement counter features such as click-through-rate of

the canonical product. One of the approaches we took is to develop

a product similarity neural network (based on Siamese networks

[5]) that predicts if given two products are duplicate. When using

our GrokNet embedding as an input feature, we achieved a +76% rel-

ative improvement in precision (at 50% recall) compared to MSURU.

Our image embeddings are a good fit for this task since (a) our

training objective was well aligned with the target task of exact

similarity and (b) every post has an image but not all of them have

text or use the same language.

Marketplace Search: we have run A/B tests to confirm im-

provement of the relevance of Marketplace text-based search. As

result of classification based on GrokNet we produce a set of search

queries, which likely would be used by users to retrieve the product

in Marketplace Search engine. These predicted queries are automat-

ically ingested into inverted index of Marketplace search engine,

and later can bematched to text-based searches from users.We keep

the top 10 most confident query predictions. We replaced previous

version based on MSURU [26] with GrokNet model search queries

and observed +9% relative improvement in search relevance quality.

Wemeasure search relevance the percentage of search sessions with
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no incorrectly surfaced product among top ten ranked results. Due

to the fine granularity of optimization targets for GrokNet, such

as exact product recognition, we were able to identify difference

between visually similar products with higher precision. In par-

ticular we noticed that the improvement on Marketplace Vehicles

dataset was more than double the precision (vehicles was one of the

most incorrectly classified category reported in search feedback),

which helped to reduce incorrect search query tag predictions for

products and thus improve search relevance.

After GrokNet predictions are calculated after inference, we store

{query, confidence} pairs, where query is a text string, and confidence

represents the likelihood of such query describing the image. In our

previous Image Recognition model (MSURU [26]), we used global

threshold to remove non-confident query predictions. During data

analysis we noticed that when we apply global threshold to query

predictions we kept some of incorrectly predicted query tags, and

identified that to improve the precision of query predictions we

need specific per-query thresholds. However, the challenge was

that we don’t have any human annotated data usually used to

calibrate the threshold to find the balance between precision and

recall, and all of our data is noisy engagement interactions from

search log. We solved this using the per query threshold selection

method described in ğ4.0.3. We on-boarded per query selection

threshold to Marketplace Search and ran A/B test experiments,

using predicted search queries for retrieval of products by matching

the text user query. We observed over +8% relative improvement in

search relevance due to per-query threshold selection.

6 CONCLUSION

We presented approaches for building an accurate image product

recognition system called GrokNet, resulting in a unified computer

vision model that incorporates a diverse set of 83 loss functions, op-

timizing jointly for exact product recognition accuracy and various

classification tasks over 7 commerce datasets. We shared innova-

tive ideas for handling large weakly-supervised training data using

cleaning and how to improve accuracy by model results post pro-

cessing, and provided practical advice on how to develop, deploy,

and integrate modern state-of-the-art image product recognition

system to applications operating at Facebook scale.
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