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1 three frequent ideas
In machine learning.



iIndependent and identically distributed data

(1) Set aside test examples

(2) Estimate f using only the training set.
Using the test set is forbidden.

!

P (3) Measure final performance
using the testing set.

Ideally this happens only once!

* This experimental paradigm has driven machine learning progress.

* The essential assumption is that training and testing data are exchangeable,
e.g., follow the same distribution.



model selection tradeoffs

Approximation
* We cannot search f* among all possible functions.

 We search instead fz that minimizes the expected risk E'(f) within
some richly parameterized family of functions F.

Estimation

* We cannot minimize E (f) because the data distribution is unknown.
* We minimize instead the empirical risk E,, (f)

1
En(F) =~ D 2(f(), )



model selection tradeoffs

E(fn) - E(f*) - (E(f;‘) - E(f*)) Approximation Error
‘ + (E(fn) - E(f;:)) Estimation Error

Approximation error

-

:F'

How complex a model can you afford with your data?



Vapnik’s razor

“When solving a (learning) problem of interest, do not solve
a more complex problem as an intermediate step. ”

How complex a model can you afford with your data? (again)
* To classify patterns, use a model that outputs a class and nothing else.

* To achieve something more complex,
i.  carefully define the problem,
ii. solve the problem and nothing else.



conceptual viewpoints in machine learning

capacity tradeoff | same distribution

statistical learning theory yes yes yes
(ERM, SRM, SVM, ...)

Bayesian learning yes yes no (1)

(generative models, priors, ...)

algorithmic learning theory yes no (2) yes
(regret bounds, ...)

1) See the discriminant versus generative debate. On the one hand, some authors see generative
models as an implicit form of regularization. On the other hand, generative models are often
appealing because they easy to combine, unlike strict discriminant classifiers.

2) Online regret bounds express how a learning algorithm performs relative to a class of competitors.
Although they do not depend on i.i.d. assumptions, they lose value when none of the competitors
works well, for instance because the data is too far fromi.i.d..



2 the tradeoffs of
large-scalelearning.



statistics and computation

Statistical Perspective

* It is good to optimize an objective function that ensures a fast
estimation rate when the number of examples increases.

Optimization Perspective
* To efficiently solve large problems, it is preferable to choose an

optimization algorithm with strong convergence properties.

Incorrect Conclusion

* To address large-scale learning problems, use the best algorithm to
optimize an objective function with fast estimation rates. *



statistics and computation

e Baseline large-scale learning algorithm

Randomly discarding data is the simplest
way to handle large datasets.

— What is the statistical benefit of processing more data?
— What is the computational cost of processing more data?

e We need a theory that links Statistics and Computation!

— 1967: Vapnik's theory does not discuss computation.

— 1981: Valiant's learnability excludes exponential time algorithms,
but (i) polynomial time already too slow, (ii) few actual results.



learning with approximate optimization

Computing f, = argmin Ej,(f) is often costly.
feF

Since we already optimize a surrogate function
why should we compute its optimum f,, exactly?

Let’'s assume our optimizer returns f},,
such that E,(fn) < Enl(fn) + p.

For instance, one could stop an iterative
optimization algorithm long before its convergence.



error decomposition

E(fy) — E(f*) = E(f5) — E(f*) Approximation error
+ E(fn) — E(f7) Estimation error
+ E(fn) — E(fy) Optimization error

Problem:

Choose F, n, and p to make this as small as possible,

max number of examples n

subject to budget constraints { max computing time T



small scale versus large scale

Beyond informal definitions...

Small scale learning problem

* We have a small-scale learning problem when the active budget
constraint is the number of examples n.

Large-scale learning problem

* We have a large-scale learning problem when the active budget
constraint is the computing time T.



small-scale learning

The active budget constraint is the number of examples.

e [0 reduce the estimation error, take n as large as the budget allows.
e To reduce the optimization error to zero, take p =0,

e \We need to adjust the size of F.

Approximation error

Size of F

See Structural Risk Minimization (Vapnik 74) and later works.



large-scale learning

The active budget constraint is the computing time.

e More complicated tradeoffs.
The computing time depends on the three variables: F, n, and p.

e Example.
If we choose p small, we decrease the optimization error. But we
must also decrease F and/or n with adverse effects on the estimation
and approximation errors.

e [ he exact tradeoff depends on the optimization algorithm.

e We can compare optimization algorithms rigorously.



test error versus training time

Test Error

—————————————————————————— Bayes Limit

.
Computing Time



test error versus training time

Test Error

10,000 examples

100,000 examples
1,000,000 examples

—————————————————————————— Bayes Limit

.
Computing Time

* Vary the number of examples



test error versus training time

A optimizer a
optimizer b
optimizer ¢

model |
model Il
model Il
model IV

Test Error

10,000 examples

100,000 examples
1,000,000 examples

—————————————————————————— Bayes Limit

.
Computing Time

* Vary the number of examples, the model, the algorithm



test error versus training time

optimizer a
optimizer b
optimizer ¢

model |
model |
model il
model IV

Test Error

Good
combinations

10,000 examples

100,000 examples
1,000,000 examples
—————————————————————————— Bayes Limit

.
Computing Time

* Optimal combination depends on training time budget.



asymptotics

E(fu) — E(f*) = E(f%) — E(f*) Approximation error
+ E(fn) — E(f7) Estimation error
+ E(fp) — E(fy) Optimization error

Asymoptotic Approach

All three errors must decrease with comparable rates.

Forcing one of the errors to decrease much faster
- would require additional computing efforts,

- but would not significantly improve the test error.



asymptotics: estimation

Uniform convergence bounds

. . d nl® 1
Estimation error < O —logg with 7 <a<l].
n

Value d describes the capacity of our system.

The simplest capacity measure is the Vapnik-Chervonenkis dimension of F.

There are in fact three (four?) types of bounds to consider:

— Classical V-C bounds (pessimistic): @ i)

n

— Relative V-C bounds in the realizable case: O logz
T g

d . ¥
— Localized bounds (variance, Tsybakov): (’)([—log%] )
n ‘

Fast estimation rates: (Bousquet, 2002; Tsybakov, 2004; Bartlett et al., 2005; ..

)



asymptotics: estimation + optimization
Uniform convergence arguments give

o o d nl“
Estimation error + Optimization error < O({—logg} + p) = €.
n

This is true for all three cases of uniform convergence bounds.

® Scaling laws for p when F is fixed

The approximation error is constant.

=9

-

— No need to choose p smaller than O(ng%r)'
d

— Not advisable to choose p larger than O
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...estimation + optimization + approximation

When F is chosen via a A-regularized cost

— Uniform convergence theory provides bounds for simple cases
(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; ...)

— Scaling laws for n, A and p depend on the optimization algorithm.
Y \ / — See (Shalev-Shwartz and Srebro, ICML 2008) for Linear SVMs.
o 2
When F is realistically complicated

Large datasets matter
— because one can use more features,

— because one can use richer models.

Bounds for such cases are rarely realistic enough.



analysis of a simple case

Simple parametric setup
e Family of function F fixed.
* Functions f;, (x) are linearly parametrized by w € R% .

Comparing three iterative optimization algorithms
1. Gradient descent
2. Second order gradient descent (Newton)
3. Stochastic gradient descent



guantities of interest

e Empirical Hessian at the empirical optimum w,,.

B -

82En(f s i Zn: agg(fn(xi)a Yi)
Hw? " n Ow?
e Empirical Fisher Information matrix at the empirical optimum w,,.

- ()

Pag=i]

e Condition number
We assume that there are Ay, Amax and v such that
— tr-a,(:e(GH"l) ~ V.
— spectrum(H) € [Auin, Mz -
and we define the condition number sk = Apax/Auin-



gradient descent

Iterate OB (fu) N
® wt—l—l <— we — 1) L\ J Wi ///_____._‘ \

dw \\\_—_ -

Best speed achieved with fixed learning rate 7 =__l_/)\max.
(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) = BE(fF) <e¢

GD O(nd) O (f{- log %) O (T?df{. log {%) O (512 /f‘;_ log? %)

— In the last column, n and p are chosen to reach e as fast as possible.
— Solve for € to find the best error rate achievable in a given time.
— Remark: abuses of the @() notation



second order gradient descent

Gradient J

:, ‘“‘\
We assume H ! is known in advance.

Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Iterate
1 OEn(fuwy)

e
o \\

o wyiy < wr— H™

f

Cost per Iterations Time to reach T[me to reach
iteration to reach p accuracy p E(fn) — E(fr) <c

. 1 1
2GD  O(d(d+n)) O(loglogl) O(d(d+n)loglogl)  O(4-logtloslogl)

— Optimization speed is much faster.
— Learning speed only saves the condition number k.



stochastic gradient descent

Iterate (Robbins-Monro)
e Draw random example (x¢, yt). B

n OL(fw,(xt), yt) /} z \>®/r3dem“yw)

o w — wp — — »-f-_::‘; =
t+1 t t Ow \

Total Gradient <J(x,y,w)>

Best decreasing gain schedule with 1 = 1/A,i,.
(see e.g. Murjata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) = E(fF) <e¢

seo__ow _chuff) o) o)

With 1 < k < k2

— Optimization speed is catastrophic.
— Learning speed does not depend on the statistical estimation rate .
— Learning speed depends on condition number k but scales very well.



benchmarking sgd on simple problems

e [ he theory suggests that SGD is very competitive.
— Many people associate SGD with trouble.

e SGD historically associated with back-propagation.

— Multilayer networks are very hard problems (nonlinear, nonconvex)
— What is difficult, SGD or MLP?

e ITry PLAIN SGD on a simple learning problem.

Download from http://leon.bottou.org/projects/sgd.
These simple programs are very short.



text categorization with a linear svm

e Dataset

— Reuters RCV1 document corpus.
— 781,265 training examples, 23,149 testing examples.
— 47,152 TF-IDF features.

e Task

— Recognizing documents of category CCAT.

I/ X\ 5
— Minimize — — W Clwa; + b, vy, .
n;( 2U + (U ri + yz) )

Ol(wxt + b, ys
—Update w < w — 1 V(ws. at,y¢) = w — 1 (/\‘w+ e th Jt))

Ow

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.



text categorization with a linear svm

¢ Results: Linear SVM
((y,y) =max{0,1 —yy} A= 0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
(y,y) =log(l +exp(—yy)) A= 0.00001

Training Time Primal cost Test Error

TRON(LibLinear, ¢ = 0.01) 30 secs 0.18907 5.68%
TRON(LibLinear, ¢ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%




text categorization with a linear svm

0.3 4 Testing cost

g2 +——= == - s - o

Training time (secs)

100 ¢
SGD

50 | -

- " : - (LibLinear)

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)




text categorization with a linear svm

From: Olivier Chapelle
Date: Sunday 2007-10-28 22:26:44
... you should really run batch with various training set sizes ...

Average Test Loss

04 T 1 1 L}
n=10000 \ n=100000\ n=781265
035 7 Log-loss problem
03 1 stochastic
Batch Conjugate
025 1 Gradient on various
training set sizes
02 |
Stochastic Gradient
0.15 1 on the full set
0.1 | | 1 1 1 |
0.001 0.01 0.1 1 10 100 1000

Time (seconds)

Why is SGD near the enveloppe?



text chunking with a crf

e Dataset

— CONLL 2000 Chunking Task:
Segment sentences in syntactically correlated chunks
(e.g., noun phrases, verb phrases.)

— 106,978 training segments in 8936 sentences.
— 23,852 testing segments in 2012 sentences.

e Model

— Conditional Random Field (all linear, log-loss.)
— Features are n-grams of words and part-of-speech tags.
— 1,679,700 parameters.

Same setup as (Vishwanathan et al., 2006) but plain SGD.



text chunking with a crf

e Results
Training Time Primal cost Test F1 score
L-BFGS 4335 secs 9042 93.74%
| SGD 568 secs 9098 93.75%
) /' ASGD 135 secs 9325 93.79%

H a2

Conll2000: Test set F1 score

F1
94




the tradeoffs of large-scale learning

Small-scale learning # large-scale learning

* Large-scale learning involves more complex tradeoffs
that depends on the properties of the optimization algorithm.

Good optimization algorithm # good learning algorithm

* Mediocre optimization algorithms (e.g., SGD)
often outperform sophisticated optimization algorithms
on large-scale learning problems.

provided that the code is correct (which is harder than it seems.)



3- breadth versus accuracy



diminishing returns

At some point
we should simply
choose another
problem...

Test error

(o)
81%  801% 8.001%

Bayes error

»
»

Training set size

e Accuracy improvements cannot justify the computational cost forever.
* Why then use very large training sets ?



Zipf distributed data

* Roughly half of the search queries are unique.

way enough data to train J

{ not enough data to train }

Queries sorted in frequency order



doubling the size of the training set

v

v

Diminishing returns
for average accuracy
improvements.

No diminishing returns
on number of queries
for which we can learn
correct answers.



the value of big data in machine learning

Accuracy improvements are subject to diminishing returns.
Breadth improvements are not subject to diminishing returns.

“How accurately do we recognize an object category?”
vs. “How many categories do we recognize well enough?”
Should we optimize a different criterion?

How does this helps if average accuracy
is what we care about ?




same distribution? 'g‘

Data collection in traditional machine learning

* Training data collection for real-life machine learning is difficult.
The data distribution must reflect the operational conditions.

* The i.i.d. assumption is not automatically satisfied.
It happens through manual data curation.

Data collection in big data machine learning
* Big data exists because data collection is automated.
* No manual curation to enforce the identical distribution assumption.

* The output of the machine learning system frequently
impacts the distribution of future training data.



dealing with covariate shifts pi%

P(X,Y) = P(Y|X) P(X)

We want to model Y = f(X). We cannot trust P(X).
We must assume that the training We want to train a system
data describes P(Y|X) well enough. robust to P(X) changes.

Minimizing the training set error
* Approximation errors are pushed towards patterns X with low probability.

* What if these patterns occur more frequently at testing time?

Maximize the “diversity” of patterns that are recognized well enough.

* Yields a solution that is more robust to P(X) changes.



independent examples? Q'Q«
jq1tossneesse MNIST digits

3333%3233353333
HAMY tOfddH 9444

* Training set : 600 writers x 100 digits.

3SFSs(ISssESsSy ] . . .o

sicevesrociscei o Tasting set: 100 different writers x 100 digits.
Iy,

177799177¢94917  * How many independent training examples, 600 or 600007
Search querles b""“g wrong trousers

* Lots of queries entered by lots of users.

* The search engines must satisfy the users, not the queries.

* The satisfaction of a user is not proportional to its satisfied queries.



independent examples? Py

Assume that a user is not satisfied below 95% correct answers.

Minimize average error Maximize queries answered at 95% level

- 0
L eTso L 80% )
pmm—m————— | bk bt ey {N
( ’ SN |
I \‘(,;’ “h !
I ! N
L 80% (' 100% )
)
1 ! ~ 1
1 Il\;\\\ _ ,,” \s\ |\
| 2 _"_ - l.\_-:c:.“. _Ir N
I}
] S 80%
,’ 'I ~ 4
/ 80% S /7
I SN /
! NN
1

Average error: 12%
Users satisfied: 3

Average error: 10%
Users satisfied: 0



scalability opportunities

no need to use all this data to
learn good enough answers

enough data to train

not enough data to train

v

Queries sorted in frequency order

* No need to consider all examples of already known queries.
* Best is to focus on queries near the boundary of the known area.
* Curriculum learning and active learning come naturally in this context.

* Scalability gains across the board.



3. deep learning
and transfer learning



engineering machine learning

Reading check amounts

— Input X : Scanned check images.
— Qutput Y : Positive numbers with two decimals.

Training a model
— Can we train a model using examples (z1,y1)...(Tn,yn) €E X X Y7

— Possibly (we did not really try.)
— This would require excessive numbers of labeled examples.

— This would require excessive computation time.



engineering machine learning

Identify subproblems

— Locate amount fields.

— Segment characters in amount fields.

— Recognize isolated characters.

— Translate character strings into an amount.

Define a submodel for each subproblem

— Fairly complicated recognition models
with large parameter vectors.

— Highly engineered location and segmentation models
with only a few adjustable thresholds.

Collect and label data for each subproblem

— Lots of manual work.
— Manual labor is not very expensive. . .



engineering machine learning

Training strategies
— Independent training
Train each submodel separately.
— Sequential trajning (better)
Label outputs of submodel n and train submodel n + 1.
— Global training (even better)

Pre-train with sequential training.
Simultaneously train all submodels with examples from X x V.

Issues
— The structure of the global model changes with the data.

e.g. managing field location and segmentation hypotheses.
— The composition of submodels has nontrivial aspects.
e.g. the label-bias problem.



deep learning

Deep learning (simplified)

— Pre-train with sequential unsupervised training
Collect outputs of submodel n
Train submodel n+ 1 with unsupervised criterion

— Tune with global training
Consider all submodels as a single statistical model.
Train with examples from X x V.

The deep learning surprise:

— Generic unsupervised subtasks work remarkably well.

— Little need to define subtasks using engineering knowledge.
— Little need to collect labeled data for all submodels.

Engineering learning systems is easier than we thought!



unsupervised learning

What is a cluster?
— Assumption: the shape of the density reveals the underlying categories.

Bayes decision boundary



unsupervised learning

Input space transforms

,! s L ¥ X
Jj%\}&lﬁ /H \\ \\' — Categories are invariant.
v vy \ — Bayes rate is invariant.

— Clustering is not invariant.

Bayes decision boundary



unsupervised learning

Clustering revisited

— Clustering is the expression
of the prior knowledge
encoded by our choice of

/ f%\\ xwl%/ /ﬁ\\\\\ input representation.
TR RTT r?j | 5!\

Unsupervised learning

— Comparable to using
really cheap labels:
“r1 and x9 are close".
“r1 and x5 are not close".

Bayes decision boundary



auxiliary tasks

The price of labels

Interesting task <= Scarce labeled examples.
Uninteresting task <= Abundant labeled examples.

Auxilliary tasks

— “In the vicinity of an interesting task (with expensive labels,)
there often are less interesting tasks (with cheap labels,)

that we can put to good use.”
— Unsupervised learning is just one of them (with trivial labels.)

— Deep-learning, semi-supervised learning, and transfer learning
are three facets of the same thing.
e.g. (Weston et al., 2008)



example —face recognition

Interesting problem
— Recognizing the faces of one million persons.
— How many labeled images per person will we get?

Related but less interesting problem

— Are two face images representing the same person?

— Abundant (but noisy) examples:
& Two faces in the same image are likely to be different persons.
¢ Faces in successive frames are likely to be the same person.

john

(Matt Miller, NECLA, 2006)



example — natural language tagging

Interesting problems
— Standard NLP tagging tasks.

Related but less interesting problem
— Positive examples are legal sentence segments.

— Negative examples are created by substituting the central word.
— Ranking loss.

cat sat song the mat
A
»
the cat sat on the mat

Q—
(Collobert et al., 2008-2011)



revisiting Vapnik’s razor

“When solving a (learning) problem of interest, do not solve
a more complex problem as an intermediate step. ”

Rationale: how complex a model can we afford with our data?

However, solving a more complex task and transferring features
often allows us to leverage more data of a different nature.

* Lots of implications.

“From machine learning to machine reasoning”, L.B., 2011.



conclusion

A good time to be in machine learning research.



