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Abstract

Inspired by progress in unsupervised representa-

tion learning for natural language, we examine

whether similar models can learn useful repre-

sentations for images. We train a sequence Trans-

former to auto-regressively predict pixels, without

incorporating knowledge of the 2D input structure.

Despite training on low-resolution ImageNet with-

out labels, we find that a GPT-2 scale model learns

strong image representations as measured by lin-

ear probing, fine-tuning, and low-data classifica-

tion. On CIFAR-10, we achieve 96.3% accuracy

with a linear probe, outperforming a supervised

Wide ResNet, and 99.0% accuracy with full fine-

tuning, matching the top supervised pre-trained

models. An even larger model trained on a mix-

ture of ImageNet and web images is competitive

with self-supervised benchmarks on ImageNet,

achieving 72.0% top-1 accuracy on a linear probe

of our features.

1. Introduction

Unsupervised pre-training played a central role in the resur-

gence of deep learning. Starting in the mid 2000’s, ap-

proaches such as the Deep Belief Network (Hinton et al.,

2006) and Denoising Autoencoder (Vincent et al., 2008)

were commonly used in neural networks for computer vi-

sion (Lee et al., 2009) and speech recognition (Mohamed

et al., 2009). It was believed that a model which learned

the data distribution P (X) would also learn beneficial fea-

tures for the subsequent supervised modeling of P (Y |X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-

ments such as piecewise linear activation functions (Nair

& Hinton, 2010), improved initializations (Glorot & Ben-

gio, 2010), and normalization strategies (Ioffe & Szegedy,

2015; Ba et al., 2016) removed the need for pre-training in

order to achieve strong results. Other research cast doubt

on the benefits of deep unsupervised representations and re-
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ported strong results using a single layer of learned features

(Coates et al., 2011), or even random features (Huang et al.,

2014; May et al., 2017). The approach fell out of favor as

the state of the art increasingly relied on directly encoding

prior structure into the model and utilizing abundant su-

pervised data to directly learn representations (Krizhevsky

et al., 2012; Graves & Jaitly, 2014). Retrospective study of

unsupervised pre-training demonstrated that it could even

hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-

ent domain. After initial strong results for word vectors

(Mikolov et al., 2013), it has pushed the state of the art

forward in Natural Language Processing on most tasks (Dai

& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;

Radford et al., 2018; Devlin et al., 2018). Interestingly, the

training objective of a dominant approach like BERT, the

prediction of corrupted inputs, closely resembles that of the

Denoising Autoencoder, which was originally developed for

images.

As a higher dimensional, noisier, and more redundant modal-

ity than text, images are believed to be difficult for genera-

tive modeling. Here, self-supervised approaches designed to

encourage the modeling of more global structure (Doersch

et al., 2015) have shown significant promise. A combination

of new training objectives (Oord et al., 2018), more recent

architectures (Gomez et al., 2017), and increased model ca-

pacity (Kolesnikov et al., 2019) has allowed these methods

to achieve state of the art performance in low data settings

(Hénaff et al., 2019) and sometimes even outperform super-

vised representations in transfer learning settings (He et al.,

2019; Misra & van der Maaten, 2019; Chen et al., 2020).

Given that it has been a decade since the original wave of

generative pre-training methods for images and considering

their substantial impact in NLP, this class of methods is due

for a modern re-examination and comparison with the recent

progress of self-supervised methods. We re-evaluate genera-

tive pre-training on images and demonstrate that when using

a flexible architecture (Vaswani et al., 2017), a tractable and

efficient likelihood based training objective (Larochelle &

Murray, 2011; Oord et al., 2016), and significant compute

resources (2048 TPU cores), generative pre-training is com-

petitive with other self-supervised approaches and learns
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Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.

We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate

the representations learned by these objectives with linear probes or fine-tuning.

representations that significantly improve the state of the

art in low-resolution unsupervised representation learning

settings.

This is especially promising as our architecture uses a dense

connectivity pattern which does not encode the 2D spatial

structure of images yet is able to match and even outperform

approaches which do. We report a set of experiments charac-

terizing the performance of our approach on many datasets

and in several different evaluation settings (low data, linear

evaluation, full fine-tuning). We also conduct several exper-

iments designed to better understand the achieved perfor-

mance of these models. We investigate how representations

are computed inside our model via the performance of linear

probes as a function of model depth as well as studying how

scaling the resolution and parameter count of the approach

affects performance.

2. Approach

Our approach consists of a pre-training stage followed by

a fine-tuning stage. In pre-training, we explore both the

auto-regressive and BERT objectives. We also apply the

sequence Transformer architecture to predict pixels instead

of language tokens.

One way to measure representation quality is to fine-tune for

image classification. Fine-tuning adds a small classification

head to the model, used to optimize a classification objective

and adapts all weights. Pre-training can be viewed as a

favorable initialization or as a regularizer when used in

combination with early stopping (Erhan et al., 2010).

Another approach for measuring representation quality uses

the pre-trained model as a feature extractor. In particular,

given labeled examples (X,Y ), the model is applied to X

to produce features fX . Then, a linear classifier is trained

on (fX , Y ). Linear probing captures the intuition that good

features should linearly separate the classes of transfer tasks.

Furthermore, linear probes help disentangle feature quality

from model architecture: in fine-tuning, one model may

outperform another because its architecture is more suited

for the downstream task rather than because of better pre-

training.

We begin this section by defining the auto-regressive and

BERT objectives in the context of images. Next, we outline

implementation details for our transformer decoder. Finally,

we describe how the transformer is used for fine-tuning and

how features are extracted for linear probes.

2.1. Pre-training

Given an unlabeled dataset X consisting of high dimen-

sional data x = (x1, ..., xn), we can pick a permutation π

of the set [1, n] and model the density p(x) auto-regressively

as follows:

p(x) =

n
∏

i=1

p(xπi
|xπ1

, ..., xπi−1
, θ)

When working with images, we pick the identity permuta-

tion πi = i for 1 ≤ i ≤ n, also known as raster order. We

train our model by minimizing the negative log-likelihood

of the data:

LAR = E
x∼X

[− log p(x)]

We also consider the BERT objective, which samples a

sub-sequence M ⊂ [1, n] such that each index i indepen-

dently has probability 0.15 of appearing in M . We call M

the BERT mask, and we train our model by minimizing

the negative log-likelihood of the “masked” elements xM

conditioned on the “unmasked” ones x[1,n]\M :

LBERT = E
x∼X

E
M

∑

i∈M

[

− log p
(

xi|x[1,n]\M

)]

In pre-training, we pick one of LAR or LBERT and mini-

mize the loss over our pre-training dataset.

2.2. Architecture

The transformer decoder takes an input sequence x1, ..., xn

of discrete tokens and produces a d-dimensional embedding

for each position. The decoder is realized as a stack of

L blocks, the l-th of which produces an intermediate em-

bedding hl
1, ..., h

l
n also of dimension d. We use the GPT-2



Generative Pretraining from Pixels

(Radford et al., 2019) formulation of the transformer de-

coder block, which acts on an input tensor hl as follows:

nl = layer norm(hl)

al = hl + multihead attention(nl)

hl+1 = al + mlp(layer norm(al))

In particular, layer norms precede both the attention and

mlp operations, and all operations lie strictly on residual

paths. We find that such a formulation allows us to scale the

transformer with ease.

The only mixing across sequence elements occurs in the

attention operation, and to ensure proper conditioning when

training the AR objective, we apply the standard upper

triangular mask to the n×n matrix of attention logits. When

using the BERT objective, no attention logit masking is

required: after applying content embeddings to the input

sequence, we zero out the positions in M .

Additionally, since we learn independent position embed-

dings for each sequence element, our BERT model has no

positional inductive biases (i.e. it is permutation invariant).

Put another way, any spatial relationships between posi-

tions must be learned by the model at train time. This is

not entirely true for the AR model, as choosing the raster

order also fixes a prespecified ordering of the condition-

als. Nevertheless, permutation invariance is a property in

strong contrast to convolutional neural networks, which in-

corporate the inductive bias that features should arise from

spatially proximate elements.

Following the final transformer layer, we apply a layer norm

nL = layer norm(hL), and learn a projection from nL to

logits parameterizing the conditional distributions at each

sequence element. When training BERT, we simply ignore

the logits at unmasked positions.

2.3. Fine-tuning

When fine-tuning, we average pool nL across the sequence

dimension to extract a d-dimensional vector of features per

example:

fL = 〈nL
i 〉i

We learn a projection from fL to class logits, which we use

to minimize a cross entropy loss LCLF .

While fine-tuning on LCLF yields reasonable downstream

performance, we find empirically that the joint objective

LGEN + LCLF

LGEN ∈ {LAR, LBERT } works even better. Similar find-

ings were reported by Radford et al. (2018).

2.4. Linear Probing

Extracting fixed features for linear probing follows a similar

procedure to fine-tuning, except that average pooling is not

always at the final layer:

f l = 〈nl
i〉i

where 0 ≤ l ≤ L. We will show in the experiments section

that the best features often lie in the middle of the network.

As in fine-tuning, we project these intermediate features

to produce class logits. Because we view the features as

fixed when linear probing, this projection contains the only

trainable weights, so we can only optimize LCLF .

3. Methodology

Although supervised pre-training is the dominant paradigm

for image classification, curating large labeled image

datasets is both expensive and time consuming. Instead

of further scaling up labeling efforts, we can instead as-

pire to learn general purpose representations from the much

larger set of available unlabeled images and fine-tune them

for classification. We investigate this setting using Ima-

geNet as a proxy for a large unlabeled corpus, and small

classic labeled datasets (CIFAR-10, CIFAR-100, STL-10)

as proxies for downstream tasks. For our largest model, we

use an additional 100 million unlabeled web images, filtered

to be similar to ImageNet.

Even in cases where labels are available, unsupervised or

self-supervised pre-training can still provide benefits in data

efficiency or on fine-tuning speed. We investigate this set-

ting by pre-training without labels and then fine-tuning or

linear probing with labels.

3.1. Dataset and Data Augmentation

We use the ImageNet ILSVRC 2012 training dataset, split-

ting off 4% as our experimental validation set and report

results on the ILSVRC 2012 validation set as our test set.

For CIFAR-10, CIFAR-100 and STL-10, we split off 10%

of the provided training set instead. We ignore the provided

unlabeled examples in STL-10, which constitute a subset of

ImageNet.

No data augmentation is used when pre-training on web

images, and lightweight data augmentation is used when

pre-training or fine-tuning on ImageNet. Specifically, when

employing data augmentation, we randomly resize an image

such that the shorter sidelength is in the range [256, 384]
and then take a random 224× 224 crop. When evaluating

on ImageNet, we resize the image such that the shorter

sidelength is 224, and use the single 224× 224 center crop.

When full-network fine-tuning on CIFAR-10 and CIFAR-

100, we use the augmentation popularized by Wide Residual

Networks: 4 pixels are reflection padded on each side, and

a 32× 32 crop is randomly sampled from the padded image

or its horizontal flip (Zagoruyko & Komodakis, 2016).

Once optimal hyperparameters are found, we fold our ex-
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perimental validation set back into the training set, retrain

the model, and report numbers on the respective test set.

3.2. Context Reduction

Because the memory requirements of the transformer de-

coder scale quadratically with context length when using

dense attention, we must employ further techniques to re-

duce context length. If we naively trained a transformer on

a sequence of length 2242 × 3, our attention logits would be

tens of thousands of times larger than those used in language

models and even a single layer would not fit on a GPU. To

deal with this, we first resize our image to a lower resolution,

which we call the input resolution (IR). Our models have

IRs of either 322 × 3, 482 × 3, or 642 × 3.

An IR of 322 × 3 is still quite computationally intensive.

While working at even lower resolutions is tempting, prior

work has demonstrated human performance on image classi-

fication begins to drop rapidly below this size (Torralba et al.,

2008). Instead, motivated by early color display palettes,

we create our own 9-bit color palette by clustering (R, G,

B) pixel values using k-means with k = 512. Using this

palette yields an input sequence length 3 times shorter than

the standard (R, G, B) palette, while still encoding color

faithfully. A similar approach was applied to spatial patches

by Ranzato et al. (2014). We call the resulting context length

(322 or 482 or 642) the model resolution (MR). Note that

this reduction breaks permutation invariance of the color

channels, but keeps the model spatially invariant.

3.3. Model

Our largest model, iGPT-XL, contains L = 60 layers and

uses an embedding size of d = 3072 for a total of 6.8B pa-

rameters. Our next largest model, iGPT-L, is essentially

identical to GPT-2 with L = 48 layers, but contains a

slightly smaller embedding size of d = 1536 (vs 1600)

for a total of 1.4M parameters. We use the same model

code as GPT-2, except that we initialize weights in the layer-

dependent fashion as in Sparse Transformer (Child et al.,

2019) and zero-initialize all projections producing logits.

We also train iGPT-M, a 455M parameter model with L =
36 and d = 1024 and iGPT-S, a 76M parameter model with

L = 24 and d = 512 to study the effect of model capacity

on representation quality in a generative model.

3.4. Training

When pre-training iGPT-XL, we use a batch size of 64 and

train for 2M iterations, and for all other models we use

a batch size of 128 and train for 1M iterations. We use

Adam with β1 = 0.9 and β2 = 0.95 and sequentially try the

learning rates 0.01, 0.003, 0.001, 0.0003, ..., stopping once

the final validation loss starts increasing. The learning rate

is warmed up for one epoch, and then decays to 0 following

a cosine schedule. No dropout is used.

When fine-tuning, we use the same batch size and Adam

hyperparameters. Here, we do not employ a cosine sched-

ule, and early stop once we reach the maximum validation

accuracy. Again, no dropout is used.

When running a linear probe on ImageNet, we follow recent

literature and use SGD with momentum 0.9 and a high

learning rate (we try the values 30, 10, 3, ... in the manner

described above) (He et al., 2019). We train for 1000000
iterations with a cosine learning rate schedule. Finally, when

running a linear probe on CIFAR-10, CIFAR-100, or STL-

10, we use the L-BFGS algorithm for consistency with prior

results (Pedregosa et al., 2011).

4. Experiments and Results

We begin with experiments and results from the autore-

gressive formulation of iGPT. Comparisons with the BERT

formulation appear in Section 4.6.

4.1. What Representation Works Best in a Generative

Model Without Latent Variables?

Figure 2. Representation quality depends on the layer from which

we extract features. In contrast with supervised models, the best

representations for these generative models lie in the middle of the

network. We plot this unimodal dependence on depth by showing

linear probes for iGPT-L on CIFAR-10, CIFAR-100, and STL-10.

In supervised pre-training, representation quality tends to

increase monotonically with depth, such that the best rep-

resentations lie at the penultimate layer (Zeiler & Fergus,

2014). Indeed, since a linear layer produces class logits

from pre-logits, a good classifier necessarily achieves high

accuracy on a linear probe of its pre-logits. If a downstream

task also involves classification, it is empirically validated

that penultimate features perform well.

With generative pre-training, it is not obvious whether a task

like pixel prediction is relevant to image classification. This

suggests that the penultimate layer of a model trained for

pixel prediction might not produce the most useful repre-

sentations for classification. Latent variable models such as

VAEs can avoid this issue by explicitly learning a represen-

tation of the input data, but deep autoregressive generative
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models have the same width and connectivity pattern at

every layer. Our first experiment studies how representa-

tion quality varies over one set of candidate representations:

different layers of a generative model. We observe a very

different behavior from supervised learning: representations

first improve as a function of depth, and then, starting around

the middle layer, begin to deteriorate until the penultimate

layer (Figure 2).

This behavior potentially suggests that these generative mod-

els operate in two phases. In the first phase, each position

gathers information from its surrounding context in order

to build a more global image representation. In the second

phase, this contextualized input is used to solve the condi-

tional next pixel prediction task. This could resemble the

behavior of encoder-decoder architectures common across

deep learning, but learned within a monolithic architecture

via a pre-training objective.

Consequently, when evaluating a generative model with

a linear probe, it is important to search for the best layer.

Taking the final layer on CIFAR-10 decreases performance

by 2.4%, the difference between a baseline and a state-of-

the-art result. In all settings, we find that the dependence of

representation quality on depth is strongly unimodal.

4.2. Better Generative Models Learn Better

Representations

Figure 3. Plot of representation quality as a function of validation

generative loss. Each line tracks a model throughout generative

pre-training: the dotted markers denote checkpoints at steps 65K,

131K, 262K, 524K, and 1000K. The positive slope suggests a link

between improved generative performance and improved represen-

tation quality. Larger models produce better representations than

smaller ones both at the end of training and at the same value of

validation loss. iGPT-XL is not shown since it was trained on a

different dataset.

Using the linear probe as a tool for measuring representation

quality, we investigate whether better generative models (as

measured by log-prob on held-out data) also learn better

representations.

In Figure 3, we see that as validation loss on the auto-

regressive objective decreases throughout training, linear

probe accuracy increases as well. This trend holds across

Table 1. Comparing linear probe accuracies between our models

and state-of-the-art models utilizing unsupervised ImageNet trans-

fer or supervised ImageNet transfer.

Model Acc Unsup Transfer Sup Transfer

CIFAR-10
ResNet-152 94

√

SimCLR 95.3
√

iGPT-L 96.3
√

CIFAR-100
ResNet-152 78.0

√

SimCLR 80.2
√

iGPT-L 82.8
√

STL-10
AMDIM-L 94.2

√

iGPT-L 95.5
√

several model capacities, with higher capacity models

achieving better validation losses. This highlights the im-

portance of scale for our approach. Note that for a given

validation loss value, bigger models also perform better.

4.3. Linear Probes on CIFAR and STL-10

In addition to CIFAR-10, we also evaluate linear probes on

CIFAR-100 and STL-10 (Figure 2) to check whether the

learned representations are useful across multiple datasets.

For this evaluation setting, we achieve state-of-the-art across

the entire spectrum of pre-training approaches (Table 1).

For example, on CIFAR-10, our model achieves 96.3%, out-

performing both SimCLR (pre-trained on ImageNet without

labels) and a ResNet-152 (pre-trained on ImageNet with

labels). In fact, on all three datasets a linear classifier fit to

the representations of iGPT-L outperforms the end-to-end

supervised training of a WideResNet baseline.

Note that our model is trained at the same input resolution

(IR) as CIFAR, whereas models trained at the standard Im-

ageNet IR may experience distribution shock upon linear

evaluation. As a counterpoint, though STL-10 has an IR

of 962 × 3, we still outperform AMDIM-L when we down-

sample to 322 × 3 before linear probing. We also note that

fine-tuning should allow models trained at high IR to adjust

to low resolution input.

4.4. Linear Probes on ImageNet

Recently, there has been a resurgence of interest in unsuper-

vised and self-supervised learning on ImageNet, evaluated

using linear probes on ImageNet. This is a particularly

difficult setting for us, since we cannot efficiently train at

the standard ImageNet input resolution (IR). Indeed, when

training iGPT-L with a model resolution (MR) of 322, we

achieve only 60.3% best-layer linear probe accuracy. As

with CIFAR-10, scale is critical to our approach: iGPT-
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Table 2. Comparing linear probe accuracies between our models

and state-of-the-art self-supervised models. A blank input resolu-

tion (IR) corresponds to a model working at standard ImageNet

resolution. We report the best performing configuration for each

contrastive method, finding that our models achieve comparable

performance.

Method IR Params (M) Features Acc

Rotation orig. 86 8192 55.4

iGPT-L 32
2 ·3 1362 1536 60.3

BigBiGAN orig. 86 8192 61.3

iGPT-L 48
2 ·3 1362 1536 65.2

AMDIM orig. 626 8192 68.1
MoCo orig. 375 8192 68.6

iGPT-XL 64
2 ·3 6801 3072 68.7

SimCLR orig. 24 2048 69.3
CPC v2 orig. 303 8192 71.5

iGPT-XL 64
2 ·3 6801 15360 72.0

SimCLR orig. 375 8192 76.5

M achieves 54.5% accuracy and iGPT-S achieves 41.9%

accuracy.

The first obvious optimization is to increase MR while stay-

ing within accelerator memory limits. With a MR of 482,

iGPT-L achieves a best-layer accuracy of 65.2% using 1536

features and with a MR of 642, iGPT-XL achieves a best-

layer accuracy of 68.7% using 3072 features.

Since contrastive methods report their best results on 8192

features, we would ideally evaluate iGPT with an embed-

ding dimension 8192 for comparison. Training such a model

is prohibitively expensive, so we instead concatenate fea-

tures from multiple layers as an approximation. However,

our features tend to be correlated across layers, so we need

more of them to be competitive. If we concatenate features

from 5 layers centered at the best single layer of iGPT-XL,

we achieve an accuracy of 72.0% using 15360 features,

which is competitive with recent contrastive learning ap-

proaches (Table 2). Note that we require more parameters

and compute to achieve this accuracy, but we work at low

resolution and without utilizing knowledge of the 2D input

structure.

4.5. Full Fine-tuning

To achieve even higher accuracy on downstream tasks, we

adapt the entire model for classification through fine-tuning.

Building off of the previous analysis, we tried attaching the

classification head to the layer with the best representations.

Though this setup trains faster than one with the head at-

tached at the end, the latter is able to leverage greater model

depth and eventually outperforms.

On CIFAR-10, iGPT-L achieves 99.0% accuracy and on

CIFAR-100, it achieves 88.5% accuracy after fine-tuning.

We outperform AutoAugment, the best supervised model

Table 3. Comparing fine-tuning performance between our models

and state-of-the-art models utilizing supervised ImageNet transfer.

We also include AutoAugment, the best performing model trained

end-to-end on CIFAR. Table results: AutoAugment (Cubuk et al.,

2019), SimCLR (Chen et al., 2020), GPipe (Huang et al., 2019),

EfficentNet (Tan & Le, 2019)

Model Acc Unsup Transfer Sup Transfer

CIFAR-10
AutoAugment 98.5
SimCLR 98.6

√

GPipe 99.0
√

iGPT-L 99.0
√

CIFAR-100
iGPT-L 88.5

√

SimCLR 89.0
√

AutoAugment 89.3
EfficientNet 91.7

√

on these datasets, though we do not use sophisticated data

augmentation techniques. In fact, 99.0% ties GPipe, the best

model which pre-trains using ImageNet labels.

On ImageNet, we achieve 66.3% accuracy after fine-tuning

at MR 322, a bump of 6% over linear probing. When fine-

tuning at MR 482, we achieve 72.6% accuracy, with a simi-

lar 7% bump over linear probing. However, our models still

slightly underperform Isometric Neural Nets (Sandler et al.,

2019), which achieves 70.2% at an IR of 282 × 3.

Finally, as a baseline for ImageNet fine-tuning, we train

the classification objective from a random initialization. At

MR 482, a model with tuned learning rate and dropout

achieves 53.2% after 18 epochs, 19.4% worse than the pre-

trained model. Comparatively, the pre-trained model is

much quicker to fine-tune, achieving the same 53.2% loss

in roughly a single epoch.

When fine-tuning, it is important to search over learning

rates again, as the optimal learning rate on the joint training

objective is often an order of magnitude smaller than that

for pre-training. We also tried regularizing with dropout,

though we did not observe any clear benefits. It is easy to

overfit the classification objective on small datasets, so we

employ early stopping based on validation accuracy.

4.6. BERT

Given the success of BERT in language, we train iGPT-L

at an input resolution of 322 × 3 and a model resolution

of 322 (Figure 4). On CIFAR-10, we observe that linear

probe accuracy at every layer is worse than that of the auto-

regressive model, with best-layer performance more than

1% lower. Best-layer accuracy on ImageNet is 6% lower.

However, during fine-tuning, BERT makes up much of this

gap. A fully fine-tuned CIFAR-10 model achieves 98.6%
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Figure 4. Comparison of auto-regressive pre-training with BERT

pre-training using iGPT-L at an input resolution of 322 × 3. Blue

bars display linear probe accuracy and orange bars display fine-

tune accuracy. Bold colors show the performance boost from

ensembling BERT masks. We see that auto-regressive models

produce much better features than BERT models after pre-training,

but BERT models catch up after fine-tuning.

accuracy, only 0.4% behind its auto-regressive counterpart,

while a fully fine-tuned ImageNet model achieves 66.5%,

slightly surpassing auto-regressive performance.

Finally, because inputs to the BERT model are masked at

training time, we must also mask them at evaluation time to

keep inputs in-distribution. This masking corruption may

hinder the BERT model’s ability to correctly predict image

classes. Therefore, we also try an evaluation scheme where

we sample 5 independent masks for each input and take the

modal prediction, breaking ties at random. In this setting,

CIFAR-10 results are largely unchanged, but on ImageNet,

we gain almost 1% on our linear probes and fine-tunes.

4.7. Low-Data CIFAR-10 Classification

Evaluations of unsupervised representations often reuse su-

pervised learning datasets which have thousands to millions

of labeled examples. However, a representation which has

robustly encoded a semantic concept should be exceedingly

data efficient. As inspiration, we note that humans are able

to reliably recognize even novel concepts with a single ex-

ample (Carey and Bartlett 1978). This motivates evaluating

performance in a low-data regime as well. It is also a more

realistic evaluation setting for the potential practical use-

fulness of an approach since it better matches the common

real-world scenario of an abundance of raw data but a lack

of labels.

In contrast with recent approaches for low-data classifica-

tion, we do not make use of pseudo-labeling or data aug-

mentation. Instead, we work directly on a subset of the raw

supervised dataset, extracting features using our pre-trained

model, and training a linear classifier on those features.

Table 4. Comparing performance on low-data CIFAR-10. By lever-

aging many unlabeled ImageNet images, iGPT-L is able to outper-

form methods such as Mean Teacher (Tarvainen & Valpola, 2017)

and MixMatch (Berthelot et al., 2019) but still underperforms the

state of the art methods (Xie et al., 2019; Sohn et al., 2020). Our

approach to semi-supervised learning is very simple since we only

fit a logistic regression classifier on iGPT-L’s features without any

data augmentation or fine-tuning - a significant difference from spe-

cially designed semi-supervised approaches. Other results reported

from FixMatch (Sohn et al., 2020).

Model 40 labels 250 labels 4000 labels

Mean Teacher 32.3 ± 2.3 9.2 ± 0.2
MixMatch 47.5 ± 11.5 11.0 ± 0.9 6.4 ± 0.1
iGPT-L 26.8 ± 1.5 12.4 ± 0.6 5.7 ± 0.1
UDA 29.0 ± 5.9 8.8 ± 1.1 4.9 ± 0.2
FixMatch RA 13.8 ± 3.4 5.1 ± 0.7 4.3 ± 0.1
FixMatch CTA 11.4 ± 3.4 5.1 ± 0.3 4.3 ± 0.2

As is standard in the low-data setting, we sample 5 random

subsets and report mean and standard deviation accuracies

(Table 4). On CIFAR-10, we find that with 4 labels per class,

we achieve 73.2% accuracy outperforming MixMatch with

much lower variance between runs and with 25 labels per

class, we achieve 87.6% accuracy, though still significantly

lower than the state of the art, FixMatch.

Although we have established that large models are neces-

sary for producing good representations, large models are

also difficult to fine-tune in the ultra-low data regime. In-

deed, we find that iGPT-L quickly memorizes a 40-example

training set and fails to generalize well, achieving only

42.1% accuracy. We expect adapting recent approaches

to semi-supervised learning will help in this setting.

5. Related Work

Many generative models have been developed and evalu-

ated for their representation learning capabilities. Notably,

GANs (Goodfellow et al., 2014; Radford et al., 2015; Don-

ahue et al., 2016) and VAEs (Kingma & Welling, 2013;

Kingma et al., 2014; Higgins et al., 2017) have been well-

studied.

As of yet, most generative model based approaches have

not been competitive with supervised and self-supervised

methods in the image domain. A notable exception is Big-

BiGAN (Donahue & Simonyan, 2019) which first demon-

strated that sufficiently high fidelity generative models learn

image representations which are competitive with other self-

supervised methods.

Many self-supervised approaches focus on designing aux-

iliary objectives which support the learning of useful rep-

resentations without attempting to directly model the input

data. Examples include surrogate classification (Dosovit-
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skiy et al., 2015), jigsaw puzzle solving (Noroozi & Favaro,

2016), and rotation prediction (Gidaris et al., 2018). A clus-

ter of similar approaches based on contrastive losses com-

paring various views and transformations of input images

have recently driven significant progress in self-supervised

learning (Hjelm et al., 2018; Bachman et al., 2019; Tian

et al., 2019).

Among contrastive approaches, our work is most similar

to Contrast Predictive Coding (Oord et al., 2018) which

also utilizes a autoregressive prediction objective, but in a

learned latent space, and to Selfie (Trinh et al., 2019) which

trains a bidirectional self-attention architecture on top of a

standard convolutional network to differentiate correct vs

wrong patches.

Our work is directly inspired by the success of generative

pre-training methods developed for Natural Language Pro-

cessing. These methods predict some parts of a piece of text

conditioned on other parts. Our work explores two training

objectives in this framework, autoregressive prediction as

originally explored for modern neural sequence models by

Dai & Le (2015), and a denoising objective, similar to BERT

(Devlin et al., 2018). The context in-painting approach of

Pathak et al. (2016) also explores pre-training by predict-

ing corruptions but predicts large regions of high-resolution

images.

Kolesnikov et al. (2019); Goyal et al. (2019) conducted

rigorous investigations of existing self-supervised methods.

Several of our findings are consistent with their results, in-

cluding the benefits of scale and the non-monotonic perfor-

mance of representations with depth in certain architectures.

Expressive autoregressive models tractably optimizing like-

lihood were first applied to images by Uria et al. (2013)

and popularized by Oord et al. (2016) serving for the ba-

sis of several papers similarly adapting transformers to the

problem of generative image modeling (Parmar et al., 2018;

Child et al., 2019).

Ke et al. (2018) introduced the pixel-by-pixel CIFAR10 task

and first benchmarked the performance of a 1D sequence

transformer on a competitive image classification dataset.

Rives et al. (2019) similarly investigates whether the recent

success of unsupervised pre-training in NLP applies to other

domains, observing promising results on protein sequence

data.

6. Discussion and Conclusion

Our results suggest that generative image modeling contin-

ues to be a promising route to learn high-quality unsuper-

vised image representations. Simply predicting pixels learns

state of the art representations for low resolution datasets.

In high resolution settings, our approach is also competitive

with other self-supervised results on ImageNet.

However, our experiments also demonstrate several areas

for improvement. We currently model low resolution in-

puts with self-attention. By comparison, most other self-

supervised results use CNN based encoders that easily work

with high resolution images. It is not immediately obvious

how to best bridge the gap between performant autoregres-

sive and discriminative models. Additionally, we observed

that our approach requires large models in order to learn

high quality representations. iGPT-L has 2 to 3 times as

many parameters as similarly performing models on Ima-

geNet and uses more compute.

Although dense self-attention was a deliberate choice for

this work due to it being domain agnostic and widely used in

NLP, it becomes very memory and computationally expen-

sive due to its quadratic scaling with sequence length. We

mitigated this via the context reduction techniques discussed

in section 3.2 but it is still a significant limitation. Future

work could instead address this via architectural changes by

exploring more efficient self-attention approaches. Several

promising techniques have recently been developed such as

local 2D relative attention (Bello et al., 2019; Ramachan-

dran et al., 2019), sparse attention patterns (Child et al.,

2019), locality sensitive hashing (Kitaev et al., 2020), and

multiscale modeling (Menick & Kalchbrenner, 2018).

Finally, our results, considered together with Donahue &

Simonyan (2019), suggest revisiting the representation learn-

ing capabilities of other families of generative models such

as flows (Dinh et al., 2014; Kingma & Dhariwal, 2018)

and VAEs in order to study whether they show similarly

competitive representation learning capabilities.
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A. Experimental details

A.1. Hyperparameters

In Table 5, we present the learning rates used to train each

model in the paper. When using too high a learning rate,

we observe an irrecoverable loss spike early on in training.

Conversely, with too low a learning rate, training is stable

but loss improves slowly and eventually underperforms. As

we increase model size, the irrecoverable loss spike occurs

at even lower learning rates. This motivates our procedure

of sequentially searching learning rates from large to small

and explains why larger models use lower learning rates

than smaller models at fixed input resolution.

We used an Adam β2 of 0.95 instead of the default 0.999

because the latter causes loss spikes during training. We

did not use weight decay because applying a small weight

decay of 0.01 did not change representation quality.

On iGPT-S, we found small gains in representation quality

from using float32 instead of float16, from untying the token

embedding matrix and the matrix producing token logits,

and from zero initializing the matrices producing token and

class logits. We applied these settings to all models.

When training BERT models, one additional hyperparameter

is the masking probability, set to 15% in Devlin et al. (2018).
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Table 5. Learning rates used for each model, objective, and input

resolution (IR) combination.

Model Objective IR Learning Rate

iGPT-S auto-regressive 32
2 × 3 0.003

iGPT-M auto-regressive 32
2 × 3 0.003

iGPT-L auto-regressive 32
2 × 3 0.001

iGPT-L auto-regressive 48
2 × 3 0.01

iGPT-XL auto-regressive 64
2 × 3 0.0003

iGPT-S BERT 32
2 × 3 0.01

iGPT-M BERT 32
2 × 3 0.003

iGPT-L BERT 32
2 × 3 0.001

We also tried higher masking rates of 20%, 25%, 30%, and

35%, finding that 20% matched the performance of 15%,

though higher probabilities decreased performance.


