
Université Paris-Sud

Ecole Doctorale Informatique de Paris-Sud
Laboratoire d’Informatique pour la Mécanique

et les Sciences de l’Ingénieur

Discipline : Informatique

Thèse de doctorat
Soutenue le 13 mai 2015 par

Théodore Bluche

Deep Neural Networks for Large
Vocabulary Handwritten Text

Recognition

Directeur de thèse : M. Hermann Ney Professeur (RWTH, Aachen; LIMSI, Paris)

Co-directeur de thèse : M. Christopher Kermorvant Docteur (Teklia, Paris; A2iA, Paris)

Composition du jury :

Président du jury : M. Thierry Paquet Professeur (LITIS, Rouen)

Rapporteurs : M. Christophe Garcia Professeur (INSA Lyon, LIRIS/IMAGINE)

M. Enrique Vidal Professeur (UPV, Espagne)

Examinateurs : M. Balázs Kégl Docteur (IN2P3, Paris)

M. Thierry Paquet Professeur (LITIS, Rouen)

Groupe Traitement
de la Langue Parlée
LIMSI-CNRS
B.P. 133
91403 Orsay Cedex, France

A2iA
39, rue de la Bienfaisance

75008 Paris, France

ED IPS
Université Paris-Sud
UFR Sciences Orsay

Bât. 650
Orsay, France

A Papa
A Papy

Acknowledgements

It is incredible how personal and professional lives are intertwined, and how what
happens outside the office impacts what happens inside. So many people helped me
go through the last few years in so many ways, directly or indirectly, maybe not even
knowing it. To those I have known for ever and those I have met on the way, to those
who believed in me and those who trusted me, thank you.

When I finished my Master, I did not plan to go for a PhD. I must first thank
Christopher Kermorvant for contacting me, and for changing my mind on the subject.
He played an important role in my doing a job that I love, in turning me from engineer
into researcher, and in giving me confidence in my work.

I would like to express my deepest gratitude to Prof. Hermann Ney, who accepted to
supervise this thesis, for very interesting discussions, useful advice, and for his valuable
experience and priceless guidance.

I am so grateful to Enrique Vidal and Christophe Garcia, who kindly accepted
to review my thesis, and to read this manuscript at a time when I could not find
the courage to read it anymore, and more generally to the whole defense committee,
including Thierry Paquet and Balázs Kégl, for doing me the honour of evaluating my
work.

Thanks to A2iA to have welcomed me and made this PhD possible, in the best
environment. A student could not dream of a better place to complete an industrial
PhD, encouraged to publish, with a lot of freedom and autonomy in the work, and to
follow exciting research directions.

I would like to thank everyone in the company for their kindness and support, and
particularly my current and former colleagues in the research team: Anne-Laure, my
coach, Farès, Jérôme, Vu, Bastien, Ronaldo, and Faouzi, for the laughs and stimulating
discussions. Working with you guys is a real pleasure. Coffee breaks are crucial, and
would not have been the same without the pleasing talks with Thomas.

The people of LIMSI should not be forgotten. They integrated me in the lab, and
even though I went there only once a week, they made me feel part of it. A special
thanks goes to François Yvon, who welcomed me when I arrived, and was very attentive
with me throughout the thesis. Research is way easier with a clear mind, and I should
high-five all the football players of the lab, who allowed me to let the steam off through
contested games: Thiago, Phuong, Tom, Sylvain, Mathieu, Nico.

Vielen Dank to Michal, Patrick, Mahdi, and all the students of the i6 lab in RWTH
who greeted me on my few stays in Aachen, and with whom I shared captivating
discussions.

I am pleased to have received the help of many, at A2iA, LIMSI and EDIPS, for
effective administrative and technical support, relieving me from much stress and worry,
and allowing me to focus on research.

I have wonderful friends, who are there in easy times, and especially present in tough
times, who elevate the ups and smooth the downs. To this respect, a huge “thank you”
must go to Laura, for the countless hours on the phone, to Pierre, Antoine, Rudy,

6

Vincent, Alex, Julien, Matthieu, Stéphane, and everyone who was there when I most
needed them, even at a time when all they heard from me was about this thesis. Thanks
Letí for being in the front line at this particular moment, and for innumerable other
reasons.

Last, but not least, and as always, I am indebted to my extraordinary family, for
their inconditional love and support. I could not have gone so far without them. Thanks
everyone, my brother Barnabé, my sisters Bertille, Pimprenelle, Pétronille, thanks Mom
for the comfort, Isabelle, Nicolas for being there. And finally, I dedicate this work to
two special persons. To my grandfather, who, from as far as I can remember, awakened
my scientific mind in so many ways. To my father, who taught me so many valuable
things in life, how to face problems and make choices, for telling me that I should do
what I love.

Merci!

Résumé

La transcription automatique du texte dans les documents manuscrits a de nombreuses
applications, allant du traitement automatique des documents à leur indexation ou leur com-
préhension. L’une des approches les plus populaires de nos jours consiste à parcourir l’image
d’une ligne de texte avec une fenêtre glissante, de laquelle un certain nombre de caractéris-
tiques sont extraites, et molélisées par des Modèles de Markov Cachés (MMC). Quand ils
sont associés à des réseaux de neurones, comme des Perceptrons Multi-Couches (PMC) ou
Réseaux de Neurones Récurrents de type Longue Mémoire à Court Terme (RNR-LMCT), et
à un modèle de langue, ces modèles produisent de bonnes transcriptions. D’autre part, dans
de nombreuses applications d’apprentissage automatique, telles que la reconnaissance de la
parole ou d’images, des réseaux de neurones profonds, comportant plusieurs couches cachées,
ont récemment permis une réduction significative des taux d’erreur.

Dans cette thèse, nous menons une étude poussée de différents aspects de modèles op-
tiques basés sur des réseaux de neurones profonds dans le cadre de systèmes hybrides réseaux
de neurones / MMC, dans le but de mieux comprendre et évaluer leur importance relative.
Dans un premier temps, nous montrons que des réseaux de neurones profonds apportent des
améliorations cohérentes et significatives par rapport à des réseaux ne comportant qu’une
ou deux couches cachées, et ce quel que soit le type de réseau étudié, PMC ou RNR, et
d’entrée du réseau, caractéristiques ou pixels. Nous montrons également que les réseaux de
neurones utilisant les pixels directement ont des performances comparables à ceux utilisant
des caractéristiques de plus haut niveau, et que la profondeur des réseaux est un élément
important de la réduction de l’écart de performance entre ces deux types d’entrées, confir-
mant la théorie selon laquelle les réseaux profonds calculent des représentations pertinantes,
de complexités croissantes, de leurs entrées, en apprenant les caractéristiques de façon au-
tomatique. Malgré la domination flagrante des RNR-LMCT dans les publications récentes en
reconnaissance d’écriture manuscrite, nous montrons que des PMCs profonds atteignent des
performances comparables. De plus, nous avons évalué plusieurs critères d’entrainement des
réseaux. Avec un entrainement discriminant de séquences, nous reportons, pour des systèmes
PMC/MMC, des améliorations comparables à celles observées en reconnaissance de la parole.
Nous montrons également que la méthode de Classification Temporelle Connexionniste est
particulièrement adaptée aux RNRs. Enfin, la technique du dropout a récemment été ap-
pliquée aux RNR. Nous avons testé son effet à différentes positions relatives aux connexions
récurrentes des RNRs, et nous montrons l’importance du choix de ces positions.

Nous avons mené nos expériences sur trois bases de données publiques, qui représentent

deux langues (l’anglais et le français), et deux époques, en utilisant plusieurs types d’entrées

pour les réseaux de neurones : des caractéristiques prédéfinies, et les simples valeurs de pixels.

Nous avons validé notre approche en participant à la compétition HTRtS en 2014, où nous

avons obtenu la deuxième place. Les résultats des systèmes présentés dans cette thèse, avec

les deux types de réseaux de neurones et d’entrées, sont comparables à l’état de l’art sur les

bases Rimes et IAM, et leur combinaison dépasse les meilleurs résultats publiés sur les trois

bases considérées.

Mots-clés – Reconnaissance de formes • Modèles de Markov Cachés • Réseaux de
Neurones • Reconnaissance de l’Ecriture Manuscrite

Abstract

The automatic transcription of text in handwritten documents has many applications,
from automatic document processing, to indexing and document understanding. One of the
most popular approaches nowadays consists in scanning the text line image with a sliding
window, from which features are extracted, and modeled by Hidden Markov Models (HMMs).
Associated with neural networks, such as Multi-Layer Perceptrons (MLPs) or Long Short-
Term Memory Recurrent Neural Networks (LSTM-RNNs), and with a language model, these
models yield good transcriptions. On the other hand, in many machine learning applications,
including speech recognition and computer vision, deep neural networks consisting of several
hidden layers recently produced a significant reduction of error rates.

In this thesis, we have conducted a thorough study of different aspects of optical models
based on deep neural networks in the hybrid neural network / HMM scheme, in order to
better understand and evaluate their relative importance. First, we show that deep neu-
ral networks produce consistent and significant improvements over networks with one or
two hidden layers, independently of the kind of neural network, MLP or RNN, and of in-
put, handcrafted features or pixels. Then, we show that deep neural networks with pixel
inputs compete with those using handcrafted features, and that depth plays an important
role in the reduction of the performance gap between the two kinds of inputs, supporting
the idea that deep neural networks effectively build hierarchical and relevant representations
of their inputs, and that features are automatically learnt on the way. Despite the domi-
nance of LSTM-RNNs in the recent literature of handwriting recognition, we show that deep
MLPs achieve comparable results. Moreover, we evaluated different training criteria. With
sequence-discriminative training, we report similar improvements for MLP/HMMs as those
observed in speech recognition. We also show how the Connectionist Temporal Classification
framework is especially suited to RNNs. Finally, the novel dropout technique to regularize
neural networks was recently applied to LSTM-RNNs. We tested its effect at different posi-
tions in LSTM-RNNs, thus extending previous works, and we show that its relative position
to the recurrent connections is important.

We conducted the experiments on three public databases, representing two languages

(English and French) and two epochs, using different kinds of neural network inputs: hand-

crafted features and pixels. We validated our approach by taking part to the HTRtS contest

in 2014. The results of the final systems presented in this thesis, namely MLPs and RNNs,

with handcrafted feature or pixel inputs, are comparable to the state-of-the-art on Rimes and

IAM. Moreover, the combination of these systems outperformed all published results on the

considered databases.

Keywords – Pattern Recognition • Hidden Markov Models • Neural Networks • Hand-
writing Recognition

Contents

List of Tables 17

List of Figures 21

Introduction 25

I HANDWRITING RECOGNITION — OVERVIEW 31

1 Offline Handwriting Recognition – Overview of the Problem 33
1.1 Introduction . 35
1.2 Preliminary Steps to Offline Handwriting Recognition 37
1.3 Reducing Handwriting Variability with Image Processing Techniques . 39

1.3.1 Normalizing Contrast . 39
1.3.2 Normalizing Skew . 40
1.3.3 Normalizing Slant . 41
1.3.4 Normalizing Size . 41

1.4 Extraction of Relevant Features for Handwriting Recognition 42
1.4.1 Text Segmentation for Feature Extraction 42
1.4.2 Features for Handwriting Representation 43

1.5 Modeling Handwriting . 46
1.5.1 Whole-Word Models . 47
1.5.2 Part-Based Methods . 47
1.5.3 Segmentation-Free Approach . 48

1.6 Modeling the Language to Constrain and Improve the Recognition . . . 49
1.6.1 Vocabulary . 50
1.6.2 Language Modeling . 51
1.6.3 Open-Vocabulary Approaches 53

1.7 Measuring the Quality of the Recognition 53
1.8 Conclusion . 54

2 Handwriting Recognition with Hidden Markov Models and Neural
Networks 55
2.1 Introduction . 57
2.2 Hidden Markov Models for Handwriting Recognition 58

2.2.1 Definition . 59
2.2.2 Choice of Topology . 61
2.2.3 Choice of Emission Distribution 62
2.2.4 Model Refinements . 62
2.2.5 Decoding . 63

12 Contents

2.3 Neural Networks for Handwriting Recognition 63
2.3.1 The Multi-Layer Perceptron . 63
2.3.2 Recurrent Neural Networks . 66
2.3.3 Long Short-Term Memory Units 67
2.3.4 Convolutional Neural Networks 68

2.4 Handwriting Recognition Systems with Neural Networks 69
2.4.1 The Hybrid NN/HMM scheme 70
2.4.2 Predicting Characters . 71
2.4.3 NN Feature Extractors . 71

2.5 Training Models . 72
2.5.1 Training Hidden Markov Models with Generative Emission Models 72
2.5.2 Training Neural Networks . 73
2.5.3 Training Deep Neural Networks 77
2.5.4 Training Complete Handwriting Recognition Systems 81

2.6 Conclusion . 86

II EXPERIMENTAL SETUP 89

3 Databases and Software 91

3.1 Introduction . 93
3.2 Databases of Handwritten Text . 93

3.2.1 Rimes . 93
3.2.2 IAM . 94
3.2.3 Bentham . 95

3.3 Software . 96
3.4 A Note about the Experimental Setup in the Next Chapters 97

4 Baseline System 99

4.1 Introduction . 101
4.2 Preprocessing and Feature Extraction 102

4.2.1 Image Preprocessing . 102
4.2.2 Feature Extraction with Sliding Windows 103

4.3 Language Models . 105
4.3.1 Corpus Preparation and Vocabulary Selection 105
4.3.2 Language Models Estimation 106
4.3.3 Recognition Output Normalization 107

4.4 Decoding Method . 108
4.5 A GMM/HMM baseline system . 109

4.5.1 HMM topology selection . 109
4.5.2 GMM/HMM training . 109
4.5.3 Results . 110

4.6 Conclusion . 112

Contents 13

III DEEP NEURAL NETWORKS IN HIDDEN MARKOV
MODEL SYSYEMS 113

5 Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recog-
nition 115
5.1 Introduction . 117
5.2 Experimental Setup . 118
5.3 Study of the Influence of Input Context 119

5.3.1 Alignments from GMM/HMM Systems 119
5.3.2 Handcrafted Features . 121
5.3.3 Pixel Intensities . 123

5.4 Study of the Impact of Depth in MLPs 124
5.4.1 Deep MLPs . 124
5.4.2 Deep vs Wide MLPs . 126

5.5 Study of the Benefits of Sequence-Discriminative Training 128
5.6 Study of the Choice of Inputs . 130
5.7 Conclusion . 131

6 Hybrid Deep Recurrent Neural Networks / HMM for Handwriting
Recognition 133
6.1 Introduction . 135
6.2 Experimental Setup . 136

6.2.1 RNN Architecture Overview . 136
6.2.2 Decoding in the Hybrid NN/HMM Framework 138

6.3 Study of the Influence of Input Context 139
6.3.1 Including Context with Frame Concatenation 140
6.3.2 Context through the Recurrent Connections 140

6.4 Study of the Influence of Recurrence 142
6.5 Study of the Impact of Depth in BLSTM-RNNs 143

6.5.1 Deep BLSTM-RNNs . 144
6.5.2 Deep vs Wide BLSTM-RNNs 146
6.5.3 Analysis . 148

6.6 Study of the Impact of Dropout . 149
6.6.1 Dropout after the Recurrent Layers 151
6.6.2 Dropout at Different Positions 151
6.6.3 Study of the Effect of Dropout in Complete Systems (with LM) 155

6.7 Study of the Choice of Inputs . 156
6.8 Conclusion . 158

IV COMPARISON AND COMBINATION OF DEEP MLPs
AND RNNs 161

7 Experimental Comparison of Framewise and CTC Training 163
7.1 Introduction . 165
7.2 Experimental Setup . 167

14 Contents

7.3 Relation between CTC and Forward-Backward Training of Hybrid NN/
HMMs . 167
7.3.1 Notations . 167
7.3.2 The Equations of Forward-Backward Training of Hybrid NN/

HMMs . 168
7.3.3 The Equations of CTC Training of RNNs 169
7.3.4 Similarities between CTC and hybrid NN/HMM Training 171

7.4 Topology and Blank . 172
7.5 CTC Training of MLPs . 173
7.6 Framewise vs CTC Training . 174
7.7 Interaction between CTC Training and the Blank Symbol 176

7.7.1 Peaks . 176
7.7.2 Trying to avoid the Peaks of Predictions 179
7.7.3 The advantages of prediction peaks 181

7.8 CTC Training without Blanks . 182
7.9 The Role of the Blank Symbol . 183
7.10 Conclusion . 183

8 Experimental Results, Combinations and Discussion 185
8.1 Introduction . 187
8.2 Summary of Results on Rimes and IAM Databases 188

8.2.1 MLP/HMM Results . 188
8.2.2 RNN/HMM Results . 190
8.2.3 Comparison of MLP/HMM and RNN/HMM Results 191
8.2.4 Combination of the Proposed Systems 193

8.3 The Handwritten Text Recognition tranScriptorium (HTRtS) Challenge 196
8.3.1 Presentation of the HTRtS Evaluation and of the Experimental

Setup . 196
8.3.2 Systems Submitted to the Restricted Track 197
8.3.3 Systems Submitted to the Unrestricted Track 200
8.3.4 Post-Evaluation Improvements 203

8.4 Conclusion . 205

Conclusions and Perspectives 207

List of Publications 213

Appendices 216

A Databases 217
A.1 IAM . 217
A.2 Rimes (ICDAR 2011 setup) . 221
A.3 Bentham (HTRtS 2014 setup) . 225

Contents 15

B Résumé Long 229
B.1 Système de Base . 231
B.2 Systèmes Hybrides Perceptrons Multi-Couches Profonds / MMC 232
B.3 Systèmes Hybrides Réseaux de Neurones Récurrents Profonds / MMC . 234
B.4 Une Comparaison Expérimentale de l’Entrai-nement CTC et au Niveau

Trame . 236
B.5 Combinaisons et Résultats Finaux . 238
B.6 Conclusions et Perspectives . 241

Bibliography 243

List of Tables

3.1 Number of pages, lines, words and characters in each dataset 94
3.2 Software used in this thesis. 96

4.1 Perplexities of Rimes LM with different discounting methods and ngram
orders, on the validation set. 107

4.2 Perplexities of Bentham LMs with different ngram orders and hyphen-
ation, on the validation set. 107

4.3 Context dependency in GMM/HMM (results on lines of IAM validation
set) . 110

4.4 Applying LMs to text lines and paragraphs (results on IAM validation
set) . 110

4.5 Results on Rimes database . 111
4.6 Results on IAM database . 111
4.7 Results on Bentham database . 112

5.1 Character widths, estimated a priori from the images and annotations,
and from the alignments with the GMM/HMM system. 121

5.2 Effect of concatenating several consecutive frames on deep MLP results
(Word Error Rates; Feat./Deep/Xent). 121

5.3 Influence of the size of the sliding window for deep MLPs with pixel
values inputs (Rimes; Pix./Deep/Xent). 123

5.4 MLPs on handcrafted and pixel features. The Frame Error Rates (FERs)
measure the classification error of the MLP alone, while the Word and
Characer Error Rates (WER, CER) are obtained with lexicon and lan-
guage model. (Xent) . 125

5.5 Selected MLP architectures . 128
5.6 Effect of sMBR training. The cross-entropy corresponds to framewise

training, as oposed to sMBR, which is a sequence-discriminative criterion
(Deep/Seq.). 130

5.7 Comparison of WERs (%) obtained with handcrafted features and pixel
values. 130

6.1 Effect of context on BLSTM-RNN performance (Feat./Deep/CTC). . 140
6.2 Effect of recurrence on the character error rate of the RNN alone, with-

out lexicon and language model (RNN-CER%; Deep/CTC). 143
6.3 Effect of depth on the performance of RNNs (CTC). 146
6.4 Comparison of number of parameters for different architectures. 147
6.5 Effect of dropout after the top N LSTM layers (RNN-CER%; Deep/

CTC). 151
6.6 Effect of dropout in complete pipelines (Deep/CTC). 151

18 List of Tables

6.7 Effect of dropout at different positions on Rimes database (RNN-CER%;
Deep/CTC). 152

6.8 Effect of dropout at different positions on IAM database (RNN-CER%;
Deep/CTC). 153

6.9 Effect of dropout at different positions on Bentham database (RNN-
CER%; Deep/ CTC). 153

6.10 Effect of dropout at different positions in complete pipelines (Deep/CTC).155
6.11 Effect of dropout at different combinations of positions in complete

pipelines (Deep/CTC). 157
6.12 Comparison of WERs (%) obtained with handcrafted features and pixel

values. 158

7.1 WER improvements with forward-backward training of neural networks 166
7.2 WER% (CER%) of different standard systems with different topolo-

gies. RNNs are trained with CTC, MLPs with framewise training, and
GMM/HMMs with Viterbi training (IAM Database, Shallow/Feat.). . 173

7.3 CTC training of MLPs. The “HMM” topology has six states per charac-
ter while the “CTC” topology is standard one for CTC, with one output
per character and a blank symbol (IAM Database, Shallow/Feat.). . . 174

7.4 Comparison of WER%/CER% with framewise and CTC training of neu-
ral networks with different output topologies (IAM Database, Shal-
low/Feat.) . 175

7.5 Error rates of neural networks alone without lexicon and language model
with different topologies (labels are HMM states; Shallow/Feat.). . . . 177

8.1 Effect of adding linguistic knowledge in MLP/HMM systems (Deep/Seq.).
. 189

8.2 Effect of adding linguistic knowledge in RNN/HMM systems (Deep/
Drop./ CTC). 191

8.3 Comparison of MLP and RNN optical models with different types of
inputs (Deep). 192

8.4 ROVER and Lattice combination of MLPs and RNNs with features and
pixel inputs on Rimes and IAM (Deep). 194

8.5 Final results on Rimes database . 195
8.6 Final results on IAM database . 195
8.7 MLP results (cross-entropy framewise training). The figures are WERs

(%) (Xent). 198
8.8 Improvement brought by sMBR sequence training, as oposed to the

cross-entropy framewise training (Deep/Seq.). 198
8.9 RNNs on handcrafted and pixel features (Deep/CTC). 198
8.10 Summary of results of restricted systems. 199
8.11 Comparison of combination techniques for the four restricted track sys-

tems. 199
8.12 Competition Results for the Restricted Track. 200
8.13 Data used for optical model training. 201

List of Tables 19

8.14 BLSTM-RNN unrestricted results (RNN-CER% is the Character Error
Rate with RNN alone, while the WER% is after adding the lexicon
and LM ; GW and AL stand for G. Washington and A. Lincoln. “s-”
indicates that only a subset was used) (Deep/Drop.). 202

8.15 Improvements brought by adding more LM data (WER% / CER%; Deep).202
8.16 Competition Results for the Unrestricted Track. 203
8.17 WER% improvements brought by adding even more LM data (Deep). 204
8.18 Results on the evaluation set. 204
8.19 WER% of the refined models (Deep). 205
8.20 Refined results on the evaluation set (Deep) 205

A.1 Documents of the IAM database, in each dataset. The Total column are
accumulated numbers, while the average, min/max and quartiles are
computed per line. The width/char measure is obtained by dividing,
for each line, the width by the number of characters in the annotation,
giving only a rough estimation. 219

A.2 Text of the IAM database. The averages, quartiles, and min/max values
are calculated from occurences of each token, e.g. 75% of the characters
appear at least 3,511 times in the training set. 219

A.3 Selection of published results on IAM database 220
A.4 Documents of the Rimes database, in each dataset. The Total column

are accumulated numbers, while the average, min/max and quartiles are
computed per line. The width/char measure is obtained by dividing, for
each line, the width by the number of characters in the annotation,
giving only a rough estimation. 223

A.5 Text of the Rimes database. The averages, quartiles, and min/max
values are calculated from occurences of each token, e.g. 75% of the
characters appear at least 3,511 times in the training set. 223

A.6 Published results on Rimes database 224
A.7 Documents of the Bentham database, in each dataset. 226
A.8 Text of the Bentham database. 227
A.9 Published results on Bentham database 227

B.1 Comparaison du taux d’erreurs mots (%) obtenus avec des PMCs util-
isant des caractéristiques pré-définies et des intensités de pixels 234

B.2 Comparaison du taux d’erreurs mots (%) obtenus avec des RNRs util-
isant des caractéristiques pré-définies et des intensités de pixels 236

B.3 Résultats sur la base Rimes (taux d’erreur mots - WER% - et caractères
- CER%). 240

B.4 Résultats sur la base IAM (taux d’erreur mots - WER% - et caractères
- CER%). 240

B.5 Résultats sur la base Bentham (taux d’erreur mots - WER% - et carac-
tères - CER%). 241

List of Figures

1 Overview of this thesis in the scope of a handwriting recognition system.
Red boxes are the focus on this work: neural network optical models. . 28

1.1 A digital image of a word at different scales. 35
1.2 The French word “vous” written by different persons, from the Rimes

database. 36
1.3 A similar shape can represent several handwritten characters. 36
1.4 Various images from the Maurdor campaign (Brunessaux et al., 2014). . 38
1.5 Example of skewed text line (Rimes database – left) and slanted hand-

writing (IAM database – right) . 40

2.1 A Hidden Markov Model. 59
2.2 Hidden Markov Model topology for Handwriting Recognition. 61
2.3 Multi-Layer Perceptron. x1, . . . , xN are the inputs, W(i), b(i) are the

weight matrice and bias vector of layer i. 65
2.4 Recurrent Neural Networks, simple form 66
2.5 Neurons for RNNs: (a) Simple Neuron (b) LSTM unit 67
2.6 Example of Convolutional Neural Network. 69
2.7 Multi-Layer Perceptron training by backpropagation of the error. . . . 75
2.8 Backpropagation Through Time. 75
2.9 The Dropout technique. 77
2.10 Unsupervised layer-wise RBM pretraining. 78
2.11 Supervised layer-wise MLP pretraining. 80
2.12 CTC graph. 83

3.1 Examples from Rimes Database. 94
3.2 Examples from IAM Database (the text to copy corresponds to the typed

header paragraph). 95
3.3 Examples from Bentham Database. 95

4.1 Overview of the recognition system. 101
4.2 Optimization of the sliding window parameters (IAM) 104
4.3 Extraction of corresponding handcrafted and pixel features with two

different sliding windows. 105

5.1 Including more context in MLPs. Left: a wider sliding window. Right:
concatenation of successive sliding windows. Blue circles correspond to
the NN inputs. 119

5.2 Statistics of the forced alignments with the GMM/HMM systems. From
top to bottom: boxplot of the character length, character average length
with average duration of each state, histograms of character lengths and
state durations. (Feat.). 120

5.3 Effect of context and depth on MLP performance (Feat./Deep/Xent). 122

22 List of Figures

5.4 MLP input filters (representing the weights between the input and first
layer) with pixel inputs on three databases, after pretraining and after
fine-tuning. (Pix./Deep/Xent) . 126

5.5 Comparison of the effect of width and depth on MLP performance. The
line styles represent the number of hidden units per layer (dots: 256,
dashes: 512, solid: 1,024). The line colors represent different inputs
(black: pixels, colors: several concatenation of features) (Deep/Xent). 127

5.6 WER and CER evolution during sequence-discriminative training (Deep/
Seq.). 129

6.1 Architecture of the BLSTM-RNNs used in this thesis. 137
6.2 HMM and Lexicon for hybrid NN/HMM decoding with CTC-trained

networks. 139
6.3 Context used trough recurrent connections by LSTM-RNNs to predict

“a” in Rimes, “a” in IAM, “v” in Bentham (sensitivity heatmaps, top:
features, bottom: pixels ; Deep/Drop./CTC). 141

6.4 LSTM (L) and feed-forward (F) blocks. 142
6.5 Input sensitivity and character predictions of RNNs with different ar-

chitectures on Rimes database (Pix./Deep/CTC). 144
6.6 Effect of depth on RNN performance (alone and in the complete pipeline;

CTC). 145
6.7 Effect of depth vs width on RNN performance (RNN-CER, CTC). . . 147
6.8 Weights of the first layer of pixel LSTM-RNNs (Pix./Deep/CTC). . . 149
6.9 Weights of the cell input of the first layer of pixel LSTM-RNNs with

different depths. (Pix./Deep/CTC). 150
6.10 Sensitivity maps of LSTM-RNNs of increasing depths (1 to 9; Pix./

Deep/ CTC). 150
6.11 Dropout position in LSTM-RNNs. 152
6.12 Weights of the first layer of pixel LSTM-RNNs with different dropout

strategies on Rimes database (Pix./Deep/CTC). 154

7.1 Comparison of CER% with CTC and framewise training, with and with-
out blank (left: MLP; right: RNN; Shallow/Feat.). 176

7.2 Outputs of different neural networks with different topologies and train-
ing methods. Each plot represents the NN posteriors at different timesteps.
The blank output is represented in gray, and other outputs correspond-
ing to HMM states, in color. 177

7.3 Evolutions of the outputs of an RNN for a given text line during CTC
training. As in Figure 7.2, gray corresponds to the blank output, and
colors to other outputs. 178

7.4 Visualisation of the state posteriors computed with the forward-backward
algorithm during CTC training. 179

7.5 Character durations in decoding when each label is repeated n times
between each blank during training. 180

7.6 Effect of different learning rates on the output of networks trained with
CTC and the blank symbol. 181

List of Figures 23

7.7 Outputs of a NN trained with CTC training without blank (CTC). . . 182

8.1 Influence of the decoding parameters (optical scale, word insertion penalty,
prior scale) on the WER% of hybrid MLP/HMM systems (Deep/Seq.). 189

8.2 Influence of the decoding parameters (optical scale, word insertion penalty,
prior scale) on the WER% of hybrid RNN/HMM systems (Deep/ Drop./
CTC). 191

8.3 Influence of the number of free parameters in MLPs and RNNs. Circles
correspond to handcrafted features, and + to pixels. RNNs are shown
in blue and MLPs in green, each point is one network (Deep). 192

A.1 Examples from IAM Database (the text to copy corresponds to the typed
header paragraph). 218

A.2 Examples from Rimes Database. 222
A.3 Examples from Bentham Database. 226

B.1 Comparaison des taux d’erreur caractères (CER%) avec l’entrainement
CTC et au niveau trame, avec et sans le symbole spécial blank. (à
gauche: PMC; à droite : RNR). 238

Introduction

We live in a digital world, where information is stored, processed, indexed and
searched by computer systems, making its retrieval a cheap and quick task. Hand-
written documents are no exception to the rule. The stakes of recognizing handwritten
documents, and in particular handwritten texts, are manifold, ranging from automatic
cheque or mail processing to archive digitalization and document understanding.

The treatment of handwritten documents raises some issues. The text they contain
is not readily available in a form that could be easily handled by computed. Instead,
it should be extracted from the image resulting from the digitalization of the docu-
ment. Thus, the regions of the image containing handwritten text must be found,
and converted into ASCII text. The latter process is known as offline handwriting
recognition.

This field has enjoyed over sixty years of research. Starting with isolated characters
and digits, the focus shifted to the recognition of words. Recognizing cursive words
is significantly more difficult than characters, mainly for two reasons. First, there are
many more different words in a language than there are characters. Moreover, the seg-
mentation of a handwritten word image into characters is difficult because of the cursive
nature of text, which introduces ambiguities. To a lesser extent, the segmentation of
a line of text into words is also ambiguous, and the current strategy is to recognize
lines of text directly, and use a language model to constrain the transcription, and help
retrieve the correct sequence of words. Progressively, recognition systems evolve to
end-to-end recognizers, that process the whole documents directly, without assuming
that a segmentation into text lines is available.

Far from being solved, this problem still interests researchers. Projects are funded
to improve the performance of recognition systems. Examples include the PACTE
project, which aims at improving the techniques for the recognition and understanding
of documents. One of its goal is to include linguistic knowledge and natural language
processing methods in order to enhance the quality of automatic transcription systems.
The MAURDOR project (Brunessaux et al., 2014) focuses on the processing of het-
erogeneous and complex documents, integrating the localization and logical ordering
of text zones, and the recognition of handwitten and typed texts in three languages:
English, French, and Arabic. Moreover, the state-of-the-art in handwriting recogni-
tion is regularly evaluated by international competitions, such as OpenHaRT (Arabic
texts, Tong et al. (2014)), HTRtS (ancient manuscripts, Sánchez et al. (2014)), or the
evaluations conducted during the MAURDOR project.

One of the most popular approaches nowadays consists in scanning the image with
a sliding window, from which features are extracted. The sequences of such observa-
tions are modeled with character Hidden Markov Models (HMMs). Word models are
obtained by concatenation of character HMMs. The standard model of observations
in HMMs is Gaussian Mixture Models (GMMs). In the nineties, the theory to re-

26 Introduction

place Gaussian mixtures and other generative models by discriminative models, such
as Neural Networks (NNs), was developped (Bourlard & Morgan, 1994). Discriminative
models are interesting because of their ability to separate different HMM states, which
improves the capacity of HMMs to differentiate the correct sequence of characters.

A drawback of HMMs is the local modeling, which fails to capture long term de-
pendencies in the input sequence, that are inherent to the considered signal. Re-
cent improvements in Recurrent Neural Networks (RNNs), a kind of NN suited to se-
quence processing, significantly reduced the error rates. The Long Short-Term Memory
units (LSTM, Gers (2001)), in particular, enable RNNs to learn arbitrarily long de-
pendencies from the input sequence, by controling the flow of information through the
network. Multi-Dimensional LSTM-RNNs (Graves & Schmidhuber, 2008) can process
the whole text line image directly, scanning it along multiple directions, and extracting
features learnt from the image automatically.

The current trend in handwriting recognition is to associate neural networks, es-
pecially LSTM-RNNs, with HMMs to transcribe text lines. NNs are used either to
extract features for Gaussian mixture modeling (Kozielski et al., 2013a), or to pre-
dict HMM states and replace GMM optical models (Doetsch et al., 2014; Pham et al.,
2014). On the other hand, in many machine learning applications, including speech
recognition and computer vision, deep neural networks, consisting of several hidden
layers, produced a significant reduction of error rates.

They were left aside in the past, due to the lack of resources and efficient training
methods. Until 2006, almost only Convolutional Neural Networks had more than one
or two hidden layers, and were successfully applied to computer vision problems, thanks
to their limited number of free parameters. Deep neural networks have now regained
considerable interest in the machine learning community, and present many interesting
aspects, e.g. their ability to learn internal representations of increasing complexity of
their inputs, reducing the need of extracting relevant features from the image before the
recognition. In the last few years, they have become a standard component of speech
recognition models, which are close to those applied to handwriting recognition.

In handwriting recognition, however, deep neural networks are limited to convolu-
tional architectures, such as convolutional neural networks or MDLSTM-RNNs, with
only a few weights and extracted features in bottom layers. Densely connected neural
networks with more than one or two hidden layers are only found in smaller applica-
tions, such as the recognition of isolated characters (Ciresan et al., 2010; Cireşan et al.,
2012) or keyword spotting (Thomas et al., 2013).

Recurrent neural networks, in particular those with Long Short-Term Memory
units, were applied to handwriting recognition in 2007, won international evaluations,
and have become a standard component of every state-of-the-art recognition system.
Multi-Layer Perceptrons, one the other hand, tend to be neglected by the community
in the last few years.

In this thesis, we focus on the hybrid NN/HMM framework, with optical models
based on deep neural networks, for large vocabulary handwritten text line recognition.
This is depicted on Figure 1, where we display a standard recognition system, and
highlight in red boxes the components studied in this thesis. We concentrated on

Introduction 27

neural network optical models, and propose a thorough study of their architecture
and training procedure, but we also varied their inputs and outputs (in light red on
Figure 1). We are interested in answering the following questions:

• Is it still important to design handcrafted features when using deep neural net-
works, or are pixel values sufficient?

• Can deep neural networks give rise to big improvements over neural networks
with one hidden layer for handwriting recognition?

• How (deep) Multi-Layer Perceptrons compare to the very popular Recurrent Neu-
ral Networks, which are now widespread in handwriting recognition and achieve
state-of-the-art performance?

• What are the important characteristics of Recurrent Neural Networks, which
make them so appropriate for handwriting recognition?

• What are the good training strategies for neural networks for handwriting recogni-
tion? Can the Connectionist Temporal Classification (CTC, Graves et al. (2006))
paradigm be applied to other neural networks? What improvements can be ob-
served with a discriminative criterion at the sequence level?

The experiments presented in this thesis were conducted on three public databases,
Rimes, IAM and Bentham, representing two languages and epochs. We considered two
input types: a set of handcrafted features, which have proven good for handwriting
recognition, and the simpler raw pixel intensities.

Our first contribution lies in building deep neural networks for handwritten text
recognition, and showing that they achieve consistent and significant improvements
over shallow networks consisting of one or two hidden layers.

The second contribution of this thesis is the comparison of handcrafted features
and pixel intensities as model inputs in the context of deep neural network optical
models, and the observation that both types of inputs yield similar performance of the
complete systems.

The third contribution is a direct comparison of LSTM-RNNs, which hold the
current state-of-the-art and are omnipresent in handwriting recognition, with MLPs.
We report comparable results with both types of neural networks, showing that RNNs
are not the only model able to achieve good recognition results, in spite of their wide
adoption by the community.

The fourth contribution is a study of the dropout technique applied in Recurrent
Neural Networks. Extending previous works on the subject, we show that the position
at which dropout is applied, relative to the recurrent connections, is important. By
thorough experiments, we found a better application of dropout in BLSTM-RNNs than
those proposed in the literature.

The fifth contribution is a comparison of different training methods for neural net-
works, and in particular the study of the CTC framework for MLPs and RNNs, which
showed that it was particularly suited to RNNs, and the confirmation of the significant

28 Introduction

Image Preprocessing

described in Section 4.2.1

Feature extraction

described in Section 4.2.2

– Pixel values
– Handcrafted features

−→ compared in Sections 5.6, 6.7

Optical Model
Training

Regularization

– Multi-layer Perceptrons (MLPs)

– Recurrent Neural Networks (RNNs)

−→ compared in Section 8.2.3

Image

– Dropout (Section 6.6)

– Cross-Entropy (framewise)

– Connectionist Temporal

– Sequence-discriminative

Classification

training (Section 5.5)

Transcription

Hidden Markov Model (HMM)

– Topology (number of states)

Language

ModelDecoding

−→ Sections 4.5, 7.4, 7.6

described in Section 4.3

−→ compared in Chapter 7

Chapter 5

Chapter 6

−→ results in Chapter 8

described in Section 4.4

Figure 1: Overview of this thesis in the scope of a handwriting recognition system.
Red boxes are the focus on this work: neural network optical models.

Introduction 29

improvements brought by sequence-discriminative training, already observed in speech
recognition.

Finally, we report state-of-the-art results with MLPs, RNNs, and both kinds of
inputs, and the combination of our models outperformed all published results on the
three databases.

This thesis is divided into four parts. We begin in Part I with an overview of the
problem of handwriting recognition, and a literature review of different approaches and
techniques proposed in the last decades. First, in Chapter 1, we present the difficulties
of handwriting recognition, and the usual steps and components of recognition systems,
namely the extraction of the text lines, the image processing to reduce the variability,
the segmentation of text lines into observations, the extraction of relevant features,
the modeling of the observations and of the language. In Chapter 2, we focus on
the components studied in this thesis: hidden Markov models and neural networks.
We present their application to handwriting recognition, in isolation or in association,
along with their training procedures.

In Part II, we present the experimental setup chosen for this thesis. We conducted
our experiments on three public databases, Rimes, IAM, and Bentham. The data, and
the software used are introduced in Chapter 3. More details on the databases and
on published results can be found in Annex A. We explore deep neural networks for
optical modeling in handwriting recognition. The optical model is only a component
of a complete recognition system, which typically also include an image processing and
feature extraction module, and a language model. We decided to fix these components,
and we explain them in Chapter 4. Besides the simple image preprocessing, we present
the handcrafted features and pixel values extracted from sliding windows, and we give
the details about the language models built for each database and about the decoding
method. Finally, we validate our choices by training GMM-HMMs, which will serve as
baselines and bootstrapping systems for the next experiments.

Part III focuses on the recognition of handwritten documents with Hidden Markov
Models and deep neural networks. We study Multi-Layer Perceptrons (MLPs) in Chap-
ter 5 and Recurrent Neural Networks (RNNs) in Chapter 6.

We compare different inputs of the neural networks: handcrafted features and pixel
values, but also how much context should the network consider to make accurate pre-
dictions. We investigate the architectures of the network, especially the number of
hidden layers, but also their size, and the importance of recurrence in RNNs. We ap-
ply training techniques to refine the models, namely a sequence-discriminative training
method which provides improvements for speech recognition, and the dropout tech-
nique, a simple and popular method to regularize the networks. The networks are
evaluated in isolation, to measure their ability to model and classify their inputs, and
in the complete recognition systems described in Part II.

We show that deep neural networks achieve significantly better results than shallow
ones, on all databases and with different inputs. We observe that these improvements
result from a better modeling capacity, rather than from the augmented number of

30 Introduction

free parameters. We also show that with deep neural networks, the performance gap
between raw pixel inputs and handcrafted features is reduced, both proving the capacity
of such models to extract meaningful representations and alleviating the need for the
design and implementation of relevant feature extraction. We report important gains
in performance from sequence discriminative training of MLPs. Moreover, we show
that the dropout technique is very effective in RNNs, and that the choice of positions
to apply it, relative to the recurrent connections, can improve a lot the performance of
the network.

Finally, in Part IV, we focus on how the neural networks are integrated with the
higher level components: the HMMs and language model.

In Chapter 7, we study the impact of the number of HMM states per character
on the performance of the MLPs and RNNs, alone and in the complete systems. In
particular, in the CTC framework, the characters are represented by a single output,
and the network also has a special output to predict no character. We evaluate the
role of this special label, and the situations in which it is useful. Moreover, the CTC
criterion uses a forward-backward procedure to avoid the need of a segmentation of
the input before training, which is reminiscent of the training procedure of HMMs. We
compare framewise and CTC training of MLPs and RNNs, and show that the CTC
paradigm, as defined by Graves et al. (2006), is especially suited to RNNs.

In Chapter 8, we evaluate the importance of the decoding parameters and of the
language model. We also compare the performances of our best systems, MLPs and
RNNs, on simple pixel values and handcrafted features. We combine these models using
two techniques, and show the complementarity of different modelings. We present the
systems we submitted to the HTRtS contest, which aimed at evaluating the quality of
the automatic transcription of ancient manuscripts, written by the philosopher Jeremy
Bentham and his staff in the nineteenth century.

We report comparable results with MLPs and RNNs, and with handcrafted features
and pixels. The different models achieve state-of-the-art performance on Rimes and
IAM databases, and their combination outperformed the best published results.

We conclude this thesis with a summary and a discussion of the presented results
and findings. In this last section, we also propose some perspectives for future research
in the field.

Part I

HANDWRITING RECOGNITION
— OVERVIEW

Chapter 1

Offline Handwriting Recognition –
Overview of the Problem

Contents
1.1 Introduction . 35

1.2 Preliminary Steps to Offline Handwriting Recognition 37

1.3 Reducing Handwriting Variability with Image Processing Tech-
niques . 39

1.3.1 Normalizing Contrast . 39

1.3.2 Normalizing Skew . 40

1.3.3 Normalizing Slant . 41

1.3.4 Normalizing Size . 41

1.4 Extraction of Relevant Features for Handwriting Recognition 42

1.4.1 Text Segmentation for Feature Extraction 42

1.4.2 Features for Handwriting Representation 43

1.5 Modeling Handwriting . 46

1.5.1 Whole-Word Models . 47

1.5.2 Part-Based Methods . 47

1.5.3 Segmentation-Free Approach . 48

1.6 Modeling the Language to Constrain and Improve the Recog-
nition . 49

1.6.1 Vocabulary . 50

1.6.2 Language Modeling . 51

1.6.2.1 Statistical n-gram Language Models 51

1.6.2.2 Neural Network Language Models 52

1.6.3 Open-Vocabulary Approaches . 53

1.7 Measuring the Quality of the Recognition 53

1.8 Conclusion . 54

1.1. Introduction 35

1.1 Introduction

Handwriting recognition is the process of transforming a digital representation of
the physical result of handwriting into a digital text, generally for further treatments,
such as indexing, classification, or translation. One may acquire handwritten text in
different manners. For example, with the advent of tablets, touchscreens or digital
pens, it is now possible to have access to many physical parameters of the writing
process. Therefore, we can know the pen position at every time, and possibly the pen
pressure, inclination, and so on. On the other hand, without such tools, we may only
have the result of handwriting in the form of a scanned document. The handwritten
text must be extracted from the image, using image processing techniques or relevant
feature extraction.

The first case is called online recognition, and the second one offline recognition.
Historically, the two have been separated, and a clear distinction is made is some
surveys (e.g. Plamondon & Srihari (2000)), while others are only focused on one
branch (e.g. Vinciarelli (2002)). While their nature make them suited to different
applications, e.g. touchscreen input for the former, and cheque processing for the
latter, the techniques employed nowadays to perform the recognition tend to be similar.
Namely, they attempt to turn a sequence of feature vectors into a sequence of characters
or words, modeling an input signal at lower levels and the language at higher levels.
In this respect, these methods are also close to those applied in speech recognition.

Offline handwriting recognition is also related to the recognition of printed text
from document images, a problem known as Optical Character Recognition (OCR).
While both recognize text from images, printed text tend to be much more regular
than handwriting, hence generally easier to process. In this thesis, we are concerned
with the offline recognition of handwritten text.

We humans see the image as a whole and make sense of it regardless of its resolution
and size. Computers, on the other hand, do not see the big picture. For them, an
image is merely a matrix of pixels, which are numbers. Figure 1.1 shows an image of
a word from IAM database at different scales. Recognition algorithms must therefore
make sense of a two-dimensional map of numbers, so that the image is interpreted at
a higher level.

Figure 1.1: A digital image of a word at different scales.

36 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

Another difficulty for automatic recognition is that everyone has their own writing
style. Some people write legibly, while some others are very hard to read (medical
doctors are a common example), causing a lot of variability in the observed shapes
of the same word. The tool used to write (e.g. pen, pencil) and the digitalization
procedure also add to the diversity of handwriting. Figure 1.2 shows examples of the
same word, written by different people.

Figure 1.2: The French word “vous” written by different persons, from the Rimes
database.

Character shapes also vary, even when written by the same person. Conversely,
the same shape may also correspond to different characters. The four images on the
left-hand side of Figure 1.3 look like reasonable examples of letter ‘u’. Actually, only
one is (the blue one). They all come from the same word, from the Rimes database,
shown on the right-hand side. The other examples are: ‘n’, ‘en’, and the beginning of
an ‘m’. This shows that the identity of a shape can only be known in the context of
the whole word, and illustrates the difficulty of cutting a word image into character
images without knowing what the word is, known as Sayre’s paradox (Sayre, 1973).

Figure 1.3: A similar shape can represent several handwritten characters.

Handwriting recognition has a long history, and has interested researchers since the
1950s (e.g. Bledsoe & Browning (1959)). The focus was first character recognition,
especially handwritten digits recognition (e.g. for ZIP code recognition). As systems
were improving, the interest shifted to word recognition, and the number of industrial

1.2. Preliminary Steps to Offline Handwriting Recognition 37

applications started to grow in the 1990s. The two main applications were address
recognition for mail delivery (Kimura et al., 1993; Srihari, 2000; El-Yacoubi et al., 2002)
and bank cheque processing (Le Cun et al., 1997; Guillevic & Suen, 1998; Gorski et al.,
1999; Morita et al., 2001; Paquet & Lecourtier, 1993). Nowadays, recognition systems
are applied to less constrained type of documents, involving larger vocabularies, such
as the transcription of handwritten mail (Grosicki et al., 2009), e.g. for subsequent
document classification (Louradour et al., 2012), information extraction (Chatelain
et al., 2006), or the recognition of the text in ancient documents (Romero et al., 2011;
Sánchez et al., 2013) for indexing and easy retrieval (Nion et al., 2013).

In this chapter, we present handwriting recognition through a selection of existing
methods developed over the years to tackle this problem. Handwriting recognition con-
sists of several steps, from the preparation of the image to the delivery of the recognized
character or word sequences. Section 1.2 gives an overview of the potential preliminary
steps required to obtain suitable inputs for the recognition systems. Generally, those
are images of word or text lines, which must sometimes be extracted from document
images.

Image processing techniques attempt to reduce the variability of writing style. Sev-
eral examples are presented in Section 1.3, which normalize the image quality, the size
of the writing, as well as a few common variations, such as slanted handwriting.

The extraction of relevant features from the image also eliminates some of the
diversity, and aims at producing pertinent values which represent the problem in a
data space where it is easier to solve. Examples of features for handwriting recognition,
along with their extraction methods, are presented in Section 1.4.

Section 1.5 focuses on the models of handwriting, and how these models transform
their inputs to produce characters or words. We will briefly overview three types of
methods: namely whole word models, systems based on heuristics and explicit segmen-
tation of the image, and segmentation-free approaches.

Finally, handwriting is a form of language representation. Usually, the characters
to recognize are not random sequences, but existing words. Similarly, sequences of
words normally convey a meaning, and form sentences that are syntactically, gram-
matically, and semantically coherent. Techniques to incorporate these constraints into
the recognition process, adding linguistic knowledge to the models, are introduced in
Section 1.6.

The interested reader can find surveys of offline handwriting recognition in (Steinherz
et al., 1999; Plamondon & Srihari, 2000; Vinciarelli, 2002; Koerich et al., 2003).

1.2 Preliminary Steps to Offline Handwriting Recog-

nition

Handwriting recognition systems operate on images of characters, words, or text
lines. In practical applications, a digitalized document does not come in the desired
form. The regions of interest must therefore be first extracted before being processed.

38 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

In some situations, e.g. very structured documents such as forms, the operation is
trivial. Prior knowledge about the document structure can help to reliably retrieve
text zones, for example in cheque and mail processing, or when a tabular structure is
known.

Figure 1.4: Various images from the Maurdor campaign (Brunessaux et al., 2014).

The recent Maurdor campaign (Brunessaux et al., 2014) aimed at evaluating a com-
plete processing pipeline for heterogeneous document processing. Figure 1.4 shows the
kind of documents of the database, which are representative of real-world applications,
and illustrates the need of specialized methods for the extraction of handwritten parts
before recognition.

First, the text in the document should be localized, and possibly grouped into text
zones. For example, for mailroom applications, it is interesting to isolate the sender and
recipient address, the core of the letter and the signature. In free forms, handwritten
text zones might be detected, and separated from printed zones. When documents
contain graphical elements, such as tables, diagrams, images, these must be discarded.
This problem is known as text / non-text classification. The remaining zones of text
should be organized in a meaningful way (e.g. one zone for each cell in a table, cf (Mao
et al., 2003) for a survey of document structure analysis).

Sometimes, one should prepare the documents beforehand. The digitalization pro-
cess may introduce noise in the image. The resolution can be an important aspect of
the image (cf Figure 1.1), and may need to be normalized. Other examples of relevant
operations include the correction of the document orientation (Hull, 1998) or the re-
moval of line rulings (e.g. in Lopresti & Kavallieratou (2010); Shi et al. (2010)). When
the language of the document is not known in advance, some methods can be applied

1.3. Reducing Handwriting Variability with Image Processing Techniques 39

at the image level to determine the language, so as to pass the image to a specific
recognition system (Ghosh et al., 2010).

Next, we should isolate text lines. This may be a difficult task, as shown by the orga-
nization of contests (Gatos et al., 2011), affected for example by the presence of accents,
diacritics, or non-horizontal lines. Successive lines might also overlap, descenders and
ascenders from different lines may touch one another, compromising simple methods
based on projection profiles or connected components. Comprehensive surveys of text
line segmentation for different applications are presented in (Likforman-Sulem et al.,
2007; Louloudis et al., 2009).

As explained before, the segmentation of an image of cursive text into images of
character is not an easy task. Yet, it is often more feasible to split the text lines
into word images. In simple cases, this segmentation involves a connected component
analysis or vertical projection profile. The result is obtained by deciding whether
distances, between components, or between non-white columns of pixels, is indicative
of a word separation (Louloudis et al., 2009). Word segmentation may be necessary,
e.g. when the system models words directly, or when the feature extraction requires
it. Moreover, one may want to keep several segmentation hypotheses, leaving the final
decision to subsequent modules, as it is for example done in (Knerr et al., 1998; Menasri
et al., 2012).

In this thesis, we focus on the recognition system, and thus assume that a reliable
line segmentation is available, which provides either images of isolated lines or their
bounding box coordinates in a document image.

1.3 Reducing Handwriting Variability with Image

Processing Techniques

1.3.1 Normalizing Contrast

As we can see on Figure 1.2, in some images, the writing is darker, and it is fainter
in others, either because of the pen or the digitalization. The background is also
sometimes not plain white. Assuming that the light (white) pixels correspond to back-
ground and dark ones to foreground, i.e. writing, the dissimilarities across images can
be reduced by contrast enhancement techniques.

Binarization is the crisper approach, mapping the range of pixel values from [0, 255]
(0 is black) to {0, 1}. In its simplest form it consists in setting a threshold value for
pixel intensities, and set all values above it to 1, and those below to 0. Ostu adaptive
thresholding (Otsu, 1979) avoids the choice of an arbitrary threshold. Instead, it
considers the histogram of pixel values, and assumes that two modes are present:
one for dark pixels (writing) and one for light ones (background). The thresholding
value is automatically adjusted for every image to best separate the two modes. Local
binarization methods are even finer, and examine local neighborhoods rather than

40 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

whole images (Sauvola & Pietikäinen, 2000; Gatos et al., 2006; Wolf et al., 2002). This
kind of technique is especially suited to old or degraded documents.

Alternative and softer methods than binarization leave the image in the gray-level
space. For example, Roeder (2009); Pesch et al. (2012) assume that the number of
background pixels is much larger than the number of foreground ones. From the image
histogram, they compute a threshold for the 5% darkest pixels, and map to 0 the values
below it. Similarly, they find a threshold to map the 70% lightest pixels to white. A
linear mapping is applied between the two thresholds. Espana-Boquera et al. (2011)
perform this task with a neural network, trained to predict the pixel intensity in the
clean image given the original one, using a local neighborhood.

1.3.2 Normalizing Skew

Figure 1.5: Example of skewed text line (Rimes database – left) and slanted handwrit-
ing (IAM database – right)

Text lines are generally not straight lines. Especially in free handwriting, it demands
application and rigour to write on an (imaginary) horizontal line. An example of skewed
line is shown on the left-hand side of Figure 1.5, from Rimes database. The writing
goes down, and the bounding box of a line also includes part of the surrounding lines.
Recognition systems must follow the text line, which is easier when the line is really
horizontal.

Some methods estimate a global skew angle from the whole line image, and are
generally based on the estimation of the baseline. Senior & Robinson (1998) com-
pute the horizontal projection profile, heuristically remove the pixels corresponding to
descenders and fit a line into the lower contour pixels. Vinciarelli & Luettin (2001)
propose a similar method but they find the core region of the text with adaptive Otsu
thresholding on the projection profile. Other methods for global skew correction are
derived from algorithms applied to the whole document, such as (Bloomberg et al.,
1995). A survey can be found in (Hull, 1998).

Some methods cope with more difficult situations. The text is often written on a
curve rather than on an horizontal or sloped line. For example, in (Toselli et al., 2004;
Vinciarelli et al., 2004; Pesch et al., 2012), text line images are split into segments
to which line fitting methods such as those presented above are applied. In (Morillot
et al., 2013b), a sliding window is scanned through the image, and angles are calculated,
also with projection based methods, without requiring to explicitly split the image.
Therefore, they propose a finer correction which better handles the fluctuations. Other

1.3. Reducing Handwriting Variability with Image Processing Techniques 41

methods are based on run-length analysis (Shi & Govindaraju, 2003), or even neural
networks (Espana-Boquera et al., 2011).

1.3.3 Normalizing Slant

The writing of some people tends to be inclined. An example of such slanted writing
is shown on Figure 1.5. Slant correction methods roughly consists in finding the angle
between the vertical axis and the strokes that should be vertical, which are mainly
found in ascenders and descenders, and in applying a shear transformation to correct
that angle. Bozinovic & Srihari (1989) first remove lines of pixels with long horizontal
runs, and small horizontal regions between the removed lines. The remaining regions
are horizontally divided in two. The slant angle is the average of the angles defined by
the connection of the centers of gravity of each region. A similar method is presented
in (Papandreou & Gatos, 2012).

Other works propose histogram-based methods. For example, Vinciarelli & Luettin
(2001) compute the vertical pixel density for each slant angle in a given interval. The
method require shearing the image for each considered angle, and the retained slant
angle maximizes a measure of verticality. Pastor et al. (2004) state that images without
slant yield projection profiles with maximum variance. They also shear the image with
different angles, and the final one is the weighted average of those close to the maximal
variance of vertical projection profiles. Buse et al. (1997) propose two methods. The
first one consists in minimizing the entropy of the vertical projection profile. The
second one uses the frequency domain to compute a weighted average of possible slant
angles. Kozielski et al. (2013a) take advantage of several methods by selecting the
median angle computed with three different projection-based algorithms.

Other approaches consider close to vertical strokes, and infer the angles from the 8-
directional chain code of the thinned image (Kimura et al., 1993; Kim & Govindaraju,
1997; You & Kim, 2002) or from the contours (Marti & Bunke, 2001). Finally, as for
skew, the slant angle can vary inside a word. Local approaches are required to achieve
a finer correction. For example, Uchida et al. (2001) apply a Dynamic Programming
(DP) algorithm to optimize a sequence of angles. They optimize a criterion which takes
into account a confidence of the local angle – the height of black pixel components in
a window slanted at different angle – and the smoothness of the sequence of angles. In
(Espana-Boquera et al., 2011), the local sequence of angles is also a DP optimization
of angles estimated with a neural network.

1.3.4 Normalizing Size

Writing size is also an important source of diversity across writers and documents.
It includes the general area occupied by a word, as well as the size of some components
(such as ascenders and descenders), the thickness of the stoke, and the tightness of
writing. For height, rescaling all images to a common value is the simplest solution.
However, the presence of ascenders/descenders will affect the size and the position of
the core region. The size of ascenders and descenders can also be very different from
a writer to another. Vinciarelli & Luettin (2001); Toselli et al. (2004); Pesch et al.

42 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

(2012) first find the regions for ascenders, descenders and core part, and scale each
of them to a fixed height for a finer normalization. This method requires finding the
baselines to determinate the regions, which is often already done for skew correction,
using projection profiles (Bozinovic & Srihari, 1989; Vinciarelli & Luettin, 2001) or
line fitting to the upper and lower contours (Toselli et al., 2004; Pesch et al., 2012).
Espana-Boquera et al. (2011) find the zones locally by classifying pixels to belong to
region extrema using a neural network. Romero et al. (2006) propose a methodology
to determine to which height the images should be normalized. Finally, Kozielski et al.
(2012) adopt a local approach based on a sliding window. The first and second order
moments are computed, to reposition the window at the center of gravity, and rescale
the writing so that each window have the same second order moments.

Differences in pens, or in the pressure applied to them during writing provoke stroke
thickness variations. Among the different preprocessing operations presented in this
section, the normalization of stroke width is the least used. The two main approaches
consist in computing the skeleton of the black pixel components (e.g. in (Senior &
Robinson, 1998)), in order to get a constant stroke width of 1px, or in applying mor-
phological operations (erosion or dilatation) to yield a constant width (e.g. in Kozielski
et al. (2012)). The interested reader can find a survey of thinning methods in (Lam
et al., 1992).

1.4 Extraction of Relevant Features for Handwrit-

ing Recognition

Feature extraction is a next step where task-specific knowledge can be put in the
system, and where unnecessary information can be discarded. In that sense, it com-
plements pre-processing.

Ideally, the features should be representative of the problem, i.e. able to capture
the important characteristics of handwriting, and discriminant, that is, simplify the
problem such that different characters are farther in feature space than in original
space.

Unlike speech recognition, where popular features have strong theoretical founda-
tions in physiology or signal processing, the majority of features proposed for hand-
writing recognition are heuristic ones, handcrafted by researchers. However some of
them (e.g. Gabor filters (Buse et al., 1997) or presence of ascenders/descenders (Côté
et al., 1998)) can be related to the visual perception of humans.

1.4.1 Text Segmentation for Feature Extraction

When the system does not directly model words – in which case the features can be
extracted from the whole word image – but characters, one should segment the image.
As pointed out earlier, character segmentation is not an easy task for cursive text.

There are mainly two approaches for segmentation, both considering smaller regions
of the image, corresponding to at most one character, and letting the recognition system

1.4. Extraction of Relevant Features for Handwriting Recognition 43

merge sub-parts into characters. More details about the two methods will be presented
in Section 1.5. Basically, the first one consists in heuristically segmenting the ink
into small chunks, at positions which are likely to be connections between characters.
Features are extracted from the smaller images.

The second method does not make any assumptions or use any heuristic. It con-
sists in scanning a sliding window through the image, and compute the features in
each extracted frame. The main parameters of a sliding window are its width, which
defines the amount of context considered at each position, and the overlap between
two consecutive windows, or equivalently the step size to shift the window, controlling
the number of observations extracted from a given image. Among proposed variations
of the sliding windows, Doetsch et al. (2012) adjust the vertical position so that the
center of the window coincide with the center of gravity of the foreground pixels at
this position (Kozielski et al. (2012) shift the image with first-order moments), and Al-
Hajj Mohamad et al. (2009) scan the image with windows slanted at different angles
to account for slanted handwriting.

Finally, some features are sometimes extracted from different (horizontal or vertical)
sub-regions of these images or sub-images. For example, in (Bianne-Bernard, 2011),
there is one feature for each column of pixels in the sliding window, and some features
computed in different horizontal regions (ascenders, core, descenders – found with the
method of Vinciarelli & Luettin (2001)). Espana-Boquera et al. (2011) define 20 square
cells organized vertically in each window and extract three features from each of them.

1.4.2 Features for Handwriting Representation

Features may be very simple (such as pixel intensities) or a higher-level representation
of the image. Different complexities involve different amount of computation and image
processing effort to obtain them. In this section, we present a selection of features
used by handwriting recognition systems, organized by the level of abstraction from
the image, starting from low-level features, close to the pixels values, to higher-level
processing involving gradient computations, or simple shape detection. Finally, we
present automatic feature extraction based on machine learning algorithms.

Feature transforms are sometimes applied. Their aim may be to decorrelate or
reduce the dimensions of feature vectors, or to increase their discriminating power.
Popular methods include PCA (e.g. in (Kozielski et al., 2012)), Linear Discriminant
Analysis (LDA, e.g. in (Natarajan et al., 2008)), or Region-Dependent Transform
(RDT, e.g. in (Chen et al., 2012)).

Pixels

In some situations, using the pixel intensities may be sufficient. For example,
in (Kozielski et al., 2012, 2013a), a lot of effort is put on the image pre-processing,
and even a simple recognition system yields good results with a Principal Components
Analysis (PCA) to reduce and decorrelate the pixel dimensions, and only a few ad-
ditional features. It may also be the case when the recognition system is powerful
enough, e.g. in (Graves & Schmidhuber, 2009), or even (Bluche et al., 2014a), where
no pre-processing is done.

44 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

Low-level pixel features

Simple features can be derived from the image easily by mere counting or averaging
operations. Examples of such features are:

• count of black pixels (e.g. in (Marti & Bunke, 2000; Bertolami & Bunke, 2008))

• pixels density (proportion of black pixels, or average gray-level e.g. in (Knerr
et al., 1998; Toselli et al., 2010; Bianne et al., 2011; Espana-Boquera et al., 2011))

• run-length analysis: count of consecutive black pixels in rows or columns (e.g. in
(Favata & Srikantan, 1996; Knerr et al., 1998; Chen et al., 2012))

• number of transitions between black and white pixels in different regions (e.g.
in (Marti & Bunke, 2000; Bertolami & Bunke, 2008; Morillot et al., 2013b)) or
along the median line (Mohamed & Gader, 1996)

• Position or relative position of the center of gravity (e.g. in (Knerr et al., 1998;
Bianne et al., 2011; Morillot et al., 2013b))

• Profile of the foreground pixels (left, top, right, and/or bottom) (e.g. in (Knerr
et al., 1998)), or position of the contour (e.g. in (Marti & Bunke, 2000))

• Projection-profile based measures, such as percentiles of the cumulated number
of black pixels in the vertical direction (Natarajan et al., 2001; Cao et al.)

• Second-order moments (e.g. in (Marti & Bunke, 2000; Kozielski et al., 2012))

When the image is not the result of a sliding window extraction, the size (height,
width) or aspect ratio may be an interesting information, e.g. in (Kim & Govindaraju,
1997), or even the position of the sub-image with respect to the text baseline or the
original image, e.g. in (Knerr et al., 1998).

High-level features

More sophisticated features, giving a higher representation of the shape, may be
computed with simple operations on images. For example, an approximation of the
derivative of the pixel intensities in each dimension (e.g. with Sobel filters) provides
an information about the orientation of the edges, as well as their position (which
corresponds to abrupt changes in intensity).

Derivatives of pixel intensities are used for example in (Natarajan et al., 2001;
Toselli et al., 2010; Espana-Boquera et al., 2011; Chen et al., 2012). The orientation of
contours are either estimated from the gradient (Marti & Bunke, 2000) or from chain
coding (Kim & Govindaraju, 1997). Histograms of gradients (HoG) pool the different
angles in discrete bins, locally or in the whole image. These are popular features in
computer vision in general, and may be helpful for handwriting recognition too (Bianne-
Bernard, 2011; Morillot et al., 2013b). Other traditional features for computer vision
are also utilized, such as Speeded Up Robust Features (SURF, (Wang et al., 2012)),
or Scale-Invariant Feature Transform (SIFT, (Rothacker et al., 2012)).

1.4. Extraction of Relevant Features for Handwriting Recognition 45

Buse et al. (1997) apply n Gabor filters to images and compute features for each
connected component in the binarized result images (such as orientation, distance and
overlap between components, area and centroid of the components). Gabor filters are
also integrated in the feature calculation of Cao et al.. Natarajan et al. (2001) perform
a linear regression of the black pixels of some regions, to calculate the angle of the
obtained line, as well as the correlation of the pixels to it.

One may also look for different local configurations of pixels (El-Hajj et al., 2005;
Bianne et al., 2011), which could carry more complicated information that mere orien-
tation of edges. In their Gradient-Structural-Concavity feature set, Favata & Srikantan
(1996) also count the number of local patterns of pixel organization.

A way of taking into account more context, or capture the dynamics of features,
is to add their derivative, either estimated by the difference between the current value
and that of the previous window (Dreuw et al., 2011b):

∆tx = xt − xt−1

or with a regression (Bianne-Bernard, 2011):

∆tx =
∑K

i=1 i× (xt−i − xt−i)
2

∑K
i=1 i2

Shape features

To capture a more global view of the shapes in the image, one can also look for
common structural elements of handwriting, such as loops (Knerr et al., 1998; Guillevic
& Suen, 1998), T-crossings and other junctions (Senior & Robinson, 1998), check the
presence of ascenders and descenders (Leroux et al., 1991; Madhvanath & Govindaraju,
1996; Guillevic & Suen, 1998), or combine these observations to extract anchor points
or key letter (e.g. in (Côté et al., 1998)).

Learning Features

Finally, automatically learning the features from the image, with machine learning
techniques, prevents the designer of the system from making assumptions about what
is relevant in the image and what is not. Feature learning methods belong to two
approaches: unsupervised learning, where the only objective is to map the image onto
a compact feature vector which accurately represent the image, and supervised learning,
where the obtained representation is for example the by-product of the discriminative
task of classifying the shape.

In unsupervised methods, the parameters of a model are optimized so that the im-
age can accurately be restored after some transformation. For example, one may build
a neural network with one or more hidden layers, and adjust the connection weights
to minimize the mean square error between the output and the original image. This
model is called Auto-Encoder (AE) (Cottrell & Munro, 1988), and can be interpreted
as an encoder of the image into a representation made of the activations of a hidden

46 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

layer, and a decoder from that representation to the restoration of the image. Only
the encoder part is kept to extract the features (Hammerla et al., 2010). Variations of
this method are Sparse AEs (Poultney et al., 2006), Contractive Auto-Encoders (Rifai
et al., 2011a,b), Denoising AEs (Vincent et al., 2008).

Other methods include Restricted Boltzmann Machines (a bipartite undirected
probabilistic graphical model with observed – pixels – and latent – features – vari-
ables, each set being easily inferred from the other), or Sparse Coding Methods, which
iteratively build a dictionary of base images and finds the optimal sparse decomposition
of the input image into elements of it (Olshausen et al., 1996).

In these methods, the features are a compact representation of the image, carrying
enough of the information, so that the image can be reconstructed from it.

Alternative techniques are based on supervised learning methods. A model, e.g.
a neural network, is trained to predict shape classes such as characters, HMM states, or
prototype class from clustering. Intermediate variables, e.g. the activations of a hidden
layer, are supposed to be optimized to map the input features into a space where the
classification is easier: they are automatically tuned to discriminate between different
shapes.

For example, Kozielski et al. (2013a) extract the activations of recurrent layers of
a Recurrent Neural Network, trained to predict HMM states. One can also take the
outputs of the network (posterior features). In (Knerr et al., 1998), it corresponds to
predictions of the image belonging to a given cluster of shapes. Dreuw et al. (2011a)
take the log-PCA reduction of HMM predictions made by a multi-layer perceptron. In
(Bluche et al., 2013a), we built a similar feature extractor with a convolutional neural
network.

1.5 Modeling Handwriting

In this section, we focus on the modeling of handwriting, i.e. the transformation of
feature vectors into digital text. We call this module optical model, similarly as the
acoustic model in speech recognition, as opposed to the language model (described in
the next section), which puts some constraints on the handwriting recognition. The
choice of optical model is related to the previous steps, especially the features and the
segmentation of the input. Therefore, we divided the existing approaches in three broad
categories. First, we will present systems that directly model whole words. Then, we
describe methods applied to images segmented in sub-characters. Finally, we introduce
some segmentation-free approaches.

The last kind is the most popular nowadays, in particular the association of a sliding
window feature extraction with hidden Markov models or using neural networks. This
is also the approach chosen in this thesis, and more details and related approaches will
be given in the next chapter.

1.5. Modeling Handwriting 47

1.5.1 Whole-Word Models

In this first class of methods, the goal is to recognize a word directly as a whole,
without relying on a segmentation or on an explicit representation of the parts. Often,
a simplified representation of the word shape is extracted from the images and matched
against a lexicon, for example with simplified upper and lower profiles (Parisse, 1996),
or with holistic features such as ascenders, descenders, loops and so on (Madhvanath &
Govindaraju, 1996; Madhvanath & Krpasundar, 1997; Guillevic & Suen, 1998). Côté
et al. (1998) feed holistic features to a three-level network. The feature level is con-
nected to a character level, itself connected to a word level. The intermediate character
level allows an iterative bottom-up and top-down approach to find the features in the
image which confirm the recognition of a word.

The disadvantage of whole word modeling is the inherent limitation of the vocabulary
size. The number of models grows linearly with the number of words. Moreover, for
methods based on a matching to a prototype, a new prototype must be created with
every added word. Classifiers must be retrained. The method of Côté et al. (1998),
with the intermediate character level, and hand-wired connections, could scale well
with lexicon size, but the holistic approach might show its limitations with many
different words with a similar shape. Most of these methods are applied to legal
amount recognition in bank cheque processing, were the vocabulary does not exceed
40-50 words.

1.5.2 Part-Based Methods

In part-based methods, the image is divided into sub-regions corresponding to at
most one character. We have already stressed the difficulty to segment characters from
cursive words, without knowing the word’s identity. Thus these systems often per-
form an over-segmentation of the image, or consider several segmentation alternatives.
The goal is to merge different part to get complete characters, or to find the correct
segmentation into characters among the different hypotheses.

The first step consists in finding possible segmentations from the image. It is of-
ten derived from heuristics about character connections. For example, Edelman et al.
(1990) extract control points from vertical and horizontal extrema of the contour to
extract simple strokes. Chen et al. (1995) apply mathematical morphology operators
to isolate regularities, which are potential segmentation points. Then, a shortest path
computation between the leftmost and rightmost segments allow to select the segmen-
tation points among candidates, and heuristics are applied to split, merge and order
segments. In (Baret, 1990; Knerr et al., 1998), the segmentation also uses regularity
and singularity principles. In (Kim & Govindaraju, 1997), the segmentation process
tries to find ligatures between characters from the contour, either by comparing with
the average stroke width or by looking at concavity and convexity features. Morita
et al. (2001) look at the local minima of the upper contour. They shift the segmenta-
tion point when a loop or an unacceptable width is found. A similar method can be

48 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

found in (El-Yacoubi et al., 1999). Tay et al. (2001) cut the image horizontally into
slices of width chosen according to the height of core region of the word. The width
is adjusted so that the number of black pixels traversed by the cut is locally minimal.
In (Favata & Srikantan, 1996), several horizontal segmentation points are found with
different algorithms. Bengio et al. (1995) combine online information (such as the pen
velocity) and offline information to generate segmentation hypotheses, and use heuris-
tics to limit the number of merges in the segmentation graph. A survey of character
segmentation techniques was proposed by Casey & Lecolinet (1996).

For the actual recognition, we can differentiate the combination approach and the
grapheme approach. In the combination approach, adjacent segments are merged to
produce different character segmentation hypotheses, generally represented as a di-
rected graph. In (Edelman et al., 1990) the stroke are recognized by prototype align-
ment, and characters are hypothesized from combinations of strokes. The word is found
with a best-first search. Kim & Govindaraju (1997) represent characters by different
code words obtained through a k-means clustering, and compute the distance from
merged segments features to these code words. The character can also be predicted
with k-nearest neighbors (Favata & Srikantan, 1996), or neural networks (Bengio et al.,
1995; Tay et al., 2001). The segmentation graph is then transformed into a prediction
graph, in which the best path corresponds to the word recognition. Lexical constraints
may be taken into account (e.g. in (Favata & Srikantan, 1996)). In (Tay et al., 2001),
the character predictions are used as emission probabilities in a hidden Markov model,
which also serves to train the neural network at the word level.

In the grapheme approach, the part of characters (the graphemes) are directly
modeled by the system, and a character is defined as a sequence of such units. Generally
the characters are modeled by Hidden Markov Models (HMMs). El-Yacoubi et al.
(1999); Morita et al. (2001) extract simple features and use discrete HMMs. In (Knerr
et al., 1998), the graphemes in the training set are clustered into 100 classes, and a
neural network is trained to predict the grapheme class. The predictions are fed to
the HMM. Chen et al. (1995) build a continuous HMM with Gaussian mixture models
emission probabilities. To cope with possible under-segmentations (i.e. a grapheme
corresponds to more than one character), some HMMs include a skip transition, e.g.
in (Knerr et al., 1998; El-Yacoubi et al., 1999).

1.5.3 Segmentation-Free Approach

In the segmentation-free approach, the recognition is accomplished without an ex-
plicit segmentation of the image, thus without relying on heuristics to find character
boundaries, and limiting the risk of under-segmentation. This category of approaches
is the most popular nowadays, receiving a lot of research interest, and achieving the
best performance on standard benchmarks. In this section, we only present a brief
overview of this kind of methods. They are mainly based on hidden Markov mod-
els and neural networks, which is the topic of the next chapter. More details on the
modeling techniques will be presented there.

1.6. Modeling the Language to Constrain and Improve the Recognition 49

The first strategy consists in extracting a sequence of feature vectors with a sliding
window (Kaltenmeier et al., 1993). The main parameters of the window are its width
and shift, defining respectively the amount of context included in the feature vector and
the overlap between two observations. Hidden Markov models are especially suited to
transform the sequence of feature vectors into a sequence of characters. Each character
is modeled by an HMM with several states. An emission model defines the probability
of a state generating an observation, i.e. a feature vector. This probability model may
be discrete (e.g. in (Kaltenmeier et al., 1993)), continuous (usually a Gaussian mixture
model, e.g. in (Marti & Bunke, 2001)), or even estimated with more complex systems,
such as neural networks (Bourlard & Morgan, 1994). A survey of Markov models for
handwriting recognition can be found in (Plötz & Fink, 2009).

In the second strategy, the system directly models the two-dimensional image in-
put. For example, Chevalier et al. (2005); Lemaıtre et al. (2008) use a two-dimensional
HMM with Gaussian modeling of spectral features. Wang et al. (2012) match keypoints
(SURF) of an image to reference keypoints of each character class. The final sequence
of characters is found with a dynamic programming search from the classification of
keypoints. Other notable techniques are based on neural networks. More particularly
convolutional neural networks, in which the two dimensional structure of the image
is kept in several layers. In this structure, local receptors are defined and repeated
at each position in the image. The outputs of each receptor can be arranged in two-
dimensional maps, allowing to apply the concept again, and iteratively extract more
complex representations. Subsampling operations, such as max pooling, reduce the size
of the maps. At the end, a classification is performed at each horizontal position to
provide character sequence hypotheses. This concept was for example applied in (Ben-
gio et al., 1995; LeCun et al., 1998), and used in the very successful Multi-Dimensional
Recurrent Neural Networks (Graves & Schmidhuber, 2009).

In the models presented in this section, the input is not segmented. The segmen-
tation of the image into characters is either performed after the recognition (e.g. in
(Wang et al., 2012)), or a by-product of the recognition. For example, word or sen-
tence recognition is achieved by concatenation of character models with HMMs, and
the recognition consists in finding the most likely sequence of states, from which the
character boundaries can usually be trivially inferred. To some extent, convolutional
neural networks also allow to retrieve the general position of a character in the original
image. Some systems, such as RNNs, model the sequence directly, and the segmenta-
tion might not be easily recovered.

1.6 Modeling the Language to Constrain and Im-

prove the Recognition

Not any sequence of characters makes a syntactically or semantically correct sentence
of existing words. Actually, the total number of possible character sequences is far
larger than the space of acceptable word sequences. As we have seen in the previous

50 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

section, many recognition processes involve a search. Knowing that we deal with
language allows us to constrain the search space, in order to get meaningful outputs.

In some applications, such as the recognition of reference/client code or phone
number (e.g. in (Kermorvant et al., 2009)), a simple grammar, a regular expression
or a graph representing it may be sufficient. For natural, unconstrained text there are
mainly two aspects: how to select a vocabulary, i.e. a list of acceptable words, and how
to build a Language Model (LM) to force the output sequence of words to be correct.

1.6.1 Vocabulary

When the system models words directly, the vocabulary is already embedded in the
recognition engine, and limited to the set of words modeled, which is usually relatively
small. In other cases, a vocabulary constrains the sequences of characters to form
words from a predefined set. It helps alleviate ambiguities arising in the recognition
procedure, and limits the size of the search space.

However, the content of the vocabulary also defines the recognizable words. Thus
its content is crucial: any word not in the vocabulary cannot be recognized. Depending
on the application, the size of the vocabulary may vary from tens of words, e.g. for
cheque processing, to millions for unconstrained text recognition.

As the vocabulary size grows, so does the search space. Moreover, there are more
words close to one another. On the other hand, the chance to encounter an Out-of-
Vocabulary word (OOV) decreases. As a consequence, the choice of a vocabulary is
usually a tradeoff between size and coverage. In practical situations, for example for
unconstrained text transcription, coverage might be hard to estimate precisely.

In the experiments presented in this thesis, we focused on public databases with
known ground-truth, hence the coverage is measured in terms of OOV rate, i.e. the
proportion of words in the test dataset that are not in the vocabulary. The OOV rate
is a lower bound on the error rate.

The vocabulary puts constraints on the recognition, and it can be organized in
intelligent ways for an efficient retrieval of the recognized word. The simplest approach
consists in computing a score for each word of the vocabulary independently, and return
the word with the highest score. This is inefficient, since the complexity grows linearly
with the vocabulary size. Moreover, it does not take advantage of the fact that many
words may share letters at the same position.

In the prefix tree approach, the vocabulary is organized as a tree, which root cor-
responds to the beginning of a word. Each branch is associated with a character, and
a terminal nodes contains the word made of the letters along the path. Therefore, the
common prefix between several words will only be examined once. Moreover, the tree
structure allows to apply conventional (and efficient) search algorithms.

A review of large vocabulary reduction and organization techniques for handwritten
word recognition was proposed by Koerich et al. (2003).

Finite-State Transducers (FSTs) (Mohri, 1997) are another interesting representa-
tion. FSTs are directed graphs with a set of states, transitions, initial and final states.

1.6. Modeling the Language to Constrain and Improve the Recognition 51

The transitions from one state to another are labeled with an input symbol from an
input alphabet, and an output symbol from an output alphabet. When provided with a
sequence of input symbols, the FST follows the successive transitions for each symbol,
and emits the corresponding output symbols. A valid sequence allows to reach a final
state with such a series of transitions.

In the FST representation of a vocabulary (Mohri, 1996), the input alphabet may
consist of the different characters modeled, and the output alphabet to the vocabu-
lary. This representation is interesting, because FST operations, such as composition,
determinization, or minimization, permit the integration of the language model (cf.
next section) in the search graph, while keeping a compact structure similar to the
prefix tree. FST representations of linguistic knowledge are popular in speech recogni-
tion (Mohri et al., 2002), and are applied to handwriting recognition (e.g. in (Toselli
et al., 2004)) and in several recognition toolkits such as Kaldi (Povey et al., 2011) or
RWTH-OCR (Dreuw, 2011).

1.6.2 Language Modeling

Even when the system outputs tokens from a vocabulary, not all sequences of words
are valid, i.e. grammatically or semantically correct. Checking the grammatical valid-
ity of a sentence may not be easy, but many techniques are developed in the field of
Natural Language Processing (NLP). Simple parsing with a set of grammar rules could
allow to discard some word sequence hypotheses. For example, Zimmermann et al.
(2006) rescore a list of sentence hypotheses with a probabilistic context-free grammar.

More generally, language modeling for handwriting recognition usually consists in
giving a score to different word sequence alternatives. The score measures how likely
is the observation of the given sequence of words. The common approach is statistical
language modeling, overviewed in (Rosenfield, 2000), and in (Bunke et al., 2004) for the
specific application to handwriting recognition. This class of methods estimates the a
priori probability of observing a word sequence W from large amounts of digital texts.
In this section, we focus on two popular methods, namely n-gram language models,
and connectionist language models based on neural networks.

To measure the suitability of a language model to a given corpus, one usually com-
putes its perplexity. It is derived from the entropy of the probability model, and can
be expressed as follows:

PPL = (p(w1, . . . , wNw))− 1

Nw = 2
1

Nw

∑Nw
k=1

log2 p(wk|wk−1,...) (1.1)

where Nw is the number of words in the text. LMs with smaller perplexities are
generally better at predicting a word given the history. However, lower perplexities do
not guarantee better recognition results, as pointed out by (Klakow & Peters, 2002).

1.6.2.1 Statistical n-gram Language Models

The space of all possible word sequences is very large. Estimating a probability
distribution over this space, even with very large corpora, is difficult, especially because

52 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

most word sequences will not appear. Factorizing p(W) with the chain rule

p(W) = p(w1, . . . , wN) = p(w1)p(w2|w1) . . . p(wN |w1, . . . , wN−1) (1.2)

yields a representation in which the probability of observing a word only depends on the
previous words. The n-gram approach addresses the data scarcity problem by making
Markovian assumptions: the probability of a word does not depend on the position of
the word in the sequence, and only on an history of n− 1 previous words:

p(wk|w1, . . . , wk−1) = p(wk|wk−1, . . . , wk−n+1) (1.3)

The Maximum Likelihood estimator of n-gram probabilities is achieved by mere
counting in the corpus:

p(wk|wk−1, . . . , wk−n+1) =
C(wk, wk−1, . . . , wk−n+1)

∑

w C(w, wk−1, . . . , wk−n+1)
(1.4)

As n grows larger, the chances of having zero counts for some n-grams increases. For
example, with a vocabulary of 10,000 words, there are a trillion different trigrams to
be observed in the training corpus. Various techniques exist to overcome this problem.
The simplest one is additive smoothing, which consists in adding a small value δ to all
counts. Good-Turing smoothing (Good, 1953) transfers some of the probability mass
of n-grams seen c+1 times to those seen c times. Witten & Bell (1991) propose another
discounting method. Other methods involve n-grams of lower orders, such as simple
linear interpolation (Jelinek & Mercer, 1980), or backing-off (Katz, 1987; Ney et al.,
1994; Kneser & Ney, 1995). Chen & Goodman (1996) present a good overview and
comparison of various smoothing techniques including those cited above.

Other models similar or related to n-grams exist, but are not used much in state-
of-the-art systems, such as class-based language models (Brown et al., 1992), in which
the n-gram probability is decomposed as

p(wk|wk−1, . . . , wk−n+1) = p(wk|Ck)p(Ck|wk−1, . . . , wk−n+1)

or skip-grams (Guthrie et al., 2006) and word trigger pairs (Tillmann & Ney, 1996),
which allow longer dependencies between words.

N-gram language models can easily be represented by weighted Finite-State Trans-
ducers (Mohri et al., 2008), which can be composed with the lexicon to build the search
graph including all the linguistic constraints.

1.6.2.2 Neural Network Language Models

Connectionist language modeling is another approach worth mentioning, although
it had received little attention in handwriting applications so far. These models are
more often found in the automatic translation or speech recognition literature. They
are based on neural networks.

The basic idea of these methods is to project each word of the history in a continuous
space and to perform a classification with neural networks to predict the next word. For

1.7. Measuring the Quality of the Recognition 53

example, Schwenk & Gauvain (2002); Bengio et al. (2003) use a multi-layer perceptron
on the projection of the last n words. Mikolov et al. (2010) predict the next word
with a recurrent neural network, which prevents from defining a fixed history, it being
encoded in the memory of the recurrent layer.

Since the output space is very large in large vocabulary applications, special output
structures have been proposed to train and use the network efficiently, e.g. in (Morin
& Bengio, 2005; Mikolov et al., 2011; Le et al., 2011). In (Graves et al., 2013a), the
acoustic and language models are integrated in a single recurrent neural network.

1.6.3 Open-Vocabulary Approaches

We have introduced n-gram models (or language models in general) for word se-
quences, but they can as well serve to model sequences of characters. The advantages
of working with characters rather than words are multiple. First, as already mentioned
for recognition models, there are less different tokens, and much more data for charac-
ter modeling. Therefore, we can estimate more reliable probability distributions, and
build higher order n-grams. Moreover, although the outputed words will not necessarily
valid ones, there would be not such things as OOVs.

Several works considered mixing word LMs limited to a vocabulary, and character
LMs to recognize potential OOVs. For example, in his PhD thesis, Bazzi (2002) pro-
posed a model where the lexicon (list of words) and filler model (looping on phones)
were examined. The word language model contains an OOV token guiding the search
towards the phone language model. In FST search graphs (or FST representations
of language models), replacing all OOV arcs by the character LM might consume too
much memory. For handwriting recognition, Kozielski et al. (2013b) use a dynamic
decoder, where the integration of the LM is done on the fly, which enables them to
explore the character LM only when the OOV arc is explored. Messina & Kermorvant
(2014) propose an over-generative method which limits the number of places where
the character LM should be inserted, allowing this hybrid LM to be plugged in static
decoding graphs.

1.7 Measuring the Quality of the Recognition

In order to assess the quality of a recognition system, a measure of the performance
is required. For isolated character or word recognition, the mere accuracy (proportion
of correctly recognized items) is sufficient. In the applications considered in this thesis,
the transcript is a sequence of words. Counting the number of completely correct
sequences is too coarse, because there would be no difference between a sentence with
no correct word and another with only one misrecognition.

In a sequence, we do not only find incorrect words, but there might also be inserted
or deleted words. Measures such as precision and recall may take these types of er-
rors into account, but not the sequential aspect. The most popular measure of error,
used in international evaluations of handwriting or speech recognition, is based on the
Levenstein edit distance (Levenshtein, 1966).

54 Chapter 1. Offline Handwriting Recognition – Overview of the Problem

This distance counts the number of edit operations required to transform one string
into another. The possible edits are:

• substitution of one item for another

• deletion of one item of the sequence

• insertion of one item in the sequence

The minimum edit distance between two strings can be retrieved efficiently with a
dynamic programming algorithm. The Word Error Rate (WER) is obtained by com-
puting the minimum number of edits from the reference string to the output transcript,
normalized by the number of reference words:

WER =
nsub + nins + ndel

nref

(1.5)

where nref , nsub, nins, ndel are respectively the numer of words in the reference, and
the number of substituted, inserted, and deleted words in the hypothesis. Note that
although it is generally expressed in percentage, it may go beyond 100% because of the
potential insertions. In this thesis, the reported WERs are computed with the SClite

implementation (Fiscus, 1998).
Similarly, we can consider an even finer measure of the quality of the output se-

quence in terms of characters, which penalizes less words with a few wrong charac-
ters and is less dependent on the distribution of word lengths: the Character Error
Rate (CER). It is computed like the WER, with characters instead of words. The
whitespace character should be taken into account in this measure, since this symbol
is important to separate words. This measure is gaining interest with open-vocabulary
recognition systems, which can output potentially any sequence of characters.

1.8 Conclusion

In this chapter, we have presented the problem of offline handwritten text recog-
nition, including the different steps to solve it. We provided examples of methods
and applications of each of these steps. This overview is of course not exhaustive.
Handwriting recognition has been an active research area for more than half a cen-
tury, and international conferences dedicated to the processing of documents and to
the recognition of handwritten text are held every year.

For this thesis, we did not work on the image preprocessing, feature extraction, or
language modeling, but we merely applied existing methods presented in this chapter.
We focus on optical modeling, following the segmentation-free approach presented in
Section 1.5.3. More precisely, we use the sliding window method, and build HMM-based
models. We study deep neural network optical models. Thus, in the next chapter,
we will present in more details these models, along with their training methods and
applications to handwriting recognition.

Chapter 2

Handwriting Recognition with
Hidden Markov Models and Neural
Networks

Contents
2.1 Introduction . 57

2.2 Hidden Markov Models for Handwriting Recognition 58

2.2.1 Definition . 59

2.2.2 Choice of Topology . 61

2.2.3 Choice of Emission Distribution 62

2.2.4 Model Refinements . 62

2.2.5 Decoding . 63

2.3 Neural Networks for Handwriting Recognition 63

2.3.1 The Multi-Layer Perceptron . 63

2.3.2 Recurrent Neural Networks . 66

2.3.3 Long Short-Term Memory Units 67

2.3.4 Convolutional Neural Networks 68

2.4 Handwriting Recognition Systems with Neural Networks . . 69

2.4.1 The Hybrid NN/HMM scheme 70

2.4.2 Predicting Characters . 71

2.4.3 NN Feature Extractors . 71

2.5 Training Models . 72

2.5.1 Training Hidden Markov Models with Generative Emission Models 72

2.5.2 Training Neural Networks . 73

2.5.2.1 Neural Network Training: an Optimization Problem . . 73

2.5.2.2 The Backpropagation Algorithm 74

2.5.2.3 Backpropagation Through Time 75

56
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

2.5.2.4 Regularization . 76

2.5.3 Training Deep Neural Networks 77

2.5.3.1 Statement of the problem 77

2.5.3.2 Unsupervised pre-training 78

2.5.3.3 Supervised pre-training 80

2.5.4 Training Complete Handwriting Recognition Systems 81

2.5.4.1 Bootstrapping . 81

2.5.4.2 Forward-Backward training of Hybrid NN/HMM 81

2.5.4.3 Connectionist Temporal Classification 82

2.5.4.4 Graph-Transformer Networks 85

2.5.4.5 Sequence-Discriminative 85

2.6 Conclusion . 86

2.1. Introduction 57

2.1 Introduction

Hidden Markov Models (HMMs) are particularly suited to model sequential signals.
They are the model of choice in many problems involving sequences, such as speech
recognition (Rabiner & Juang, 1986), computational biology (e.g. to model protein
sequences (Krogh et al., 1994)), or handwriting recognition (Kaltenmeier et al., 1993).
The sequential nature of text lends itself well to this kind of modeling. Character
models may be concatenated to form word or sentence models, in the same way as
phone models are in speech recognition.

However, unlike in speech processing or in computational biology, the inputs of
offline handwriting recognition are not naturally sequential, they are images, i.e. maps
of pixels in two dimensions. Although a few approaches have been proposed to apply
Markov models to the two-dimensional signal that images form (Park & Lee, 1998;
Chevalier et al., 2005; Lemaıtre et al., 2008), the common approach consists in extract-
ing sequences of observations, and model these instead.

As pointed out in Section 1.5, sequences of observations are either retrieved by
extracting and segmenting the ink (foreground pixels) in the image (e.g. in (Chen
et al., 1995; Knerr et al., 1998)), or by scanning a sliding window in the reading order
over the image (Kaltenmeier et al., 1993), and extracting features at each position.

Historically, HMMs have become attractive in speech and handwriting recognition for
their capability to perform time alignment, and for the maximum likelihood formulation
of the parameter estimation. In that formulation, their emission model is generative.
However, for pattern recognition problems, discriminative models are preferred. Neural
networks are such discriminative models, which enjoy considerable interest. They are
very popular in pattern recognition applications, and suited to classification problems,
where the task is to predict a class to which an input belongs. They have been applied
to handwriting recognition, e.g. by LeCun et al. (1989) for handwritten digits.

While “simple” neural networks require a fixed size input to make a prediction,
architectures have been proposed to deal with variable sized images and output se-
quences, such as Space-Displacement Neural Networks (Bengio et al., 1995), which
are extensions of Convolutional Neural Networks (ConvNNs, (LeCun et al., 1989)), or
Multi-Dimensional Recurrent Neural Networks (Graves & Schmidhuber, 2008).

Several solutions were proposed to train and use neural networks directly for hand-
writing recognition, without relying on HMMs (e.g. Graph-Transformer Networks
(Bottou et al., 1997; Le Cun et al., 1997) or Connectionist Temporal Classification
(Graves et al., 2006)), as well as neural networks able to deal with sequences, such as
Recurrent Neural Networks (RNNs). Yet they are often combined with HMMs, ap-
plied to each observation vector, to replace the standard Gaussian mixture modeling
(Bourlard & Morgan, 1994).

In this chapter, we focus on the recognition of handwritten text with hidden Markov
models and neural networks. In a first part, we present the general aspects of HMMs
and their specific application to handwriting recognition in Section 2.2. In a second
time, we give an overview of neural networks in Section 2.3.

58
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

We show some applications of neural networks in the task of handwriting text
recognition in Section 2.4. More specifically, we present the hybrid NN/HMM frame-
work (Bourlard & Morgan, 1994), where neural networks are optical models in HMMs,
and the tandem association of neural networks and HMMs (Hermansky et al., 2000),
where neural networks are used to extract features for conventional GMM-HMMs. We
also present some neural networks for handwriting recognition, which are not used in
combination with HMMs.

Finally, in Section 2.5, we explain the training procedures for HMMs and neural
networks. We present the issues arising for deep neural networks, and some proposed
solutions. We also introduce training methods for complete handwriting recognition
systems.

We conclude in Section 2.6 with an overview of the chosen approach in this work,
in comparison with related methods presented in this chapter.

We will only give an overview of the different techniques and models found in the
literature, and describe in more details the methods used in the following of the thesis,
e.g. HMMs, the Connectionist Temporal Classification framework, the pre-training of
deep neural networks, or the dropout technique.

2.2 Hidden Markov Models for Handwriting Recog-

nition

The problem of handwritten text line recognition is now widely approached with
hidden Markov models (Plötz & Fink, 2009) (the first applications of HMMs to that
problem date from (Levin & Pieraccini, 1992; Kaltenmeier et al., 1993)). These models
are designed to handle sequential data, with hidden states emitting observations. There
are well-known techniques to (i) compute the probability of an observation sequence
given a model, (ii) find the sequence of states which is most likely to have produced
an observed sequence, and (iii) find the parameters of the model to maximize the
probability of observing a sequence (Rabiner & Juang, 1986). The third problem is
the actual training of these models, while the second allows to decode a sequence of
observation. In this paradigm, the characters are each represented by a hidden Markov
model. A simple concatenation of these produce word models. The advantages are
twofold:

• from a few character models (around one hundred), we can build word models
for potentially any word of the language. Thus this method is much more scal-
able the large vocabulary problems than systems attempting to model each word
separately

• recognizing a word from character models does not require a prior segmentation of
the word image into characters. Since the word model is a hidden Markov model
of its own, the segmentation into characters is a by-product of the decoding
procedure, which consists in finding the most likely sequence of states.

2.2. Hidden Markov Models for Handwriting Recognition 59

The second point extends to the line recognition problem: we do not need to split the
text line into words to recognize word sequences.

Automatic speech recognition is a famous example of successful application of HMMs.
This field has an experience of over 25 years of these systems, and many advances there
can be transferred to handwriting recognition.

Amongst many aspects, handwriting recognition benefits from speech recognition
techniques, such as decoding with linguistic constraints (vocabulary), adding statistical
language models in the hidden Markov model framework (Marti & Bunke, 2000), the
integration of these components in a Finite-State Transducer decoder (Mohri et al.,
2002). Moreover, tools built for speech recognition, such as HTK (Young et al., 1997),
or Kaldi (Povey et al., 2011) can be used for HMM-based handwriting recognition
without modification.

2.2.1 Definition

Figure 2.1: A Hidden Markov Model.

An HMM (Figure 2.1) is a doubly stochastic process, that we can represent as a
probabilistic graphical model. It is made of states, and transitions between them
defined by probabilities. It is a first-order Markov process: the state at time t + 1 is
independent of the state at time t− 1, given the state at time t.

In HMMs, the observed information is not the state sequence, but a sequence of
data x = x1 . . . xT generated by HMM states with an emission probability model.

An HMM λ is defined by the following elements:

• A set of states Q = {s1, . . . , sN}. For convenience, we also define the set of all
state sequences of length T : QT = {q = q1 . . . qT : qi ∈ Q, 1 ≤ i ≤ T}.

60
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

• A transition model, defined by the probabilities p(qt = si|qt−1 = sj), for all
si, sj ∈ Q.

• A probability distribution over initial states p(q1 = s),∀s ∈ Q.

• An emission model, defined by the probabilities p(x|s), where s ∈ Q, and x is
an observation, which can be drawn from a finite set in discrete HMMs, from
{0, 1}D in Bernoulli HMMs (Giménez et al., 2010), or from R

D for continuous
HMMs (where D is the dimension of the observation).

The Markovian assumptions provide an easy formulation of the likelihood of an
observation sequence x = x1 . . . xT given a state sequence q ∈ QT :

p(x|q, λ) =
T

∏

t=1

p(xt|qt) (2.1)

because the individual observations are independent given the current state, and of the
probability of the state sequence q ∈ QT in the model λ:

p(q|λ) = p(q1)
T

∏

t=2

p(qt|qt−1; λ) (2.2)

.
Therefore, the likelihood of an observation sequence under the model is obtained

by summing over all state sequences:

p(x|λ) =
∑

q∈QT

p(q1)p(x1|q1)
T

∏

t=2

p(xt|qt)p(qt|qt−1; λ) (2.3)

The summation over all possible state sequences is expensive to compute naively.
The forward-backward procedure (Baum et al., 1967) alleviates this problem, by a
recursive computation of so-called forward variables :

αt(s) = p(x1:t, qt = s|λ)

α1(s) = p(q1 = s)× p(x1|s)

αt(s) = p(xt|qt = s)×
∑

r∈Q

αt−1(r)p(qt = r|qt−1 = r; λ)

The forward-backward procedure also defines backward variables, which are used
for training HMMs (Section 2.5.1):

βt(s) = p(xt+1:T |qt = s, λ)

βT (s) = 1

βt(s) =
∑

r∈Q

p(qt+1 = s|qt = s; λ)p(xt+1|qt+1 = r)βt+1(r)

Consequently, we have p(x|λ) =
∑

s∈Q αT (s).

2.2. Hidden Markov Models for Handwriting Recognition 61

Finally, we can retrieve the most likely state sequence q∗ ∈ QT of a HMM λ given
the observed sequence x, that is:

q∗ = arg max
q∈QT

p(q|x, λ) = arg max
q∈QT

p(q, x|λ)
p(x)

(2.4)

with Viterbi algorithm (Viterbi, 1967). Ignoring p(x), which is the same for all state
sequences, it consists in replacing the summation by a maximization in the recurrence
of the forward variable, and keeping track of the maximizing state r at each iteration.

In the last fifteen years, HMMs have become the standard model for handwriting
recognition. An HMM is built for each character, allowing to concatenate these models
to obtain word or sentence models. The recognition of a line therefore does not require
a prior segmentation into characters.

2.2.2 Choice of Topology

Figure 2.2: Hidden Markov Model topology for Handwriting Recognition.

The topology of explicit segmentation models takes into account the possible cutting
of a character into several graphemes, usually one to three or four. It sometimes includes
a skip transition to accept potential under-segmentation. Examples of such topologies
may be found in (El-Yacoubi et al., 1999; Tay et al., 2001; Augustin, 2001).

In the sliding window approach, HMMs have a left-right topology, depicted on
Figure 2.2, modeling the sequential progression of the window. Allowed transition for
a given state are to itself, to the next one, and sometimes to the second next.

The number of states may be the same for all character HMMs, chosen empirically
or heuristically. It can be adjusted to acknowledge the different length of characters.
The letter “i” is for example likely to be written shorter than “m”. Automatic methods
to adapt the length of individual HMMs were proposed by Augustin (2001); Zimmer-
mann & Bunke (2002); Schambach (2003); Dreuw et al. (2008); Bianne-Bernard et al.
(2012). Günter & Bunke (2004) compare several optimization strategies for choosing
the number of states along with the training method.

62
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

2.2.3 Choice of Emission Distribution

The common emission models of HMM states are Gaussian Mixture Models (GMMs):

p(x|s) =
M
∑

m=1

csmN (x; µsm, Σsm) (2.5)

where N (·, µ, Σ) is the multivariate Gaussian distribution with mean µ and covariance
matrix Σ. csm, µsm and Σsm are respectively the weight, mean, and covariance of the
m-th component of the GMM for state s. The number of Gaussians M in GMMs is
usually set to 1 at the beginning of training and increased during the EM procedure. In
order to limit the number of parameters of the system, and to simplify the estimation
procedure, diagonal covariance matrices are defined. However, this implies that the
dimensions of the input features vectors must be decorrelated.

Giménez et al. (2010) used a Bernoulli distribution to model observation made of
binary pixel values:

p(x|s) =
M
∑

m=1

csm

D
∏

d=1

pxd
smd(1− psmd)1−xd (2.6)

In the hybrid NN/HMM scheme presented in Section 2.4.1, the emission model is
derived from the outputs of a neural network, providing state posterior probabilities
p(s|x):

p(x|s) =
p(s|x)
p(s)

p(x) (2.7)

where p(s) is the prior probability of state s, and p(x) is not computeable in general,
and can be ignored since it cancels out in recognition.

2.2.4 Model Refinements

Some modeling improvements were inspired from speech recognition. For example,
context-dependent models correspond to the triphone approach, which models the co-
articulation effect occurring in speech. In handwriting, it would model the cursive
nature of the text, where the shape of connections between characters depends on
the letters involved. In the context-dependent approach, there is one HMM for each
character, given each possible left and right character. Since the number of states and
distributions to estimate is very large, and most contexts do not appear in training
sets, the emission probability distributions are shared among different HMM states,
across context-dependent models. This is usually achieved by a decision tree, and
the distribution is retrieved by asking questions regarding the character, the context,
and the HMM state number. Examples of context-dependent models for handwriting
recognition were presented in (Fink & Plotz, 2007; Natarajan et al., 2008; Bianne et al.,
2011; Hamdani et al., 2014).

2.3. Neural Networks for Handwriting Recognition 63

Writer adaptation is to handwriting recognition what speaker adaptation is in speech
recognition. Techniques such as MLLR (Leggetter & Woodland, 1995), CMLLR (Gu-
nawardana & Byrne, 2001), SAT (Anastasakos et al., 1996) are also applied to hand-
writing recognition, e.g. in (Vinciarelli & Bengio, 2002; Dreuw et al., 2009; Kozielski
et al., 2013a). The improvements due to these methods, however, tend to be smaller
than for speech recognition.

2.2.5 Decoding

The goal of handwriting recognition is to retrieve the most likely word sequence
W∗ given a sequence of observation vectors x, which is achieved by maximizing the
conditional probability p(W|x). Using Bayes’ rule, the problem is formulated as:

W∗ = arg max
W

p(x|W)p(W)
p(x)

= arg max
W

p(x|W)p(W) (2.8)

The prior probability of the observation sequence p(x) is generally difficult to compute,
and may be ignored since it is constant for all word sequences.

W is represented by its HMMs, and p(x|W) is described by Equation 2.3. The
Viterbi algorithm presented in Section 2.2.1 can be applied to this maximization prob-
lem, and provides an exact solution at the state sequence level. On the other hand,
p(W) is provided by a language model, as described in Section 1.6.2.

2.3 Neural Networks for Handwriting Recognition

Neural Networks (NNs) are popular systems for pattern recognition in general. They
are made from basic processing units, linked to each other with weighted and directed
connections, such that the output of some units are inputs to others. The appellation
“(Artificial) Neural Network” comes from the similarity between the units of these
models and biological neurons.

The first formal description of artificial neural networks was proposed by McCulloch
& Pitts (1943). Algorithms to adjust the weights of the connections lead to the percep-
tron (Rosenblatt, 1958), and Multi-Layer Perceptrons (MLPs, Rumelhart et al. (1988)).
Among different kinds of neural networks, Recurrent Neural Networks (RNNs), able
to process sequences, and Convolutional Neural Networks (ConvNNs, (LeCun et al.,
1989)), suited to image inputs, are worth noticing.

2.3.1 The Multi-Layer Perceptron

The perceptron (Rosenblatt, 1958) is a binary classifier, which goal is to take a
“yes/no” decision. The output y can take two values, corresponding to a negative and
positive decision, and can be formulated as

y = f(x) = sign(b + w1x1 + . . . + wnxn) (2.9)

64
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

where x = x1, . . . , xn is an input feature vector, b, w1, . . . , wn are the free parameters
(weights)1, and sign(x) = 1 if x > 0 and −1 otherwise. Other choices of functions
which can take only two values, such as the heaviside function, could be used instead
of the sign function. However, for practical reasons, a differentiable (and continuous)
function is preferred. A natural choice is the sigmoid function

σ(t) =
1

1 + e−t
(2.10)

which resemble the heaviside function, but is continuous and differentiable. We can
still perform binary classification by taking a decision from the outcome of the sigmoid:

y =

0, if σ(wT x + b) < 0.5

1, otherwise
(2.11)

where w = [w1 · · ·wn] is the weight vector and b is called bias.
The thresholding of the outcome of the sigmoid defines the decision boundary of

the binary classifier as a hyperplane in the input space, defined by the equation

b + w1x1 + . . . + wnxn = 0 (2.12)

Therefore, the perceptron is optimal only when the classification problem can be lin-
early separated in that space.

Parallels have been drawn between this model and biological neurons. In this anal-
ogy, the inputs xi are received from other neurons through synapses. The weights wi

represent the strength and the excitatory/inhibitory nature of the synaptic connection.
In the cell body, the contribution of all input connections are summed, and if greater
than a predefined threshold, the neuron fires. Although this is a simplistic and inac-
curate model of a neuron, this model is called (artificial) neuron, and associations of
such neurons – i.e. connecting the output of one to the input of other ones – defines
(artificial) neural networks.

In the following, we denote by a =
∑N

i=1 wixi + b the activation of a neuron (before
the non-linear activation function), and by z its output.

Multi-Layer Perceptrons (MLPs, Rumelhart et al. (1988)) are an example of artificial
neural networks, where the neurons presented in the previous section are connected to
each other. An MLP, as its name indicates, contains neurons organized in layers.
Instead of the single perceptron, several neurons are connected to the same inputs
x1, . . . , xn, with a different set of weights. The outputs of all these neurons are inputs
for a new layer of neurons.

Considered altogether, the weights of each neuron k (w(i)
k), define a weight matrix

from layer Li−1 to layer Li: W(i). Thus the output (vector) of a given layer Li can be
computed as the multiplication of the input vector y(i−1) by the weight matrix W(i),

1not to be confused with wk in the previous chapter, which denoted words in sequences

2.3. Neural Networks for Handwriting Recognition 65

Figure 2.3: Multi-Layer Perceptron. x1, . . . , xN are the inputs, W(i), b(i) are the weight
matrice and bias vector of layer i.

the addition of a bias vector b(i), and the element-wise application of a non-linear
function fi.

y(1) =f1(W(1)·x + b(1))
...

y(i) =fi(W(i)·y(i−1) + b(i))
...

y(N) =fN(W(N)·y(N−1) + b(N))

(2.13)

This organization in successive layers have some advantages. Since a given layer only
receives inputs from previous layers and provides inputs for next layers, the output of
the network can be computed in a single feed-forward pass, by sequentially determining
the output of each layer. This is also interesting for the backpropagation algorithm, as
we will see in the next section.

The neurons of the last layer of the MLP are linear binary classifiers sharing the same
input features. Thus an MLP with several outputs is a multi-class classifier. It was
shown (Bourlard & Wellekens, 1989) that the outputs of the network can be interpreted
as posterior probabilities. The softmax function (Bridle, 1990b) is often applied instead
of the sigmoid function at the output layer. For n neurons with activations a1, . . . , an,
the softmax function is defined as follows:

zi = softmax(ai) =
eai

∑n
k=1 eak

(2.14)

With this function, the outputs zi ∈]0, 1] sum up to one, i.e.
∑n

i=1 zi = 1, and
define probability distribution over the different classes, conditioned on the inputs

66
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

of the network. The advantages of such a property are (i) that the classification is
associated with a confidence score with a meaningful interpretation on the one hand,
and (ii) that the network can be a component of a larger system, where the posterior
probabilities are important on the other hand, as is the case in hybrid NN/HMM
systems.

2.3.2 Recurrent Neural Networks

Figure 2.4: Recurrent Neural Networks, simple form

Recurrent Neural Networks (RNNs) are networks with a notion of internal state,
evolving through time, achieved by recurrent connections. Hopfield networks (Hopfield,
1982) are an early form of recurrent neural network, where the recurrence is used to
find a stable state rather than process time sequences.

Saul & Jordan (1990); Elman (1990) proposed neural network architectures for
sequences of input vectors. These networks contain one hidden layer, as well as a
separate context layer, implementing a memory in the network.

In its simplest form, an RNN is an MLP – i.e. neurons are organized in different
layers – with recurrent layers. A recurrent layer does not only receive inputs from the
previous layers, but also from itself, as depicted on the left-hand side of Figure 2.4.

The activations at
k of such a layer evolve through time with the following recurrence

at
k =

I
∑

i=1

win
kix

t
i +

H
∑

h=1

wrec
kh zt−1

h (2.15)

where xis are the inputs and win
ki the corresponding weights, and zt−1

h the layer’s outputs
at the previous timestep and wrec

kh the corresponding weights.

Bidirectional RNNs (BRNNs, Schuster & Paliwal (1997)) process the sequence in
both directions. In these networks, there are two recurrent layers: a forward layer,
which take inputs from the previous timestep, and a backward layer, connected to
the next timestep. Both layers are connected to the same input and output layers.
Graves et al. (2007) added convolutional aspects to build Multi-Dimensional RNNs
(MDRNNs), which process an input image with four directions in recurrent layers.

2.3. Neural Networks for Handwriting Recognition 67

Robinson (1994) proposed simple recurrent neural networks for speech recognition,
and Senior (1994); Lee & Kim (1995); Senior & Robinson (1998) applied simple recur-
rent neural networks to handwriting recognition.

2.3.3 Long Short-Term Memory Units

In RNNs, the vanishing gradient issue prevents the network to learn long time de-
pendencies. Hochreiter & Schmidhuber (1997) proposed improved recurrent neurons
called Long Short-Term Memory units. In LSTM, the flow of information is controlled
by a gating system, scaling the input information, the output activation, and the con-
tribution of the internal state of the unit at the previous timestep to the current state,
based on the input and recurrent information and the cell internal state.

An LSTM cell is shown on Figure 2.5, and compared to a basic recurrent neuron.
The cell input and all gates receive the activation of the lower layer and of the layer
at the previous timestep. The following equations define the behaviour of the LSTM
unit.

(a) Simple Recurrent Neuron (b) Long Short-Term Memory Unit

Figure 2.5: Neurons for RNNs: (a) Simple Neuron (b) LSTM unit

The Input Gate controls whether the input of the cell is integrated in the cell state

at
ι =

I
∑

i=1

wiιx
t
i +

H
∑

h=1

whιz
t−1
h +

C
∑

c=1

wcιs
t−1
c

zt
ι = f(at

ι)

The Forget Gate controls whether the previous state is integrated in the cell state,
or if it is forgotten.

at
φ =

I
∑

i=1

wiφxt
i +

H
∑

h=1

whφzt−1
h +

C
∑

c=1

wcφst−1
c

68
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

zt
φ = f(at

φ)

The Cell state is the sum of the previous state, scaled by the forget gate, and of
the cell input, scaled by the input gate.

at
c =

I
∑

i=1

wicx
t
i +

H
∑

h=1

whcz
t−1
h

st
c = zt

φst−1
c + zt

ιg(at
c)

The Output Gate controls whether the LSTM unit emits the activation h(st
c).

at
ω =

I
∑

i=1

wiωxt
i +

H
∑

h=1

whωzt−1
h +

C
∑

c=1

wcωst
c

zt
ω = f(at

ω)

The Cell output is computed by applying the activation function h to the cell
state, scaled by the output gate.

zt
c = zt

ωh(st
c)

The activation function f for the gates is usually the sigmoid function. Doetsch
et al. (2014) propose a scaling factor in the activation, shared among all gates of each
type: zt

ι = f(λιa
t
ι), zt

ω = f(λωat
ω), and zt

φ = f(λφat
φ). These factors are learnt, and

make the gates more selective. The activation functions g and h are usually the sigmoid
or hyperbolic tangent function.

The dependency of gate activations at
ι, at

φ and at
ω on cell state(s) corresponds to the

so-called peephole connections (Gers & Schmidhuber, 2000; Gers et al., 2003), which
are especially useful when the network should learn precise timings.

The LSTM cells provide abilities that standard RNNs lack, such as learning simple
grammars (Hochreiter & Schmidhuber, 1997; Gers & Schmidhuber, 2001) or music com-
position (Eck & Schmidhuber, 2002). LSTM-RNNs have been successfully applied to
phoneme (Graves & Schmidhuber, 2005) and speech (Graves et al., 2013a) recognition,
and to handwriting recognition.

With Long Short-Term Memory neurons in recurrent layers, Bidirectional and
Multi-Dimensional RNNs achieve very good results in handwriting recognition, and
constitute the state-of-the-art in that domain (Doetsch et al., 2014; Graves & Schmid-
huber, 2008; Bluche et al., 2014a; Moysset et al., 2014).

2.3.4 Convolutional Neural Networks

Convolutional Neural Networks (ConvNNs, LeCun et al. (1989)) have a structure
similar to MLPs, but each layer is not fully-connected to the previous one. They
implement the notion of local receptors, via local connections and weight sharing. The
input is the two-dimensional image, and neurons in the hidden layers are organized in
two-dimensional maps, each looking for a single feature. Each neuron of a map is only
connected to a small neighborhood in the previous maps (or input image), with the
same connection weights as other neurons of the map (Figure 2.6). One may interpret
it as convolutions of the image with trainable filters.

2.4. Handwriting Recognition Systems with Neural Networks 69

Figure 2.6: Example of Convolutional Neural Network.

The convolutional layers are often followed by subsampling layers, to limit the size of
the network and implement some invariance to distortions. The subsampling operation
may be a max-pooling or averaging over small neighborhoods. Usually, a few features
(or maps, or trainable filters) are extracted in lower layers, and increasingly more
features are extracted in upper layers, while the dimensions of the maps decrease (e.g.
in LeNet-5 by LeCun et al. (1998)).

ConvNNs designed for classification can be easily extended to variable sized images,
hence producing sequences of predictions, thanks to the local connections and shared
weights. Such a structure is called Space-Displacement Neural Network (SDNN, Matan
et al. (1991); Bengio et al. (1995)).

Finally, the aspects of ConvNNs may also be implemented in more complex archi-
tecture than MLPs, as for example in Multi-Dimensional RNNs (MDRNNs, Graves
et al. (2007)).

ConvNNs are popular in computer vision, and achieve excellent results in various
tasks (e.g. object recognition (Szegedy et al., 2014), image segmentation (Farabet
et al., 2013)). They have also recently been applied to speech recognition (Abdel-
Hamid et al., 2012). They were initially used to recognize handwritten digits (LeCun
et al., 1989), and later handwritten text (Bengio et al., 1995; Le Cun et al., 1997; LeCun
et al., 1998). More recently, we combined them with HMMs for word recognition on
public databases (Bluche et al., 2013a,b).

2.4 Handwriting Recognition Systems with Neural

Networks

As already mentioned in previous sections, different kinds of neural networks have
been applied to the problem of handwriting recognition:

• MLPs in explicit segmentation systems (Knerr et al., 1998) or in segmentation-
free approaches to predict HMM states (Espana-Boquera et al., 2011) or to ex-
tract features for GMM-HMM systems (Dreuw et al., 2011a).

70
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

• ConvNNs for character prediction in segmentation graphs (Bengio et al., 1995)
or the SDNN version to predict sequences of characters (LeCun et al., 1998).
We also used them in the HMM framework to classify HMM states or to extract
features (Bluche et al., 2013a,b)

• RNNs, able to transform an input sequence into a sequence of predictions, have
already been applied to handwriting recognition in (Senior, 1994). With LSTM
cells, RNNs are now the state-of-the-art in handwriting recognition, and used
in many research groups (Kozielski et al., 2013a; Morillot et al., 2013b; Moysset
et al., 2014; Strauß et al., 2014). The multi-dimensional aspect (Graves et al.,
2007; Graves & Schmidhuber, 2009), suited to images, was first applied to hand-
writing recognition.

Deep neural networks applications to handwriting recognition are however limited to
convolutional architectures (LeCun et al., 1998; Graves & Schmidhuber, 2009), where
the number of parameters is limited by the local receptors and weight sharing aspects,
and the extraction of only a few features in lower layers.

Densely connected neural networks with more than one or two hidden layers are
found in handwriting recognition, but limited to isolated character recognition (Ciresan
et al., 2010; Cireşan et al., 2012). An application to keyword spotting is proposed by
Thomas et al. (2013).

In this section, we present how neural networks are integrated in complete handwrit-
ing recognition systems: either replacing GMMs as the emission model of HMMs, or as
character predictors. In the tandem approach, they are also used to extract features.

2.4.1 The Hybrid NN/HMM scheme

In the hybrid approach (Bourlard & Morgan, 1994), GMMs are replaced by neural
networks for the emission model of HMMs. The NN does not provide generative
likelihoods p(xt|s) , but discriminative state posteriors p(s|xt). We can use Bayes’ rule:

p(xt|s) = p(xt)
p(s|xt)

p(s)
(2.16)

Equation 2.8 becomes:

p(W, x) = p(W)
∑

q

∏

t

p(xt|qt)p(qt|qt−1, W)

=
∏

t

p(xt)p(W)
∑

q

∏

t

p(qt|xt)
p(qt)

p(qt|qt−1, W)

∏

t p(xt) being the same for all word sequences in decoding, it does not influence the
result, and we can effectively use p(s|xt)

p(s)
.

H. Bourlard and his colleagues thoroughly studied the theoretical foundations of
hybrid NN/HMM systems in (Bourlard & Wellekens, 1989; Bourlard & Morgan, 1994;
Renals et al., 1994; Konig et al., 1996; Hennebert et al., 1997). In particular, they show

2.4. Handwriting Recognition Systems with Neural Networks 71

in (Konig et al., 1996) how a discriminant formulation of HMMs (Bourlard & Wellekens,
1989), able to compute p(W|x) leads to a particular MLP architecture predicting
local conditional transition probabilities p(qt|qt−1, xt), which allow to estimate global
posterior probabilities.

Hybrid models for handwriting recognition were built, with different neural networks.
Dreuw et al. (2011a); Espana-Boquera et al. (2011) use an MLP. Bengio et al. (1994a)
built an hybrid ConvNN/HMM. In (Bluche et al., 2013b,a), we applied ConvNNs in
the hybrid framework, for handwritten word recognition, using different segmentation
methods.

2.4.2 Predicting Characters

Neural networks can also predict characters directly. This is for example the case
in some recognition systems based on explicit segmentation (Bengio et al., 1995; Tay
et al., 2001).

In segmentation-free approaches, the input of such neural networks is often the
whole image. Due to the variable size of the image, the neural networks in this case
implement some replication of the weights. ConvNNs may be trained to predict char-
acters, and then applied to whole images (SDNNs, Bengio et al. (1995)). RNNs are
already suited to recognize sequences, with a replication of the weights across time.
They may implement convolutional aspects too, for example in MDRNNs. In the Con-
nectionist Temporal Classification framework (Graves et al., 2006), RNNs are trained
to predict sequences of labels, e.g. characters.

Some of these approaches also acknowledge the fact that no character may be present
at a given position, by adding a non-character class in the output of the network. We
find this kind of “junk” class for MLPs in (Rashid et al., 2012) for printed text, in
(Tay et al., 2001) with an explicit segmentation system, and in the formulation of
Connectionist Temporal Classification proposed by Graves et al. (2006) for RNNs.

2.4.3 NN Feature Extractors

As pointed out in Section 1.4.2, NNs may be feature extractors for a different system,
for example a GMM-HMM. In the tandem approach (Hermansky et al., 2000), the
network is also trained to predict HMM states or characters, but the posteriors are not
directly used for optical modeling. Instead, the network acts as a feature extractor.
Dreuw et al. (2011a) use the posteriors or an MLP as features for a GMM-HMM.

In (Bluche et al., 2013a,b), the posterior features are extracted from a ConvNN, for
handwritten word recognition. One may extract the intermediate activations in hidden
layers as features. For example, Kozielski et al. (2013b) build a GMM-HMM with the
activations of LSTM layers of an RNN trained to classify HMM states.

Auto-encoders are neural networks trained to output their inputs. In the hidden
layers, a compact representation of the input is computed. One can extract this repre-
sentation as features, as presented for example in (Hammerla et al., 2010).

72
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

2.5 Training Models

2.5.1 Training Hidden Markov Models with Generative Emis-
sion Models

The standard method to adjust the parameters of HMMs consists in maximizing
the likelihood of the observed sequences in a training set. This is achieved with an
Expectation-Maximization (EM) procedure (Dempster et al., 1977), alternating the
computation of an objective function for a fixed HMM λ, and the re-estimation of the
parameters to maximize the criterion, yielding a new HMM λ̂.

This iterative procedure for HMM is the Baum-Welch training (Baum et al., 1967,
1970). In the first step, the forward-backward procedure is applied to calculate the
posterior probability of seeing state s at time t (with α and β defined in Section 2.2.1):

p(qt = s|x, λ) =
αt(s)βt(s)

∑

r∈Q αt(r)βt(r)
(2.17)

and of seeing state s at t and r at t + 1:

p(qt = s, qt+1 = r|x, λ) =
αt(s)p(xt+1|qt+1 = r)p(qt+1 = r|qt = s, λ)βt+1(r)

∑

u∈Q αt(u)βt(u)
(2.18)

The probabilities of the transition and emission models can be updated using these
values and the observation sequence x (Juang, 1985). The criterion maximized by this
procedure is the auxiliary function:

Q(λ, λ̂) =
∑

q∈QT

p(q|x, λ) log p(x, q|λ̂) (2.19)

which ensures an increase in likelihood (Baum et al., 1967):

max
λ̂

Q(λ, λ̂)⇒ p(x|λ̂) ≥ p(x|λ) (2.20)

Thus, Baum-Welch training guarantees to find a local maximum of likelihood.
An alternative to Baum-Welch training is Viterbi training. The forward-backward

procedure is replaced by Viterbi decoding, and the equations become

p(qt = s|x, λ) =

1 if q∗
t = s

0 otherwise
(2.21)

p(qt = s, qt+1 = r|x, λ) =

1 if q∗
t = s and q∗

t+1 = r

0 otherwise
(2.22)

Gradient-based techniques have also been proposed for maximum likelihood training,
e.g. by Baldi & Chauvin (1994); Krogh (1994).

2.5. Training Models 73

For some applications, such as handwriting or speech recognition, we are not really
interested in the HMM ability to model observation sequences. We would rather want
to find the best HMM among several HMMs (e.g. word HMMs), i.e. to discrimi-
nate between HMMs. Discriminative training criteria include the Maximum Mutual
Information (MMI; Bahl et al. (1986); Normandin (1992)), the Minimum Phone Error
(MPE, designed for speech recognition; Povey (2004)), or the Minimum Classification
Error (MCE; Chou et al. (1993)). Moreover, a formulation of discriminant HMMs was
proposed in (Bourlard & Wellekens, 1989).

2.5.2 Training Neural Networks

Training a neural network consists in adjusting its parameters, the connection weights,
so that the model is able to perform the task at hand. As for HMMs, the goal is to
optimize a criterion that reflects the quality of the network.

Given such a criterion, one may apply numerical optimization methods such as
gradient descent. The backpropagation algorithm (Rumelhart et al., 1988) takes ad-
vantage from the structure of the networks to apply these methods. Algorithms were
also designed to handle the temporal aspect in RNNs, such as the Backpropagation
Through Time (BPTT) algorithm (Williams & Zipser, 1995).

2.5.2.1 Neural Network Training: an Optimization Problem

Provided with an input pattern, a neural network performs a series of simple com-
putations to return an output, corresponding for example to a classification. To assess
the quality of the neural network, one can compare the actual output y(x) to the de-
sired one z, and calculate a measure of error. For example, it may be the squared
error (y(x) − z)2 for binary classification. For multi-class classification, the output is
a vector y(x). The desired output may be encoded as a vector z, with all components
set to 0 except for the one corresponding to the true class, and the squared error is

EMSE(x, z) = ‖y(x)− z‖2 (2.23)

The components of y are posterior probabilities. Moreover, with softmax, the outputs
are positive and sum up to one, so one can use the Cross-Entropy (CE) criterion:

ECE(x, z) = −
C

∑

i=1

zi log yi(x) (2.24)

Given a dataset S = (x(i), z(i)), i = 1, 2, . . . , N of examples labeled with the expected
outputs, one can compute a global loss function

E(S) =
1
N

N
∑

i=1

E(x(i), z(i)) (2.25)

We obtain the optimal parameters θ = θ1, . . . θN by minimizing the error function.
Numerical optimization methods, such as gradient descent, are applied to reach this
minimum.

The gradient descent proceeds as follows.

74
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

1. For each training example (x(i), z(i)), compute y(x(i)) and E(x(i), z(i)).

2. Compute the error E(S), and its derivative with respect to the parameters ∂E
∂θi

.

3. Update the parameters in the direction of the gradient θi ← θi − η ∂E
∂θi

.

where η is called learning rate.
In order to compute the error, and therefore take one step in adjusting the param-

eters, one has to go through the whole dataset, which can lead to a slow convergence.
In stochastic gradient descent (SGD), the parameters are updated after every training
example, or every few ones, and allow to better explore and exploit the parameter
space.

The momentum technique (Rumelhart et al., 1985) consists in adding a fraction of
the previous update in the current one:

∆θ(t) = −η
∂E

∂θ
+ ρ∆θ(t− 1)

The choice of learning rate may be crucial. Instead of keeping it fixed, one may
change it during training. One can pre-define a schedule for learning rates, or decrease
it when the objective function does not improve, or with rules such as in (Bottou, 2010),
where its decrease is inversely proportional to the number of epochs, or the AdaGrad
technique (Duchi et al., 2011), where the learning rate is different for each parameter,
and decreases according to the sum of observed gradients for the parameter. Note
that alternatives to the simple gradient descent algorithm presented here exist, such
as RPROP (Riedmiller & Braun, 1993).

Finally, while we minimize the error on the training set, we also want the system to
perform well on unseen examples, and avoid overfitting the training data. One manner
of controlling the generalization power is to keep a validation set, separate from the
training set, on which we can also compute the error. The early stopping method
consists in stopping the training procedure when the error on these validation data
increases.

2.5.2.2 The Backpropagation Algorithm

The neural networks presented in Section 2.3 have a layered structure. The outputs
are computed from the inputs, one layer at a time. An error can be measured from
the output. The backpropagation algorithm, introduced by Werbos (1974), and used
in (Rumelhart et al., 1988) for MLPs, consists in calculating the gradient of the error
with respect to the parameters of one layer at a time, starting from the output layer
and going sequentially to the input layer, based on the following formulae:

∂E

∂outi−1

=
∂E

∂ini

=
∂E

∂outi

∂outi

∂ini

(2.26)

∂E

∂θk

=
∂E

∂outi

∂outi

∂θk

(2.27)

2.5. Training Models 75

Figure 2.7: Multi-Layer Perceptron training by backpropagation of the error.

The algorithm can be applied when the connections between layers form a directed
acyclic graph, and the error is propagated from the outputs to the inputs, as illus-
trated on Figure 2.7, hence the term backpropagation, and the parameter updates are
computed on the way. The only requirement is to be able to compute the derivatives
of the outputs of a layer with respect to its inputs.

2.5.2.3 Backpropagation Through Time

In RNNs, the inputs of recurrent layers include their outputs at the previous timestep.
Thus, a sequential aspect is added to the layered structure of the network. The Back-
propagation Through Time algorithm (BPTT, Werbos (1990)) consists in propagating
the error both from the output to the input layer and to the previous timesteps.

When the network is unrolled in time, as shown on the right-hand side of Figure 2.4,
one obtains a directed acyclic graph, on which backpropagation methods can apply.
There are inputs and output layers at every timestep t, so the error for each t should
be incorporated in the gradients computations, as shown on Figure 2.8.

Figure 2.8: Backpropagation Through Time.

Williams & Zipser (1995) reviewed several methods to train RNNs, including BPTT
and Real-Time Recurrent Learning, as well as methods to efficiently compute gradients.

76
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

2.5.2.4 Regularization

The criterion optimized in the training of neural networks is a measure of error on
the training set. In the number of parameters in the model is large enough, the network
can memorize the training examples, and be excellent at predicting the correct targets
for examples of the training set, but perform poorly on unseen example.

The early stopping method, presented in Section 2.5.2.1, is a possible way of limiting
this problem, called overfitting. We present two regularization methods which help
reducing the overfitting phenomenon: weight decay, and dropout.

Weight Decay

The weight decay technique consists in adding a penalty to the cost function, which
depends on the weights of the network. A common formulation is the following:

Ereg(S) = E(S) + λ
∑

i,j,k

(

w
(k)
ij

)2
(2.28)

where the regularization term is the sum of squares of all the weights wij of all layers
(k), E(S) is the original cost function, and λ controls the relative importance given to
the original cost compared to the regularization part.

The practical effect of weight decay is that the training procedure will promote
solutions with small weights. It is generally observed that neural networks overfit less
with that constraints, which might be explained by the fact that with small weights,
the network is less sensible to small changes of the input.

Dropout

The dropout technique was recently proposed by Hinton et al. (2012) to reduce
overfitting. It consists in randomly ignoring some of the units of the network during
training. When dropout is applied to a hidden layer, a sample of units is dropped
for each training example, with some probability. The forward pass compute the out-
put of the network without those dropped units and corresponding connections. The
backpropagation procedure is performed in this network with missing nodes. This is
illustrated on Figure 2.9.

Using dropout is equivalent to train simultaneously 2N network architectures which
share weights. One architecture is randomly selected at each training step. At test
time, no unit is dropped, and the whole network is used. Because a layer following
dropout had less inputs during the training procedure, the weights are multiplied by
(1 − p), where p is the dropping probability, when the whole network is used. For an
MLP with a single hidden layer and a softmax output, this is equivalent to computing
the geometric mean of the outputs of all 2N possible architectures (Hinton et al., 2012).

2.5. Training Models 77

Figure 2.9: The Dropout technique.

One of the motivations of dropout is to prevent hidden units to rely on the output
of others, and make them useful for classification by themselves. The underlying goal
is to reduce overfitting, hence making it a form of regularization. Wager et al. (2013)
have shown that dropout is equivalent to a first-order L2 regularization after some
transform of the features. Pham et al. (2014) observed that the effects of dropout were
similar to those of an L2 regularization on the classification weights.

This technique has been successfully applied to MLPs (Dahl et al., 2013), ConvNNs
(Krizhevsky et al., 2012), LSTM-RNNs (Zaremba et al., 2014) and MDLSTM-RNNs
(Pham et al., 2014).

2.5.3 Training Deep Neural Networks

2.5.3.1 Statement of the problem

Neural networks with many hidden layers are attractive due to their resemblance to
the hierarchical organization of the brain. For example, in the visual system, successive
areas process information of increasing complexity, starting from oriented edges, to
actual understanding of the image. Similarly, simple features are extracted in lower
layers of deep neural networks, and combined in higher layers to recognize complex
structures.

Deep neural networks are very popular nowadays, in many applications of machine
learning, including computer vision, speech recognition, and natural language process-
ing. Error rates have drastically dropped with such models.

However, before sensible weight initialization techniques were proposed (Hinton
et al., 2006; Bengio et al., 2007; Glorot & Bengio, 2010), it seemed difficult to train deep
architectures. The successful exceptions are ConvNNs, which have a limited number
of weights, shared across several positions.

Glorot & Bengio (2010) published a series of experiments designed to understand
why training deep neural networks is difficult. They observe that a random initializa-
tion of weights induces an early saturation of activations in some layers. Saturated
activations have small gradients, which provoke small weight updates, explaining the
plateaus observed in training.

78
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

Moreover, the magnitude of gradients tends to decrease in the backpropagation
procedure, and weight updates in layer that are far from the output may be too small.
This is reminiscent of the vanishing gradient observed in standard RNNs (Bengio et al.,
1994b; Hochreiter, 1998), which, in training procedures such as BPTT where the net-
work is unfolded in time, may be interpreted as deep in time. This problem prevents
RNNs to learn long-time dependencies, and deep MLPs to successfully learn depen-
dency of the output on the input.

Methods were developed to overcome this issue. For MLPs, they deal mainly with a
good initialization of weights. Hinton et al. (2006) proposed an unsupervised training
method based on Restricted Boltzmann Machines to initialize the weights of Deep
Belief Networks. Erhan et al. (2009) showed that this initialization places the network
in a better position for the supervised training. Bengio et al. (2007) also use a greedy
layer-wise pre-training, based on supervised training of each layer in turn. In (Glorot
& Bengio, 2010), the authors propose a range for the uniform distribution used in
random initialization of the weights, aiming at keeping activations and gradients in
suitable range for effective gradient descent.

2.5.3.2 Unsupervised pre-training

In 2006, Hinton et al. (2006) proposed a method to efficiently train DNNs. The proce-
dure consists in initializing the weights of each layer in turn. The weights are obtained
by training a Restricted Boltzmann Machine (RBM). The training of RBMs is called
unsupervised in the sense that we do not need target labels for the training data. The
RBMs learn connections between observed variables and latent (hidden) ones, such
that the probability of the observations, given by the model, is maximized. Thus,
RBMs are generative models explaining the data. The connection weights learnt by
this procedure, for each layer, are the initialization of the weights of the neural network.
Then, the network can be trained in a classical supervised way (Bengio et al., 2007),
as presented in the previous section.

Figure 2.10: Unsupervised layer-wise RBM pretraining.

A Restricted Boltzmann Machine is a generative stochastic model, made of visi-
ble and hidden binary units. It is a form of neural network with undirected connections

2.5. Training Models 79

between visible and hidden units (and without visible-visible or hidden-hidden connec-
tions). It is an energy-based model, defined by the following energy for a given joint
configuration of visible units v and hidden units h:

E(v, h; θ) = −
V

∑

i=1

aivi −
H

∑

j=1

bjhj −
V

∑

i=1

H
∑

j=1

wijvihj (2.29)

where W = (wij) is the matrix of connections weights, and a = (ai) and b = (bj) are
bias vectors respectively for the visible and hidden units.

That energy function allows us to define the joint probability p(v, h) as

p(v, h; θ) =
1
Z

e−E(v,h;θ) (2.30)

where the normalization factor Z is the sum over all possible joint configurations. With
this formulation, we can easily compute the conditional probabilities of unit activations,
where the partition function Z does not appear:

p(vi = 1|h; θ) = σ(ai +
H

∑

j=1

wijhj) (2.31)

p(hj = 1|h; θ) = σ(bj +
V

∑

i=1

wijvi) (2.32)

Training With Equation 2.30, we can also compute the probability of a visible vector
v:

p(v; θ) =
1
Z

∑

h

e−E(v,h;θ) (2.33)

with which we define a cost function for training: the negative log-probability of the
training set with the model

ERBM(S) = −
∑

v∈S

log p(v; θ) (2.34)

The derivative with respect to the parameters is (taking the notation of Hinton (2010)):

∂ log p(v)
∂wij

= 〈vihj〉data − 〈vihj〉model (2.35)

〈vihj〉data is the expectation of vi and hj being active together, given by the data, which
can be computed with Equation 2.32 and the training set. 〈vihj〉model is the same
expectation, given by the model, which should be computed with Equation 2.30. This
calculation involves summing over all possible joint configurations, which is difficult to
do in practice.

In (Hinton, 2002), Hinton proposes a method to train RBMs called Contrastive
Divergence (CD). The underlying idea is that we can run Gibbs sampling alternatively
on the hidden hj and the visible vi. Running the Markov chain defined by this process
for an infinite number of steps, we can assume that 〈vihj〉CDinf

is a good replacement
for 〈vihj〉model. In practice, running the chain for n steps is sufficient to train RBMs,
and even a single step of CD works well.

80
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

The training procedure for the whole network is as follows (depicted on Fig-
ure 2.10). First, train an RBM with contrastive divergence, using the training obser-
vation vector as visible data. The product of gradient descent is a weight matrix W1,
for visible-hidden connections, and biases vectors. Then, the biases for visible units are
dropped, and we keep the hidden biases b1 and the weights. The connections between
visible and hidden units are oriented.

Then, the observations are forwarded through this first layer, using Equation 2.32,
and the hidden units are now considered as visible units of a new RBM. Training that
RBM produces a second weight matrix W2. After N such iterations, we have a network
of N layers, with incoming weights learnt in an unsupervised manner.

Finally, on top of this network, we add the output (softmax) layer. The weights
of the connection between the last pretrained layer and the output layer are randomly
initialized. The obtained network is an MLP, which can be trained with the supervised
methods described in Section 2.3.1.

2.5.3.3 Supervised pre-training

The method presented above initializes the weights by training generative models,
i.e. modeling the probability of observing the actual data, in an unsupervised manner.
Here, unsupervised means that we do not need labeled observations. By doing so, we
learn intermediate, and possibly more and more complex hidden representations which
explain or model the data.

The unsupervised part makes it possible to incorporate a virtually unlimited amount
of training data. Since no labels are required, the wealth of data available today,
especially through the Internet, can contribute to the creation of robust models.

The network obtained after the unsupervised pass, although being a possibly good
feature extractor, is not suited to the initial classification problem, which is why su-
pervised fine-tuning is necessary.

Another approach to weight initialization by training, patented in (Yu et al., 2011)
and also explored in (Bengio et al., 2007), consists in applying supervised training
methods. This approach, illustrated on Figure 2.11, also initializes the weights of one
layer at a time.

Figure 2.11: Supervised layer-wise MLP pretraining.

2.5. Training Models 81

We first build the MLP containing only the first hidden layer and its weight matrix
W1, and connect it directly to the output layer. We train this MLP as explained in
Section 2.3.1. Thus, the weights are adjusted so that the produced layer outputs help
discriminate the different classes.

Instead of waiting for training convergence of this MLP, we stop after a few iter-
ations, e.g. one epoch. First, this is merely a method for weight initialization, and
their values will be further adjusted in the next steps, so it is not necessary to waste
too much time in this part. Moreover, in the end, we do not want the outputs of this
particular layer to be the classification features, but rather to be intermediate features
helping to build more complex representations in higher layers. If we wait until conver-
gence of the network, we risk to get activations in the saturated parts of the sigmoid
(or tanh) function, which will make the final training difficult and slow.

Then, we throw away the connections between the hidden and output layers, and
add a second hidden layer after the first one. We keep W1 for the first layer, and
randomly initialize a weight matrix W2 connecting the hidden layers. We repeat the
training described above with this 3-layer MLP. Repeating this procedure N times, we
get a neural network with N hidden layers, which weights have been discriminately
initialized. This network is trained until convergence.

2.5.4 Training Complete Handwriting Recognition Systems

2.5.4.1 Bootstrapping

One may train the neural network as a classifier, with a labeled dataset S =
{x(i), z(i)} with methods presented in Section 2.5.2. For example, in the hybrid NN/HMM
approach, x(i)s are frames and z(i)s, HMM states.

The targets may be obtained with uniform segmentation of observation sequences,
or by alignment of the data using a trained system, e.g. GMM-HMM. One may re-align
the observations with HMM states during the training procedure to refine the targets.

A similar approach for systems predicting character consists in using already seg-
mented data. For example, one may train the network on datasets of isolated character.

The neural network is then plugged into the whole system, and its predictions
provide scores for the decoding procedure.

2.5.4.2 Forward-Backward training of Hybrid NN/HMM

The bootstrapping procedure presented above assumes a prior segmentation of the
input data. However, an advantage of HMMs is the possibility to train and apply them
to unsegmented data. In the Baum-Welch training (Section 2.5.1), a forward-backward
procedure is employed in the HMM of the true word sequence, in order to adjust the
HMM parameters without making hard decisions about boundaries.

Replacing the GMM likelihoods p(x|s) by the scaled NN posteriors p(s|x)
p(s)

in the
HMM formulation, and in forward and backward variables, one can apply the forward-
backward algorithm to obtain state posterior probabilities in the HMM, including NN

82
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

and transition probabilities:

αt(s)βt(s) = p(x, qt = s|λ)
∑

s

αt(s)βt(s) =
∑

s

p(x, qt = s|λ) = p(x|λ)

p(qt = s|x, λ) =
αt(s)βt(s)

∑

r αt(r)βt(r)

This training procedure, based on the forward-backward algorithm applied to HMMs
or similar models, can already be found in Alpha-nets (Bridle, 1990a). Bengio et al.
(1992); Haffner (1993) also propose a global training of the NN/HMM system using an
MMI loss, computed with forward and backward variables. They report an improve-
ment of results over the separate training of NN and HMMs.

Senior & Robinson (1996); Yan et al. (1997) first train a network with hard align-
ments, and then estimate the state posteriors with the forward-backward procedure to
get a new, softer, estimate of targets, and use them for cross-entropy training of the
NN.

Konig et al. (1996); Hennebert et al. (1997) focused on theoretical aspects, and
explained the required assumptions for this training to achieve a global estimation of
posterior probabilities. Namely, with the simplifications suggested in (Hennebert et al.,
1997), they show that p(W|x) is directly optimized with this procedure.

2.5.4.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) was proposed by Graves et al. (2006),
and corresponds to the task of labelling unsegmented data with neural networks. It
is different from the previous methods, where there is one target at each timestep (or
each frame in the sliding window approach).

The basic idea of this framework is that the output of the neural network, when
applied to an input sequence, is directly the sequence of symbols of interest, in our case
the sequence of characters. The main advantages presented in (Graves et al., 2006) are
(i) that the training data does not need to be pre-segmented, i.e. we do not need one
target for each frame to train the network, and (ii) that the output do not require any
post-processing: it is already the sequence of characters, while usually neural networks
predict posterior probabilities for HMM states, which should be decoded.

To make this possible, several artefacts are required. The input sequence has some
length T = |x|. Thus the length of the sequence of predictions (after the softmax)
will also be T , while the length of the expected output sequence is generally smaller
|z| ≤ T . If no complicated post-processing is to be done, the simplest way is to have the
network predict characters directly, and then look at the predictions. The output can
be obtained by removing duplicates, e.g. AAAABBB −→ AB. A problem arises when
two successive labels are the same, for example if we want to predict AAB. This is one
of the reason why a blank symbol⊘ is introduced in (Graves et al., 2006), corresponding
to observing no label. Therefore, in the CTC framework, the network has one output
for each label in an alphabet L, plus one blank output, i.e. the output alphabet is

2.5. Training Models 83

L′ = L ∪ {⊘}. A mapping B : L′T 7→ L≤T is defined, which removes duplicates, then
blanks in the network prediction. For example: B(⊘AA⊘⊘B) = B(AAA⊘BB) = AB.

Provided that the network outputs for different timesteps are independent, given
the input (because there is no connection from the output layer to intermediate lay-
ers (Graves et al., 2006)), the probability of a label sequence π ∈ L′T for a given x in
terms of the RNN outputs is

p(π|x) =
∏

t

yt
πt

(x) (2.36)

and the mapping B allows to calculate the posterior probability of a label (character)
sequence l ∈ L≤T by summing over all possible segmentations:

p(l|x) =
∑

π∈B−1(l)

p(π|x) (2.37)

With this formula, we can train the network to maximize the probability of the correct
labelling of the unsegmented training data S = {(x, z), z ∈ L≤|x|} by minimizing the
following cost

ECT C = −
∑

(x,z)∈S

log p(z|x) (2.38)

with gradient descent techniques.

Figure 2.12: CTC graph.

The computation of p(z|x) implies a sum over all paths in B−1(z), each of which of
length T = |x|, which is expensive. Graves et al. propose to use the forward-backward
algorithm in a graph representing all possible labelling alternatives. An example of
this graph is shown on Figure 2.12. The forward (resp. backward) variables represent
the probabilities of prefixes (resp. suffixes).

84
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

They are defined as follows:

αt(s) = p(π1:t : B(π1:t) = l1:s/2, πt = l′
s|x) =

∑

π:B(π1:t)=l1:s/2

t
∏

t′=1

yt′

πt′
(2.39)

βt(s) = p(πt+1:T : B(πt:T) = ls/2:|l|, πt = l′
s|x) =

∑

π:B(πt:T)=ls/2:|l|

T
∏

t′=t+1

yt′

πt′
(2.40)

where l ∈ L≤T is the considered label sequence and l′ ∈ L′T is l, augmented with
blanks, of length |l′| = 2|l|+ 1.

With the blank being optional, and the transitions allowed by the mapping B, we
get the recurrences

αt(s) =

yt
l′s

∑1
n=0 αt−1(s− n), if l′

s = ⊘ or l′
s = l′

s−2

yt
l′s

∑2
n=0 αt−1(s− n), otherwise

(2.41)

for forward variables, and

βt(s) =

yt+1
l′s+1

βt+1(s + 1) + yt+1
l′s

βt+1(s), if l′
s = ⊘ or l′

s = l′
s−2

yt+1
l′s+1

βt+1(s + 1) + yt+1
l′s

βt+1(s) + yt+1
l′s+2

βt+1(s + 2), otherwise
(2.42)

for backward ones.
The probability of the labelling l is given by the forward variables

p(l|x) = αT (|l′|) + αT (|l′| − 1) (2.43)

and by the product αβ at any time t

p(l|x) =
|l′|
∑

s=1

αt(s)βt(s) (2.44)

which are classical forward-backward results. The derivatives of the cost with respect
to the network outputs are

∂E

∂yt
k

= −
1

p(z|x)
∂p(z|x)

∂yt
k

= −
1

∑|z′|
s′=1 αt(s′)βt(s′)

∂
(

∑|z′|
s=1 αt(s)βt(s)

)

∂yt
k

(2.45)

With simple calculus, we can show that

∂p(z|x)
∂yt

k

=
1
yt

k

∑

s∈lab(z,k)

αt(s)βt(s) (2.46)

where lab(z, k) = {s : z′
s = k}. Thus we have the following derivatives with respect to

the pre-softmax activations:

∂E

∂at
k

= yt
k −

∑

s∈lab(z,k)

αt(s)βt(s)
∑

s′ αt(s′)βt(s′)
(2.47)

2.5. Training Models 85

2.5.4.4 Graph-Transformer Networks

Bottou et al. (1997); Le Cun et al. (1997) proposed to train the neural network
with backpropagation, in an integrated manner. In the Graph-Transformer Networks
(GTN) approach, the character scores given by a ConvNN are included in a recognition
graph. Modules transform the graph in successive steps, such as the composition with
a grammar, and the extraction of the best path. The ConvNN can also be seen as a
graph transformer, following a field locator and a segmenter.

Methods are proposed to back-propagate the gradients of the recognition error
through the different graph-transformers (LeCun et al., 1998). The error compares the
constrained recognition result, i.e. the best path for the desired character sequence,
and the actual recognition result.

2.5.4.5 Sequence-Discriminative

Sequence-discriminative training optimizes criteria to increase the likelihood of the
correct word sequence, while decreasing the likelihood of other sequences. This kind of
training is similar to the discriminative training of GMM-HMMs with the Maximum
Mutual Information (MMI) or the Minimum Phone Error (MPE) criteria.

The MMI criterion is defined as follows:

FMMI(S) =
∑

(x,Wr)∈S

log
p(Wr|x)

∑

W p(W|x)
(2.48)

The Minimum Phone Error (MPE, Povey (2004)) class of criteria has the following
formulation:

FMBR(S) =
∑

(x,Wr)∈S

∑

W p(W|x)A(W, Wr)
∑

W′ p(W′|x)
(2.49)

where A(W1, W2) is a measure of accuracy between W1 and W2. It is the number of
correct characters for MPE, or the number of correct HMM states in the recognized
sequence (compared to the forced alignments) for state-level Minimum Bayes Risk
(sMBR, Kingsbury (2009)).

These criteria involve a summation over all possible word sequences, which is difficult
to compute in practice. Instead, recognition lattices are extracted with the optical and
language models, and only word sequences in these lattices are considered in the cost
function.

Sequence-discriminative training is popular in hybrid NN/HMM in speech recogni-
tion. As already mentioned earlier, Bengio et al. (1992); Haffner (1993) applied the
MMI criterion to the global training of a NN/HMM system. In the past few years,
these training methods arouse much interest with the advent of deep neural networks
(Kingsbury, 2009; Sainath et al., 2013; Veselý et al., 2013; Su et al., 2013). Usually, a
neural network is first trained with a framewise criterion. Then, lattices are generated,
and the network is further trained with MMI, MPE, or sMBR. Regenerating the lat-
tices during training may be helpful, but the gains are limited beyond the first epoch

86
Chapter 2. Handwriting Recognition with Hidden Markov Models and Neural

Networks

(Veselý et al., 2013). In speech recognition, experiments with sequence-discriminative
training yielded relative WER improvements in the range of 5-15%.

It should be noted that sequence-discriminative training of NN/HMM systems is
also found for handwriting recognition, for example in the explicit segmentation system
of Tay et al. (2001), and in (Bengio et al., 1995).

2.6 Conclusion

In this chapter, we have presented HMMs and various kinds of neural networks. We
explained how they are built and trained, and showed examples of their individual
and combined application to handwriting recognition. From these observations, a few
questions may be asked.

Can deeper neural networks yield significant improvements over shallow
ones?

Deep architectures with more than one or two hidden layers are limited to convolu-
tional ones (ConvNNs (Le Cun et al., 1997), MDLSTM-RNNs (Graves & Schmidhuber,
2008)) for handwritten text recognition. The number of extracted features in early lay-
ers of these architectures is small, due to local receptors and weight sharing. Densely
connected networks, such as MLPs (Dreuw et al., 2011a; Espana-Boquera et al., 2011)
or BLSTM-RNNs (Graves et al., 2009; Kozielski et al., 2013a; Morillot et al., 2013b),
have only one or two hidden layers.

The few deep MLPs found in the literature only focus on isolated character recog-
nition (Ciresan et al., 2010; Cireşan et al., 2012) or keyword spotting (Thomas et al.,
2013). On the other hand, deep MLPs are now the standard acoustic model in HMM-
based speech recognition, and lead to significant reductions in error rates.

In this thesis, we will study deep architectures for MLPs in Chapter 5, and for
BLSTM-RNNs in Chapter 6, and show that deeper networks can also give better
results in handwriting recognition.

With deep neural networks, should we use pixel inputs rather than hand-
crafted features?

In speech recognition, we observe that deep neural networks perform well on less
elaborated features than MFCCs (e.g. filterbanks). We will study that aspect by
comparing the results using handcrafted features and pixel values.

Which criterion should be optimized to train neural networks for handwrit-
ing recognition?

Several procedures to train the neural networks to maximize the likelihood of the
desired word sequences have been proposed in the nineties (forward-backward training,
GTN, or CTC more recently). In recent publications in handwriting recognition, the

2.6. Conclusion 87

neural networks are either trained framewise with the bootstrapping procedure, or they
are RNNs and trained with CTC.

On the one hand, the equation of CTC are similar to those of forward-backward
training, and CTC-trained RNNs achieve very good results. Thus, we can wonder
whether the CTC algorithm can be applied with more standard HMM structures rather
than with the topology proposed by Graves et al. (2006), and whether CTC training
of MLPs would improve their results (Chapter 7).

On the other hand, training of deep neural networks (especially MLPs), integrating
lexicons and language models are common nowadays in speech recognition. More
specifically, sequence-discriminative criteria, similar to those employed to train HMMs,
such as MMI, MPE or state-level Minimum Bayes Risk (sMBR), generally improve
the performance of neural networks. We will see that we can also achieve relative
WER improvements in the range of 5-10% with deep MLPs in handwriting recognition
(Chapter 5).

What are the strengths of RNNs, which are popular for handwriting recog-
nition, and how do they compare to MLPs?

LSTM-RNNs produce excellent results for handwritten text recognition. They are in-
volved in state-of-the-art systems (e.g. (Doetsch et al., 2014) for IAM database, (Pham
et al., 2014) for Rimes), as well as in the winning systems of most international evalu-
ations (ICDAR (Grosicki & El-Abed, 2011), OpenHaRT (Tong et al., 2014), Maurdor
(Brunessaux et al., 2014), HTRtS (Sánchez et al., 2014)). We studied different aspects
of LSTM-RNNs, in order to try to understand what makes them so good (Chapter 6),
and compared them to deep MLPs (Chapter 8).

The next two chapters present the setup of our experiments, give details about the
image processing, feature extraction, and language modeling, and provide preliminary
GMM-HMM results.

Part II

EXPERIMENTAL SETUP

Chapter 3

Databases and Software

Contents
3.1 Introduction . 93

3.2 Databases of Handwritten Text 93

3.2.1 Rimes . 93

3.2.2 IAM . 94

3.2.3 Bentham . 95

3.3 Software . 96

3.4 A Note about the Experimental Setup in the Next Chapters 97

3.1. Introduction 93

3.1 Introduction

In this short chapter, we provide some details about the experimental setup. Namely,
we start by briefly presenting the databases in Section 3.2. A more comprehensive
analysis of the data, including images and language statistics, data collection, and
published results, is given in Appendix A. In Section 3.3, we give an overview of the
tools used to build and evaluate our systems. Finally, we introduce some notations
employed to clarify the setup of the experiments explained in different part of this
thesis, in Section 3.4.

3.2 Databases of Handwritten Text

We carried out the experiments on publicly available databases, in order to compare
our work to other approaches and research groups (see Chapter 8). We limited the
scope of this thesis to Latin script, and selected three databases. Overall, they contain
two languages (French and English) and two epochs (contemporary and 19th century).
The data creation/collection methods are specific to each database, and the textual
content more or less controlled. In IAM (Marti & Bunke, 2002), the text to write were
imposed to contributors, so the task was to copy. In Rimes (Augustin et al., 2006),
only the topic of a letter was given. The last database consists of personal notes of
Jeremy Bentham (Sánchez et al., 2014), making it differently constrained.

A common practice in handwriting recognition is to divide the databases in three
distinct sets. The free parameters of the systems are optimized with the data of the
training set. The evaluation set (or test set) contains images not seen during training,
on which the performance of the system, its ability to generalize to unknown exam-
ples, is assessed. Training algorithms have some parameters themselves (the hyper-
parameters), that should be set to train the systems. The development (or validation)
set is another test set, on which we can check the best choice of values for these hyper-
parameters. Most of the results presented in the thesis are on those validation sets. A
selection of the best systems was made, and we evaluated them on the actual test sets
in Chapter 8.

In the following, we briefly introduce the databases. More details and figures about
the content of the documents (images and texts) can be found in Annex A. Please refer
to the corresponding publications for precision about the data collection, digitalization
and ground-truth preparation.

3.2.1 Rimes

The Rimes database (Augustin et al., 2006) consists of images of handwritten letters
from simulated French mail. We followed the setup of the ICDAR 2011 competition.
The available data are a training set of 1,500 paragraphs, manually extracted from the
images, and an evaluation set of 100 paragraphs. We held out the last 149 paragraphs
(approximately 10%) of the training set as a validation set, and trained the systems
on the remaining 1,391 paragraphs. Figure 3.1 shows examples of images in Rimes
database. Table 3.1 presents the number of words and characters in the different

94 Chapter 3. Databases and Software

Table 3.1: Number of pages, lines, words and characters in each dataset

Database Set #Pages #Lines #Words (unique) #Characters (unique)

Rimes Train 1,391 10,203 73,822 (8,061) 460,201 (97)
(French) Dev. 149 1,130 8,380 51,924

Eval. 100 778 5,639 35,286

IAM Train 747 6,482 55,081 (7,843) 287,727 (79)
(English) Dev. 116 976 8,895 43,050

Eval. 336 2,915 25,920 128,531

Bentham Train 350 9,198 76,707 (12,104) 419,764 (93)
(English) Dev. 50 1,415 11,580 64,070

Eval. 33 860 7,868 40,231

Figure 3.1: Examples from Rimes Database.

subsets. There are 460k characters distributed in more than 10k text lines, and 97
different symbols to be modeled (lowercase and capital letters, accentuated letters,
digits and punctuation marks). The average character length, computed from the line
widths, is 37.6 pixels at 300 DPI.

3.2.2 IAM

The IAM database (Marti & Bunke, 2002) consists of images of handwritten pages.
They correspond to English texts extracted from the LOB corpus (Johansson, 1980),
copied by different writers. The database is split into 747 images for training, 116 for
validation, and 336 for evaluation. Note that this division is not the one presented in
the official publication or on the website1, but the one found in various publications
(Bertolami & Bunke, 2008; Graves et al., 2009; Kozielski et al., 2013b). We obtained
the subdivision from H. Bunke, one of the creator of the database. Figure 3.2 shows
examples of images in IAM database. Table 3.1 presents the number of words and
characters in the different subsets. There are almost 290k characters distributed in
more than 6k text lines, and 79 different symbols to be modeled (lowercase and capital
letters, digits and punctuation marks). The average character length, computed from
the line widths, is 39.1 pixels at 300 DPI.

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

3.2. Databases of Handwritten Text 95

Figure 3.2: Examples from IAM Database (the text to copy corresponds to the typed
header paragraph).

3.2.3 Bentham

Figure 3.3: Examples from Bentham Database.

This database contains images of personal notes of the British philosopher Jeremy
Bentham, written by himself and his staff in English, around the 18th and 19th cen-
turies. The data were prepared by University College, London, during the tranScrip-

96 Chapter 3. Databases and Software

torium project2(Sánchez et al., 2013). We followed the setup of the HTRtS competi-
tion (Sánchez et al., 2014). The training set consists of 350 pages. The validation set
comprises 50 images, and the test set 33 pages. Figure 3.3 shows examples of images in
the Bentham collection. Table 3.1 presents the number of words and characters in the
different subsets. There are 420k characters distributed in almost 10k text lines, and 93
different symbols to be modeled (lowercase and capital letters, digits and punctuation
marks). The average character length, computed from the line widths, is 32.7 pixels
at 300 DPI.

3.3 Software

We used several software implementations to perform different tasks in the recog-
nition pipeline, and to train our models. In this section, we briefly present them.
Table 3.2 gives an overview of the versions and licences, as well as their application.

Table 3.2: Software used in this thesis.

Software License Version Application
A2iA Proprietary - image processing,

feature extraction,
NN training

Python Imaging c©Secret Labs AB 1.1.7 image processing,
Library (PIL) feature extraction

Kaldi Apache v2 rev. 2600 HMMs, GMM-HMMs,
(Povey et al., 2011) MLP training,

decoding,
system combination

SRILM SRILM Research 1.7.1 language modeling
(Stolcke, 2002) Community Licence

SCTK Public Domain 2.4.7 scoring,
(Fiscus, 1998) system combination

A2iA software is a private implementation of document processing and text recogni-
tion algorithms, developed in C++ by the company. We used some of its functionality
for image processing, feature extraction, and neural network training.

Kaldi (Povey et al., 2011) is a speech recognition toolkit, written in C++, and re-
leased with an Apache v2 license. It is provided with many executable programs
performing simple tasks, such as accumulating statistics in the Expectation step of
GMM training, updating the GMMs, decoding with likelihood matrices. The modular
architecture of the toolkit allows an easy integration with other programs. The code

2http://transcriptorium.eu/

3.4. A Note about the Experimental Setup in the Next Chapters 97

is released with many example scripts. We used the decoders of Kaldi, as well as the
programs for GMM, MLP, and HMM training, decoding graph preparation and lattice
operations, such as rescoring or combination.

SRILM (Stolcke, 2002) is a language modeling toolkit, developed in C++ in the
Stanford Research Institute (SRI), released freely for research purposes, under the
“SRILM Research Community License”. Several executables allowed us to build lan-
guage models, in the ARPA format, transformed into FSTs with Kaldi.

SCTK (Fiscus, 1998) is a scoring package released by the National Institute of Stan-
dards and Technology (NIST). We used the sclite program to compute the WER
results. For the CERs, we did not use the -c option. Instead, we separated the
characters and replaced the whitespace with a special symbol, in order to take them
into account into the error rate. Moreover, we used the rover program for system
combination.

The Python Imaging Library (PIL) was also used to implement some simple image
processing algorithms.

3.4 A Note about the Experimental Setup in the

Next Chapters

In the following chapters, we will study several aspects of deep neural networks,
along with training techniques. The results presented in different sections, tables and
figures might not always be comparable to each other, due to different setups.

Sometimes, a given aspect will be the focus of the experiment, and other parts will
be fixed. When relevant and possible, the result tables and figures will be accompanied
with the experimental setup regarding the following aspects:

• The input features of the systems: handcrafted features (Feat.) or pixel values
(Pix.).

• The depth of neural networks: we focus on deep (Deep) networks, but sometimes,
we will use shallow (Shallow) architectures, for rapid experimentation.

• For RNNs, we sometimes applied the Dropout (Drop.) regularization technique
(Hinton et al., 2012; Pham et al., 2014).

• The training procedure of neural networks optimizes a framewise criterion (Xent),
the CTC criterion (CTC), or a sequence-discriminative one (Seq.).

So, for example, the mention Feat./Deep/Drop. in a result table means that all
error rates presented are achieved with the handcrafted features, and a deep architec-
ture with dropout. The experiment in this case might be a comparison of different
training criterion.

Chapter 4

Baseline System

Contents
4.1 Introduction . 101

4.2 Preprocessing and Feature Extraction 102

4.2.1 Image Preprocessing . 102

4.2.2 Feature Extraction with Sliding Windows 103

4.2.2.1 Handcrafted Features 103

4.2.2.2 Pixel Values . 104

4.3 Language Models . 105

4.3.1 Corpus Preparation and Vocabulary Selection 105

4.3.2 Language Models Estimation . 106

4.3.3 Recognition Output Normalization 107

4.4 Decoding Method . 108

4.5 A GMM/HMM baseline system 109

4.5.1 HMM topology selection . 109

4.5.2 GMM/HMM training . 109

4.5.3 Results . 110

4.6 Conclusion . 112

4.1. Introduction 101

4.1 Introduction

In the next chapters, we present many experiments, carried out on three public
databases. In this thesis, we focus on the optical model of HMMs for handwriting
recognition. More particularly, we study two kinds of deep neural networks in the
hybrid NN/HMM framework presented in the Chapter 2. The inputs of our systems
are sequences of feature vectors extracted from preprocessed line images. The outputs
are posterior probabilities of HMM states.

We explored different aspects of the neural networks: their structure, their parame-
ters, their training procedure. We present results of the whole recognition systems, i.e.
with raw image inputs, and word sequence outputs. Most of the components of these
systems, excluding the neural networks, are kept fixed throughout the experiments,
unless stated otherwise.

This chapter is dedicated to the presentation of these fixed components:

• The text line image preprocessing

• The extraction of features

• The modeling with Hidden Markov Models (HMMs)

• The language models, and output normalizations

Figure 4.1 shows an overview of the recognition system and of its components. The
blue ones are the fixed ones, presented in this chapter. In the last section, we also
present a baseline optical model – a Gaussian Mixture Model.

Figure 4.1: Overview of the recognition system.

102 Chapter 4. Baseline System

In this chapter, we introduce the components, and justify the choice of parameters.
In Section 4.2, we describe the image preprocessing and the extraction of two types of
features – handcrafted features and pixel values – with sliding windows.

Language models are detailed in Section 4.3.
In Section 4.4, we present the decoding method, using the Kaldi toolkit (Povey

et al., 2011), based on Finite-State Transducers.
In the last Section (4.5), we evaluate the quality of the choices of preprocessing,

feature extraction and language models by training GMM/HMMs. These systems will
also serve as baselines for the rest of the work, and provide forced alignments to train
neural networks. We show that we obtain reasonable results, comparable to the best
published ones for GMM/HMMs. Moreover, the comparison with the best systems
in general, which involve Recurrent Neural Networks, proves that these discriminative
models are more powerful for handwriting recognition, and justify the need to explore
them.

4.2 Preprocessing and Feature Extraction

In this section, we present the image preprocessing applied and the features ex-
tracted. We experimented several options. The number of all different combinations
was too large to try them all. The quick experiments consisted in training GMM/HMM
systems with 10% of the training set, for only a few EM iterations and Gaussians per
state, and recording the WER on 10% of the validation set, with a very small closed
vocabulary (around 500 words without OOVs) and a unigram language model. We
used the handcrafted features described in the second part of this section, exctracted
with a sliding window. We present results on IAM, where we tried most of the config-
urations. We also tuned Rimes and Bentham systems, starting with setups that were
good for IAM. High WERs are caused by the limited amount of data (image and vo-
cabulary) and order of language model, but the selected methods produced reasonable
GMM/HMM baselines in the end (cf. Section 4.5) and state-of-the-art final systems
(cf. Chapter 8).

4.2.1 Image Preprocessing

First the potential skew in the image is corrected with the algorithm of Bloomberg
et al. (1995). We applied the slant correction method presented in (Buse et al., 1997).
For contrast enhancement, we tried adaptive thresholding (Otsu, 1979), and the inter-
polation method from (Roeder, 2009). The following table shows that the latter gives
better WERs, with two choices of sliding window widths.

Window size: 6px 9px
Method None 54.2% 58.0%

Adaptive 57.2% 58.5%
Interpolation 53.1% 57.2%

We also tried to normalize the height of images, either to a fixed value of 72px
or with region-dependent methods (Toselli et al., 2004; Pesch et al., 2012), with fixed

4.2. Preprocessing and Feature Extraction 103

height for each region (ascenders, core, descenders – 22, 33 and 17px, or 24px for each).
The regions are found after deskew and deslant with the algorithm of Vinciarelli &
Luettin (2001). We selected the normalization of each region to 24px, based on the
following results (WER):

Window size: 6px 9px
Method None 56.9% 59.6%

Fixed (72px) 54.2% 58.7%
Region (22px, 33px, 17px) 58.7% 63.8%
Region (24px, 24px, 24px) 53.1% 57.2%

4.2.2 Feature Extraction with Sliding Windows

We used two kinds of features: handcrafted features, and raw pixel intensities.
A sliding window is scanned through the line image to extract features.

4.2.2.1 Handcrafted Features

The handcrafted features are geometrical and statistical features extracted from the
window. They were proposed by Bianne-Bernard (2011); Bianne et al. (2011), and
derived from the work of El-Hajj et al. (2005). They gave good performance on several
public databases (Menasri et al., 2012; Bianne et al., 2011).

The text baseline and core region are computed with the algorithm of (Vinciarelli
& Luettin, 2001), and the following values are calculated:

• 3 pixel density measures: in the whole window, and in the regions above and
below the baseline,

• pixel densities in each column of pixels (wf values, where wf is the width of the
sliding window,

• 2 measures of the center of gravity: relative vertical positions with respect to the
baseline and to the center of gravity in the previous window,

• 12 measures (normalized counts) of local pixel configurations: six configurations,
computed from the whole window and from the core region,

• histogram of gradients (HoG) in 8 directions.

All these features form a (25+wf)-dimensional vector, to which deltas are appended,
resulting in feature vectors of dimension 56 (wf = 3px). The parameters of the sliding
window (width and shift) for the handcrafted features have been tuned using the same
method as for preprocessing. The result is presented on Figure 4.2. Each shift value
corresponds to a different subplot, and each width to a different line color. We tested
different number of HMM states per character. The best parameters were a shift and
width of 3px each (no overlap between windows). We ran a full training of a selection
of the best systems, which confirmed the superiority of the selected parameters.

104 Chapter 4. Baseline System

Figure 4.2: Optimization of the sliding window parameters (IAM)

For neural networks, the features are normalized to have zero mean and unit vari-
ance. We compute the mean and standard deviation along each dimension on the
training set. A feature vector for neural networks is obtained by subtracting the mean
and dividing by the standard deviation in each dimension.

4.2.2.2 Pixel Values

The “pixel features” are extracted with a sliding window. The width of the window
was optimized for deep neural networks: 45px for Rimes and IAM, 57px for Bentham.
We also tried variations of these values in specific experiments. In order to extract
the same number of frames for both kinds of features (so we can keep the same HMM
topologies, use GMM/HMM forced alignments for both input types, and get compara-
ble results), the shift was fixed to be the same as for handcrafted features. Moreover,
we padded the images with (wp − wf)/2 columns of white pixels on the left and right
borders, where wp (resp. wf) is the the width of the window for pixel values (resp.
handcrafted features). This is illustrated on Figure 4.3.

To limit the number of features, each frame is downscaled from a height of 72px
to a height of 32px. The aspect ratio is kept constant (20x32px for Rimes and IAM,
25x32px for Bentham). This is done after the window extraction in order to keep
the integer shift fixed equal to 3px. The pixels intensities are transformed with the
following formula:

x 7→
255− x

255

to lie in the interval [0, 1] (1 corresponding to black pixels). The frame is flattened to
obtain the 640-dimensional feature vectors (800-dimensional for Bentham). No Princi-
pal Component Analysis or other decorrelation or dimensionality reduction algorithm

4.3. Language Models 105

Figure 4.3: Extraction of corresponding handcrafted and pixel features with two dif-
ferent sliding windows.

was applied.
These features are only used in neural networks, and are also normalized to zero

mean and unit variance. The difference with handcrafted features is that we do not
normalize along each dimension separately, but compute the global pixel mean and
standard deviation, independently of the pixel location.

4.3 Language Models

We trained language models for each database with the SRILM toolkit (Stolcke,
2002). First, we selected a vocabulary and prepare the corpus for LM training. The
tokenization and normalizations applied to the training corpora, as well as the vocab-
ularies are presented in the first part of this section. The output of the recognition
system is a sequence of tokens from the vocabulary. After giving details about LM
training, we present the post-processing applied to the transcriptions.

4.3.1 Corpus Preparation and Vocabulary Selection

Each database has specificities. For example, Rimes contains many reference codes
and acronyms. Hyphenation appears a lot in Bentham database. We applied different
tokenizations to take them into account and limit the size of the vocabularies.

For IAM, the language model is trained on the LOB, Wellington and Brown corpora.
Since IAM consists of texts from the LOB corpus, the passages corresponding to the
validation and test sets were removed from the corpus. The punctuation symbols
were separated from words, with a special treatment of contractions, for which the
apostrophe is assigned to the right part. We kept the 50,000 most frequent words in
the corpus in the vocabulary.

For Rimes, we also split the words made only of digits and/or capital letters, so
that the reference codes, likely to appear only once, are not included in the language
model. The LM was trained on the tokenized training set paragraph annotations, with
a vocabulary including all tokens (5,000).

106 Chapter 4. Baseline System

For Bentham, we first extracted complete paragraphs of text from the line annota-
tions. There were lines with a single word, which did not always fit into the sentence.
When we re-built the paragraphs, we ignored these, but kept them for unigram counts.
The hyphenation does not make sense either at paragraph level, so we reconstructed
whole words from hyphenated ones. Hyphenation is signaled at the end and beginning
of lines by three different symbols (:, -, and =). When we found a word ending with
an hyphenation symbol, followed by a word beginning with one, we reassembled the
word. If we found beginnings but no ending (or the opposite), we droped the sentence.

To limit the size of the vocabulary, we also isolated currency symbols, and split
sequences of digits and capital letters.

A vocabulary of 7,318 words is extracted from this corpus. In order to recognize
hyphenated words, we added hyphenated versions in the vocabulary. For all words
with more than ten occurrences, we generated all possible (beginning, end) pairs using
Pyphen1. For example, “hyphenation” produces (’hyphen’, ’ation’) and (’hy’,

’phenation’). We added the three possible hyphenation symbols at the end (resp.
beginning) of words beginnings (resp. endings), and included them in the vocabulary.
It increased the size to 32,692 words, but decreased the Out-Of-Vocabulary (OOV)
rate on the validation set from 7.1 to 5.6%.

4.3.2 Language Models Estimation

Note: the perplexities presented in this section do not take into account the out-of-
vocabulary words.

IAM — We used a 3-gram language model trained on the tokenized LOB, Brown
and Wellington corpora, with modified Kneser-Ney smoothing. The resulting model
has a perplexity of 298 and an OOV rate of 4.3% on the validation set (respectively 329
and 3.7% on the evaluation set). This LM was trained by the handwriting recognition
team at RWTH University in Aachen, and kindly provided to us by P. Doetsch, M.
Kozielski and their colleagues.

Rimes — We trained ngrams of different orders, with different discounting methods,
and measured the perplexity on the normalized validation set annotations. The results
are summarized on Table 4.1. We notice that Kneser-Ney discounting produce better
language models. The improvement from 4 to 5gram was small, so we built a 4gram
LM with Kneser-Ney discounting (Kneser & Ney, 1995) as a tradeoff between size and
perplexity. The language model has a perplexity of 18 and OOV rate of 2.9% on the
validation set (respectively 18 and 2.6% on the evaluation set).

Bentham — We estimate the LMs with the ngram counts from the corpus. The
hyphenated word chunks are added to the unigrams with count 1. We generated 4grams
with Kneser-Ney discounting. Table 4.2 presents the perplexities of different ngrams.
They are better without hyphenation, but we found that the hyphenated version gave
better recognition results.

1http://pyphen.org

4.3. Language Models 107

Table 4.1: Perplexities of Rimes LM with different discounting methods and ngram
orders, on the validation set.

Discounting 1gram 2gram 3gram 4gram 5gram
Natural 282.1 31.1 21.9 20.4 20.2

Witten & Bell (1991) 288.0 30.7 21.0 19.4 19.4
Kneser & Ney (1995) 283.4 29.2 19.6 18.0 17.9

Table 4.2: Perplexities of Bentham LMs with different ngram orders and hyphenation,
on the validation set.

Hyphenation Size OOV% 1gram 2gram 3gram 4gram
No 7,318 7.1 348.7 129.4 101.7 96.7
Yes 32,692 5.6 656.1 137.6 108.4 103.1

4.3.3 Recognition Output Normalization

We evaluated the system by comparing the recognition outputs to the ground-truth
transcriptions. We compute the WER and CER. Different databases have different
annotation conventions. For example:

• In Rimes, exclamation and question marks are separated from words most of the
time. Full stops, commas, quotes, currencies, parentheses sometimes are, but not
always. Contractions are mostly not.

• In IAM, the punctuation is separated from words, except for apostrophe: when it
is a single quote mark, it is separated; when a possessive mark, it is not (e.g. the

party’s supporters, the neutrals’ conference). Verb contractions are also
separated (e.g. he ’s), but negation contractions are not (e.g. don’t).

• In Bentham, punctuation symbols are separated, even in contractions and pos-
sessives (e.g. it ’ s), except when involved in hyphenation.

Our systems model whitespaces, but they are optional during decoding. The output
is a sequence of LM tokens (words). In the initial transcription, we insert spaces
between each item in the sequence. We transform the transcriptions obtained with our
systems so they match the database conventions rather than the tokenization chosen
for LMs. The transformations are simple rule-based ones, mainly based on regular
expressions. Since we do not apply a complicated post-processing, it is not always
possible to retrieve the right format (e.g. for the “’s” in IAM). The following post-
processing is done:

Rimes — We remove spaces in sequences of digits/capital letters. We apply the
rules for punctuation (e.g. full spaces, commas, parentheses are not separated from
words), and remove the spaces around apostrophes.

108 Chapter 4. Baseline System

IAM — We stick ’s to any word which is not in a list of pronouns (he, she, it, what,
who, where, how, that, there), and ’t to the preceding word.

Bentham — We remove spaces in sequences of digits/capital letters.

4.4 Decoding Method

We decoded with the tools implemented in the Kaldi speech recognition toolkit
(Povey et al., 2011), which consist in a beam search in an FST, with a token pass-
ing algorithm. The FST is the composition of the representation of each components
(HMM, vocabulary and Language Model) as FSTs (H, L, G). The HMM and vo-
cabulary conversion into FST is straightforward. The LM generated by SRILM is
transformed by Kaldi. The final graph computation not only involves composition,
but also other FST operations. The method proposed in Kaldi is a variation of the
technique explained in (Mohri et al., 2002):

F = min(rm(det(H ◦min(det(L ◦G)))))

where ◦ denotes FST composition, and min, det and rm are respectively FST minimiza-
tion, determination, and removal of some ǫ-transitions and potential disambiguation
symbols. Refer to (Mohri et al., 2002; Povey et al., 2011) for more details concerning
the FST creation.

The decoding start at initial states, and iteratively reads frame scores to advance to
next states, following arcs. Tokens are propagated, computing the following score:

s(qt) = s(qt−1) + α× l(xt, qt) + ω(qt−1 → qt) (4.1)

where ω(qt−1 → qt) is the graph cost for transiting from qt−1 to qt, including the LM
and HMM transition negative log-probabilities, α is the optical scale parameter, tuned
on the validation set. l(xt, qt) is the score provided by the optical model. With GMMs,
it is the negative log-likelihood of xt for the GMM of qt. For hybrid NN/HMM systems,
as explained in the previous chapter:

l(xt, qt) = − log
p(qt|xt)
p(qt)κ

(4.2)

where p(qt|xt) is the state posterior probability computed by the neural network, and
p(qt) is the state prior probability, estimated from the training set. κ is the prior scale
parameter, tuned on the validation set.

For each state, we keep only the token with the best score (Viterbi decoding), and
delete all tokens with a score worse than the current best minus a beam value (beam
search).

4.5. A GMM/HMM baseline system 109

Lattices are generally extracted (Povey et al., 2012) and rescored with different opti-
cal scales and word insertion penalties. The word insertion penalty (WIP) is included
by adding a constant value to all word arcs in the lattice FSTs. The final values are
chosen according to the validation set results.

The final transcription is the sequence of output symbols (words) in the best path
of the lattice, normalized as explained in the previous section. This decoding procedure
is the same for GMM/HMMs and for all hybrid systems presented in this thesis.

4.5 A GMM/HMM baseline system

4.5.1 HMM topology selection

We chose a left-right HMM topology for all the characters. Each state has one
transition to itself, and one to the next state. The whitespace is modeled by a 2-state
HMM. All other character HMMs have the same number of states, tuned along with the
sliding window topology. On Figure 4.2, we observe a correlation between the shift and
the optimal number of states. This is not surprising, since the shift controls the number
of frames extracted, hence the average duration of characters in terms of number of
observation vectors. Each state if associated with its own emission probability. We
built:

• 96 character HMMs with 5 states for Rimes

• 78 character HMMs with 6 states for IAM

• 92 character HMMs with 6 states for Bentham

4.5.2 GMM/HMM training

We trained GMM/HMMs with Kaldi (Povey et al., 2011), using the handcrafted
features, the Maximum Likelihood criterion and the EM procedure described in Chap-
ter 2. At each iteration, the Viterbi alignments of the training set are computed. We
add as many Gaussians in the mixtures as there are HMMs states, and weights, means
and diagonal covariances are updated. Transition probabilities are also estimated from
the alignments.

Every five iterations, we assess the performance on the validation set. When no
improvement is observed for more than 15 iterations, the training stops, and the best
model is kept. The GMM/HMMs have not been discriminately trained. Finally, we
have:

• 33,630 diagonal-covariance Gaussians in 484 mixtures for Rimes

• 40,849 diagonal-covariance Gaussians in 472 mixtures for IAM

• 67,037 diagonal-covariance Gaussians in 556 mixtures for Bentham

110 Chapter 4. Baseline System

Table 4.3: Context dependency in GMM/HMM (results on lines of IAM validation set)

Model WER CER
Context-independent 16.2 6.9

Context-dependent 16.3 6.6

On IAM, we tried to build context-dependent models, where the HMM state emission
probability density function (PDF) also depends on the previous and next character.
PDFs are shared across several states, and determining which one to use in a given
context is done with a Clustering and Regression Tree (CART). We followed the data-
driven approach implemented in Kaldi (Povey et al., 2011). From Viterbi alignments,
questions are generated with hierarchical clustering of Gaussians, and the CART is
built by iteratively splitting nodes to maximize the likelihood. The algorithm has
hyper-parameters such as the maximum number of leaves, the minimum occupancy
of leaves, or a likelihood improvement threshold. In the best setup we found, the
improvement over the context-independent models was not significant, as illustrated
in Table 4.3. Therefore, we only used context-independent GMM/HMMs.

4.5.3 Results

The goals of these GMM/HMMs are: (i) to check that we chose a good preprocessing,
feature extraction, and HMM topology, (ii) to serve as baseline to compare hybrid
models with, and (iii) to produce forced alignments to build training sets for neural
networks. Therefore, it is important to yield good results with these models to validate
the choices and to make sure that the baseline is good. Moreover, good models will
certainly produce good alignments, i.e. a good ground-truth of the training sets.

We recorded the results of the recognition of validation and test sets of each
database. For Rimes and IAM, we know the order of lines in paragraphs, and we
applied the language models at paragraph level, which both makes more sense and
gives better results (see Table 4.4).

Table 4.4: Applying LMs to text lines and paragraphs (results on IAM validation set)

LM scope WER CER
Lines 16.2 6.9

Paragraphs 15.2 6.3

The results are presented on Tables 4.5 (Rimes), 4.6 (IAM), and 4.7 (Bentham). We
compare them to the best published results with pure GMM/HMMs on the one hand,
and with other systems on the other hand.

On Rimes (Table 4.5), some publications do not report results on the development
set, while others (such as (Kozielski et al., 2014a)) were directly tuned on the evaluation

4.5. A GMM/HMM baseline system 111

set. Yet our GMM/HMM system performs well, achieving WER and CER competitive
with the GMM/HMM of Kozielski et al. (2014a).

Table 4.5: Results on Rimes database

Dev. Eval.
WER CER WER CER

Our GMM/HMM 17.2 5.9 15.8 6.0

GMM/HMM systems
Kozielski et al. (2014a) - - 15.7 5.5

Grosicki & El-Abed (2011) - - 31.2 18.0

Other systems
Pham et al. (2014) - - 12.3 3.3

Doetsch et al. (2014) - - 12.9 4.3
Messina & Kermorvant (2014) - - 13.3 -

The results are also reasonable on IAM (Table 4.6). The first line of the compari-
son (Kozielski et al., 2013b) uses an open-vocabulary approach, able to recognize any
word (no OOV). The corresponding closed vocabulary result with a 20k word lexicon
is displayed on the third line.

Table 4.6: Results on IAM database

Dev. Eval.
WER CER WER CER

Our GMM/HMM 15.2 6.3 19.6 9.0

GMM/HMM systems
Kozielski et al. (2013b) 12.4 5.1 17.3 8.2
Kozielski et al. (2014a) 12.6 4.7 - -
Kozielski et al. (2013b) 18.7 8.2 22.2 11.1

Toselli et al. (2010) - - 25.8 -
Bertolami & Bunke (2008) 26.8 - 32.8 -

Other systems
Doetsch et al. (2014) 8.4 2.5 12.2 4.7

Kozielski et al. (2013a) 9.5 2.7 13.3 5.1
Pham et al. (2014) 11.2 3.7 13.6 5.1

On Bentham database (Table 4.7), the only available GMM/HMM reference is given
on the validation set. The system of Gatos et al. (2013) corresponds to the baseline
provided by the organizers of the HTRtS competition2.

Finally, the “other systems” are much better. They all involve recurrent neural
networks, either as a feature extractor or as an optical model. In the following chapters,

2The organizers of the competition would like to point out that this baseline was provided to the
contestants with the aim of encouraging participation. Its performance is therefore not that of a
true baseline and can be easily beaten. Unofficial (unpublished) results obtained by improving this
system, e.g. with discriminative training, are roughly 18% WER with GMM/HMMs, according to
the organizers.

112 Chapter 4. Baseline System

Table 4.7: Results on Bentham database

Dev.
WER CER

Our GMM/HMM 27.9 14.5

GMM/HMM systems
Gatos et al. (2013) 32.6 -

we build such discriminative models: recurrent neural networks, but also deep multi-
layer perceptrons. In the last chapter, we present comparable results to those displayed
here.

4.6 Conclusion

In this chapter, we have introduced the baseline systems for the rest of the thesis. We
will give our results on three different public databases: Rimes, IAM and Bentham. We
have presented the decoding method and the choices of components which will remain
fixed throughout the experiments, namely:

• the preprocessing, consisting of deskewing and deslanting the text lines, en-
hancing the contrast with an interpolation method, and normalizing the height
of the image to a fixed value for different regions

• the extraction of observation sequences with sliding windows, with two kinds
of features: handcrafted features, and pixel values

• the selection of vocabularies and training of n-gram language models

Finally, we validated our choices by training GMM/HMMs. We obtained results
that are comparable to other published GMM/HMM systems. These models will serve
as baselines for the next experiments.

Part III

DEEP NEURAL NETWORKS IN
HIDDEN MARKOV MODEL

SYSYEMS

Chapter 5

Hybrid Deep Multi-Layer
Perceptrons / HMM for
Handwriting Recognition

Contents
5.1 Introduction . 117

5.2 Experimental Setup . 118

5.3 Study of the Influence of Input Context 119

5.3.1 Alignments from GMM/HMM Systems 119

5.3.2 Handcrafted Features . 121

5.3.3 Pixel Intensities . 123

5.4 Study of the Impact of Depth in MLPs 124

5.4.1 Deep MLPs . 124

5.4.2 Deep vs Wide MLPs . 126

5.5 Study of the Benefits of Sequence-Discriminative Training . 128

5.6 Study of the Choice of Inputs 130

5.7 Conclusion . 131

5.1. Introduction 117

5.1 Introduction

Multi-Layer Perceptrons (MLPs) have been used in handwriting recognition systems
with explicit segmentation (Knerr et al., 1998), and in HMM-based systems in the
hybrid NN/HMM framework (Espana-Boquera et al., 2011), or to extract discriminant
features for GMM modeling (Dreuw et al., 2011a). However, the architecture proposed
in these papers are shallow, limited to one or two hidden layers. The application
of deeper MLPs is found in handwriting recognition, but only for isolated digit or
character recognition (Ciresan et al., 2010; Cireşan et al., 2012), or keyword spotting
(Thomas et al., 2013).

In HMM-based speech recognition, major improvements were reported with deep
MLPs in the last decade. They are now a standard component of state-of-the-art
speech recognition systems. Depth seems to contribute to better modeling (Mohamed
et al., 2012) and robustness (Deng et al., 2013). Sequence-discriminative training of
MLPs is also commonly applied in speech recognition systems, bringing significant
improvements over the framewise-trained networks with cross-entropy.

Finally, deep neural networks are known to build internal representations of in-
creasing complexity of their raw inputs. Therefore, one may not have to design or
implement the extraction of relevant features from the image, and feed instead the
pixels directly to the network. Deep MLPs achieve good results in speech recognition
even with less elaborated inputs than MFCC (Deng et al., 2013). In computer vision,
the pixel values are used as the network inputs.

In this chapter, we investigate deep MLPs for handwriting recognition in hybrid
NN/HMM systems. We are interested in answering the following questions:

• Is it still important to design handcrafted features when using deep MLPs, or are
pixel values sufficient?

• Can deep MLPs give rise to big improvements over MLPs with one hidden layer
for handwriting recognition?

• Do we observe the same improvements with sequence-discriminative training of
these systems as one does in speech recognition?

First, in Section 5.2, we introduce the experimental setup followed in this chapter.
We give some details about the MLP architecture and training procedure.

In Section 5.3, we study how the input context, i.e. the size of the sliding window
or the number of considered frames, influences the performance of the neural network.
We show that choosing the right amount of context is crucial, and has a significant
impact on the results.

Then, in Section 5.4, we experiment different depths of MLPs. We show that MLPs
with more than one hidden layer yield better Word Error Rates (WERs) than shallow
MLPs, especially when the inputs are pixel values.

In Section 5.5, we apply a sequence-discriminative training criterion, the state-
level Minimum Bayes Risk, to further improve the results of the deep MLPs. We

118Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

report relative WER improvements which are consistent with those observed in speech
recognition.

Finally, in Section 5.6, we compare the results obtained with handcrafted features
and with pixel values. The final WERs are similar for both types of inputs.

We conclude this Chapter in Section 5.7 with a discussion of the important aspects
of deep MLPs.

5.2 Experimental Setup

The experiments are carried out on three public databases of handwritten text lines:
Rimes, IAM and Bentham, with handcrafted features and pixel values.

To train the deep MLPs, we performed the forced alignments of the training set
with the GMM/HMMs presented in Section 4.5, to have a target HMM state for each
input observation. We held out 10% of the datasets for validation and early stopping.
Overall, the datasets contain:

• 5.6M training examples (frames) for Rimes

• 3.8M training examples (frames) for IAM

• 4.3M training examples (frames) for Bentham

The networks presented in this chapter were trained with the Kaldi toolkit, and
the GPU implementation, following the procedure described in Section 2.5.3.2. The
weights of the first layer are initialized by contrastive divergence training of a Gaussian-
Bernouilli RBM, for two epochs, with a learning rate of 0.01. Weights of higher layers
are initialized by contrastive divergence training of Bernouilli-Bernouilli RBMs for one
epoch, with a learning rate of 0.4. A penalty on the L2-norm of the weights is added
to the cost function with a factor 0.0002.

Once the weights initialized, the MLP with sigmoid hidden units is trained with
the cross-entropy criterion and the labeled dataset. At each epoch, the cost on the
validation set is computed. When the relative improvement is below 0.01%, the learning
rate is halved. When the cost starts increasing, the training procedure stops, and the
best MLP is kept.

The MLPs have a softmax output layer, and each output corresponds to an HMM
state in the models presented in Section 4.5, that is:

• 484 outputs for Rimes (96 five-state charcter HMMs, and two space HMMs with
two states)

• 472 outputs for IAM (78 six-state charcter HMMs, and two space HMMs with
two states)

• 556 outputs for Bentham (92 six-state charcter HMMs, and two space HMMs
with two states)

5.3. Study of the Influence of Input Context 119

The decoding was performed with Kaldi, and the MLPs replaced the GMMs in the
HMMs trained in Section 4.5. The complete system is a hybrid NN/HMM. The outputs
of the networks p(s|xt) are scaled by the state priors p(s), following Equation 2.7:

p(s|xt)
p(s)κ

(5.1)

where κ is a scaling factor on the state priors, tuned on the validation sets. The
state priors are estimated from frequencies in the GMM/HMM forced alignments. The
optical scale and word insertion penalty were also tuned.

5.3 Study of the Influence of Input Context

In this section, we are interested in the effect of adding context in the MLP input. We
can introduce context in several ways. First, we can widen the sliding window, in order
to take more of the input image into account. When working with pixel intensities,
we indeed add more information, because the number of inputs is proportional to the
width of the window. On the other hand, with the chosen handcrafted features, the
dimension of the extracted vector is 50 + 2ω, where ω is the width of the window,
typically between 3px and 12px. Increasing ω will not add many features, and the
added information will only be summarized in the remaining 50 dimensions.

Figure 5.1: Including more context in MLPs. Left: a wider sliding window. Right:
concatenation of successive sliding windows. Blue circles correspond to the NN inputs.

Therefore, we may also adopt the technique consisting in concatenating a fixed num-
ber of frames, before and after the considered one. Since most of our sliding windows
are not overlapping, and the order of the inputs is irrelevant for MLPs, concatenating
several frames or taking a wider window is strictly identical as far as pixel intensities are
concerned. The different strategies are depicted on Figure 5.1. Note that the concate-
nation of feature vector is reminiscent of Time-Delay Neural Networks (TDNNs, Waibel
et al. (1989)).

5.3.1 Alignments from GMM/HMM Systems

The targets for training the MLPs are obtained with a forced alignment of the text
lines of the training set with the baseline GMM/HMM system. On Figure 5.2, we plot

120Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

some statistics of the retrieved alignments. We show the distributions of character
lengths in terms of frames on the top plot, and the average duration for each state of
each character. On the bottom two plots, we show the distributions of character and
state durations.

(a) Rimes (b) IAM

(c) Bentham

Figure 5.2: Statistics of the forced alignments with the GMM/HMM systems. From
top to bottom: boxplot of the character length, character average length with average
duration of each state, histograms of character lengths and state durations. (Feat.).

In Table 5.1, we report the average character width, calculated from the forced
alignments (Figure 5.2). These values put the context sizes used below in perspective.

5.3. Study of the Influence of Input Context 121

Table 5.1: Character widths, estimated a priori from the images and annotations, and
from the alignments with the GMM/HMM system.

Alignments
Rimes 30.3px (10.1 frames)

IAM 36.6px (12.2 frames)
Bentham 28.0px (9.3 frames)

5.3.2 Handcrafted Features

In this first experiment, we trained different deep MLPs with the procedure described
previously, and the same targets obtained by forced alignments of the GMM/HMM
baseline system, but different size of context, i.e. different number of frames concate-
nated on each side of the considered one.

Table 5.2: Effect of concatenating several consecutive frames on deep MLP results
(Word Error Rates; Feat./Deep/Xent).

Context frames Rimes IAM Bentham

no context 14.4% 12.3% 25.0%
±1 frame 14.0% 11.9% 23.3%
±3 frames 13.9% 12.8% 21.0%
±5 frames 14.5% 12.1% 20.1%
±7 frames 14.8% 12.4% 20.7%
±9 frames 14.2% 12.6% 21.3%

In Table 5.2, we show the WERs on the development sets of Rimes, IAM and Ben-
tham databases, obtained with MLPs consisting of hidden layers with 1,024 sigmoid
units. We varied the number of hidden layers, and for each size of context and each
database, we report the results of the best MLP. We observe that adding the right
amount of context brings relative WER improvements from 3 to 20% over the sin-
gle frames without context in the complete hybrid NN/HMM systems with language
models.

On Figure 5.3, we plot, for each database, the Frame Error Rate (FER), i.e. the
classification error of the MLP alone, without lexicon and language model, and the
Word Error Rate (WER) with language model, obtained with different context sizes
and the depths of the MLP. Note that varying the size of context in this experiment has
an effect on the total number of adjustable parameters. However, when the network
becomes deeper, this difference remains constant and becomes negligible. Interestingly,
although depth is important, as we will see in Section 5.4, the effect of choosing the
right context size is much more noticeable. Therefore, this parameter should not be
overlooked when designing an hybrid MLP/HMM system.

122Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

(a) Frame Error Rate (FER%)

(b) Word Error Rate (WER%)

Figure 5.3: Effect of context and depth on MLP performance (Feat./Deep/Xent).

The MLPs are trained to classify inputs into HMM states. On Figure 5.3a, it is clear
that adding more context in the input is highly beneficial to the classification accuracy,
and the results are almost always better with more context. With no context, using
the original frames, the high FERs may be explained by the fact that the windows
are small. They are 3px wide, which is less than 10% of the average character size.
Thus, similar observations will correspond to different parts of different characters, i.e.
different HMM states, which makes the classification difficult.

With ±5 frames, a total of 11 frames are fed to the network, which approximately

5.3. Study of the Influence of Input Context 123

corresponds to the average character size. We observe big improvements when we add
context from none to ±5. There are some improvements beyond that number, that is,
including more than a character on average, but smaller ones. It seems a good choice
to select a context size about the size of a character, or slightly bigger.

The differences of WERs, when the MLP is included in the complete hybrid NN/HMM
system, with language model, are not as visible. Choosing the right amount of context
seems important nonetheless, and we notice that the difference between a bad and a
good one can represent an absolute difference in WER of 1% on Rimes and IAM. On
Bentham database, the differences are more obvious.

In any case, the best context size in the complete system is not quite correlated with
the best one in terms of FER. Based on the experimental results shown on Figure 5.3b,
we chose ±3 frames for Rimes, ±1 frames for IAM, and ±5 for Bentham database.

5.3.3 Pixel Intensities

Instead of building a bootstrapping system with pixel inputs to retrieve the forced
alignments for the training set, we used the same ones as for the MLP based on hand-
crafted features. In order to have as many observation vectors as target HMM states,
we applied the same shift to the sliding window of pixels as for the features, as explained
in Section 4.2.2.2.

For pixels, we did not concatenate consecutive frames, but instead extracted the
values from a wider window. Moreover, to limit the number of inputs, each frame is
rescaled to a height of 32px, keeping the aspect ratio fixed (cf. Section 4.2.2.2).

In Table 5.3, we report the result of varying the sliding window width. 21px (resp.
45px) corresponds to the same context as ±3 (resp. ±5) feature frames, and 72px
corresponds to a square sliding window. Again, we observe that the context has an
important effect on the performance.

We chose a pixel sliding window of 45px for Rimes. Since with handcrafted features
on IAM, the same context size was about as good as for Rimes, we also extracted pixel
values with a window of 45px. For Bentham database, the best context size with
handcrafted features was bigger, so we used a bigger pixel window of 57px. These
choices are heuristical, and the results we report in the rest of this thesis for systems
based on pixels could certainly be improved with a more careful choice of the window
size.

Table 5.3: Influence of the size of the sliding window for deep MLPs with pixel values
inputs (Rimes; Pix./Deep/Xent).

Window size WER% CER%
21px 15.8 4.7
45px 14.1 4.2
72px 16.5 4.9

124Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

5.4 Study of the Impact of Depth in MLPs

In this section, we study the importance of the depth of MLPs, i.e. the number
of hidden layers. We trained MLPs on handcrafted features and pixels, with one
to seven hidden layers, for Rimes, IAM and Bentham databases. We performed the
layerwise pretraining method to initialize the weights of seven hidden layers. To train
an MLP with n hidden layers, we only kept the initialized weight matrices of the first
n layers. Thus the pretraining procedure is done only once, and all networks of each
configuration have undergone the same pretraining, and initially share the same weights
in lower layers.

5.4.1 Deep MLPs

For this set of experiments, we trained MLPs with 1,024 hidden units per layer, with
feature and pixel inputs. The results for handcrafted features were already reported
on Figure 5.3 in Section 5.3. We have seen that the amount of context was important
for the classification accuracy, but also for the performance of the whole system. On
Figure 5.3, we observe that the variations in FER (no language model) and WER
(with language model) are more important when the context varies than when depth
does. However, we notice relative FER improvements up to 20% going from one to
several hidden layers. The improvements due to depth are bigger for networks with
more context. Overall, four or five hidden layers look like a good choice to get optimal
FER: the improvements beyond that number are relatively small.

When the MLP is plugged in the complete hybrid system, including the language
model, the improvements of WERs are less visible than those of FERs. For handcrafted
features, we observe a relative improvement in WER between 2.5% (IAM) and 7.4%
(Bentham), when we compare networks with a single hidden layer to MLPs with more
hidden layers, for a given context size. The results are reported on Table 5.4, using the
best context size found in Section 5.3.

The gap between one and more hidden layers is more manifest for pixel inputs than
for handcrafted features. The comparison between one and two hidden layers shows
a relative WER improvement between 6 and 10%. With the best depth, we report
relative WER improvements up to 17%. The best deep MLPs with features and pixels
yield similar WERs, except for Bentham database. It looks like with deep neural
networks, it does not make a difference to use handcrafted features or pixels.

The results support the general agreement in the deep learning community that
deep architectures automatically extract helpful features of increasing complexity as
the input is propagated forward through the network (Bengio, 2009). Depth has less
influence when the inputs are handcrafted features, but with pixels, the first layers ex-
tract features that are learnt from the frame images, and deeper networks are necessary
to get good results.

Since each hidden unit has a connection to each pixel of the input frame, we can show
the weights graphically, as images of the same size as the input frame. The intensity

5.4. Study of the Impact of Depth in MLPs 125

Table 5.4: MLPs on handcrafted and pixel features. The Frame Error Rates (FERs)
measure the classification error of the MLP alone, while the Word and Characer Error
Rates (WER, CER) are obtained with lexicon and language model. (Xent)

Depth Features Pixels
FER% WER% CER% FER% WER% CER%

Rimes 1 36.1 14.6 4.4 38.3 15.4 5.3
2 33.9 14.1 4.2 34.5 14.5 4.5
3 33.2 14.0 4.0 33.4 14.6 4.5
4 33.1 14.1 4.0 32.8 14.2 4.3
5 33.3 13.9 3.9 32.2 14.1 4.2
6 33.0 13.9 4.0 32.4 14.2 4.4
7 33.4 14.0 4.0 32.0 14.1 4.2

IAM 1 42.6 12.2 4.3 42.2 13.6 5.2
2 41.2 11.9 4.2 39.1 12.7 4.6
3 41.0 12.0 4.2 37.9 12.6 4.5
4 40.9 12.0 4.3 37.3 12.5 4.4
5 41.1 12.1 4.3 37.0 12.3 4.2
6 41.1 12.0 4.3 37.0 12.5 4.4
7 41.6 13.2 4.3 37.6 12.3 4.4

Bentham 1 35.2 21.7 9.8 48.2 27.1 15.0
2 31.8 21.2 9.7 43.3 24.6 12.6
3 30.3 20.5 8.9 40.9 23.7 11.8
4 30.0 20.2 8.6 40.1 23.5 11.6
5 30.0 20.1 8.6 39.4 22.7 10.8
6 30.0 20.2 8.8 39.2 22.6 10.9
7 30.2 20.2 8.7 39.0 22.5 10.5

of each pixel reflects the value of the corresponding weight, so we can see this as a
representation of the feature computed by the units, or as a filter applied to the input
image.

On Figure 5.4, we show the weights of the first hidden layer of the pixel MLPs.
On top, we display the weights after the RBM pre-training. Below, we show the same
weights, after the cross-entropy training of the whole MLP. We see that the RBM
weights are localized to a specific position in the image, and features computed by
this first layer are mainly blobs or couple of blobs. Each unit detects the presence of
black pixels at different positions. After supervised training of the whole network, the
weights are modified. For a deep MLP (bottom), the weights did not change much,
and the hidden units are still pixel detectors, i.e. very elementary feature detectors.
When there is only one hidden layer, the weights are more modified, and the filters
look like character parts, or local oriented edge detectors.

126Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

Figure 5.4: MLP input filters (representing the weights between the input and first
layer) with pixel inputs on three databases, after pretraining and after fine-tuning.
(Pix./Deep/Xent)

5.4.2 Deep vs Wide MLPs

For every added hidden layer in the previous experiment, one million parameters are
introduced in the network. Therefore, the observed improvement may be caused by
the augmented model capacity rather than by the depth. In this section, we present
the results obtained with MLPs having 256, 512, and 1,024 hidden units in each layer,
and one to seven hidden layers.

The FERs and WERs, for features and pixels, different sizes of context, and different
sizes and numbers of hidden layers, are shown on Figure 5.5. We see that, although the
number of hidden units in each layer influences the classification accuracy (Figure 5.5a),
increasing the depth almost always yields some improvements, and deep MLP with a
few units tend to be better than MLPs with one large hidden layer. For example, there
are approximately the same number of parameters in a MLP with 7 hidden layers of
256 units and in an MLP with one hidden layer of 1,024 units, but the performance is
better with the former.

5.4. Study of the Impact of Depth in MLPs 127

(a) Frame Error Rate (FER%)

(b) Word Error Rate (WER%)

Figure 5.5: Comparison of the effect of width and depth on MLP performance. The
line styles represent the number of hidden units per layer (dots: 256, dashes: 512,
solid: 1,024). The line colors represent different inputs (black: pixels, colors: several
concatenation of features) (Deep/Xent).

128Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

The effect of depth is more visible with pixel inputs than with features. We also
notice that it is more visible in general when there are less hidden units per layer.

5.5 Study of the Benefits of Sequence-Discriminative

Training

In this section, we explore the sequence-discriminative training of deep MLPs. In
speech recognition, this procedure improves the results, generally by a relative 5 to
10% (Veselý et al., 2013; Su et al., 2013). Among different possibilities, we chose the
state-level Minimum Bayes Risk (sMBR) criterion, described in (Kingsbury, 2009),
which yields slightly better WERs than other sequence criteria on a speech recognition
task (Switchboard; Veselý et al. (2013)). The objective function maximized by this
training procedure is

FMBR(S) =
∑

(x,Wr)∈S

∑

W p(W|x)A(W, Wr)
∑

W′ p(W′|x)
=

∑

(x,Wr)∈S

∑

W p(W)p(x|W)A(W, Wr)
∑

W′ p(W′)p(x|W′)

(5.2)
where S is a training set and A(W1, W2) is a count of correct HMM states encountered
during the computation of the sum. In practice, the reference word sequence Wr is
represented by a sequence of states, obtained with forced alignment. Both sums in
the objective function are computed efficiently with a variant of the forward-backward
algorithm in lattices. The propagated gradient to maximize the objective function
FMBR is also a product of the forward-backward procedure (Kingsbury, 2009). Instead
of optimizing the HMM state classification, sequence discriminative training aims at
maximizing the probability of the correct sequences, while minimizing the probability
of competing ones.

Table 5.5: Selected MLP architectures

Context Hidden layers

Rimes Features ±3 frames 3× 512
Pixel - 5× 512

IAM Feature ±3 frames 5× 256
Pixels - 5× 1, 024

Bentham Feature ±5 frames 7× 512
Pixels - 6× 512

We selected the best networks obtained previously for each database and input type
(Table 5.5), and further trained them with a few epochs of sMBR. First, we re-aligned
the training set using the cross-entropy-trained networks. Lattices are then extracted
with a closed vocabulary and a language model, using the selected networks. We did
not regenerate lattices during sequence training. We tried several language models
p(W), estimated from the annotations of the training set: zerogram, unigram and
bigram. The zerogram is a uniform distribution over all words. We ran a few epochs
of sMBR training with a learning rate of 10−4.

5.5. Study of the Benefits of Sequence-Discriminative Training 129

Figure 5.6: WER and CER evolution during sequence-discriminative training (Deep/
Seq.).

The evolution of the WER and CER during sMBR training is shown on Figure 5.6
for all databases and types of inputs. The points at epoch 0 correspond to the perfor-
mance of the MLPs trained with cross-entropy. Regarding the order of the language
model used to generate lattices, a zerogram, where all words have the same probability,
is not sufficient: in most cases, it lead to degraded performance of the sequence-trained
networks. On the other hand, a bigram language model did not yield much improve-
ment over a unigram one, and the results were even worse most of the time. With
a unigram language model, for all configurations (solid lines in Figure 5.6), both the
CER and the WER were improved by sequence training.

On Table 5.6, we report the results of the final systems, before and after sequence-
discriminative training. We record relative WER improvements ranging from 5 to 13%,
which is consistent with the observations made in speech recognition. With handcrafted
features, these improvements are bigger than those observed by increasing the number
of hidden layers.

The success of this training procedure seems to rely on the information brought by
the language model, as shown by the lack of improvement with a zerogram. However,
the systems seems to benefit from the variety of the candidate sequences of words. If we
increase the language constraints, changing from a unigram to a bigram, the observed
improvements with respect to a cross-entropy training tend to diminish.

130Chapter 5. Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition

Table 5.6: Effect of sMBR training. The cross-entropy corresponds to framewise train-
ing, as oposed to sMBR, which is a sequence-discriminative criterion (Deep/Seq.).

Features Pixels
WER% CER% WER% CER%

Rimes Cross-entropy 13.5 3.8 14.1 4.2
+ sMBR 12.5 3.4 12.6 3.8

(-7.4%) (-10.5%) (-10.6%) (-9.5%)
IAM Cross-entropy 11.7 4.2 12.3 4.2

+ sMBR 10.9 3.7 11.7 4.0
(-6.8%) (-11.9%) (-4.9%) (-4.5%)

Benth. Cross-entropy 20.1 8.5 22.4 10.6
+ sMBR 18.6 7.4 19.4 8.4

(-7.5%) (-12.9%) (-13.4%) (-20.8%)

5.6 Study of the Choice of Inputs

In this section, we focus on the performance of deep MLPs with two kinds of inputs:
handcrafted features and pixels. Reaching the same error rates with features and pixels
may be interesting. First, it alleviates the need to implement the feature extraction
methods. Moreover, features might be good for one script, e.g. Latin, but not suited to
another one, for example Arabic. Finally, using pixels removes potential assumptions
about what are the relevant features of handwriting, and leaves the decision to the
machine learning algorithm.

Table 5.7: Comparison of WERs (%) obtained with handcrafted features and pixel
values.

Features Pixels
Rimes

1-layer MLP 14.0% 15.3% (+9.3%)
Deep MLP 13.5% 14.0% (+3.7%)

+sMBR 12.5% 12.6% (+0.8%)
IAM

1-layer MLP 12.4% 13.6% (+9.7%)
Deep MLP 11.8% 12.3% (+4.2%)

+sMBR 10.9% 11.7% (+7.3%)
Bentham

1-layer MLP 21.5% 28.8% (+34.0%)
Deep MLP 20.1% 22.4% (+11.4%)

+sMBR 18.6% 19.4% (+4.3%)

5.7. Conclusion 131

In Table 5.7, we compare the results of the modeling of features and pixels. We see
that going from MLPs with a single hidden layer to deep MLPs greatly reduces the gap
between handcrafted features and pixel inputs. The relative WER difference between
features and pixels drops from about 9% to 4% for Rimes and IAM, and from 34%
to 11% for Bentham. Sequence discriminative training provides another significant
reduction of the difference, except for IAM.

5.7 Conclusion

In this chapter, we have studied MLPs for handwriting recognition on Rimes, IAM
and Bentham databases, using handcrafted features and pixels. We have built deep
networks, with one to seven hidden layers, trained with a framewise classification cri-
terion, the cross-entropy, and a sequence-discriminative one, sMBR.

We have seen that using the single frames extracted with the sliding windows was not
optimal, and that providing the MLP with the right amount of input context
was crucial. The classification accuracy is largely improved by giving more context.
The improvements are not so evident in the complete system, but the context is still a
source of variation, and a few percents of relative WER improvements can be expected
by tuning this parameter.

We trained MLPs of different depths, and we have shown that deep MLPs achieve
significantly better results than ones with a single hidden layer. We observed
that depth itself produced improvements, which were not only due to the larger number
of parameters in deeper networks.

The improvements due to deeper networks are even clearer with pixel inputs. In
that case, the gap between one and more hidden layers is bigger, suggesting that deep
networks are particularly suited to that kind of inputs. This supports the idea that an
automatic extraction of learnt features happens in the lower layers of the network. Thus
MLPs with pixel inputs require more hidden layers, but finally achieve
similar performance as MLPs operating with handcrafted features, showing
that carefully designing relevant features may not be necessary.

Finally, we have shown that fine-tuning the MLPs with a sequence discrim-
inative criterion (sMBR) yields significant improvements, between 5 and
13% of WER, and up to 20% of CER. This is consistent with what one can read in the
speech recognition literature. The language model in the computation of the cost is
important, although a simple unigram seems sufficient to attain these improvements.

Chapter 6

Hybrid Deep Recurrent Neural
Networks / HMM for Handwriting
Recognition

Contents
6.1 Introduction . 135

6.2 Experimental Setup . 136

6.2.1 RNN Architecture Overview . 136

6.2.2 Decoding in the Hybrid NN/HMM Framework 138

6.3 Study of the Influence of Input Context 139

6.3.1 Including Context with Frame Concatenation 140

6.3.2 Context through the Recurrent Connections 140

6.4 Study of the Influence of Recurrence 142

6.5 Study of the Impact of Depth in BLSTM-RNNs 143

6.5.1 Deep BLSTM-RNNs . 144

6.5.2 Deep vs Wide BLSTM-RNNs . 146

6.5.3 Analysis . 148

6.6 Study of the Impact of Dropout 149

6.6.1 Dropout after the Recurrent Layers 151

6.6.2 Dropout at Different Positions 151

6.6.3 Study of the Effect of Dropout in Complete Systems (with LM) . 155

6.7 Study of the Choice of Inputs 156

6.8 Conclusion . 158

6.1. Introduction 135

6.1 Introduction

In Recurrent Neural Networks (RNNs), the activations of hidden layers at a given
timestep are fed to the network in the following timesteps, making them specially de-
signed to process sequences. Potentially, the context of the whole sequence contributes
to the decision at time t, while with MLPs, the amount of considered context has to
be fixed in advance. Since handwriting recognition involves a processing of sequences,
RNNs seem suited to the problem. Actually, most systems winning international evalu-
ations in the last few years, as well as state-of-the-art ones, involve a RNN component.

For example, Graves & Schmidhuber (2008); Bluche et al. (2014a); Pham et al.
(2014); Moysset et al. (2014) use Multi-Dimensional LSTM-RNNs, which are deep and
implement convolutional concepts. The LSTM layers are connected to local neighbor-
hoods in the image, and are followed by convolutional and subsampling layers. As
in many Convolutional Neural Networks, only a few features are computed in lower
layers, and more features in upper layers, as the size of input maps decreases.

On the other hand, Bidirectional LSTM-RNNs (BLSTM-RNNs) process sequences
of input vectors, and are densely connected. More features are extracted in each layer,
but, as for MLPs, there are only shallow architectures with one or two hidden layers
in the literature. For example, Kozielski et al. (2013a, 2014a); Doetsch et al. (2014)
build tandem and hybrid systems using RNNs with two hidden layers.

In this chapter, we focus on BLSTM-RNNs, for which we can use the same inputs
as the previous GMM and MLP systems, trained with the Connectionist Temporal
Classification (CTC) criterion. We performed handwriting recognition in the hybrid
NN/HMM framework. We are interested in answering the following questions:

• Is it still important to design handcrafted features when using deep RNNs, or are
pixel values sufficient?

• Do deep BLSTM-RNNs yield improvements over RNNs with only one or two
hidden layers?

• What is the importance of the recurrence at different depths in BLSTM-RNNs?

• The input context was important for classification in MLPs. Do RNNs benefit
from more input context, or is it better to let the recurrence learn the amount of
context needed?

• Dropout (Hinton et al., 2012) is a regularization technique, which has proven very
efficient for deep MLPs (Dahl et al., 2013), ConvNNs (Krizhevsky et al., 2012),
and RNNs (Zaremba et al., 2014). Pham et al. (2014) proposed to apply it at
a specific location in MDLSTM-RNNs and reported significant improvements.
Does it also help in deep BLSTM-RNNs? Where is the best position to apply
dropout in these models?

136
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

In Section 6.2, we introduce the experimental setup for this chapter. In particular,
we describe the RNN architecture that we used, along with the training and decoding
procedure.

In Section 6.3, we show that the concatenation of input frames has little effect on
the final results in RNNs, supporting the idea that RNNs can effectively learn the
necessary context.

In Section 6.4, we present experiments with recurrent layers at different depth in
the network: close to the input or output layer, or in the middle and show that more
recurrence is better, and that the recurrence in the top layer is especially important,
in the CTC framework.

We trained BLSTM-RNNs with different depths. The results, reported in Sec-
tion 6.5, prove that RNNs can benefit from being deep, even without pre-training.

We experimented the dropout technique in BLSTM-RNNs, and its application at
different locations in the network. We show in Section 6.6 that the improvements of
Pham et al. (2014) can be reproduced with BLSTM-RNNs on the one hand, and that
we can achieve significant improvements by applying dropout at different positions
from the one they suggested, on the other hand.

Finally, in Section 6.7, we point out that the discrepancy between the results
obtained with handcrafted features and with pixel values is reduced by using deep
BLSTM-RNNs.

We draw some conclusions in Section 6.8.

6.2 Experimental Setup

6.2.1 RNN Architecture Overview

In RNNs, the inputs to a given recurrent layer are not only the activations of the pre-
vious layers, but also its own activations at the previous timestep. This characteristic
enables them to naturally work with sequential inputs, and to use the past context to
make predictions. Long Short-Term Memory (LSTM) units are recurrent neurons, in
which a gating mechanism avoids the vanishing gradient problem, appearing in con-
ventional RNNs (Hochreiter & Schmidhuber, 1997; Graves & Schmidhuber, 2008), and
allow to learn arbitrarily long dependencies.

In Bi-Directional LSTM-RNNs (BLSTM-RNNs), LSTM layers are doubled: the
second layer is connected to the “next” timestep rather than the previous one. Thus
the input sequence is processed in both directions, so past and future context are used
to make predictions.

We used an RNN architecture which resembles the MDLSTM-RNN architecture of
Graves & Schmidhuber (2008). The input sequence is fed to two parallel LSTM layers,
one for each direction. The outputs of both LSTM layers at a given time are connected
to a simple feed-forward layer. The sequence formed by the outputs of this layer may
be connected to a new couple of LSTM layers.

Our architecture, depicted on Figure 6.1, alternates pairs of LSTM layers and feed-
forward, non-recurrent layers. Every time that we add recurrent layers, we also add a

6.2. Experimental Setup 137

feed-forward layer before. The last LSTM layers are directly connected to the output
layer. Thus, our RNNs will always have an odd number of hidden layers: N LSTM lay-
ers, and N − 1 feed-forward layers. Moreover, we did not use the peephole connections
in LSTM units.

Figure 6.1: Architecture of the BLSTM-RNNs used in this thesis.

We used the Connectionist Temporal Classification (CTC) objective function (Graves
et al., 2006) to train the RNNs. With CTC, no prior segmentation of the line images
in the training data is required. Therefore, we do not need a bootstrapping procedure
involving forced alignments with a previously trained HMM. Instead, we can select the
target sequence to be the sequence of characters in the image annotation. In the CTC
paradigm, there is one output for each character, plus one blank output, corresponding
to no character prediction. We also have an output for whitespaces. Therefore, we
have:

• 98 outputs for Rimes

• 80 outputs for IAM

• 94 outputs for Bentham

The RNN training was performed with A2iA software, and consisted in minimizing
the Negative-Log Likelihood of the labeling, as explained in Section 2.5.4.3. It is done
with stochastic gradient descent and BPTT. We noticed that with the CTC objective

138
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

function, a learning rate of 0.001 was generally a good choice, yielding fast convergence
(around 20-30 epochs) and good results.

The CTC cost is computed at the end of each epoch on the validation set. When
it does not decrease for at least 20 epochs, the training procedure is interrupted, and
the best RNN is kept.

6.2.2 Decoding in the Hybrid NN/HMM Framework

The interesting property of CTC is that the output of the network can be easily
mapped to a sequence of characters. Therefore, the RNN alone can produce tran-
scriptions, using the mapping described in Section 2.5.4.3, and there is no need for an
HMM. Wei et al. (2013) proposes methods to match the outputs with a dictionnary
word, using the Levenstein distance, or Viterbi-like decoding. However, this method
requires to evaluate the words one by one, and does not integrate the language model
probabilities. An alternative method, described in (Graves et al., 2006), consists in
modifying the forward-backward procedure of CTC training to apply it to a prefix
tree representation of the vocabulary, calculating at each iteration the probability of
extending the current prefix with a given label. An extension is proposed in (Graves
& Jaitly, 2014), giving more details on a beam search decoding procedure and on how
to integrate the language model. A similar method is employed by Maas et al. (2014)
to decode with CTC trained networks and a language model.

The HMM framework, on the other hand, is interesting because of the mathematical
formulation, which separates the optical model and the language model (LM):

W∗ = arg max
W

p(W|x) = arg max
W

p(x|W)p(W) (6.1)

In our decoding pipeline, the HMM, lexicon, and language models are represented
as FSTs, and the decoder of the Kaldi toolkit is implemented for HMMs. For the
simplicity of implementation, and for the consistency with the rest of this thesis, we
chose the hybrid NN/HMM approach, which is to some extent similar to the beam
search methods presented above.

Therefore, we integrated the RNNs in the hybrid NN/HMM framework, including
the specific aspects coming from the CTC training, namely the blank symbol and
allowed transitions. Since there is one output for each character in the RNN, we
represented the characters and the blank symbol ⊘ with one-state HMMs with loop
and outgoing transitions (Figure 6.2a). All transition probabilities are set to 0.5, so
that the total weight of transition probabilities is the same for any word sequence for a
given observation sequence. This is to reproduce the absence of transition probabilities
in the CTC.

The allowed transitions between characters and blanks in a word are encoded in
the FST representation of the lexicon (Figure 6.2b). The LM FST is the same as in
the previous chapters.

In the hybrid NN/HMM scheme, the NN predictions p(s|x) are scaled by HMM
state prior probabilities p(s). Since there are no prior probabilities in the CTC, we

6.3. Study of the Influence of Input Context 139

(a) Hidden Markov Model (b) Lexicon FST

Figure 6.2: HMM and Lexicon for hybrid NN/HMM decoding with CTC-trained net-
works.

could use a uniform distribution for p(s), for the same reason as for uniform transition
probabilities. However, we noticed that including prior probabilities improved the
global performance of the systems.

Since CTC training does not require pre-segmented data, we cannot estimate the
label priors beforehand. We could estimate character priors from the training corpus,
but we do not have counts for the blank symbol. Different methods are possible:

• We can record the forced alignments during or after CTC training, and use the
label frequencies, as we did for MLPs.

• The forward-backward algorithm applied CTC training already computes the
label posteriors p(qt = s|x), so we can set

p(s) ≈
1

∑

x∈S |x|

∑

(x,z)∈S

|x|
∑

t=1

p(qt = s|x, z) (6.2)

where S is the training set, which is a softer estimate than the forced alignment
counts, and is the method we used.

6.3 Study of the Influence of Input Context

In the previous chapter, we have seen that choosing the right amount of context
(number of consecutive concatenated frames) to feed MLPs was to some extent more
important than depth for classification accuracy.

The main characteristic of RNNs is the recurrent part, making the inner state of
the network dependent of the past state(s), and allowing them to naturally process
sequential inputs. Thus, they can make predictions based not only on a localized
input, but potentially on the whole sequence, provided that the information can flow
from remote timesteps. The most basic form of recurrence is difficult to train, due to
the vanishing gradient problem. The Long Short-Term memory units were designed to
overcome this problem, and the gating mechanism enables the cell to hold or release
the information depending on its inputs.

140
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

In handwriting recognition, the symbols to recognize are quite localized, and one
would not expect to see an influence from the inputs (pixels or feature vectors) outside
or too far away from the character boundaries. We could argue that if we take into
account a wide enough context, other deep architectures such as MLPs or Convolu-
tional Neural Networks could perform equally well as RNNs. In other words, since the
characters are localized, the RNNs should use only a local context, and local predictors,
like MLPs with context, could be sufficient.

6.3.1 Including Context with Frame Concatenation

The first experiment consists in concatenating the feature vector of the considered
position with a fixed amount of previous and next ones, as we did for MLPs in Sec-
tion 5.3. The same information will then appear in the RNN input at different positions
of successive timesteps. The goal is to see if explicitly giving such context in the in-
put of the network helps, or whether RNNs can achieve better results by learning the
necessary amount of context.

We carried out this experiment on Rimes and IAM, with BLSTM-RNNs made of
five hidden layers, three LSTM layers and two feed-forward, and 100 hidden nodes in
each layer. We trained these RNNs with the original observation sequences, and with
the sequences obtained after concatenation of ±1, 3 or 5 frames.

Table 6.1: Effect of context on BLSTM-RNN performance (Feat./Deep/CTC).

Context Rimes IAM
frames RNN-CER% WER% CER% RNN-CER% WER% CER%

None 8.1 14.1 4.1 10.4 12.2 4.3
±1 frame 9.0 14.2 4.2 10.8 12.1 4.1
±3 frames 9.4 13.7 4.2 11.1 12.6 4.4
±5 frames 10.6 14.1 4.4 11.9 12.6 4.6

The results are reported on Table 6.1. The RNN-CER is the CER of the RNN used
alone, outside the hybrid NN/HMM system, and without lexicon or LM. The WER
and CER are computed in the complete pipeline, including the LM. We observe that
the RNN-CER is always better without context, in contrast to MLPs, for which the
classification accuracy was always improved by adding context. The effect of adding
context on the WER and CER in the complete system is quite limited. We observe
small improvements in some cases, but generally the system is not better with more
input context in feature vectors.

6.3.2 Context through the Recurrent Connections

In this section, we try to see how RNNs incorporate the context to predict characters
through the recurrent connections. Similarly as in (Graves et al., 2013b), we observed
the sensitivity of the output prediction at a given time to the input sequence.

6.3. Study of the Influence of Input Context 141

To do so, we computed the derivative of the RNN output yτ at time t = τ with
respect to the input sequence x. We plotted the sensitivity map S = (St,d)1≤t≤|x|,1≤d≤D,
where D is the dimension of the feature vector, and:

St,d =

∣

∣

∣

∣

∣

∂yτ

∂xt,d

∣

∣

∣

∣

∣

(6.3)

For pixel inputs, the sliding windows are overlapping, and the dimension of the
feature vectors is D = wh, where w is the width of the window, and h its height.
Therefore, we can reshape the feature vector to get the shape of the frame, and a sen-
sitivity map with the same shape as the image. In overlapping regions, the magnitude
of the derivative for consecutive windows are summed:

Si,j =
w/2δ
∑

k=−w/2δ

∣

∣

∣

∣

∣

∂yτ

∂xi+δk,i+w(j−1)−δk

∣

∣

∣

∣

∣

(6.4)

where δ = 3px is the step size of the sliding window. This way, we can see the sensitivity
in the image space.

(a) Rimes (b) IAM (c) Bentham

Figure 6.3: Context used trough recurrent connections by LSTM-RNNs to predict “a”
in Rimes, “a” in IAM, “v” in Bentham (sensitivity heatmaps, top: features, bottom:
pixels ; Deep/Drop./CTC).

On Figure 6.3, we display the results for BLSTM-RNNs with 7 hidden layers of 200
units, trained with CTC and the dropout technique applied after all LSTM layers, with
feature and pixel inputs, for all three databases. On each plot, we show on top the
preprocessed image, the position τ and the RNN prediction yτ , as well as the sliding
window at this position to put the sensitivity map in the perspective of the area covered
by the window at t = τ .

The step size δ of all sliding windows is 3px, i.e. the size of the sliding window for
features, displayed on the top plots. We observe that the input sensitivity goes beyond
±5 frames, as well as beyond the character boundaries in some cases, as if the whole
word could help to disambiguate the characters.

It is also an indication that RNNs actually use their ability to model arbitrarily long
dependency, an ability that MLPs lack. To provide an MLP with all the information
handled by the RNN in the case of Figure 6.3a, one would need to concatenate around
70 frames, which seems difficult to achieve, because it would add a lot of variability
as well as a lot of parameters, and would probably not improve the performance,
considering the results presented in the previous chapter.

142
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

6.4 Study of the Influence of Recurrence

In this section, we study the influence and abilities of recurrence in LSTM-RNNs.
To do so, we replace LSTM layers by feed-forward ones in BLSTM-RNNs made of
five hidden layers (three LSTM and two feed-forward layers). To keep the number of
parameters approximately constant, we replace the original LSTM layer with 100 units
for each directions by a feed-forward layer with 900 units, as illustrated on Figure 6.4.

Figure 6.4: LSTM (L) and feed-forward (F) blocks.

We keep the intermediate feed-forward layers which were in between LSTM layers.
In this architecture, there are three possible positions to include or not the recurrence:
bottom, middle and top. We trained all eight possible combinations on Rimes and
IAM, with pixel and feature inputs. We refer to the different architectures by a triplet
indicating the type of layer at the original LSTM positions (bottom, middle, top). LLL
represents the original RNNs, while FFF corresponds to a purely feed-forward MLP.

The results are expressed in Table 6.2 in terms of RNN-CER, i.e. the CER of the
RNN alone, without a language model. The top part of the table are results with
features, and the bottom ones are results with pixels. With the usual learning rate
of 0.001, some trainings did not converge, which is indicated in the table by the dash
symbol. Therefore, we also trained the networks with a smaller learning rate (0.0001).

The first remark is not related to the recurrence, but to the learning rate. With
the small learning rate, the training converged in all cases. When it also did with the
larger learning rate, the results were always better.

Regarding convergence, we notice that the networks which did not converge have
the common property of not having a recurrent top layer. It seems to indicate that at
least for CTC, the last LSTM layer plays an important role in the convergence of the
training procedure to get good results.

If we look at the different positions of one LSTM layer (LFF, FLF and FFL), in
almost all cases, the higher it is in the network, the better the results are. This is
especially visible with pixel inputs.

Adding LSTM layers seems generally helpful, although it is not always the case.
For example, adding LSTM in the first hidden layer degrades a lot the performance
with pixel inputs. It might be due to the fact that for pixels, the lower layers extract

6.5. Study of the Impact of Depth in BLSTM-RNNs 143

Table 6.2: Effect of recurrence on the character error rate of the RNN alone, without
lexicon and language model (RNN-CER%; Deep/CTC).

L.Rate FFF LFF FLF FFL LLF LFL FLL LLL

Features 0.001 44.0 - - 11.9 - 9.3 9.4 8.1
(Rimes) 0.0001 94.1 13.2 12.3 13.0 11.6 11.6 11.6 9.7

0.001 39.2 13.3 12.4 11.6 - 10.3 10.7 9.7
(IAM) 0.0001 39.6 13.7 13.2 12.5 23.1 11.8 12.0 11.4

Pixels 0.001 - - - 13.7 - 11.1 8.9 8.7
(Rimes) 0.0001 38.0 62.2 20.6 17.5 20.8 23.0 15.3 16.7

0.001 - - - 12.3 - 11.8 10.6 11.3
(IAM) 0.0001 32.8 61.3 19.2 17.5 20.3 19.6 17.5 18.9

elementary features from the image. On the other hand, recurrence seems important in
the CTC framework, as already stated, and as shown in the next chapter. Therefore, it
is probably too difficult for this first layer to learn both the low-level features required
to interpret the image and the dependency that are necessary for the convergence of
the CTC.

On Figure 6.5, we see that the LFF architecture is sensitive to a wide area of the
image. However, when we look at the sequence of predictions made by this RNN, we
see that it converged to a very sub-optimal solution, where whitespace is predicted in
all word segments. For other architectures, the sensitivity is more focused on the area
of the predicted letter “n”, and networks with more recurrence on top even include
more context of the whole word.

6.5 Study of the Impact of Depth in BLSTM-RNNs

RNNs with a single hidden layer are often regarded as deep models, because the
output at a given time may depend on the input at a remote timestep. The information
flows through many layers sharing weights. We can also increase the number of hidden
layers, in order to extract representations of the sequence with increasing complexity.
The Multi-Dimensional LSTM-RNN architecture proposed by Graves & Schmidhuber
(2008) has five hidden layers, with a structure resembling Convolutional Networks. Few
works, however, have studied BLSTM-RNN with more than one or two hidden layers.
Graves et al. (2013b) recently reported significant improvements with BLSTM-RNNs
with up to five hidden LSTM layers for a speech recognition task.

In this section, we investigate the depth of BLSTM-RNNs for handwriting recog-
nition. In particular,we are interested to see whether adding more than one or two
LSTM layers improves the results. We conducted the experiment on Rimes, IAM and
Bentham databases, with both kinds of inputs. The networks are trained with the
CTC algorithm to predict character and blank labels, with a learning rate of 0.001.
We built RNNs with one to thirteen hidden layers of different sizes and studied the

144
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

Figure 6.5: Input sensitivity and character predictions of RNNs with different archi-
tectures on Rimes database (Pix./Deep/CTC).

influence of depth on the performance of the RNN and of the complete system.

6.5.1 Deep BLSTM-RNNs

The RNNs in this section have 100 hidden units on each layer, and we varied the
number of hidden layers. The results are shown on Figure 6.6, where the CER without
and with language models are displayed, and reported on Table 6.3. The RNN-CER
is the character error rate when the recognition system is the RNN alone. The WER
and CER are respectively the word and character error rates of the hybrid systems,
with the vocabularies and language models described in previous sections.

6.5. Study of the Impact of Depth in BLSTM-RNNs 145

Figure 6.6: Effect of depth on RNN performance (alone and in the complete pipeline;
CTC).

First, we observe that almost every time we add layers, the performance of the RNN
is increased (dashed lines on Figure 6.6). For handcrafted features, adding a second
LSTM layer and a feed-forward one brings around a relative 20-25% CER improvement.
Adding a third one yields another 6-12% relative improvement.

For pixels, one hidden layer only is not sufficient, and adding another LSTM layer
divides the error rates by more than two. A third LSTM layer is also significantly
better, by another 20-25% relative CER improvement.

Not surprisingly, when we add the vocabulary and language model, the CER is
significantly improved. We still observe the biggest performance gain from one to two
LSTM layers. For handcrafted feature inputs, the CER improvement with more hidden
layers is small, and a few percents relative WER improvement can be achieved. For
pixel intensities, we notice significant WER and CER improvements when we build
networks with more than two LSTM layers.

The improvements beyond three hidden layers for handcrafted features, and beyond
five for pixels, although present, are not as visible in complete systems as they are for
the RNNs alone. This might be explained by the fact that the character errors corrected
by deeper networks are also corrected by the linguistic constraints anyway (vocabulary
and language model). As we have seen on Figure 6.3, a character prediction can be
influenced by regions in the image outside the predicted character, which might suggest
that RNNs also learn a sort of language model from the image.

It is also interesting to note that in the method described here, no pretraining was
performed, and the networks were directly trained from random weights. We tried

146
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

Table 6.3: Effect of depth on the performance of RNNs (CTC).

Handcrafted Features Pixels
Depth RNN-CER WER% CER% RNN-CER WER% CER%

Rimes 1 14.5 14.9 4.7 33.8 24.1 10.3
3 10.6 13.6 4.1 12.9 15.1 5.1
5 8.1 14.1 4.1 9.8 14.0 4.4
7 8.0 13.8 4.1 8.7 14.5 4.5
9 7.6 13.2 3.9 8.6 14.5 4.5

11 7.3 13.3 4.0 7.5 14.8 4.4
13 6.6 14.5 4.2 7.7 15.2 4.9

IAM 1 13.7 13.4 5.0 71.9 83.2 66.7
3 11.1 12.4 4.3 15.3 14.9 5.8
5 10.4 12.2 4.3 11.7 13.3 4.9
7 9.9 12.2 4.3 11.3 13.5 5.2
9 9.3 11.9 4.1 11.6 15.2 5.7

11 8.8 11.4 4.0 9.6 12.8 4.6
13 8.9 11.9 4.1 9.6 13.7 4.9

Bentham 1 17.3 20.6 8.8 38.9 33.8 19.6
3 12.8 18.5 7.5 17.7 22.6 10.2
5 12.0 19.0 7.6 14.0 20.8 8.7
7 11.1 18.5 7.5 12.2 21.4 8.8
9 10.6 18.3 7.2 12.1 21.6 8.9

11 10.0 19.1 7.4 10.9 20.3 8.1
13 10.0 18.8 7.3 10.9 20.5 8.4

to apply the following layerwise pretraining. First, we initialize a network with one
LSTM layer and run one epoch of supervised gradient descent. Then we add one layer
and train for one more epoch. Finally, when the final depth is reached we run the
full training. No improvement were observed on IAM with this technique for various
depths and hidden layer sizes.

6.5.2 Deep vs Wide BLSTM-RNNs

Every time we add a new hidden layer, the number of free parameters is increased.
So the improvements may be caused by the larger capacity of the network rather than
by its depth. In this section, we compare the benefits of depth to the improvements
obtained by adding nodes in hidden layers, i.e. increasing width.

First, because of the many connections in LSTM units, a lot of parameters are added
when we increase the size of an hidden layer. In Table 6.4, we compare the approximate
number of parameters in RNNs of different widths and depths, with 100 outputs and
56 (features) or 640 (pixels) inputs.

6.5. Study of the Impact of Depth in BLSTM-RNNs 147

Table 6.4: Comparison of number of parameters for different architectures.

(a) Features

hidden units 50 100 200
hidden layers

1 52k 145k 450k
3 97k 325k 1,170k
5 142k 505k 1,890k
7 187k 685k 2,610k

(b) Pixels

hidden units 50 100 200
hidden layers

1 286k 612k 1,384k
3 331k 792k 2,104k
5 376k 972k 2,824k
7 421k 1,152k 3,544k

We trained networks with 1, 3, 5 and 7 hidden layers, each containing 50, 100 or 200
units, with features and pixels on Rimes, IAM and Bentham databases. The results
are shown on Figure 6.7 in terms of RNN-CER. As depth increases, the difference
between different widths becomes less visible. Moreover, it is almost always better to
add hidden layers than to multiply the number of units per layer by even four.

Figure 6.7: Effect of depth vs width on RNN performance (RNN-CER, CTC).

Deeper RNNs with less units yield better CERs than shallower RNNs with more

148
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

units, and also more parameters. This observation shows that it is not so much the
augmented capacity which causes the improvement, but rather a consequence of the
depth itself. We limited ourselves to 200 units per hidden layer, and adding even more
units might decrease the error rate of the features RNNs with one hidden layer, until
the performance matches that of the deep RNNs one. However, it would also mean a
lot more free parameters, and the economy can be made by using deeper and skinnier
networks.

6.5.3 Analysis

These experiments show that it is possible to achieve substantial performance gains
by training deeper BLSTM-RNNs. When the RNN is trained with CTC to be used
alone, deeper is almost always better. In all our experiments, the best results of the
full pipeline including the language model were achieved with networks with more than
two LSTM layers. Moreover, these recurrent networks require only a few units in each
layer to yield good results.

In deep RNNs, the higher LSTM layers see an input sequence which have already
been processed by lower recurrent layers. Thus, one may see it as an higher level
representation of the whole sequence, possibly including long-term dependencies. This
is consistent with what we observed in MLPs, where representations of the input of
increasing complexities are computed by successive layers.

As we did for MLPs, we can display the weights of the first layer of RNNs based
on pixels as images of the same size as the input frame (Figure 6.8). Unlike MLPs, the
input units of LSTM networks also include recurrent connections, but we limited the
display to the the input connections. Moreover, the gates also depend on the input
pixels, so we also show the weights of the connections between gates and pixels. We
observe, at least for the cell input, common shapes of filters in deep learning, which
are detectors of oriented edges and blobs. The first layer of deep pixel RNNs seems to
effectively extract elementary features.

On Figure 6.9, we show the weights of LSTM cell inputs for pixel RNNs of different
depths. We see that when there are more layers in the RNN, the features extracted in
the first layer are simpler. When there is only one layer, except for Bentham database,
the weights do not look very informative of what is represented in the cells. For Rimes,
we can see some structure, which is not elementary like oriented edge detector or
Gabor-like filters, but rather complex shapes.

On Figure 6.10, we display the input sensitivity of the output of RNNs trained on
pixels for Rimes and Bentham databases, with 1, 3, 5, 7 and 9 hidden layers of 100
units. We see that with one hidden layer, the sensitivity is concentrated in the current
window, and does not extend much beyond it. When we increase the number of hidden
layers, the prediction may depend on a wider area, including the whole word in some
cases.

We have even seen on Figure 6.3b that the sensitivity could even include adjacent
words, as if the RNN actually learnt to read words or sequences of words to recognize

6.6. Study of the Impact of Dropout 149

Figure 6.8: Weights of the first layer of pixel LSTM-RNNs (Pix./Deep/CTC).

well the characters. If the RNN indeed models the characters in the context of the
whole word, it would also explain why large improvements in RNN-CER do not lead
to improvements when linguistic constraints are added, as we have seen in Table 6.3.

6.6 Study of the Impact of Dropout

The dropout technique (Hinton et al., 2012) is a regularization method for neural
networks. It consists in randomly setting some activations from a given hidden layer to
zero during training. Wager et al. (2013) described dropout as an adaptive regularizer,
and showed that it is equivalent to a first-order L2 regularization after some transform
of the features. Moreover, they obtained better results with dropout than with L2

regularization on a sentiment analysis classification task using logistic regression.
Pham et al. (2014); Zaremba et al. (2014) recently proposed a way to use dropout

in LSTM networks. Pham et al. (2014) carried out experiments on handwritten word
and line recognition with MDLSTM-RNNs, and reported relative WER improvements

150
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

Figure 6.9: Weights of the cell input of the first layer of pixel LSTM-RNNs with
different depths. (Pix./Deep/CTC).

(a) Rimes (b) Bentham

Figure 6.10: Sensitivity maps of LSTM-RNNs of increasing depths (1 to 9; Pix./
Deep/ CTC).

between 2 and 15% for line recognition with language models, and also observed effects
on the classification weights similar to those of L2 regularization.

The authors proposed to apply dropout with p = 0.5 in feed-forward connections
following the LSTM layers, and show that in an architecture of three levels of LSTM
layers, it is generally better to use dropout after every LSTM layer, rather than after
the last one or two only. Here we propose to explore the dropout technique within our
deep BLSTM-RNN architecture.

6.6. Study of the Impact of Dropout 151

6.6.1 Dropout after the Recurrent Layers

First, we reproduced the dropout experiments of Pham et al. (2014) with BLSTM-
RNNs on Rimes, IAM and Bentham databases, with pixel and feature inputs. We built
RNNs with seven hidden layers. We applied dropout after LSTM layers with dropping
probability p = 0.5.

On Table 6.5, we report the CER achieved with RNNs with 7 hidden layers, with 200
units each, and dropout after the top N LSTM layers. We observe that dropout on the
topmost layer improves the performance. We get more improvement with dropout on
the top N LSTM layers, and the best results are achieved with dropout after all LSTM
layers, which is consistent with the findings of Pham et al. (2014) in MDLSTM-RNNs.

Table 6.5: Effect of dropout after the top N LSTM layers (RNN-CER%; Deep/ CTC).

Dropout None Top-1 Top-2 Top-3 All

Rimes Features 8.0 7.5 7.1 6.5 5.7
Pixels 8.9 7.5 6.9 6.0 6.0

IAM Feature 10.1 9.1 9.1 8.7 8.1
Pixels 11.6 11.2 9.2 8.9 7.5

We evaluated the complete systems with RNNs with 100 and 200 hidden units, and
with dropout. We observe on Table 6.6 relative WER improvements ranging from 4 to
10%, which is also consistent with the results of Pham et al. (2014).

Table 6.6: Effect of dropout in complete pipelines (Deep/CTC).

Handcrafted Features Pixels
RNN-CER WER% CER% RNN-CER WER% CER%

Rimes 7x100 8.0 13.8 4.1 8.7 14.5 4.5
7x200 8.0 14.1 4.1 8.9 14.7 5.0
+drop. 5.7 12.7 3.6 6.0 13.6 4.1

IAM 7x100 9.9 13.0 4.3 11.3 13.6 5.2
7x200 10.1 12.9 4.6 11.6 14.6 5.5
+drop. 8.1 11.9 3.9 7.5 11.8 4.0

Benth. 7x100 11.1 18.5 7.5 12.2 21.4 8.8
7x200 11.0 18.0 7.0 11.9 20.6 8.4
+drop. 8.9 17.2 6.7 9.2 18.7 7.3

6.6.2 Dropout at Different Positions

In (Pham et al., 2014), dropout is used only after the LSTM layers, so as not to
affect the recurrent connections. In practice, we can apply it between any two layers.
We complemented the previous experiments by using dropout at different positions,
depicted on Figure 6.11, that is either before the LSTM layer, after it, or in the

152
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

recurrent connections. Moreover, instead of comparing the improvements by increasing
the number of top N layers affected by dropout, we studied the effect of dropout in
different layers in isolation.

(a) Before (b) Inside (c) After

Figure 6.11: Dropout position in LSTM-RNNs.

The chosen architecture for this set of experiments consists of five hidden layers, with
200 hidden units each. We compare the effect of the position of dropout with respect
to the LSTM layer: before, inside or after, and to the layers in which it is applied:
none, bottom, middle, top, or all. The experiments were carried out on Rime, IAM
and Bentham.

Table 6.7: Effect of dropout at different positions on Rimes database (RNN-CER%;
Deep/CTC).

Dropout Before Inside After All
Rimes None 8.2
(Features) Bottom 6.8 6.7 8.2 6.7

Middle 6.6 7.3 7.2 6.8
Top 7.4 8.6 8.0 8.8
All 5.0 5.4 6.8 7.1

None 9.7
(Pixels) Bottom 7.1 7.6 8.1 7.2

Middle 7.5 9.6 9.0 8.8
Top 8.0 9.2 7.8 9.1
All 5.8 6.0 6.5 7.4

The RNN-CER results are reported on Table 6.7 (Rimes), Table 6.8 (IAM) and
Table 6.9 (Bentham). Bold numbers are the best results for dropout at a single position
in a single layer, at a single position in all layers, and at all positions in a single layer.
The few cases when dropout did not decrease, or increased the error rate are signaled
in italics.

Besides the fact that dropout almost always helps, we can draw several conclusions.
When dropout is only applied at one position:

6.6. Study of the Impact of Dropout 153

Table 6.8: Effect of dropout at different positions on IAM database (RNN-CER%;
Deep/CTC).

Dropout Before Inside After All
IAM None 10.4
(Features) Bottom 9.1 8.5 9.8 8.8

Middle 8.9 9.1 8.6 8.7
Top 9.1 10.2 9.5 10.4
All 7.9 7.0 9.0 9.4

None 13.2
(Pixels) Bottom 10.0 9.1 11.4 10.1

Middle 10.1 11.1 10.6 10.8
Top 10.9 12.3 11.1 12.6
All 8.6 8.4 10.1 11.4

Table 6.9: Effect of dropout at different positions on Bentham database (RNN-CER%;
Deep/ CTC).

Dropout Before Inside After All
Bentham None 11.0
(Features) Bottom 8.5 9.9 12.3 8.8

Middle 9.8 9.9 10.4 10.0
Top 10.5 11.2 10.7 12.3
All 7.4 8.1 10.0 8.5

None 14.0
(Pixels) Bottom 10.4 9.9 13.4 9.7

Middle 11.0 13.6 12.2 13.0
Top 12.0 15.1 12.7 14.4
All 8.0 9.4 10.8 12.3

• it is generally better in lower layers of the RNNs, rather than in the top LSTMs,
except when it is after the LSTM.

• it is almost always better before the LSTM layer than inside or after it, and
better after than inside, except for the bottom layer.

When it is applied in all layers (bottom, middle and top):

• among all relative positions to the LSTM, when dropout is applied to every
LSTM, placing it after was the worst choice in all six configurations

• before LSTMs seems to be the best choice for Rimes and Bentham, and inside
LSTMs is better for IAM.

Moreover, adding dropout before, inside and after the LSTM at the same time
is not as good as choosing the right position.

154
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

For the position before the LSTM layer (Figure 6.11a), there are actually two pos-
sibilities. The first one, chosen for the results presented in this section, is to drop the
same inputs for both directions in the LSTM. The other option is to sample a different
set of inputs to drop for the forward and backward LSTM. We explored both methods,
and got exactly the same results.

Figure 6.12: Weights of the first layer of pixel LSTM-RNNs with different dropout
strategies on Rimes database (Pix./Deep/CTC).

On Figure 6.12, we display the weights of the connections between the inputs and the
first LSTM layer, including the gates, without and with dropout at different positions,
on Rimes database, with pixel inputs. The recurrent connections are not shown. We
notice that the filters are generally sharper with dropout, as if this regularization tech-
nique improved the selectivity of the cells, making them more focused on elementary
features. This is especially visible for the weights of the gates. Note that the block
artefacts that appear in the filters of the RNN without dropout is certainly caused by
our three-zone height normalization. Some units seem to have specialized in the de-
tection of the presence or absence of black pixels anywhere in the core region, which is
generally sufficient to detect whitespace, for example, ignoring the possible descenders
of the line above, or ascenders of the line below.

The values of neighboring pixels are highly correlated. If the model can always
access one pixel, it might be sufficient to infer the values of neighboring ones, and the

6.6. Study of the Impact of Dropout 155

weights will be used to model more complicated correlations. However, with dropout
on the inputs, the local correlations are less visible. With half the pixels missing,
the model cannot rely on regularities in the input signal, and should model them to
make the most of each pixel. This may explain why the filters represent some local,
elementary components, which capture the correlations between neighboring pixels.

6.6.3 Study of the Effect of Dropout in Complete Systems
(with LM)

Table 6.10: Effect of dropout at different positions in complete pipelines (Deep/CTC).

Handcrafted Features Pixels
RNN-CER WER CER RNN-CER WER CER

Rimes (%) (%) (%) (%) (%) (%)
5 no dropout 8.2 12.9 3.7 9.7 15.5 4.8
hidden after 6.8 12.8 3.6 6.5 13.3 4.1
layers inside 5.4 13.2 3.8 6.0 14.3 4.6

before 5.0 13.1 3.7 5.8 13.8 4.0
7 no dropout 8.0 14.1 4.1 8.9 14.7 5.0
hidden after 5.7 12.7 3.6 6.0 13.6 4.1
layers inside 5.3 12.7 3.7 5.9 14.2 4.6

before 4.8 12.7 3.7 5.3 13.7 4.2
IAM

5 no dropout 10.4 11.7 4.0 13.2 14.7 5.7
hidden after 9.0 11.8 4.1 10.1 13.2 4.7
layers inside 7.0 11.6 3.9 8.4 13.3 5.0

before 7.9 12.3 4.2 8.6 12.4 4.5
7 no dropout 10.1 12.9 4.6 11.6 14.6 5.5
hidden after 8.1 11.9 3.9 7.5 11.8 4.0
layers inside 7.1 11.9 4.1 7.9 13.0 4.7

before 7.4 11.7 4.1 8.3 13.2 4.8
Bentham

5 no dropout 11.0 18.1 7.0 14.0 21.3 9.0
hidden after 10.0 17.3 6.9 10.8 19.1 7.7
layers inside 8.1 17.7 6.8 9.4 20.0 8.5

before 7.4 16.6 6.2 8.0 17.8 6.9
7 no dropout 11.0 18.0 7.0 11.9 20.6 8.4
hidden after 8.9 17.2 6.7 8.9 18.7 7.3
layers inside 7.1 17.4 6.5 8.7 20.1 8.4

before 6.5 16.7 6.1 7.5 17.7 6.4

On Table 6.10, we report the results of different dropout strategies in the complete
systems including the language models, with 5 and 7 hidden layers. Dropout is applied

156
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

in every LSTM layer, at the different positions relative to it. The baselines are RNNs
without dropout, and with dropout after LSTM, as proposed by Pham et al. (2014).

We observe that for Rimes, the best results are achieved with dropout after LSTMs,
despite the superior performance of dropout before for the RNN alone. For IAM,
dropout inside LSTMs is only slightly better. On Bentham database, dropout before
LSTMs consistenly yields lower error rates than other solutions. The lack of a strong
correlation between the performance of the network alone, and of the complete system
was already noticed in previous sections, as well as in the previous chapter.

The main difference between the RNN alone and the complete system is that the
former only considers the best character hypothesis at each timestep, whereas the lat-
ter potentially considers all predictions in the search of the best transcription, with
linguistic constraints. Therefore, applying dropout after the LSTM in the top layer(s)
might be beneficial for the beam search in the decoding with complete systems. In-
deed, dropout after the last LSTMs forces the classification to rely on more units.
Conversely, a given LSTM unit will contribute to the prediction of more labels. Thus,
the classification will be more robust, because it relies on more evidence, and might
keep competing character hypotheses in a closer range, leaving more room for error
correction in the beam search. Moreover, the weight halving at decoding time stabi-
lizes the response of the network to small changes to the LSTM outputs. On the other
hand, dropout on the inputs of the LSTM layer prevents it to rely on their correlations,
as explained in the previous section.

In Table 6.11, we report the results when the different choices of dropout positions
(before or after) are combined. More specifically, we apply dropout before LSTMs
in lower layers, and after LSTMs in upper layers. We see that for the RNN alone
(inside parentheses), dropout before some LSTMs is always better than dropout after
all LSTMs, but not necessarily much better than dropout before all LSTMs and no
dropout after. On the other hand, for complete systems, adding dropout after the
top LSTMs nearly always improves the results over dropout before only, and the best
combination of before and after always outperforms both dropout before all and after
all. The optimal combination seems to be before the first two and after the last LSTM
for features, and before and after all LSTMs for pixels.

6.7 Study of the Choice of Inputs

In this section, we focus on the differences in the performance of RNNs with feature
and pixel inputs. As we can see on Figure 6.6, as models are deeper, the difference
between features and pixels decreases. With 11 hidden layers the RNN-CER is less
than 1% higher for pixels.

On Table 6.12, we see that when we select the best deep BLSTM-RNN for each type
of inputs, the relative difference between features and pixels is around 10%, while it is
above 60% with only one layer. We also notice that deep pixel RNNs yield comparable
results as feature RNNs with only one hidden layer. When moreover dropout is applied

6.7. Study of the Choice of Inputs 157

Table 6.11: Effect of dropout at different combinations of positions in complete
pipelines (Deep/CTC).

Handcrafted Features Pixels
RNN-CER WER CER RNN-CER WER CER

Rimes (%) (%) (%) (%) (%) (%)
5 after all 6.8 12.8 3.6 6.5 13.3 4.1
hidden before all 5.0 13.1 3.7 5.8 13.8 4.0
layers bef. 1 / aft. 2-3 5.5 12.8 3.6 6.3 13.5 4.0

bef. 1-2 / aft. 3 5.6 12.7 3.6 6.0 13.7 4.2
bef.+aft. all 5.4 12.7 3.7 5.3 12.7 3.9

7 after all 5.5 12.7 3.6 6.0 13.6 4.1
hidden before all 4.8 12.7 3.7 5.3 13.7 4.2
layers bef. 1-2 / aft. 3-4 5.3 12.7 3.7 6.2 13.6 4.1

bef. 1-2-3 / aft. 4 5.1 13.3 3.8 5.9 13.6 4.1
bef.+aft. all 5.6 13.7 4.2

IAM
5 after all 9.0 11.8 4.1 10.1 13.2 4.7
hidden before all 7.9 12.3 4.2 8.6 12.4 4.5
layers bef. 1 / aft. 2-3 8.2 11.6 4.0 8.0 11.9 4.1

bef. 1-2 / aft. 3 8.1 11.2 3.8 8.3 11.8 4.2
bef.+aft. all 7.8 12.2 4.1 7.9 11.6 4.1

7 after all 8.1 11.9 3.9 7.5 11.4 3.9
hidden before all 7.4 11.7 4.1 8.3 13.2 4.8
layers bef. 1-2 / aft. 3-4 8.0 11.5 3.9 7.9 11.6 4.0

bef. 1-2-3 / aft. 4 7.5 11.6 3.9 8.2 12.3 4.2
bef.+aft. all 8.1 13.3 4.5

Bentham
5 after all 10.0 17.3 6.9 10.8 19.1 7.7
hidden before all 7.4 16.6 6.2 8.0 17.8 6.9
layers bef. 1 / aft. 2-3 7.1 16.1 5.8 8.4 17.6 6.7

bef. 1-2 / aft. 3 7.4 16.0 6.0 8.7 18.1 6.7
bef.+aft. all 7.3 17.1 6.3 7.5 17.5 6.7

7 after all 8.9 17.2 6.7 8.9 18.7 7.3
hidden before all 6.5 16.7 6.1 7.5 17.7 6.4
layers bef. 1-2 / aft. 3-4 6.7 16.1 5.8 7.1 17.0 6.2

bef. 1-2-3 / aft. 4 6.7 16.3 5.7 7.3 17.6 6.4
bef.+aft. all 7.1 17.7 6.5

during the training of the network, the gap of performance between pixels and features
decreases even more. There is finally no difference on Rimes and IAM between both
kinds of inputs, and only 1% absolute difference on Bentham.

158
Chapter 6. Hybrid Deep Recurrent Neural Networks / HMM for Handwriting

Recognition

Table 6.12: Comparison of WERs (%) obtained with handcrafted features and pixel
values.

Features Pixels
Rimes
1-layer BLSTM-RNN 14.9% 24.1% (+65.1%)

Deep BLSTM-RNN 12.9% 14.0% (+7.9%)
+dropout 12.7% 12.7% (+0.0%)

IAM
1-layer BLSTM-RNN 13.4% 83.2% (+520.0%)

Deep BLSTM-RNN 11.4% 12.8% (+12.3%)
+dropout 11.2% 11.4% (+0.9%)

Bentham
1-layer BLSTM-RNN 20.6% 33.8% (+64.1%)

Deep BLSTM-RNN 18.0% 20.3% (+12.8%)
+dropout 16.0% 17.0% (+6.3%)

These results show that with deep RNNs, pixels might be sufficient. Instead of
handcrafted features, one can rely on the automatic extraction of features relevant to
the task, and learnt by the RNN during training. Note also that we did not experi-
mented several sizes of sliding window for pixels. Regarding the results presented in
Section 6.3, we could expect to see some improvements by carefully tuning the width
of the window of pixels.

6.8 Conclusion

In this chapter, we have studied BLSTM-RNNs for handwriting recognition on
Rimes, IAM and Bentham databases, using handcrafted features and pixels. We have
built deep RNNs, with up to 13 hidden layers.

We have seen that explicitly including context in the observation sequences
did not improve the results, and that RNNs could effectively learn the dependencies
in the input sequences, and the context necessary to make character predictions. The
observations suggested that in some cases, the context of the whole word was relevant
to a single character prediction.

Then, we have shown that the recurrence was especially useful in the top
layers of RNNs in the CTC framework. The bottom layers, particularly with raw
inputs such as pixel values, are more focused on the extraction of elementary features.
Recurrent layers in these cases may not be crucial.

We have also demonstrated that significant improvements are brought by
increasing the depth of RNNs, adding many hidden layers. We limited the ex-

6.8. Conclusion 159

periments to up to thirteen hidden layers. We recorded relative CER improvements
between 35 and 50% for features and between 70 and 80% for pixels, from RNNs with
a single layer to deep RNNs, when used alone. In the complete pipeline including the
linguistic constraints, the WER improvements are not as impressive, probably because
depth help the RNNs to correct mistakes that are also corrected by the language model,
but still range from 10 to 15% for handcrafted features and around 40% for pixels.

Moreover, we confirmed that the dropout technique was very efficient to get better
RNN results, and almost always improved the CER of RNNs, wherever it was applied.
We studied different positions for dropout in the networks, in particular its relative
position to LSTM layers, and reported significant improvements over the method
presented in (Pham et al., 2014) when dropout is applied before LSTM
layers rather than after them. Yet, in complete systems, when the outputs of the
RNNs are used in a decoder with linguistic constraints, dropout on the classifica-
tion weights is still very important.

Finally, the discrepancy between the performance of the systems with
handcrafted feature and pixel inputs is largely decreased with deep RNNs.
As for deep MLPs, the need to design and implement good feature extraction may
not be necessary. Deep networks automatically learn features from the image, without
making a priori assumptions about what is relevant to the task.

We did not experiment many sizes of sliding windows for pixels, and kept the same
ones as for MLPs. The extracted frames are about the same size as characters in the
image, while the sliding window for features is much smaller. Considering the results of
Section 6.3, we might expect further improvements with the pixel systems with smaller
windows, and to bridge the remaining gap between the two kinds of inputs.

It is also worth pointing out that, as Convolutional Neural Networks are a good
alternative to MLPs in Computer Vision problems (and are generally preferred to
them), MDLSTM-RNNs are an excellent alternative to BLSTM-RNNs for handwriting
recognition (Bluche et al., 2014a; Moysset et al., 2014; Pham et al., 2014), and also
work with raw pixel values, their inputs being images. They were not presented in this
thesis, and left for future investigation.

Part IV

COMPARISON AND
COMBINATION OF DEEP MLPs

AND RNNs

Chapter 7

Experimental Comparison of
Framewise and CTC Training

Contents
7.1 Introduction . 165

7.2 Experimental Setup . 167

7.3 Relation between CTC and Forward-Backward Training of
Hybrid NN/ HMMs . 167

7.3.1 Notations . 167

7.3.2 The Equations of Forward-Backward Training of Hybrid NN/
HMMs . 168

7.3.3 The Equations of CTC Training of RNNs 169

7.3.4 Similarities between CTC and hybrid NN/HMM Training 171

7.4 Topology and Blank . 172

7.5 CTC Training of MLPs . 173

7.6 Framewise vs CTC Training . 174

7.7 Interaction between CTC Training and the Blank Symbol . . 176

7.7.1 Peaks . 176

7.7.2 Trying to avoid the Peaks of Predictions 179

7.7.3 The advantages of prediction peaks 181

7.8 CTC Training without Blanks 182

7.9 The Role of the Blank Symbol 183

7.10 Conclusion . 183

7.1. Introduction 165

7.1 Introduction

In the previous part, we built hybrid systems based on deep neural networks. The
approach was different for MLPs and RNNs, mainly because we chose the Connectionist
Temporal Classification framework (Graves et al., 2006; Graves, 2012) for RNNs, which
has proven successful for handwriting recognition is the past years. More precisely:

• for MLPs, we trained the networks with a framewise criterion, with HMM
states targets, obtained through a forced alignment of the training data with
the GMM/HMM systems of Section 4.5

• for RNNs, we trained the networks with the CTC criterion, which considers all
possible segmentations of character sequences, and does not require a boot-
strapping system.

The main difference in the final hybrids is that for MLPs, we use the HMMs of the
GMM/HMM systems, with 5 or 6 states, while for RNNs, we build an HMM to match
the output of the CTC-trained networks, with one state per character, and a one-state
blank HMM. Less states per character give several advantages. First, there is less
classes to separate, and more training examples per class, which may be beneficial for
the neural network. Moreover, the HMM are smaller, hence the decoding graph has
less arcs, and requires less memory, as illustrated on the following table:

Decoding graph size MLP/HMM RNN/HMM
Rimes Size (MB) 20 11

arcs 925k 546k
states 427k 188k

IAM Size (MB) 357 180
arcs 17.5M 9.6M

states 7.8M 2.9M
Bentham Size (MB) 35 17

arcs 1,7M 877k
states 775k 287k

It may be interesting to see if this particular topology, with only a few states, gives
better results for hybrid systems. Furthermore, the non-character symbol of CTC is
also found in (Tay et al., 2001; Rashid et al., 2012) for MLPs, and might be useful to
model inter-characters.

The CTC training algorithm consists of a forward-backward computation in a graph
representing all possible segmentations of the output sequence. This is reminiscent of
the Baum-Welch training of hidden Markov models.

CTC is not the first algorithm proposed to train neural networks with unsegmented
data. Researchers have investigated forward-backward training of hybrid systems, to
include both the NN and HMM in the training procedure, and to avoid the need
for a bootstrapping system (Senior & Robinson, 1996; Hennebert et al., 1997; Yan

166 Chapter 7. Experimental Comparison of Framewise and CTC Training

et al., 1997). On Table 7.1, we report some of the improvements observed in the
past with a forward-backward training of NNs. Forward-backward procedures are also
found in sequence-discriminative training methods (Bengio et al., 1992; Haffner, 1993;
Kingsbury, 2009; Veselý et al., 2013).

Table 7.1: WER improvements with forward-backward training of neural networks

Author System Training Test Framewise FwdBwd
Senior & Robinson (1996) RNN N/A (25p. of text) 17.0% 15.4%

Yan et al. (1997) MLP 2,090 utt. 500 utt. 4.1% 3.1%
- 1,600 utt. 6.0% 4.9%

Hennebert et al. (1997) MLP 9,000 utt. 2,000 utt. 13.7% 12.2%
- 19,000 utt. 7,000 utt. 9.8% 10.1%

This chapter is a study of the CTC paradigm, in comparison to framewise training
methods. We are interested in answering the following questions:

• Apart from the outputs consisting of one label for each character and a blank
symbol, what are the differences between the CTC training algorithm and the
forward-backward training proposed in the nineties?

• How important is the number of HMM states in hybrid systems? Would it be
better to have fewer states in MLP/HMMs, or more states in RNN/HMMs?

• Is the non-character symbol useful for handwriting recognition? In which condi-
tions (training method, NN type) does it help?

• What is the role of this blank symbol?

• Can CTC training be applied to MLP? Does it improve the results?

• How CTC training compares to framewise training for RNNs.

First, in Section 7.2, we present the experimental setup for this chapter. We are
interested in the training methods and the output space of neural networks, and their
integration in the hybrid NN/HMM framework. Therefore, we built smaller neural
networks, in order to have quicker trainings.

In Section 7.3, we show that the equations of CTC are very similar to those of
forward-backward training of neural networks, and we point out the differences.

Then, in Section 7.4, we study the influence of the number of HMM states on the
performance of the neural networks in the hybrid NN/HMM integration, as well as the
importance of adding a non-character (blank) model between character models.

In Section 7.5, we apply the CTC training algorithm to MLPs, either with the
standard HMM topology, or with the topology defined in the CTC paradigm, with one
NN output for each character, and a blank output.

We compare framewise training and CTC training of both MLPs and RNNs in
Section 7.6, varying the number of states and the presence of the blank symbol. We
show that the CTC framework is particularly suited for RNNs.

7.2. Experimental Setup 167

In Section 7.7, we study the interaction between the blank symbol and the CTC
training algorithm, and underline the advantages of observing peaks of character pre-
dictions at localized timesteps, surrounded by many blank predictions. In Section 7.8,
we observe what happens when the blank is not present in CTC, and suppose that this
special symbol helps in the alignment procedure at early stages of training.

Finally, we investigate the role of the blank symbol, for training and modeling, in
Section 7.9. We stress its interaction with CTC training, from which peaks of non-
blank prediction emerge, and underline one more time that blank, CTC and RNNs
work especially well together.

We conclude this chapter with a discussion of our findings in Section 7.10.

7.2 Experimental Setup

In this chapter, we trained GMMs, MLPs and RNNs with handcrafted features on the
IAM database.

The training of GMMs follows the standard EM procedure, realigning the data with
Viterbi algorithm and and updating the mixtures to maximize the data likelihood, in-
creasing the number of Gaussian at each step, until no more improvement is observed
in the validation data. We chose neural network architectures to be a tradeoff between
model size (training time) and performance. The goal here is not to compare the ab-
solute results of MLPs and RNNs, or to determine the exact optimal number of states,
but rather to study, evaluate, and compare the trends when we vary the topology and
the training procedure. Because of time constraints, we limited ourselves to relatively
small neural networks in this chapter.

The MLPs have two hidden layers of 1,024 sigmoid units. The RNNs have one
hidden layer with 100 units, made of an LSTM layer for each direction (BLSTM-
RNN). The MLPs take 11 consecutive frames of 56-dimensional feature vectors to take
into account the context. The RNNs directly consider the initial sequence of feature
vectors.

In framewise training, the optimized criterion is the classification cross-entropy. For
framewise training and CTC, we used early stopping: training stops when the cost on
the validation data does not decrease for 20 epochs, and the best network is selected.
All networks were trained with the software implementation of A2iA.

7.3 Relation between CTC and Forward-Backward

Training of Hybrid NN/ HMMs

7.3.1 Notations

Let Qn(W) be the set of all state sequences of length n representing some word
sequence W. For notation convenience, we also define Q(W), the list of all states
in the model of W (a sequence in Qn(W) is made of elements of Q(W)). Since in

168 Chapter 7. Experimental Comparison of Framewise and CTC Training

practice the same state can be used several times (and appear several times in Q(W)
– e.g. the first state of the HMM for character “e” in word “tee”), we define Q∗ the
set of all distinct states, and a mapping µ : Q(W) 7→ Q∗ which provides the identity
of a considered state. This is needed since HMMs have a single emission model for
each element of Q∗, when the forward-backward algorithms often consider elements of
Q(W).

7.3.2 The Equations of Forward-Backward Training of Hybrid
NN/ HMMs

The basic idea of forward-backward training of neural networks is to use the scaled
neural network posterior in the HMM formulation:

p(x|W) =

|x|
∏

t=1

p(xt)

∑

q∈Q|x|(W)

p(q1, W)
p(q1|x1)

p(q1)

|x|
∏

t=2

p(qt|xt)
p(qt)

p(qt|qt−1, W) (7.1)

and to apply the same forward-backward procedure in the HMM as for Baum-Welch
training, with forward and backward variables:

αt(s) = p(x1:t, qt = s|W)

βt(s) = p(xt+1:T |qt = s, x1:t, W)

where s ∈ Q(W). These variables are computed iteratively, and the following recur-
rence equations apply with the neural network posteriors:

αt(s) =
p(qt = s|xt)

p(s)
×

∑

r∈Q(W)

αt−1(r)p(qt = s|qt−1 = r, W)

βt(s) =
∑

r∈Q(W)

p(qt+1 = r|xt+1)
p(r)

p(qt+1 = r|qt = s, W)βt+1(r)

Since p(q|x)
p(q)

= p(x|q)
p(x)

, this forward-backward procedure actually computes

p(x|W)
∏|x|

t=1 p(xt)
=

∑

s∈Q(W)

αt(s)βt(s) (7.2)

and we can derive the state posteriors given the word sequence W:

p(qt = s ∈ Q(W)|x, W) =
αt(s)βt(s)

∑

r αt(r)βt(r)

Summing over all occurrences of a given state in the word sequence HMM, we get
the posterior probability of a state given the observation and HMM:

p(qt = k ∈ Q∗|x, W) =
∑

s:µ(s)=k

p(qt = s|x, W) (7.3)

7.3. Relation between CTC and Forward-Backward Training of Hybrid NN/ HMMs 169

At every time t, the neural network computes a posterior distribution over elements
of Q∗, and thus we can use the distribution computed with Equation 7.3 as the target
distribution in the cross-entropy training criterion. The backpropagated error is

∂E

∂at
k

= yt
k − p(qt = k ∈ Q∗|x, W) = yt

k −
∑

s:µ(s)=k

αt(s)βt(s)
∑

r αt(r)βt(r)
(7.4)

where yt
k is the output of the neural network at time t for class k, i.e. p(qt = k|xt),

and at
k are the activations before the softmax.

Several papers about forward-backward training of neural networks were published.
The idea is to replace the Viterbi segmentation of the input sequence, where the classi-
fication targets are HMM states, by considering all possible segmentations, as it is done
in the Baum-Welch algorithm for HMMs. In some works, such as (Senior & Robinson,
1996; Yan et al., 1997), it is assumed that p(q|x)

p(q)
∝ p(x|q), so Eqns. 7.1 and 7.2 both

compute p(x|W) . The “soft” targets are then obtained with Equation 7.3.

In (Hennebert et al., 1997), the same recurrences on α and β compute p(x|W)
∏

t
p(xt)

, and

posteriors are again obtained with Equation 7.3. The original goal of the work of
Hennebert et al. (1997) was to optimize directly p(W|x), in which we are interested
for decoding. Some assumptions, such as the common limitation of the dependency of
the HMM state qt to the current observation (or some local context) given the previous
state (p(qt|x, qt−1) = p(qt|xt, qt−1)) leads to the REMAP formulation and special kind
of neural network (Konig et al., 1996). When furthermore the dependency on the
previous state is dropped, given the current observation, we obtain Equation 7.3, but
the equations do not exactly compute p(W|x). Earlier, other papers used a forward-
backward procedure to train the NN with a Maximum Mutual Information criterion
(Bengio et al., 1992; Haffner, 1993).

The idea of these works is to replace hard targets by soft ones, which take into
account different possible segmentations of the input. After a first training with Viterbi
alignments, the targets are re-estimated with the forward-backward procedure, and the
network is trained with the obtained posterior probabilities over classes for each frame.
We can show (simple derivations of the expression of the posteriors in terms of α and
β), that when the cross-entropy is the training criterion, and the re-estimation are made
after each batch (epoch or training sequence), the method of (Senior & Robinson, 1996;
Yan et al., 1997) is equivalent to training the network with the negative log-likelihood
− log p(x|W).

7.3.3 The Equations of CTC Training of RNNs

The goal of CTC (Graves et al., 2006) is to use a neural network to transform an input
sequence x into a (shorter) output sequence of labels L (e.g. a sequence of characters)
using the NN predictions with no complicated post-processing. The proposed method
defines the NN outputs to be the set of possible labels, plus a blank output (⊘). This

170 Chapter 7. Experimental Comparison of Framewise and CTC Training

way, a mapping transforms sequence of predictions into the target sequence of labels
by first removing repetitions of labels, and then blanks. For example:

a a⊘⊘b b⊘ ba 7→ abba

One of the motivation for the special blank label is to be able to use this simple
mapping function and still output two consecutive identical labels in the output se-
quence (Graves et al., 2006). The authors also suggests that this label should model
everything in between the relevant part of the input sequences, such as the connec-
tions or short whitespaces between characters in an image. A blank prediction is only
mandatory between two consecutive and identical labels, and optional between other
labels.

With this labeling problem at hand, the NN is trained to minimize the probability
of the label sequence given the input sequence (− log p(L|x)). Several prediction se-
quences yield the same label sequence (e.g. a a b b, a a a b, a ⊘ b b, ...). To simplify
the analogy with the methods presented previously, let Qn(L) be the set of all label
(prediction) sequences mapping to L. Thus

p(L|x) =
∑

q∈Q|x|(L)

p(q|x)

In (Graves et al., 2006), the authors assume that the predictions made at different
timesteps are independent given the observation sequence, hence

p(L|x) =
∑

q∈Q|x|(L)

|x|
∏

t=1

p(qt|x)

This quantity can also be efficiently computed with a forward-backward procedure.
The mapping defines the allowed transitions between labels: one can either continue
to predict the same label, jump to the next one if it is different, or jump to a blank.
The forward and backward variables are defined as follows, with L = l1 . . . ln and
L′ = l′

1 . . . l′
n = ⊘l1 ⊘ . . .⊘ ln⊘

αt(l′
s) = p(q1:t ∈ Qt(L1:s/2), qt = l′

s|x)

βt(l′
s) = p(qt+1:T ∈ QT −t(Ls/2+1:|L|), qt = l′

s|x)

and the recurrences are:

αt(l′
s) = p(qt = l′

s|x)
k

∑

n=0

αt−1(l′
s−n)

βt(l′
s) =

k
∑

n=0

p(qt+1 = l′
s+n|x)βt+1(l′

s+n)

where k = 1 whenever l′
s = ⊘ or l′

s = l′
s−2 (resp. l′

s = l′
s+2) for forward (resp. backward)

variables, and k = 2 otherwise.

7.3. Relation between CTC and Forward-Backward Training of Hybrid NN/ HMMs 171

The α and β variables allow to compute

p(L|x) =
∑

q∈Q|x|(L)

αt(q)βt(q)

and the derivation of the cost − log p(L|x) leads to the following backpropagated error:

∂E

∂at
k

= yt
k −

∑

s:µ(s)=k

αt(s)βt(s)
∑

r αt(r)βt(r)
(7.5)

where yt
k is the output of the neural network at time t for label k, and at

k are the
activations before the softmax.

7.3.4 Similarities between CTC and hybrid NN/HMM Train-
ing

We notice that Equation 7.4 and Equation 7.5 are exactly the same. The differences
lie in the way yt

k and α and β are computed. First, the CTC uses yt
k = p(qt = k|x)

instead of p(qt = k|xt). This is mainly because the CTC appears in the context
of RNNs, which make predictions based on the whole input sequence. Note that in
(Hennebert et al., 1997), the assumptions leading to the neural network optimizing
p(W|x) include the fact that the dependency of the HMM state on the input sequence
is limited to some local context. If we make this assumption, the CTC can be applied
to any neural network, not necessarily RNNs.

Concerning the forward and backward variables, besides the limitation of the summa-
tion to allowed transitions in CTC, the main difference is the absence of transition and
prior probabilities for CTC. Setting p(r|s)

p(r)
= 1 when a transition from s to r exists and

0 otherwise in the formulation of Section 7.3.2, we obtain the CTC equations. Note
that these probabilities do not appear either in the framewise training with Viterbi
alignments.

Thus, CTC may be seen as a simplification of the forward-backward training of
hybrid NN/HMMs, using an HMM with a simple topology where each character is
modeled with a single state, plus an optional state between characters.

Added to the fact that we use CTC-trained RNN in the hybrid framework, these
observations lead to the following remarks. First, the HMM remove the need of a simple
post-processing of the RNN outputs, so having only one output for each character is
not required. The blank symbol to separate the sequences of identical characters is not
justified anymore. The equations could be applied to any HMM topology. Conversely,
the CTC topology yields good results with RNNs. The few number of HMM states /
NN outputs could be advantageous, as pointed out in the introduction of this chapter.
Therefore, we may use less HMM states in NN/HMM hybrids, and investigate the
benefits of a non-character model to represent the inter-character signal. Finally, the
CTC training criterion is limited to RNNs only because of the dependency of the
prediction on the whole input sequence, but assuming that only a local context is
relevant, it could be applied to other neural networks, such as MLPs.

172 Chapter 7. Experimental Comparison of Framewise and CTC Training

In the following of this chapter, we will study these different aspects, namely the
influence of the number of states per character, of the blank symbol, and of the training
criterion (framewise or CTC), as well as how they interact with each other.

7.4 Topology and Blank

The transition model in the CTC is principally designed so that the neural network
can be used alone to predict the desired output – the character/word sequence –,
outside the HMM framework. In practice, however, the HMM framework is convenient,
in particular for the integration of the language model. We have included CTC trained
RNNs in hybrid NN/HMM handwriting recognition systems and obtained good results
with language models (e.g. in Chapter 6 and in (Bluche et al., 2014a; Moysset et al.,
2014; Pham et al., 2014)). The HMMs were designed to match the CTC topology: one
state for every character, plus an optional state for blanks, with self-loops. We also
found that the inclusion of state priors gives better results.

In this hybrid NN/HMM framework, the CTC topology is not justified anymore,
except to have smaller search graphs in decoding, and possibly an easier classification
problem for NNs. The topology of CTC is moreover the extreme opposite of classical
HMM topologies for character modeling, which consist of several states. In the first
set of experiments, we varied the number of states in CTC training of RNNs, with a
number of states per character ranging from one to seven. We compared the results
of these variations with the trends observed in GMM-HMMs and framewise-trained
MLPs.

First, we trained GMM/HMMs. Each state has its own emission probability dis-
tribution, hence its own set of parameters. We wanted to confirm that several states
per character are better than one or two, and to check whether a blank model to take
care of the inter-character parts could help. The results are shown on the top part of
Table 7.2. We confirm that for GMM/HMM models, it is better to have several states
per character: when we increase the size of the models, the error decreases.

We also notice by comparing the two lines that adding a blank model between char-
acters helps too. However, we always got better results by incrementing the character
model sizes than by inserting blanks between characters. In the former approach,
the inter-characters are modeled differently for each character, which requires more
parameters but is better than the latter method, using a generic inter-character model.

The MLPs were trained with the framewise cross-entropy criterion, which focuses
on the classification of individual frames. The ground-truth targets are obtained by
forced alignment of the training data with a bootstrapping system, the corresponding
GMM/HMM system. The results are presented in the middle part of Table 7.2. Apart
from the well-known huge improvements brought by these discriminative models over
the generative GMMs, we draw the same conclusions concerning the number of states.

7.5. CTC Training of MLPs 173

Table 7.2: WER% (CER%) of different standard systems with different topologies.
RNNs are trained with CTC, MLPs with framewise training, and GMM/HMMs with
Viterbi training (IAM Database, Shallow/Feat.).

States 1 2 3 4 5 6 7
GMM
No blank 25.7 (15.5) 20.8 (10.7) 17.3 (8.2) 16.7 (7.7) 16.5 (7.4) 16.3 (6.9)

Blank 30.1 (18.0) 23.5 (12.6) 18.3 (8.7) 17.1 (7.7) 17.3 (7.4) 17.0 (7.4) 18.7 (8.6)
MLP
No blank 17.8 (8.2) 15.0 (6.1) 13.6 (5.3) 13.2 (4.8) 12.4 (4.6) 14.8 (4.8)

Blank 19.6 (9.0) 16.0 (6.3) 14.4 (5.5) 14.1 (5.2) 13.9 (5.2) 14.3 (5.9) 16.0 (6.7)
RNN
No blank 19.3 (8.0) 16.5 (6.1) 14.1 (5.3) 13.7 (5.0) 14.1 (4.9) 14.5 (5.1)

Blank 13.1 (4.9) 13.9 (5.0) 14.3 (5.2) 13.9 (5.1) 14.9 (5.4) 15.3 (5.8) 14.2 (5.4)

Namely, adding states in the character models improves the results. The blank model,
however, only helps when the character models are relatively small.

The RNNs were trained with the CTC criterion, but without the CTC constraints
of one output per character plus blank. Since we use RNNs in hybrid mode with
HMMs, the outputs are the different HMMs state, as for MLPs. So we apply CTC
with the transition model defined by the HMMs, or equivalently, we train the hybrid
model with the method presented in Section 7.3.2, ignoring the transition and state
prior probabilities. The results are presented in the bottom part of Table 7.2. Without
blank, increasing the number of states still improve the performance. As for MLPs,
adding a blank only helps when characters are modeled with a few states.

However, there is one noticeable difference with MLP results: with the blank sym-
bol, adding states to the character models leads to worse results. For the previous
models, the CTC topology gave the worst results, but for CTC-trained RNNs, it looks
like this topology is the best choice. A reasonable question to ask at this point is
whether it is due to the CTC training or to the RNN, or maybe a combination of both.
The next two sets of experiments attempt to answer it. Anyway, this observation
shows that the role of the blank in RNNs trained with CTC is not simply to model
inter-characters.

7.5 CTC Training of MLPs

The CTC training criterion was proposed in the context of RNNs. The only part
of the equations that makes it specific to RNNs is the representation of NN outputs
as p(qt|x), meaning that the prediction depends on the whole input sequence. The
limitation disappears when we assume as in (Hennebert et al., 1997) that a state label
only depends on some local context. The algorithm is then applicable to any model of
p(qt|xt). Moreover, we outlined in Section 7.3 the resemblance of the CTC criterion to
the forward-backward training of hybrid NN/HMMs, and like we did for the last RNN

174 Chapter 7. Experimental Comparison of Framewise and CTC Training

experiments, we can apply the CTC criterion to MLPs, with the best HMM topology
(6 states/character, no blank symbol).

Table 7.3: CTC training of MLPs. The “HMM” topology has six states per character
while the “CTC” topology is standard one for CTC, with one output per character
and a blank symbol (IAM Database, Shallow/Feat.).

Training Topology WER% CER%
Framewise HMM 12.4 4.6
CTC HMM 12.6 4.3

CTC 17.6 7.4

The results are presented on Table 7.3, and compared to the best MLP trained with
a framewise criterion. With the 6-state topology without blank (“HMM” topology), we
observe some limited improvement, from 4.6% CER to 4.3%, with CTC training. On
the other hand, with the classical CTC topology, consisting of one state per character
and a blank model, the results are far worse. This choice of topology, which was the
best one for CTC training of RNNs, is not suited to MLPs, even with CTC training.
Note however that CTC training still improved the error rates for this topology over
framewise training (19.6% WER / 9.0% CER in Table 7.2). In the next experiment,
we conduct a more thorough comparison of framewise and CTC training, with different
topologies, for MLPs and RNNs.

7.6 Framewise vs CTC Training

In this section, we compare the results of framewise and CTC (forward-backward)
training of neural networks. Note that in the literature, the comparison of framewise
and CTC training is carried out with the standard HMM topology with several states
and no blank for framewise training, and with the CTC topology for CTC training
(Graves et al., 2006; Morillot et al., 2013a). Maas et al. (2014) compare CTC-trained
deep neural networks with and without recurrence, using the topology defined by the
CTC framework, and report considerably better results with recurrence, which we
confirm in these experiments. Here, we take one step further, comparing framewise
and CTC training using the same topology in each case, and observing the effect of
both the training procedure and the output topology, for MLPs and RNNs.

For each topology (1 to 7 states, with and without blank), we trained MLPs and
RNNs. The results are summarized on Table 7.4. With blank, CTC training gives
better results than framewise training when characters are represented by a few (one
or two) states. With more states, there was no improvement nor degradation for
RNNs, but the results tended to be worse with CTC for MLPs. We make the opposite
observation without blank: for MLPs and RNNs, the results are similar or improved
with CTC training when there are many states per characters, but degraded for one
or two states.

7.6. Framewise vs CTC Training 175

Table 7.4: Comparison of WER%/CER% with framewise and CTC training of neural
networks with different output topologies (IAM Database, Shallow/Feat.)

Without blank With blank
States Framewise CTC Framewise CTC

MLP 1 - - 19.6 / 9.0 17.6 / 7.4
2 17.8 / 8.2 19.1 / 8.5 16.0 / 6.3 16.4 / 6.7
3 15.0 / 6.1 15.2 / 6.1 14.4 / 5.5 16.4 / 6.5
4 13.6 / 5.3 13.3 / 4.9 14.1 / 5.2 14.9 / 5.6
5 13.2 / 4.8 13.0 / 4.5 13.9 / 5.2 14.9 / 5.6
6 12.4 / 4.6 12.6 / 4.3 14.3 / 5.9 16.1 / 6.4
7 12.8 / 4.8 12.7 / 4.3 16.0 / 6.7 17.4 / 7.0

RNN 1 - - 18.7 / 8.2 13.1 / 4.9
2 17.7 / 7.5 19.3 / 8.0 15.9 / 6.1 13.9 / 5.0
3 15.4 / 5.6 16.5 / 6.1 14.4 / 5.8 14.3 / 5.2
4 14.2 / 5.4 14.1 / 5.3 13.8 / 5.3 13.9 / 5.1
5 14.2 / 5.1 13.7 / 5.0 14.3 / 5.2 14.2 / 5.1
6 14.0 / 5.1 14.1 / 4.9 14.6 / 5.8 15.3 / 5.8
7 14.6 / 5.2 14.5 / 5.1 15.7 / 6.4 14.2 / 5.4

Moreover, CTC training without blank and with less than 5 states per character
converged to a poor local optimum, for both neural networks, and most of the predic-
tions were whitespaces. The training algorithm did not manage to find a reasonable
alignment, and the resulting WERs / CERs where above 90%. To obtain the presented
results, we had to initialize the networks with one epoch of framewise training. This
problem did not occur when a blank model was added, suggesting that this symbol
plays a role in the success in the alignment procedure in early stages of CTC training.

On Figure 7.1, we plot the CERs of MLPs (left) and RNNs (right), without blank
in solid lines, and with blank in dashed ones, and using framewise training (blue) and
CTC (red). We observe that systems with blanks are better with a few states, and
worse with many states. Moreover, all curves but one have a similar shape: the error
decreases when the number of states increases, and start increasing when there are too
many states. This increase appears sooner when we add a blank model.

The only different case concerns the RNN with CTC training and blank symbol.
With one state per character, the CER is as good as the RNN with six states, CTC
training and no blank. The error slightly increases with the number of states. These
observations show that the HMM topologies such as those presented in Chapter 4 are
good choices in general. The CTC framework, including the single state per character,
blank symbol and forward-backward training is especially suited to RNNs.

The full systems are influenced by the HMM decoding, and by the linguistic con-
straints (vocabulary and language model). On Table 7.5, we report the error rates of
the neural networks with the different topologies alone. For framewise training, we
report the frame error rate, which is the classification error for each frame individually.
For CTC training, we report the normalized edit distance, i.e. a label error rate, simi-

176 Chapter 7. Experimental Comparison of Framewise and CTC Training

Figure 7.1: Comparison of CER% with CTC and framewise training, with and without
blank (left: MLP; right: RNN; Shallow/Feat.).

lar to the RNN-CER of Chapter 6, between the target label sequences and the output
sequences.

We observe that the error rates generally increase with the number of states. This
is not really surprising: as we supposed in the introduction, if there are less states,
there are also fewer classes to discriminate for the network, and more training sample
per class on average. With framewise training, we also notice that the topologies with
blank yield lower error rate. This is probably because the blank symbol, which is a
junk class, and also the majority class, is easier to predict.

An interesting behaviour appears with CTC training. With the blank symbol, the
same trend is observed, namely an increase of the error with the number of states per
character. When there is no blank, both neural networks get better with more states.
This is probably because CTC training relies on the forward-backward procedure, per-
forming a sort of alignment of the outputs of the network with the target sequence.
When the models are longer, and closer to the average character length, the alignment
is certainly easier, which should favor a better learning.

7.7 Interaction between CTC Training and the Blank

Symbol

7.7.1 Peaks

A typical observation in CTC-trained RNNs is the dominance of blank predictions
in the output sequence, with localized peaks for character predictions. Interestingly,
this behaviour still occurs with more states (e.g. with three states: three peaks of

7.7. Interaction between CTC Training and the Blank Symbol 177

Table 7.5: Error rates of neural networks alone without lexicon and language model
with different topologies (labels are HMM states; Shallow/Feat.).

Framewise – Label Classification Error (frame level)
States 1 2 3 4 5 6 7

MLP No blank 23.8 24.7 25.8 26.2 28.2 29.3
Blank 17.1 18.8 20.8 22.0 23.2 25.4 28.5

RNN No blank 14.4 15.4 16.3 17.2 19.6 20.7
Blank 11.3 12.8 14.2 15.0 16.0 19.0 22.2

CTC – Label Edit Distance (sequence level)
States 1 2 3 4 5 6 7

MLP No blank 77.0 53.8 44.4 39.6 34.8 32.6
Blank 18.5 18.9 21.8 26.1 23.9 22.9 24.0

RNN No blank 23.6 19.0 17.7 16.6 15.6 15.8
Blank 9.2 10.7 11.5 11.6 12.2 13.0 13.0

states predictions with many blanks between each character). We also observe this
with CTC-trained MLPs.

Figure 7.2: Outputs of different neural networks with different topologies and training
methods. Each plot represents the NN posteriors at different timesteps. The blank
output is represented in gray, and other outputs corresponding to HMM states, in
color.

On Figure 7.2, we show the predictions of neural networks at different timesteps.
Each output is represented with a different color, and the blank predictions are dis-
played in grey. We observe that the predictions are mainly blanks, for both types of
neural networks, and with different numbers of states. Moreover, the peaks are not
observed with framewise training of the same models. Thus, we can conclude that this
typical output is due to the interaction between blank and CTC training, rather than
a consequence of using RNNs or single-state character models.

178 Chapter 7. Experimental Comparison of Framewise and CTC Training

Figure 7.3: Evolutions of the outputs of an RNN for a given text line during CTC
training. As in Figure 7.2, gray corresponds to the blank output, and colors to other
outputs.

On Figure 7.3, we show how the outputs of a network with one state per character and
blank evolve in the beginning of CTC training. In the top left plot, we see the outputs
before training. Since the weights of the network have not yet been adjusted, the
outputs are more or less random. As the training procedure advances, the predictions
of the blank symbol increases, until the posterior probability is close to one for the
whole sequence (end of the second line). At this point, the network predicts only blank
labels. Then (third line), the probabilities of character labels start increasing, and
peaks emerge at specific locations.

This is not surprising. In the CTC graph, there is one blank between each character.
In early stages of training, the NN outputs are more or less random (at first approxima-
tion, drawn from a uniform distribution). Any path is equally likely, but summing all
blank posteriors for a given timestep in the forward-backward procedure, the target for
blank will be much higher than for any other character. The backpropagated error will
make the network more likely to give a high posterior probability to the blanks, which
in turn will favor path with many blanks in subsequent forward-backward computations
of the cost.

Figure 7.4 shows the posterior probabilities computed with the forward-backward
algorithm during training, which are the targets of the CTC training algorithm. We
see that the fact that one in two labels is a blank will give a higher posterior probability
for this symbol. When the network starts outputting only blanks, the paths with many
blanks will be more likely. On the other hand, the difference between the network
output for the blank label, and the posterior probability of the blank computed with
the forward-backward algorithm will become small.

Predicting only blanks will penalize the cost function because of the low proba-
bilities given to characters, and the network has only to find one location to predict
each character, to “jump” from one sequence of blanks to another. Since a valid path
must go through character labels, the posterior probabilities of these labels will also
increase. We see on the second plot of Figure 7.4 that at some positions, the character
labels have a higher posterior probability. Since the network predicts only blanks, the
gradients for characters at these positions will be high, and the network will be trained

7.7. Interaction between CTC Training and the Blank Symbol 179

Figure 7.4: Visualisation of the state posteriors computed with the forward-backward
algorithm during CTC training.

to output the character labels at specific locations. Finally, the path with blanks every-
where and characters at localized position will have a much higher probability, and the
training algorithm may not consider much the other possible segmentations (bottom
plot of Figure 7.4).

Learning to make localized character predictions is much easier for RNNs, which
can use a context of arbitrary length to make a prediction at the specific timestep.
Conversely, all predictions in MLPs must be made from an fixed context, which is
makes more difficult to predict a character only at a specific timestep, and blank
everywhere else.

7.7.2 Trying to avoid the Peaks of Predictions

From these observations, we attempted a few methods to try to avoid the peaks of
predictions. First, since the peaks are not observed in framewise training, we initialized
an RNN we a framewise training of one epoch. This way, we may hope that the
considered paths in the forward-backward procedure give less importance to the blank
symbols in the first steps. However, after CTC training, we still observe the peaks as
if we used CTC from the start.

We have seen that even with several different states per character, the CTC training
algorithm with the blank symbol still produced peaks. We supposed that it may be due
to the much larger number of blanks in the CTC graph. To limit this phenomenon, we
modified the graph to force each valid path to contain several consecutive repetitions
of the same character before being allowed to transit to a blank. This way, the ratio
between blanks and other labels is reduced.

180 Chapter 7. Experimental Comparison of Framewise and CTC Training

We tried two, three and five label repetitions during training. For decoding, we kept
the original graph representing each character with one HMM state. This training pro-
cedure effectively suppressed the localized peaks. But instead, when we repeated each
label n times, the length of each character in decoding was always n. On Figure 7.5,
we show the duration of each character in decoding. For each subfigure, the top plot
is a boxplot for each character (the two rightmost characters are the whitespace and
the blank). The bottom plot represents the average duration. Remember that during
decoding, for all training strategies, i.e. all numbers of repetitions, the characters are
still represented by only one HMM states, so no notion of duration is encoded in the
search graph.

(a) Repeat once (b) Repeat twice

(c) Repeat 5 times

Figure 7.5: Character durations in decoding when each label is repeated n times be-
tween each blank during training.

We observe that there is almost no variation in the durations, compared for example
with Figure 5.2. With one repetition (original CTC), the character durations are mostly
equals to one (peaks). With two or five repetitions, the RNN has learnt to output each
character twice or five times. It did not solve our problem, which would be to have an
output sequence representative of the input, i.e. to be able to retrieve the position of
the characters, or their boundaries, from the output. However, it shows an interesting
property of LSTM networks being able to learn exactly how many time to output a
given label.

Finally, we trained the network with a smaller learning rate, 10−4 instead of 10−3,
so that the network does not learn too quickly to predict only blanks. The results are
shown on Figure 7.6, with MLPs (left) and RNNs (right), three states per character,

7.7. Interaction between CTC Training and the Blank Symbol 181

Figure 7.6: Effect of different learning rates on the output of networks trained with
CTC and the blank symbol.

and a blank symbol. For RNNs, we see that the outputs are still peaks, even with the
smaller learning rate. For MLPs however, the blank symbol, optional, disappears, and
the outputs are not peaks anymore, but reflect better the content of the input signal.
Moreover, we had better results for MLPs with this smaller learning rate, and it was
used in the previous sections. It seems to confirm that it is difficult for an MLP to
predict well very localized peaks for characters, and that better results are obtained
when the output really represents the input at each timestep. For RNNs, the bigger
learning rate yielded better results, and the presence of peaks even with the smaller
learning rate seems to confirm that RNNs are able to use their recurrence efficiently to
produce the minimum required number of character predictions.

7.7.3 The advantages of prediction peaks

Predicting characters only at specific timesteps is not necessarily a bad solution.
Even though we cannot retrieve the character segmentation or the positions of the
boundaries, this behaviour is interesting for decoding. First, models with one state
and a blank yield much smaller decoding graphs. Furthermore, since the character
predictions are very localized, and the blank is uninformative and shared by all word
models, the number of predictions to change in order to recognize a different word is
small. It means that correcting mistakes is not very costly. That also means that it is
easier to keep more various hypotheses during beam search decoding.

We observed that the optimal optical scale in decoding is related to the length of the
characters (in the sequence of predictions). Without blank, there are roughly between
10 and 15 frames per characters in this database, and the best optical scale is always
between 10−1 and 15−1. With CTC training and blank, the predictions are localized
and correspond to 1 or 2 timesteps with one-state models, and around N timesteps
for N -state ones, and the optimal optical scale is always around N−1. With a larger
optical scale, for a fixed beam, the decoding is much faster. Thus, when the NN is
good with CTC and blank, one can obtain a fast decoding with as many alternatives,
and good results.

182 Chapter 7. Experimental Comparison of Framewise and CTC Training

7.8 CTC Training without Blanks

As already pointed out, when we trained a neural network, RNN or MLP, with CTC
and a few states per character (less than five), but without a blank symbol, the training
procedure did not converge to a good result. On Figure 7.7, we show the outputs of a
neural network when there is no blank symbol between characters. On top, we display
the output after framewise training. Below is the output after simple CTC training
from a random initialization. The big gray area corresponds to the whitespace, and
the character predictions, in color, only appear at the beginning and the end of the
sequences.

Figure 7.7: Outputs of a NN trained with CTC training without blank (CTC).

Like the blank was predominant in the CTC graph, now the whitespace symbol is
the most frequent symbol, and the network learnt to predict it everywhere. Although
it is not clear why we do not observe this behaviour with blank, it seems to indicate
that this symbol is important in the CTC training from a random initialization, maybe
helping to align the outputs of the network with the target sequence. A similar con-
clusion was drawn at the end of Section 7.6, comparing the error rates of CTC-trained
network without blank and with different number of states (Table 7.5). As the number
of states per character grows, the alignment in the forward-backward is easier, and the
error decreases.

When we initialize the network by one epoch of framewise training, before switch-
ing to CTC training, this problem disappears, as we observe on the bottom plot of
Figure 7.7. Thus, when there is no blank, we should follow the same procedure as
in (Senior & Robinson, 1996; Hennebert et al., 1997), consisting of first training the
network with Viterbi alignments, and then refining it with forward-backward training.
Only when the number of states encodes some kind of duration of the character can we
rely on the topology to yield reasonable alignments in the training procedure. However,
we always got better results in that case with the framewise initialization.

7.9. The Role of the Blank Symbol 183

7.9 The Role of the Blank Symbol

With our decoding pipeline, the role of the blank symbol cannot be limited only to
the separation of identical consecutive labels. In the previous sections, we have seen
the cases where the blank symbol helped to get better results. During the experiments,
we observed the consequences of having or not a blank symbol in the models.

With framewise training, or GMM modeling, when the character are represented
only be a few states, the addition of a blank symbol improved the result. In this case, it
effectively modeled the inter-character parts in the image, which was one of its original
justification. With CTC training, the blank symbol was also better when there were
only a few states per characters. When the models are large enough, there may not be
a need or a benefit by using this special symbol.

With CTC training and a blank symbol, we have seen that the output of the
networks are localized peaks of character predictions. This observation is due to the
interaction between this symbol and the CTC algorithm. These peaks are interesting
for decoding, as underlined in Section 7.7. Thus one of the benefits of the blank might
be to produce the peaks. However, they are more difficult to obtain with MLPs, while
RNNs, with the long-term dependencies allowed by their structure, achieve very good
results with CTC and blanks.

When there is no blank in the CTC algorithm, the training does not converge to a
good result. The observed outputs shows that there might be a problem in the forward-
backward alignments in the beginning of training. This suggests that the blank symbol
is useful to get good alignments. Nonetheless, long enough HMM should be preferred
for MLP, because of the difficult learning problem with blank, CTC and short model.

7.10 Conclusion

In this chapter, we have studied the training method for RNNs and MLPs. We
focused on framewise training, and on the CTC algorithm yielding good results with
RNNs. In the CTC paradigm, the network have one output for each character and a
special blank symbol. The training method defines transitions between labels, and is
reminiscent of forward-backward training of HMMs.

First, we have shown that the CTC training algorithm is very similar to
the integrated training of NN/HMM systems with a forward-backward
procedure, already proposed in the nineties (Senior & Robinson, 1996; Hennebert
et al., 1997; Yan et al., 1997). The main difference is the absence of transition and
prior probabilities in CTC. Moreover, the topology defined in the CTC is very specific.

Then, we have trained GMMs, MLPs, and RNNs with different topologies. Both
GMMs and MLPs get better results with many states and no blank model,
when RNNs yield better results with the CTC topology.

184 Chapter 7. Experimental Comparison of Framewise and CTC Training

The CTC training algorithm is not limited to RNNs. We have trained MLPs with
CTC, and got poor results with one state and a blank symbol. With the best HMM
topology, CTC, or forward-backward training of MLPs produced limited
improvements, which is consistent with the findings of Hennebert et al. (1997): when
the training set is large enough, forward-backward training is not much better than
framewise training.

A more careful study of framewise and CTC training of MLPs and RNNs with differ-
ent topologies showed that the CTC framework, with one state per character
and a blank symbol, is especially suited to RNNs. While in all cases, the WER
decreased with the number of states, only with blank and CTC did we observe good
results with short models. For MLPs, the best results where with 6 states and no
blank, which was the HMM topology chosen in previous chapters

Moreover, for the networks alone, the classification error increased with the number
of states, confirming that the classification problem is easier with a few states only.
However, for CTC training, and without blank, adding states decreased the classifi-
cation error, suggesting that a right length of models helped the alignment procedure
during training.

Then, we studied the interaction between CTC and the blank symbol. We have seen
that CTC without blank did not converge well, suggesting that when characters are
represented with a few states, the blank symbol might help the alignement
during CTC training. Moreover, the presence of the blank in the CTC
encourages the network to predict localized peaks of character probabilities,
which can be helpful to have a rich and fast decoding.

Finally, we can conclude that the CTC paradigm, including the forward-backward
procedure, but especially the single state per character and the blank symbol, is par-
ticularly suited to RNNs, and allows them to produce very good results. For MLPs,
we confirmed that the HMM topology chosen in this thesis was good to obtain good
results. The forward-backward procedure is also found in the sequence discriminative
training applied to fine-tune these networks.

Chapter 8

Experimental Results,
Combinations and Discussion

Contents
8.1 Introduction . 187

8.2 Summary of Results on Rimes and IAM Databases 188

8.2.1 MLP/HMM Results . 188

8.2.2 RNN/HMM Results . 190

8.2.3 Comparison of MLP/HMM and RNN/HMM Results 191

8.2.4 Combination of the Proposed Systems 193

8.2.4.1 ROVER Combination 193

8.2.4.2 Lattice Combination . 194

8.2.4.3 Comparison with the State-of-the-Art 195

8.3 The Handwritten Text Recognition tranScriptorium (HTRtS)
Challenge . 196

8.3.1 Presentation of the HTRtS Evaluation and of the Experimental
Setup . 196

8.3.2 Systems Submitted to the Restricted Track 197

8.3.2.1 Deep MLPs . 197

8.3.2.2 Deep RNNs . 198

8.3.2.3 Combination . 199

8.3.2.4 Competition Results for the Restricted Track 199

8.3.3 Systems Submitted to the Unrestricted Track 200

8.3.3.1 Adding Data to the Training of Optical Models 200

8.3.3.2 Adding Data to the Training of Language Models . . . 201

8.3.3.3 Competition Results for the Unrestricted Track 203

8.3.4 Post-Evaluation Improvements 203

8.3.4.1 A More “Author-Specific” Language Model 203

186 Chapter 8. Experimental Results, Combinations and Discussion

8.3.4.2 A More Careful Tuning of Neural Networks 204

8.4 Conclusion . 205

8.1. Introduction 187

8.1 Introduction

In the previous chapters, we proposed hybrid NN/HMM systems with deep MLPs
and deep BLSTM-RNNs. We studied different aspects of these neural networks,
namely:

• their inputs: handcrafted features, and pixel values, including more or less
context,

• their architecture: we reported significant improvement by increasing the depth
of the networks, and studied the importance of LSTM recurrent layers,

• their outputs: a varying number of HMM states, and the CTC approach with
one label for each character, and a blank symbol,

• the training criterion: either framewise training with the cross-entropy,
CTC training, or sequence-discriminative training with sMBR.

In this chapter, we compare the results of deep MLPs with those of deep BLSTM-
RNNs, for handcrafted features and pixel values. Although RNNs are the state-of-the-
art systems for handwriting recognition, leaving little room for MLPs in the past few
years, we will see that they achieve similar performance. Moreover, as already pointed
out, the discrepancy between results with handcrafted features and pixel values tends
to be small with deep neural networks.

The two types of inputs and of neural networks give us four different systems, likely to
make different mistakes. We explore two types of combination of the results produced
by the transcription pipelines, namely ROVER (Fiscus, 1997) and lattice combinations
(Xu et al., 2011), and report significant improvements.

Finally, we compare the performance of our systems with the results published on
each database, and show that we achieve state-of-the-art performance. In particu-
lar, with the combinations of models, we report the best results on Rimes and IAM
databases.

This chapter is divided into two parts.
In Section 8.2, we present our results on Rimes and IAM databases.
Section 8.3 is focused on the HTRtS contest, held in 2014 to evaluate the quality

of the transcription of Bentham database. We first present the systems we submitted
to the competition. In particular, we were the only contestant to participate to both
the restricted track, where only the data from Bentham database are allowed to build
the system, and the unrestricted track, where additional data can be used. Then, we
present the improvements brought to the systems after the competition.

We present our conclusions in Section 8.4.

188 Chapter 8. Experimental Results, Combinations and Discussion

8.2 Summary of Results on Rimes and IAM Databases

8.2.1 MLP/HMM Results

In Chapter 5, we have seen the importance of including enough context in the MLP
inputs, as well as the gains obtained with deep MLPs and a fine-tuning of the networks
with a sequence-discriminative criterion. In this section, we are interested in the full
decoding pipeline, including the linguistic knowledge (vocabulary and language model).

The MLPs retained for this chapter correspond to those achieving the best results
from the previous chapters, that is:

Rimes:

• for handcrafted features, an MLP with 3 hidden layers, consisting of 512 units
each, ±3 frames of context, trained with the cross-entropy criterion, and fine-
tuned with 7 epochs of sMBR

• for pixels, an MLP with 5 hidden layers, consisting of 512 units each, trained
with the cross-entropy criterion, and fine-tuned with 6 epochs of sMBR

IAM:

• for handcrafted features, an MLP with 5 hidden layers, consisting of 256 units
each, ±3 frames of context, trained with the cross-entropy criterion, and fine-
tuned with 7 epochs of sMBR

• for pixels, an MLP with 5 hidden layers, consisting of 1,024 units each, trained
with the cross-entropy criterion, and fine-tuned with 8 epochs of sMBR

As seen in Section 4.4, several parameters are included in the decoding procedure:

• the optical scale α, balancing the scores of the optical model and the scores of
the search graph, corresponding to transitions and LM probabilities

• the word insertion penalty (WIP), controlling the number of words in the
output

• the prior scale κ, applied to the state priors used to scale the NN posteriors.

We varied the values of these parameters, and show the results on Figure 8.1.
For each parameter, the opaque lines are the best results with the given value of the
parameter, optimizing the other ones. The transparent lines are with fixed values for all
parameters. Overall, for both databases and kinds of inputs, we found similar optimal
values. We observe that the optical scale was the most crucial parameter, with a best
value around 0.1. The best prior scale is 1.0, and some improvement is also obtained
by tuning the word insertion penalty.

8.2. Summary of Results on Rimes and IAM Databases 189

Figure 8.1: Influence of the decoding parameters (optical scale, word insertion penalty,
prior scale) on the WER% of hybrid MLP/HMM systems (Deep/Seq.).

We have performed the decoding with different levels of linguistic constraints. The
simplest one is to recognize sequences of characters. In this setup, all characters HMMs
are in parallel, which only constrains the sequences of HMM states to correspond
to characters. In the next level, the lexicon is added, so that output sequences of
characters form sequences of valid words. Finally, the language model is added, to
promote likely sequences of words.

Table 8.1: Effect of adding linguistic knowledge in MLP/HMM systems (Deep/Seq.).

Features Pixels
WER% CER% WER% CER%

Rimes no lexicon 61.1 17.8 59.5 17.8
lexicon 26.9 6.8 26.1 7.2

lexicon+LM 12.5 3.4 12.6 3.8
IAM no lexicon 54.7 15.8 54.2 15.6

lexicon 24.7 7.7 25.5 8.0
lexicon+LM 10.9 3.7 11.7 4.0

The results are reported on Table 8.1. We see that without lexicon, when the
only constraint is to recognize characters, i.e. valid sequences of HMM states, the
results are not good. The WERs are high, partly because when training the models,
the recognition of a whitespace between words was optional. Therefore, the missing
whitespaces in the predictions induce a high number of word merges in the output, i.e.
a large number of deletions and substitutions.

190 Chapter 8. Experimental Results, Combinations and Discussion

When a vocabulary is added, the error rates are roughly divided by two. Another
reduction by a factor two is achieved when a language model is present. These results
show the importance of the linguistic constraints to correct the numerous errors of the
MLP/HMM system.

8.2.2 RNN/HMM Results

In Chapter 6, we observed the benefits of deep RNNs, and the significant improve-
ments achieved with the dropout technique.

The RNNs retained for this chapter correspond to those achieving the best results
from the previous chapters, that is:

Rimes:

• for handcrafted features, an RNN with 7 hidden layers, consisting of 200 units
each, trained with dropout before every LSTM

• for pixels, an RNN with 5 hidden layers, consisting of 200 units each, trained
with dropout before and after every LSTM

IAM:

• for handcrafted features, an RNN with 5 hidden layers, consisting of 200 units
each, trained with dropout before the first two LSTMs and after the last one

• for pixels, an RNN with 7 hidden layers, consisting of 200 units each, trained
with dropout after every LSTM

As we did for MLPs, we studied the influence of the decoding parameters, the optical
and prior scales, and the word insertion penalty, in the full pipeline. The results are
depicted on Figure 8.2. For RNNs, the optical scale is also the most crucial decoding
parameter. The best values we found across all experiments was 1.0, which is quite
different from MLPs. A tentative explanation was given in the previous chapter, where
we observed that the optimal optical scale was related to the expected number of pre-
dictions to change in order to recognize another character. For CTC-trained networks,
there is only one prediction for each character, the remaining being blank predictions,
while in conventional systems, the number of prediction is related to the length of
the characters, i.e. about 10 frames. Moreover, the best prior scale was around 0.5
for all RNN experiments, and tunig the word insertion penalty also provided some
improvement.

We also applied different levels of linguistic constraints, and we present the results
on Table 8.2. We notice that the differences between no constraints, and lexicon with
LM are not as dramatic as for MLPs. The WERs are only multiplied by 2 to 2.5 when
we remove the constraints, when it was roughly multiplied by 5 for MLPs. We may
put it in perspective with Chapter 6, where we have seen that a lot of context was used
by the network through the recurrent connections, which seems to enable the network
to predict characters with some knowledge about the words.

8.2. Summary of Results on Rimes and IAM Databases 191

Figure 8.2: Influence of the decoding parameters (optical scale, word insertion penalty,
prior scale) on the WER% of hybrid RNN/HMM systems (Deep/ Drop./ CTC).

Yet, both the lexicon and the language model bring significant improvements, and
remain very important to achieve state-of-the-art results. The fact that the RNNs
produce reasonably good transcriptions by themselves should make them more suited
to open-vocabulary scenarii (e.g. the approaches of Kozielski et al. (2013b); Messina
& Kermorvant (2014)), where the language model is either at the character level, or
an hybrid between a word and a character language model.

Table 8.2: Effect of adding linguistic knowledge in RNN/HMM systems (Deep/
Drop./ CTC).

Features Pixels
WER% CER% WER% CER%

Rimes no lexicon 20.1 5.1 20.9 5.6
lexicon 16.7 5.3 16.4 4.3

lexicon+LM 12.8 3.8 12.7 4.0
IAM no lexicon 27.5 7.9 24.7 7.3

lexicon 17.6 5.5 16.7 5.3
lexicon+LM 11.2 3.8 11.4 3.9

8.2.3 Comparison of MLP/HMM and RNN/HMM Results

In this section, we compare the results with MLPs and RNNs on the one hand,
and with handcrafted features and pixels on the other hand. They are summarized
on Table 8.3. As one can notice, similar error rates are achieved by the two kinds of

192 Chapter 8. Experimental Results, Combinations and Discussion

optical models, and of inputs, making a definite conclusion hard to draw about what
are the best choices.

Table 8.3: Comparison of MLP and RNN optical models with different types of inputs
(Deep).

Features Pixels
WER% CER% WER% CER%

Rimes Deep MLP 12.5 3.4 12.6 3.8
Deep RNN 12.8 3.8 12.7 4.0

IAM Deep MLP 10.9 3.7 11.7 4.0
Deep RNN 11.2 3.8 11.4 3.9

What we may conclude however, is that:

• pixel values yielding similar performance as handcrafted features, the need to de-
sign and implement features vanishes, and one may simply use the pixels directly,
as pointed out in previous chapters

• although RNNs are found in all the best published systems for handwritten text
line recognition, they are not the only option, and MLPs should not be neglected.

Figure 8.3: Influence of the number of free parameters in MLPs and RNNs. Circles
correspond to handcrafted features, and + to pixels. RNNs are shown in blue and
MLPs in green, each point is one network (Deep).

On Table 8.3, we have compared the best MLPs and RNNs, selected from the exper-
iments presented in the previous chapters. Although the MLPs have between 512 and
1,024 units per layer, and RNNs have only 200, one should remember that the LSTM
layer have actually 200 units in each direction, and that with the recurrent connections
and with the gates, the number of free parameters in LSTM layers is roughly multiplied
by 8.

8.2. Summary of Results on Rimes and IAM Databases 193

On Figure 8.3, we selected the MLPs with 256 and 512 hidden units per layer,
and the RNNs with 100 units per layer, for different depths and types of inputs. We
compare the number of free parameters, and the word error rates achieved on Rimes,
IAM and Bentham. Each point represents one network (blue for RNNs, green for
MLPs). We see that, except for Bentham, where RNNs yield far better results than
MLPs, the WERs of the two kinds of networks are also comparable for a given number
of parameters.

8.2.4 Combination of the Proposed Systems

For each database, we have selected four systems, two MLPs and two RNNs, with
feature and pixel inputs. We have seen that their performance was comparable. How-
ever, the differences between these systems probably lead to different errors. Thus,
we combined their outputs, with two methods: ROVER (Fiscus, 1997), which com-
bines the transcription outputs, and a lattice combination technique (Xu et al., 2011),
which extracts the final transcript from the combination of lattice outputs. For both
methods, we started by computing the decoding lattices, obtained with the decoder
implemented in Kaldi.

8.2.4.1 ROVER Combination

ROVER stands for Recognizer Output Voting Error Reduction. It is a system combi-
nation method, which inputs are the sequences of words recognized by different systems.
Each word of the output sequence of each system is associated with a confidence score,
computed with the Minimum Bayes Risk (MBR) decoding method presented in (Xu
et al., 2011).

The word sequences of all systems are iteratively aligned to build a confusion net-
work. So-called NULL arcs are inserted to account for deletions in the alignments.
Then, the voting step computes a score for each unique word w at each position i with
the following formula:

s(w, i) = a
N(w, i)

N
+ (1− a)C(w, i) (8.1)

where N is the number of systems, and a ∈ [0, 1] is an interpolation parameter between
the frequency of w at position i and the final confidence C(w, i). C(w, i) may be the
maximum or the average confidence score of all occurrences of w at position i. The
confidence of a NULL arc is another hyper-parameter of the algorithm. The final result
is the sequence W∗ = w∗

1w∗
2 . . . w∗

n, where w∗
i = arg maxw s(w, i).

The results of ROVER combination of the four systems are reported on Table 8.4.
We varied the parameters of this combination method, and obtained the best results
with a = 0, i.e. the word frequency in the confusion network is ignored, C(w, i) being
the average word score, and with a confidence of 1 for NULL arcs.

We see that the combination significantly outperforms the best single system. We
tried different subsets of systems to be combined, and always recorded improvements,

194 Chapter 8. Experimental Results, Combinations and Discussion

but we still obtained better results by including all of them. The observed combination
results support the hypothesis that the different systems make different mistakes, and
can complement each other.

Table 8.4: ROVER and Lattice combination of MLPs and RNNs with features and
pixel inputs on Rimes and IAM (Deep).

Rimes IAM
WER% CER% WER% CER%

Deep MLP Features 12.5 3.4 10.9 3.7
Pixels 12.6 3.8 11.7 4.0

Deep RNN Features 12.8 3.8 11.2 3.8
Pixels 12.7 4.0 11.4 3.9

ROVER combination 11.3 3.5 9.6 3.6
Lattice combination 11.2 3.3 9.6 3.3

8.2.4.2 Lattice Combination

Xu et al. (2011) developed an algorithm to minimize Bayes risk with respect to the
word error rate, or rather the Levenstein edit distance, from lattices. The algorithm
iteratively finds the best word sequence in a lattice, using the forward-backward algo-
rithm to compute an approximate edit distance of the lattice to a given word sequence.
The posterior probabilities of having a word at a given position are used to update the
reference word sequence. The forward-backward procedure is repeated with the new
reference word sequence, and the whole process is repeated until convergence.

We used this decoding method to get the scored outputs for ROVER combination.
The results of MBR decoding were not much better than those of the standard MAP
decoding. This algorithm can take several input lattices. Given a weight for each
one, the procedure can be applied to each lattice, and the score of each word is the
weighted sum of the scores computed in individual lattices. We scaled the lattices of
each system individually with the corresponding optimal acoustic scale, and added the
optimal word insertion penalties.

We combined our systems with this lattice-based method, and the results are re-
ported on Table 8.4. The only hyper-parameter of this combination algorithm is the
weights assigned to different systems. We tried several, but obtained similar results as
those presented, which correspond uniform weights. The difference between ROVER
and lattice combinations is small on the validation sets of Rimes and IAM, as we
see in Table 8.4. Nonetheless, lattice combination is never worse, and is clearly bet-
ter than ROVER on the evaluation sets (Section 8.2.4.3), and on Bentham database
(Section 8.3.2.3).

8.2. Summary of Results on Rimes and IAM Databases 195

8.2.4.3 Comparison with the State-of-the-Art

The final results, comparing different models and input features on the one hand,
and comparing our proposed systems with other published results on the other hand,
are reported on Tables 8.5 (Rimes) and 8.6 (IAM). The error rates are reported on both
the validation and evaluation sets. The conclusions of the previous sections about the
small differences in performance between MLPs and RNNs and between features and
pixels are still applicable to the evaluation set results.

Table 8.5: Final results on Rimes database

Dev. Eval.
WER% CER% WER% CER%

GMM-HMM Features 17.2 5.9 15.8 6.0
MLP Features 12.5 3.4 12.7 3.7

Pixel 12.6 3.8 12.4 3.9
RNN Features 12.8 3.8 12.6 3.9

Pixels 12.7 4.0 13.8 4.6
ROVER combination 11.3 3.5 11.3 3.7
Lattice combination 11.2 3.3 11.2 3.5

Pham et al. (2014) - - 12.3 3.3
Doetsch et al. (2014) - - 12.9 4.3

Messina & Kermorvant (2014) - - 13.3 -
Kozielski et al. (2013a) - - 13.7 4.6

Messina & Kermorvant (2014) - - 14.6 -
Menasri et al. (2012) - - 15.2 7.2

Table 8.6: Final results on IAM database

Dev. Eval.
WER% CER% WER% CER%

GMM-HMM Features 15.2 6.3 19.6 9.0
MLP Features 10.9 3.7 13.3 5.4

Pixel 11.4 3.9 13.8 5.6
RNN Features 11.2 3.8 13.2 5.0

Pixels 11.8 4.0 14.4 5.7
ROVER combination 9.6 3.6 11.2 4.7
Lattice combination 9.6 3.3 10.9 4.4

Doetsch et al. (2014) 8.4 2.5 12.2 4.7
Kozielski et al. (2013a) 9.5 2.7 13.3 5.1

Pham et al. (2014) 11.2 3.7 13.6 5.1
Kozielski et al. (2013a) 11.9 3.2 - -

Messina & Kermorvant (2014) - - 19.1 -
Espana-Boquera et al. (2011) 19.0 - 22.4 9.8

Not suprisingly, the systems based on neural networks outperform by far the GMM-
HMM baseline systems presented in Chapter 4: the relative improvement is about 30%.

196 Chapter 8. Experimental Results, Combinations and Discussion

Moreover, on Rimes, we see that all of our single systems achieve state of the art
performance, competing with the systems of Pham et al. (2014), which uses the same
language model with an MDLSTM-RNN with dropout, trained directly on the image,
and of Doetsch et al. (2014), an hybrid BLSTM-RNN.

On IAM, it is worth noting that the decoders of Kozielski et al. (2013a); Doetsch
et al. (2014) include an open-vocabulary language model which can potentially recog-
nize any word, when the error of our systems is bound to be higher than the OOV rate
of 3.7%. For (Kozielski et al., 2013a), the second result in Table 8.6 corresponds to the
closed vocabulary decoding with the same system as the first one. Unfortunately, the
results on the evaluation set are not reported with this setup, but from the validation
set errors, we may consider that our single systems achieve similar performance as the
best closed-vocabulary systems of Pham et al. (2014) and Kozielski et al. (2013a).

Finally, both combination methods clearly outperform the best published WERs
on Rimes and IAM, even those obtained with open-vocabulary systems. The lattice
combination yields lower WERs and CERs than the ROVER method.

8.3 The Handwritten Text Recognition tranScrip-

torium (HTRtS) Challenge

In this part, we present our results on the Bentham database. This database was
released for the Handwritten Text Recognition tranScriptorium (HTRtS) challenge,
held in 2014. Due to the time constraints for the competition, the submitted systems
do not always match those presented in the previous chapters.

We will first present the competition in Section 8.3.1. There were two tracks
to which we participated. In the restricted track, only the data of the Bentham
database were allowed to train the systems, which we present in Section 8.3.2. In the
unrestricted track, we could include more data, both for the optical and the lan-
guage model. We introduce the additional data we used for this track in Section 8.3.3.
We study the influence of adding data to optical models and to language models in
isolation and in combination. Finally, in Section 8.3.4, we explain the refinements done
after the challenge, and present the final results.

8.3.1 Presentation of the HTRtS Evaluation and of the Ex-
perimental Setup

The HTRtS contest was organized in the scope of the International Conference on
Frontiers in Handwriting Recognition (ICFHR 2014; Sánchez et al. (2014)). The docu-
ments, prepared for the tranScriptorium project (Sánchez et al., 2013) by the University
College, London, consist of a subset of the Bentham collection. They are handwritten
manuscripts written by the British philosopher Jeremy Betham and his staff in the
18th and 19th centuries.

The data, presented in Section 3.2, were the only allowed source of information to
build the recognition system for the restricted track of the competition. More data can

8.3. The Handwritten Text Recognition tranScriptorium (HTRtS) Challenge 197

be used to train systems submitted to the unrestricted track. The other contestants
both trained MDLSTM-RNNs (Sánchez et al., 2014). The CITLab team took part only
in the restricted track. The A2iA team used the open-vocabulary modeling presented
in (Messina & Kermorvant, 2014), and only submitted a system for the unrestricted
track. The organizers of the contest provided a baseline GMM/HMM system with a
bigram LM, achieving a WER of 32.6% on the development set.

We took part in both tracks. The image preprocessing and feature extraction applied
in all the following experiments, and for the contest, are those presented in Section 4.2.
The procedure followed to build the language models was explained in Section 4.3. For
the restricted track, we used the language model of Section 4.3. For the unrestricted
track and the complementary experiments, we only added more data to the language
model estimation.

For this contest, we built several systems, using the provided data, as well as ad-
ditional data. We trained hybrid NN/HMM systems, with deep MLPs and RNNs,
working on different type of features (handcrafted and pixels values). For improved
performance, we also combined the different systems.

8.3.2 Systems Submitted to the Restricted Track

Because of the limited time allowed to train the systems for the competition, the
performance of the systems presented in this section may differ from those of previous
chapters. We will give a brief description of the systems retained for the restricted track,
as well as their results on the validation set. Then, we compare different combination
schemes, and present the results of the competition.

8.3.2.1 Deep MLPs

The forced alignments computed with the GMM/HMM of Section 4.5 are used to
create a training set for MLPs, with either handcrafted or pixel features. The networks
are pre-trained with the unsupervised layerwise training method described in (Hinton
et al., 2006), and fine-tuned with a cross-entropy criterion. Each hidden layer has 1,024
units and a sigmoid activation, and the output layer has 372 nodes, one for each HMM
state.

We trained networks with different depths, and in the case of handcrafted features,
different contexts. The WERs on the validation set are summarized on Table 8.7.

We further trained the best networks (in bold face in Table 8.7) with a sequence-
discriminative training criterion (sMBR; Kingsbury (2009)), after realignment of the
training set using the cross-entropy-trained networks. We record relative WER im-
provements up to 11.9% (Table 8.8).

The two selected networks are:

• MLP features : sMBR-trained MLP using ±9 input frames of handcrafted
features, with 4 hidden layers of 1,024 nodes.

198 Chapter 8. Experimental Results, Combinations and Discussion

Table 8.7: MLP results (cross-entropy framewise training). The figures are WERs (%)
(Xent).

Number of hidden layers
Features Context 1 2 3 4 5 6 7
Hand- ± 1 27.2 26.4 25.9 26.3 25.5 25.7 25.5
crafted ± 3 26.2 25.9 26.3 26.2 26.0 26.2 25.7

± 5 27.7 26.3 25.8 26.0 25.7 25.7 25.6
± 7 27.7 27.2 26.0 26.2 25.7 26.1 25.8
± 9 26.5 25.4 25.1 24.4 24.5 24.7 24.6

Pixels - 33.2 25.0 24.4 23.5 23.8 22.8 22.9

Table 8.8: Improvement brought by sMBR sequence training, as oposed to the cross-
entropy framewise training (Deep/Seq.).

Inputs Training WER CER

Features Cross-entropy 21.0% 8.9%
+sMBR 19.4% (-7.6%) 7.9% (-11.2%)

Pixels Cross-entropy 22.6% 10.7%
+sMBR 19.9% (-11.9%) 8.2% (-23.4%)

• MLP pixels : sMBR-trained MLP using pixel features, with 6 hidden layers of
1,024 nodes.

8.3.2.2 Deep RNNs

For both types of inputs – handcrafted features and pixels, we trained BLSTM-
RNNs. The inputs are the sequences of feature vectors, and there is one output for
each character, plus one for a special non-character symbol, used to cope with the
different sizes of the input and the output (94 outputs). We trained the networks
with the Connectionist Temporal Classification (CTC) objective function. To improve
the performance of the RNNs, we also applied the dropout technique after the LSTM
layers.

Table 8.9: RNNs on handcrafted and pixel features (Deep/CTC).

Handcrafted Features Pixels
RNN-CER% WER% CER% RNN-CER% WER% CER%

7x100 11.1 18.5 7.5 12.2 21.4 8.8
7x200 11.0 18.0 7.0 11.8 20.6 8.4

+ dropout 8.9 17.2 6.7 9.2 18.7 7.3

8.3. The Handwritten Text Recognition tranScriptorium (HTRtS) Challenge 199

The results are presented on Table 8.9. As previously, the systems we kept are
indicated in bold face:

• RNN features : CTC-trained BLSTM-RNN using dropout, handcrafted fea-
tures, with 7 hidden layers of 200 nodes.

• RNN pixels : CTC-trained BLSTM-RNN using dropout, pixel features, with 7
hidden layers of 200 nodes.

8.3.2.3 Combination

On Table 8.10 we report again the performance of restricted systems. We see that
NN optical models bring a huge improvement over the standard ML-trained GMMs.
The handcrafted features seem better than raw pixel values, although the difference is
small for MLPs. RNNs gave lower error rates than MLPs on this task.

Table 8.10: Summary of results of restricted systems.

System WER% CER%
GMM-HMM Features 27.9 14.5
Deep MLP Features 19.4 7.9

Pixels 19.9 8.2
Deep RNN Features 17.2 6.7

Pixels 18.7 7.3

The different systems use different optical modeling and input features, and make dif-
ferent mistakes. We tried two system combination methods to improve the results: the
ROVER combination described in (Fiscus, 1997) and the lattice combination method
described in (Xu et al., 2011). We combined the four systems, and report the results
on Table 8.11, showing the superior performance of the lattice-based combination. The
relative improvements brought by the best combination are 10% WER and 11% CER
over the best single system.

Table 8.11: Comparison of combination techniques for the four restricted track systems.

Method WER% CER%
ROVER combination 16.0 6.6
Lattice combination 15.4 5.9

8.3.2.4 Competition Results for the Restricted Track

We submitted the single systems and the result of the lattice combination the the
restricted track of the competition. The WERs achieved by these systems are reported
on Table 8.12. The performances are similar to those obtained on the validation data,
although we got slightly better results with features and slightly worse ones with pixels.

The combination yielded 15.0% WER, just above the 14.6% of the CITlab system.

200 Chapter 8. Experimental Results, Combinations and Discussion

Table 8.12: Competition Results for the Restricted Track.

Model WER%
Deep MLP Features 19.0

Pixels 20.0
Deep RNN Features 17.1

Pixels 19.0
Lattice combination 15.0

CITlab 14.6

8.3.3 Systems Submitted to the Unrestricted Track

For the unrestricted track, we added more data to the training of RNNs with hand-
crafted features, and included a larger corpus to estimate the language model. We
studied the effects of the additional data for optical modeling, and for language mod-
eling.

8.3.3.1 Adding Data to the Training of Optical Models

To train better optical models, we used annotated images from other databases and
from the web. We selected them because they corresponded to documents written in
English, or historical documents, or manuscripts from the same epoch as Bentham
documents.

The IAM database (Marti & Bunke, 2002) is a well-known database for handwriting
recognition. The training set consists of 747 pages of pretty clean handwritten passages
of the English LOB corpus, copied by different writers. The positions and transcripts
of text lines are provided with the database.

The Georges Washington database (Fischer et al., 2012) is extracted from Wash-
ington Papers, dating from the 18th century. It is written in English by two writers,
and the available version provided by the University of Bern consists of preprocessed
text lines along with their transcription.

The NUMEN database, provided by Numen Digital, comprises 13,649 historical
documents in old creole French containing land surveying reports. It contains anno-
tations of line positions and transcriptions. We only used a subset of 11,710 lines for
training.

The IBM UB 1 database1 was collected at the University of Buffalo. It contains
online and offline data, totalling around 6,000 pages of cursive handwritten texts pro-
duced by more than 40 writers. The line positions are unknown, and the transcript is
provided only for whole pages or couple of pages.

The Abraham Lincoln database2 is not an official database. It was retrieved from
the Library of Congress, and is made of Lincoln’s correspondence manuscript docu-
ments from the 19th century. The documents were produced by different writers, and
again, the line positions are unknown and the transcript is available only for whole

1http://www.cubs.buffalo.edu/hwdata
2http://memory.loc.gov/mss/mal/

8.3. The Handwritten Text Recognition tranScriptorium (HTRtS) Challenge 201

documents of several pages.
We extracted subsets of text lines with mapped transcript from the last two databases

using the method presented in (Bluche et al., 2014b). We modified the algorithm pa-
rameters to retrieve only those lines for which we can be confident that the extracted
position and mapped transcript are correct. Some errors are inevitably introduced by
this automatic procedure, but we trusted the recognition systems to be able to cope
with that “noise” during training.

A summary of the data used for training the optical models is presented on Ta-
ble 8.13. Later, when we say that we use only a subset of some database, it corresponds
to approximately 10% of randomly selected lines.

Table 8.13: Data used for optical model training.

Track Name Number of text lines
Restricted Bentham 9,198
Unrestricted IAM 6,482

NUMEN 11,710
G. Washington (GW) 642

IBM UB 1 825
A. Lincoln (AL) 3,960

We trained BLSTM-RNNs with this additional data for the unrestricted track. Due
to time constraints, we only trained such systems with handcrafted features, and with
the same architecture (7x200 hiddens) and training procedure as the RNN features
system of the restricted track.

We built three such systems, using different subsets of the available images. We
refer to these systems by:

• uRNN1 : Bentham, G. Washington, subset of IAM, Numen and A. Lincoln

• uRNN2 : Bentham, G. Washington, subset of IAM, Numen, IBM and A. Lincoln

• uRNN3 : Bentham, G. Washington, IAM, IBM, A. Lincoln and Numen

The training data and results of these systems with the restricted-track language
model are presented on Table 8.14. Adding more data to train the RNNs, we observe up
to 26% gain in CER on the validation set of Bentham database with the RNN alone,
and 8% of WER improvement of the complete systems. The best RNN is already
almost as good as the system combination submitted to the restricted track.

8.3.3.2 Adding Data to the Training of Language Models

For the unrestricted track, we added the Open American National Corpus (Ide &
Suderman, 2007) for the estimation of the language models. We used only the part
extracted from written documents, which amounts to more than 11M running words.

202 Chapter 8. Experimental Results, Combinations and Discussion

Table 8.14: BLSTM-RNN unrestricted results (RNN-CER% is the Character Error
Rate with RNN alone, while the WER% is after adding the lexicon and LM ; GW and
AL stand for G. Washington and A. Lincoln. “s-” indicates that only a subset was
used) (Deep/Drop.).

Name Training data RNN-CER% WER%
RNN features Bentham 8.9 17.2
uRNN1 Bentham, GW, sIAM,

sNumen, sAL 7.5 16.5
uRNN2 Bentham, GW, sIAM, sNumen,

sIBM, sAL 6.6 15.8
uRNN3 Bentham, GW, IAM, Numen,

IBM, AL 6.6 15.8

The new vocabulary, including hyphenations contains 108k words, which represents
an OOV rate on the validation set of 2.5%. We built a bigram language model for
decoding, of perplexity 345 on the validation data, and a trigram for rescoring, of
perplexity 245.

Table 8.15: Improvements brought by adding more LM data (WER% / CER%; Deep).

Restricted LM Unrestricted LM
Deep MLP Features 19.4 / 7.9 16.7 / 6.9

Pixels 19.9 / 8.2 17.5 / 7.5
Deep RNN Features 17.2 / 6.7 14.9 / 5.7

Pixels 18.7 / 7.3 16.3 / 6.4
Lattice combination 15.4 / 5.9 12.5 / 4.9

uRNN1 16.5 / 6.1 13.4 / 5.1
uRNN2 15.8 / 5.6 13.1 / 4.8
uRNN3 15.8 / 5.6 13.1 / 4.8

Lattice combination 14.6 / 5.4 11.8 / 4.8

Adding more data for the language model estimation seems critical to solve this
task, as shown on Table 8.15 (“Restricted” versus “Unrestricted” columns). We observe
relative WER (resp. CER) improvements between 12 and 19% (resp 8 and 17%).

The final lattice combination of all systems, with the new language model, achieves
11.8% WER and 4.8% CER, against 15.4% and 5.9% for the system submitted to the
restricted track. We notice that the separate improvements due to more optical model
data, around 0.8% absolute WER, and to more LM data, around 3% absolute WER,
add up to obtain the observed results.

8.3. The Handwritten Text Recognition tranScriptorium (HTRtS) Challenge 203

8.3.3.3 Competition Results for the Unrestricted Track

For the unrestricted track, we submitted the single RNNs, and the lattice combina-
tion of all systems. Although we got significantly better results than for the restricted
track, by more than 25%, our system is not as good as the MDLSTM-RNN of A2iA,
which was trained on much more data, and was combined with an open-vocabulary
approach. Their language model was moreover estimated on Bentham texts retrieved
from the web, which are probably very representative of the content of the manuscripts
to recognize for the competition.

Table 8.16: Competition Results for the Unrestricted Track.

Model WER%
RNN features 14.7

uRNN1 12.9
uRNN2 12.7
uRNN3 12.4

Lattice Combination 11.1
A2iA production system 8.6

8.3.4 Post-Evaluation Improvements

After the competition, we brought some refinements to our systems. First, noticing
the importance of a good language model in the unrestricted track, we built one with
the Bentham texts used in the A2iA system. Then, we had more time training care-
fully the different neural networks, which corresponds to the experiments presented
in Chapters 5 and 6, and yielded better results in some cases. Finally, we have ob-
served in Chapter 6 that applying dropout before LSTM layers rather than after them
was better, so we retrained the five RNNs presented above, changing the position of
dropout.

8.3.4.1 A More “Author-Specific” Language Model

First, we studied the effect of the corpora used to train the language models. We
complete the previous results with a new language model, built with exactly the same
procedure as before, described in Section 4.3, but using the same corpus as the A2iA
system. It is composed of additional Betham texts retrieved from the web3. The new
bigram language model has a perplexity of 215 and an OOV rate of 1.47% on the
validation set, for a vocabulary of 166k words. The lattices are rescored with a trigram
of perplexity 156.

As we can see on Table 8.17, this new LM seems significantly better, bringing
another 2% absolute WER improvement compared to the LM built on the OANC.
Compared to the language models of the restricted track, this new one produce a
relative WER improvement of 34%.

3http://oll.libertyfund.org/titles/bentham-works-of-jeremy-bentham-11-vols

204 Chapter 8. Experimental Results, Combinations and Discussion

Table 8.17: WER% improvements brought by adding even more LM data (Deep).

OANC Bentham texts
Deep MLP Features 16.7 14.0

Pixels 17.5 14.6
Deep RNN Features 14.9 13.1

Pixels 16.3 14.4
Lattice combination 12.5 10.7

uRNN1 13.4 11.9
uRNN2 13.1 11.3
uRNN3 13.1 11.3

Lattice combination 11.8 9.7

Table 8.18: Results on the evaluation set.

Model WER%
Deep MLP Features 13.1

Pixels 14.3
Deep RNN Features 12.4

Pixels 13.7
Lattice combination 10.2

uRNN1 11.1
uRNN2 10.5
uRNN3 10.4

Lattice combination 8.9
A2iA production system 8.6

When we use the same corpus to train the language model, our combined system is
almost as good as A2iA’s, even though they used an open-vocabulary approach, which
enables their system to recognize any word (Table 8.18), while our result is bounded
to be greater than the OOV rate.

8.3.4.2 A More Careful Tuning of Neural Networks

We have seen in Section 6.6 that applying the dropout technique before the LSTM
layers in RNNs produced better results than after LSTMs. The new results with this
different position of dropout, and with a more careful training and selection of MLPs,
are presented on Table 8.19. The language model used in the decoder is the one for
the restricted track.

All four systems are improved, by 0.7 to 1.8% absolute WER, and the combination
of those is also significantly better than the one submitted to the competition. On
Table 8.20, we report the results of our new systems on the evaluation set, for the
restricted and unrestricted track, and compare them to the results of the competi-
tion (Sánchez et al., 2014).

On the restricted track, the combination of our refined systems outperforms the

8.4. Conclusion 205

Table 8.19: WER% of the refined models (Deep).

Competition Refined
Deep MLP Features 19.4 18.6

Pixels 19.9 19.2
Deep RNN Features 17.2 16.2

Pixels 18.7 16.9
Lattice combination 15.4 14.6

results of the winning team. On the unrestricted track, their combination, plus the
same corpus to train the language model (although not with the open-vocabulary
method of Messina & Kermorvant (2014), used in A2iA’s system), achieves the same
error rate as the competition winner.

Table 8.20: Refined results on the evaluation set (Deep)

(a) Restricted track

Model WER% CER%
Deep MLP Features 18.6 7.5

Pixels 20.9 8.2
Deep RNN Features 16.2 5.4

Pixels 16.9 5.9
Lattice combination 14.1 5.0

CITlab 14.6 -
Ours (Competition) 15.1 -

(b) Unrestricted track

Model WER% CER%
Deep MLP Features 13.2 4.9

Pixels 14.4 6.1
Deep RNN Features 11.2 4.0

Pixels 11.5 4.4
uRNN1 10.9 4.0
uRNN2 10.5 3.7
uRNN3 10.2 3.6

Lattice combination 8.6 3.1

A2iA production system 8.6 -
Ours (Competition) 11.1 -

8.4 Conclusion

In this chapter, we have studied the complete hybrid NN/HMM systems, including
the decoding with linguistic constraints. We have directly compared the different opti-

206 Chapter 8. Experimental Results, Combinations and Discussion

cal models, and the different types of inputs. Moreover, we have presented the results
of all systems, and of their combination, on the official evaluation set of each database.
We have also introduced the systems submitted to the HTRtS 2014 evaluation, and
the obtained results.

We have confirmed the observation made in the last chapters, that pixel values
yield competitive results with handcrafted features for optical models made
of deep neural networks. Moreover, we have shown that deep MLPs can achieve
similar performance to RNNs, despite the dominance of the latter in the literature
of handwriting recognition.

However, as seen in the previous chapter, the MLPs need an adjustment of the
number of states in HMM models, and of the size of input context provided, and a
sequence-discriminative training to attain this level of performance. The RNNs,
with the CTC training, model sequences of characters directly, and are
much easier to train, coping with the input sequence and the length estimation
automatically. No bootstrapping of the training is necessary. Yet for a fair comparison
with the two kinds of models, it would be worth training MLPs with dropout and
RNNs with sMBR.

We have also underlined the importance of the decoding parameters. The optical
scale, in particular, has a big influence on the final results. We found that
0.1 is the best value for MLPs in general, on those databases, and 1 is the best value for
RNNs. Tuning the word insertion penalty and the prior scale may bring a few percent
of improvement.

The linguistic constraints, i.e. the lexicon and the language model, are crucial
to achieve the presented results. Without them, the error rates are dramatically
higher, especially for MLPs, with which half of the words are misrecognized. With
only a lexicon, more than one word out of four is still wrong.

By combining the systems with two methods, we have shown the complemen-
tarity of the different models. We achieved over 1% absolute WER improvement
compared to the best single system. By considering more alternatives, the lattice-based
combination method of Xu et al. (2011) produces robuster results.

Finally, we applied our models to the evaluation sets, in order to compare their results
to those published by others. On Rimes and IAM, all our single systems yield
comparable results to the state-of-the-art. The proposed model combinations
outperform all published results on the studied databases: Rimes, IAM and
Bentham.

Conclusions and Perspectives

In this thesis, we focused on the problem of offline, unconstrained, large vocabulary
handwritten text recognition, consisting of transforming images of cursive text into
their digital transcription. More specifically, we concentrated on images of text lines,
for which a segmentation into words or characters was unknown. We adopted the
popular sliding window approach: a sequence of feature vectors is extracted from the
image, processed by an optical model, and the resulting sequence is modeled by Hidden
Markov Models and linguistic knowledge (a vocabulary and a language model) to obtain
the final transcription.

In the interest of gaining a deeper knowledge or understanding of these models, we
have carried out thorough experiments with deep neural networks optical models for
hybrid NN/HMM handwriting recognition. We focused particularly on two popular ar-
chitectures: Multi-Layer Perceptrons, and Long Short-Term Memory Recurrent Neural
Networks. We studied and evaluated many aspects of those models: the type of inputs,
the output model, the training procedure, and the architectures of the networks. We
validated our approach on three public databases: Rimes, IAM, and Bentham. Our
contributions lie in the answers to the following questions regarding neural network
optical models.

−→ Is it still important to design handcrafted features when using deep neural net-
works, or are pixel values sufficient?

Throughout this thesis, we have carried out our experiments with two kinds of
inputs: handcrafted features, and raw pixel values. The role of features is to carry
a meaningful representation of the input signal. By meaningful, we mean that it
should discard the useless variations in the signal, and extract the characteristics that
are relevant to the task at hand, here handwriting recognition. Manually designing,
implementing, and validating handcrafted features through many experiments, may be
a tedious task. Moreover, the choice of features is inevitably biased towards the beliefs
and hypotheses of the designer about what is relevant to the problem in the input
signal.

The current trend in handwriting recognition, as in many areas of machine learning,
is to encode less and less assumptions in the systems, but to let the learning algorithm
decide. For example, after trying to segment characters, or words, researchers have
switched to whole line recognition, and obtained better results. Likewise, in many
areas such as object detection or speech recognition, the extraction of handcrafted, and
often popular features is being dismissed, and replaced by the input signal directly, for
example the pixel intensities in an image. Deep learning methods have proved quite
efficient in processing this raw input, yielding competitive if not better results than
classical methods based on features.

Although we have seen that shallow networks tend to be much better when fed
with handcrafted features, we showed that the discrepancy between the perfor-

208 Conclusions and Perspectives

mance of the systems with handcrafted feature and pixel inputs is largely
decreased with deep neural networks. With pixel inputs, the gap between one
and more hidden layers is bigger than for handcrafted features, suggesting that deep
networks are particularly suited to pixels. This supports the idea that an automatic
extraction of learnt features happens in the lower layers of the network. Neural net-
works with pixel inputs require more hidden layers, or more parameters,
but finally achieve similar performance as networks operating with hand-
crafted features. The need to design and implement good feature extractions may
therefore not be necessary. Deep networks automatically learn features from the image,
without making a priori assumptions about what is relevant to the task.

−→ Can deep neural networks give rise to big improvements over neural networks
with one hidden layer for handwriting recognition?

Deep neural networks refer to neural networks with more than one or two hidden
layers. For a long period, they were ignored due to the lack of efficient training meth-
ods. The only deep architectures found in the literature were convolutional neural
networks, which contain a limited number of free parameters thanks to the locality
and weight sharing aspects of their architecture. With better resources, more data,
better hardware, and new techniques and “tricks”, it recently became possible to build
deep, densely connected networks, quite simply and efficiently.

Deep neural networks brought significant improvements and reductions of error
rates in many areas, including speech recognition and computer vision. While the
inclusion of neural networks into HMM based systems, as optical model, has long
been adopted and is widespread, both in speech and handwriting recognition, the only
use of deep neural networks in continuous handwriting recognition is still limited to
convolutional architectures. Deep, densely connected models can be found for isolated
character recognition for example, but not for text line recognition of handwritten text.

In this thesis, we have trained two kinds of neural networks, namely Multi-Layer
Perceptrons and Recurrent Neural Networks, and we have thoroughly evaluated the
influence of the number of hidden layers on the performance of the system. We trained
neural networks of different depths, and we have shown that deep neural networks
achieve significantly better results than neural networks with a single hid-
den layer.

It should be noted that increasing the depth of neural networks by adding hidden
layers also increases the number of free parameters in the models, and therefore their
capacity. By varying the number if units in hidden layers, we can also control the
number of parameters. By doing so, we have shown that increasing the number of
hidden layers yielded better improvements than increasing the number of
units in the layer, proving that depth itself produced improvements, which
were not only due to the larger number of parameters in deeper networks.
With deep neural networks, we recorded relative improvements of error rates in the
range 5-10% for MLPs and 10-15% for RNNs. When the inputs of the network are
pixels, the improvement can be much larger.

Conclusions and Perspectives 209

−→ What are the important characteristics of Recurrent Neural Networks, which
make them so appropriate for handwriting recognition?

Recurrent Neural Networks are very popular and achieve state-of-the-art results on
many benchmarks of handwriting recognition. They have become a standard compo-
nent of recognition systems, and receive a lot of research attention nowadays. Many
aspects (recurrence, training method) contribute to their success, and we have carried
out several experiments to evaluate the importance of different elements.

We have seen that explicitly including context in the observation sequences did
not improve the results, as it does for MLPs, and that RNNs could effectively
learn the dependencies in the input sequences, and the context necessary
to make character predictions. We have observed that the context used by the
networks for a given, localized prediction is not limited to the character boundaries in
the input signal, and sometimes spans whole words, suggesting that an handwritten
character is better modeled in the context of surrounding characters, and that the RNN
may learn some linguistic information.

The most evident characteristic of RNNs is the recurrent connections. We evaluated
the importance of the recurrence in different layers of the networks, by replacing them
with feed-forward layers. We have shown that the recurrence was especially useful
in the top layers of RNNs, at least in the CTC framework. The bottom layers,
particularly with raw inputs such as pixel values, are more focused on the extraction
of elementary features. Having recurrent layers at these positions may not be crucial.

Finally, we have shown that RNNs can take advantage of the CTC framework,
which defines an objective function at the sequence level for training, but also the
output classes of the network. These are characters directly, and a special non-character
symbol, allowing the network to produce transcriptions with the neural network alone,
without relying on an HMM or any other elaborated model. Trained with CTC,
the RNNs could produce reasonable character and word error rates, even
without a lexicon and a language model, which is not the case of MLPs.

−→ How (deep) Multi-Layer Perceptrons compare to the very popular Recurrent
Neural Networks, which are now widespread in handwriting recognition and achieve
state-of-the-art performance?

With the advent of RNNs, and their success in handriting recognition, MLPs tend
to be neglected by the community. However, in speech recognition, a field where
the systems are quite similar – HMM-based systems, with signal processing, feature
extraction, acoustic and language modeling – deep MLPs have become the standard
acoustic model, yielding a considerable drop of error rates, unseen for years. In this
thesis, we have studied deep MLPs, and compared their results with those of RNNs.

We have shown that deep MLPs can achieve similar performance to RNNs,
and that both kinds of model give comparable results to the state-of-the-art on Rimes
and IAM. We conclude that, despite the dominance of RNNs in the literature of hand-
writing recognition, MLPs, and possibly other kind of models, can be a good alterna-
tive, and therefore should not be put aside.

However, we have also shown that MLPs are more sensitive to the number of states
in HMM models, and to the amount of input context provided. The RNNs, with

210 Conclusions and Perspectives

CTC training, model sequences of characters directly, and are much easier
to train, coping with the input sequence and the length estimation automatically.

Finally, most of our work on the Bentham database took place during the HTRtS
contest. We had a limited amount of time to build and train the systems to be sub-
mitted to the competition. On this database, we report better results with RNNs than
with MLPs. It required less effort to achieve good results with RNNs, for the reasons
evoked above, and might explain the popularity of those models.

−→ What are the good training strategies for Neural Networks for handwriting
recognition? Can the Connectionist Temporal Classification paradigm be applied to
other Neural Networks? What improvements can be observed with a discriminative
criterion at the sequence level?

The optimized cost is an important feature of the training procedure of models with
machine learning algorithms, and it may affect the quality of the system. The most
common approach to train neural networks for hybrid NN/HMM systems consists in
first aligning the frames to HMM states with a bootstrapping system, and then train the
network on the obtained labeled dataset with a framewise classification cost function,
such as the cross-entropy.

This strategy amounts to considering the segmentation of the input sequence into
HMM states fixed, and to have the network predict it. A softer approach, similar to
the Baum-Welsch training algorithm, would consist in summing over all possible
segmentations of the input sequences yielding the same final transcription.
We have seen that in general, this approach produces only small improvements.

The CTC framework is such a training procedure, but also defines the outputs of
the neural network to correspond to the set of characters, and a special non-character
output (blank label). We have shown that the typical CTC output, consisting
mainly of blank predictions, and of localized peaks for characters, is due
to the interaction between the training criterion and the blank label, rather
than by RNNs. Yet, RNNs are especially good to cope with this target output, and
can achieve very good results with the CTC criterion. MLPs, which do not have
recurrent connexions, can be trained with CTC but do not benefit from it.

We have studied the effects of applying a discriminative training criterion at the
sequence level, namely state-level Minimum Bayes Risk (sMBR). This kind of ojec-
tive function reflects the goal of recognition: to retrieve the most likely sequence of
words. We have shown that fine-tuning the MLPs with sMBR yields signifi-
cant improvements, between 5 and 13% of WER, which is consistent with the speech
recognition literature.

Moreover, we investigated a new regularization technique, dropout, in RNNs, ex-
tending the work of Pham et al. (2014); Zaremba et al. (2014). More specifically, we
studied different positions for dropout in the networks, in particular its relative po-
sition to LSTM layers, and reported significant improvements over the method
presented in (Pham et al., 2014) when dropout is applied before LSTM
layers rather than after them.

Conclusions and Perspectives 211

Finally, all our models achieved error rates comparable to the state-of-the-art on
Rimes and IAM, independently of the type of inputs (handcrafted features or pixels),
and of the kind of neural network (MLP or RNN). The lattice combination of
our systems, with the method of Xu et al. (2011), outperformed the best
published systems for all three databases, showing the complementarity of the
developed models. We validated our approach by taking part to the HTRtS 2014
contest, and ranked second in both tracks of the competition.

Beside depth, a significant part of the improvements were caused by sequence-
discriminative training of MLPs, and dropout in RNNs. A natural continuation of
this work would be to apply sequence-discriminative training to RNNs and dropout
to MLPs. Moreover, for an industrial application of our findings, we should apply
the presented systems and models to more difficult and realistic scenarios, such as
the Maurdor data, which contains heterogeneous, real-life documents, with complex
layouts and three different languages.

This thesis was conducted in an industrial context, as a continuation of several
other theses at A2iA (MLP/HMM hybrid system for word recognition with an explicit
grapheme segmentation (Augustin, 2001); GMM/HMM system for word recognition
using the sliding window technique (Bianne-Bernard, 2011)). The results presented
here improve those of the latest one (Bianne-Bernard, 2011), even for GMM/HMMs,
partly due to the application of language models after recognizing whole lines, instead of
isolated words. Deep neural networks also brought huge improvements. The next step
to use these models in industrial applications would consist in accelerating them, for
example by taking advantage of the knowledge acquired through some of the presented
experiments, such as removing the recurrent connections in lower layers, or building
deeper but skinnier networks.

Most of the improvement observed in the last few years is due to several factors:

• replacing GMMs by discriminative models, such as RNNs as the emission model
in HMMs

• modeling the sequence of character directly with CTC training of RNNs, rather
than using multi-state character HMMs

• making the language more flexible, in particular combining language models at
the word and character levels to alleviate the out-of-vocabulary (OOV) words
problem

There has been some recent works on image pre-processing (Kozielski et al., 2012).
While aiming at reducing the variability of the inputs, pre-processing and feature ex-
traction eliminates some of the information. As models and machine learning tech-
niques become more powerful and reliable, these steps become less and less important
to obtain good results, and not worth the effort. The current tends is to make less
assumptions, and using the pixel values of the raw images directly may be sufficient.

212 Conclusions and Perspectives

We observed that big improvements in the optical models did not transfer to the
results of complete systems. It looks like the limiting factor is the language model.
When the language model is good enough, it may correct many of the mistakes made
by the optical model. Conversely, although building an appropriate language model
in the constrained problems of public databases (mails similar to each other in Rimes,
extracts of the Lancaster-Oslo-Bergen corpus in IAM, or collection of texts from the
same author in Bentham) is possible, estimating the language model suited to industrial
applications may be much more difficult.

We observed on IAM that half of the remaining errors are caused by OOVs. Now,
the main problem might not be so much how to improve the optical model as how
can be build better language models. Among the huge improvements observed in the
last few years, a significant part was due to a better language modeling. Increasing
the size of the vocabulary and of the corpus used in their estimation is only a partial
solution, and several methods were developed to cope with out-of-vocabulary words,
directly at decoding time (Kozielski et al., 2013b; Messina & Kermorvant, 2014), or as
a post-processing (Oprean et al., 2013).

A significant part of the errors also concerned punctuation. While tuning the word
insertion penalty decreased the error rates, it particularly affected punctuation symbols,
which are small, limited to one character, and probably more difficult to predict with
standard language models.

We believe that future improvements in handwriting recognition, both in research
and in industry, may come from new ways of integrating language models and linguistic
knowledge sources in the system. Some propositions were made for example in (Maas
et al., 2014; Graves et al., 2013a). Moreover, Recurrent Neural Networks can already
learn some dependencies between characters, and character language models might be
sufficient.

The problem of handwriting recognition is still far from being solved. The current
systems rely on a line segmentation, which may not be available, especially in industrial
applications, and is not always straightforward to obtain. The development of end-to-
end recognition systems, which, from the document image, and without making any
assumption about the line positions, are able to produce their transcription, is a very
exciting direction of research, in the vein of the evolution of handwriting recognition
systems. Another interesting line of work would be the improvement of unsupervised
training methods, lessening the need for human transcriptions, costly to obtain, for
example inspired by the work of Kozielski et al. (2014b).

List of Publications

The work carried out during this PhD lead to several publications in conference
proceedings. For the sake of consistency, not all published papers are covered by this
thesis. For the most part, the work presented here extends the content of (Bluche et al.,
2014c). Concerning specific points, Chapter 7 gives more details on the experiments
presented in (Bluche et al., 2015c), and the study of dropout in RNNs, detailed in
Section 6.6, was published in (Bluche et al., 2015a). The system submitted to the
HTRtS contest in 2014 is overviewed in (Bluche et al., 2015b).

We started with the recognition of isolated handwritten words, from Rimes and IAM
databases, using Convolutional Neural Networks (ConvNNs), before switching to line
recognition with deep MLPs and RNNs.

In (Bluche et al., 2013b), we compare a tandem and an hybrid approach to combining
HMM and ConvNNs. The results show that tandem models tend to produce better
word recognition results. Combined with context-dependent, discriminatively trained
GMM-HMMs, we obtained comparable error rates to RNNs.

In (Bluche et al., 2013a), we extend that work by considering different segmentations
of images: with a sliding window, and with an explicit grapheme segmentation. While
the later approach yields lower performance, the models are much faster and suited to
industrial applications as a first-pass recognition system.

We also took part and won international evaluations with the research team at A2iA.
The systems, based on Multi-Dimensional Long Short-Term Memory RNNs, are de-
scribed in (Bluche et al., 2014a) for the OpenHaRT’2013 evaluation (recognition of
handwritten Arabic documents), and in (Moysset et al., 2014) for the MAURDOR
evaluation in 2013 (recognition of handwritten and printed texts in heterogeneous doc-
uments, in French, English, and Arabic).

Moreover, we developed a method to jointly segment document images and map
their transcript, allowing to automatically create ground-truth material at the line
level, which is required to train the recognition systems. The method, described in
(Bluche et al., 2014b), was used during the MAURDOR evaluation, and during the
HTRtS contest, for the unrestricted track presented in Section 8.3.3.

It was also applied for the ORIFLAMMS project, aiming at studing the shapes of
letters, and their variation across space and time. The work carried out in this project
lead to a publication to the Digital Humanities 2015 conference (Stutzmann et al.,
2015).

Finally, we contributed to the experiments presented in (Louradour et al., 2012;
Kermorvant et al., 2012), dealing with the classification of documents using their auto-
matic transcripts along with the text recognition confidence score, and in (Pham et al.,
2014), the first work applying the dropout technique to LSTM networks.

214 List of Publications

Publications:

Bluche, T., Kermorvant, C., & Louradour, J. (2015a). Where to Apply Dropout in
Recurrent Neural Networks for Handwriting Recognition? In 13th International
Conference on Document Analysis and Recognition (ICDAR), (pp. –). IEEE.

Bluche, T., Louradour, J., Knibbe, M., Moysset, B., Benzeghiba, M. F., & Kermorvant,
C. (2014a). The A2iA Arabic Handwritten Text Recognition System at the Open
HaRT2013 Evaluation. In 11th IAPR International Workshop on Document Analysis
Systems (DAS), (pp. 161–165). IEEE.

Bluche, T., Moysset, B., & Kermorvant, C. (2014b). Automatic Line Segmentation
and Ground-Truth Alignment of Handwritten Documents. In 14th International
Conference on Frontiers in Handwriting Recognition (ICFHR2014), (pp. 667–672).

Bluche, T., Ney, H., & Kermorvant, C. (2013a). Feature Extraction with Convolu-
tional Neural Networks for Handwritten Word Recognition. In 12th International
Conference on Document Analysis and Recognition (ICDAR), (pp. 285–289). IEEE.

Bluche, T., Ney, H., & Kermorvant, C. (2013b). Tandem HMM with convolutional
neural network for handwritten word recognition. In 17th International Conference
on Acoustics, Speech and Signal Processing (ICASSP), (pp. 2390–2394). IEEE.

Bluche, T., Ney, H., & Kermorvant, C. (2014c). A Comparison of Sequence-Trained
Deep Neural Networks and Recurrent Neural Networks Optical Modeling for Hand-
writing Recognition. In International Conference on Statistical Language and Speech
Processing, (pp. 199–210).

Bluche, T., Ney, H., & Kermorvant, C. (2015b). The LIMSI Handwriting Recognition
System for the HTRtS 2014 Contest. In 13th International Conference on Document
Analysis and Recognition (ICDAR), (pp. –). IEEE.

Bluche, T., Ney, H., Louradour, J., & Kermorvant, C. (2015c). Framewise and CTC
Training of Neural Networks for Handwriting Recognition. In 13th International
Conference on Document Analysis and Recognition (ICDAR), (pp. –). IEEE.

Kermorvant, C., Bianne-Bernard, A.-L., Bluche, T., & Louradour, J. (2012). On using
alternative recognition candidates and scores for handwritten documents classifica-
tion. Tech. Rep. A2iA-RR-2012-1, A2iA.

Louradour, J., Bluche, T., Bianne-Bernard, A.-L., Menasri, F., & Kermorvant, C.
(2012). De l’usage des scores et des alternatives de reconnaissance pour la classifica-
tion d’images de documents manuscrits. In Colloque International Francophone sur
l’Ecrit et le Document (CIFED).

Moysset, B., Bluche, T., Knibbe, M., Benzeghiba, M. F., Messina, R., Louradour,
J., & Kermorvant, C. (2014). The A2iA Multi-lingual Text Recognition System at
the second Maurdor Evaluation. In 14th International Conference on Frontiers in
Handwriting Recognition (ICFHR2014), (pp. 297–302).

List of Publications 215

Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. (2014). Dropout improves
recurrent neural networks for handwriting recognition. In 14th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR2014), (pp. 285–290).

Stutzmann, D., Bluche, T., Lavrentev, A., Leydier, Y., & Kermorvant, C. (2015).
From Text and Image to Historical Resource: Text-Image Alignment for Digital
Humanists. In Digital Humanities (DH) – to appear .

216 List of Publications

Appendix A

Databases

A.1 IAM

The IAM database, described in details in (Marti & Bunke, 2002) consists of images
of handwritten documents. They correspond to English texts exctracted from the
electronically available LOB corpus (Johansson, 1980). Fifteen categories have been
selected, form which an overall amount of 500 texts where kept. Segments of a few
sentences were extracted, and given to several writers to write by hand. The only
constraint was to copy the printed text; writers were not required to write on lines, or
at a specific size. 657 writers contributed to the database, producing between 1 and 59
handwritten documents. The annotation and segmentation of the database is provided
at the word, line and paragraph level. We focused on the line recognition problem.

The database is divided into several subset (a-f,u,x), and the online version 1 comes
with training, validation and evaluation splits. However, these are not the splits used
for handwriting recognition experiments reported on the litterature. The community
opted for an alternative splitting into 747 images for training, 116 for validation, and
336 for evaluation. In this setup, the sets of writers contributing for each dataset are
disjoint.

In the following, we give more details on the images of the datasets, as well as on
the corresponding text corpora. We also present a selection of published results and
breifly present the systems.

Images

The images of the database are gray-level TIFF (Tagged Image File Format) images.
They are produced by scanning the written documents at a resolution of 300dpi. They
contain the printed text to copy, and the handwritten text. Provided are the lines
bounding boxes and transcript. Some basic statistics extracted from the database are
presented in Table A.1. We observe that these statistics are quite stable from one set
to the other.

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database

218 Appendix A. Databases

Figure A.1: Examples from IAM Database (the text to copy corresponds to the typed
header paragraph).

Corpus

The text of the IAM database corresponds to texts extracted from the LOB corpus,
which have some controlled linguistic properties. In Table A.2, we present some num-
bers about the text of the IAM Database, such as the number of words and characters
in each subset, the number of unique words and characters, as well as some occurence
statistics.

We checked that each character in the validation and evaluation set are also present
in the training set, so that a system modeling characters can theoretically recognize all
the words in the data. However, some words in the validation and evaluation set do
not occur in the training set.

Published Results

In Table A.3, we present a list of published results on the IAM database, for com-
parison with the results presented in this thesis. Some papers gave several results (e.g.
GMM-HMM and LSTM results), but we only kept the best ones here. Also, they did
not all report figures like Character Error Rates or results on the validation data.

We notice a drop in error rates in the last couple of years, mainly due to improve-
ment of the language models, and the creation of open-vocabulary decoders.

(Bertolami & Bunke, 2008) — The slant and skew in the images are corrected and
the baseline position and average character width normalized. For each column of
pixels, nine geometrical features are extracted (foreground pixels, moments, contour
positions, black-white transitions). Ensemble methods (bagging, feature subspace)
are applied to train several HMM recognition systems, which are then combined with
ROVER. A bigram language model, trained on the LOB, Brown and Wellington cor-
pora, and limited to the 20k most frequent words is applied.

A.1. IAM 219

Table A.1: Documents of the IAM database, in each dataset. The Total column are
accumulated numbers, while the average, min/max and quartiles are computed per
line. The width/char measure is obtained by dividing, for each line, the width by the
number of characters in the annotation, giving only a rough estimation.

Train Total Average Min. 25% Median 75% Max.

Pages 747 - - - - - -
Lines(/page) 6,482 8.7 3.0 7.0 9.0 10.0 13.0
Words(/line) 55,081 8.5 1.0 7.0 8.0 10.0 19.0
Chars(/line) 287,727 44.4 2.0 39.0 44.0 50.0 81.0

Line Width (px) 10,995,371 1,696.3 104.0 1,668.0 1,754.0 1,830.1 2,260.0
Line Height (px) 794,758 122.6 44.0 99.0 119.0 142.0 342.0

Width/Char (px) 253,638 39.1 18.4 34.1 39.1 43.7 122.6

Validation Total Average Min. 25% Median 75% Max.

Pages 116 - - - - - -
Lines(/page) 976 8.4 2.0 7.0 8.0 10.0 12.0
Words(/line) 8,895 9.1 2.0 8.0 9.0 11.0 18.0
Chars(/line) 43,050 44.1 5.0 39.0 44.0 50.0 73.0

Line Width (px) 1,636,386 1,676.6 100.0 1,653.0 1,745.5 1,821.0 2,146.0
Line Height (px) 111,841 114.6 45.0 95.0 115.0 131.0 218.0

Width/Char (px) 37,761 38.7 20.0 34.5 38.0 42.7 70.5

Evaluation Total Average Min. 25% Median 75% Max.

Pages 336 - - - - - -
Lines(/page) 2,915 8.7 4.0 7.0 9.0 10.0 13.0
Words(/line) 25,920 8.9 1.0 7.0 9.0 10.0 22.0
Chars(/line) 128,531 44.1 6.0 38.0 44.0 50.8 94.0

Line Width (px) 4,983,925 1,709.8 150.0 1,683.2 1,770.0 1,844.0 2,180.0
Line Height (px) 379,209 130.1 38.0 104.0 128.0 153.0 337.0

Width/Char (px) 116,461 40.0 10.1 34.0 39.5 44.7 73.7

Table A.2: Text of the IAM database. The averages, quartiles, and min/max values
are calculated from occurences of each token, e.g. 75% of the characters appear at
least 3,511 times in the training set.

Train Total Unique Average Min. 25% Median 75% Max.

Words 55,111 7,843 7.0 1.0 1.0 1.0 3.0 2889.0
Chars 236,588 77 3072.6 2.0 94.4 390.0 3511.2 28050.0

Validation Total Unique Average Min. 25% Median 75% Max.

Words 8,845 2,448 3.6 1.0 1.0 1.0 2.0 442.0
Chars 34,767 75 463.6 1.0 17.6 50.0 629.4 3952.0

Evaluation Total Unique Average Min. 25% Median 75% Max.

Words 25,862 5,359 4.8 1.0 1.0 1.0 2.0 1322.0
Chars 104,473 73 1431.1 2.0 46.7 149.0 1897.4 12008.0

(Graves et al., 2009) — After extracting the line images, the skew and slant are
corrected, the height of the ascenders, descenders and core regions normalized, and the

220 Appendix A. Databases

Table A.3: Selection of published results on IAM database

Dev. Eval.
WER CER WER CER

Doetsch et al. (2014) 8.4 2.5 12.2 4.7
Kozielski et al. (2013a) 9.5 2.7 13.3 5.1

Pham et al. (2014) 11.2 3.7 13.6 5.1
Kozielski et al. (2013a) 11.9 3.2 - -

Messina & Kermorvant (2014) - - 19.1 -
Espana-Boquera et al. (2011) 19.0 - 22.4 9.8

Toselli et al. (2010) - - 25.8 -
Graves et al. (2009) - - 25.9 18.2

Dreuw et al. (2011a) 22.7 6.1 28.8 10.1
Dreuw et al. (2011b) 23.7 6.5 29.2 10.3

Bertolami & Bunke (2008) 26.8 - 32.8 -

width is adjusted to normalize the mean character width. Nine geometrical features
(contours, pixel transitions, mean value, center of gravity) are extracted from each
column of pixels, and are given to a BLSTM-RNN, with CTC training. For decoding
a bigram language model estimated on the LOB, Brown and Wellington corpora, and
limited to the 20k most frequent words is applied.

(Toselli et al., 2010) — The skew and slant in the images are corrected and the height
normalized to a fixed value for ascenders, descenders and core region. Then feature
vectors of dimension 60 are extracted from a from a grid on the image (normalized gray
level and vertical and horizontal derivatives). The recognition system is a GMM/HMM,
and a bigram language model, trained on the LOB corpus is applied. The vocabulary
contains all words present in the training and test sets.

(Dreuw et al., 2011b) — The images are deslanted and the size of ascenders and de-
scenders normalized. They are then scaled to 16px high and appearence-based features
and their horizontal derivatives are extracted from a sliding window scanned through
the image. Seven consecutive frames are concatenated and the feature vector is re-
ducted by PCA to 30 dimensions. The recognition system is a GMM/HMM, trained
with confidence and margin-based MPE, and a trigram language model estimated on
the LOB, Brown and Wellington corpora, and limited to the 50k most frequent words.

(Dreuw et al., 2011a) — This system is the same as the previous one, except that
the features are used to train an MLP to predict HMM state posterior probabilities.
The log-posteriors are used as the features of the M-MPE trained GMM/HMM.

(Espana-Boquera et al., 2011) — Different MLPs are trained and applied to the line
image to enhance the contrast, correct the slope, the slant, and normalize the height.
The normalized gray level and vertical and horizontal derivatives are extracted from
a grid on the image, and each column of the grid is used to build the feature vector.
The recognition system is an hybrid MLP/HMM, and the decoding is carried out with
a bigram language model estimated on the LOB, Brown and Wellington corpora, and
limited to the 20k most frequent words.

(Kozielski et al., 2013a) — The contrast and slant in the images are corrected. A

A.2. Rimes (ICDAR 2011 setup) 221

cosine window is scanned through the line image, and the obtained frames are nor-
malized with respect to the first and second-order moments (translation of the center
of gravity, standard-deviation normalization). The feature vectors are obtained by
extracting the pixel values and applying a 20 dimensional PCA, and appending four
moment features. A BLSTM-RNN is trained on these features to predict HMM states,
and the activations of the first hidden layer are extracted and reduced to 20 dimen-
sions by PCA. From these features, a GMM-HMM is trained (tandem approach) with
writer adaptation and discriminative training. An open-vocabulary language model
is used for decoding, consisting of a trigram word LM estimated on the LOB, Brown
and Wellington corpora, and limited to the 50k most frequent words, and a 10gram
character language model trained to represent OOV words.

(Doetsch et al., 2014) — This system is the same as the previous one, except for a
modification of the gating mechanism in LSTMs, and for the integration of the RNN.
It is an hybrid system where the RNN is directy used as an estimate of the emission
model of the HMM.

(Pham et al., 2014) — The line images are passed through an MDLSTM-RNN,
trained with CTC, without any preprocessing besides the mean and variance normal-
ization of the pixel values. The dropout technique is applied after each LSTM layer,
and the decoding is performed with a trigram language model estimated on the LOB,
Brown and Wellington corpora, and limited to the 50k most frequent words.

(Messina & Kermorvant, 2014) — The system is the same as the previous one
except for the dropout (not present in this paper) and for the language model, which
here contains all the 106k unique words of the LOB, Brown and Wellington corpora.

A.2 Rimes (ICDAR 2011 setup)

Description

The Rimes database (Augustin et al., 2006) consists of images of handwritten para-
graphs from simulated French mail. The goal is to evaluate the quality of automatic
mail processing for companies and administrations. The contributors were asked to
write letters according to predefined scenarios among nine themes (e.g. information
request, complaint, damage declaration), leaving some freedom in the actual content
of the letter and in its layout. The setup for the ICDAR 2011 competition is limited to
the core of the letters. It defines a training set of 1,500 paragraphs, and an evaluation
set of 100 paragraphs2. We held out the last 149 images from the training set for
system validation.

In the following, we give more details on the images of the datasets, as well as on
the corresponding text corpora. We also present a selection of published results and
breifly present the systems.

2The competition had a validation and a test set of 100 documents (Grosicki & El-Abed, 2011),
but the evaluation set is not publicly available, and published papers use the validation set, which we
hence call evaluation set in this thesis, as oposed to the validation set we manually defined from the
training set.

222 Appendix A. Databases

Images

Figure A.2: Examples from Rimes Database.

The images of the database are gray-level images, cropped to the paragraph loca-
tion. They are produced by scanning the written documents at a resolution of 300dpi.
They contain the printed text to copy, and the handwritten text. The transcript of
paragraphs is available, including the carriage return and the spelling error. The main
difficulty in these images, compared to IAM for example, is the variety of layouts,
with many irregular and not straight lines. Some basic statistics extracted from the
database are presented in Table A.4. We observe that these statistics are quite stable
from one set to the other.

Corpus

The text of the Rimes database is only limiteded by the scenario given to the con-
tributors. Therefore, it is rather free despite a semantic constraint. Moreover, because
of the scenarios, and of the fact that the documents are letters addressed by individuals
to companies and administration, the language employed is also redundant, with a pre-
dominance of the first person, and of formulations of politeness, requests and wishes.
The main difficulty lies in the fair amount of proper name, addresses, dates, and codes,
prone to induce out-of-vocabulary words.

In Table A.5, we present some numbers about the text of the Rimes Database, such
as the number of words and characters in each subset, the number of unique words and
characters, as well as some occurence statistics.

Published Results

In Table A.3, we present a list of published results on the IAM database, for com-
parison with the results presented in this thesis. Some papers gave several results (e.g.
GMM-HMM and LSTM results), but we only kept the best ones here. Note that since
the official evaluation set has not been publicly released, the results presented on the
literature are obtained on the validation set. Some systems were tuned on this set,

A.2. Rimes (ICDAR 2011 setup) 223

Table A.4: Documents of the Rimes database, in each dataset. The Total column are
accumulated numbers, while the average, min/max and quartiles are computed per
line. The width/char measure is obtained by dividing, for each line, the width by the
number of characters in the annotation, giving only a rough estimation.

Train Total Average Min. 25% Median 75% Max.

Pages 1,351 - - - - - -
Lines(/page) 10,203 7.6 2.0 6.0 7.0 9.0 17.0
Words(/line) 73,822 7.2 0.0 5.0 8.0 9.0 18.0
Chars(/line) 460,201 45.1 0.0 34.0 47.0 57.0 110.0

Line Width (px) 16,642,312 1631.1 96.0 1333.0 1821.0 2039.0 2502.0
Line Height (px) 1,323,409 129.7 35.0 104.0 126.0 152.0 365.0

Width/Char (px) 383,532 37.6 0.0 32.3 36.4 41.5 1774.0

Validation Total Average Min. 25% Median 75% Max.

Pages 149 - - - - - -
Lines(/page) 1,130 7.6 3.0 6.0 7.0 9.0 15.0
Words(/line) 8,380 7.4 1.0 5.0 8.0 10.0 17.0
Chars(/line) 51,924 46.0 3.0 36.0 48.0 58.0 89.0

Line Width (px) 1,879,538 1663.3 125.0 1408.9 1864.0 2066.1 2470.0
Line Height (px) 148,050 131.0 48.0 105.0 127.0 152.0 319.0

Width/Char (px) 42,327 37.5 23.2 31.9 36.3 41.4 344.6

Evaluation Total Average Min. 25% Median 75% Max.

Pages 100 - - - - - -
Lines(/page) 778 7.8 4.0 6.0 8.0 9.0 18.0
Words(/line) 5,639 7.2 1.0 5.0 8.0 9.0 18.0
Chars(/line) 35,286 45.4 5.0 34.0 47.5 58.0 98.0

Line Width (px) 1,296,956 1667.0 133.0 1422.2 1867.5 2097.1 2432.0
Line Height (px) 100,592 129.3 46.0 103.0 124.0 152.0 296.0

Width/Char (px) 30,077 38.7 6.5 32.2 37.4 43.4 233.6

Table A.5: Text of the Rimes database. The averages, quartiles, and min/max values
are calculated from occurences of each token, e.g. 75% of the characters appear at
least 3,511 times in the training set.

Train Total Unique Average Min. 25% Median 75% Max.

Words 73,822 8,061 9.2 1.0 1.0 1.0 3.0 4630.0
Chars 395,186 98 4032.5 1.0 69.8 319.5 2152.6 57439.0

Validation Total Unique Average Min. 25% Median 75% Max.

Words 8,380 2,036 4.1 1.0 1.0 1.0 2.0 518.0
Chars 44,529 88 506.0 1.0 12.9 45.0 284.1 6411.0

Evaluation Total Unique Average Min. 25% Median 75% Max.

Words 7,631 1,246 6.1 1.0 1.0 1.0 3.0 376.0
Chars 30,325 85 356.8 1.0 9.7 36.0 193.6 4339.0

while we chose to isolate a part of the training data to define a new validation set. As
for IAM, the CER is not always reported in papers.

224 Appendix A. Databases

Table A.6: Published results on Rimes database

WER CER

Pham et al. (2014) 12.3 3.3
Doetsch et al. (2014) 12.9 4.3

Messina & Kermorvant (2014) 13.3 -
Kozielski et al. (2013a) 13.7 4.6

Messina & Kermorvant (2014) 14.6 -
Menasri et al. (2012) 15.2 7.2

Telecom ParisTech (Grosicki & El-Abed, 2011) 31.2 18.0

Telecom ParisTech (Grosicki & El-Abed, 2011) — Lines are extracted from docu-
ment images, deslanted, and binarized. Components belonging to surrounding lines are
removed, and 28 geometrical and statistical features are extracted from a sliding win-
dow (mean pixel values, center of gravity, pixel configurations, black/white transitions).
The recognition system is a context-dependent GMM/HMM modeling trigraphs, and
a bigram language model estimated from the training transcriptions.

(Menasri et al., 2012) — The line images are automatically segmented into words,
keeping several hypotheses represented as a graph. This system is a combination of
three MDLSTM-RNNs trained on the word images directly, with CTC and a different
initialization for each, and a grapheme based MLP-HMM hybrid, using 74 features
extracted from an explicit over-segmentation of the word image. Each word in the
segmentation graph is recognized and scored with the combination of models, and the
best path is extracted after applying a bigram language model estimated from the
training set annotations, with a vocabulary of 6k words.

(Kozielski et al., 2013a) — The contrast and slant in the images are corrected.
A cosine window is scanned through the line image, and the obtained frames are
normalized with respect to the first and second-order moments (translation of the
center of gravity, standard-deviation normalization). The feature vectors are obtained
by extracting the pixel values and applying a 20 dimensional PCA, and appending four
moment features. A BLSTM-RNN is trained on these features to predict HMM states,
and the activations of the first hidden layer are extracted and reduced to 20 dimensions
by PCA. From these features, a GMM-HMM is trained (tandem approach) with writer
adaptation and discriminative training. A 4gram language model estimated on the
training annotations is used for decoding.

(Doetsch et al., 2014) — This system is the same as the previous one, except for a
modification of the gating mechanism in LSTMs, and for the integration of the RNN.
It is an hybrid system where the RNN is directy used as an estimate of the emission
model of the HMM.

(Pham et al., 2014) — The line images are passed through an MDLSTM-RNN,
trained with CTC, without any preprocessing besides the mean and variance normal-
ization of the pixel values. The dropout technique is applied after each LSTM layer, and
the decoding is performed with a 4gram language model estimated on the annotations
of the training set, and limited to the 5k most frequent words.

A.3. Bentham (HTRtS 2014 setup) 225

(Messina & Kermorvant, 2014) — The system is the same as the previous one
except for the dropout (not present in this paper) and for the language model, which
here is an hybrid word/character language model for an open-vocabulary approach
based on a static decoding graph, with a trigram word language model limited to the
most frequent 3k words in the training annotations, and a 10gram character language
model.

A.3 Bentham (HTRtS 2014 setup)

Description

This database contains images of personal notes of the British philosopher Jeremy
Bentham, written by himself or copied by his staff in English, around the 18th and
19th centuries. The data were prepared by University College, London, during the tran-
Scriptorium project3(Sánchez et al., 2013). The transcription of Bentham manuscripts
is a collaborative project (Causer & Wallace, 2012) and is carried out by amateur
volunteers, and reviewed by experts.

In the setup of the HTRtS competition (Sánchez et al., 2014), there are a training
set of 350 pages, a validation set of 50 images, and a test set of 33 pages. The data
available for this competition contains lines positions and annotations, obtained by an
automatic mapping of the transcripts (Gatos et al., 2014) In the following, we give more
details on the images of the datasets, as well as on the corresponding text corpora. We
also present a selection of published results and breifly present the systems.

Images

The images of the database are color images scanned at 300 DPI, and provided in
JPG format. Some examples are shown on Figure A.3. They contains many diffi-
culties, compared to the previous two databases, such as side-notes, stamps, fainted
ink, or inclusion of words between lines. Some parts of the text were crossed out, and
sometimes transcribed anyway, meaning the system has to recognize them despite the
optical difficulty, but also the complication for a language model, and sometimes they
are trascribed as a special gap token. Moreover, Bentham has a handwriting that is
hard to read4, compensating the few number of different writers for this database.

Corpus

The corpus of Bentham database is made of a limited number of topics, addressed by
Bentham (e.g. the constitution, the panopticon prison scheme), and is entirely written
in Bentham’s prose, even his staff contributed to the writing. However, it contains
some difficulties. Besides the crossed out words that are nonetheless transcribed, for
which the language model may have trouble, there are also words in French in Latin,

3http://transcriptorium.eu/
4http://www.transcribe-bentham.da.ulcc.ac.uk/td/Help:Examples_of_Bentham%27s_

handwriting

226 Appendix A. Databases

Figure A.3: Examples from Bentham Database.

Table A.7: Documents of the Bentham database, in each dataset.

Train Total Average Min. 25% Median 75% Max.

Pages 350 - - - - - -
Lines(/page) 9,198 26.3 3.0 23.0 26.5 30.0 55.0
Words(/line) 76,707 8.3 1.0 7.0 9.0 11.0 19.0
Chars(/line) 419,764 45.6 1.0 40.0 52.0 60.0 102.0

Line Width (px) 12,767,586 1,388.1 21.0 1,383.2 1,666.0 1,724.0 2,448.0
Line Height (px) 1,084,323 117.9 20.0 96.0 115.0 137.0 407.0

Width/Char (px) 300,673 32.7 5.1 27.4 30.3 35.0 273.0

Validation Total Average Min. 25% Median 75% Max.

Pages 50 - - - - - -
Lines(/page) 1,415 28.3 12.0 26.0 28.0 31.0 40.0
Words(/line) 11,580 8.2 1.0 7.0 9.0 10.0 17.0
Chars(/line) 64,070 45.3 1.0 43.0 50.0 57.0 82.0

Line Width (px) 2,066,281 1,460.3 31.0 1,504.5 1,681.0 1,761.5 2,463.0
Line Height (px) 180,092 127.3 28.0 100.0 122.0 148.0 384.0

Width/Char (px) 48,116 34.0 17.8 28.6 32.8 37.1 110.0

and Bentham used alternative spellings of some words5. The main problem, however,
is hyphenation, which is quite frequent, and must be addressed to prevent the number
of out-of-vocabulary words to explode.

In Table A.8, we present some numbers about the text of the IAM Database, such
as the number of words and characters in each subset, the number of unique words and
characters, as well as some occurence statistics.

5http://www.transcribe-bentham.da.ulcc.ac.uk/td/Alternative_spellings

A.3. Bentham (HTRtS 2014 setup) 227

Table A.8: Text of the Bentham database.

Train Total Unique Average Min. 25% Median 75% Max.

Words 87,146 8,518 10.2 1.0 1.0 1.0 3.0 5,162.0
Chars 347,393 92 3,776.0 1.0 114.4 338.5 2,135.0 42,769.0

Validation Total Unique Average Min. 25% Median 75% Max.

Words 13,269 2,627 5.1 1.0 1.0 1.0 2.0 855.0
Chars 53,136 85 625.1 1.0 24.0 56.0 539.2 6,450.0

Published Results

In Table A.9, we present a list of published results on the Bentham database, for
comparison with the results presented in this thesis. Because of the novelty of this
database, only the results of the HTRtS contest of 2014 are available.

Table A.9: Published results on Bentham database

WER

A2iA (unrestricted track) (Sánchez et al., 2014) 8.6
CITlab (restricted track) (Strauß et al., 2014) 14.6

A2iA (Sánchez et al., 2014) —The line images are passed through an MDLSTM-
RNN, trained with CTC, without any preprocessing besides the mean and variance
normalization of the pixel values. The RNN is trained on two databases and adapted
to the Bentham data. The dropout technique is applied after each LSTM layer, and the
decoding is based on an hybrid word/character language model for an open-vocabulary
approach based on a static decoding graph, with a trigram word LM limited to 30k
words, and a 10gram character LM. The text corpora used for LM training are Bentham
books retrieved from the web.

CITlab (Strauß et al., 2014) — After contrast enhancement, and height normaliza-
tion to 64px (with a different fixed height for ascenders, descenders and core region), the
components belonging to surrounding lines are removed and the slant corrected. The
obtained images are passed through predefined Gabor filters, followed by an MDLSTM-
RNN, trained with CTC and iterative inclusion of all the training images. The LSTM
cells are replaced with a version where the internal state is computed as a convex
combination of previous states (MDLeaky). The decoding is carried out by a dy-
namic programming search, where words and special characters are identified, then
constrained by a vocabulary but leaving the option to output out-of-vocabulary words.
No further language modeling is applied.

Appendix B

Résumé Long

Nous vivons dans un monde digital, où l’information est stockée et traitée automa-
tiquement. L’écriture manuscrite n’échappe pas à la règle. Les enjeux de sa recon-
naissance automatique sont multiples, allant du traitement automatique des chèques
et de la dématérialisation de formulaires administratifs, à l’extraction automatique
d’information d’archives, de registres, ou de courriers entrants au sein de grandes ad-
ministrations et entreprises.

Le domaine de la reconnaissance automatique de l’écriture manuscrite a suscité
l’intérêt de chercheurs depuis plus de soixante ans, et est toujours un champ de
recherche très actif, comme l’attestent les nombreux projets financés et la tenue de
conférences internationales sur le sujet. D’abord concentrés sur la reconnaissance de
caractères isolés, les systèmes ont peu à peu évolué vers la reconnaissance de mots
isolés, puis de lignes segmentées en mots, jusqu’à la reconnaissance directe de lignes
aujourd’hui.

Les systèmes “classiques” de reconnaissance comportent aujourd’hui plusieurs com-
posantes. Les lignes de textes doivent tout d’abord être extraites des pages, et nous
supposons dans le cadre de cette thèse que cette étape est déjà faite. Ensuite, certaines
sources de variabilités dans les images sont éliminées lors d’une étape de pré-traitement
des images. Les étapes suivantes dépendent surtout de la granularité des modèles.
Certains systèmes, peu adaptés au larges vocabulaires, modélisent les mots entiers di-
rectement, ce qui nécessite une segmentation de la ligne de texte en mots. Les systèmes
modélisant les caractères passent plus facilement à l’échelle, mais la nature cursive de
l’écriture manuscrite rend la segmentation en caractères difficile (Sayre, 1973). Alors
que certains tentent une segmentation explicite et heuristique de l’image en caractères
ou en partie de caractères (graphèmes; Baret (1990); Knerr et al. (1998)), la plupart des
systèmes actuels se reposent sur une segmentation implicite, obtenue comme produit de
la reconnaissance. L’une des approches principale, choisie dans cette thèse, consiste à
extraire séquences de caractéristiques de l’image en la parcourant avec une fenêtre glis-
sante (Kaltenmeier et al., 1993). La transformation de ces séquences d’observations en
séquences de caractères est généralement obtenue avec des Modèles de Markov Cachés
(MMCs; Rabiner & Juang (1986)). Les probabilités d’émission des MMCs peuvent
être par exemple estimées avec des mixtures de Gaussiennes, ou avec des Réseaux de

230 Appendix B. Résumé Long

Neurones (RNs; Bourlard & Morgan (1994)). L’autre possibilité consiste à de fournir
à des réseaux de neurones avec une architecture appropriée, par exemple à convolu-
tions, l’image de la ligne directemement, ce qui est fait dans les réseaux de neurones
récurrents multi-dimensionnels (Graves & Schmidhuber, 2008). Un modèle de langue
est ensuite appliqué aux séquences prédites afin de les contraindre à être plausibles.

Par certains aspects, ce type de systèmes peut être mis en parallèle avec ceux utilisés
dans d’autre domaines. Par exemple, ils ressemblent aux modèles de reconnaissance de
la parole où des séquences de caractéristiques sont extraites et tranformées en texte,
également avec des MMCs et des modèles de langues. Les entrées étant des images,
certaines composantes peuvent se rapprocher des systèmes de reconnaissance d’objets
et de vision articifielle.

Dans ces deux domaines, on constate ces dernières années une réduction consid-
érable des taux d’erreur dûe à l’utilisation de réseaux de neurones profonds. En recon-
naissance d’écritures, ce type de réseaux est limité, soit à des architectures à convo-
lutions, soit à des sous-problèmes, comme la localisation de mots-clés (Thomas et al.,
2013) ou la reconnaissance de caractères isolés (Ciresan et al., 2010; Cireşan et al.,
2012).

De plus, quand des réseaux de neurones profonds sont appliqués, on constate, no-
tamment en reconnaissance de parole et d’objets, que l’extraction de caractéristiques
devient moins cruciale.

D’autre part, des méthodes d’entrainements de ce type de réseau ont émergés ou
regagné de l’intérêt ces dernières années, comme la technique de régularisation dite de
dropout, ou les critères discriminants au niveau des séquences complètes.

Enfin, toujours concernant les réseaux de neurones, on constate en reconnaissance
d’écriture un abandon progressifs des perceptrons multi-couches, pourtant toujours
détenteurs d’excellents résultats en parole, au profit des réseaux de neurones récurrents,
qui font partie de tous les meilleurs systèmes et gagnent la plupart des évaluations
internationales.

Dans cette thèse, nous proposons d’étudier les réseaux de neurones profonds pour
la reconnaissance d’écriture manuscrite, dans le cadre de systèmes hybrides RN/MMC.
Les observations précédentes donnent naturellement lieu aux questions suivantes, auxquelles
nous tentons d’apporter une réponse :

• Avec des réseaux de neurones profonds pour la reconnaissance d’écriture, est-il
toujours important de choisir et d’implémenter des caractéristiques pré-définies,
ou bien les simples intensités de pixels sont-elles suffisantes?

• Des réseaux de neurones profonds, comportant plus qu’une ou deux couches
cachées, peuvent-ils apporter des améliorations significatives en reconnaissance
d’écriture, et dans quelles situations?

• Comment les perceptrons multi-couches (profonds) se comparent-ils aux désor-
mais très populaires réseaux de neurones récurrents, très répendus en reconnais-
sance d’écriture manuscrite et produisant des résultats à l’état de l’art?

B.1. Système de Base 231

• Quelles caractéristiques des réseaux de neurones récurrents les rendent si appro-
priés à la reconnaissance d’écriture manuscrite?

• Quelles sont les bonnes stratégies d’entrainement de réseaux de neurones pour
la reconnaissance d’écriture? Est-ce que la Classification Temporelle Connex-
ionniste (CTC, Graves et al. (2006)) peut être appliquée à d’autre types de
réseaux de neurones que des réseaux récurrents? Quelles améliorations peuvent
être observées en utilisant un critère d’entrainement discriminant au niveau des
séquences?

B.1 Système de Base

Nous avons mené nos expériences sur trois bases de données publiques, Rimes (Au-
gustin et al., 2006) , IAM (Marti & Bunke, 2002), et Bentham (Sánchez et al., 2014),
afin de comparer nos résultats à l’état de l’art. Elle représentent deux langues (l’anglais
et le français), et deux époques (contemporaine et XIXème sciècle). Les conditions de
collection de ces bases sont plus ou moins contraintes, en terme de contenu. Une
description détaillée se trouve en Annexe A.

Dans cette thèse, nous nous focalisons sur le modèle optique de systèmes hybrides
réseaux de neurones profonds / modèles de Markov cachés. Néanmoins, le sysème de
reconnaissance complet inclut un certain nombre d’autres composantes, que nous fixons
à l’avance. Le choix de ces composantes est validé sur l’ensemble de développement de
chaque base, en mesurant le taux d’erreurs mots d’un modèle de Markov caché gaussien
(cf. Chapitre 4).

Pré-traitement des images. Tout d’abord, les inclinaisons de la ligne de texte
(Bloomberg et al., 1995), et des caractères (Buse et al., 1997) sont corrigées. Le
contraste est renforcé (Roeder, 2009). Les régions horizontales correspondantes aux
ascendants et descendants sont détectées (Vinciarelli & Luettin, 2001) et normalisées
à une hauteur de 24 pixels.

Extraction de caractéristiques. Des séquences de vecteurs de caractéristiques sont
extraites à l’aide de fenêtres glissantes (Kaltenmeier et al., 1993). Nous avons utilisé
et comparé deux types de caractéristiques:

• pré-définies : 56 caractéristiques statistiques et géométriques (configurations
de pixels, centre de gravité, intensités moyennes de pixels, histogrammes de gra-
dients), extraites avec une fenêtre glissante de largeur 3px et de pas 3px (Bianne-
Bernard, 2011; Bianne et al., 2011)

• intensités de pixels : vecteur contenant tous les niveaux de gris d’une fenêtre
de taille 20× 32px, résultant d’un redimensionnement d’une fenêtre glissante de
largeur 45px et de pas 3px (25× 32px et 57px pour la base Bentham)

232 Appendix B. Résumé Long

Modèles de langue Nous avons utilisé des modèles de langue de type “n-gram”,
estimant la probabilité d’un mot, conditionnée aux n− 1 mots précédents, et limitée à
un vocabulaire pré-défini.

Pour IAM, nous avons défini un modèle trigramme, estimé sur les corpus LOB,
Brown et Wellington, avec un lissage Kneser-Ney modifié (Kneser & Ney, 1995). Les
passages du corpus LOB qui apparaissent dans les ensembles de test d’IAM ont été
retirés. Le vocabulaire est limité au 50,000 mots les plus fréquents. Le taux de mots
hors vocabulaire et la perplexité de ce modèle de langue sont de 4.3% et 298 (resp.
3.7% et 329) sur l’ensemble de validation (resp. test).

Pour Rimes, nous avons défini un modèle quadrigramme, estimé sur les annotations
de l’ensemble d’entraînement, avec un lissage Kneser-Ney modifié. Le vocabulaire
contient 5,000 mots, et le taux de mots hors vocabulaire et la perplexité de ce modèle
de langue sont de 2.9% et 18 (resp. 2.6% et 18) sur l’ensemble de validation (resp.
test).

Pour Bentham, nous avons défini un modèle quadrigramme, estimé sur les annota-
tions de l’ensemble d’entraînement, avec un lissage Kneser-Ney modifié. Les débuts et
fins de mots sont ajoutés aux unigrammes pour prendre en compte le grand nombre
de coupure de mots présents dans cette base. Le taux de mots hors vocabulaire et la
perplexité de ce modèle de langue sont de 5.6% et 103.1 sur l’ensemble de validation.

MMCs gaussiens La topologie retenue pour les MMCs comporte plusieurs états
par caractères (5 pour Rimes, 6 pour IAM et Bentham), et des transitions uniquement
d’un état vers lui-même et vers l’état suivant. L’espace est modélisé par un MMC à
deux états. Nous avons entrainé des MMCs gaussiens, afin de valider les choix de pré-
traitement, de fenêtres glissantes, de modèle de langues et de topologie de MMCs. Les
taux d’erreurs atteints sur les trois bases sont comparables à l’état de l’art en matière
de MMC gaussiens.

B.2 Systèmes Hybrides Perceptrons Multi-Couches

Profonds / MMC

Alors qu’en reconnaissance de la parole, où les systèmes standards ressemblent beau-
coup à ceux que nous utilisons (extraction de caractéristiques, modélisation par MMCs
et modèle de langue), les perceptrons multi-couches (PMCs) sont devenus une com-
posante essentielle, en particulier les PMCs profonds, en reconnaissance d’écriture ils
tendent à être délaissés ces dernières années au profits des réseaux de neurones récur-
rents.

Dans le Chapitre 5, nous nous intéressons aux perceptrons multi-couches profonds,
combinés aux MMCs. Nous entrainons des PMCs pour les trois bases et les deux
types de caractéristiques, avec une à sept couche cachées, en utilisant un critère de
classification local, et un critère discriminant au niveau de la séquence complète.

B.2. Systèmes Hybrides Perceptrons Multi-Couches Profonds / MMC 233

En premier lieu, nous avons étudié l’influence du contexte en entrée du réseau. Dans
les systèmes hybrides RN/MMC, il est courant de concaténer plusieurs trames succes-
sives. Nous confirmons cette hypothèse : les réseaux utilisant un concaténation de la
trame centrale avec un nombre fixe de trames précédentes et suivantes donnent de bien
meilleurs résultats, comparés à ceux n’utilisant que la trame centrale. La différence
est particulièrement visible sur les performances du réseau seul, sans MMC et modèle
de langue. Avec ces derniers, qui ajoutent des contraintes sur les séquences d’états
reconnus, les améliorations sont moindres quoique visible.

Ensuite, nous avons entrainé des PMC de différentes profondeurs. Nous montrons
qu’en passant d’une à plusieurs couches cachées, il est possible d’atteindre une reduction
relative du taux d’erreur au niveau trame de l’ordre de 20%, pour le réseau seul, sans
contrainte linguisique. En ajoutant le MMC et le modèle de langue, les améliorations
sont moins visibles, surtout pour les caractéristiques pré-définies, mais tout de même
non négligeables, d’environ 5% relatifs.

Quand les entrées sont les intensités de pixels, la différence entre une et plusieurs
couches cachées est bien plus nette. Le simple passage à deux couches cachées permet
d’obtenir une amélioration relative du taux d’erreur mots, incluant l’application du
modèle de langue, allant jusqu’à 10%. Avec des réseaux plus profonds, la réduction
observée monte à 17%. Ces résultats confirment l’hypothèse des modèles profonds que
des représentations intermédiaires, de complexité croissante, sont calculées dans les
couches basses du réseau, qui permettent une classification plus robuste.

En entrainant également des réseaux plus larges, c’est-à-dire avec plus d’unités dans
les couches cachées, nous avons vérifié que ce n’est pas uniquement l’augmentation du
nombre de paramètres libres, résultant de l’ajout de couches dans le PMC, qui sont à
l’origine de l’amélioration des performances.

De plus, nous avons comparé les taux d’erreur mots obtenus avec les caractéristiques
pré-définies et les intensités de pixels (cf. Table B.1). L’écart de performance entre
les systèmes utilisant ces deux types d’entrée, d’environ 10% pour des PMCs à une
couche cachée en faveur des caractéristiques, est réduit de plus que de moitié quand
on considère des réseaux profonds. Ce résultat suggère que l’effort mis en oeuvre
pour sélectionner et implémenter les caractéristiques adaptées au problème et leur
extraction n’est pas forcément nécessaire, et qu’un système ne faisant aucun hypothèse,
considérant directement le signal d’entrée, est suffisant pour obtenir des performances
raisonnables.

Enfin, nous avons appliqué un critère d’entrainement des réseaux discriminant au
niveau des séquences de mots. Ce type de critères vise à augmenter la probabilité a
posteriori de la séquence de mots correcte, étant donnée la séquence d’observations,
ce qui reflète mieux le but final des systèmes de reconnaissance. En pratique, pour
des raisons computationnelles, cela consiste à extraire des treillis de reconnaissance,
incluant le réseau de neurones et le modèle de langue, et à distinguer la séquence cor-
recte des séquences concurrentes. L’entrainement discriminant au niveau des séquences

234 Appendix B. Résumé Long

Table B.1: Comparaison du taux d’erreurs mots (%) obtenus avec des PMCs utilisant
des caractéristiques pré-définies et des intensités de pixels

Caractéristiques Pixels
Rimes
PMC à une couche 14.0% 15.3% (+9.3%)

PMC profond 13.5% 14.0% (+3.7%)
+sMBR 12.5% 12.6% (+0.8%)

IAM
PMC à une couche 12.4% 13.6% (+9.7%)

PMC profond 11.8% 12.3% (+4.2%)
+sMBR 10.9% 11.7% (+7.3%)

Bentham
PMC à une couche 21.5% 28.8% (+34.0%)

PMC profond 20.1% 22.4% (+11.4%)
+sMBR 18.6% 19.4% (+4.3%)

est classique en reconnaissance de la parole, où il permet d’obtenir des améliorations
relatives des taux d’erreurs entre 5 et 10%.

Nous avons choisi le critère sMBR (Kingsbury, 2009), qui donnait de meilleurs
résultats que d’autres sur une tâche de reconnaissance de la parole. Nous montrons
qu’affiner un PMC entrainé au niveau trame avec sMBR permet d’atteindre des amélio-
rations significatives, entre 5 et 13% en taux d’erreur mots (cf. Table B.1) et jusqu’à
20% en taux d’erreur caractères. Nous montrons également l’importance du modèle de
langue dans le calcul de ce critère, bien qu’un simple unigramme semble suffisant pour
obtenir ces améliorations.

B.3 Systèmes Hybrides Réseaux de Neurones Récur-

rents Profonds / MMC

Le Chapitre 6 est consacré aux réseaux de neurones récurrents (RNRs) profonds,
combinés aux MMCs. Les neurones de ces réseaux sont des unités Longue Mémoire à
Court Terme (LMCT, en anglais Long Short-Term Memory, Hochreiter & Schmidhuber
(1997)). Les couches récurrentes contiennent en fait deux couches, pour parcourir les
séquences dans les deux directions. Nous entrainons ces réseaux avec le critère de
Classification Temporelle Connexionniste (CTC), défini par Graves et al. (2006). Ce
type de réseau est populaire en reconnaissance d’écriture, et ses bonnes performances
en ont fait un standard du domaine (Graves & Schmidhuber, 2008; Bluche et al., 2014a;
Moysset et al., 2014; Kozielski et al., 2014a; Doetsch et al., 2014).

Afin de faire rentrer ces RNRs dans le cadre des systèmes hybrides RN/MMC, nous
définissons des MMCs de caractères à un état, ainsi qu’un MMC pour le symbole blank
de la CTC, optionnel entre deux caractères. Nous entrainons des RNRs pour les trois
bases et les deux types de caractéristiques, avec une à treize couche cachées, alternant

B.3. Systèmes Hybrides Réseaux de Neurones Récurrents Profonds / MMC 235

des couches récurrentes et des couches standards.

Tout d’abord, nous avons reproduit l’expérience du chapitre précédent, consistant
à concaténer les trames en entrée du réseau pour lui fournir un contexte plus grand.
Nous montrons que cette stratégie, bénéfique pour les PMCs, tend à déteriorer les
résultats des RNRs. Nous vérifions que la récurrence de ces réseaux leur permettent
d’apprendre effectivement les dépendences et le contexte nécessaire pour prédire les
caractères. Nous observons que ce contexte dépasse souvent la zone d’un caractère,
s’étendant parfois au mot entier, suggérant qu’un large contexte est parfois nécessaire
pour prédire de façon fiable un caractère, et supportant le choix des unités LMCT.

Ensuite, nous montrons que la récurrence dans ces réseaux, avec l’entrainement CTC,
est particulièrement importante dans les couches supérieures. Les couches basses, en
particulier quand les entrées sont les intensités de pixels, servent plus à extraire des
caractéristiques élémentaires du signal, rendant la récurrence moins cruciale. Cette
observation pourrait permettre de simplifier les RNRs, en n’implémentant la récurrence,
plus chère en temps de calcul, que dans les couches hautes du réseau.

Nous reportons également des améliorations significatives grâce à l’augmentation de
la profondeur des réseaux. Nous nous sommes limités à treize couche cachées. Nous
avons observé des baisses de taux d’erreur au niveau caractère, quand le réseau est
utilisé seul, sans modèle de langue, entre 35 et 50% pour les caractéristiques pré-
définies, et entre 70 et 80% pour les pixels, quand nous passons d’un réseau à une
couche cachée à un réseau profond.

Les améliorations des taux d’erreurs ne sont pas aussi impressionnantes quand les
réseaux sont inclus dans la chaîne de reconnaissance complète, incluant les contraintes
liguistiques. Cela est certainement dû au fait que les erreurs corrigées par des réseaux
plus profonds étaient également corrigées par le modèle de langue. Ceci dit, nous
observons quand même des baisses de taux d’erreurs, entre 10 et 15% pour les carac-
téristiques, et aux alentours de 40% pour les pixels, ce qui n’est pas négligeable.

Comme nous l’avons fait pour les PMCs, nous avons vérifié que ces résultats
n’étaient pas simplement dûs à l’augmentation du nombre de paramètres libres du
modèle. Nous avons comparé des RNRs plus profonds à des RNRs plus “larges”, c’est-
à-dire avec plus d’unités dans les couches cachées, et obtenu de meilleurs résultats en
augmentant la profondeur.

De plus, nous confirmons l’efficacité du dropout, une technique de régularisation des
réseaux consistant à ignorer les réponses de certains neurones lors de l’entrainement.
Cette méthode, introduite par Hinton et al. (2012), a récemment été appliquée aux
RNRs (Pham et al., 2014; Zaremba et al., 2014). En particulier, avec une architecture
de réseaux proche de la nôtre, mais pour des RNR multi-dimensionnels, Pham et al.
(2014) ont fait le choix d’appliquer le dropout uniquement en sortie des couches LMCT.

En explorant de manière exhaustive les différentes positions pour le dropout, nous
avons d’une part confirmé que cette technique permettait pratiquement toujours d’améliorer
les performances des RNRs seuls. La position du dropout relative aux couches LMCT

236 Appendix B. Résumé Long

semble particulièrement importante, et nous reportons des améliorations significatives
par rapport à la méthode proposée par Pham et al. (2014) quand le dropout est ap-
pliqué en entrée des LMCTs plutôt qu’en sortie.

Cependant, dans le système complet, l’ensemble des sorties est passé au décodeur,
et il apparaît que, dans ce cas, le dropout sur les poids de classification soit bénéfique.
Finalement, les meilleurs résultats ont été obtenu en utilisant le dropout avant les
couches récurrentes basses, et après les couches récurrentes hautes.

Table B.2: Comparaison du taux d’erreurs mots (%) obtenus avec des RNRs utilisant
des caractéristiques pré-définies et des intensités de pixels

Caractéristiques Pixels
Rimes
LMCTB-RNR à une couche 14.9% 24.1% (+65.1%)

LMCTB-RNR profond 12.9% 14.0% (+7.9%)
+dropout 12.7% 12.7% (+0.0%)

IAM
LMCTB-RNR à une couche 13.4% 83.2% (+520.0%)

LMCTB-RNR profond 11.4% 12.8% (+12.3%)
+dropout 11.2% 11.4% (+0.9%)

Bentham
LMCTB-RNR à une couche 20.6% 33.8% (+64.1%)

LMCTB-RNR profond 18.0% 20.3% (+12.8%)
+dropout 16.0% 17.0% (+6.3%)

Enfin, nous montrons que l’écart de performance entre les systèmes traitant les car-
actéristiques pré-définies et les simples valeurs de pixels est largement réduit quand
les réseaux sont profonds, passant d’une soixantaine à une dixaine de pourcents, et
devenant pratiquement négligeables quand le dropout est utilisé en entrainement (cf.
Table B.2). Comme pour les PMCs, la nécessité de trouver et d’implémenter une
extraction de caractéristiques pertinantes disparaît, au profit d’un apprentissage au-
tomatique, sans a priori spécifique, des caractéristiques par le réseau.

B.4 Une Comparaison Expérimentale de l’Entrai-

nement CTC et au Niveau Trame

Au Chapitre 7, nous nous intéressons plus particulièrement aux sorties des réseaux
et à la méthode d’entrainement. En effet, dans les expériences précédentes, les PMCs
prédisent des états de MMC, six par caractères, et sont entrainés au niveau trame, tan-
dis que les RNRs sont entrainés avec la CTC à prédire directement des caractères, ainsi
qu’un symbole spécial, blank, correspondant à une absence de prédiction de caractère.
Les deux types de système obtiennent de bons résultats.

B.4. Une Comparaison Expérimentale de l’Entrai-nement CTC et au Niveau Trame 237

L’entrainement CTC définit des transitions possibles entre les différents labels, et
considère toutes les segmentations possibles du signal d’entrée en prédictions, ce qui
rappelle l’entrainement Baum-Welsch des MMCs. Dans un premier temps, nous mon-
trons que l’entrainement CTC est très similaire à l’entainement global des systèmes
hybrides RN/MMC par une procédure forward-backward, déjà proposée par plusieurs
groupes de recherche dans les années 90 (Senior & Robinson, 1996; Hennebert et al.,
1997; Yan et al., 1997). Les principales différences sont l’absence de probabilités de
transition et de probabilités à priori d’états dans la CTC, ainsi qu’une topologie spé-
cifique incluant un symbole blank.

Nous avons étudié l’influence de la topologie, en faisant varier le nombre d’états des
MMCs de caractères, et la présence ou non d’un MMC de blank à un état. Les mixtures
de gaussiennes et les PMCs obtiennent de meilleurs résultats avec plusieurs états par
caractère, et pas de blank, alors que les RNRs atteignent leur meilleure performance
avec la topologie définie par la CTC.

D’autre part, l’entrainement CTC n’étant pas théoriquement limité aux RNRs, nous
l’avons appliqué à un PMC mais les résultats obtenus sont relativement décevants. Par
contre, en gardant plusieurs états par caractères, sans blank, l’entrainement CTC mod-
ifié permet une légère amélioration des résultats du PMC, quoique limitée, ce qui est
cohérent avec les conclusions de Hennebert et al. (1997) : si l’ensemble d’entrainement
est suffisamment grand, il y a peu ou pas de différence entre l’entrainement au niveau
trame, avec des étiquettes de trames fixes, et l’entrainement consistant à considérer
toutes les segmentations possibles en états de MMC.

Nous avons ensuite poussé plus loin la comparaison entre la CTC et l’entrainement au
niveau des frames. Nous avons entrainé des PMCs et des RNRs avec les deux critères,
en faisant également varier la topologie. Nous avons trouvé que le cadre strict de la
CTC, avec un état par caractère et le blank, était particulièrement adapté aux RNRs.
Dans toutes les situations sauf celle-ci, le taux d’erreur diminuait avec le nombre d’état
(cf. Figure B.1). Pour les PMCs, nous avons obtenu les meilleurs résultats finaux avec
six états par MMC, et sans blank, ce qui correspond à la topologie choisie pour les
chapitres précédents.

De plus, quand les réseaux sont considérés seuls, sans modèle de langue, l’erreur
de classification augmente avec le nombre d’états, à l’inverse du taux d’erreur dans la
chaine complète. Cela confirme néanmoins que le problème de classification est plus
simple avec un nombre limité d’états. En revanche, pour l’entrainement CTC sans
blank, l’ajout d’états dans les modèles fait baisser le taux d’erreur, ce qui suggère que
le choix d’une longueur de MMC adaptée permet d’aider l’algorithme à produire de
bons alignements pendant la procédure d’entrainement.

Nous avons étudié l’interaction de l’entrainement CTC avec le blank. Nous avons ob-
servé qu’en utilisant directement la CTC sans blank, l’entrainement ne convergeait pas,
ou vers des solutions sous-optimales. Dans ces cas-là, nous avons dû faire une première
passe d’entrainement au niveau trame, avant de poursuivre avec la CTC. Cela suggère

238 Appendix B. Résumé Long

Figure B.1: Comparaison des taux d’erreur caractères (CER%) avec l’entrainement
CTC et au niveau trame, avec et sans le symbole spécial blank. (à gauche: PMC; à
droite : RNR).

que, quand les caractères sont représentés par seulement quelques états, le blank peut
aider dans la procédure d’alignement. En fait, nous expliquons que la présence du
blank, associé à la CTC provoque dans les premiers instants de l’entrainement une
tendance du réseau à ne prédire que ce symbole. Les prédictions de caractères appa-
raissent ensuite sous forme de pics localisés, qui peuvent être intéressant pour avoir un
décodage riche et rapide quand les contraintes linguistiques sont introduites.

Enfin, concernant cette partie, nous concluons que la CTC, incluant la procédure
forward-backward, mais plus spécifiquement le blank et la représentation des carac-
tères par une seule sortie de réseau, ou un seul état de MMC, est particulièrement
adaptée aux RNRs, et leur permet d’obtenir relativement facilement de très bonnes
performances. Quant aux PMCs, nous avons confirmé que la topologie des MMCs
choisies pour cette thèse était bonne. La procédure forward-backward, que l’on trouve
également dans l’entrainement discriminant au niveau des séquences, ne permet qu’une
légère amélioration.

B.5 Combinaisons et Résultats Finaux

Dans le dernier chapitre, nous étudions les systèmes de reconnaissance complets,
incluant le modèle hybride RN/MMC, et le décodage avec les contraintes linguistiques
(vocabulaire et modèle de langue). Nous comparons directement les différents modèles
optiques (RNRs et PMCs), et les différents types d’entrées (pixels et caractéristiques).
Nous présentons également les résultats de nos systèmes sur les ensembles de test de

B.5. Combinaisons et Résultats Finaux 239

chaque base de données, afin de les comparer aux meilleurs résultats publiés. Nous don-
nons enfin dans ce chapitre une description détaillée des systèmes soumis à l’évaluation
HTRtS 2014, ainsi que leurs résultats.

Nous confirmons nos observations des chapitres précédents, à savoir que les pixels
permettent d’obtenir des résultats compétitifs avec ceux atteints avec les caractéris-
tiques pré-définies, pour des modèles optiques comportant des réseaux de neurones
profonds. D’autre part, nous montrons que des PMCs profonds atteignent des per-
formances similaires à celles des RNRs, malgré la domination de ces derniers dans la
littérature récente en reconnaissance d’écriture.

Cependant, comme vu précédemment, les PMCs requièrent un ajustement du nom-
bre d’états dans les MMCs, et de la quantité de contexte à donner en entrée des réseaux.
De plus, ce niveau de performance a été atteint grâce à l’entrainement discriminant au
niveau des séquences. A l’inverse, les RNRs, avec l’entrainement CTC, modélisent les
séquences de caractères directement, et sont plus simples à optimiser pour atteindre
facilement les résultats présentés. Ils gèrent la séquence d’entrée, et notamment la taille
de contexte nécessaire aux prédictions directement, et il n’y a pas besoin d’alignements
forcés des trames avec les états de MMCs pour l’entrainement. Ceci dit, pour une
comparaison plus juste de ces modèles, nous prévoyons d’appliquer la technique du
dropout dans les PMCs, ainsi que la procédure d’entrainement en séquence aux RNRs.

Nous soulignons également l’importance des paramètres de décodage. Le facteur op-
tique, qui contrôle l’influence du score du modèle optique par rapport à celui du modèle
de langue, a le plus grand impact sur les résultats finaux. A travers les différentes ex-
périences et configurations, nous avons trouvé que 0.1 semble être la meilleure valeur
pour les systèmes basés sur des PMCs, tandis que 1.0 est le meilleur choix pour les
RNRs. L’ajustement de la pénalité d’insertion de mot et du facteur appliqué aux
probabilités a priori d’états de MMC peuvent également apporter quelques pourcents
d’amélioration.

Le contraintes linguisiques, c’est-à-dire le vocabulaire et le modèle de langue, sont
cruciaux pour atteindre les résultats présentés dans cette thèse. Sans eux, les taux
d’erreur sont largement plus haut, en particulier pour les PMCs, pour lesquels la moitié
des mots seraient alors mal reconnus. En n’appliquant qu’un vocabulaire, sans donner
un score aux séquences de mots, plus d’un mot sur quatre serait encore faux.

Les deux types de réseau de neurones et d’entrées nous donnent quatre systèmes
de reconnaissance, qui obtiennent tous des résultats comparables, mais se comportent
différemment, et font des erreurs différentes. En combinant ces systèmes avec deux
méthodes, au niveau des transcriptions (ROVER; Fiscus (1997)), et au niveau des
treillis de reconnaissance (Xu et al., 2011), nous montrons la complémentarité des
différents modèles. En effet, nous avons obtenu plus qu’un pourcent d’amélioration
absolue du taux d’erreur mots, comparé à celui du meilleur système. La méthode basée
sur les treillis de reconnaissance, qui considère un plus grand nombre d’alternatives,
produit de meilleurs et plus robustes résultats.

240 Appendix B. Résumé Long

Table B.3: Résultats sur la base Rimes (taux d’erreur mots - WER% - et caractères -
CER%).

Dev. Eval.
WER% CER% WER% CER%

GMMC Caractéristiques 17.2 5.9 15.8 6.0
PMC Caractéristiques 12.5 3.4 12.7 3.7

Pixels 12.6 3.8 12.4 3.9
RNR Caractéristiques 12.8 3.8 12.6 3.9

Pixels 12.7 4.0 13.8 4.6
Combinaison ROVER 11.3 3.5 11.3 3.7

Combinaison de treillis 11.2 3.3 11.2 3.5

Pham et al. (2014) - - 12.3 3.3
Doetsch et al. (2014) - - 12.9 4.3

Messina & Kermorvant (2014) - - 13.3 -
Kozielski et al. (2013a) - - 13.7 4.6

Messina & Kermorvant (2014) - - 14.6 -
Menasri et al. (2012) - - 15.2 7.2

Table B.4: Résultats sur la base IAM (taux d’erreur mots - WER% - et caractères -
CER%).

Dev. Eval.
WER% CER% WER% CER%

GMMC Caractéristiques 15.2 6.3 19.6 9.0
PMC Caractéristiques 10.9 3.7 13.3 5.4

Pixels 11.4 3.9 13.8 5.6
RNR Caractéristiques 11.2 3.8 13.2 5.0

Pixels 11.8 4.0 14.4 5.7
Combinaison ROVER 9.6 3.6 11.2 4.7

Combinaison de treillis 9.6 3.3 10.9 4.4

Doetsch et al. (2014) 8.4 2.5 12.2 4.7
Kozielski et al. (2013a) 9.5 2.7 13.3 5.1

Pham et al. (2014) 11.2 3.7 13.6 5.1
Kozielski et al. (2013a) 11.9 3.2 - -

Messina & Kermorvant (2014) - - 19.1 -
Espana-Boquera et al. (2011) 19.0 - 22.4 9.8

Enfin, nous avons appliqué nos modèles sur les ensembles de test de chaque base, afin
de comparer leur résultats à ceux publiés par d’autres sur les mêmes données. Nous les
rappelons ici, Table B.3 pour Rimes, Table B.4 pour IAM, et Table B.5 pour Bentham.
Nous voyons que sur Rimes et IAM, tous nos systèmes simples atteignent un niveau de
performance comparable à l’état de l’art. De plus, la combinaison des reconnaisseurs
égale ou dépasse tous les meilleurs résultats publiés sur les trois bases : Rimes, IAM
et Bentham.

B.6. Conclusions et Perspectives 241

Table B.5: Résultats sur la base Bentham (taux d’erreur mots - WER% - et caractères
- CER%).

(a) Tâche restreinte

Model WER% CER%
PMC profond Caractéristiques 18.6 7.5

Pixels 20.9 8.2
RNR profond Caractéristiques 16.2 5.4

Pixels 16.9 5.9
Combinaison de treillis 14.1 5.0

CITlab 14.6 -
Notre système (Compétition) 15.1 -

(b) Tâche non restreinte

Model WER% CER%
PMC profond Caractéristiques 13.2 4.9

Pixels 14.4 6.1
RNR profond Caractéristiques 11.2 4.0

Pixels 11.5 4.4
uRNR1 10.9 4.0
uRNR2 10.5 3.7
uRNR3 10.2 3.6

Combinaison de treillis 8.6 3.1

A2iA (système de production) 8.6 -
Notre système (Compétition) 11.1 -

B.6 Conclusions et Perspectives

En conclusion, nous présentons dans cette thèse une étude poussée des réseaux de
neurones profonds pour la reconnaissance d’écriture manuscrite et de leur intégration
dans des systèmes hybrides RN/MMC.

Nous nous sommes intéressés aux entrées des réseaux, et avons montré qu’avec la
profondeur des réseaux, l’écart de performance entre des caractéristiques extraites pré-
définies et les simples valeurs de pixels se réduisait, diminuant ainsi l’intérêt de la
création et de l’implémentation d’une bonne extraction de caractéristiques. D’autre
part, nous avons étudié la taille du contexte à fournir en entrée du réseau, et montré que
ce paramètre était crucial pour les PMCs, alors que les résultats n’étaient pas améliorés
par l’introduction d’un plus grand contexte pour les RNRs, qui peuvent apprendre à
utiliser un contexte arbitrairement grand à travers leurs connexions récurrentes. Pour
les valeurs de pixels, nous n’avons pas expérimenté beaucoup de tailles différentes des
fénêtres glissantes, et des améliorations peuvent être attendues si une attention plus
fine est portée à ce paramètre.

242 Appendix B. Résumé Long

Les nombreuses expériences réalisées nous permettent d’affirmer que des gains sig-
nificatifs de performance résultent d’une plus grande profondeur de réseau, c’est-à-dire
d’un plus grand nombre de couches cachées. Cela constitue la majeure contribution de
notre travail, sachant qu’aujourd’hui, en reconnaissance d’écriture manuscrite, très peu
de travaux ont considéré des architectures à plusieurs couches cachées, mises à part les
architectures à convolutions.

Il est important de signaler que les réseaux à convolutions sont une excellente al-
ternative aux PMCs et obtiennent de très bons résultats en vision artificielle, de même
que les RNRs multi-dimensionnels sont une excellente alternative aux RNRs présentés,
et constituent l’état de l’art en reconnaissance d’écriture. Dans un souci de cohérence,
nous ne discutons pas dans cette thèse de nos travaux sur les réseaux à convolutions
(Bluche et al., 2013a,b) ou utilisant des RNRs multi-dimensionnels (Bluche et al.,
2014a; Moysset et al., 2014; Pham et al., 2014), mais il va de soi qu’une étude compar-
ative les incluant doit être menée.

Enfin, nous avons étudié l’influence des sorties des réseaux (notamment le nombre
d’états de MMCs par caractère et la présence d’un symbole blank), et la méthode
d’entrainement des réseaux, qui a en particulier souligné la bonne interaction entre
la CTC, le blank, et les RNRs. Des gains intéressants ont été atteints avec un en-
trainement en séquence, et l’utilisation du dropout, et une poursuite logique de ces
travaux consisterait à appliquer aux RNRs l’entrainement en séquence, et aux PMCs
la technique du dropout.

Parmi les directions futures de recherche, outre l’application de tels systèmes à
d’autres types de données, telles que des scripts différents comme l’arabe, où des don-
nées plus difficiles comme celles de l’évaluation MAURDOR (Brunessaux et al., 2014),
il semble aujourd’hui important de trouver des pistes pour améliorer les modèles de
langues, et pour passer de la reconnaissance de lignes, nécessitant une segmentation
explicite, à une reconnaissance de bout en bout, qui transcrirait les images des docu-
ments entiers, et serait dans la veine de l’évolutions des systèmes faisant de moins en
moins d’hypothèses.

Bibliography

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., & Penn, G. (2012). Applying convolu-
tional neural networks concepts to hybrid NN-HMM model for speech recognition. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Con-
ference on, (pp. 4277–4280). IEEE.

Al-Hajj Mohamad, R., Likforman-Sulem, L., & Mokbel, C. (2009). Combining slanted-
frame classifiers for improved HMM-based Arabic handwriting recognition. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 31 (7), 1165–1177.

Anastasakos, T., McDonough, J., Schwartz, R., & Makhoul, J. (1996). A compact
model for speaker-adaptive training. In Spoken Language, 1996. ICSLP 96. Proceed-
ings., Fourth International Conference on, vol. 2, (pp. 1137–1140). IEEE.

Augustin, E. (2001). Reconnaissance de mots manuscrits par systèmes hybrides Réseaux
de Neurones et Modèles de Markov Cachés. Ph.D. thesis, Université René Descartes,
Paris V.

Augustin, E., Carré, M., Grosicki, E., Brodin, J.-M., Geoffrois, E., & Preteux, F.
(2006). RIMES evaluation campaign for handwritten mail processing. In Proceedings
of the Workshop on Frontiers in Handwriting Recognition, 1.

Bahl, L. B., de Souza, P., & P Mercer, R. (1986). Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. Acoustics,
Speech, and Signal Processing, IEEE International Conference on ICASSP’86.

Baldi, P., & Chauvin, Y. (1994). Smooth on-line learning algorithms for hidden Markov
models. Neural Computation, 6 (2), 307–318.

Baret, O. (1990). Régularités singulairtés de représentations et leur complémentarité:
application à la reconnaissance de l’écriture manuscrite non contrainte. Ph.D. thesis.

Baum, L. E., Eagon, J., et al. (1967). An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to a model for ecology.
Bull. Amer. Math. Soc, 73 (3), 360–363.

Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains. The
annals of mathematical statistics, (pp. 164–171).

Bazzi, I. (2002). Modelling out-of-vocabulary words for robust speech recognition. Ph.D.
thesis, Massachusetts Institute of Technology.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends R© in
Machine Learning, 2 (1), 1–127.

244 Bibliography

Bengio, Y., De Mori, R., Flammia, G., & Kompe, R. (1992). Global optimization of a
neural network-hidden Markov model hybrid. Neural Networks, IEEE Transactions
on, 3 (2), 252–259.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
Language Model. Journal of Machine Learning Research, 3 (6), 1137–1155.

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise
training of deep networks. Advances in neural information processing systems, 19 ,
153.

Bengio, Y., LeCun, Y., & Henderson, D. (1994a). Globally trained handwritten word
recognizer using spatial representation convolutional neural networks and hidden
Markov models. Advances in Neural Information Processing Systems, (pp. 937–937).

Bengio, Y., LeCun, Y., Nohl, C., & Burges, C. (1995). Lerec: A NN/HMM hybrid for
on-line handwriting recognition. Neural Computation, 7 (6), 1289–1303.

Bengio, Y., Simard, P., & Frasconi, P. (1994b). Learning long-term dependencies with
gradient descent is difficult. Neural Networks, IEEE Transactions on, 5 (2), 157–166.

Bertolami, R., & Bunke, H. (2008). Hidden Markov Model Based Ensemble Methods
for Offline Handwritten Text Line Recognition. Pattern Recognition, 41 (11), 3452 –
3460.

Bianne, A.-L., Menasri, F., Al-Hajj, R., Mokbel, C., Kermorvant, C., & Likforman-
Sulem, L. (2011). Dynamic and Contextual Information in HMM modeling for Hand-
writing Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence,
33 (10), 2066 – 2080.

Bianne-Bernard, A.-L. (2011). Reconnaissance de mots manuscrits cursifs par modèles
de Markov cachés en contexte. Ph.D. thesis, Telecom ParisTech.

Bianne-Bernard, A.-L., Menasri, F., Likforman-Sulem, L., Mokbel, C., & Kermor-
vant, C. (2012). Variable length and context-dependent HMM letter form models
for Arabic handwritten word recognition. In IS&T/SPIE Electronic Imaging, (pp.
829708–829708). International Society for Optics and Photonics.

Bledsoe, W., & Browning, I. (1959). Pattern recognition and reading by machine. In
Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer
conference, (pp. 225–232). ACM.

Bloomberg, D. S., Kopec, G. E., & Lakshmi Dasari (1995). Measuring document image
skew and orientation. Proc. SPIE Document Recognition II , 2422 (302), 302–316.

Bluche, T., Kermorvant, C., & Louradour, J. (2015a). Where to Apply Dropout in
Recurrent Neural Networks for Handwriting Recognition? In 13th International
Conference on Document Analysis and Recognition (ICDAR), (pp. –). IEEE.

Bibliography 245

Bluche, T., Louradour, J., Knibbe, M., Moysset, B., Benzeghiba, M. F., & Kermorvant,
C. (2014a). The A2iA Arabic Handwritten Text Recognition System at the Open
HaRT2013 Evaluation. In 11th IAPR International Workshop on Document Analysis
Systems (DAS), (pp. 161–165). IEEE.

Bluche, T., Moysset, B., & Kermorvant, C. (2014b). Automatic Line Segmentation
and Ground-Truth Alignment of Handwritten Documents. In 14th International
Conference on Frontiers in Handwriting Recognition (ICFHR2014), (pp. 667–672).

Bluche, T., Ney, H., & Kermorvant, C. (2013a). Feature Extraction with Convolu-
tional Neural Networks for Handwritten Word Recognition. In 12th International
Conference on Document Analysis and Recognition (ICDAR), (pp. 285–289). IEEE.

Bluche, T., Ney, H., & Kermorvant, C. (2013b). Tandem HMM with convolutional
neural network for handwritten word recognition. In 17th International Conference
on Acoustics, Speech and Signal Processing (ICASSP), (pp. 2390–2394). IEEE.

Bluche, T., Ney, H., & Kermorvant, C. (2014c). A Comparison of Sequence-Trained
Deep Neural Networks and Recurrent Neural Networks Optical Modeling for Hand-
writing Recognition. In International Conference on Statistical Language and Speech
Processing, (pp. 199–210).

Bluche, T., Ney, H., & Kermorvant, C. (2015b). The LIMSI Handwriting Recognition
System for the HTRtS 2014 Contest. In 13th International Conference on Document
Analysis and Recognition (ICDAR), (pp. –). IEEE.

Bluche, T., Ney, H., Louradour, J., & Kermorvant, C. (2015c). Framewise and CTC
Training of Neural Networks for Handwriting Recognition. In 13th International
Conference on Document Analysis and Recognition (ICDAR), (pp. –). IEEE.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010 , (pp. 177–186). Springer.

Bottou, L., Bengio, Y., & Le Cun, Y. (1997). Global training of document process-
ing systems using graph transformer networks. In Computer Vision and Pattern
Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on, (pp.
489–494). IEEE.

Bourlard, H., & Morgan, N. (1994). Connectionist speech recognition: a hybrid approach
Chapter 7 , vol. 247 of The Kluwer international series in engineering and computer
science: VLSI, computer architecture, and digital signal processing. Kluwer Aca-
demic Publishers.

Bourlard, H., & Wellekens, C. J. (1989). Links between Markov models and multilayer
perceptrons. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
12 (12), 1167–1178.

Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11 (1), 68–83.

246 Bibliography

Bridle, J. S. (1990a). Alpha-nets: a recurrent âneuralâ network architecture with a
hidden Markov model interpretation. Speech Communication, 9 (1), 83–92.

Bridle, J. S. (1990b). Probabilistic interpretation of feedforward classification network
outputs with relationships to statistical pattern recognition. In Neurocomputing,
(pp. 227–236). Springer.

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992).
Class-based n-gram models of natural language. Computational linguistics, 18 (4),
467–479.

Brunessaux, S., Giroux, P., Grilhères, B., Manta, M., Bodin, M., Choukri, K., Galib-
ert, O., & Kahn, J. (2014). The Maurdor Project: Improving Automatic Processing
of Digital Documents. In Document Analysis Systems (DAS), 2014 11th IAPR In-
ternational Workshop on, (pp. 349–354). IEEE.

Bunke, H., Bengio, S., & Vinciarelli, A. (2004). Offline recognition of unconstrained
handwritten texts using HMMs and statistical language models. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 26 (6), 709–720.

Buse, R., Liu, Z. Q., & Caelli, T. (1997). A structural and relational approach to
handwritten word recognition. IEEE Transactions on Systems, Man and Cybernet-
ics, 27 (5), 847–61.

Cao, H., Natarajan, P., Peng, X., Belanger, K. S. D., & Li, N. (????). Progress in the
Raytheon BBN Arabic Offline Handwriting Recognition System.

Casey, R. G., & Lecolinet, E. (1996). A survey of methods and strategies in character
segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
18 (7), 690–706.

Causer, T., & Wallace, V. (2012). Building a volunteer community: results and findings
from Transcribe Bentham. Digital Humanities Quarterly, 6 .

Chatelain, C., Heutte, L., & Paquet, T. (2006). Segmentation-driven recognition ap-
plied to numerical field extraction from handwritten incoming mail documents. In
Document Analysis Systems VII , (pp. 564–575). Springer Berlin Heidelberg.

Chen, J., Zhang, B., Cao, H., Prasad, R., & Natarajan, P. (2012). Applying Dis-
criminatively Optimized Feature Transform for HMM-based Off-Line Handwriting
Recognition. In ICFHR, (pp. 219–224).

Chen, M.-Y., Kundu, A., & Srihari, S. N. (1995). Variable duration hidden Markov
model and morphological segmentation for handwritten word recognition. Image
Processing, IEEE Transactions on, 4 (12), 1675–1688.

Chen, S. F., & Goodman, J. (1996). An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics, (pp. 310–318). Association for Computational Linguis-
tics.

Bibliography 247

Chevalier, S., Prêteux, F. J., Geoffrois, E., & Lemaitre, M. (2005). A generic 2D
approach of handwriting recognition. In ICDAR, (pp. 489–493).

Chou, W., Lee, C.-H., & Juang, B.-H. (1993). Minimum error rate training based on N-
best string models. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93.,
1993 IEEE International Conference on, vol. 2, (pp. 652–655). IEEE.

Ciresan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep big
simple neural nets for handwritten digit recognition. Neural computation, 22 (12),
3207–3220.

Cireşan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2012). Deep big
multilayer perceptrons for digit recognition. In Neural Networks: Tricks of the Trade,
(pp. 581–598). Springer.

Côté, M., Lecolinet, E., Cheriet, M., & Suen, C. Y. (1998). Automatic reading of
cursive scripts using a reading model and perceptual concepts. International Journal
on Document Analysis and Recognition, 1 (1), 3–17.

Cottrell, G. W., & Munro, P. (1988). Principal components analysis of images via
back propagation. In Visual Communications and Image Processing’88: Third in a
Series, (pp. 1070–1077). International Society for Optics and Photonics.

Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013). Improving deep neural networks
for LVCSR using rectified linear units and dropout. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, (pp. 8609–8613).
IEEE.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), (pp. 1–38).

Deng, L., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X.,
Williams, J., et al. (2013). Recent advances in deep learning for speech research at
Microsoft. In 38th IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP2013), (pp. 8604–8608). IEEE.

Doetsch, P., Hamdani, M., Ney, H., Gimenez, A., Andres-Ferrer, J., & Juan, A. (2012).
Comparison of Bernoulli and Gaussian HMMs using a vertical repositioning tech-
nique for off-line handwriting recognition. In Proceedings of the 2012 International
Conference on Frontiers in Handwriting Recognition, (pp. 3–7). IEEE Computer
Society.

Doetsch, P., Kozielski, M., & Ney, H. (2014). Fast and robust training of recurrent
neural networks for offline handwriting recognition. (pp. –).

Dreuw, P. (2011). The RWTH OCR System For Handwritten and Machine Printed
Text Recognition.
URL http://www-i6.informatik.rwth-aachen.de/rwth-ocr/

248 Bibliography

Dreuw, P., Doetsch, P., Plahl, C., & Ney, H. (2011a). Hierarchical hybrid MLP/HMM
or rather MLP features for a discriminatively trained gaussian HMM: a comparison
for offline handwriting recognition. In Image Processing (ICIP), 2011 18th IEEE
International Conference on, (pp. 3541–3544). IEEE.

Dreuw, P., Heigold, G., & Ney, H. (2011b). Confidence-and margin-based MMI/MPE
discriminative training for off-line handwriting recognition. International Journal on
Document Analysis and Recognition (IJDAR), 14 (3), 273–288.

Dreuw, P., Jonas, S., & Ney, H. (2008). White-space models for offline Arabic hand-
writing recognition. In Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on, (pp. 1–4). IEEE.

Dreuw, P., Rybach, D., Gollan, C., & Ney, H. (2009). Writer adaptive training and
writing variant model refinement for offline Arabic handwriting recognition. In Doc-
ument Analysis and Recognition, 2009. ICDAR’09. 10th International Conference
on, (pp. 21–25). IEEE.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. The Journal of Machine Learning Research,
12 , 2121–2159.

Eck, D., & Schmidhuber, J. (2002). A first look at music composition using lstm
recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale.

Edelman, S., Flash, T., & Ullman, S. (1990). Reading cursive handwriting by alignment
of letter prototypes. International Journal of Computer Vision, 5 (3), 303–331.

El-Hajj, R., Likforman-Sulem, L., & Mokbel, C. (2005). Arabic handwriting recogni-
tion using baseline dependant features and hidden markov modeling. In Document
Analysis and Recognition, 2005. Proceedings. Eighth International Conference on,
(pp. 893–897). IEEE.

El-Yacoubi, A., Gilloux, M., Sabourin, R., & Suen, C. Y. (1999). An HMM-based ap-
proach for off-line unconstrained handwritten word modeling and recognition. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on, 21 (8), 752–760.

El-Yacoubi, M. A., Gilloux, M., & Bertille, J.-M. (2002). A statistical approach for
phrase location and recognition within a text line: an application to street name
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24 (2), 172–188.

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14 (2), 179–211.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., & Vincent, P. (2009). The diffi-
culty of training deep architectures and the effect of unsupervised pre-training. In
International Conference on Artificial Intelligence and Statistics, (pp. 153–160).

Bibliography 249

Espana-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J., & Zamora-Martinez, F.
(2011). Improving offline handwritten text recognition with hybrid HMM/ANN
models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33 (4),
767–779.

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013). Learning hierarchical
features for scene labeling. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 35 (8), 1915–1929.

Favata, J. T., & Srikantan, G. (1996). A multiple feature/resolution approach to hand-
printed digit and character recognition. International journal of imaging systems and
technology, 7 (4), 304–311.

Fink, G. A., & Plotz, T. (2007). On the use of context-dependent modeling units for
HMM-based offline handwriting recognition. In Document Analysis and Recognition,
2007. ICDAR 2007. Ninth International Conference on, vol. 2, (pp. 729–733). IEEE.

Fischer, A., Keller, A., Frinken, V., & Bunke, H. (2012). Lexicon-free handwritten
word spotting using character HMMs. Pattern Recognition Letters, 33 (7), 934–942.

Fiscus, J. (1998). Sclite scoring package. US National Institute of Standard Technology
(NIST), URL http://www. itl. nist. gov/iaui/894.01/tools.

Fiscus, J. G. (1997). A post-processing system to yield reduced word error rates: Rec-
ognizer output voting error reduction (ROVER). In IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU1997), (pp. 347–354). IEEE.

Gatos, B., Louloudis, G., Causer, T., Grint, K., Romero, V., Sanchez, J. A., Toselli,
A. H., & Vidal, E. (2014). Ground-truth production in the tranScriptorium project.
In Document Analysis Systems (DAS), 2014 11th IAPR International Workshop on,
(pp. 237–241). IEEE.

Gatos, B., Louloudis, G., Stamatopoulos, N., Ntirogiannis, K., Papandreou, A.,
Pratikakis, I., Zagoris, K., Sánchez, J. A., Romero, V., Toselli, A., Vidal, E.,
Villegas, M., Álvaro, F., & Bosch, V. (2013). Description and evaluation of tools for
DIA HTR and KWS (M12).
URL http://transcriptorium.eu/pdfs/deliverables/tranScriptorium-D3.

1.2-31December2013.pdf

Gatos, B., Pratikakis, I., & Perantonis, S. J. (2006). Adaptive degraded document
image binarization. Pattern recognition, 39 (3), 317–327.

Gatos, B., Stamatopoulos, N., & Louloudis, G. (2011). ICDAR2009 handwriting seg-
mentation contest. International Journal on Document Analysis and Recognition
(IJDAR), 14 (1), 25–33.

Gers, F. (2001). Long Short-Term Memory in Recurrent Neural Networks TH ESE.
2366 .

250 Bibliography

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Neural
Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International
Joint Conference on, vol. 3, (pp. 189–194). IEEE.

Gers, F. A., & Schmidhuber, J. (2001). LSTM recurrent networks learn simple context-
free and context-sensitive languages. Neural Networks, IEEE Transactions on, 12 (6),
1333–1340.

Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2003). Learning precise timing
with LSTM recurrent networks. The Journal of Machine Learning Research, 3 ,
115–143.

Ghosh, D., Dube, T., & Shivaprasad, A. P. (2010). Script recognition : A review.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32 (12), 2142–
2161.

Giménez, A., Khoury, I., & Juan, A. (2010). Windowed Bernoulli mixture HMMs
for Arabic handwritten word recognition. In Frontiers in Handwriting Recognition
(ICFHR), 2010 International Conference on, (pp. 533–538). IEEE.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. In International Conference on Artificial Intelligence and
Statistics, (pp. 249–256).

Good, I. J. (1953). The population frequencies of species and the estimation of popu-
lation parameters. Biometrika, 40 (3-4), 237–264.

Gorski, N., Anisimov, V., Augustin, E., Baret, O., Price, D., & Simon, J.-C. (1999).
A2ia check reader: A family of bank check recognition systems. In Document Analysis
and Recognition, 1999. ICDAR’99. Proceedings of the Fifth International Conference
on, (pp. 523–526). IEEE.

Graves, A. (2012). Sequence Transduction with Recurrent Neural Networks. In ICML.

Graves, A., Fernández, S., Gomez, F., & Schmidhuber, J. (2006). Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural net-
works. In International Conference on Machine learning, (pp. 369–376).

Graves, A., Fernández, S., & Schmidhuber, J. (2007). Multi-Dimensional Recurrent
Neural Networks. CoRR, abs/0705.2 .

Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent
neural networks. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), (pp. 1764–1772).

Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber,
J. (2009). A novel connectionist system for unconstrained handwriting recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (5), 855–68.

Bibliography 251

Graves, A., Mohamed, A.-r., & Hinton, G. (2013a). Speech recognition with deep
recurrent neural networks. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), (pp. 6645–6649). IEEE.

Graves, A., Mohamed, A.-R., & Hinton, G. (2013b). Speech Recognition with Deep
Recurrent Neural Networks. In proc ICASSP, 3.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidi-
rectional LSTM and other neural network architectures. Neural Networks, 18 (5-6),
602–610.

Graves, A., & Schmidhuber, J. (2008). Offline Handwriting Recognition with Multidi-
mensional Recurrent Neural Networks. In Advances in Neural Information Processing
Systems, (pp. 545–552).

Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition with multidi-
mensional recurrent neural networks. In Advances in Neural Information Processing
Systems, (pp. 545–552).

Grosicki, E., Carree, M., Brodin, J.-M., & Geoffrois, E. (2009). Results of the rimes
evaluation campaign for handwritten mail processing. In Document Analysis and
Recognition, 2009. ICDAR’09. 10th International Conference on, (pp. 941–945).
IEEE.

Grosicki, E., & El-Abed, H. (2011). Icdar 2011-french handwriting recognition com-
petition. In International Conference on Document Analysis and Recognition (IC-
DAR2011), (pp. 1459–1463). IEEE.

Guillevic, D., & Suen, C. Y. (1998). Recognition of legal amounts on bank cheques.
Pattern Analysis and Applications, 1 (1), 28–41.

Gunawardana, A., & Byrne, W. (2001). Discriminative speaker adaptation with condi-
tional maximum likelihood linear regression. In INTERSPEECH , (pp. 1203–1206).

Günter, S., & Bunke, H. (2004). HMM-based handwritten word recognition: on the
optimization of the number of states training iterations and Gaussian components.
Pattern Recognition, 37 (10), 2069–2079.

Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006). A closer look at
skip-gram modelling. In Proceedings of the 5th international Conference on Language
Resources and Evaluation (LREC-2006), (pp. 1–4).

Haffner, P. (1993). Connectionist speech recognition with a global MMI algorithm. In
EUROSPEECH .

Hamdani, M., Doetsch, P., & Ney, H. (2014). Improvement of Context Dependent
Modeling For Arabic Handwriting Recognition. In 14th International Conference on
Frontiers in Handwriting Recognition (ICFHR2014), (pp. –).

252 Bibliography

Hammerla, N., Plötz, T., Vajda, S., & Fink, G. (2010). Towards feature learning for
HMM-based offline handwriting recognition. In International Workshop on Frontiers
of Arabic Handwriting Recognition, Istanbul, Turkey.

Hennebert, J., Ris, C., Bourlard, H., Renals, S., & Morgan, N. (1997). Estimation of
global posteriors and forward-backward training of hybrid HMM/ANN systems.

Hermansky, H., Ellis, D. P., & Sharma, S. (2000). Tandem connectionist feature ex-
traction for conventional HMM systems. In Acoustics, Speech, and Signal Processing,
2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on, vol. 3, (pp.
1635–1638). IEEE.

Hinton, G. (2010). A practical guide to training restricted Boltzmann machines. Mo-
mentum, 9 (1), 926.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14 (8), 1771–1800.

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18 (7), 1527–1554.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R.
(2012). Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580 .

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6 (02), 107–116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9 (8), 1735–1780.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79 (8),
2554–2558.

Hull, J. J. (1998). Document image skew detection: Survey and annotated bibliography
. In BT - Document Analysis Systems II. Word Scientific, (pp. 40–64).

Ide, N., & Suderman, K. (2007). The open american national corpus (oanc).
URL http://www.americannationalcorpus.org/OANC/index.html

Jelinek, F., & Mercer, R. L. (1980). Interpolated Estimation of Markov Source Param-
eters from Sparse Data. In Proceedings of the Workshop on Pattern Recognition in
Practice.

Johansson, S. (1980). The LOB corpus of British English texts: presentation and
comments. ALLC journal, 1 (1), 25–36.

Bibliography 253

Juang, B.-H. (1985). Maximum-Likelihood Estimation for Mixture Multivariate
Stochastic Observations of Markov Chains. AT&T technical journal, 64 (6), 1235–
1249.

Kaltenmeier, A., Caesar, T., Gloger, J. M., & Mandler, E. (1993). Sophisticated topol-
ogy of hidden Markov models for cursive script recognition. In Document Analysis
and Recognition, 1993., Proceedings of the Second International Conference on, (pp.
139–142). IEEE.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model
component of a speech recognizer. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 35 (3), 400–401.

Kermorvant, C., Bianne, A.-L., Marty, P., & Menasri, F. (2009). From Isolated Hand-
written Characters to Fields Recognition: There’s Many a Slip twixt Cup and Lip.
In International Conference on Document Analysis and Recognition.

Kermorvant, C., Bianne-Bernard, A.-L., Bluche, T., & Louradour, J. (2012). On using
alternative recognition candidates and scores for handwritten documents classifica-
tion. Tech. Rep. A2iA-RR-2012-1, A2iA.

Kim, G., & Govindaraju, V. (1997). A lexicon driven approach to handwritten word
recognition for real-time applications. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 19 (4), 366–379.

Kimura, F., Shridhar, M., & Chen, Z. (1993). Improvements of a lexicon directed
algorithm for recognition of unconstrained handwritten words. In Document Analysis
and Recognition, 1993., Proceedings of the Second International Conference on, (pp.
18–22). IEEE.

Kingsbury, B. (2009). Lattice-based optimization of sequence classification criteria for
neural-network acoustic modeling. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP 2009), (pp. 3761–3764). IEEE.

Klakow, D., & Peters, J. (2002). Testing the correlation of word error rate and per-
plexity. Speech Communication, 38 (1), 19–28.

Knerr, S., Augustin, E., Baret, O., & Price, D. (1998). Hidden Markov model based
word recognition and its application to legal amount reading on French checks. Com-
puter Vision and Image Understanding, 70 (3), 404–419.

Kneser, R., & Ney, H. (1995). Improved backing-off for m-gram language modeling.
In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International
Conference on, vol. 1, (pp. 181–184). IEEE.

Koerich, A. L., Sabourin, R., & Suen, C. Y. (2003). Large vocabulary off-line hand-
writing recognition: A survey. Pattern Analysis & Applications, 6 (2), 97–121.

254 Bibliography

Konig, Y., Bourlard, H., & Morgan, N. (1996). Remap: Recursive estimation and max-
imization of a posteriori probabilities-application to transition-based connectionist
speech recognition. Advances in Neural Information Processing Systems, (pp. 388–
394).

Kozielski, M., Doetsch, P., Hamdani, M., & Ney, H. (2014a). Multilingual Off-line
Handwriting Recognition in Real-world Images. (pp. 1–1).

Kozielski, M., Doetsch, P., Ney, H., et al. (2013a). Improvements in RWTH’s System for
Off-Line Handwriting Recognition. In Document Analysis and Recognition (ICDAR),
2013 12th International Conference on, (pp. 935–939). IEEE.

Kozielski, M., Forster, J., & Ney, H. (2012). Moment-Based Image Normalization for
Handwritten Text Recognition. In ICFHR, (pp. 256–261). Citeseer.

Kozielski, M., Nuhn, M., Doetsch, P., & Ney, H. (2014b). Towards Unsupervised
Learning for Handwriting Recognition. In Frontiers in Handwriting Recognition
(ICFHR), 2014 14th International Conference on, (pp. 549–554).

Kozielski, M., Rybach, D., Hahn, S., Schluter, R., & Ney, H. (2013b). Open vocabu-
lary handwriting recognition using combined word-level and character-level language
models. In 38th IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP2013), (pp. 8257–8261). IEEE.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, (pp. 1097–1105).

Krogh, A. (1994). Hidden Markov models for labeled sequences. In Pattern Recognition,
1994. Vol. 2-Conference B: Computer Vision & Image Processing., Proceedings
of the 12th IAPR International. Conference on, vol. 2, (pp. 140–144). IEEE.

Krogh, A., Brown, M., Mian, I. S., Sjölander, K., & Haussler, D. (1994). Hidden
Markov models in computational biology: Applications to protein modeling. Journal
of molecular biology, 235 (5), 1501–1531.

Lam, L., Lee, S.-W., & Suen, C. Y. (1992). Thinning methodologies-a comprehensive
survey. IEEE Transactions on pattern analysis and machine intelligence, 14 (9),
869–885.

Le, H.-S., Oparin, I., Allauzen, A., Gauvain, J., & Yvon, F. (2011). Structured output
layer neural network language model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, (pp. 5524–5527). IEEE.

Le Cun, Y., Bottou, L., & Bengio, Y. (1997). Reading checks with multilayer graph
transformer networks. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-
97., 1997 IEEE International Conference on, vol. 1, (pp. 151–154). IEEE.

Bibliography 255

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1 (4), 541–551.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE , 86 (11), 2278–2324.

Lee, S.-W., & Kim, Y.-J. (1995). A new type of recurrent neural network for handwrit-
ten character recognition. In Document Analysis and Recognition, 1995., Proceedings
of the Third International Conference on, vol. 1, (pp. 38–41). IEEE.

Leggetter, C. J., & Woodland, P. C. (1995). Maximum likelihood linear regression for
speaker adaptation of continuous density hidden Markov models. Computer Speech
& Language, 9 (2), 171–185.

Lemaıtre, M., Grosicki, E., Geoffrois, E., & Prêteux, F. (2008). Off-line handwrit-
ten word recognition based on a bidimensional Markovian approach with a large
vocabulary.

Leroux, M., Salome, J., & Badard, J. (1991). Recognition of cursive script words in
a small lexicon. In Proceedings Int. Conf. on Document Analysis and Recognition,
(pp. 774–782).

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions insertions and
reversals. In Soviet physics doklady, vol. 10, (p. 707).

Levin, E., & Pieraccini, R. (1992). Dynamic planar warping for optical character
recognition. In Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992
IEEE International Conference on, vol. 3, (pp. 149–152). IEEE.

Likforman-Sulem, L., Zahour, A., & Taconet, B. (2007). Text line segmentation of
historical documents: a survey. International Journal of Document Analysis and
Recognition (IJDAR), 9 (2-4), 123–138.

Lopresti, D., & Kavallieratou, E. (2010). Ruling line removal in handwritten page
images. In Pattern Recognition (ICPR), 2010 20th International Conference on,
(pp. 2704–2707). IEEE.

Louloudis, G., Gatos, B., Pratikakis, I., & Halatsis, C. (2009). Text line and word
segmentation of handwritten documents. Pattern Recognition, 42 (12), 3169–3183.

Louradour, J., Bluche, T., Bianne-Bernard, A.-L., Menasri, F., & Kermorvant, C.
(2012). De l’usage des scores et des alternatives de reconnaissance pour la classifica-
tion d’images de documents manuscrits. In Colloque International Francophone sur
l’Ecrit et le Document (CIFED).

Maas, A. L., Hannun, A. Y., Jurafsky, D., & Ng, A. Y. (2014). First-Pass Large
Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs.
arXiv preprint arXiv:1408.2873 .

256 Bibliography

Madhvanath, S., & Govindaraju, V. (1996). Holistic lexicon reduction for handwritten
word recognition. In Electronic Imaging: Science & Technology, (pp. 224–234).
International Society for Optics and Photonics.

Madhvanath, S., & Krpasundar, V. (1997). Pruning large lexicons using generalized
word shape descriptors. In Document Analysis and Recognition, 1997., Proceedings
of the Fourth International Conference on, vol. 2, (pp. 552–555). IEEE.

Mao, S., Rosenfeld, A., & Kanungo, T. (2003). Document structure analysis algorithms:
a literature survey. In Electronic Imaging 2003 , (pp. 197–207). International Society
for Optics and Photonics.

Marti, U.-V., & Bunke, H. (2000). Handwritten sentence recognition. In Pattern
Recognition, 2000. Proceedings. 15th International Conference on, vol. 3, (pp. 463–
466). IEEE.

Marti, U.-V., & Bunke, H. (2001). Using a statistical language model to improve the
performance of an HMM-based cursive handwriting recognition system. International
journal of Pattern Recognition and Artificial intelligence, 15 (01), 65–90.

Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database
for offline handwriting recognition. International Journal on Document Analysis and
Recognition, 5 (1), 39–46.

Matan, O., Burges, C. J., LeCun, Y., & Denker, J. S. (1991). Multi-digit recognition
using a space displacement neural network. In NIPS , (pp. 488–495). Citeseer.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5 (4), 115–133.

Menasri, F., Louradour, J., Bianne-Bernard, A.-L., & Kermorvant, C. (2012). The
A2iA French handwriting recognition system at the Rimes-ICDAR2011 competition.
In Document Recognition and Retrieval Conference, vol. 8297.

Messina, R., & Kermorvant, C. (2014). Surgenerative Finite State Transducer n-gram
for Out-Of-Vocabulary Word Recognition. In 11th IAPR Workshop on Document
Analysis Systems (DAS2014), (pp. 212–216).

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Recurrent
Neural Network Based Language Model. In Eleventh Annual Conference of the
International Speech Communication Association.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., & Khudanpur, S. (2011). Exten-
sions of recurrent neural network language model. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, (pp. 5528–5531).
IEEE.

Mohamed, A.-r., Hinton, G., & Penn, G. (2012). Understanding how deep belief
networks perform acoustic modelling. In 37th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP2012), (pp. 4273–4276). IEEE.

Bibliography 257

Mohamed, M., & Gader, P. (1996). Handwritten word recognition using segmentation-
free hidden Markov modeling and segmentation-based dynamic programming tech-
niques. IEEE transactions on pattern analysis and machine intelligence, 18 (5), 548–
554.

Mohri, M. (1996). On some applications of finite-state automata theory to natural
language processing. Natural Language Engineering, 2 (01), 61–80.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Com-
putational linguistics, 23 (2), 269–311.

Mohri, M., Pereira, F., & Riley, M. (2002). Weighted finite-state transducers in speech
recognition. Computer Speech & Language, 16 (1), 69–88.

Mohri, M., Pereira, F., & Riley, M. (2008). Speech recognition with weighted finite-
state transducers. In Springer Handbook of Speech Processing, (pp. 559–584).
Springer.

Morillot, O., Likforman-Sulem, L., & Grosicki, E. (2013a). Comparative study of
HMM and BLSTM segmentation-free approaches for the recognition of handwritten
text-lines. In Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, (pp. 783–787). IEEE.

Morillot, O., Likforman-Sulem, L., & Grosicki, E. (2013b). New baseline correction
algorithm for text-line recognition with bidirectional recurrent neural networks. Jour-
nal of Electronic Imaging, 22 (2), 023028–023028.

Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. In AISTATS , vol. 5, (pp. 246–252). Citeseer.

Morita, M., El Yacoubi, A., Sabourin, R., Bortolozzi, F., & Suen, C. Y. (2001). Hand-
written month word recognition on Brazilian bank cheques. In Document Analysis
and Recognition, 2001. Proceedings. Sixth International Conference on, (pp. 972–
976). IEEE.

Moysset, B., Bluche, T., Knibbe, M., Benzeghiba, M. F., Messina, R., Louradour,
J., & Kermorvant, C. (2014). The A2iA Multi-lingual Text Recognition System at
the second Maurdor Evaluation. In 14th International Conference on Frontiers in
Handwriting Recognition (ICFHR2014), (pp. 297–302).

Natarajan, P., Lu, Z., Schwartz, R., Bazzi, I., & Makhoul, J. (2001). Multilingual
machine printed OCR. International Journal of Pattern Recognition and Artificial
Intelligence, 15 (01), 43–63.

Natarajan, P., Saleem, S., Prasad, R., MacRostie, E., & Subramanian, K. (2008).
Multi-lingual offline handwriting recognition using hidden Markov models: A script-
independent approach. In Arabic and Chinese Handwriting Recognition, (pp. 231–
250). Springer.

258 Bibliography

Ney, H., Essen, U., & Kneser, R. (1994). On structuring probabilistic dependences in
stochastic language modelling. Computer Speech & Language, 8 (1), 1–38.

Nion, T., Menasri, F., Louradour, J., Sibade, C., Retornaz, T., Métaireau, P.-Y., &
Kermorvant, C. (2013). Handwritten information extraction from historical census
documents. In Document Analysis and Recognition (ICDAR), 2013 12th Interna-
tional Conference on, (pp. 822–826). IEEE.

Normandin, Y. (1992). Hidden Markov models maximum mutual information estima-
tion and the speech recognition problem.

Olshausen, B. A., et al. (1996). Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381 (6583), 607–609.

Oprean, C., Likforman-Sulem, L., Popescu, A., & Mokbel, C. (2013). Using the Web to
create dynamic dictionaries in handwritten out-of-vocabulary word recognition. In
Document Analysis and Recognition (ICDAR), 2013 12th International Conference
on, (pp. 989–993). IEEE.

Otsu, N. (1979). A Threshold Selection Method from Grey-Level Histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9 (1), 62–66.

Papandreou, a., & Gatos, B. (2012). Word Slant Estimation Using Non-horizontal
Character Parts and Core-Region Information. 2012 10th IAPR International
Workshop on Document Analysis Systems, (pp. 307–311).
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

6195384

Paquet, T., & Lecourtier, Y. (1993). Automatic reading of the literal amount of bank
checks. Machine Vision and Applications, 6 (2-3), 151–162.

Parisse, C. (1996). Global word shape processing in off-line recognition of handwriting.
IEEE transactions on pattern analysis and machine intelligence, 18 (4), 460–464.

Park, H.-S., & Lee, S.-W. (1998). A truly 2-D hidden Markov model for off-line hand-
written character recognition. Pattern Recognition, 31 (12), 1849–1864.

Pastor, M., Toselli, A. H., & Vidal, E. (2004). Projection profile based algorithm
for slant removal. In Proceedings of the 2004 International Conference on Image
Analysis and Recognition (ICIAR04).

Pesch, H., Hamdani, M., Forster, J., & Ney, H. (2012). Analysis of Preprocessing
Techniques for Latin Handwriting Recognition. ICFHR, 12 , 18–20.

Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. (2014). Dropout improves
recurrent neural networks for handwriting recognition. In 14th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR2014), (pp. 285–290).

Bibliography 259

Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition:
a comprehensive survey. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 22 (1), 63–84.

Plötz, T., & Fink, G. A. (2009). Markov models for offline handwriting recognition:
a survey. International Journal on Document Analysis and Recognition (IJDAR),
12 (4), 269–298.

Poultney, C., Chopra, S., Cun, Y. L., et al. (2006). Efficient learning of sparse represen-
tations with an energy-based model. In Advances in neural information processing
systems, (pp. 1137–1144).

Povey, D. (2004). Discriminative training for large vocabulary speech recognition. Ph.D.
thesis, Ph. D. thesis, Cambridge University.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-
mann, M., Motlicek, P., Qian, Y., Schwarz, P., et al. (2011). The Kaldi speech
recognition toolkit. In Workshop on Automatic Speech Recognition and Understand-
ing (ASRU2011), (pp. 1–4).

Povey, D., Hannemann, M., Boulianne, G., Burget, L., Ghoshal, A., Janda, M.,
Karafiát, M., Kombrink, S., Motlicek, P., Qian, Y., et al. (2012). Generating ex-
act lattices in the WFST framework. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, (pp. 4213–4216). IEEE.

Rabiner, L., & Juang, B.-H. (1986). An introduction to hidden Markov models. ASSP
Magazine, IEEE , 3 (1), 4–16.

Rashid, S. F., Shafait, F., & Breuel, T. M. (2012). Scanning Neural Network for
Text Line Recognition. In Document Analysis Systems (DAS), 2012 10th IAPR
International Workshop on, (pp. 105–109). IEEE.

Renals, S., Morgan, N., Bourlard, H., Cohen, M., & Franco, H. (1994). Connectionist
probability estimators in HMM speech recognition. Speech and Audio Processing,
IEEE Transactions on, 2 (1), 161–174.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropa-
gation learning: The RPROP algorithm. In Neural Networks, 1993., IEEE Interna-
tional Conference on, (pp. 586–591). IEEE.

Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., & Glorot, X.
(2011a). Higher order contractive auto-encoder. In Machine Learning and Knowledge
Discovery in Databases, (pp. 645–660). Springer.

Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011b). Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), (pp. 833–840).

Robinson, A. J. (1994). An application of recurrent nets to phone probability estima-
tion. Neural Networks, IEEE Transactions on, 5 (2), 298–305.

260 Bibliography

Roeder, P. (2009). Adapting the rwth-ocr handwriting recognition system to french
handwriting. Ph.D. thesis, Master’s thesis, Human Language Technology and Pattern
Recognition Group, RWTH Aachen University, Aachen. Germany.

Romero, V., i Gadea, M. P., Toselli, A. H., & Vidal, E. (2006). Criteria for handwrit-
ten off-line text size normalization. In Procc. of The Sixth IASTED international
Conference on Visualization, Imaging, and Image Processing (VIIP 06).

Romero, V., Sánchez, J.-A., Serrano, N., & Vidal, E. (2011). Handwritten text recog-
nition for marriage register books. In Document Analysis and Recognition (ICDAR),
2011 International Conference on, (pp. 533–537). IEEE.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65 (6), 386.

Rosenfield, R. (2000). Two decades of statistical language modeling: Where do we go
from here?

Rothacker, L., Vajda, S., & Fink, G. A. (2012). Bag-of-Features Representations for
Offline Handwriting Recognition Applied to Arabic Script. In ICFHR, (pp. 149–154).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal repre-
sentations by error propagation. Tech. rep., DTIC Document.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations
by back-propagating errors. Cognitive modeling.

Sainath, T. N., Mohamed, A.-r., Kingsbury, B., & Ramabhadran, B. (2013). Deep
convolutional neural networks for LVCSR. In 38th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP2013), (pp. 8614–8618). IEEE.

Sánchez, J. A., Mühlberger, G., Gatos, B., Schofield, P., Depuydt, K., Davis, R. M.,
Vidal, E., & de Does, J. (2013). tranScriptorium: a european project on hand-
written text recognition. In Proceedings of the 2013 ACM symposium on Document
engineering, (pp. 227–228). ACM.

Sánchez, J. A., Romero, V., Toselli, A., & Vidal, E. (2014). ICFHR 2014 HTRtS: Hand-
written Text Recognition on tranScriptorium Datasets. In International Conference
on Frontiers in Handwriting Recognition (ICFHR).

Saul, L. K., & Jordan, M. I. (1990). Artificial Neural Networks. chap. Attractor
Dynamics and Parallelism in a Connectionist Sequential Machine, (pp. 112–127).
Piscataway, NJ, USA: IEEE Press.

Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern
recognition, 33 (2), 225–236.

Sayre, K. M. (1973). Machine recognition of handwritten words: A project report.
Pattern recognition, 5 (3), 213–228.

Bibliography 261

Schambach, M.-P. (2003). Model Length Adaptation of an HMM based Cursive Word
Recognition System. In ICDAR, vol. 3, (p. 109).

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on, 45 (11), 2673–2681.

Schwenk, H., & Gauvain, J.-L. (2002). Connectionist language modeling for large vo-
cabulary continuous speech recognition. In Acoustics, Speech, and Signal Processing
(ICASSP), 2002 IEEE International Conference on, vol. 1, (pp. I–765). IEEE.

Senior, A., & Robinson, T. (1996). Forward-backward retraining of recurrent neural
networks. Advances in Neural Information Processing Systems, (pp. 743–749).

Senior, A. W. (1994). Off-line Cursive Handwriting Recognition using Recurrent Neural
Networks. Ph.D. thesis, Trinity College, University of Cambridge.

Senior, A. W., & Robinson, A. J. (1998). An off-line cursive handwriting recognition
system. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20 (3),
309–321.

Shi, Z., & Govindaraju, V. (2003). Skew detection for complex document images using
fuzzy runlength. In 2013 12th International Conference on Document Analysis and
Recognition, vol. 2, (pp. 715–715). IEEE Computer Society.

Shi, Z., Setlur, S., & Govindaraju, V. (2010). Removing rule-lines from binary hand-
written arabic document images using directional local profile. In Pattern Recognition
(ICPR), 2010 20th International Conference on, (pp. 1916–1919). IEEE.

Srihari, S. N. (2000). Handwritten address interpretation: a task of many pattern
recognition problems. International journal of pattern recognition and artificial in-
telligence, 14 (05), 663–674.

Steinherz, T., Rivlin, E., & Intrator, N. (1999). Offline cursive script word recognition–a
survey. International Journal on Document Analysis and Recognition, 2 (2-3), 90–
110.

Stolcke, A. (2002). SRILM – An Extensible Language Modeling Toolkit. In Interna-
tional Conference on Spoken Language Processing.

Strauß, T., Grüning, T., Leifert, G., & Labahn, R. (2014). CITlab ARGUS for historical
handwritten documents.

Stutzmann, D., Bluche, T., Lavrentev, A., Leydier, Y., & Kermorvant, C. (2015).
From Text and Image to Historical Resource: Text-Image Alignment for Digital
Humanists. In Digital Humanities (DH) – to appear .

Su, H., Li, G., Yu, D., & Seide, F. (2013). Error back propagation for sequence training
of Context-Dependent Deep Networks for conversational speech transcription. In
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP2013), (pp. 6664–6668).

262 Bibliography

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., & Rabinovich, A. (2014). Going Deeper with Convolutions. CoRR,
abs/1409.4842 .
URL http://arxiv.org/abs/1409.4842

Tay, Y. H., Lallican, P.-M., Khalid, M., Knerr, S., & Viard-Gaudin, C. (2001). An
analytical handwritten word recognition system with word-level discriminant train-
ing. In Document Analysis and Recognition, 2001. Proceedings. Sixth International
Conference on, (pp. 726–730). IEEE.

Thomas, S., Chatelain, C., Paquet, T., & Heutte, L. (2013). Un modèle neuro
markovien profond pour l’extraction de séquences dans des documents manuscrits.
Document numérique, 16 (2), 49–68.

Tillmann, C., & Ney, H. (1996). Selection criteria for word trigger pairs in language
modeling. In Grammatical Interference: Learning Syntax from Sentences, (pp. 95–
106). Springer.

Tong, A., Przybocki, M., Maergner, V., & El Abed, H. (2014). NIST 2013 Open
Handwriting Recognition and Translation (OpenHaRT13) Evaluation. In 11th IAPR
Workshop on Document Analysis Systems (DAS2014).

Toselli, A. H., Juan, A., González, J., Salvador, I., Vidal, E., Casacuberta, F., Key-
sers, D., & Ney, H. (2004). Integrated handwriting recognition and interpretation
using finite-state models. International Journal of Pattern Recognition and Artificial
Intelligence, 18 (04), 519–539.

Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive
transcription of text images. Pattern Recognition, 43 (5), 1814–1825.

Uchida, S., Taira, E., & Sakoe, H. (2001). Nonuniform slant correction using dynamic
programming. In Document Analysis and Recognition, 2001. Proceedings. Sixth In-
ternational Conference on, (pp. 434–438). IEEE.

Veselý, K., Ghoshal, A., Burget, L., & Povey, D. (2013). Sequence-discriminative
training of deep neural networks. In 14th Annual Conference of the International
Speech Communication Association (INTERSPEECH2013), (pp. 2345–2349).

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, (pp. 1096–1103). ACM.

Vinciarelli, A. (2002). A survey on off-line cursive word recognition. Pattern recogni-
tion, 35 (7), 1433–1446.

Vinciarelli, A., & Bengio, S. (2002). Writer adaptation techniques in HMM based
off-line cursive script recognition. Pattern Recognition Letters, 23 (8), 905–916.

Bibliography 263

Vinciarelli, A., Bengio, S., & Bunke, H. (2004). Offline recognition of unconstrained
handwritten texts using HMMs and statistical language models. IEEE transactions
on Pattern Analysis and Machine Intelligence, 26 (6), 709–20.

Vinciarelli, A., & Luettin, J. (2001). A new normalisation technique for cursive hand-
written words. Pattern Recognition Letters, 22 , 1043–1050.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. Information Theory, IEEE Transactions on, 13 (2),
260–269.

Wager, S., Wang, S., & Liang, P. S. (2013). Dropout training as adaptive regularization.
In Advances in Neural Information Processing Systems, (pp. 351–359).

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme
recognition using time-delay neural networks. Acoustics, Speech and Signal Process-
ing, IEEE Transactions on, 37 (3), 328–339.

Wang, S., Uchida, S., & Liwicki, M. (2012). Part-based method on handwritten texts.
In Pattern Recognition (ICPR), 2012 21st International Conference on, (pp. 339–
342). IEEE.

Wei, X., VIARD-GAUDIN, C., & MOUCHERE, H. (2013). University De Nantes.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE , 78 (10), 1550–1560.

Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent
networks and their computational complexity. Back-propagation: Theory, architec-
tures and applications, (pp. 433–486).

Witten, I. H., & Bell, T. (1991). The zero-frequency problem: Estimating the prob-
abilities of novel events in adaptive text compression. Information Theory, IEEE
Transactions on, 37 (4), 1085–1094.

Wolf, C., Jolion, J., & Chassaing, F. (2002). Text localization enhancement and bina-
rization in multimedia documents. In Pattern Recognition, 2002. Proceedings. 16th
International Conference on, vol. 2, (pp. 1037–1040). IEEE.

Xu, H., Povey, D., Mangu, L., & Zhu, J. (2011). Minimum Bayes Risk decoding and
system combination based on a recursion for edit distance. Computer Speech &
Language, 25 (4), 802–828.

Yan, Y., Fanty, M., & Cole, R. (1997). Speech recognition using neural networks
with forward-backward probability generated targets. In Acoustics, Speech, and
Signal Processing, IEEE International Conference on, vol. 4, (pp. 3241–3241). IEEE
Computer Society.

264 Bibliography

You, D., & Kim, G. (2002). Slant correction of handwritten strings based on structural
properties of Korean characters. In Frontiers in Handwriting Recognition, 2002.
Proceedings. Eighth International Workshop on, (pp. 467–472). IEEE.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell,
J., Ollason, D., Povey, D., et al. (1997). The HTK book, vol. 2. Entropic Cambridge
Research Laboratory Cambridge.

Yu, D., Deng, L., Seide, F. T. B., & Li, G. (2011). Discriminative pretraining of deep
neural networks. US Patent App. 13/304,643.

Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regular-
ization. arXiv preprint arXiv:1409.2329 .

Zimmermann, M., & Bunke, H. (2002). Hidden Markov model length optimization
for handwriting recognition systems. In Frontiers in Handwriting Recognition, 2002.
Proceedings. Eighth International Workshop on, (pp. 369–374). IEEE.

Zimmermann, M., Chappelier, J., & Bunke, H. (2006). Offline grammar-based recog-
nition of handwritten sentences. IEEE transactions on pattern analysis and machine
intelligence, 28 (5), 818–821.

	Acknowledgements
	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	I HANDWRITING RECOGNITION — OVERVIEW
	Offline Handwriting Recognition – Overview of the Problem
	Introduction
	Preliminary Steps to Offline Handwriting Recognition
	Reducing Handwriting Variability with Image Processing Techniques
	Normalizing Contrast
	Normalizing Skew
	Normalizing Slant
	Normalizing Size

	Extraction of Relevant Features for Handwriting Recognition
	Text Segmentation for Feature Extraction
	Features for Handwriting Representation

	Modeling Handwriting
	Whole-Word Models
	Part-Based Methods
	Segmentation-Free Approach

	Modeling the Language to Constrain and Improve the Recognition
	Vocabulary
	Language Modeling
	Open-Vocabulary Approaches

	Measuring the Quality of the Recognition
	Conclusion

	Handwriting Recognition with Hidden Markov Models and Neural Networks
	Introduction
	Hidden Markov Models for Handwriting Recognition
	Definition
	Choice of Topology
	Choice of Emission Distribution
	Model Refinements
	Decoding

	Neural Networks for Handwriting Recognition
	The Multi-Layer Perceptron
	Recurrent Neural Networks
	Long Short-Term Memory Units
	Convolutional Neural Networks

	Handwriting Recognition Systems with Neural Networks
	The Hybrid NN/HMM scheme
	Predicting Characters
	NN Feature Extractors

	Training Models
	Training Hidden Markov Models with Generative Emission Models
	Training Neural Networks
	Training Deep Neural Networks
	Training Complete Handwriting Recognition Systems

	Conclusion

	II EXPERIMENTAL SETUP
	Databases and Software
	Introduction
	Databases of Handwritten Text
	Rimes
	IAM
	Bentham

	Software
	A Note about the Experimental Setup in the Next Chapters

	Baseline System
	Introduction
	Preprocessing and Feature Extraction
	Image Preprocessing
	Feature Extraction with Sliding Windows

	Language Models
	Corpus Preparation and Vocabulary Selection
	Language Models Estimation
	Recognition Output Normalization

	Decoding Method
	A GMM/HMM baseline system
	HMM topology selection
	GMM/HMM training
	Results

	Conclusion

	III DEEP NEURAL NETWORKS IN HIDDEN MARKOV MODEL SYSYEMS
	Hybrid Deep Multi-Layer Perceptrons / HMM for Handwriting Recognition
	Introduction
	Experimental Setup
	Study of the Influence of Input Context
	Alignments from GMM/HMM Systems
	Handcrafted Features
	Pixel Intensities

	Study of the Impact of Depth in MLPs
	Deep MLPs
	Deep vs Wide MLPs

	Study of the Benefits of Sequence-Discriminative Training
	Study of the Choice of Inputs
	Conclusion

	Hybrid Deep Recurrent Neural Networks / HMM for Handwriting Recognition
	Introduction
	Experimental Setup
	RNN Architecture Overview
	Decoding in the Hybrid NN/HMM Framework

	Study of the Influence of Input Context
	Including Context with Frame Concatenation
	Context through the Recurrent Connections

	Study of the Influence of Recurrence
	Study of the Impact of Depth in BLSTM-RNNs
	Deep BLSTM-RNNs
	Deep vs Wide BLSTM-RNNs
	Analysis

	Study of the Impact of Dropout
	Dropout after the Recurrent Layers
	Dropout at Different Positions
	Study of the Effect of Dropout in Complete Systems (with LM)

	Study of the Choice of Inputs
	Conclusion

	IV COMPARISON AND COMBINATION OF DEEP MLPs AND RNNs
	Experimental Comparison of Framewise and CTC Training
	Introduction
	Experimental Setup
	Relation between CTC and Forward-Backward Training of Hybrid NN/ HMMs
	Notations
	The Equations of Forward-Backward Training of Hybrid NN/ HMMs
	The Equations of CTC Training of RNNs
	Similarities between CTC and hybrid NN/HMM Training

	Topology and Blank
	CTC Training of MLPs
	Framewise vs CTC Training
	Interaction between CTC Training and the Blank Symbol
	Peaks
	Trying to avoid the Peaks of Predictions
	The advantages of prediction peaks

	CTC Training without Blanks
	The Role of the Blank Symbol
	Conclusion

	Experimental Results, Combinations and Discussion
	Introduction
	Summary of Results on Rimes and IAM Databases
	MLP/HMM Results
	RNN/HMM Results
	Comparison of MLP/HMM and RNN/HMM Results
	Combination of the Proposed Systems

	The Handwritten Text Recognition tranScriptorium (HTRtS) Challenge
	Presentation of the HTRtS Evaluation and of the Experimental Setup
	Systems Submitted to the Restricted Track
	Systems Submitted to the Unrestricted Track
	Post-Evaluation Improvements

	Conclusion

	Conclusions and Perspectives
	List of Publications
	Appendices
	Databases
	IAM
	Rimes (ICDAR 2011 setup)
	Bentham (HTRtS 2014 setup)

	Résumé Long
	Système de Base
	Systèmes Hybrides Perceptrons Multi-Couches Profonds / MMC
	Systèmes Hybrides Réseaux de Neurones Récurrents Profonds / MMC
	Une Comparaison Expérimentale de l'Entrai-nement CTC et au Niveau Trame
	Combinaisons et Résultats Finaux
	Conclusions et Perspectives

	Bibliography

