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Convolutional neural networks (CNNs) have been applied to visual tasks
since the late 1980s. However, despite a few scattered applications, they
were dormant until the mid-2000s when developments in computing
power and the advent of large amounts of labeled data, supplemented
by improved algorithms, contributed to their advancement and brought
them to the forefront of a neural network renaissance that has seen rapid
progression since 2012. In this review, which focuses on the application
of CNNs to image classification tasks, we cover their development, from
their predecessors up to recent state-of-the-art deep learning systems.
Along the way, we analyze (1) their early successes, (2) their role in the
deep learning renaissance, (3) selected symbolic works that have con-
tributed to their recent popularity, and (4) several improvement attempts
by reviewing contributions and challenges of over 300 publications. We
also introduce some of their current trends and remaining challenges.

1 Introduction

Image classification, which can be defined as the task of categorizing im-
ages into one of several predefined classes, is a fundamental problem in
computer vision. It forms the basis for other computer vision tasks such
as localization, detection, and segmentation (Karpathy, 2016). Although the
task can be considered second nature for humans, it is much more chal-
lenging for an automated system. Some of the complications encountered
include viewpoint-dependent object variability and the high in-class vari-
ability of having many object types (Ciresan, Meier, Masci, Gambardella, &
Schmidhuber, 2011). Traditionally, a dual-stage approach was used to solve
the classification problem. Handcrafted features were first extracted from
images using feature descriptors, and these served as input to a trainable
classifier. The major hindrance of this approach was that the accuracy of the
classification task was profoundly dependent on the design of the feature
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extraction stage, and this usually proved to be a formidable task (LeCun,
Bottou, Bengio, & Haffner, 1998).

In recent years, deep learning models that exploit multiple layers of
nonlinear information processing, for feature extraction and transforma-
tion as well as for pattern analysis and classification, have been shown to
overcome these challenges. Among them, CNNs (LeCun, Boser, Denker,
Henderson, Hubbard, & Jackel, 1989a, 1989b) have become the leading ar-
chitecture for most image recognition, classification, and detection tasks
(LeCun, Bengio, & Hinton, 2015). Despite some early successes (LeCun
et al., 1989a, 1989b; LeCun et al. 1998; Simard, Steinkraus, & Platt 2003),
deep CNNs (DCNNs) were brought into the limelight as a result of the deep
learning renaissance (Hinton, Osindero, & Teh, 2006; Hinton & Salakhutdi-
nov, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2006), which was fueled
by GPUs, larger data sets, and better algorithms (Krizhevsky, Sutskever, &
Hinton, 2012; Deng & Yu, 2014; Simonyan & Zisserman, 2014; Zeiler & Fer-
gus, 2014). Several advances such as the first GPU implementation (Chel-
lapilla, Puri, & Simard, 2006) and the first application of maximum pooling
(max pooling) for DCNNs (Ranzato, Huang, Boureau, & LeCun, 2007) have
all contributed to their recent popularity.

The most significant advance, which has captured intense interest in
DCNN, especially for image classification tasks, was achieved in the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Rus-
sakovsky et al., 2015), when the winning entry, by Krizhevsky et al. (2012),
used a DCNN to classify approximately 1.2 million images into 1000 classes,
with record-breaking results. Since then, DCNNs have dominated subse-
quent versions of the ILSVRC and, more specifically, its image classification
component (Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy,
Liu, et al., 2015).

In addition, selected representative examples of other improvement at-
tempts related to the following different aspects of DCNNs—(1) network
architecture (Lin, Chen, & Yan, 2013; Zeiler & Fergus, 2013; Gong, Wang,
Guo, & Lazebnik, 2014; Szegedy, Vanhoucke, loffe, Shlens, & Wojna, 2015);
(2) nonlinear activation functions (He, Zhang, Ren, & Sun, 2015a; Xu, Wang,
Chen, & Li, 2015); (3) supervision components (Tang, 2013; Zhao & Grif-
fin, 2016); (4) regularization mechanisms (Hinton, Srivastava, Krizhevsky,
Sutskever, & Salakhutdinov, 2012; Zeiler & Fergus, 2013); and (5) optimiza-
tion techniques (Glorot & Bengio, 2010; Krizhevsky et al., 2012)—have also
been implemented in recent years. Moreover, some of their open challenges,
like their variance to geometric distortions (Gong, Wang, et al., 2014), the
fact that their models are often large and slow to compute (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014), and the intriguing discovery of adver-
sarial examples (Szegedy et al., 2014), have led to even more research focus-
ing on image classification with DCNNs.

Previously, several generic deep learning reviews (Bengio, 2009; Schmid-
huber, 2015; Deng, 2014; LeCun et al., 2015), reviews that deal with deep
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learning for visual understanding (Guo et al., 2016), reviews covering re-
cent advances in CNNs (Gu et al., 2015), and a taxonomy of DCNNs for
computer vision tasks (Srinivas et al., 2016) have been published. However,
given the surge in the popularity of DCNNSs for image classification tasks
and the subsequent plethora of related papers, we feel the time is right to re-
view them for this specific and momentous problem. With this in mind, this
review is intended for those who want to understand the development of
CNN technology and architecture, specifically for image classification, from
their predecessors up to modern state-of-the-art deep learning systems. It
also asserts brief insights into their future and provides several interesting
imminent directions making it suitable for researchers in the field.

The remainder of this review is organized as follows: Section 2 briefly
introduces CNNs and acquaints readers with the key building blocks of
their architecture. Section 3 covers the early development of CNNs. Among
other highlights, it briefly touches on the first applications of backpropaga-
tion and max pooling, as well as the introduction of the famous MNIST
data set (LeCun et al., 1998). In section 4, we deal with the role of DC-
NNs in the deep learning renaissance, and this is followed by discussions
on selected representative works that have contributed to their popularity
for image classification tasks. Section 5 deals with several DCNN improve-
ment attempts in various aspects, including network architecture, nonlinear
activation functions, supervision components, regularization mechanisms,
optimization techniques, and computational cost developments. Section 6
concludes the review by introducing some of the remaining challenges and
current trends.

2 Overview of CNN architecture

CNNs are feedforward networks in that information flow takes place in
one direction only, from their inputs to their outputs. Just as artificial neu-
ral networks (ANN) are biologically inspired, so are CNNs. The visual cor-
tex in the brain, which consists of alternating layers of simple and complex
cells (Hubel & Wiesel, 1959, 1962), motivates their architecture. CNN ar-
chitectures come in several variations; however, in general, they consist
of convolutional and pooling (or subsampling) layers, which are grouped
into modules. Either one or more fully connected layers, as in a standard
feedforward neural network, follow these modules. Modules are often
stacked on top of each other to form a deep model. Figure 1 illustrates typ-
ical CNN architecture for a toy image classification task. An image is input
directly to the network, and this is followed by several stages of convolu-
tion and pooling. Thereafter, representations from these operations feed one
or more fully connected layers. Finally, the last fully connected layer out-
puts the class label. Despite this being the most popular base architecture
found in the literature, several architecture changes have been proposed in
recent years with the objective of improving image classification accuracy or
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Figure 1: CNN image classification pipeline.

reducing computation costs. Although for the remainder of this section, we
merely fleetingly introduce standard CNN architecture, in section 5 we deal
with several architectural design changes that have facilitated enhanced im-
age classification performance.

2.1 Convolutional Layers. The convolutional layers serve as feature
extractors, and thus they learn the feature representations of their input
images. The neurons in the convolutional layers are arranged into feature
maps. Each neuron in a feature map has a receptive field, which is con-
nected to a neighborhood of neurons in the previous layer via a set of train-
able weights, sometimes referred to as a filter bank (LeCun et al., 2015).
Inputs are convolved with the learned weights in order to compute a new
feature map, and the convolved results are sent through a nonlinear acti-
vation function. All neurons within a feature map have weights that are
constrained to be equal; however, different feature maps within the same
convolutional layer have different weights so that several features can be
extracted at each location (LeCun et al., 1998; LeCun et al., 2015). More for-
mally, the kth output feature map Y} can be computed as

Ye = f(We %) (2.1)

where the input image is denoted by x; the convolutional filter related to
the kth feature map is denoted by W;; the multiplication sign in this con-
text refers to the 2D convolutional operator, which is used to calculate the
inner product of the filter model at each location of the input image; and
f(-) represents the nonlinear activation function (Yu, Wang, Chen, & Wei,
2014). Nonlinear activation functions allow for the extraction of nonlinear
features. Traditionally, the sigmoid and hyperbolic tangent functions were
used; recently, rectified linear units (ReLUs; Nair & Hinton, 2010) have
become popular (LeCun et al., 2015). Their popularity and success have
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opened up an area of research that focuses on the development and ap-
plication of novel DCNN activation functions to improve several charac-
teristics of DCNN performance. Thus, in section 5.2, we formally introduce
the ReLU and discuss the motivations that led to their development, before
elaborating on the performance of several rectification-based and alterna-
tive activation functions.

2.2 Pooling Layers. The purpose of the pooling layers is to reduce the
spatial resolution of the feature maps and thus achieve spatial invariance to
input distortions and translations (LeCun et al., 1989a, 1989b; LeCun et al.,
1998, 2015; Ranzato et al., 2007). Initially, it was common practice to use av-
erage pooling aggregation layers to propagate the average of all the input
values, of a small neighborhood of an image to the next layer (LeCun et al.,
1989a, 1989b; LeCun et al., 1998). However, in more recent models (Ciresan
et al., 2011; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Zeiler &
Fergus, 2014; Szegedy, Liu, et al., 2015; Xu et al., 2015), max pooling aggre-
gation layers propagate the maximum value within a receptive field to the
next layer (Ranzato et al., 2007). Formally, max pooling selects the largest
element within each receptive field such that

Yk{]‘ = maXx kaq, (22)
(p.q)eN;;

where the output of the pooling operation, associated with the kth feature
map, is denoted by Y, xkp; denotes the element at location (p, q) contained
by the pooling region %;;, which embodies a receptive field around the po-
sition (7, j) (Yu et al., 2014). Figure 2 illustrates the difference between max
pooling and average pooling. Given an input image of size 4 x 4,ifa 2 x 2
filter and stride of two is applied, max pooling outputs the maximum value
of each 2 x 2 region, while average pooling outputs the average rounded
integer value of each subsampled region. While the motivations behind the
migration toward max pooling are addressed in section 4.2.3, there are also
several concerns with max pooling, which have led to the development of
other pooling schemes. These are introduced in section 5.1.2.

2.3 Fully Connected Layers. Several convolutional and pooling layers
are usually stacked on top of each other to extract more abstract feature
representations in moving through the network. The fully connected layers
that follow these layers interpret these feature representations and perform
the function of high-level reasoning (Hinton et al., 2012; Simonyan & Zisser-
man, 2014; Zeiler & Fergus, 2014). For classification problems, it is standard
to use the softmax operator (see sections 5.3.1 and 5.3.5) on top of a DCNN
(Krizhevsky et al.,, 2012; Lin et al.,, 2013; Simonyan & Zisserman, 2014;
Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015; Xu et al., 2015). While early
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Figure 2: Average versus max pooling.

success was enjoyed by using radial basis functions (RBFs), as the classifier
on top of the convolutional towers (LeCun et al., 1998), Tang (2013) found
that replacing the softmax operator with a support vector machine (SVM)
leads to improved classification accuracy (see section 5.3.4 for further de-
tails). Moreover, given that computation in the fully connected layers is
often challenged by their compute-to-data ratio, a global average-pooling
layer (see section 5.1.1.1 for further details), which feeds into a simple lin-
ear classifier, can be used as an alternative (Lin et al. 2013). Notwithstanding
these attempts, comparing the performance of different classifiers on top of
DCNNEs still requires further investigation and thus makes for an interest-
ing research direction (see section 6 for other intrinsic DCNN trends).

2.4 Training. CNNs, and ANNSs in general use learning algorithms to
adjust their free parameters (i.e., the biases and weights) in order to at-
tain the desired network output. The most common algorithm used for
this purpose is backpropagation (LeCun, 1989; LeCun et al., 1998; Bengio,
2009; Deng & Yu, 2014; Deng, 2014; Srinivas et al., 2016). Backpropaga-
tion computes the gradient of an objective (also referred to as a cost/loss/
performance) function to determine how to adjust a network’s parameters
in order to minimize errors that affect performance. A commonly experi-
enced problem with training CNNs, and in particular DCNNs, is overfit-
ting, which is poor performance on a held-out test set after the network is
trained on a small or even large training set. This affects the model’s ability
to generalize on unseen data and is a major challenge for DCNNs that can
be assuaged by regularization, which is surveyed in section 5.4.
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2.5 Discussion. This section briefly highlighted some of the fundamen-
tal aspects related to the basic building blocks of CNNs. Further detailed
explanations on the convolution function and its variants and the con-
volutional and pooling layers, can be found in Goodfellow, Bengio, and
Courville (2016). Furthermore, for convolutional and pooling arithmetic,
reader’s are referred to Dumoulin and Visin (2016). Detailed explanations
on the backpropagtion algorithm and general training protocols for deep
neural networks (DNNSs) are available in LeCun et al. (1998) and Goodfel-
low et al. (2016), while LeCun et al. (2015) provides a concise summary of
the algorithm and supervised learning (one of the major machine learn-
ing paradigms, together with unsupervised and reinforcement learning)
in general. A brief history on the development of this popular algorithm,
specifically for CNNSs, is provided in section 3.2. Finally, some of the DCNN
theoretical considerations, many of which are concisely summarized by
Koushik (2016), are introduced in section 6.1.

3 Early CNN Development

In this section, we cover the early developments and significant advance-
ments of CNNs, from their predecessors up to successful applications prior
to the deep learning renaissance (Hinton et al., 2006; Hinton & Salakhutdi-
nov, 2006; Bengio, Lamblin, Popovici, & Larochelle, 2006).

3.1 CNN Predecessors Inspired by Neuroscience. Biology has inspired
several artificial intelligence techniques such as ANNSs, evolutionary algo-
rithms, and cellular automata (Floreano & Mattiussi, 2008). However, per-
haps the greatest success story among them are CNNs (Goodfellow et al.,
2016). Their history began with the neurobiological experiments conducted
by Hubel and Wiesel (1959, 1962) from as early as 1959. The main contribu-
tion of their work was the discovery that neurons in different stages of the
visual system, responded strongly to specific stimulus patterns while ignor-
ing others. More specifically, they found that neurons in the early stages of
the primary visual cortex responded strongly to precisely oriented patterns
of light, such as bars, but ignored more complex patterns of the input stimu-
lus that resulted in strong responses from neurons in later stages. They also
found that the visual cortex consisted of simple cells, which had local recep-
tive fields, and complex cells, which were invariant to shifted or distorted
inputs, arranged in a hierarchical fashion. These works provided the early
inspiration to model our automated vision systems based on characteristics
of the central nervous system.

In 1979, a novel multilayered neural network model, nicknamed the
neocognitron, was proposed (Fukushima, 1979). Modeled based on the
findings of Hubel and Wiesel (1959, 1962), it also consisted of simple and
complex cells, cascaded together in a hierarchical manner. With this archi-
tecture, the network proved successful at recognizing simple input patterns
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irrespective of a shift in the position or considerable distortion in the shape
of the input pattern (Fukushima, 1980; Fukushima & Miyake, 1982). Sig-
nificantly, the neocognitron laid the groundwork for the development of
CNN:s. In fact, CNNs were derived from the neocognitron, and hence they
have a similar architecture (LeCun et al., 2015).

3.2 Brief History of Backpropagation and the First Application to
CNNs. Backpropagation was derived in the 1960s. In particular, S. E. Drey-
fus (1962) derived a simplified version of the algorithm that used the chain
rule alone. Nevertheless, the early versions of backpropagation were inef-
ficient since they backpropagated derivative information from one layer
to the preceding layer without openly addressing direct links across lay-
ers. Furthermore, they did not consider potential efficiency gains due to
network sparseness (Schmidhuber, 2015). The modern efficient form of the
algorithm that addressed these issues was derived in 1970 (Linnainmaa,
1970); however, there was no mention of its use for ANNs. Preliminary
discussions for its use for ANNs date back to 1974 (Werbos, 1974); how-
ever, the first known application of efficient backpropagation, specifically
for ANNSs, was described in 1981 (Werbos, 1982), but this remained rela-
tively unknown. Nevertheless, it was “significantly popularized” (Schmid-
huber, 2015) due to a seminal paper in 1986 by D. E. Rumelhart et al. (1986),
which demonstrated that by using the backpropagation learning algorithm,
the internal hidden neurons of an ANN could be trained to represent im-
portant features of the task domain.

In 1989, LeCun et al. (1989a, 1989b) proposed the first multilayered
CNNs and successfully applied these large-scale networks, to real (hand-
written digits and zip codes) image classification problems. These ini-
tial CNNs were reminiscent of the neocognitron (Fukushima, 1979, 1980;
Fukushima & Miyake, 1982). However, the key difference was that they
were trained in a fully supervised fashion using backpropagation, which
was in contrast to the unsupervised reinforcement scheme used by their
predecessor. This allowed them to rely more profoundly on automatic
learning rather than hand-designed preprocessing for feature extraction
(LeCun et al., 1989a, 1989b; LeCun, 1989), which previously proved to be
extremely challenging; hence, they form an essential component of many
recent competition-winning DCNNs (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015).

3.3 Introduction of the MNIST Data Set. In 1998, the CNNs described
earlier (LeCun et al., 1989a, 1989b), were improved on and used for the
task of individual character classification in a document recognition appli-
cation. This work was published in a detailed seminal paper (LeCun et al.,
1998) that highlighted the main advantages of CNNs when compared to
traditional ANNSs: they require fewer free parameters (because of weight
sharing), and they consider the spatial topology of the input data, thereby
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Figure 3: Architecture of LeNet-5 (LeCun et al., 1998).

allowing them to deal with the variability of 2D shapes. In addition to the
proposed CNNs, LeCun et al. (1998) introduced the popular Modified Na-
tional Institute of Standards and Technology (MNIST) data set of 70,000
handwritten digits, which has since been used extensively for several com-
puter vision tasks and, in particular, for image classification and recognition
problems. Figure 3 illustrates the architecture of the CNN, called LeNet-5,
proposed by LeCun et al. (1998). The diagram clearly illustrates the design
of LeNet-5, which consists of alternating convolutional and subsampling
layers, followed by a single fully connected layer.

3.4 Early CNN Successes Despite Perceived Issues with Gradient De-
scent. Inthelate 1990s and early 2000s, neural network research had dimin-
ished (Simard et al., 2003; LeCun et al., 2015). It was little used for machine
learning tasks, and computer vision and speech recognition tasks over-
looked them. It was widely believed that learning useful multistage feature
extractors, with little prior knowledge, was infeasible due to issues with
the popular optimization algorithm, gradient descent. Specifically, it was
thought that basic gradient descent would not recover from poor weight
configurations that inhibited the reduction of the average backpropagated
error, a phenomenon known as poor local minima (LeCun et al., 2015). In
contrast, other statistical methods and, in particular, SVMs, became popular
due to their successes (Decoste & Schélkopf, 2002). Contrary to this trend, a
CNN was proposed for the application of visual document analysis in 2003
(Simard et al., 2003).

At a time when CNNs were not popular in the engineering community,
Simard et al. (2003) were able to achieve the best-known classification re-
sult on the MNIST data set (LeCun et al., 1998), improving on the previous
best results obtained by the SVMs of Decoste and Scholkopf (2002). Cit-
ing the advantages that were mentioned by LeCun et al. (1998), utilizing
CNNs for visual tasks, they expanded the size and quality of the MNIST
data set and proposed the use of simple software loops for the convolu-
tional operation. These loops exploited the property of backpropagation
that allows an ANN to be expressed in a modular fashion, and this allowed
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for modular software debugging. Although LeCun et al. (1998) had already
hypostasized and proved that by increasing the size of the data set, using ar-
tificially generated affine transformations, the network’s performance will
improve, Simard et al. (2003) improved the quality of the increased por-
tion of the data set to further improve performance. This was accomplished
by using elastic image deformations. This work formed part of a series of
several optical character recognition applications that used CNNs. In par-
ticular, Microsoft used them for English handwritten digits (Simard et al.,
2003; Chellapilla, Shilman, & Simard, 2006), Arabic handwriting recogni-
tion (Abdulkader, 2006) and East Asian handwritten character recognition
(Chellapilla & Simard, 2006). Thus, these applications, together with the
work described by LeCun et al. (1989a, 1989b, 1998), represent some of the
early image classification successes enjoyed by CNNs. The background to
the next section highlights several other successes.

4 The Deep Learning Renaissance and the Rise of DCNNs

This section briefly introduces the deep learning renaissance and focuses on
the significant contributions of DCNNSs to the current surge in deep learning
research. It also covers a seminal paper and several representative works
that have led to their recent ascendancy over other image classification
techniques.

4.1 Background to the Deep Learning Renaissance. The first feedfor-
ward multilayered neural networks were trained in 1965 (Ivakhnenko &
Lapa, 1966), and although they did not use backpropagation, they were per-
haps the first deep learning systems (Schmidhuber, 2015). Although deep
learning-like algorithms have a long history, the term deep learning became a
catchphrase around 2006, when deep belief networks (DBNs) and autoen-
coders trained in an unsupervised fashion were used to initialize DNNs,
trained using backpropagation (Hinton et al., 2006; Hinton & Salakhut-
dinov, 2006; Bengio et al., 2006). Prior to this, it was taught that deep
multilayered networks (including DCNNs) were too hard to train due to
issues with gradient descent and thus were not popular (Bengio et al., 2006;
Bengio, 2009; Deng & Yu, 2014; Schmidhuber, 2015; Goodfellow et al., 2016).
Conversely, CNNs were a notable exception and proved easier to train
when compared to fully connected networks (Simard et al., 2003, Bengio,
2009; LeCun et al., 2015; Goodfellow et al., 2016). In addition to the suc-
cesses discussed in section 3.3, some of the other successful applications that
incorporated CNNs for their image classification component prior to the
resurgence of neural networks in 2006 include medical image segmentation
(Ning et al., 2005); facial recognition, detection, and verification (Lawrence,
Giles, Tsoi, & Back, 1997; Garcia & Delakis, 2002; Chopra, Hadsell, & Le-
Cun, 2005); off-road obstacle avoidance (Muller, Ben, Cosatto, Flepp, &
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LeCun, 2005); and generic object classification (LeCun, Huang, & Bottou,
2004; Huang & LeCun, 2006).

However, since neural network research had slowed in the late 1990s and
early 2000s (Simard et al., 2003; LeCun et al., 2015), CNN development was
also hindered, but it revived around 2006. Using an energy-based model to
extract sparse features, which has several applications that include classi-
fication and segmentation, and then using the resultant output to initialize
the first layer of a DCNN, Ranzato, Poultney, Chopra, and LeCun (2006)
slightly improved the previous best-reported classification result (Simard
et al., 2003) on the MNIST data set (LeCun et al., 1998). Citing Hinton et al.
(2006), their DCNN model, which had a similar architecture to that of Le-
Cun et al. (1998) but used a considerably larger number of feature maps
to produce sparse features, was pretrained in an unsupervised fashion and
consisted of three essential components. An encoder interrogated the in-
put image and computed a code vector of the image, which was then trans-
formed into a sparse code vector by a nonlinear-sparsifying logistic module.
A decoder that computed a restored version of the input image deciphered
the sparse code vector, and its output was used to initialize the first-layer
weights of the CNN. This work was the first to use DCNNSs initialized by
unsupervised training techniques during the period of the deep learning
renaissance and led to several other unsupervised pretraining attempts be-
tween 2006 and 2011, as the next section shows.

4.2 The Deep Learning Renaissance Fueled by GPUs and Improved
Algorithms.

4.2.1 Unsupervised Pretraining. Inspired by the speed and accuracy
advantages of unsupervised pretraining (Hinton et al., 2006; Hinton &
Salakhutdinov, 2006; Bengio et al., 2006; Ranzato et al., 2006), Ranzato et al.
(2007) used a DCNN-like architecture trained in an unsupervised manner to
learn hierarchical sparse features that were locally invariant to small shifts
and distortions. Their approach, which introduced max pooling (see sec-
tions 2.2 and 4.2.3), achieved results very close to the state-of-the-art for
the MNIST (LeCun et al., 1998; Ranzato et al., 2006) and the California
Institute of Technology (CALTECH-101—Fei-Fei, Fergus, & Perona, 2006;
Zhang, Berg, Maire, & Malik, 2006) benchmarks. Despite this early success,
DCNN:s are still not immune to large-scale shifts and distortions; this is still
an open area of research (see section 6.2).

Asserting that the pretraining methods that Hinton et al. (2006), Ben-
gio et al. (2006), and Ranzato et al. (2007), used were complicated and
restricted, Weston, Ratle, Mobahi, and Collobert (2008) presented a sim-
pler way to perform deep learning by fusing nonlinear embedding algo-
rithms with deep multilayered architectures (including DCNNS), trained in
a supervised fashion. The resulting semisupervised deep learning scheme
was inspired by the Laplacian SVMs presented by Belkin, Niyogi, and
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Sindhwani (2006) and brought about competitive error rates on the MNIST
data set (LeCun et al., 1998), when compared to other shallow semisuper-
vised techniques (Belkin, Niyogi, & Sindhwani, 2006; Collobert, Sinz, We-
ston, & Bottou, 2006) and the existing deep learning approaches of the time
(Hinton et al., 2006; Ranzato et al., 2007; Salakhutdinov & Hinton, 2007).
Figure 4 shows how the embedding algorithms were added to regularize
either the entire network output, the hidden layers, or an auxiliary network
that had the same initial layers of the original network but a new final set
of weights. In the figure, the broken red lines illustrate the point at which
the embedding algorithms were incorporated.

Along the lines of unsupervised DCNN pretraining (Ranzato et al., 2006,
2007) and semi-supervised embedding (Weston et al., 2008), Ahmed, Yu,
Xu, Gong, and Xing (2008) first performed a set of pseudo-tasks on data
in an unsupervised fashion and then transferred the resultant knowledge
to DCNNSs via transfer learning. All the layers of the DCNN, including the
final classification layer, were trained with backpropagation. Their results
inferred that knowledge transfer followed by supervised training improved
DCNN performance and could be applied to a range of visual tasks, includ-
ing object, gender, and ethnicity recognition. Further details are available in
the original paper (Ahmed et al., 2008); an overview on the different forms
of knowledge transfer and some of its early successes is provided by Fei-
Fei (2006). Recently, the features extracted by DCNNs have been shown to
provide an astounding baseline for various computer vision tasks, includ-
ing scene recognition, fine-grained recognition, attribute detection, image
retrieval, and, most significant, image classification (Razavian, Azizpour,
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Sullivan, & Sarlsson, 2014). The obvious advantage for computer vision sys-
tems that use knowledge transferred from DCNNSs is that their exorbitant
training times can be eliminated, thus reducing the development and de-
ployment times of such schemes.

A detailed study that investigated the effect of the nonlinearities that
follow convolutional filters in DCNNSs; the performance of supervised, un-
supervised, and randomly learned convolutional filters; and the advan-
tages (if any) of using two stages of feature extraction compared to one
was undertaken by Jarrett, Kavukcuoglu, and LeCun (2009), and LeCun,
Kavukcuoglu, and Farabet (2010). They found that nonlinearities that com-
prise rectification and local contrast normalization were key to good accu-
racy on the MNIST (LeCun et al., 1998), CALTECH-101 (Fei-Fei et al., 2006),
and NYU Object Recognition Benchmark (NORB—LeCun et al., 2004) data
sets, and that better classification accuracy was obtained from two stages
of feature extraction rather than one. In particular, they set a new record
on the unmodified MNIST data set, improving on the previous best perfor-
mance (Ranzato et al., 2006) by following unsupervised pretraining, using a
method called predicative sparse decomposition (PSD; Kavukcuoglu, Ran-
zato, & LeCun, 2010), with supervised reinforcement. The PSD technique,
like the work proposed by Ranzato et al. (2006), is based on an encoder-
decoder architecture that enforces sparse constraints on the feature vec-
tor by utilizing a basic feedforward regressor that is trained to estimate a
sparse solution for all the vectorized patches or their stacks in a prescribed
training set. Although sparse coding algorithms are generally computation-
ally exorbitant, since the PSD technique approximates the sparse codes, it is
computationally cheaper, making it very fast relative to other sparse coding
schemes.

Unsupervised (including semisupervised) pretraining, followed by su-
pervised refinement, discussed in this section, was made popular by the
deep belief networks proposed at the rise of the deep learning renaissance
(Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Bengio et al., 2006). The
most common unsupervised schemes used contrastive divergence (Hin-
ton, 2002) methods (see Lee, Grosse, Ranganath, & Ng, 2009), sparse con-
straints (Ranzato et al., 2006, 2007), or PSD (Kavukcuoglu et al., 2010;
LeCun et al., 2010). In general, for these techniques, the feature extraction
filters are trained such that representations at a particular stage can be re-
constructed from representations of a preceding stage. The major hindrance
of this approach is that the feature learning process is independent of the
task, although Bengio et al. (2006), Mairal, Bach, Ponce, Sapiro, and Zisser-
man (2008), and Ranzato and Szummer (2008) attempted to alleviate this
by assimilating supervised criteria with unsupervised techniques.

Furthermore, despite the initial promising results obtained from unsu-
pervised pretraining (see Erhan et al., 2010, for a detailed analysis), in recent
years, supervised learning has become the leading paradigm for train-
ing DCNNs (see section 5.3). However, semisupervised learning is more
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biologically plausible. For example, consider how children learn about their
environments or, more specifically, how they learn to recognize or classify
objects. They are usually supplied a few examples by their caregivers, anal-
ogous to semi- or weakly supervised learning, and they use this to general-
ize on unseen objects. Thus, to align our current heavily supervised models
closer to nature, it is envisaged that future DCNNs will go back to using
semisupervised schemes, similar to those introduced in this section. These
schemes will incorporate, at least initially, supervised criteria to overcome
the known issues with their unsupervised counterparts. Such progress will
eventually lead to independent, unsupervised systems to tackle the increas-
ingly immense expanses of unannotated data currently available (see sec-
tion 6.6 for further insight).

4.2.2 GPUs Stimulate Research into DCNNs. Even though the deep learn-
ing algorithms that work currently have been available since the 1980s
(LeCun et al., 1989a, 1989b), they were taught to be too computationally ex-
pensive to allow a great deal of research on the hardware available prior
to 2006 (Goodfellow et al., 2016). Furthermore, during program execu-
tion, convolution operations are computationally costly and thus make DC-
NNs significantly slower to evaluate when compared to standard ANNs
of the same magnitude. To overcome these constraints, Chellapilla, Puri,
and Simard (2006) proposed three novel methods to speed up DCNNs: un-
rolling convolution, using basic linear algebra software subroutines, and us-
ing GPUs. Although GPUs had already been applied to ANNs (Oh & Jung,
2004; Steinkrau, Simard, & Buck, 2005), this work was significant since it
was the first implementation of a DCNN using GPUs. Over time, this has
become a momentous facet of most award-winning or state-of-the-art DC-
NNs (Ciresan et al., 2011; Krizhevsky et al., 2012; Hinton et al., 2012; Zeiler
& Fergus, 2013, 2014; Simonyan & Zisserman, 2014; Szegedy et al., 2015; He
etal.,, 2015a). Although the development of enhanced hardware to facilitate
DCNN computation is still an open area of research, it has become largely
commercialized in recent years. With this trend, much of the academic fo-
cus has been on either the application of this commercially available hard-
ware or algorithmic development to aid swifter processing. Although this
is not envisaged to change in the near future, there is an expectation that
imminent hardware and software advances will focus on the deployment
of DCNNs to mobile devices (see section 6.3).

4.2.3 Max Pooling Leads to Improved Generalization. In 2007, backpropa-
gation was applied for the first time to a DCNN-like architecture that used
max pooling (Ranzato et al., 2007). In 2010, Scherer, Miiller, and Behnke
(2010) showed empirically that the max pooling operation was vastly supe-
rior for capturing invariance in image-like data and could lead to improved
generalization and faster convergence when compared to a subsampling
operation. They demonstrated this by achieving the best published results
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on the normalized-uniform NORB data set (LeCun et al., 2004), improving
on the previous best (Nair & Hinton, 2009) by over a half percent. Contin-
uing with the empirical work, Jarrett et al. (2009) showed that max pool-
ing alleviated the need for a rectification layer, which is not usually part
of DCNN architecture; however, they found that average pooling does not
enjoy the same benefit and thus suffers from cancellation effects between
neighboring filter outputs.

A detailed theoretical analysis of max pooling and average pooling, sup-
plemented by empirical evaluations, was conducted by Boureau, Ponce,
and LeCun (2010). They concluded that the performance of either max or
average pooling was dependant on the data and its features, and that for a
given classification problem, using either pooling strategy alone may not
be optimal. Since max pooling was designed only for feedforward net-
works, Lee, Gross, Ranganath, and Ng (2009) introduced and applied prob-
abilistic max pooling to convolutional DBNs with the aim of scaling DBNs
(Hinton et al., 2006) to full-sized, high-dimensional images. Their resultant
translation invariant hierarchical generative model performed well on sev-
eral classification benchmarks, including MNIST (LeCun et al., 1998) and
CALTECH-101 (Fei-Fei et al., 2006). Although it is well known that max
pooling leads to a certain degree of invariance to distortions and transla-
tions, it accomplishes this by discarding spatial information (Ranzato et al.,
2007; Scherer et al., 2010; Szegedy, Liu, et al., 2015). Despite this, it contin-
ues to be a key component of several state-of-the-art DCNNs (Ciresan et al.,
2011; Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy, Liu,
et al., 2015). For some of the issues associated with max and average pool-
ing and their proposed solutions, refer to section 5.1.2.

4.3 The Changing Point in the Application of DCNNs for Computer
Vision Tasks. The deep learning renaissance of 2006 (Hinton et al., 2006;
Hinton & Salakhutdinov, 2006; Bengio et al., 2006), spurred on several suc-
cessful applications of DCNNSs to a wide variety of tasks. These included
image and object classification and recognition (Chellapilla, Puri, & Simard,
2006; Ranzato et al., 2007; Weston et al., 2008; Jarrett et al., 2009; Lee et al.,
2009; LeCun et al., 2010; Scherer et al., 2010; Boureau et al., 2010; Masci,
Meier, Ciresan, & Schmidhuber, 2011), face detection (Nasse, Thurau, &
Fink, 2009), and image segmentation (Turaga et al., 2010). Furthermore,
they also found interesting applications in scene parsing (Farabet, Couprie,
Najman, & LeCun, 2012), vision for autonomous off-road driving (Had-
sell et al., 2009), and hand gesture recognition (Nagi et al., 2011). Despite
these accomplishments, they were still largely discarded by the mainstream
computer vision and machine learning communities (LeCun et al., 2015).
This changed after the ILSVRC 2012 (Russakovsky et al., 2015), when a
fully supervised DCNN achieved record-breaking classification results on
a subset of the ImageNet data set (Krizhevsky et al., 2012). This work has
revolutionized the field of computer vision, and as a result, DCNNs have
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Figure 5: DCNN architecture split over two GPUs (Krizhevsky et al., 2012).

since become the leading architecture for most visual tasks, in particu-
lar, for image classification—related applications, as the rest of this review
shows.

Central to their success, they implemented several novel and unusual
techniques. Rather than using traditional sigmoid or hyperbolic tangent
activation functions, they were inspired by Jarrett et al. (2009) and used
ReLU (Nair & Hinton, 2010) activations, which allowed much faster train-
ing times (see section 5.2.1 for further details). Since their network was too
big to fit into one GPU, they spread it over two GPUs arranged in a parallel
configuration, which was similar to the multicolumn DCNNs proposed by
Ciresan, Meier, and Schmidhuber (2012). Inspired by the local contrast nor-
malization of Jarrett et al. (2009), they applied local response normalization.
Denoted mathematically, if a kernel i, at position (x; y) is used to compute
the activity of a neuron denoted by a;‘y and the ReLU nonlinearity is than

applied, the response-normalized activity bic’y can be expressed as

min(N=1.i+n/2) ) B
Vey =0y, / (k+a > (ai,y)> , 4.1)

j=max(0,i—n/2)

where N is the total number of kernels in the layer and the sum runs over
n “adjacent” kernel maps at the same spatial position. This scheme aided
generalization and reduced their network classification error rates. They
further reduced the classification error by overlapping the network’s max
pooling layers. Figure 5 illustrates the revolutionary architecture presented
by Krizhevsky et al. (2012). It consisted of five convolutional layers, three
of which were followed by max pooling layers, and three fully connected
layers. The various layer parts in the top half of the figure ran on one GPU,
while the layer parts at the bottom ran on the second GPU. The GPUs in-
teracted with each other only at specific layers.
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To overcome overfitting, the authors employed a regularization tech-
nique known as Dropout (Hinton et al., 2012). Specifically, when each train-
ing case was presented to the network during the training phase, each
hidden neuron was randomly omitted from the network with a probability
of 0.5. Thus, hidden neurons could not rely on other hidden neurons be-
ing present, and this prevented complex coadaptations of features on the
training data. At test time, all of the hidden neurons were used, but their
outputs were multiplied by 0.5 to compensate for the fact that double the
number of neurons were now active. The result of this was a strong regular-
ization effect that significantly reduced overfitting (Krizhevsky et al., 2012;
Hinton et al., 2012; Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-
dinov, 2014). Figure 11 (in section 5.4.2) shows the effect of Dropout on a
standard feedforward network, with two hidden layers, while section 5.4.1
gives a more formal description of the technique and introduces several of
its variants.

Overfitting was further reduced by applying data augmentation, a pop-
ular procedure to artificially enlarge a data set (LeCun et al., 1998; Simard
et al., 2003; Ciresan et al., 2011, 2012). In particular, they created more im-
ages by applying translations and horizontal reflections to the training im-
ages, altering the intensities of their color channels, and performing princi-
pal component analysis (PCA) on their pixel values, which led to improved
classification performance. Krizhevsky et al.’s (2012) model has been used
extensively for various purposes since its development. Vast amounts of re-
search have used it to benchmark their models against or as a base model
to test new algorithms. Furthermore, their model has inspired DCNN work
and has become one of the major contributors to the recent rise in DCNN
technology for image classification-related applications.

Notably, preceding the pioneering work of Krizhevsky et al. (2012) was
the series of work proposed by Ciresan et al. (2011, 2012). They presented
deep hierarchical CNNSs, trained in a fully supervised fashion, that achieved
the best published results on the NORB (LeCun et al., 1998; Krizhevsky,
2009; Coates, Lee, & Ng, 2011) and MNIST (LeCun et al., 1998; Ciresan,
Meier, Gambardella, & Schmidhuber, 2010) classification benchmarks (Cire-
san et al., 2011). By stacking these DCNNs into columns, they further im-
proved the state of the art for these benchmarks and, in particular, reached
human-level performance on the MNIST data set. Furthermore, on the Ger-
man traffic sign recognition benchmark (GTSRB; Stallkamp, Schlipsing,
Salmen, & Igel, 2011), they surpassed human performance by a factor of
two.

Table 1 summarizes the key attributes of the image classification data
sets introduced thus far. Although other classification data sets exist (see
sections 5.1.2.3 and 5.3.2), these are the most commonly used for DCNN
evaluation and benchmarking. Among them, the MNIST data set (LeCun
et al., 1998) has stood the test of time and become the most popular,
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although modern classification systems are judged by their success on the
ILSVRC (Russakovsky et al., 2015), as the next section shows.

4.4 Representative Improvements Exemplify DCNN Dominance.
Since the groundbreaking work of Krizhevsky et al. (2012), DCNNs have
dominated image classification tasks, in particular the ILSVRC (Rus-
sakovsky et al., 2015). In fact, they were triumphant in every ImageNet
classification challenge since 2012 (Simonyan & Zisserman, 2014; Zeiler &
Fergus, 2014; Szegedy, Liu, et al., 2015; He, Zhang, Ren, & Sun, 2015b). In an
attempt to understand them and derive ways to improve their performance,
Zeiler and Fergus (2014) introduced a new visualization technique using a
multilayered deconvolutional network (Zeiler, Taylor, & Fergus, 2011) that
provided vision into the intermediate feature extraction layers of the net-
work. They used this in a diagnostic role to improve the DCNN architec-
ture and performance of Krizhevsky et al. (2012). Thus, when compared
to Krizhevsky et al. (2012), their model achieved better results on the Ima-
geNet classification benchmark, and multiple models were averaged to win
the ILSVRC 2013 (Russakovsky et al., 2015). Furthermore, their model gen-
eralized excellently, and they demonstrated this by achieving the best pub-
lished results on the CALTECH-101 (Fei-Fei et al., 2006) and CALTECH-
256 data sets (Griffin et al., 2007). Although their visualization technique
worked well on relatively higher-dimensional color images, it would be
interesting to test its applicability on the popular MNIST data set (LeCun
etal., 1998), since it is conceivable that the deconvolutional network may not
be able to reproduce the lower-dimensional gray-scale MNIST images with
the same accuracy. Another interesting direction from using the extracted
features in a diagnostic role will be to investigate its applicability to solve
some of the remaining DCNN challenges, specifically like those mentioned
in sections 6.2 and 6.4.

Szegedy, Liu, et al. (2015) introduced a DCNN architecture that they
called the Inception model. A particular incarnation of this model,
GoogLeNet, produced outstanding image classification and object detec-
tion results, winning both the ImageNet classification and detection chal-
lenges in 2014 (Russakovsky et al., 2015). Their success was brought about
by using a very large network, consisting of 22 layers. Since the cost of this
is a larger number of parameters, which makes the network more prone
to overfitting and a considerably larger computational burden, they used
a carefully engineered design, based on Hebbian principles, that allowed
them to move from a fully to sparsely connected convolutional architecture,
which was motivated by the findings of Arora, Bhaskara, Ge, and Ma (2014).
Specifically, their architecture used 1 x 1 convolutions heavily, inspired by
Lin et al. (2013), to perform two functions. Most significant, they served as
dimension-reduction blocks prior to the more computationally costly 3 x 3
and 5 x 5 convolutions, and they included the use of rectified linear activa-
tions (Nair & Hinton, 2010), thus making them dual purpose. Subsequently,
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they were able to increase the depth and width of their network, while only
marginally increasing the computational cost. Figure 8 (in section 5.1.1.1)
illustrates an Inception module, which incorporates the dimension reduc-
tion 1 x 1 convolution filters, illustrated by the bevel in the diagram. These
modules are the building blocks of the Inception model, which has since
been improved several times, as discussed in section 5.1.1.2.

Similar to Szegedy, Liu, et al. (2015), Simonyan and Zisserman (2014), the
runners-up in the same ILSVRC 2014 classification contest (Russakovsky
et al., 2015), also used a very deep DCNN, which consisted of 19 layers
compared to the 22 of their competitors. However, asserting that the Incep-
tion model was too complex, they kept all the parameters of their DCNN
architecture constant and steadily increased the depth alone. This was made
feasible by using smaller-sized convolutional (3 x 3) filters throughout the
network, which was inspired by Ciresan et al. (2011), who already used
smaller kernels, albeit for shallower networks applied to simpler tasks.

The winners of the ILSVRC 2015 (Russakovsky et al., 2015), He et al.
(2015b), used an even deeper DCNN, when compared to Simonyan and
Zisserman (2014) and Szegedy, Liu, et al. (2015). In fact, their model was
ultra-deep in that it consisted of 152 layers. Since deeper models are harder
to train and suffer from degradation (of training and thus test accuracy)
(He et al., 2015b; He & Sun, 2015; Srivastava, Greff, & Schmidhuber, 2015a,
2015b), they introduced a new residual learning framework.! They refor-
mulated the layers of the network and forced them to learn residual func-
tions with reference to their preceding layer inputs rather than learning
unreferenced functions. This allowed errors to be propagated directly to
the preceding units, and thus made these networks easier to optimize and,
although they were ultra-deep, easier to train. They tried different residual
module configurations and network architectures and found that optimized
residual modules worked more optimally compared to their initial mod-
ules. Figure 6 compares the difference between the original residual module
and its optimized successor, which resulted in faster computation. As illus-
trated, ReLUs (Nair & Hinton, 2010) feature heavily in both versions; how-
ever, optimized residual connections make use of the dimension-reducing
1 x 1 filters to cushion computation. A more formal description of the orig-
inal residual learning technique, as well its improvements, is discussed in
section 5.5.4.

Table 2 illustrates the performance of DCNNSs in the ILSVRC since its in-
ception. Significantly, the table highlights DCNN domination over earlier
methods that used feature extraction and compression, followed by clas-
sification with a shallow classifier (Perronnin, Sanchez, & Mensink, 2010;

1Degradation is caused by the poor propagation of activations and gradients because
of stacking several nonlinear transformations on top of each other.
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Figure 6: Residual versus improved residual modules.

Lin et al., 2011; Sdnchez & Perronnin, 2011), as well as an approximate
correlation between classification performance and network depth (see
section 5.5.4). Further results can be found in Table 4.

Notwithstanding degradation (He et al., 2015b; He & Sun, 2015; Srivas-
tava et al., 2015a, 2015b), deeper models are generally more accurate and
thus produce better empirical results; however, as depth increases, so do
computational costs. With this in mind, the representative work discussed
here has led to several attempts to improve the classification accuracy of
DCNNs by modifying their architecture for improved performance without
losing sight of the computational burden imposed on such models. In par-
ticular, the models of Szegedy, Liu, et al. (2015), Simonyan and Zisserman
(2014), and He et al. (2015b) all focused on deeper or wider networks for
improved accuracy, with several tricks, ranging from dimension reduction
to residual learning, to handle the associated computational strain placed
on deeper networks. This has led to a classic engineering dilemma between
deeper models, which are more accurate but computationally expensive,
and shallower models, which are easier and cheaper to train but do not
produce the same classification accuracy. Thus, although there have been
several attempts to address this, maintaining accuracy with reduced com-
putational expenditures remains an open challenge for DCNNS. To this end,
section 5.5.4 deals with the swifter processing of deep models, while the
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Table 2: ILSVRC Image Classification Results from 2010.

Number General

Year Team of Layers Contribution Position References

2010 NEC Shallow Fast feature extraction, First Lin et al., 2011
data compression, SVM
classifier

2011 XRCE Shallow High-dimensional image First Perronnin et al.,
signatures, data 2010; Sanchez
compression, SVM & Perronnin,
classifier 2011

2012 SuperVision 8 Efficient GPU-based First Krizhevsky
DCNN, with Dropout et al., 2012
and several other
innovations

2013 Clarifai 8 DCNN architecture based ~ First Zeiler & Fergus,
on deconvolutional 2014; Zeiler
visualization technique etal., 2011

2014 GoogLeNet 22 DCNN architectural First Szegedy,
design based on Vanhoucke
Hebbian principle and etal., 2015
multiscale ideas

2014 VGG 19 Improvements to DCNN  Second Simonyan &
convolutional layers, Zisserman,
increased network depth 2014

2015 MSRA 152 Introduction of deep First He et al., 2015b
residual learning for
ultra DCNNs

latest developments, trends, and recommendations in this regard are intro-
duced in section 6.3.

5 A Deep Array of Further Improvements and Recent Advancements __

In addition to the revolutionary work of Krizhevsky et al. (2012) and the fur-
ther symbolic improvements described in the preceding section (Simonyan
& Zisserman, 2014; Zeiler & Fergus, 2014; Szegedy, Liu, et al., 2015; He
et al., 2015b), several other improvement attempts related to network ar-
chitecture, nonlinear activation functions, supervision components, regu-
larization mechanisms, optimization techniques, and swifter processing of
DCNNs have supplemented the popularity of DCNNSs. In the sections
that follow, we survey these improvements in detail, focusing on their
employment to image classification applications. Along the way, we com-
pare and contrast the different methodologies and techniques used to de-
sign these improvements. Toward the end of the section, we empirically
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summarize their classification results on several popular image classifica-
tion benchmarks.

5.1 Network Architecture. This section first introduces the improve-
ments made to the convolutional layers of DCNNS, followed by discussions
that deliberate several pooling schemes, including the latest advancements
in this regard.

5.1.1 Convolutional Layers. The convolutional layers learn the feature
representations of their input images, and this makes them the main build-
ing block of DCNNSs. Thus, it is natural to try to improve this aspect of
DCNN architecture. Here we introduce the motivations behind some of the
key innovations in this area.

5.1.1.1 Network in network. Since the convolutional layers use linear fil-
ters, which are more suited to learning latent features (hidden properties
of an image) that are linearly separable, they are not cable of extracting
abstract representations from images.? Thus, Lin et al. (2013) proposed
replacing them with universal function approximators. Specifically, they
replaced the conventional local convolutional filters with multilayered
perceptrons (MLPs), which are compatible with the architecture and train-
ing procedures of DCNNSs, to convolve over the input resulting in a MLP
convolutional layer. The computation performed by this layer, when the
ReLU (Nair & Hinton, 2010) is used as the activation function, can be ex-
pressed mathematically as

flix, = max (i fi51 + by, 0) (5.1)

where the pixel index of the feature map is denoted by (i, j); the input patch,
centered at location (i, j), is denoted by x; ;; the feature map channels are
indexed by k; and n represents the number of layers in the MLP.

The proposed method demonstrated that these MLP convolutional lay-
ers model local image patches better than standard convolutional layers.
When combined with a novel global average pooling technique, which spa-
tially averaged the feature maps of the final layer, was used to replace
the standard fully connected layer, they produced state-of-the-art results
on two versions of the CIFAR-10 (Krizhevsky, 2009; Wan, Zeiler, Zhang,
LeCun, & Fergus, 2013; Goodfellow, Warde-Farley, Mirza, Courville, &
Bengio, 2013) and CIFAR-100 benchmarks (Krizhevsky, 2009; Srivastava &
Salakhutdinov, 2013), and very close to the state of the art on the MNIST

? Abstract in this contents relates to features that are invariant to features of an equiva-
lent concept (Bengio, Courville, & Vincent, 2013).
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Figure 7: Convolutional versus MLP convolutional layers.

data set (LeCun et al., 1998; Goodfellow et al., 2013). Although the pro-
posed global average pooling technique, which has fewer parameters and
thus cheaper computational costs compared to fully connected layers, con-
tributed to a reduction in overfitting for the relatively small MNIST (LeCun
et al., 1998) and CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) data sets, a
study into overfitting using this type of layer to replace the conventional
fully connected layers of other DCNN models is still at large for larger data
sets like ImageNet (Russakovsky et al., 2015). Figure 7 illustrates the differ-
ence between a conventional convolutional module and an MLP convolu-
tional module, which is the main building block of the network in network
(NIN) model. While both variants map the local receptive field represent-
ing the hidden input features to a succeeding layer, panel b uses a micronet-
work for enhanced representation.

5.1.1.2 Inception and improved Inception models. The Inception model
(Szegedy, Liu, et al., 2015), inspired by Lin et al. (2013) and discussed in
section 4.4, used a dimension-reduction (1 x 1 convolutional filters) tech-
nique to lessen the computational burden of the expensive convolutional
operation. In order to scale up and further improve DCNN classification ac-
curacy in a computationally efficient manner, the Inception model was later
enhanced by using factorized convolutions (see section 6.6) and aggres-
sive dimension reductions within the network. While the original Inception
module still used 5 x 5 convolutions, the improved version replaced this




2376 W. Rawat and Z. Wang

Succeeding
layer

Succeeding ﬁ

layer
Filter result
integration

3x3 filters

o

Filter result
integration

I Ix1 filters 3x3 filters 1x1 filters I 1x1 filters 3x3 filters 1x1 filters ‘

1x1 filters ‘ 1x1 filters -J 1x1 filters 1x1 filters
9 |

Preceding / Preceding _/

layer layer
a) Inception module b) Improved inception module

Figure 8: Inception versus improved Inception modules.

with two computationally cheaper 3 x 3 convolutions (Szegedy, Vanhoucke
et al., 2015). Figure 8 illustrates the differences between the two modules.

Inspired by the image classification accuracy accomplished by residual
networks (He et al., 2015b), discussed in sections 4.4 and 5.5.4, the Inception
architecture (Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke et al., 2015) was
further refined and combined with residual connections to form residual In-
ception networks (Szegedy, loffe, & Vanhoucke, 2016). The paper provided
clear evidence advocating that training with residual connections signifi-
cantly accelerated the training of Inception networks. Although they tested
several Inception-only and residual Inception architectures, they found that
a hybrid residual Inception architecture yielded the best single-model clas-
sification accuracy, albeit at a higher computation cost when compared
to the improved Inception architecture described by Szegedy, Vanhoucke
et al. (2015). Furthermore, when they combined a new, improved Incep-
tion model, which had a simpler architecture and more Inception modules
compared to their earlier model (Szegedy, Vanhoucke et al., 2015), into an
ensemble with three residual Inception networks, they achieved the best
published results on the challenging ImageNet image classification bench-
mark (Russakovsky et al., 2015; He et al., 2015b). Despite this success, fur-
ther work is required in order to reduce the computational burden imposed
on the hybrid architecture.

5.1.1.3 Doubly convolution. Motivated by intuition, followed by a theo-
retical analysis, which advocated that several of the learned filters of well-
trained DCNNS are slightly translated versions of each other, Zhai, Cheng,
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Lu, and Zhang (2016) newly proposed doubly convolutional neural net-
works, which make use of a double convolution operation in the convolu-
tional layers. This allows them to learn clusters of filters, where filters within
each cluster are translated forms of each other. In order to accomplish this,
a set of meta-filters is allocated to a doubly convolutional layer. The sizes of
these meta-filters are larger than the effective filter size, which are extracted
from each of them. This corresponds to convolving the meta-filters with an
identity kernel. By concatenating the extracted filters and then convolving
it with the input, the technique attains double convolution. This technique
is also complementary to Maxout (Goodfellow et al., 2013), which we intro-
duce in section 5.2.8, since there is an opportunity to pool along the activa-
tions generated by the same meta-filter. They outperformed the NIN model
(Lin et al., 2013), which also altered the standard convolutional layer for
improved classification accuracy, on the CIFAR-10 and CIFAR-100 data sets
(Krizhevsky, 2009); furthermore, since the architecture of the doubly con-
volutional networks can be amenably varied, they are parameter efficient,
thus reducing their storage space requirements without a loss in accuracy.
The downside of such an approach is that the double convolution opera-
tion will incur additional computational costs in comparison to a standard
convolutional layer.

5.1.1.4 Analysis and outlook. The convolutional filters, the workhorses
of DCNN:s, are generalized linear models of the underlying image patches
that they convolve, and although they work well for extracting features
that have a low level of abstraction, they are challenged when they need
to extract highly nonlinear functions of our input images. This advocated
the need for more effective nonlinear feature extractors, starting with the
NIN model. The architecture introduced by Lin et al. (2013) led to a series
of other improvements that also focused on the convolutional layers. At
the heart of these approaches were the Inception (Szegedy, Liu, et al., 2015)
and improved Inception models (Szegedy, Vanhoucke et al., 2015; Szegedy
et al.,, 2016), which were meticulously engineered to mitigate any compu-
tational constraints, and this facilitated increased network size (width and
depth) for enhanced classification accuracy. However, notwithstanding
the promising empirical results of these models, a theoretical justification
for their successes is still lacking. Furthermore, their complex and highly
optimized architectures do not warrant modification without possible
performance constraints, thus the need to exercise caution when adopting
them. Future work should attempt to justify the reasons for the empirical
successes of the innovative convolutional layers discussed here, and this
should be supplemented by novel convolutional-related modifications
that address the concerns associated with our current models, such as the
computational encumbrance imposed by the convolutional operation, their
inability to extract potent features, and the complexity of the current mod-
els that mitigate these concerns. This will not only advance classification
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accuracy and robustness and promote swifter computation but will lead to
models that are easily adaptable to different tasks. Some of the promising
recent developments along these lines include double convolution (see
section 5.1.1.3), tiled convolution (Ngiam et al., 2010; Wang & Oates, 2015),
and, in particular, dilated convolution (Yu & Koltun, 2015), which has
shown promising results for diverse tasks such as speech recognition
and synthesis (Sercu & Goel, 2016; Oord et al., 2016), machine translation
(Kalchbrenner et al., 2016), and scene segmentation (Yu & Koltun, 2015).

5.1.2 Pooling Layers. After the convolutional layers, the pooling layers
are perhaps the most important. They recapitulate the responses of neigh-
boring neurons from the same kernel map and thus reduce the dimensions
of their input representations. Significantly, they provide DCNNs with their
spatial invariance (Krizhevsky et al., 2012; LeCun et al., 2015). In addi-
tion to average and max pooling, introduced in sections 2.2 and 4.2.3, we
survey some of the other successful pooling techniques mentioned in the
literature.

51.2.1 L, pooling. Although the use of max pooling has resulted in ex-
cellent empirical results (Ciresan et al., 2011; Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke
et al., 2015), it can overfit the training data and does not guarantee gener-
alization on test data. Average pooling, on the other hand, considers all the
elements in the pooling region and thus areas of low activation may lessen
the effect of areas of high activation (Zeiler & Fergus, 2013; Sainath, Kings-
bury, Mohamed et al., 2013). To address these issues, a viable alternative
is the biologically inspired L, pooling, which is modeled on complex cells
(Simoncelli & Heeger, 1998; Hyvirinen & Koster, 2007). In a given pooling
region R;, it takes the weighted average of the activations a;, as illustrated
by equation 5.1:

1/p
sj = (Z zzf (5.2)

i€R;

Notably, when p =1 the equation corresponds to average pooling, while
p = oo translates to max pooling. For values of 1 < p < o0, L, pooling can
be seen as a trade-off between average and max pooling (Sainath, Kings-
bury, Mohamed et al., 2013). Although L, pooling has been applied pre-
viously (Yang, Yu, Gong, & Huang, 2009; Kavukcuoglu, Ranzato, Fergus,
& LeCun, 2009), when it was combined with DCNNs (Sermanet, Chintala,
& LeCun, 2012), it resulted in exceptional image classification results and
a new state of the art on the Street View House Numbers (SVHN) classi-
fication benchmark, beating the previous best set by Netzer et al. (2011).
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Moreover, theoretical analysis conducted by Boureau et al. (2010), Bruna,
Szlam, and LeCun (2013), and Gulcehre, Cho, Pascanu, and Bengio (2014)
suggests that it provides better generalization when compared to max
pooling.

5.1.2.2 Stochastic and fractional max pooling. Motivated by the problems
with average and max pooling and the regularization effect of Dropout
(Turaga et al., 2010; Hinton et al., 2012), Zeiler and Fergus (2013) introduced
stochastic pooling to replace the deterministic average and max pooling
techniques. Specifically, in stochastic pooling, by normalizing the activa-
tions within each region j, the probabilities p for the region are first com-
puted by

aj
pi=
ZkeRJv Ak

(5.3)

Then, based on p, a sample is taken from the multinomial distribution,
formed from the activations of each pooling region, in order to pick a lo-
cation [ within the region. Thus, the pooled activation is simply 4;:

sj =a; wherel ~ P(p1, ..., pr;|)- (5.4)

Although stochastic pooling has the same benefits as max pooling, its
stochastic nature helps it prevent overfitting, thus making it an effective
network regularization technique that can be combined with other ap-
proaches such as Dropout (Hinton et al., 2012; Srivastava et al., 2014) and
data augmentation (LeCun et al., 1998; Simard et al., 2003; Ciresan et al.,
2011, 2012; Montavon, Orr, & Miiller, 2012). When applied to image clas-
sification tasks, stochastic pooling outperformed average and max pooling
on the MNIST (LeCun et al., 1998), CIFAR-10 and CIFAR-100 (Krizhevsky,
2009), and SVHN (Netzer et al., 2011) benchmarks.

Similar to stochastic pooling, fractional max pooling (Graham, 2014),
also introduces stochastic attributes to the pooling process. However, di-
vergent from stochastic pooling, the selection of the pooling regions, rather
than the pooling operations within them, has a stochastic nature. More
specifically, while stochastic and traditional max pooling use g x f max
pooling, where g = 2 (see section 2.2), fractional max pooling introduces a
fractional factor B (e.g., +/2), which is selected either randomly or pseudo-
randomly from the range 1 < B < 2, to reduce the spatial dimensions of the
pooling input. They obtained state-of-the-art results on the CIFAR data sets
(Krizhevsky, 2009; see Table 6); however, their observations lacked suitable
motivation and the technique still needs to be tested on other architectures
such as Inception (Szegedy, Liu, et al., 2015) and Residual networks (He
et al. 2015b).
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5.1.2.3 Mixed pooling. Inspired by the stochastic nature of the pool-
ing technique described by Zeiler and Fergus (2013) and other successful
stochastic regularization techniques such as Dropout (Hinton et al., 2012;
Srivastava etal., 2014) and DropConnect (Wan et al., 2013) (see section 5.4.2),
Yu, Wang, Chen, and Wei (2014) introduced a novel mixed pooling tech-
nique to further boost the regularization abilities of DCNNs and address
the known issues associated with average and max pooling (Zeiler & Fer-
gus,2013; D. Yu et al., 2014; Sainath, Kingsbury, Mohamed et al., 2013). They
also employed a stochastic procedure to utilize, randomly, max or average
pooling during DCNN training. Expressed mathematically, the mixed-pool
output yy;; in relation to the kth feature map is computed by:

1
xk,,q + (1 — )») . |‘H]| Z xkpq, (55)
] Jjl

p.g)EN;;

Ykij = A - max
(p.g)eN;

i

where the element at location (p, q), within the pooling region %;; with size
|N;;1, is represented by xx,;, and either max or average pooling is selected
by X, which has a random value of either one or zero. Similar to stochas-
tic pooling, the combination of mixed pooling with other regularization
techniques is possible. Comparatively, when tested on the SVHN (Netzer
etal., 2011) classification challenge, this method proved superior to average,
max, stochastic, and L, pooling (Sermanet et al., 2012). Additionally, when
tested on the CIFAR-10 and CIFAR-100 benchmarks (Krizhevsky, 2009), it
also provided enhanced classification performance over average, max, and
stochastic pooling (Zeiler & Fergus, 2013), and the parameterized scheme
introduced by Malinowski and Fritz (2013).

5.1.2.4 Mixed, gated, and tree pooling. Experiments conducted by Lee, Gal-
lagher, and Tu (2016) support the findings of Boureau et al. (2010), who also
found that there were instances where either max or average pooling per-
formed better than the other did. Thus, they explored learning the pool-
ing function by combining max and average pooling using a responsive
(achieved via a gate) and unresponsive strategy. The output of the gated
max-average method can be computed by

Feate() = 0/(107%) finax (X) + (1 = 0/ (07X)) fang (%), (5.6)

where the values in the pooling region are denoted by x and the val-
ues of the gating mask are denoted by w. Furthermore, inspired by Bulo
and Kontschieder (2014), who incorporated MLPs with decision trees,
Lee et al. (2016) used a binary decision tree to learn a combination of
previously learned individual pooling filters. A particular incarnation of
their approach, which combined their tree and max-average methods,
achieved state-of-the-art results on several benchmarks. In particular, they
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outperformed several high-performing convolutional networks such as
NIN (Lin et al., 2013), stochastic pooling DCNNs (Zeiler & Fergus, 2013),
the DCNNSs presented by Jarrett et al. (2009), Maxout networks (Goodfel-
low et al., 2013), and DropConnect networks (Wan et al., 2013) on vari-
ous image classification benchmarks, including the MNIST (LeCun et al.,
1998), CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer
etal., 2011) data sets. Notably, despite their successes, RCNNs (Liang & Hu,
2015) outperformed them on the CIFAR-100 data set. Furthermore, for fu-
ture DCNN s to readily incorporate decision analysis tools such as decision
trees into their architectures, further work on reducing the computational
costs and exorbitant number of model parameters required by such models
is still required.

5.1.2.5 Spectral pooling. Rather than focus on the computational speed
gains of moving the convolutional operation out of the spatial domain,
similar to the work described by Mathieu, Henaff, and LeCun (2013), Rip-
pel, Snoek, and Adams (2015) proposed learning the convolutional filters
of DCNN:Ss directly in the frequency domain. More significant, the authors
proposed spectral pooling, which projected spectral representations into
the frequency domain and then truncated these representations as an un-
conventional dimensionality-reduction technique, when compared to the
popular max pooling. More precisely, spectral pooling first computes the
discrete Fourier transform (DFT) of an input feature map x € RMN and
then crops the frequency representation by maintaining only the central
H x W sub-matrix of frequencies that are governed by the dimensions of
the desired output feature map H x W. Finally, the inverse DFT maps the
truncated representation back to the spatial domain. Their method pro-
vided a viable solution to the loss of spatial information associated with
max pooling (Ranzato et al., 2007; Scherer et al., 2010; Szegedy, Liu, et al.,
2015; Rippel et al., 2015) and a new form of stochastic regularization similar
to a Dropout (Hinton et al., 2012; Srivastava et al., 2014) variant, known as
Nested Dropout (Rippel, Gelbart, & Adams, 2014). On the CIFAR-10 and
CIFAR-100 benchmarks (Krizhevsky, 2009), they outperformed several of
the works already introduced in this review (Lin et al., 2013; Zeiler & Fer-
gus, 2013; Goodfellow et al., 2013; Liang & Hu, 2015), as well as the deeply
supervised DCNNs proposed by Lee, Xie, Gallagher, Zhang, and Tu (2015),
but not the combined tree-mixed pooling technique of Lee et al. (2016). The
successes described by this work advocate the need for further research into
hybrid DCNNs that make use of digital signal processing fundamentals to
improve the accuracy of our current classification systems.

5.1.2.6 Spatial pyramid pooling. DCNNSs are restricted in that they can
only handle a fixed input image size (e.g., 96 x 96). In order to make them
more flexible and thus handle images of different sizes, scales, and aspect
ratios, inspired by the spatial pyramid matching described in papers by
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Input image | Size standardization — Conv./ pooling layers | Fully connected layers

a) Conventional DCNN

Input image > Conv. / pooling layers —| SPP layer —{ Fully connected layers

b) DCNN with SPP layer

Figure 9: Conventional versus SPP DCNNSs.

Grauman and Darrell (2005), Lazebnik, Schmid, and Ponce (2006), and Yang
etal. (2009), He, Zhang, Ren, and Sun (2014) proposed spatial pyramid pool-
ing (SPP). They used multilevel spatial bins, which have sizes proportional
to the image size, and this allowed them to generate a fixed-length rep-
resentation, irrespective of the image size or scale. The SPP layer was in-
tegrated into DCNN architecture between the final convolutional /pooling
layer and the first fully connected layer (see Figure 9) and thus performed
information aggregation deep in the network to prevent fixing the size (via
cropping or warping) of the image at the input. Unlike stochastic (Zeiler &
Fergus, 2013) and L, pooling (Sermanet et al., 2012), SPP is designed to work
with max pooling layers rather than replace them. Among other successes,
they set a new record on the CALTECH-101 data set (Fei-Fei et al., 2006),
beating the previous best set by Chatfield, Simonyan, Vedaldi, and Zisser-
man (2014), and they came in third in the classification component of the
ILSVRC 2014 (Russakovsky et al., 2015), behind Simonyan and Zisserman
(2014) and Szegedy;, Liu, et al. (2015). Further work along these lines is re-
quired to facilitate commercial DCNN deployment on a variety of portable
devices, since this will relax the constraints placed on the image capturing
system. Furthermore, this work has shown that tried and tested computer
vision-based techniques need not be forsaken in the face of deep learning
and that room for this type of traditional computer vision integration is still
available.

5.1.2.7 Multiscale orderless pooling. Inspired by Lazebnik et al. (2006),
Gong, Wang, et al. (2014) attempted to make DCNNs more robust to in-
variance without compromising their discriminative power. Asserting that
max pooling may not provide invariance to large-scale global deformations,
they proposed multiscale orderless pooling (MOP), which extracts patches
at multiple scales, beginning with the complete image and then pools each
scale disregarding spatial information. Specifically, they extract deep activa-
tion features from the whole image, to preserve global spatial layout, and
from local patches, to capture fine-grained details. Next, the fine-grained
details are aggregated via VLAD encoding (Jegou et al., 2012), which has



Deep Convolutional Neural Networks for Image Classification 2383

an orderless nature and thus contributes to a more invariant representation.
Finally, the initial global deep activations and the VLAD encoded features
are concatenated to form a new image representation. Their method proved
successful at a wide variety of applications, including scene classification,
data retrieval, and, most significant, image classification producing com-
petitive results on the ILSVRC 2012/2013 (Russakovsky et al., 2015). With
the ever rising size of image data sets (see Table 1), further investigation
into the merge of feature compression techniques, such as VLAD encoding
and DCNN technology, is warranted.

5.1.2.8 Transformation invariant pooling. Since the features extracted by
DCNN:s lack invariance to known nuisance variations in data, inspired by
max pooling (Boureau et al., 2010) and multiple instance learning (Wu, Yu,
Huang, & Yu, 2015), Laptev, Savinov, Buhmann, and Pollefeys (2016) intro-
duced a new pooling technique to generate transformation-invariant fea-
tures. Given an input image x, they formulate new features gx(x) from a
predefined set of possible transformations ¢, such that the new features are
independent of any known nuisance variations of the input. Formally, these
features are formulated in the following manner:

g(x) = max fi(#(x)). (5.7)

Subsequently, they refer to this max pooling over transformations as
transformation-invariant pooling (T1 pooling). By applying the maximum
operator, learned features are less dependent on the known nuisance varia-
tions. Furthermore, for specific transformation sets, they theoretically prove
complete transformation invariance. Similar to the SPP integration into
DCNN architecture (He et al., 2014), the authors proposed integrating TI
pooling at the same point in the network; however, they used parallel
Siamese architectures—two or more identical subnetworks that share the
same weights (Bromley et al., 1993)—and applied TI pooling at their out-
puts prior to the fully connected layers. On two variations of the MNIST
data set (Larochelle, Erhan, Courville, Bergstra, & Bengio, 2007; Jader-
berg, Simonyan, & Zisserman, 2015), which were designed to benchmark
rotation-invariant algorithms, their method obtained results comparable to
or better than other state-of-the-art DCNNS5s, with the added advantage of
requiring fewer model parameters since they did not use data augmenta-
tion, a popular technique for invariant tasks (Van Dyk & Meng, 2012).

5.1.2.9 Analysis and outlook. Pooling is imperative to diminish the com-
putational burden of the expensive convolutional layers; however, de-
spite the initial successes of average pooling and the contribution of max
pooling to the recent rise of DCNNSs, inadequacies associated with them
(see sections 4.2.3 and 5.1.2.1) have led researchers to investigate other
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pooling strategies. Although L, pooling is biologically plausible and there
is theoretical evidence to show it results in better generalization compared
to max pooling, the latter continues to enjoy greater popularity for image
classification tasks, probably because of its known ability to capture invari-
ance from visual data. The stochastic nature of stochastic pooling (Zeiler
& Fergus, 2013) and mixed pooling (D. Yu et al., 2014) gives them an ad-
vantage over max pooling with relation to their intrinsic ability to avoid
overfitting. The downside is that their inherent probability computations
put them at a disadvantage concerning their computational burden when
compared to other deterministic techniques such as max or average pool-
ing. The tree-based scheme of Lee et al. (2016) produced exceptional classi-
fication performance, but utilizing decision analysis tools adds complexity
and computational strain. Although SPP (He et al., 2014) addresses varia-
tions in image properties and is fast and effective, architectures that use it
cannot be trained in an end-to-end manner. While TI pooling (Laptev et al.,
2016) advances DCNN invariance, making DCNNs invariant to geometric
transformations and translations, and in particular, large-scale variances, is
still an open area of research requiring further efforts, some of which are
touched on in section 6.2.

From the analysis, we can conclude that the different pooling strategies
have various pros and cons, and thus a particular superlative and generic
strategy cannot be singled out. Although max pooling is probably the most
established, the choice of strategy will depend largely on the requirements
of a particular classification task and the resources available to accomplish
it. Some of the key factors to consider here are system complexity, since it
is possible to incorporate techniques from digital signal processing (Rippel
et al., 2015), decision analysis (Lee et al., 2016), and traditional computer
vision (He et al., 2014; Gong, Wang, et al., 2014), required classification ac-
curacy, the consequences of overfitting, and the available computational
resources. Future pooling innovations should focus on harmonizing these
conflicting requirements, while not losing cognizance of the need for them
to be biologically conceivable, so that we are able to both improve our mod-
els and understand more about our current vision system.

5.2 Nonlinear Activations. The choice of activation function affects net-
work training time, and this has a significant influence on the performance
of large DCNNSs on large data sets (Krizhevsky et al., 2012). Introduced by
Nair and Hinton (2010) for deep Boltzmann machines, ReLUs were made
popular for DCNNs by Krizhevsky et al. (2012), although Glorot, Bordes,
and Bengio (2011) had already shown that they lead to faster training times
in fully supervised networks without the need for unsupervised pretrain-
ing. Figure 10 compares the training times of ReLUs (solid line) to hyper-
bolic tangent (dashed line) activations for a four-layer DCNN (Krizhevsky
et al., 2012), trained on the CIFAR-10 data set (Krizhevsky, 2009). The
DCNN with ReLUs was trained six times faster than an equivalent



Deep Convolutional Neural Networks for Image Classification 2385

0.75
0.54 \
.. ~
Training ~
error rate =~
S~ -—
_— _—
0.25+ ==
0 . . . : . . T
0 5 10 15 20 25 30 35 40
Epochs

Figure 10: Training times of ReLUs versus tanh activations (Krizhevsky et al.,
2012).

network that used hyperbolic tangent activations (Krizhevsky et al., 2012).
We next briefly introduce this nonsaturating activation function and discuss
the motivations that have led to several of their successors.

5.2.1 ReLU Activations. Traditional activation functions, such as the sig-
moid or hyperbolic tangent are given by f(x) =1/(1+¢—x) and f(x) =
tanh(x), respectively, where f is the neuron’s output as a function of its in-
put x (the same notation is used for the remainder of the activation functions
that follow). The ReLU (Nair & Hinton, 2010), a piecewise linear function,
has the simplified form f(x) = max(x, 0). The ReLU retains only the posi-
tive part of the activation, by reducing the negative part to zero, while the
integrated maximum operator promotes faster computation. The ReLU has
been used in several state-of-the-art image classification systems (Zeiler &
Fergus, 2013, 2014; Lin et al., 2013; Gong, Wang, et al., 2014; Simonyan &
Zisserman, 2014; Szegedy, Vanhoucke et al., 2015; Szegedy, Liu et al., 2015).
An in-depth discussion and further motivations on them can be found in
the work presented by Glorot et al. (2011).

5.2.2 LReLU Activations. Even though ReLUs (Nair & Hinton, 2010) lead
to faster convergence (Nair & Hinton, 2010; Glorot et al., 2011; Krizhevsky
et al., 2012; Maas, Hannun, & Ng, 2013) and do not suffer from the vanish-
ing gradient problem, in which the lower layers have gradients near zero
because high layers are almost saturated (Bengio, Simard, & Frasconi, 1994),
they are at a possible disadvantage during optimization since the gradient
is zero when the unit is not active (Glorot et al., 2011; Maas et al., 2013). This
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may lead to cases where units never get activated, since popular gradient
descent optimization algorithms fine-tune only the weights of units previ-
ously activated. Thus, similar to the vanishing gradient problem, ReLUs
suffer from slow convergence when training networks with constant zero
gradients. To compensate for this, Maas et al. (2013) introduced leaky rec-
tified linear units (LReLU), which allow for small nonzero gradients when
the unit is not active yet is saturated. Mathematically, the LReLU is given

by
f(x) = max(x, 0) + A min(x, 0), (5.8)

where 1 is a predefined parameter within the range (0, 1). LReLUs were
initially applied to acoustic models (Maas et al., 2013); however, Xu et al.
(2015) found that they perform slightly better than ReLU for image clas-
sification tasks after conducting an empirical evaluation on the CIFAR-10
and CIFAR-100 data sets (Krizhevsky, 2009). A measure on the modern
ImageNet (Russakovsky et al., 2015) will facilitate the comparison of this
rectification-based nonlinearity to other similar activations.

5.2.3 PReLU Activations. While LReLUs (Maas et al., 2013) rely on a pre-
defined parameter to compress the negative part of the activation signal, He
et al. (2015a) proposed a parametric rectified linear unit (PReLU) to adap-
tively learn the parameters of the activation units during backpropagation.
Mathematically, the PReLU is the same as the LReLU, except that 4 is re-
placed with the learnable A, which is allowed to vary for different input
channels, denoted by k. Thus, the PReLU can be expressed as

f(xx) = max(xg, 0) + A min(xg, 0). (5.9)

Utilizing a previously designed DCNN model and training implementa-
tion (He & Sun, 2015), He et al. (2015a) compared the performance of
ReLUs (Nair & Hinton, 2010) to PReLUs and found a greater than 1%
performance increase on the ILSVC data set (Russakovsky et al., 2015). Fur-
thermore, when this method was combined with a robust weight initializa-
tion method that specifically considered the rectified nonlinearities, they
surpassed human-level performance for the first time on this challenging
benchmark (Russakovsky et al., 2015). At the time, their results were the
state of the art on this data set, and although outside of the yearly competi-
tion, they beat the winning entry from 2014 (Simonyan & Zisserman, 2014).
Despite this, Xu et al. (2015) found that the PReLU always performed bet-
ter than other rectified units, such as the ReLU (Nair & Hinton, 2010) and
LReLU (Zeiler & Fergus, 2014), on the training set, thus alerting to the fact
that they suffer from a severe overfitting problem on smaller data sets.
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5.2.4 APL Activations. Similar to PReLUs (He et al., 2015a), Agostinelli,
Hoffman, Sadowski, and Baldi (2014) concurrently proposed adaptive
piecewise linear (APL) activation functions, which are parameterized, learn
independently for every neuron by using conventional gradient descent,
and can represent both convex and nonconvex functions of the input. Math-
ematically, the APL is expressed as the sum of hinge-shaped functions,

s=1
hi(x) = max(0, x) + Zaf max(0, —x + b3), (5.10)

where S is the number of hinges, which is a hyperparameter set in advance,
and the variables 2}, b} fori € 1, ..., S are learned during training. In equa-
tion 5.7, the a; variables control the slopes of the linear segments, while
the location of the hinges is determined by the b} variables. Although they
obtained new state-of-the-art results on the CIFAR-10 and CIFAR-100 data
sets (Krizhevsky, 2009), beating the high-performing NIN (Lin et al., 2013),
unlike PReLUs (He et al., 2015a), their image classification experimentation
did not include the challenging ILSVRC data set (Russakovsky et al., 2015).
Thus, the relative performance between these similar techniques cannot be
evaluated.

5.2.5 RReLU Activations. In order to address the overfitting problem as-
sociated with the PReLU (He et al., 2015a), the randomized rectified lin-
ear unit (RReLU) was proposed in a Kaggle National Data Science Bowl
Competition (National Data Science Bowl |Kaggle, 2016). For RReLUs, the
negative components of the activation function are randomly selected from
a uniform distribution during training. During testing, they are averaged,
similar to the Dropout technique (Hinton et al., 2012; Srivastava et al., 2014)
before being fixed, thus allowing them to obtain a deterministic result (Xu
et al., 2015). Mathematically, the PReLU can be expressed as

F") = max(x{”, 0) + 2{"” min(x{"’, 0), (5.11)

where A,(c") denotes the randomized sampled parameter on the kth channel
of the nth example. On the CIFAR-10 and CIFAR-100 (Krizhevsky, 2009),
and a private plankton classification data set (National Data Science Bowl |
Kaggle, 2016), their classification accuracy outperformed the ReLU (Nair &
Hinton, 2010), LReLU (Maas et al., 2013), and PReL.U activations (He et al.,
2015a).

5.2.6 ELU Activations. While ReLUs (Nair & Hinton, 2010), LReLUs
(Maas et al., 2013), and PReLUs (He et al., 2015a) are all nonsaturating and
thus lessen the vanishing gradient problem (Bengio et al., 1994), only ReLUs
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ensure a noise-robust deactivation state (Nair & Hinton, 2010; Clevert, Un-
terthiner, & Hochreiter, 2016); however, they are nonnegative and thus have
a mean activation larger than zero. To deal with this, Clevert et al. (2016)
proposed the exponential linear unit (ELU), which has negative values to
allow for activations near zero, but also saturates to a negative value with
smaller arguments. Since the saturation decreases the variation of the units
when deactivated, the precise deactivation argument becomes less relevant,
thereby making ELUs robust against noise. Formally:

f(x) = max(x, 0) + min(r ("), 0), (5.12)

where A is a predetermined parameter that controls the amount an ELU
will saturate for negative inputs. ELUs sped up DCNN learning and led
to higher classification accuracy when compared to other activation func-
tions such as ReLUs. In particular, among other successes, they set a new
record on the CIFAR-100 data set (Krizhevsky, 2009), beating the previous
best obtained by the fractional max pooling DCNNs proposed by Graham
(2014), and they obtained encouraging convergence speeds on the stimu-
lating ImageNet (Russakovsky et al., 2015). Even though these activations
provide promising image classification results and considerably reduce the
computational strain on DCNNS, further experimentation using them, in
particular with different architectures, is required.

5.2.7 SReLU Activations. Despite the successes of ReLUs (Nair & Hin-
ton, 2010), LReLUs (Maas et al., 2013), and PReLUs (He et al., 2015a),
they all have a limited ability to learn nonlinear transformations. Specif-
ically, since all of these activations are convex, they are not able to learn
nonconvex functions. Although the APL activation can approximate con-
vex functions, it does so with inappropriate constraints that undermine its
representation ability. To alleviate these concerns, taking inspiration from
psychophysics and neural sciences, Jin et al. (2015) proposed a new type of
activation, called the S-shaped rectified linear unit (SReLU). This activation
combines three linear functions and performs a R — R mapping with the
following mathematical expression:

tiy +a,?(xi — t{), Xi = tiy
f) =1 %, t>x >t (5.13)

Bt —t), x>t

where {t/, al, tf, aﬁ} are the learnable parameters used to model each indi-
vidual SReLU activation unit, and the subscript i indicates that SReLUs are
allowed to vary on different input channels. Briefly, in the positive direc-
tion, when the inputs exceed the threshold ¢!, the slope of the right line
of the activation curve is given by a/, while ¢ represents a symmetrical
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threshold in the negative direction. For inputs smaller than !, the left line
of the activation curve calculates the outputs. For inputs within the range
(t!, 1), the outputs are linear functions with a slope of one and no bias. SRe-
LUs were incorporated into the state-of-the-art models of Lin et al. (2013)
and Szegedy, Liu, et al. (2015), and the empirical results attained, after sev-
eral image classification experiments on the MNIST (LeCun et al., 1998),
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and ILSVRC (Russakovsky
et al., 2015) data sets, illustrated their superiority over several other high-
performing activations (Nair & Hinton, 2010; Goodfellow et al., 2013; Maas
et al., 2013; He et al., 2015a; Xu et al., 2015). With this promising outcome,
it is interesting to think about whether future deep learning advances will
also rely on further inspiration from psychophysics and neural sciences.

5.2.8 Maxout and Probout Activations. Goodfellow et al. (2013) proposed
an alternative to the several rectification-based activation units called Max-
out, which are activations that output the maximum value from a set of
inputs. For a given input x € R?, a hidden layer in a Maxout network im-
plements the following activation function,

T
flx) = max x W...ij + bij, (5.14)

where W € Rk and b € R™* are both learnable parameters. Specif-
ically, for a DCNN, a Maxout feature map can be attained by taking
the maximum across kaffine feature maps, which corresponds to a sub-
space pooling across channels in additional spatial locations. In addition to
achieving state-of-the-art image classification results on several popular
benchmarks, the authors provided empirical proof that Maxout was well
suited for DCNN training with Dropout (Hinton et al., 2012; Srivastava
et al., 2014), and that it aided in model averaging and DCNN optimiza-
tion. Despite this, it suffers from the same faith as ReLUs (Nair & Hinton,
2010), LReLUs (Maas et al., 2013), and PReLUs (He et al., 2015a) concerning
their inability to learn nonconvex functions; furthermore, it requires a large
number of extra parameters, which increases the storage and memory costs
and requires a significantly longer training time (Jin et al., 2015).

As mentioned above, Maxout (Goodfellow et al., 2013) performs a sub-
space pooling operation over a group of linear transformations, and this
makes it partially invariant to variations in the input. In order to improve
this invariance property and maintain the desirable properties of Maxout
units, Springenberg and Riedmiller (2013) proposed a probabilistic vari-
ant of Maxout, called Probout, in which the maximum operator is replaced
with a probabilisti sampling technique. On the CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) and SVHN (Netzer et al., 2011) data sets, Probout ac-
tivations achieved better classification results compared to Maxout acti-
vations; however, in comparison to their competitors, they have a greater
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computational burden due to their inherent yet computationally expensive
probability calculations.

5.2.9 Analysis and Outlook. Using the correct nonlinear activation for a
specific task improves the classification accuracy and computational perfor-
mance of a DCNN. Although our initial models used sigmoid activations,
they saturate during backpropagation, which exterminates the local gradi-
ent, and they negatively affect network dynamics during gradient descent,
since their outputs are nonzero centred. This led to the development of the
popular ReLU (Nair & Hinton, 2010) activation, which significantly accel-
erates network convergence. However, when large gradients pass through
them during network training, they may irreversibly perish, and this led to
other innovations such as the ReLU (Maas et al., 2013), PReLU (He et al.,
2015a), and APL activations (Agostinelli et al., 2014). Despite the promis-
ing empirical results of these methods, further investigation to gauge their
reliability on diverse classification tasks still needs to be conducted. ELU
Clevert et al. (2016) and SReL.U (Jin et al., 2015) activations have addressed
other shortcomings of ReLUs, such as their positive mean activation and
inability to deal with nonconvex functions, but their consistency is also rel-
atively uncertified. Furthermore, activations such as Maxout and Probout
appear particularly well suited to training DCNNs with Dropout (Hinton
et al., 2012), but they require a high number of parameters and can be com-
putationally exorbitant, therefore advocating the need for further innova-
tions in this area.

From this analysis, we can conclude there is no clear-cut solution for
which activation to use for a specific task, but a trial-and-error approach
starting with ReLUs and progressing to the other activations and that mon-
itors their shortfalls against required performance can be adopted. While an
interesting future direction is to combine the use of different activation func-
tions within the same DCNN model for their diverse benefits, a detailed the-
oretical analysis of why our current rectification-based activations succeed
empirically is also of paramount importance. To supplement this, although
it has been proven by Baldi and Sadowski (2013, 2014) that any continuous,
twice-differentiable piece-wise activation function, of which ReLUs are a
special case, can be used in conjunction with the Dropout model averag-
ing technique (Hinton et al., 2012; Goodfellow et al., 2013; Srivastava et al.,
2014; see sections 5.4.1 and 5.4.3), the effect of the different activations on
the generalization characteristics of Dropout or even other regularization
techniques still needs to be fundamentally analyzed, thus opening up the
door for stimulating future work.

5.3 Supervision Component. After the innovative work of Krizhevsky
etal. (2012), the preceding unsupervised DCNN pretraining methods (Ran-
zato et al., 2006, 2007; Weston et al., 2008; Ahmed et al., 2008; Jarrett et al.,
2009; Lee et al., 2009; LeCun et al., 2010) were largely abandoned for fully
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supervised training. In general, learning in DCNNSs is achieved by mini-
mizing a specific loss function, with the most common classification loss
being the softmax loss (Krizhevsky et al., 2012; Lin et al., 2013; Goodfellow
et al., 2013; Zeiler & Fergus, 2013, 2014; Chatfield et al., 2014; Simonyan &
Zisserman, 2014; Szegedy, Liu, et al., 2015; Szegedy, Vanhoucke, et al., 2015;
He et al., 2015a, 2015b). In this section, we briefly introduce this loss and
deal with some motivations for using alternative losses in DCNNSs.

5.3.1 Softmax Loss. The softmax activation function is widely used in the
last fully connected layer of DCNNSs, owing to its simplicity and probabilis-
tic interpretation. When this activation function is combined with the cross-
entropy loss (or multinomial logistic regression) in the last fully connected
layer of a DCNN, they form the extensively used softmax loss. Formally, for
the ith input feature x; that has a corresponding label y;, the softmax loss can
be written as

1 1 efvi
L:NZLi:NZ—log(w>, (5.15)

i i

where the jth element (j € [1, K], K is the number of classes) of the vector
of class scores f is represented by f;, and N is the amount of training data.
For this loss, f is typically the activations of a fully connected layer W; thus,
fy:» can be denoted as f,, = WyTlxi in which W), is the y;th column of W (Liu,
Wen, Scut, Yu, & Yang, 2016).

5.3.2 Contrastive and Triplet Losses. In order to enforce further intra-
class compactness and interclass separability, and thus reinforce DCNNs
with more discriminative information, the contrastive loss, also called the
margin-based loss (Hadsell, Chopra, & LeCun, 2006), and the triplet loss
(Schroff, Kalenichenko, & Philbin, 2015), were independently proposed
(Liu, Wen et al., 2016). The contrastive loss was first implemented in a
Siamese DCNN to reduce the dimensionality of data by learning mappings
that are invariant to geometric distortions (Hadsell et al., 2006), while the
embedded DCNNSs described by Weston et al. (2008), combined it with the
hinge loss for image classification and semantic role labeling tasks. Other
image classification-related applications that have used the contrastive loss
as part of DCNN architecture include face representation (Sun, Chen, Wang,
& Tang, 2014) and visual similarity for visual search (Bell & Bala, 2015),
where the contrastive loss was used in combination with the softmax loss.
Furthermore, it was also used for image instance retrieval (Lin, Morere,
Chandrasekhar, Veillard, & Goh, 2015), in which the authors proposed a
double-margin loss. For the contrastive loss, the loss function runs over
pairs of samples, which is dissimilar to conservative systems, where it is
the run over individual samples. Formally, as introduced by Hadsell et al.
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(2006), for a pair of input vectors }Tl) , )Tz) € I, with binary label Y(if Y =0
)71) and }72) are deemed similar and Y = 1 if dissimilar), the general form of
the contrastive loss is

P .
L=>"LW.(Y.X{.X;)) = (1= Y)Ls(Djy) + YLp(Djy). (5.16)

i=1

where Dy (Yl) , }Tz) ) is written as Dy (to shorten notation), (Y, }Tl) , YZ )1 is the
ith labeled sample pair, the partial loss function for a pair of similar points
and dissimilar points is represented by Ls and Lp, respectively, and P rep-
resents the number of training pairs.

The triplet loss for DCNNs (Schroff et al., 2015), which was previously
used for large-margin nearest-neighbor classification (Weinberger, Blitzer,
& Saul, 2005), requires training samples in multiples of three. It minimizes
the distance between a shared identity anchor sample and a positive sam-
ple while maximizing the distance between the anchor sample and a nega-
tive sample that has a different identity. Formally, for face classification, the
minimized loss L is then

N
L= TIF() = FEDIE = 1F&) = FEDIE +aly, (5.17)

where 7, is an anchor image of a specific person, xf are positive images of
the same person, negative images of any other person are denoted by x, « is
the enforced margin between positive and negative pairs, and N is the cardi-
nality of all the possible triplets in the training set. For the triplet loss, the an-
chor image needs to be closer to all other positive images of the same person
than itis to any negative image of any other person. By combining the triplet
loss with embedded image mappings, optimized by a DCNN, to a compact
Euclidean space in which distance corresponds directly to face similarity,
Schroff et al. (2015) achieved the best published results on the popular La-
belled Faces in the Wild (LFW; Huang, Ramesh, Berg, & Learned-Miller,
2007) and YouTube Faces (Wolf, Hassner, & Maoz, 2011) databases. These
results were a significant improvement compared to the previous best error
rates reported in the literature (Sun, Wang, & Tang, 2015).

The LWF data set (Huang et al., 2007) was introduced in 2007 and has
since become the de facto academic standard for face verification and iden-
tification (Sun, Chen et al., 2014; Taigman, Yang, Ranzato, & Wolf, 2014;
Schroff et al., 2015; Zhou, Cao, & Yin, 2015). Initially, most face verifica-
tion and identification attempts on this data set used individual or com-
bined feature extractors, with the leading systems (Barkan, Weill, Wolf, &
Aronowitz, 2013; Cao, Wipf, Wen, Duan, & Sun, 2013; Chen, Cao, Wen,
& Sun, 2013) using greater than 10,000 image descriptors. However, more
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recently, fully supervised DCNNs have been at the heart of most of the
top-achieving systems, as illustrated by Table 3. The table compares the
accuracy of the highest-performing DCNNs against human-level perfor-
mance (HLP; Kumar, Berg, Belhumeur, & Naya, 2009). For significance, only
the results published in academic papers are included; further results, in-
cluding non-DCNN techniques, are deliberated in the data sets-related sur-
vey paper (Learned-Miller, Huang, RoyChowdhury, Li, & Hua, 2016). De-
spite these successes, the mechanisms used by the human brain to be able
to easily identify and recognize faces, in a short period of time, are still
at large. Interestingly, it may be possible that the central nervous system
has evolved to process faces in a different fashion when compared to ob-
jects (Leibo, Mutch, & Poggio, 2011), and thus future face classification and
recognition DCNN models may need to incorporate this type of evidence.

5.3.3 Large Margin Loss. Asserting that a larger angular similarity will
lead to larger angular seperability between learned features, which in turn
will result in the generation of more discriminative features, Liu, Wen et al.
(2016) introduced an angular margin between the input feature vector and
the weight matrix for a more general, large-margin softmax loss, which they
called the large-margin softmax (L-Softmax). Formally, the L-Softmax is de-
fined as

Wy [EARACH!
L— = — 1 1
softma e RUATICRE S (>-18)
in which
cos(mf), 0<6<7%
v(0) = , (5.19)

where 6 is the angular margin, a® is the input vector, w; is the jth column of
the weight matrix, and m regulates the margin among classes. In addition
to fashioning more discriminative features, other desirable advantages of
the L-Softmax include the fact that its geometric interpretation is very clear
and that it partially avoids overfitting. When applied to image classification
tasks, it outperformed the original softmax loss (for the same architecture)
and achieved results on par with the state of the art for the MNIST data set. It
also accomplished new state-of-the-art results on the CIFAR-10 and CIFAR-
100 data sets (LeCun et al., 1998; Krizhevsky, 2009; Bulo & Kontschieder,
2014; Liang & Hu, 2015; Liu, Wen, et al., 2016).

While others have proposed using a specially designed hybrid loss func-
tion that combines the negative logarithm of a normalized value with
weighted errors of varying order to improve the adversarial robustness
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(see section 6.4) of DCNNs (Zhao & Griffin, 2016), the application of the
L-Softmax loss to this specific challenge is still at large. Specifically, since
this loss results in the generation of more discriminative features, its ap-
plication to the challenge of adversarial examples will contribute to under-
standing if holistic changes to the way we train DCNNs are required to
address their remaining challenges.

5.3.4 L2-SVM Loss. While SVMs have previously been used in combina-
tion with CNNs (i.e., by replacing the softmax layer with an SVM) for im-
proved classification performance (Huang & LeCun, 2006; Lee et al., 2009;
Coates et al., 2011), the downside is that the lower-level features of the CNN
are not learned with respect to the SVM’s objective. To address this issue,
Collobert and Bengio (2004) and Nagi, Di Caro, Giusti, Nagi, and Gam-
bardella (2012) proposed joint training at the lower levels by, respectively,
introducing new cost functions to integrate SVMs with MLPs and CNNs.
Inspired by this, Tang (2013) also proposed integrating SVMs with DCNNs
but they replaced the standard SVM hinge loss (L1-SVM) with the L2-S5VM
loss (Hinton, 1989). When compared to the L1-SVM loss, the L2-SVM loss
is differentiable and penalizes errors more profoundly. SVMs were initially
formulated for binary classification. Therefore, given training samples and
their corresponding labels (x,, y,).n=1,...,N,x, € RP t, € {—1, +1}, the
L2-SVM minimizes the squared hinge loss, denoted formally by the follow-
ing unconstrained optimization problem,

N
o1 2
min inW +C E max (1 — w’x,t,,0)", (5.20)

n=1

where W is the weight connecting the penultimate layer to the softmax
layer. The class label for test data x can be predicted by arg max; (w!x)t,
while for a multiclass SVM (Vapnik, 1995), where the output of the kth SVM
is denoted as ax(x) = w'x, the predicted class is arg max; ax(x). When com-
pared to the conventional softmax loss, for the same DCNN architecture, the
L2-SVM loss showed improved classification performance on the CIFAR-10
data set (Krizhevsky, 2009), obtaining results comparable with the current
(at the time) state of the art, which utilized a much more complex model that
included contrast normalization layers and Bayesian parameter fine tuning
(Snoek, Larochelle, & Adams, 2012).

5.3.5 Analysis and Outlook. The softmax loss is an extremely popular
choice for CNNs owing to its simplicity, probabilistic elucidation, and the
intuitive output it produces. However, to furnish CNNs with the ability to
extract more discriminative features, other losses, such as the contrastive
loss (Hadsell et al., 2006) and the triplet loss (Schroff et al., 2015), were sug-
gested. Although these losses encourage discriminative learning, a conse-
quent problem is that in theory, the number of required training pairs or
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triplets can go up to O(N?), where N is the total number of training samples.
Moreover, for a large data set, like the data set used for the ILSVRC (Rus-
sakovsky et al., 2015), which consists of over 1 million images, the subset
of training samples will require careful online or offline selection for both
of these losses. This led to the recently proposed coupled clusters loss (see
Liu, Tian, Yang, Pang, & Huang, 2016), which accelerated network conver-
gence and stabilized the training process. Although it produced promising
vehicle reidentification results, more traditional classification tasks are yet
to be tested. Despite its benefits and well-established and acceptable perfor-
mance, the softmax loss does not explicitly encourage intraclass compact-
ness and interclass separability. It uses the cosine distance between classes
for its classification score; thus, the predication of a label for a given input is
determined predominantly by the angular similarity to each class. This in-
spired the proposal of the L-Softmax loss (Liu, Tian et al., 2016), which still
needs to be commissioned on DCNN's open issues (see sections 5.3.3 and
6.4). Integrating the L2-SVM loss, traditionally associated with SVMs, facil-
itated improved classification accuracy, but like the coupled clusters loss,
its consistency across diverse tasks remains unknown.

Despite the innovations summarized above, the softmax loss remains a
reputable choice for traditional academic benchmarks such as MNIST (Le-
Cun et al., 1998) and ImageNet (Russakovsky et al., 2015), or other tasks
where a single output class (label) per image is required. For real-world
tasks requiring multiple classes per image, per class multiple logistic re-
gression is recommended as a starting point. Based on the requirements of
the task, experimentation with the other losses mentioned in this section
can be explored. For example, fine-grained classification could benefit par-
ticularly by employing the coupled clusters loss, while for face verification
or other verification tasks not constrained by computational resources, the
triplet loss could produce excellent verification performance. In closing, it is
recommended that future work should challenge the development of novel
loss functions that address DCNN's open issues, supporting the work pro-
posed by Zhao and Griffin (2016), while the use of other multiclass SVM
formulations, or even other classifiers such as RBFs, which further investi-
gate the performance improvements presented by LeCun et al. (1998) and
Tang (2013), should also be explored.

5.4 Regularization Mechanisms. DCNNs are very expressive models,
capable of learning exceptionally complicated relationships between their
inputs and outputs. However, with limited training data, even for larger
data sets (Krizhevsky et al., 2012), many of these complicated mappings
are due to sampling noise. Thus they exist in the training set rather than
in the test set, irrespective of whether they are drawn from the same data
distribution. This leads to overfitting, which can be mitigated by regulariza-
tion. Although the easiest and most common method to reduce overfitting
is data augmentation (LeCun et al., 1998; Simard et al., 2003; Ciresan et al.,
2011, 2012; Krizhevsky et al., 2012; Montavon et al., 2012; Chatfield et al.,
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2014), it requires a larger memory footprint and comes at a higher com-
putational cost (Szegedy, Liu, et al., 2015). Furthermore, despite the reg-
ularization effects of several other diverse methods, including L; and L,
regularization, stopping training early, stochastic pooling (Zeiler & Fergus,
2013), unique activation functions (He et al., 2015a; Xu et al., 2015), model
averaging (Goodfellow et al., 2013; Srivastava et al., 2014), novel loss func-
tions (Liu, Wen et al., 2016), and soft-weight sharing (Nowlan & Hinton,
1992), the successful application of Dropout (Hinton et al., 2012; Srivastava
et al., 2014) to DCNNs (Krizhevsky et al., 2012) has led to its extensive use
and inspired numerous improvements. We next provide a formal descrip-
tion of Dropout and discuss several of its variants. We also introduce some
of the latest regularization developments that can be used in conjunction
with Dropout.

5.4.1 Dropout. In Dropout (Hinton et al., 2012; Srivastava et al., 2014),
each unit of a layer’s output is retained with probability p; else, it is
set to zero with probability 1 — p, with 0.5 being a common value of p
(Krizhevsky et al., 2012; Hinton et al., 2012). When Dropout is applied to
a fully connected layer of a DCNN (or any DNN), the output of the layer
r=[r,r.,...,1r4]", canbe expressed as

r=mxa(W,), (5.21)

where » denotes the element-wise product between a binary mask vector m
and the matrix product between the input vector v = [v1, 02, ..., v,]" and
the weight matrix W (with dimensions d x 1), followed by a nonlinear ac-
tivation function, 4. In equation 5.16, the binary mask vector has size d, and
each element j is drawn independently from a Bernoulli(p) distribution m;,
while the biases are included in W and fixed to one for simplicity (Wan et al.,
2013). The primary benefit of Dropout is its proven ability to significantly
reduce overfitting by effectively preventing feature coadaptation (Hinton
et al., 2012); it is also capable of attaining model averaging (Goodfellow
etal.,2013; Srivastava et al., 2014). Further, to the various improvements and
Dropout variants discussed below, Wager, Wang, and Liang (2013) high-
lighted its adaptive regularization characteristics; its efficiency and ensem-
ble learning characteristics were examined by Warde-Farley, Goodfellow,
Courville, and Bengio (2013), while Baldi and Sadowski (2013, 2014) pro-
vided a detailed mathematical analysis of its static and dynamic properties
and characterized its averaging properties for DNNs by formal recursive
equations.

5.4.1.1 Fast dropout. Despite the highlighted advantages of Dropout
(Hinton et al., 2012; Srivastava et al., 2014), the actual sampling or train-
ing of multiple models makes training slower. Furthermore, in the case of
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nonredundant data, depending on the how the data are sampled, train-
ing efficiency may be further reduced. To assuage these concerns yet still
achieve the advantages of Dropout training without actually sampling, and
thus use all the data efficiently, Wang and Manning (2013) proposed Fast
Dropout. Fast Dropout training is accomplished by sampling from or in-
tegrating with a gaussian approximation, which is justified by the central
limit theorem and empirical evidence. Specifically, when Fast Dropout is
integrated with the commonly used softmax loss, the loss can be computed
by the following loss function:

lyl
L =EenNuy) |:Z ti log(softmax(S),-):| , (5.22)

i=1

where samples are taken directly from an input gaussian approximation,
with S € R/, and the set y represents all the possible predications. Fast
Dropout can also be integrated with the hinge loss traditionally associated
with SVMs (see section 5.3.4) and the Maxout technique (Goodfellow et al.,
2013) and has produced promising results on regression, document classi-
fication, and, most significant, noteworthy speed gains on image classifi-
cation tasks benchmarked on the CIFAR-10 (Krizhevsky, 2009) and MNIST
data sets (LeCun et al., 1998). Although training with backpropagation is
possible with certain limitations (see section 5.4.3), further research to as-
sert its benefits and shortcomings when applied to different DCNN archi-
tectures is still required.

5.4.1.2 Adaptive dropout (standout). Since Dropout (Hinton et al., 2012)
uses a constant probability to randomly drop units, it is conceivable that
even units that can make confident predictions for the presence or ab-
sence of a feature will be dropped 50% (if p = 0.5) of the time. Motivated
to improve this, Ba and Frey (2013) presented a Dropout variation, called
Standout, in which a binary belief network that shares parameters with
a deep network computes the Dropout probability for each hidden unit.
More specifically, the dropout probability is adaptive, and unlike in stan-
dard Dropout, where the unit activity is masked by a Bernoulli(p) distribu-
tion m, with probability 0.5, in Standout it depends on the input activities

P(m;=1l{a;:i < j}) = f (Z ”j,ia,i) : (5.23)

ii<j

where the weight from unit i to unit j in the adaptive dropout network is
denoted by 7;; and f(-) is a sigmoidal function, with f: R — [0, 1]. With
this method, units that make confident predications for the presence of
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features have a higher probability of being retained, and vice versa. The
paper’s empirical work on popular classification benchmarks did not in-
clude experiments on DCNNs; however, since Standout is designed to work
with backpropagation, using stochastic gradient descent, it seems plausible
to incorporate it into DCNN architecture for image classification—related
applications.

5.4.1.3 Multinomial dropout and evolutional dropout. Asserting that stan-
dard Dropout (Hinton et al., 2012) resulted in suboptimal convergence and
that it was more logical to use nonuniform multinomial sampling proba-
bilities for different neurons and their associated features, Li, Gong, and
Yang (2016) freshly proposed multinomial dropout. More specifically, to
determine the optimal Dropout probabilities rather than the original tech-
nique that determined them independently and identically and to jus-
tify the application of multinomial sampling to shallow learning systems,
they formally established a risk bound for stochastic optimization with
multinomial dropout. This allowed them to attain, by minimizing a sam-
pling reliant factor from the risk bound, a distribution-dependent dropout.
This distribution-dependent dropout demanded sampling probabilities
that were based on the second-order statistics of the data distribution. Based
on this multinomial distribution-dependent dropout, they proposed an ef-
ficient yet adaptive Dropout version called Evolutional Dropout, with the
objective of solving the deep learning issue of internal covariate shift, which
is discussed further in section 5.5.3.

The dropout probabilities for Evolutional Dropout can be computed by
the following expression,

/L Z’]’.q_l[xl 2]
i=1,...,d, (5.24)

pi= =1
IRNEDNRNOE

where the probabilities p! evolve as the output layers’ distribution evolves
(hence, the name Evolution), and the outputs of the /th layer, for a mini-
batch of m examples is represented by X' = (X',..., X! ). On popular
image classification benchmarks such as MNIST (LeCun et al.,, 1998),
CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer et al.,
2011), they provided empirical proof that these latest Dropout additions
lead to faster convergence and smaller testing error when compared to
vanilla Dropout, advocating the need for further investigation.

5.4.1.4 Spatial dropout. In an object localization application that used a
DCNN, the authors found that applying regular Dropout beforea 1 x 1 con-
volution layer (see the paper for detailed architecture) increased the training
time but did not prevent overfitting. Thus, they proposed Spatial Dropout
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(Tompson, Goroshin, Jain, LeCun, & Bregler, 2015). Specifically, for a given
convolutional feature tensor, with dimensions 7 s x height x width, they
performed only # f.ts Dropout and used the entire feature map to extend the
Dropout value. Subsequently, adjacent pixels in a dropped-out feature map
were either all zero (omitted) or all active. Initial results indicate that Spatial
Dropout is well suited to a data set that has a small number of training sam-
ples, thus making it a good candidate to reduce overfitting for smaller data
sets, where generalization is usually an issue. Furthermore, although the
method demonstrated promising results in human pose and joint motion
estimation, further work is warranted for classification-specific tasks. In
particular, its application to fine-grained classification seems conceivable,
since the technique recovers information lost during the pooling operation
without losing the computational gains achieved by pooling.

5.4.1.5 Nested dropout. To learn ordered representations of data in which
different dimensions have different degrees of importance, such that the in-
formation contained in each dimension of the representation decreases as
a function of the dimension index according to a predefined decay func-
tion, Rippel et al. (2014) proposed Nested Dropout. Nested Dropout ran-
domly draws unit indices from a geometric distribution. Rather than inde-
pendently drop units with a predefined probability, as in standard Dropout
(Hinton et al., 2012) it omits all the units that follow the drawn number.
More specifically, for a representation space with dimension K, a distribu-
tion pB(-) defined over the representation index subset S, = {1,...,0},b =
1,...,K has the characteristic that if the jth unit appears in a particular
mask, then all the preceding units 1, ..., j — 1, do so as well, thereby allow-
ing the jth unit to rely on them. Thus, while Dropout enforces a distribution
over each individual unit in a model, Nested Dropout assigns a distribution
over nested subsets of representation units. Inspired by its application to
unsupervised autoencoders (Rippel et al., 2014), Finn et al. (2015) used it to
train, by standard backpropagation, compact DCNNSs that adapt to differ-
ent tasks and data complexity.

5.4.1.6 Max pooling dropout. Dropout was initially designed to work on
the fully connected layers of deep architectures (Krizhevsky et al., 2012;
Hinton et al., 2012; Wan et al., 2013), with little attention paid to the other
layers. Motivated by this, empirical work by Wu and Gu (2015) found that
the effect of Dropout on the max pooling layers of DCNNS is equivalent
to randomly picking an activation based on a multinomial distribution at
training time, which is similar in nature to stochastic pooling (Zeiler & Fer-
gus, 2013). Thus, to get a more accurate approximation of averaging all pos-
sible Dropout units, they proposed a probabilistic weighted pooling scheme
instead of the commonly used max pooling. For the proposed scheme, the
pooled activity of all activations in each region is computed by
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where the pooling region j at layer [ is represented by R?), and p; is the
probability computed by

Pr(ag.lﬂ) /.(l) =pi=pg" " (i=1,2,...,n), (5.26)

in which p is the retaining property, g =1 — p is the dropout probability,
and i is an index in the multinomial distribution. The proposed scheme is ca-
pable of regularization and model averaging similar to the effect of Dropout
(Srivastava et al., 2014) and Maxout (Goodfellow et al., 2013). For classifica-
tions tasks on the MNIST (LeCun et al., 1998) and CIFAR-10 and CIFAR-100
(Krizhevsky, 2009) data sets, their method outperformed max pooling and
scaled max pooling, while they also found that Dropout on the max pool-
ing layers outperformed the stochastic pooling technique (Zeiler & Fergus,
2013), discussed in section 5.1.2.2.

5.4.2 DropConnect. Another popular generalization of Dropout (Hinton
etal., 2012) is DropConnect (Wan et al., 2013), which, rather than randomly
dropping a subset of activations, as in traditional Dropout, randomly drops
a subset of the weights with probability 1 — p. As with Dropout, DropCon-
nect is suitable for the fully connected layers of DNNs (DCNNs included)
only. Formerly, using the same notation as equation 5.16, the output of a
DropConnect layer can be expressed as

r=a((MxW),), (5:27)

where M is a binary mask matrix that encodes the connection information of
the weights, drawn from a Bernoulli (p) distribution m;;. During the training
process, each element of the mask is drawn independently for each sam-
ple, thus resulting in a different connectivity for each example observed.
Furthermore, during this process, the biases are also masked out. During
inference, samples are drawn from a 1D gaussian approximation through
moment matching and are averaged and presented to the next layer after
being passed through the activation layer.

The DropConnect paper compared the image classification performance
of Dropout and DropConnect on several popular classification bench-
marks and found that DropConnect outperformed Dropout on the MNIST
(LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009), and SVHN (Netzer
et al., 2011) data sets, while on the NORB data set (LeCun et al., 2004),
Dropout produced better results. Moreover, when they combined vari-
ous DCNN s trained with DropConnect into ensembles, motivated by the
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voting scheme presented by Ciresan et al. (2012), they achieved new state-
of-the-art results on the SVHN, MNIST and NORB, and CIFAR-10 data sets,
respectively, beating the previous best results of Zeiler and Fergus (2013),
Ciresan et al. (2012), and Snoek et al. (2012). Although there have been sev-
eral high-performing DCNNSs since (see Table 5), the DropConnect model,
which used data augmentation, still holds the record for the lowest classi-
fication error on the famous MNIST benchmark. Since the empirical work
of Wan et al. (2013) was conducted only on small data sets, Smirnov, Tim-
oshenko, and Andrianov (2014) extended the comparison and found that
Dropout provided better regularization than DropConnect on the much
larger ILSVRC 2013 (Russakovsky et al., 2015). Figure 11 illustrates the dif-
ference between a feedforward fully connected network without Dropout,
with Dropout, and with DropConnect. As illustrated, in a DropConnect net-
work, the connections with their associated weights are randomly dropped
rather than the nodes.

5.4.3 Recent Regularization Advances. Further to the model regularization
techniques mentioned in the introduction to this section, another mostly
uncharted alternative is to regularize a DCNN'’s output distribution. One
of the signs of overfitting is when a model assigns all class probabilities to a
single class from the training set. These confident estimates usually resem-
ble low-entropy output distributions. To deal with this, Szegedy, Vanhoucke
et al. (2015) introduced label smoothing regularization (LSR), which main-
tains a realistic ratio between the unnormalized log probabilities (logits) of
erroneous classes by estimating, during training, the marginalized conse-
quence of label dropout. This averts the model from allocating a complete
likelihood for each training case. The LSR technique can be considered the
equivalent of replacing a single cross-entropy loss with a pair of losses, the
second of which looks at a prior distribution and penalizes the deviation
of the predicted label relative to it. Inspired by the regularization effect of
LSR, confident output distributions are also penalized by Pereyra, Tucker,
Chorowski, Kaiser, and Hinton (2017), who present a confidence penalty
based on maximum entropy supplemented by uniform and unigram label
smoothing. Their technique improves several state-of-the-art models on a
wide variety of tasks, which include image classification. Recently another
output regularization technique, which added noise to the output layer, was
also proposed (Xie, Wang, Wei, Wang, & Tian, 2016), hinting at a possible
new trend to tackle overfitting.

5.4.4 Analysis and Outlook. A suitable way to regularize a model is to
average the results from several different networks; however, for large DC-
NNs, the computational resources required to do this will be astronomical.
This led to the presentation of Dropout (Hinton et al., 2012), which provided
a means to roughly merge an exponential number of DCNNs in an effec-
tive manner (Hinton et al., 2012; Goodfellow et al., 2013; Srivastava et al.,
2014), and this contributed to numerous empirical successes that stimulated
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a) Fully connected network

b) Connections to be dropped ¢) Nodes to be dropped
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Figure 11: Difference between fully connected network layers without Dropout
(a), with Dropout (b, d), and with DropConnect (c, e).

researchers to advance the technique further and investigate and mitigate
its inadequacies.

To deal with the training inefficiencies associated with standard
Dropout, a Fast Dropout (Wang & Manning, 2013) method capable of pro-
viding DCNNs with significant speed gains during training and inference,
together with more stability, was proposed. However, the downside of this
approach is that training during the backward pass of backpropagation
is more complicated, while the forward pass remains straightforward. A
possible solution to mitigate this is to train a DCNN with standard Dropout
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for simplicity and use Fast Dropout only during inference for computa-
tional speed gains; further work to simplify the process is still required.
Standout (Ba & Frey, 2013) was implemented to reduce the risk of drop-
ping units that presented assertive predications of features, but as with
Fast Dropout and Spatial Dropout (Tompson et al., 2015), although they
have shown promising results for other architectures and tasks, further in-
vestigation focusing on their application to image classification tasks tack-
led by DCNN:s is still required. In particular, using them for discriminative
fine-tuning, after knowledge transfer is an interesting avenue requiring fur-
ther investigation. Evolutional Dropout (Li et al., 2016), which has adaptive
characteristics similar to Standout, can improve the convergence charac-
teristics and improve the classification performance of DCNNs; however,
as with Standout and Max pooling Dropout (Wu & Gu, 2015), the comple-
mentary probability computations add to the computational burden of the
systems that use them. Whilst DropConnect (Wan et al., 2013) allows for the
training of large models without overfitting, it is slower than models that
utilize Dropout or no Dropout.

Thus, from this analysis, it can be concluded that despite the promis-
ing empirical results of the several dropout variants described in this
section, further research to firmly establish them is still required. In par-
ticular, the technique can benefit the most from further innovations that
focus on reducing the computational costs of systems that utilize it. More-
over, given that real intelligence is highly adaptive in nature, it is predicted
that future work will incorporate adaptive physiognomies, similar to Stand-
out and Evolutional Dropout. On the theoretical side, to supplement the
work by Wager et al. (2013), Wade-Farley et al. (2013) and, most signifi-
cant, Baldi and Sadowski (2013, 2014), and further promote the application
of Dropout, further theoretical analysis justifying the reasons for its suc-
cesses is still required. In particular, its generalization properties are yet to
be proven with acceptable mathematical precision. In fact, all its variants
will benefit from such scrutiny. Another promising avenue regarding fur-
ther analysis, briefly touched on by Baldi and Sadowski (2014), is to inves-
tigate the duality and connections between spiking or stochastic neurons
and Dropout, since there is a possibility that these can be used during learn-
ing to accomplish the same objectives of this game-changing regularization
technique.

Although output regularization techniques are still in their infancy for
DCNNs, the initial results are encouraging, and given that the techniques
introduced are generally suitable and orthogonal to many other regular-
ization approaches such as Dropout, further work along these lines is
encouraged.

5.5 Optimization Techniques. In this section, we evaluate some of
the important optimization techniques, after first examining their require-
ments.
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5.5.1 Gradient-Based Learning. In fully supervised DCNN:S, the loss func-
tion, which is in most cases the softmax loss (Krizhevsky et al., 2012; Good-
fellow et al., 2013; Lin et al., 2013; Zeiler & Fergus, 2013, 2014; Simonyan &
Zisserman, 2014; Chatfield et al., 2014; Szegedy, Liu, et al., 2015; Szegedy,
Vanhoucke et al., 2015; He et al., 2015a, 2015b), is usually minimized us-
ing some form of stochastic gradient descent (SGD; Bottou, 1998, 2010). For
this technique, the gradient is evaluated using the popular backpropaga-
tion algorithm (Ciresan et al., 2011; Krizhevsky et al., 2012; Wan et al., 2013;
Goodfellow et al., 2013; Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014;
Szegedy, Vanhoucke et al., 2015; Szegedy, Liu, et al., 2015; He et al., 2015b;
Srivastava et al., 2015a; Choromanska, Henaff, Mathieu, Arous, & LeCun,
2015). While gradient descent, made popular by Rumelhart et al. (1986),
was used in many of the early CNNs (LeCun et al., 1989a, 1989b; LeCun
et al., 1998), increases in data size—consider MNIST (LeCun et al., 1998)
versus ILSVRC (Russakovsky et al., 2015)—and its related computational
complexity have led to the popularization of SGD, which is a tremendous
simplification of the traditional method (Bottou, 2010). Instead of precisely
computing the gradient, a single randomly selected sample (in practice,
a mini-batch of samples) is used to estimate it for each iteration, thereby
making the process naturally stochastic. Significantly, SGD can process ex-
amples online (or on the fly) since it does not need to recall which exam-
ples were observed in past iterations (Choromanska et al., 2015). Further-
more, standard SGD can be implemented in parallel, across multiple GPUs,
for further optimization and improved processing speeds, particularly for
large-scale machine learning applications (Zinkevich, Weimer, Li, & Smola,
2010; Recht, Re, Wright, & Niu, 2011; Dean et al., 2012; Zhuang, Chin, Juan,
& Lin, 2013; Bengio, 2013; Paine, Jin, Yang, Lin, & Huang, 2013). While we
have given a brief introduction here, further details can be gleaned from the
abundance of literature available on this optimization technique. In partic-
ular, Bottou (1998, 2010) presents a detailed analysis on SGD; Qian (1999),
Zeiler (2012), Duchi, Hazan, and Singer (2011), and Kingma and Ba (2014)
present other gradient descent-based optimization algorithms, while sev-
eral of these alternatives are surveyed and compared by Sutskever, Martens,
Dahl, and Hinton (2013). Despite the heavy use of gradient-based optimiza-
tion techniques for DCNNs and image classification in general, the question
remains whether these algorithms are intrinsically flawed, leading to some
of the known challenges with DCNNS5s (see section 6). Thus, further work to
understand the inner workings of our models and, in particular, our opti-
mization techniques still needs to be conducted.

5.5.2 Enhanced Initialization Schemes. Poor initialization of DCNN pa-
rameters, which are typically in the millions (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; Taigman et al., 2014; Szegedy, Liu, et al., 2015),
and in particular their weights, can hamper the training process because of
the vanishing/exploding gradient problem (Bengio et al., 1994), and hinder
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convergence. Thus, their initialization is extremely critical (Sutskever et al.,
2013; Simonyan & Zisserman, 2014; He et al., 2015a; Mishkin & Matas, 2016).
Here we briefly introduce selected representative initialization schemes.
Saxe, McClelland, and Ganguli (2013); Sussillo and Abbott (2014), Hin-
ton, Vinyals, and Dean (2015), Romero et al. (2015), and Srivastava (2015a,
2015b) can be referred to for other appropriate techniques.

5.5.2.1 Xavier initialization. Glorot and Bengio (2010) evaluated how
backpropagated gradients and activations varied across different layers;
based on these considerations, they proposed a normalized initialization
scheme that essentially adopted a balanced uniform distribution for weight
initialization (He et al., 2015a). For this initialization scheme, the initial
weights are drawn from a uniform or gaussian distribution, with a zero-
mean and precise variance. As Glorot and Bengio (2010) recommended, the
following variance can be used:

2
My + 1,

Var(W_Init) = (5.28)

where W_Init represents a specific neuron’s distribution at initialization, #,
is the number of neurons feeding into the variance, and n, represents the
number of neurons furnished by its output. Thus, for the original technique,
the number of input and output neurons controls the degree of initializa-
tion. Later, the scheme was referred to as “Xavier” initialization and simpli-
fied for easier implementation by Jia et al. (2014), in which the variance is
drawn from a distribution with zero mean, and variance computed by the
following expression:

1
Var(W_Init) = —. (5.29)

X

Xavier initialization promotes the propagation of signals deep into DNN5s
(DCNN s included) and has been shown to lead to substantively faster con-
vergence (Glorot & Bengio, 2010). Its main limitation is that its derivation
is based on the assumption that activations are linear, thus making it inap-
propriate for ReLU (Nair & Hinton, 2010) and PReLU activations (He et al.,
2015a).

5.5.2.2 Theoretically derived adaptable initialization. To circumvent this, He
et al. (2015a) derived a theoretically sound initialization that considered
these nonlinear activations. Specifically, their derivation, which closely fol-
lowed Glorot and Bengio (2010), led to the initialization of weights from a
zero-mean gaussian distribution whose standard deviation is \/2/n;, where
n is the number of connections of the response and [ is the layer index.
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Furthermore, they initialize the biases to zero. They showed empirical proof
that this initialization scheme was suited to training extremely deep mod-
els, while Xavier initialization was not.

5.5.2.3 Standard fixed initialization. Another method made popular by
Krizhevsky et al. (2012) is to initialize the weights for each layer from a
zero-mean gaussian distribution, with a fixed standard deviation—0.01 in
Krizhevsky et al. (2012)—and set the biases of different layers to either a
constant one or zero. However, while Krizhevsky et al. (2012) found that
this initialization scheme complimented ReLU activations (Nair & Hinton,
2010) and accelerated learning, others have found that for very deep mod-
els, it hinders convergence due to the magnitude of the gradients or the ac-
tivations in the final layers (Simonyan & Zisserman, 2014; He et al., 2015a;
Mishkin & Matas, 2016).

5.5.2.4 Layer sequential unit variance initialization. After its inception, the
Xavier initialization method (Glorot & Bengio, 2010) was generalized only
to ReLUS (Nair & Hinton, 2010) by He et al. (2015a), but not to other non-
linear activations like the hyperbolic tangent or Maxout (Goodfellow et al.,
2013) activations. Moreover, the initial theoretical derivation did not cover
the entire spectrum of DCNN layers such as max pooling (Ranzato et al.,
2007) and local response normalization (Krizhevsky et al., 2012). However,
instead of deriving a new theoretical formulation to cover all the remaining
activation and DCNN layers, Mishkin and Matas (2016) presented a data-
driven weight initialization scheme called layer-sequential unit-variance
(LSUV) initialization. Briefly, they preinitialize the weights of the convolu-
tional and inner product layers by filling the weights with gaussian noise,
with unit variance. Next, they use QR or single value decomposition (SVD)
to decompose the weights to an orthonormal basis, motivated by Saxe et al.
(2013), and then replace them with one of the components. Thereafter, they
estimate the output variance of each of the affected layers, from the first to
the final layer, normalizing the weights so that the variance is equal to one.
On ImageNet (Russakovsky et al., 2015), CIFAR-10 (Krizhevsky, 2009), and
MNIST (LeCun et al., 1998), their fast initialization technique facilitated the
training of DCNN’s and led to results comparable to the state of the art, out-
performing other sophisticated systems (Srivastava et al., 2015a; Romero
et al.,, 2015) also designed for optimization.

5.5.2.5 Analysis and outlook. To escape the vanishing/exploding gradient
problem (Bengio et al., 1994) and thus promote network convergence and
to mitigate the challenges of training DCNNs usually imposed with non-
convex loss functions (Choromanska et al., 2015), a considerable amount of
research has gone into ensuring adequate network initialization. Xavier ini-
tialization (Glorot & Bengio, 2010), which is commonly employed to initial-
ize DNNs, facilitates fast convergence and is known to work well in many
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applications (Mishkin & Matas, 2016). However, since Xavier initialization
is inappropriate for rectification-based nonlinear activations, it is not well
suited to modern DCNNs, which utilize them exhaustively. Furthermore, it
does not promote the convergence of extremely deep networks. These defi-
ciencies were addressed by the more robust scheme presented by He et al.
(2015a); however, in extremely deep networks, although they showed im-
proved convergence characteristics, they could not demonstrate that their
initialization method led to improved accuracy, probably due to degrada-
tion (He et al., 2015b; He & Sun, 2015; Srivastava et al., 2015a, 2015b), which
also encumbers standard fixed initialization. To counter this, Simonyan and
Zisserman (2014) pretrain a DCNN shallow enough to have its weights ran-
domly initialized and use this network to train deeper architectures; how-
ever, this naturally requires more training time, is more expensive compu-
tationally, and may even lead to poor convergence, advocating the need
for other alternatives. The recently proposed LSUYV initialization technique
(Mishkin & Matas, 2016) produced promising empirical results; however,
despite the practicality of the proposed data-driven approach, it still neces-
sitates computing batch statistics, is not established on large data sets, and
entails intricate procedures.

Thus, from this we can conclude that the key factors to consider when
selecting an initialization scheme are the activation function to be used,
the network depth, which could hamper classification accuracy due to
degradation, the computational budget available, the size of the data
set, and the tolerable complexity of the required solution. If the last two
factors do not impose system constraints, LSUV is appealing (see section
5.5.3.2), while standard fixed initialization remains a popular choice for
shallower networks (by today’s standards). For extremely deep networks,
experimentation with other schemes, such as those presented by Simonyan
and Zisserman (2014) and He et al. (2015a), which specifically monitor for
degradation, can be conducted. Upcoming work should focus on the de-
sign of generic initialization schemes that not only speed up training times
and maintain accuracy by tackling degradation but are also adaptable to
different models, irrespective of their depth and tasks irrespective of their
complexity, while a theoretical analysis of how our current schemes opti-
mize our modern models is also advocated. Furthermore, notwithstanding
the computational implications, the optimization effect of unsupervised
pretraining, supporting the work conducted by Saxe et al. (2013) and
Simonyan and Zisserman (2014), also necessitates further experimentation.

5.5.3 Batch Normalization. In addition to having a large number of pa-
rameters, the training of DCNNS is convoluted by a phenomenon known
as internal covariate shift, which is caused by changes to the distribution
of each layer’s inputs because of parameter changes in the previous layer.
This phenomenon has severe consequences, which include slower training
due to lower learning rates, the need for careful parameter initializations,
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and complexities when training DCNNs with saturating nonlinear acti-
vations. To reduce the consequences of internal covariate shift, Ioffe and
Szegedy (2015) proposed a technique known as batch normalization (BN).
This technique introduces a normalization step, which is simply a nonlin-
ear transform applied to each activation, that fixes the means and variances
of layer inputs. To allow integration with SGD (Bottou, 1998, 2010), which
also uses mini-batches during training, BN computes the mean and vari-
ance estimates after mini-batches rather than over the entire training set.

Specifically, for a mini-batch B = {x;,_,}, with activation x and dimen-
sion 7, the mini-batch mean and variances are first computed by up <
s ixjand of < 1300 (v — up)’, respectively. The jth dimension is
then normalized by the following expression,

. Xj—Hp

.X'j — —,
[ 2
aB+e

where € is a constant, introduced for arithmetical stability. The normalized
values £ are then scaled and shifted for enhanced representation by the fol-
lowing expression:

(5.30)

where ¢ and B are learnable parameters. The result of the second transfor-
mation Y is propagated to other layers of the network.

5.5.3.1 Application to other DCNN models and empirical summary. Batch
normalization allows for higher learning rates, which traditionally resulted
in exploding or vanishing gradient issues (Bengio et al., 1994), and this sig-
nificantly accelerates training times. Furthermore, it has a regularization ef-
fect similar to Dropout (Hinton et al., 2012; Srivastava et al., 2014), and when
combined with the Inception model (Szegedy, Liu, et al., 2015), there were
significant training speed gains without an increase in overfittting. When
combined into an ensemble, batch-normalized DCNNSs achieved the best re-
ported results on the ImageNet data set (Russakovsky et al., 2015), passing
the previous best by He et al. (2015a), which was already considered better
than human-level performance; however, this was later superseded by the
improved Inception model (Szegedy, Vanhoucke et al., 2015), the residual
networks of He et al. (2015b), and the batch normalized Inception-residual
networks of Szegedy et al. (2016).

In fact, this is clearly illustrated in Table 4, which compares the perfor-
mance of batch normalization to selected representative DCNNs on the Im-
ageNet data set (Russakovsky et al., 2015), starting from the revolutionary
work of Krizhevsky et al. (2012) up to the current state of the art (Szegedy
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Table 4: DCNN Performance on the ImageNet Data Set.

Top 5
Code Name and Reference Specific Contributions Error (%)
AlexNet (Krizhevsky et al., DCNN model across parallel GPUS, 153
2012) innovations including Dropout, data
augmentation, ReLUs, and local
response normalization
Z&F-net (Zeiler & Fergus, Novel visualization method; larger 11.7
2014) convolutional layers compared to
Krizhevsky et al., 2012
SPP-net (He et al., 2014) Spatial pyramid pooling to allow for 8.06
flexible image size
VGG-net (Simonyan & Increased depth, more convolutional 7.32
Zisserman, 2014) layers, 3 x 3 convolutional filter
GoogLeNet (Szegedy, Liu, Novel inception architecture, very large 6.67
etal., 2015) network, dimensionality reduction
PReLU-net (He et al., 2015a) PReLU activation functions and a robust 4.94
initialization scheme
BN-Inception (Ioffe & Batch normalization combined with 4.82
Szegedy, 2015) inception architecture
Inception-V3 (Szegedy, Factorized convolutions, aggressive 3.58
Vanhoucke et al., 2015) dimensionality reduction
ResNets (He et al., 2015b) Residual functions/blocks integrated 3.57
into DCNN layers
BN-Inception-ResNet BN, Inception architecture integrated 3.08

(Szegedy et al., 2016)

with residual functions

Notes: The entry in bold represents the state of the art or lowest known published error
rates for the data set. The italicized entries represent results obtained in competition.

et al., 2016). For the ILSVRC, there are three reporting measures, the top
1 and top 5 error rates, and hierarchical criteria; however, since the top 5
metric is the simplest and is best suited to the benchmark, it has been used
exclusively since 2012. The italicized numbers represent results obtained in
competition, while Russakovsky et al. (2015) discuss further results, espe-
cially from early successes, together with a detailed analysis on this chal-
lenging classification benchmark in their comprehensive survey.
Furthermore, BN was also combined with the NIN model (Lin et al.,
2013) and Maxout activations (Goodfellow et al., 2013) to form a complex
batch-normalized Maxout network in network (MIN) module and network,
which is illustrated by the top and bottom halves of Figure 12, respectively
(Chang & Chen, 2015). Despite its sophistication, it outperformed the high-
performing RCNNs and achieved state-of-the-art results (for no data aug-
mentation), on the MNIST and CIFAR-100 benchmarks and a new state of
the art (for with and without data augmentation) on the CIFAR-10 data set
(LeCun et al., 1998; Krizhevsky, 2009; Liang & Hu, 2015). The NIN model
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Figure 12: Batch-normalized MIN (Chang & Chen, 2015).

(Lin et al., 2013) was also extended to incorporate batch-normalized (loffe
& Szegedy, 2015) activations prior to Maxout activations (Goodfellow et al.,
2013), resulting in the Maxout network in Maxout network (MIM) model
(Liao & Carneiro, 2016), which is similar in architecture and complexity to
the MIN model presented by Chang and Chen (2015). The paper showed
empirical proof that using BN led to model preconditioning, allowing for
the use of larger learning rates, and thus faster convergence, while still
maintaining accuracy.

Table 5 compares the performances of several state-of-the-art or high-
performing DCNNs on the MNIST data set (LeCun et al., 1998). The results
obtained in the clear blocks were by single models that did not use data aug-
mentation, while the results in red were the state-of-the-art performance for
this configuration at the time of their respective papers. As illustrated, for
this configuration, MIN obtained state-of-the-art results, which were very
close to the lowest error rates achieved by ensemble-based models supple-
mented with data augmentation (shaded blocks). Despite several DCNN
successes since the DropConnect paper (Wan et al., 2013), this model still
holds the record for the lowest known published error rate on this popular
benchmark.

5.5.3.2 Batch renormalization. Despite the effectiveness of BN in acceler-
ating the training of DCNN:, its efficiency is challenged for small mini-
batches or mini-batches that do not contain independent samples. Asserting
that these shortcomings are due to the activations being computed differ-
ently during training and inference, loffe (2017) replaced BN with batch
renormalization, which ensures that the outputs computed by a model are
reliant not on the entire mini-batch but on the individual examples through-
out the course of training and inference. Specifically, for models that have
batch-normalized layers, loffe (2017) augments the model by applying per
dimension affine transformations, of which they keep the parameters fixed,
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Table 5: DCNN Performance on the MNIST Data Set.

Model and Reference Brief Description Error (%)
Pretrained DCNN (Ranzato et al., Energy-based unsupervised 0.60
2006) pretraining, followed by DCNN
DCNN-NN (Jarrett et al., 2009) Dual CNN feature extractor followed 0.53
by dual neural network
FitNets (Romero et al., 2015) Thin, deep networks with 0.51
intermediate-level hints to guide
training
Stochastic pooling (Zeiler & Stochastic rather than deterministic 0.47
Fergus, 2013) pooling procedure
NIN (Lin et al., 2013) MLP integrated into DCNN 0.47
architectur
Maxout networks (Goodfellow Maxout activation functions 0.45
etal., 2013)
Highway Networks (Srivastava Learning gate mechanism for 0.45
et al., 2015b) regulating DCNN information
flow
Deeply supervised nets (Lee Companion objective function, 0.39
etal., 2015) feature quality feedback
MIM (Liao & Carneiro, 2016) Maxout network in Maxout network 0.35
RCNN (Liang & Hu, 2015) Recurrent connections in 0.31
convolutional layer
Tree+Max-Avg pooling (Lee etal.,  Tree pooling followed by gated 0.31
2016) average max pooling
Batch-normalized MIN (Chang & BN, Maxout activations, NIN 0.24
Chen, 2015) architecture
Multicolumn DCNN (Ciresan Multicolumn DCNNSs, with data 0.23
etal., 2012)? augmentation (elastic distortions)
DropConnect (Wan et al., 2013)? Ensemble of DropConnect 0.21

networks, with data
augmentation (no elastic
distortions)

Notes: The italicized entries represent the state of the art for this configuration at the time

of their publication data set.

?Ensemble-based models that used data augementation.

to the already normalized network activations, thereby allowing the fol-
lowing layers to observe the precise activations that would be generated by
the inference model. Thus, this extension of BN enforces a per dimension
correction to ensure correlation between the activations of the training and
inference models, and this can completely eliminate overfitting for image
data sets that have a biased label distribution.

5.5.3.3 Analysis and outlook. Internal covariate shift, which imposes
lower learning rates and cautious parameter initializations, is a major
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problem in DNNs, and DCNNs are not immune to it. BN was conceptu-
alized to address this. It can significantly reduce training times by reducing
the total number of iterations required for convergence; during inference,
since the means and variances can be doubled into the convolutional layer,
the effect of the overhead generated is eliminated. Various researchers have
confirmed its ability and incorporated it into their models, as illustrated in
section 5.5.3.1. However, notwithstanding this, it adds 30% computational
overhead and requires an additional 25% of parameters per iteration (Ioffe
& Szegedy, 2015). This has stimulated others to improve this aspect of the
technique. The LSUV initialization scheme of Mishkin and Matas (2016)
shares the same unit variance normalization procedure as BN and can be
regarded as a weight initialization scheme supplemented by BN applied to
the first mini-batch. The method efficiently decorrelates layer activations by
performing orthonormalization of weights matrices, and this makes it more
computationally efficient per iteration when compared to BN. However, for
large data sets like ImageNet (Russakovsky et al., 2015), its results are er-
ratic, and although BN is still the preferred choice, other attempts to reduce
the computational encumber and additional parameter requirements per
step imposed on systems that use BN are still necessary.

Furthermore the efficacy of BN diminishes for mini-batches constrained
by size and devoid of independent samples, and although this can be mit-
igated by utilizing batch renormalization (loffe, 2017), which is easy to
implement and significantly improves the training of constrained mini-
batches, the method introduces extra hyperparameters that require tuning
and is still new, requiring further investigation. While future work should
also attempt to reduce the intricacy of the complex models (Chang & Chen,
2015; Liao & Carneiro, 2016) that use BN, this should be supplemented by
a theoretical justification of why BN leads to faster convergence. Other at-
tempts to solve the problem of internal covariate shift such as novel train-
ing procedures are also plausible. One such fresh attempt is Evolutional
Dropout proposed by Li et al. (2016; see section 5.4.1.4), which adapts
dropout sampling probabilities, computed on-the-fly from a mini-batch of
examples, to the evolving distributions of layers outputs rather than us-
ing identical and independent probabilities as in standard Dropout (Hinton
etal., 2012).

5.5.4 Skip Connections. Even though increasing network depth generally
leads to increased performance (see Table 2), improving the classification
accuracy of DCNNSs is not as straightforward as simply adding layers (Sri-
vastava etal., 2015a). As mentioned in section 4.4, some of the complications
include overfitting, an increased computational burden and memory foot-
print, and degradation (Krizhevsky et al., 2012; Szegedy, Liu, et al., 2015; He
et al., 2015b; He & Sun, 2015; Srivastava et al., 2015a; Romero et al., 2015).
In particular, degradation remains a key challenge. Thus, overcoming it is
imperative in order to investigate the benefits of very deep networks for



2414 W. Rawat and Z. Wang

several applications; this has led to work that focuses on skip (or shortcut)
connections within DCNNSs.

5.5.4.1 Highway networks. Highway networks (Srivastava et al., 2015a,
2015b) use a learnable gating mechanism, inspired by the long short-Term
memory (LSTM) recurrent neural networks (RNNs) presented by Hochre-
iter and Schmidhuber (1997), for regulating information flow across several
layers without degradation. The output y of a highway network block is
computed by

y=H(x, Wi1) - T (x, Wr) + x - C (x, W) , (5.32)

where H (parameterized by Wy) is a nonlinear transformation on its asso-
ciated input x, and T and C represent transform gates and carry gates, re-
spectively. In the equation, the layer indices and biases have been excluded
for simplification. These networks can have hundreds of layers, since their
architecture enables optimization regardless of depth. On MNIST (LeCun
et al., 1998) and CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), the authors
obtained competitive results in comparison to the best-performing DCNNSs,
even though their networks had many fewer parameters compared to the
thin, wide, and shallower (yet still deep) DCNN model compression net-
works of Romero et al. (2015). Following this, a similar grid-based LSTM
model was proposed for a wider range of tasks (Kalchbrenner, Danihelka,
& Graves, 2015), which included language translation, character predica-
tion, sequence memorization, and, most meaningful, image classification.

5.5.4.2 Residual networks. Residual networks (He et al., 2015b), intro-
duced in section 4.4, also address the degradation problem, using skip con-
nections. The main idea of residual networks is to learn an additive residual
function with respect to an identity mapping that is based on the preceding
layers inputs, accomplished by attaching an identity shortcut connection.
Residual modules perform the following computation:

v =h(xi) + F(xi, Wik zk=x ). (5.33)
xip1 = f (), (5.34)

where the input to the /th residual module is denoted by x;, W represents
its weights and biases, K is the number of layers in a module, F represents
the residual function such as a stack of convolutional filters, f is the oper-
ation that follows element-wise addition (see Figure 6), and / is an iden-
tity mapping of the form & (x;) = x;. Residual networks have brought about
some empirical success; in particular, they have performed exceptionally
well on the demanding ImageNet challenge (Russakovsky et al., 2015), as
illustrated by Tables 2 and 4.
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5.5.4.3 Improved residual networks. To further enhance the residual learn-
ing framework, He, Zhang, Ren, and Sun (2016) found that it was possible to
create a direct path for propagating information throughout the network in
both the forward and backward pass rather than within residual units alone
(He et al., 2015b). This propagation made training easier and was accom-
plished by using identity mappings as the shortcut connections coupled
with after-addition activation. Considering equations 5.33 and 5.34, if f is
also an identity mapping of the form x;;1 = y;, by substituting equations
5.33 into 5.34, the input feature to the /th residual module can be computed

by
xp = x; + F(xi, Wy). (5.35)
If equation 5.35 is solved recursively, this translates to

L-1
xe=x+ Yy F(xi, W), (5.36)

i=l

where L represents residual modules that are deeper than preceding shal-
lower modules represented by [. Significantly, this result presents two key
attributes. First, the features of deeper residual modules, denoted by xi,
can be represented as the features of any shallower module, denoted by
x1, supplemented by a residual function (317" F). Second, the features of
deeper residual modules comprise the summation of all the previous resid-
ual functions. They empirically established their improved technique by
easily training a network that had 1000 layers and demonstrated improved
accuracy. Furthermore, they experimented with several other optimization
techniques from Hinton et al. (2012), Srivastava et al. (2014), Szegedy, Liu,
etal. (2015), and Srivastava et al. (2015a) and found that these had a negative
effect on information propagation and hindered optimization. Notwith-
standing this, they found that BN (loffe & Szegedy, 2015) and ReLU (Nair
& Hinton, 2010) preactivations improved the performance of their previous
generation residual networks (He et al., 2015b). Moreover, shortcut residual
connections were also combined with the Inception architecture (Szegedy,
Liu, et al., 2015; see section 5.1.1.2) and BN (Ioffe & Szegedy, 2015) for im-
proved image classification performance (Szegedy et al., 2016).

Given that the extremely deep residual networks of He et al. (2016)
were slow to train, their depth was reduced and width increased in a new
variant called wide residual networks (WRNs; Zagoruyko & Komodakis,
2017). These WRNs were much shallower since they consisted of 16 layers
compared to the 1000 of He et al. (2016), yet they outperformed all the
previous residual models in terms of efficiency and accuracy and set new
state-of-the-art results on the CIFAR-100 (Krizhevsky, 2009; Szegedy, Van-
houcke et al., 2015), and SVHN (Netzer et al., 2011; Lee et al., 2016) data sets.
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However, these were later superseded by the shortcut technique introduced
in section 5.5.4.4.

5.5.4.4 Densely connected convolutional networks. The recently proposed
densely connected convolutional networks (Huang, Liu, Weinberger, & van
der Maaten, 2016) extend the idea of skip connections by connecting in the
usual feedforward modus each layer with every other layer in the network.
Thus, the feature maps of all the previous layers are used as the inputs for
each succeeding layer. Formerly, using notation similar to equation 5.35, the
Ith layer accepts the preceding layer’s feature maps, Xy, ...X;_1, as its input:

Xp = H]([Xo, X1,X2... X1_1]), (537)

where [Xg, X1, X2 ... x;_1] represents the feature map concatenation of the
maps generated in layers 0, .../ — 1, and H;, which follows the improved
residual networks (He et al., 2016), is a compound function of ReLUs (Nair
& Hinton, 2010), preceded by BN (loffe & Szegedy, 2015), and is followed
by convolution. On popular image classification benchmarks, including the
challenging ImageNet (Russakovsky et al., 2015), they obtained accuracy
comparable to residual networks (He et al., 2016) but required significantly
fewer parameters. Furthermore, they tackle degradation (He et al., 2015b;
He & Sun, 2015; Srivastava et al., 2015a, 2015b) and the vanishing gradient
problem (Bengio et al., 1994), while also promoting feature reuse to reduce
computation.

Table 6 compares the performance of several DCNNs on the popular CI-
FAR (Krizhevsky, 2009) and SVHN (Netzer et al., 2011) data sets. The re-
sults reported in the CIF-10 (with DA) column are by DCNN models that
used data augmentation. For CIFAR-100 and SVHN, where data augmenta-
tion is less popular, the results of the models that used data augmentation
are in italics. As illustrated, WRNs (Zagoruyko & Komodakis, 2017) sur-
passed several other state-of-the-art DCNNs on these tasks (CIFAR-100 and
SVHN), and when DCNNs were combined with ELUs (Clevert et al., 2016),
they obtained the lowest classification error at the time on the CIFAR-10
data set without data augmentation. On CIFAR-10, with data augmenta-
tion, WRNss obtained results very close to the second lowest error rate ob-
tained by the fractional max pooling method presented by Graham (2014;
see section 5.1.2.2), even though they did not use the same extreme data
augmentation techniques. The densely connected convolutional networks
of Huang, Liu et al. (2016) superseded all of these results, illustrating the ex-
ceptional performance of the technique and the importance and empirical
successes of shortcut connections within our current models.

5.5.4.5 Analysis and outlook. As researchers began experimenting with
deeper networks for improved image classification performance, they
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Table 6: DCNN Performance on CIFAR-10 and CIFAR-100, and SVHN Data
Sets.

CIE-10
Model Brief Description CIE-10 (with DA) CIE-100 SV-HN
DropConnect (Wan Optimized DCNNs 18.7 9.32 - 1.94
etal., 2013) with dropped
connections
Stochastic pooling Stochastic rather than 15.13 - 42.51 2.80
(Zeiler & Fergus, deterministic pooling
2013) procedure
Maxout networks Maxout activation 11.68 9.38 38.57 2.47
(Goodfellow et al., functions
2013)
Probout (Springenberg  Probabilistic activation ~ 11.35 9.39 38.14 2.39
& Riedmiller, 2013) functions
NIN (Lin et al., 2013) MLP integrated into 10.41 8.81 35.68 2.35
DCNN architecture
Deeply supervised nets Companion objective 9.78 8.22 34.57 1.92
(Lee et al., 2015) function, feature
quality feedback
DCNN + APL Adaptive piecewise 9.59 7.51 34.40 -
(Agostinelli et al., linear activations
2014)
All-CNN DCNN with 9.08 441 33.71 -
(Springenberg, convolutional layers
Dosovitskiy, Brox, & only
Riedmiller, 2014)
RCNN (Liang & Hu, Recurrent connections 8.69 7.09 31.75 1.77
2015) in convolutional
layers
Doubly convolutional =~ Double convolutional 8.58 7.24 30.35 -
nets operation
MIM (Liao & Carneiro, Maxout network in 8.52 29.20 1.97
2016) Maxout network
Batch-normalized MIN BN, Maxout 7.85 6.75 28.86 1.97
(Chang & Chen, activations, NIN
2015)
Tree+Max-Avg pooling Tree pooling followed 7.62 6.05 32.37 1.69
(Lee et al., 2016) by gated average
max pooling
ELU (Clevert et al., Exponential linear 6.55 - 24.28 -
2016) activation functions
Tree based priors DCNN with learned - 36.85 -
(Srivastava & tree priors
Salakhutdinov, 2013)
FitNet-LSUV (Mishkin  FitNet architecture 6.06 27.66
& Matas, 2016) with LSUV

initialization
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Table 6: Continued.

CIE-10
Model Brief Description CIE-10 (with DA) CIE-100 SV-HN
Deep Attention DCNNSs with feedback - 9.22 33.78 -
Selective Net connections
(Stollenga, Masci,
Gomez, &
Schmidhuber, 2014)
FitNets (Romero etal., Thin, deep networks - 8.39 34.04 2.42
2015) with intermediate
level hints for training
Highway networks Learning gates for - 7.6 32.33 -
(Srivastava et al., regulating data flow
2015b)
Deep residual networks Residual functions / - 6.43 - -
1 (He et al., 2015b) blocks integrated into
DCNN layers
Deep residual networks Residual blocks with - 4.62 22.71 -
2 (He et al., 2016) identity mappings
Fractional max pooling Fractional stochastic - 3.47 26.39 -
(Graham, 2014) version of max
pooling
WRNSs (Zagoruyko &  Residual blocks with - 417 20.50 1.64
Komodakis, 2017) increased width
Densely connected Interconnections 5.19 3.46 17.18 1.59
CNNs (Huang, Liu, between layers
et al., 2016)

Note: Entries in italics for CIFAR-100 and SVHN are the results of the models that used
data augmentation.

encountered what can still be regarded as an open challenge, commonly
referred to degradation (see section 4.4). An early attempt to counter
degradation was carried out by highway networks (Srivastava et al., 2015a,
2015b), which used gating shortcuts to effectively train very deep networks
(more than 100 layers), optimized by SGD (Bottou, 1998, 2010). However,
there are instances when the shortcuts are closed, preventing information
flow; furthermore, the gated shortcuts are data dependent and require a
number of parameters. Residual networks (He et al., 2015b, 2016) also al-
leviate the problem of degradation; however, in contrast to highway net-
works, they use identity-mapping shortcuts that are parameter free and
are always open, allowing for continuous information flow. Residual net-
works, which can contain greater than 1000 layers without diminishing
performance, have produced exceptional performance on localization, de-
tection, and classification tasks. Despite their successes, others have found
that there is significant redundancy in their extreme number of layers,
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and this causes them to take a superfluous long time to train, advocat-
ing the need for other alternatives. Along these lines, WRNSs (Zagoruyko
& Komodakis, 2017) demonstrated that shallower residual networks can
produce classification performance comparable to their extremely deep
counterparts (He et al., 2015b, 2016) and are several times faster to train;
however, their performance on the challenging ImageNet (Russakovsky
et al., 2015) was made available only this year, encouraging the need for
further experimentation with shallower yet wider convolutional networks.

Stochastic depth networks (Huang, Sun, Liu, Sedra, & Weinberger, 2016)
also challenged the layer redundancies of residual networks by bypass-
ing redundant layers with identity functions after stochastically drop-
ping them. These networks accomplished reduced classification error and
were faster compared to residual networks on the CIFAR-10 benchmark
(Krizhevsky, 2009); however, they are yet to be tested on the challenging Im-
ageNet, on which residual networks have significantly advanced the state
of the art. Furthermore, they require hyperparameter tuning. Densely con-
nected networks, which impose lower memory and computational con-
straints compared to residual networks, take shortcut connections to the
extreme by introducing direct connections between layers, but unlike resid-
ual networks, they are yet to be tested on diverse computer vision tasks
apart from image classification. Thus, although there has been progress to-
ward solving degradation, the techniques available currently are yet to be
firmly established. The empirical successes of residual networks on Ima-
geNet make them the most appealing choice; however, when combined
with Dropout (Hinton et al., 2012; Srivastava et al., 2014), they fail to con-
verge to acceptable solutions (He et al., 2016). Thus, future work focusing on
fundamentally changing the residual learning framework to work in con-
junction with Dropout and other regularization techniques is required. To
this end, WRNs show promising initial results.

Finally, despite the successful applications of the various shortcut con-
nections discussed here and their promising empirical results reported thus
far, a clear understanding of how they fundamentally improve the training
of DCNN:s is still devoid. Although some recent work has attempted to ad-
dress diverse characteristics of this challenge (Hardt & Ma, 2016; Li, Jiao,
Han, & Weissman, 2016; Littwin & Wolf, 2016), perhaps the most stimu-
lating explanation behind their success is that they break intrinsic symme-
tries in the loss landscapes of DCNNS, resulting in considerably simplified
landscapes, as observed by Orhan (2017). Specifically, for densely connected
convolutional networks (see section 5.5.4.4), the paper found that shortcut
connections cause discontinuities in the rescaling symmetry of the matrices
that connect the different layers of the network, while for other deep mod-
els, they cause discontinuities in the permutation symmetries of the neurons
at a specific layer. Furthermore, although other means of breaking symme-
tries also facilitate performance improvements when training deep models,
they found that shortcut connections promote additional benefits further to
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their symmetry-breaking physiognomies, and these include their ability to
deal with the vanishing or exploding gradient problem (Bengio et al., 1994).
Moreover, with regard to symmetry breaking, they also observed that dif-
ferentiated classes of neurons, perhaps like those used by the human brain
(Harris & Shepherd, 2015), are superior to undifferentiated neurons com-
monly used by artificial networks. Although this work provides a starting
point, further research is required to better understand the role of shortcut
connections in our models and to determine if the central nervous system
uses mechanisms similar to them for visual tasks.

5.5.5 Computational Cost Developments. It is well known that larger data
sets have contributed to the successes of deep learning (Krizhevsky et al.,
2012; Deng & Yu 2014; Zeiler & Fergus, 2014). However, the downside, par-
ticularly during training, is a greater computational burden. Coupled to
this is the fact that DCNN models have a tremendous number of parame-
ters, which has a negative effect on their storage and memory requirements
(Krizhevsky et al., 2012; Wan et al., 2013; Simonyan & Zisserman, 2014;
Szegedy, Vanhoucke et al., 2015; Szegedy, Liu, et al., 2015; He et al., 2015b;
Szegedy et al., 2016). As an example, the DCNN from Krizhevsky et al.
(2012) had 60 million parameters and took six days to train on two GPUs,
while the largest model presented by Simonyan and Zisserman (2014) con-
sisted of 144 million parameters, trained on four GPUs in two to three
weeks. Thus, a considerable amount of research has gone into reducing
computational costs and storage space requirements of DCNNs. We next
discuss some of the representative work in this regard.

5.5.5.1 Parallel computing. A considerable amount of effort (Zinkevich
et al., 2010; Recht et al., 2011; Dean et al., 2012; Zhuang et al., 2013; Paine
etal., 2013; Yadan, Adams, Taigman, & Ranzato, 2014; Krizhevsky, 2014) has
gone in to parallelizing the training of DCNNSs via model parallelism, which
entails the use of GPUs, multiple GPUs, GPU and CPU clusters, and data
parallelism, which incorporates improved optimization algorithms such as
asynchronous SGD (ASGD; Recht et al., 2011; Dean et al., 2012) and BN
(Ioffe & Szegedy, 2015). Yadan et al. (2014) utilized a hybrid parallelism
strategy that considered both model and data parallelism. They used a con-
figuration that shared the network’s computation and image mini-batch
split over four GPUs to reduce training time by greater than 2.2 times when
compared to a single GPU. Dean et al. (2012) introduced a new framework
for the parallel-distributed training of deep networks on a cluster of CPUs.
Within the framework, they introduced a new form of ASGD, called Down-
pour SGD, to support training a large number of model replicas. This frame-
work was also utilized by the top-performing system of Szegedy, Liu, et al.
(2015), and although they used a CPU-based implementation, they forecast
network convergence on several high-end GPUs as well, albeit with the es-
timated downside being higher memory use.
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Paine et al. (2013) also exploited model and data parallelism by using
GPUs for model parallelism and A-SGD (Recht et al., 2011; Paine et al.,
2013) for data parallelism and accomplished 3.2 times speed gains with
eight GPUs in comparison to a single unit; however, they lost significant ac-
curacy. Krizhevsky (2014) proposed two variants of SGD descent that par-
allelize the training of DCNNs by utilizing heavy data parallelism in the
convolutional layers and more model parallelism in the fully connected lay-
ers. On eight GPUs, the paper achieved 6.16 times speed gains with a negli-
gible change in accuracy. Asserting that this scheme was too sophisticated,
Simonyan and Zisserman (2014) achieved speed gains of 3.75 times on an
off-the-shelf GPU system, consisting of four GPUs relative to a single GPU.
However, even with this, it took two to three weeks to train a single net-
work, thus advocating the need for other solutions. More recently, Dettmers
(2016) proposed a large-scale GPU cluster, combined with improved par-
allelism algorithms for efficient DCNN parallelization (see section 6.3 for
further details). Even though this system produced successful classification
results, it lacks practicality for large-scale deployment.

5.5.5.2 Exploiting the convolution theorem and circular projections. By carry-
ing out the convolutional operation as element-wise products in the Fourier
domain, using fast Fourier transforms (FFTs) and recycling the same trans-
formed feature map numerous times, Mathieu et al. (2013) achieved signifi-
cant processing speed gains (up to two times) at the cost of a larger memory
footprint. This technique can easily be integrated with spectral pooling (see
section 5.1.2.5), and since the discrete Fourier transform (DFT) is performed
for both methods, there are negligible additional computational costs (Rip-
pel et al., 2015).

Independently, Cheng, Felix et al. (2015) and Cheng, Yu et al. (2015) also
used FFTs to speed up computation. However, in contrast to Mathieu et al.
(2013), who used the well-established convolution theorem to minimize the
processing time in the convolutional layers, they focused on speeding up
computation in the fully connected layers by imposing a circular rather
than a linear structure on weight matrices. More formally, given a fully con-
nected layer with 4 input and d output nodes, circular projections improve
the time complexity from O(d*) to O(d logd). Furthermore, their method
also benefits storage space and reduces the space complexity from O(d”)
to O(d). On MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009), and
ImageNet (Russakovsky et al., 2015), they achieved significant computa-
tional cost and storage space reductions, with minimal increases in classifi-
cation error. Following with the use of digital signal processing entrenched
techniques, Wang, Xu, You, Tao, and Xu (2016) proposed compressing
and reducing the computational costs of DCNNs by linearly uniting the
convolution responses of discrete cosine transform (DCT) bases after first
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treating the convolutional filters as images and then decomposing their rep-
resentations in the frequency domain.

5.5.56.3 Matrix manipulations. Denil, Shakibi, Dinh, and de Freitas (2013)
carried out an early attempt to alleviate the overparameterization of deep
networks (Hinton et al., 2012; Denton, Zaremba, Bruna, LeCun, & Fergus,
2014; Kim et al., 2015). Their technique, aimed at reducing neural network’s
free parameters (weights and biases), was based on representing the weight
matrix as a low-rank product of two smaller matrices. Therefore, by fac-
toring and controlling the rank of the weight matrix, they were able to
directly control the network’s parameterization. On the CIFAR-10 bench-
mark (Krizhevsky, 2009), they found that by predicting and thus eliminat-
ing the computation and storage space of 75% of the parameters, there was a
negligible effect on classification accuracy. Their method is complementary
to other DCNN advances such as Dropout (Hinton et al., 2012; Srivastava
et al., 2014) and Maxout activations (Goodfellow et al., 2013).

Spurred on by this, Denton et al. (2014) exploited the redundancy within
the convolutional layers and derived approximations to minimize compu-
tation. Specifically, they used monochromatic approximations in the first
convolutional layer and biclustering approximations with SVD in the sec-
ond convolutional layer. In both layers, they report speed gains between
2 and 2.5 times, with a 1% drop in performance, relative to their base-
line models. Furthermore, by applying truncated SVD, they reduced the
memory overhead and storage requirements of the fully connected lay-
ers and reported up to 13.4 times reduction in weights with less than 1%
loss in accuracy. Similar to this, Jaderberg, Vedaldi, and Zisserman (2014)
used filter approximations to approximate the convolutional filters and
followed this by using filter and data reconstruction techniques to recon-
struct the approximations with minimal error. In a scene text classification
application, they attained speed gains of 2.5 times with no loss in accu-
racy and 4.5 times with less than 1% drop in accuracy. Both Denton et al.
(2014) and Jaderberg et al. (2014) employ low-rank matrix factorization to
compress either a single or multiple layers; others who have employed
related techniques include Sainath, Kingsbury, Sindhwani, Arisoy, and
Ramabhadran (2013) and Lebedev, Ganin, Rakhuba, Oseledets, and Lem-
pitsky (2014).

Inspired by the redundancies in neural networks parameters highlighted
by Denil et al. (2013), Gong, Liu, Yang, and Bourdev (2014) proposed vec-
tor quantization as a higher-performing alternative to low-rank matrix fac-
torization (Sainath, Kingsburg, Sindhwani et al., 2013; Denton et al., 2014;
Jaderberg et al., 2014), for the compression of the matrices of the dense fully
connected layers. They were able to obtain impressive compression rates
(up to 24 times) without sacrificing more than 1% top 5 classification ac-
curacy on the challenging ImageNet data set (Russakovsky et al., 2015). In
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addition to Gong, Liu et al. (2014), various other methods based on vec-
tor quantization have been shown to achieve better compression than SVD.
These include circular projections (Cheng, Felix et al., 2015; Cheng, Yu et al.,
2015), hashing techniques (Chen, Wilson, Tyree, Weinberger, & Chen, 2015),
and tensor train decomposition (Oseledets, 2011; Novikov, Podoprikhin,
Osokin, & Vetrov, 2015).

5.5.5.4 Analysis and outlook. Our current state-of-the-art classification
models are deeply dependent on supervised training; however, this regi-
ment, has an inherent limitation in that it requires an exhaustive amount
of training data that significantly lengthens the training process and inflicts
space and memory complications. Although this can be mitigated by the
brute force approach of using CPU or GPU clusters, access to such sys-
tems is restricted to large organizations. To reduce computation and mem-
ory footprints, different aspects of DCNN computation can be carried out
using techniques firmly established in digital signal processing, such FFTs,
DFTs, DCTs, and the convolutional theorem. For these techniques, the com-
putation and memory footprints of either the convolutional operation or the
fully connected layers can be reduced. Although moving between domains
increases the complexity of our systems, given the successes described in
section 5.5.4.2, further research into hybrid DCNNs that make use of digital
signal processing-based fundamentals to improve not only computational
costs and memory footprints but also classification accuracy (see section
5.1.2.5) is vindicated. Manipulation of the weight matrices of both the con-
volutional and fully connected layers is another alternative to improve
computation efficiency and tackle the consequences of DCNN over param-
eterization; however, although further improvements forged from applied
mathematics are encouraged, they do not tackle the root cause of the prob-
lem. In summary, moving operations to the frequency domain and ma-
nipulating matrices can lead to improved computational characteristics;
however, all the techniques discussed in this section suffer from a loss in
accuracy, even if it is just marginal. Parallel computing approaches can pro-
vide the required accuracy; however, this comes with financial implications
preventing large-scale use and is not practical for large-scale adaptation.
Thus, further research to address these challenges is required. While we
have reviewed some of the early improvements in this section, the latest
trends to improve DCNN computation, supplemented by future recom-
mendations, are elaborated on in section 6.3.

6 Selected Open Challenges and Trends

Despite the promising image classification results obtained by DCNNS,
there are still challenges that need to be addressed. In this final section, we
address some of these, together with selected trends in recent work.
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6.1 Theoretical Justification and Internal Understanding. Despite the
empirical successes of DCNNS, the theoretical proof of why they succeed
is lacking. To this end, Mallat (2012) proved translation invariance and
deformation stability of the features extracted by scattering convolutional
networks. Wiatowski and Bolcskei (2015) persisted with the mathematical
analysis of the features extracted by DCNNSs, and they theoretically estab-
lished deformation stability and vertical translation invariance. Continuing
with the theoretical analysis, Basu et al. (2016) considered image classifi-
cation data sets where texture plays a significant role (Lazebnik, Schmid,
& Ponce, 2005; Filho, Luiz, Oliveira, & Britto, 2009; Oxholm, Bariya, &
Nishino, 2012), and they provided theoretical bounds on the use of DC-
NN for textural classification. Specifically, they used the theory of Vapnik-
Chervonenkis (VC) dimension (see Vapnik & Chervonenkis, 1971, for
details and Sontag, 1998, for the first application to ANNs) to demonstrate
that hand-crafted feature extraction creates low-dimensional representa-
tions. As a corollary to this, they derived the upper bounds on the VC di-
mension of DCNNs. Furthermore, there has also been investigation into
the internal operation and performance of DCNNS, such as the commonly
cited feature visualization technique presented by Zeiler and Fergus (2014).
Other visualization techniques, all with the intention of understanding the
internal mechanisms of DCNNSs, have also been proposed (Girshick, Don-
ahue, Darrell, & Malik, 2014; Yu, Yang, Bai, Yao, & Rui, 2014a, 2014b). Fur-
ther progress is dependent on both sound theoretical proof and practical
investigations that lead to improved understanding and performance.

6.2 Geometric Invariance. Although DCNNSs are robust against small-
scale deformations (Lee et al., 2009), their final representations are not geo-
metrically invariant (Ciresan et al., 2011; Gong, Wang, et al., 2014; Razavian
et al., 2014). Specifically, they are sensitive to global translations, rotations,
and scaling (Gong, Wang, et al., 2014). To address translation variances, Lee
et al. (2009) proposed probabilistic max pooling, while the MOP scheme of
Gong, Wang, et al. (2014) was shown to be robust against several geomet-
ric variances. Recently, the TI pooling scheme presented by Laptev et al.
(2016) efficiently handled rotations and scale changes and thus built trans-
formation invariance into DCNN architecture, while the spatial transformer
module proposed by Jaderberg et al. (2015) learned translation, scale, rota-
tion, and warping invariance. Thus, an interesting direction is to investigate
if further fundamental changes to DCNN architectures are required to im-
prove their universal robustness. Furthermore, despite the large number of
images available in modern data sets like ImageNet (Russakovsky et al.,
2015), it is still conceivable that our current data sets are not suitable for the
invariance tasks we now face. Thus, another promising direction is to col-
lect or generate new training data that do not necessarily lead to larger data
sets, similar to the trend we have seen over the last few years, but will facil-
itate the learning of DCNN features that contribute to more robust models.
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6.3 Toward Mobile Deployment. Despite several computational cost,
memory footprint, and storage reductions (see section 5.5.4), improving
DCNN:Ss in this regard continues to be an open area of research, especially
with the aim of deploying them on FPGAs, embedded systems, mobile de-
vices, and other devices with limited memory and battery constraints. Some
of the very recent developments in this regard include DCNN compression
and weight quantization, fast algorithms, GPU clusters with truncated rep-
resentations, and FPGA accelerated advances.

By using network pruning, weight quantization to enforce weight shar-
ing, and Huffman encoding for greater compression, Han, Mao, and Dally
(2016), introduced deep compression, which reduced the storage require-
ments of the model proposed by Krizhevsky et al. (2012) from 240 MB to
6.9 MB without any loss in accuracy. When benchmarked on CPUs, GPUs,
and mobile GPUs, they also obtained speed gains of between 3.0 and 4.2
times. Amuch more effective compression method, which introduced a new
DCNN Fire module (1 x 1 squeeze convolutional layer, followed by 1x1
and 3x3 convolutions) and SqueezeNet architecture, also experimented
with the model from Krizhevsky et al. (2012) reducing it to 4.8 MB with-
out any loss in accuracy (landola et al., 2016). Furthermore, when they ap-
plied deep compression to their model, with 6 bit weight quantization, they
managed a further reduction to 0.47 MB, also without any impact on the
classification error.

Another extreme quantization approach, which presented binary weight
(filters approximated with binary weights) and XNOR networks (binary
weights and binary inputs to convolutional layers), resulted in networks
with 32 times memory savings compared to baseline (Krizhevsky et al.,
2012) and, in the case of the XNOR-network, 58 times speed gains dur-
ing inference (Rastegari, Ordonez, Redmon, & Farhadi, 2016). Courbariaux,
Hubara, Soudry, El-Yaniv, and Bengio (2016) introduced binarized net-
works that have binary weights and activations at run time and when
computing the parameters’ gradients during training. Similar to binary
and XNOR networks, these networks also reduce memory footprint by
a factor of up to 32 times, while also reducing memory access by the
same amount. Courbariaux, Bengio, and David (2015), Cheng, Soudry,
Mao, and Lan (2015) and Kim and Smaragdis (2016) carried out other
recent quantization attempts along these lines that also introduced bi-
narized weights and activations during training and inference. DCNNs
with weight quantization are expected to substantially advance power
efficiency since they perform bit-wise operations rather than the usual
arithmetic ones and their fast computation and significantly reduced
memory footprints make them well suited for mobile deployment. What
remains to be investigated is whether they deteriorate or improve model
performance on other open issues such as those introduced in sections
6.2 and 6.4. Furthermore, the expressive abilities of binarized networks
are also questionable, and this has resulted in the development of other
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quantization-based models such as ternary weight networks (Li, Zhang, &
Liu, 2016).

Recently Lavin and Gray (2016) also proposed a new class of DCNN
algorithms based on Winograd’s minimal filtering algorithms (Winograd,
1980) and achieved speed gains of between 1.48 and 7.42 times when com-
pared to their baseline model from Simonyan and Zisserman (2014). How-
ever, their model varied up to a maximum size of 16 MB, which is big-
ger than the 11.3 MB achieved by Han, Mao, et al. (2016) for the same
VGG-net baseline (Simonyan & Zisserman, 2014). Another recent devel-
opment that allowed for the performance evaluation of several DCNNs
on smartphones used Bayesian matrix factorization, Tucker decomposition
(see Tucker, 1966) to compress entire DCNN layers, and fine tuning to re-
cover accumulated accuracy losses (Kim et al., 2015).

On the hardware side, Qiao et al. (2016) built a prototype FPGA system
to accelerate DCNNs and achieved speed gains of 3.54 times and energy ef-
ficiency gains of 7.4 times over baseline CPU and GPU implementations. To
perform inference on the compressed model proposed by Han, Mao, et al.
(2016), Han, Liu, et al. (2016) proposed an energy-efficient engine that ex-
ploits the compression techniques proposed earlier (Han, Mao, et al., 2016)
and thus achieved substantial computational and energy gains. Continuing
with the model and data parallelism approach introduced by Krizhevsky
(2014), Dettmers (2016) recently built a GPU cluster consisting of 96 units
and showed that by compressing gradients and nonlinear activations into
8-bit representations, speed-ups of up to 50 times were achievable. Thus, al-
though it is conceivable to conclude that new hardware developments and
improved algorithms that specifically consider the hardware architecture
will fuel future advances in DCNN computation and storage requirements,
the reasons behind the initial training of redundant models also necessitate
further investigation; if this can be solved first, the need to counter its conse-
quences can be relaxed. In the interim, although the methods highlighted in
this section show promise, further empirical investigations and theoretical
motivations to firmly establish them, especially on the diverse real world
data sets collected on mobile devices, is required.

6.4 Deep Flaws. Among the open challenges, perhaps the most intrigu-
ing of all is that the classification accuracy of DCNNs and classifiers in gen-
eral is not robust when faced with adversarial examples. These are small
yet intentional perturbations applied to images with the aim of misleading
or fooling the recognition or classification system. When these perturba-
tions are used to alter an image, humans are easily able to classify the im-
age correctly (Goodfellow, Shlens, & Szegedy, 2015; Uli¢ny, Lundstrém, &
Byttner, 2016), while classifiers see the image as being from a different class.
Since the initial discovery of this phenomenon (Szegedy et al., 2014), sev-
eral papers have confirmed the vulnerability of DCNNSs to these images and
proposed some viable countermeasures to mitigate them (Szegedy et al.,
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2014; Goodfellow et al., 2015; Gu & Rigazio, 2014; Maharaj, 2015; Zhao &
Griffin, 2016; Uli¢ny et al., 2016; Jin, Dundar, & Culurciello, 2016; Tabacof
& Valle, 2016; Miyato, Maeda, Koyama, Nakae, & Ishii, 2016; Sabour, Cao,
Faghri, & Fleet, 2016; Papernot, McDaniel, Xu, Jha, & Swami, 2016; Huang,
Xu, Schuurmans, & Szepesvari, 2016).

So far the most promising attempts to solve this issue focus on different
training techniques such as adversarial training (Goodfellow et al., 2015)
and distillation (Papernot et al., 2016), generative preprocessing methods
such as the use of denoising autoencoders (Uli¢ny et al., 2016), and chang-
ing DCNN architecture to make it more nonlinear or to penalize unusual
signals (Zhao & Griffin, 2016; Jin et al., 2016). Furthermore, a theoretical
framework to formally investigate robustness has also been introduced, and
the fundamental limits on the robustness of selected classifiers, concern-
ing a distinguishability measure between classes, have been established
(Fawzi, Fawzi, & Frossard, 2015a, 2015b). Moreover, Bastani et al. (2016)
recently proposed two statistical measures, adversarial frequency and ad-
versarial severity, for measuring robustness based on the formalized con-
ception of point-wise robustness, encoded as a constrained optimization
problem. Interestingly, RBF networks have been shown to be intrinsically
immune to adversarial examples (Goodfellow et al., 2015), and thus com-
bining their features with standard DCNN architecture, like the work pro-
posed by Zhao and Griffin (2016), remains a suitable approach that requires
further investigation. Recently, image discretization has yielded improved
adversarial performance (Maharaj, 2015); however, the robustness effect of
other dimensionality-reduction techniques on input data and feature vec-
tors from different DCNN layers is yet to be investigated.

Complementary to the finding of adversarial examples, Nguyen, Yosin-
ski, & Clune (2015) found that it was possible to generate images that are
entirely unrecognizable to humans but that state-of-the-art DCNNSs classify
as recognizable objects—alarmingly, with extremely high confidence. These
images were generated using evolutionary algorithms and gradient-based
optimization and are referred to as fooling images. Referring to these im-
ages as being from a rubbish class, Goodfellow et al. (2015) showed that they
canbe generated by ways that are more efficient and that they affect not only
deep networks (this study included DCNNs) but shallow classifiers as well.
Supplementary and up-to-date work by Zhao and Griffin (2016) referred
to these images as nonsense images and began work showing that DCNN
architecture changes are a viable solution to overcome this flaw; however,
as with adversarial examples, they remain an ongoing challenge requiring
further attention.

Since these adversarial (Szegedy et al., 2014) and fooling (Nguyen et al.,
2015) images highlight a vast gap between the vision capabilities of hu-
mans and computer vision systems, finding these intriguing properties
has brought about several questions regarding the generalization, function
approximation, and security features of deep networks (Szegedy etal., 2014;
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Goodfellow et al., 2015; Gu & Rigazio, 2014; Maharaj, 2015; Zhao & Griffin,
2016; Uli¢ny et al., 2016; Jin et al., 2016; Tabacof & Valle, 2016; Papernotetal.,
2016). This has opened up a completely new area of research focusing on
the generation of these images and the design of systems that are robust
against them. Naturally, since DCNNs have become the leading architec-
ture for visual tasks and given the fact that they are not immune to both ad-
versarial and fooling images, research into their robustness is a momentous
problem.

6.5 Multilabeled Images and Deeper Image Understanding. Even
though DCNNs have surpassed human-level performance on single-label
image data sets such as the MNIST (LeCun et al., 1998; Ciresan et al.,
2012; Wan et al., 2013) and ImageNet (Russakovsky et al., 2015; Ioffe &
Szegedy, 2015; Szegedy, Vanhoucke et al., 2015; He et al., 2015a, 2015b;
Szegedy et al., 2016) data sets, real-world images usually contain mul-
tiple labels, which relate to different objects, parts, scenes, actions, and
their interactions or attributes (Wang, Yang, et al., 2016). Furthermore,
the ability to correctly describe the semantic content of an image, in
properly formed natural language sentences, is a challenging problem
(Vinyals, Toshev, Bengio, & Erhan, 2015), which finds itself at the inter-
section between computer vision and natural language processing. To ad-
dress these problems, a recent trend is to combine DCNNs with RNNS.
To counter the multilabel classification problem, Wang, Yang, et al. (2016)
presented a DCNN-RNN framework in which the DCNN extracts se-
mantic representations from images, while the RNN models the image-
label relationship and label dependency. Both Vinyals et al. (2015) and
Karpathy and Fei-Fei (2016) used DCNNs for image classification and
RNN:Ss for sequence modeling and combined them into a unified network,
which they used to generate English-language descriptions of images. An-
other promising direction is to train these combined architectures using
reinforcement learning, and although systems combining deep and rein-
forcement learning are still in their early days (LeCun et al., 2015), they have
already produced some exceptional image classification results (Ba, Mnih,
& Kavukcuoglu, 2015).

6.6 Other Selected Trends and Challenges. As mentioned in section
4.2.1, despite the contribution of unsupervised pretraining to the deep
learning renaissance (Hinton et al., 2006; Hinton & Salakhutdinov, 2006;
Bengio et al., 2006), current DCNNs mostly utilize the supervised learn-
ing paradigm; thus, they are not able to exploit the massive amounts of
unlabeled data available on the Internet, stored in cloud-based systems or
even captured by mobile devices. Furthermore, human learning is natu-
rally unsupervised (LeCun et al., 2015), and thus it is expected that future
DCNN models will attempt to mimic nature more than our current mod-
els do. Recent attempts along these lines include work by Goodfellow et al.
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(2014), Kingma and Welling (2014), Bengio, Thibodeau-Laufer, Alain, and
Yosinski (2014), Kulkarni, Whitney, Kohli, and Tenenbaum (2015) and, more
recently, Bachman (2016), all of which use promising generative-based
modeling techniques.

DCNN s require several hyperparameters, such as the number of epochs
to run the model and the learning rate; however, determining them re-
quires careful tuning, which is often based on expert experience, rules of
thumb, or computationally exorbitant search methods. By using an auto-
mated Bayesian optimization technique, Snoek et al. (2012) were able to find
better hyperparameters faster than a human expert did and obtained excel-
lent image classification results. However, this method is time-consuming
and does not scale well to large models (Srinivas et al., 2016); thus, alterna-
tives along these lines are required. A possible solution may be to use evolu-
tionary algorithms, such as particle swarm optimization (Kennedy & Eber-
hart, 1995), which has become a popular optimization technique, to conduct
the hyperparameter search and then integrate the results with DCNNSs. If
successful, this will see two popular biologically inspired techniques work-
ing in tandem with each other. Another interesting yet challenging direc-
tion is to leverage the discriminative and expressive classification abilities
of DCNNSs in online robotic systems, with some recent successes described
by Pinto and Gupta (2015), Finn et al. (2015), and Levine, Finn, Darrell, and
Abbeel (2016).

One more trend that is gaining momentum is the factorization of con-
volutions to improve computational efficiency. The technique was popu-
larized by the revised Inception model (Szegedy, Vanhoucke et al., 2015),
which found that # x n convolutions can be factorized into 1 x n followed
by n x 1 convolutions. For example, they found that 3 x 1 convolutions fol-
lowed by 1 x 3 convolutions resulted in a 33% reduction in computation in
comparison to using a single 3 x 3 filter having the same effective receptive
field size. Inspired by this, Chollet (2016) proposed the Xception architec-
ture in which they replace the Inception building blocks with depth-wise
separable convolutions (depth-wise convolution followed by a point-wise
convolution). Depth-wise convolutions was also exploited by Xie, Girshick,
Dollar, and He (2016), who repeat a residual building block that concate-
nates a series of transformations that have an identical topology. The effi-
ciency gains of utilizing this type of factorization, especially as we proceed
toward mobile DCNN deployment, is of significant importance and will
probably be used extensively in future models.

The most significant challenge is to close the theoretical gap between
biological neural networks and DCNNSs, and although the fresh theoreti-
cal analysis by Bengio, Mesnard, Fischer, Zhang, and Wu (2017) did not
specifically deal with DCNNSs, their motivation of how the biological brain
executes credit assignment in deep hierarchies, perhaps as proficiently as
backpropagation does, can be regarded as an important step toward link-
ing our deep computational models to mechanisms of the human brain.
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7 Conclusion

This review presents a comprehensive review of CNNs for image classifi-
cation tasks. It categorizes their progression into their early development,
their contribution to the deep learning renaissance, and their rapid advance-
ment over the past few years. In particular, it focuses on their advance-
ment by deliberating and analyzing most of the notable advances in relation
to their architectures, supervision components, regularization mechanisms,
optimization techniques, and computation since 2012. Despite successes in
other domains, DCNNs have seen remarkable progression in image classifi-
cation tasks, setting the state of the art on several challenging classification
benchmarks and dominating numerous image-classification-related chal-
lenges and competitions. In fact, on several single label image classification
benchmarks, their performance has surpassed human-level performance.
However, the contemporary rise of DCNNs has led researchers to scruti-
nize their classification performance, robustness, and computational char-
acteristics, resulting in the discoveries of several challenges and trends to
address them. Accordingly, this review also recapitulates these open issues
and their associated trends and, most significant, provides several recom-
mendations and research directions for future exploration.
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