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Artificial intelligence (AI)-based methods have emerged as 
powerful tools to transform medical care. Although machine 
learning classifiers (MLCs) have already demonstrated strong 
performance in image-based diagnoses, analysis of diverse 
and massive electronic health record (EHR) data remains chal-
lenging. Here, we show that MLCs can query EHRs in a manner 
similar to the hypothetico-deductive reasoning used by physi-
cians and unearth associations that previous statistical meth-
ods have not found. Our model applies an automated natural 
language processing system using deep learning techniques 
to extract clinically relevant information from EHRs. In total, 
101.6 million data points from 1,362,559 pediatric patient 
visits presenting to a major referral center were analyzed to 
train and validate the framework. Our model demonstrates 
high diagnostic accuracy across multiple organ systems and is 
comparable to experienced pediatricians in diagnosing com-
mon childhood diseases. Our study provides a proof of con-
cept for implementing an AI-based system as a means to aid 
physicians in tackling large amounts of data, augmenting diag-
nostic evaluations, and to provide clinical decision support in 
cases of diagnostic uncertainty or complexity. Although this 
impact may be most evident in areas where healthcare provid-
ers are in relative shortage, the benefits of such an AI system 
are likely to be universal.

Medical information has become increasingly complex over 
time. The range of disease entities, diagnostic testing and biomark-
ers, and treatment modalities has increased exponentially in recent 
years. Subsequently, clinical decision-making has also become more 
complex and demands the synthesis of decisions from assessment 

of large volumes of data representing clinical information. In the 
current digital age, the electronic health record (EHR) represents a 
massive repository of electronic data points representing a diverse 
array of clinical information1–3. Artificial intelligence (AI) methods 
have emerged as potentially powerful tools to mine EHR data to aid 
in disease diagnosis and management, mimicking and perhaps even 
augmenting the clinical decision-making of human physicians1.

To formulate a diagnosis for any given patient, physicians fre-
quently use hypotheticodeductive reasoning. Starting with the chief 
complaint, the physician then asks appropriately targeted questions 
relating to that complaint. From this initial small feature set, the 
physician forms a differential diagnosis and decides what features 
(historical questions, physical exam findings, laboratory testing, 
and/or imaging studies) to obtain next in order to rule in or rule 
out the diagnoses in the differential diagnosis set. The most use-
ful features are identified, such that when the probability of one of 
the diagnoses reaches a predetermined level of acceptability, the 
process is stopped, and the diagnosis is accepted. It may be pos-
sible to achieve an acceptable level of certainty of the diagnosis with 
only a few features without having to process the entire feature set. 
Therefore, the physician can be considered a classifier of sorts.

In this study, we designed an AI-based system using machine 
learning to extract clinically relevant features from EHR notes to 
mimic the clinical reasoning of human physicians. In medicine, 
machine learning methods have already demonstrated strong per-
formance in image-based diagnoses, notably in radiology2, derma-
tology4, and ophthalmology5–8, but analysis of EHR data presents 
a number of difficult challenges. These challenges include the vast 
quantity of data, high dimensionality, data sparsity, and deviations 
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or systematic errors in medical data9. These challenges make it dif-
ficult to use machine learning methods to perform accurate pattern 
recognition and generate predictive clinical models.

In this paper, we propose a data mining framework for EHR data 
that integrates prior medical knowledge and data-driven model-
ing. We develop a deep learning-based natural language processing 
(NLP) system to extract clinically relevant information and subse-
quently establish a diagnostic system based on extracted clinical 
features. Finally, this framework is applied in a large pediatric popu-
lation to demonstrate the diagnostic ability of an AI-based method.

We conducted a retrospective study and obtained EHRs from 
1,362,559 outpatient visits from 567,498 patients of the Guangzhou 
Women and Children’s Medical Center, a major academic medi-
cal referral center. These records encompassed physician–patient 
encounters presenting from January 2016 to July 2017. The median 
age was 2.35 years (range 0 to 18 years; 95% confidence interval 0.2 
to 9.7 years), and 40.11% were female (Supplementary Table 1).

The primary diagnoses considered 55 diagnosis codes in total, 
encompassing common pediatric diseases and representing a wide 
range of pathologies. Some of the most frequently encountered 
diagnoses included acute upper respiratory infection, bronchi-
tis, diarrhea, bronchopneumonia, acute tonsillitis, stomatitis, and 
acute sinusitis (Supplementary Table 1). The records originated 
from a wide range of specialties, with the top three most repre-
sented departments being general pediatrics, the Special Clinic  
for Children, and pediatric pulmonology (Supplementary Table 1). 

The Special Clinic for Children is for private patients at this institu-
tion and encompassed care for a range of conditions.

First, the diagnostic system analyzed the EHR in the absence of 
a defined classification system with human input. In the absence of 
pre-defined labeling as input, the unsupervised clustering was still 
able to detect trends in clinical features to generate a relatively sen-
sible grouping structure (Extended Data 1). In many instances, it 
successfully established broad grouping of related diagnoses even 
without any directed labeling or classification system in place, sug-
gesting that the clinical features that we developed capture the key 
similarities and differences between the conditions that we intend 
to model and diagnose.

A total of 6,183 charts were manually annotated using the schema 
described in the Methods section by senior attending physicians 
with more than 25 years’ clinical practice experience. Then 3,564 
manually annotated charts were used to train the NLP information 
extraction model, and the remaining 2,619 were used to validate 
the model. The information extraction model summarized the key 
conceptual categories representing clinical data (Fig. 1). This NLP 
model utilized deep learning techniques (see Methods) to automate 
the annotation of the free text EHR notes into the standardized lexi-
con and clinical features, allowing the further processing of clinical 
information for diagnostic classification.

The NLP model achieved excellent results in the annotation of 
EHR physician notes (Supplementary Table 2). Across all categories 
of clinical data (chief complaint, history of present illness, physical  
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Fig. 1 | Workflow diagram of our Ai pediatric diagnosis framework. This diagram depicts the process of data extraction from electronic medical records, 
followed by deep learning-based NLP analysis of these encounters, which were then processed with a disease classifier to predict a clinical diagnosis for 
each encounter.
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examination, laboratory testing, and PACS (picture archiving and 
communication systems) reports), the F1 scores exceeded 90% 
except in one instance, which was for categorical variables detected 
in the laboratory testing. The highest recall of the NLP model was 
achieved for physical examination (95.62% for categorical variables, 
99.08% for free text), and the lowest for laboratory testing (72.26% 
for categorical variables, 88.26% for free text). The highest precision 
of the NLP model was for chief complaint (97.66% for categorical 
variables, 98.71% for free text), and the lowest for laboratory test-
ing (93.78% for categorical variables, and 96.67% for free text). 
In general, the precision (or positive predictive value) of the NLP 
labeling was slightly greater than the recall (the sensitivity), but the 
system demonstrated overall strong performance across all domains 
(Supplementary Table 2).

After the EHR notes were annotated using the deep NLP infor-
mation extraction model, logistic regression classifiers were used 
to establish a hierarchical diagnostic system. The diagnostic sys-
tem was primarily based on anatomic divisions (for example, organ 
systems). This was meant to mimic traditional frameworks used 
in physician reasoning, in which an organ-based approach can be 
employed for the formulation of a differential diagnosis. Logistic 
regression classifiers were used to allow straightforward identifica-
tion of relevant clinical features and for ease of establishing inter-
pretability for the diagnostic classification.

The first level of the diagnostic system categorized the EHR 
notes into broad organ systems: respiratory, gastrointestinal, neuro-
psychiatric, genitourinary, and systemic or generalized conditions 
(Fig. 2). This was the first level of separation in the diagnostic hier-
archy. Then, within each organ system, further sub-classifications 
and hierarchical layers were made, where applicable. The most 
number of diagnoses in this cohort fell into the respiratory system, 
which was further divided into upper respiratory conditions and 
lower respiratory conditions. These were further separated into 
more specific anatomic divisions (for example, laryngitis, trache-
itis, bronchitis, and pneumonia) (see Methods). The performance of 
the classifier was evaluated at each level of the diagnostic hierarchy. 
In short, the system was designed to evaluate the extracted features  
of each patient record and categorize the set of features into finer 
levels of diagnostic specificity along the levels of this decision  

tree, similar to how a human physician might evaluate a patient’s  
features to achieve a diagnosis based on the same clinical data 
incorporated into the information model. Encounters labeled by 
physicians as having a primary diagnosis of ‘fever’ or ‘cough’ were 
eliminated, as these represented symptoms rather than specific  
disease entities.

Across all levels of the diagnostic hierarchy, our diagnostic sys-
tem achieved a high level of accuracy between the predicted pri-
mary diagnoses based on the extracted clinical features by the NLP 
information model and the initial diagnoses designated by the 
examining physician (Table 1). For the first level, in whichthe diag-
nostic system classified the patient’s diagnosis into a broad organ 
system, the median accuracy was 0.90, ranging from 0.85 for gas-
trointestinal diseases to 0.98 for neuropsychiatric disorders (full 
contingency table in Table 1a). Even at deeper levels of diagnostic 
specification, the system retained a strong level of performance. 
To illustrate, within the respiratory system, the next division in 
the diagnostic hierarchy was between upper respiratory and lower 
respiratory conditions. The system achieved an accuracy of 0.89 of 
upper respiratory conditions and 0.87 of lower respiratory condi-
tions between predicted diagnoses and initial diagnoses (Table 1b). 
When dividing the upper respiratory subsystem into more specific 
categories, the median accuracy was 0.92 (range: 0.86 for acute lar-
yngitis to 0.96 for sinusitis, Table 1c). Acute upper respiratory infec-
tion was the single most common diagnosis among the cohort, and 
our model was able to accurately predict the diagnosis in 95% of 
the encounters (Table 1c). Within the respiratory system, asthma 
was categorized separately as its own subcategory, and the accuracy 
ranged from 0.83 for cough variant asthma to 0.97 for unspecified 
asthma with acute exacerbation (Table 1d).

In addition to the strong performance in the respiratory system, 
the diagnostic model performed comparably in the other organ 
subsystems (see Supplementary Tables 3–6). Notably, the classifier 
achieved a very high level of accuracy in predicting diagnoses for 
the generalized systemic conditions (Supplementary Table 6), with 
an accuracy of 0.90 for infectious mononucleosis, 0.93 for roseola 
(sixth disease), 0.94 for influenza, 0.93 for varicella, and 0.97 for 
hand-foot-mouth disease. The diagnostic framework also achieved 
high accuracy for conditions with potential for high morbidity, such 
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Fig. 2 | Hierarchy of the diagnostic framework in a large pediatric cohort. A hierarchical logistic regression classifier was used to establish a diagnostic 
system based on anatomic divisions. An organ-based approach was used, wherein diagnoses were first separated into broad organ systems, then 
subsequently divided into organ subsystems and/or into more specific diagnosis groups.
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as bacterial meningitis, for which accuracy was 0.93 (Supplementary 
Table 5).

To gain insight into how the diagnostic system generated a diag-
nosis prediction, we identified key clinical features driving the diag-
nosis prediction. For each feature, we identified which category of 
EHR clinical data it was derived from (for example, history of pres-
ent illness, physical exam) and whether it was coded as a binary 
classification or categorical (Supplementary Table 7). The inter-
pretability of the predictive impact of clinical features used in our 
diagnostic system allowed us to evaluate whether the prediction was 
based on clinically relevant features.

In terms of gastroenteritis, for example, the diagnostic system 
identified words such as ‘abdominal pain’ and ‘vomiting’ as key 
associated clinical features. The binary classifiers were coded such 
that the presence of a feature was denoted as ‘1’ and absence was 
denoted as ‘0’. In this case, ‘vomiting = 1’ and ‘abdominal pain = 1’ 
were identified as key features for both chief complaint and history 
of present illness. Under physical examination, ‘abdominal tender-
ness = 1’ and ‘rash = 1’ were noted to be associated with this diagno-
sis. Interestingly, ‘palpable mass = 0’ was also associated, meaning 
that the patients predicted to have gastroenteritis usually did not 
have a palpable mass, which is consistent with human clinical expe-
rience. In addition to binary classifiers, there were also nominal 
categories in the schema. The feature of ‘fever’ with a text entry of 
greater than 39° C also emerged as an associated clinical feature 
driving the diagnosis of gastroenteritis. Laboratory and imaging 
features were not identified as strongly driving the prediction of this 
diagnosis, perhaps reflecting the fact that most cases of gastroen-
teritis are diagnosed without extensive ancillary tests.

We also compared the performance of diagnosis between our AI 
model and human physicians using 11,926 records from an inde-
pendent cohort of pediatric patients. Twenty pediatricians in five 
groups with increasing levels of proficiency and years of clinical 
practice experience (see Methods section for description) manually 
graded 11,926 records. A physician in each group read a random 
subset of the raw clinical notes from this independent validation 
data set and assigned diagnoses. We evaluated the diagnostic per-
formance of each physician group in each of the top 15 diagnosis 
categories using an F1 score (Table 2). Our model achieved an aver-
age F1 score higher than the two junior physician groups but lower 
than the three senior physician groups. This result suggests that this 
AI model may potentially assist junior physicians in diagnoses but 
may not necessarily outperform experienced physicians.

Here, we present an AI-based NLP model that can process 
free text from physicians’ notes in the EHR to accurately predict 
the primary diagnosis in a pediatric population. The model was 
initially trained using a set of notes that were manually annotated 
by an expert team of physicians and informatics researchers. Once 
trained, the NLP information extraction model used deep learning 
techniques to automate the annotation process for notes from over 
1.4 million patient encounters from a single institution in China. 
With the clinical features extracted and annotated by the deep NLP 
model, logistic regression classifiers were used to predict the pri-
mary diagnosis for each encounter. This system achieved excellent 
performance across all organ systems and subsystems, demonstrat-
ing a high level of accuracy for its predicted diagnoses compared 
with the initial diagnoses determined by an examining physician.

This diagnostic system demonstrated strong performance for 
two important categories of disease: common conditions that are 
frequently encountered in the population of interest, and dangerous 
or even potentially life-threatening conditions, such as acute asthma 
exacerbation and meningitis. Being able to predict common diag-
noses as well as dangerous diagnoses is crucial for any diagnostic 
system to be clinically useful. For common conditions, there is a 
large pool of data to train the model, so we would expect a better 
performance with more training data. Accordingly, the performance Ta
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of our system was especially strong for the common conditions of 
acute upper respiratory infection and sinusitis, both of which were 
diagnosed with an accuracy of 0.95 between the machine-predicted 
diagnosis and the human physician-generated diagnosis. In con-
trast, dangerous conditions tend to be less common and would have 
less training data. Despite this, a key goal for any diagnostic system 
is to achieve high accuracy for these dangerous conditions in order 
to promote patient safety. Our system was able to achieve this in 
several disease categories, as illustrated by its performance for acute 
asthma exacerbations (0.97), bacterial meningitis (0.93), and across 
multiple diagnoses related to systemic generalized conditions, such 
as varicella (0.93), influenza (0.94), mononucleosis (0.90), and rose-
ola (0.93). These are all conditions that can have potentially serious 
and sometimes life-threatening sequelae, so accurate diagnosis is of 
utmost importance.

Another strength of this study was the massive volume of  
data that was used, with over 1.4 million records included in the 
analysis. It has been well documented that machine learning tech-
niques improve as the amount of input data increases10–12, so the 
large volume of encounters here contributed to the robustness of the 
diagnostic system. Furthermore, another strength was that the data 
inputs in this model were harmonized. This represents an improve-
ment upon other techniques, such as mapping the attributes to a 
fixed format (Fast Healthcare Interoperability Resources), as was 
done recently in an AI-based analysis of EHR data13. Harmonized 
inputs describe the data in a consistent fashion and improve  
the quality of the data using machine learning capabilities14. These 
strengths of high volume of data, and harmonization of data inputs 
are key advantages of this model compared with other NLP frame-
works that have been reported previously.

Our overall framework of automating the extraction of clinical 
data concepts and features to facilitate diagnostic prediction can 
potentially be applied across a wide array of clinical applications. In 
this study, we used primarily an anatomical or organ systems-based 
approach to the diagnostic classification. This broad generalized 
approach is often used in the formulation of differential diagnoses 
by physicians. Other strategies include using a pathophysiological 
or etiological approach (for example, ‘infectious’ versus ‘inflam-
matory’ versus ‘traumatic’ versus ‘neoplastic’). The design of the 

diagnostic hierarchy decision tree can be adjusted to what is most 
appropriate for the clinical situation.

In terms of implementation, we foresee this type of AI-assisted 
diagnostic system being integrated into clinical practice in several 
ways. First, it could assist with triage procedures. For example, 
when patients come to the emergency department or to an urgent 
care setting, their vital signs, basic history, and notes from a physi-
cal examination by a nurse or midlevel provider could be entered 
into the framework, allowing the algorithm to generate a predicted 
diagnosis. These predicted diagnoses could help to prioritize which 
patients should get seen first by a physician. Some patients with rel-
atively benign or non-urgent conditions may even be able to bypass 
the physician evaluation altogether and be referred for routine out-
patient follow-up in lieu of urgent evaluation. This diagnostic pre-
diction would help to ensure that physicians’ time is dedicated to 
the patients with the highest and/or most urgent needs. By triaging 
patients more effectively, waiting times for emergency or urgent care 
may decrease, allowing improved access to care within a healthcare 
system of limited resources.

Another potential application of this framework is to assist  
physicians with the diagnosis of patients with complex or rare con-
ditions. While formulating a differential diagnosis, physicians often 
draw upon their own experiences, and therefore the differential 
may be biased towards conditions that they have seen recently or 
that they have commonly encountered in the past. However, for 
patients presenting with complex or rare conditions, a physician 
may not have extensive experience with that particular condition. 
Misdiagnosis may be a distinct possibility in these cases. Using this 
AI-based diagnostic framework harnesses the power generated 
by data from millions of patients and would be less prone to the 
biases of individual physicians. In this way, a physician could use 
the AI-generated diagnosis to help to broaden his or her differen-
tial diagnosis and think of diagnostic possibilities that may not have 
been immediately obvious.

In conclusion, this study describes an AI framework to extract 
clinically relevant information from free text EHR notes to accu-
rately predict a patient’s diagnosis. Our NLP information model 
was able to perform the information extraction with high recall 
and precision across multiple categories of clinical data, and when 

Table 2 | illustration of diagnostic performance of our Ai model and physicians

Disease conditions Our model Physicians

Physician group 1 Physician group 2 Physician group 3 Physician group 4 Physician group 5

Asthma 0.920 0.801 0.837 0.904 0.890 0.935

Encephalitis 0.837 0.947 0.961 0.950 0.959 0.965

Gastrointestinal disease 0.865 0.818 0.872 0.854 0.896 0.893

Group: ‘Acute laryngitis’ 0.786 0.808 0.730 0.879 0.940 0.943

Group: ‘Pneumonia’ 0.888 0.829 0.767 0.946 0.952 0.972

Group: ‘Sinusitis’ 0.932 0.839 0.797 0.896 0.873 0.870

Lower respiratory 0.803 0.803 0.815 0.910 0.903 0.935

Mouth-related diseases 0.897 0.818 0.872 0.854 0.896 0.893

Neuropsychiatric disease 0.895 0.925 0.963 0.960 0.962 0.906

Respiratory 0.935 0.808 0.769 0.89 0.907 0.917

Systemic or generalized 0.925 0.879 0.907 0.952 0.907 0.944

Upper respiratory 0.929 0.817 0.754 0.884 0.916 0.916

Root 0.889 0.843 0.863 0.908 0.903 0.912

Average F1 score 0.885 0.841 0.839 0.907 0.915 0.923

We used the F1score to evaluate the diagnosis performance across different groups (rows); our model, two junior physician groups (groups 1 and 2), and three senior physician groups (groups 3, 4, and 
5) (see Methods section for description). We observed that our model performed better than junior physician groups but slightly worse than three experienced physician groups. Root is the first level of 
diagnosis classification.
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processed with logistic regression classifiers, was able to achieve 
high association between predicted diagnoses and initial diagno-
ses determined by a human physician. This type of framework may 
be useful for streamlining patient care, such as in triaging patients 
and differentiating between those patients who are likely to have a 
common cold from those who need urgent intervention for a more 
serious condition. Furthermore, as NLP processes become increas-
ingly refined, these frameworks could become a diagnostic aid for 
physicians and assist in cases of diagnostic uncertainty or complex-
ity, thus not only mimicking physician reasoning but augmenting it 
as well. Although this impact may be most obvious in areas in which 
there are few healthcare providers relative to the population, such as 
China, healthcare resources are in high demand worldwide, and the 
benefits of such a system are likely to be universal.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41591-018-0335-9.
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Methods
Data collection. We conducted a retrospective study and obtained EHRs from 
1,362,559 outpatient visits from 567,498 pediatric patients from the Guangzhou 
Women and Children’s Medical Center, a major Chinese academic medical referral 
center. These records encompassed physician encounters for pediatric patients 
presenting to this institution from January 2016 to July 2017. The median age 
was 2.35 years (range 0 to 18 years, 95% confidence interval 0.2 to 9.7 years), 
and 40.11% were female (Supplementary Table 1). Disease prevalence from 
Supplementary Table 1 is derived from the official government statistics report 
from the Guangdong province15. All encounters included the primary diagnosis 
in the International Classification of Disease (ICD)-10 coding determined by 
the physician16.The EHR system was developed by a Chinese vendor named 
Zesing Electronic Medical Records. A further 11,926 patient visit records from an 
independent cohort of pediatric patients from Zengcheng Women and Children’s 
Hospital (Guangdong Province, China) were used for a comparison study between 
our AI system and human physicians.

The study was approved by the Guangzhou Women and Children’s Medical 
Center and Zengcheng Women and Children’s Hospital institutional review 
board and complied with the Declaration of Helsinki. Informed written consents 
were obtained from all participants at the initial hospital visit. Patient sensitive 
information was removed during the initial extraction of EHR data and EHR were 
de-identified. Data were stored in a fully HIPAA (Health Insurance Portability and 
Accountability Act)-compliant manner.

NLP model construction. We established a raw information extraction model, 
which extracted the key concepts and associated categories in EHR raw data and 
transformed them into reformatted clinical data in query–answer pairs (Extended 
Data 2). The reformatted chart grouped the relevant symptoms into categories, 
which increased interpretability by showing the exact features that the model relies 
on to make a diagnosis. Three physicians curated and validated the schemas, which 
encompassed chief complaint, history of present illness, physical examination, 
and laboratory reports. There were multiple components to the NLP framework: 
lexicon constructionl; tokenization; word embedding; schema construction; and 
sentence classification using long short-term memory (LSTM) architecture. The 
median number of records included in the training cohort for any given diagnosis 
was 1,677, but there was a wide range (4 to 321,948) depending on the specific 
diagnosis. Similarly, the median number of records in the test cohort for any given 
diagnosis was 822, but the number of records also varied (range of 3 to 161,136) 
depending on the diagnosis.

Lexicon construction. The lexicon was generated by manually reading  
sentences in the training data (approximately 1% of each class, consisting of 
over 11,967 sentences) and selecting clinically relevant words for the purpose of 
query–answer model construction. The keywords were curated by our physicians 
and were generated by using a Chinese medical dictionary17, which is analogous 
to the unified medical language system (UMLS)18 in the United States. Next, any 
errors in the lexicon were revised according to the physicians’ clinical knowledge 
and experience, as well as expert consensus guidelines, based on conversations 
between two board-certified internal medicine physicians, one informatician, and 
one health information management professional. This procedure was iteratively 
conducted until no new concepts of history of present illness and physical 
examination were found. We then used these 11,967 sentences to train a word 
embedding model.

Schema design. The schema consists of a list of physician curated questions-and-
answer pairs that the physician would use in extracting symptom information 
towards the diagnosis. Examples of questions are ‘Does the patient have a fever?’ 
and ‘Is the patient coughing?’. The answer consists of a key_location and a 
numeric feature. The key_location encodes anatomical locations such as lung or 
gastrointestinal tract. Therefore, the value is either a categorical variable or a binary 
number depending on the feature type. Then, we constructed a schema for each 
type of medical record data: the history of present illness and chief complaint, 
physical examination, laboratory tests. We then applied this schema towards the 
text re-formatting model construction.

The rationale for this schema design was to maximize data interoperability 
across hospitals for future study. The pre-defined space of query–answers pairs 
simplifies the data interpolation process across EHR systems from multiple 
hospitals. Also, providing clinical information in reduced formats can help  
protect patient privacy compared to providing raw clinical notes that could  
be patient-identifiable. Even with removal of patient-identifiable variables, the 
style of writing in the EHR may potentially reveal the identity of the examining 
physician, as suggested by advances in stylometry tools19, which could increase 
patient identifiability.

Tokenization and word embedding. Due to the lack of publicly available 
community annotated resources for the clinical domain in Chinese, we built 
standard data sets for word segmentation. The tool used for tokenization was 
Mecab (https://github.com/taku910/mecab), with our curated lexicons as the 
optional parameter. We had a total of 4,363 tokens. We used word2vec from the 

python Tensorflow package (1.9.0) to embed the 4,363 tokens with 100 features, to 
represent the semantics and similarities of the word in the high dimensional space.

LSTM model training set and test set construction. We curated a small data 
set for training the query–answer extraction model. We manually annotated the 
query–answer pairs in our training (n = 3,564) and validation (n = 2,619) cohort. 
For questions with binary answers, we used 0,1 to indicate whether the text gives 
a no or yes. For example, given the text snippet ‘the patient has a fever’, the query 
‘Does the patient have a fever?’ is assigned a value of 1. For queries with categorical 
or numerical values, we assigned each a pre-defined categorical answer.

Our free text harmonization process was modeled using the attention-based 
LSTM described previously20. We implemented the model using Tensorflow and 
trained the model with 200,000 steps. We applied our NLP model to all EHR 
physician notes and converted them into a structured format, in whicheach 
record contained data in query–answer pairs (Extended Data 2). We did not tune 
the hyperparameters but relied on either default or commonly used settings of 
hyperparameters for the LSTM model. We used a default of 128 hidden units 
per layer as reported in multiple publications21,22 and two layers of LSTM cells 
as suggested by the commonly adopted bidirectional LSTM;23 we used a default 
learning rate of 0.001 from Tensorflow.

Hierarchical multi-label diagnosis model. Diagnosis hierarchy curation. The 
diagnosis hierarchy was curated by at least two US board-certified physicians 
and two Chinese board-certified physicians. An anatomically based classification 
system was used for the diagnostic hierarchy, as this is a common practice for 
formulating a differential diagnosis when a human physician evaluates a patient. 
First, the diagnoses were separated into general organ systems (for example, 
respiratory, neuropsychiatric, or gastrointestinal). Within each organ system, 
there was a subdivision into subsystems (for example, upper respiratory and lower 
respiratory). A separate category was labeled ‘systemic or generalized’ in order to 
include conditions that affected more than one organ system and/or were more 
general in nature (for example, mononucleosis or influenza).

Model training and validation process. The data from the query–answer model 
consist of a mix of categorical variables and yes or no binary answers. Therefore, we 
used the hot-one encoding scheme to first convert both the categorical and binary 
answers to a unified binary feature by visit matrix. The data were then randomly 
split into a training cohort, consisting of 70% of the total visit records, and a test 
cohort, comprising the remaining 30%. We then annotated each visit record in the 
training and test cohort by constructing a query–answer membership matrix.

For each intermediate node, we trained a multiclass linear logistic regression 
classifier based on the immediate child terms. All the subclasses of the child 
terms were collapsed to the level of the child terms. The one versus rest multiclass 
classifier was trained using Sklearn class LogisticRegression with the default 
l1 regularization penalty (Lasso), simulating situations in which physicians 
rely on a limited number of symptoms to make a diagnosis. The inputs were in 
query–answer pairs as described above. To further evaluate the model, we also 
generated the receiver operating characteristic—area under curves (ROC-AUC) 
(Supplementary Table 8) to evaluate the sensitivity and specificity of our multiclass 
linear logistic regression classifiers. We also examined the robustness of our 
classification models using fivefold cross-validation (Supplementary Table 9).

Hierarchical clustering of disease. We correlated the mean profile of the feature 
membership matrix using the Pearson correlation. Hierarchical clustering was 
carried out using the clustermap function of the Python Seaborn package with 
default parameters.

To evaluate the robustness of the clustering result (Extended Data 1), we first 
randomly split the data in half, with one half for training and the other for testing, 
and regenerated the two cluster maps for the training and test data independently. 
We assigned the leaves in both the training and test cluster maps to ten classes by 
cutting the associated dendrogram at the corresponding height independently.  
The class assignment concordance between the training and test data was evaluated 
using the adjusted Rand index (ARI)24. An ARI value closer to 1 indicates higher 
concordance between training class assignment and test class assignment, whereas 
an ARI closer to 0 indicates close to the null background. We observed a high 
ARI of 0.8986 between the training and test class assignments, suggesting that 
our cluster map is robust. In several instances, the system clustered diagnoses 
with related ICD-10 codes, illustrating that it was able to detect trends in clinical 
features that align with a human-defined classification system. However, in 
other instances, it clustered together related diagnoses but did not include other 
very similar diagnoses within this cluster. For example, it grouped ‘asthma’ and 
‘cough variant asthma’ into the same cluster, but did not include ‘acute asthma 
exacerbation’, which was instead grouped with ‘acute sinusitis’. Several similar 
pneumonia-related diagnosis codes were also spread across several different 
clusters instead of being grouped together. In many instances, it successfully 
established broad grouping of related diagnoses even without any directed labeling 
or classification system in place, suggesting that the clinical features that we 
developed capture the key similarities and differences between the conditions  
that we intend to model and diagnose.
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Comparison of performance of our AI system with that of human physicians. 
We conducted a study to compare the performance of our AI system with that 
of human physicians using 11,926 records from an independent cohort of 
pediatric patients from Zengcheng Women and Children’s Hospital, Guangdong 
Province, China. We chose 20 pediatricians in five groups with increasing levels 
of proficiency and years of clinical practice experience (four in each level) to 
manually grade 11,926 records. These five groups are: senior resident physicians 
with more than 3 years’ practice experience, junior physicians with 8 years’ practice 
experience, midlevel physicians with 15 years’ practice experience, attending 
physicians with 20 years’ practice experience, senior attending physicians with 
more than 25 years’ practice experience. A physician in each group read a random 
subset of 2,981 clinical notes from this independent validation dataset and  
assigned a diagnosis. Each patient record was randomly assigned and graded 
by four physicians (one in each physician group). We evaluated the diagnostic 
performance of each physician group in each of top 15 diagnosis categories using 
an F1 score (Table 2).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We have made available the Jupyter notebook that we used in constructing and 
validating the hierarchical logistic regression models: https://s3.cn-north-1.
amazonaws.com.cn/ped.emr/Data/hierachical_logistic_regression.ipynb. To 
protect patient confidentiality, we have deposited de-identified aggregated 
patient data in a secured and patient confidentiality compliant cloud in China 
in concordance with data security regulations. Data access can be requested by 
writing to the corresponding authors. All data access requests will be reviewed and 
(if successful) granted by the Data Access Committee.

References
 15. Liang, Y., Chen, Z., Huang, X. & Zeng, L. Analysis of the disease spectrum  

of hospitalized children in guangdong province. Chin. Med. J. (Engl) 1, 
414–418 (2013).

 16. WHO. International Statistical Classification of Diseases and Related Health 
Problems. (World Health Organization, 2004).

 17. English–Chinese Medical Dictionary (英汉医学大词典) (Shanghai Scientific 
and Technical Publishers (上海科学技术出版社), 2015).

 18. Lindberg, D. A. B., Humphreys, B. L. & Mccray, A. T. The unified medical 
language system. Methods Inf. Med. 32, 281–291 (1993).

 19. Tweedie, F. J., Singh, S. & Holmes, D. I. Neural network applications  
in stylometry: the federalist papers. Computers and the Humanities 30,  
1–10 (1996).

 20. Luong, M.-T., Pham, H. & Manning, C. D. Effective approaches to 
attention-based neural machine translation. Preprint at https://arxiv.org/
abs/1508.04025 (2015).

 21. Lipton, Z.C., Kale, D.C. & Wetzel, R.C. Phenotyping of clinical time series 
with LSTM recurrent neural networks. Preprint at https://arxiv.org/
pdf/1510.07641.pdf (2015).

 22. Peng, X.B., Andrychowicz, M., Zaremba, W. & Abbeel, P. Sim-to-real transfer 
of robotic control with dynamics randomization. IEEE International 
Conference on Robotics and Automation (ICRA) 3803–3810 (2018).

 23. Graves, A. & Schmidhuber, J. Framewise phoneme classification with 
bidirectional LSTM and other neural network architectures. Neural Networks 
18, 602–610 (2005).

 24. Yeung, K.Y. & Ruzzo, W.L. Details of the adjusted rand index and clustering 
algorithms supplement to the paper ‘an empirical study on Principal 
Component Analysis for clustering gene expression data. Available at  
http://faculty.washington.edu/kayee/pca/supp.pdf (2011).

NATuRE MEDiCiNE | www.nature.com/naturemedicine

https://s3.cn-north-1.amazonaws.com.cn/ped.emr/Data/hierachical_logistic_regression.ipynb
https://s3.cn-north-1.amazonaws.com.cn/ped.emr/Data/hierachical_logistic_regression.ipynb
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/pdf/1510.07641.pdf
https://arxiv.org/pdf/1510.07641.pdf
http://faculty.washington.edu/kayee/pca/supp.pdf
http://www.nature.com/naturemedicine


LettersNATuRE MEDICINE

Extended Data 1 | unsupervised clustering of NLP extracted textual features from pediatric diseases. The diagnostic system analyzed the EHRs in the 
absence of a defined classification system. This grouping structure reflects the detection of trends in clinical features without pre-defined labeling or 
human input. The clustered blocks are marked with the boxes with grey lines.
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Extended Data 2 | Design of the natural language processing information extraction model. Segmented sentences from the raw text of the EHR were 
embedded using word2vec. The LSTM model then generated the structured records in a query–answer format. This schematic illustrates the process using 
the free-text ‘lesion in the upper left lobe of patient’s lung’ as an example.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.
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Data collection The electronic health records used in this study was developed by a Chinese vendor named Zesing Electronic Medical Records.

Data analysis Mecab (URL: https://github.com/taku910/mecab) was used for tokenization. word2vec from the python Tensorflow package was used to 
embed the 4363 tokens with 100 features, to represent the semantics and similarities of the word in the high dimensional space. Python 
seaborn package was used to generate hierarchical clustering.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

We have made available the Jupyter notebook that we used in constructing and validating the hierarchical logistic regression models: https://s3.cn-
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north-1.amazonaws.com.cn/ped.emr/Data/hierachical_logistic_regression.ipynb. To protect patient confidentiality, we have deposited de-identified aggregated 
patient data in a secured and patient confidentiality compliant cloud in China in concordance with data security regulations. Data access can be requested by 
writing to the corresponding authors. All data access requests will be reviewed and (if successful) granted by the Data Access Committee
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Life sciences study design
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Sample size Electronic health records were collected from 1,362,559 outpatient patient visits from the Guangzhou Women and Children's Medical Center. 
(See Method). It has been well documented that machine learning techniques improve with a greater amount of input data, so the large 
volume of encounters here contributed to the robustness of the diagnostic system (See Discussion).

Data exclusions We did not exclude any data

Replication No experimental replication was attempted.

Randomization The data was split into a training cohort, consisting of 70% of the total visit records, and a testing cohort, comprised of the remaining 30%. 
 (See Method)

Blinding Blinding is not applicable since only electronic health records, in which patient sensitive information was removed during the initial extraction 
of EHR data and EHR were de-identified, were used to evaluate performance of AI system v.s. human physicians.

Reporting for specific materials, systems and methods
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Methods
n/a Involved in the study
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Flow cytometry
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Human research participants
Policy information about studies involving human research participants

Population characteristics Electronic health records of 1,362,559 outpatient visits from 567,498 pediatric patients from the Guangzhou Women and 
Children's Medical Center were collected. These records encompassed physician encounters for pediatric patients presenting to 
this institution from January 2016 to July 2017. The median age was 2.35 years (range: 0 to 18, 95% confidence interval: 0.2 to 
9.7 years old), and 40.11% were female. 11,926 patient visit records from an independent cohort of pediatric patients from 
Zhengcheng Women and Children’s Hospital (Guangdong Province, China) were used for a comparison study between our AI 
system and human physicians.

Recruitment Electronic health records of 1,362,559 outpatient visits from 567,498 pediatric patients and 11,926 patient visit records were 
collected from Guangzhou Women and Children's Medical Center and Zhengcheng Women and Children’s Hospital. The study 
was approved by the Guangzhou Women and Children’s Medical Center and Zhengcheng Women and Children’s Hospital 
institutional review board and ethics committee and complied with the Declaration of Helsinki.  Consents were obtained from all 
participants at the initial hospital visit.  Patient sensitive information was removed during the initial extraction of EHR data and 
EHR were de-identified.  A data use agreement was composed and upheld by all institutions involved in the data collection and 
analysis. Data were stored in a fully HIPAA-compliant manner.
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