
OXFORD CHEMISTRY MASTERS
 

Series Editors

RICHARD G. COMPTON

University of Oxford

STEPHEN G. DAVIES

University of Oxford

JOHN EVANS

University of Southampton



OXFORD CHEMISTRY MASTERS
 

j
a
e

>

A. Rodger and B. Nordén: Circular dichroism and linear dichroism
N.K. Terrett: Combinatorial chemistry
H.M.I. Osborn and T.H. Khan: Oligosaccharides: Their chemistry and
biologicalroles
H. Cartwright: Intelligent data analysis in science



Intelligent
Data Analysis

in Science
 

Edited by

HUGH CARTWRIGHT
University of Oxford

OXFORD
UNIVERSITY PRE



OXFORD
UNIVERSITY PRESS

Great Clarendon Street. Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Athens Auckland Bangkok Bogota Buenos Aires Calcutta

Cape Town Chennai Dares Salaam Delhi Florence Hong Kong Istanbul

Karachi KualaLumpur Madrid Melbourne Mexico City Mumbai

Nairobi Paris Sao Paulo Singapore Taipei Tokyo Toronto Warsaw

with associated companies in

Berlin Ibadan

Oxford is a registered trade mark of Oxford University Press

in the UK and in certain other countries

Published in the United States

by Oxford University Press, Inc., New York

© Oxford University Press, 2000

The moral rights of the author have been asserted

Database right Oxford University Press (maker)

First published 2000

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,

or as expressly permitted by law, or under terms agreed with the appropriate

reprographicsrights organization. Enquiries concerning reproduction

outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover

and you must impose this same condition on any acquirer

A cataloguerecordforthis title is available from the British Library

Library of Congress Cataloging in Publication Data

(Data available)

13579108642

ISBN 0 19 850233 8

Typeset by EXPO Holdings, Malaysia

Printed in Great Britain on acid free paper by

The Bath Press, Avon



Series Editors’ Foreword

Oxford Chemistry Masters are designed to provide clear and concise

accounts of important topics — both established and emergent — that may be

encountered by chemistry students as they progress from the senior under-

graduate stage through postgraduate study to leadership in research. These

Masters assumelittle prior knowledge, other than the foundations provided

by an undergraduate degree in chemistry, and lead the reader through to an

appreciation of the state-of-the-art in the topic whilst providing an entreé to

the original literature in the field.

In this volume Hugh Cartwright has brought together an authoritative

group of contributors to provide a clear and comprehensive account of the

use of artificial intelligence for /ntelligent Data Analysis in Science. This

book will interest novices, initiates and masters in the field who wish to

exploit the new and powerful techniques described and to use them in a

diversity of applications within chemistry and beyond.

Richard G. Compton

Stephen G. Davies

John Evans



Preface

That computers have revolutionized scientific research is beyond doubt.

Calculations can now be carried out at speeds that would have been unimag-

inable a few decades ago. However, just as crucially, computers have opened

up anew world of analysis through the developmentof intelligent methods.

Computer programs employing Artificial Intelligence (AI) are enjoying a

period of explosive growth. AI programs can now be found embedded in

scientific instruments, taking control of industrial production lines, and built

into a wide variety of commercially available software. AI constitutes a set of

tools of great versatility and power, and this is well illustrated by the contri-

butions to this text which brings together some of the leading researchers in

this emergingfield.

Each chapter includes theory, practical details of implementation, and the

application of AI to the solution of real scientific problems. The extensive

lists of references at the end of each chapter will be indispensableto all those

whoare encouraged to explore the subject further.

The potential of AI in science is immense. The methods and applications

discussed in this text will consequently be of wide interest to those both in

the physical and natural sciences and in mainstream AI research.

Oxford H.C.

January 2000
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1 Introduction to intelligent

data analysis
D. Brynn Hibbert

1. Introduction

I am an Analytical Chemist, and it comes as a surprise to my new students

that hardl, anyonein the world wants to know the concentration of X (where

X is a con:poundoftheir choice) per se. People want to know the answersto

questions such as ‘Can I drink the water?’, ‘Is it safe to live next door to a

nuclear power station?’, or ‘Should I invest in the proposed new gold mine?’.

The answer to each of these sample questions requires chemical analysis,

allied wit1 inputs from other science-based disciplines, but the ultimate

answeris 10t in parts per million, but a simple ‘yes’ or ‘no’. Intelligent data

analysis, therefore, has as an ultimate goal to take inputs from scientific

endeavor(signals from instruments), with other relevant information, and to

turn these inputs into reasoned answers.It is the purpose of this book to intro-

duce the <eader to the mainstream methods of extracting information from

data, and the purpose of this introductory chapter to set the scene, define the

terms, anc possibly to indulge in somecrystal ball gazing.

Scienc:: at the start of the twenty first century goes about its business via a

plethora of instruments that interact with the outside world. Direct observa-

tion has b:en superseded by mediated methods that amplify, change, and pick

out aspects of the world. The optics of a simple telescope (a straightforward

mediated method) may be understandable, but the complex signal from a

high-field, pulsed nuclear magnetic resonance spectrometer will require con-

siderable manipulation to extract the useful information about different nuclei

in the sample. Even then there may be further steps in using that information

for the benefit of society.

2. Towards autonomous,intelligent machines (AIMs)

The prese-at interest in intelligent data analysis is but a step on the way to

intelligent instruments and finally autonomous, intelligent machines. The

latter, the robots of science fiction, will have generalized mission state-

ments rather than specific directives. They will collect data, intelligently

analyse them, and act on the results. Unlike the robots of science fiction

they are unlikely to be humanoid, nor very large. Imagine a nano-machine

injected ito a patient’s bloodstream with a goal to repair a faulty heart

valve and then return for retrieval (or perhaps self destruct). The machine

would ne:d a powerful computer processor, sensors for compoundsin the

blood, ter1perature, and pressure. It must have some mechanical way of
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Fig. 1.1 Electron micrograph of a spider mite on a micro lock mechanism.

Photograph courtesy of Sandia National Laboratories’ Intelligent Micromachine

Initiative, http:/(www.mdl.sandia.gov/Micromachine.

orienting and propelling itself, and tools for completing the task (miniature

lasers, protein synthesis kit for tissue repair). Nearly all this technology

exists. Much of it has been miniaturized, including gears, wheels, and other

moving parts (Fig. 1.1).

Chemical sensors have been developed for many of the ions (H*, Na*, K*,

Ca**, Cl-) and biological species (enzyme electrodes for glucose, amino

acids, hormones,etc) likely to be encountered. Arrays of sensors are a prime

target for intelligent data analysis and will be discussed at greater length

below. Feedback and control has been demonstrated. A simple mobile robot

has been equipped with an ‘artificial nose’ (an array of vapour sensors) and

trained to follow trails of camphor painted on a factory floor (Devezaet al.

1994). The algorithm used gives a path similar to that followed by a male

lobster, tracking down the source of a pheromone plumerelease by an egg-

laden female (Atema 1995).

Possibly the greatest lacunae in the, admittedly fanciful, account given

above is in the software whereby data from the sensors can be analysed and

turned into actions that satisfy the mission’s primary goals, 1.e. intelligent

data analysis.

Figure 1.2 attempts to bring together this discussion to show the relation

between the different levels of intelligent instrumentation, and whereintelli-

gent data analysis is used to achieve these wider goals.

The solid line encloses an intelligent instrument. The end user looses the

instrument on the world and it then takes appropriate measurements, con-
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Fig. 1.2 Data, instruments, and intelligent analysis. See text for discussion.

cerns its2lf with validation, calibration, and so on, and returns results, advice,

and performs such actions as are required. The first dotted line contains an

instrum:nt that the user controls and uses to take measurements. Thereisstill

full scope for intelligent data analysis using methods that are described in

this book. The inner rectangle shows the present position of many instru-

ments, ‘vith some analysis being performed internally but the user being

requirec| to understand and control the instrument, and also perform most of

the end data analysis off line.

3. Data

Manya -riminal case has revolved around data — blood tests on stains found

at the sc 2ne of the crime, the level of alcohol in a driver’s blood, the speed of

a suspect’s motor car. Because of the needto be certain of what came out of a

forensic scientist’s black box, lawyers have caused the notion of ‘primary

data’ to be distinguished from ‘derived data’. In the past, the primary data

could hive been the reading on the dial of an instrument, faithfully recorded

in the s:ientist’s laboratory notebook. Now,in the age of electronic instru-

ments, the primary data may well be the contents ofa file residing on a hard

disk. Whatever form the primary data takes, it provides us with a starting

point for our discussion ofintelligent data analysis.

All ir struments output a signal in the form of a voltage (or occasionally a

current, ‘hat is readily converted to a voltage). This may cause the needle on a

meter tc move, it may cause a pen to trace out a line on a chart recorder, orit

may be converted to a digital signal via an analogue to digital converter

(ADC)and thus be relayed to a computer.

Intel] gent data analysis maystart its work on this raw signal, or on the

product of some algorithmic manipulation ({Analysis]! in Fig. 1.2). The

Data 3
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output of a pH meter is an example of such a conversion. It is obtained

from the voltage between glass electrode and a reference electrode via the

equation

pH=a-bV (1)

a is a constant, determined by measuring the voltage (V) in a solution of

known,or defined pH,and 5 is calculated from a theoretical treatment of the

response of such electrodes (the Nernst equation (Hibbert 1993)) and the

measured temperature. Althoughthe intelligence shown by Nernstin deriving

his equation in the 1890s was considerable, no one would ascribe intelligence

to the operation of the internal electronics in the pH meter. Wherein, there-

fore, lies intelligence in data analysis?

4. Intelligence

Philosophers and computerscientists have madea tidy business of discussing

the nature ofartificially intelligent machinesandtheir relation to humanintel-

ligence. The sections on knowledge-based reasoning and expert systems con-

front directly the question ‘Whatis intelligence?’, and other chapters in this

text build on the notion implicit in the title that there exists something that

could be called ‘intelligent data analysis’. The much-criticised definition of

artificial intelligence given by Minsky (1968) ‘the science of making

machines do things that would require intelligence if done by men’ may, apart

from the inherent sexism, serve us here. We believe that the interpretation of

scientific data requires intelligence, and thus computer software that can take

low-level data and spit out high-level information, advice, or simply more

useful data maybe described as ‘intelligent’. In adopting this approach we

may be accused of a ‘heads-down, pure engineering’ view ofartificial intelli-

gence (Whitby 1988) but it will allow us to make progress on the central

issue of whether we can use computer procedures in the sciences that can

substantially upgrade the information availability of data. The philosophical

foundations of this book may at least be on a par with the modern concepts of

the ‘intelligent micromachineinitiative’ (see Fig. 1.1) and somewhat ahead of

‘intelligent polymers’'.

5. Heuristics and learning

The exercise of human intelligence often arises when applying general

knowledge to fill in the gaps in understanding situations for which only

partial information is available. The data from most experiments may, theo-

retically, have a numberof interpretations but in the context of a given situ-

ation humanssee the obvious one, often being guided by expectations about

the outcome. Theintervention of an intelligent human, and what distinguishes

'There exists at the University of Wollongong, New South Wales, Australia the ‘Intelligent

Polymer Research Centre’.
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levels of expertise in humans,is a subtle blend of experience and understand-

ing of the field in question. Expertise is gained by exposureto situations for

which the answer is known (or becomes apparent), direct teaching, and gen-

erally trving and failing. This is the most difficult ‘intelligence’ to bring to

data analysis.

6. Data analysis and the embodimentof intelligence

In using a term such as ‘increase the information availability’ of data, we

incorpor.ite the idea that, at one level, data analysis can be simply a reorgan-

ization cf data. A principal components analysis (PCA) of a set of spectra

may reveal groupings of objects or variables that are not apparent from an

examinaion of the original data (Martens and Naes 1989). PCAis a linear

matrix rianipulation of the data. Nothing is added or removed, the data is

reorgani.“ed and in doingso features are revealed allowing the intelligence of

the obseiver to extract the necessary information ([Analysis]" in Fig. 1.2).

Modern trends in scientific instrumentation have been to increase the

amount xf data enormously. A humanplotting data a point at a time read from

an instru mental dial lags far behind an analogueto digital converter accessing

many cl:annels at a megahertz rate. Diode array detectors, using charge

coupled device technology, capture many spectra per minute at hundreds of

wavelensths. The information so obtained has increased the power of HPLC

to discritninate betweenclosely eluting compounds. The millions of numbers

represeniing absorbances at given wavelengths and times cannot be under-

stood when viewed as raw data. At least a three-dimensional visualization

and further intelligent analysis is required to make sense of whatis being

seen.

Intelligent data analysis really comes into its own when the data issuing

from th: instrument is augmented by prior knowledge or understanding

([Analysis]" in Fig. 1.2). The dotted line from the End Userin Fig. 1.2 shows

that knowledge is required if the user is to perform her ownanalysis, but the

instrument could already be imbued with such knowledge, input via the

knowledze base of an expert system, or learned from earlier experience.

7. Traceability, calibration, and validation

Traceab:lity to the Systeme Internationale (SI) is commonin all fields of

physical measurement but has only recently been identified as a major

problem in chemistry (Kaarls and Quinn 1997). Commercial (through trade)

and publ:c (health and environment) pressures demand reliable measurements

that can only be assured if those measurementsare traceable to agreed inter-

national ‘eferences. Physical measurements of time, length, and weight have

long been associated with international standards. Electrical potential and

current are also traceable. More recently traceability of chemical measure-

ments has been extensively discussed, both in terms of possible redefinition

of the grim in terms of the SI measure of the amountof substance (the mole)
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and practical realization of this by establishment of certified reference labora-

tories (de Biévre and Taylor 1997).

The reliance on apparatus that does not directly observe Nature, implies

the need for calibration, namely the procedure by which the relationship

between the instrumental response and the level of the measurand is estab-

lished. If an instrument returns the concentration of a component, no matter

in how complex a manner,traditional calibration could be used with certified

reference materials providing the traceability to international standards. If,

however, the intelligence is taken one step further to offer advice based on

the direct results of the measurements, then it is hard to see how metrologi-

cally valid calibration could be effected. An example would be the establish-

ment of the authenticity of olive oil, based on the output of an array of vapour

sensors and a neural network trained on a number of genuine andersatz

samples. No single compound is explicitly determined, ratherit is the ensem-

ble of vapoursthat triggers the real/fake result. It may be argued that because

no aciual concentration is measured then there is no metrology problem to

consider. Howeverif instruments in the future are to be seen as increasingly

intelligent, then some meansof assessing the calibration must be developed.

Sobolev and Aumala (1996) have addressed the problem of metrological

support in intelligent systems, defining their concept of Metrological

Automatic Support (MAS). While concentrating on intelligent instruments

for which measurements are without ambiguity (by implication physical

rather than chemical measurements), they identify complexity and the ability

of intelligent systems to reconfigure themselves as reasons whytraditional

metrological approaches mayfail.

That an intelligent instrument may arrive at an answer from a numberof

pathways through the possible configurations of the instrument and the near

impossibility of establishing the metrological characteristics of those possible

structures has led to the concept of internal or autonomousverification. This

has the advantage of tracking changes in the system itself and thus maintain-

ing a chain of calibration even if the instrument changesthe structure of the

measurement chain. Models of the working of sensors and other parts of an

intelligent instrument are required, and these may be set up andtested via

virtual instruments (see below).

There is a clear challenge to the writers of intelligent software to estab-

lish the validity of their code. Validation is the demonstration that a

process is acceptable for its intended purpose (Green 1996). The follow-

ing, with an emphasis on the analysis of pharmaceutical compounds, are

identified as being generally required for validation of an analytical

method: specificity, accuracy, precision, detection limit, quantitation limit,

linearity, and robustness. If the outputof intelligent data analysis 1s a con-

centration then most of the validation criteria could be used. In the more

complex world of intelligent machines linearity of calibration would be

replaced by a suitable statistical measure of the goodness of the regres-

sion, perhaps established by cross validation. Interlaboratory trials could

establish measures of precision even if an uncertainty audit, with propaga-

tion of uncertainty of the steps in the analysis throughto the final result, is

not possible.



Requirementsfor an intelligent sensor

Accuracy is usually measured in one of four ways. The most metrologi-

cally sound method is to compare the analysis with that of a certified refer-

ence material (CRM) of near the same concentration and composition. For

many samples such a well-characterized CRM is not available. Second, the

results nay be compared with the analysis using another validated test

method. This also encompassesthe idea of using a certified reference labora-

tory to independently analyse a sample. Howeverexactly equivalent methods

are not always available. Thirdly, a known amount of the analyte (a spike)

may be idded to a blank matrix and the recovery determined. This is common

in the pharmaceutical industry. If the matrix cannot be made up independ-

ently to zive a blank to which analyte may be added,the final methodis that

of standard addition to the sample, followed by a calculation of the recovery.

The -aeasure of robustness is fraught with danger for methods based on

intellige1t data analysis. The robustness of a methodis its ability to remain

unaffectid by small changes in the system as may be found in normal prac-

tice. Par;ameters such as temperature, pH, the waythat the instrumentis oper-

ated, and the nature of the matrix will show a natural variation, and unless

they are explicitly compensated for (such as temperature) it must be estab-

lished how they will affect the analytical result. It is rarely good enough to

change «ne identified factor at a time. Any correlation between variables will

lead to erroneous results. Multivariate methods that allow the analysis of

target analytes in the presence of multicomponent matrices meansthat to be

tested thoroughly, a large experimental design 1s probably required. As with

the narre-wer problem of traceability discussed above, the more intelligent the

system, the wider the range of situations in which it can be used, and the

greater t1e task of validation.

In addition to the analytical validation that is required, a complex program

must be validated internally, i.e. does the software deliver the output that the

program.mer thought it should? This is a major concern of computer science

and a steady stream of much publicized computer-aided disasters does not

appear :o aid public confidence in the ability of software to deliver the

desired “esults (Waldrop 1987).

8. Requirementsfor an intelligent sensor

For data analysis to be intelligent, the data supplied must be of a quality to

allow su 2h analysis to function properly. A numberof papers in a volume of

the jourr al Measurement and control were devoted to the topic of intelligent

instruments (Brignell 1996). From an engineering aspect there are several

qualities of an intelligent instrument that are worthy of note. Riviere efal.

(1996) listed the properties and functionality of an intelligent sensor. These

are compiled, with considerable amendment for an intelligent chemical

sensor 1n Table 1.1.

In the first column wesee that collection of data is only one function that

is requir::d of a suitably intelligent instrument. The data mustbe stored (in the

case of _arge data sets this may require compression) and properly indexed.

Wheniriterrogated the data must be made available, after some validation

7



8 Introductionto intelligent data analysis

Table 1.1 Intelligent chemical sensors. Requirements and functionality

 

Data manipulation Measurements Data analysis

to be made

 

e Collection of e Measurand(s) e Calibration

data

(measurement) e Physical e Calculation of

(temperature required information

e Storage pressure) and inferences

(concentrations

e Distribution to e Internal diagnostic leading to advice)

authorized

personnel e lime e Validation

/diagnostics,

e Deletion of Time/date stamp

data (clearing

of memory) e Advice — answering
wider questions with

contextual

understanding

 

that the system or person accessing the instrument has authority to do so. The

memory will be freed when the data is no longer needed by the instrument, or

when higherpriority data must be stored.

In many present-day sensors the instrument has an obvious primary meas-

uring device, plus other sensors that are required to compensate the measure-

ment and internal devices to check the general integrity of the device

({Analysis]"’ in Fig. 1.2). Howeverincreasingly there is what may be called a

‘total measurement process’ in which a number of variables are measured

simultaneously and processedto yield both information about the analyte and

other diagnostic information. Array sensors used for vapours in a number of

‘electronic nose’ instruments are a good example of this. Thusat the level of

the sensor itself, the distinction between measurand and other species has

become blurred, leaving the data analysis to sort out the different output

requirements.

The data analysis therefore brings together measurements on standards

(calibration) and the system to providea first level of information, which may

be concentrations of the target analytes. For a complex array of measure-

ments the software to accomplish this could well be classed as intelligent.

Further intelligence is shown if the measurements are validated, by checking

compliance information, making measurements on check standards, deter-

mining that measurements are within acceptable bounds,that calibration lin-

earity is maintained, and that the basic electronics are functioning as

specified. Data should have the appropriate level of auxiliary information, the

minimum being a time/date stamp. Finally an ensemble of data may be

analysed to provide the top level of information, such as advice to the user

that may come from an expert system.



Appropriate intelligent methods

The roregoing discussion showsthe serious approach taken by the engin-

eering community to the problems created by the complexity of intelligent

instruments. A neural network that uses sensory input data to determine the

origin 0” olive oil, is a long way from a finished, validated instrumentthat

can work in an olive oil bottling plant. Two interesting approaches to the

design of intelligent instruments have recently been published. Onetests and

designs “he instrument in a computer program, thus creating a virtual instru-

ment that can quickly be assessed, changed, or reprogrammed before too

much expensive engineering takes place. Taner and White (1996) describe a

technique using virtual instrumentation for testing and analyzing an elec-

tronic sub-system.

Luttenbacher et al. (1996) consider the requirements of an intelligent

sensor having to connect to other sensors and instruments as part of the make

up of intelligent machines. To integrate an intelligent sensor into an auto-

mated sistem, there must exist a model of the sensor in terms of the services

it can o:fer, the inputs required, and its general behaviour. They describe an

object o-1iented approach to build models, and give an example using OMT

(object riodelling technologies).

9. Appropriate intelligent methods

Reading the chapters of this book may leave a neophyte data-analyser with

the question ‘which, of such powerful methods should I use?’. There are

hard-lin:: proponents of any method who maintain that all knowledge may be

extracted using their technique, but there is little evidence that any one

method is superior over a wide range of problems. Typically the literature

abounds with papers that compare method X with method Y for a restricted

problem, and for which X is obviously better suited than Y anyway. The

choice cf data analysis method mustrest on two considerations, the nature of

the data and the nature of the required output. Practically there is a third

factor, ramely the availability and user friendliness of the software, which

tends to ninder the widespread use of new methods.

Figur 1.3 attempts to show the relationship between the three main areas

of data nalysis, statistical multivariate analysis, neural networks andlogic-

based programming, and the nature of the data and problem.

Data may be numerical, either continuous or discrete’, or symbolic.

Logical manipulation of symbols (words, sentences, etc), and the output of

advice i: usually thought of as the province of expert systems, knowledge-

based reiisoning, and the like. At the other extreme, the treatment of numeri-

cal data with a quantitative output is often treated by statistically based

methods such as principal components analysis, and regression, partial least

squares “egression, or ridge regression. Classification based on numerical

data may be accomplished by methods such as discriminant analysis,

“Becauseof the use of analogto digital convertersall data from instrumentsis discrete, but if
the discretizationis fine enough. methodsare not disadvantaged bytreating the data as
continuous

9
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Advice ES, KBS

5 ANN GC
O. LDA, PCA,

5 KNN, CA
© GA

MLS, PCR, PLS,

Quantitative RR

Numeric Symbolic
DATA

Fig. 1.3 Intelligent data analysis methods arranged in termsof the nature of the
data and the required output. Key to methods: LDA,linear discriminant analysis;

KNN, K-nearest neighbours; PCA, principal components analysis; CA, cluster

analysis; MLS multivariate linear regression; PCR, principal components regres-

sion; PLS, partial least squares; RR, ridge regression; ANN, artificial neural

network; GA, genetic algorithm; GC, genetic classifier; KBS knowledge based
system; ES, expert system.

SIMCA, K-nearest neighbour, or cluster analysis. Artificial neural network

methods take up much of the middle ground. They are numerically based but

are best suited to classification problems. The inherent non-linearity of neural

networks and their flexibility has led to their wide use in data analysis.

Evolutionary optimizers such as genetic algorithms are used to discover

optimum parameters of the system and also show great flexibility through

different codings of the problem. They mayalso be used to optimize another

data analysis method, and thus may be considered as providing meta-

intelligent data analysis. Methods can be used effectively in combination.

Induction methods based on information theory can be used to provide the

rules for an expert system, and neural networks have been the classification

front end to expert systems in speech recognition. It should be noted,

however, that with sufficient determination any method can be used for any

data. Thus a purely numerical regression technique such as partial least

squares that is most comfortable in determining continuous numerical vari-

ables can be used to, for example, classify diseases from blood analysis data.

Similarly by binning ranges of an output variable a classifier may be made to

yield a number.

10. Configuration of ion chromatography —acase studyin the

comparison of methods

An example of the comparison of many different analysis methods for a

single problem comes with a series of papers on the configuration of an

instrument to separate a mixture of ions by a group at the University of New
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South Wales in Sydney, Australia (Mulholland et al. 1993, 1995a, 1995b,

1996; van Kampen 1997; Ramadan 1998a, 1998b). The design of a suitable

ion chromatography (IC) method requires knowledge of the chemistry of ions

and their interaction with column materials in different carrier solutions and

the possiilities for their detection. Different chromatographic mechanisms

can be applied to separate ions and each of these requires a considered choice

of method conditions. By its nature IC is used to analyse mixtures and so

there is infinite variety in the possible solutions that will be presented to the

method. In addition the application requiring the chemical analysis may

impose its own constraints, for example environmental samples may have

low concentrations of the analyte ions and the amountof biological samples

available may be small. Previous applications have applied expert system

technolosty to solve problems in chromatography but IC had not been tackled

until the comprehensive database produced by Haddad and Jackson (1990)

provided an ideal source of data on this subject. A set of nineteen attributes

were defined to characterize a system. Eachattribute has a numberof poss-

ible values. The attributes give information both about the sample (numberof

solutes, uv-adsorbing, solubility, application, presence of sulfate ...) and

about the chromatographic method (detector, mobile phase, pH, mechanism

of the separation ...). For each attribute it may not be clear what may be

known by the user and what is required to be supplied by the program. For

example. although the detector may normally be anattribute to be predicted,

if a laboratory only possesses one type of detector, then that must be a given

attribute ind the method should, if possible, be determined aroundit.

The database consisted of previous published IC methods covering thelit-

erature u) to 1990. The total number of cases was 14 103. The database was

not ameided in any way. Thus it contained errors, duplications, and

conflicting advice (more than one method may be proposed for a particular

case). The database also spanned ten years, during which time the subject

advanced considerably, so that a method suggested in 1980 may have been

supersed::d by 1990. Finally, 1t must be noted that a stunningly good method

will probably only be published once. What tends to appear in the literature

are niche: methods and ones with novel, but not necessarily useful, methodol-

ogy. For these reasons,therefore, this represented an excellent ‘real world’test

of the method of data analysis. The project commencedas a suitable problem

for testing the use of an expert system methodology called ‘ripple down

rules’. Tl e extent of the database also meant that building the system by hand

would be too time consuming, and soinitially two induction methods, C4.5

and INI;UCT provided an automatic way to create the expert system

(Mulholland et al. 1995, 1996). A self-organizing neural network and a

genetic algorithm classifier were then applied to the database (Mulholland

et al. 1$)5b, 1996). To address the question of whether linear statistical

methods :ould be used on the problem, principal components regression and

linear discriminant analysis were applied to a suitably coded database

(Ramada. ef al. 1998). The problem of using statistical methods requiring

continuous variables for such a classification problem is well known (Sharaf

et al. 1986). It may be argued that these methodsare simply not suited to dis-

crete data, but as principal components analysis and discriminant analysis

11
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have become so widespread in their use, if they could be shown to work

it would bring a range of problems within the purview of mainstream

chemometrics.

There are two coding options. Oneis to assign a cardinal to each possible

value of the attribute. Thus for the class of ion, 1 could code for organic ions

and 2 for inorganic ions. Unfortunately these labels bear no relationship to

each other. Howeverthe charge on an ion conveniently fits this coding, taking

values from —4 to +4. The required output may be similarly coded, for

example if the detector was being classified then an output of 1 would be the

choice of a conductivity detector, 2, a UV detector and so on. Because the

classification methods give a decimal value, the output needs to be rounded to

the nearest cardinal. This showsthe difficulty of using this coding, as an

output of 1.5 does not really mean ‘choose between detector number1.0 and

detector number 2.0’. A better way of coding the input and outputis to assign

a variable taking a value between 0 and 1 for every possible value of each

attribute. Ideally for each attribute the output registers | for the correct choice

and 0 for all others. Fractions now do have a meaning,reflecting the certainty

of a given value. This coding increases the number of variables considerably

(in the case of the IC problem from 19 to 118) but with a large enoughtrain-

Table 1.2 Classification of detectors for ion chromatography by different methods

 

 

Algorithm Percentageclassified Reference

correctly

Genetic algorithm 82 van Kampenetal. 1996

C4.5 70 Mulholland et a/. 1995a

Linear discriminant 69 Ramadan etal. 1998

analysis with prior

probability = fraction

in database

Neural network 68 Mulholland et a/. 1995b

INDUCT 68 Mulholland et a/. 1995b

Principal components 60 Ramadanetal. 1998

regression with binary

data

Linear discriminant 33 Ramadanetal. 1998

analysis with prior

probability = 1/18

Principal components 28 Ramadan etal. 1998

regression with cardinal

data
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ing set if is not prohibitive. It is not surprising that with this coding the

classification of detectors was twice as successful as with cardinals (see

Table 1.2:) (Ramadanef al. 1998).

In linear discriminant analysis the discriminantscore is calculated for each

case for each class from which the probability that a case belongsto the given

class is calculated. The discriminant function is optimized to give the

maximum numberof correct classifications of the training set. Once trained

the discriminant function is applied to data from unknowncases and the

classes culy predicted. The probability that a case with given discriminant

score belongs to a particular group requires an estimate of the prior probabil-

ity of the group which can be taken as proportional to the incidence ofthat

detector in the database, or equal across the groups. In the first instance, con-

ductivity detectors are weighted highly (7775 cases out of 12 693 use a con-

ductivity detector) and a post-column reactor incorporating a detector (9

cases) is greatly weighted against. To classify detectors correctly that appear

infrequently in the database, an equal prior probability has to be chosen.

Again this shows how awkward using numerical methods is for what is

essential y a symbolic problem. In an expert system little-used detectors

would be catered for by unique rules that fired only occasionally. Table 1.2

compare:the overall success rates of these disparate methods in choosing a

detector. Apart from the methods that were not expected to work (cardinal

coding in PCR and equalprior probability in LDA)there is a remarkable con-

formity cf results, with the genetic classifier giving the best result. Inspection

of the da abase led van Kampenef al. (1997) to conclude that because of the

factors discussed above an 80 per cent success rate was probably the best any

classification method could achieve.

11. The electronic nose — a case studyin intelligent instruments

This boox is organized around particular techniques that may be describedas

intelligert data analysis. Here we shall look at a particular application and

describe the techniques that have been brought to bear on the problem. No

attempt ‘will be made to give detail of the data analysis, these topics are

covered ater, but it may be useful to understand the interplay between the

problem. the instrumental approach, andthe data analysis.

Reseach into the ‘artificial’ or ‘electronic’ or ‘bionic’ nose, is an expand-

ing field with sensor design based on different chemical principles, a range of

applications, and increasing numbers of instruments on the market (Gardner

and Bartlett 1994, Hodgins and Simmonds 1995). An array of sensors, each

of which responds to a number of different compoundsbut with different sen-

sitivity, has the potential to differentiate among a very large numberof com-

pounds. ]t can be appreciated that if a sensor may yield a signal at x levels,

and N sensors are grouped in an array, there are x possible combinations of

response. For even modest values of x and N the theoretical number of com-

bination: quickly exceeds the number of known compounds; 10’ small

organic r1olecules and 10'° polymers and proteins could be accommodated

by 10 sensors returning 32 levels (5 bits). Even allowing for uncertainty in

13



14 Introductionto intelligent data analysis

the sensor readings leads to a calculation of 5 x 10!! compounds with
10 sensors having 10 per cent uncertainty in the response (Muller 1991). Real

arrays of sensors can be highly correlated, thus reducing the information, but

arrays of sensors have evident advantages over single compoundsensors. The

mammalian olfactory system appears to have evolved along theselines. It is

not thought that one receptor in the nose codes for one type of vapour mole-

cule. In fact it is hard to see how this could ever be selectable in an evolution-

ary sense as molecules new to an individual would not be perceived(i.e. there

would be no mechanism for ‘A smells like B’ if receptors werestrictly

unique). At present we believe that about 1000, but possibly as many as

10 000, different receptors code for about 10 000 different smells (Bell 1996).

A generalized sensor therefore may react to generic properties of mole-

cules such as ability to undergo oxidation, weight, size, or solubility. These

properties have formed the basis of array sensors. For example the conduc-

tion of semiconductors such as tin oxide (Chiba 1990) depend on the oxida-

tion of the impinging molecule by surface oxygen. Conducting polymers such

as polypyrrole (Hierlemanner a/. 1995) interact with organic vapours leading

to changes in resistance. More sensitive are sensors that monitor mass

changes of surface polymer layers as vapours partition into them. Examples

of these are the quartz crystal microbalance (Barko et al. 1995), and surface

acoustic wave devices (Hivert ef al. 1994). Optical sensors incorporating

polarity-sensitive fluorescent molecules in a polymer matrix (Dickinson etal.

1996) rely on the dissolution of the vapour molecule causing changes in

polarity. The non-specific array is then manufactured by coating a bundle of

optical fibres with films having different polymer composition and constant

fluorophore. A sensor may thus be made quickly with a wide range of coat-

ings having slightly different responses.

Whatever the transduction, the output of the array of sensors is a number

of time-varying voltages. These must be calibrated to whatever problem is at

hand. The interest in electronic noses tends to arise from the applications

which require some added intelligence such as deciding on the origin of a

whiskey, or the authenticity of an oil.

There is some debate about the best pretreatment of the voltage signals.

Options include mean centring (subtraction of the mean of a column or row

of the data from each value), double centring, standardization (division by the

standard deviation of a column), and range scaling (causing the valuesto fall

between O and 1). The choice of pretreatment depends on the nature of the

information in the signals. Standardization, for example, tends to emphasize

smaller signals (with commensurately smaller variance) over greater signals.

The concentration dependence of the sensor response may be removed by

dividing by the root mean square of the responses. This apparently drastic

step improvesthe discrimination achieved by principal components analysis

and cluster analysis and mimics the human nose, whichis notefficient at per-

ceiving the intensity of smells (Gardner 1991). A discussion of data process-

ing with reference to the analysis of essential oils has been given by Hibbert

(1996).

Moving on to the substantive part of data analysis, array sensors rarely

follow well characterized functional forms, and certainly not independent
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linear mcdels as are the basis of methods such as principal components

analysis. Despite this, linear methods such as principal componentsanalysis

(PCA) and principal components regression (PCR), partial least squares

regressior (PLS), discriminant analysis and cluster analysis (Gardner 1991;

Auge et c!. 1995; Stetter et al. 1993; Seemannet al. 1997; Barko et al. 1995;

Sundgren et al. 1990) are found as often as the most prevalent of the non-

linear methods, artificial neural networks (Auge et al. 1995; Seemann ef al.

1997; Sur dgren et al. 1990; Nakamoto ef al. 1993; Singh et al. 1996).

However, except for very simple cases PLS or PCR does not do well

against eilher non-linear PLSorartificial neural networks (Stetter et al. 1993)

because «f the non-linear nature of sensor data. Other methods published

include “<-nearest neighbour (KNN) classification (Barko et al. 1995;

Sundgrenet al. 1990), feature extraction methods (Seemann et al. 1997,

di Natale 2¢ al. 1995a) and vector representation (Weimaref al. 1990).

Artifical neural networks have been shown to work well for complex,

non-linea:’ classifications. No model is assumed, the calibration data is pre-

sented to the ANN, and an internal model is built. ANNs are particularly

powerful when used for classification, for example distinguishing among

beers, wires, cheeses, and other foods. Most commonly published cases use a

feed forward net with back propagation for training.

ANNsare powerful, but must be used in context. Calibration, discussed in

general zbove, must use standards that span all possible combinations of

input parz meters and all classification outcomes. Back propagationtraining is

computer intensive, which is a drawback if recalibration, because of drifting

sensors c° changes in the system being monitored, is necessary (Nakamoto

et al. 1953). The requirements of re-training are also not well understood.

Pruning, ‘he removal of sensors (i.e. ignoring a sensor which does not con-

tribute to the classification model) or the number of hidden neurons in the

network, is necessary to avoid overtraining (Seemann et al. 1997). That this

problem ‘developmentof the network until the fit to the training set 1s excel-

lent but ;redictive ability is lost) is perceived in the development of array

sensors niay reflect the tendency to use too few trainingsets.

The presentation of each training set to the sensor array is an experiment

for which a standard has to be provided, so it is not as easy to obtain compre-

hensive tvaining sets, as, for example, for vision-based systems. Parsimony in

the number of sensors recalls the theoretical treatment of Muller (1991), and

underline ; the fact that data is no use unless it contains extractable informa-

tion. Rec:ntly the speed of self organizing maps (di Natale et al. 1995b) and

self organizing adaptive resonance networks (Gardneret al. 1996) have been

shownto be useful in analysing data from sensorarrays.

The tr:atment of complex data from a sensor array will probably fall into

the category of ‘intelligent data analysis’. However, of the many papers pub-

lished with different sensors and different methods of data analysis, the

majority :re laboratory-based studies on contrived or extremely restricted sets

of data. Sales of commercial electronic nose instruments suggest some are

deployed in industry, but anecdotal evidence implies that there have been no

great success stories of their use in genuinely intelligent situations. The

problem ies as much with the chemistry of the sensors as with the data

15
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analysis, but this field remains a challenge for those who would claim to have

producedintelligent data analysis methods.

12. Conclusion

Intelligent data analysis does exist. Modern instrumentation provides such a

great quantity of data that, even at an early stage, intelligence must be shown

to manipulate and analyse them. Future intelligent instruments and

autonomousintelligent machines will require sophisticated data analysis.

This book aims to describe where mainstream intelligent data analysis is now,

and outline trends.
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2 Knowledgetransfer:

human experts to expert

systems

Sharbari Lahiri and Martin J. Stillman

1 Introduction

At a meetiig in 1956 at Dartmouth College, Marvin Minsky, John McCarthy,

Nathaniel Rochester, and Claude Shannon gave birth to the term ‘artificial

intelligence’ and announcedthefirst computer program, the Logic Theorist,

in artificia! intelligence (AI). This program was developed by Allen Newell

and Herbe.t Simon of Carnegie Mellon and J.C. Shaw of the Rand Corp. The

research o° Newell, Shaw, and Simon on the Logic Theorist, a chess playing

program, :nd the General Problem Solver (GPS) dominated the first decade

of AI fron. the mid-1950s to the mid-1960s. Their research in areas such as

heuristic search, problem solving, planning, and knowledge representation

remain important areas of AI and lead to the current generation of expert

system pregrams.

In studving expert system applications in science, the hardware and soft-

ware com=onents serve only as tools to represent and apply scientific knowl-

edge. The key to the application of AI techniques is knowledge coding. In

this chapter we describe and illustrate implementation of techniques of

knowledg: coding that allow for greater use of expert systems. We begin with

a discussion of the transfer of human expertise into an expert system, contin-

uing with . discussion of the two important stages involvedin the transfer of

human exertise, namely (a) knowledge acquisition and (b) knowledge repre-

sentation, and end by discussing our approach to building rule-based expert

systems.

1.1 Simulation of human thought processes

GPS was one of the first programs created to simulate human thought

processes. In the GPS:

@ the problem was expressed as an external representation,

@ atransator converted the problem into an internal representation, and

@ problein solving techniques provided the solution by processing the inter-

nal representation.

The powerof the GPS wasbased on the effectiveness of the problem solving

technique: used and its generality was demonstrated by showing that the

program c duld solve problems associated with different knowledge domains.
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Problem solving was based on a heuristic search that was guided by a tech-

nique called ‘means-end analysis’. In means-end analysis, the approach to

analysis was based on the desired solution (end to be reached). The GPS con-

sists of a group of methods capable of solving one or more problems. A ‘big

switch’ model of generality was proposed if there was a need for a diagnostic

routine to relate a given problem to a particular method.

However, the concept of generality was found to give rise to systemsthat

were inefficient in terms of performance. The developmentof specific knowl-

edge based systems began in 1965 when workstarted on DENDRAL,a

system to interpret mass spectral fragmentation patterns. In 1973, researchers

at Stanford University reported their results for MYCIN, a knowledgebased

system that was used to offer advice on possible treatments of bacterial infec-

tions in blood. In 1974, PROSPECTOR,an expert system to aid geologists in

ore exploration was developed at the Stanford Research Institute.

DENDRAL, MYCIN, and PROSPECTORare landmarks in the history of the

application of artificial intelligence techniques to complicated real world

problems because each program wasdesigned to solve a specific problem.

DENDRALand MYCIN showedthat knowledge based systems offered high

levels of performance because the emphasis was on knowledge accumulation

in a particular area. The success of these expert systems led to the develop-

ment and expansion ofthis new discipline.

Expert systems and neural networks have since been used extensively in

chemistry. Typical applications include (i) interpretation of possible chemical

structures from spectroscopic data, (11) choice of optimal parameters for instru-

ment operation, (iii) selection of an appropriate method of analysis, and

(iv) diagnostic systems in which causes of chemical problems are inferred

from a list of symptoms (mostof the references given at the end of this chapter

illustrate such applications). Each of these expert systems makesuse of heuris-

tics and inference mechanismsto represent and use knowledge belonging to a

particular domain. Table 2.1 lists various expert system projects in the authors’

laboratory where the key research has been in the knowledge coding and user

interface steps. The emphasis on diagnostic expert systems for analytical

chemistry was chosen because the knowledge domainsare so well knownthat

many experts are available, making knowledge acquisition easier. In addition,

once the system is complete, there are many who can verify the accuracy of

the decision-making that is based on the coded knowledge base.

Although similar in context, proceduralartificial neural networks are com-

posed of input and output units that simulate the computational aspects of

the human brain. Neural networks have been used for spectral interpretation,

recognition of flow injection patterns, qualitative and semiquantitative analy-

sis in ICP-AES,and for modeling and prediction in multicomponentanalysis.

Unlike expert systems, neural networksare considered to handle ‘fuzziness’

in the data and information well.

Expert systems can be designed to handle modifications in knowledge

through revisions of the knowledge base. However, this can be difficult,

therefore it is important to make the construction, expansion, and modification

of the knowledge base of an expert system efficient and user friendly through

the availability of appropriate tools.
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Table 2.1 A summaryof the applications developed in the Stillman Laboratory at the U.W.O.

(Reproduced with permission from Zhu and Stillman 1996.)

 

 

Program Module Software Tool Description
(personnel)

EAshell EAengine C A Windows-basedinference engine,

(G. Huang) accessible by DLL function call.
TableGenerator C, Excel A tool kit for the knowledge

acquisition process.

RuleEditor C A batch processorto convert a filled

KDM into a rule file (KBF).

AAexpert AAdiagnosis KDS, EAshell, A diagnostic expert system for the

(S. Lahiri) Visual Basic atomic absorption spectrometer.

AAmethod EAshell, Visual An expert system for method

Basic selection in flame AAS.

AAcontrol EAshell, C, A control program for automated AAS

Fortran analysis of trace metals.

GCexpert GCdiagnosis EAshell, C, A diagnostic expert system for gas

(H. Du) Visual Basic chromatography.

GC-OQC EAshell, C A module performing data analysis.

SPILLexp2rt ACselect Quick Basic, A module for selection of proper

(Q. Zhu) KDS analytical methods based on the

matrix, concentration range, and

detection limit required.

ERexpert EAshell, A program using both an internal

Access, Visual database and an expert system

Basic module to advise on the best

response to emergency chemical

spill accidents.

ACmethod EAshell, KDS, A updated version of ACselect

GCMSdiaynosis
(Q. Zhu)

OISMSdiagnosis

SPECview

DIAGplatform

Access, Visual

Basic

EAshell, Visual

Basic

Visual Basic

Visual Basic

comprising a database of methods
and an expert system component.

A diagnostic expert system for GC

tandem mass spectrometer using the

quadrupole ion storage device.

A module directly access the Varian

Saturn series of GCMSdata
A module automatically calculates the

conversion efficiency of aGC-MS-MS

process.

 

2. Builcling an expert system: the problem domain and design

of thre prototype

The completeness of the description of the problem domain is the most

important criterion in the successful development of expert systems. The
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Fig. 2.1. The stages involved in the construction of an expert system application.

Knowledge acquisition is a particularly important step that can be the bottleneck

for subsequent development work. Reproduced with permission from Zhu and

Stillman 1996.

crucial factors that determine whether an expert system will be able to solve a

particular problem are: the nature of the problem, the availability of human

expertise, and the ability to analyse the expertise and the problem in such a

way that the knowledge can be coded into the knowledge base (Jackson

1990).

Full scale development of an expert system should be preceded by devel-

opment of a prototype that can be used to indicate the appropriateness of

using an expert system to solve the problem (Waterman 1986). Prototype

design requires that an overall plan for the development process be deter-

mined and individual steps outlined. Figure 2.1 shows the stages commonly

required. In many situations, knowledge acquisition proves to be the most

difficult task to complete because of the interaction with experts who are not

part of the development team — instead they are co-opted to provide their

expertise. Personnel scheduling and cooperation of the various experts in

allowing sometimes naive discussions of their expertise combine to reduce

productivity at this crucial step.

The following example shows the relationship between the problem

domain andthe design of the knowledge base. Planning for the coding of the

knowledge base requires that the domain knowledge be veryclearly delin-

eated. Figure 2.2, taken from Zhu and Stillman (1995a), shows how the deci-
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Fig. 2.2 Description of the different aspects involved in the cleanup processes

for a chemical spill accident. Three factors need to be considered: (i) scientific and

technological responses, (ii) regulatory constraints, and (iii) political, economic,

and social demands. Reproduced with permission from Zhu and Stillman 1995a.

sion making process required following a chemical spill must be broken

downinto a series of subdomains.

For each area different decision-making processes are involved and each

subdomain must be considered independently. A significant part of the

problem c.smain is concerned with the quality of the advice given following

an emergency. Providing advice on the correct action to be taken following a

spill is coraplicated by the random nature of the emergency, yet much can be

included 11 the knowledge base to reduce the difficulty in selecting a small

number o= decisions to offer to the user. The figure shows how the chain of

inference nust be completed in parallel and that each of these conclusions

must be w2ighed to obtain the best decision.

Figure 2.3 shows the sequence of tasks required as part of the scientific

and techncal assessment of the response to a spill. The domain that was

described for this project was concerned with the reaction by all levels of

response team to a random catastrophic event, here a chemicalspill in a

public pl:cce. ERexpert is a program designed to provide the correct

notificatio 1 and assessment information from data provided by the response
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Fig. 2.3. The decision making hierarchy applied in response to a chemical spill.

Five phases of the responseare outlined. Reproduced with permission from Zhu

and Stillman 1995a.

team. This part of the response must be rapid and so the program uses a

combination of databases of known chemicals and rules for unidentified

chemicals. The steps outlined as Phase III in Fig. 2.3 provide advice on the

best containment and remedial action to be carried out at the scene. Phases IV

and V involve the follow-up work to restore the condition of the area.

ERexpert requires extensive data on the properties of chemicals (for example,

so that the containment advice can be determinedfor different environmental

conditions, an isolated stream compared with an urban roadway). Figure 2.4

showsthe design of the factbase used in ERexpert (Zhu and Stillman 1995a).

Clearly, the knowledge domainfor this problem is multi-faceted with areas of

expertise from chemical identification to chemical properties to chemical

containmentin the natural environment.
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Fig. 2.4 Design of factbase used in ERexpert. Reproduced with permission from Zhu & Stillman 1995a.

2.1 Knowledge acquisition in expert systems

Once the problem domain has been well defined, the next step is to plan the

acquisition step. Knowledge acquisition has been defined as the transfer and

transformition of potential problem solving expertise from some knowledge

source to 1 program (Jackson 1990). The different approaches to knowledge

acquisition can be grouped as follows (Gruber 1990):

e Tradit onal knowledge engineering;

e Interactive knowledge acquisition tools; and

@ Machine learning.

The traditional form of knowledge acquisition involves one or more

experts describing their expertise and their line of reasoning in problem
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solving. This step is often referred to as ‘the bottleneck problem’ in the gener-

ation of expert systems (Fig. 2.1) because it is found that it is very difficult to

acquire knowledge from experts. The information that is extracted is then

transferred to a form usable by the computer. This approach has also been

referred to as the basic model of knowledge engineering. The major problem

associated with this basic modelis the assumption that knowledge engineers

are available who can successfully transfer the specialized knowledge.

The interactive model of knowledge acquisition involves the expert

directly transferring knowledge into a knowledge base and the knowledge

engineer then collaborating with the expert to validate the knowledge base.

Often, the knowledge acquisition tools require that knowledge is represented

in a form that is conceptually or practically difficult for the expert to provide.

For example, the expert may find it hard to supply the values when the

knowledge acquisition tool requires the expert to provide weighted links

associating data with hypotheses. Repertory grid centered tools for knowl-

edge acquisition have been used to build knowledge based systems (Boose

1990). In a repertory grid, also knownasa rating grid, solutions, referred to

as elements, are placed in the columnsandthetraits, referred to as constructs,

are placed as rows of the grid. These tools interact with the expert and

perform tasks such as interviewing the expert, testing, and refining the resul-

tant knowledge base. AQUINAS, an expanded version of the Expertise

Transfer System (ETS), can automatically generate production rules from

rating grids, which can be reformatted for use in various expert system build-

ing tools.

The third approach to knowledge acquisition, machine learning, involves

the production of rules from examples. The implementation of machine learn-

ing requires setting up an induction algorithm to transform examplesinto

rules. Quinlan (1983) developed an inductive algorithm (the ID3 algorithm)

which has been applied in commercially available expert system shells, e.g.

the KDS (Knowledge Delivery System) shell.

2.2 Knowledge representation in expert systems

Knowledgerepresentation can be groupedinto four major categories

Logic

Semantic Networks

Frames and

Rule-based Systems.

2.2.1 Logic

First order logic (FOL) expresses features of deductive reasoning as proposi-

tions. Propositions are defined as statements that are either TRUE or FALSE.

Complex expressions are generated by using a set of symbols called connec-

tives. Commonly used connectives are AND, OR, NOT, and IMPLIES.

The drawbackto representing knowledge using FOLis that propositions in

the real world cannot always be expressed as TRUE or FALSE. Multi-valued

logic like fuzzy logic has been developed to express uncertainty (Pavelin

1988).
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2.2.2 Semantic networks

Quillian was the first to apply semantic network ideas to the field of natural

languagetranslation and understanding. He proposedan associational model

of human memory, called semantic memory, which attempted to capture the

meanings of words(similar to capabilities of human memory) and implement

this meanng in a computer program. Winston’s idea of structured descrip-

tions was based on generalizations from examples, similar to representation

of human thoughtprocesses. The problem of using semantic networksto rep-

resent knowledge arises from the fact that definitions of meanings, also

known as concepts, are subjective and difficult to incorporate into a program.

A semzntic network is defined as a labeled directed graph that consists of

vertices and labeled arcs between vertices. Each vertex represents a concept

which is also known as a word meaning.The arcs represent binary relations

between concepts. Relations commonly used in a semantic networkare:

A ‘part-ol’ relation: a relation in which the first concept is a ‘part of the

second concept. For example, halogensare a ‘part of the Periodic Table.

An ‘is-a’ ri2lation: there are two typesof the ‘is a’ relation between concepts.

(i) The set inclusion relation: a relation in which a concept‘is a’ subclass

of axother concept. For example, a transition metal ‘is a’ metal, and

(ii) The nembership relation: a relation in which a concept‘is a’ member

of a certain class of objects. For example, copper ‘is a’ transition

metal.

Figure 2.5 showsthe representation of knowledgethat is contained in the

periodic table of elements in the form of a semantic network.

The su dset-of and member-of links can be used to derive new information

and may form the basis for an inference engine. The use of links in a reason-

ing mech:nism called inheritance is explained in the following example.
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Fig. 2.5 Representation of knowledge using a semantic network. Reproduced

with permission from Lahiri 1994.
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Figure 2.6 An exception in inheritance in a semantic network. Reproduced with
permision From Lahiri 1994. |

The statements represented in Figure 2.5 are:

Copperis a transition metal:
Transition metals are metals, and

Metals are elements of the Periodic Table.

From the above statements, the following statement can be derived.
Transition metals are elements of the Periodic Table.

The following statement can be derived using subset-of and member-of
links:

Copperis a metal.

In an inheritance mechanism, the concept inherits properties of concepts
higher in the semantic network through links. However,the hierarchical rep-
resentation gives rise to problems in knowledge representation. Figure 2.6
depicts the problems associated with inheritance. The network showsthat
metals are solids and conductelectricity. Therefore, mercury, a metal, should

inherit both properties of metals. Although mercury conductselectricity, it is

not a solid. Flexibility has been introduced with regardsto the inheritance of

properties, by using knowledge representation in terms of frames (Lucas and

Van der Gaag 1991).

2.2.3 Frames

In a frame-basedrepresentation, knowledgerelevant to a concept is stored in

entities called frames. A frame is defined as a network of nodesandrelations

organized in a hierarchy, where the topmost nodes represent general concepts

and the lower nodes represent more specific instances of the concepts. This

mode of knowledge representation is known as a frame hierarchy or frame

taxonomy in which framesare represented by vertices and arcs denote ‘is a’

links between two frames.

Class frames, also known as generic frames, represent knowledge con-

cerning classes of objects. Knowledge concerning individual objects is repre-
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instance copperis

instance-of

transition metals;

atomic number= 29

end   
Fig. 2.7 Representation of knowledge using frames (tree-like taxonomy).

Reproduced with permission from Lahiri 1994.

sented by instance frames. A frame indicates its relative position in a taxon-

omy by using two types of ‘is a’ link.

(i) An instance-of link: a link between an instance frame anda class frame,

and

(ii) A -s.xperclass link: a link between two class frames.

Figure 2.7 shows an example of frame taxonomy. Metals represent a

superclass and copperis a specialization, a transition metal. Representation of

knowled¢e in a frametakes the form:

instance copperis

instance-of transition metals;

group = | B;

atomic number = 29;

physical state = solid;

property = conducts electricity

end

Proce«lures present in frames are called demons and can beactivated at a

particular time during the manipulation of the frame. Commonly used

demonsare if-needed, if-added, and if-removed. Demonscan also be used in

knowled:.e based systems that use frames and production rules. Knowledge
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in CENTAUR, a LISP-based expert system used to assist in the treatment of

pulmonary diseases, is represented in the form of frames and production rules

(Lucas and Van der Gaag 1991). It has been suggested that descriptive knowl-

edge can be successfully represented in a frame-based system.

2.2.4 Rule-based systems

The concept of using rules to represent knowledge was introduced by

researchers on the DENDRALproject. Rules represent knowledge in the

form of IF — THENstatements. The IF part contains the premise of the rule

and the THENpart contains the action or conclusionofthe rule.

Example: IF pH of a solution = 3.0 THEN thesolution is acidic.

The premise of a rule is a Boolean expression that mustbesatisfied for the

rule to be executed (or fired). The conclusion of a rule can either be list of

commandsto be carried out whenthe rule fires or be evaluated to true when

the premise does. The set of rules that describe a particular knowledge
domain is referred to as the rule base. In an expert system,therule base along
with facts associated with the knowledge domain forms the knowledgebase.

Rules that are grouped in sub-areas of the problem domainare referred to
as well-written rules. Well-written rules are said to be transparentin that the
developerofthe rule base is able to see through the syntax to the meaning.It
is easy to modify knowledge in such a rule-based system because onepart of
the rule base can be changed without affecting the otherparts ofthe rule base.
Well-written rules should have the following features:

e@ Organization of rules: the maintainability of a rule based system
improvesif rules that have the same conclusion are grouped together;

e@ Ordering of rules: higher performance is achieved for an expert system
when, in a particular group, rules are placed in order of most likely to
least likely, and

@ Sequenceof rules in a rule base: the order of rules in a group should be

based on the primary inference strategy used by the inference engine.

The drawbackof a rule-based system is that it cannot represent structural

knowledge. In a rule-based representation, it is not possible to represent

knowledgedescribing a particular entity in the form of the clusters which are

the characteristic feature of frame-based systems.

3. Encoding knowledge:a case history approach

There are two approaches in the implementation of a rule-based representa-

tion of knowledge:(i) the knowledge base can be designed for direct input of

knowledge in the form of rules, and (ii) the system can be designed to gener-

ate rules from the available chemical knowledge. The maintainability of the

knowledge base is important and adding knowledgeto a system that requires

input as rules is not an easy task. Therefore, in our work, we have opted for

the second approach; that is to build rule-based expert systems based on the

automated rule generation from case histories.
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Table 2.2 The knowledge domain described in termsof case histories.

(Reproduced with permission from Lahiri 1994.)

 

 

Knowledge domain Observables Action/Advice/Solution

Contaminiation_Blockage The flame has a The burner slot may be partially

ragged appearance blocked

Contamination_Blockage Occasional pulse Contaminated spray chamber

observed from the

absorption profile

Contamiriation_Blockage; Lower than The burner slot may be partially
Solution_?roblem expected blocked

absorbancevalues There may be contamination in

the spray chamber

The solution may be too

viscous

Solution_?roblem Long rise time The solution is too viscous

observed from the

absorption profile

 

Wetrex t the chemical knowledgeas facts, and we are more able to modify

facts rather than a rule-based structure for problems in the chemical domain.

Wefirst ¢escribed the design and implementation of a rule-based expert

system to diagnose problemsthat arise during analysis by atomic absorption

spectrometry (Lahiri and Stillman 1992). In this scheme, knowledgeis repre-

sented as i matrix of observables (or symptoms) in rows and conclusions (or

causes) it columns. Connections established the true—false relationships.

Knowledge belonging to the same sub-domain is grouped in the order of

most likely to least likely observables. This mode of depiction greatly aids in

the verification, portability, and expansion of the knowledge base. The fol-

lowing example shows how the case history approach can be used to give

generate riles (Table 2.2).

In the next step, the case history knowledge is transformed into the

Knowledge Domain Table (Table 2.3). The connection between observables

and conclusions can occur in several cells, for example row 2 in Table 2.3.

Whenthe input of knowledge is completed, rules are created using in-house

software ( Table 2.4).

4. Exarnples of expert systems that implement the case history

approach

Over the last 10 years the Stillman group has developed the use of truth

tables as «: means of coding heuristic knowledge in terms of case histories.

Figure 2.8 shows the sequence of coding knowledge in this manner.
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Table 2.3 Representation of chemical knowledgein the form of a

Knowledge Domain Table. (Reproduced with permission from Lahiri

1994.)
 

Burnerslot is Contaminated Check viscosity

 

blocked spray chamber of solution

The flame has a T

ragged appearance

Lowerthan T T T

expected

absorbance values

Long rise time T

observed from the

absorption profile
Occasional pulse T

observed from the

absorption profile

 

Table 2.4 Rules generated from the chemical knowledge presentin

the knowledgetable. (Reproduced with permission from Lahiri 1994.)

 

Rule 1. IF The flame has a ragged appearance = True AND Lowerthan

expected absorbance values = True THEN Contamn Blockage = Burner

slot is blocked.

Rule 2. IF Lower than expected absorbance values = True AND

Occasional pulse observed from the absorption profile = True THEN

Contamn_Blockage = Contaminated spray chamber.

Rule 3. IF Lower than expected absorbance values = True AND Longrise

time observed from the absorption profile = True THEN Soln_Problem =
Check viscosity of the solution.
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Fig. 2.8 The steps involved in the use of the Knowledge Domain Matrix to process heuristic knowledge that describes

a defined problem domain. Reproduced with permission from Zhu and Stillman 1995b.
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Follow ing the assembly of the knowledge through knowledge acquisition

from one or more experts causal analysis is carried out that relates observ-

ables to actions that are to be part of the decision. The sequence carried out

involves ,:roviding observables that define the condition to be assessed and

using mor2 and moredistinct observables to narrow the choice of conclusion.

A series cf compilation steps is carried out to ensure that each conclusionis

identified sy a uniqueset of observables, and that ambiguities are not inserted

during such maintenance. Finally, the Knowledge Domain Matrix (KDM)is

processed to generate a rule base. This last step can be automatedasall ambi-

guities have been resolved in the previous steps. The rule base then can be

prepared in any format, thus allowing the knowledge to be transferred from

system to system. In fact, the KDM is an ideal depository of expertise

because each condition and conclusion and the connecting logic (true or

false) can be read using a standard spreadsheet program (EXCEL) as a

viewer. This provides valuable portability as the expert can modify the matrix

without axiy prior knowledge of the expert system shell.

The portability of the knowledge also means that experts world-wide can

comment 9n the connections tabulated between observable or conditions and

conclusions or decisions without access to the expert system. Indeed, knowl-

edge engineers can process the KDM to providerules in the form best suited

to local ex pert system shells through filter programsthat can allow manydif-

ferent expert system shells to use the same knowledgebase.

Figure 2.9 illustrates how the truth table, as envisaged in the discussion

above, rayidly becomes a complex database of knowledge. Figure 2.10 shows

the complexity that arises when the similarities in observables or conditions

require a large numberof connections to provide unambiguousselection of

the concli..sion.
When two or more domains overlap and with increased complexity within

a single domain, a three-dimensional structure for the KDM is required. Here

conclusio.is from one level become conditions of another. A straightforward

view of stich a knowledge base is shown in Figure 2.10. The three layers can

represent different components required in the decision making. With the

appropriae user interface the layers do not need to be interconnected in the

sequentia. manner shownin Figure 2.10.

We have developed expert systems to solve a number of chemical prob-

lems, frov1 design of automated and unattended instrument analyses to emer-

gency response to chemical spills. We have emphasized the importance ofa

‘universal means of converting chemical knowledgeinto rules that can be

used by :n expert system. The prototype AAexpert deals with automated

analyses “of metals by flame atomic absorption spectrometry (FAAS) (Browett

and Stillman 1989; Browett et al. 1989; Lahiri and Stillman 1992; Lahiri et

al. 1994) We have also implemented an expert system, GCDiagnosis, for

diagnosing gas chromatographic data. The domain knowledge in these expert

systems ‘vas acquired by studying the symptom to causerelationship by

deliberately introducing faults in the analytical instruments. It was shownthat

error trap:sing by defining criteria and performanceindices was an essential

componeit involved in achievement of fully automated and unattended

analyses. We have designed an expert system, ERexpert, that offers advice
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Fig. 2.9 The Knowledge Domain Matrix for the second knowledgelayer in ERexpert. ‘T’ indicates a unique connection

                
 

                
whereas‘t’ indicates that this is a parallel case, a situation where a numberof observables point to several conclusions.

 
19
.
Av

oi
d
sp

ar
k
co
nt
ac
t.

F
o
a
m
e
d

po
ly

ur
et

ha
ne

,
co

nc
re

te
di

ke
to

co
nt
ai
n,

pu
mp
/v
ac
uu
m
i
n

au
xi

li
ar

y
ta
nk
/s
um
p,

di
re

ct
to

p
a
v
e
d

su
rf
ac
e/

su
r-

fa
ce

se
al

an
t.

T
e
m
p
o
r
a
r
y

bu
ri
al

to
co
nt
ai
n

fo
r
la

te
r
tr

ea
tm

en
t.
 

34 Knowledge transfer: human experts to exp

Volatile chemicals

ert systems

Solid chemicals Insoluble liquid/solid chemicals

  



Fig. 2.9 Continued
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Fig. 2.10 A multilayer KDM designed to incorporate the complexity found in

multistep decision making processes. Conclusions from one level are inserted as

conditions in a second layer. Reproduced with permission from Zhu and Stillman

1996.

following an accidental chemical spill (Zhu and Stillman 1995a; Zhu and
Stillman 1995; Zhu and Stillman 1996). This uses a database structure that
provides an effective archival method for organization of the elaborate factual
information necessary in solving problems in the domain.

4.1 AAexpert: an example

This project is part of a large, multicomponent expert system named
ACexpert, a system that is concerned with all aspects of instrumental analysis
(Browett and Stillman 1989; Browett et al. 1989; Lahiri and Stillman 1992:

Lahiri et al. 1994). A manual, non-automated model of the typical analytical

laboratory was proposed, in which it was assumedthat the analytical instru-

ment and methodto be used will be determined largely by regulatory agen-

cies. The system is subdivided into a set of individual expert systems

designed to perform specific tasks. The structure of AAexpert is shown in

Figure 2.11.

AAexpert has been designed so that each module addresses single,

limited domain of expertise within the overall domain of analysis by Flame

Atomic Absorption Spectroscopy. In this model, linked expert systems pro-

vided advice on each aspect of the analysis. On receipt of the sample the

MANAGER’stask is to consult with both the CUSTOMER and the REGU-

LATORY AGENCYto determine the criteria to be used in the analysis.

AAassurance is a quality assurance expert system that is used by the

MANAGERand the ANALYSTto assist in the execution of a laboratory

quality assurance program. The ANALYST’srole is supervision of the expert
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Fig. 2.11. The structure of AAexpert. Reproduced with permission from Browett

and Stillman 1989.

system. AAanalyst, the process control and quality control expert system, will

complete the required analyses using the modules: AAmethods for method

selection, AAcontrol for sample. scheduling and handling, AAdiagnosis for

diagnosir g faults associated with both instrumental operation and quality of

data, and AA-QCfor quality control. AAteach is an instruction expert system

that uses simulation to give advice and examples on how to operate the

instrument. The individual areas identified include method selection

(AAmethods), control of the solution handling and measurement steps

(AAcontrol), real-time assessment of analytical data (AA-Quality Control),

and diagnosis of errors due to instrumental malfunction and interfering

sample chemistry (AAdiagnosis). Each example involvesa different applica-

tion of expert system technology.

Thecritical steps involved in realization of real-time corrective control of

analytical instruments are (i) obtaining measureddata that reflect the instanta-

neous condition of the sample chamber and (11) modeling the data in terms of

analyte quality. Modeling the detector response implies understanding the

physical and chemical processes which produce the analytical signal. The

program dedicated to quality control made use ofa rule baseto identify com-

monly occurring problems associated with analysis by FAAS. Automated

detection of problems can prompt the instrument to take remedial actions

which may involve modification in sample preparation or stopping analysis.

For exan: ple, the presence of out of range detector response is always associ-

ated witl a concentrated sample. Automated signal interpretation and error

handling can rectify the problem by diluting and reinjecting the sample.

Visual detection of the error at the end of the batch analysis would have ren-

dered the analysis of the remaining samples useless.



38 Knowledge transfer: human experts to expert systems

4.2 GCDiagnosis: an example

The knowledge base for the initial expert system for diagnosing problems

associated with analysis by gas chromatography was published in 1994 (Du

et al. 1995). We have also described a modelthat characterizes the physico-

chemical processes of a gas chromatographic system with a flame ionization

detector (Du and Stillman 1994). Causal analysis was used to generate and

compile the knowledge base of GCDiagnosis. A standard test mixture was

used to measure the peak parameters. The algorithm was based on informa-

tion theory and chemical knowledge about the sample. GC-Assess program

was developed to compare the peaks in the sample and reference chro-

matograms. This program was validated by using simulated data. It was

found that even with severe distortion in peak retention times, GC—Assess

was able to cope with variations in the simulated chromatogram. Relative

Performance Indices were used to quantify instrument characteristics and

describe the relationship between detector response and sample properties.

The knowledge base wasgenerated using an in-house EXCEL macro package

that created unique rules free from syntax errors.

Before an instrument can carry out unattended, automated analyses, the

controlling system must be able to interrupt or modify the operation in real

time to correct instrument malfunctions and change sample measurement

problems. However, if operator intervention is required, a diagnostic expert

system can be used to act as an advisor. We have described the design of

rule-based expert systems in which knowledgeis represented as a matrix of

observables and underlying causes. Although rule-based expert systems use

the natural way of capturing expert knowledge, changesin the data involve a

revision of the knowledge base. The major limitation of rule-based expert

systemsis its lack of learning ability.

4.3. ERexpert: an example

Zhu and Stillman have described the application of expert system technologyto

decision-making following a chemical spill. The key componentin these

studies was the combination of factual information in traditional databases with

heuristic knowledge coded in a rule-base. The determination of the correct

advice to give following a chemical spill is extremely complicated. requiring

assessment of the chemicals involved, the environmental aspects of the spill.

and legal and regulatory aspects of the cleanup. ERexpert was designed to

accomplish the task of considering each of these components and provide

advice for each phase of the response — from the immediate tasks following

the spill to the remediation process necessary once the spill is con.ained. The

Structure of the knowledge base was discussed and the knowledge domain

matrix used in the prototype described, shownin this chapter as Fig. 2.9.

Decision-making in response to any emergency is an ideal task for an

expert system. The knowledge can be compiled and maintained over time

between emergencies. Experts from around the world can participate in the

compilation step and emergencies around the world can be usedascasehisto-

ries to validate the responses provided by the program.Finally, the challenges

of making the very best decisions following such an accident require special-
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ized tools — the expert system is one such tool that can be tuned to provide

highly focused information to aid in the decision-makingprocess.

5. Casehistories to expert network

New workon the use of hybrid Al tools to diagnose problems associated with

gas chro-natographic analysis has been reported by researchers at Florida

State University and Los Alamos National Laboratory (Levis et al. 1995;

Elling et wl. 1997). An expert networkis a translated rule-based expert system

that uses specialized nodes and functions uncommonto traditionalartificial

neural ne:works. This hybrid Al tool preserves the natural knowledge repre-

sentation and explanation capability of rule-based programming, yet provides

the learni1g capability of neural networks. The knowledge wasrepresented as

a matrix of case histories modified from that previously reported (Duefal.

1994; Dv. and Stillman 1995). The true—false representation was replaced by

qualifiers such as Always, Usually, Sometimes, Infrequently, and Never to

reflect uncertainty in the relationship between symptoms and causes. The

expert ne work consisted of Symptom,Filter, Combination, and Fault nodes.

The binaty (e.g. irregular spikes, a symptom that is either present or absent)

and fuzzy) (e.g. tailing peaks, a symptom that occurs with varying degree of

fault) outputs from algorithms which extract signal parameters from chro-

matograrus are used as input for the Symptom node (Lahiri er al. 1996). A

training algorithm that uses back-propagation of error was developedto opti-

mize the weights of the connections between Filter and Combination nodes.

The syst:m was trained and tested using examples that were generated for

specific jaults. The untrained expert network was able to diagnose induced

faults in 44 per cent of the examples, training on 25 per cent of the data pro-

duced an accuracy of 88 per cent. Incorporation of knowledge for multiple

paths of “easoning increased the diagnostic capabilities of the expert network

to 93 per cent accuracy. An expert network can be retrained when more

example: are available or to account for small changes in instrument

configuration and sample type. This improves the performance and robust-

ness of the system.

6. Design of a model expert system

In this section we detail the criteria required in the developmentof a rule-

based expert system. We proposethat the design and implementation of an

expert system be described in terms of phases, each phase containing one or

more cycles. A typical design may involve three phasesto arrive at the com-

pleted ve-sion of the program. Thetimeline picture (Fig. 2.12) showsphaseI,

which comprises two cycles; phase I is considered to be the most important

part of thie project. Phase II and phaseIII each contain one cycle.

At the end of the first three cycles, a test version of the expert system is

released to users. Each task in the development cycle is modularized, this

allowstk.2 prototype design andtesting to be carried out at different stages of
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Fig. 2.12 Phase | in the design and implementation of a rule-based expert system. Lahiri and Stillman, unpublished
work.

the project. Figure 2.12 showsthe relationship between a numberofspecific

tasks and their sequence in the developmentcycle. The keystepsare:

Problem Definition: The expert, consultant, and knowledge engineer meet to

discuss the problem and the problem-solving strategy. The knowledgeengi-

neer carries out an initial survey of the knowledge related to the problem

domain and outlines the design of the expert system. At the endofthis stage,

the consultant meets with the expert to discuss the feasibility of the project

and to finalize the contractual details.

Prototype Design: Aninitial structure of the expert system is delineated, the

breadth and depth of the expertise is defined, and the applicability and extent

of data analysis is assessed. Thefinal prototype designis arrived at following

the phaseI of the project.

Knowledge Acquisition: Domain knowledge and heuristics used by a

domain expert are captured in this step of the implementation. The expertis

interviewed by the knowledge engineerandfills a knowledge template in an

order of most likely to least likely observables. The knowledge template will

include signal characteristics, description and the reasoning process. The

knowledge engineer must be able to generalize the knowledge, extract the



concepts. and understand the trends and exceptions in the knowledge. Next,

domain knowledgeis classified into goals where relevant knowledgeis pre-

sented as case histories. Coded knowledgeis converted into rules.

Data analysis: This is one of the most important tasks of a project that deals

with anayses involving signal interpretation. Increasing the number of

defined signal features will help in the construction of an expert system that

will be capable of providing more accurate adviceto end users.

Code writing: This component in the development concerns programs

needed to support the user interface, construction of the knowledgebase, data

analysis, and creation of the link between the user interface and inference

engine. Code needs to be written to provide an explanation system that traces

the line cf reasoning and providesa detailed version of the remedial action.

User Forum: Becausethe success of an expert system is intimately linked to

the accepability of the program to users, potential users must be requested to

provide <eedback. This includes the ease of use (user interface), depth of

knowledge, and quality of advice. User forum allows for exchange of ideas

and incotporation of revisions. This is a critical part of the project as the

expert svstem must provide the users with the information they require;

the time taken in this stage will depend on the extent of the responses by the

users.

Test with cases: The knowledge base and the quality of the advice given

must be t2sted with conditions taken from the knowledge domain. This com-

ponentprovides testing of the knowledge base.

Reports: Provide milestones of the project.

Thetime required or the completion of stages involving knowledge acqut-

sition, release test version, and userforum will be determinedinitially by the

time allocated to the project developers by the experts and endusers.

7. Conclusions

Expert svstems are knowledge based computer programs that attempt to

apply the experience of an expert in a particular area of knowledge. In study-

ing expeit system applications in chemistry, the hardware and software com-

ponents ‘erve only as tools to represent and apply the chemical knowledge.

The role of expert systems is not to replace these scientists but to aid them

with advice. Researchers interested in expert system applicationsin analytical

chemistry have mainly focused on a single area of expertise, refined the

knowledsre base, and written prototypes.

There are two important stages involved in the transfer of human expertise

into an expert system. Theseare: (i) encoding the chemical knowledge, and

(ii) representing the chemical knowledge. There has been little work reported

about hoy knowledgein general can be codedfor use in an expert system. As

computational tools become more available, the coding of chemical know!-

edge becomes more and moreof a bottleneck. Once coded,the availability of

different forms of knowledge representation introduces a knowledge trans-

portation bottleneck because not only can rules not be readily transferred

between systems, the knowledge encoded in a rule-based representation

Conclusions 4]
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cannot be used in other representations, for example knowledge coded in a

rule-based system cannotbe transferred to a frame-based system.

It is hoped that the acquisition of knowledge in the form of a matrix of

conditions and conclusions will lead to a common method for encoding

chemical knowledge for rule-based expert systems. This will allow such

knowledge bases to be transported from onerule-based expert system tool to

another.
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1. Introduction

The Genetic Algorithms (GAs)(Holland 1975) are search algorithms motiv-
ated by the extra-cellular flow of evolutionary information throughselection,
crossover, and mutation. The GAsare typically applied to problems in which
little knowledgeis available about the quantitative properties of the objective
function. The lack of quantitative information characterizing the search space
for manyreal life search problems, the inherent suitability implementations,
and apparent robustness against noisy data have made the GAsquite popular
for solving large search, optimization, and machine learning related prob-
lems. In the recentpast there has also been growinginterest in the application
of GAs for Knowledge Discovery and Data mining (KDD). Thefield of KDD
deals with the problem of detecting patterns within large databases.
Scalability (variations of performance quality with respect to growing
problem difficulty, desired accuracy, reliability, computational resources) of
KDDalgorithmsis an important issue, since large databases and high dimen-
sional feature spaces are typical characteristics of the common KDD applica-
tions. Therefore the scalability of the GAsislikely to play a critical role in
their success in large scale KDD applications.

This chapter focuses on the scalability issue of the GAs.It takes a detailed
look at the fundamental underlying search processes in the GAs, points out
someserious bottle-necks of frequently used simple GAs (Dejong 1975), pre-
sents a new scalable genetic algorithm, and outlines its application to a large-
scale electrical powerdistribution network fault detection problem.

Section 2 reviews the related work on GA-based KDD. Sections 3 and 4
offer a perspective of black-box search/optimization (optimization in absence
of adequate quantitative information regarding the search space) in the
context of a general probabilistic and approximate framework. Section 5 pre-
sents a discussion on problem difficulty from this perspective. Section 6 dis-
cusses the simple GA in this context. Section 7 identifies a critical problem

with the simple GA — lack of scalable mechanism for linkage learning

(detection of appropriate relations among the search space members). Section

8 presents a new class of GAs capable of scalable linkage learning, called the
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gene expression messy GAs. Sections 9 and 10 describe the power distribu-

tion network fault detection problem and present the experimental results.

Finally, Section 11 concludes this chapter.

2. Data mining and the genetic algorithms

Knowled:ze Discovery and Data mining (KDD)is a fast growingfield that

deals with the research and practice of detecting patterns in data. While

knowled:e discovery is used to mean the complete process, including data

pre-processing, extraction, analysis, and visualization, the phrase data mining

usually represents the process of detecting data patterns using machine learn-

ing, statistics, and other techniques. The phrase ‘data pattern’ is usually used

to mean relations among the data sets in a set theoretic sense. The relations

are typically captured in terms of rules, similarly based subsets, and associ-

ations among the search space dimensions. Therefore, a data mining algorithm

can also be viewed as a search for appropriate rules, similarities, or other

kinds of associations. The GAsfit quite well into this application, and can be

used for finding any of these pattern types. Apart from these, typically the

data mining process requires feature selection, model optimization, and

system identification techniques. The GAsare also suitable for such applica-

tions. There exists a growing bodyofliterature on the application of the GAs

to data analysis/mining problems. The following part of this section reviews

some of :hese works.

Since machine learning algorithms find frequent applications in data

mining, it is appropriate to review some of the early GA Based Machine

Learning (GBML) systems. LS-1! (Smith 1980, 1983, 1984) is an example of

one such early GBMLsystem that used simple GA-like genetic operators to

manipulate a population of production rules. They manipulated the represen-

tation at different levels of granularity reflecting the semantics of the repre-

sentation. showing that results of genetic algorithms still remained valid. In

GABIL ‘DeJong, Spears, and Gordon 1993), Disjunctive Normal Form

(DNF) concept descriptions are evolved using an LS-1 style approach. This

work is aimed at a single class learning application. The goodness of a

concept description is measured as the square of examples correctly

classified. The COGIN approach developed elsewhere (Greene and Smith

1993, 1994) addresses multi-class problem domains introducing competition

for coverage of training examples, encouraging the population to co-

operatively solve the concept learning task. Each rule is a conjunction of

attribute,'value sets in binary coding. In this approach, the newly created rules

using GAoperators, together with the existing population of rules, are ranked

in order of fitness and are inserted one by one in this rank order into the next

generation of the population, provided they cover some examplein the train-

ing set w iich hasnot already been covered by a previously inserted rule. Any

such redundantrule is discarded. The population size thus changes dynami-

cally according to the numberof rules required to coverthe entire set of train-

ing exanples. Fitness is based on entropy measure, modified according to

45
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classification accuracy. Both single point and uniform crossover have been

used. Recombination is applied to the left hand sides of rules only. The right

hand side of a rule is assigned to be the majority class found within training

examples covered bytherule.

The REGAL system (Neri and Giordana 1995) uses a similar coverage-

based approach for multi-concept learning. Each rule is evolved on its own

and co-operation within population is encouraged through competition for

coverage. This work introduced the Universal Suffrage selection operator,

that selects rules providing larger coverage together. A parallel GA based

approach (Cui, Fogarty, and Gammack 1993) is used for the identification

of ‘good’ and ‘bad’ customers in credit-scoring applications. Solutions are

evaluated using either a generic classification accuracy measure, or an appli-

cation-specific measure of profitability. The results are then compared with

otherclassification algorithms (Bayes, k-nearest neighbours, and ID3).

The GA-MINERsystem (Radcliffe 1995) is yet another effort for GA-

based data mining. The author divides the data-mining problem into undi-

rected or pure data-mining, directed data-mining, and hypothesis testing and

refinement. Undirected data mining addresses the case where the system is

left almost entirely unconstrained to find patterns in the data; whereas in

directed data-mining, the user may specify some constraints. In hypothesis

testing and refinement, the user poses some hypothesis and the system first

evaluates the hypothesis and thentries to refine it. The GA-MINERsystemis

supposed to be able to deal with all of these three levels of data-mining and

uses a parallel genetic-algorithm based data-mining tool for data pattern dis-

covery. One of its main components is the pattern template. It defines the

general form of the patterns of interest to the user and reduces the search

space to those patterns consistent with this form. The pattern interest is evalu-

ated throughstatistical measures. In this work, the application concerns the

identification of valuable patterns in large databases such as that obtained by

the aggregation of census data and car sales data. This work also studies the

scalability of the system with respect to increasing computational resources.

In Punch et al. 1997, a feature selection and classification problem is dealt

with using a GA combined with a K-nearest-neighbour algorithm to optimize

classification looking for an optimal features weighting in orderto efficiently

accomplish the classification task. A GA-based data mining application has

also been developed in (Bhargava and Jacobson 1997). This work used a GA

to detect appropriate feature subsets and combined them to generate ‘interest-

ing’ patterns from Persian Gulf Syndromerelated data.

In this chapter we address at least one aspect of this big picture — the

scalability issue. Although the volume of GA-based data mining application

is increasing, more attention needsto be paid to scalability. This is an impor-

tant issue in algorithm design that studies the performance of algorithms with

respect to growing problem difficulty levels, desired accuracy, reliability, and

the computational model. In this chapter we are primarily concerned with the

scalability of GAs with respect to growing search space. Weare interested in

GAsthat offer quality performance with amenable increase in computational

cost as the size of the problem increases. In order to explore scalability we

need to understand the fundamental search processes of a black-box search
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Fig. 3.1 BBO decompositionin relation, class and sample spaces. Note the sim-

ilarity basied equivalence relations. Here f denotes a position of equivalence and

the [#] ch: racter matches with any binary value.

algorithm like the GA. The following section describes a probabilistic and

approximate frameworkto do so.

3. Decomposing black-box search/optimization

Understanding the genetic algorithms (GAs) requires first understanding the

foundation of non-enumerative black-box search/optimization (BBO) algor-

ithms. Tle goal of a BBO algorithm is to find solution(s) from the search

space tht make the objective function value extreme beyond an acceptable

criterion. Since for most interesting problemsthe search space is quite large,

BBOalgorithms, like the GAs, depend on non-enumerative search, which is

actually :n inductive process. This section makes a note of that and offers a

decomposition of the underlying processes in a non-enumerative BBO algor-

ithm using the Search Envisioned As Relation and Class Hierarchizing

(SEARCH) framework.

The S2ARCH framework (Kargupta 1995; Kargupta & Goldberg 1996)

studies the fundamental issues in BBO by decomposing them into searches in

(1) relation, (2) class, and (3) sample spaces (Fig. 3.1). SEARCHis based on

the fact that induction is an essential part of non-enumerative BBO,since in

the absence of any analytic information about the objective function struc-

ture, a BBO algorithm must guess based on the samples it takes from the

search space. SEARCHalso notes that induction is no better than table look

up unlesswerestrict the scope of the inductive search algorithm to a finite set

of relations! among the search space members.If relations are important to

consider, then we should pay careful attention to determine whichrelationis

‘appropriate’ and whichis not.

Let us illustrate the idea. Suppose we would like to identify the person

among several in a room with the largest amount of moneyin his or her pocket.

To do better than enumeration, 1.e. exhaustively picking every person and

checking the amount of money they have, we must makeintelligent guesses by

observins certain features of the people (e.g. quality of dress, shoes etc.) If we

consider ‘all possible features’ we are back to enumeration (Watanabe 1969;

Mitchell 1980). We must consider a certain finite set of features that defines the

'A relation is defined as a set of ordered tuples. A class is a tuple of elements taken from the

domain uneer consideration. In this document we will primarily be concerned with tuples taken

from space of n-ary Cartesian products of the search domain with itself. Equivalence relations

are symme: ic, transitive, and associative relations: similarity based equivalence relations among

a space of |:inary sequences define equivalence based on similarity among the sequences.
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bias of the process. Features like quality of dress define relations amongtheset

of people. Depending on what we mean by ‘quality of dress’, such a relation

may divide the set of people into different classes, such as cheaply dressed

people, very expensively dressed people, and so on. We consider hypotheses

defined by the featureset, use it to divide the search space into different classes,

and evaluate hypotheses using samples taken from the search domain. Theset

of features, that werestrict our attention to, may be pre-determined or dynami-

cally constructed during the course of induction. The decomposition of BBO in

SEARCH in terms of relation, class, and sample spaces essentially captures

this idea. Two important underlying processes of a BBO algorithm are, (1) con-

struction of partial ordering, followed by selection among relations and

(2) construction ofpartial ordering, followed by selection among classes. Note

that the former step is essential since some relations are inherently good and

some are not. For example, ‘quality of dress’ may be a good relation, but

‘colour of hair’ may not. In SEARCH,relations that are inherently good for

decision makingare said to properly delineate the search space. If we construct

a partial ordering amongtheclasses, defined bya relation of order k (logarithm

of the numberof classes defined bythe relation), select the ‘top’ ranked classes

for further exploration, and the class containing the optimal solution is one

among thoseselected classes, then we say that order-k relation properly delin-

eates the search space. The search for appropriate relations and classes can be

viewed as decision making processesin the relation and class spaces respec-

tively. SEARCH offers a general probabilistic and approximate framework to

do that. If the relation space provided a priori to the search algorithm contains

all the relations needed to solve a problem and the orderofall of these suitable

relations is bounded from top by some constant k, then the given problem can

be solved in sample complexity (can be loosely defined as the numberof

samples taken for solving the problem) polynomial in problem size, solution

quality, success probability. This class of problem is called the class of order-k

delineable problems.

SEARCHpoints out that, since induction is an essential part of BBO,

search for appropriate relationsis critical. Instead of looking for better solu-

tions from the beginning, SEARCH advocates a BBO algorithm to

1. detect the structure of the search space, induce relations and classes to

capture that |

2. identify desired quality solutions by guiding the search following the

detected structure

A detailed description of each of these processes can be found elsewhere

(Kargupta 1995). In order to fully appreciate the critical role of efficient rela-

tion and class searches we must understand their computational cost; the fol-

lowing section considersthat.

4. Cost of relation and class search

For a given relation space, and a well-defined algorithm in SEARCH,it is

possible to derive a bound on the number of samples (sample complexity)
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needed fer the desired solution quality and reliability of decision making.

Defining an algorithm in SEARCHfirst requires specifying class and rela-

tion comparison statistics. Although, most of the existing BBO algorithms

do not explicitly define them, SEARCH doesso in order to quantify and

understand the role of decision making in the relation and class spaces.

Kargupta (1995) considered a distribution free ordinal comparisonstatistics

for compuring both relations and classes. In an ordinal comparisonstatistic,

two distributions are compared on the basis of some chosen percentile.

SEARCHdoes not assume any particular technique for evaluating a relation

or a class since typically it differs from algorithm to algorithm. It assumes

that the wlgorithm has a way to rank the relations and classes. Figure 3.2

shows th: cumulative distribution functions (cdf) F’ and F of twoarbitrary

subsets (’,; and C,;, respectively. Indices j, k represent the two classes

defined by somerelation r;. When these two classes are compared on the

basis of tle a quantile, then we say C,; < aC,,, since ®,,,;; < Opn Opyji

and ®,,,, are the solutions of F’(®,,;) = a and F(®,;) = a, respectively. Let

us define

d= F(®,,),i) — A®,,4;/)

The variables d defines the zone of indifference, whichis basically the differ-

ence in the percentile value of ®,,,; and that of ®,,,;; computed from the

same cdf F. Figure 3.2 explains this definition. We can quantify the decision

making process using such ordinal class and relation comparisonstatistics.

Let Vr bs: the given relation space and S, C WV, be the set of relations needed

to solve the given problem. We denote the index ofa relation r; by N,. Define,

Noax = Max{N|IVr,€ S,}

d’ = mintF(®,,,«;) _- F(D1;1 jn Vi}

where F( D,,,..;) is the cdf of the class containing the optimal solution. The

index j varies overall the classes defined by a relation 7;. Index 7 varies over

all the relations in V,. If d* is a constant such that d’ => d*, that corresponds
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to the desired quality of decision making in the class space, the bound on

overall sample complexity1s,

1

q IS-li(Neax-Mmin)

Nnax 1S, Il log 1—-| —
r

 SCs a (1)

where q is the overall desired success probability and q, is the desired success

probability in the relation space. M,,;, 1s a constant that depends on the

memory used bythe algorithm.

AS weincrease the success probability in the relation space, the overall

success probability in the combined relation and class spaces increases. The

sample complexity should therefore decrease as success probability in the

relation space increases. This also shows that SC decreases with increase in

 

q,- Note that the ratio qayemax~™min) approaches one in the limit as

qd;

ISlI(Ninax -— Mmin) approaches infinity. Therefore, SC grows at most linearly

with the maximum index value N,,,, and the cardinality of the set S.. Recall

that d* defines the desired region of indifference; in other words, it defines a

region in terms of percentile within which any solution will be acceptable.

The sample complexity decreases as d* increases. Kargupta (1995) also

showedthat when norelations are considered, this expression points out that

the sample complexity will be of the order of the size of search space; in

other words search will be no better than enumeration. For a given relation

space and a class of problems that can be solved considering a bounded

numberof relations from that space, inequality 1 gives the bound on sample

complexity for desired quality and reliability of the decision making.

Although different algorithms may use different class and relation compari-

son Statistics, the overall physical implications of the different terms of the

bound provide us with fairly universal insights into any BBO process. This

bound can also be usedto identify the class of BBO problems that we can

efficiently solve. The following section presents that.

5. Difficult and easy BBO problems

Traditionally problem difficulty in the BBOis characterized by different fea-

tures of the problem, such as local optima, decomposability, noise in objec-

tive function evaluation, and others. Since the success of a BBO algorithm is

significantly controlled by the searches in the relation and class spaces, the

notion of easy and difficult BBO problems must depend onthe cost of search-

ing in these spaces. In fact, the bound on the sample complexity, noted in the

previous section, can be directly used to characterized hard and easy prob-

lems from an algorithm perspective.

Recall from inequality | that the sample complexity grows linearly with

the cardinality of the set of relations considered to solve the problem, S,.
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Since the purposeofthe relationsis to relate different search space members,

most of the commonly usedrelation spaces are of sizes exponential in the size

of the problem. In this document, we are going to define size of the problem

(/) as the ]ogarithm of the cardinality of the complete search space. Typically

this corresponds to the total number of dimensions of the problem. In a

sequence representation with constant alphabet size, the length of the

sequences neededto represent the search space may be an example of such a

size paranieter.

Definition 1 (Problem difficulty in SEARCH) Given an optimization func-

tion ® : X — St (where X is finite discrete space) and a set of relations Vr,

we call a problem difficult for an algorithm if the total number of samples

neededto find the globally optimal solution grows exponentially with lI, q, q,

I/d*, and !/d,*.

Where g denotes the boundin the overall decision success probability in

choosing the right classes; //d* defines the quality of the desired solution.

Both g and //d* together can be viewed as representing the overall accuracy

and the quality of the solution found; g,is the bound in success probability in

choosing the right relations, and //d,* represents the desired quality of the

relations.

The abovedefinition of problem difficulty in SEARCH can bephysically

interprete:! into the following items.

1. Growth of the search space along problem dimension.

2. Inadequate source of relations and decision makingin relation space.

3. Inaccurate decision making in choosing classes.

4. Quality of the desired solution andrelations.

This gives a general description of the SEARCH perspective of problem

difficulty. Since, the bound on sample complexity growslinearly with S,, we

can only handle a polynomially boundedrelation space size. Since inequality

1 also growslinearly with N,,,,, we also need to bound that by a polynomial

of J. As noted earlier, for order-k relations N,,,, 1s bounded by a constant.

    
  

Class of problemsthat
can be transformed to
order-k delineable problems.; ; Class of all problems
by relation construction

Class of order-k delineable problemsfor a given algorithm

Fig. 3.3. BBO problems from the delineability perspective.
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Therefore, we can solve the class of problems for which, (1) the cardinality of

the set of all required delineable relations can be bound by a polynomialin /

and (2) the order of each of these relations is at most k, using a polynomial

number of samples. This class of problemsis called the class of order-k-

delineable problems. A formal definition of this class of problems can be

found in (Kargupta 1995). Figure 3.3 depicts a conceptual hierarchy ofdiffer-

ent class of problems offered by the SEARCH framework.In the following

part of this section, we shall make our notion of order-k delineable problems

more tangible by considering a class of problems in the sequence space.

Let us consider sequence representation in which the underlying search

space 1s represented by a sequence of / characters, where each character can

take a value from the alphabet set, A. The cardinality of A will be denoted by

A. Let us also restrict our attention to similarity based equivalencerelations

and classes. In the GA literature they are usually called partitions and

schemata respectively. The overall relation space, V, = {f, #}/, where f indi-

cates values that must match for equivalence and # is a wild character that

matches any value. The cardinality of the set of all such similarity based

equivalencerelations|| V, |l = 2’. Since this grows exponentially with /, we

cannot afford to considerall such similarity based relations. One way to pick

up a generally meaningful polynomially bounded subset of VW, is to consider

only those relations in which there are at most k fixed position of equivalence

(f) and / — k wild characters. There are ; such similarity based equivalence

relations and it is a polynomialof / for constant values of k. Since GAsoften
deal with sequencerepresentation and similarity based equivalencerelations,
such a restriction must be imposed in order to guarantee polynomial time
search. Therefore, this class of order-k delineable problems should be of
primary importancein the context GAs. Even if we have interestin other par-
adigms of evolutionary computation that do not pay attention to similarity
based equivalencerelations as such, the SEARCH frameworkpoints outthat,

I. careful attention mustbe paid to the relation induction process and
2. order-k delineable problems must be identified for the chosen relation

space of the algorithm.

In this chapter, we focus on GAsandtherefore werestrict our attention to the
class of order-k delineable problemsin the sequence space. Although therela-
tion space size is bounded by a polynomial, efficient detection of relations

and classes by choosing appropriate statistics is a major challenge. Like any

other BBO algorithm, the GAs need to pay careful attention to the relation

induction process for solving the order-k delineable problemsefficiently. In

this chapter we are therefore interested in developing scalable GAsthat can

solve order-k delineable problems efficiently. First, let us investigate the

efficacy of simple GAs in accomplishingthis task.

6. The simple genetic algorithms

The simple Genetic Algorithm (sGA) (Dejong 1975; Goldberg 1989; Holland

1975) is a popular class of genetic algorithms. The simple GA uses operators



like selection, crossover, and mutation to explore the search space adaptively

in order to maximize or minimize the objective function (sometimescalled

fitness function). Simple GA typically uses a sequence representation. In

other words, the search variables are represented as a sequence (often called

chromosome) of symbols, chosen from some given alphabetset. The slot cor-

respondiny to any entry in the sequenceis called a gene. Popular approaches

include binary, gray, and real value codingsof the search variables. A simple

GAstarts from a randomly generated population. It iteratively applies the

search opsrators — selection, crossover, and mutation — to this population

to produce a new population of chromosomes. The main search operators are

as follows.

1. Selection: Compute the objective (fitness) function values of all the chro-

mosomes. Make more copies of the chromosomeswith higherfitness and use

these add:tional copies to replace those chromosomesof the population that

have wors.2 objective function values.

2. Crossover: The crossover operator is usually applied on the population

with a high probability. There are several types of crossover operators pre-

vailing in the GAliterature. A simple one-point crossover picks two chromo-

somes froin the population randomly. Nextit picks a random cross-point(1.e.

a slot in the chromosome) that divides each chromosomeinto two halves.

This is followed by swappingofeither the left or right halves.

3. Mutation: Simple mutation is usually a low profile operator that changes

the value of a gene with some low probability.

Although the sGAexplicitly processes a population of chromosomes, a better

understanding about the underlying search may be obtained by investigating

the processing of schemata (similarity based equivalence classes) in the pop-

ulation (Holland 1975). In a sequencerepresentation, a similarity based parti-

tion divides the space of all sequences into different schemata. For example

in a 4-bit tepresentation schema(singular form of schemata) 11### denotes the

set of all strings that start with a 11 (ie. the set {1100, 1101, 1110, 1111}).

The corresponding partition can be represented by ff##, where f denotes the

position of equivalence and # denotes the wild card character. Partition ff##

divides a.l strings into four schemata namely OO##, O1##, 1O## and 11##.

The effect of selection, crossover, and mutation applied on the population can

also be interpreted in the space of partitions and schemata. For a given popu-

lation of strings and GA operators the so called schema theorem (Holland

1975) cari be used to determine an expected bound on the growth or destruc-

tion of sc:emata from generation to generation.

The simple GA has been quite successful in solving many different problems

(Goldberg: 1989; Mitchell 1996); howeverit is not magic. Like any other BBO

algorithm, the sGA is fundamentally based on an inductive search process.

Therefiore, the observations made by the SEARCH framework are equally

applicable to sGA. The success of GAs dependsonseveral factors, including:

detection of schemata that capture the desired solution(s);

interaction between schemata and genetic operators;

popu.ation size;

problem difficulties.P
w
W
w
n
N
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Although schemata and partitions are often used as a tool to understand the

underlying behaviour of GAs, the sGA does not have any mechanism for

explicit processing of schemata and partitions. This implicit perspective alone

falls far short in delivering reliable performance for schema and partition

detection. A simple illustration can be given using the following example.

Consider the deceptive trap (Ackley 1987) function, f(x) = k if u = k; f(x) =

k — 1 —u otherwise; where u is the unitation variable, or the number of Is in

the string x, and k is the length of the sub-function. This function is widely

reported to be difficult for simple GA since low order partitions lead sGA

toward the wrong direction. If we carefully observe this trap function, we

shall note that 1t has two peaks. One of them correspondsto the string with all

ls and the otheris the string with all Os. The solution with all Is 1s optimal.

Let us construct a test function by concatenating 5-bit trap functions one after

another. In other words each consecutive five bits define a separate trap func-

tion. This overall concatenated function can be linearly decomposed into

order-5 sub-functions. To solve this problem efficiently either the sGA needs

to be informed about related bits or they must be adaptively detected by

selecting the appropriate partitions and schemata. Lack of a mechanism for

explicit partition and schema detection makes the sGA perform very poorly

for such problems. Figure 3.4 showsthe result of a typical sGA run for a 36-

bit objective function, comprised of six trap sub-functions, each of size six

bits. The sGAfail to obtain the optimal solution.

Manyreallife problems exist in which the underlying non-linearity of the

problem results in higher order problem delineability. As a result, success
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Fig. 3.4 The variation of the best fitness value of an sGA population with

respect to different generations. The optimal solution has a fitness value of 36.

The sGA has population size = 100, crossover probability = 0.7, mutation prob-

ability = 0.001, binary tournamentselection.
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demands effective search for appropriate partitions and schemata. This

problem ot detecting appropriate relations and classesis traditionally called

linkage learning in the GAliterature. Although by definition linkage learning

is not necessarily restricted to similarity based relations and classes, in the

following )art of this chapter linkage learning will be restricted to only those

special cases. Linkage learning is essentially the problem of detecting appro-

priate bases of the underlying problem representation. A general definition of

linkage learning can be found elsewhere (Kargupta 1998; Kargupta and

Bandyopailhyay, to be published). There is a growing consensusthat scalable

linkage learning 1s essential for the success of GAs in search, machine learn-

ing, optim: zation, and data mining problems. However, the need for linkage

learning was realized even during the early inception of the GAs. The follow-

ing sectio: describes the related work since the dawn of genetic algorithm

research.

7. Linkage learning in simple GAs

Theeffica:y of implicit processing has been questioned since the inception of

the GAs. Several efforts have been made for designing GAs capable of

explicit detection of significant partitions and schemata. The history of

linkage learning efforts dates back to Bagley’s dissertion (Bagley 1967).

Bagley uses a representation in which the gene explicitly contains both the

position avid the allele value. For example, string ((0 1)(2 0)(1 1)) will corre-

spond to the string 110 in a fixed-locus representation of the simple GA.

Bagley us2d the so-called inversion operator for adaptively clustering the

related genes that define good partitions and schemata. The inversion opera-

tor works »y reversing the order of the genes lying in between pair of ran-

domly chcsen points along the chromosome. Although this mechanism was

used for generating new tightly coded partitions, Bagley’s work provides no

mechanism for accurate evaluation of the partitions. Moreover, introduction

of the inversion operator restricted the use of GA crossover operator and

Bagley did not conclude in favour of the use of inversion. Rosenberg

(Rosenberg 1967) also investigated the possibility of learning linkage by

evolving tne probability of choosing a location for crossover. Although this

approach does not rigorously search for appropriate partitions, adaptive

crossover joint may be able to process schemata, with widely separated fixed

bits, bette: than a single point crossover. Frantz (Frantz 1972) investigated the

utility of t1e inversion operator and like Rozenberg reported that inversion is

too slow <.ad not very effective. Holland (Holland 1975) also realized the role

of linkage learning and suggested the use of the inversion operator despite its

reported failure in earlier studies. Goldberg and Lingle (Goldberg and Lingle

1985) intcoduced a new PMX crossover operator that could combine the

ordering information of the selected regions of the parent chromosomes.

They cor:luded that this approach has more potential than the earlier

approaches. Schaffer and Morishima (Schaffer and Morishima 1987) intro-

duced a set of flags in the representation. These flags were used for identify-

ing the set of genes to be used for crossover points. For different test
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problems, they noted the formation of certain favourite crossover points in

the population, that corroborated their hypothesis regarding the need for

detecting gene linkage. Goldberg and Bridges (Goldberg and Bridges 1990)

confirmed that lack of linkage knowledge can lead to failure of GAs for

difficult classes of problems, such as deceptive problems. Additional efforts

on linkage learning GAs can be found elsewhere (Levenick 1991; Paredis

1995; Smith and Fogarty 1996). Harik introduced the LLGA (Harick 1997)

which made aneffort to learn linkage by introducing the so-called exchange

crossover operator and the probabilistic expression based representation. An

alternate approach to linkage learning can be found elsewhere (Smith and

Fogarty 1996).

In addition to growing empirical evidence for the need of explicit linkage

learning algorithms in the GAs, theoretical advances havealso started corrob-

orating these observations. Efficacy of such implicit processing of relations

has been seriously questioned on theoretical grounds (Goldberg, Korb and

Deb 1989; Kargupta 1995; Thierens and Goldberg 1993). Thierens and

Goldberg showed that simple GAfails to scale up for the class of problems

with only order-k significant partitions, unless information about the appro-

priate partitions is provided by the user.

The main reasonsbehindthis lack of scalability are the mergerof the rela-

tion, class, and sample spaces into a single population and the lack of ade-

quate efforts to methodically search for the appropriate order-k partitions. The

sGA also has some additional problems in the context of efficient partition

search. A single sample from the search space can be used for the evaluation
of all the relations under consideration. This is because that sample must
belong to some schemadefined by anypartition. This is often called implicit
parallelism in the GAliterature. Although this can be exploited in a very sys-
tematic manner whenrelations are methodically processed, implicit process-
ing of schemata makes this quite noisy in the sGA. These observations
regarding the problems of simple GA in searching appropriate partitions and
schemata resulted in the developmentof different evolutionary algorithmsthat
pay attention to the linkage learning issue. The following section describes
one such algorithm,called the gene expression messy genetic algorithm.

8. The gene expression messy GA

The Gene Expression Messy Genetic Algorithm (GEMGA)(Kargupta 1996a,b;

Bandyopadhyay, Kargupta, and Wang 1998) offers an efficient approach to

learning linkage. In GEMGA,the problem ofassociating similarities among

chromosomeswith similarities of their corresponding fitness values is posed

as a problem of detecting approximate symmetry. Symmetry can be defined

as an invariance in the pattern under observation when sometransformation

is applied to it. Similarities among the fitness values of the members of a

schema can be viewed as a kind of approximate symmetry, that remains

invariant under any transformation that satisfies the closure property of the

schema. The GEMGAidentifies the fitness symmetry (in an approximate

sense) by identifying symmetry breaking dimensions, and uses them to detect
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Fig. 3.5 Structure of achromosome in GEMGA.

8.3 Operators

The GEMGAhasthree primary operators, namely: (1) Transcription,
(2) PreRecombinationExpression and (3) RecombinationExpression. Each of
them is briefly described in the following.

8.3.1 Transcription

The GEMGATranscription operator plays an importantrole in the detection
of schemata. It detects /ocal symmetry in the fitness landscape by noting the
relative invariance of the fitness values of chromosomes under transforma-
tions that perturb the chromosome, one geneat a time. It changes the current
value of a gene to a different value, randomly chosen from the alphabetset
and notes the changeinfitness value. If the fitness deteriorates because of the
change in gene value, that geneis identified as the symmetry breaking dimen-
sion and the corresponding gene capacity is set to zero, indicating that the
value at that gene value cannot be changed. On the other hand,if the fitness

improves or does not changeatall, the corresponding capacity of the geneis

set to one, indicating that this dimension offers symmetry, with respect to the

pattern of improvementin fitness. Finally, the value of that geneis set to the

original fitness. This process continues for all the genes andfinally all the

genes whose capacities are reduced to zeroes are collected in one set, called

the initial locuslist. This is stored as the first elementof the linkageset associ-

ated with the chromosome.Its weight, goodness, and trial factors are ini-

tialised to 1, 0, and 0 respectively. The transcription operator does not change
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1 def Transcription (self):

2 forae self.pop:

3 *empset <— kjSet()

4 value <—a.value

5 for 7 € range (self.problem_length):

6 a.flip (J)
7 if value < objective (a):

8 a.genes [j].weight < 0.0

9 tempest.add(j)

10 else:

1] a.genes [j].weight < 1.0

12 a.flip(j)
13 a.l inkageset.append( link (cempest, self. INITIAL_WEIGHT,0,0))

14 return

Fig. 3.6 ‘Transcription operator for minimization problem.

anythingiv: a chromosomeexceptthe capacities andit initiates the formation

of the linkage sets. Any symmetry that remains true over the whole search

space alsc remains true within a local domain. Figure 3.6 shows the

Transcription operator.

Locally detected schemata are next evaluated in a population-wide global

sense, as C.2scribed in the following section.

8.3.2 PreRecombinationExpression

The PreRecombinationExpression stage detects schemata that capture sym-

metry beyond a small local neighbourhood defined by the bit-wise perturba-

tion of transcription. The PreRecombinationExpression phase determines the

clusters of genes precisely defining the relations among those instances of

genes. It consists of two steps ResolveLinkage, and GetFinalLinkage.

1 def PreRecombinationExpression( self ):

2 for ae self.pop:

3 ‘istx <— range (len (self.pop))

4 for b € range (self.no_linkage.exp):

5 while |:

6 chosen © whrandom.choice (1istx)

7 listx.remove (chosen )

8 che self.pop|[ chosen|

9 ifa(ch=a):

10 break

11 sel £.ResolveLinkage (a, ch )

12 counter — counter +1

13 print counter

14 forae self.pop:

15 1.GetFinalLinkage (self.EPSILON, sel £.WEIGHT_THRESH)

16 return

Fig. 3.7. PreRecombinationExpression Operator.
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ResolveLinkage Each chromosome in the population undergoes a fixed

number (No_Linkage_Exp) of ResolveLinkage operations with different

membersof the population other than itself. During the ResolveLinkage oper-

ation those genes which are members of the initial locuslist (constructed

using Transcription) of both the chromosomesand having the same value and

capacity are grouped togetherin a newset. If the set is already present in the

linkage set of the first chromosome then the weight of the corresponding

locuslist is increased by an amount INCR_WEIGHT,elseit is included as a

new elementofthe linkageset.

GetFinalLinkage A conditional probability matrix P is now constructed,
where the entry P[i,j](i # j) denotes the probability of finding gene i in a
locuslist given gene j is already present. In case(i = j) it denotes the probabil-
ity of a locuslist containing gene i only. The maximum probability max/i] in
each row is calculated and those entries which are less than max [i] —
EPSILONare replaced with 0. Now a new linkage setis calculated by col-
lecting the nonzero entries in each row into a locuslist and using the mean of
the corresponding probabilities as its weight. The set is added to the new
linkage set if its weight is greater than WEIGHT_THRESH.Theaddition of a
new locuslist is done in the same way as was done during the resolution
phase by checking for the existence of another locuslist with the same
members as the new one.

1 def GetFinalLinkage (self,EPSILON, WEIGHT_THRESH ):
2 toplist — self.linkageset [0].set.items()
3 conditional ¢ sel f.CalcConditional()
4 ThresholdConditional ( conditional , EPSILON )
5 self.linkageset<[ ]

6 forieé toplist:

7

8

sum <— 0.0

count — 0.0

9 newlink ¢ kjSet( )

10 forje toplist:

1] if i =:

12 newlink.add(j)

13 else:

14 if conditional [J[j] = max [/]:

15 newlink.add(j)

16 sum sum + conditional [J] fj]

17 count count + 1

18 elem <¢ len (newlink)

19 if count:

20 sum<—sum / count

21 ifelemA( sum > WEIGHT_THRESH):
22 self. linkageset.append(link (newlink,sum,0.0,0.0))

23 return

Fig. 3.8 GetFinalLinkage Operator.
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1 def RecombinationExpression (self ):

2 nevjpop <—[ |

3 for i€ range (len(self.pop )):

4 maxind<€1

5 maxfit — self.pop [i].value

6 forj¢€ range(1, self.tsixe):

7 tempind < whrandom.randint (0, len( self.pop )-1)

8 if maxfit >self.pop[tempind |.value:

9 maxind<« tempind

10 maxfit < self.pop[tempind ].value

11 “.ewpop.append (self.pop [maxind ] )

12 se_f.popo — newpop

13 for ie range (0, len( self.pop ), 2 ):

14 © el f.GEMGARecombination ( self .pop [i], self .pop [i+ 1))

15 return

Fig. 3.9 ecombinationExpression Operator.

8.3.3. RecombinationExpression

The ReconibinationExpression Phase is the selecto-recombinative phase of

the algorithm andis run a fixed (No_Gen)times.It also consists of two steps.

First a mating poolis created by performing binary tournament selection in

the population. Then the GEMGA Recombination operator is applied itera-

tively ovet pairs of chromosomes.

First, copies of the given pair are made, and one of them is marked. An

element of the linkage set of the marked chromosome is selected, based on a

linearly combinedfactor of its weight and goodness, for swapping. The corre-

sponding zenes were swapped between the two chromosomes provided the

goodness values ofthe disrupted locuslists of the unmarked chromosomeare

less than that of the selected one. The linkage sets of the two chromosomes

are adjusted accordingly. Depending on whetherthe fitness of the unmarked

chromoso:ne decreases or not, the goodness of the selected linkage set

elementis. decreased or increased. Finally, only two of the four chromosomes

(including: the two original copies) are retained (Bandyopadhyay, Kargupta,

and Wang 1998).

8.4 The algorithm

The overzill structure of the GEMGA is summarized below:

1. Initialization Randomlyinitialize the population.

2. PrimerdialExpression Detect schemata that capture local fitness

symmetry by the so called transcription operator. Since population size m =

cA‘, this c in be done in time O(A‘/).

3. PreRecombinationExpression Identify schemata that capture fitness sym-

metry over a larger domain. This only requires comparing the chromosomes

with each other and no additional function evaluation is needed.
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4. RecombinationExpression

(a) Create a Mating Pool using Binary TournamentSelection.

(b) GEMGArecombination: The GEMGAusesa recombination operator,

designed using motivation from cell meiosis process that combines the

effect of selection and crossover. Reconstruct, modify schemalinkage

sets and their parameters.

(c) Mutation: Low probability mutation like simple GA. All the experi-
ments reported in this work used a zero mutation probability.

The primordial expression stage requires O(A‘/) objective function evalua-
tions. PreRecombinationExpression requires O(A”*) pair-wise similarity com-
putation time (no objective function evaluation). The length of the
Recombination stage can be roughly estimated as follows. If t be the total
number of generations in the juxtapositional stage and if selection gives @
copies to the best chromosomethen if selection dominates the crossover,
every chromosomeof the population will converge to the same instance when
a’ =m,

t=logm/log a (2)

Substituting m = cA‘, we get:

_logc+klogaA h

loga
t (3)

Therefore, the numberof generations in the recombination expression stage is
O(k). This result is true when selection is allowed to give an exponentially
increasing numberof copies. The overall number of function evaluations is
bounded by O(A*/). This analysis assumesthat the cardinality of the alphabet
set of the chosen representation is bounded by a small constant (e.g. in case
of binary representation it is two). The GEMGAhas been applied to solve a
feature selection problem using a powerdistribution network fault-diagnosis
data set. The following section describes the application domain and presents
the results.

9. Data analysis application

This section describes the development of a diagnostic tool for fault
identification and location in a radial medium voltage (MV) distribution
network using the GEMGAalgorithm. A minimal subset from a large set of
electrical features available at the metering stations is identified. Finding the
most significant patterns or parameters in a large database is not

a

trivial
problem; solving it however can help speed up on-line diagnosis of faults.
The evaluation of the significance of each feature is done by means of a
diagnostic model based on the comparisons between the network simulator
output in normal and outage operating states. The characterization of each
faulty condition is extensively studied in (Di Silvestre 1998). The results



Data analysis application 63

1 def GEMGARecombination(self, chroml, chrom2);

2 gl<|]

3 tl<[]

4 swapflag < 0

5 downflag — 0

6 eqialflag + 0

7 tl <— copy.deepcopy(chrom1!)

8 t2 < copy.deepcopy(chrom2)

9 if chroml.linkageset:

10 maxind — chrom1.ChooseLinkage()

11 maxtrial,maxgood, maxwtl <—

chrom2.MaxDisruptedLinkage(chrom1.linkageset [maxind])

12 if chroml.linkageset [maxind] .goodness = maxgood:

13 chroml.swapgenes(maxind, chrom2)

14 chrom1.fitness()

15 chrom2.fitness()

16 tl & chrom2.AdjustLinkage(chromi.linkageset [maxind])

17 index < len(chrom2.linkageset)-l

18 chrom1.SelfAdjustLinkage(chrom2.linkageset[-1], t1)

19 chrom2.linkageset <— chrom2.linkageset + gl

20 if chrom2.value =t2.value:

21 chrom2.IncreaseGoodness()

22 if chrom2.value = t2.value:

23 equalflag < 1

24 elif chrom2.value > t2.value:

25 chrom2.DecreaseGoodness()

26 downflag < 1

27 if (chrom2.linkageset [index] .goodness =

maxgooc) A (maxtrial >0)A(chroml.value > t1.value):

28 self<¢tl

29 if equalflag:

30 self<tl

31 chrom2 ¢+ t2

32 if downflag:

33 chrom2 <— t2

34 return

Fig. 3.10 GEMGARecombination Operator.

presented here provide a considerable numberof different possible minimal

sets of features and the results of the algorithm can be interpreted in physical

terms.

9.1 Background

The prob.2m offault identification and location in powerdistribution systems

has created wide interest among the scientific community in the Power
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1 def main()

2 GA <— GEMGA()

3 GA.Randomize()

4 GA.Transcription()

5 GA.PreRecombinationExpression()

6 gen.counter ¢ 100

7 for j] € range (gen_counter):

8 GA.RecombinationExpression()

9 GA.PrintBest(j)

10 return

Fig. 3.11. Main loop of the algorithm.

Distribution area. An efficient approach to this problem leads to immediate
benefit to the customerin service quality and cost reduction. Electrical utility
companies are therefore interested in efficient tools for fast and accurate
diagnosis of the system so that down-time can be minimized. In general diag-
nostic problems can be divided in two sub-problems:

1. building up a reliable knowledge base for fault-identification;
2. identification of faults.

The problem ofidentifying the significant features required to perform

a

fast
online diagnosis can be doneeither on-line or off-line. Examples ofthefirst
approach can be found in (Wen and Chang 1997) and (Changet al. 1997). In
Wen and Chang (1997), the identification of the faulty sub-network is per-
formed using the real-time network topology determination method and by
comparing the pre-fault and post-fault conditions. In this way, the scope of
the fault section estimation can be drastically reduced and the diagnostic
problem is then solved using a refined GA. In Chang et al. (1997), the
problem size is reduced on-line. This is done using a fuzzy expert system for
faulty sub-networkidentification. The knowledgebaseis enriched on-line by
post-fault data of protective relays and circuit breakers, collected from all
over the network. The problem ofdetecting precise fault location is consid-
ered elsewhere (Zhuet al. 1997) and (Hsuetal. 1991). A multi-stage scheme
for locating and diagnosing faults in distribution feeders has been developed
by (Zhu et al. 1997). Fault location detection is performed using on-line data
collected from the Medium Voltage/Low Voltage (MV/LV) sub-station and
using probabilistic modelling and analysis. The results of the first location
detection are then adjusted taking into account the approximation introduced
in the generated models. In (Hsu etal. 1991), the problem ofthe fault loca-
tion is solved using an expert system. Recently, the large amountof informa-
tion derived from dispatchers’ past experience and logical reasoning have
prompted extensive work on the application of expert systems in fault diag-
nosis. Both rule-based and model-based expert systems can have drawbacks
due to either the large number of rules needed to describe the protection
system behaviour and/or dueto the time requiredbythe inference process. In
(Momoher al. 1997) the faults diagnosis is performed for single-line faults in
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distribution systems, using on-line digitized data collected at the High

Voltage/Medium Voltage (HV/MV) sub-station. It describes an integrated

packagefcr fault diagnosis, using a rule based schemeandanartificial neural

network to identify, detect and classify single-phase faults. The proposed

diagnostic. tool can be applied to distribution networks with grounded or

ungrounded neutral. Togami and Kitahashi (Togamiet al. 1995) have devel-

oped a dia;znosis methodologyusing a decision tree. The methodis applied to

a single main MV feeder with burdensat the end of the feeder. It takes into

considerat.on only two types of faults. An alternate fault diagnosis system

has been developed by Teo (Teo 1995) using a special purpose machine

learning algorithm.In the current study a diagnostic strategy based on off-line

determination of a set of features similar to that described on Togamietal.

(1995) anc. Teo (1995) is presented. In particular, in Togamier al. (1995), the

feature sel2ction is performed using comparison amongrangesofvariation of

some electrical features as the parameters vary. The test system is small and

the number of events is limited. In the present study however, the network

model is accurate and is capable of simulating a large number of possible

electrical network working conditions, in both outage and normal operating

states. Moreover, the solution sets obtained are composedofelectrical fea-

tures that are good for distinguishing amongthe variousfaults and identifying
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9.2 Problem description

The distribution network considered in this chapter is presented in Fig. 3.12.

Further details regarding its electrical and topological features can be found

in (Di Silvestre 1998). It has the following characteristics:

I. Single HV/MV sub-station from which a numberof main feeders spread
out; these supply all the radially connected loads. The connections may
be cable or overheadlines.

2. Loads are supplied through MV/LV transformers installed in sub-
stations, where it is possible to perform measurements of the electrical
features, above and below the derivation.

3. Load varies with daily, weekly, and monthly cadence.

The faults considered here can be divided into two main categories:

1. Faults dueto line insulation break-down, that can be further divided into:
(a) single-phase faults,

(b) phase-to-phase faults,

(c) phase-to-phase-to-groundfaults.
2. Faults due to the mechanical break-downof a line. This is primarily

expected from overheadlines and can be further dividedinto:
(a) direct: interruption close to a pole, whentheline on the supply side

goes to the ground,
(b) inverse: interruption close to a pole, when the supply on the load

side goes to the ground,
(c) double: both sides ofthe lines go to the ground.

In faulty conditions the parameters that most directly influenceelectrical fea-
tures are.

1. Neutral grounding system.

2. Fault resistance.

3. Supplied load entity at the momentthe fault occurred.
4. Fault location in the network.

The electrical features considered to be useful for the diagnosis are the zero,
positive, and negative components of the voltage and the current: the nega-
tive and zero componentsof real and reactive power. They are evaluated at
the input and/or output sections of the MV/LV sub-stations; those sections
will be called control points.

Since we assumethat the system is symmetrical, choosing zero and nega-
tive real and reactive poweras features allowsthe identification and location
detection of non-symmetrical faults. The elementary event that can take
place in the system under current consideration is one of the faulty condi-
tions indicated above occurring between two adjacent MV/LVsub-stations.
Once the parameters influencing any faulty conditions have been defined,it
is possible to evaluate the corresponding range of variation of all the fea-
tures at all control points, for these events. In the present application the
parameters are those listed earlier. To develop a diagnostic model, the
knowledge base is therefore made up of the range of variation of each of



the features considered in any of the control points. The knowledge baseis

made urof all the ranges defined by two real values indicating their upper

and lower bounds. The simulation software for the system’s behaviouris

that described in (Augugliaro ert al. 1996). The following section presents

the diagrostic model used.

10. Diagnostic model

The diagnostic model comprises a system having c control points, at each of

whichf features can be observed,for e different types of possible events. Let

us denote the minimum and the maximum value of the feature F by F,,;, and

Fax. A database of the (Finins Fmax) tuples is generated by varying the parame-

ters betwveen their respective minimum and maximum values. The total

number of such tuples is therefore c x f x e. The problem can then be

expressed (Di Silvestre 1998) as follows. Given the rangesof variation ofall

the independent parameters, identify the set of features that allows proper

distinction between the various faults with a given precision. For any event1,

let us denote the ranges of variation of feature F by the tuple (Fimin, Fimax)-

For any two such events i and j, there are three possible options for this

range: non-overlapping,partially overlapping, andtotally overlapping. These

options @re presented in Fig. 3.13.

Let us denote the range of variation of feature F, during event 7 by the

symbol .\i. If the overlapping area S; between the events 7 and j is greater

than zer«) (as in cases b) and c) shownin Fig. 3.13), then we can define index

Ig as follows.

This ind2x measures the significance of F with respect to its ability to distin-

guish between events i and j and vice-versa. This identification index ranges
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Fig. 3.133 Possible relations between the ranges of variation of a feature when events / or j take place.
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between 0 and 1. Therefore, for each of the features it is possible to create a

matrix whose row and column indices are the events to be recognized. This

matrix provides valuable indication of the significance of a feature in distin-

guishing between all the events, under the assumption of uniform occurrence

of all the different parameter values. In the present study, for the sake of sim-

plicity we will consider J,;;, to be Boolean. Whenever J/g; is lower than unity,

it is set to zero. Therefore, the resulting matrices for different features are

symmetrical and can be summarizedinto a single table with f columns and r

rows. The numberof rowsof the table is,

(3 (5)

wheree, is the total numberof events. The problem is then to find the minimal
set of features that can distinguish betweenall events. The test system is repre-
sented in Fig. 3.12. It comprises different types of lines such as:

1. two lines of A type, overhead lines, total length: 21 km, supplying
10 MV/LV sub-stations whose rated poweris 250 kVA;

2. five lines of B type, cable lines, total length: 8 km, supplying 11 MV/LV
sub-stations whose rated poweris 250 kVA;

3. two lines of C type, mixed cable-overheadlines, total length: 21 km, sup-
plying 22 MV/LVsub-stations whose rated power is 250 kVA.

In this work we consider only those features that are monitored on one of
the lines of type C. The faults considered occur on the lines of type C and
type A only. The simulation outputs ten electrical features, listed in Section
9.2, at seven control points. Therefore the application involves seventy
features in total. The numberof events to be distinguishedis e, = 31. The
same faults occurring in two different sections are considered as two
different faults. We will specifically consider six different working
conditions:

Normal operating condition.
Insulation breakdown(single-phase and double single-phase).
Mechanical breakdown(direct and inversefault).
Three-phase fault.

Phase-to-phasefault.

6. Phase-to-phase-to-ground fault

A
P
w
W
N

A fault event on a line of type A, different from that where the simulated
measurements are currently performed is not included here.It can indeed be
identified by measurements at the control points at the start of each of the
lines. In this case, analytical studies on the network (Di Silvestre 1998) have
proved that measurements of the negative componentof the reactive power
and of the positive componentof voltage or current in symmetrical and non-
symmetrical systems can tell us whether the line under observation or an
external line is in one of the followingstates.

1. Normaloperation.

2. Three-phase fault.
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3. Insulation breakdown, mechanical breakdown, two-phase, and two-

phase-to-groundfaults.

Once thefaulty line has been identified, the feature selection for precise fault

identification and location detection can be performed. This is the object of

the present study. The events we are considering here can take place on one

of the main feeders of type C, in which the metering systems are placedat

each MV/LVsub-station. Therefore, the size of the search space is 2’. Sincef

linearly zrows with the number control points c, the search space grows

exponentially with both the number of control points and the numberof

features.

Finally, due to the flexibility of the tool used for feature selection, the

present study can easily be extendedto include different possible implemen-

tations for various different objective function formulations. Of course, the

ranges 0” variation of the features are affected by errors due to the model

used. Also, when any diagnosis is actually to be performed, the possible

errors due to the measurement systems themselves have to be considered in

the diagnostic model formulation. The following section describes the for-

mulatior of the objective function.

10.1 The objective function formulation

The objective is to minimize the number of features required for the

identification of all events. To explain the criterion used for the objective

function implementation a simple caseis reported in Fig. 3.14.

For example, consider a system with four features and three possible

events, s)f= 4 and e, = 3; in this case, we choose c = 1. Figure 3.14(a) shows

the ranges of variation for the given set of features, whereas Fig. 3.14(b) 1s

the table resulting from the comparison of the ranges in Fig. 3.14(a). The
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(b) Table containing binary values indicating the pairwise

a) status of the ranges (overlapping = 0; not overlapping = 1).
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number of rows is 3 and it comes from equation 5 with e, = 3. As can be

seen, noneof the four featuresis, by itself, able to distinguish all events. Only

the tuples (Ff, Fy) and (Ff, F,) are able to do that. Moreover, all the sets con-

taining these tuples are able to distinguish all the events, but they are not

minimal sets. Since we are interested in finding the solution that distinguishes

all events from one another with a minimal numberof features, we can define

the objective function to be,

f2
mae +1-“ (6)

where e; is numberof events that can be distinguished by the features con-

tained in the solution set and f,, is the number of features in the solutionset.

The following section presents the experimentalresults.

10.2. Results

The diagnostic system design problem is an important class of problem in

electrical engineering. In additionto finding a good solution comprised of the
optimal feature set, the physical interpretation of the solution is also impor-
tant. Since the GEMGAdetects the linkage sets that correspondto the physi-
cal dependencies among the features, the linkage information is also
valuable.

In such an application GEMGAprovides a good insight into the physical
problem. The GEMGAsearchesfor linkage sets among variables, which can
indicate the contribution ofsets ofelectrical features to the diagnosis problem.
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towards efficient detection of relations and classes by identifying the

approximate symmetry-preserving and symmetry-breaking dimensions.It

has been shown (Kargupta 1996a,b; Bandyopadhyayet al. 1998; Kargupta

and Bandyopadhyay 1998) that the GEMGAbased approachis promising

and it has produced linear-time performancefor a large class of problems.

In this chapter we extendedthe linear-time performanceto a feature selec-

tion problem using electrical power distribution network-fault detection

data. We hopethat this work takes the decade-long effort on scalable GAs

one step closer to the holy grail.
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4 Theory and application of

fuzzy methodology
Paul P. Wang and Fuji Lai

1. Introduction

The challenge of extracting information from a knowledge base is a very

importantpractical issue in AI research. There have been numerousproposals
in the past as to how to approach this problem. At the same time, other
research has demonstrated in fuzzy control problems that fuzzy logic is an
effective tool for solving practical problems. In this chapter we demonstrate
that fuzzy set theory is a valuable methodology for the design of knowledge
bases, whichis a task closely linked to information extraction.

The issues of inference and the organization of a knowledge base are very
muchintertwined. In consequence, the design of a knowledge base must con-
sider the mechanism of inference at the earliest stages. Traditional AI
methods for making inferences, such as rule-based knowledge bases and
semantic networks, have proven to beless effective than fuzzy logic methods
using approximate reasoning.

Classification is fundamental to the organization and to the efficient and
effective use of knowledge. Thetask ofclassification exists in all aspects of
life and in all academicdisciplines (Nilsson 1965). For example, in chemistry
the Periodic Table is used as an orderedclassification of elements. In zoology
classifications exist of different families of animals. For this specific
classification problem there is no unique way to proceed. Taxonomyis like
language in that it comprises syntactic and semantic aspects. In a given tax-
onomytask, it is desirable not only to completely separate sub-classes (syn-
tactic), but also to attach meaning (semantic) to each classification. In this
chapter we outline howclassification tasks can be accomplished according to
so-called ‘features’. We will illustrate this using an example from industry, in
which automated classification of small manufactured items can have far-
reaching consequences in efficiency, to demonstrate how classification can
be achieved with the use of fuzzy set theory (Kaufman 1975).

In pursuing the task of classification, one mustfirst focus on the issue of
pattern recognition. Human cognitive processes have been shown to use
feature extraction and analysis in recognizing and classifying patterns or
objects. Other theories in cognitive psychology have suggested instead a
template-matching method of cognitive recognition, but these have been
unable to account for the remarkable flexibility of human powers of recog-
nition, whereby recognition is still possible in the face of adverse condi-
tions suchas translation, enlargement, rotation, or segmentation of patterns
(Schalkoff 1992; Duda and Hart 1973). Pattern recognition is the first step
to making a connection between the real world and the digital computer,



and therefore is vital in tackling real world engineering problems with a

computer.

One must develop numeric descriptions and data structures for patterns,

becausethis is the nature of a digital computer. One must be able to pick a

pattern o: sample and generate data to be used for recognition. Intensive

research i; neededto translate data from realistic data structures to features.

Our research has demonstrated how sample classification and recognition can

be achieved throughthe creation of a knowledge base of features, and further

inferences made using this knowledge base. The key tools are fuzzy set

theory, membership functions, fuzzy relations, the properties of similarity

relation n-atrices, and fuzzy inference. Even ‘approximate reasoning’ can be

employec. advantageously in resolving ambiguouscases.

2. Cognitive science

Cognitive psychologyrefers to all processes by which ‘sensory inputis trans-

formed, r2duced, elaborated, stored, recovered and used’ (Best 1986). Our

cognitive processes respond to sensory input and transform physical energy

into code: of natural or neural energy. The nervous system receives a physical

stimulus and encodes it in such a way as to preserve manyof its characteris-

tics. Not only is a neural code created, but so is a cognitive code. This kind of

code can le defined as ‘the transformations of physical energy that are poten-

tially capable of entering our awareness, or those transformations that form

the basis of such an event’ (Best 1986). Once created, a cognitive code 1s

reduced cr elaborated. An example of the creation of a cognitive code is the

process cf reading, which involves the assimilation of the meanings of each

word to assemble a pattern of meaning. Later, one might be hard-pressed to

remember the exact words of the passage read, but one would beable to

recall the general meaning. The processes involved in the storing, transform-

ing, recovering, and reconstructing cognitive codes form the basis of our

mental liies and whatis often referred to as memory.

Of importance in visual perception and object recognition is the process of

pattern recognition: the template-matching theory and the feature analysis

theory. The first of these is based on the assumption that a faithful retinal

image ofthe object is transmitted to the brain, where it 1s compared with a

stored kriowledge base of patterns called templates (Pao 1989). For example,

in letter r2cognition, the perceptual system tries to compare the inputletter to

the storex! templates to achieve a match betweentheretinal pattern created by

the letter A, for example, andtheretinal pattern template. A practical example

is the computerized check-sorting machine used by banks to read account

numbers printed on checks. For this to succeed, nearly uniform size and posi-

tion of the printed characters is required. Template matching theory has two

disadvan ages. Oneis that the system is inefficient, requiring much time to

sort thro.igh many templates and compare them with an image. The second1s

that patt:rnm recognition in humansis very flexible, as we can recognize the

same chzracters even if they are displaced, rotated, enlarged, or blurred, and

this sugg-2sts that template-matching is perhaps not the methodthebrain uses.
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The extraction and recognition of features has been established as the most

vital com»onent of pattern and object recognition. In the identification of the

25 samples, discussed later in this chapter, we have simulated the human cog-

nitive prccesses which go into making such a decision. In our experiment

eight featitres have been extracted to construct a knowledge base which can

be used tc identify objects. As in the whimsical pandemonium model, there

are ‘demons’ or features which have higherdistinction powers.

Many artificial systems have been developed to attempt to classify pat-

terns. One, the WISARD (Wilkie, Aleksander and Stonham’s Recognition

Device) System demonstrated how instead of using features, a neural network

which stored responses to a large number of instances of different pattern

exemplars was able to classify new patterns correctly (Anderson 1985). This

system relied on sampling of select n-tuples of pixels and analysis of statisti-

cal similarity. Although this system might play a role in industrial sorting

applications, it is limited because results vary according to the lighting.

WISARD demonstrates that sorting can be done by brute force and the use of

extensive amounts of memory, but awarenessof the abstract characteristics of

objects would help solve the task in a moreintelligent and efficient way.

3. Fuzzy set theory and similarity relation matrices

Fuzzy set theory was introduced by Lofti Zadeh in 1965 as a way of repre-

senting tue vagueness in everyday life. It is a superset of conventional

(Boolean) logic that has been extended to handle the conceptofpartial truth.

Rather th:.n being regardedas

a

single theory, it has been said that one should

approach the process of ‘fuzzification’ as a methodology to generalize any

specific th eory from a crisp (discrete) to a continuous (fuzzy) form.

The essence of fuzziness closely resembles the nature of human cognitive

processes (Zadeh 1975). For example, in everyday language one would advise

that a driver ‘apply the brakes soon’, rather than ‘begin braking 74 feet from the

crosswalk.’. The latter instruction is too precise to be implemented. In all aspects

of daily life, one learns to assimilate and live by fuzzy data, vague rules, and

imprecise information (Bezdek and Pal 1992). Thus, it is reasonable to think

that computational models of real systems shouldbe able to recognize and inter-

pret fuzzy uncertainties (Wang and Chang 1981; Wang 1981, 1983, 1993).

Just as there is a strong relationship between Boolean logic and the

concept «f subject, there is a similar relationship between fuzzy logic and

fuzzy subset theory. In classical set theory, a subset U of a set S can be

defined as: a mapping from the elementsof S to the elements ofthe set {0,1}:

U:S 3 {0,1}

This mapping can be represented as a set of ordered pairs, with exactly one

ordered pair present for each element of S, and the first element of the

ordered y:air being an element of S, the second element being either 0 or 1.

The valu: zero represents total non-membership and the value one represents

members 1ip. Thetruth or falsity of the statement

x isin U
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is determined byfinding the ordered pair whose first element is x. The state-

mentis true if the second element of the ordered pair is 1, and the statement

is false if it is 0.

In a parallel manner, a fuzzy subset F of a set can be defined as a set of

ordered pairs, each with the first element from S, and the second element

from the interval [0,1], with exactly one ordered pair present for each element

of S. This defines a mapping between elements of the set S and valuesin the

interval [0,1]. Zero represents complete non-membership while the value one

represents complete membership, and values in betweenare used to represent

intermediate degrees of membership. ThesetS is referred to as the ‘universe

of discourse’ for the fuzzy subset F. The mapping may bedescribed as ‘the

membership function’ of F. The degree to which the statement

x is in F

is true is found byfinding the ordered pair whosefirst element is x. The
degree of truth of the statement is the second element of the ordered pair.
There are many forms of membership functions. For example, the concept of
‘tallness’ is affected by linguistic perceptions as well as cognitive percep-
tions. If we define a fuzzy subset TALL, the question will become ‘to what
degree is personx tall’? Each person would be assigned a membership grade
defining his ‘tallness’. One way in which this could be doneis a membership
function according to height.

0: if height (x) <5
tall(x) = (height (x) — 5 ft)/2 ft if 5 ft < height (x) <7 ft

1: if height (x) >

7

ft

The graph would then beofa triangular form. Membership functions can also
exist in other shapes, such as bell curves or staircase graphs. They may be
derived from sources such as subjective evaluation or data and probabilities.

To manipulate fuzzy sets, we need operations to combine them. ‘Classical’
operations were laid out by Zadeh (1975) and are characterized in terms of
F(X) = All Fuzzy Subsets of X and m e F(X) m:X +> [0,1]. The fuzzy
Sets M4, Mg € F(X) and the operationsare:

(=) Equality A = B © m, (x) = mz (x)

(C) Containment A C B & my, (x) S mz(x)
(~) Complement m, = 1—- m, (x)
(1) Intersection Mang (x) = min {m, (x), Mg (x)}

(U) Union = mayg (x) = max {my (x), Mg (x)}

We could develop the concept of tallness by relating it to a pair of
variables such as the person’s height and the person’s age, giving a two-
dimensional membership function or ‘fuzzy relation’. In pattern or object
recognition, the aim is to search for structure in data. One way to approach
this is to use the concept of fuzzy sets to transform input data into a set of
membership values which indicate the degree of membership in certain
classes and the degree of similarity between different classes. We now
discuss how the notion of fuzzy relations and fuzzy similarity relations can
give an indication of the similarity of the two samples.
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An example of a fuzzy relation is shown below, where we let P be a

product set of n sets and M its membership function, and a fuzzy n-ary rela-

tion is a fiizzy subset of P taking its values in M (Wang 1976).

F, = {x1, Xz, Xz}, Eo = {W11 Yor Var Yar Vet, M = [0,1]

y1 Y2 Y3 V4 Y5
xX, 0 -0 0,1 0,3 1

X> 0 0,8 0 0 1

Xs 0,4 0,4 0,5 0 0,2

In the case where E, = E, = E and M = [0,1] the result is a fuzzy binary rela-

tion. The membership grade associating each pair gives the strength of the

relation between members. Similarity relation matrices or relations of simili-

tude are a subset of fuzzy binary relations which have the property of “equiv-

alence’. Within equivalence are three requirements that mustbesatisfied:

(a) Symnetry. A symmetric fuzzy binary relation is defined by

V(x,y) € EXE: (up (x, y) = w) > (eR (y, X) = pb).

(b) Refl:xivity. This property is defined by

V(x, y) € Ex E: up (x, x) = 1

(c) Trarsitivity. If we let x, y, ze E; then

V(x, y), (y, 2), (x, z), € EXE:
Lup (x, Z) 2 MAX [MIN (pe (x, y), We (Y, Z))I-

An example of a fuzzy similarity relation is shown below andit can be seen

to satisfy all three requirements. The properties of symmetry andreflexivity

can be rationalized by recognizing that the similarity of one sampleto itself

should be one and the similarity of two samples should be the same regard-

less of the order in which they are taken.

A B C D E
1 0,1 0 0,1 0,9

0,1 1 0,2 0,3 0,4
0 0,2 1 0,5 0,2

0,1 0,3 0,5 1 0,1
0,9 0,4 0,2 0,1 1m

u
o
u
U
a
g
w
W
w
y
Y
D

Thusthe 2ntries on the diagonal are unity and those on oneside of the diago-

nal are re flected onto the other side. These similarity relation matrices can be

used to ferm inferences and putative identifications. This can be done through

several d:fferent methods such as max-min composition, max-star composi-

tion, or max-product composition (Kaufman 1975). The max-min composi-

tion is defined such that if R, C X x Y and R, C Y x Z, then the min-max

composit on R, and R, denoted R, 0 R, is:

Mroor(X, Z) = Vy [mar (x,y) /\ Mralx, y)] = MAX, [MIN (tep1 (x, ¥) eral, 2))1
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where xe X, ye Y, andze Z. An example 1s shown below:

R Y) Y2 Y3 Y4

X, X> X3 X4 x) 1 0,8 03 0,4

03 0,4 0,5 0,1 ° X5 0,8 1 02 0,5

x, 03 O02 1 06

x, O04 O05 O06 1

The operation is carried out by taking the | x 4 matrix in turn with each

column of the 4 x 4 matrix in the manner:

MAX [(0,3 “\ 1), (0,4 A 0,8), (0,5 /\ 0,3), (0,1 /\ 0,4)] =

0,3 \/ 0,4 \/ 0,3\/0,1 = 0,4

(Note: \/ = minimum; A = maximum)

The result would be: [0,4 0,4 0,5 0,5]

In this manner inferences can be made. There exist at least 12 different
ways of making inferences and max-min composition is not the only method
possible (Togai and Wang 1982, 1984, 1985).

4. Knowledge base

The creation of a knowledge base must precede all other steps in any machine
intelligence task. In describing different samples or patterns, features must be
extracted first; identification can proceed later with the use of those features
in a knowledge base and a decision-making policy or discrimination func-
tional block (Watanabe 1985; Pao 1989).

Let us consider Boolean logic in which the binary variable ‘1’ symbolizes
a ‘yes’ and a ‘0’ symbolizes a ‘no’. To distinguish two samplesat least one bit
of information is needed, and for four different samples at least two bits of
information are needed. Thus a minimum of n features are needed for
identification if the number of samples is 2n. The detailed selection of fea-
tures is important to optimize efficiency and discrimination powers. If fea-
tures are chosen correctly, both the number required for identification and
computation time are kept at a minimum (Bruce 1990).

One advantage of fuzzy set and fuzzy logic theory as opposed to Boolean
logic or crisp set theory is that variables need not be assigned to only zero or
one, but instead maytake any real value in this range (Zadeh et al. 1975). In
an ideal situation, one feature would besufficient to distinguish between any
number of samples, as the membership grade would be able to take on any
value between 0 and |. However, this situation exists only if there is such a
perfect feature that each sample hasa different grade valuation in the mem-
bership function relation representing that feature.

In reality one feature is usually insufficient for identification as there is the
problem of spacing between membership grades of samples. It is advanta-
geous to have larger spacing because thisraises the tolerance to noise. In any



realistic sicuation, noise is a force to be reckoned with, and in our particular

problem ncise may arise in the translation from real three dimensional sample

to two dimensional signal (image), and the eventual mapping to single

numeric scalar number. The greater the number of features used, the higher

will be the accuracy of recognition. Thus it is necessary to experiment and

generate a: many effective features as possible to yield membership grades

with high discrimination power. This is particularly important during the

initial stag: of design of the recognition system.

The selection of membership function is also not arbitrary. The type of

function used was a convex function and basically piecewise linear in nature.

In our exp¢riment, 25 industrial samples of washers and nuts were chosen as

the patterris to be classified and recognized. To identify all 25 samples, at

least five l:its of information are required, according to information theory.

The extrac:ion of features from the three dimensional samples was done by

first relatizig each sample to a two dimensional image of the head of the

sample (Wang 1976; Thint eft al. 1993; Sollberger et al. 1989). Next, one

dimensional numbers representing features of the two dimensional images

were obtai1ed. These numbers were chosen as ratios which would give an
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indication of the important characteristics of the sample, such as the general

size, the number ofsides/edges, and the numberof perforations in the sample.

Eight such features were selected after much experimentation. The use of

eight features should provide better results than just five, but it must be noted

that there is a redundancy of information as not all features would present

orthogonal basis vectors in a vector space. This redundancynaturally renders

our experimental model less than ideal in terms of the spanning of a vector

space. On the other hand, this heuristic scheme has the advantage of achiev-

ing more accurate recognitionrates, taking advantage of majority voting.

For each feature chosen, the samples were renumbered according to their

membership grades, from the lowest to highest (typical classification are

shown in Figs 4.1 and 4.2).

As mentioned previously, the ordering of the membership grade is impor-

tant, because one can make ‘semantic’ interpretations of a specific feature.

Next, the membership grade for each sample was comparedin turn with each
of those of the other samples and the difference was mapped using a convex
membership function onto another numberin the range [0,1]. These results,
representing the degrees of similarity between two chosen samples, were
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As in the analogy to a dictionary, a similarity relation matrix can only

work perfectly (that is give a definite and correct answer) if ideal data are

presented. It represents the measuring stick against which comparisons of

similarity will be made. A grade of ‘1’, represents complete similarity while

‘0’, represents complete dissimilarity. In order to maximize accuracy of

identification, there are two parameters which can be varied by the designer

to fit the situation. These are the type of membership function chosen and the

parameter k; optimizing these is knownto the fuzzy research community as

‘tuning’.

It is important to understand the physical nature of similarity relation

matrices in order to appreciate the mechanism of the inference process. Each

column and row forms a knowledgebasefor a particular sample.

The generation of the similarity relation matrices itself involves inference
through the calibration of the values of k to obtain optimum results. Let us
consider one feature. First the initial membership grades of the row vector of
the 25 samples were translated into similarity relation matrix entries using an
initial value of & through the methoddetailed above. To ascertain the appro-
priateness of this value of k the inference process was carried out using the
same ideal sample data. With ideal data providing the input, recognition
should be close to 100 percent.

To demonstrate the process of inference in tuning, let us pick the first
sample in the ordering for that particular feature. A 1 x 25 matrix is created
which has entries representing grades of similarity between sample | and
each of the other samples in turn, e.g. entry 3 is a similarity relation between
sample 1 and sample 3. This matrix then undergoes max—min composition
with each of the columns of the similarity relation matrix for that feature.
The result should be a | x 25 matrix with a 1 in thefirst position indicating

 

   

1.0 px
. -~—k=18 for feature 2

L \
VO ene k=20 for features 1,4

L \y ON
0.8 \ \ —-— k=50 for features 3,5,7,8

L \ \ —  k=70for feature 6
\

0.6F \\ 3
\ \

y OMLL \ oy

\ MA

O.4+ \ A
\ ‘A

\
- \ a

\ \

\ SS

i \ ie
NG SN

0.0 1 I —s po, J I I !

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4.4 Similarity relation matrix for feature 1.





88 Theory and application offuzzy methodology

 

 

   
 

290 _ 4%

09 -

= 200b
x L
Cc

2 r
S 5

2 L

@ 150-
OH L

aS .
— O---------------- oO
3 . 8%
© .
OQ

2 100+
Ou. bom

r ° Be

pO | 16%

-10 100
Noise rate (%)

Fig. 4.5 Distribution of noise for each noiserate.

the real-life raw membership value forthe first sample, and the inference
method described earlier carried out. The noisy membership grade for the
first sample was compared in turn with the perfect membership grades for
the other samples. The difference was then mapped with the similarity func-
tion (using the appropriate tuned k value) definedforthat particular feature to
give a | x 25 ‘realistic similarity vector’ which represents information about
the real-life sample 1. This vector then underwent max—min composition with
each of the columnsofthe similarity relation matrix for that feature to give a
1 x 25 matrix result. If the ‘1’ was in the correctplace,i.e. the first position in
this present computation, then recognition was said to have been successful.

This procedure was repeated four times with the same noise, sample and
feature, and then a further 5 trials were performedat 8 per cent, 12 per cent,
16 per cent, and 20 per cent noise. The entire process was repeated for this
feature for each of the 25 samples. The steps above were repeated for the
remaining seven features.

Majority voting was usedto calculate recognition accuracy at each noise
rate. A sample wassaid to have been identified correctly if the total number
of hits was greater than 20. (The total numberof possible hits would be
5 trials x 8 features = 40). The recognition rate was calculated as the number
of such samples out of 25.

As expected, the recognition rate decreased as the percentage of noise
increased (Fig. 4.6).

However, it can be seen that recognition isstill surprisingly good as the
rate was still 100 per cent at 4 per cent error. At 8 per cent and 12 per cent
error the rate wasrelatively high at 88 per cent. As noise increased to 16 per
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cent and 2:0 per cent the rates became 48 per cent and 32 per cent respec-

tively. Thus it can be seen that our system was successful in recognizing even

in modera‘e levels of noise.

7. Conclusion

We have shownthe richness of the use of fuzzy membership functions as a

meansof riodelling features. This is particularly powerful when coupled with

similarity matrices, fuzzy inference, and majority voting. These lead to the

successful design of knowledge bases whichare vital components in machine

intelligence. Furthermore, they can be implemented in hardware to increase

the speed or the numberof inferences per unit time.

Samples can beidentified in even moderate levels of noise and in the face

of uncertzin or incomplete data. Recognition wasstill 100 per cent at 4 per

cent noise but deteriorated as noise levels increased. This research has estab-

lished only the lower bounds for the use of the knowledge base and fuzzy

inference. Thereis still much room for exploration and improvementthrough

the process of tuning and design optimization.

In arriving at our conclusion we made several decisions regarding the

method to be used. One concerned the injection of noise at the membership

grade level. It should be noted that there exists the possibility of future inves-

tigation u:ing noise applied at the two-dimensional image stage (Agin 1981;

Haralick 1978). Another decision was the use of max—min compositions

although several other types of compositions such as the min-product
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composition exist (Wang and Wang 1981; Wang and Togai 1985). Further

investigation into control of the value of k may give evenstrongerresults. In

addition, it may be possible to increase recognition rate by increasing the

number of features used. Howeverthis has the disadvantage of increasing

cost due to the amount of hardware and computation time required.

Potentially, we might also be returning to the use of ‘brute strength’ as

opposedto the intelligent selection of features with the highest discrimina-

tion power. Usually an optimal combination set of features can be found. The

weighting of the multiple features, taking the inner product of the weight

vector and the feature vector, may result in high recognition rates; but this
would be at the expense of ‘semantic interpretation’ as it would be difficult to
attach a physical meaning to such a membership grade.

Another pointof note is that contemporary research on similarity matrices
has generated very rich theoretical results (Le 1993, 1994, Taramaetal.
1971). These results may lead to further refinement of knowledge base design
using fuzzy methodology.

Our research has not touched on all avenues of exploration; prospects for
further growth and improvementof this method of recognition are excep-
tional. The method we have investigated has countless possible applications
in science and areas requiring ranking, taxonomy,classification, and recogni-
tion (Wang and Fatmi 1986). We are likely to witness the power of feature
extraction, the knowledge base, and the similarity relation matrix coming to
the forefront of machineintelligence theory in the future.
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Appendix: feature generation and selection

The selection of features used for classification and identification was done
through extensive experimentation (Wang and Kadonoff 1984; Wang and
Ellinwood 1979). Each feature captures a certain aspect of the sample and
together they form a dictionary of similarity grades with which to distinguish
samples. Not all features have the same discrimination power. We describe
below the rationale for the selection andillustrate the method of calculation
with an example for each feature.

Feature 1:

This feature attempts to capture the approximate proportions of sample
surface area compared with the area of any enclosed hole.

Surface Area
CompactRatio =

Total Edge Length
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e.g. Sample 1
a=1.5cm

b=3.2 cm

(=)-*(3)WT 2 — 7 2

feature = compactratio =
qwa+ab

Feature2: Fig. 4.7

 

A Vv

This feature approximates the edge length of the sample (including outer

edges andiny inner edgesofholes).

e.g. Sampie 5
a=0.4cr

b=0.9 cm

c=2.5cm

edge length = 7(3a+ b+ Cc)

O
h
m

O

f Y

Feature 3: Fig. 4.8

The surfac:2 area gives an idea of the size of the sample.

e.g. Sample 12

a=2.0cm

surface area = m(a/2)? i.»

Feature 4:

This was defined as the number of crossings over the surface area. This

attemptedto extract information about the numberofdiscreet openings inthe Fig. 4.9

sample. A crossing was found by centering the sample shape inside the small-

est rectanyle possible to contain the shape and then drawing lines from the

centre of “he rectangle to each rectangle edge and rectangle side midpoint. A Se

b

 

crossing cccurred whenever there was a change from solid to hole or vice

versa.    
e.g. Sample 4

a=0./ cr)

b= 1.4 crn Fig. 4.10

feature =

Feature 3:

This give: the ratio of compact ratio over numberofcrossings.

e.g. Sample

compactratio from feature 1

16
feature = 
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Feature 6:

This was definedas the ratio of the compactratio over the numberof sides. A

side was defined as any abrupt changein the orientation when following the

outer edge of a sample. For instance, a circle would havea side rating of 1

while a hexagon would havea side rating of 6.

e.g. Sample 1

compactratio from feature 1

1 side
 feature =

Feature 7

This feature contains information about the hole-to-surface ratio, the number
of holes, and the numberofsides of the sample. First the ratio of number of
crossings to number of sides was obtained. Then the compact ratio was
divided by this numberto givethe feature.

e.g. Sample 1

compactratio from feature 1

16

/

feature = 

Feature8:

This was found by taking the ratio of the number of crossings to the number
of sides and then dividing by the surface area.

 

e.g. Sample 12

@
feature = |

surface area from feature 3
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5 Data representations for

evolutionary computation
lan C. Parmee, Carlos A. Coello Coello,

and Andrew H. Watson

1. Introduction

The data processing capabilities of genetic algorithms (GAs) have been

recognized (within a wide variety of domains) in recent years, and have

received much attention from researchers and practitioners working in many

different «lisciplines (Goldberg 1989). As a stochastic, heuristic technique,

the GA does not need specific information about the problem domain to

guide search. Its structure is analogous to biological evolution theory using

the principle of survival of the fittest (Holland 1975). Therefore, the GA

resembles a ‘black box’ that can be attached to any particular application. In

general, the following basic components are required to implement a GA

(Michalewicz 1992):

1. Arepresentation for potential solutions to the problem.

2. A wavto create an initial population of potential solutions (this is nor-

mally done randomly, but deterministic approaches can also be used).

3. An evaluation function that plays the role of the environment, rating

soluti »ns in termsof their ‘fitness’.

4. Genetic operators that alter the composition of children (normally,

crossover and mutation).

5. Values for parameters that the genetic algorithm uses (population size,

probabilities of applying genetic operators, etc.).

In this chapter, we focus on the first of these components: the representation

used by tue genetic algorithm.

The traditional representation used to encode a set of solutions is the

binary sc.ieme, in which a chromosome is a string of the form <b), by, ...,

b,,> (Fig. 5.1), where b;, b:, ..., b, are termed genes (the values that these

genes ca“ assumeare called alleles and in binary representation are either

zeros or cnes).

There are several reasons why binary encoding is normally utilized by

GAs but most date back to John Holland’s pioneering work. In his book,

Holland (1975) gave a theoretical justification for the use of binary encoding.

He compared two different representations with approximately the same

information-carrying capacity, one that had a small numberofalleles and

long strings (e.g., binary strings of length 80), and the other with a large

numberof alleles and shortstrings (e.g., decimalstrings of length 24). Notice

that 28° (sinary) ~ 10*+ (decimal). Holland (1975) arguedthatthe first encod-

ing allows a higher degree of ‘implicit parallelism’ than thelatter, since it

 

    
0}! 1 oy!

  
 

Fig. 5.1

string.

An example of a binary
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contains more schemata than the second encoding (117+ Versus 3%). A
schema(plural schemata) is a template describing a subset of the strings that

share certain similarities at some locationsacrosstheir length (Holland 1975;

Goldberg 1989). The presence of more schemata favours diversity, and

increases the probability that good ‘building blocks’ (i.e., the portion of a
chromosomethat confers higher fitness on the string in which it is present)
are formed at each generation, therefore improving the performance of the
GA over time according to the schema theorem (Holland 1975: Goldberg
1989). The ‘implicit parallelism’ of GAs, introduced by Holland,refers to the
fact that, while explicitly calculating the fitness of the individuals in a popula- —
tion, the GA implicitly estimates the average fitnesses of a much larger
number of chromosomicstrings by calculating the observed average fitnesses
of the “building blocks’ detected in the population.

Therefore, according to Holland, it is preferable to have many genes with
few possible alleles rather than a few genes with many possible alleles. This
is not only for theoretical reasons (following Holland’s schema theorem), but
it also hasa biological justification in genetics, where it is more usual to have
chromosomes with many genes and fewalleles per gene rather than few
genes and manyalleles per gene. However, the implicit parallelism of GAs
does not preclude the use ofalphabets of higher cardinality, although a binary
alphabet offers the maximum numberof schemata per bit of information of
any coding (Michalewicz 1992; Goldberg 1989). Nevertheless there has been
long debate over these non-binary alphabets, mainly from the practitioner’s
side.

As we will see in this chapter, the use of a binary representation has
several drawbacks when the GAis used to solve real-world problems. For
example, if we try to optimize a function with high dimensionality (e.g., 50
variables), and weare interested in good precision (e.g., 5 decimals), then
the mapping from real numbers to binary numbers will generate extremely
long strings (of perhaps 1000bits) and the GA will be unable to perform well
in most cases unless special operators and procedures are designed for the
problem. |

In the followingpages wewill discuss someofthealternative representa-
tion schemesthat have been proposed to deal with this and with other limita-
tions of the binary representation, providing in each case examples of
applications in which such approaches have been found useful.

2. Gray coding

Early work by GAresearchers revealed problemsin the use of a binary repre-
sentation and anomalies in the mappingofthe search Space to the representa-
tion space (Hollstien 1971). For example, the integers 5 and 6, which are
adjacent in the search space, have binary equivalents of 101 and 110, which
differ by 2 bits in the representation space. This phenomenon, known as a
Hamming cliff (Caruana and Schaffer 1988), has led to alternative representa-
tions in which the adjacency property existing in the search space can be pre-
served in the representation space. The Gray coding representationis part of a



family of bit representations that fall into this category (Whitley et al. 1998).

We can convert any binary number to a Gray code number by performing

XORto its consecutive bits from right to left. For example, given the number

0101 in biiary, we would do': 1 ©0=1,061=1,1@60=1,producing (the

leftmost it remains the same) 0111, which is the equivalent Gray code

number.

The us: of Gray coding has been empirically shownto improvethe perfor-

mance of GA whenapplied to the classical De Jong test functions (DeJong

1975) (see for example Caruana and Schaffer 1988; Mathias and Whitley

1994b). In fact, Mathias and Whitley found that Gray coding not only elimi-

nates Han: ming cliffs, but also alters the numberof local optimain the search

space and thesize of good search regions(those that will lead usto the vicin-

ity of the global optimum). They showedthat a random mutation hill-climber

is able to tind the global optimum of mostof the test functions provided when

Gray coding is used, even though some of these were designed to present

difficulty ‘0 traditional (evolutionary or not) search algorithms.

3. Encoding real numbers

Although Gray coding can be very useful to encodeintegers, the problem of

mapping “he search space correctly onto the representation space becomes

more serious when wetry to encode real numbers.In the traditional approach

(Wright 1991), a binary number is used to represent a real number, by

defining |] »wer and upper boundsfor each variable, as well as the precision

desired. For example, if we want to encode a variable that ranges from 0.35

to 1.40, using a 2-decimal precision, we would need log, (140-35) ~ 7 bits to

represent any real number within that range. However, in this case, we have

the same problem that we previously discussed, because the number 0.38

would be represented as 0000011 whereas 0.39 would be encoded as

0000100

Even with Gray coding there is another (more important) issue when

dealing with real-world applications: high dimensionality. If we have too

many var.ables, and we want high precision for each, then our binary strings

will become extremely long, and the GA will tend to perform poorly.

We could adopt some standard binary format for representing real

numbers such as the IEEE standard for single precision in which a real

numberis represented using 32 bits, from which 8 are used for the exponent

in excess.-127 notation and 23 bits are used for the mantissa (see Fig. 5.2)

(Scragg 992). We could handle a relatively large range of real numbers

using a fixed amountof bits (for example between 27'”° and 2'*’ if we used

the IEEE, standard for single precision previously described). However, the

decoding process would be more complex, and the mapping betweenthe rep-

resentaticn space and the search space would be much more complex than

when a simple binary representation is used, because any small change in the

| ® indicates XOR.
"We are ass iming that 0.35 is encoded as 0000000.

Encoding real numbers 97
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Sign Exponent Mantissa

 

0 | 1OO01011 | O100...0
 

| bit 8 bits 23 bits

Fig. 5.2 An example of IEEE notation.

 

| 2.15 | 1.89 | 0.43 | 3.14 | 0.27 | 7.93 15.11
   

Fig. 5.3 An example of a real-coded GA.

exponentfield would produce large jumps in the search space, whereas per-
turbations in the mantissa may not change, in a significant way, the numerical
value encoded.

Whereastheoreticians claim that small alphabets should be more effective
than large alphabets, practitioners have shown through a considerable number
of real world applications (particularly numerical optimization problems) that
the direct use of real numbers in a chromosomeworksbetter in practice than
the traditional binary representation (Davis 1991: Eshelman and Schaffer
1993).

The use of real numbers in a chromosomic string (Fig. 5.3) has been
common in other evolutionary techniques, such as evolution Strategies
(Schwefel 1981) and evolutionary programming (Fogel and Stayton 1994),
Where mutation is normally the primary operator. However, when dealing
with GAs, there has been strong criticism of the use of real values in a chro-
mosome, mainly because this higher cardinality representation makes behav-
1our of the GA more difficult to predict. Consequently, several special
operators have been designed to emulate the effect of crossover and mutation
over binary alphabets (Eshelman and Schaffer 1993; Wright 1991: Deb and
Agrawal 1995).

Practitioners argue that one of the main abilities of real-coded GAsis their
capacity to exploit the gradualness of functions of continuous variables
(where gradualness is taken to mean that small changes in the variablescorre-
spond to small changesin the function). Real-coded GAs can thus adequately
deal with the ‘cliffs’ produced when the variables used are real numbers,
because a small change in the representation is mapped as a small change in
the search space (Eshelmanand Schaffer 1993; Wright 1991).

To reduce the gap between theory and practice, some researchers have
developed a theoretical frameworkthat justifies the use of higher-cardinal-
ity alphabets (Goldberg 1990; Wright 1991; Eshelman and Scaffer 1993:
Surry and Radcliffe 1997), but there has been little agreement on most of
the main issues, and the use of real-coded GAs remains a practitioner’s
choice. |

Other representations for real numbers have been used. For example,the
use of integers to represent each digit of a real number has been successfully
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applied to several optimization problems (Coello et al. 1997b; Coello etal.

1998; Coello and Christiansen 1998). Fig. 5.4 showsa representation of the

real number 1.45679. In this case, a fixed position is assumed for the decimal

point in each variable, but this need not remain fixed for the other variables

encoded in the string. Precision is limited by the length of the string, and can

be increased or decreased as desired. The traditional crossover operators

(one-poirt, two point, and uniform) can be useddirectly with this representa-

tion, and mutation may consist of generating a random digit for a certain

location or of producing a small perturbation (for example +1) to avoid large

jumps in the search space. This representation is intended to be more of a

compron:ise between a real-coded GA and a binary representation of real

numbers. trying to keep the best from both worlds by incrementing the cardi-

nality of the alphabet used, whilst leaving the use of the traditional genetic

operators almost unchanged.

Alternatively, we could also use long integers to represent real numbers

(Fig. 5.5° but then the operators would be redefined in the same manner as

when using real numbers. The use of such a representation scheme seems

unlikely as a replacement for real-coded GAs, because precision would

be sacriiced and the only savings would be in terms of computer

memory (the storage of integers takes up less memory than the storage of

real numbers), but this has nevertheless been used in some applications

(Davis 1991).

4. Variable-length representations

In some oroblems, the use of high-cardinality alphabets may be inappropri-

ate, and it may be necessary to introduce variable-length chromosomesto

deal with changes in the environment over time (for example, to

decreasevincrease the precision of a variable or to add/subtract variables). It

may be possible to introduce symbols in the alphabet that are counted as

‘empty’ positions along the string, therefore allowing the use of fixed-length

chromosomesto represent variable-length strings. This is the approach taken

in (Coel.o et al. 1997a) to design combinational circuits. In this case, the use

of a symlol called WIRErepresents the absenceofa gate, thereby allowing a

change i1 the length of the resulting Boolean expression generated using a

bi-dimensional matrix.

However, in other domains, this sort of simplification may be impossible,

and alteinative representations must be devised. For example, in problems

that hav:either partial or full deception (Grefenstette 1993) (i.e., low-order

building blocks do not guide the GA to the optimum and do not combineto

 

145679 | 67893| 37568 | 95432|

Fig.5.5 Another integer representation of real-numbers. In this case, each gene

contains an entire real number represented as a long integer.

 

L114] 5]6]7]9|
Fig. 5.4 An integer representa-
tion of real-numbers. The whole

string is decoded as a single real

number by multiplying and dividing

each digit accordingtoits location.
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| (2,1) | (2,0) | 3,0) | B.0|
 

 

} 1,0) |0) ] GD| 4D| 4,0) |
 

Fig. 5.6 Two examples of valid strings in a messy genetic algorithm.

form higher-order building blocks), a GA will not perform well regardless of

its parameters. To deal with this problem, Goldberg et al. (1989, 1990, 1991)

proposed a GAstructure of variable length which uses populations of variable

size, termed the ‘messy GA’ (mGA)as an alternative to the standard fixed-

length, fixed population-size GA (Mitchell 1996).

MGAsstart with short chromosomes, identify a set of good building

blocks, and then increment the length of the chromosometo propagate these

good building blocksalongtherest ofthestring.

The representation used by mGAsis novel, since each bit is associated

with a particular location along the string, and some locations could be
assigned to more than one bit (overspecification) while others may not be
assigned at all (underspecification). Consider, for example, the two strings
shownin Fig. 5.6 which constitute valid chromosomes for a messy GA (we
are assuming chromosomesof4 bits). The notation adopted in this example
uses parentheses to indicate a gene, whichis defined asa pair consisting of
the location along thestring (the first value) and the bit value in that location
(a binary alphabet is assumed).In the first case, the first and fourth positions
are not specified, and the second andthird are specified twice. In the second
case, the second andthird positions are not specified, the first is specified
three times and the fourth is specified twice. To deal with overspecification,
some simple deterministic rules may be defined. For example, we can use
only the first definition from left to right for a certain location. For under-
specification, we have to do something more complicated, because an under-
specified string is actually representing a ‘candidate schema’ rather than a
complete chromosome. For example, thefirst string in Fig. 5.6 represents the
schema *10* (the * means ‘don’t care’). To compute fitness for an under-
specified string, we can use a hill-climber to find a local optimum and then
use that information to replace the ‘don’t cares’ from the schema. This
approach is termed ‘competitive templates’ by Goldberg et al. (1990).

Messy GAsoperate in 2 phases (Goldberg et al. 1990): the ‘primordial
phase’ and the ‘juxtapositional phase’. In the primordial phase, short
schemata are generated to serve as the building blocks of the juxtapositional
phase in which they will be combined. The problem atthis point is how to
decide how longthese ‘short’ schemata should be.If they are too short, they
may not contain enough genetic material to solve the problem at hand;if they
are too long, the technique will become impractical because of the ‘curse of
dimensionality’ (we would have to generate and evaluate too many
chromosomes).

During the primordial phase we generate these short schemata and evalu-
ate their fitnesses. Subsequently, only selection is applied to the population



 
|

(2,0) (2,1) | G,0) | (1,0| 4D
CUT |

|1) | 2,0) | 4D | B.D|G.| 2D| 4,0) |

     
 

 

 

Fig. 5.7. An example of the ‘cut’ operator in a messy genetic algorithm. The

thick lines: indicate the cut point.

 

|
| (2,0) | (2,1) | (2,1) | (4,0) |
 

SPLICE
 

 

|
Le)ED)

Fig. 5.8 An example of the ‘splice’ operator in a messy genetic algorithm. The

thick lines; show the part of the string that was added.

(without crossover or mutation) to propagate the good building blocks, and

half of the population is deleted at regular intervals (Mitchell 1996). After a

certain (j:re-defined) number of generations, the primordial phase ends and

the juxtapositional phase is begun. From this point, the size of the population

remains fixed, and weuseselection and two special operators called ‘cut’ and

‘splice’ ((Zoldberg et al. 1989). The cut operator simply takes a portion of the

chromosome away, whereas splice puts two portions together. Consider the

examples shownin Fig. 5.7 and 5.8.

Because of the nature of the messy GA,the strings produced by the cut

and splic 2 operators will always be legal. If the building blocks produced in

the primordial phase carry enough information, the messy GA can approach

the global optimum evenif the problem is deceptive (Goldberg et al. 1991).

Although very promising, the drawbacks of messy GAs(Mitchell 1996)

have kept them from widespread use, and only a few applications have been

reported in the literature (Chowdhury and Li 1996; Kajitani et al. 1997; Iba et

al. 1997. Halhalet al. 1997; Beveridge 1998).

5. Tree representation

Oneofthie early goals of Artificial Intelligence (AI) was the automatic gener-

ation of computer programs. For many years this goal seemed too ambitious

since th:re is normally an exponential growth of the search space as we

extend t1e domain of a program, and consequently, any technique will

produce ither invalid or very inefficient programs.

There. are many examples of evolutionary computing techniques that

attempt to deal with automatic programming, but notorious failures even in

Tree representation 101
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Fig. 5.9 An example of a chromosomein genetic programming.

very simple domains have prevented other AI researchers taking muchofthis

work seriously (Fogel 1995). However, Holland developed the modern

concept of the genetic algorithm within the framework of machine learning

and muchresearchstill investigates the use of GAsfor that purpose, although
automatic programming wasput aside by researchers for several years. One
of the reasons for this was that a conventional GA has some(rather obvious)
limitations when used for automatic programming, particularly in terms of
representation issues. Encodingthe set of instructions of a programminglan-
guage and finding a way of combining them in a meaningful manneris not
simple, but if a tree structure is used in combination with rules that avoid the
generation of invalid expressions, we can build a primitive parser capable of
producing simple programs. This was precisely the approach taken by John
Koza (1992) to develop ‘genetic programming’ in which LISP was used to
take advantage of the parser built into the language to evaluate the expres-
sions produced.

The tree representation adopted by Koza requires different alphabets and
specialized operators to evolve randomly generated programs until they
become 100 percent valid to solvea certain (pre-defined) task, but the under-
lying principles of the technique can be generalized. Trees are composed of
functions and terminals. The functions normally used are the following:

Arithmetic operations(e.g., +, —, X, +)

Mathematical functions(e.g., sine, cosine, log, exp)

Boolean operations (e.g., AND, OR, NOT)

Conditionals (IF-THEN-ELSE)

Iterators (DO-UNTIL)

Recursive functions

Any other function defined in the current domainS
I
A
M

RB
W
N

Terminals are typically variables or constants, and can be seen as functions
that take no arguments. An example of a chromosomethatuses the functions F
= {AND, OR, NOT} andthe terminals T = { AO, Al} is shown in Fig. 5.9.

Crossover can be performed by numbering the nodesof the trees corre-
sponding to the 2 parents (Fig. 5.10) and selecting (randomly) a point in each
so that the sub-trees below that point are exchanged (Fig. 5.11, where we
assumedthat the crossoverpointfor the first parent is 2, and for the secondis 6).



 
Fig. 5.10 Nodesin the tree are numbered as a previousstep to crossover.

Fig. 5.11. The two children generated after performing crossover.

Typically, the sizes of the trees of the 2 parents will be different. It should

also be ol:served that if the crossover point happensto be the root of one of the

two parerts, then that entire chromosome will become a sub-tree of the other

parent, wiiich is a way of incorporating subroutines into a program. It is also

possible that the roots of both parents are selected as the crossoverpoints. In that

case, no crossoveris performed, and the offspring are the sameastheir parents.

Normally. the implementation of genetic programming imposesa limit to the

maximundepth that a certain tree can reach, to avoid generating (randomly and

by using <rossover or mutation) trees of considerable size and complexity.

Mutation is performed by selecting (randomly) a certain point in tree,

and then replacing the sub-tree below it with another that is generated ran-

domly. Fig. 5.12 shows an example in which the mutation point1s 3.

Permutation is an asexual operator that emulates the inversion operator

used in genetic algorithms (Goldberg 1989). It reorders the leaves of a sub-

tree after a (randomly) selected point, aiming to strengthen the unionofallele

combina‘:ions with good performance in a chromosome (Holland 1975). An

example »f permutation is shown in Fig. 5.13, where the selected permutation

point is «- (the ‘*’ indicates multiplication, and the *%’ indicates “protected

division’ and it refers to a division operator that avoids program crashes

when the second argumentis zero).

Tree representation 103
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BEFORE AFTER

Fig. 5.12 An example of mutation in genetic programming.

BEFORE

 

Fig. 5.13 An example of permutation in genetic programming.

It is also possible to protect or ‘encapsulate’ a sub-tree that is known to be
a good building block, to avoid its destruction by any of the genetic opera-
tors. The selected sub-tree is replaced by a symbolic namepointing to the
location of the sub-tree, and the actual sub-tree is compiled separately and
linked to the rest of the tree in a way similar to external classes in an object-
oriented language. Fig. 5.14 shows an example of encapsulation in which the
right sub-tree is replaced by the name EO.

It is also normally necessary to do some editing to the expressions gener-
ated to simplify them, although the rules for doing that are problem-
dependent. For example, if we are generating Boolean expressions, we can
apply rules suchas the following:

(AND X X) > X

(OR X X) > X

(NOT (NOT. X)) > X

+)

A) €)

 

BEFORE AFTER

Fig. 5.14 An example of encapsulation in genetic programming.
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LISP (Antonisse 1991). Other (more problem-specific) encodings such as

matrix representation have also been proposed (Vignaux and Michalewicz

1989; Beasley et al. 1993).

7. Acase study

Parmee (1996) studied the application of the stGA in whole system design,

utilizing the stGA to negotiate a design hierarchy described by both continu-

ous and discrete variables. An example ofthis sort of hierarchical representa-

tion is shown in Fig. 5.17. In such a representation, differing sets of

continuous variables are dependant upondiscrete, selected configurations.

The requirement therefore is for a search algorithm that can search across

discrete design options, optimally sampling the many dependant continuous
variable sets in order to identify high-performance design configurations
(Parmee 1998).

Although some previous research on problems in which discrete and con-
tinuous design variables are interrelated has been reported (Jenkins 1991;
Hajela and Lin 1992; Hajela and Lee 1995: Cai and Thierauf 1996), these
approaches are sequential, normally tackling the discrete space first and then
moving to the continuous spacerelevantto a certain configuration identified
as optimum. The aim of Parmee’s research wasto explore concurrently both
the discrete and the differing continuous search spaces. Previous experience
with the stGAat the Plymouth Engineering Design Centre (Wadeet al. 1994:
Roberts and Wade 1994) led Parmeeto use this approach as a Starting point
for the developmentofa suitable global search paradigm.

In his initial experiments, Parmee (1994, 1996) used binary representation
for all the hierarchy. This presented problemsdueto the use of mixed discrete
and continuous variables, resulting in encodings of different order, which
produced, as a consequence, different probabilities of crossover and muta-
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Fig. 5.17 A simple hierarchical representation of data.
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20 paths created by the discrete parameter set. The number of calls relates to the

number oc: times each discrete set has been passed to the mathematical model.

Fitness is ‘elative to best fitness achieved during the experimentation.

tion for «ach variable, with higher order encodings having a much better

chance of being disrupted than lower order encodings. A weighted scheme of

the binary digits was introduced to deal with this problem. However, binary

representation coupled with the inherent redundancy of variables within the

stGA’s structure resulted in very long chromosomes.The associated increase

in chrom.ssome length as the number of discrete levels increases therefore

renders binary representation impractical for real-world applications.

A real numberrepresentation (Davis 1991) was therefore introduced to

reduce st ch encoding problems. To encourage the GA to explore the lower-

level variables in the hierarchy, an independent (higher) mutation probability

was assigned to the high-level discrete variables, whilst maintaining a lower

uniform mutation rate for the continuous variables (Fig. 5.19) (Parmee 1995).

Variable mutation allowed greater exploration but resulted in premature con-

vergence upon inferior solutions. This led Parmee to propose a hybrid

approach, that would allow the stGA to conduct a diverse search across the

hierarchy, while also identifying the best performing solutions. In initial

experiments it was found found that the degree of search diversity across the

hierarch,, was very low (Fig. 5.18).

Although the stGA proved useful both in finding high performance solu-

tions and exploring through a design hierarchy, the approachis inefficient for

more complex hierarchies, because of the large number of parameters

required as the hierarchy is developed and the complexity of the problem

increase:. Furthermore, because of the type of encoding, crossover tends to

be disruptive at earlier generations even with a relatively simple hierarchy

due to tie exchange of information between differing configurations. This
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Fig. 5.19 Hybrid mutation regime.

exchange of informationis largely random during early generations and gen-
erally results in premature convergence upona locally optimal configuration.

Ideally, the representation would ensure the avoidance of non-feasible
parameter combinations whilst allowing an appropriate information exchange
through the traditional crossover operation. Parmee proposeda strategy that
involved two individual search agents that operated simultaneously: a simple
hill climber manipulating the discrete variables, and a GA manipulating the
continuousvariables. Selection and crossover allowed an inherent communi-
cation between the twosets of variables (discrete and continuous), and the
approach was improved by introducing lower-level information exchange
between the discrete variables by using elements of an ant colony metaphor
for the manipulation of such discrete variables (Parmee 1998). This consti-
tutes the basis for the GAANTalgorithm that utilizes a genetic algorithm
whilst also borrowing concepts from ant colony strategies (Parmee 1996;
Parmee 1998).

7.1 GAANT

The GAANTalgorithm borrows two concepts from the ant colony analogy
(Coloni et al. 1991; Coloni et al. 1992: Bilchev and Parmee 1995):

¢ Fitness proportionate distribution: this is similar to fitness proportion-
ate reproduction (Goldberg 1989), but in this case the amount of search
resource (search agents) distributed along each discrete path is propor-
tional to the relative strength (i.e., the fitness) of that combination of dis-
crete options.

* Evaporation: the discrete path will be ‘evaporated’if its strength does not
improve over a preset numberof cycles; the released search resource



Randomly generate initial population
ofXY chromosomes
Generation, g=1. Set epochsize, n.

'
Evaluate chromosomefitness andstore.

Reproduce accordingly and speciate reproduced — +—

population in terms of discrete configurations

t
Apply intra-species crossover and mutation to set Y
only i.e. maintain discrete variable sets (X).

tN
g/n=0?

| Yes

Calculate:

Mean fitness of each chromosomeoverprevious n
generations(fitn).
Mean fitness of nth generation(fitall).
Relative fitness of each chromosomeoverprevious n
generations (rfit=fitn/fitall)

 
 

i) If rfit<Rfl discardtrail (i.e. chromosome)
ii) If Rfl<rfit<Rf2 maintaintrail but introduce
local perturbation to discrete set X.
iii) If rfit>Rf2 maintaintrail.

Make good population deficit by randomly

selecting from set created from (iii)

+ x
g=gmax?

| Yes

end

 
 

Fig. 5.20 GAANTflow chart.

(search agent) is then redistributed around the better sets of discrete

desig 1 options within the hierarchy.

The concepts supporting these two operations were adapted slightly and

integrated with the manipulation of the discrete variables by Parmee (1996a,

1997, 1998). Fig. 5.20 illustrates this integration. The values of the discrete

variable: are randomly selected at generation 1 and combined with a ran-

domly s: lected population of continuous variables. The initial population of

discrete ‘values survives for a preset number of generations (n) while the asso-

ciated ccntinuous values are manipulated by a simple GA. A combination of

like variable types during crossover and mutation is controlled by means of

speciation of each chromosomein termsoflike configurations of the discrete

variable:. Crossover then only occurs between membersof the samespecies.
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Table 5.1 Comparison of the stGA and the GAANTalgorithm

 

Hybrid stGA approach GAANTimplementation

 

n=5 n= 10

 

2500 calls 5000 calls 2500 calls 5000 calls 5000calls 7500 calls

 

Max solution

No. of solutions > 0.9
No. of solutions > 0.8

No. of calls along best path
SD of no. of calls (best path)
SD of fitness (best path)

No. of missed paths

Max. no. of misses of any path

0.95 0.97 1 1.01 1 1.01
3 3 3 3 3 3
5 5 7 9 9 10

611 1727 711 1277 1287 2545
580 [706 207 460 413 738

0.21 0.26 0.05 0.05 0.05 0.04
93 78 0 0 0 0
20 26 0 0) 0 0
 

Evolution of the continuous variables continues over each generation
whereas improvementsin the discrete variables are achieved as follows: the
average fitness of each chromosomeis calculated over n generations, and
then compared to the averagefitness of the chromosomesof the nth genera-
tion. Evaporation, duplication, and perturbation of the discrete variables is
then established in accordance with their relativefitness (rfit) which is repre-
sented in terms of their average fitness (fitn) over n generations and the
average fitness of members of the nth generation(fitall) i.e., rfit = fitn/fitall.
This allows the following communication:

* low-level communication between the chromosomesof the discrete set
resulting in the evolution of the continuous variables within the bounds
imposedby their discrete system configuration;

* low-level communication every nth generation between the chromosome
sets representing the discrete variables which results in their gradual
improvement;

* high-level communication between the two agentsin the form ofrelative
fitness of an entire string over n generations.

Evaporation, duplication, and perturbation are controlled at the nth genera-
tions by introducing two thresholds Rf, and Rf,. If Rf, < Rf, then the
configuration is evaporated(i.e., the chromosomeis not reproduced). If rfit >
Rf, then the configuration is maintained(i.e., the chromosomeis reproduced)
and further resource is allocated from the evaporated configurations(i.e., the
population deficit created by configuration evaporation is made good by ran-
domly selecting chromosomes from those with a fitness higher than Rf,).
Finally, if rfit lies between Rf, and Rf,, the discrete variables are randomly
perturbed to create a new configuration.

Table 5.1 compares the results found by Parmee (1998) using the dual
mutation approach and GAANTand Fig. 5.21 shows the numberofcalls and
fitness measure corresponding to the GAANT implementation. From these
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Fig. 5.21 GAANT implementation.

results it is clear that the GAANTapproach provides improved performance

in terms of maximum fitness across a larger number of paths than the stGA

using a dual mutation strategy. The GAANT approach provides not only

better resilts, but also covers the discrete paths better and is more robust than

the stGA. as can be seen from the standard deviation (SD) over 50 runs ofthe

algorithms.

GAAMThasalso been applied to more complexstructuresrelating to the

optimiza:ion of thermal power system configuration (Chen et al. 1997),

obtaining a very significant reduction in design lead time in addition to

significant increases in predicted power output. The integration of GAANT

and someofits variants has replaced engineer/machine based design process-

ing by a totally computer-based approach. Overall design time has been

reduced l:y approximately 75 per cent (Parmee 1998).

7.2 Variable length hierarchies

The concepts behind the GAANTrepresentation have also been applied to

the manipulation of variable-length multi-level mathematical function repre-

sentation s. The objective in this case has been to improve the calibration of

prelimin:ry design models to empiric data or to results from a more in-depth

analysis (FEA or CFD). This is achieved by identifying those areas of coding

where insufficient knowledge or the requirement of keeping computational

expense {o a minimum hasresulted in unavoidable function approximation. A

contribut.ng factor may be the inclusion of empirically derived coefficients.

The objective is to evolve improved coding within these areas to achieve a

better calibration with existing empiric data or results generated from a more

in-depth computationally expensive analysis. If this is possible, the element
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of associated risk would be lessened while rapid design iteration can still be

achieved with these simple, but more representative models. This led to the

use of genetic programming (Koza 1994) for system identification.

7.3 The need to improve genetic programming

Genetic Programming (GP) manipulation of engineering relationships has

provided reasonable results related to the generation of formulas for pressure

drop in turbulent pipe flow and also energy loss associated with sudden con-

traction or sudden expansionin incompressible pipeflow (Watson and Parmee

1996). However, it soon became apparent that the problems associated with
the crossover of continuous coefficients between differing discrete functional
structures was causing similar problems to those mentionedin relation to the
design hierarchies of the previous section. The reasonis that the exchange of
information from continuous design spaces to unrelated discrete design
configurations does not promote the formation of high performancevariable
parameter combinations. |

Before describing how some elements of the GAANTstrategy were intro-
duced in the GP approach to improve its capabilities to deal with variable
length design hierarchies, it is important to analyze the main limitations of
GP.

In the past, at least two fundamentallimitations of the traditional GP para-
digm have beenidentified (Ibaer al. 1995):

1. Random sub-tree crossover disrupts beneficial sub-trees in tree struc-
tures.

2. GP does not provide evaluation of tree descriptions.

Traditional GP blindly combines sub-trees by applying crossover operations.
This can often disrupt beneficial sub-functions in tree structures. Thus,
crossover operations seem ineffective as a means of constructing higher-order
functions. Recombination operators (such as Swapping sub-trees of nodes)
often causes radical changes in the semantics of the trees. This semantic disrup-
tion (Iba et al. 1995) is due to the ‘context-sensitive’ representation of GP trees.
As a result, useful sub-trees may not be able to contribute to higher fitness
values of the whole tree, and the accumulation of useful sub-functions may be
disturbed. To avoid this, Koza (1992, 1994) has proposed a strategy called
Automatic Defining Functions (ADFs) for maintenanceof useful sub-trees.

Thefitness definitions used in traditional GP do notinclude evaluations of
the tree descriptions. Without the necessary control mechanisms, trees may
grow exponentially large, increasing the evaluation procedures, or so small
that they degrade search efficiency. Usually the maximum depth oftrees is
set in order to control tree sizes, but an appropriate depth is not always
known beforehand. Kinnear (1993) proposed using a size componentin the
fitness definition; i.e., the size of the tree is multiplied by a size factor, and
the result is added to the raw fitness value. The use of a minimum description
length (MDL)based fitness function for evaluating tree structures has been
used together with a local hill-climber (Iba et al. 1995; Iba et al. 1993). This
fitness definition involves a trade-off betweencertain structural details of the
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Fig. 5.22 Node complexity weighting.

and minimizes building block disruption by ensuring some similarity between
crossed sub-trees. Tree lengthsare also indirectly controlled.

The population is equally divided into sub-populations or ‘species’. The
run parameters that define the species groupings are the minimum and
maximum NC values and the numberof species used. The sub-populations
are then divided equally between these two limits. If, for example, the
minimum NC value is 10 and the maximum NC valueis 40, with 3 species
and a total population size of 300, then each species will have 100 individuals
with the following NC[0] values:

Species 1: NC[O] > 10.0 and NC[O] < 20.0
Species 2: NC[0] > 20.0 and NC[O] < 30.0

Species 3: NC[0] > 30.0 and NC[O] < 40.0

Communication between sub-populations is achieved through crossover. As a
new child individual is producedit is possible that its complexity changes,
and if the root node complexity moves to another species range, it is placed
into that species and evaluated. If a crossed individual’s NC[O] value lies
outside the species ranges then the individual is discarded.

Constrained Complexity Crossover (CCC)is initiated by randomly choos-
ing parents Pl and P2 from the total population. A cross point CP1 is ran-
domly chosen from P1 which then defines the root node of the sub-tree to be
replaced. The second cross point CP2 from P2 must then be within + 2.0 of
the NC value of CP1. The sub-tree with root node CP2 replaces the sub-tree
with root node CP1 with each allele having a probability of being mutated of
FMUTATE(usually set to 0.5). When mutating, functionals can only be
mutated to other functionals, and terminals into other terminals. Once



crossed, orily one child is produced which is then evaluated and placed into

the correct species population, replacing the worst individual within that

species.

Injecticn mutation occurs every IM crosses (usually set to IM =

Population Size) and changes only one allele within each individual with a

probability of mutation FMUTATE(set to 0.5 throughout the work presented

here). The top 5 individuals are elite and are never mutated, but are allowed

to particip::te in crossover.

7.4 Boolean induction with DRAM-GP

Boolean concept learning (or Boolean induction) is an important part of

machine learning, and can be regarded as a type of pattern recognition, in

which the input (independent) and output (dependent) variables are binary.

The effectiveness of DRAM-GPis initially demonstrated through one experi-

ment. All jalculations within this section are based on 100 runs. The results

describe computational effort required to obtain one correct solution with a

probabilit, of 99 per cent. Computational effort E, and other performance

calculations are discussed in Koza (1992, 1994).

7.4.1 Parity 3 problem (Koza 1992, 1994)

To show “he effectiveness of DRAM-GPas a Boolean conceptlearner, a

simple kniwn experiment, ‘parity 3’, in which the goal function is the even

parity function f of 3 variables is utilized. f takes the value 1 if the 3 input

variables |, ..., X; have even parity, i.e. an even number of them are 1. The

-DRAM-G?parameters are shown in Table 5.2. The NC weightings for the

functionals, Np were chosen based upon the numberof outputs that are true

for each functional. The AND functional has | of 4 true values, and is thus

considerec. more complex than the OR function which has 3 of 4 true outputs.

Initially, che fitness was calculated after Koza (1992), i.e. Fitness = Test

points — hits. This leads to individuals with the same fitness values but vastly

differing complexities. A solution with a fitness of 4.0 and a NC[O] value of

8 88 shoud be ranked above another individual with the same fitness but a

higher cor iplexity. It was for this reason that the fitness measure was adjusted

to: Fitnes: = (Test Points — Hits) + 0.001NC[0]. This then allows individuals

of the same fitness but lower complexity to be ranked above those with

higher co:nplexity values.

Table 5.2 lists the parameters used for the GP implementation, and

Table 5.3 shows a comparison of GP with DRAM-GP.

7.4.2 Twvo-Box problem (Koza 1992)

The two-box problem concerns the identification of a relationship between

six independent variables (x), ..., %6), where this relationship relates to the

difference y in the volumesof the first box whose length, width, and height

are X,, X>, x; and the second box whoselength, width, and height are x4, x5, X6.
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Table 5.2 Run parameters for parity 3

 

Functional set F = {and, or, nand, nor}

Arguments Fa = {2, 2, 1, 3}

NC functionals N- = {1.2, 1.1, 1.1, 1.2}

Terminal set T = {d0, d1, d2}

NC terminals Nz = {1, 1, 1}
Mutation rate 0.5

Imutation (IM) M (popsize)

Test points (TP) 8

Fitness (TP—Hits) + 0.01NC[0O]

NC max. 130.0

NC min. 50.0
Elite 5
CCC + 2.0 of NC value

Chromosomelength 100
Max. generations 200

 

Table 5.3 Parity 3 results

 

Method Population size M Effort E
(popsize x species)

 

Koza[2](STD) 4000 80 000
Kozal[3]}(STD) 16 000 96 000
Koza[3](ADF) 16 000 64 000
DRAM-GP 10 (10 x 1) 14 060
DRAM-GP 30 (30 x 1) 15 840
DRAM-GP 50 (50 x 1) 15 750
DRAM-GP 50 (10 x 5) 13 600
DRAM-GP 100 (10 x 10) 12 900
DRAM-GP 100 (20 x 5) 8400
DRAM-GP 150 (10 x 15) 9900
DRAM-GP 200 (10 x 20) 11 600
DRAM-GP 200 (20 x 10) 10 000
DRAM-GP 300 (20 x 15) 8400
DRAM-GP 400 (20 x 20) 7600
 

Thus y = (x, x3 x3) — (x4 x5 x6). The goalof this symbolic regression(i.e., the
identification of a mathematical expression, in symbolic form,that provides a
good, best, or perfect fit between a givenfinite sampling of values of the
independentvariables and the associated valuesof the dependentvariables)is
to derive the above equation as a ‘complete form’ when given a set of N
observations.

In this problem, where the raw fitness is a floating point numberrather
than an integer, there is no need to include the NC[0] Weighting in the fitness
calculation. The multiply and divide functions are considered more complex



Table 5.4 Run parameters for two-box problem

 

Functiona set

Arguments

NC Functionals

Terminal sat

NC Termirials

F={+,-,*,%}

Fa= {2, 2, 2, 2}

N- = {1.1, 1.1, 1.2, 1.2}

T = {x1, x2, x3, x4, x5, x6}

N; = {1, 1, 1, 1, 1, 1}

 

 

Mutation Rate 0.5
Imutation »IM) 80

Test points (TP) 10

Fitness MSE
Max. NC 30.0
Min. NC 5.0

Elite 5
CCC + 2.0 of NC value

Chromoscame length 50
Max. generations 200

Table 5.5 Two-box problem results

Population size M Effort E

(popsize x species)

 

Koza [2] (TD) 4000 1 176 000

Koza [4] (\DF) 4000 2 220 000

DRAM-GF 10 (10 x 1) 95 760

DRAM-GIF 20 (10 x 2) 163 800

DRAM-GF' 30 (30 x 1) 60 000

DRAM-GI° 50 (50 x 1) 54 800

DRAM-GI" 50 (25 x 2) 76 500

DRAM-GI’ 50 (10 x 5) 292 500

DRAM-G!’ 80 (80 x 1) 66 640

DRAM-Gr 100 (50 x 2) 213 000

DRAM-G? 100 (20 x 5) 260 000

DRAM-G"” 100 (10 x 10) 222 000

DRAM-G°” 150 (30 x 5) 112 500

DRAM-G” 200 (100 x 2) 184 800

DRAM-G?P 200 (40 x 5) 156 000

DRAM-GP 200 (20 x 10) 166 000

DRAM-GP 250 (50 x 5) 169 500

DRAM-GP 300 (30 x 10) 130 500

DRAM-GP 400 (40 x 10) 136 000

DRAM-GP 500 (50 x 10) 237 000
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than the p.us and minusfunctions and thus have higher Ny values. The fitness

measure is the mean squared error (MSE) ofall of the test points. The

DRAM-CGP parameters are shown in Table 5.4 and the comparisonofresults

between s :andard GP and DRAM-GPis shownin Table 5.5.
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Summary

In this chapter we have discussed several possible data representations in

evolutionary computing, starting from the traditional fixed-length linear

structure in which each location along the string is occupied by a binary

number. Some possible alternatives to using binary numbers have been dis-

cussed, such as integers and real numbers. In certain applications a fixed-

length string may not be appropriate, and Goldberg’s messy genetic algorithm

whichallows variable-length strings may be used.

A linear structure is often not appropriate for tasks such as automatic pro-
gramming, where tree structure seems moresuitable. An interesting compro-
mise between

a

linear and

a

tree structure is the Structured Genetic Algorithm.
However, the inability of the Structured Genetic Algorithm to efficiently
search across complex hierarchies has led to the development of the GAANT
algorithm that utilizes a genetic algorithm whilst also borrowing concepts
from ant colony strategies. The concepts introduced in the GAANThave been
used to improve genetic programming performance through the development
of a new techniquethatis able to achieve the results produced with Automatic
Defining Functions (ADFs), whilst utilizing small populations.
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6 Applications of artificial

neural networks to the

analysis of multivariate

data
Royston Goodacre

1. Multivariate data

Multivariate data consist of the results of observations of many different

characters (variables) for a number of individuals (objects) (Mark 1991;

Martensarid Nes 1989). Each variable may be regarded as constituting a dif-

ferent dimension, suchthat if there are n variables each object may besaid to

reside at a unique position in an abstract entity referred to as n-dimensional

hyperspac:. This hyperspace is necessarily difficult to visualize, and the

underlying theme of multivariate analysis (MVA) is thus simplification

(Chatfield and Collins 1980) or dimensionality reduction, which usually

means that we want to summarize a large body of data by meansofrelatively

few paramsters, preferably the two or three which lend themselves to graphi-

cal display with minimalloss of information.

In spectroscopy, variables are usually represented by properties suchas the

absorbanc« at particular wavelengths. Spectral techniques which seem ideally

suited to analysis by multivariate methods include those based on vibrational

measurements such as infrared (IR) absorbance and Ramanlight scattering.

Other hyper-dimensional measurements include gas and liquid chromatogra-

phy, nuclear magnetic resonance (NMR), and mass spectrometry (MS).

Conventionally the reduction of the multivariate data generated by MS

(Goodacre: and Kell 1996; Gutteridge et al. 1985; Magee 1993), chromatogra-

phy (Maclie et al. 1978), IR and other spectroscopic methods (Defernez and

Wilson 1995: Martens and Nes 1989), and NMR (Kvalheim et al. 1985) have

been carr.ed out using principal components analysis (Causton 1987;

Chatfield nd Collins 1980; Everitt 1993; Jolliffe 1986). PCA is a well-known

technique for reducing the dimensionality of multivariate data whilst preserv-

ing most of the variance, and whilst it does not take account of any groupings

in the dati, neither does it require that the populations be normally distrib-

uted, i.e. 1: iS a non-parametric method. Moreover, PCA can be usedto iden-

tify corre!ations amongst

a

set of variables and to transform the original set

of variabls to a new set of uncorrelated variables called principal compo-

nents (PC 3). The objective of PCAis to see if the first few PCs account for

most (>9() per cent) of the variation in the original data. If they do reduce the

number c’ dimensions required to display the observed relationships, then
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the PCs can moreeasily be plotted and ‘clusters’ in the data visualized; more-

over this technique can be used to detect outliers. The closely related dis-

criminant function analysis (DFA; sometimesreferred to as canonical variates

analysis (CVA) is often used to separate the objects (samples) into groups on

the basis of the retained PCs andthe a priori knowledge of the appropriate

number of groupings; this is achieved by minimizing the within-group vari-

ance and maximizing the between-group variance (MacFieet al. 1978; Manly

1994; Windig et al. 1983). Provided that the data set contains ‘standards’ (i.e.

known things) it is evident that one can establish the closeness of any
unknown samples to a standard, and thus effect the identification of the

former, a technique termed ‘operational fingerprinting’ by Meuzelaaretal.
(1982).

2. Supervised versus unsupervised learning

Such analysesfall into the category of ‘unsupervised learning’ (Fig. 6.1), in
which the relevant multivariate algorithms seek ‘clusters’ in the data (Everitt
1993). This allows the investigator to group objects onthe basis of their per-
ceived closeness in n-dimensional hyperspace. These methods, although in
some sense quantitative, are better seen as qualitative since their chief
purpose is to distinguish objects or populations. More recently, a variety of
related but much more powerful methods, most often referred to within the
framework of chemometrics, have been applied to the ‘supervised’ analysis
of multivariate data. In these methods, of which multiple linear regression
(MLR), partial least squares regression (PLS), and principal components
regression (PCR) are the most widely used, one seeksto relate the multivari-
ate spectral inputs to the concentrations oftarget determinants,i.e. to generate
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Fig. 6.1 Unsupervised learning. When learning is unsupervised, the system Is
showna set of inputs (multivariate data) and thenleft to cluster them into groups.
For multivariate analysis this optimization procedure is usually simplification or
dimensionality reduction; this means that a large body of data (the inputs) are
Summarized by means of a few parameters with minimal loss of information.
After clustering the results then have to be interpreted.
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a quantitative analysis, essentially via suitable types of multidimensional

curvefittir.g or regression analysis (Brereton 1992; Brownet al. 1996; Lavine

1998; Martens and Nes 1989; Massart ef al. 1988). Although non-linear ver-

sions of these techniques are increasingly available (Berglund and Wold

1997; Heikka et al. 1997; Héskuldsson 1992; Taavitsainen and Korhonen

1992; Walczak and Massart 1996; Wold 1992; Wold et al. 1989), the usual

implementations of these methods are linear in scope. However, a related

approach 10 chemometrics, which is inherently nonlinear, is the use of

(artificial) 1eural networks (ANNs).

For a given analytical system there are some patterns (e.g. mass spectra)

which have desired responses which are known (i.e. the concentration of

target determinands). These two types of data (the representation of the

objects anc their responses in the system) form pairs which for the present

purpose are called inputs and targets. The goal of supervised learning is to

find a movlel or mapping that will correctly associate the inputs with the

targets (Figs. 6.2).

Thus thbasic idea in these supervised learning techniquesis that there are

minimally 4 data sets to be studied, as follows. The ‘training data’ consist of

(i) a matris. of s rows and n columnsin which s is the number of objects and n

the number of variables (these may be the absorbance at particular wave-

lengths, or the normalized ion intensities at a particular mass-to-charge ratio

for MS,and (ii) a second matrix, again consisting of s rows andtypically | or

two columins, in which the columnsrepresentthe variable(s) whose values(s)

are required (these are the result(s) wanted; Fig. 6.2) and which for the train-

ing set have actually been determined by some existing, ‘benchmark’ method.

This varialble may be the concentration ofa target determinand, and is always

paired wit1 the patterns in the same row in (i). The ‘test data’ also consist of

two matrices, (iii) and (iv), corresponding to those in (i) and (11) above, but

the test se: contains different objects. As the name suggests, this second pair
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Fig. 6.2 Supervised learning. When we know the desired responses (targets)

associate with each of the inputs (multivariate data) then the system may be

supervised. The goal of supervised learning is to find a model that will correctly

associate :he inputs with the targets; this is usually achieved by minimizing the

error betv.een the knowntarget and the model’s response (output).
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is used to test the accuracy of the system; alternatively they may be used to

cross-validate the model. Thatis to say, after construction of the model using

the training set (1, 1i) the test data (ili) are ‘passed’ through the calibration

model so as to obtain the model’s prediction of results. These may then be

compared with the known, expected responses(iv).

3. Good modelling practice

As in all other data analysis techniques, these supervised learning methods
are not insensitive to badly chosen initial data (Kell and Sonnleitner 1995:
Zupan and Gasteiger 1993). Therefore, the exemplars forthe training set must
be carefully chosen; the golden rule is ‘garbage in — garbage out’. An excel-
lent example of an unrepresentative training set was discussed on the BBC
television programme Horizon; a neural network wastrained to attempt to
distinguish tanks from trees. Pictures were taken of forest scenes lacking mil-
itary hardware and of similar but perhaps less bucolic landscapes whichalso
contained more-or-less camouflaged battle tanks. A neural network was
trained with these input data and foundto differentiate successfully between
tanks and trees. However, when a new set of pictures was analysed by the
network,it failed to detect the tanks. After further investigation, it was found
that the first set of pictures containing tanks had been taken on a sunny day —
whilst those without tanks were obtained when it was overcast. The neural
network had thus learned to recognize the weather! We conclude that the
training and test sets must be carefully selected to contain representative
exemplars encompassing the appropriate variance overall relevant proper-
ties for the problem at hand.

It is also known (Bishop 1995; Goodacre and Kell 1993; Goodacre et al.
1994a; Kell and Sonnleitner 1995: Martens and Nes 1989; Wasserman 1989)
that supervised learning methods such as neural networks (and partial least
Squares) can over-fit data. For example, an over-trained neural network may
learn perfectly the stimulus patterns it has seen but can not give accurate pre-
dictions for unseen stimuli, i.e. it is no longer able to generalize. For super-
vised learning methods accurately to learn and predict the concentrations of
determinandsin biological systems, or to identify new observationsas being
from something previously seen, the model must be calibrated to the correct
point. The reality is that in extension to normal chemometric practices
detailed above the data should be split into three sets: (1) data used to cali-
brate the model; (2) date employed to cross-validate the model; (3) spectra
whose determinand concentration, or identities, were ‘unknown’ and used to
test the ‘calibrated’ system. During calibration, the models would be interro-
gated with both the training andthe cross validation set and the error between
the output seen and that expected calculated, thus allowing twocalibration
curves for the training and cross-validation sets to be drawn. Whenthe error
on the cross-validation data was lowest the system will be deemed to have
reached the best generalization point and then may be challenged with input
stimuli whose determinand concentrations, or identities, are really ‘unknown’.
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For quantitative determinations it is also imperative that the objects fill

the sample space. If a neural network is trained with samples in the concen-

tration ranze from 0 to 50 per centit is unlikely to give accurate estimates for

samples w.10se concentrations are greater than 50 percent, that is to say, the

network is unable to extrapolate (Kell and Sonnleitner 1995). Furthermore

for the ne:work to provide good interpolation it needs to be trained with a

numberof samples covering the desired concentration range (Goodacreet al.

1993a).

4. Applicationsof artificial neural networks

In the 195s and 1960s researchers produced the first ANNs. Initially elec-

tronic circuits were used and these were later replaced by computer simula-

tions. Ther. in 1969 Minsky and Papert (Minsky and Papert 1969) proved that

single layer networks (perceptrons) were incapable of solving many simple

problems, notably the function performed by the exclusive-or gate (XOR).

This caused interest in ANNs to diminish rapidly and this science wasput to

sleep for 20 years. In time, several workers (see Parker 1982; Rumelhart

et al. 1985) independently invented backpropagation ANNs which used a

hidden laver employing a sigmoidal squashing function. These new ANNs

were able to solve many of the problems posed by Minsky and Papert. This

finding lec to an explosion of interest and research into ANNs,both theoreti-

cal and in their application. So great has been the resurgence of interest into

ANNsthe: since 1986 the number of publications has grown exponentially

(Fig. 6.3) and in 1998 over 3000 papers have been published (not including

conference proceedings).

Figure 6.3 also illustrates that there has been a wealth of papers on ANN

applications totalling approximately 1000 in 1998, and that this has been a
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works applied to spectral techniques from 1981 to 1998. Source, BIDS Institute for

Scientific Information Inc. Service (http://www.bids.ac.uk/isi.html/).
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constant one third of all the papers, indicating the great interest globally in

neural computational technology.

It would be impossible to review so many publications, therefore what

follows are selected examples which fall into one of three domains;

(1) exploratory analyses, (2) classification and identification, or (3)

quantification.

Exploratory data analyses are those wherelittle useful information is avail-

able on the problem in hand and we wouldlike to know how similar a group of

objects are. For example,in this set offive plastic samples are any the same and

which are different? These seven bottles ofolive oil are all labelled identically
— but is this true? Or given a diverse population of bacteria, which are similar
and which different? Exploratory data analysis is also used to detect outliers,
the acquisition of a spectral measurement may be complicated and prone to
experimental error; by analysing several replicates one can find out whetherall
spectra are identical or whether there has been a problem (perhaps a fly was
caught in the analysis). Outlier detection may also include looking for novelty,
for example my microbial culture collection contains several thousandisolates
producing potentially novel pharmaceuticals; when cultivating ‘new’ bacteria
how do I knowthat I have not previously characterized this organism?

There is much overlap betweenclassification and identification, and it is
usual to deal with these two togethersinceclassificationis the discipline whose
aim is to identify objects. For example, from which polymeris a particular
plastic made? Where wasthis foodstuff produced? Is this bacterium isolated
from a patient the same pathogenisolated from another patient in ward X?

Quantification problemsare those where the aim is to predict the amount
of a substance. For example, how muchofthe co-polymers poly-hydroxybu-
tyrate and poly-hydroxyvalerate are in this biodegradable plastic? In the
orange juice I have bought how muchis from Brazil and how much from
Florida? Or with respect to my patient in ward X that has bacterial Ssepti-
caemia whatis the microbial load in his or her blood?

9. Exploratory data analyses

Exploratory data analyses fall into the category of ‘unsupervised learning’, in
which the relevant multivariate algorithms seek ‘clusters’ in the data (Everitt
1993); the most common multivariate statistical method is principal compo-
nents analysis (PCA). Recently there has been aninterest in the use of neural -
computation methods whichcan also perform unsupervised learning on mul-
tivariate data, the most commonly used are self-organizing (feature) maps
(SOMs) and auto-associative artificial neural networks.

5.1 Self-organizing maps

SOMswere invented by Teuvo Kohonen (Kohonen 1989), and are hence also
referred to as Kohonen ANNs. SOMsprovide an objective way of classifying
data through self-organizing networks ofartificial neurons (Hecht-Nielsen
1990; Hertz et al. 1991; Kohonen 1989).
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Kohonen

 
  

Infrared input layer
Fig. 6.4 A simplified self-organizing map. Nodes in the two-dimensional

Kohonenlyer are interconnected with each other, such that an activation node

tends to activate surrounding nodesalso. The infrared data are applied to the

input layer (represent here by only 24 nodes;in reality >800 inputs) which activ-

ates a nodeor group of neighbouring nodes in the Kohonen layer (represented

here as ha.ing 4 x 4 nodes; the numberof nodescan bevaried to allow quantita-

tive inform ation to be extracted).

SOMsusedto analyse spectral data typically consist of a two-dimensional

network o” neurons arranged on a square grid (Fig. 6.4). Each neuronis con-

nected to its eight nearest neighbours on the grid. The neuronsstore

a

set of

weights ( :1 weight vector) each of which correspondsto one of the inputs in

the data. Thus, for infrared data consisting of 882 quantitative absorbances

(see Fig. 9.5 for examples of IR spectra) at particular electromagnetic radi-

ation wavelengths each node stores 882 weights in its weight vector. Upon

presentation of an infrared spectrum (represented as a vector consisting of

the 882 alsorbances) to the network each neuron calculates its ‘activation

level’. A node’s activation level is defined as:

 

   
n

Sy (weight, — input ;)?

i=0

This is the Euclidean distance between the points represented by the weight

vector and the input vector in n-dimensional space. Thus a node whose

weight vector closely matches the input vector will have a small activation

level, and a node whose weight vector is very different from the input vector

will have a large activation level. The node in the network with the smallest

activatior: level is deemed to be the ‘winner’ for the current input vector.

Duringtraining the network is presented with each input pattern in turn,

and all nodescalculate their activation levels. The winning node and someof

the nodes. around it are allowed to adjust their weight vectors to match the

Exploratory data analyses 129
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Fig. 6.5 Fourier transform infrared diffuse reflectance—absorbance spectra of
bacteria typically associated with urinary tract infection; Escherichia coli, Proteus
mirabilis, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aerginosa,
and an Enterococcusspecies.

current input vector more closely. The nodes in this set are said to belong to
the ‘neighbourhood’ of the winner. Thesize of the winner’s neighbourhoodis
varied throughtraining. Initially all nodes in the network are includedin the
neighbourhood of the winner, but astraining proceeds the size of the neigh-
bourhoodis decreased linearly after each presentation ofthe complete ‘train-
ing set’ (all the spectra being analysed), until it includes only the winner
itself. The amount by which the nodes in the neighbourhood are allowed to
adjust their weights is also reduced linearly throughoutthe training period.

The factor which governsthe size of the weight alterations is known asthe
learning rate and is represented by a. Theiterative adjustments to each item
in the weight vector (where 6w is the change in the weight) are made in
accordance with the following:

OW, = —a(w; - I)

This is carried out for i = | to i =n where in this case n = 882. Theinitial
value for @ is | andthe final valueis 0.

The effect of the ‘learning rule’ (weight update algorithm) is to distribute
the neurons evenly throughout the region of n-dimensional Space populated
by the training set (Hecht-Nielsen 1990; Hertz er al. 1991; Kohonen 1989).

This effect is displayed in Fig. 6.6 which showsthe distribution of a
Square network over an evenly populated two-dimensional square input space
(Fig. 6.6(A)), and a more complex input space (Fig. 6.6(B)). The neuron with
the weight vector closest to a given input pattern will win for that pattern and
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Fig. 6.6 Representations of square networks distributed across (A) an evenly

distributed square, and (B) a more complex two-dimensional input space.

for any other input patterns thatit is closest to. Input patterns which allow the

same node to win are then deemed to be in the same group, and when a map

of their “elationship is drawn line encloses them. By training with networks

of increasing size a map with several levels of groups or ‘contours’ can be

drawn. “hese contours, however, may sometimes cross, which appears to be

due to failure of the SOM to converge to an even distribution of neurons over

the input space (Erwin et al. 1992).
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Fig. 6.7. Kohonen map(10 by 10 square grid) from a SOM trained with infrared
data from measurements made on bacteria. Two maps are show: (A) the number
of spectra that are found in each nodein the 2-dimensional Kohonen layer and (B)
the identities of the bacteria

Construction of these maps allows close examination of the relationships
between the items in the training set, which in this example consisted of
infrared spectra derived, for example, from bacterial species (Fig. 6.7).

Networks on square grids of 10 nodes were used to group the IR spectra.
The SOMswere allowed to ‘wrap around’ so that they formed toroidal struc-
tures to avoid the edge effects which otherwise tend to corrupt very small net-
worksofthis type. The result of this exploratory analysis is displayed in Fig. 6.7
as a 2-dimensional Kohonen map. This groups the bacteria together; one can
observethat the samebacteria cluster in the output nodesof this 10 by 10 erid.

Elsewhere, Wilkins et al. (Wilkins et al. 1994a, 1994b, 1996) have applied
Kohonen maps to multi-dimensional flow cytometric data for the
identification of species of fresh water phytoplankton, and Goodacre and col-
leagues have exploited SOMsto carry out unsupervised learning, and hence
the classification of canine Propionibacterium acnesisolates (Goodacreetal.



1994b), . acnes isolated from man (Goodacreet al. 1996a), and plant seeds

(Goodacre et al. 1996b). SOMshave also been used to detect and classify

humanblood plasmalipoprotein lipid profiles on the basis of H'NMRspec-

troscopic data (Kaartinen et al. 1998), for cluster analysis of multivariate

satellite Jata (Waldemark 1997), and for seismological surveys of earth-

quakes and quarry blast (Musil and Plesinger 1996).

5.2 Auto-associative artificial neural networks

Auto-associative artificial neural networks (AAANNs)are a neural network-

based method again used for unsupervised feature extraction and were pio-

neered b) Kramer (Kramer 1991, 1992).

AAAWNsconsist of five layers containing processing nodes (neurons or

units) mzde up of a layer of x input nodes (for example in Fig. 6.8 this is

depicted as a set of 24 measurements), x output nodes (the same set of 24

measurements as used in the input layer), and three ‘hidden’ layers containing

in this ex ample of 8, 2 and 8 nodesrespectively; this may be represented as a

24-8-2-8-24 architecture.

Adjacent layers of the network are fully interconnected, and the algorithm

used to train these neural networksis the standard back-propagation (BP)

 
Input Mapping  Bottle-neck De-Mapping Output

layer layer layer layer layer

Fig. 6.8 Architecture of an auto-associative neural network consisting of 5

layers. In the architecture shown, adjacent layers of the networkarefully intercon-

nected. The input and output layer are presented with identical multivariate data

(in this figure there are 24 nodesin these layers). A key feature of the auto-asso-

ciative n:twork is the data compression in the middle (third) bottle-neck layer of
2 nodes. The second and fourth layers each consisted of 8 nodes and these map

and de-n-ap the massspectra allowing feature extraction in the bottle neck layer,

this is eg sivalent to non-linear principal components analysis.
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Fig. 6.9 Binary encoding the seven nodes in the output layer on a multilayer

perceptro 1 or radial basis function trained to classify one of seven substances

A-G.

terns in the same row in (i). Once trained, new input data can be passed

through these ANNs, and the identities ‘read off’ easily, since a tabular

format is employedin the classification encoding.

The following texts, books, and indeed this Al handbook are recom-

mended iis excellent introductory texts to artificial neural networks (Baxt

1995; Bishop 1995; Dybowski and Gant 1995; Goodacre et al. 1996d;

Haykin 1994; Hertz et al. 1991; Richard and Lippmann 1991; Ripley 1994;

Ripley 1996; Rumelhart et al. 1986; Simpson 1990; Wasserman 1989;

Werbos 994; Zupan and Gasteiger 1993). The following briefly outlines the

major differences between MLPsand RBFs.

6.1 Multilayer perceptrons

The structure of a typical MLPis shownin Fig. 6.10(A). It consists of three

layers; raultivariate data as the input layer, connected to an output layer

encoded “or identification purposesas detailed in Fig. 6.9, via a single hidden

layer. Each of the input nodes is connected to the nodes of the hidden layer

using abstract interconnections (connections or synapses). These connections

each have an associated real value, termed the weight (w,), that scales the

input (i,) passing through them,this also includes the bias (3), which also has

a modifiz ble weight. Nodes sum the signals feeding to them (Net):

n

Net = 1,W,+1,W, + 1gW3+...+1jW; +...+1,W, = ) iw, +d

i=

The surof the scaled inputs and the node’s bias, is scaled to lie between 0

and +1 ty an activation function to give the node’s output (Our); this scaling

is typically achieved using a logistic ‘squashing’ (or sigmoidal) function:

1
Out = ——-—___

(1+ exp-%et)
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Input layer

(linear) Hidden layer Output layer

with summation and (linear or

(non-linear squashing) non-linear)

Multilayer Perceptron  Input layer

(linear)
Hidden layer

of radial basis function nodes

(non-linear)

 
Outputlayer

(linear)

Radial Basis Function
 

Fig. 6.10 (A) A multilayer perceptron neural network consisting of an input layer connected to a single node in the
output layer by 1 hidden layer. In the architecture shown, adjacent layers of the network are fully interconnected
although other architectures are possible. Nodes in the hidden and output layers consist of processing elements which
sum the input applied to the node and scale the signal using a sigmoidal logistic squashing function. (B) Radial basis
function neural network consisting of an input layer connected to a single node in the output layer by 1 hidden layer.
The hiddenlayer consists of radially-symmetric Gaussian functions, although others exist (e.g., Mexican hat and thin
plate splines).

productof this node is then fed to the ‘outside world’.

These signals (Out) are then passed to the output node which sums them:
in turn they are squashed by the logistic sigmoidal activation function; the

For the training of the MLPthe algorithm used most often is standard
back-propagation (BP) (Chauvin and Rumelhart 1995; Haykin 1994;
Rumelhart et al. 1986; Wasserman 1989; Werbos 1994). When input is
applied to the network,it is allowed to run until an output is produced at each
output node. The differences between the actual and the desired output, taken
over the entire training set, are fed back through the network in the reverse

direction to signal flow (hence back-propagation) modifying the weights as

they go. This process is repeated until a suitable level of error is achieved.

One reason that MLPsare so attractive for the analysis of multivariate

(spectral) data is that it has been shown mathematically (Cybenko 1989;

Funabashi 1989; Hornik er al. 1989; Hornik et al. 1990; White 1990, 1992)

that a MLP neural network consisting of only one hidden layer, with an arbi-

trarily large number of nodes, can learn any arbitrary (and hence non-linear)

mapping of a continuous function to an arbitrary degree of accuracy.

 



6.2 Radial basis functions

By contrast RBFs networks are hybrid neural networks encompassing both
unsupervised and supervised learning (Beale and Jackson 1990; Bishop 1995:

Broomhead and Lowe 1988; Hush and Horne 1993; Moody and Darken

1989; Park and Sandberg 1991; Saha and Keller 1990; Walczak and Massart

1996; Wilkins et al. 1994a). RBFs are also typically three-layer neural net-

works arid in essence the sigmoidal squashing function is replaced by non-

linear (o:ten either Gaussian or ‘Mexican hat’) basis functions or kernels

(Figure 6,10(B)) The kernel is the function that determines the output of each

node in the hidden layer when an input pattern is applied to it. This outputis

simply a function of the Euclidean distance from the kernel centre to the pre-

sented input pattern in the multi-dimensional space, and each node in the

hidden li: yer only produces an output when the input applied is within its

receptive: field; if the input is beyondthis receptive field the output is 0. This

receptive field can be chosen and is radially symmetric around the kernel

centre. B2tween them the receptive fields cover the entire region of the input

space in ‘which a multivariate input pattern may occur; a diagrammatic repre-

sentatior of this is given in Fig. 6.11, where a two-dimensional input is

mapped “»y seven radially symmetric basis functions. This is a fundamentally

different approach from the MLP, in which each hidden noderepresents

a non-linear hyperplanar decision boundary bisecting the input space

(Fig. 6.1). Thus RBF’s have the advantage over gradient descent MLPsin

that they have the ability to learn any arbitrary non-linear mapping ofa dis-

continuous function to an arbitrary degree of accuracy (Haykin 1994; Bishop

1995; Broomhead and Lowe 1988).

The outputs of the RBF nodesin the hidden layer are then fed forward via

weighted connections to the nodes in the output layer in a similar fashion to

the MLP, and each output nodecalculates a weighted sum of the outputs from

the non-linear transfer from the kernels in the hidden layer. The only differ-

ence is that the output nodes of an RBF network are normally linear, whilst

those of -he MLP moretypically employ a sigmoidal or logistic (non-linear)

squashin 2 function.
Thus -n the RBFtraining proceeds in two stages: Stage / involves unsu-

pervised clustering of the input data, typically using the K-meansclustering

algorithr1 (Duda and Hart 1973; Everitt 1993; Hush and Horne 1993) to

divide the high-dimensional input data into clusters. Next, kernel centres

are placed at the meanofeach cluster of data points. The use of K-meansis

particularly convenient because it positions the kernels relative to the

density of the input data points. Next the receptive field is determined by

the nearsst neighbour heuristic wherer; (the radius of kernel /) is set to the

Euclidean distance between w, (the vector determining the centre for the yj

RBF) and its nearest neighbour (k), and an overlap constant (Overlap) is

used:

r= Overlap x min (Ilw;— wll)

where ||_.. || denotes a vector norm, or Euclidean distance.

The overlap that often gives best results is where the edge of the radius of

one kerr.2] is at the centre of its nearest neighbour (Saha and Keller 1990).
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(hyperplanar) boundary

represented by single s +
nodein hidden layer MI

 

 decision boundary

V 

BT

 

Kernel centre

 ~,
ee

Fig. 6.11 (A) Typical decision boundaryfor a classification problem created
between two data classes by a MLP with 2 nodesin the hidden layer, for 2 input
nodes. Each hidden node represents a non-linear boundary and the nodes in the
output layer interpolate this to form a decision boundary. (B) The same
classification problem modelled by 7 radially symmetric basis functions. The
width of each kernel function (referred to as its receptive field) is determined by
the local density distribution of training examples.

The output from nodesin the hidden layer is dependent on the shapeofthe

basis function and the one used wasthat of the Gaussian. Thusthis value (R;)

for node j when given the iinput vector (i;) can be calculated by:

i2 /
/,

/2
J

  

/
/

Stage 2 involves supervised learning using simple linear regression. The

inputs are the output valuesfor all 1 basis functions (R, — R,,) forall the train-

ing input patterns to that layer (7, — i,), and the outputs are identities binary

encoded as shownin Fig. 6.9.



6.3 Identification of biological materials using spectroscopic

measurements

Pyrolysis- MS involves the thermal degradation of non-volatile complex mol-

ecules in it vacuum causing their cleavage to smaller, volatile fragments sepa-

rable by a mass spectrometer on the basis of their mass-to-charge ratio (m/z)

(Goodacre and Kell 1996; Irwin 1982; Magee 1993; Meuzelaaret al. 1982).

PyMSallows the chemically based discrimination of bacterial and fungal

cells and produces complex biochemical fingerprints (1.e., pyrolysis mass

spectra) ‘which are distinct for different micro-organisms (Magee 1993;

Goodacre 1994). The analytically useful multivariate data (see Fig. 6.12 for

an example) are typically constituted by a set of 150 normalised intensities
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Fig. 6.12! Normalized pyrolysis mass spectra of Propionibacterium acnes from

the foret 2ads of two healthy adult human individuals. P acnes is a common

inhabitar’: of the skin of humans, post puberty, and is considered to cause skin

disorders and acne.
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versus m/z in the range 51 to 200 and these are applied to the nodes on the

input layers of ANNs.

The first demonstration of the ability of MLPs to discriminate between

biological samples from their pyrolysis mass spectra wasfor the qualitative

assessmentof the adulteration of extra virgin olive oils with various seed oils

(Goodacre et al. 1992, 1993b); in this study, which was performed double-

blind, neural networks were trained with the spectra from 12 virgin olive oils,

coded | at the output node, and with the spectra from 12 adulterated oils,

which were coded 0. All oils in the test were correctly identified; 1n a typical

run, the virgins were assessed with a code of 0.99976 + 0.000146 (range

0.99954 — 1.00016) and the adulterated olive oils in the test set with a code of

0.001079 + 0.002838 (range 0.00026 — 0.01009). This permitted their rapid

and precise assessment, a task which previously was labour intensive and

very difficult. It was most significant that the traditional ‘unsupervised’ mullti-

variate analyses of principal component, discriminant, and cluster analyses

failed to separate the oils according to whether they were pure or adulterated

but rather discriminated them on the basis of the type of olive tree that the

Olive fruit came from.

The use of pyrolysis-MS with MLPsfor the analysis of foodstuffs is
becoming widespread and has beeninvestigated for identifying the geograph-
ical origin of olive oils (Salter et al. 1997), for the characterization of cocoa
butters (Anklam et al. 1997), and for differentiating between industrially
made vinegar ‘Aceto Balsamico di Modena’ and traditionally produced
vinegar “Aceto Balsamico Tradizionale di Modena e di Reggio Emilia’
(Anklam et al. 1998); the latter is often substituted with the industrial vinegar
in an attempt to fool the consumer!

Several studies have also shownthat this combination of PyMSand MLPs
is also very effective for the rapid identification of a variety of bacterial
strains of industrial, clinical, and veterinary importance. For example this
approach has allowed the propionibacteria isolated from dogs to be correctly
identified as human Propionibacterium acnes (Goodacreetal. 1994b), for
detecting Escherichia coli isolates which produced verocytotoxins (Sisson
et al. 1995), for distinguishing between Mycobacterium tuberculosis and
M. bovis (Freemanet al. 1994), and for identifying streptomycetes recovered
from soil (Chun et al. 1993a, b), oral abscess bacteria (Goodacre et al.
1996e), and fungi belonging to the genus Penicillium which were associated
with cheese (Nilsson et al. 1996).

RBFneural networks have been rather less widely applied to the analysis
of spectral data. Boddy and colleagues have used RBFsfor the identification
of marine phytoplankton from flow cytometric data (measurements based on:
time offlight, light scattering, and fluorescence) (Morgan et al. 1998; Wilkins
et al. 1994b; 1996). Other studies that have exploited RBFs include those
based on PyMSto detect physiological changesin industrial fermentations of
Streptomyces species (Kang et al. 1998a,b), for the classification of odours
and food stuffs using chemical gas sensors in electronic nose arrays (Ping
and Jun 1996; Schaller et al. 1998), for the correct discrimination of aromatic
and non-aromatic chemical species from a 100 compound near-IR gas-phase
library (Brown and Lo 1998), for the identification of common infectious



agents associated with urinary tract infection from their MS, IR, and Raman

spectra (Croodacre et al. 1998a), and for the detection of cervical pre-cancer

from fluorescence spectra from the cervix in vivo (Tumeret al. 1998).

With regard to neural network architecture other than the gradient descent

and RBF-based algorithms illustrated above, Harrington (1993a) has com-

pared minimal neural networks (MNN) with BP-ANNSsfor the analysis of

tandem mass spectrometry data. MNN differ from BP-ANNsin that they use

localized processing and build classification trees with branches composed

of multiple processing units. A global entropy minimization may be achieved

at a branch by combiningthe processing logic using principles from fuzzy set

theory. Weight vectors are adjusted using an angular co-ordinate system and

gradients of the fuzzy entropy function. The branches are optimal with

respect tc fuzziness and can accommodate non-linearly separable or ill-condi-

tioned deta. The most significant advantage of the MNNsis that relations

among the training data and the mechanism of inference may be directly

observed, thus rule-based classification trees have been constructed from the

mass spetral daughter ions to discriminate between diesel smoke, dry yeast,

Escherichia coli, MS-2 coliphage, grass pollen, Bacillus subtilis, fog oil,

wood smoke, aldolase, and Bacillus globigii (Harrington 19935).

7. Quantification

Quantific:ition problems are those wherethe aim is to predict the amount ofa

substance. Spectral measurements of complex biological (organic) mixtures

may be expressed, to some degree, in subpatterns of spectra describing the

pure components of the mixtures and theirrelative concentrations; this is of

course rather simplistic and spectral and biological interferences, from the

total matrix, mean that the spectrum ofA addedto the spectrum of B doesnot

equal the spectrum of (A + B). However, this complication aside, for present

purposes, if a particular componentA is changing in amount in a set of mix-

tures the subpattern spectrum of this component will also change magnitude

relative to the amountof it; therefore multivariate calibration for the amount

of A in the total spectra would be possible. This is a supervised learning

problem, and the most commonly used machine learning method to achieve

this is th: MLP, where the output node(s) of these MLPs are encoded simply

as the quintity of the component(s) to be measured.

Other non-cognitive supervised learning methods that are used for

quantitative analyses include multiple linear regression (MLR), principal

components regression (PCR), and partial least squares (PLS). PCR and

PLS reg:ession techniques are multivariate factor analysis methods (Jones

et al. 1998; Liang et al. 1993; Martens and Nes 1989; Martin 1992) that

are usef.i1 when the target matrix (here equivalent to the output layer of

ANNs) oes not contain the full model representation; that is to say, there

are more variables in the data matrix than in the target matrix (which is

generalli’ the case with the spectroscopic measurements). As with super-

vised learning in MLPs both approachesutilize a priori information about

the samples (Brereton 1990). The first stage in PCR is the decomposition
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of the data (X-) matrix into latent variables by linear PCA;then each ofthe

target (Y-) variables are regressed onto this decomposed X-matrix. PLS,

however, performs a simultaneous and interdependent linear PCA decom-

position in both X- and Y- matrices, in such a waythat the information in

the Y-matrix is used directly as a guide for the optimal decomposition of

the X-matrix, and then performslinear regression of the latent variables on

Y. It is considered that PLS usually handles several co-varying Y-variables

better than does PCR, and is superior for the simultaneous modelling

of several intercorrelated target variables (Martens and Nes 1989;

Martin 1992).

The use of PLS and PCR for the deconvolution of spectroscopic data is

well documented (Martens and Nes 1989). Indeed, studies comparing multi-

ple least squares methodsas well as the latent variable PCR and PLS methods

(Carey et al. 1986; Geladi and Kowalski 1986; Joreskog and Wold 1982)

have concluded that the best linear regression technique appears to be PLS.

Whilst other studies based on a range of different spectroscopic data, viz.,
fluorescence (McAvoyet al. 1992), infrared (Bhandare et al. 1994; Jacobsson
and Hagman 1993), X-ray (Luo et al. 1997), mass spectra (Goodacre 1997;
Goodacre et al. 1994a, 1995), measurements from a piezoelectric crystal
sensor array (Xing and He 1997), and kinetic spectrophotometric determina-
tions (Blanco et al. 1995, 1996) have concluded that ANNsoften give better
predictions than does PLS because ANNsare able to perform non-linear
mappings of the inputs to output(s) whilst still being able to map the linear
ones.

Whentrying to teach fully interconnected feedforward MLPs to quantify
more than one thingat a time,it is best to have as many MLPsas components
that are being quantified, since the main problem in teaching a single MLP
with multiple outputs is that conflicting error messages are back-propagated
from the output layer during the learning process (Bishop 1995; Jordan
1992). That is to say, the error that is fed back from one of the x output nodes
1s fed to all nodesin the preceding hidden layer, which also contains informa-
tion pertinent to learning the other x-1 targets; if one target is failing to be
learned, and thus sends the algorithm off in a different direction in weight
space, it will inevitably hinder the learningofthe other targets. This has been
seen experimentally when comparing MLPpredictions for the quantification
of single and multicomponent mixtures from pyrolysis mass spectrometry
(Goodacre et al. 1994a) and X-ray fluorescence measurements (Luo et al.
1998).

8. Interpretation of neural networks

The exploitation of novel multivariate analysis techniques employing ANNs
which are based on supervised learning, rather than unsupervised methods,
has permitted even better discrimination and quantification of biological
systems. However, the information in terms of which input nodesare impor-
tant is not readily available, and ANNsare often perceived as a ‘black box’
approach to modelling spectra. It is known from thestatistical literature that



better predictions can often be obtained when only the most relevant input
variables are considered (Bishop 1995; Miller 1990; Rawlings 1988; Ripley

1994; Ripley 1996; Seasholtz and Kowalski 1993). Therefore neural net-

works that prune larger networks are an active area of study (Finnoffet al.

1993; Hassibi and Stork 1993; LeCun et al. 1989; Mozer and Smolensky

1989; Resd 1993; Weigend et al. 1991), whilst it is also possible to grow

neural ne:works from small ones (Broomhead and Lowe 1988; Fahlman and

Lebiere 1990; Frean 1990; Moody and Darken 1989).

Alternatively PCA can be used to reduce the complexity of the MLP

model. P(’A 1s an excellent dimensionality reduction technique, since after

the first few PCs are extracted subsequent ones will contribute only noise to

the model. The use of PC scores as inputs to neural networks, withoutdeteri-

oration ofthe calibration model, has previously been applied to the analysis

of UV/visible spectroscopic data (Blanco et al. 1995; Gemperline ef al.

1991), for the identification of bacteria from their FT-IR spectra (Goodacre et

al. 1998b:; Goodacreet al. 1996f), for the quantification of bacteria (Timmins

and Goociacre 1997) and foodstuffs (Goodacre 1997; Goodacre et al. 1997)

from thei: PyMSspectra, and for the quantification of antibiotics in a bacter-

ial matrix using FT-IR (Winsonet al. 1997).

Another way to select the optimal numberof inputs to a neural network

is to use genetic algorithms (GAs) (Broadhurst et al. 1997). A GA is an

optimizat on method basedon the principles of Darwinian selection (Back

et al. 19$7; Goldberg 1989; Holland 1992; Mitchell 1995), and effectively

performs a directed search through the multivariate space for possible

solutions from random starting points. GAs are only one of a family of

evolutiorary computation methods, and perhaps a more powerfuloneis to

use genet c programming (GP). GP is an application of the GA approach to

derive mathematical equations, logical rules or program functions auto-

matically (Gilbert et al. 1997; Koza 1992, 1994), and when applied to

spectroscopic data have been shown to give very similar predictive

results to ANNs but with the added benefit of spectral deconvolution in

biochemizal terms (Gilbert et al. 1997; Goodacre et al. 1998c; Taylor et al.

1998).

9. Concluding remarks

The application of neural networks for quantitative and qualitative analyses

is well documented and accepted. ANNsclearly present themselves as

extremelpowerful and valuable tools for the analysis of multivariate data.

Over the last few years the availability of powerful and inexpensive com-

puters iri conjunction with the development of user-friendly packages,

which ca1 simulate artificial neural networks, has led to machine learning

increasin zly being adopted by researchers in the biological, chemical, and

physical sciences. Training a neural network is no longer cumbersome, and

in the future it will be possible to devise automated cross validation tech-

niques so that the network decides whenit is optimally trained without user

interfere“ice.
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7 Applications of knowledge-

based systems
Mary Mulholland and D. Brynn Hibbert

1. Introduction

Knowledge-based systemsare at the heart of many Artificial Intelligence (AI)

approache:. To answerhigh-level questions in science requires human exper-

tise that resides in the experience of a practitioner. The sum of that experience

comprises knowledge, and applications that rely on this amassed knowledge

are referre 1 to as knowledge-based systems. Expert systems (ESs) are par-

ticular knowledge-based applications that use some form ofinference engine

to advise <. user via a suitable interface (Fig. 7.1).

Research concentrates on the nature of the inference engine, the construc-

tion and maintenanceof the knowledge base in a form that is useable by the

inference «ngine, and the user interface. There have been a great number of

expert systems published, too many to adequately review in one chapter. In

chemistry alone 1500 publications have appeared since 1984. Therefore, we

shall focus: on the area of analytical chemistry. First, we discuss practical

aspects of the construction of knowledge-based expert systems and review a

numberof systems in analytical chemistry. A novel approach to knowledge

engineerin z and maintenanceof an ES, using Ripple Down Rules (RDR), and

its application to ion chromatography is then described. Finally we shall

discuss reasons why, with the obvious research interest in ES, there are so

few working systemsin use.
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2. lon chromatography

Throughout this chapter, the analytical method of liquid chromatography

(also known as high pressure liquid chromatography or HPLC)andits sub-

method, ion chromatography (IC), will be used as an example of a widely

used method to which expert system technologies may be applied. IC is an

analytical method that separates and detects ions in solution as a meansof

identifying and quantifying them (Haddad and Jackson 1990). A small

volume of sample is injected into a flowing stream (the eluent) which passes

through a column in which the separation is effected. The ions issuing from

the columnpassinto a detector, the signal from which1s displayedas a series

of peaks. The time from injection to the appearanceof a peak is characteristic

of a given ion, and the peak height or area is proportional to its concentration

in the sample. Chemical analysis using IC requires a variety of expertise

which would not be possible to encompassin one ES.In breaking downthe

domain into smaller, more manageable parts, it is first necessary to decide

how to represent the various research areas of IC.

Figure 7.2 shows the stages in the development of a chromatographic

method. Thefirst stage is to collect information on the number and type of

ions, the complexity of the sample matrix, and the requirements of the appli-

cation. A check is usually made of the literature to find a previously devel-
oped method, and if such a method is available, it can be configured to a
complete description. Alternatively, the method may require some further
optimization. If a methodis not available then a first guess is made on

a

suit-
able sample preparation technique, column,eluent, pH, and detector. This can
be further optimized for retention, selectivity, and instrumental conditions.

The calibration technique can be chosen and the final method validated.
Selection of the calibration methodis often an integral part of the validation
study.

Each stage shownin Fig. 7.2 maybe selected for an ES application. Maris
and Hindriks (1993) present a similar scheme, and suggest that four aspects
of the development of a chromatographic method are amenable to an ES: the
initial guess of the configuration, optimization of selectivity, optimization of
chromatographic conditions, and validation.

The initial configuration presents a classical problem of disparate and
often incomplete knowledge about the system with an expert’s general
knowledge, aided by the literature, to give a workable system within the con-
straints of the laboratory. Traditional expert systems have been written to
advise on the configuration and the novel method ofripple down rules is
described below.

Optimization of selectivity and chromatographic conditions is a problem
treated by AI, but not necessarily knowledge-based systems. Several algor-
ithmic optimization methods have been usedto find, for example, the best
composition of the mobile phase. Here propose and revise strategies work
well as new combinations maybetried experimentally.

Finally, validation is a process in which the methodis provedto be‘fit for

purpose’ in terms of a numberof analytical and statistical measures. The indi-

vidual steps in validation are well known, but a knowledge-based system can
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lead the analyst through the necessary experiments, acting as an intelligent

agent.

A majc~ effort by the European Union to assemble software to accomplish

some or a.l of these tasks will be describedlater.

The analytical chemistry method of liquid chromatographyis sufficiently

broad that it is not feasible to contemplate a single ES for all of the above

tasks and ull possible scenarios. However, particular needs can be accommo-

dated by :acrificing breadth of application or depth of knowledge. A broad

but shallow system tackles a large variety of problems but restrictions in

computer hardware and software necessarily mean these systems do not

contain detailed knowledge. The problem with broad systems is that users

consult them only for their own application areas and very quickly learn the
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Fig. 7.3 Examples of 1: ‘narrow and deep’ and 2: ‘broad and shallow’ knowl-

edge in the domain of ion chromatography.

contents of the knowledge base, rendering them useful only for a short time.
The alternative is to build a narrow yet deep system that can tackle a small
number of problems but in greater depth. However, their restricted ambit
limits these systems to a small numberof users. Taking the example of ion
chromatography, the IC domain may be represented in two dimensions:
applications: e.g., water analysis, pharmaceutical excipients, industrial
effluent; and method conditions: e.g., the type of detector, column/eluent
combinations, the separation mechanism. Figure 7.3 shows two possible
domain definitions along three dimensions comprising the two IC dimensions
described above and the extent of knowledge required. Thefirst illustrates a
narrow and deep domain, which would be the case of an ES developedfor a
pharmaceutical analyst who occasionally requires ion chromatography to
assay 1onic excipients. The ES would be required to cover a limited range of
applications and separation mechanisms (only those suited to the available
equipment) thus would be narrow. However, the knowledgeof these separa-
tion mechanisms would haveto be deep, as the analyst needs detailed infor-
mation of the method conditions. This ES would have lasting use for a
limited numberof users, since it would take longer for the user to become
familiar with the knowledgein the ES that is relevant to his/her domain.

The second example, a broad and shallow system, could be an ES for an
analyst who is required to specialize in ion chromatography. The ES must
contain knowledge of a wide range of applications and possible method con-
ditions. Hence, by necessity, it must be shallow in detailed knowledge. The
user needs to supplementthe details, or in-depth knowledge, from thelitera-
ture and eventually from their own experience. This system has a large
numberofpotential users, but they would quickly learn the knowledge in the
ES that is relevantto their domain andsothe lifetime of this system is likely
to be short.

The knowledge that is required for a system of any depth needs to be
sufficiently complete and predictable to give acceptable accuracy and consis-
tency of the method prediction. For a shallow system,this is notcritical as
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Table 7.1 A breakdownof the stages of building an ES (Goulderet al.
1988)

 

Conventional tasks Time scale (months) based on a 21

month schedule

 

Selection of expert 2

Selection of tool 2
Testing o* tools 4
Knowledge engineering 6

Implementation 3

Validation 1

Evaluation 3
OMaintenance ngoing

 

long as there is sufficient alternative advice or even scope for developmental

experimenrital work.

3. Builcling an expert system for ion chromatography

3.1 Selection of the expert and domain

The selection of the (human) expert and the area of expertise is the most

important stage in building an ES. The expert must besufficiently recognized

by his/her peers. More importantly, the expert must be willing to spend a con-

siderable «mount of time cooperating with the knowledge engineer to reveal

the full depth of his/her knowledge. A busy analytical chemist mayfind it

unsatisfying to rehearse at length the complex processes used toarrive at a

decision. When building a system for the initial configuration several thou-

sand case: must be assessed to bring out the required knowledge for even the

sub-methed of ion chromatography.

3.2. The knowledge base

The form of knowledge representation depends on facilities provided by the

tools, anc. on the nature of the knowledge. Knowledge in ESsusually takes

the form «f rules and facts. The facts are the objects or concepts about which

the expert reasons andrulesare derived from this reasoning. An examplefact

for chromatographyis that the equipmentconsists of a detector, an injector, a

column, end a pump.

3.2.1 Rules

From the early days of AI it was recognized that the rules of inference of

formal loy:ic provided the best potential for the representation of knowledge.

Rules in AI systems are used to represent the reasoning knowledge and

employ fi.nctions allowed by procedural logic and predicate calculus. These

include th.2 following: IF, AND, NOT, OR, THEN, IMPLIES, EQUIVALENT,
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TRUE/FALSE,IS A. Rules are supposed to represent the way in which the

expert solves problems. For example, if a compound is non-volatile then

liquid chromatographyis preferred to gas chromatography, or if molecular

weights are greater than 3000, then size-exclusion chromatographyis applic-

able. These decisions can be represented as the following rules:

IF a compoundis non-volatile

AND liquid chromatographyis available

THEN use liquid chromatography

IF the molecular weight is more than 3000

AND liquid chromatographyis available

AND size-exclusion chromatographyis available

THEN use liquid chromatography

AND usesize-exclusion chromatography

These examples show how apparently simple rules can become complex

when they are fully implemented with all their exceptions and additions.

They show the use of the ‘IF condition(s) THEN conclusion(s)’ process.

Rules conclude new information from information already available. This
new information can now beinserted into the knowledge base. The source of
information for operation of a rule is the knowledge base, the user, or some
external source. When building rules it is important to maintain easy legibil-
ity of the rule base. A simple piece of advice often offered to rule builders is
that ‘if the rule looks too big it probably is too big and should be split into
smaller rules’. (This is itself an example of an IF ... THEN construct).

The term meta-knowledge is quite frequently used; this is knowledge
about the knowledge base. For example, it may be the time and date of cre-
ation of a frame, or the nameofthe creator. It also offers the possibility to
specialize global characteristics of the knowledge base locally. It can allow
range restrictionsfor attribute values. For instance, the temperature range of a
liquid chromatography oven is usually 35-150 °C and the wavelength range
of a UV/VISdetector is 190-700 nm.

3.2.2 Frames

A powerful way of representing factual knowledge is through frame net-
works, as developed by Marvin Minsky (1975). A frame is a computer repre-
sentation of an object or concept. It can also be defined as a schemaor unit. A
framehasattributes and values, which describe an object. Attributes can have
a large number of values, and these are strings, numbers, or symbols. This
conceptis often defined by object/attribute/valuestriplicates. A typical frame
for a liquid chromatography column is shown in Table 7.2. The columnis
represented as an object with various attributes and values. Any particular
column can be defined by this frame by selecting the relevant values for each
attribute. Other frames can belinked to this to form a network, for instance

pre-columns, cartridges, or guard columns.
These links are formed by relations. In tools which support frame struc-

tures, two standard relations are normally provided, the IS A and INSTANCE

relations. These links are illustrated in a small network shown in Table 7.3.

Attribute values may then be inherited. These default values can be subse-
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Table 7.2 The representation of an HPLC column as a frame

 

 

Object Attributes Allowed values

Column Manufacturer BDH

Altex

Phase Separations

 

 

 

Stationary phase ODS

C2

PL-gel 50A

Particle size 5um
10 um

Internal diameter 2um
4.6 um

Length 10 cm

25cm

Table 7.3 Network of HPLC columns

Frame Relation Frame

Microbor:: column ISA Column

GPC colu’nn ISA Column

2mm x 11) cm C8 ISA Microbore column

4.6 mm x 10 cm ODS ISA Reverse-phase column
 

Table 7.4. Example of relations which can be user defined

 

 

Frame Relation Frame

Microbore columns REQUIRE A 1 uL flow cell
Fast HPLC columns REQUIRE A 2.5 uL flow cell
Detector IS PART OF HPLC system

Flow cell IS PART OF Detector

 

quently overridden by new values. Some tools allow the developer to define

relations, which can provide extra powers of expression. An example from

liquid chromatography is shown in Table 7.4.

Another commonfeature permits a procedural attachment to an attribute

(or slot). “his is known as an active value or a demon. The demon watches

the attribute for a specified access to it. When this occurs the demonis acti-
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Fig. 7.4 A network of chemical compounds.

vated and some pre-defined action is taken. Typical uses of demons are

protection against unauthorized access, update of an attribute, or the re-

calculation of an object if any of its constituents are changed. Forinstance,if

the internal diameter of the column is changed then this requires changes in

flow-rate, flow cell, and injection volume. A demon could watch for a new

input of the internal diameter and, when necessary, activate the required

changesin flow-rate, etc.

From these examples it can be seen that a complete HPLC or any other
analytical instrument can be represented using frames. Appropriate rules can
then be developed to interact with a network of frames. Frames also allow
inheritance through a parent-child structure, often referred to as specializa-
tion—generalization hierarchies. Figure 7.4 shows a network for chemical
compounds. Asthe network progresses downwards,the classes become more
specialized and each lowerclass inherits the properties of all the classes
above it. For instance Fe** has all the properties of the transition metal ion
class and this in turn hasall the properties of cations. This can be a very
useful representation as once an objectis identified as part of one class, other
information can be recognized about the object. Frames provide an efficient
form of knowledge storage and prevent some unnecessary duplication of
data. However, the example also highlights the problem of anessentially two-
dimensional hierarchy. The aromatic/aliphatic choice could have been made
one generation earlier applied to ‘organic ions’. However the subsets acids

and amines would then have been duplicated under each of ‘aromatic’ and

‘aliphatic’.

3.2.3 Semantic networks

Semantic networkswere first introduced by Ross Quillan (1968). The concept

was proposed as a meansto imitate the psychological model of human asso-

clative memory. Very simply, semantic networks are another way of repre-

senting knowledge in a frame system. They have two basic components,

nodes and arcs. Nodes represent objects, concepts, or situations andarcsrep-

resent the relationships between them. Nodes are indicated by boxes or

circles and arcs by arrows. The information described above in frames could



Building an expert systemfor ion chromatography 161

CAN BE

| ION ASSAYED BY | ION

CHROMATOGRAPHY

[CATION2

[cm

ei

[Tin ION

| f ; CHARGE

ASA OF +3

Fig. 7.5 An example semantic network for the analysis of Fe** by ion

chromatog ‘aphy.

 

 

 

 

 

 

be represe:ited in a semantic net where the information in Table 7.2 would be

represented in nodes and the relations shown in Tables 7.3 and 7.4 would be

arcs. A siraple semantic network for the analysis of Fe** by ion chromatogra-

phy is shown in Fig. 7.5. The advantage of these networksis the ease with

which relationships can be viewed.It is a simple process to translate frames

to semanti2 networksor vice-versa. Each object in the frame becomes a node

in the serr.antic network andeachslot (or relationship) becomes an arc. Thus

Fe>* inherits ‘can be assayed by ion chromatography’ through its membership

of the clas; of ‘transition metal ions’, which in turn is inherited through mem-

bership of‘cations’ and ultimately ‘ions’.

3.3. The reasoning mechanism

The reaso.1ing mechanism of the inference engine is the method by which

the knowledge base is accessed to produce a conclusion. There are two main

processes adopted in ESs, forward and backward chaining. These are compre-

hensively 2xplained by Harman and King (1985).

Develcoment tools usually offer one of these strategies, though some offer

both. Exainples of how these strategies perform can be demonstrated by the

use of the following rules:

(a) A& BSD

(b) D=>H

(c) D& BSE

(d) FRH&KESX

(ec) ESF

These rules are read as follows: rule (a) means that if A and B are known then

D can be concluded. Forward chaining begins with some facts, from either

the consu.ation or the knowledge base. The rules run with this information to

make any potential conclusions. In this example A and B are unknown. The

first conc] 1sion is from rule (a), i.e., conclude D.At this stage it is possible to
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use either rule (b) or rule (c). A conflict resolution strategy is employed to

determine which haspriority. The control the developerhas overthis strategy

is dependent on the tool being used. For this example it is assumed that con-

cluding from single facts has precedence over multiple facts and so rule (c)

take preference. Thus, the order of conclusions is as follows: conclude E,

conclude H, conclude F, conclude X. At this point there are no morerulesto

be activated, so the result of the reasoning strategy is that D, E, H, F, and X

can be concluded if A and B are known.

Backward chaining differs in that the goal is first set for the rules to con-

clude. For example, if the goal is set to conclude X, rule (d) showsthat to

prove X it 1s required to prove F, H, and A. Each of these then becomes a

goal, so the firing of the rules now runsas follows:

to prove F prove E

to prove E prove B and D

to prove D prove A and B

to prove H proveD.

In conclusion it can be seen that X can be concluded if A and B are known.

The classical example of a programming language that employs a forward

chaining rule system is OPS5, and one that uses backward chainingis Prolog.

Forward chaining is more appropriate for problems such as configuration

tasks where there are a small numberofstarting states and a large numberof

finishing states (goals). Backward chaining is better for solving diagnostic

problems wherethere are a small numberof goals (faults) and a large number

of starting conditions (causes). The larger developmenttools allow forward

and backward chaining to be mixed as the problem dictates. The smaller tools

may permit only oneorthe other.

Matt Ginsberg (1993) remarks that AI systems use knowledge to reduce

problemsofintelligent action to a search. Manytasks in AI can be phrasedin

terms of a search for the solution to the problem at hand. ESs require some

mechanism to search the rule base for a suitable decision or conclusion.

Numeroussearch techniques are possible, but many are susceptible to the

problem of combinatorial explosion.If the size of the system is specified by a

parameter n, the search space is typically 2” or n!. Consider the case of

finding an IC method that combines values for 8 features (eluent, detector,

column, etc). Some of these attributes can have 40 possible values. A brute

force search with no IC knowledge would require a lengthy search of 8*°
(1 x 10°°) possible states. Various search methods have been proposed from

the mathematics and computer science communities. Uninformed methods

(known as weak methods) such as blind hill-climbing methods, genetic algo-

rithms, or evolutionary strategies (Davis 1991) are less efficient than those

that employ domain knowledge to reduce the search space and improve

efficiency.

Chromatographers are not newcomers to the field of effective search.

Many workers have evaluated methods to search for eluent combinations in

what is often called solvent optimization strategies. SIMPLEX is a weak

method that uses a hill climbing search method. Whereas the technique devel-

oped by Schoenmakers (1986) uses fewer experiments, each of these is
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designec with a knowledge of chromatography and they provide a much
more efficient search. In a similar manner AI has adopted a concept of knowl-
edge bas 2d heuristics for constraining and directing search (Firebaugh 1989).
These mezthods are known as control systems as they control the use of the
rules. There are many search techniquesthat can be applied, including depth
first or breadth first, these methods are embeddedin the inference engine of

the ES tcol.

3.4 Theinterfaces

Two inte "faces are part of an ES. Thefirst is the developer’s interface, which

is important because it determines the ease and speed of building a system.

The interface should be easy to use and contain features such as graphical

representation to aid the development of networks. There should be compre-

hensive debugging andtrace facilities that allow the examination of all the

rules anc. the order of activation for a particular consultation of the ES. It

should be easy to develop prototype systems, in order to build up a system in

stages arid to test each stage with a minimumofeffort. It is also important to

consider the qualifications and experience of the knowledge engineer. A com-

petent scftware engineer could handle even the most complex of tools. On the

other hand the chemist or analyst with little programming experience needsto

select a stmplertool.

The second user interface is that for the eventual consultant of the soft-

ware. More flexible tools allow the creation of interfaces by the developer,

but others provide a fixed interface. User interfacing is not a particularly

strong point of most tools. As the final interface can be complex with many

features, such as explanation facilities, it must be carefully designed to avoid

unduly c._uttered screens or convoluted procedures.

3.5 Hardware and software

Any syscem is limited by the ES development software and hardware.

Generally, a larger ES requires more investment in software and hardware.

The investment should reflect the value of the final system. For instance,

chromatographic applications are mostly confined to the PC environment,

and although some chromatographers use workstation applications an ES

written for this environment would not be widely used.

ES d:velopment tools have two major restrictions, they are memory

hungry aid slow. This alwaysrestricts the size of knowledgebases.It is often

better to build an integration of small modules that can run with reasonable

memory requirements and speed.

3.5.1 Levelopment tools — conclusions

Table 7.5 shows a summary of someofthe features of the developmenttools

evaluate! within the project ‘Expert systems applied to Analytical Chemistry’

(Goulder et al. 1988), which was funded as part of the European Strategic

Program for Research in Information Technology.
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Table 7.5 Comparison of developmenttools

 

 

Features Shells Semi-tools Tools

Price ($) 100s 1000s 5000s

Knowledge Average Good Excellent

representation

Inferencing One Two Two

Externals* Poor Good Excellent

Numeric capability Poor Good Excellent

Hardware PC Expanded PC Workstation

Examples Delfi, Kes, Goldworks, N expert, Xi Plus ART, KEE, KC,
Crystal Level 5 Object

 

‘Externals’ is the ability of the tool to connect with external routines, databases, or sources of data.

4. Applications of expert systemsin analytical chemistry

4.1 Introduction _

Expert systems have captured the interest of many chemists (Bridge 1990;

Buydens and Schoenmakers 1993; Peris 1996) and indeed a chemical system,

DENDRAL,was one of the first ESs. DENDRAL,still considered a bench-

mark system in AI, was developed in 1964 and has progressed through

several versions since (Firebaugh 1989, p. 338). Indeed, the success of

DENDRALhas been cited as the spur to the exceptional interest in ES in

chemistry.

4.2 Dendral

Joshua Lederberg, a Nobel prize winner in genetics, devised a program,

DENDRAL(dendritic algorithm), for enumerating all possible configura-

tions of a set of atoms. To reduce the numberof potential configurations pro-

duced by Lederberg’s original system to a manageable number, Feigenbaum

developed an expert system (known originally as heuristic DENDRAL but

later just referred to as DENDRAL)that used massspectral information and

expertise. Feigenbaum describes the problem domain as follows:

‘It was a problem which hadall the elements of classical empirical induc-

tion. Here’s an array of data that comes from a physical instrument, the

mass spectrometer. Here's a set of primitive constructs out cf which to

composea hypothesis about what organic compoundis being analyzed.

Here’s a legal-move generator for generating all possible hypotheses.

The problem is to find good ones outof all the set of possible ones, since

in the general case, you don't want to generate all possible hypotheses.

How do you find the good ones? And how do you employ knowledgeof

the world of chemistry, mass spectrometry, to constrain the set of alter-

natives, steering away from large sets of unfruitful ones? That was the

framework (of the problem)’.
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In the analysis of mass spectra, there is no numerical algorithm for
mapping the mass spectrum to the structure of a compound. The expertise
and experience of a trained mass spectrometrist is brought to bear on the
problem. The task for Feigenbaum wasto build an expert system with
Lederberg’s expertise. As with many ES projects it required the expert,
Lederberg, to learn about computers and the knowledge engineer,
Feigenbaum, to learn about chemistry. This project was the first to identify

the prob]2m of ‘the knowledge acquisition bottleneck’ discussed above. The

team wasalso the first to identify problems with experts explicating their

expertise It had become clear that in addition to the many rules of chem-

istry, che nists relied on a vast body of heuristic knowledge based on experi-

ence and simply guessing.

In 19°70 a project was launchedto develop rules automatically by examin-

ing examiples of previously interpreted mass spectra. This was knownas the

Meta-DE.NDRALproject and it was an attempt to avoid the pitfalls of using

human e* perts.

Although DENDRALis held by the AI community as a seminal ES, it has

neverattracted a following in chemistry.

4.2.1 Adescription of the DENDRAL program

The inpu' data to DENDRALtypically consists of the following information

on the cc npound understudy:

@ The enpirical chemical formula e.g., CgH,,O

@ The riass spectrum of the compound

@ Nuclear Magnetic Resonance (NMR)spectroscopic information

There are three basic stages in the identification of structure, PLAN, GENER-

ATE, ancl TEST.

The PLAN stage reduces the set of possible configuration of atoms by the

constrains derived from the mass spectrum. The constraints are applied in

two ways; the molecular fragments that must be included in the final structure

and those that must not appear.

The GENERATEstage uses the constraints from the PLANstage to generate

all structares of the empirical formula containing the identified molecular

fragment: and removing those which should be excluded.

The TEST stage ranks the output of the GENERATEstage according to the

quality c* the fit between the hypothesized structure and the experimental

one.

The follc wing are some example rules:

IF the spectrum from the molecule has two peaks at masses XI and X2 such

that:

X1+ X2 ::M+ 28 AND

X1 - 28 is a high peak AND

X2 —- 28 is a high peak AND
at least one of X1 or X2 is high THEN

165
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The molecule contains a ketone group

IF there is a high peak at mass 71 AND

There is a high peak at mass 43 AND

There is a high peak at mass 86 AND

There is a high peak at mass 58 THEN
There must be an N-PROPYL-KETONES structure

In the example given above, CgH;,O, DENDRALoriginally reduces the pos-

sible atom arrangements from 698 to about 40 ketones usingthefirst rule and

then arrives at the singular answer CH,;,CH,(CO)CH,CH,CH,CH,CH,; using

the second rule. If DENDRALcannotarrive at a unique solution, it presents a

list of possible structures together with a probability estimate of each one.

DENDRALis written in LISP and is available as a commercial system in

the USA.It claims to perform at the level of a chemistry PhD or aboveinits

strictly defined domain. Perhaps the most notable feature of the DENDRAL

project was that it was the first move away from the attempt to develop

general problem solvers in AI. It marked the development of domain specific

and knowledge-rich problem solvers. This was a major paradigm shift for the

AI community.

4.3. ECAT

ECAT (Expert Chromatography Assistance Team) was the first major

attempt to develop an ES for the chromatography domain. It was developed

by Varian Associates and the goal of the project was defined as follows (Bach

et al. 1986):

‘The goal of our project is to create a computer program that performs,

at the human expert level, the tasks of designing, analyzing, optimizing,

and trouble-shooting a high performanceliquid chromatography (HPLC)

separation method.’

The complete ES envisioned by the team wasto provide for the followingtasks:

To provide chemical information.

To choose between gas chromatography and liquid chromatography.

To specify the column,fluent constituents, and detector.

To decide on a sample clean-up procedure.

To optimize (or redesign) the separation.

To diagnose hardware problemsN
W
P
W
N
P

The program was to be implemented in ZETALISP and FRANZLISP in the

UNIX environment. This project achieved only task 3 above anu then only

for a limited number of chemical samples. The team found that the extent of

an expert’s domain knowledge typically exceeds that which heor shereal-

izes, and the knowledge engineering was non-trivial (Williamset al. 1989).

Consider task | of the goals of this project. This module wasto haveasits

input the chemical name of the sample and perhapsits structure. The ES

would then provide information on its chemical properties. An undergraduate

degree can provide a chemist with only a limited ability to predict chemical
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the domainswerestrictly defined. These systems could later be integrated to

provide useful communication links. The overall conclusion was that ESs

could not replace the analyst but they could provide tools to make analysts

more efficient. The following list summarized the gains that could be

expected from the introduction of a HPLC ESto a laboratory:

Faster method development

Better quality method development

Faster analysis

Distribution of senior scientists’ knowledge to junior group members, thus

increasing the team’sefficiency

Introduction of new knowledge from external sourcesto the laboratory

Improved documentation

Improved consistency

Enhancedpotential for the analyst

5. Ripple down rules

5.1 The philosophy of ripple down rules

The Ripple Down Rules (RDR) approach provides a numberof solutions to

the limitations of traditional ESs which rely on an empirical reductionist phil-

osophy embedded in the physical symbols hypothesis. Compton argues

against the absolute acceptance of the reductionist philosophy in AI and pro-

poses a theory that knowledge is developed for the context in which it is

being used. RDRallowsfor the creation of knowledge in context by the addi-

tion of rules in a tree structure within clearly defined contexts. A rule that is

added to an RDRrule base is associated with the context of the case that

causedits creation. It will not apply in other contexts. This process can run

into the same problem of combinatory explosion in the physical symbols

hypothesis.

Although Compton questionsthe validity of the reductionism philosophy,

he did not abandonit for the development of RDR. He simply proposed a

format for linking these atoms of knowledgethat attempted to avoid the prob-

lems encountered with the physical symbol hypothesis. The flexibility of

RDR, which allowed the addition either of ad hoc rules or for a process of

conjecture andrefutation, largely solves many of the maintenance problems

of traditional ESs. To assumethat an ES could be built in a finite time captur-

ing even the majority of the expertise in a domain has been shown to be

naive. RDR is a genuine attempt to move away from this simplistic philoso-

phy of knowledge engineering.

5.2 Theory of ripple down rules

An RDRESis based on a binary tree. Each node of the tree can be consid-

ered a rule with attached rule conditions and conclusion. There are two

branches from each node, the true branch and the false branch. Thetree is





170 Applications ofknowledge-based systems

 

 

 
   

 

   
  

  

Rule 1:

IF UV visibility = yes

THEN UVdetection

False True

Rule 2: Rule 3:

IF Sample = chloride IF Suppressor =yes
THEN Conductivity | THEN Conductivity
detection detection

False True es Nx

Rule 5: Rule 4:

IF Sample = cyanide IF Sample = bromide
THEN Amperometric THEN Amperometric
detection detection
  

Fig. 7.7. An example RDRtree for the selection of an IC detector.

The first sample is an organic acid and is used as the cornerstone case to
create Rule | in Fig. 7.7. This case can be usedlater to define the context in
which Rule 1 was made. The secondcasein Table 7.6 is now presented to the
RDRtree. As the case does notfall within the premise of rule 1 the system
cannot provide a solution and another rule needs to be addedto the system.
To be consistent with a philosophy of knowledgein context the useris pre-
sented with a list of differences between the cornerstone case of Rule | and
the current case. One or more of these differences can be selected as the
premise(s) of Rule 2. As Rule | evaluated to false for this case the new ruleis
added on the false branch of that rule. Consider case 4; the RDRtree Suggests
the use of UV detection for this case as Rule | evaluates to true. However,
this is an incorrectresult. The user needs to add a new rule andis presented
with a difference list from which to select new premises. This rule is added to
the true branch of Rule |. In this way the RDRtree beginsto grow.

Unlike other ES methods, RDRtrees do not distinguish between the devel-
opment and maintenance stages. New rules can be added as required and
because they are added in a controlled way, there is no need to validate the
system with each new addition. Each new rule is embedded within the

context of the cornerstone case and is not applicable outside this context.

5.3 Developmentcycle

The development cycle for ESs has been studied extensively (Gaines and

Compton 1992), and is markedly different from ES technology. Maintenance

and the evolution of an RDR system is a continual process of knowledge evo-

lution, andso is indistinguishable from beta testing or prototyping. Theutility

of the ripple down rule approach has been demonstrated in large-scale appli-

cations. The 650 complex rules of a system for interpreting chemical pathol-

ogy was reduced to some 550 simpler Ripple Down Rules, and the rate of



developing the rule base was increased from about 2 rules a day to 10 rules

an hour. ‘his successful implementation of RDR has lead to the development

and impl«mentation of a larger system at St Vincent’s Hospital in Sydney.

This system now contains some 1600 rules and is successfully being used in

the day-to-day evaluation of reports from the Department of Chemical

Patholog,, (Edwardset al. 1993).

5.4 Summary of the RDR method

RDRoffer a novel approach to the development of an ES which could have

long term. advantages to the worth of an ES. The major advantages and disad-

vantages «re summarized in the following sections.

5.4.1 Advantages of RDR

1. The vaajor advantage of RDRlies in the simplicity of the technique.It

automatically provides a consistent method of building an ES. The user

does not require any programmingskills, although knowledge of the

front end software (Hypercard) allows the user opportunities to cus-

tomi;e the system.

2. The philosophical underpinning of RDR is more attractive than that of

the p.rysical symbols hypothesis, however it has not removedall of the

limit: tions of the reductionist philosophy. The technique has attempted to

prov.de facilities that allow intelligence to be programmedbythe creat-

ing riles within the context of their use. In this fashion it employs a

belie!’ that intelligence is a creative action.

3. The riaintenance of the system can be carried out easily and in a controlled

way that avoids the problemsinherentin traditional ES maintenance.

5.4.2 Disadvantages of RDR

1. The :echnique is designedfor classification problems with single conclu-

sions being drawn from prior list of options. However, many problems

cannot be phrased as simple classifications. For example, selecting chro-

matographic conditions in ion chromatography is a configuration

problem requiring a number of conclusions (e.g., the column, detector,

eluert, etc) and these conclusions are dependent on each other. A case

stud’, of this system is presentedlater.

2. New rules are added within the context of the case that caused the

chan.ze, so it is not possible to add rules which are not context specific.

Consider the example tree described in Fig. 7.7. Rule 3 (whichstates that

if a suppressoris available, use conductivity) was added as an exception

to Rule 1. This rule is actually generally applicable, and it is true for

manother contexts. It is an exception to Rule 5 and will also be an

exce)tion down the false branch of Rule 3. This means that the same

knowledge has to be re-implemented at several places in the tree. The

problem is alleviated if general rules are programmednearto the top of

the t-ee, but there is no way of knowing in advance the most general

case: with which to begin the RDRtree. Also, knowledge changes with

time and new general knowledge will always be required.

Ripple down rules 171
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This problem often exhibits itself when the RDR developmentis well under

way and the tree is complex. A user can add a case which describes a new

general rule only to find the next case follows a different path down thetree

not reaching the relevant knowledge. This can be not only frustrating but can

lead directly to the same problem of combinatory explosion experienced with

traditional AI. Hence RDR trees can become very large and the problem of

adding knowledge is not completely solved by the RDR format.

5.5 A RDRexpert system for ion chromatography

The developmentof an ES in RDR wasbasedon a databaseofall the significant

published methods employing IC between 1980 and 1996 (Haddad and Jackson

1990). This amounts to over four thousand examples of IC. An example of a

case in the database is shown in Table 7.7. Only the necessary information was
extracted from the case and encodedasa series ofattribute values, which were

augmented by relevant information aboutthe analyte: molecular weight, charge,
if an acid the proticity and pK, values, and the hydrophobicity.

Further attributes were automatically added to the case from an internal
look-up table that described the nature of the solutes and special characteris-
tics that maylead to the desired detection. Table 7.8 gives a list of the attrib-
utes that were used in the ES. The configuration problem wasto fill in
unknownattribute values for a given case. Usually these would be method
attributes such as column, mobile phase, whether a suppressoris used,etc.
However, if a laboratory had only one type of detector, for example, this
would becomea given attribute and the ES would have to work around this
constraint to arrive at a suitable method.

An expert system using RDR wasable to achieve 70-80 per cent agree-
ment with a human expert when given a test set from the database. This was
considered a good result as the database itself contained conflicting cases,
and did not representa statistically distributed set of cases.

Table 7.7 A typical case for IC from which the RDR expert system was

 

 

built

Attributes Values

Record 3968

Hardware Dionex QIC

Column Dionex AS-1 ion-exclusion, 250 x 2.0 mm ID

Packing Cross—linked PS—DVB cation exchanger

Eluent 2.0 mM sulfuric acid; 0.8 ml/min

Solutes Lactic (6.9), tartaric (8.0), malic (10.0), acetic (13.2)

Detection Conductivity with various suppressor devices

Detection limit 2 ppm

Sample White wine

Preparation Dilution, filtration

Temperature Ambient
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Table 7.8 Attributes used by RDRin analysis of IC methods

Attribute Description Number Examples

mnemonic of values

Solute attributes

APPLICAT For what application was the 14 environmental, pharmaceutical,

method used?

TYPE The nature of the solute 3 cation, anion, neutral

charge

PH_SOLUWTE Is solute acidic or basic? 3 acidic, basic, neutral

SOLUBLTY Solubility of the solute 4 slightly ... very

CHARGE Charge on solute ion 9 +4...-4

IONCLASS Chemical nature of the solute 6 inorganic, organic

SUPPRESS Is suppressor used? 2 yes, no

NO_SOLIT Numberof ions to be 3 1-5, 6-10, > 10

separated

UV_ABSIOR Solute contains UV absorbing 3 both absorbing and

species? non—absorbing, yes, no

HALIDES: Whetherhalides are to be 4 Uvhalide, none, non_Uvhalide,

assayed, and their UV both

absorbing properties

SULFATI:.S Sulfate or sulfite to be 2 yes, no

assayed?

NITRATES Nitrates or nitrites to be 2 yes, no

assayed?

Method attributes

MECHANSM Chemical mechanism of the 5 ion exchange,ion interaction

separation

POST_COLM Is a post-column reaction 2 yes, no

used?

pH pH of mobile phase 4 acidic, basic, neutral,

unspecified

MOBILE._P Eluent composition 48 water, H,SO,, HCl

GRADIENT Gradient elution used? 2 yes, no

COLUMIN Column type 7 neutral silica, cation exchanger

resin, crown ether

DETECT OR Detector type 18 conductivity, amperometry,

refractive index
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6. Conclusions

Artificial intelligence and expert systems,in particular, have been the subjects

of much hype and media-built expectation. ESs apply human terminology to

non-human things and use their own peculiar language of fuzzy logic,

demons, rules, and frames. All this has had the effect of surrounding the field

with an aura of mystery. It is interesting to speculate why ESs received so

muchattention in the 1970s and 1980s and whyinterest has waned in the
1990s. There were several reasons for the initial enthusiasm. First, ESs
promised to make information technology and computer software more
human andless algorithmic. This would allow computers to tackle a whole
new area of human problems. Theability of ESs to imitate real experts also
raised expectations that these problem solvers would be easier to use and to
learn from than conventional software. Secondly, workers increasingly
needed to access expertise from outside their own subject domain. Hence,
there was a real need for expertise transfer and ESs promised to tackle this
need. Finally, it is a recognized business maxim that a company’s most valu-
able asset is its personnel. ESs could potentially allow this experience and
skill to be preserved within a companyif personnelretire or leave. Together,
these reasonsled to the investment of millions of dollars in this technology.

So why did this investment wane in the 1990s? Mainly due to the disap-
pointing results achieved so far by the technology. Although many successful
ESs were built and are still in use, the technology did not live up to its
expected potential. Like much of AI, ESs failed to deliver the overblown
promisesof the early practitioners. The all-knowing HALof Kubrick’s 2001
was not going to be realized before the millennium. Indeed, it became
obviousthat the computer science researchers did not know howtostart real-
izing such a system. The following is a list of some of the lacunae that
became evident with ESs:

@ ESsare time consuming and expensive to produce.
@ ESs are not robust. In other words, they quickly failed outside their

limited domains.
@ ESsare hard to keep up to date. Most systems simply provided a snapshot

of the expertise applied overthe time of their creation and quickly became
out of date.

@ [t was more difficult than originally thought to extract knowledge from
experts.

The limitations and capabilities of ESs are now better known, and by
adopting a more conservative strategy there have been sufficient successes to
show that the technology is worthwhile.

6.1 ES in analytical chemistry

If DENDRALis considered an archetype by the AI community, it must be
admitted that it is not highly regarded by the analytical community for many
of the reasons given above.
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1. Introduction

The desiga process entails creation of a complex structure to satisfy user-

defined requirements. The design of analog electrical circuits is particu-

larly challenging because it is generally viewed as requiring human

intelligence and becauseit is a major activity of practicing analog electrical

engineers.

Design of analog circuits begins with a high-level description of the

circuit’s «lesired behavior and entails creation of both the topology and

the siziny: of a satisfactory circuit. The topology comprises the gross

number cf components in the circuit, the type of each component(e.g., a

resistor), ind a list of all connections between the components. The sizing

involves :pecifying the values (typically numerical) of each ofthe circuit's

componeuts.

Considerable progress has been made in automating the design of certain

categories of purely digital circuits; however, the design of analog circuits

and mixe«| analog—digital circuits has not proved as amenable to automation

(Rutenba: 1993). Describing ‘the analog dilemma,’ Aaserud and Nielsen

(1955) need

Analog d2signers are few and far between.In contrast to digital design,

most of the analog circuits are still handcrafted by the experts or so-

called ‘zahs’ of analog design. The design processis characterized by a

combination of experience and intuition and requires a thorough knowl-

edge of tie process characteristics and the detailed specifications of the

actual product.

Analoc: circuit design is known to be a knowledge-intensive, multi-

phase, itzrative task, which usually stretches over a significant period of

time and is performed by designers with a large portfolio of skills. It is

therefore considered by manyto be a form of art rather than a science.

There 1as been extensive previous work on the problem of circuit design

using si. Jlated annealing,artificial intelligence, and other techniquesas out-

lined in Koza er al. (1997), including work using genetic algorithms
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(Kruiskamp and Leenaerts 1995; Grimbleby 1995; Thompson 1996).

However, there has previously been no general automated technique for syn-

thesizing an analog electrical circuit from a high-level statement of the

desired behaviorof the circuit.

Once the user has specified the high-level design goals for an analog

circuit, it would be ideal if an automated design process could create both the

topology and the sizing of a circuit that satisfies the design goals. Thatis, it

would be ideal to have an automated ‘What You Want Is What You Get’

(WYWIWYG’ — pronounced ‘wow-eee-wig’) process for analog circuit
design.

This chapter presents a uniform approach to the automatic design of both
the topology andsizing of analog electrical circuits. Section 2 presents design
problems involving five prototypical analog circuits. Section 3 describes
genetic programming. Section 4 describes the method by which genetic pro-
gramming is applied to the problem of designing analog electrical circuits.
Section 5 details required preparatory steps. Section 6 showsthe results for
the five problems. Section 7 cites other circuits that have been designed by
genetic programming.

2. Five problemsof analog design

In this chapter we apply genetic programmingto a suite of five problems of
analog circuit design. The circuits comprise a variety of types of components,
including transistors, diodes, resistors, inductors, and capacitors. The circuits
to be designed have varying numbers of inputs and Outputs, and are as
follows:

(1) Design a lowpass filter having a one-input, one-output composed of
capacitors and inductors and that passesall frequencies below 1000 Hz
and suppressesall frequencies above 2000 Hz.

(2) Design

a

tri-state frequency discriminator (source identification) circuit
having one input and one output that is composedofresistors, capaci-
tors, and inductors and that produces an output of 1/2 volt and 1 volt for
incoming signals whose frequencies are within 10 per cent of 256 Hz
and within 10 per cent of 2560 Hz,respectively, but produces an output
of 0 volts otherwise.

(3) Design a computational circuit having one input and one output that
is composed of transistors, diodes, resistors, and capacitors and that
produces an output voltage equal to the square root of its input
voltage.

(4) Design a time-optimal robot controller circuit having two inputs and
one output that is composed of the above components and that navi-
gates a constant-speed autonomous mobile robot with nonzero turning
radius to an arbitrary destination in minimal time.

(5) Design an amplifier composed of the above components andthat deliv-
ers amplification of 60 dB (i.e., 1000 to 1) with low distortion and low

bias.
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Genetic programming breeds computer programs to solve problems by

executing the following three steps:

(1) Randomly create an initial population of individual computer programs.
(2)  Iteratively perform the following sub-steps (called a generation) on the

population of programs until the termination criterion has beensatisfied:
(a) Assign a fitness value to each individual program in the population

using the fitness measure.

(b) Create a new population of individual programs by applying the
following three genetic operations. The genetic operations are
applied to one or two individuals in the population selected with a
probability based onfitness (with reselection allowed).

(1) Reproducean existing individual by copying it into the new
population.

(ii) Create two new individual programs from two existing
parental individuals by genetically recombining sub-trees
from each program using the crossover operation at ran-
domly chosen crossover points in the parental individuals.

(iii) Create a new individual from an existing parental individual
by randomly mutating one randomly chosen sub-tree of the
parental individual.

(3) Designate the individual computer program that is identified by the
method of result designation (e.g., the best-so-far individual) as the
result of the run of genetic programming. This result may represent a
solution (or an approximate solution) to the problem.

Genetic programming has been applied to numerous problems in fields
such as system identification, control, classification, design, optimization, and
automatic programming. Between 1992 and 1997, over 800 papers were pub-
lished on genetic programming.

Multi-part programs consisting of a main program and one or more
reusable, parameterized, hierarchically-called sub-programs(called automati-
cally defined functions) may also be evolved (Koza 1994a, b) An automati-
cally defined function (ADF) is a function (i.e., sub-routine, sub-program,
DEFUN,procedure) that is dynamically evolved during a run of genetic pro-
gramming and which maybecalled by

a

calling program (or sub-program)
that is concurrently being evolved. When automatically defined functionsare
being used, a program in the population consists of a hierarchy of one (or
more) reusable function-defining branches(i.e., automatically defined func-
tions) along with a main result-producing branch. Typically, the automati-
cally defined functions possess one or more dummy arguments (formal
parameters) and are reused with different instantiations of these dummyargu-
ments. During a run, genetic programming evolves different sub-programs in
the function-defining branches of the overall program, different main pro-
gramsin the result-producing branch, different instantiations of the dummy
arguments of the automatically defined functions in the function-defining
branches, and different hierarchical references between the branches.

Architecture-altering operations enhance genetic programming with auto-
matically defined functions by providing a way to automatically determine







forecasting problems, the fitness cases may be the daily closing price of

somefinaricial instrument.

The coriputer programs in generation O of a run of genetic programming

will almost always have exceedingly poorfitness. Nonetheless, some indi-

viduals in the population will turn out to be somewhat more fit than others.

These differences in performanceare then exploited. The Darwinian principle

of reprodiction and survival of the fittest and the genetic operation of

crossover ire used to create a new offspring population of individual com-

puter programs from the current population of programs.

The reproduction operation involves selecting a computer program from

the current population of programsbasedonfitness (i.e., the better the fitness,

the morelikely the individual is to be selected) and allowing it to survive by

copying it into the new population.

The crcssover operation creates new offspring computer programs from

two parental programs selected based on fitness. The parental programs in

genetic programming are typically of different sizes and shapes. The off-

spring pro.zrams are composed of sub-expressions (sub-trees, sub-programs,

sub-routines, building blocks) from their parents. These offspring programs

are typically of different sizes and shapes than their parents.

For example, consider the following computer program (presented here as

a LISP S-expression):

(+ (* 0.234 Z) (- X 0.789)),

which we would ordinarily write as

0.234 Z + X-0.789

This program takes two inputs (X and Z) and producesa floating point

output.

Also, consider a second program:

(x (* ZY) (4 Y (* 0.314 Z))).

One crossover point is randomly and independently chosen in each parent.

Supposethat the crossover points are the * in the first parent and the + in the

second pz.rent. These two crossover fragments correspond to the underlined

sub-progrums (sub-lists) in the two parental computer programs.

The tw) offspring resulting from crossover are as follows:

(+ (4 ¥Y (* 0.314 Z)) (- X 0.789) )

(* (* ZY) (* 0.234 Z)).

Thus, <rossover creates new computer programs using parts of existing

parental p-ograms. Because entire sub-trees are swapped, the crossover oper-

ation alw..ys produces syntactically and semantically valid programsasoff-

spring regardless of the choice of the two crossover points. Because programs

are select:d to participate in the crossover operation with a probability based

on fitness, crossover allocates future trials to regions of the search space

whose prc grams contains parts from promising programs.

The mutation operation creates an offspring computer program from

parental programsselected based onfitness. One crossoverpoint is randomly
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4.2 Component-creating functions

Each program tree contains component-creating functions and topology-

modifying functions. The component-creating functions insert a component

into the developing circuit and assign componentvalue(s) to the component.

Each component-creating function has a writing head that points to an

associatec. highlighted componentin the developing circuit and modifies that

component in a specified manner. The construction-continuing sub-tree of

each comonent-creating function points to a successor function or terminal

in the circiit-constructing program tree.

The ar thmetic-performing sub-tree of a component-creating function

consists 07 a composition of arithmetic functions (addition and subtraction)

and randem constants (in the range —1.000 to +1.000). The arithmetic-

performin z sub-tree specifies the numerical value of a component by return-

ing a floa:ing-point value that is interpreted on a logarithmic scale as the

value for the componentin a range of 10 orders of magnitude (using a unit of

measurethat is appropriate for the particular type of component).

The two-argument resistor-creating R function causes the highlighted

componert to be changed into a resistor. The value of the resistor in kilo

Ohmsis s ecified by its arithmetic-performing sub-tree.

Figure 8.2 shows a modifiable wire ZO connecting nodes | and 2 of a

partial circuit containing four capacitors (C2, C3, C4, and C5). The circle

indicates ‘hat ZO has a writing head(i.e., is the highlighted component and

that ZO is subject to subsequent modification).

Figure 8.3 showsthe result of applying the R function to the modifiable

wire ZO of Fig. 8.2. The circle indicates that the newly created RI has a

writing head so that R1 remains subject to subsequent modification.

Similarly, the two-argument capacitor-creating C function causes the high-

lighted component to be changed into a capacitor whose value in micro

Farads is specified by its arithmetic-performing sub-trees.

The one-argument Q_ D_PNP diode-creating function causes a diode to be

inserted i1 lieu of the highlighted component. This function has only one

argument because there is no numerical value associated with a diode and

thus no arithmetic-performing sub-tree. In practice. the diode is implemented

here usin a pnp transistor whose collector and base are connected to each
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Fig. 8.3 Result of applying the R function.

other. The Q_D_NPN function inserts a diode using an npn transistor in a
similar manner.

There are also six one-argument transistor-creating functions
(Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_ NPN,
Q_GND_EMITPNP, Q_POS_EMITPNP, Q_NEG_COLL_PNP) that insert
a bipolar junction transistor in lieu of the highlighted component and that
directly connect the collector or emitter of the newly created transistor to a
fixed point of the circuit (the positive power supply, ground, or the negative
power supply). For example, the Q_POSCOLLNPN function inserts a
bipolar junction transistor whose collector is connected to the positive power
supply.

Each of the functions in the family of six different three-argumenttransis-
tor-creating Q_3_NPN functions causes an npn bipolar junction transistor to
be inserted in place of the highlighted component and oneof the nodes to
which the highlighted component is connected. The Q_3_NPN function
creates five new nodesand three modifiable wires. There is no writing head
on the new transistor, but there is a writing head on each of the three new
modifiable wires. There are 12 members (called ©3NPNO, ...,
Q_3_NPN11) in this family of functions because there are two choices of
nodes (1 and 2) to be bifurcated and then there are six ways of attaching the
transistor’s base, collector, and emitter after the bifurcation. Similarly the
family of 12 Q_3_PNP functions causes a pnp bipolar junctiontransistor to
be inserted.

Figure 8.4 showsthe result of applying the Q_3_NPNOfunction, thereby
creating transistor Q6 in lieu of the resistor R1 of Fig. 8.3.

4.3 Topology-modifying functions

Each topology-modifying function in a program tree points to an associated
highlighted component and modifies the topology of the developingcircuit.
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Fig. 8.5 Result after applying the SERIES function to resistor R1 of Fig. 8.3,

thereby traasforming it into resistors R7 and R1 and wire Z6.

  

The thr2e-argument SERIES division function creates a series composition

of the highlighted component (with a writing head), a copy ofit (with a

writing head), one new modifiable wire (with a writing head), and two new

nodes. Fig. 8.5 illustrates the result of applying the SERIES division function

to resistor RI from Fig. 8.3.

The fo.wr-argument PARALLELOparallel division function creates a paral-

lel compcsition consisting of the original highlighted component (with a

writing head), a copy of it (with a writing head), two new modifiable wires

(each witl a writing head), and two new nodes. Figure 8.6 showsthe result of

applying >ARALLELOto the resistor R1 from Fig. 8.3. The one-argument

polarity-reversing FLI P function reverses the polarity of the highlighted

componert.

  C3

741 137

Fig. 8.6 Result of the PARALLELO function.
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Fig. 8.7 Result of applying the T_GND_O function to resistor R1 of Fig. 8.3,
thereby creating a connection to ground.

There are six three-argument functions (T_GND_0, T_GND_1, T_POS_0,
T__POS_1, T_NEG_0, T_NEG_1) that insert two new nodes and two new
modifiable wires, and then make a connection to ground, positive power
supply, or negative power supply, respectively. Figure 8.7 shows the
T_GND_0 function connecting resistor R1 of Fig. 8.3 to ground.

There are two three-argument functions (PAIR_CONNECT_0 and
PAIR_CONNECT_1) that enable distant parts of a circuit to be connected
together. The first PATR_CONNECTto occur in the developmentof a circuit
creates two new wires, two new nodes, and one temporary port. The next
PAIRCONNECT creates two new wires and one new node, connects the
temporary port to the end of one of these new wires, and then removes the
temporary port.

The one-argument NOOP function has no effect on the highlighted com-
ponent; however, it delays activity on the developmental path on whichit
appears in relation to other developmental paths in the overall program
tree.

The zero-argument END function causes the highlighted component
to lose its writing head, thereby ending that particular developmental
path.

The zero-argument SAFE_CUT function causes the highlighted compo-
nent to be removed from the circuit provided that the degree of the nodesat
both ends of the highlighted componentis three (i.e., no dangling conipo-
nents or wires are created).

5. Preparatory steps

Before applying genetic programming to a problem ofcircuit design, seven
major preparatory steps are required: (1) identify the suitable embryonic
circuit, (2) determine the architecture of the overall circuit-constructing
program trees, (3) identify the terminals of the program trees, (4) identify the
primitive functions contained in these program trees, (5) create the fitness
measure, (6) choose parameters, and (7) determine the termination criterion

and method ofresult designation.
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For the npn transistors, the 02N3904 model wasused. For pnptransis-

tors, the O2N3906 model was used.

The initial terminal set, Tccs-initial, for each construction-continuing sub-

tree was Iccs-initial = {END, SAFECUT}.

The initial terminal set, Taps-initial, for each arithmetic-performing sub-

tree consisted of Taps-initial = {<-},

where <— represents floating-point random constants from —1.0 to +1.0.

The function set, Faps, for each arithmetic-performing sub-tree was,

Faps = {+, -}.

The terminal and function sets were identical for all result-producing
branchesfor a particular problem.

For the lowpassfilter and frequency discriminator, there was no need
for functions to provide connectivity to the positive and negative power
supplies.

For the frequency discriminator, the robot controller, and the amplifier, the
architecture-altering operations were used andtheset of potential new func-
tions, Fpotential, was

Fpotential = {ADFO, ADF1, ...}.

The set of potential new terminals, Tpotential, for the automatically
defined functions was

Tpotential = {ARGO}.

The architecture-altering operations changethe function set, Fecs for each
construction-continuing sub-tree of all three result-producing branches and
the function-defining branches, so that

Fecs = Fccs-initial = Fpotential.

The architecture-altering operations generally change the terminal set for
automatically defined functions, Taps-adf, for each arithmetic-performing
sub-tree, so that

Taps-adf = Taps-initial = Tpotential.

5.4 Fitness measure

The fitness measure varies for each problem. The high-level statement of
desired circuit behavioris translated into a well-defined measurable quantity
that can be used by genetic programmingto guide the evolutionary process.
The evaluation of each individual circuit-constructing program tree in the
populationbegins with its execution. This execution progressively applies
the functions in each program tree to an embryoniccircuit, thereby creating
a fully developed circuit. A netlist is created that identifies each component
of the developed circuit, the nodes to which each componentis connected,
and the value of each component. The netlist becomes the input to the

217,000-line SPICE (Simulation Program with Integrated Circuit Emphasis)

simulation program Quarles et al. 1994. SPICE then determines the behav-

lor of the circuit. It was necessary to make considerable modifications in



SPICEso that it could run as a submodule within the genetic programming

system.

5.4.1 Lowpassfilter

A simple Ji/ter is a one-input, one-output electronic circuit that receives a

signal as .ts input and passes the frequency components of the incoming

signalthat lie in a specified range (called the passband) while suppressing the

frequency componentsthatlie in all other frequency ranges (the stopband).

The desired lowpass LC filter should have a passband below 1000 Hz and

a stopband above 2000 Hz. Thecircuit is driven by an incoming AC voltage

source with a 2 volt amplitude. If the source (internal) resistance RSOURCE

and the lcad resistance RLOAD in the embryonic circuit are each | kilo

Ohm,the i 1coming 2 volt signal is dividedin half.

The att: nuation of the filter is defined in terms of the output signalrelative

to the reference voltage (half of 2 volt here). A decibel is a unitless measure

of relative voltage that is defined as 20 times the common(base 10) logarithm

of the ratio between the voltage at a particular probe point and a reference

voltage.

In this problem, a voltage in the passband of exactly 1 volt and a voltage

in the stopsand of exactly 0 volts is regarded as ideal. The (preferably small)

variation ivithin the passband is called the passband ripple. Similarly, the

incoming signal is never fully reduced to zero in the stopband of an actual

filer. The ‘preferably small) variation within the stopbandis called the stop-

band ripp!e. A voltage in the passband of between 970 millivolts and 1 volt

(i.e., a pas sband ripple of 30 millivolts or less) and a voltage in the stopband

of betweenO volts and 1 millivolts (i.e., a stopband ripple of | millivolts or

less) is regarded as acceptable. Any voltage lower than 970 millivolts in the

passband ind any voltage above | millivolts in the stopband is regarded as

unacceptalble.

A fifth-order elliptic (Cauer) filter with a modular angle © of 30 degrees

(i.e., the ercsin of the ratio of the boundaries of the passband and stopband)

and a reflection coefficient p of 24.3 per cent is required to satisfy these

design gols.
Since the high-level statement of behavior for the desired circuit 1s

expressed in terms of frequencies, the voltage VOUTis measuredin the fre-

quency domain. SPICE performs an AC small signal analysis and report the

circuit’s behavior over five decades (between 1 Hz and 100 000 Hz) with

each decade being divided into 20 parts (using a logarithmic scale), so that

there are a total of 101 fitness cases.

Fitness is measured in terms of the sum over these cases of the absolute

weighted Jeviation between the actual value of the voltage that is produced

by the circuit at the probe point VOUTandthe target value for voltage. The

smaller tk.2 value of fitness, the better. A fitness of zero represents an (unat-

tainable) : Jeal filter.

Specifically, the standardized fitnessis

100

Fit) = SS wiate.fide
i=0
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5.6 Implementation on parallel computer

Each problem was run on a medium-grained parallel Parsytec computer

system (Andre and Koza 1996) consisting of 64 80-MHz PowerPC 601

processors arranged in an 8 by 8 toroidal mesh with a host PC Pentium type

computer. The distributed genetic algorithm was used with a population size

of Q = 10 000 at each of the D = 64 demes (semi-isolated subpopulations).

On each generation, four boatloads of emigrants, each consisting of B = 2 per

cent (the migration rate) of the node’s subpopulation (selected on the basis of

fitness) were dispatched to each of the four adjacent processing nodes.

6. Results

In all five problems,fitness was observed to improve over successive genera-
tions. A large majority of the randomly createdinitial circuits of generation 0
were not able to be simulated by SPICE; however, most were simulatable
after only a few generations. Satisfactory results were generatedin every case
on the first or second trial. When two runs were required, the first produced
an almostsatisfactory result. This rate of success suggests that the capabili-
ties of the approach and current computing system have not been fully
exploited.

6.1 Lowpassfilter

Many of the runs produced lowpassfilters having a topology similar to that
employed by human engineers. For example, in generation 32 of one run, a
circuit (Fig. 8.8) was evolved with a near-zerofitness of 0.00781. The circuit
was 100 per cent compliant with the design requirements in that it scored 101
hits (out of 101). After the evolutionary run, this circuit (and all evolved cir-
cuits herein) were simulated anew using the commercially available
MicroSim circuit simulator to verify performance. This circuit had the recog-
nizable ladder topology of a Butterworth or Chebychevfilter (i.e., a composi-
tion ofseries inductors horizontally with capacitors as vertical shunts).

Figure 8.9 showsthe behavior in the frequency domain of this evolved
lowpass filter. As can be seen, the evolved circuit delivers about 1 volt for
all frequencies up to 1000 Hz and about 0 volts for all frequencies above
2000 Hz.
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Fig. 8.9 Frequency domain behavior of genetically evolved 7-mng ladder

lowpass Iter.

In another run, a 100 per cent compliant recognizable ‘bridged T’;

arrangement was evolved. In yet another run using automatically defined

functions, a 100 per cent compliant circuit emerged with the recognizable

elliptic topology that was invented and patented by Cauer. When invented,

the Cauer filter was a significant advance (both theoretically and commer-

cially) over the Butterworth and Chebychevfilters.

Thus, genetic programming rediscovered the ladder topology of the

Butterwcrth and Chebychevfilters, the ‘bridged T’ topology, and the elliptic

topology

6.2 Tri-state frequency discriminator

The evolved three-waytri-state frequency discriminatorcircuit from genera-

tion 106 scores 101 hits (out of 101). Figure 8.10 showsthis circuit (after

expansion of its automatically defined functions). The circuit produces the

desired cutputs of 1 volt and 1/2 volts (each within the allowable tolerance)

for the tv7o specified bands of frequencies and the desired near-zero signal for

all other frequencies. -

6.3 Computational circuit

The gen:tically evolved computationalcircuit for the square root from gener-

ation 60 (Fig. 8.11), achieves a fitness of 1.68, and has 36 transistors, two
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Fig. 8.11 Evolved square rootcircuit.

diodes, no capacitors, and 12 resistors (in addition to the source and load
resistors in the embryo). The output voltages produced by this best-of-run
circuit are almost exactly the required values.

6.4 Robot controller circuit

The best-of-run time-optimal robot controller circuit (Fig. 8.12) appeared
in generation 31, scores 72 hits, and achieves a near-optimal fitness of
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Fig. 8.12 Evolved robot controller.
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Fig. 8.13 Genetically evolved amplifier.

1.541 hc urs. In comparison, the optimal value of fitness for this problem is

known to be 1.518 hours. This best-of-run circuit has 10 transistors and

4 resistozs. The program has one automatically defined function that is called

twice (incorporated into the figure).

The best circuit from generation 109 (Fig. 8.13) achieves a fitness of

0.178. Bused on a DC sweep,the amplification is 60 dB here (1.e., 1000-to-1

ratio) and the bias is 0.2 volt. Based on a transient analysis at 1000 Hz, the

amplification is 59.7 dB; the bias is 0.18 volts; and the distortion is very low

(0.17 pe: cent). Based on an AC sweep, the amplification at 1000 Hz is

59.7 dB; the flatband gain is 60 dB; and the 3dB bandwidth is 79 333 Hz. Thus,

a high-gain amplifier with low distortion and acceptable bias has been evolved.

7. Other circuits

Numerots other circuits have been similarly designed, including asymmetric

bandpas:filters (Koza et al. 1996c), crossoverfilters (Koza et al. 1996a),

double passband filters (Koza et al. 1996), amplifiers (Koza et al. 1997), a

temperature-sensing circuit, and a voltage reference circuit (Koza et al.

1997).

8. Conclusion

Genetic programming evolved the topology andsizing of five different proto-

typical <aalog electrical circuits, including a low passfilter, a tri-state fre-

quency ¢1scriminator circuit, a 60 dB amplifier, a computational circuit for

the squa:‘e root, and a time-optimal robot controller circuit. The problem-

specific information required for each of the eight problems is minimal and

consists .rimarily of the numberof inputs and outputs of the desired circuit,
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