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Series Editors’ Foreword

Oxford Chemistry Masters are designed to provide clear and concise
accounts of important topics — both established and emergent — that may be
encountered by chemistry students as they progress from the senior under-
graduate stage through postgraduate study to leadership in research. These
Masters assume little prior knowledge, other than the foundations provided
by an undergraduate degree in chemistry, and lead the reader through to an
appreciation of the state-of-the-art in the topic whilst providing an entreé to
the original literature in the field.

In this volume Hugh Cartwright has brought together an authoritative
group of contributors to provide a clear and comprehensive account of the
use of artificial intelligence for Intelligent Data Analysis in Science. This
book will interest novices, initiates and masters in the field who wish to
exploit the new and powerful techniques described and to use them in a
diversity of applications within chemistry and beyond.

Richard G. Compton
Stephen G. Davies
John Evans



Preface

That computers have revolutionized scientific research is beyond doubt.
Calculations can now be carried out at speeds that would have been unimag-
inable a few decades ago. However, just as crucially, computers have opened
up a new world of analysis through the development of intelligent methods.

Computer programs employing Artificial Intelligence (Al) are enjoying a
period of explosive growth. Al programs can now be found embedded in
scientific instruments, taking control of industrial production lines, and built
into a wide variety of commercially available software. Al constitutes a set of
tools of great versatility and power, and this is well illustrated by the contri-
butions to this text which brings together some of the leading researchers in
this emerging field.

Each chapter includes theory, practical details of implementation, and the
application of Al to the solution of real scientific problems. The extensive
lists of references at the end of each chapter will be indispensable to all those
who are encouraged to explore the subject further.

The potential of Al in science is immense. The methods and applications
discussed in this text will consequently be of wide interest to those both in
the physical and natural sciences and in mainstream Al research.

Oxford H.C.
January 2000



Contents

1 Introduction to intelligent data analysis
D. Brynn Hibbert

1.

W N

R I

12

L.

Introduction

Towards autonomous, intelligent machines (AIMs)
Data

Intelligence

Heuristics and learning

Data analysis and the embodiment of intelligence
Traceability, calibration, and validation
Requirements for an intelligent sensor
Appropriate intelligent methods

Configuration of ion chromatography — a case study in the
comparison of methods

The electronic nose — a case study in intelligent
instruments

Conclusion

2 Knowledge transfer: human experts to expert systems
Sharbari Lahiri and Martin J. Stillman

1.

(O8]

oW

Introduction

1.1  Simulation of human thought processes
Building an expert system: the problem domain and
design of the prototype

2.1 Knowledge acquisition in expert systems

2.2 Knowledge representation in expert systems
Encoding knowledge: a case history approach
Examples of expert systems that implement the case
history approach

4.1 AAexpert: an example

4.2 GCDiagnosis: an example

4.3 ERexpert: an example

Case histories to expert network

Design of a model expert system

Conclusions

The genetic algorithms, linkage learning, and scalable

data mining
Hillol Kargupta, Eleonora Riva Sanseverino, Erik Johnson,
and Samir Agrawal

1.
-

Introduction
Data mining and the genetic algorithms

O D0 D BB W=

13
16

19
19

21
25
26
30

31
36
38
38
39
39
41

44
45



x Contents

Decomposing black-box search/optimization
Cost of relation and class search
Difficult and easy BBO problems
The simple genetic algorithms
Linkage learning in simple GAs
The Gene Expression Messy GA
8.1 Population sizing
8.2 Representation
8.3 Operators
8.4 The algorithm
9.  Data analysis application
9.1 Background
9.2 Problem description
10. Diagnostic model
10.1 The objective function formulation
10.2  Results
11.  Conclusions

PN W

Theory and application of fuzzy methodology

Paul P. Wang and Fuji Lai

Introduction

Cognitive science

Fuzzy set theory and similarity relation matrices
Knowledge base

Inference using similarity relation matrices
Results

Appendix: feature generation and selection

A e

Data representations for evolutionary computation
Ian C. Parmee, Carlos A. Coello Coello, and Andrew H. Watson
Introduction

Gray coding

Encoding real numbers

Variable-length representations

Tree representation

Structured genetic algorithm

A case study

7.1 GAANT

7.2 Variable length hierarchies

7.3 The need to improve genetic programming
7.4  Boolean induction with DRAM-GP

Nk LD =

Applications of artificial neural networks to the analysis of
multivariate data

Royston Goodacre

1. Multivariate data

2. Supervised versus unsupervised learning

47
48
50
52
55
56
57
57
58
61
62

67

71

76
71
79
82
85
87
90

95
96
97
99
101
105
107
106
111
112
115

123
124



&

o

Good modelling practice

Applications of artificial neural networks
Exploratory data analyses

5.1 Self-organizing maps

5.2 Auto-associative artificial neural networks
Identification

6.1 Multilayer perceptrons

6.2 Radial basis functions

6.3 Identification of biological materials using spectroscopic

measurements
Quantification
Interpretation of neural networks
Concluding remarks

Applications of knowledge-based systems
Mary Mulholland and D. Brynn Hibbert

1.
2.
3.

Introduction

Ton chromatography

Building an expert system for ion chromatography
3.1 Selection of the expert and domain

3.2 The knowledge base

3.3 The reasoning mechanism

3.4 The interfaces

3.5 Hardware and software

Applications of expert systems in analytical chemistry
4.1 Introduction

4.2 DENDRAL

4.3 ECAT

44 ESCA

Ripple down rules

5.1 The philosophy of ripple down rules

5.2 Theory of ripple down rules

5.3 Development cycle

5.4 Summary of the RDR method

5.5 ARDR expert system for ion chromatography
Conclusions

6.1 ES in analytical chemistry

Automatic design of analog electrical circuits using genetic
programming

John R. Koza, Forrest H. Bennett III, David Andre, and
Martin A. Keane

1

2.
3.
4.

Introduction

Five problems of analog design
Genetic programming

Design by genetic programming
4.1 The embryonic circuit

126
127
128

134

137

139
141
142
143

153
154
157
157
157
161
163
163
164
164
164
166
167
168
168
168
170
171
172
174
174

177
178
179
186
186

Contents

X1



X1i

Contents

Index

4.2 Component-creating functions
4.3 Topology-modifying functions
Preparatory steps

5.1 Embryonic circuit

5.2 Program architecture

5.3 Function and terminal sets

5.4 Fitness measure

5.5 Control parameters

5.6 Implementation on parallel computer
Results

6.1 Lowpass filter

6.2 Tri-state frequency discriminator
6.3 Computational circuit

6.4 Robot controller circuit

Other circuits

Conclusion

187
188
190
191
191
191
192
195
196
196
196
197
197
198
199
199

203



Contributors

Samir Agrawal
School of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA 99164-2752, USA.

David Andre
Computer Science Division, University of California, Berkeley, California,
USA.

Forrest H. Bennett I11
Chief Scientist, Genetic Programming Inc., Los Altos, California 94023,
USA.

Carlos A. Coello Coello
Engineering Design Centre, University of Plymouth, Drake Circus,
Plymouth, Devon PL4 8AA, England.

Royston Goodacre
Institute of Biological Sciences, University of Wales, Aberystwyth,
Ceredigion, SY23 3DD, Wales.

D. Brynn Hibbert
Department of Analytical Chemistry, The University of New South Wales,
P. O. Box I, Kensington, New South Wales, Australia 2033.

Erik Johnson
School of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA 99164-2752, USA.

Hillol Kargupta
School of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA 99164-2752, USA.

Martin A. Keane
Chief Scientist, Econometrics Inc., 111 E. Wacker Dr., Chicago, Illinois
60601, USA.

John R. Koza
Section of Medical Informatics, School of Medicine, Stanford University,
Stanford, California, 94305, USA.

Sharbari Lahiri
Department of Chemistry, University of Western Ontario, London, Ontario,
Canada N6A 5B7



xiv  Contributors

Fuji Lai
Department of Electrical Engineering, Duke University, Box 90291, Durham, North
Carolina 27708-0291, USA.

Mary Mulholland
University of Technology, Sydney, Australia.

Ian C. Parmee
Engineering Design Centre, University of Plymouth, Drake Circus, Plymouth, Devon
PL4 8AA, England.

Eleonora Riva Sanseverino
School of Electrical Engineering and Computer Science, Washington State University,
Pullman, WA 99164-2752, USA.

Martin J. Stillman
Department of Chemistry, University of Western Ontario, London, Ontario, Canada
N6A 5B7.

Paul P. Wang
Department of Electrical Engineering, Duke University, Box 90291, Durham, North
Carolina 27708-0291, USA.

Andrew H. Watson
Engineering Design Centre, University of Plymouth, Drake Circus, Plymouth, Devon
PL4 8AA, England.



1 Introduction to intelligent

data analysis
D. Brynn Hibbert

1. Introduction

I am an Analytical Chemist, and it comes as a surprise to my new students
that hardly, anyone in the world wants to know the concentration of X (where
X is a conpound of their choice) per se. People want to know the answers to
questions such as ‘Can I drink the water?’, ‘Is it safe to live next door to a
nuclear power station?’, or ‘Should I invest in the proposed new gold mine?’.
The answer to each of these sample questions requires chemical analysis,
allied wit1 inputs from other science-based disciplines, but the ultimate
answer is not in parts per million, but a simple ‘yes’ or ‘no’. Intelligent data
analysis, therefore, has as an ultimate goal to take inputs from scientific
endeavor (signals from instruments), with other relevant information, and to
turn these inputs into reasoned answers. It is the purpose of this book to intro-
duce the -eader to the mainstream methods of extracting information from
data, and (he purpose of this introductory chapter to set the scene, define the
terms, and possibly to indulge in some crystal ball gazing.

Scienc: at the start of the twenty first century goes about its business via a
plethora of instruments that interact with the outside world. Direct observa-
tion has b:en superseded by mediated methods that amplify, change, and pick
out aspects of the world. The optics of a simple telescope (a straightforward
mediated method) may be understandable, but the complex signal from a
high-field, pulsed nuclear magnetic resonance spectrometer will require con-
siderable manipulation to extract the useful information about different nuclei
in the sample. Even then there may be further steps in using that information
for the benefit of society.

2. Towards autonomous, intelligent machines (AlMs)

The preseat interest in intelligent data analysis is but a step on the way to
intelligen! instruments and finally autonomous, intelligent machines. The
latter, the robots of science fiction, will have generalized mission state-
ments rather than specific directives. They will collect data, intelligently
analyse tl'em, and act on the results. Unlike the robots of science fiction
they are unlikely to be humanoid, nor very large. Imagine a nano-machine
injected into a patient’s bloodstream with a goal to repair a faulty heart
valve and then return for retrieval (or perhaps self destruct). The machine
would ne:d a powerful computer processor, sensors for compounds in the
blood, teriperature, and pressure. It must have some mechanical way of
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Fig. 1.1 Electron micrograph of a spider mite on a micro lock mechanism.
Photograph courtesy of Sandia National Laboratories’ Intelligent Micromachine
Initiative, http://www.mdl.sandia.gov/Micromachine.

orienting and propelling itself, and tools for completing the task (miniature
lasers, protein synthesis kit for tissue repair). Nearly all this technology
exists. Much of it has been miniaturized, including gears, wheels, and other
moving parts (Fig. 1.1).

Chemical sensors have been developed for many of the ions (H*, Na*, K*,
Ca**, CI") and biological species (enzyme electrodes for glucose, amino
acids, hormones, etc) likely to be encountered. Arrays of sensors are a prime
target for intelligent data analysis and will be discussed at greater length
below. Feedback and control has been demonstrated. A simple mobile robot
has been equipped with an ‘artificial nose’ (an array of vapour sensors) and
trained to follow trails of camphor painted on a factory floor (Deveza et al.
1994). The algorithm used gives a path similar to that followed by a male
lobster, tracking down the source of a pheromone plume release by an egg-
laden female (Atema 1995).

Possibly the greatest lacunae in the, admittedly fanciful, account given
above is in the software whereby data from the sensors can be analysed and
turned into actions that satisfy the mission’s primary goals, i.e. intelligent
data analysis.

Figure 1.2 attempts to bring together this discussion to show the relation
between the different levels of intelligent instrumentation, and where intelli-
gent data analysis is used to achieve these wider goals.

The solid line encloses an intelligent instrument. The end user looses the
instrument on the world and it then takes appropriate measurements, con-
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Fig. 1.2 Data, instruments, and intelligent analysis. See text for discussion.

cerns its2lf with validation, calibration, and so on, and returns results, advice,
and performs such actions as are required. The first dotted line contains an
instrum:nt that the user controls and uses to take measurements. There is still
full scope for intelligent data analysis using methods that are described in
this book. The inner rectangle shows the present position of many instru-
ments, vith some analysis being performed internally but the user being
requirec to understand and control the instrument, and also perform most of
the end data analysis off line.

3. Data

Many a :riminal case has revolved around data — blood tests on stains found
at the sc 2ne of the crime, the level of alcohol in a driver’s blood, the speed of
a suspect’s motor car. Because of the need to be certain of what came out of a
forensic scientist’s black box, lawyers have caused the notion of ‘primary
data’ to be distinguished from ‘derived data’. In the past, the primary data
could have been the reading on the dial of an instrument, faithfully recorded
in the suientist’s laboratory notebook. Now, in the age of electronic instru-
ments, the primary data may well be the contents of a file residing on a hard
disk. Whatever form the primary data takes, it provides us with a starting
point for our discussion of intelligent data analysis.

All ir struments output a signal in the form of a voltage (or occasionally a
current, ‘hat is readily converted to a voltage). This may cause the needle on a
meter tc move, it may cause a pen to trace out a line on a chart recorder, or it
may be converted to a digital signal via an analogue to digital converter
(ADC) and thus be relayed to a computer.

Intel] gent data analysis may start its work on this raw signal, or on the
product of some algorithmic manipulation ([Analysis]' in Fig. 1.2). The

Data 3
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output of a pH meter is an example of such a conversion. It is obtained
from the voltage between a glass electrode and a reference electrode via the
equation

pH=a-bV (1)

a is a constant, determined by measuring the voltage (V) in a solution of
known, or defined pH, and b is calculated from a theoretical treatment of the
response of such electrodes (the Nernst equation (Hibbert 1993)) and the
measured temperature. Although the intelligence shown by Nernst in deriving
his equation in the 1890s was considerable, no one would ascribe intelligence
to the operation of the internal electronics in the pH meter. Wherein, there-
fore, lies intelligence in data analysis?

4. Intelligence

Philosophers and computer scientists have made a tidy business of discussing
the nature of artificially intelligent machines and their relation to human intel-
ligence. The sections on knowledge-based reasoning and expert systems con-
front directly the question “What is intelligence?’, and other chapters in this
text build on the notion implicit in the title that there exists something that
could be called ‘intelligent data analysis’. The much-criticised definition of
artificial intelligence given by Minsky (1968) ‘the science of making
machines do things that would require intelligence if done by men’ may. apart
from the inherent sexism, serve us here. We believe that the interpretation of
scientific data requires intelligence, and thus computer software that can take
low-level data and spit out high-level information, advice, or simply more
useful data may be described as ‘intelligent’. In adopting this approach we
may be accused of a ‘heads-down, pure engineering’ view of artificial intelli-
gence (Whitby 1988) but it will allow us to make progress on the central
issue of whether we can use computer procedures in the sciences that can
substantially upgrade the information availability of data. The philosophical
foundations of this book may at least be on a par with the modern concepts of
the ‘intelligent micromachine initiative’ (see Fig. 1.1) and somewhat ahead of
‘intelligent polymers’'.

5. Heuristics and learning

The exercise of human intelligence often arises when applying general
knowledge to fill in the gaps in understanding situations for which only
partial information is available. The data from most experiments may, theo-
retically, have a number of interpretations but in the context of a given situ-
ation humans see the obvious one, often being guided by expectations about
the outcome. The intervention of an intelligent human, and what distinguishes

IThere exists at the University of Wollongong, New South Wales, Australia the “Intelligent
Polymer Research Centre’.
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levels of expertise in humans, is a subtle blend of experience and understand-
ing of the field in question. Expertise is gained by exposure to situations for
which the answer is known (or becomes apparent), direct teaching, and gen-
erally trving and failing. This is the most difficult ‘intelligence’ to bring to
data analysis.

6. Data analysis and the embodiment of intelligence

In using a term such as ‘increase the information availability’ of data, we
incorporate the idea that, at one level, data analysis can be simply a reorgan-
ization c¢f data. A principal components analysis (PCA) of a set of spectra
may reveal groupings of objects or variables that are not apparent from an
examina‘ion of the original data (Martens and Naes 1989). PCA is a linear
matrix rnanipulation of the data. Nothing is added or removed, the data is
reorgani-ed and in doing so features are revealed allowing the intelligence of
the obseiver to extract the necessary information ([Analysis]" in Fig. 1.2).

Modern trends in scientific instrumentation have been to increase the
amount of data enormously. A human plotting data a point at a time read from
an instru mental dial lags far behind an analogue to digital converter accessing
many clannels at a megahertz rate. Diode array detectors, using charge
coupled device technology, capture many spectra per minute at hundreds of
wavelengths. The information so obtained has increased the power of HPLC
to discrininate between closely eluting compounds. The millions of numbers
represeniing absorbances at given wavelengths and times cannot be under-
stood when viewed as raw data. At least a three-dimensional visualization
and further intelligent analysis is required to make sense of what is being
seen.

Intelligent data analysis really comes into its own when the data issuing
from the instrument is augmented by prior knowledge or understanding
([Analys s]" in Fig. 1.2). The dotted line from the End User in Fig. 1.2 shows
that knoivledge is required if the user is to perform her own analysis, but the
instrument could already be imbued with such knowledge, input via the
knowled ze base of an expert system, or learned from earlier experience.

7. Traceability, calibration, and validation

Traceab: lity to the Systéme Internationale (SI) is common in all fields of
physical measurement but has only recently been identified as a major
problem in chemistry (Kaarls and Quinn 1997). Commercial (through trade)
and publ: ¢ (health and environment) pressures demand reliable measurements
that can only be assured if those measurements are traceable to agreed inter-
national -eferences. Physical measurements of time, length, and weight have
long been associated with international standards. Electrical potential and
current are also traceable. More recently traceability of chemical measure-
ments has been extensively discussed, both in terms of possible redefinition
of the grum in terms of the SI measure of the amount of substance (the mole)
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and practical realization of this by establishment of certified reference labora-
tories (de Bievre and Taylor 1997).

The reliance on apparatus that does not directly observe Nature, implies
the need for calibration, namely the procedure by which the relationship
between the instrumental response and the level of the measurand is estab-
lished. If an instrument returns the concentration of a component, no matter
in how complex a manner, traditional calibration could be used with certified
reference materials providing the traceability to international standards. If,
however, the intelligence is taken one step further to offer advice based on
the direct results of the measurements, then it is hard to see how metrologi-
cally valid calibration could be effected. An example would be the establish-
ment of the authenticity of olive oil, based on the output of an array of vapour
sensors and a neural network trained on a number of genuine and ersatz
samples. No single compound is explicitly determined, rather it is the ensem-
ble of vapours that triggers the real/fake result. It may be argued that because
no aciual concentration is measured then there is no metrology problem to
consider. However if instruments in the future are to be seen as increasingly
intelligent, then some means of assessing the calibration must be developed.
Sobolev and Aumala (1996) have addressed the problem of metrological
support in intelligent systems, defining their concept of Metrological
Automatic Support (MAS). While concentrating on intelligent instruments
for which measurements are without ambiguity (by implication physical
rather than chemical measurements), they identify complexity and the ability
of intelligent systems to reconfigure themselves as reasons why traditional
metrological approaches may fail.

That an intelligent instrument may arrive at an answer from a number of
pathways through the possible configurations of the instrument and the near
impossibility of establishing the metrological characteristics of those possible
structures has led to the concept of internal or autonomous verification. This
has the advantage of tracking changes in the system itself and thus maintain-
ing a chain of calibration even if the instrument changes the structure of the
measurement chain. Models of the working of sensors and other parts of an
intelligent instrument are required, and these may be set up and tested via
virtual instruments (see below).

There is a clear challenge to the writers of intelligent software to estab-
lish the validity of their code. Validation is the demonstration that a
process is acceptable for its intended purpose (Green 1996). The follow-
ing, with an emphasis on the analysis of pharmaceutical compounds, are
identified as being generally required for validation of an analytical
method: specificity, accuracy, precision, detection limit, quantitation limit,
linearity, and robustness. If the output of intelligent data analysis is a con-
centration then most of the validation criteria could be used. In the more
complex world of intelligent machines linearity of calibration would be
replaced by a suitable statistical measure of the goodness of the regres-
sion, perhaps established by cross validation. Interlaboratory trials could
establish measures of precision even if an uncertainty audit, with propaga-
tion of uncertainty of the steps in the analysis through to the final result, is
not possible.



Requirements for an intelligent sensor

Accuracy is usually measured in one of four ways. The most metrologi-
cally sound method is to compare the analysis with that of a certified refer-
ence material (CRM) of near the same concentration and composition. For
many samples such a well-characterized CRM is not available. Second, the
results may be compared with the analysis using another validated test
method. This also encompasses the idea of using a certified reference labora-
tory to independently analyse a sample. However exactly equivalent methods
are not always available. Thirdly, a known amount of the analyte (a spike)
may be xdded to a blank matrix and the recovery determined. This is common
in the pharmaceutical industry. If the matrix cannot be made up independ-
ently to zive a blank to which analyte may be added, the final method is that
of standard addition to the sample, followed by a calculation of the recovery.

The neasure of robustness is fraught with danger for methods based on
intellige 1t data analysis. The robustness of a method is its ability to remain
unaffected by small changes in the system as may be found in normal prac-
tice. Parameters such as temperature, pH, the way that the instrument is oper-
ated, and the nature of the matrix will show a natural variation, and unless
they are explicitly compensated for (such as temperature) it must be estab-
lished how they will affect the analytical result. It is rarely good enough to
change e identified factor at a time. Any correlation between variables will
lead to erroneous results. Multivariate methods that allow the analysis of
target analytes in the presence of multicomponent matrices means that to be
tested thoroughly, a large experimental design is probably required. As with
the narrc wer problem of traceability discussed above, the more intelligent the
system, the wider the range of situations in which it can be used, and the
greater (1e task of validation.

In addition to the analytical validation that is required, a complex program
must be validated internally, i.e. does the software deliver the output that the
program.mer thought it should? This is a major concern of computer science
and a steady stream of much publicized computer-aided disasters does not
appear “o aid public confidence in the ability of software to deliver the
desired esults (Waldrop 1987).

8. Requirements for an intelligent sensor

For data analysis to be intelligent, the data supplied must be of a quality to
allow su ch analysis to function properly. A number of papers in a volume of
the jourral Measurement and control were devoted to the topic of intelligent
instruments (Brignell 1996). From an engineering aspect there are several
qualities of an intelligent instrument that are worthy of note. Riviere et al.
(1996) listed the properties and functionality of an intelligent sensor. These
are compiled, with considerable amendment for an intelligent chemical
sensor in Table 1.1.

In the first column we see that collection of data is only one function that
is requir:d of a suitably intelligent instrument. The data must be stored (in the
case of |arge data sets this may require compression) and properly indexed.
When interrogated the data must be made available, after some validation

7



8 Introduction to intelligent data analysis

Table 1.1 Intelligent chemical sensors. Requirements and functionality

Data manipulation Measurements Data analysis
to be made
e Collection of e Measurand(s) e Calibration
data
(measurement) e Physical e Calculation of
(temperature required information
e Storage pressure) and inferences
(concentrations
e Distribution to e Internal diagnostic leading to advice)
authorized
personnel e Time e Validation
/diagnostics,
o Deletion of Time/date stamp
data (clearing
of memory) e Advice — answering
wider questions with
contextual

understanding

that the system or person accessing the instrument has authority to do so. The
memory will be freed when the data is no longer needed by the instrument, or
when higher priority data must be stored.

In many present-day sensors the instrument has an obvious primary meas-
uring device, plus other sensors that are required to compensate the measure-
ment and internal devices to check the general integrity of the device
([Analysis]"™ in Fig. 1.2). However increasingly there is what may be called a
‘total measurement process’ in which a number of variables are measured
simultaneously and processed to yield both information about the analyte and
other diagnostic information. Array sensors used for vapours in a number of
‘electronic nose’ instruments are a good example of this. Thus at the level of
the sensor itself, the distinction between measurand and other species has
become blurred, leaving the data analysis to sort out the different output
requirements.

The data analysis therefore brings together measurements on standards
(calibration) and the system to provide a first level of information, which may
be concentrations of the target analytes. For a complex array of measure-
ments the software to accomplish this could well be classed as intelligent.
Further intelligence is shown if the measurements are validated, by checking
compliance information, making measurements on check standards, deter-
mining that measurements are within acceptable bounds, that calibration lin-
earity is maintained, and that the basic electronics are functioning as
specified. Data should have the appropriate level of auxiliary information, the
minimum being a time/date stamp. Finally an ensemble of data may be
analysed to provide the top level of information, such as advice to the user
that may come from an expert system.



Appropriate intelligent methods

The roregoing discussion shows the serious approach taken by the engin-
eering community to the problems created by the complexity of intelligent
instruments. A neural network that uses sensory input data to determine the
origin o olive oil, is a long way from a finished, validated instrument that
can work in an olive oil bottling plant. Two interesting approaches to the
design of intelligent instruments have recently been published. One tests and
designs “he instrument in a computer program, thus creating a virtual instru-
ment that can quickly be assessed, changed, or reprogrammed before too
much expensive engineering takes place. Taner and White (1996) describe a
technique using virtual instrumentation for testing and analyzing an elec-
tronic sub-system.

Luttenbacher et al. (1996) consider the requirements of an intelligent
sensor having to connect to other sensors and instruments as part of the make
up of intelligent machines. To integrate an intelligent sensor into an auto-
mated si'stem, there must exist a model of the sensor in terms of the services
it can o:fer, the inputs required, and its general behaviour. They describe an
object oiented approach to build models, and give an example using OMT
(object rodelling technologies).

9. Appropriate intelligent methods

Reading the chapters of this book may leave a neophyte data-analyser with
the que:tion ‘which, of such powerful methods should I use?’. There are
hard-lin:: proponents of any method who maintain that all knowledge may be
extracted using their technique, but there is little evidence that any one
method is superior over a wide range of problems. Typically the literature
abounds with papers that compare method X with method Y for a restricted
problem:, and for which X is obviously better suited than Y anyway. The
choice cf data analysis method must rest on two considerations, the nature of
the data and the nature of the required output. Practically there is a third
factor, riamely the availability and user friendliness of the software, which
tends to ninder the widespread use of new methods.

Figurz 1.3 attempts to show the relationship between the three main areas
of data :nalysis, statistical multivariate analysis, neural networks and logic-
based programming, and the nature of the data and problem.

Data may be numerical, either continuous or discrete?, or symbolic.
Logical manipulation of symbols (words, sentences, etc), and the output of
advice i: usually thought of as the province of expert systems, knowledge-
based reiasoning, and the like. At the other extreme, the treatment of numeri-
cal data with a quantitative output is often treated by statistically based
methods such as principal components analysis, and regression, partial least
squares -egression, or ridge regression. Classification based on numerical
data may be accomplished by methods such as discriminant analysis,

“Because of the use of analog to digital converters all data from instruments is discrete, but if
the discretization is fine enough. methods are not disadvantaged by treating the data as
continuous

9
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o -

Advice | ES, KBS
5 ANN GC
& LDA, PCA,
5 KNN, CA
o GA

MLS, PCR, PLS,
Quantitative RR
Numeric Symbolic

DATA

Fig. 1.3 Intelligent data analysis methods arranged in terms of the nature of the
data and the required output. Key to methods: LDA, linear discriminant analysis;
KNN, K-nearest neighbours; PCA, principal components analysis; CA, cluster
analysis; MLS multivariate linear regression; PCR, principal components regres-
sion; PLS, partial least squares; RR, ridge regression; ANN, artificial neural
network; GA, genetic algorithm; GC, genetic classifier; KBS knowledge based
system; ES, expert system.

SIMCA, K-nearest neighbour, or cluster analysis. Artificial neural network
methods take up much of the middle ground. They are numerically based but
are best suited to classification problems. The inherent non-linearity of neural
networks and their flexibility has led to their wide use in data analysis.
Evolutionary optimizers such as genetic algorithms are used to discover
optimum parameters of the system and also show great flexibility through
different codings of the problem. They may also be used to optimize another
data analysis method, and thus may be considered as providing meta-
intelligent data analysis. Methods can be used effectively in combination.
Induction methods based on information theory can be used to provide the
rules for an expert system, and neural networks have been the classification
front end to expert systems in speech recognition. It should be noted,
however, that with sufficient determination any method can be used for any
data. Thus a purely numerical regression technique such as partial least
squares that is most comfortable in determining continuous numerical vari-
ables can be used to, for example, classify diseases from blood analysis data.
Similarly by binning ranges of an output variable a classifier may be made to
yield a number.

10. Configuration of ion chromatography — a case study in the
comparison of methods

An example of the comparison of many different analysis methods for a
single problem comes with a series of papers on the configuration of an
instrument to separate a mixture of ions by a group at the University of New
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South Wiles in Sydney, Australia (Mulholland ez al. 1993, 1995a, 1995b,
1996; van Kampen 1997; Ramadan 1998a, 1998b). The design of a suitable
ion chromatography (IC) method requires knowledge of the chemistry of ions
and their interaction with column materials in different carrier solutions and
the possioilities for their detection. Different chromatographic mechanisms
can be applied to separate ions and each of these requires a considered choice
of method conditions. By its nature IC is used to analyse mixtures and so
there is infinite variety in the possible solutions that will be presented to the
method. In addition the application requiring the chemical analysis may
impose ils own constraints, for example environmental samples may have
low concantrations of the analyte ions and the amount of biological samples
available may be small. Previous applications have applied expert system
technoloy to solve problems in chromatography but IC had not been tackled
until the comprehensive database produced by Haddad and Jackson (1990)
provided an ideal source of data on this subject. A set of nineteen attributes
were defined to characterize a system. Each attribute has a number of poss-
ible valu:s. The attributes give information both about the sample (number of
solutes, nv-adsorbing, solubility, application, presence of sulfate ...) and
about the chromatographic method (detector, mobile phase, pH, mechanism
of the separation ...). For each attribute it may not be clear what may be
known b the user and what is required to be supplied by the program. For
example. although the detector may normally be an attribute to be predicted,
if a laboratory only possesses one type of detector, then that must be a given
attribute ind the method should, if possible, be determined around it.

The database consisted of previous published IC methods covering the lit-
erature u» to 1990. The total number of cases was 14 103. The database was
not ameided in any way. Thus it contained errors, duplications, and
conflicting advice (more than one method may be proposed for a particular
case). The database also spanned ten years, during which time the subject
advanced considerably, so that a method suggested in 1980 may have been
superseded by 1990. Finally, it must be noted that a stunningly good method
will probably only be published once. What tends to appear in the literature
are niche methods and ones with novel, but not necessarily useful, methodol-
ogy. For these reasons, therefore, this represented an excellent ‘real world’ test
of the method of data analysis. The project commenced as a suitable problem
for testirg the use of an expert system methodology called ‘ripple down
rules’. Tl e extent of the database also meant that building the system by hand
would be too time consuming, and so initially two induction methods, C4.5
and INDUCT provided an automatic way to create the expert system
(Mulholland et al. 1995, 1996). A self-organizing neural network and a
genetic algorithm classifier were then applied to the database (Mulholland
et al. 1535b, 1996). To address the question of whether linear statistical
methods :ould be used on the problem, principal components regression and
linear discriminant analysis were applied to a suitably coded database
(Ramadan et al. 1998). The problem of using statistical methods requiring
continuous variables for such a classification problem is well known (Sharaf
et al. 1986). It may be argued that these methods are simply not suited to dis-
crete data, but as principal components analysis and discriminant analysis

11
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have become so widespread in their use, if they could be shown to work
it would bring a range of problems within the purview of mainstream
chemometrics.

There are two coding options. One is to assign a cardinal to each possible
value of the attribute. Thus for the class of ion, 1 could code for organic ions
and 2 for inorganic ions. Unfortunately these labels bear no relationship to
each other. However the charge on an ion conveniently fits this coding, taking
values from —4 to +4. The required output may be similarly coded, for
example if the detector was being classified then an output of 1 would be the
choice of a conductivity detector, 2, a UV detector and so on. Because the
classification methods give a decimal value, the output needs to be rounded to
the nearest cardinal. This shows the difficulty of using this coding, as an
output of 1.5 does not really mean ‘choose between detector number 1.0 and
detector number 2.0°. A better way of coding the input and output is to assign
a variable taking a value between 0 and 1 for every possible value of each
attribute. Ideally for each attribute the output registers 1 for the correct choice
and O for all others. Fractions now do have a meaning, reflecting the certainty
of a given value. This coding increases the number of variables considerably
(in the case of the IC problem from 19 to 118) but with a large enough train-

Table 1.2 Classification of detectors for ion chromatography by different methods

Algorithm Percentage classified Reference

correctly
Genetic algorithm 82 van Kampen et al. 1996
Ca.5 70 Mulholland et al. 1995a
Linear discriminant 69 Ramadan et al. 1998
analysis with prior
probability = fraction
in database
Neural network 68 Mulholland et al. 1995b
INDUCT 68 Mulholland et al. 1995b
Principal components 60 Ramadan et al. 1998
regression with binary
data
Linear discriminant 33 Ramadan et al. 1998
analysis with prior
probability = 1/18
Principal components 28 Ramadan et al. 1998

regression with cardinal
data
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ing set il is not prohibitive. It is not surprising that with this coding the
classification of detectors was twice as successful as with cardinals (see
Table 1.2) (Ramadan et al. 1998).

In linear discriminant analysis the discriminant score is calculated for each
case for cach class from which the probability that a case belongs to the given
class is calculated. The discriminant function is optimized to give the
maximum number of correct classifications of the training set. Once trained
the discriminant function is applied to data from unknown cases and the
classes cualy predicted. The probability that a case with given discriminant
score belongs to a particular group requires an estimate of the prior probabil-
ity of the group which can be taken as proportional to the incidence of that
detector in the database, or equal across the groups. In the first instance, con-
ductivity detectors are weighted highly (7775 cases out of 12 693 use a con-
ductivity detector) and a post-column reactor incorporating a detector (9
cases) is greatly weighted against. To classify detectors correctly that appear
infrequently in the database, an equal prior probability has to be chosen.
Again this shows how awkward using numerical methods is for what is
essential y a symbolic problem. In an expert system little-used detectors
would be catered for by unique rules that fired only occasionally. Table 1.2
compare: the overall success rates of these disparate methods in choosing a
detector. Apart from the methods that were not expected to work (cardinal
coding in PCR and equal prior probability in LDA) there is a remarkable con-
formity cf results, with the genetic classifier giving the best result. Inspection
of the daabase led van Kampen et al. (1997) to conclude that because of the
factors discussed above an 80 per cent success rate was probably the best any
classification method could achieve.

11. The electronic nose — a case study in intelligent instruments

This boox is organized around particular techniques that may be described as
intelligert data analysis. Here we shall look at a particular application and
describe the techniques that have been brought to bear on the problem. No
attempt will be made to give detail of the data analysis, these topics are
covered _ater, but it may be useful to understand the interplay between the
problem. the instrumental approach, and the data analysis.

Resea -ch into the ‘artificial’ or ‘electronic’ or ‘bionic’ nose, is an expand-
ing field ‘with sensor design based on different chemical principles, a range of
applications, and increasing numbers of instruments on the market (Gardner
and Bartlett 1994, Hodgins and Simmonds 1995). An array of sensors, each
of which responds to a number of different compounds but with different sen-
sitivity, has the potential to differentiate among a very large number of com-
pounds. It can be appreciated that if a sensor may yield a signal at x levels,
and N sensors are grouped in an array, there are x" possible combinations of
response. For even modest values of x and N the theoretical number of com-
bination: quickly exceeds the number of known compounds; 107 small
organic rolecules and 10'3 polymers and proteins could be accommodated
by 10 sensors returning 32 levels (5 bits). Even allowing for uncertainty in

13



14 Introduction to intelligent data analysis

the sensor readings leads to a calculation of 5 x 10'" compounds with
10 sensors having 10 per cent uncertainty in the response (Muller 1991). Real
arrays of sensors can be highly correlated, thus reducing the information, but
arrays of sensors have evident advantages over single compound sensors. The
mammalian olfactory system appears to have evolved along these lines. It is
not thought that one receptor in the nose codes for one type of vapour mole-
cule. In fact it is hard to see how this could ever be selectable in an evolution-
ary sense as molecules new to an individual would not be perceived (i.e. there
would be no mechanism for ‘A smells like B’ if receptors were strictly
unique). At present we believe that about 1000, but possibly as many as
10 000, different receptors code for about 10 000 different smells (Bell 1996).

A generalized sensor therefore may react to generic properties of mole-
cules such as ability to undergo oxidation, weight, size, or solubility. These
properties have formed the basis of array sensors. For example the conduc-
tion of semiconductors such as tin oxide (Chiba 1990) depend on the oxida-
tion of the impinging molecule by surface oxygen. Conducting polymers such
as polypyrrole (Hierlemann er al. 1995) interact with organic vapours leading
to changes in resistance. More sensitive are sensors that monitor mass
changes of surface polymer layers as vapours partition into them. Examples
of these are the quartz crystal microbalance (Barko et al. 1995), and surface
acoustic wave devices (Hivert er al. 1994). Optical sensors incorporating
polarity-sensitive fluorescent molecules in a polymer matrix (Dickinson et al.
1996) rely on the dissolution of the vapour molecule causing changes in
polarity. The non-specific array is then manufactured by coating a bundle of
optical fibres with films having different polymer composition and constant
fluorophore. A sensor may thus be made quickly with a wide range of coat-
ings having slightly different responses.

Whatever the transduction, the output of the array of sensors is a number
of time-varying voltages. These must be calibrated to whatever problem is at
hand. The interest in electronic noses tends to arise from the applications
which require some added intelligence such as deciding on the origin of a
whiskey, or the authenticity of an oil.

There is some debate about the best pretreatment of the voltage signals.
Options include mean centring (subtraction of the mean of a column or row
of the data from each value), double centring, standardization (division by the
standard deviation of a column), and range scaling (causing the values to fall
between 0 and 1). The choice of pretreatment depends on the nature of the
information in the signals. Standardization, for example, tends to emphasize
smaller signals (with commensurately smaller variance) over greater signals.
The concentration dependence of the sensor response may be removed by
dividing by the root mean square of the responses. This apparently drastic
step improves the discrimination achieved by principal components analysis
and cluster analysis and mimics the human nose, which is not efficient at per-
ceiving the intensity of smells (Gardner 1991). A discussion of data process-
ing with reference to the analysis of essential oils has been given by Hibbert
(1996).

Moving on to the substantive part of data analysis, array sensors rarely
follow well characterized functional forms, and certainly not independent
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linear medels as are the basis of methods such as principal components
analysis. Despite this, linear methods such as principal components analysis
(PCA) and principal components regression (PCR), partial least squares
regressior (PLS), discriminant analysis and cluster analysis (Gardner 1991;
Auge et .. 1995; Stetter et al. 1993; Seemann et al. 1997; Barko et al. 1995;
Sundgren et al. 1990) are found as often as the most prevalent of the non-
linear methods, artificial neural networks (Auge et al. 1995; Seemann et al.
1997; Surdgren et al. 1990; Nakamoto ef al. 1993; Singh et al. 1996).

Howe er, except for very simple cases PLS or PCR does not do well
against either non-linear PLS or artificial neural networks (Stetter et al. 1993)
because of the non-linear nature of sensor data. Other methods published
include X-nearest neighbour (KNN) classification (Barko et al. 1995;
Sundgren et al. 1990), feature extraction methods (Seemann et al. 1997;
di Natale 2f al. 1995a) and vector representation (Weimar et al. 1990).

Artific :al neural networks have been shown to work well for complex,
non-linea: classifications. No model is assumed, the calibration data is pre-
sented to the ANN, and an internal model is built. ANNs are particularly
powerful when used for classification, for example distinguishing among
beers, wires, cheeses, and other foods. Most commonly published cases use a
feed forw ard net with back propagation for training.

ANN s are powerful, but must be used in context. Calibration, discussed in
general ¢pove, must use standards that span all possible combinations of
input par: meters and all classification outcomes. Back propagation training is
computer intensive, which is a drawback if recalibration, because of drifting
sensors ¢ - changes in the system being monitored, is necessary (Nakamoto
et al. 1943). The requirements of re-training are also not well understood.
Pruning, the removal of sensors (i.e. ignoring a sensor which does not con-
tribute to the classification model) or the number of hidden neurons in the
network, s necessary to avoid overtraining (Seemann et al. 1997). That this
problem 'development of the network until the fit to the training set is excel-
lent but jredictive ability is lost) is perceived in the development of array
sensors niay reflect the tendency to use too few training sets.

The presentation of each training set to the sensor array is an experiment
for which a standard has to be provided, so it is not as easy to obtain compre-
hensive t-aining sets, as, for example, for vision-based systems. Parsimony in
the numter of sensors recalls the theoretical treatment of Muller (1991), and
underline ;s the fact that data is no use unless it contains extractable informa-
tion. Rec:ntly the speed of self organizing maps (di Natale ez al. 1995b) and
self organizing adaptive resonance networks (Gardner ef al. 1996) have been
shown to be useful in analysing data from sensor arrays.

The triatment of complex data from a sensor array will probably fall into
the category of ‘intelligent data analysis’. However, of the many papers pub-
lished with different sensors and different methods of data analysis, the
majority .re laboratory-based studies on contrived or extremely restricted sets
of data. {ales of commercial electronic nose instruments suggest some are
deployed in industry, but anecdotal evidence implies that there have been no
great suc :ess stories of their use in genuinely intelligent situations. The
problem ies as much with the chemistry of the sensors as with the data
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analysis, but this field remains a challenge for those who would claim to have
produced intelligent data analysis methods.

12. Conclusion

Intelligent data analysis does exist. Modern instrumentation provides such a
great quantity of data that, even at an early stage, intelligence must be shown
to manipulate and analyse them. Future intelligent instruments and
autonomous intelligent machines will require sophisticated data analysis.
This book aims to describe where mainstream intelligent data analysis is now,
and outline trends.
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2 Knowledge transfer:
human experts to expert

systems
Sharbari Lahiri and Martin J. Stillman

1 Introduction

At a meeting in 1956 at Dartmouth College, Marvin Minsky, John McCarthy,
Nathaniel Rochester, and Claude Shannon gave birth to the term ‘artificial
intelligence’ and announced the first computer program, the Logic Theorist,
in artificia! intelligence (AI). This program was developed by Allen Newell
and Herbe 't Simon of Carnegie Mellon and J.C. Shaw of the Rand Corp. The
research o Newell, Shaw, and Simon on the Logic Theorist, a chess playing
program, .nd the General Problem Solver (GPS) dominated the first decade
of Al fron the mid-1950s to the mid-1960s. Their research in areas such as
heuristic search, problem solving, planning, and knowledge representation
remain important areas of Al and lead to the current generation of expert
system prc.grams.

In studving expert system applications in science, the hardware and soft-
ware comahonents serve only as tools to represent and apply scientific knowl-
edge. The key to the application of Al techniques is knowledge coding. In
this chaprer we describe and illustrate implementation of techniques of
knowledg: coding that allow for greater use of expert systems. We begin with
a discussicn of the transfer of human expertise into an expert system, contin-
uing with 1 discussion of the two important stages involved in the transfer of
human exoertise, namely (a) knowledge acquisition and (b) knowledge repre-
sentation, and end by discussing our approach to building rule-based expert
systems.

1.1 Simulation of human thought processes

GPS was one of the first programs created to simulate human thought
processes. In the GPS:

o the problem was expressed as an external representation,

® atrans ator converted the problem into an internal representation, and

@ problen solving techniques provided the solution by processing the inter-
nal representation.

The power of the GPS was based on the effectiveness of the problem solving
techniques used and its generality was demonstrated by showing that the
program ¢ >uld solve problems associated with different knowledge domains.



20 Knowledge transfer: human experts to expert systems

Problem solving was based on a heuristic search that was guided by a tech-
nique called ‘means-end analysis’. In means-end analysis, the approach to
analysis was based on the desired solution (end to be reached). The GPS con-
sists of a group of methods capable of solving one or more problems. A ‘big
switch’ model of generality was proposed if there was a need for a diagnostic
routine to relate a given problem to a particular method.

However, the concept of generality was found to give rise to systems that
were inefficient in terms of performance. The development of specific knowl-
edge based systems began in 1965 when work started on DENDRAL, a
system to interpret mass spectral fragmentation patterns. In 1973, researchers
at Stanford University reported their results for MYCIN, a knowledge based
system that was used to offer advice on possible treatments of bacterial infec-
tions in blood. In 1974, PROSPECTOR, an expert system to aid geologists in
ore exploration was developed at the Stanford Research Institute.
DENDRAL, MYCIN, and PROSPECTOR are landmarks in the history of the
application of artificial intelligence techniques to complicated real world
problems because each program was designed to solve a specific problem.
DENDRAL and MYCIN showed that knowledge based systems offered high
levels of performance because the emphasis was on knowledge accumulation
in a particular area. The success of these expert systems led to the develop-
ment and expansion of this new discipline.

Expert systems and neural networks have since been used extensively in
chemistry. Typical applications include (i) interpretation of possible chemical
structures from spectroscopic data, (ii) choice of optimal parameters for instru-
ment operation, (iii) selection of an appropriate method of analysis, and
(iv) diagnostic systems in which causes of chemical problems are inferred
from a list of symptoms (most of the references given at the end of this chapter
illustrate such applications). Each of these expert systems makes use of heuris-
tics and inference mechanisms to represent and use knowledge belonging to a
particular domain. Table 2.1 lists various expert system projects in the authors’
laboratory where the key research has been in the knowledge coding and user
interface steps. The emphasis on diagnostic expert systems for analytical
chemistry was chosen because the knowledge domains are so well known that
many experts are available, making knowledge acquisition easier. In addition,
once the system is complete, there are many who can verify the accuracy of
the decision-making that is based on the coded knowledge base.

Although similar in context, procedural artificial neural networks are com-
posed of input and output units that simulate the computational aspects of
the human brain. Neural networks have been used for spectral interpretation,
recognition of flow injection patterns, qualitative and semiquantitative analy-
sis in ICP-AES, and for modeling and prediction in multicomponent analysis.
Unlike expert systems, neural networks are considered to handle ‘fuzziness’
in the data and information well.

Expert systems can be designed to handle modifications in knowledge
through revisions of the knowledge base. However, this can be difficult,
therefore it is important to make the construction, expansion, and modification
of the knowledge base of an expert system efficient and user friendly through
the availability of appropriate tools.
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Table 2.1 A summary of the applications developed in the Stillman Laboratory at the U.W.O.
(Reproduced with permission from Zhu and Stillman 1996.)

Program Module Software Tool Description
(personnel)
EAshell EAengine C A Windows-based inference engine,
(G. Huang) accessible by DLL function call.
TableGenerator C, Excel A tool kit for the knowledge
acquisition process.
RuleEditor C A batch processor to convert a filled
KDM into a rule file (KBF).
AAexpert AAdiagnosis KDS, EAshell, A diagnostic expert system for the
(S. Lahiri) Visual Basic atomic absorption spectrometer.
AAmethod EAshell, Visual An expert system for method
Basic selection in flame AAS.
AAcontrol EAshell, C, A control program for automated AAS
Fortran analysis of trace metals.
GCexpert GCdiagnosis EAshell, C, A diagnostic expert system for gas
(H. Du) Visual Basic chromatography.
GC-QC EAshell, C A module performing data analysis.
SPILLexp=rt ACselect Quick Basic, A module for selection of proper
(Q. Zhu) KDS analytical methods based on the
matrix, concentration range, and
detection limit required.
ERexpert EAshell, A program using both an internal
Access, Visual database and an expert system
Basic module to advise on the best
response to emergency chemical
spill accidents.
ACmethod EAshell, KDS, A updated version of ACselect

GCMSdiagnosis
(Q. Zhu)

QISMSdiagnosis

SPECview

DIAGplatform

Access, Visual
Basic

EAshell, Visual
Basic

Visual Basic

Visual Basic

comprising a database of methods
and an expert system component.

A diagnostic expert system for GC
tandem mass spectrometer using the
quadrupole ion storage device.

A module directly access the Varian
Saturn series of GCMS data

A module automatically calculates the
conversion efficiency of a GC-MS-MS
process.

2. Building an expert system: the problem domain and design
of the prototype

The completeness of the description of the problem domain is the most
important criterion in the successful development of expert systems. The
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System Design
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Performance
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Acceptance
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] Knowledge extraction
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l Knowledge transformation ‘

|
Y

| Semantic networks |
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Plan

| Frame representations |

I Logical expressions using a rule format

Fig. 2.1 The stages involved in the construction of an expert system application.
Knowledge acquisition is a particularly important step that can be the bottleneck
for subsequent development work. Reproduced with permission from Zhu and
Stillman 1996.

crucial factors that determine whether an expert system will be able to solve a
particular problem are: the nature of the problem, the availability of human
expertise, and the ability to analyse the expertise and the problem in such a
way that the knowledge can be coded into the knowledge base (Jackson
1990).

Full scale development of an expert system should be preceded by devel-
opment of a prototype that can be used to indicate the appropriateness of
using an expert system to solve the problem (Waterman 1986). Prototype
design requires that an overall plan for the development process be deter-
mined and individual steps outlined. Figure 2.1 shows the stages commonly
required. In many situations, knowledge acquisition proves to be the most
difficult task to complete because of the interaction with experts who are not
part of the development team — instead they are co-opted to provide their
expertise. Personnel scheduling and cooperation of the various experts in
allowing sometimes naive discussions of their expertise combine to reduce
productivity at this crucial step.

The following example shows the relationship between the problem
domain and the design of the knowledge base. Planning for the coding of the
knowledge base requires that the domain knowledge be very clearly delin-
eated. Figure 2.2, taken from Zhu and Stillman (1995a), shows how the deci-
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SCOPE OF THE DECISION PROCESS

1. SCIENTIFIC & TECHNICAL INPUT

2. REGULATORY INPUT

3. POLITICAL, SOCIAL & ECONOMIC INPUT

|

f RESPONSE SCENARIO \
/ Y \
POLITICAL, SOCIAL SCIENTIFIC and REGULATORY
& EONOMIC input TECHNICAL input input

EVALUATION INPUT
OF EACH ASPECT

[DECISION SCORE 1| |DECISION SCORE 2 | | DECISION SCORE 3

Y
BEST RESPONSE
DECISION

Fig. 2.2 Description of the different aspects involved in the cleanup processes
for a chemical spill accident. Three factors need to be considered: (i) scientific and
technological responses, (ii) regulatory constraints, and (iii) political, economic,
and social demands. Reproduced with permission from Zhu and Stillman 1995a.

sion making process required following a chemical spill must be broken
down into a series of subdomains.

For each area different decision-making processes are involved and each
subdomain must be considered independently. A significant part of the
problem c.>main is concerned with the quality of the advice given following
an emergency. Providing advice on the correct action to be taken following a
spill is coraplicated by the random nature of the emergency, yet much can be
included i1 the knowledge base to reduce the difficulty in selecting a small
number o decisions to offer to the user. The figure shows how the chain of
inference must be completed in parallel and that each of these conclusions
must be w 2ighed to obtain the best decision.

Figure 2.3 shows the sequence of tasks required as part of the scientific
and techn cal assessment of the response to a spill. The domain that was
described for this project was concerned with the reaction by all levels of
response leam to a random catastrophic event, here a chemical spill in a
public pl:ce. ERexpert is a program designed to provide the correct
notificatio1 and assessment information from data provided by the response

23
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Chemical spill accident

|

' DECISION
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PROCESS2
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(Phase I)
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Trend analysis Health Environmental
impact impact
.............................. ECOexpert

Fig. 2.3 The decision making hierarchy applied in response to a chemical spill.
Five phases of the response are outlined. Reproduced with permission from Zhu
and Stillman 1995a.

team. This part of the response must be rapid and so the program uses a
combination of databases of known chemicals and rules for unidentified
chemicals. The steps outlined as Phase III in Fig. 2.3 provide advice on the
best containment and remedial action to be carried out at the scene. Phases IV
and V involve the follow-up work to restore the condition of the area.
ERexpert requires extensive data on the properties of chemicals (for example,
so that the containment advice can be determined for different environmental
conditions, an isolated stream compared with an urban roadway). Figure 2.4
shows the design of the factbase used in ERexpert (Zhu and Stillman 1995q).
Clearly, the knowledge domain for this problem is multi-faceted with areas of
expertise from chemical identification to chemical properties to chemical
containment in the natural environment.
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Fig. 2.4 Design of factbase used in ERexpert. Reproduced with permission from Zhu & Stillman 1995a.

2.1 Knowledge acquisition in expert systems

Once the problem domain has been well defined, the next step is to plan the
acquisition step. Knowledge acquisition has been defined as the transfer and
transformation of potential problem solving expertise from some knowledge
source to a program (Jackson 1990). The different approaches to knowledge
acquisition can be grouped as follows (Gruber 1990):

e Tradit onal knowledge engineering;
e Interactive knowledge acquisition tools; and
e Machine learning.

The traditional form of knowledge acquisition involves one or more
experts describing their expertise and their line of reasoning in problem
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solving. This step is often referred to as ‘the bottleneck problem’ in the gener-
ation of expert systems (Fig. 2.1) because it is found that it is very difficult to
acquire knowledge from experts. The information that is extracted is then
transferred to a form usable by the computer. This approach has also been
referred to as the basic model of knowledge engineering. The major problem
associated with this basic model is the assumption that knowledge engineers
are available who can successfully transfer the specialized knowledge.

The interactive model of knowledge acquisition involves the expert
directly transferring knowledge into a knowledge base and the knowledge
engineer then collaborating with the expert to validate the knowledge base.
Often, the knowledge acquisition tools require that knowledge is represented
in a form that is conceptually or practically difficult for the expert to provide.
For example, the expert may find it hard to supply the values when the
knowledge acquisition tool requires the expert to provide weighted links
associating data with hypotheses. Repertory grid centered tools for knowl-
edge acquisition have been used to build knowledge based systems (Boose
1990). In a repertory grid, also known as a rating grid, solutions, referred to
as elements, are placed in the columns and the traits, referred to as constructs,
are placed as rows of the grid. These tools interact with the expert and
perform tasks such as interviewing the expert, testing, and refining the resul-
tant knowledge base. AQUINAS, an expanded version of the Expertise
Transfer System (ETS), can automatically generate production rules from
rating grids, which can be reformatted for use in various expert system build-
ing tools.

The third approach to knowledge acquisition, machine learning, involves
the production of rules from examples. The implementation of machine learn-
ing requires setting up an induction algorithm to transform examples into
rules. Quinlan (1983) developed an inductive algorithm (the ID3 algorithm)
which has been applied in commercially available expert system shells, e.g.
the KDS (Knowledge Delivery System) shell.

2.2 Knowledge representation in expert systems
Knowledge representation can be grouped into four major categories

o Logic

® Semantic Networks
® Frames and

® Rule-based Systems.

2.2.1 Logic

First order logic (FOL) expresses features of deductive reasoning as proposi-
tions. Propositions are defined as statements that are either TRUE or FALSE.
Complex expressions are generated by using a set of symbols called connec-
tives. Commonly used connectives are AND, OR, NOT, and IMPLIES.

The drawback to representing knowledge using FOL is that propositions in
the real world cannot always be expressed as TRUE or FALSE. Multi-valued
logic like fuzzy logic has been developed to express uncertainty (Pavelin
1988).
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2.2.2 Semantic networks

Quillian was the first to apply semantic network ideas to the field of natural
language (ranslation and understanding. He proposed an associational model
of human memory, called semantic memory, which attempted to capture the
meanings of words (similar to capabilities of human memory) and implement
this mean ng in a computer program. Winston’s idea of structured descrip-
tions was based on generalizations from examples, similar to representation
of human thought processes. The problem of using semantic networks to rep-
resent knowledge arises from the fact that definitions of meanings, also
known as concepts, are subjective and difficult to incorporate into a program.
A sem:ntic network is defined as a labeled directed graph that consists of
vertices and labeled arcs between vertices. Each vertex represents a concept
which is #1so known as a word meaning. The arcs represent binary relations
between c¢oncepts. Relations commonly used in a semantic network are:

A ‘part-ol” relation: a relation in which the first concept is a ‘part of the
second concept. For example, halogens are a ‘part of the Periodic Table.
An ‘is-a’ r2lation: there are two types of the ‘is a' relation between concepts.
(i) The set inclusion relation: a relation in which a concept ‘is a subclass
of a“iother concept. For example, a transition metal ‘is a8 metal, and
(i) The membership relation: a relation in which a concept ‘is a8 member
of a certain class of objects. For example, copper ‘is & transition
metal.

Figure 2.5 shows the representation of knowledge that is contained in the
periodic table of elements in the form of a semantic network.

The subset-of and member-of links can be used to derive new information
and may form the basis for an inference engine. The use of links in a reason-
ing mech:nism called inheritance is explained in the following example.

! Periodic Table |
L

part of part of
Metals Halogens
subset of member of
Tr'agztllg n Chlorine

/‘ member of

/

/

Copper |

Fig. 2.5 Representation of knowledge using a semantic network. Reproduced
with permission from Lahiri 1994.
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| member of T T8
// Mercury ph‘! S'\ca\ std
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Figure 2.6 An exception in inheritance in a semantic network. Reproduced with
permision From Lahiri 1994.

The statements represented in Figure 2.5 are:

Copper is a transition metal;

Transition metals are metals, and

Metals are elements of the Periodic Table.

From the above statements, the following statement can be derived.
Transition metals are elements of the Periodic Table.

The following statement can be derived using subset-of and member-of
links:

Copper is a metal.

In an inheritance mechanism, the concept inherits properties of concepts
higher in the semantic network through links. However, the hierarchical rep-
resentation gives rise to problems in knowledge representation. Figure 2.6
depicts the problems associated with inheritance. The network shows that
metals are solids and conduct electricity. Therefore, mercury, a metal, should
inherit both properties of metals. Although mercury conducts electricity, it is
not a solid. Flexibility has been introduced with regards to the inheritance of
properties, by using knowledge representation in terms of frames (Lucas and
Van der Gaag 1991).

2.2.3 Frames

In a frame-based representation, knowledge relevant to a concept is stored in
entities called frames. A frame is defined as a network of nodes and relations
organized in a hierarchy, where the topmost nodes represent general concepts
and the lower nodes represent more specific instances of the concepts. This
mode of knowledge representation is known as a frame hierarchy or frame
taxonomy in which frames are represented by vertices and arcs denote ‘is a’
links between two frames.

Class frames, also known as generic frames, represent knowledge con-
cerning classes of objects. Knowledge concerning individual objects is repre-
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Fig. 2.7 Representation of knowledge using frames (tree-like taxonomy).
Reproduced with permission from Lahiri 1994.

sented by instance frames. A frame indicates its relative position in a taxon-
omy by using two types of ‘is a’ link.

(i) An instance-of link: a link between an instance frame and a class frame,
and
(ii) A s.perclass link: a link between two class frames.

Figure 2.7 shows an example of frame taxonomy. Metals represent a
superclass and copper is a specialization, a transition metal. Representation of
knowled; e in a frame takes the form:

instance copper is

instance-of transition metals;
group = 1 B;

atomic number = 29;

physical state = solid;
property = conducts electricity
end

Proce:lures present in frames are called demons and can be activated at a
particular time during the manipulation of the frame. Commonly used
demons are if-needed, if-added, and if-removed. Demons can also be used in
knowled:e based systems that use frames and production rules. Knowledge



30 Knowledge transfer: human experts to expert systems

in CENTAUR, a LISP-based expert system used to assist in the treatment of
pulmonary diseases, is represented in the form of frames and production rules
(Lucas and Van der Gaag 1991). It has been suggested that descriptive knowl-
edge can be successfully represented in a frame-based system.

2.2.4 Rule-based systems

The concept of using rules to represent knowledge was introduced by
researchers on the DENDRAL project. Rules represent knowledge in the
form of IF — THEN statements. The IF part contains the premise of the rule
and the THEN part contains the action or conclusion of the rule.

Example: IF pH of a solution = 3.0 THEN the solution is acidic.

The premise of a rule is a Boolean expression that must be satisfied for the
rule to be executed (or fired). The conclusion of a rule can either be a list of
commands to be carried out when the rule fires or be evaluated to true when
the premise does. The set of rules that describe a particular knowledge
domain is referred to as the rule base. In an expert system, the rule base along
with facts associated with the knowledge domain forms the knowledge base.

Rules that are grouped in sub-areas of the problem domain are referred to
as well-written rules. Well-written rules are said to be transparent in that the
developer of the rule base is able to see through the syntax to the meaning. It
is easy to modify knowledge in such a rule-based system because one part of
the rule base can be changed without affecting the other parts of the rule base.
Well-written rules should have the following features:

e Organization of rules: the maintainability of a rule based system
improves if rules that have the same conclusion are grouped together;

® Ordering of rules: higher performance is achieved for an expert system
when, in a particular group, rules are placed in order of most likely to
least likely, and

e Sequence of rules in a rule base: the order of rules in a group should be
based on the primary inference strategy used by the inference engine.

The drawback of a rule-based system is that it cannot represent structural
knowledge. In a rule-based representation, it is not possible to represent
knowledge describing a particular entity in the form of the clusters which are
the characteristic feature of frame-based systems.

3. Encoding knowledge: a case history approach

There are two approaches in the implementation of a rule-based representa-
tion of knowledge: (i) the knowledge base can be designed for direct input of
knowledge in the form of rules, and (ii) the system can be designed to gener-
ate rules from the available chemical knowledge. The maintainability of the
knowledge base is important and adding knowledge to a system that requires
input as rules is not an easy task. Therefore, in our work, we have opted for
the second approach; that is to build rule-based expert systems based on the
automated rule generation from case histories.
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Table 2.2 The knowledge domain described in terms of case histories.
(Reproduced with permission from Lahiri 1994.)

Knowledge domain Observables

Action/Advice/Solution

Contamination_Blockage The flame has a
ragged appearance

Contamination_Blockage Occasional pulse
observed from the
absorption profile

Contamination_Blockage; Lower than
Solution_”roblem expected
absorbance values

Solution_”roblem Long rise time
observed from the
absorption profile

The burner slot may be partially
blocked

Contaminated spray chamber

The burner slot may be partially
blocked

There may be contamination in
the spray chamber

The solution may be too
viscous

The solution is too viscous

We tre: t the chemical knowledge as facts, and we are more able to modify
facts rather than a rule-based structure for problems in the chemical domain.
We first cescribed the design and implementation of a rule-based expert
system to diagnose problems that arise during analysis by atomic absorption
spectrometry (Lahiri and Stillman 1992). In this scheme, knowledge is repre-
sented as ;1 matrix of observables (or symptoms) in rows and conclusions (or
causes) i columns. Connections established the true—false relationships.
Knowledg e belonging to the same sub-domain is grouped in the order of
most likely to least likely observables. This mode of depiction greatly aids in
the verification, portability, and expansion of the knowledge base. The fol-
lowing example shows how the case history approach can be used to give
generate 1 1les (Table 2.2).

In the next step, the case history knowledge is transformed into the
Knowledge Domain Table (Table 2.3). The connection between observables
and conclisions can occur in several cells, for example row 2 in Table 2.3.
When the input of knowledge is completed, rules are created using in-house
software (Table 2.4).

4. Examples of expert systems that implement the case history
approach

Over the last 10 years the Stillman group has developed the use of truth
tables as @ means of coding heuristic knowledge in terms of case histories.
Figure 2.8 shows the sequence of coding knowledge in this manner.
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Table 2.3 Representation of chemical knowledge in the form of a
Knowledge Domain Table. (Reproduced with permission from Lahiri
1994.)

Burner slot is Contaminated Check viscosity

blocked spray chamber of solution
The flame has a T
ragged appearance
Lower than T T T
expected
absorbance values
Long rise time T

observed from the
absorption profile
Occasional pulse T
observed from the
absorption profile

Table 2.4 Rules generated from the chemical knowledge present in
the knowledge table. (Reproduced with permission from Lahiri 1994.)

Rule 1. IF The flame has a ragged appearance = True AND Lower than
expected absorbance values = True THEN Contamn Blockage = Burner
slot is blocked.

Rule 2. IF Lower than expected absorbance values = True AND
Occasional pulse observed from the absorption profile = True THEN
Contamn_Blockage = Contaminated spray chamber.

Rule 3. IF Lower than expected absorbance values = True AND Long rise
time observed from the absorption profile = True THEN Soln_Problem =
Check viscosity of the solution.

"three-level "automated batch
"re-structuring" compilation" process of KDM"
W(ACT1, ACT2, ... ACTn) 2 , g g
=D(0OBS1, OBS2, ... OBSm)
Structured Primary Knowledge - Know(::z:iegse) Base
Knowledge Know- Domain
ledge Table Matrix

I testing with cases and knowledge expansion I

Fig. 2.8 The steps involved in the use of the Knowledge Domain Matrix to process heuristic knowledge that describes
a defined problem domain. Reproduced with permission from Zhu and Stillman 19955b.
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Follow ing the assembly of the knowledge through knowledge acquisition
from one or more experts causal analysis is carried out that relates observ-
ables to actions that are to be part of the decision. The sequence carried out
involves providing observables that define the condition to be assessed and
using mor2 and more distinct observables to narrow the choice of conclusion.
A series of compilation steps is carried out to ensure that each conclusion is
identified »y a unique set of observables, and that ambiguities are not inserted
during su:h maintenance. Finally, the Knowledge Domain Matrix (KDM) is
processed to generate a rule base. This last step can be automated as all ambi-
guities have been resolved in the previous steps. The rule base then can be
prepared in any format, thus allowing the knowledge to be transferred from
system to system. In fact, the KDM is an ideal depository of expertise
because each condition and conclusion and the connecting logic (true or
false) can be read using a standard spreadsheet program (EXCEL) as a
viewer. Tl is provides valuable portability as the expert can modify the matrix
without ay prior knowledge of the expert system shell.

The portability of the knowledge also means that experts world-wide can
comment dn the connections tabulated between observable or conditions and
conclusions or decisions without access to the expert system. Indeed, knowl-
edge engineers can process the KDM to provide rules in the form best suited
to local expert system shells through filter programs that can allow many dif-
ferent expert system shells to use the same knowledge base.

Figure 2.9 illustrates how the truth table, as envisaged in the discussion
above, rajidly becomes a complex database of knowledge. Figure 2.10 shows
the complexity that arises when the similarities in observables or conditions
require a large number of connections to provide unambiguous selection of
the concli sion.

When 1wo or more domains overlap and with increased complexity within
a single domain, a three-dimensional structure for the KDM is required. Here
conclusios from one level become conditions of another. A straightforward
view of siich a knowledge base is shown in Figure 2.10. The three layers can
represent different components required in the decision making. With the
appropria e user interface the layers do not need to be interconnected in the
sequentia’ manner shown in Figure 2.10.

We have developed expert systems to solve a number of chemical prob-
lems, frora design of automated and unattended instrument analyses to emer-
gency response to chemical spills. We have emphasized the importance of a
universal means of converting chemical knowledge into rules that can be
used by xn expert system. The prototype AAexpert deals with automated
analyses of metals by flame atomic absorption spectrometry (FAAS) (Browett
and Stillman 1989; Browett et al. 1989; Lahiri and Stillman 1992; Lahiri et
al. 1994) We have also implemented an expert system, GCDiagnosis, for
diagnosing gas chromatographic data. The domain knowledge in these expert
systems tvas acquired by studying the symptom to cause relationship by
deliberately introducing faults in the analytical instruments. It was shown that
error trapoing by defining criteria and performance indices was an essential
component involved in achievement of fully automated and unattended
analyses. We have designed an expert system, ERexpert, that offers advice
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T

T
TIT{T|T|T|T

32. Small removable volume

19. Soft surface/river bottom
33. Clear area

20. Flammable

21. Volatile
27. Category 4D chemicals*

10. Category 3A chemicals*
11. Spill happened on land
12. Dry ground surface

13. Category 2B chemicals*
14. Category 2C chemicals*
15. Category 2D chemicals*
16. Category 2E chemicals*
17. Category 3B chemicals*
18. Flat surface

24. Category 4A chemicals*
28. Category 4E chemicals*
29. Category 4F chemicals*
30. Natural barrier exists
31. Geographically feasible

25. Category 4B

9. Category 2A chemicals*
26. Category 4C

3. Category 1B chemicals*

2. Category 1A chemicals*
4. Category 1C

5. Category 1D chemicals

6. Sheltered area
7. Calm area (air/water

8. Limited spill size
23. Spill in watercourse

1. Mechanical failure
22. Liquid state

whereas ‘t’ indicates that this is a parallel case, a situation where a number of observables point to several conclusions.

Fig. 2.9 The Knowledge Domain Matrix for the second knowledge layer in ERexpert. ‘T’ indicates a unique connection
Reproduced with permission from Zhu and Stillman 19955.
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Fig. 2.10 A multilayer KDM designed to incorporate the complexity found in
multistep decision making processes. Conclusions from one level are inserted as
conditions in a second layer. Reproduced with permission from Zhu and Stillman
1996.

following an accidental chemical spill (Zhu and Stillman 1995a; Zhu and
Stillman 1995b; Zhu and Stillman 1996). This uses a database structure that
provides an effective archival method for organization of the elaborate factual
information necessary in solving problems in the domain.

4.1 AAexpert: an example

This project is part of a large, multicomponent expert system named
ACexpert, a system that is concerned with all aspects of instrumental analysis
(Browett and Stillman 1989; Browett et al. 1989; Lahiri and Stillman 1992;
Lahiri er al. 1994). A manual, non-automated model of the typical analytical
laboratory was proposed, in which it was assumed that the analytical instru-
ment and method to be used will be determined largely by regulatory agen-
cies. The system is subdivided into a set of individual expert systems
designed to perform specific tasks. The structure of AAexpert is shown in
Figure 2.11.

AAexpert has been designed so that each module addresses a single,
limited domain of expertise within the overall domain of analysis by Flame
Atomic Absorption Spectroscopy. In this model, linked expert systems pro-
vided advice on each aspect of the analysis. On receipt of the sample the
MANAGER’s task is to consult with both the CUSTOMER and the REGU-
LATORY AGENCY to determine the criteria to be used in the analysis.
AAassurance is a quality assurance expert system that is used by the
MANAGER and the ANALYST to assist in the execution of a laboratory
quality assurance program. The ANALYST’s role is supervision of the expert
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AAexpert
[' SAMPLE »[ CUSTOMER
’ | REGULATORY

|:A AAteach

':A AAreport
Y

‘ SAMPLE PREPARATION ‘\

S — |
\‘ AAmethods
AA-QC AAdiagnosis
v T

k7 OPERATOR
>
[\] AAanalysis
c
(¢}
é AAcontrol \

INSTRUMENT AUTOSAMPLER

Fig. 2.11 The structure of AAexpert. Reproduced with permission from Browett
and Stillnran 1989.

system. A Aanalyst, the process control and quality control expert system, will
complete the required analyses using the modules: AAmethods for method
selection. AAcontrol for sample scheduling and handling, AAdiagnosis for
diagnosir g faults associated with both instrumental operation and quality of
data, and AA-QC for quality control. AAteach is an instruction expert system
that uses simulation to give advice and examples on how to operate the
instrument. The individual areas identified include method selection
(AAmethods), control of the solution handling and measurement steps
(AAcontrol), real-time assessment of analytical data (AA-Quality Control),
and diagnosis of errors due to instrumental malfunction and interfering
sample chemistry (AAdiagnosis). Each example involves a different applica-
tion of expert system technology.

The critical steps involved in realization of real-time corrective control of
analytical instruments are (i) obtaining measured data that reflect the instanta-
neous condition of the sample chamber and (ii) modeling the data in terms of
analyte quality. Modeling the detector response implies understanding the
physical and chemical processes which produce the analytical signal. The
program dedicated to quality control made use of a rule base to identify com-
monly occurring problems associated with analysis by FAAS. Automated
detection of problems can prompt the instrument to take remedial actions
which may involve modification in sample preparation or stopping analysis.
For exan ple, the presence of out of range detector response is always associ-
ated witl' a concentrated sample. Automated signal interpretation and error
handling can rectify the problem by diluting and reinjecting the sample.
Visual detection of the error at the end of the batch analysis would have ren-
dered the analysis of the remaining samples useless.
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4.2 GCDiagnosis: an example

The knowledge base for the initial expert system for diagnosing problems
associated with analysis by gas chromatography was published in 1994 (Du
et al. 1995). We have also described a model that characterizes the physico-
chemical processes of a gas chromatographic system with a flame ionization
detector (Du and Stillman 1994). Causal analysis was used to generate and
compile the knowledge base of GCDiagnosis. A standard test mixture was
used to measure the peak parameters. The algorithm was based on informa-
tion theory and chemical knowledge about the sample. GC-Assess program
was developed to compare the peaks in the sample and reference chro-
matograms. This program was validated by using simulated data. It was
found that even with severe distortion in peak retention times, GC—Assess
was able to cope with variations in the simulated chromatogram. Relative
Performance Indices were used to quantify instrument characteristics and
describe the relationship between detector response and sample properties.
The knowledge base was generated using an in-house EXCEL macro package
that created unique rules free from syntax errors.

Before an instrument can carry out unattended, automated analyses, the
controlling system must be able to interrupt or modify the operation in real
time to correct instrument malfunctions and change sample measurement
problems. However, if operator intervention is required, a diagnostic expert
system can be used to act as an advisor. We have described the design of
rule-based expert systems in which knowledge is represented as a matrix of
observables and underlying causes. Although rule-based expert systems use
the natural way of capturing expert knowledge, changes in the data involve a
revision of the knowledge base. The major limitation of rule-based expert
systems is its lack of learning ability.

4.3 ERexpert: an example

Zhu and Stillman have described the application of expert system technology to
decision-making following a chemical spill. The key component in these
studies was the combination of factual information in traditional databases with
heuristic knowledge coded in a rule-base. The determination of the correct
advice to give following a chemical spill is extremely complicated. requiring
assessment of the chemicals involved, the environmental aspects of the spill.
and legal and regulatory aspects of the cleanup. ERexpert was designed to
accomplish the task of considering each of these components and provide
advice for each phase of the response — from the immediate tasks following
the spill to the remediation process necessary once the spill is con.ained. The
structure of the knowledge base was discussed and the knowledge domain
matrix used in the prototype described, shown in this chapter as Fig. 2.9.
Decision-making in response to any emergency is an ideal task for an
expert system. The knowledge can be compiled and maintained over time
between emergencies. Experts from around the world can participate in the
compilation step and emergencies around the world can be used as case histo-
ries to validate the responses provided by the program. Finally, the challenges
of making the very best decisions following such an accident require special-
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ized tools — the expert system is one such tool that can be tuned to provide
highly focused information to aid in the decision-making process.

5. Case histories to expert network

New work on the use of hybrid Al tools to diagnose problems associated with
gas chronatographic analysis has been reported by researchers at Florida
State University and Los Alamos National Laboratory (Levis et al. 1995;
Elling et ul. 1997). An expert network is a translated rule-based expert system
that uses specialized nodes and functions uncommon to traditional artificial
neural ne works. This hybrid Al tool preserves the natural knowledge repre-
sentation and explanation capability of rule-based programming, yet provides
the learning capability of neural networks. The knowledge was represented as
a matrix of case histories modified from that previously reported (Du et al.
1994; Du. and Stillman 1995). The true—false representation was replaced by
qualifiers such as Always, Usually, Sometimes, Infrequently, and Never to
reflect urcertainty in the relationship between symptoms and causes. The
expert ne :work consisted of Symptom, Filter, Combination, and Fault nodes.
The binary (e.g. irregular spikes, a symptom that is either present or absent)
and fuzz, (e.g. tailing peaks, a symptom that occurs with varying degree of
fault) outputs from algorithms which extract signal parameters from chro-
matograrns are used as input for the Symptom node (Lahiri ef al. 1996). A
training algorithm that uses back-propagation of error was developed to opti-
mize the weights of the connections between Filter and Combination nodes.
The syst:m was trained and tested using examples that were generated for
specific faults. The untrained expert network was able to diagnose induced
faults in 4 per cent of the examples, training on 25 per cent of the data pro-
duced an accuracy of 88 per cent. Incorporation of knowledge for multiple
paths of ~easoning increased the diagnostic capabilities of the expert network
to 93 per cent accuracy. An expert network can be retrained when more
example: are available or to account for small changes in instrument
configuration and sample type. This improves the performance and robust-
ness of the system.

6. Design of a model expert system

In this s:ction we detail the criteria required in the development of a rule-
based expert system. We propose that the design and implementation of an
expert system be described in terms of phases, each phase containing one or
more cycles. A typical design may involve three phases to arrive at the com-
pleted ve -sion of the program. The timeline picture (Fig. 2.12) shows phase I,
which comprises two cycles; phase I is considered to be the most important
part of thz project. Phase II and phase III each contain one cycle.

At the end of the first three cycles, a test version of the expert system is
released to users. Each task in the development cycle is modularized, this
allows tf 2 prototype design and testing to be carried out at different stages of
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Fig. 2.12 Phase | in the design and implementation of a rule-based expert system. Lahiri and Stillman, unpublished

work.

the project. Figure 2.12 shows the relationship between a number of specific
tasks and their sequence in the development cycle. The key steps are:

Problem Definition: The expert, consultant, and knowledge engineer meet to
discuss the problem and the problem-solving strategy. The knowledge engi-
neer carries out an initial survey of the knowledge related to the problem
domain and outlines the design of the expert system. At the end of this stage,
the consultant meets with the expert to discuss the feasibility of the project
and to finalize the contractual details.

Prototype Design: An initial structure of the expert system is delineated, the
breadth and depth of the expertise is defined, and the applicability and extent
of data analysis is assessed. The final prototype design is arrived at following
the phase I of the project.

Knowledge Acquisition: Domain knowledge and heuristics used by a
domain expert are captured in this step of the implementation. The expert is
interviewed by the knowledge engineer and fills a knowledge template in an
order of most likely to least likely observables. The knowledge template will
include signal characteristics, description and the reasoning process. The
knowledge engineer must be able to generalize the knowledge, extract the



concepts. and understand the trends and exceptions in the knowledge. Next,
domain knowledge is classified into goals where relevant knowledge is pre-
sented as case histories. Coded knowledge is converted into rules.

Data analysis: This is one of the most important tasks of a project that deals
with ana yses involving signal interpretation. Increasing the number of
defined signal features will help in the construction of an expert system that
will be capable of providing more accurate advice to end users.

Code writing: This component in the development concerns programs
needed to support the user interface, construction of the knowledge base, data
analysis, and creation of the link between the user interface and inference
engine. Code needs to be written to provide an explanation system that traces
the line c¢7 reasoning and provides a detailed version of the remedial action.
User Forum: Because the success of an expert system is intimately linked to
the accer-ability of the program to users, potential users must be requested to
provide ~eedback. This includes the ease of use (user interface), depth of
knowledge, and quality of advice. User forum allows for exchange of ideas
and incotporation of revisions. This is a critical part of the project as the
expert svstem must provide the users with the information they require;
the time laken in this stage will depend on the extent of the responses by the
users.

Test with cases: The knowledge base and the quality of the advice given
must be t2sted with conditions taken from the knowledge domain. This com-
ponent provides testing of the knowledge base.

Reports: Provide milestones of the project.

The time required or the completion of stages involving knowledge acqui-
sition, reiease test version, and user forum will be determined initially by the
time allocated to the project developers by the experts and end users.

7. Conclusions

Expert svstems are knowledge based computer programs that attempt to
apply the experience of an expert in a particular area of knowledge. In study-
ing expert system applications in chemistry, the hardware and software com-
ponents :erve only as tools to represent and apply the chemical knowledge.
The role of expert systems is not to replace these scientists but to aid them
with advice. Researchers interested in expert system applications in analytical
chemistry have mainly focused on a single area of expertise, refined the
knowledye base, and written prototypes.

There are two important stages involved in the transfer of human expertise
into an e <pert system. These are: (i) encoding the chemical knowledge, and
(ii) representing the chemical knowledge. There has been little work reported
about how knowledge in general can be coded for use in an expert system. As
computalional tools become more available, the coding of chemical knowl-
edge becomes more and more of a bottleneck. Once coded, the availability of
different forms of knowledge representation introduces a knowledge trans-
portation bottleneck because not only can rules not be readily transferred
between systems, the knowledge encoded in a rule-based representation

Conclusions
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cannot be used in other representations, for example knowledge coded in a
rule-based system cannot be transferred to a frame-based system.

It is hoped that the acquisition of knowledge in the form of a matrix of
conditions and conclusions will lead to a common method for encoding
chemical knowledge for rule-based expert systems. This will allow such
knowledge bases to be transported from one rule-based expert system tool to
another.
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1. Introduction

The Genetic Algorithms (GAs)(Holland 1975) are search algorithms motiv-
ated by the extra-cellular flow of evolutionary information through selection,
crossover, and mutation. The GAs are typically applied to problems in which
little knowledge is available about the quantitative properties of the objective
function. The lack of quantitative information characterizing the search space
for many real life search problems, the inherent suitability implementations,
and apparent robustness against noisy data have made the GAs quite popular
for solving large search, optimization, and machine learning related prob-
lems. In the recent past there has also been growing interest in the application
of GAs for Knowledge Discovery and Data mining (KDD). The field of KDD
deals with the problem of detecting patterns within large databases.
Scalability (variations of performance quality with respect to growing
problem difficulty, desired accuracy, reliability, computational resources) of
KDD algorithms is an important issue, since large databases and high dimen-
sional feature spaces are typical characteristics of the common KDD applica-
tions. Therefore the scalability of the GAs is likely to play a critical role in
their success in large scale KDD applications.

This chapter focuses on the scalability issue of the GAs. It takes a detailed
look at the fundamental underlying search processes in the GAs, points out
some serious bottle-necks of frequently used simple GAs (Dejong 1975), pre-
sents a new scalable genetic algorithm, and outlines its application to a large-
scale electrical power distribution network fault detection problem.

Section 2 reviews the related work on GA-based KDD. Sections 3 and 4
offer a perspective of black-box search/optimization (optimization in absence
of adequate quantitative information regarding the search space) in the
context of a general probabilistic and approximate framework. Section 5 pre-
sents a discussion on problem difficulty from this perspective. Section 6 dis-
cusses the simple GA in this context. Section 7 identifies a critical problem
with the simple GA — lack of scalable mechanism for linkage learning
(detection of appropriate relations among the search space members). Section
8 presents a new class of GAs capable of scalable linkage learning, called the
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gene expression messy GAs. Sections 9 and 10 describe the power distribu-
tion network fault detection problem and present the experimental results.
Finally, Section 11 concludes this chapter.

2. Data mining and the genetic algorithms

Knowled:ze Discovery and Data mining (KDD) is a fast growing field that
deals with the research and practice of detecting patterns in data. While
knowledge discovery is used to mean the complete process, including data
pre-processing, extraction, analysis, and visualization, the phrase data mining
usually r:presents the process of detecting data patterns using machine learn-
ing, statiztics, and other techniques. The phrase ‘data pattern’ is usually used
to mean relations among the data sets in a set theoretic sense. The relations
are typically captured in terms of rules, similarly based subsets, and associ-
ations among the search space dimensions. Therefore, a data mining algorithm
can also be viewed as a search for appropriate rules, similarities, or other
kinds of associations. The GAs fit quite well into this application, and can be
used for finding any of these pattern types. Apart from these, typically the
data mining process requires feature selection, model optimization, and
system identification techniques. The GAs are also suitable for such applica-
tions. There exists a growing body of literature on the application of the GAs
to data analysis/mining problems. The following part of this section reviews
some of :hese works.

Since machine learning algorithms find frequent applications in data
mining, it is appropriate to review some of the early GA Based Machine
Learning (GBML) systems. LS-1 (Smith 1980, 1983, 1984) is an example of
one such early GBML system that used simple GA-like genetic operators to
manipulate a population of production rules. They manipulated the represen-
tation at different levels of granularity reflecting the semantics of the repre-
sentation showing that results of genetic algorithms still remained valid. In
GABIL DeJong, Spears, and Gordon 1993), Disjunctive Normal Form
(DNF) concept descriptions are evolved using an LS-1 style approach. This
work is aimed at a single class learning application. The goodness of a
concept description is measured as the square of examples correctly
classified. The COGIN approach developed elsewhere (Greene and Smith
1993, 1994) addresses multi-class problem domains introducing competition
for coverage of training examples, encouraging the population to co-
operativily solve the concept learning task. Each rule is a conjunction of
attribute/'value sets in binary coding. In this approach, the newly created rules
using GA operators, together with the existing population of rules, are ranked
in order of fitness and are inserted one by one in this rank order into the next
generaticn of the population, provided they cover some example in the train-
ing set w 1ich has not already been covered by a previously inserted rule. Any
such redundant rule is discarded. The population size thus changes dynami-
cally according to the number of rules required to cover the entire set of train-
ing exan ples. Fitness is based on entropy measure. modified according to
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classification accuracy. Both single point and uniform crossover have been
used. Recombination is applied to the left hand sides of rules only. The right
hand side of a rule is assigned to be the majority class found within training
examples covered by the rule.

The REGAL system (Neri and Giordana 1995) uses a similar coverage-
based approach for multi-concept learning. Each rule is evolved on its own
and co-operation within population is encouraged through competition for
coverage. This work introduced the Universal Suffrage selection operator,
that selects rules providing larger coverage together. A parallel GA based
approach (Cui, Fogarty, and Gammack 1993) is used for the identification
of ‘good’ and ‘bad’ customers in credit-scoring applications. Solutions are
evaluated using either a generic classification accuracy measure, or an appli-
cation-specific measure of profitability. The results are then compared with
other classification algorithms (Bayes, k-nearest neighbours, and ID3).

The GA-MINER system (Radcliffe 1995) is yet another effort for GA-
based data mining. The author divides the data-mining problem into undi-
rected or pure data-mining, directed data-mining, and hypothesis testing and
refinement. Undirected data mining addresses the case where the system is
left almost entirely unconstrained to find patterns in the data; whereas in
directed data-mining, the user may specify some constraints. In hypothesis
testing and refinement, the user poses some hypothesis and the system first
evaluates the hypothesis and then tries to refine it. The GA-MINER system is
supposed to be able to deal with all of these three levels of data-mining and
uses a parallel genetic-algorithm based data-mining tool for data pattern dis-
covery. One of its main components is the pattern template. It defines the
general form of the patterns of interest to the user and reduces the search
space to those patterns consistent with this form. The pattern interest is evalu-
ated through statistical measures. In this work, the application concerns the
identification of valuable patterns in large databases such as that obtained by
the aggregation of census data and car sales data. This work also studies the
scalability of the system with respect to increasing computational resources.
In Punch et al. 1997, a feature selection and classification problem is dealt
with using a GA combined with a K-nearest-neighbour algorithm to optimize
classification looking for an optimal features weighting in order to efficiently
accomplish the classification task. A GA-based data mining application has
also been developed in (Bhargava and Jacobson 1997). This work used a GA
to detect appropriate feature subsets and combined them to generate ‘interest-
ing’ patterns from Persian Gulf Syndrome related data.

In this chapter we address at least one aspect of this big picture — the
scalability issue. Although the volume of GA-based data mining application
is increasing, more attention needs to be paid to scalability. This is an impor-
tant issue in algorithm design that studies the performance of algorithms with
respect to growing problem difficulty levels, desired accuracy, reliability, and
the computational model. In this chapter we are primarily concerned with the
scalability of GAs with respect to growing search space. We are interested in
GAs that offer quality performance with amenable increase in computational
cost as the size of the problem increases. In order to explore scalability we
need to understand the fundamental search processes of a black-box search
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Fig. 3.1 BBO decomposition in relation, class and sample spaces. Note the sim-
ilarity based equivalence relations. Here f denotes a position of equivalence and
the [#] ch:racter matches with any binary value.

algorithm like the GA. The following section describes a probabilistic and
approximate framework to do so.

3. Decomposing black-box search/optimization

Understanding the genetic algorithms (GAs) requires first understanding the
foundation of non-enumerative black-box search/optimization (BBO) algor-
ithms. Tle goal of a BBO algorithm is to find solution(s) from the search
space that make the objective function value extreme beyond an acceptable
criterion. Since for most interesting problems the search space is quite large,
BBO algorithms, like the GAs, depend on non-enumerative search, which is
actually :n inductive process. This section makes a note of that and offers a
decomposition of the underlying processes in a non-enumerative BBO algor-
ithm using the Search Envisioned As Relation and Class Hierarchizing
(SEARCH) framework.

The SEARCH framework (Kargupta 1995; Kargupta & Goldberg 1996)
studies the fundamental issues in BBO by decomposing them into searches in
(1) relation, (2) class, and (3) sample spaces (Fig. 3.1). SEARCH is based on
the fact that induction is an essential part of non-enumerative BBO, since in
the absence of any analytic information about the objective function struc-
ture, a BBO algorithm must guess based on the samples it takes from the
search space. SEARCH also notes that induction is no better than table look
up unless we restrict the scope of the inductive search algorithm to a finite set
of relations' among the search space members. If relations are important to
consider, then we should pay careful attention to determine which relation is
‘appropriate’ and which is not.

Let us illustrate the idea. Suppose we would like to identify the person
among several in a room with the largest amount of money in his or her pocket.
To do better than enumeration, i.e. exhaustively picking every person and
checking the amount of money they have, we must make intelligent guesses by
observing certain features of the people (e.g. quality of dress, shoes etc.) If we
consider ‘all possible features’ we are back to enumeration (Watanabe 1969;
Mitchell 1980). We must consider a certain finite set of features that defines the

'A relation is defined as a set of ordered tuples. A class is a tuple of elements taken from the
domain un: er consideration. In this document we will primarily be concerned with tuples taken
from space of n-ary Cartesian products of the search domain with itself. Equivalence relations
are symme: ic. transitive, and associative relations: similarity based equivalence relations among
a space of I'inary sequences define equivalence based on similarity among the sequences.



48 The genetic algorithms, linkage learning and scalable data mining

bias of the process. Features like quality of dress define relations among the set
of people. Depending on what we mean by ‘quality of dress’, such a relation
may divide the set of people into different classes, such as cheaply dressed
people, very expensively dressed people, and so on. We consider hypotheses
defined by the feature set, use it to divide the search space into different classes,
and evaluate hypotheses using samples taken from the search domain. The set
of features, that we restrict our attention to, may be pre-determined or dynami-
cally constructed during the course of induction. The decomposition of BBO in
SEARCH in terms of relation, class, and sample spaces essentially captures
this idea. Two important underlying processes of a BBO algorithm are, (1) con-
struction of partial ordering, followed by selection among relations and
(2) construction of partial ordering, followed by selection among classes. Note
that the former step is essential since some relations are inherently good and
some are not. For example, ‘quality of dress’ may be a good relation, but
‘colour of hair’ may not. In SEARCH, relations that are inherently good for
decision making are said to properly delineate the search space. If we construct
a partial ordering among the classes, defined by a relation of order k (logarithm
of the number of classes defined by the relation), select the ‘top’ ranked classes
for further exploration, and the class containing the optimal solution is one
among those selected classes, then we say that order-k relation properly delin-
eates the search space. The search for appropriate relations and classes can be
viewed as decision making processes in the relation and class spaces respec-
tively. SEARCH offers a general probabilistic and approximate framework to
do that. If the relation space provided a priori to the search algorithm contains
all the relations needed to solve a problem and the order of all of these suitable
relations is bounded from top by some constant &, then the given problem can
be solved in sample complexity (can be loosely defined as the number of
samples taken for solving the problem) polynomial in problem size, solution
quality, success probability. This class of problem is called the class of order-k
delineable problems.

SEARCH points out that, since induction is an essential part of BBO,
search for appropriate relations is critical. Instead of looking for better solu-
tions from the beginning, SEARCH advocates a BBO algorithm to

1. detect the structure of the search space, induce relations and classes to
capture that

2. identify desired quality solutions by guiding the search following the
detected structure

A detailed description of each of these processes can be found elsewhere
(Kargupta 1995). In order to fully appreciate the critical role of efficient rela-
tion and class searches we must understand their computational cost; the fol-
lowing section considers that.

4. Cost of relation and class search

For a given relation space, and a well-defined algorithm in SEARCH, it is
possible to derive a bound on the number of samples (sample complexity)
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Fig. 3.2 Objective (Fitness) function value (®), distribution function (F, F’) of
two classes C;;and C ;.
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needed for the desired solution quality and reliability of decision making.
Defining an algorithm in SEARCH first requires specifying class and rela-
tion comparison statistics. Although, most of the existing BBO algorithms
do not explicitly define them, SEARCH does so in order to quantify and
understand the role of decision making in the relation and class spaces.
Kargupta (1995) considered a distribution free ordinal comparison statistics
for compuring both relations and classes. In an ordinal comparison statistic,
two distributions are compared on the basis of some chosen percentile.
SEARCH does not assume any particular technique for evaluating a relation
or a class since typically it differs from algorithm to algorithm. It assumes
that the slgorithm has a way to rank the relations and classes. Figure 3.2
shows th: cumulative distribution functions (cdf) F” and F of two arbitrary
subsets (;; and C,;, respectively. Indices j, k represent the two classes
defined by some relation r;, When these two classes are compared on the
basis of the a quantile, then we say C;; < aC,;, since @ ;; < @ s Py
and @, are the solutions of F'(®;;) = a and F(®,) = a, respectively. Let
us define

d=F®p) - FPpy0)

The variables d defines the zone of indifference, which is basically the differ-
ence in the percentile value of @, ; and that of ®,,,; computed from the
same cdf F. Figure 3.2 explains this definition. We can quantify the decision
making process using such ordinal class and relation comparison statistics.
Let Wr b: the given relation space and S, C W, be the set of relations needed
to solve the given problem. We denote the index of a relation r; by N,. Define,

Npax = max{NilVr, e S}
d = min{F((D[,]’*,,») - F(q)[,]’j,i)lvjr V/}

where F( D, ;) is the cdf of the class containing the optimal solution. The
index j varies over all the classes defined by a relation r;. Index i varies over
all the relations in W,. If d* is a constant such that d” > d*, that corresponds
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to the desired quality of decision making in the class space, the bound on
overall sample complexity is,

1
1S 11Nmax—Mmin)
N IS, lllog 1—[qi] ’

r

SCs % )
where ¢ is the overall desired success probability and ¢, is the desired success
probability in the relation space. M., is a constant that depends on the
memory used by the algorithm.

As we increase the success probability in the relation space, the overall
success probability in the combined relation and class spaces increases. The
sample complexity should therefore decrease as success probability in the

relation space increases. This also shows that SC decreases with increase in
1

g, Note that the ratio ( 9 J”S" (N max =Mwmin) - approaches one in the limit as
q

IS (Nmax — Miin) approaches infinity. Therefore, SC grows at most linearly
with the maximum index value N,,,, and the cardinality of the set S,. Recall
that d* defines the desired region of indifference; in other words, it defines a
region in terms of percentile within which any solution will be acceptable.
The sample complexity decreases as d* increases. Kargupta (1995) also
showed that when no relations are considered, this expression points out that
the sample complexity will be of the order of the size of search space; in
other words search will be no better than enumeration. For a given relation
space and a class of problems that can be solved considering a bounded
number of relations from that space, inequality 1 gives the bound on sample
complexity for desired quality and reliability of the decision making.
Although different algorithms may use different class and relation compari-
son statistics, the overall physical implications of the different terms of the
bound provide us with fairly universal insights into any BBO process. This
bound can also be used to identify the class of BBO problems that we can
efficiently solve. The following section presents that.

5. Difficult and easy BBO problems

Traditionally problem difficulty in the BBO is characterized by different fea-
tures of the problem, such as local optima, decomposability, noise in objec-
tive function evaluation, and others. Since the success of a BBO algorithm is
significantly controlled by the searches in the relation and class spaces, the
notion of easy and difficult BBO problems must depend on the cost of search-
ing in these spaces. In fact, the bound on the sample complexity, noted in the
previous section, can be directly used to characterized hard and easy prob-
lems from an algorithm perspective.

Recall from inequality 1 that the sample complexity grows linearly with
the cardinality of the set of relations considered to solve the problem, S,.
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Since the purpose of the relations is to relate different search space members,
most of the commonly used relation spaces are of sizes exponential in the size
of the problem. In this document, we are going to define size of the problem
(/) as the logarithm of the cardinality of the complete search space. Typically
this corresponds to the total number of dimensions of the problem. In a
sequence representation with constant alphabet size, the length of the
sequences needed to represent the search space may be an example of such a
size paranjeter.

Definition 1 (Problem difficulty in SEARCH) Given an optimization func-
tion ® : X — N (where X is finite discrete space) and a set of relations Vr,
we call a problem difficult for an algorithm if the total number of samples
needed to find the globally optimal solution grows exponentially with I, q, g,
1/d*, and 1/d.*.

Where ¢ denotes the bound in the overall decision success probability in
choosing the right classes; 1/d* defines the quality of the desired solution.
Both ¢ and 1/d* together can be viewed as representing the overall accuracy
and the quality of the solution found; g, is the bound in success probability in
choosing the right relations, and 1/d,* represents the desired quality of the
relations.

The above definition of problem difficulty in SEARCH can be physically
interpretect into the following items.

Growth of the search space along problem dimension.

Inadejuate source of relations and decision making in relation space.
Inaccurate decision making in choosing classes.

Qualily of the desired solution and relations.

Sl S e

This gives a general description of the SEARCH perspective of problem
difficulty. Since, the bound on sample complexity grows linearly with S,, we
can only handle a polynomially bounded relation space size. Since inequality
1 also grows linearly with N,,,,, we also need to bound that by a polynomial
of 1. As noted earlier, for order-k relations N,,, is bounded by a constant.

Class of problems that
can be transformed to
order-k delineable problems

. . Class of all problems
by relation construction

Class of order-k delineable problems for a given algorithm

Fig. 3.3 BBO problems from the delineability perspective.

51



52 The genetic algorithms, linkage learning and scalable data mining

Therefore, we can solve the class of problems for which, (1) the cardinality of
the set of all required delineable relations can be bound by a polynomial in /
and (2) the order of each of these relations is at most k, using a polynomial
number of samples. This class of problems is called the class of order-k-
delineable problems. A formal definition of this class of problems can be
found in (Kargupta 1995). Figure 3.3 depicts a conceptual hierarchy of differ-
ent class of problems offered by the SEARCH framework. In the following
part of this section, we shall make our notion of order-k delineable problems
more tangible by considering a class of problems in the sequence space.

Let us consider sequence representation in which the underlying search
space is represented by a sequence of / characters, where each character can
take a value from the alphabet set, A. The cardinality of A will be denoted by
A. Let us also restrict our attention to similarity based equivalence relations
and classes. In the GA literature they are usually called partitions and
schemata respectively. The overall relation space, ¥, = {f, #}/, where f indi-
cates values that must match for equivalence and # is a wild character that
matches any value. The cardinality of the set of all such similarity based
equivalence relations Il W, Il = 2'. Since this grows exponentially with /, we
cannot afford to consider all such similarity based relations. One way to pick
up a generally meaningful polynomially bounded subset of W, is to consider
only those relations in which there are at most & fixed position of equivalence

[
(f) and [ — k wild characters. There are (k such similarity based equivalence

relations and it is a polynomial of / for constant values of k. Since GAs often
deal with sequence representation and similarity based equivalence relations,
such a restriction must be imposed in order to guarantee polynomial time
search. Therefore, this class of order-k delineable problems should be of
primary importance in the context GAs. Even if we have interest in other par-
adigms of evolutionary computation that do not pay attention to similarity
based equivalence relations as such, the SEARCH framework points out that,

1. careful attention must be paid to the relation induction process and
2. order-k delineable problems must be identified for the chosen relation
space of the algorithm.

In this chapter, we focus on GAs and therefore we restrict our attention to the
class of order-k delineable problems in the sequence space. Although the rela-
tion space size is bounded by a polynomial, efficient detection of relations
and classes by choosing appropriate statistics is a major challenge. Like any
other BBO algorithm, the GAs need to pay careful attention to the relation
induction process for solving the order-k delineable problems efficiently. In
this chapter we are therefore interested in developing scalable GAs that can
solve order-k delineable problems efficiently. First, let us investigate the
efficacy of simple GAs in accomplishing this task.

6. The simple genetic algorithms

The simple Genetic Algorithm (sGA) (Dejong 1975; Goldberg 1989; Holland
1975) is a popular class of genetic algorithms. The simple GA uses operators



like selection, crossover, and mutation to explore the search space adaptively
in order to maximize or minimize the objective function (sometimes called
fitness function). Simple GA typically uses a sequence representation. In
other words, the search variables are represented as a sequence (often called
chromosoine) of symbols, chosen from some given alphabet set. The slot cor-
responding to any entry in the sequence is called a gene. Popular approaches
include binary, gray, and real value codings of the search variables. A simple
GA starts from a randomly generated population. It iteratively applies the
search operators — selection, crossover, and mutation — to this population
to produce a new population of chromosomes. The main search operators are
as follows.

1. Selectinn: Compute the objective (fitness) function values of all the chro-
mosomes. Make more copies of the chromosomes with higher fitness and use
these add:tional copies to replace those chromosomes of the population that
have wors 2 objective function values.

2. Crossover: The crossover operator is usually applied on the population
with a high probability. There are several types of crossover operators pre-
vailing in the GA literature. A simple one-point crossover picks two chromo-
somes from the population randomly. Next it picks a random cross-point (i.e.
a slot in the chromosome) that divides each chromosome into two halves.
This is fol lowed by swapping of either the left or right halves.

3. Mutation: Simple mutation is usually a low profile operator that changes
the value of a gene with some low probability.

Although the sGA explicitly processes a population of chromosomes, a better
understanding about the underlying search may be obtained by investigating
the processing of schemata (similarity based equivalence classes) in the pop-
ulation (Flolland 1975). In a sequence representation, a similarity based parti-
tion divides the space of all sequences into different schemata. For example
in a 4-bit 1epresentation schema (singular form of schemata) 11## denotes the
set of all strings that start with a 11 (i.e. the set {1100, 1101, 1110, 1111}).
The corresponding partition can be represented by ff##, where f denotes the
position of equivalence and # denotes the wild card character. Partition ff##
divides a.l strings into four schemata namely 00##, O1##, 10## and 11##.
The effec: of selection, crossover, and mutation applied on the population can
also be interpreted in the space of partitions and schemata. For a given popu-
lation of strings and GA operators the so called schema theorem (Holland
1975) cari be used to determine an expected bound on the growth or destruc-
tion of scaiemata from generation to generation.

The simple GA has been quite successful in solving many different problems
(Goldberg, 1989; Mitchell 1996); however it is not magic. Like any other BBO
algorithm, the sGA is fundamentally based on an inductive search process.

Therefore, the observations made by the SEARCH framework are equally
applicabl: to sGA. The success of GAs depends on several factors, including:

detection of schemata that capture the desired solution(s);
interaction between schemata and genetic operators;

popu ation size;

problem difficulties.

b
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Although schemata and partitions are often used as a tool to understand the
underlying behaviour of GAs, the sGA does not have any mechanism for
explicit processing of schemata and partitions. This implicit perspective alone
falls far short in delivering reliable performance for schema and partition
detection. A simple illustration can be given using the following example.
Consider the deceptive trap (Ackley 1987) function, f(x) = k if u = k; fix) =
k — 1 — u otherwise; where u is the unitation variable, or the number of 1s in
the string x, and k is the length of the sub-function. This function is widely
reported to be difficult for simple GA since low order partitions lead sGA
toward the wrong direction. If we carefully observe this trap function, we
shall note that it has two peaks. One of them corresponds to the string with all
Is and the other is the string with all Os. The solution with all 1s is optimal.
Let us construct a test function by concatenating 5-bit trap functions one after
another. In other words each consecutive five bits define a separate trap func-
tion. This overall concatenated function can be linearly decomposed into
order-5 sub-functions. To solve this problem efficiently either the SGA needs
to be informed about related bits or they must be adaptively detected by
selecting the appropriate partitions and schemata. Lack of a mechanism for
explicit partition and schema detection makes the sGA perform very poorly
for such problems. Figure 3.4 shows the result of a typical sGA run for a 36-
bit objective function, comprised of six trap sub-functions, each of size six
bits. The sGA fail to obtain the optimal solution.

Many real life problems exist in which the underlying non-linearity of the
problem results in higher order problem delineability. As a result, success
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Fig. 3.4 The variation of the best fitness value of an sGA population with
respect to different generations. The optimal solution has a fitness value of 36.
The sGA has population size = 100, crossover probability = 0.7, mutation prob-
ability = 0.001, binary tournament selection.
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demands cffective search for appropriate partitions and schemata. This
problem of detecting appropriate relations and classes is traditionally called
linkage learning in the GA literature. Although by definition linkage learning
is not necessarily restricted to similarity based relations and classes, in the
following part of this chapter linkage learning will be restricted to only those
special cases. Linkage learning is essentially the problem of detecting appro-
priate bases of the underlying problem representation. A general definition of
linkage learning can be found elsewhere (Kargupta 1998; Kargupta and
Bandyopatlhyay, to be published). There is a growing consensus that scalable
linkage learning is essential for the success of GAs in search, machine learn-
ing, optim zation, and data mining problems. However, the need for linkage
learning w as realized even during the early inception of the GAs. The follow-
ing sectio describes the related work since the dawn of genetic algorithm
research.

7. Linkage learning in simple GAs

The effica:y of implicit processing has been questioned since the inception of
the GAs. Several efforts have been made for designing GAs capable of
explicit detection of significant partitions and schemata. The history of
linkage learning efforts dates back to Bagley’s dissertion (Bagley 1967).
Bagley uses a representation in which the gene explicitly contains both the
position a~d the allele value. For example, string ((0 1)(2 0)(1 1)) will corre-
spond to the string 110 in a fixed-locus representation of the simple GA.
Bagley us:d the so-called inversion operator for adaptively clustering the
related genes that define good partitions and schemata. The inversion opera-
tor works Jy reversing the order of the genes lying in between a pair of ran-
domly chcsen points along the chromosome. Although this mechanism was
used for generating new tightly coded partitions, Bagley’s work provides no
mechanism for accurate evaluation of the partitions. Moreover, introduction
of the invarsion operator restricted the use of GA crossover operator and
Bagley did not conclude in favour of the use of inversion. Rosenberg
(Rosenberg 1967) also investigated the possibility of learning linkage by
evolving 1ne probability of choosing a location for crossover. Although this
approach does not rigorously search for appropriate partitions, adaptive
crossover oint may be able to process schemata, with widely separated fixed
bits, better than a single point crossover. Frantz (Frantz 1972) investigated the
utility of t1e inversion operator and like Rozenberg reported that inversion is
too slow z.nd not very effective. Holland (Holland 1975) also realized the role
of linkage learning and suggested the use of the inversion operator despite its
reported failure in earlier studies. Goldberg and Lingle (Goldberg and Lingle
1985) int:oduced a new PMX crossover operator that could combine the
ordering information of the selected regions of the parent chromosomes.
They cor :luded that this approach has more potential than the earlier
approaches. Schaffer and Morishima (Schaffer and Morishima 1987) intro-
duced a sct of flags in the representation. These flags were used for identify-
ing the sct of genes to be used for crossover points. For different test

55



56 The genetic algorithms, linkage learning and scalable data mining

problems, they noted the formation of certain favourite crossover points in
the population, that corroborated their hypothesis regarding the need for
detecting gene linkage. Goldberg and Bridges (Goldberg and Bridges 1990)
confirmed that lack of linkage knowledge can lead to failure of GAs for
difficult classes of problems, such as deceptive problems. Additional efforts
on linkage learning GAs can be found elsewhere (Levenick 1991; Paredis
1995; Smith and Fogarty 1996). Harik introduced the LLGA (Harick 1997)
which made an effort to learn linkage by introducing the so-called exchange
crossover operator and the probabilistic expression based representation. An
alternate approach to linkage learning can be found elsewhere (Smith and
Fogarty 1996).

In addition to growing empirical evidence for the need of explicit linkage
learning algorithms in the GAs, theoretical advances have also started corrob-
orating these observations. Efficacy of such implicit processing of relations
has been seriously questioned on theoretical grounds (Goldberg, Korb and
Deb 1989; Kargupta 1995; Thierens and Goldberg 1993). Thierens and
Goldberg showed that simple GA fails to scale up for the class of problems
with only order-k significant partitions, unless information about the appro-
priate partitions is provided by the user.

The main reasons behind this lack of scalability are the merger of the rela-
tion, class, and sample spaces into a single population and the lack of ade-
quate efforts to methodically search for the appropriate order-k partitions. The
sGA also has some additional problems in the context of efficient partition
search. A single sample from the search space can be used for the evaluation
of all the relations under consideration. This is because that sample must
belong to some schema defined by any partition. This is often called implicit
parallelism in the GA literature. Although this can be exploited in a very sys-
tematic manner when relations are methodically processed, implicit process-
ing of schemata makes this quite noisy in the sGA. These observations
regarding the problems of simple GA in searching appropriate partitions and
schemata resulted in the development of different evolutionary algorithms that
pay attention to the linkage learning issue. The following section describes
one such algorithm, called the gene expression messy genetic algorithm.

8. The gene expression messy GA

The Gene Expression Messy Genetic Algorithm (GEMGA) (Kargupta 19964, b;
Bandyopadhyay, Kargupta, and Wang 1998) offers an efficient approach to
learning linkage. In GEMGA, the problem of associating similarities among
chromosomes with similarities of their corresponding fitness values is posed
as a problem of detecting approximate symmetry. Symmetry can be defined
as an invariance in the pattern under observation when some transformation
is applied to it. Similarities among the fitness values of the members of a
schema can be viewed as a kind of approximate symmetry, that remains
invariant under any transformation that satisfies the closure property of the
schema. The GEMGA identifies the fitness symmetry (in an approximate
sense) by identifying symmetry breaking dimensions, and uses them to detect
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the underlying linkage. This approach appears to be quite successful for prop-
erly delineating partitions of an optimization problem. An additional strength
of this method is its intelligent crossover, which explicitly works to preserve
linkage information detected earlier in the algorithm. Unlike other
approaches. (Deb, Harik etc), which relied on a position independent coding
and tried to get a ‘tight linkage’, this approach makes no such attempt; rather,
it starts by detecting local fitness symmetry and uses that to do a bottom-up
construction of global linkage information. In the following sections we
review the recently proposed version (v.1.3) (Bandyopadhyay, Kargupta, and
Wang 199%) of the GEMGA.

8.1 Population sizing

In order to detect a schema, the GEMGA requires that the population contains
at least on: instance of that schema. If we consider the population size to be a
constant and randomly initialized, then this can be guaranteed only when the
order (nunber of fixed positions) of the schema to be detected is bounded by
some cons -ant k. For a sequence representation with alphabet set A of cardi-
nality A, = randomly generated population of size A* is expected to contain
one instarice of every order-k schema. The population size in GEMGA is
therefore n1 = ¢ AX, where c is a constant. Although we treat ¢ as a constant, ¢
is likely tc depend on the variation of fitness values of the members of the
schema. Note that the population size is independent of the problem size /.
For all th: experiments reported in this work, the population size is kept
constant.

8.2 Representation

The GEMI3A uses a sequence representation. Every member of this sequence
is called s gene. A gene is a data structure, which contains the value and
capacity. The value contains the value of the gene, which could be any
member ol the alphabet set, A. The capacity associated with every gene takes
a positive real value. The chromosome also contains a dynamic list of lists
called the linkage set. The linkage set of a chromosome is a list of weighted
lists. Eacti member of this sequence consists of a list, termed locuslist which
defines th: set of genes that are related, and three factors, the weight, good-
ness, and trials. The weight is a measure of the number of times that the
genes in [ocuslist are found to be related in the population. The goodness
value indicates how good the linkage of the genes is in terms of its contribu-
tion to the fitness. This value is normalized between O and 1, and is initialised
to 0. The trial field indicates the number of times this linkage set has been
tried. (Nole that if the trial of any element of the linkage set is zero, then its
goodness is temporarily assumed to be 1, unless proved otherwise.) The
linkage set space over all genes defines the relation space of the GEMGA.
Figure 3.5 shows the structure of a chromosome in GEMGA. Unlike the orig-
inal mess, GA (Deb 1991; Goldberg, Korb and Deb 1989) no under or over-
specificati ons are allowed. A population in GEMGA is a collection of such
chromosoines.
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Chromosome i
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Fig. 3.5 Structure of a chromosome in GEMGA.

8.3 Operators

The GEMGA has three primary operators, namely: (1) Transcription,
(2) PreRecombinationExpression and (3) RecombinationExpression. Each of
them is briefly described in the following.

8.3.1 Transcription

The GEMGA Transcription operator plays an important role in the detection
of schemata. It detects local symmetry in the fitness landscape by noting the
relative invariance of the fitness values of chromosomes under transforma-
tions that perturb the chromosome, one gene at a time. It changes the current
value of a gene to a different value, randomly chosen from the alphabet set
and notes the change in fitness value. If the fitness deteriorates because of the
change in gene value, that gene is identified as the symmetry breaking dimen-
sion and the corresponding gene capacity is set to zero, indicating that the
value at that gene value cannot be changed. On the other hand, if the fitness
improves or does not change at all, the corresponding capacity of the gene is
set to one, indicating that this dimension offers symmetry, with respect to the
pattern of improvement in fitness. Finally, the value of that gene is set to the
original fitness. This process continues for all the genes and finally all the
genes whose capacities are reduced to zeroes are collected in one set, called
the initial locuslist. This is stored as the first element of the linkage set associ-
ated with the chromosome. Its weight, goodness, and trial factors are ini-
tialised to 1, 0, and O respectively. The transcription operator does not change
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1 def Transcription (self):
2 for a € self .pop:
3 empset « kjSet()
4 alue « a.value
5 for j € range (self.problem_length):
6 aflip (j)
7 if value < objective (a):
8 a.genes [jl.weight « 0.0
9 tempest.add(j)
10 else:
11 a.genes [jlweight « 1.0
12 a.flip(j)
13 a.l inkageset.append( link (cempest, self.INITIAL_WEIGHT,0,0))
14 return

Fig. 3.6 ‘Iranscription operator for minimization problem.

anything ir a chromosome except the capacities and it initiates the formation
of the linkage sets. Any symmetry that remains true over the whole search
space alsc remains true within a local domain. Figure 3.6 shows the
Transcription operator.

Locally detected schemata are next evaluated in a population-wide global
sense, as ¢ 2scribed in the following section.

8.3.2 PrcRecombinationExpression

The PreRccombinationExpression stage detects schemata that capture sym-
metry beyond a small local neighbourhood defined by the bit-wise perturba-
tion of transcription. The PreRecombinationExpression phase determines the
clusters of genes precisely defining the relations among those instances of
genes. It consists of two steps ResolveLinkage, and GetFinalLinkage.

1 def PreRecombinationExpression( self ):
2 for a e self.pop:
3 istx < range (len (self .pop))
4 for b € range (self.no_linkage.exp )
5 while 1:
6 chosen « whrandom.choice (1istx)
7 listx.remove ( chosen)
8 ch ¢« self.pop [ chosen]
9 if-(ch=a):
10 break
11 sel f.ResolveLinkage ( a, ch)
12 counter « counter + 1
13 print counter
14 forae self.pop:
15 1.GetFinalLinkage ( self .EPSILON, self .WEIGHT_THRESH)
16 relurn

Fig. 3.7 PreRecombinationExpression Operator.



60 The genetic algorithms, linkage learning and scalable data mining

ResolveLinkage Each chromosome in the population undergoes a fixed
number (No_Linkage_Exp) of ResolveLinkage operations with different
members of the population other than itself. During the ResolveLinkage oper-
ation those genes which are members of the initial locuslist (constructed
using Transcription) of both the chromosomes and having the same value and
capacity are grouped together in a new set. If the set is already present in the
linkage set of the first chromosome then the weight of the corresponding
locuslist is increased by an amount INCR_WEIGHT, else it is included as a
new element of the linkageset.

GetFinalLinkage A conditional probability matrix P is now constructed,
where the entry P[i,j](i # j) denotes the probability of finding gene i in a
locuslist given gene j is already present. In case (i = j) it denotes the probabil-
ity of a locuslist containing gene i only. The maximum probability max/i] in
each row is calculated and those entries which are less than max [i] -
EPSILON are replaced with 0. Now a new linkage set is calculated by col-
lecting the nonzero entries in each row into a locuslist and using the mean of
the corresponding probabilities as its weight. The set is added to the new
linkage set if its weight is greater than WEIGHT_THRESH. The addition of a
new locuslist is done in the same way as was done during the resolution
phase by checking for the existence of another locuslist with the same
members as the new one.

1 def GetFinalLinkage ( self,EPSILON, WEIGHT_THRESH ):
2 toplist < self.linkageset [0].set.items()

3 conditional « self.CalcConditional()

4 ThresholdConditional ( conditional, EPSILON )

5 self.linkageset « [ ]

6 forie toplist:

7

8

sum « 0.0
count « 0.0
9 newlink « kjSet( )
10 forje toplist:
11 ifi=:
12 newlink.add(j)
13 else:
14 if conditional [[][j] 2 max []]:
15 newlink.add(j)
16 sum ¢- sum + conditional [[] [j]
17 count « count + 1
18 elem ¢ len (newlink)
19 if count:
20 sSum ¢ sum / count
21 ifelem A (sum > WEIGHT_THRESH ):
22 self.linkageset.append(link (newlink, sum,0.0,0.0))
23 return

Fig. 3.8 GetFinalLinkage Operator.
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1 def RecombinationExpression ( self ):

2 ne.pop « [ ]

3 for i € range (len (self .pop)):

4 maxind « i

5 maxfit « self.pop [i].value

6 forje range (1, self.tsixe):

7 tempind <« whrandom.randint (0, len (self.pop)-1)

8 if maxfit > self.pop [ tempind].value:

9 maxind < tempind
10 maxfit « self.pop [ tempind ].value
11 “lewpop.append ( self .pop [maxind])

12 se . f.pop ¢« newpop

13 for i € range (0, len (self.pop),2):

14 ¢ el f.GEMGARecombination ( self .pop [i], self.pop [i +1])
15 return

Fig. 3.9 RecombinationExpression Operator.

8.3.3 RecombinationExpression

The ReconbinationExpression Phase is the selecto-recombinative phase of
the algorithm and is run a fixed (No_Gen) times. It also consists of two steps.
First a maring pool is created by performing binary rournament selection in
the population. Then the GEMGA Recombination operator is applied itera-
tively ovet pairs of chromosomes.

First, copies of the given pair are made, and one of them is marked. An
element of the linkage set of the marked chromosome is selected, based on a
linearly combined factor of its weight and goodness, for swapping. The corre-
sponding jenes were swapped between the two chromosomes provided the
goodness values of the disrupted locuslists of the unmarked chromosome are
less than rhat of the selected one. The linkage sets of the two chromosomes
are adjust:d accordingly. Depending on whether the fitness of the unmarked
chromoso ne decreases or not, the goodness of the selected linkage set
element is. decreased or increased. Finally, only two of the four chromosomes
(including the two original copies) are retained (Bandyopadhyay, Kargupta,
and Wang 1998).

8.4 The algorithm

The overall structure of the GEMGA is summarized below:

1. Initialization Randomly initialize the population.

2. PrimcrdialExpression Detect schemata that capture local fitness
symmetry by the so called transcription operator. Since population size m =
¢, this ¢ an be done in time O(A¥]).

3. PreRecombinationExpression Identify schemata that capture fitness sym-
metry over a larger domain. This only requires comparing the chromosomes
with each other and no additional function evaluation is needed.
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4. RecombinationExpression

(a) Create a Mating Pool using Binary Tournament Selection.

(b) GEMGA recombination: The GEMGA uses a recombination operator,
designed using motivation from cell meiosis process that combines the
effect of selection and crossover. Reconstruct, modify schema linkage
sets and their parameters.

(¢) Mutation: Low probability mutation like simple GA. All the experi-
ments reported in this work used a zero mutation probability.

The primordial expression stage requires O(A*l) objective function evalua-
tions. PreRecombinationExpression requires O(A%*) pair-wise similarity com-
putation time (no objective function evaluation). The length of the
Recombination stage can be roughly estimated as follows. If 7 be the total
number of generations in the juxtapositional stage and if selection gives «a
copies to the best chromosome then if selection dominates the crossover,
every chromosome of the population will converge to the same instance when
o' =m,

t=logm/log a (2)
Substituting m = cA%, we get:

_logc+kloga
loga

t (3)

Therefore, the number of generations in the recombination expression stage is
O(k). This result is true when selection is allowed to give an exponentially
increasing number of copies. The overall number of function evaluations is
bounded by O(A¥)). This analysis assumes that the cardinality of the alphabet
set of the chosen representation is bounded by a small constant (e.g. in case
of binary representation it is two). The GEMGA has been applied to solve a
feature selection problem using a power distribution network fault-diagnosis
data set. The following section describes the application domain and presents
the results.

9. Data analysis application

This section describes the development of a diagnostic tool for fault
identification and location in a radial medium voltage (MV) distribution
network using the GEMGA algorithm. A minimal subset from a large set of
electrical features available at the metering stations is identified. Finding the
most significant patterns or parameters in a large database is not a trivial
problem; solving it however can help speed up on-line diagnosis of faults.
The evaluation of the significance of each feature is done by means of a
diagnostic model based on the comparisons between the network simulator
output in normal and outage operating states. The characterization of each
faulty condition is extensively studied in (Di Silvestre 1998). The results
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Data analysis application

def GEMGARecombination(self, chroml, chrom?2);

gl <]

tl « ]

swapflag « 0

downflag « 0

egialflag« 0

t1l « copy.deepcopy(chroml)

t2 <« copy.deepcopy(chrom?2)

if chroml.linkageset:
maxind <« chroml.ChooseLinkage()
maxtrial, maxgood, maxwtl ¢«

chrom2.MaxDisruptedLinkage(chroml . linkageset [maxind])

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

if chroml.linkageset [maxind] .goodness = maxgood:
chroml.swapgenes(maxind, chrom2)
chroml.fitness()
chrom?2 fitness()
t1 « chrom2.AdjustLinkage(chroml .linkageset [maxind])
index « len(chrom2.linkageset)-1
chroml.SelfAdjustLinkage(chrom2 . linkageset [-1],t1)
chrom?.linkageset - chrom2.linkageset + gl
if chrom2.value € t2.value:
chrom?2.IncreaseGoodness()
if chrom2.value = t2.value:
equalflag « 1
elif chrom2.value > t2.value:
chrom2.DecreaseGoodness()
downflag « 1
if (chrom2.linkageset [index] .goodness =

maxgood) A (maxtrial >0) A (chroml.value > tl.value):

28
29
30
31
32
33
34

self«tl
if equalflag:
self «tl
chrom2 « t2
if downflag:
chrom2 < t2
return

Fig. 3.10 GEMGARecombination Operator.

presented here provide a considerable number of different possible minimal
sets of features and the results of the algorithm can be interpreted in physical
terms.

9.1 Background

The prob 2m of fault identification and location in power distribution systems
has created wide interest among the scientific community in the Power

63
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1 def main()

2 GA <« GEMGA()

3 GA.Randomize()

4 GA.Transcription()

5 GA.PreRecombinationExpression()

6 gen.counter « 100

7 for j € range (gen_counter):
8 GA.RecombinationExpression()
9 GA.PrintBest())

10 return

Fig. 3.11 Main loop of the algorithm.

Distribution area. An efficient approach to this problem leads to immediate
benefit to the customer in service quality and cost reduction. Electrical utility
companies are therefore interested in efficient tools for fast and accurate
diagnosis of the system so that down-time can be minimized. In general diag-
nostic problems can be divided in two sub-problems:

1. building up a reliable knowledge base for fault-identification;
2. identification of faults.

The problem of identifying the significant features required to perform a fast
online diagnosis can be done either on-line or off-line. Examples of the first
approach can be found in (Wen and Chang 1997) and (Chang et al. 1997). In
Wen and Chang (1997), the identification of the faulty sub-network is per-
formed using the real-time network topology determination method and by
comparing the pre-fault and post-fault conditions. In this way, the scope of
the fault section estimation can be drastically reduced and the diagnostic
problem is then solved using a refined GA. In Chang et al. (1997), the
problem size is reduced on-line. This is done using a fuzzy expert system for
faulty sub-network identification. The knowledge base is enriched on-line by
post-fault data of protective relays and circuit breakers, collected from all
over the network. The problem of detecting precise fault location is consid-
ered elsewhere (Zhu et al. 1997) and (Hsu et al. 1991). A multi-stage scheme
for locating and diagnosing faults in distribution feeders has been developed
by (Zhu et al. 1997). Fault location detection is performed using on-line data
collected from the Medium Voltage/Low Voltage (MV/LV) sub-station and
using probabilistic modelling and analysis. The results of the first location
detection are then adjusted taking into account the approximation introduced
in the generated models. In (Hsu et al. 1991), the problem of the fault loca-
tion is solved using an expert system. Recently, the large amount of informa-
tion derived from dispatchers’ past experience and logical reasoning have
prompted extensive work on the application of expert systems in fault diag-
nosis. Both rule-based and model-based expert systems can have drawbacks
due to either the large number of rules needed to describe the protection
system behaviour and/or due to the time required by the inference process. In
(Momoh ez al. 1997) the faults diagnosis is performed for single-line faults in



distributicn systems, using on-line digitized data collected at the High
Voltage/Medium Voltage (HV/MV) sub-station. It describes an integrated
package for fault diagnosis, using a rule based scheme and an artificial neural
network to identify, detect and classify single-phase faults. The proposed
diagnostic tool can be applied to distribution networks with grounded or
ungrounded neutral. Togami and Kitahashi (Togami et al. 1995) have devel-
oped a diagnosis methodology using a decision tree. The method is applied to
a single main MV feeder with burdens at the end of the feeder. It takes into
considerat on only two types of faults. An alternate fault diagnosis system
has been developed by Teo (Teo 1995) using a special purpose machine
learning algorithm. In the current study a diagnostic strategy based on off-line
determination of a set of features similar to that described on Togami et al.
(1995) an¢ Teo (1995) is presented. In particular, in Togami et al. (1995), the
feature selction is performed using comparison among ranges of variation of
some elecirical features as the parameters vary. The test system is small and
the number of events is limited. In the present study however, the network
model is accurate and is capable of simulating a large number of possible
electrical network working conditions, in both outage and normal operating
states. Moreover, the solution sets obtained are composed of electrical fea-
tures that are good for distinguishing among the various faults and identifying
them.
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Fig. 3.12 The test system.
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9.2 Problem description

The distribution network considered in this chapter is presented in Fig. 3.12.
Further details regarding its electrical and topological features can be found
in (Di Silvestre 1998). It has the following characteristics:

1. Single HV/MV sub-station from which a number of main feeders spread
out; these supply all the radially connected loads. The connections may
be cable or overhead lines.

2. Loads are supplied through MV/LV transformers installed in sub-
stations, where it is possible to perform measurements of the electrical
features, above and below the derivation.

3. Load varies with daily, weekly, and monthly cadence.

The faults considered here can be divided into two main categories:

1. Faults due to line insulation break-down, that can be further divided into:
(a) single-phase faults,
(b) phase-to-phase faults,
(c) phase-to-phase-to-ground faults.
2. Faults due to the mechanical break-down of a line. This is primarily
expected from overhead lines and can be further divided into:
(a) direct: interruption close to a pole, when the line on the supply side
goes to the ground,
(b) inverse: interruption close to a pole, when the supply on the load
side goes to the ground,
(¢) double: both sides of the lines go to the ground.

In faulty conditions the parameters that most directly influence electrical fea-
tures are.

Neutral grounding system.

Fault resistance.

Supplied load entity at the moment the fault occurred.
Fault location in the network.

el NS

The electrical features considered to be useful for the diagnosis are the zero,
positive, and negative components of the voltage and the current; the nega-
tive and zero components of real and reactive power. They are evaluated at
the input and/or output sections of the MV/LV sub-stations; those sections
will be called control points.

Since we assume that the system is symmetrical, choosing zero and nega-
tive real and reactive power as features allows the identification and location
detection of non-symmetrical faults. The elementary evenr that can take
place in the system under current consideration is one of the faulty condi-
tions indicated above occurring between two adjacent MV/LV sub-stations.
Once the parameters influencing any faulty conditions have been defined, it
is possible to evaluate the corresponding range of variation of all the fea-
tures at all control points, for these events. In the present application the
parameters are those listed earlier. To develop a diagnostic model, the
knowledge base is therefore made up of the range of variation of each of



the features considered in any of the control points. The knowledge base is
made ugp of all the ranges defined by two real values indicating their upper
and lower bounds. The simulation software for the system’s behaviour is
that described in (Augugliaro et al. 1996). The following section presents
the diagrostic model used.

10. Diagnostic model

The diagnostic model comprises a system having ¢ control points, at each of
which freatures can be observed, for e different types of possible events. Let
us denote the minimum and the maximum value of the feature F by F;, and
F e A database of the (Fp,, Fo) tuples is generated by varying the parame-
ters between their respective minimum and maximum values. The total
number of such tuples is therefore ¢ x f X e. The problem can then be
expressed (Di Silvestre 1998) as follows. Given the ranges of variation of all
the independent parameters, identify the set of features that allows proper
distinction between the various faults with a given precision. For any event i,
let us denote the ranges of variation of feature F by the tuple (Fjpnin, Fimax)-
For any two such events i and j, there are three possible options for this
range: non-overlapping, partially overlapping, and totally overlapping. These
options :re presented in Fig. 3.13.

Let us denote the range of variation of feature F, during event i by the
symbol Ai. If the overlapping area S; between the events i and j is greater
than zero (as in cases b) and c¢) shown in Fig. 3.13), then we can define index
15, as follows.

S.
Ioj = —-A% (4)
This ind::x measures the significance of F with respect to its ability to distin-
guish between events i and j and vice-versa. This identification index ranges

Aj

Aj

Ai

a) b)

Diagnostic model

Aj

Fig. 3.13 Possible relations between the ranges of variation of a feature when events i or j take place.
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between O and 1. Therefore, for each of the features it is possible to create a
matrix whose row and column indices are the events to be recognized. This
matrix provides valuable indication of the significance of a feature in distin-
guishing between all the events, under the assumption of uniform occurrence
of all the different parameter values. In the present study, for the sake of sim-
plicity we will consider /;; ; to be Boolean. Whenever /; ; is lower than unity,
it is set to zero. Therefore, the resulting matrices for different features are
symmetrical and can be summarized into a single table with f columns and r
rows. The number of rows of the table is,

r_[Zj (5)

where e, is the total number of events. The problem is then to find the minimal
set of features that can distinguish between all events. The test system is repre-
sented in Fig. 3.12. It comprises different types of lines such as:

1. two lines of A type, overhead lines, total length: 21 km, supplying
10 MV/LV sub-stations whose rated power is 250 kVA;

2. five lines of B type, cable lines, total length: 8 km, supplying 11 MV/LV
sub-stations whose rated power is 250 kVA;

3. two lines of C type, mixed cable-overhead lines, total length: 21 km, sup-
plying 22 MV/LV sub-stations whose rated power is 250 kVA.

In this work we consider only those features that are monitored on one of
the lines of type C. The faults considered occur on the lines of type C and
type A only. The simulation outputs ten electrical features, listed in Section
9.2, at seven control points. Therefore the application involves seventy
features in total. The number of events to be distinguished is e, =31. The
same faults occurring in two different sections are considered as two
different faults. We will specifically consider six different working
conditions:

Normal operating condition.

Insulation breakdown (single-phase and double single-phase).
Mechanical breakdown (direct and inverse fault).
Three-phase fault.

Phase-to-phase fault.

Phase-to-phase-to-ground fault

AN e

A fault event on a line of type A, different from that where the simulated
measurements are currently performed is not included here. It can indeed be
identified by measurements at the control points at the start of each of the
lines. In this case, analytical studies on the network (Di Silvestre 1998) have
proved that measurements of the negative component of the reactive power
and of the positive component of voltage or current in symmetrical and non-
symmetrical systems can tell us whether the line under observation or an
external line is in one of the following states.

1. Normal operation.
2. Three-phase fault.
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3. Insulation breakdown, mechanical breakdown, two-phase, and two-
phase-to-ground faults.

Once the: faulty line has been identified, the feature selection for precise fault
identificstion and location detection can be performed. This is the object of
the present study. The events we are considering here can take place on one
of the main feeders of type C, in which the metering systems are placed at
each MV/LV sub-station. Therefore, the size of the search space is 2/. Since f
linearly zrows with the number control points c, the search space grows
exponentially with both the number of control points and the number of
features.

Finally, due to the flexibility of the tool used for feature selection, the
present study can easily be extended to include different possible implemen-
tations for various different objective function formulations. Of course, the
ranges o variation of the features are affected by errors due to the model
used. Also, when any diagnosis is actually to be performed, the possible
errors due to the measurement systems themselves have to be considered in
the diagnostic model formulation. The following section describes the for-
mulatiorn of the objective function.

10.1 The objective function formulation

The objective is to minimize the number of features required for the
identification of all events. To explain the criterion used for the objective
function implementation a simple case is reported in Fig. 3.14.

For example, consider a system with four features and three possible
events, s> f=4 and e, = 3; in this case, we choose ¢ = 1. Figure 3.14(a) shows
the ranges of variation for the given set of features, whereas Fig. 3.14(b) is
the table resulting from the comparison of the ranges in Fig. 3.14(a). The

F F F F
Featu:: 38 F, F, F3 F4 1 2 3 4
Events E | E, 0 0 0 1
11078 3.9 12.8 33 E, E, 1 1 0 1
El ........................................................................
11115 54.8 538.4 655 E, E; 1 1 0 0
11078 3.7 12.7 66 b)
E2 ........................................................................
11157 116 1120.7 66.5
11074 0.6 83.4 66.2
E3 ........................................................................
11075 3 330.1 66.7

Fig. 3.14 (a) Table containing the ranges of variation
of features F,—F, relating to the difference events E,-Ej;
(b) Table containing binary values indicating the pairwise
a) status of the ranges (overlapping = 0; not overlapping = 1).
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number of rows is 3 and it comes from equation 5 with ¢, = 3. As can be
seen, none of the four features is, by itself, able to distinguish all events. Only
the tuples (Fy, F,) and (F,, F,) are able to do that. Moreover, all the sets con-
taining these tuples are able to distinguish all the events, but they are not
minimal sets. Since we are interested in finding the solution that distinguishes
all events from one another with a minimal number of features, we can define
the objective function to be,

f2
max[e, +1—%) 6)

where e; is number of events that can be distinguished by the features con-
tained in the solution set and f, is the number of features in the solution set.
The following section presents the experimental results.

10.2 Results

The diagnostic system design problem is an important class of problem in
electrical engineering. In addition to finding a good solution comprised of the
optimal feature set, the physical interpretation of the solution is also impor-
tant. Since the GEMGA detects the linkage sets that correspond to the physi-
cal dependencies among the features, the linkage information is also
valuable.

In such an application GEMGA provides a good insight into the physical
problem. The GEMGA searches for linkage sets among variables, which can
indicate the contribution of sets of electrical features to the diagnosis problem.
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yd
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4000 ~ / ,
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Number of function evaluations

21 -
000 -
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T
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Problem size
Fig. 3.15 Performance of the GEMGA. Note that the number of function evalu-
ations grows linearly with the problem size.



Featute combinations are represented as chromosomes, with each gene
taking a boolean value. A zero and a one represent absence and presence of
the corresponding feature respectively. The chromosomes are evaluated
according to equation 6. Both the simple GA and the GEMGA are applied
separatelv to solve the problem. Five independent runs are considered and
the average number of function evaluations per success are computed for
both the SGA and the GEMGA. Figure 3.15 shows the growth of the number
of function evaluations with respect to increasing problem size.

As we note, the GEMGA outperforms the SGA by a large factor.
Moreover, the increase in the number of function evaluations for the
GEMGA is linear, as predicted from the theoretical analysis. The reference
minimal solution set has been determined by execution of several runs on
each problem size. The optimal solution for the seventy, forty, and twenty
features mroblem contains eight, five, and three features respectively.

These results have a physical explanation. Since the solution set should
be able to detect the fault type besides its location, the systems considered
have indeed seven, four, and two control points for the seventy, forty, and
twenty fcatures. One feature in all the solution sets is the positive current at
the start of the line. This gives evidence of symmetrical fault occurrence
and location all over the line. The remaining features give evidence of non-
symmetrical fault identification and location. These are mostly negative
components and zero components of active and reactive power and are
good incicators of non-symmetrical faults in symmetrical systems. The
linkage sets detected by the GEMGA offers some insights. For example, a
typical CEMGA run would find a linkage set involving the inverse compo-
nent of voltage and of current at the same control point. Moreover, the
schema rletected by the GEMGA over this linkage partition contains a one
for the v>ltage and a zero for the current. This is naturally expected, since
for this upplication, in most cases these features are mutually exclusively
physically.

Furth:r developments of the present study will take into account the non-
symmetry of the system. They will also consider the uncertainty arising due
to measurement errors and the approximations of the used model.

11. Conclusions

Data mining is an important application area and genetic algorithms are
likely tc continue their popular role as an effective data mining tool.
However, this chapter points out that scalability of genetic algorithms is
likely to play an important role in the success of GAs in the twenty-first
century. This chapter focused on this scalability issue and presented at least
two important fundamental concepts. Like any black-box search/optimiza-
tion algorithm, GAs are fundamentally based on an inductive search
process. Therefore, searching for appropriate relations and classes defined
over the search space members is important for transcending the limits of
enumerative search. This chapter has presented one possible approach

Conclusions
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towards efficient detection of relations and classes by identifying the
approximate symmetry-preserving and symmetry-breaking dimensions. It
has been shown (Kargupta 1996a,b; Bandyopadhyay et al. 1998; Kargupta
and Bandyopadhyay 1998) that the GEMGA based approach is promising
and it has produced linear-time performance for a large class of problems.
In this chapter we extended the linear-time performance to a feature selec-
tion problem using electrical power distribution network-fault detection
data. We hope that this work takes the decade-long effort on scalable GAs
one step closer to the holy grail.
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4 Theory and application of

fuzzy methodology
Paul P. Wang and Fuji Lai

1. Introduction

The challenge of extracting information from a knowledge base is a very
important practical issue in Al research. There have been numerous proposals
in the past as to how to approach this problem. At the same time, other
research has demonstrated in fuzzy control problems that fuzzy logic is an
effective tool for solving practical problems. In this chapter we demonstrate
that fuzzy set theory is a valuable methodology for the design of knowledge
bases, which is a task closely linked to information extraction.

The issues of inference and the organization of a knowledge base are very
much intertwined. In consequence, the design of a knowledge base must con-
sider the mechanism of inference at the earliest stages. Traditional Al
methods for making inferences, such as rule-based knowledge bases and
semantic networks, have proven to be less effective than fuzzy logic methods
using approximate reasoning.

Classification is fundamental to the organization and to the efficient and
effective use of knowledge. The task of classification exists in all aspects of
life and in all academic disciplines (Nilsson 1965). For example, in chemistry
the Periodic Table is used as an ordered classification of elements. In zoology
classifications exist of different families of animals. For this specific
classification problem there is no unique way to proceed. Taxonomy is like
language in that it comprises syntactic and semantic aspects. In a given tax-
onomy task, it is desirable not only to completely separate sub-classes (syn-
tactic), but also to attach meaning (semantic) to each classification. In this
chapter we outline how classification tasks can be accomplished according to
so-called “features’. We will illustrate this using an example from industry, in
which automated classification of small manufactured items can have far-
reaching consequences in efficiency, to demonstrate how classification can
be achieved with the use of fuzzy set theory (Kaufman 1975).

In pursuing the task of classification, one must first focus on the issue of
pattern recognition. Human cognitive processes have been shown to use
feature extraction and analysis in recognizing and classifying patterns or
objects. Other theories in cognitive psychology have suggested instead a
template-matching method of cognitive recognition, but these have been
unable to account for the remarkable flexibility of human powers of recog-
nition, whereby recognition is still possible in the face of adverse condi-
tions such as translation, enlargement, rotation, or segmentation of patterns
(Schalkoff 1992; Duda and Hart 1973). Pattern recognition is the first step
to making a connection between the real world and the digital computer,



and therefore is vital in tackling real world engineering problems with a
computer.

One must develop numeric descriptions and data structures for patterns,
because this is the nature of a digital computer. One must be able to pick a
pattern o: sample and generate data to be used for recognition. Intensive
research is needed to translate data from realistic data structures to features.
Our research has demonstrated how sample classification and recognition can
be achieved through the creation of a knowledge base of features, and further
inferences made using this knowledge base. The key tools are fuzzy set
theory, mambership functions, fuzzy relations, the properties of similarity
relation n-atrices, and fuzzy inference. Even ‘approximate reasoning’ can be
employec. advantageously in resolving ambiguous cases.

2. Cognitive science

Cognitive psychology refers to all processes by which ‘sensory input is trans-
formed, r:duced, elaborated, stored, recovered and used’ (Best 1986). Our
cognitive processes respond to sensory input and transform physical energy
into code: of natural or neural energy. The nervous system receives a physical
stimulus and encodes it in such a way as to preserve many of its characteris-
tics. Not omly is a neural code created, but so is a cognitive code. This kind of
code can he defined as ‘the transformations of physical energy that are poten-
tially cap.able of entering our awareness, or those transformations that form
the basis of such an event’ (Best 1986). Once created, a cognitive code is
reduced cr elaborated. An example of the creation of a cognitive code is the
process of reading, which involves the assimilation of the meanings of each
word to assemble a pattern of meaning. Later, one might be hard-pressed to
remember the exact words of the passage read, but one would be able to
recall the general meaning. The processes involved in the storing, transform-
ing, recovering, and reconstructing cognitive codes form the basis of our
mental lives and what is often referred to as memory.

Of importance in visual perception and object recognition is the process of
pattern recognition: the template-matching theory and the feature analysis
theory. The first of these is based on the assumption that a faithful retinal
image of the object is transmitted to the brain, where it is compared with a
stored kriowledge base of patterns called templates (Pao 1989). For example,
in letter rzcognition, the perceptual system tries to compare the input letter to
the storec! templates to achieve a match between the retinal pattern created by
the letter A, for example, and the retinal pattern template. A practical example
is the computerized check-sorting machine used by banks to read account
numbers printed on checks. For this to succeed, nearly uniform size and posi-
tion of tl'e printed characters is required. Template matching theory has two
disadvan ages. One is that the system is inefficient, requiring much time to
sort thro.igh many templates and compare them with an image. The second is
that patt:rn recognition in humans is very flexible, as we can recognize the
same chiracters even if they are displaced, rotated, enlarged, or blurred, and
this sugg 2sts that template-matching is perhaps not the method the brain uses.
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Feature analysis has as its basic assumption that all complex stimuli are
composed of distinctive and separable parts known as features. Pattern recog-
nition occurs by noting the presence or absence of features and comparing the
count with a tabulation of features linked with different labels. This relies
upon ‘decomposability of stimuli’ (Best 1986). Such a tabulation has been
shown to be true for letters. The features of the alphabet consist of horizontal
lines, vertical lines, lines at approximately 45 degrees and curves. According
to these features, a letter A may be seen to consist of two lines at 45 degree
angles and a horizontal line. Some have suggested that this theory is not such
a departure from the template-matching theory, saying that features are only
mini-templates. Nevertheless, feature analysis theory is more versatile since
the features are simpler, so difficulties encountered by template models may
be reduced or eliminated. Also, the feature-combination scheme allows
recognition of the relationships most critical to the pattern, as in the case of
the letter A, where the crucial characteristic is the two 45 degree lines
meeting at a point and intersected by a cross bar. Thus the letter A can be rec-
ognized in all its possible presentations. The feature theory also is more
efficient due to the smaller number of templates required, as templates are not
needed for every possible pattern but only each feature. Experiments have
established that there is much validity in the feature analysis theory. For
example, in letter recognition tasks, it has been noted that letters with many
features in common, such as with C and G, are more prone to be confused.

Feature analysis models gained popularity during the 1960s when physiol-
ogists posited ‘feature detectors’ in the visual cortex of cats and monkeys
(Bruce 1990). In Selfridge’s Pandemonium system (1959), originally devised
for Morse Code recognition but later popularized in alphanumeric recognition
(Bruce 1990), pattern recognition takes place in a series of stages carried out
by highly specialized cognitive processes, known as ‘demons’. First, image
demons convert the physical stimulus into a cognitive form recognizable by
other demons. The feature demons analyze this information, each scanning
for its own particular feature. Next, the cognitive demon checks for its own
particular set of features. Every appropriate feature seen increases the noise-
making of the demon by one notch. In the final stage, the decision demon
listens to the resulting pandemonium, decides who is screaming the loudest
and determines that that is the incoming stimulus. A Pandemonium system
can also learn to give different weights to different features according to the
discriminating power of these features. Although this model is interesting, it
was proven unsatisfactory as an absolute model for human recognition
because, although it classified patterns, it failed to retain and describe the dif-
ferences between patterns of the same class.

The most valuable lesson to be learnt from the feature analysis theory is
the general and flexible representational format for human pattern and object
recognition provided by structural descriptions (Bruce 1990). A structural
description is not a theory but provides the right kind of representation with
which to construct a theory. It consists of a set of symbolic propositions
which define the structural arrangements of the parts. For example, the letter
T may be defined as a horizontal line supported by a vertical line with the
support occurring about halfway along the horizontal line.



Fuzzy set theory and similarity relation matrices

The exiraction and recognition of features has been established as the most
vital comnonent of pattern and object recognition. In the identification of the
25 samples, discussed later in this chapter, we have simulated the human cog-
nitive prccesses which go into making such a decision. In our experiment
eight features have been extracted to construct a knowledge base which can
be used tc identify objects. As in the whimsical pandemonium model, there
are ‘demcns’ or features which have higher distinction powers.

Many artificial systems have been developed to attempt to classify pat-
terns. Onz, the WISARD (Wilkie, Aleksander and Stonham’s Recognition
Device) System demonstrated how instead of using features, a neural network
which stored responses to a large number of instances of different pattern
exemplars was able to classify new patterns correctly (Anderson 1985). This
system relied on sampling of select n-tuples of pixels and analysis of statisti-
cal similarity. Although this system might play a role in industrial sorting
applications, it is limited because results vary according to the lighting.
WISARD demonstrates that sorting can be done by brute force and the use of
extensive amounts of memory, but awareness of the abstract characteristics of
objects would help solve the task in a more intelligent and efficient way.

3. Fuzy set theory and similarity relation matrices

Fuzzy set theory was introduced by Lofti Zadeh in 1965 as a way of repre-
senting tne vagueness in everyday life. It is a superset of conventional
(Boolean) logic that has been extended to handle the concept of partial truth.
Rather th:n being regarded as a single theory, it has been said that one should
approach the process of ‘fuzzification’ as a methodology to generalize any
specific t eory from a crisp (discrete) to a continuous (fuzzy) form.

The essence of fuzziness closely resembles the nature of human cognitive
processes (Zadeh 1975). For example, in everyday language one would advise
that a driver ‘apply the brakes soon’, rather than ‘begin braking 74 feet from the
crosswalk.'. The latter instruction is too precise to be implemented. In all aspects
of daily life, one learns to assimilate and live by fuzzy data, vague rules, and
imprecise information (Bezdek and Pal 1992). Thus, it is reasonable to think
that computational models of real systems should be able to recognize and inter-
pret fuzzy uncertainties (Wang and Chang 1981; Wang 1981, 1983, 1993).

Just as there is a strong relationship between Boolean logic and the
concept of subject, there is a similar relationship between fuzzy logic and
fuzzy subset theory. In classical set theory, a subset U of a set S can be
defined as a mapping from the elements of S to the elements of the set {0,1}:

Uu:s —{0,1}

This mapping can be represented as a set of ordered pairs, with exactly one
ordered pair present for each element of S, and the first element of the
ordered yair being an element of S, the second element being either 0 or 1.
The valu: zero represents total non-membership and the value one represents
members 1ip. The truth or falsity of the statement

xisinU
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is determined by finding the ordered pair whose first element is x. The state-
ment is true if the second element of the ordered pair is 1, and the statement
is false if it is 0.

In a parallel manner, a fuzzy subset F of a set can be defined as a set of
ordered pairs, each with the first element from S, and the second element
from the interval [0,1], with exactly one ordered pair present for each element
of S. This defines a mapping between elements of the set S and values in the
interval [0,1]. Zero represents complete non-membership while the value one
represents complete membership, and values in between are used to represent
intermediate degrees of membership. The set S is referred to as the ‘universe
of discourse’ for the fuzzy subset F. The mapping may be described as ‘the
membership function’ of F. The degree to which the statement

xisinF
is true is found by finding the ordered pair whose first element is x. The
degree of truth of the statement is the second element of the ordered pair.
There are many forms of membership functions. For example, the concept of
‘tallness’ is affected by linguistic perceptions as well as cognitive percep-
tions. If we define a fuzzy subset TALL, the question will become ‘to what
degree is person x tall’? Each person would be assigned a membership grade

defining his ‘tallness’. One way in which this could be done is a membership
function according to height.

0: if height (x) <5
tall(x) = (height (x) - 5 ft)/2 ft if 5 ft < height (x) < 7 ft
1: if height (x) > 7 ft

The graph would then be of a triangular form. Membership functions can also
exist in other shapes, such as bell curves or staircase graphs. They may be
derived from sources such as subjective evaluation or data and probabilities.

To manipulate fuzzy sets, we need operations to combine them. ‘Classical’
operations were laid out by Zadeh (1975) and are characterized in terms of
F(X) = All Fuzzy Subsets of X and m e F(X) & m: X — [0,1]. The fuzzy
sets m,, my € F(X) and the operations are:

(=) Equality A=B & my (x) = mg (x)

(C) Containment A C B & my (x) =< mg (x)

(~) Complement my=1-m, (x)

(M) Intersection mung (x) = min{m, (x), mg (x)}
(U) Union = my 5 (x) = max {m, (x), mg (x)}

We could develop the concept of tallness by relating it to a pair of
variables such as the person’s height and the person’s age, giving a two-
dimensional membership function or ‘fuzzy relation’. In pattern or object
recognition, the aim is to search for structure in data. One way to approach
this is to use the concept of fuzzy sets to transform input data into a set of
membership values which indicate the degree of membership in certain
classes and the degree of similarity between different classes. We now
discuss how the notion of fuzzy relations and fuzzy similarity relations can
give an indication of the similarity of the two samples.
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An ex:mple of a fuzzy relation is shown below, where we let P be a
product sct of n sets and M its membership function, and a fuzzy n-ary rela-
tion is a fiizzy subset of P taking its values in M (Wang 1976).

E, ={xy, X2, X3}, E; ={y1, Y2, Var Var V61, M =10,1]

Y1 Y2 Y3 Ya Ys
X1 0 -0 0,1 0,3 1
Xo 0 0,8 0 0 1
X3 0,4 0,4 0,5 0 0,2

In the case where E; = E, = E and M = [0,1] the result is a fuzzy binary rela-
tion. The membership grade associating each pair gives the strength of the
relation b:tween members. Similarity relation matrices or relations of simili-
tude are a subset of fuzzy binary relations which have the property of ‘equiv-
alence’. Within equivalence are three requirements that must be satisfied:

(a) Symmetry. A symmetric fuzzy binary relation is defined by
V(xy) € EXE: (ug(x, y) =u) > (ug(y, x) = p).
(b) Refl:xivity. This property is defined by
V(x, y) e EXE: pg(x, x) =1
(c) Trarsitivity. If we letx, y, z € E; then

V(Xr Y)/ (y, z)l (X: Z), € E % E:
wr (X, 2) = MAX IMIN (ug (x, ¥), paly, 201

An example of a fuzzy similarity relation is shown below and it can be seen
to satisfy all three requirements. The properties of symmetry and reflexivity
can be rationalized by recognizing that the similarity of one sample to itself
should be one and the similarity of two samples should be the same regard-
less of the order in which they are taken.

R A B C D E
A 1 0.1 0 0.1 0,9
B 0.1 1 0,2 0.3 0,4
c 0 0,2 1 0,5 0,2
D 0,1 0,3 0,5 1 0,1
E 0,9 0,4 0,2 0.1 1

Thus the >ntries on the diagonal are unity and those on one side of the diago-
nal are re flected onto the other side. These similarity relation matrices can be
used to fcrm inferences and putative identifications. This can be done through
several d: fferent methods such as max-min composition, max-star composi-
tion, or max-product composition (Kaufman 1975). The max-min composi-
tion is defined such that if R; C X X Y and R, C Y x Z, then the min-max
composit on R| and R, denoted R, o R is:

Uraort (X, D) =V, Lug (X, y) A pmpa(x, y)1 = MAX, IMIN (ug (X, y) He2ly, 2]

81



82 Theory and application of fuzzy methodology

where x € X, ye Y, and z € Z. An example is shown below:
R Y1 Y2 ] Ya
Xi Xy X3 X4 X4 1 0,8 03 04
03 04 05 0,1 ° X 0,8 1 02 05
x; 03 02 1 06
Xy 0,4 0,5 0.6 1

The operation is carried out by taking the 1 X 4 matrix in turn with each
column of the 4 X 4 matrix in the manner:

MAXT(0,3 A\ 1),(0,4/\0,8),(0,5 N\0,3), (0,1/\0,4)] =
0,3\v0,4\03,0,1=0,4

(Note: \/ = minimum; A\ = maximum)

The result would be: [0,4 0,4 0,5 0,5]

In this manner inferences can be made. There exist at least 12 different
ways of making inferences and max-min composition is not the only method
possible (Togai and Wang 1982, 1984, 1985).

4. Knowledge base

The creation of a knowledge base must precede all other steps in any machine
intelligence task. In describing different samples or patterns, features must be
extracted first; identification can proceed later with the use of those features
in a knowledge base and a decision-making policy or discrimination func-
tional block (Watanabe 1985; Pao 1989).

Let us consider Boolean logic in which the binary variable ‘1’ symbolizes
a ‘yes’and a ‘0’ symbolizes a ‘no’. To distinguish two samples at least one bit
of information is needed, and for four different samples at least two bits of
information are needed. Thus a minimum of n features are needed for
identification if the number of samples is 2n. The detailed selection of fea-
tures is important to optimize efficiency and discrimination powers. If fea-
tures are chosen correctly, both the number required for identification and
computation time are kept at a minimum (Bruce 1990).

One advantage of fuzzy set and fuzzy logic theory as opposed to Boolean
logic or crisp set theory is that variables need not be assigned to only zero or
one, but instead may take any real value in this range (Zadeh er al. 1975). In
an ideal situation, one feature would be sufficient to distinguish between any
number of samples, as the membership grade would be able to take on any
value between 0 and 1. However, this situation exists only if there is such a
perfect feature that each sample has a different grade valuation in the mem-
bership function relation representing that feature.

In reality one feature is usually insufficient for identification as there is the
problem of spacing between membership grades of samples. It is advanta-
geous to have larger spacing because this raises the tolerance to noise. In any



realistic sizuation, noise is a force to be reckoned with, and in our particular
problem ncise may arise in the translation from real three dimensional sample
to two diriensional signal (image), and the eventual mapping to single
numeric scalar number. The greater the number of features used, the higher
will be the accuracy of recognition. Thus it is necessary to experiment and
generate a: many effective features as possible to yield membership grades
with high discrimination power. This is particularly important during the
initial stage of design of the recognition system.

The selection of membership function is also not arbitrary. The type of
function used was a convex function and basically piecewise linear in nature.
In our expsriment, 25 industrial samples of washers and nuts were chosen as
the patterris to be classified and recognized. To identify all 25 samples, at
least five Lits of information are required, according to information theory.
The extrac ion of features from the three dimensional samples was done by
first relating each sample to a two dimensional image of the head of the
sample (Wang 1976; Thint er al. 1993; Sollberger et al. 1989). Next, one
dimension:il numbers representing features of the two dimensional images
were obtained. These numbers were chosen as ratios which would give an
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indication of the important characteristics of the sample, such as the general
size, the number of sides/edges, and the number of perforations in the sample.
Eight such features were selected after much experimentation. The use of
eight features should provide better results than just five, but it must be noted
that there is a redundancy of information as not all features would present
orthogonal basis vectors in a vector space. This redundancy naturally renders
our experimental model less than ideal in terms of the spanning of a vector
space. On the other hand, this heuristic scheme has the advantage of achiev-
ing more accurate recognition rates, taking advantage of majority voting.

For each feature chosen, the samples were renumbered according to their
membership grades, from the lowest to highest (typical classification are
shown in Figs 4.1 and 4.2).

As mentioned previously, the ordering of the membership grade is impor-
tant, because one can make ‘semantic’ interpretations of a specific feature.
Next, the membership grade for each sample was compared in turn with each
of those of the other samples and the difference was mapped using a convex
membership function onto another number in the range [0,1]. These results,
representing the degrees of similarity between two chosen samples, were
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Inference using similarity relation matrices

Similarity relation matrix for feature 1

1.0.99.99.40.78.75.74.55.53.30.26.19.18.12.12.05.02.00.00.00.00.00.00.00.00
.991.0.99.%1.79.76.75.55.54.31.26.19.18.13.12.05.02.00.00.00.00.00.00.00.00
.99.991.0.15.84.82.81.62.60.36.31.23.22.16.15.06.03.00.00.00.00.00.00.00.00
.90.91.951 0.97.95.95.81.79.55.49.39.37.28.28.13.07.00.00.00.00.00.00.00.00
.78.79.84.171.0.99.99.92.91.70.64.53.52.41.40.20.13.01.01.00.00.00.00.00.00
.75.76.82.75.991.0.99.94.93.74.67.56.55.44.43.23.14.01.01.00.00.00.00.00.00
.74.75.81.95.99.991.0.95.94.74.68.57.56.45.44.23.14.01.01.00.00.00.00.00.00
.55.55.62.1.92.94.951.0.99.91.86.77.75.64.63.38.26.03.02.01.01.01.00.00.00
.53.54.60.50.91.93.94.991.0.92.87.78.77.66.65.40.27.03.03.01.01.01.00.00.00
.30.31.36.%5.70.74.74.91.921.0.99.96.95.88.88.64.49.09.07.04.04.03.00.00.00
.26.26.31.49.64.67.68.86.87.991.0.98.98.93.92.71.55.12.09.06.06.04.00.00.00
.19.19.23.29.53.56.57.77.78.96.981.0.99.98.97.81.66.17.14.09.09.06.01.01.00
18.18.22.:7.52.55.56.75.77.95.98.991.0.98.98.82.68.18.14.09.09.06.01.01.00
.12.13. :8.41.44.45.64.66.88.93.98.981.0.99.91.79.25.20.13.13.09.01.01.00
.12.12.15.18.40.43.44.63.65.88.92.97.98.991.0.91.79.25.20.13.13.09.01.01.00
05.05. 3.20.23.23.38.40.64.71.81.82.91.911.0.97.47.41.30.30.22.04.04.00
02.02.03.(7.13.14.14.26.27.49.55.66.68.79.79.971.0.62.55.42.42.33.07.07.01
00.00.00.40.01.01.01.03.03.09.12.17.18.25.25.47.621.0.99.95.95.88.42.42.14
00.00.00.£0.01.01.01.02.02.07.09.14.14.20.21.41.55.991.0.98.98.92.49.49.18
00.00.00.(0.00.00.00.01.01.04.06.09.09.13.14.30.42.95.981.01.0.98.62.62.26
00.00.00.40.00.00.00.01.01.04.06.09.09.13.14.30.42.95.981.01.0.98.62.62.26
00.00.00.¢0.00.00.00.01.01.03.04.06.06.09.09.22.33.88.92.98.981.0.73.73.34
00.00.00.(0.00.00.00.00.00.00.00.01.01.01.01.04.07.42.49.62.62.731.01.0.80
00.00.00.¢0.00.00.00.00.00.00.00.01.01.01.01.04.07.42.49.62.62.731.01.0.80
00.00.00.¢0.00.00.00.00.00.00.00.00.00.00.00.01.01.14.18.26.26.34.80.801.0

Fig. 4.3 “he tuned results of the similarity membership function.

entered in-o a similarity relation matrix. These matrices contain much valu-
able information which, when presented with information representing an
unknown sample, can produce a decision on the identity of the sample. Thus
these eight similarity relation matrices form the knowledge base (an example
is shown in Fig. 4.3) through which inference will be made.

5. Inference using similarity relation matrices

The ability to make inference is very much tied into human intelligence, which
enables a person to apply his powers of identification to newly encountered pat-
terns. The orocess of inference in our research involves extracting a conclusion
in terms of the identity of a sample through use of a similarity relation matrix. A
similarity relation matrix is a form of database of features for identification
which males use of closeness properties of patterns. It can also be described in
terms of mathematical linguistics as a ‘dictionary’ whereby identification is
carried oul by finding the sample’s closest match in the dictionary. This matrix
can be thcaght of as a mathematical model which is fixed and ready to use for
inference. With the input as real data from an unknown sample, the similarity
relation matrix acts as a transfer to output the identity of the sample.

One very important by-product of our research on fuzzy inference is the
ability of the model to place a new or foreign sample within our taxonomy
system. This is the basic principle of inference. The observation emphasizes
the very important notion of ‘adaptiveness’ as a vital characteristic of
machine intelligence. Consequently, the size of the knowledge base will
grow. However, the irony is that as a result, the feature space will become
progressively tighter and thus more features are eventually required. This also
explains the importance of the spacing of the range of the membership grades
in feature space.
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86 Theory and application of fuzzy methodology

As in the analogy to a dictionary, a similarity relation matrix can only
work perfectly (that is give a definite and correct answer) if ideal data are
presented. It represents the measuring stick against which comparisons of
similarity will be made. A grade of ‘1’, represents complete similarity while
‘0’, represents complete dissimilarity. In order to maximize accuracy of
identification, there are two parameters which can be varied by the designer
to fit the situation. These are the type of membership function chosen and the
parameter k; optimizing these is known to the fuzzy research community as
‘tuning’.

It is important to understand the physical nature of similarity relation
matrices in order to appreciate the mechanism of the inference process. Each
column and row forms a knowledge base for a particular sample.

The generation of the similarity relation matrices itself involves inference
through the calibration of the values of k to obtain optimum results. Let us
consider one feature. First the initial membership grades of the row vector of
the 25 samples were translated into similarity relation matrix entries using an
initial value of k through the method detailed above. To ascertain the appro-
priateness of this value of k the inference process was carried out using the
same ideal sample data. With ideal data providing the input, recognition
should be close to 100 per cent.

To demonstrate the process of inference in tuning, let us pick the first
sample in the ordering for that particular feature. A 1 x 25 matrix is created
which has entries representing grades of similarity between sample 1 and
each of the other samples in turn, e.g. entry 3 is a similarity relation between
sample 1 and sample 3. This matrix then undergoes max—min composition
with each of the columns of the similarity relation matrix for that feature.
The result should be a 1 x 25 matrix with a 1 in the first position indicating

1.0
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-\ \\ ------- k=20 for features 1,4
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Fig. 4.4 Similarity relation matrix for feature 1.



that the test sample 1 has been correctly identified. This is carried out with
each of the other samples for that feature, and the value of k finally chosen
for the similarity relation matrix is the one which maximizes recognition
accuracy (Fig. 4.4).

Each festure generates different orderings for the samples, and all features
do not nec:ssarily have the same optimum k value. During tuning the infer-
ence process is essentially one of max—min composition of each of the
columns of a similarity matrix with the similarity matrix. In our experiment
accuracy was defined through majority voting, according to which a sample
was said to have been correctly identified if at least 5 of the 8 features
identified i1 correctly, i.e.. there was a ‘1’ in the correct position for at least
five features. If there were ‘1’ entries in more than one position, the sample
received a correctness vote of (1 / number of ones) from that feature. The
final recoguition rate was calculated out of recognition for 25 samples.

The truc challenge arises when the similarity relation matrices are faced
with data :ontaminated with noise. The ultimate purpose of the use of the
similarity rzlations pursued in our research is application to real-life automa-
tion. We would like to use machine intelligence to carry out sorting tasks for
humans. However, noise poses a significant problem since it cannot be
avoided in 1 real industrial environment. Noise in our industrial example may
arise from inany sources and will have the effect of lowering recognition rate.
This issue will be addressed in the next section.

6. Results

Real-life noisy data were simulated to explore the effects of noise on recogni-
tion rate. ata were simulated using a random number generator for uniform
probability errors of 4 per cent, 8 per cent, 12 per cent, 16 per cent, and
20 per cen! as displayed in Fig. 4.5.

(To clarify, an error of 4 per cent means that the integral of the probability
of errors from —2 per cent to +2 per cent was 1. The percentages presented
here indicate the maximum excursion of the uniform distribution and not sta-
tistical parameters such as mean or standard deviation). For each noise rate, 5
trials wer: carried out. In real applications, noise may arise from many
sources, including the translation from three-dimensional object to two-
dimensionil image (Wang er al. 1984; Wang and Fatmi 1986). The random
number generator simulated the errors which could possibly infect the values
of the raw geometric membership grades obtained.

Twenty -five samples were selected from an array of industrial samples
found at the local hardware centre. These samples were used to generate eight
similarity relation matrices based on eight features. The properties of two
dimensior 1l noise of the industrial parts have not been taken into considera-
tion in a direct manner in this research. However, our simulation of random
noise does not hinder the generality of our approach.

Let us cegin with the first similarity relation matrix and a noise rate of
4 per cenl. The raw geometric membership grade of the first sample was
injected wth noise of a random value of + 2 per cent. This value was used as

Results
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Fig. 4.5 Distribution of noise for each noise rate.

the real-life raw membership value for the first sample, and the inference
method described earlier carried out. The noisy membership grade for the
first sample was compared in turn with the perfect membership grades for
the other samples. The difference was then mapped with the similarity func-
tion (using the appropriate tuned k value) defined for that particular feature to
give a 1 X 25 ‘realistic similarity vector’ which represents information about
the real-life sample 1. This vector then underwent max—min composition with
each of the columns of the similarity relation matrix for that feature to give a
1 X 25 matrix result. If the ‘1" was in the correct place, i.e. the first position in
this present computation, then recognition was said to have been successful.

This procedure was repeated four times with the same noise, sample and
feature, and then a further 5 trials were performed at 8 per cent, 12 per cent,
16 per cent, and 20 per cent noise. The entire process was repeated for this
feature for each of the 25 samples. The steps above were repeated for the
remaining seven features.

Majority voting was used to calculate recognition accuracy at each noise
rate. A sample was said to have been identified correctly if the total number
of hits was greater than 20. (The total number of possible hits would be
5 trials x 8 features = 40). The recognition rate was calculated as the number
of such samples out of 25.

As expected, the recognition rate decreased as the percentage of noise
increased (Fig. 4.6).

However, it can be seen that recognition is still surprisingly good as the
rate was still 100 per cent at 4 per cent error. At 8 per cent and 12 per cent
error the rate was relatively high at 88 per cent. As noise increased to 16 per
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Fig. 4.6 ‘ample recognition accuracy as a function of noise.

cent and 20 per cent the rates became 48 per cent and 32 per cent respec-
tively. Thus it can be seen that our system was successful in recognizing even
in modera:e levels of noise.

7. Conclusion

We have shown the richness of the use of fuzzy membership functions as a
means of 110delling features. This is particularly powerful when coupled with
similarity matrices, fuzzy inference, and majority voting. These lead to the
successful design of knowledge bases which are vital components in machine
intelligence. Furthermore, they can be implemented in hardware to increase
the speed or the number of inferences per unit time.

Samples can be identified in even moderate levels of noise and in the face
of uncerte.n or incomplete data. Recognition was still 100 per cent at 4 per
cent noise but deteriorated as noise levels increased. This research has estab-
lished only the lower bounds for the use of the knowledge base and fuzzy
inference. There is still much room for exploration and improvement through
the proces;s of tuning and design optimization.

In arriving at our conclusion we made several decisions regarding the
method to be used. One concerned the injection of noise at the membership
grade level. It should be noted that there exists the possibility of future inves-
tigation u:ing noise applied at the two-dimensional image stage (Agin 1981;
Haralick 1978). Another decision was the use of max—min compositions
although several other types of compositions such as the min-product
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composition exist (Wang and Wang 1981; Wang and Togai 1985). Further
investigation into control of the value of k may give even stronger results. In
addition, it may be possible to increase recognition rate by increasing the
number of features used. However this has the disadvantage of increasing
cost due to the amount of hardware and computation time required.
Potentially, we might also be returning to the use of ‘brute strength’ as
opposed to the intelligent selection of features with the highest discrimina-
tion power. Usually an optimal combination set of features can be found. The
weighting of the multiple features, taking the inner product of the weight
vector and the feature vector, may result in high recognition rates; but this
would be at the expense of ‘semantic interpretation’ as it would be difficult to
attach a physical meaning to such a membership grade.

Another point of note is that contemporary research on similarity matrices
has generated very rich theoretical results (Le 1993, 1994, Tarama et al.
1971). These results may lead to further refinement of knowledge base design
using fuzzy methodology.

Our research has not touched on all avenues of exploration; prospects for
further growth and improvement of this method of recognition are excep-
tional. The method we have investigated has countless possible applications
in science and areas requiring ranking, taxonomy, classification, and recogni-
tion (Wang and Fatmi 1986). We are likely to witness the power of feature
extraction, the knowledge base, and the similarity relation matrix coming to
the forefront of machine intelligence theory in the future.

Acknowledgement: The authors would like to thank Jerry C.Y. Tyan and
Hiro Kaneda for their assistance in computer graphics and software. This
research was supported in part by National Science Foundation grant
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Appendix: feature generation and selection

The selection of features used for classification and identification was done
through extensive experimentation (Wang and Kadonoff 1984; Wang and
Ellinwood 1979). Each feature captures a certain aspect of the sample and
together they form a dictionary of similarity grades with which to distinguish
samples. Not all features have the same discrimination power. We describe
below the rationale for the selection and illustrate the method of calculation
with an example for each feature.

Feature 1:

This feature attempts to capture the approximate proportions of sample
surface area compared with the area of any enclosed hole.

Surface Area

Compact Ratio =
P ' Total Edge Length




Appendix: feature generation and selection

e.g. Sample 1
a=15cm
b=32cm

A3) s

feature = compact ratio =
7a+ b

Feature 2: Fig. 4.7

This feature approximates the edge length of the sample (including outer
edges and any inner edges of holes).

e.g. Samgeb
a=04cm
b=09cm a

c=25cm O @)
edge leng'h = m(3a+ b + ¢)

Feature 3: Fig. 4.8
The surfac area gives an idea of the size of the sample.

e.g. Sample 12
a=20cm
surface araa = 7(a/2)?

Feature 4.

This was defined as the number of crossings over the surface area. This
attempted to extract information about the number of discreet openings in the Fig. 4.9
sample. A crossing was found by centering the sample shape inside the small-
est rectangle possible to contain the shape and then drawing lines from the
centre of the rectangle to each rectangle edge and rectangle side midpoint. A @

crossing cccurred whenever there was a change from solid to hole or vice
versa.

e.g. Sample 4 <—b—>
a=0.7cr
b=1.4cm Fig. 4.10

feature =

Feature &:
This give:. the ratio of compact ratio over number of crossings.

e.g. Sample
compact ratio from feature 1
16

feature =
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Feature 6:

This was defined as the ratio of the compact ratio over the number of sides. A
side was defined as any abrupt change in the orientation when following the
outer edge of a sample. For instance, a circle would have a side rating of 1
while a hexagon would have a side rating of 6.

e.g. Sample 1

compact ratio from feature 1
1 side

feature =

Feature 7

This feature contains information about the hole-to-surface ratio, the number
of holes, and the number of sides of the sample. First the ratio of number of
crossings to number of sides was obtained. Then the compact ratio was
divided by this number to give the feature.

e.g. Sample 1

compact ratio from feature 1
16
/

feature =

Feature 8:

This was found by taking the ratio of the number of crossings to the number
of sides and then dividing by the surface area.

e.g. Sample 12
®
feature = /
surface area from feature 3
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5 Data representations for
evolutionary computation

lan C. Parmee, Carlos A. Coello Coello,
and Andrew H. Watson

1. Introduction

The data processing capabilities of genetic algorithms (GAs) have been
recognized (within a wide variety of domains) in recent years, and have
received much attention from researchers and practitioners working in many
different clisciplines (Goldberg 1989). As a stochastic, heuristic technique,
the GA does not need specific information about the problem domain to
guide seacch. Its structure is analogous to biological evolution theory using
the principle of survival of the fittest (Holland 1975). Therefore, the GA
resembles a ‘black box’ that can be attached to any particular application. In
general, the following basic components are required to implement a GA
(Michalevsicz 1992):

1. Arepresentation for potential solutions to the problem.

2. A wav to create an initial population of potential solutions (this is nor-
mally done randomly, but deterministic approaches can also be used).

3. An evaluation function that plays the role of the environment, rating
soluti ons in terms of their ‘fitness’.

4. Genelic operators that alter the composition of children (normally,
crossover and mutation).

5. Values for parameters that the genetic algorithm uses (population size,
probabilities of applying genetic operators, etc.).

In this chapter, we focus on the first of these components: the representation
used by tue genetic algorithm.

The traditional representation used to encode a set of solutions is the
binary sc1eme, in which a chromosome is a string of the form <by, by, ...,
b,> (Fig. 5.1), where b, b,, ..., b, are termed genes (the values that these
genes ca’ assume are called alleles and in binary representation are either
ZEeros or ¢nes).

There are several reasons why binary encoding is normally utilized by
GAs but most date back to John Holland’s pioneering work. In his book,
Holland (1975) gave a theoretical justification for the use of binary encoding.
He compared two different representations with approximately the same
information-carrying capacity, one that had a small number of alleles and
long strings (e.g., binary strings of length 80), and the other with a large
number of alleles and short strings (e.g., decimal strings of length 24). Notice
that 2% (»inary) ~ 10** (decimal). Holland (1975) argued that the first encod-
ing allow:s a higher degree of ‘implicit parallelism’ than the latter, since it

oj1j1rjojit

Fig. 5.1
string.

An example of a binary
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contains more schemata than the second encoding (11?* Versus 3%0). A
schema (plural schemata) is a template describing a subset of the strings that
share certain similarities at some locations across their length (Holland 1975;
Goldberg 1989). The presence of more schemata favours diversity, and
increases the probability that good ‘building blocks’ (i.e., the portion of a
chromosome that confers higher fitness on the string in which it is present)
are formed at each generation, therefore improving the performance of the
GA over time according to the schema theorem (Holland 1975; Goldberg
1989). The ‘implicit parallelism’ of GAs, introduced by Holland, refers to the
fact that, while explicitly calculating the fitness of the individuals in a popula-
tion, the GA implicitly estimates the average fitnesses of a much larger
number of chromosomic strings by calculating the observed average fitnesses
of the ‘building blocks’ detected in the population.

Therefore, according to Holland, it is preferable to have many genes with
few possible alleles rather than a few genes with many possible alleles. This
is not only for theoretical reasons (following Holland’s schema theorem), but
it also has a biological justification in genetics, where it is more usual to have
chromosomes with many genes and few alleles per gene rather than few
genes and many alleles per gene. However, the implicit parallelism of GAs
does not preclude the use of alphabets of higher cardinality, although a binary
alphabet offers the maximum number of schemata per bit of information of
any coding (Michalewicz 1992; Goldberg 1989). Nevertheless there has been
long debate over these non-binary alphabets, mainly from the practitioner’s
side.

As we will see in this chapter, the use of a binary representation has
several drawbacks when the GA is used to solve real-world problems. For
example, if we try to optimize a function with high dimensionality (e.g., 50
variables), and we are interested in good precision (e.g., 5 decimals), then
the mapping from real numbers to binary numbers will generate extremely
long strings (of perhaps 1000 bits) and the GA will be unable to perform well
in most cases unless special operators and procedures are designed for the
problem.

In the following pages we will discuss some of the alternative representa-
tion schemes that have been proposed to deal with this and with other limita-
tions of the binary representation, providing in each case examples of
applications in which such approaches have been found useful.

2. Gray coding

Early work by GA researchers revealed problems in the use of a binary repre-
sentation and anomalies in the mapping of the search space to the representa-
tion space (Hollstien 1971). For example, the integers 5 and 6, which are
adjacent in the search space, have binary equivalents of 101 and 110, which
differ by 2 bits in the representation space. This phenomenon, known as a
Hamming cliff (Caruana and Schaffer 1988), has led to alternative representa-
tions in which the adjacency property existing in the search space can be pre-
served in the representation space. The Gray coding representation is part of a



family of bit representations that fall into this category (Whitley et al. 1998).
We can convert any binary number to a Gray code number by performing
XOR to its consecutive bits from right to left. For example, given the number
0101 in binary, we would do:1®0=1,0®1=1,1®0=1, producing (the
leftmost hit remains the same) 0111, which is the equivalent Gray code
number.

The us: of Gray coding has been empirically shown to improve the perfor-
mance of 2 GA when applied to the classical De Jong test functions (DeJong
1975) (se: for example Caruana and Schaffer 1988; Mathias and Whitley
1994b). In fact, Mathias and Whitley found that Gray coding not only elimi-
nates Han ming cliffs, but also alters the number of local optima in the search
space and the size of good search regions (those that will lead us to the vicin-
ity of the y7lobal optimum). They showed that a random mutation hill-climber
is able to lind the global optimum of most of the test functions provided when
Gray coding is used, even though some of these were designed to present
difficulty ‘o traditional (evolutionary or not) search algorithms.

3. Encoding real numbers

Although Gray coding can be very useful to encode integers, the problem of
mapping “he search space correctly onto the representation space becomes
more serious when we try to encode real numbers. In the traditional approach
(Wright 1991), a binary number is used to represent a real number, by
defining ] >wer and upper bounds for each variable, as well as the precision
desired. For example, if we want to encode a variable that ranges from 0.35
to 1.40, using a 2-decimal precision, we would need log, (140-35) ~ 7 bits to
represent any real number within that range. However, in this case, we have
the same problem that we previously discussed, because the number 0.38
would b: represented as 0000011 whereas 0.39 would be encoded as
0000100

Even with Gray coding there is another (more important) issue when
dealing with real-world applications: high dimensionality. If we have too
many var ables, and we want high precision for each, then our binary strings
will become extremely long, and the GA will tend to perform poorly.

We could adopt some standard binary format for representing real
numbers such as the IEEE standard for single precision in which a real
number it represented using 32 bits, from which 8 are used for the exponent
in excess-127 notation and 23 bits are used for the mantissa (see Fig. 5.2)
(Scragg - 992). We could handle a relatively large range of real numbers
using a fixed amount of bits (for example between 271 and 2'*7 if we used
the IEEE, standard for single precision previously described). However, the
decoding process would be more complex, and the mapping between the rep-
resentaticn space and the search space would be much more complex than
when a simple binary representation is used, because any small change in the

' @ indicat:s XOR.
>We are ass 1ming that 0.35 is encoded as 0000000.

Encoding real numbers
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Sign  Exponent Mantissa

l 0 I 10001011 | 0100...0 |

I bit 8 bits 23 bits
Fig. 5.2 An example of IEEE notation.

l2.15|1.89 043 [3.14]027]793]5.11

Fig. 5.3 An example of a real-coded GA.

exponent field would produce large jumps in the search space, whereas per-
turbations in the mantissa may not change, in a significant way, the numerical
value encoded.

Whereas theoreticians claim that small alphabets should be more effective
than large alphabets, practitioners have shown through a considerable number
of real world applications (particularly numerical optimization problems) that
the direct use of real numbers in a chromosome works better in practice than
the traditional binary representation (Davis 1991; Eshelman and Schaffer
1993).

The use of real numbers in a chromosomic string (Fig. 5.3) has been
common in other evolutionary techniques, such as evolution strategies
(Schwefel 1981) and evolutionary programming (Fogel and Stayton 1994),
where mutation is normally the primary operator. However, when dealing
with GAs, there has been strong criticism of the use of real values in a chro-
mosome, mainly because this higher cardinality representation makes behav-
iour of the GA more difficult to predict. Consequently, several special
operators have been designed to emulate the effect of crossover and mutation
over binary alphabets (Eshelman and Schaffer 1993; Wright 1991; Deb and
Agrawal 1995).

Practitioners argue that one of the main abilities of real-coded GAs is their
capacity to exploit the gradualness of functions of continuous variables
(where gradualness is taken to mean that small changes in the variables corre-
spond to small changes in the function). Real-coded GAs can thus adequately
deal with the ‘cliffs’ produced when the variables used are real numbers,
because a small change in the representation is mapped as a small change in
the search space (Eshelman and Schaffer 1993; Wright 1991).

To reduce the gap between theory and practice, some researchers have
developed a theoretical framework that justifies the use of higher-cardinal-
ity alphabets (Goldberg 1990; Wright 1991; Eshelman and Scaffer 1993:
Surry and Radcliffe 1997), but there has been little agreement on most of
the main issues, and the use of real-coded GAs remains a practitioner’s
choice.

Other representations for real numbers have been used. For example, the
use of integers to represent each digit of a real number has been successfully
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applied to several optimization problems (Coello et al. 1997b; Coello et al.
1998; Coello and Christiansen 1998). Fig. 5.4 shows a representation of the
real number 1.45679. In this case, a fixed position is assumed for the decimal
point in ¢ach variable, but this need not remain fixed for the other variables
encoded in the string. Precision is limited by the length of the string, and can
be increased or decreased as desired. The traditional crossover operators
(one-poirt, two point, and uniform) can be used directly with this representa-
tion, and mutation may consist of generating a random digit for a certain
location or of producing a small perturbation (for example +1) to avoid large
jumps in the search space. This representation is intended to be more of a
compron:ise between a real-coded GA and a binary representation of real
numbers. trying to keep the best from both worlds by incrementing the cardi-
nality of the alphabet used, whilst leaving the use of the traditional genetic
operators almost unchanged.

Alternatively, we could also use long integers to represent real numbers
(Fig. 5.5 but then the operators would be redefined in the same manner as
when us ng real numbers. The use of such a representation scheme seems
unlikely as a replacement for real-coded GAs, because precision would
be sacriiced and the only savings would be in terms of computer
memory (the storage of integers takes up less memory than the storage of
real numbers), but this has nevertheless been used in some applications
(Davis 1991).

4. Variable-length representations

In some problems, the use of high-cardinality alphabets may be inappropri-
ate, and it may be necessary to introduce variable-length chromosomes to
deal with changes in the environment over time (for example, to
decreasesincrease the precision of a variable or to add/subtract variables). It
may be possible to introduce symbols in the alphabet that are counted as
‘empty’ positions along the string, therefore allowing the use of fixed-length
chromosomes to represent variable-length strings. This is the approach taken
in (Coel 0 e al. 1997a) to design combinational circuits. In this case, the use
of a symbol called WIRE represents the absence of a gate, thereby allowing a
change i1 the length of the resulting Boolean expression generated using a
bi-dimensional matrix.

However, in other domains, this sort of simplification may be impossible,
and alternative representations must be devised. For example, in problems
that hav: either partial or full deception (Grefenstette 1993) (i.e., low-order
building blocks do not guide the GA to the optimum and do not combine to

|145679] 67893] 37568 i 95432

Fig. 5.5 Another integer representation of real-numbers. In this case, each gene
contains an entire real number represented as a long integer.

[felsfel7]o]

Fig. 5.4 An integer representa-
tion of real-numbers. The whole
string is decoded as a single real
number by multiplying and dividing
each digit according to its location.
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Fig. 5.6 Two examples of valid strings in a messy genetic algorithm.

form higher-order building blocks), a GA will not perform well regardless of
its parameters. To deal with this problem, Goldberg et al. (1989, 1990, 1991)
proposed a GA structure of variable length which uses populations of variable
size, termed the ‘messy GA’ (mGA) as an alternative to the standard fixed-
length, fixed population-size GA (Mitchell 1996).

MGAs start with short chromosomes, identify a set of good building
blocks, and then increment the length of the chromosome to propagate these
good building blocks along the rest of the string.

The representation used by mGAs is novel, since each bit is associated
with a particular location along the string, and some locations could be
assigned to more than one bit (overspecification) while others may not be
assigned at all (underspecification). Consider, for example, the two strings
shown in Fig. 5.6 which constitute valid chromosomes for a messy GA (we
are assuming chromosomes of 4 bits). The notation adopted in this example
uses parentheses to indicate a gene, which is defined as a pair consisting of
the location along the string (the first value) and the bit value in that location
(a binary alphabet is assumed). In the first case, the first and fourth positions
are not specified, and the second and third are specified twice. In the second
case, the second and third positions are not specified, the first is specified
three times and the fourth is specified twice. To deal with overspecification,
some simple deterministic rules may be defined. For example, we can use
only the first definition from left to right for a certain location. For under-
specification, we have to do something more complicated, because an under-
specified string is actually representing a ‘candidate schema’ rather than a
complete chromosome. For example, the first string in Fig. 5.6 represents the
schema *10* (the * means ‘don’t care’). To compute fitness for an under-
specified string, we can use a hill-climber to find a local optimum and then
use that information to replace the ‘don’t cares’ from the schema. This
approach is termed ‘competitive templates’ by Goldberg et al. (1990).

Messy GAs operate in 2 phases (Goldberg ef al. 1990): the ‘primordial
phase’ and the ‘juxtapositional phase’. In the primordial phase, short
schemata are generated to serve as the building blocks of the juxtapositional
phase in which they will be combined. The problem at this point is how to
decide how long these ‘short” schemata should be. If they are too short, they
may not contain enough genetic material to solve the problem at hand; if they
are too long, the technique will become impractical because of the ‘curse of
dimensionality” (we would have to generate and evaluate too many
chromosomes).

During the primordial phase we generate these short schemata and evalu-
ate their fitnesses. Subsequently, only selection is applied to the population
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Fig. 5.7 An example of the ‘cut’ operator in a messy genetic algorithm. The
thick lines indicate the cut point.
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Fig. 5.8 An example of the ‘splice’ operator in a messy genetic algorithm. The
thick lines show the part of the string that was added.

(without :rossover or mutation) to propagate the good building blocks, and
half of the population is deleted at regular intervals (Mitchell 1996). After a
certain (jre-defined) number of generations, the primordial phase ends and
the juxtanositional phase is begun. From this point, the size of the population
remains fixed, and we use selection and two special operators called ‘cut’ and
‘splice’ ((3oldberg et al. 1989). The cut operator simply takes a portion of the
chromosome away, whereas splice puts two portions together. Consider the
examples shown in Fig. 5.7 and 5.8.

Because of the nature of the messy GA, the strings produced by the cut
and splic 2 operators will always be legal. If the building blocks produced in
the primordial phase carry enough information, the messy GA can approach
the global optimum even if the problem is deceptive (Goldberg et al. 1991).

Although very promising, the drawbacks of messy GAs (Mitchell 1996)
have kept them from widespread use, and only a few applications have been
reported n the literature (Chowdhury and Li 1996; Kajitani ez al. 1997; Iba et
al. 1997; Halhal et al. 1997; Beveridge 1998).

5. Tree representation

One of tle early goals of Artificial Intelligence (AI) was the automatic gener-
ation of computer programs. For many years this goal seemed too ambitious
since thire is normally an exponential growth of the search space as we
extend 11e domain of a program, and consequently, any technique will
produce :ither invalid or very inefficient programs.

There are many examples of evolutionary computing techniques that
attempt (o deal with automatic programming, but notorious failures even in

Tree representation
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Fig. 5.9 An example of a chromosome in genetic programming.

very simple domains have prevented other Al researchers taking much of this
work seriously (Fogel 1995). However, Holland developed the modern
concept of the genetic algorithm within the framework of machine learning
and much research still investigates the use of GAs for that purpose, although
automatic programming was put aside by researchers for several years. One
of the reasons for this was that a conventional GA has some (rather obvious)
limitations when used for automatic programming, particularly in terms of
representation issues. Encoding the set of instructions of a programming lan-
guage and finding a way of combining them in a meaningful manner is not
simple, but if a tree structure is used in combination with rules that avoid the
generation of invalid expressions, we can build a primitive parser capable of
producing simple programs. This was precisely the approach taken by John
Koza (1992) to develop ‘genetic programming’ in which LISP was used to
take advantage of the parser built into the language to evaluate the expres-
sions produced.

The tree representation adopted by Koza requires different alphabets and
specialized operators to evolve randomly generated programs until they
become 100 per cent valid to solve a certain (pre-defined) task, but the under-
lying principles of the technique can be generalized. Trees are composed of
functions and terminals. The functions normally used are the following:

Arithmetic operations (e.g., +, —, X, +)
Mathematical functions (e.g., sine, cosine, log, exp)
Boolean operations (e.g., AND, OR, NOT)
Conditionals (IF-THEN-ELSE)

Iterators (DO-UNTIL)

Recursive functions

Any other function defined in the current domain

Nk wLN -~

Terminals are typically variables or constants, and can be seen as functions
that take no arguments. An example of a chromosome that uses the functions F
= {AND, OR, NOT} and the terminals T = { A0, A1} is shown in Fig. 5.9.
Crossover can be performed by numbering the nodes of the trees corre-
sponding to the 2 parents (Fig. 5.10) and selecting (randomly) a point in each
so that the sub-trees below that point are exchanged (Fig. 5.11, where we
assumed that the crossover point for the first parent is 2, and for the second is 6).



Fig. 5.10 Nodes in the tree are numbered as a previous step to crossover.

Fig. 5.11 The two children generated after performing crossover.

Typicz.lly, the sizes of the trees of the 2 parents will be different. It should
also be ol:served that if the crossover point happens to be the root of one of the
two parerts, then that entire chromosome will become a sub-tree of the other
parent, which is a way of incorporating subroutines into a program. It is also
possible that the roots of both parents are selected as the crossover points. In that
case, no crossover is performed, and the offspring are the same as their parents.
Normally. the implementation of genetic programming imposes a limit to the
maximun depth that a certain tree can reach, to avoid generating (randomly and
by using :rossover or mutation) trees of considerable size and complexity.

Mutation is performed by selecting (randomly) a certain point in a tree,
and then replacing the sub-tree below it with another that is generated ran-
domly. Fig. 5.12 shows an example in which the mutation point is 3.

Permutation is an asexual operator that emulates the inversion operator
used in genetic algorithms (Goldberg 1989). It reorders the leaves of a sub-
tree after a (randomly) selected point, aiming to strengthen the union of allele
combina:ions with good performance in a chromosome (Holland 1975). An
example of permutation is shown in Fig. 5.13, where the selected permutation
point is < (the **’ indicates multiplication, and the ‘%’ indicates ‘protected
division’ and it refers to a division operator that avoids program crashes
when the second argument is zero).

Tree representation
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BEFORE AFTER

Fig. 5.12 An example of mutation in genetic programming.

BEFORE AFTER

Fig. 5.13 An example of permutation in genetic programming.

It is also possible to protect or ‘encapsulate’ a sub-tree that is known to be
a good building block, to avoid its destruction by any of the genetic opera-
tors. The selected sub-tree is replaced by a symbolic name pointing to the
location of the sub-tree, and the actual sub-tree is compiled separately and
linked to the rest of the tree in a way similar to external classes in an object-
oriented language. Fig. 5.14 shows an example of encapsulation in which the
right sub-tree is replaced by the name EO.

It is also normally necessary to do some editing to the expressions gener-
ated to simplify them, although the rules for doing that are problem-
dependent. For example, if we are generating Boolean expressions, we can
apply rules such as the following:

(AND X X) - X
(ORX X) - X
(NOT (NOT. X)) - X

(+) (+)
OO ® &
® ©

BEFORE AFTER

Fig. 5.14 An example of encapsulation in genetic programming.
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Fig. 5.15 An example of a 2-level structure of a Structured GA.

Finally, genetic programming provides mechanisms to destroy a percent-
age of the population so that we can refresh the chromosomic material after a
number o7 generations. This mechanism, called execution, is useful in highly
complex Jomains where the population may not contain a single feasible
individual even after a large number of generations.

6. Structured genetic algorithm

Dasgupta (Dasgupta and McGregor 1994) proposed a representation that is a
comprom se between the traditional linear fixed-length chromosome and the
tree encoding used by genetic programming. The Structured Genetic
Algorithn: (stGA) uses a hierarchical representation with a mechanism similar
to diploidy (Goldberg 1989) where certain genes act as switching (or dom-
inance) cperators to turn genes on (active) or off (passive) respectively
(Dasgupti and McGregor 1994).

The s:GA uses a linear chromosomic string, but encodes a multi-level
genetic slructure (a directed graph or tree) as shown in Fig. 5.15. Genes at
any level can be active or passive, but the high-level genes activate or deacti-
vate sets of lower level genes, which means that any small change at a high
level gets magnified at lower levels (Dasgupta and McGregor 1992). The idea
is that the high-level genes should explore the potential areas of the space and
lower-level sets should exploit that sub-space.

The hierarchical structure used by the stGA is nevertheless encoded as a
fixed-length linear chromosome, as shown in Fig. 5.16. However, the data
structure required to implement an stGA is slightly more complicated than the
simple ar-ay required by a traditional GA, because each gene at a higher level
acts as a switchable pointer which has two possible states: when the gene is
active (on) it points to its lower level gene and when is passive (off), it points
to the gene at the same level as itself (Dasgupta and McGregor 1992).

Other encodings have also been proposed. For example, Antonisse (1991)
and Gero ef al. (1994) have suggested the use of grammars in the context of
program-ning languages and design, respectively. In fact, Antonisse claims
that his approach is more general that Koza’s (Koza 1992), because he
defines context sensitive grammars which are more general (in the Noam
Chomsk:,’s hierarchy of languages) than the S-expressions used by Koza in

(e1 € €3 C11 €12 €13 €21 €22 €23 €31 €32 €33 )

Fig. 5.1% A chromosome representing the 2-level structure of the structured GA
shown before.

Structured genetic algorithm
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LISP (Antonisse 1991). Other (more problem-specific) encodings such as
matrix representation have also been proposed (Vignaux and Michalewicz
1989; Beasley et al. 1993).

7. A case study

Parmee (1996) studied the application of the stGA in whole system design,
utilizing the stGA to negotiate a design hierarchy described by both continu-
ous and discrete variables. An example of this sort of hierarchical representa-
tion is shown in Fig. 5.17. In such a representation, differing sets of
continuous variables are dependant upon discrete, selected configurations.
The requirement therefore is for a search algorithm that can search across
discrete design options, optimally sampling the many dependant continuous
variable sets in order to identify high-performance design configurations
(Parmee 1998).

Although some previous research on problems in which discrete and con-
tinuous design variables are interrelated has been reported (Jenkins 1991;
Hajela and Lin 1992; Hajela and Lee 1995; Cai and Thierauf 1996), these
approaches are sequential, normally tackling the discrete space first and then
moving to the continuous space relevant to a certain configuration identified
as optimum. The aim of Parmee’s research was to explore concurrently both
the discrete and the differing continuous search spaces. Previous experience
with the stGA at the Plymouth Engineering Design Centre (Wade ef al. 1994:
Roberts and Wade 1994) led Parmee to use this approach as a starting point
for the development of a suitable global search paradigm.

In his initial experiments, Parmee (1994, 1996) used binary representation
for all the hierarchy. This presented problems due to the use of mixed discrete
and continuous variables, resulting in encodings of different order, which
produced, as a consequence, different probabilities of crossover and muta-

A (1...5)
DISCRETE
DESIGN
OPTIONS | B(172) B(.2) B(l.2) B(1.2) B(l.2)
(set X) etc etc etc etc
| ca..4

CONTINUOUS
VARIABLE SETS (Y)

ABC defghkm

[y S
Set X SetY

- chromosomal representation

Fig. 5.17 A simple hierarchical representation of data.
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Fig. 5.18 Simple stGA implementation. Each line represents one of the possible
20 paths created by the discrete parameter set. The number of calls relates to the
number o times each discrete set has been passed to the mathematical model.
Fitness is ‘elative to best fitness achieved during the experimentation.

tion for :ach variable, with higher order encodings having a much better
chance of being disrupted than lower order encodings. A weighted scheme of
the binarv digits was introduced to deal with this problem. However, binary
representation coupled with the inherent redundancy of variables within the
stGA’s structure resulted in very long chromosomes. The associated increase
in chrom >some length as the number of discrete levels increases therefore
renders binary representation impractical for real-world applications.

A real number representation (Davis 1991) was therefore introduced to
reduce st ch encoding problems. To encourage the GA to explore the lower-
level variables in the hierarchy, an independent (higher) mutation probability
was assigned to the high-level discrete variables, whilst maintaining a lower
uniform inutation rate for the continuous variables (Fig. 5.19) (Parmee 1995).
Variable mutation allowed greater exploration but resulted in premature con-
vergence upon inferior solutions. This led Parmee to propose a hybrid
approach, that would allow the stGA to conduct a diverse search across the
hierarchy, while also identifying the best performing solutions. In initial
experiments it was found found that the degree of search diversity across the
hierarch, was very low (Fig. 5.18).

Althoigh the stGA proved useful both in finding high performance solu-
tions and exploring through a design hierarchy, the approach is inefficient for
more complex hierarchies, because of the large number of parameters
required as the hierarchy is developed and the complexity of the problem
increase:. Furthermore, because of the type of encoding, crossover tends to
be disruptive at earlier generations even with a relatively simple hierarchy
due to t'e exchange of information between differing configurations. This

A case study
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Fithness measure
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Fig. 5.19 Hybrid mutation regime.

exchange of information is largely random during early generations and gen-
erally results in premature convergence upon a locally optimal configuration.

Ideally, the representation would ensure the avoidance of non-feasible
parameter combinations whilst allowing an appropriate information exchange
through the traditional crossover operation. Parmee proposed a strategy that
involved two individual search agents that operated simultaneously: a simple
hill climber manipulating the discrete variables, and a GA manipulating the
continuous variables. Selection and crossover allowed an inherent communi-
cation between the two sets of variables (discrete and continuous), and the
approach was improved by introducing lower-level information exchange
between the discrete variables by using elements of an ant colony metaphor
for the manipulation of such discrete variables (Parmee 1998). This consti-
tutes the basis for the GAANT algorithm that utilizes a genetic algorithm
whilst also borrowing concepts from ant colony strategies (Parmee 1996;
Parmee 1998).

7.1 GAANT

The GAANT algorithm borrows two concepts from the ant colony analogy
(Coloni et al. 1991; Coloni et al. 1992; Bilchev and Parmee 1995):

* Fitness proportionate distribution: this is similar to fitness proportion-
ate reproduction (Goldberg 1989), but in this case the amount of search
resource (search agents) distributed along each discrete path is propor-
tional to the relative strength (i.e., the fitness) of that combination of dis-
crete options. .

* Evaporation: the discrete path will be ‘evaporated’ if its strength does not
improve over a preset number of cycles; the released search resource
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Fig. 5.20 GAANT flow chart.

(search agent) is then redistributed around the better sets of discrete
desig1 options within the hierarchy.

The ¢oncepts supporting these two operations were adapted slightly and
integrated with the manipulation of the discrete variables by Parmee (1996a,
1997, 1998). Fig. 5.20 illustrates this integration. The values of the discrete
variable: are randomly selected at generation 1 and combined with a ran-
domly s:lected population of continuous variables. The initial population of
discrete values survives for a preset number of generations (n) while the asso-
ciated ccntinuous values are manipulated by a simple GA. A combination of
like variable types during crossover and mutation is controlled by means of
speciaticn of each chromosome in terms of like configurations of the discrete
variable:. Crossover then only occurs between members of the same species.
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Table 5.1 Comparison of the stGA and the GAANT algorithm

Hybrid stGA approach GAANT implementation

n=5 n=10

2500 calls 5000 calls 2500 calls 5000 calls 5000 calls 7500 calls

Max solution

No. of solutions > 0.9

No. of solutions > 0.8

No. of calls along best path
SD of no. of calls (best path)
SD of fitness (best path)

No. of missed paths

Max. no. of misses of any path

0.95 0.97 1 1.01 1 1.01
3 3 3 3 3 3
5 5 7 9 9 10
611 1727 711 1277 1287 2545
580 1706 207 460 413 738
0.21 0.26 0.05 0.05 0.05 0.04
93 78 0 0 0 0
20 26 0 0 0 0

Evolution of the continuous variables continues over each generation
whereas improvements in the discrete variables are achieved as follows: the
average fitness of each chromosome is calculated over n generations, and
then compared to the average fitness of the chromosomes of the nth genera-
tion. Evaporation, duplication, and perturbation of the discrete variables is
then established in accordance with their relative fitness (rfit) which is repre-
sented in terms of their average fitness (fitn) over n generations and the
average fitness of members of the nth generation (fitall) i.c., rfit = fitn/fitall.
This allows the following communication:

* low-level communication between the chromosomes of the discrete set
resulting in the evolution of the continuous variables within the bounds
imposed by their discrete system configuration;

* low-level communication every nth generation between the chromosome
sets representing the discrete variables which results in their gradual
improvement;

* high-level communication between the two agents in the form of relative
fitness of an entire string over n generations.

Evaporation, duplication, and perturbation are controlled at the nth genera-
tions by introducing two thresholds Rf, and Rf,. If Rf, < Rf, then the
configuration is evaporated (i.e., the chromosome is not reproduced). If rfit >
Rf, then the configuration is maintained (i.e., the chromosome is reproduced)
and further resource is allocated from the evaporated configurations (i.e., the
population deficit created by configuration evaporation is made good by ran-
domly selecting chromosomes from those with a fitness higher than Rf,).
Finally, if rfit lies between Rf, and Rf,, the discrete variables are randomly
perturbed to create a new configuration.

Table 5.1 compares the results found by Parmee (1998) using the dual
mutation approach and GAANT and Fig. 5.21 shows the number of calls and
fitness measure corresponding to the GAANT implementation. From these
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Fig. 5.21 GAANT implementation.

results it is clear that the GAANT approach provides improved performance
in terms of maximum fitness across a larger number of paths than the stGA
using a dual mutation strategy. The GAANT approach provides not only
better results, but also covers the discrete paths better and is more robust than
the stGA. as can be seen from the standard deviation (SD) over 50 runs of the
algorithms.

GAANT has also been applied to more complex structures relating to the
optimiza:zion of thermal power system configuration (Chen et al. 1997),
obtaining a very significant reduction in design lead time in addition to
significant increases in predicted power output. The integration of GAANT
and some of its variants has replaced engineer/machine based design process-
ing by a totally computer-based approach. Overall design time has been
reduced |'y approximately 75 per cent (Parmee 1998).

7.2 Variable length hierarchies

The concepts behind the GAANT representation have also been applied to
the manipulation of variable-length multi-level mathematical function repre-
sentation s. The objective in this case has been to improve the calibration of
prelimin: ry design models to empiric data or to results from a more in-depth
analysis (FEA or CFD). This is achieved by identifying those areas of coding
where insufficient knowledge or the requirement of keeping computational
expense [0 a minimum has resulted in unavoidable function approximation. A
contribut ng factor may be the inclusion of empirically derived coefficients.
The objetive is to evolve improved coding within these areas to achieve a
better calibration with existing empiric data or results generated from a more
in-depth computationally expensive analysis. If this is possible, the element
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of associated risk would be lessened while rapid design iteration can still be
achieved with these simple, but more representative models. This led to the
use of genetic programming (Koza 1994) for system identification.

7.3 The need to improve genetic programming

Genetic Programming (GP) manipulation of engineering relationships has
provided reasonable results related to the generation of formulas for pressure
drop in turbulent pipe flow and also energy loss associated with sudden con-
traction or sudden expansion in incompressible pipeflow (Watson and Parmee
1996). However, it soon became apparent that the problems associated with
the crossover of continuous coefficients between differing discrete functional
structures was causing similar problems to those mentioned in relation to the
design hierarchies of the previous section. The reason is that the exchange of
information from continuous design spaces to unrelated discrete design
configurations does not promote the formation of high performance variable
parameter combinations.

Before describing how some elements of the GAANT strategy were intro-
duced in the GP approach to improve its capabilities to deal with variable
length design hierarchies, it is important to analyze the main limitations of
GP.

In the past, at least two fundamental limitations of the traditional GP para-
digm have been identified (Iba et al. 1995):

1. Random sub-tree crossover disrupts beneficial sub-trees in tree struc-
tures.
2. GP does not provide evaluation of tree descriptions.

Traditional GP blindly combines sub-trees by applying crossover operations.
This can often disrupt beneficial sub-functions in tree structures. Thus,
crossover operations seem ineffective as a means of constructing higher-order
functions. Recombination operators (such as swapping sub-trees of nodes)
often causes radical changes in the semantics of the trees. This semantic disrup-
tion (Iba et al. 1995) is due to the ‘context-sensitive’ representation of GP trees.
As a result, useful sub-trees may not be able to contribute to higher fitness
values of the whole tree, and the accumulation of useful sub-functions may be
disturbed. To avoid this, Koza (1992, 1994) has proposed a strategy called
Automatic Defining Functions (ADFs) for maintenance of useful sub-trees.
The fitness definitions used in traditional GP do not include evaluations of
the tree descriptions. Without the necessary control mechanisms, trees may
grow exponentially large, increasing the evaluation procedures, or so small
that they degrade search efficiency. Usually the maximum depth of trees is
set in order to control tree sizes, but an appropriate depth is not always
known beforehand. Kinnear (1993) proposed using a size component in the
fitness definition; i.e., the size of the tree is multiplied by a size factor, and
the result is added to the raw fitness value. The use of a minimum description
length (MDL) based fitness function for evaluating tree structures has been
used together with a local hill-climber (Iba et al. 1995; Iba er al. 1993). This
fitness definition involves a trade-off between certain structural details of the



tree and irs fitting (or classification) of errors. In order to produce an efficient
guided crossover operator to search the symbolic search space a symbolic
function classification is required which can then be used to minimize
semantic disruption. This classification, called Node Complexity weighting
(NC) (Wetson and Parmee 1997), includes information on the lengths of the
individuals. Semantic disruption is therefore minimized while tree length is
controlled.

Watson and Parmee (1997) proposed to combine steady state GP with NC
controlled crossover using a technique called RAM-GP (Rapid, Attenuated
Memory (enetic Programming). In their approach, NC weightings are used
as a basis for the crossover operator together with a high rate of mutation
and steadv GP. They extended the technique to incorporate sub-populations
of solutions classified by the complexity of the root node of each individual.
These sut-populations act as discrete GP sub-populations which communi-
cate with each other via crossover. The new approach has been called
DRAM-GP (D stands for Distributed).

The main concepts of DRAM-GP involve a steady state GP with con-
strained complexity crossover (CCC). Crossover is constrained by node com-
plexity weighting values. The root node will give a complexity rating of the
whole tre:, and is thus used to speciate the population into smaller sub-popu-
lations. T1is approach was inspired by the speciation of like configurations
relating tc whole system design and the GAANT algorithm. These points are
discussed in the remaining portion of this section.

Kinne:r (1993) has investigated the use of steady state GP as an alterna-
tive to th: generational model traditionally used (Koza 1992). The idea is to
evaluate an individual immediately for fitness, and then merge it into the pop-
ulation (or in this case a species), in place of the existing lowest fitness indi-
vidual. This approach is non-generational, but when the number of new
individua s that have been generated is equal to the population size it is con-
sidered that the equivalent of a generation has passed. The population size is
then the 1otal number of individuals (i.e. species population size X number of
species).

Node (Complexity (NC) weighting is a measure of the complexity of a tree
and all of its nodes. If for example we have a functional set and terminal set
consisting of F= { +, -, *, %} and T = { a, b, ¢, d, e, f}, as in the two-box
problem (Koza 1994), we can weight these functions (e.g. all terminals = 1.0,
plus = 1.1, minus = 1.1, multiply = 1.2, divide = 1.2) each NC value is then a
function >f the NC values of the nodes below it and the weighting of that
node. An example of the NC weighting is shown in Fig. 5.22.

Each 10de has a specific weighting factor which is applied to the NC
values b:low them. The NC value is then the sum of these adjusted lower
node valies. It can be seen that the complexity of the tree will decrease
with tree depth, for example in Fig. 5.22 NC[0] = 7.248 (the root node) and
NC[7] = 1.0 (a terminal).

Crossover is then constrained by only crossing sub-trees with similar NC
values (from initial iuns using the weighting values given in the run parame-
ters tables. All of the results shown here are restricted to between + 2.0 NC).
This then provides a numerical complexity measure which controls crossover
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NC[0]=2.2*%1.2+3.84*1.2=7.248

/

+ %

Z \ Z N\
NC[1]=1.0*1.1+1.0*1.1=2.2 NC[4]=2.2*¥1.2+1.0*1.2=3.84
/ \ yd AN

a b + C
I\
NC[2]=1.0 NC[3]=1.0 NC[5]=1.0*1.1+1.0*1.1=2.2 NC[8]=1.0

/[ \

a d

NC[6=1.0 | [NC[7=1.0

Fig. 5.22 Node complexity weighting.

and minimizes building block disruption by ensuring some similarity between
crossed sub-trees. Tree lengths are also indirectly controlled.

The population is equally divided into sub-populations or ‘species’. The
run parameters that define the species groupings are the minimum and
maximum NC values and the number of species used. The sub-populations
are then divided equally between these two limits. If, for example, the
minimum NC value is 10 and the maximum NC value is 40, with 3 species
and a total population size of 300, then each species will have 100 individuals
with the following NC[0] values:

Species 1: NC[0] > 10.0 and NC[0] < 20.0
Species 2: NC[0] > 20.0 and NC[0] < 30.0
Species 3: NC[0] > 30.0 and NC[0] < 40.0

Communication between sub-populations is achieved through crossover. As a
new child individual is produced it is possible that its complexity changes,
and if the root node complexity moves to another species range, it is placed
into that species and evaluated. If a crossed individual’s NC[O0] value lies
outside the species ranges then the individual is discarded.

Constrained Complexity Crossover (CCC) is initiated by randomly choos-
ing parents P1 and P2 from the total population. A cross point CP1 is ran-
domly chosen from P1 which then defines the root node of the sub-tree to be
replaced. The second cross point CP2 from P2 must then be within = 2.0 of
the NC value of CP1. The sub-tree with root node CP2 replaces the sub-tree
with root node CP1 with each allele having a probability of being mutated of
FMUTATE (usually set to 0.5). When mutating, functionals can only be
mutated to other functionals, and terminals into other terminals. Once



crossed, orly one child is produced which is then evaluated and placed into
the correct species population, replacing the worst individual within that
species.

Injecticn mutation occurs every IM crosses (usually set to IM =
Populatior Size) and changes only one allele within each individual with a
probability of mutation FMUTATE (set to 0.5 throughout the work presented
here). The top 5 individuals are elite and are never mutated, but are allowed
to particip:te in crossover.

7.4 Boolean induction with DRAM-GP

Boolean concept learning (or Boolean induction) is an important part of
machine lcarning, and can be regarded as a type of pattern recognition, in
which the input (independent) and output (dependent) variables are binary.
The effectiveness of DRAM-GP is initially demonstrated through one experi-
ment. All :alculations within this section are based on 100 runs. The results
describe computational effort required to obtain one correct solution with a
probability of 99 per cent. Computational effort E, and other performance
calculations are discussed in Koza (1992, 1994).

7.4.1 Parity 3 problem (Koza 1992, 1994)

To show “he effectiveness of DRAM-GP as a Boolean concept learner, a
simple known experiment, ‘parity 3°, in which the goal function is the even
parity function f of 3 variables is utilized. f takes the value 1 if the 3 input
variables .y, ..., X; have even parity, i.e. an even number of them are 1. The
DRAM-G? parameters are shown in Table 5.2. The NC weightings for the
functionals, Np were chosen based upon the number of outputs that are true
for each functional. The AND functional has 1 of 4 true values, and is thus
considerec more complex than the OR function which has 3 of 4 true outputs.
Initially, the fitness was calculated after Koza (1992), i.e. Fitness = Test
points — hits. This leads to individuals with the same fitness values but vastly
differing complexities. A solution with a fitness of 4.0 and a NC[0] value of
8.88 shou d be ranked above another individual with the same fitness but a
higher coriplexity. It was for this reason that the fitness measure was adjusted
to: Fitnes: = (Test Points — Hits) + 0.001NC[0]. This then allows individuals
of the same fitness but lower complexity to be ranked above those with
higher co-aplexity values.

Table 5.2 lists the parameters used for the GP implementation, and
Table 5.3 shows a comparison of GP with DRAM-GP.

7.4.2 Two-Box problem (Koza 1992)

The two-box problem concerns the identification of a relationship between
six independent variables (x). ..., xs), where this relationship relates to the
difference y in the volumes of the first box whose length, width, and height
are x,, X, 3 and the second box whose length, width, and height are x,, xs. Xe.
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Table 5.2 Run parameters for parity 3

Functional set
Arguments

NC functionals
Terminal set
NC terminals
Mutation rate
Imutation (IM)
Test points (TP)

F = {and, or, nand, nor}

Fa=1{2,2,1,3}
Ne=1{.2,1.1, 1.1, 1.2}
T ={d0, d1, d2}

NT = {1, 1, 1}

0.5

M (popsize)

8

Fitness (TP-Hits) + 0.01NCIO0]

NC max. 130.0

NC min. 50.0

Elite 5

CCcC + 2.0 of NC value
Chromosome length 100

Max. generations 200

Table 5.3 Parity 3 results

Method Population size M Effort E

(popsize x species)

Koza[2)(STD) 4000 80 000
Koza[3](STD) 16 000 96 000
Kozal3](ADF) 16 000 64 000
DRAM-GP 10 (10 x 1) 14 060
DRAM-GP 30 (30 x 1) 15 840
DRAM-GP 50 (50 x 1) 15 750
DRAM-GP 50 (10 x 5) 13 600
DRAM-GP 100 (10 x 10) 12 900
DRAM-GP 100 (20 x 5) 8400
DRAM-GP 150 (10 x 15) 9900
DRAM-GP 200 (10 x 20) 11 600
DRAM-GP 200 (20 x 10) 10 000
DRAM-GP 300 (20 x 15) 8400
DRAM-GP 400 (20 x 20) 7600

Thus y = (x; x, x3) — (x4 X5 Xg). The goal of this symbolic regression (i.e., the
identification of a mathematical expression, in symbolic form, that provides a
good, best, or perfect fit between a given finite sampling of values of the
independent variables and the associated values of the dependent variables) is
to derive the above equation as a ‘complete form’ when given a set of N
observations.

In this problem, where the raw fitness is a floating point number rather
than an integer, there is no need to include the NC[0] weighting in the fitness
calculation. The multiply and divide functions are considered more complex



Table 5.4 Run parameters for two-box problem

Functiona set
Arguments

NC Functionals
Terminal sat
NC Terminals

F={+,-.%, %}
Fa=12,2,2,2}

N ={1.1, 1.1, 1.2, 1.2}
T = {x1, x2, x3, x4, x5, x6}
Nr={1,1,1,1,1,1

Mutation Rate 0.5

Imutation ' IM) 80

Test points (TP) 10

Fitness MSE

Max. NC 30.0

Min. NC 5.0

Elite 5

CCC + 2.0 of NC value
Chromosome length 50

Max. generations 200

Table 5.5 Two-box problem results

Population size M Effort E

(popsize x species)
Koza [2] (TD) 4000 1176 000
Koza [4] (ADF) 4000 2 220 000
DRAM-GF 0(10x 1) 95 760
DRAM-GF 0(10x2) 163 800
DRAM-GF 0(30x1) 60 000
DRAM-GF” 0(50x 1) 54 800
DRAM-GI? 50 (25 x 2) 76 500
DRAM-GP 50 (10 x 5) 292 500
DRAM-GP 80 (80 x 1) 66 640
DRAM-GF 100 (50 x 2) 213 000
DRAM-GF 100 (20 x 5) 260 000
DRAM-GP 100 (10 x 10) 222 000
DRAM-G* 150 (30 x 5) 112 500
DRAM-G? 200 (100 x 2) 184 800
DRAM-G?P 200 (40 x 5) 156 000
DRAM-GP 200 (20 x 10) 166 000
DRAM-GP 250 (50 x 5) 169 500
DRAM-GP 300 (30 x 10) 130 500
DRAM-GP 400 (40 x 10) 136 000
DRAM-GP 500 (50 x 10) 237 000
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than the p us and minus functions and thus have higher N, values. The fitness
measure is the mean squared error (MSE) of all of the test points. The
DRAM-CiP parameters are shown in Table 5.4 and the comparison of results
between ¢ :andard GP and DRAM-GP is shown in Table 5.5.



118 Data representations for evolutionary computation
Summary

In this chapter we have discussed several possible data representations in
evolutionary computing, starting from the traditional fixed-length linear
structure in which each location along the string is occupied by a binary
number. Some possible alternatives to using binary numbers have been dis-
cussed, such as integers and real numbers. In certain applications a fixed-
length string may not be appropriate, and Goldberg’s messy genetic algorithm
which allows variable-length strings may be used.

A linear structure is often not appropriate for tasks such as automatic pro-
gramming, where a tree structure seems more suitable. An interesting compro-
mise between a linear and a tree structure is the Structured Genetic Algorithm.
However, the inability of the Structured Genetic Algorithm to efficiently
search across complex hierarchies has led to the development of the GAANT
algorithm that utilizes a genetic algorithm whilst also borrowing concepts
from ant colony strategies. The concepts introduced in the GAANT have been
used to improve genetic programming performance through the development
of a new technique that is able to achieve the results produced with Automatic
Defining Functions (ADFs), whilst utilizing small populations.
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6 Applications of artificial
neural networks to the
analysis of multivariate
data

Royston Goodacre

1. Multivariate data

Multivariale data consist of the results of observations of many different
characters (variables) for a number of individuals (objects) (Mark 1991;
Martens and Nzs 1989). Each variable may be regarded as constituting a dif-
ferent dimension, such that if there are n variables each object may be said to
reside at a unique position in an abstract entity referred to as n-dimensional
hyperspac:. This hyperspace is necessarily difficult to visualize, and the
underlying theme of multivariate analysis (MVA) is thus simplification
(Chatfield and Collins 1980) or dimensionality reduction, which usually
means that we want to summarize a large body of data by means of relatively
few parameters, preferably the two or three which lend themselves to graphi-
cal display with minimal loss of information.

In spectroscopy, variables are usually represented by properties such as the
absorbanc: at particular wavelengths. Spectral techniques which seem ideally
suited to analysis by multivariate methods include those based on vibrational
measurements such as infrared (IR) absorbance and Raman light scattering.
Other hyper-dimensional measurements include gas and liquid chromatogra-
phy, nuclear magnetic resonance (NMR), and mass spectrometry (MS).

Conventionally the reduction of the multivariate data generated by MS
(Goodacre and Kell 1996; Gutteridge et al. 1985; Magee 1993), chromatogra-
phy (Maclie er al. 1978), IR and other spectroscopic methods (Defernez and
Wilson 1995; Martens and Naes 1989), and NMR (Kvalheim er al. 1985) have
been carred out using principal components analysis (Causton 1987,
Chatfield :nd Collins 1980; Everitt 1993; Jolliffe 1986). PCA is a well-known
technique for reducing the dimensionality of multivariate data whilst preserv-
ing most of the variance, and whilst it does not take account of any groupings
in the dat:, neither does it require that the populations be normally distrib-
uted, i.e. i - is a non-parametric method. Moreover, PCA can be used to iden-
tify corre'ations amongst a set of variables and to transform the original set
of variabl:s to a new set of uncorrelated variables called principal compo-
nents (PCs). The objective of PCA is to see if the first few PCs account for
most (>90 per cent) of the variation in the original data. If they do reduce the
number ¢ dimensions required to display the observed relationships, then
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the PCs can more easily be plotted and ‘clusters’ in the data visualized; more-
over this technique can be used to detect outliers. The closely related dis-
criminant function analysis (DFA; sometimes referred to as canonical variates
analysis (CVA) is often used to separate the objects (samples) into groups on
the basis of the retained PCs and the a priori knowledge of the appropriate
number of groupings; this is achieved by minimizing the within-group vari-
ance and maximizing the between-group variance (MacFie et al. 1978; Manly
1994; Windig et al. 1983). Provided that the data set contains ‘standards’ (i.e.
known things) it is evident that one can establish the closeness of any
unknown samples to a standard, and thus effect the identification of the
former, a technique termed ‘operational fingerprinting’ by Meuzelaar er al.
(1982).

2. Supervised versus unsupervised learning

Such analyses fall into the category of ‘unsupervised learning’ (Fig. 6.1), in
which the relevant multivariate algorithms seek ‘clusters’ in the data (Everitt
1993). This allows the investigator to group objects on the basis of their per-
ceived closeness in n-dimensional hyperspace. These methods, although in
some sense quantitative, are better seen as qualitative since their chief
purpose is to distinguish objects or populations. More recently, a variety of
related but much more powerful methods, most often referred to within the
framework of chemometrics, have been applied to the ‘supervised’ analysis
of multivariate data. In these methods, of which multiple linear regression
(MLR), partial least squares regression (PLS), and principal components
regression (PCR) are the most widely used, one seeks to relate the multivari-
ate spectral inputs to the concentrations of target determinants, i.e. to generate

MULTIVARIATE
DATA
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Fig. 6.1 Unsupervised learning. When learning is unsupervised, the system is
shown a set of inputs (multivariate data) and then left to cluster them into groups.
For multivariate analysis this optimization procedure is usually simplification or
dimensionality reduction; this means that a large body of data (the inputs) are
summarized by means of a few parameters with minimal loss of information.
After clustering the results then have to be interpreted.
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a quantitative analysis, essentially via suitable types of multidimensional
curve fittir g or regression analysis (Brereton 1992; Brown et al. 1996; Lavine
1998; Martens and Nas 1989; Massart et al. 1988). Although non-linear ver-
sions of these techniques are increasingly available (Berglund and Wold
1997; Heilka et al. 1997; Hoskuldsson 1992; Taavitsainen and Korhonen
1992; Walczak and Massart 1996; Wold 1992; Wold et al. 1989), the usual
implementations of these methods are linear in scope. However, a related
approach 10 chemometrics, which is inherently nonlinear, is the use of
(artificial) 1eural networks (ANNS).

For a given analytical system there are some patterns (e.g. mass spectra)
which have desired responses which are known (i.e. the concentration of
target determinands). These two types of data (the representation of the
objects an their responses in the system) form pairs which for the present
purpose arz called inputs and targets. The goal of supervised learning is to
find a moclel or mapping that will correctly associate the inputs with the
targets (Fig. 6.2).

Thus the basic idea in these supervised learning techniques is that there are
minimally 4 data sets to be studied, as follows. The ‘training data’ consist of
(i) a matri» of s rows and n columns in which s is the number of objects and n
the number of variables (these may be the absorbance at particular wave-
lengths, or the normalized ion intensities at a particular mass-to-charge ratio
for MS, and (ii) a second matrix, again consisting of s rows and typically 1 or
two columns, in which the columns represent the variable(s) whose values(s)
are requircd (these are the result(s) wanted; Fig. 6.2) and which for the train-
ing set have actually been determined by some existing, ‘benchmark’” method.
This variable may be the concentration of a target determinand, and is always
paired wit1 the patterns in the same row in (). The ‘test data’ also consist of
two matrices, (iii) and (iv), corresponding to those in (i) and (ii) above, but
the test se” contains different objects. As the name suggests, this second pair

MULTIVARIATE KNOWN
DATA TARGET
CALIBRATION ERROR
SYSTEM
l Y

COMPUTATIONAL
_——
OUTPUT COMPARISON

Fig. 6.2 Supervised learning. When we know the desired responses (targets)
associate: with each of the inputs (multivariate data) then the system may be
supervised. The goal of supervised learning is to find a model that will correctly
associate :he inputs with the targets; this is usually achieved by minimizing the
error betv.een the known target and the model’s response (output).
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is used to test the accuracy of the system; alternatively they may be used to
cross-validate the model. That is to say, after construction of the model using
the training set (i, ii) the test data (iii) are ‘passed’ through the calibration
model so as to obtain the model’s prediction of results. These may then be
compared with the known, expected responses (iv).

3. Good modelling practice

As in all other data analysis techniques, these supervised learning methods
are not insensitive to badly chosen initial data (Kell and Sonnleitner 1995;
Zupan and Gasteiger 1993). Therefore, the exemplars for the training set must
be carefully chosen; the golden rule is ‘garbage in — garbage out’. An excel-
lent example of an unrepresentative training set was discussed on the BBC
television programme Horizon; a neural network was trained to attempt to
distinguish tanks from trees. Pictures were taken of forest scenes lacking mil-
itary hardware and of similar but perhaps less bucolic landscapes which also
contained more-or-less camouflaged battle tanks. A neural network was
trained with these input data and found to differentiate successfully between
tanks and trees. However, when a new set of pictures was analysed by the
network, it failed to detect the tanks. After further investigation, it was found
that the first set of pictures containing tanks had been taken on a sunny day
whilst those without tanks were obtained when it was overcast. The neural
network had thus learned to recognize the weather! We conclude that the
training and test sets must be carefully selected to contain representative
exemplars encompassing the appropriate variance over all relevant proper-
ties for the problem at hand.

It is also known (Bishop 1995; Goodacre and Kell 1993; Goodacre et al.
1994a; Kell and Sonnleitner 1995; Martens and Nas 1989; Wasserman 1989)
that supervised learning methods such as neural networks (and partial least
squares) can over-fit data. For example, an over-trained neural network may
learn perfectly the stimulus patterns it has seen but can not give accurate pre-
dictions for unseen stimuli, i.e. it is no longer able to generalize. For super-
vised learning methods accurately to learn and predict the concentrations of
determinands in biological systems, or to identify new observations as being
from something previously seen, the model must be calibrated to the correct
point. The reality is that in extension to normal chemometric practices
detailed above the data should be split into three sets: (1) data used to cali-
brate the model; (2) date employed to cross-validate the model; (3) spectra
whose determinand concentration, or identities, were ‘unknown’ and used to
test the ‘calibrated’ system. During calibration, the models would be interro-
gated with both the training and the cross validation set and the error between
the output seen and that expected calculated, thus allowing two calibration
curves for the training and cross-validation sets to be drawn. When the error
on the cross-validation data was lowest the system will be deemed to have
reached the best generalization point and then may be challenged with input
stimuli whose determinand concentrations, or identities, are really ‘unknown’.
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For quantitative determinations it is also imperative that the objects fill
the sample space. If a neural network is trained with samples in the concen-
tration range from 0 to 50 per cent it is unlikely to give accurate estimates for
samples whose concentrations are greater than 50 per cent, that is to say, the
network is unable to extrapolate (Kell and Sonnleitner 1995). Furthermore
for the ne:work to provide good interpolation it needs to be trained with a

number of samples covering the desired concentration range (Goodacre et al.
1993a).

4. Applications of artificial neural networks

In the 195)s and 1960s researchers produced the first ANNs. Initially elec-
tronic circiits were used and these were later replaced by computer simula-
tions. Ther in 1969 Minsky and Papert (Minsky and Papert 1969) proved that
single layer networks (perceptrons) were incapable of solving many simple
problems, notably the function performed by the exclusive-or gate (XOR).
This caused interest in ANNs to diminish rapidly and this science was put to
sleep for 20 years. In time, several workers (see Parker 1982; Rumelhart
et al. 1986) independently invented backpropagation ANNs which used a
hidden laver employing a sigmoidal squashing function. These new ANNs
were able to solve many of the problems posed by Minsky and Papert. This
finding lec to an explosion of interest and research into ANNs, both theoreti-
cal and in their application. So great has been the resurgence of interest into
ANNGs the.: since 1986 the number of publications has grown exponentially
(Fig. 6.3) and in 1998 over 3000 papers have been published (not including
conference proceedings).

Figure 6.3 also illustrates that there has been a wealth of papers on ANN
applications totalling approximately 1000 in 1998, and that this has been a

4000 | L LI L LA DL L L 1200
5 1 OLiooo &
S 3000- g r =
@ 800 2
£ 4  Rumelhart & n B 2‘
‘S 2000 McClel.lanq PDP o 600 &
5 publication " - =g
E ; e} —400 a
£ 1000 ‘ . - &
= 1 200 8
\ al r -
0 -0

55 5 % % o 9 o 9

0 0 ®© 0 VW O O O \O

[N I N e N = S 2 el

Year

®m All neural network citations
O Applied neural network citations
Fig. 6.3 Survey of papers on neural networks and references on neural net-

works applied to spectral techniques from 1981 to 1998. Source, BIDS Institute for
Scientific Information Inc. Service (http://www.bids.ac.uk/isi.html/).
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constant one third of all the papers, indicating the great interest globally in
neural computational technology.

It would be impossible to review so many publications, therefore what
follows are selected examples which fall into one of three domains;
(1) exploratory analyses, (2) classification and identification, or (3)
quantification.

Exploratory data analyses are those where little useful information is avail-
able on the problem in hand and we would like to know how similar a group of
objects are. For example, in this set of five plastic samples are any the same and
which are different? These seven bottles of olive oil are all labelled identically
— but is this true? Or given a diverse population of bacteria, which are similar
and which different? Exploratory data analysis is also used to detect outliers,
the acquisition of a spectral measurement may be complicated and prone to
experimental error; by analysing several replicates one can find out whether all
spectra are identical or whether there has been a problem (perhaps a fly was
caught in the analysis). Outlier detection may also include looking for novelty,
for example my microbial culture collection contains several thousand isolates
producing potentially novel pharmaceuticals; when cultivating ‘new’ bacteria
how do I know that I have not previously characterized this organism?

There is much overlap between classification and identification, and it is
usual to deal with these two together since classification is the discipline whose
aim is to identify objects. For example, from which polymer is a particular
plastic made? Where was this foodstuff produced? Is this bacterium isolated
from a patient the same pathogen isolated from another patient in ward X?

Quantification problems are those where the aim is to predict the amount
of a substance. For example, how much of the co-polymers poly-hydroxybu-
tyrate and poly-hydroxyvalerate are in this biodegradable plastic? In the
orange juice I have bought how much is from Brazil and how much from
Florida? Or with respect to my patient in ward X that has bacterial septi-
caemia what is the microbial load in his or her blood?

5. Exploratory data analyses

Exploratory data analyses fall into the category of ‘unsupervised learning’, in
which the relevant multivariate algorithms seek ‘clusters’ in the data (Everitt
1993); the most common multivariate statistical method is principal compo-
nents analysis (PCA). Recently there has been an interest in the use of neural
computation methods which can also perform unsupervised learning on mul-
tivariate data, the most commonly used are self-organizing (feature) maps
(SOMs) and auto-associative artificial neural networks.

5.1 Self-organizing maps

SOMs were invented by Teuvo Kohonen (Kohonen 1989), and are hence also
referred to as Kohonen ANNs. SOMs provide an objective way of classifying
data through self-organizing networks of artificial neurons (Hecht-Nielsen
1990; Hertz et al. 1991; Kohonen 1989).



2-D
Kohonen

Infrared input layer

Fig. 6.4 A simplified self-organizing map. Nodes in the two-dimensional
Kohonen l:yer are interconnected with each other, such that an activation node
tends to a-tivate surrounding nodes also. The infrared data are applied to the
input layer (represent here by only 24 nodes; in reality >800 inputs) which activ-
ates a nod or group of neighbouring nodes in the Kohonen layer (represented
here as ha\ing 4 x 4 nodes; the number of nodes can be varied to allow quantita-
tive inform ation to be extracted).

SOM s used to analyse spectral data typically consist of a two-dimensional
network o~ neurons arranged on a square grid (Fig. 6.4). Each neuron is con-
nected to its eight nearest neighbours on the grid. The neurons store a set of
weights ( a1 weight vector) each of which corresponds to one of the inputs in
the data. Thus, for infrared data consisting of 882 quantitative absorbances
(see Fig. 1.5 for examples of IR spectra) at particular electromagnetic radi-
ation wave:lengths each node stores 882 weights in its weight vector. Upon
presentation of an infrared spectrum (represented as a vector consisting of
the 882 absorbances) to the network each neuron calculates its ‘activation
level’. A node’s activation level is defined as:

[ n

|

’y’ E (weight; — input ;)?
=0

V4

This is the Euclidean distance between the points represented by the weight
vector ani the input vector in n-dimensional space. Thus a node whose
weight vector closely matches the input vector will have a small activation
level, and a node whose weight vector is very different from the input vector
will have a large activation level. The node in the network with the smallest
activatior: level is deemed to be the ‘winner’ for the current input vector.
During training the network is presented with each input pattern in turn,
and all nodes calculate their activation levels. The winning node and some of
the nodes. around it are allowed to adjust their weight vectors to match the

Exploratory data analyses
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Fig. 6.5 Fourier transform infrared diffuse reflectance-absorbance spectra of

bacteria typically associated with urinary tract infection; Escherichia coli, Proteus

mirabilis, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aerginosa,

and an Enterococcus species.

current input vector more closely. The nodes in this set are said to belong to
the ‘neighbourhood’ of the winner. The size of the winner’s neighbourhood is
varied through training. Initially all nodes in the network are included in the
neighbourhood of the winner, but as training proceeds the size of the neigh-
bourhood is decreased linearly after each presentation of the complete ‘train-
ing set’ (all the spectra being analysed), until it includes only the winner
itself. The amount by which the nodes in the neighbourhood are allowed to
adjust their weights is also reduced linearly throughout the training period.

The factor which governs the size of the weight alterations is known as the
learning rate and is represented by «. The iterative adjustments to each item
in the weight vector (where dw is the change in the weight) are made in
accordance with the following:

ow; = —alw; - i)

This is carried out for i = 1 to i = n where in this case n = 882. The initial
value for « is 1 and the final value is 0.

The effect of the ‘learning rule’ (weight update algorithm) is to distribute
the neurons evenly throughout the region of n-dimensional space populated
by the training set (Hecht-Nielsen 1990; Hertz ez al. 1991; Kohonen 1989).

This effect is displayed in Fig. 6.6 which shows the distribution of a
square network over an evenly populated two-dimensional square input space
(Fig. 6.6(A)), and a more complex input space (Fig. 6.6(B)). The neuron with
the weight vector closest to a given input pattern will win for that pattern and
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Fig. 6.6 Representations of square networks distributed across (A) an evenly
distributed square, and (B) a more complex two-dimensional input space.

for any other input patterns that it is closest to. Input patterns which allow the
same node to win are then deemed to be in the same group, and when a map
of their “elationship is drawn a line encloses them. By training with networks
of incre 1sing size a map with several levels of groups or ‘contours’ can be
drawn. "hese contours, however, may sometimes cross, which appears to be
due to fuilure of the SOM to converge to an even distribution of neurons over
the input space (Erwin et al. 1992).

Exploratory data analyses
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Fig. 6.7 Kohonen map (10 by 10 square grid) from a SOM trained with infrared
data from measurements made on bacteria. Two maps are show: (A) the number
of spectra that are found in each node in the 2-dimensional Kohonen layer and (B)
the identities of the bacteria

Construction of these maps allows close examination of the relationships
between the items in the training set, which in this example consisted of
infrared spectra derived, for example, from bacterial species (Fig. 6.7).

Networks on square grids of 10 nodes were used to group the IR spectra.
The SOMs were allowed to ‘wrap around’ so that they formed toroidal struc-
tures to avoid the edge effects which otherwise tend to corrupt very small net-
works of this type. The result of this exploratory analysis is displayed in Fig. 6.7
as a 2-dimensional Kohonen map. This groups the bacteria together; one can
observe that the same bacteria cluster in the output nodes of this 10 by 10 grid.

Elsewhere, Wilkins et al. (Wilkins et al. 1994a, 19945, 1996) have applied
Kohonen maps to multi-dimensional flow cytometric data for the
identification of species of fresh water phytoplankton, and Goodacre and col-
leagues have exploited SOMs to carry out unsupervised learning, and hence
the classification of canine Propionibacterium acnes isolates (Goodacre et al.



1994b), P acnes isolated from man (Goodacre et al. 1996a), and plant seeds
(Goodacte et al. 1996b). SOMs have also been used to detect and classify
human blood plasma lipoprotein lipid profiles on the basis of H'NMR spec-
troscopic data (Kaartinen er al. 1998), for cluster analysis of multivariate
satellite Jdata (Waldemark 1997), and for seismological surveys of earth-
quakes and quarry blast (Musil and Plesinger 1996).

5.2 Aulo-associative artificial neural networks

Auto-associative artificial neural networks (AAANNSs) are a neural network-
based method again used for unsupervised feature extraction and were pio-
neered by, Kramer (Kramer 1991, 1992).

AAANNSs consist of five layers containing processing nodes (neurons or
units) m:de up of a layer of x input nodes (for example in Fig. 6.8 this is
depicted as a set of 24 measurements), x output nodes (the same set of 24
measurements as used in the input layer), and three ‘hidden’ layers containing
in this ex ample of 8, 2 and 8 nodes respectively; this may be represented as a
24-8-2-8-24 architecture.

Adjacent layers of the network are fully interconnected, and the algorithm
used to t-ain these neural networks is the standard back-propagation (BP)

Input Mapping Bottle-neck De-Mapping Output
layer layer layer layer layer

Fig. 6.8 Architecture of an auto-associative neural network consisting of 5
layers. In the architecture shown, adjacent layers of the network are fully intercon-
nected. The input and output layer are presented with identical multivariate data
(in this fijure there are 24 nodes in these layers). A key feature of the auto-asso-
ciative n:twork is the data compression in the middle (third) bottle-neck layer of
2 nodes. The second and fourth layers each consisted of 8 nodes and these map
and de-n-ap the mass spectra allowing feature extraction in the bottle neck layer;
this is eq lsivalent to non-linear principal components analysis.

Exploratory data analyses
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(Chauvin and Rumelhart 1995: Rumelhart et al. 1986; Werbos 1994). Since
these neural networks are auto-associative in nature, that is to say, during
training the input and output layer are presented with identical multivariate
data, a key feature of these networks is the data compression in the middle
(third) bottle-neck layer of 2 nodes. The second and fourth layers each consist
of nodes that map and de-map the multivariate data, allowing feature extrac-
tion in the bottle neck layer. This is equivalent to non-linear principal compo-
nents analysis (Kramer 1991, 1992). After training, each of the multivariate
data used to train the AAANN is applied in turn to the input layer and the
overall activation on the three nodes in the ‘bottle-neck’ layer calculated.
Plots of the activations of the nodes in the ‘bottle-neck’ layer therefore allow
‘clusters’ to be found in the data.

Kramer and colleagues (Kramer 1992; Leonard and Kramer 1993) have
shown that these types of neural networks reduce measurement noise by
mapping inputs into the space of the correlation model (the cluster analyses
in the middle bottleneck layer), and the residuals of this mapping can be used
to detect sensor failures; moreover values for missing and faulty sensors can
be estimated using these networks.

Auto-associative ANNs have been used to reduce the dimensionality of
the infrared spectra of polysaccharides and hence extract spectral features
due to polysaccharides (Jacobsson 1994), to detect plasmid instability using
on-line measurements from an industrial fermentation producing a recombi-
nant protein expressed by Escherichia coli (Montague and Morris 1994), for
effecting exploratory cluster analyses of pyrolysis mass spectra (Goodacre
et al. 1996b,c), and for knowledge extraction in chemical process control
(Kuespert and McAvoy 1994). Whilst, more recently NLPCA using back-
propagation ANN has been used for image coding (Tzovaras and Strintzis
1998) and image processing (Bowden et al. 1997), and for electrocardio-

gram (ECG) analysis for detecting ischemia in patients (Stamkopoulos ef al.
1998).

6. ldentification

The goal of identification is to take an unknown object and classify it as
belonging to a group that has been seen previously. This process is based on
supervised analysis and the two most exploited of the neural computational
methods for this purpose are (1) multilayer perceptrons (MLPs) using stan-
dard backpropagation of error and (2) radial basis function neural networks
(RBFs).

In MLPs and RBFs that are to be trained for identification purposes, as
detailed above the training data used to calibrate the model consist of (i) a
matrix of s rows and n columns in which s is the number of objects and 1 the
number of variables, and (ii) a second matrix, again consisting of s rows and
the same number of columns as there are classes to be identified. For
identification these s rows are binary encoded as shown in Fig. 6.9; these are
the result(s) wanted and which for the training set have actually been deter-
mined by classical identification methods, and are always paired with the pat-



Nodes on MLP or RBF output layer

1 2 3 4 5 6 7
Al 1 [ o 0 0 0 0 0
B 0 1 0 0 0 0 0
C 0 0 1 | o 0 0 0
D 0 0 0 1 0 0 0
E 0 0 0 0 1 0 0
F 0 0 0 o | o | 1 0
G 0 0 0 0 0 o | 1

Fig. 6.9 Binary encoding the seven nodes in the output layer on a multilayer
perceptro or radial basis function trained to classify one of seven substances
A-G.

terns in the same row in (i). Once trained, new input data can be passed
through these ANNSs, and the identities ‘read off’ easily, since a tabular
format is employed in the classification encoding.

The following texts, books, and indeed this Al handbook are recom-
mended as excellent introductory texts to artificial neural networks (Baxt
1995; Bishop 1995; Dybowski and Gant 1995; Goodacre et al. 1996d;
Haykin 1994; Hertz et al. 1991; Richard and Lippmann 1991; Ripley 1994;
Ripley 1996; Rumelhart er al. 1986; Simpson 1990; Wasserman 1989;
Werbos - 994; Zupan and Gasteiger 1993). The following briefly outlines the
major differences between MLPs and RBFs.

6.1 Multilayer perceptrons

The structure of a typical MLP is shown in Fig. 6.10(A). It consists of three
layers; raultivariate data as the input layer, connected to an output layer
encoded “or identification purposes as detailed in Fig. 6.9, via a single hidden
layer. Ea:h of the input nodes is connected to the nodes of the hidden layer
using ab:tract interconnections (connections or synapses). These connections
each have an associated real value, termed the weight (w;), that scales the
input (i;) passing through them, this also includes the bias (), which also has
a modifizble weight. Nodes sum the signals feeding to them (Ner):

n
Net = W, + W, +igWg +...+i;w; +...+i,w, = E iw;+ 9
i=1
The surr of the scaled inputs and the node’s bias, is scaled to lie between 0
and +1 by an activation function to give the node’s output (Out); this scaling
is typically achieved using a logistic ‘squashing’ (or sigmoidal) function:
1

Out=———
(1+ exp~Net)
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Input layer Hidden layer Output layer Input layer Hidden layer Output layer
(linear) with summation and (linear or (linear) of radial basis function nodes (linear)
(non-linear squashing) non-linear) (non-linear)
Multilayer Perceptron Radial Basis Function

Fig. 6.10 (A) A multilayer perceptron neural network consisting of an input layer connected to a single node in the
output layer by 1 hidden layer. In the architecture shown, adjacent layers of the network are fully interconnected
although other architectures are possible. Nodes in the hidden and output layers consist of processing elements which
sum the input applied to the node and scale the signal using a sigmoidal logistic squashing function. (B) Radial basis
function neural network consisting of an input layer connected to a single node in the output layer by 1 hidden layer.

The hidden layer consists of radially-symmetric Gaussian functions, although others exist (e.g., Mexican hat and thin
plate splines).

These signals (Out) are then passed to the output node which sums them:
in turn they are squashed by the logistic sigmoidal activation function; the
product of this node is then fed to the ‘outside world’.

For the training of the MLP the algorithm used most often is standard
back-propagation (BP) (Chauvin and Rumelhart 1995; Haykin 1994;
Rumelhart er al. 1986; Wasserman 1989; Werbos 1994). When input is
applied to the network, it is allowed to run until an output is produced at each
output node. The differences between the actual and the desired output, taken
over the entire training set, are fed back through the network in the reverse
direction to signal flow (hence back-propagation) modifying the weights as
they go. This process is repeated until a suitable level of error is achieved.

One reason that MLPs are so attractive for the analysis of multivariate
(spectral) data is that it has been shown mathematically (Cybenko 1989;
Funabashi 1989; Hornik er al. 1989; Hornik et al. 1990; White 1990, 1992)
that a MLP neural network consisting of only one hidden layer, with an arbi-
trarily large number of nodes, can learn any arbitrary (and hence non-linear)
mapping of a continuous function to an arbitrary degree of accuracy.



6.2 Radial basis functions

By contrist RBFs networks are hybrid neural networks encompassing both
unsupervised and supervised learning (Beale and Jackson 1990; Bishop 1995;
Broomhcad and Lowe 1988; Hush and Horne 1993; Moody and Darken
1989; Park and Sandberg 1991; Saha and Keller 1990; Walczak and Massart
1996; Wilkins et al. 1994a). RBFs are also typically three-layer neural net-
works and in essence the sigmoidal squashing function is replaced by non-
linear (o’ten either Gaussian or ‘Mexican hat’) basis functions or kernels
(Figure €.10(B)) The kernel is the function that determines the output of each
node in the hidden layer when an input pattern is applied to it. This output is
simply a function of the Euclidean distance from the kernel centre to the pre-
sented input pattern in the multi-dimensional space, and each node in the
hidden l:yer only produces an output when the input applied is within its
receptive field; if the input is beyond this receptive field the output is 0. This
receptive field can be chosen and is radially symmetric around the kernel
centre. B:tween them the receptive fields cover the entire region of the input
space in which a multivariate input pattern may occur; a diagrammatic repre-
sentatior: of this is given in Fig. 6.11, where a two-dimensional input is
mapped "y seven radially symmetric basis functions. This is a fundamentally
different approach from the MLP, in which each hidden node represents
a non-linear hyperplanar decision boundary bisecting the input space
(Fig. 6.1 ). Thus RBF’s have the advantage over gradient descent MLPs in
that they have the ability to learn any arbitrary non-linear mapping of a dis-
continuous function to an arbitrary degree of accuracy (Haykin 1994; Bishop
1995; Broomhead and Lowe 1988).

The outputs of the RBF nodes in the hidden layer are then fed forward via
weighted connections to the nodes in the output layer in a similar fashion to
the MLP, and each output node calculates a weighted sum of the outputs from
the non-linear transfer from the kernels in the hidden layer. The only differ-
ence is that the output nodes of an RBF network are normally linear, whilst
those of “he MLP more typically employ a sigmoidal or logistic (non-linear)
squashin 3 function.

Thus n the RBF training proceeds in two stages: Stage I involves unsu-
pervised clustering of the input data, typically using the K-means clustering
algorithr1 (Duda and Hart 1973; Everitt 1993; Hush and Horne 1993) to
divide tl'e high-dimensional input data into clusters. Next, kernel centres
are placed at the mean of each cluster of data points. The use of K-means is
particularly convenient because it positions the kernels relative to the
density of the input data points. Next the receptive field is determined by
the near:st neighbour heuristic where r; (the radius of kernel j) is set to the
Euclidean distance between w; (the vector determining the centre for the jo
RBF) and its nearest neighbour (k), and an overlap constant (Overlap) is
used:

r;= Overlap x min (llw; - w;ll)

where Il .. Il denotes a vector norm, or Euclidean distance.
The overlap that often gives best results is where the edge of the radius of
one kerr 21 is at the centre of its nearest neighbour (Saha and Keller 1990).
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A

N

(hyperplanar) boundary
represented by single m =
node in hidden layer B

—_—

decision boundary

B/\

Kernel centre

Fig. 6.11 (A) Typical decision boundary for a classification problem created
between two data classes by a MLP with 2 nodes in the hidden layer, for 2 input
nodes. Each hidden node represents a non-linear boundary and the nodes in the
output layer interpolate this to form a decision boundary. (B) The same
classification problem modelled by 7 radially symmetric basis functions. The
width of each kernel function (referred to as its receptive field) is determined by
the local density distribution of training examples.

The output from nodes in the hidden layer is dependent on the shape of the
basis function and the one used was that of the Gaussian. Thus this value (R)
for node j when given the /" input vector (i;) can be calculated by:

(i

i

. 7L r2
R;(i;)=exp \/ 7

Stage 2 involves supervised learning using simple linear regression. The
inputs are the output values for all n basis functions (R, — R,) for all the train-
ing input patterns to that layer (i; — i,), and the outputs are identities binary
encoded as shown in Fig. 6.9.



6.3 Identification of biological materials using spectroscopic
measurexnents

Pyrolysis-MS involves the thermal degradation of non-volatile complex mol-
ecules in it vacuum causing their cleavage to smaller, volatile fragments sepa-
rable by @ mass spectrometer on the basis of their mass-to-charge ratio (m/z)
(Goodacre and Kell 1996; Irwin 1982; Magee 1993; Meuzelaar ef al. 1982).
PyMS allows the chemically based discrimination of bacterial and fungal
cells and produces complex biochemical fingerprints (i.e., pyrolysis mass
spectra) which are distinct for different micro-organisms (Magee 1993;
Goodacre 1994). The analytically useful multivariate data (see Fig. 6.12 for
an example) are typically constituted by a set of 150 normalised intensities

4.5 T T T T T T T

Percentage total ion count
S

0.5+ 7

60 80 100 120 140 160 180 200

Mass (m/z)

Fig. 6.12 Normalized pyrolysis mass spectra of Propionibacterium acnes from
the forer 2ads of two healthy adult human individuals. P. acnes is a common
inhabitan of the skin of humans, post puberty, and is considered to cause skin
disorders and acne.
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versus m/z in the range 51 to 200 and these are applied to the nodes on the
input layers of ANNs.

The first demonstration of the ability of MLPs to discriminate between
biological samples from their pyrolysis mass spectra was for the qualitative
assessment of the adulteration of extra virgin olive oils with various seed oils
(Goodacre et al. 1992, 1993b); in this study, which was performed double-
blind, neural networks were trained with the spectra from 12 virgin olive oils,
coded 1 at the output node, and with the spectra from 12 adulterated oils,
which were coded 0. All oils in the test were correctly identified; in a typical
run, the virgins were assessed with a code of 0.99976 + 0.000146 (range
0.99954 — 1.00016) and the adulterated olive oils in the test set with a code of
0.001079 £ 0.002838 (range 0.00026 — 0.01009). This permitted their rapid
and precise assessment, a task which previously was labour intensive and
very difficult. It was most significant that the traditional ‘unsupervised’ multi-
variate analyses of principal component, discriminant, and cluster analyses
failed to separate the oils according to whether they were pure or adulterated
but rather discriminated them on the basis of the type of olive tree that the
olive fruit came from.

The use of pyrolysis-MS with MLPs for the analysis of foodstuffs is
becoming widespread and has been investigated for identifying the geograph-
ical origin of olive oils (Salter er al. 1997), for the characterization of cocoa
butters (Anklam et al. 1997), and for differentiating between industrially
made vinegar ‘Aceto Balsamico di Modena’ and traditionally produced
vinegar ‘Aceto Balsamico Tradizionale di Modena e di Reggio Emilia’
(Anklam et al. 1998); the latter is often substituted with the industrial vinegar
in an attempt to fool the consumer!

Several studies have also shown that this combination of PyMS and MLPs
is also very effective for the rapid identification of a variety of bacterial
strains of industrial, clinical, and veterinary importance. For example this
approach has allowed the propionibacteria isolated from dogs to be correctly
identified as human Propionibacterium acnes (Goodacre et al. 1994b), for
detecting Escherichia coli isolates which produced verocytotoxins (Sisson
et al. 1995), for distinguishing between Mycobacterium tuberculosis and
M. bovis (Freeman et al. 1994), and for identifying streptomycetes recovered
from soil (Chun er al. 1993a, b), oral abscess bacteria (Goodacre et al.
1996¢), and fungi belonging to the genus Penicillium which were associated
with cheese (Nilsson er al. 1996).

RBF neural networks have been rather less widely applied to the analysis
of spectral data. Boddy and colleagues have used RBFs for the identification
of marine phytoplankton from flow cytometric data (measurements based on:
time of flight, light scattering, and fluorescence) (Morgan er al. 1998; Wilkins
et al. 1994b; 1996). Other studies that have exploited RBFs include those
based on PyMS to detect physiological changes in industrial fermentations of
Streptomyces species (Kang et al. 1998a,b), for the classification of odours
and food stuffs using chemical gas sensors in electronic nose arrays (Ping
and Jun 1996; Schaller et al. 1998), for the correct discrimination of aromatic
and non-aromatic chemical species from a 100 compound near-IR gas-phase
library (Brown and Lo 1998), for the identification of common infectious



agents associated with urinary tract infection from their MS, IR, and Raman
spectra (Cioodacre et al. 1998a), and for the detection of cervical pre-cancer
from fluorescence spectra from the cervix in vivo (Tumer et al. 1998).

With regard to neural network architecture other than the gradient descent
and RBF-based algorithms illustrated above, Harrington (1993a) has com-
pared minimal neural networks (MNN) with BP-ANNSs for the analysis of
tandem mass spectrometry data. MNN differ from BP-ANNSs in that they use
localized processing and build classification trees with branches composed
of multiple processing units. A global entropy minimization may be achieved
at a branch by combining the processing logic using principles from fuzzy set
theory. Wezight vectors are adjusted using an angular co-ordinate system and
gradients of the fuzzy entropy function. The branches are optimal with
respect tc fuzziness and can accommodate non-linearly separable or ill-condi-
tioned dera. The most significant advantage of the MNNs is that relations
among the training data and the mechanism of inference may be directly
observed, thus rule-based classification trees have been constructed from the
mass spe: tral daughter ions to discriminate between diesel smoke, dry yeast,
Eschericlia coli, MS-2 coliphage, grass pollen, Bacillus subtilis, fog oil,
wood smoke, aldolase, and Bacillus globigii (Harrington 1993b).

7. Quantification

Quantification problems are those where the aim is to predict the amount of a
substance. Spectral measurements of complex biological (organic) mixtures
may be expressed, to some degree, in subpatterns of spectra describing the
pure components of the mixtures and their relative concentrations; this is of
course rather simplistic and spectral and biological interferences, from the
total mat:ix, mean that the spectrum of A added to the spectrum of B does not
equal the spectrum of (A + B). However, this complication aside, for present
purposes, if a particular component A is changing in amount in a set of mix-
tures the subpattern spectrum of this component will also change magnitude
relative to the amount of it; therefore multivariate calibration for the amount
of A in tne total spectra would be possible. This is a supervised learning
problem, and the most commonly used machine learning method to achieve
this is th: MLP, where the output node(s) of these MLPs are encoded simply
as the quantity of the component(s) to be measured.

Other non-cognitive supervised learning methods that are used for
quantitative analyses include multiple linear regression (MLR), principal
components regression (PCR), and partial least squares (PLS). PCR and
PLS reg-ession techniques are multivariate factor analysis methods (Jones
et al. 1998; Liang et al. 1993; Martens and Nas 1989; Martin 1992) that
are usef.ll when the target matrix (here equivalent to the output layer of
ANNG5) ¢oes not contain the full model representation; that is to say, there
are more variables in the data matrix than in the target matrix (which is
generalli' the case with the spectroscopic measurements). As with super-
vised learning in MLPs both approaches utilize a priori information about
the samy les (Brereton 1990). The first stage in PCR is the decomposition

Quantification

141



142 Applications of artificial neural networks

of the data (X-) matrix into latent variables by linear PCA; then each of the
target (Y-) variables are regressed onto this decomposed X-matrix. PLS,
however, performs a simultaneous and interdependent linear PCA decom-
position in both X- and Y- matrices, in such a way that the information in
the Y-matrix is used directly as a guide for the optimal decomposition of
the X-matrix, and then performs linear regression of the latent variables on
Y. It is considered that PLS usually handles several co-varying Y-variables
better than does PCR, and is superior for the simultaneous modelling
of several intercorrelated target variables (Martens and Nas 1989;
Martin 1992).

The use of PLS and PCR for the deconvolution of spectroscopic data is
well documented (Martens and Nas 1989). Indeed, studies comparing multi-
ple least squares methods as well as the latent variable PCR and PLS methods
(Carey et al. 1986; Geladi and Kowalski 1986; Joreskog and Wold 1982)
have concluded that the best linear regression technique appears to be PLS.
Whilst other studies based on a range of different spectroscopic data, viz.,
fluorescence (McAvoy et al. 1992), infrared (Bhandare et al. 1994 Jacobsson
and Hagman 1993), X-ray (Luo er al. 1997), mass spectra (Goodacre 1997;
Goodacre er al. 1994a, 1995), measurements from a piezoelectric crystal
sensor array (Xing and He 1997), and kinetic spectrophotometric determina-
tions (Blanco er al. 1995, 1996) have concluded that ANNs often give better
predictions than does PLS because ANNs are able to perform non-linear
mappings of the inputs to output(s) whilst still being able to map the linear
ones.

When trying to teach fully interconnected feedforward MLPs to quantify
more than one thing at a time, it is best to have as many MLPs as components
that are being quantified, since the main problem in teaching a single MLP
with multiple outputs is that conflicting error messages are back-propagated
from the output layer during the learning process (Bishop 1995; Jordan
1992). That is to say, the error that is fed back from one of the x output nodes
is fed to all nodes in the preceding hidden layer, which also contains informa-
tion pertinent to learning the other x—1 targets; if one target is failing to be
learned, and thus sends the algorithm off in a different direction in weight
space, it will inevitably hinder the learning of the other targets. This has been
seen experimentally when comparing MLP predictions for the quantification
of single and multicomponent mixtures from pyrolysis mass spectrometry

(Goodacre et al. 1994a) and X-ray fluorescence measurements (Luo et al.
1998).

8. Interpretation of neural networks

The exploitation of novel multivariate analysis techniques employing ANNs
which are based on supervised learning, rather than unsupervised methods,
has permitted even better discrimination and quantification of biological
systems. However, the information in terms of which input nodes are impor-
tant is not readily available, and ANNs are often perceived as a ‘black box’
approach to modelling spectra. It is known from the statistical literature that



better predictions can often be obtained when only the most relevant input
variables are considered (Bishop 1995; Miller 1990; Rawlings 1988; Ripley
1994; Ripley 1996; Seasholtz and Kowalski 1993). Therefore neural net-
works that prune larger networks are an active area of study (Finnoff et al.
1993; Hassibi and Stork 1993; LeCun ef al. 1989; Mozer and Smolensky
1989; Rexd 1993; Weigend et al. 1991), whilst it is also possible to grow
neural ne:works from small ones (Broomhead and Lowe 1988; Fahlman and
Lebiere 1990; Frean 1990; Moody and Darken 1989).

Alternatively PCA can be used to reduce the complexity of the MLP
model. PCA is an excellent dimensionality reduction technique, since after
the first fcw PCs are extracted subsequent ones will contribute only noise to
the mode] The use of PC scores as inputs to neural networks, without deteri-
oration of the calibration model, has previously been applied to the analysis
of UV/visible spectroscopic data (Blanco et al. 1995; Gemperline et al.
1991), for the identification of bacteria from their FT-IR spectra (Goodacre et
al. 1998b; Goodacre er al. 1996f), for the quantification of bacteria (Timmins
and Gooclacre 1997) and foodstuffs (Goodacre 1997; Goodacre et al. 1997)
from thei: PyMS spectra, and for the quantification of antibiotics in a bacter-
ial matrix using FT-IR (Winson et al. 1997).

Anoth:r way to select the optimal number of inputs to a neural network
is to use genetic algorithms (GAs) (Broadhurst et al. 1997). A GA is an
optimizat on method based on the principles of Darwinian selection (Bdck
et al. 195 7; Goldberg 1989; Holland 1992; Mitchell 1995), and effectively
performs a directed search through the multivariate space for possible
solutions from random starting points. GAs are only one of a family of
evolutior ary computation methods, and perhaps a more powerful one is to
use genet ¢ programming (GP). GP is an application of the GA approach to
derive mathematical equations, logical rules or program functions auto-
matically (Gilbert et al. 1997; Koza 1992, 1994), and when applied to
spectroscopic data have been shown to give very similar predictive
results to ANNs but with the added benefit of spectral deconvolution in
biochemi >al terms (Gilbert et al. 1997; Goodacre et al. 1998¢; Taylor et al.
1998).

9. Concluding remarks

The application of neural networks for quantitative and qualitative analyses
is well documented and accepted. ANNs clearly present themselves as
extremelv powerful and valuable tools for the analysis of multivariate data.
Over the last few years the availability of powerful and inexpensive com-
puters in conjunction with the development of user-friendly packages,
which ca1 simulate artificial neural networks, has led to machine learning
increasin 21y being adopted by researchers in the biological, chemical, and
physical sciences. Training a neural network is no longer cumbersome, and
in the future it will be possible to devise automated cross validation tech-
niques so that the network decides when it is optimally trained without user
interfere:ce.
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7 Applications of knowledge-

based systems
Mary Mulholland and D. Brynn Hibbert

1. Introduction

Knowledgs:-based systems are at the heart of many Artificial Intelligence (AI)
approache:. To answer high-level questions in science requires human exper-
tise that recides in the experience of a practitioner. The sum of that experience
comprises knowledge, and applications that rely on this amassed knowledge
are referre 1 to as knowledge-based systems. Expert systems (ESs) are par-
ticular knowledge-based applications that use some form of inference engine
to advise ¢ user via a suitable interface (Fig. 7.1).

Research concentrates on the nature of the inference engine, the construc-
tion and maintenance of the knowledge base in a form that is useable by the
inference : ngine, and the user interface. There have been a great number of
expert syslems published, too many to adequately review in one chapter. In
chemistry alone 1500 publications have appeared since 1984. Therefore, we
shall focus. on the area of analytical chemistry. First, we discuss practical
aspects of the construction of knowledge-based expert systems and review a
number of systems in analytical chemistry. A novel approach to knowledge
engineerin 3 and maintenance of an ES, using Ripple Down Rules (RDR), and
its application to ion chromatography is then described. Finally we shall
discuss reasons why, with the obvious research interest in ES, there are so
few working systems in use.

Inference : Expert System Tool
Engine |
/ I
User | Developer
Interface i Interface

\ A /
_ Knowledge | !
' Expert System Base

Fig. 7.1 The components of an Expert System and an Expert System develop-
ment tool.
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2. lon chromatography

Throughout this chapter, the analytical method of liquid chromatography
(also known as high pressure liquid chromatography or HPLC) and its sub-
method, ion chromatography (IC), will be used as an example of a widely
used method to which expert system technologies may be applied. IC is an
analytical method that separates and detects ions in solution as a means of
identifying and quantifying them (Haddad and Jackson 1990). A small
volume of sample is injected into a flowing stream (the eluent) which passes
through a column in which the separation is effected. The ions issuing from
the column pass into a detector, the signal from which is displayed as a series
of peaks. The time from injection to the appearance of a peak is characteristic
of a given ion, and the peak height or area is proportional to its concentration
in the sample. Chemical analysis using IC requires a variety of expertise
which would not be possible to encompass in one ES. In breaking down the
domain into smaller, more manageable parts, it is first necessary to decide
how to represent the various research areas of IC.

Figure 7.2 shows the stages in the development of a chromatographic
method. The first stage is to collect information on the number and type of
ions, the complexity of the sample matrix, and the requirements of the appli-
cation. A check is usually made of the literature to find a previously devel-
oped method, and if such a method is available, it can be configured to a
complete description. Alternatively, the method may require some further
optimization. If a method is not available then a first guess is made on a suit-
able sample preparation technique, column, eluent, pH, and detector. This can
be further optimized for retention, selectivity, and instrumental conditions.
The calibration technique can be chosen and the final method validated.
Selection of the calibration method is often an integral part of the validation
study.

Each stage shown in Fig. 7.2 may be selected for an ES application. Maris
and Hindriks (1993) present a similar scheme, and suggest that four aspects
of the development of a chromatographic method are amenable to an ES: the
initial guess of the configuration, optimization of selectivity, optimization of
chromatographic conditions, and validation.

The initial configuration presents a classical problem of disparate and
often incomplete knowledge about the system with an expert’s general
knowledge, aided by the literature, to give a workable system within the con-
straints of the laboratory. Traditional expert systems have been written to
advise on the configuration and the novel method of ripple down rules is
described below.

Optimization of selectivity and chromatographic conditions is a problem
treated by Al but not necessarily knowledge-based systems. Several algor-
ithmic optimization methods have been used to find, for example, the best
composition of the mobile phase. Here propose and revise strategies work
well as new combinations may be tried experimentally.

Finally, validation is a process in which the method is proved to be ‘fit for
purpose’ in terms of a number of analytical and statistical measures. The indi-
vidual steps in validation are well known, but a knowledge-based system can
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Fig. 7.2 Stages in the development of a chromatographic method.

lead the analyst through the necessary experiments, acting as an intelligent
agent.

A majc - effort by the European Union to assemble software to accomplish
some or a_| of these tasks will be described later.

The analytical chemistry method of liquid chromatography is sufficiently
broad thar it is not feasible to contemplate a single ES for all of the above
tasks and :ll possible scenarios. However, particular needs can be accommo-
dated by :acrificing breadth of application or depth of knowledge. A broad
but shallow system tackles a large variety of problems but restrictions in
computer hardware and software necessarily mean these systems do not
contain d:tailed knowledge. The problem with broad systems is that users
consult them only for their own application areas and very quickly learn the

Ion chromatography
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Extent of

Applications
knowledge pp

v

Method conditions

Fig. 7.3 Examples of 1: ‘narrow and deep’ and 2: ‘broad and shallow’ knowl-
edge in the domain of ion chromatography.

contents of the knowledge base, rendering them useful only for a short time.
The alternative is to build a narrow yet deep system that can tackle a small
number of problems but in greater depth. However, their restricted ambit
limits these systems to a small number of users. Taking the example of ion
chromatography, the IC domain may be represented in two dimensions:
applications: e.g., water analysis, pharmaceutical excipients, industrial
effluent; and method conditions: e.g., the type of detector, column/eluent
combinations, the separation mechanism. Figure 7.3 shows two possible
domain definitions along three dimensions comprising the two IC dimensions
described above and the extent of knowledge required. The first illustrates a
narrow and deep domain, which would be the case of an ES developed for a
pharmaceutical analyst who occasionally requires ion chromatography to
assay ionic excipients. The ES would be required to cover a limited range of
applications and separation mechanisms (only those suited to the available
equipment) thus would be narrow. However, the knowledge of these separa-
tion mechanisms would have to be deep, as the analyst needs detailed infor-
mation of the method conditions. This ES would have lasting use for a
limited number of users, since it would take longer for the user to become
familiar with the knowledge in the ES that is relevant to his/her domain.

The second example, a broad and shallow system, could be an ES for an
analyst who is required to specialize in ion chromatography. The ES must
contain knowledge of a wide range of applications and possible method con-
ditions. Hence, by necessity, it must be shallow in detailed knowledge. The
user needs to supplement the details, or in-depth knowledge, from the litera-
ture and eventually from their own experience. This system has a large
number of potential users, but they would quickly learn the knowledge in the
ES that is relevant to their domain and so the lifetime of this system is likely
to be short.

The knowledge that is required for a system of any depth needs to be
sufficiently complete and predictable to give acceptable accuracy and consis-
tency of the method prediction. For a shallow system, this is not critical as
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Table 7.1 A breakdown of the stages of building an ES (Goulder et al.
1988)

Conventional tasks Time scale (months) based on a 21
month schedule

Selection of expert 2
Selection of tool 2
Testing o* tools 4
Knowledge engineering 6
Implementation 3
Validation 1
Evaluation 3

(0]

Maintenance ngoing

long as there is sufficient alternative advice or even scope for developmental
experimental work.

3. Building an expert system for ion chromatography

3.1 Selection of the expert and domain

The selection of the (human) expert and the area of expertise is the most
important stage in building an ES. The expert must be sufficiently recognized
by his/her peers. More importantly, the expert must be willing to spend a con-
siderable amount of time cooperating with the knowledge engineer to reveal
the full depth of his/her knowledge. A busy analytical chemist may find it
unsatisfying to rehearse at length the complex processes used to arrive at a
decision. 'When building a system for the initial configuration several thou-
sand case: must be assessed to bring out the required knowledge for even the
sub-methcd of ion chromatography.

3.2 The knowledge base

The form of knowledge representation depends on facilities provided by the
tools, anc. on the nature of the knowledge. Knowledge in ESs usually takes
the form of rules and facts. The facts are the objects or concepts about which
the experr reasons and rules are derived from this reasoning. An example fact
for chromatography is that the equipment consists of a detector, an injector, a
column, ¢ad a pump.

3.2.1 Rules

From the early days of Al it was recognized that the rules of inference of
formal logic provided the best potential for the representation of knowledge.
Rules in Al systems are used to represent the reasoning knowledge and
employ fi. nctions allowed by procedural logic and predicate calculus. These
include th 2 following: IF. AND. NOT, OR, THEN. IMPLIES, EQUIVALENT,
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TRUE/FALSE, IS A. Rules are supposed to represent the way in which the
expert solves problems. For example, if a compound is non-volatile then
liquid chromatography is preferred to gas chromatography, or if molecular
weights are greater than 3000, then size-exclusion chromatography is applic-
able. These decisions can be represented as the following rules:

IF a compound is non-volatile
AND liquid chromatography is available
THEN use liquid chromatography

IF the molecular weight is more than 3000

AND liquid chromatography is available

AND size-exclusion chromatography is available
THEN use liquid chromatography

AND use size-exclusion chromatography

These examples show how apparently simple rules can become complex
when they are fully implemented with all their exceptions and additions.
They show the use of the ‘IF condition(s) THEN conclusion(s)’ process.
Rules conclude new information from information already available. This
new information can now be inserted into the knowledge base. The source of
information for operation of a rule is the knowledge base, the user, or some
external source. When building rules it is important to maintain easy legibil-
ity of the rule base. A simple piece of advice often offered to rule builders is
that ‘if the rule looks too big it probably is too big and should be split into
smaller rules’. (This is itself an example of an IF ... THEN construct).

The term meta-knowledge is quite frequently used; this is knowledge
about the knowledge base. For example, it may be the time and date of cre-
ation of a frame, or the name of the creator. It also offers the possibility to
specialize global characteristics of the knowledge base locally. It can allow
range restrictions for attribute values. For instance, the temperature range of a
liquid chromatography oven is usually 35-150 °C and the wavelength range
of a UV/VIS detector is 190-700 nm.

3.2.2 Frames

A powerful way of representing factual knowledge is through frame net-
works, as developed by Marvin Minsky (1975). A frame is a computer repre-
sentation of an object or concept. It can also be defined as a schema or unit. A
frame has attributes and values, which describe an object. Attributes can have
a large number of values, and these are strings, numbers, or symbols. This
concept is often defined by object/attribute/values triplicates. A typical frame
for a liquid chromatography column is shown in Table 7.2. The column is
represented as an object with various attributes and values. Any particular
column can be defined by this frame by selecting the relevant values for each
attribute. Other frames can be linked to this to form a network, for instance
pre-columns, cartridges, or guard columns.

These links are formed by relations. In tools which support frame struc-
tures, two standard relations are normally provided, the IS A and INSTANCE
relations. These links are illustrated in a small network shown in Table 7.3.
Attribute values may then be inherited. These default values can be subse-
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Table 7.2 The representation of an HPLC column as a frame

Object Attributes Allowed values
Column Manufacturer BDH
Altex

Phase Separations

Stationary phase ODS
C2
PL-gel 50A
Particle size 5um
10 um
Internal diameter 2um
4.6 um
Length 10cm
25cm
Table 7.3 Network of HPLC columns
Frame Relation Frame
Microbor:: column IS A Column
GPC colu'nn ISA Column
2mmx 10 cm C8 IS A Microbore column
4.6 mm x 10 cm ODS ISA Reverse-phase column

Table 7.4 Example of relations which can be user defined

Frame Relation Frame
Microbore columns REQUIRE A 1 uL flow cell
Fast HPL(C: columns REQUIRE A 2.5 uL flow cell
Detector IS PART OF HPLC system
Flow cell IS PART OF Detector

quently overridden by new values. Some tools allow the developer to define
relations, which can provide extra powers of expression. An example from

liquid chromatography is shown in Table 7.4.

Another common feature permits a procedural attachment to an attribute
(or slot). This is known as an active value or a demon. The demon watches
the attribute for a specified access to it. When this occurs the demon is acti-
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Fig. 7.4 A network of chemical compounds.

vated and some pre-defined action is taken. Typical uses of demons are
protection against unauthorized access, update of an attribute, or the re-
calculation of an object if any of its constituents are changed. For instance, if
the internal diameter of the column is changed then this requires changes in
flow-rate, flow cell, and injection volume. A demon could watch for a new
input of the internal diameter and, when necessary, activate the required
changes in flow-rate, etc.

From these examples it can be seen that a complete HPLC or any other
analytical instrument can be represented using frames. Appropriate rules can
then be developed to interact with a network of frames. Frames also allow
inheritance through a parent—child structure, often referred to as specializa-
tion—generalization hierarchies. Figure 7.4 shows a network for chemical
compounds. As the network progresses downwards, the classes become more
specialized and each lower class inherits the properties of all the classes
above it. For instance Fe** has all the properties of the transition metal ion
class and this in turn has all the properties of cations. This can be a very
useful representation as once an object is identified as part of one class, other
information can be recognized about the object. Frames provide an efficient
form of knowledge storage and prevent some unnecessary duplication of
data. However, the example also highlights the problem of an essentially two-
dimensional hierarchy. The aromatic/aliphatic choice could have been made
one generation earlier applied to ‘organic ions’. However the subsets acids
and amines would then have been duplicated under each of ‘aromatic’ and
‘aliphatic’.

3.2.3 Semantic networks

Semantic networks were first introduced by Ross Quillan (1968). The concept
was proposed as a means to imitate the psychological model of human asso-
ciative memory. Very simply, semantic networks are another way of repre-
senting knowledge in a frame system. They have two basic components,
nodes and arcs. Nodes represent objects, concepts, or situations and arcs rep-
resent the relationships between them. Nodes are indicated by boxes or
circles and arcs by arrows. The information described above in frames could
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Fig. 7.5 An example semantic network for the analysis of Fe3* by ion
chromatog -aphy.

be represeted in a semantic net where the information in Table 7.2 would be
represented in nodes and the relations shown in Tables 7.3 and 7.4 would be
arcs. A sirnple semantic network for the analysis of Fe** by ion chromatogra-
phy is shown in Fig. 7.5. The advantage of these networks is the ease with
which relationships can be viewed. It is a simple process to translate frames
to semanti : networks or vice-versa. Each object in the frame becomes a node
in the semr antic network and each slot (or relationship) becomes an arc. Thus
Fe3* inherits ‘can be assayed by ion chromatography’ through its membership
of the clas; of ‘transition metal ions’, which in turn is inherited through mem-
bership of ‘cations’ and ultimately ‘ions’.

3.3 The reasoning mechanism

The reasciing mechanism of the inference engine is the method by which
the knowledge base is accessed to produce a conclusion. There are two main
processes 1dopted in ESs, forward and backward chaining. These are compre-
hensively zxplained by Harman and King (1985).

Develcpment tools usually offer one of these strategies, though some offer
both. Examples of how these strategies perform can be demonstrated by the
use of the following rules:

() A&B=D

(b) D=H

(c) D&B=E

d F&H&E=X
(e) E=F

These rules are read as follows: rule (a) means that if A and B are known then
D can be concluded. Forward chaining begins with some facts, from either
the consu. :ation or the knowledge base. The rules run with this information to
make any potential conclusions. In this example A and B are unknown. The
first conclision is from rule (a), i.e., conclude D. At this stage it is possible to
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use either rule (b) or rule (c). A conflict resolution strategy is employed to
determine which has priority. The control the developer has over this strategy
is dependent on the tool being used. For this example it is assumed that con-
cluding from single facts has precedence over multiple facts and so rule (c)
take preference. Thus, the order of conclusions is as follows: conclude E,
conclude H, conclude F, conclude X. At this point there are no more rules to
be activated, so the result of the reasoning strategy is that D, E, H, F, and X
can be concluded if A and B are known.

Backward chaining differs in that the goal is first set for the rules to con-
clude. For example, if the goal is set to conclude X, rule (d) shows that to
prove X it is required to prove F, H, and A. Each of these then becomes a
goal, so the firing of the rules now runs as follows:

to prove F prove E

to prove E prove B and D
to prove D prove A and B
to prove H prove D.

In conclusion it can be seen that X can be concluded if A and B are known.
The classical example of a programming language that employs a forward
chaining rule system is OPS35, and one that uses backward chaining is Prolog.
Forward chaining is more appropriate for problems such as configuration
tasks where there are a small number of starting states and a large number of
finishing states (goals). Backward chaining is better for solving diagnostic
problems where there are a small number of goals (faults) and a large number
of starting conditions (causes). The larger development tools allow forward
and backward chaining to be mixed as the problem dictates. The smaller tools
may permit only one or the other.

Matt Ginsberg (1993) remarks that Al systems use knowledge to reduce
problems of intelligent action to a search. Many tasks in Al can be phrased in
terms of a search for the solution to the problem at hand. ESs require some
mechanism to search the rule base for a suitable decision or conclusion.
Numerous search techniques are possible, but many are susceptible to the
problem of combinatorial explosion. If the size of the system is specified by a
parameter n, the search space is typically 2" or n!. Consider the case of
finding an IC method that combines values for 8 features (eluent, detector,
column, etc). Some of these attributes can have 40 possible values. A brute
force search with no IC knowledge would require a lengthy search of 8%
(1 x 10%) possible states. Various search methods have been proposed from
the mathematics and computer science communities. Uninformed methods
(known as weak methods) such as blind hill-climbing methods, genetic algo-
rithms, or evolutionary strategies (Davis 1991) are less efficient than those
that employ domain knowledge to reduce the search space and improve
efficiency.

Chromatographers are not newcomers to the field of effective search.
Many workers have evaluated methods to search for eluent combinations in
what is often called solvent optimization strategies. SIMPLEX is a weak
method that uses a hill climbing search method. Whereas the technique devel-
oped by Schoenmakers (1986) uses fewer experiments, each of these is
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designec with a knowledge of chromatography and they provide a much
more efficient search. In a similar manner Al has adopted a concept of knowl-
edge bas2d heuristics for constraining and directing search (Firebaugh 1989).
These m.zthods are known as control systems as they control the use of the
rules. There are many search techniques that can be applied, including depth
first or breadth first, these methods are embedded in the inference engine of
the ES tcol.

3.4 The interfaces

Two inte -faces are part of an ES. The first is the developer’s interface, which
is important because it determines the ease and speed of building a system.
The inteiface should be easy to use and contain features such as graphical
represenlation to aid the development of networks. There should be compre-
hensive debugging and trace facilities that allow the examination of all the
rules anc. the order of activation for a particular consultation of the ES. It
should be easy to develop prototype systems, in order to build up a system in
stages and to test each stage with a minimum of effort. It is also important to
consider the qualifications and experience of the knowledge engineer. A com-
petent scftware engineer could handle even the most complex of tools. On the
other hand the chemist or analyst with little programming experience needs to
select a simpler tool.

The sccond user interface is that for the eventual consultant of the soft-
ware. More flexible tools allow the creation of interfaces by the developer,
but others provide a fixed interface. User interfacing is not a particularly
strong point of most tools. As the final interface can be complex with many
features, such as explanation facilities, it must be carefully designed to avoid
unduly c uttered screens or convoluted procedures.

3.5 Hardware and software

Any system is limited by the ES development software and hardware.
Generall, a larger ES requires more investment in software and hardware.
The investment should reflect the value of the final system. For instance,
chromatographic applications are mostly confined to the PC environment,
and although some chromatographers use workstation applications an ES
written for this environment would not be widely used.

ES d:velopment tools have two major restrictions, they are memory
hungry a1d slow. This always restricts the size of knowledge bases. It is often
better to build an integration of small modules that can run with reasonable
memory requirements and speed.

3.5.1 Development tools — conclusions

Table 7.5 shows a summary of some of the features of the development tools
evaluate:| within the project ‘Expert systems applied to Analytical Chemistry’
(Goulder et al. 1988), which was funded as part of the European Strategic
Program for Research in Information Technology.
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Table 7.5 Comparison of development tools

Features Shells Semi-tools Tools

Price ($) 100s 1000s 5000s

Knowledge Average Good Excellent

representation

Inferencing One Two Two

Externals* Poor Good Excellent

Numeric capability Poor Good Excellent

Hardware PC Expanded PC Work station

Examples Delfi, Kes, Goldworks, N expert, Xi Plus ART, KEE, KC,
Crystal Level 5 Object

‘Externals’ is the ability of the tool to connect with external routines, databases, or sources of data.

4. Applications of expert systems in analytical chemistry

4.1 Introduction

Expert systems have captured the interest of many chemists (Bridge 1990;
Buydens and Schoenmakers 1993; Peris 1996) and indeed a chemical system,
DENDRAL, was one of the first ESs. DENDRAL, still considered a bench-
mark system in Al, was developed in 1964 and has progressed through
several versions since (Firebaugh 1989, p. 338). Indeed, the success of
DENDRAL has been cited as the spur to the exceptional interest in ES in
chemistry.

4.2 Dendral

Joshua Lederberg, a Nobel prize winner in genetics, devised a program,
DENDRAL (dendritic algorithm), for enumerating all possible configura-
tions of a set of atoms. To reduce the number of potential configurations pro-
duced by Lederberg’s original system to a manageable number, Feigenbaum
developed an expert system (known originally as heuristic DENDRAL but
later just referred to as DENDRAL) that used mass spectral information and
expertise. Feigenbaum describes the problem domain as follows:

‘It was a problem which had all the elements of classical empirical induc-
tion. Here's an array of data that comes from a physical instrument, the
mass spectrometer. Here's a set of primitive constructs out ¢f which to
compose a hypothesis about what organic compound is being analyzed.
Here's a legal-move generator for generating all possible hypotheses.
The problem is to find good ones out of all the set of possible ones, since
in the general case, you don’t want to generate all possible hypotheses.
How do you find the good ones? And how do you employ knowledge of
the world of chemistry, mass spectrometry, to constrain the set of alter-
natives, steering away from large sets of unfruitful ones? That was the
framework (of the problem)’.
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In the analysis of mass spectra, there is no numerical algorithm for
mapping the mass spectrum to the structure of a compound. The expertise
and experience of a trained mass spectrometrist is brought to bear on the
problem. The task for Feigenbaum was to build an expert system with
Lederberg’s expertise. As with many ES projects it required the expert,
Lederberg, to learn about computers and the knowledge engineer,
Feigenbaum, to learn about chemistry. This project was the first to identify
the problm of ‘the knowledge acquisition bottleneck’ discussed above. The
team was also the first to identify problems with experts explicating their
expertise It had become clear that in addition to the many rules of chem-
istry, che mists relied on a vast body of heuristic knowledge based on experi-
ence and simply guessing.

In 1970 a project was launched to develop rules automatically by examin-
ing examnples of previously interpreted mass spectra. This was known as the
Meta-DENDRAL project and it was an attempt to avoid the pitfalls of using
human e: perts.

Although DENDRAL is held by the AI community as a seminal ES, it has
never attracted a following in chemistry.

4.2.1 A description of the DENDRAL program

The inpur data to DENDRAL typically consists of the following information
on the cc mpound under study:

o The e npirical chemical formula e.g., CgH,;,O
o The raass spectrum of the compound
o Nuclear Magnetic Resonance (NMR) spectroscopic information

There are three basic stages in the identification of structure, PLAN, GENER-
ATE, and TEST.

The PLAN stage reduces the set of possible configuration of atoms by the
constrain s derived from the mass spectrum. The constraints are applied in
two ways; the molecular fragments that must be included in the final structure
and those that must not appear.

The GENERATE stage uses the constraints from the PLAN stage to generate
all structares of the empirical formula containing the identified molecular
fragments and removing those which should be excluded.

The TES'T stage ranks the output of the GENERATE stage according to the
quality ¢ the fit between the hypothesized structure and the experimental
one.

The follc wing are some example rules:

IF the spectrum from the molecule has two peaks at masses XI and X2 such
that:

X1+ X2:: M+ 28 AND

X1 -28is a high peak AND

X2 -28is a high peak AND

at least one of X1 or X2 is high THEN
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The molecule contains a ketone group

IF there is a high peak at mass 71 AND

There is a high peak at mass 43 AND

There is a high peak at mass 86 AND

There is a high peak at mass 58 THEN

There must be an N-PROPYL-KETONES structure

In the example given above, CgH O, DENDRAL originally reduces the pos-
sible atom arrangements from 698 to about 40 ketones using the first rule and
then arrives at the singular answer CH;CH,(CO)CH,CH,CH,CH,CH; using
the second rule. If DENDRAL cannot arrive at a unique solution, it presents a
list of possible structures together with a probability estimate of each one.

DENDRAL is written in LISP and is available as a commercial system in
the USA. It claims to perform at the level of a chemistry PhD or above in its
strictly defined domain. Perhaps the most notable feature of the DENDRAL
project was that it was the first move away from the attempt to develop
general problem solvers in Al. It marked the development of domain specific
and knowledge-rich problem solvers. This was a major paradigm shift for the
Al community.

43 ECAT

ECAT (Expert Chromatography Assistance Team) was the first major
attempt to develop an ES for the chromatography domain. It was developed
by Varian Associates and the goal of the project was defined as follows (Bach
et al. 1986):

‘The goal of our project is to create a computer program that performs,
at the human expert level, the tasks of designing, analyzing, optimizing,
and trouble-shooting a high performance liquid chromatography (HPLC)
separation method.’

The complete ES envisioned by the team was to provide for the following tasks:

To provide chemical information.

To choose between gas chromatography and liquid chromatography.
To specify the column, fluent constituents, and detector.

To decide on a sample clean-up procedure.

To optimize (or redesign) the separation.

To diagnose hardware problems

S e

The program was to be implemented in ZETALISP and FRANZLISP in the
UNIX environment. This project achieved only task 3 above anu then only
for a limited number of chemical samples. The team found that the extent of
an expert’s domain knowledge typically exceeds that which he or she real-
izes, and the knowledge engineering was non-trivial (Williams et al. 1989).
Consider task 1 of the goals of this project. This module was to have as its
input the chemical name of the sample and perhaps its structure. The ES
would then provide information on its chemical properties. An undergraduate
degree can provide a chemist with only a limited ability to predict chemical



properties from a compound’s structure. The chemist usually specializes in a
limited domain of chemicals before real expertise can be built up for that
domain of structures. Task 3 would also prove to be extremely taxing. Most
chromatagraphers specialize in developing separation methods for a limited
range of chemicals, so to build a general system would require many experts
and thus a huge knowledge base. This project revealed the enormity of the
task of building an ES for chromatography and also highlighted potential pit-
falls in the knowledge engineering process. It never reached conclusion and
was almost completely abandoned by the late 1980s.

44 ESCA

ESCA (Fxpert Systems Applied to Chemical Analysis) was funded by
ESPRIT (European Strategic Programme for Research in Information
Technology). ESPRIT aimed to invest in both pre-development and product
research projects in order to build and maintain a European competitive
advantage in information technology. The ESCA project was of 3 years dura-
tion and ~epresented 27 person-years of effort and approximately $3.5 million
investment. The project began in 1987 and was completed in 1990.

This project began with much more general goals than either DENDRAL
or ECAT. to purchase several ES development tools and to investigate their
usefulness for the development of methods for HPLC (Mulholland 1992).
Knowing; the problems experienced by the ECAT team with their attempt to
develop an ES for chromatography, the developers of ESCA spent the first
two to four months defining a series of potential domains. Each domain
tackled c 1ly one part of the method development process applied to a limited
number of sample applications (Goulder et al. 1988). The four domains of
expertise were as follows:

1. A best first guess at chromatographic conditions for central nervous
system drugs (Hamoir et al. 1992).

2. Optinization criteria to evaluate chromatograms (Peeters et al. 1988).

3. Optimization of chromatographic parameters such as flow cell and
coluinn dimensions, flow-rate and the detector time constant
(Schoenmakers and Dunand 1989).

4. Advice on the validation of chromatographic methods with regards to
repe:tability, reproducibility, and ruggedness testing (Mulholland et al.
198%4, 1989b)

A nuriber of ES development tools and environments were evaluated.
These systems were built using a number of ES development tools including
KES, Goldworks, and N-Expert Object. Some of the systems were later re-
implemented in a more conventional software environment (Pascal) in order to
improve speed and memory requirements. The ESCA project then attempted
to integriate some of these systems to test the feasibility of building large
multi-functional systems for chromatography (Yuzhu et al. 1989; Mullholland
et al. 1991; Hamoir et al. 1992; Buydens et al. 1993). The team concluded that
effective ESs could be built to tackle problems in chromatography, provided

ESCA
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the domains were strictly defined. These systems could later be integrated to
provide useful communication links. The overall conclusion was that ESs
could not replace the analyst but they could provide tools to make analysts
more efficient. The following list summarized the gains that could be
expected from the introduction of a HPLC ES to a laboratory:

Faster method development

Better quality method development

Faster analysis

Distribution of senior scientists” knowledge to junior group members, thus
increasing the team’s efficiency

Introduction of new knowledge from external sources to the laboratory
Improved documentation

Improved consistency

Enhanced potential for the analyst

5. Ripple down rules

5.1 The philosophy of ripple down rules

The Ripple Down Rules (RDR) approach provides a number of solutions to
the limitations of traditional ESs which rely on an empirical reductionist phil-
osophy embedded in the physical symbols hypothesis. Compton argues
against the absolute acceptance of the reductionist philosophy in Al and pro-
poses a theory that knowledge is developed for the context in which it is
being used. RDR allows for the creation of knowledge in context by the addi-
tion of rules in a tree structure within clearly defined contexts. A rule that is
added to an RDR rule base is associated with the context of the case that
caused its creation. It will not apply in other contexts. This process can run
into the same problem of combinatory explosion in the physical symbols
hypothesis.

Although Compton questions the validity of the reductionism philosophy,
he did not abandon it for the development of RDR. He simply proposed a
format for linking these atoms of knowledge that attempted to avoid the prob-
lems encountered with the physical symbol hypothesis. The flexibility of
RDR, which allowed the addition either of ad hoc rules or for a process of
conjecture and refutation, largely solves many of the maintenance problems
of traditional ESs. To assume that an ES could be built in a finite time captur-
ing even the majority of the expertise in a domain has been shown to be
naive. RDR is a genuine attempt to move away from this simplistic philoso-
phy of knowledge engineering.

5.2 Theory of ripple down rules

An RDR ES is based on a binary tree. Each node of the tree can be consid-
ered a rule with attached rule conditions and conclusion. There are two
branches from each node, the true branch and the false branch. The tree is



consulted by a forward chaining mechanism. When a data set is presented to
an RDR Iree, the node is evaluated (to be either true or false) and causes the
data set 0 be passed to the next appropriate branch, this process continues
down to a terminal leaf. The conclusion of the last true is returned as the
diagnosis of this data set. When an RDR produces an incorrect conclusion a
new rule is added to the tree. The new rule is added as a branch of the last
rule reached (whether or not it was true). It is added to the true branch if the
data was zvaluated to true, and to the false if the data was evaluated to false.

In Fig 7.6 each dot in the diagram indicates a rule, and each branch illus-
trates a possible result of evaluating the rule — a true evaluation leads to the
right, whle false evaluation leads to the left. An essential part of a practical
RDR sys:em is the maintenance of cornerstone cases. These cases are data
sets that aused some change to the system. For each rule in a system, there is
cornerstone case. There are several reasons why these are important.
Trivially, they provide a chronicle of the development of the system for docu-
mentation purposes. More fundamentally however, they provide a context
within which new rules can be created.

This point is a crucial one in the effective implementations of RDR ESs.
An expert will create a new rule when she/he does not agree with the conclu-
sion produced by the system. The new rule she/he creates will differ in some
way from the last set of true rule conditions, while satisfying data in the
current case. In an effort to simplify new rules and make the new rule more
concise, it is advantageous to provide the expert with a list of differences
between the current case and the cornerstone case belonging to the last true
rule. In other words the context for the new rule is provided by the case
belongin to the last true rule.

In orcer to explain the process used to build an RDR tree, a simple
example can be given. RDR trees are built using a selection of typical cases
together with their conclusions. For this example, we will use the selection of
a detectcr for an ion chromatography method. Table 7.6 shows the cases used
in the development of the tree. These are purely speculative and are chosen
simply tc illustrate the process.

Table 7.6 Example cases with which to build an RDR tree
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Fig. 7.6 A simple Ripple Down
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Rule 1:
IF UV visibility = yes
THEN UV detection

Rule 3:
IF Suppressor = yes

Rule 2:
IF Sample = chloride
THEN Conductivity THEN Conductivity
detection detection

Rule 4:
IF Sample = bromide

Rule 5:
IF Sample = cyanide

THEN Amperometric
detection

THEN Amperometric
detection

Fig. 7.7 An example RDR tree for the selection of an IC detector.

The first sample is an organic acid and is used as the cornerstone case to
create Rule 1 in Fig. 7.7. This case can be used later to define the context in
which Rule 1 was made. The second case in Table 7.6 is now presented to the
RDR tree. As the case does not fall within the premise of rule 1 the system
cannot provide a solution and another rule needs to be added to the system.
To be consistent with a philosophy of knowledge in context the user is pre-
sented with a list of differences between the cornerstone case of Rule 1 and
the current case. One or more of these differences can be selected as the
premise(s) of Rule 2. As Rule 1 evaluated to false for this case the new rule is
added on the false branch of that rule. Consider case 4; the RDR tree suggests
the use of UV detection for this case as Rule 1 evaluates to true. However,
this is an incorrect result. The user needs to add a new rule and is presented
with a difference list from which to select new premises. This rule is added to
the true branch of Rule 1. In this way the RDR tree begins to grow.

Unlike other ES methods, RDR trees do not distinguish between the devel-
opment and maintenance stages. New rules can be added as required and
because they are added in a controlled way, there is no need to validate the
system with each new addition. Each new rule is embedded within the
context of the cornerstone case and is not applicable outside this context.

5.3 Development cycle

The development cycle for ESs has been studied extensively (Gaines and
Compton 1992), and is markedly different from ES technology. Maintenance
and the evolution of an RDR system is a continual process of knowledge evo-
lution, and so is indistinguishable from beta testing or prototyping. The utility
of the ripple down rule approach has been demonstrated in large-scale appli-
cations. The 650 complex rules of a system for interpreting chemical pathol-
ogy was reduced to some 550 simpler Ripple Down Rules, and the rate of



developing the rule base was increased from about 2 rules a day to 10 rules
an hour. This successful implementation of RDR has lead to the development
and implementation of a larger system at St Vincent’s Hospital in Sydney.
This system now contains some 1600 rules and is successfully being used in
the day-to-day evaluation of reports from the Department of Chemical
Patholog, (Edwards et al. 1993).

5.4 Summary of the RDR method

RDR offer a novel approach to the development of an ES which could have
long term advantages to the worth of an ES. The major advantages and disad-
vantages ire summarized in the following sections.

5.4.1 Advantages of RDR

1. The raajor advantage of RDR lies in the simplicity of the technique. It
automatically provides a consistent method of building an ES. The user
does not require any programming skills, although knowledge of the
front end software (Hypercard) allows the user opportunities to cus-
tomize the system.

2. The philosophical underpinning of RDR is more attractive than that of
the paysical symbols hypothesis, however it has not removed all of the
limit: tions of the reductionist philosophy. The technique has attempted to
prov- de facilities that allow intelligence to be programmed by the creat-
ing riles within the context of their use. In this fashion it employs a
belie! that intelligence is a creative action.

3. The raintenance of the system can be carried out easily and in a controlled
way that avoids the problems inherent in traditional ES maintenance.

5.4.2 Disadvantages of RDR

1. The :echnique is designed for classification problems with single conclu-
sions being drawn from a prior list of options. However, many problems
cannot be phrased as simple classifications. For example, selecting chro-
matographic conditions in ion chromatography is a configuration
problem requiring a number of conclusions (e.g., the column, detector,
eluert, etc) and these conclusions are dependent on each other. A case
study, of this system is presented later.

2. New rules are added within the context of the case that caused the
chane, so it is not possible to add rules which are not context specific.
Consider the example tree described in Fig. 7.7. Rule 3 (which states that
if a suppressor is available, use conductivity) was added as an exception
to Rule 1. This rule is actually generally applicable, and it is true for
many other contexts. It is an exception to Rule 5 and will also be an
exception down the false branch of Rule 3. This means that the same
knowledge has to be re-implemented at several places in the tree. The
problem is alleviated if general rules are programmed near to the top of
the t-ee, but there is no way of knowing in advance the most general
case: with which to begin the RDR tree. Also, knowledge changes with
time and new general knowledge will always be required.

Ripple down rules
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This problem often exhibits itself when the RDR development is well under
way and the tree is complex. A user can add a case which describes a new
general rule only to find the next case follows a different path down the tree
not reaching the relevant knowledge. This can be not only frustrating but can
lead directly to the same problem of combinatory explosion experienced with
traditional AI. Hence RDR trees can become very large and the problem of
adding knowledge is not completely solved by the RDR format.

5.5 A RDR expert system for ion chromatography

The development of an ES in RDR was based on a database of all the significant
published methods employing IC between 1980 and 1996 (Haddad and Jackson
1990). This amounts to over four thousand examples of IC. An example of a
case in the database is shown in Table 7.7. Only the necessary information was
extracted from the case and encoded as a series of attribute values, which were
augmented by relevant information about the analyte: molecular weight, charge,
if an acid the proticity and pK, values, and the hydrophobicity.

Further attributes were automatically added to the case from an internal
look-up table that described the nature of the solutes and special characteris-
tics that may lead to the desired detection. Table 7.8 gives a list of the attrib-
utes that were used in the ES. The configuration problem was to fill in
unknown attribute values for a given case. Usually these would be method
attributes such as column, mobile phase, whether a suppressor is used, etc.
However, if a laboratory had only one type of detector, for example, this
would become a given attribute and the ES would have to work around this
constraint to arrive at a suitable method.

An expert system using RDR was able to achieve 70-80 per cent agree-
ment with a human expert when given a test set from the database. This was
considered a good result as the database itself contained conflicting cases,
and did not represent a statistically distributed set of cases.

Table 7.7 A typical case for IC from which the RDR expert system was

built

Attributes Values

Record 3968

Hardware Dionex QIC

Column Dionex AS-1 ion-exclusion, 250 x 2.0 mm ID
Packing Cross-linked PS-DVB cation exchanger
Eluent 2.0 mM sulfuric acid; 0.8 ml/min

Solutes Lactic (6.9), tartaric (8.0), malic (10.0), acetic (13.2)
Detection Conductivity with various suppressor devices
Detection limit 2 ppm

Sample White wine

Preparation Dilution, filtration

Temperature Ambient




Ripple down rules 173

Table 7.8 Attributes used by RDR in analysis of IC methods
Attribute Description Number Examples
mnemonic of values
Solute attributes
APPLICAT For what application was the 14 environmental, pharmaceutical,
method used?
TYPE The nature of the solute 3 cation, anion, neutral
charge
PH_SOLUITE Is solute acidic or basic? 3 acidic, basic, neutral
SOLUBLTY Solubility of the solute 4 slightly ... very
CHARGE Charge on solute ion 9 +4...-4
IONCLAES Chemical nature of the solute 6 inorganic, organic
SUPPRESS Is suppressor used? 2 yes, no
NO_SOLUT Number of ions to be 3 1-5, 6-10, > 10
separated
UV_ABSOR Solute contains UV absorbing 3 both absorbing and
species? non-absorbing, yes, no
HALIDES Whether halides are to be 4 Uvhalide, none, non_Uvhalide,
assayed, and their UV both
absorbing properties
SULFATES Sulfate or sulfite to be 2 yes, no
assayed?
NITRATES Nitrates or nitrites to be 2 yes, no
assayed?
Method attributes
MECHAMNSM Chemical mechanism of the 5 ion exchange, ion interaction
separation
POST_COLM Is a post-column reaction 2 yes, no
used?
pH pH of mobile phase 4 acidic, basic, neutral,
unspecified
MOBILE_P Eluent composition 48 water, H,SO,, HCI
GRADIENT Gradient elution used? 2 yes, no
COLUMN Column type 7 neutral silica, cation exchanger
resin, crown ether
DETECT DR Detector type 18 conductivity, amperometry,

refractive index
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6. Conclusions

Artificial intelligence and expert systems, in particular, have been the subjects
of much hype and media-built expectation. ESs apply human terminology to
non-human things and use their own peculiar language of fuzzy logic,
demons, rules, and frames. All this has had the effect of surrounding the field
with an aura of mystery. It is interesting to speculate why ESs received so
much attention in the 1970s and 1980s and why interest has waned in the
1990s. There were several reasons for the initial enthusiasm. First, ESs
promised to make information technology and computer software more
human and less algorithmic. This would allow computers to tackle a whole
new area of human problems. The ability of ESs to imitate real experts also
raised expectations that these problem solvers would be easier to use and to
learn from than conventional software. Secondly, workers increasingly
needed to access expertise from outside their own subject domain. Hence,
there was a real need for expertise transfer and ESs promised to tackle this
need. Finally, it is a recognized business maxim that a company’s most valu-
able asset is its personnel. ESs could potentially allow this experience and
skill to be preserved within a company if personnel retire or leave. Together,
these reasons led to the investment of millions of dollars in this technology.

So why did this investment wane in the 1990s? Mainly due to the disap-
pointing results achieved so far by the technology. Although many successful
ESs were built and are still in use, the technology did not live up to its
expected potential. Like much of Al, ESs failed to deliver the overblown
promises of the early practitioners. The all-knowing HAL of Kubrick’s 2001
was not going to be realized before the millennium. Indeed, it became
obvious that the computer science researchers did not know how to start real-
izing such a system. The following is a list of some of the lacunae that
became evident with ESs:

® ESs are time consuming and expensive to produce.

® ESs are not robust. In other words, they quickly failed outside their
limited domains.

® ESs are hard to keep up to date. Most systems simply provided a snapshot
of the expertise applied over the time of their creation and quickly became
out of date.

® It was more difficult than originally thought to extract knowledge from
experts.

The limitations and capabilities of ESs are now better known, and by
adopting a more conservative strategy there have been sufficient successes to
show that the technology is worthwhile.

6.1 ES in analytical chemistry

If DENDRAL is considered an archetype by the AI community, it must be
admitted that it is not highly regarded by the analytical community for many
of the reasons given above.



In chromatography, which has received the most attention, the early opti-
mism, which assumed building a general chromatography system was simply
a matter o’ mining knowledge from chromatographers and implementing it in
rules, has given way to a more pragmatic stance. The most recent ESs have
been buill to tackle only defined domains, but despite the existence of a
number o° systems there has been no widespread use of any of these. One of
the reasons for this appears to be that the ES are only applicable within
narrow domains. Several other factors seem to influence the reluctance to use
ES. Laboratories mostly have their own defined procedures and are reluctant
to accept outside expertise. It is also difficult to customize an ES to over-
come this problem. ESs are brittle, without specifically coded expertise they
quickly fail when applied outside the specified domain for which they were
developed. An ES captures only a snap-shot of an expert’s knowledge over
the time-frame of the development of the system. They cannot easily self
learn and maintenance of ES is a non-trivial task.
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8 Automatic design of
analog electrical circuits
using genetic

programming

John R. Koza, Forrest H. Bennett lll,
David Andre, and Martin A. Keane

1. Introduction

The desiga process entails creation of a complex structure to satisfy user-
defined requirements. The design of analog electrical circuits is particu-
larly challenging because it is generally viewed as requiring human
intelligence and because it is a major activity of practicing analog electrical
engineers

Design of analog circuits begins with a high-level description of the
circuit’s desired behavior and entails creation of both the topology and
the sizin;; of a satisfactory circuit. The topology comprises the gross
number ¢t components in the circuit, the type of each component (e.g., a
resistor), ind a list of all connections between the components. The sizing
involves :pecifying the values (typically numerical) of each of the circuit’s
components.

Consiclerable progress has been made in automating the design of certain
categories of purely digital circuits; however, the design of analog circuits
and mixe:l analog—digital circuits has not proved as amenable to automation
(Rutenbar 1993). Describing ‘the analog dilemma,” Aaserud and Nielsen
(1955) nced

Analog d3signers are few and far between. In contrast to digital design,
most of the analog circuits are still handcrafted by the experts or so-
called ‘zahs’ of analog design. The design process is characterized by a
combination of experience and intuition and requires a thorough knowl-
edge of t1e process characteristics and the detailed specifications of the
actual product.

Analog circuit design is known to be a knowledge-intensive, multi-
phase, itarative task, which usually stretches over a significant period of
time and is performed by designers with a large portfolio of skills. It is
therefore considered by many to be a form of art rather than a science.

There 1as been extensive previous work on the problem of circuit design
using simr_1lated annealing, artificial intelligence, and other techniques as out-
lined in Koza et al. (1997). including work using genetic algorithms



178 Automatic design of analog electrical circuits using genetic programming

(Kruiskamp and Leenaerts 1995; Grimbleby 1995; Thompson 1996).
However, there has previously been no general automated technique for syn-
thesizing an analog electrical circuit from a high-level statement of the
desired behavior of the circuit.

Once the user has specified the high-level design goals for an analog
circuit, it would be ideal if an automated design process could create both the
topology and the sizing of a circuit that satisfies the design goals. That is, it
would be ideal to have an automated ‘What You Want Is What You Get’
("WYWIWYG’ — pronounced ‘wow-eee-wig’) process for analog circuit
design.

This chapter presents a uniform approach to the automatic design of both
the topology and sizing of analog electrical circuits. Section 2 presents design
problems involving five prototypical analog circuits. Section 3 describes
genetic programming. Section 4 describes the method by which genetic pro-
gramming is applied to the problem of designing analog electrical circuits.
Section 5 details required preparatory steps. Section 6 shows the results for
the five problems. Section 7 cites other circuits that have been designed by
genetic programming.

2. Five problems of analog design

In this chapter we apply genetic programming to a suite of five problems of
analog circuit design. The circuits comprise a variety of types of components,
including transistors, diodes, resistors, inductors, and capacitors. The circuits
to be designed have varying numbers of inputs and outputs, and are as
follows:

(1) Design a lowpass filter having a one-input, one-output composed of
capacitors and inductors and that passes all frequencies below 1000 Hz
and suppresses all frequencies above 2000 Hz.

(2) Design a tri-state frequency discriminator (source identification) circuit
having one input and one output that is composed of resistors, capaci-
tors, and inductors and that produces an output of 1/2 volt and 1 volt for
incoming signals whose frequencies are within 10 per cent of 256 Hz
and within 10 per cent of 2560 Hz, respectively, but produces an output
of 0 volts otherwise.

(3) Design a computational circuit having one input and one output that
is composed of transistors, diodes, resistors, and capacitors and that
produces an output voltage equal to the square root of its input
voltage.

(4) Design a time-optimal robot controller circuit having two inputs and
one output that is composed of the above components and that navi-
gates a constant-speed autonomous mobile robot with nonzero turning
radius to an arbitrary destination in minimal time.

(5) Design an amplifier composed of the above components and that deliv-
ers amplification of 60 dB (i.e., 1000 to 1) with low distortion and low
bias.



3. Genetic programming

Genetic programming is a domain-independent problem-solving approach in
which computer programs are evolved to solve, or approximately solve, prob-
lems. Genetic programming is based on the Darwinian principle of reproduc-
tion and survival of the fittest and analogs of naturally occurring genetic
operations such as crossover (sexual recombination) and mutation.

John Holland’s pioneering Adaptation in natural and artificial systems
(1975) described how an analog of the evolutionary process can be applied to
solving mathematical problems and engineering optimization problems using
what is now called the genetic algorithm (GA). The genetic algorithm
attempts tc find a good (or best) solution to the problem by genetically breed-
ing a population of individuals over a series of generations. In the GA, each
individual in the population represents a candidate solution to the given
problem. The GA transforms a population (set) of individuals, each with an
associated fitness value, into a new generation of the population using repro-
duction, crossover, and mutation.

Books »n genetic algorithms include those that survey the entire field,
such as Geldberg (1989), Michalewicz (1992), and Mitchell (1996) as well as
others that specialize in particular areas, such as the application of genetic
algorithms to robotics (Davidor 1990), financial applications (Bauer 1994),
image seg nentation (Bhanu and Lee 1994), parallelization (Stender 1993),
and simulation and modeling (Stender er al. 1994), control and signal
processin: (Man et al. 1997), and engineering design (Gen and Chen
1997).

Geneti:: programming addresses one of the central goals of computer
science, ramely automatic programming. The goal of automatic program-
ming is to create, in an automated way, a computer program that enables a
computer ‘0 solve a problem. Paraphrasing Arthur Samuel (1959), the goal of
automatic programming concerns,

How can computers be made to do what needs to be done, without
being tolci exactly how to do it?

In genctic programming, the genetic algorithm operates on a population of
computer programs of varying sizes and shapes (Koza 1992). Genetic pro-
gramming starts with a primordial ooze of thousands or millions of randomly
generated computer programs composed of the available programmatic ingre-
dients anc then applies the principles of animal husbandry to breed a new
(and often improved) population of programs. The breeding is done in a
domain-ir dependent way using the Darwinian principle of survival of the
fittest, an analog of the naturally occurring genetic operation of crossover
(sexual rezombination), and occasional mutation. The crossover operation is
designed to create syntactically valid offspring programs (given closure
amongst (he set of programmatic ingredients). Genetic programming com-
bines the expressive high-level symbolic representations of computer pro-
grams w th the near-optimal efficiency of learning of Holland’s genetic
algorithir A computer program that solves (or approximately solves) a given
problem ¢ ften emerges from this process. See also Koza and Rice 1992.

Genetic programming
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Genetic programming breeds computer programs to solve problems by
executing the following three steps:

(1) Randomly create an initial population of individual computer programs.

(2) Iteratively perform the following sub-steps (called a generation) on the

population of programs until the termination criterion has been satisfied:

(a) Assign a fitness value to each individual program in the population
using the fitness measure.

(b) Create a new population of individual programs by applying the

following three genetic operations. The genetic operations are

applied to one or two individuals in the population selected with a

probability based on fitness (with reselection allowed).

(1)  Reproduce an existing individual by copying it into the new
population.

(i)  Create two new individual programs from two existing
parental individuals by genetically recombining sub-trees
from each program using the crossover operation at ran-
domly chosen crossover points in the parental individuals.

(iii) ~ Create a new individual from an existing parental individual
by randomly mutating one randomly chosen sub-tree of the
parental individual.

(3)  Designate the individual computer program that is identified by the
method of result designation (e.g., the besr-so-far individual) as the
result of the run of genetic programming. This result may represent a
solution (or an approximate solution) to the problem.

Genetic programming has been applied to numerous problems in fields
such as system identification, control, classification, design, optimization, and
automatic programming. Between 1992 and 1997, over 800 papers were pub-
lished on genetic programming.

Multi-part programs consisting of a main program and one or more
reusable, parameterized, hierarchically-called sub-programs (called automati-
cally defined functions) may also be evolved (Koza 1994a, b) An automati-
cally defined function (ADF) is a function (i.e., sub-routine, sub-program,
DEFUN, procedure) that is dynamically evolved during a run of genetic pro-
gramming and which may be called by a calling program (or sub-program)
that is concurrently being evolved. When automatically defined functions are
being used, a program in the population consists of a hierarchy of one (or
more) reusable function-defining branches (i.e., automatically defined func-
tions) along with a main result-producing branch. Typically, the automati-
cally defined functions possess one or more dummy arguments (formal
parameters) and are reused with different instantiations of these dummy argu-
ments. During a run, genetic programming evolves different sub-programs in
the function-defining branches of the overall program, different main pro-
grams in the result-producing branch, different instantiations of the dummy
arguments of the automatically defined functions in the function-defining
branches, and different hierarchical references between the branches.

Architecture-altering operations enhance genetic programming with auto-
matically defined functions by providing a way to automatically determine



the number of such sub-programs, the number of arguments that each sub-
program possesses, and the nature of the hierarchical references, if any,
among su:h sub-programs (Koza 1995). These operations include branch
duplicatior, argument duplication, branch creation, argument creation, branch
deletion, :nd argument deletion. The architecture-altering operations are
motivated by the naturally occurring mechanism of gene duplication that
creates neiv proteins (and hence new structures and new behaviors in living
things) (Olino 1970).

Recent research on genetic programming is described in books (Banzhaf
et al. 1997), edited collections of papers (Kinnear 1994, Angeline and
Kinnear 1996), conference proceedings (Koza et al. 1996, 1997), and the
World Wide Web (www.genetic-programming.org).

Before applying genetic programming to a problem, the user must perform
five major preparatory steps. These five steps involve determining:

(1) the set of terminals,

(2) the sct of primitive functions,

(3) the f iness measure,

(4) the parameters for controlling the run, and

(5) the method for designating a result and the criterion for terminating a
run.

The fir:t major step in preparing to use genetic programming is to identify
the set of rerminals. The terminals can be viewed as the inputs to the as-yet-
undiscove ed computer program. The set of terminals (along with the set of
functions) are the ingredients from which genetic programming attempts to
construct i computer program to solve, or approximately solve, the problem.

The second major step in preparing to use genetic programming is to iden-
tify the s:t of functions that are to be used to generate the mathematical
expressior that attempts to fit the given finite sample of data. Each computer
program (i.e., parse tree, mathematical expression, LISP S-expression) is a
composition of functions from the function set F and terminals from the ter-
minal set T. Each of the functions in the function set should be able to accept,
as its arguments, any value and data type that may possibly be returned by
any functi >n in the function set and any value and data type that may possibly
be assum:d by any terminal in the terminal set. That is, the function set and
terminal set selected should have the closure property so that any possible
composition of functions and terminals produces a valid executable computer
program. “or example, a run of genetic programming will typically employ a
protected version of division (returning an arbitrary value such as zero when
division by zero is attempted).

The ev >lutionary process is driven by the fitness measure. Each individual
computer program in the population is executed and then evaluated, using
the fitness measure, to determine how well it performs in the particular
problem cnvironment. The nature of the fitness measure varies with the
problem. For many problems, fitness is naturally measured by the discrep-
ancy between the result produced by an individual candidate program and
the desire 1 result. The closer this error is to zero. the better the program. In a
problem of optimal control. the fitness of a computer program may be the
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amount of time (or fuel, or money, etc.) it takes to bring the system to a
desired target state. The smaller the amount, the better. If one is trying to rec-
ognize patterns or classify objects into categories, the fitness of a particular
program may be measured by accuracy or correlation. For electronic circuit
design problems, the fitness measure may involve how closely the circuit’s
performance (say, in the frequency or time domain) satisfies user-specified
design requirements. If one is trying to evolve a good randomizer, the fitness
might be measured by means of entropy, satisfaction of the gap test, satisfac-
tion of the run test, or some combination of these factors. For some problems,
it may be appropriate to use a multiobjective fitness measure incorporating a
combination of factors such as correctness, parsimony (smallness of the
evolved program), efficiency (of execution), power consumption (for an elec-
trical circuit), or manufacturing cost (for an electrical circuit).

The primary parameters for controlling a run of genetic programming are
the population size, M, and the maximum number of generations to be run, G.

Each run of genetic programming requires specification of a termination
criterion for deciding when to terminate a run and a method of result desig-
nation. One frequently used method of result designation for a run is to desig-
nate the best individual obtained in any generation of the population during
the run (i.e., the best-so-far individual) as the result of the run.

In genetic programming, populations of thousands or millions of computer
programs are genetically bred for dozens, hundreds, or thousands of genera-
tions. This breeding is done using the Darwinian principle of survival and
reproduction of the fittest along with a genetic crossover operation appropri-
ate for mating computer programs. A computer program that solves (or
approximately solves) a given problem often emerges from this combination
of Darwinian natural selection and genetic operations.

Genetic programming starts with an initial population (generation 0) of
randomly generated computer programs composed of the given primitive
functions and terminals. Typically, the size of each program is limited, for
practical reasons, to a certain maximum number of points (i.e. total number
of functions and terminals) or a maximum depth (of the program tree). The
creation of this initial random population is, in effect, a blind random parallel
search of the search space of the problem represented as computer programs.

Typically, each computer program in the population is run over a number
of different fitness cases so that its fitness is measured as a sum of an
average over a variety of representative different situations. These fitness
cases sometimes represent a sampling of different values of an independent
variable or a sampling of different initial conditions of a system. For
example, the fitness of an individual computer program in the population
may be measured in terms of the sum of the absolute value of the differences
between the output produced by the program and the correct answer to the
problem (i.e., the Minkowski distance) or the square root of the sum of the
squares (i.e., Euclidean distance). These sums are taken over a sampling of
different inputs (fitness cases) to the program. The fitness cases may be
chosen at random or may be chosen in some structured way (e.g., at regular
intervals or over a regular grid). It is also common for fitness cases to repre-
sent initial conditions of a system (as in a control problem). In economic



forecastini problems, the fitness cases may be the daily closing price of
some financial instrument.

The corputer programs in generation 0 of a run of genetic programming
will almost always have exceedingly poor fitness. Nonetheless, some indi-
viduals in the population will turn out to be somewhat more fit than others.
These diff: rences in performance are then exploited. The Darwinian principle
of reprodiction and survival of the fittest and the genetic operation of
crossover :re used to create a new offspring population of individual com-
puter programs from the current population of programs.

The reproduction operation involves selecting a computer program from
the current population of programs based on fitness (i.e., the better the fitness,
the more likely the individual is to be selected) and allowing it to survive by
copying it into the new population.

The cressover operation creates new offspring computer programs from
two parenlal programs selected based on fitness. The parental programs in
genetic programming are typically of different sizes and shapes. The off-
spring pro zrams are composed of sub-expressions (sub-trees, sub-programs,
sub-routines, building blocks) from their parents. These offspring programs
are typically of different sizes and shapes than their parents.

For example, consider the following computer program (presented here as
a LISP S-¢xpression):

(+ (* 0.234 7) (- X 0.789)),
which we would ordinarily write as
0.234 Z + X-0.789

This program takes two inputs (X and Z) and produces a floating point
output.
Also, consider a second program:

(* (* 2 Y) (+ Y (* 0.314 2))).

One crossover point is randomly and independently chosen in each parent.
Suppose that the crossover points are the * in the first parent and the + in the
second pz.rent. These two crossover fragments correspond to the underlined
sub-progrims (sub-lists) in the two parental computer programs.

The tw offspring resulting from crossover are as follows:

(+ (+ Y (* 0.314 z)) (- X 0.789))
(* (* 2 Y) (* 0.234 2)).

Thus, :rossover creates new computer programs using parts of existing
parental p-ograms. Because entire sub-trees are swapped, the crossover oper-
ation alw.ys produces syntactically and semantically valid programs as off-
spring regardless of the choice of the two crossover points. Because programs
are select:d to participate in the crossover operation with a probability based
on fitness, crossover allocates future trials to regions of the search space
whose pre grams contains parts from promising programs.

The mutation operation creates an offspring computer program from
parental programs selected based on fitness. One crossover point is randomly

Genetic programming
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and independently chosen and the sub-tree occurring at that point is deleted.
Then, a new sub-tree is grown at that point using the same growth procedure
as was originally used to create the initial random population.

After genetic operations are performed on the current population, the
population of offspring (i.e., the new generation) replaces the old popula-
tion (i.e., the old generation). Each individual in the new population of pro-
grams is then measured for fitness, and the process is repeated over many
generations.

The hierarchical character of the computer programs that are produced is
an important feature of genetic programming. The results of genetic program-
ming are inherently hierarchical. In many cases the results produced by
genetic programming are default hierarchies, prioritized hierarchies of tasks,
or hierarchies in which one behavior subsumes or suppresses another.

The dynamic variability of the computer programs that are developed
along the way to a solution is also an important feature of genetic program-
ming. It is often difficult and unnatural to try to specify or restrict the size and
shape of the eventual solution in advance. Moreover, advance specification or
restriction of the size and shape of the solution to a problem narrows the
window by which the system views the world and might well preclude
finding the solution to the problem at all.

Another important feature of genetic programming is the absence or rela-
tively minor role of preprocessing of inputs and postprocessing of outputs.
The inputs, intermediate results, and outputs are typically expressed directly
in terms of the natural terminology of the problem domain. The programs
produced by genetic programming consist of functions that are natural for
the problem domain. The postprocessing of the output of a program, if any, is
done by a wrapper (output interface).

Finally, another important feature of genetic programming is that the
structures undergoing adaptation in genetic programming are active. They are
not passive encodings (i.e., chromosomes) of the solution to the problem.
Instead, given a computer on which to run, the structures in genetic program-
ming are active structures that are capable of being executed in their current
form.

Automated programming requires some hierarchical mechanism to
exploit, by reuse and parameterization, the regularities, symmetries, homo-
geneities, similarities, patterns, and modularities inherent in problem en-
vironments. Sub-routines do this in ordinary computer programs.

Automatically defined functions can be implemented within the context of
genetic programming by establishing a constrained syntactic structure for the
individual programs in the population. Each multi-part program in the popu-
lation contains one (or more) function-defining branches and one (or more)
main result-producing branches. The result-producing branch usually has the
ability to call one or more of the automatically defined functions. A function-
defining branch may have the ability to refer hierarchically to other already-
defined automatically defined functions.

Genetic programming evolves a population of programs, each consisting
of an automatically defined function in the function-defining branch and a
result-producing branch. The structures of both the function-defining



branches and the result-producing branch are determined by the combined
effect, over many generations, of the selective pressure exerted by the fitness
measure and by the effects of the operations of Darwinian fitness-based
reproduction and crossover. The function defined by the function-defining
branch is available for use by the result-producing branch. Whether or not the
defined function will be actually called is not predetermined, but instead,
determined by the evolutionary process.

Since exch individual program in the population of this example consists
of functior -defining branch(es) and result-producing branch(es), the initial
random ge neration must be created so that every individual program in the
population has this particular constrained syntactic structure. Since a con-
strained sy atactic structure is involved, crossover must be performed so as to
preserve this syntactic structure in all offspring.

Genetic programming with automatically defined functions has been
shown to he capable of solving numerous problems (Koza 1994a). More
importantl, the evidence so far indicates that, for many problems, genetic
programm ng requires less computational effort (i.e., fewer fitness evalu-
ations to y eld a solution with, say, a 99 per cent probability) with automati-
cally defined functions than without them (provided the difficulty of the
problem is above a certain relatively low break-even point). Also, genetic
programming usually yields solutions with smaller average overall size with
automatically defined functions than without them (provided, again, that the
problem is not too simple). That is, both learning efficiency and parsimony
appear to he properties of genetic programming with automatically defined
functions.

Moreover, there is evidence that genetic programming with automatically
defined fuuctions is scalable. For several problems for which a progression of
scaled-up versions was studied, the computational effort increases as a func-
tion of problem size at a slower rate with automatically defined functions
than without them. Also, the average size of solutions similarly increases as a
function of problem size at a slower rate with automatically defined func-
tions than without them. This observed scalability results from the profitable
reuse of hierarchically callable, parameterized sub-programs within the
overall program.

When single-part programs are involved, genetic programming auto-
matically determines the size and shape of the solution (i.e., the size and
shape of the program tree) as well as the sequence of work-performing
primitive functions that can solve the problem. However, when multi-part
programs and automatically defined functions are being used, the question
arises as .0 how to determine the architecture of the programs that are
being evolved. The architecture of a multi-part program consists of the
number ¢f function-defining branches (automatically defined functions)
and the number of arguments (if any) possessed by each function-
defining ranch. The architecture may be specified by the user, may be
evolved using evolutionary selection of the architecture (Koza 1994a), or
may be evolved using evolutionary selection of the architecture (Koza
1994a), ¢~ may be evolved using architecture-altering operations (Koza
1995).

Genetic programming
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4. Design by genetic programming

Genetic programming can be applied to circuits if a mapping is established
between the program trees (rooted, point-labeled trees (acyclic graphs) with
ordered branches) used in genetic programming and the line-labeled cyclic
graphs germane to electrical circuits. The principles of developmental
biology, the creative work of Kitano (1990) on using genetic algorithms to
evolve neural networks, and the innovative work of Gruau (1992) on using
genetic programming to evolve neural networks provide motivation for
mapping trees into circuits by means of a growth process that begins with an
embryo. For circuits, the embryo typically includes fixed wires that connect
the inputs and outputs of the particular circuit being designed and certain
fixed components (such as source and load resistors). The embryo also con-
tains modifiable wires. Until these wires are modified, the circuit does not
produce interesting output. An electrical circuit is developed by progressively
applying the functions in a circuit-constructing program tree to the modifiable
wires of the embryo (and, during the developmental process, to new compo-
nents and modifiable wires). See also Brave 1996.

The functions in the circuit-constructing program trees are divided into
four categories: (1) topology-modifying functions that alter the circuit topol-
0gy. (2) component-creating functions that insert components into the circuit,
(3) arithmetic-performing functions that appear in sub-trees as argument(s) to
the component-creating functions and specify the numerical value of the
component, and (4) automatically defined functions that appear in the func-
tion-defining branches and potentially enable certain substructures of the
circuit to be reused (with parameterization).

Each branch of the program tree is created in accordance with a constrained
syntactic structure. Branches are composed of construction-continuing sub-trees
that continue the developmental process and arithmetic-performing sub-trees
that determine the numerical value of components. Topology-modifying
functions have one or more construction-continuing sub-trees, but no arithmetic-
performing sub-tree. Component-creating functions have one or more construc-
tion-continuing sub-trees and typically have one arithmetic-performing sub-tree.
This constrained syntactic structure is preserved using structure-preserving
crossover with point typing (see Koza 1994a).

4.1 The embryonic circuit

An electrical circuit is created by executing a circuit-constructing program
tree that contains various component-creating and topology-modifying func-
tions. Each tree in the population creates one circuit. The specific embryo
used depends on the number of inputs and outputs.

Figure 8.1 shows a one-input, one-output embryonic circuit in which
VSOURCE is the input signal and VOUT is the output signal (the probe point).
The circuit is driven by an incoming alternating circuit source VSOURCE.
There is a fixed load resistor RLOAD and a fixed source resistor RSOURCE in
the embryo. In addition to the fixed components, there is a modifiable wire Z0
between nodes 2 and 3. All development originates from this modifiable wire.
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Fig. 8.1 One-input, one-output embryo.

4.2 Component-creating functions

Each program tree contains component-creating functions and topology-
modifying functions. The component-creating functions insert a component
into the developing circuit and assign component value(s) to the component.

Each component-creating function has a writing head that points to an
associatec highlighted component in the developing circuit and modifies that
component in a specified manner. The construction-continuing sub-tree of
each comnonent-creating function points to a successor function or terminal
in the circiit-constructing program tree.

The ar thmetic-performing sub-tree of a component-creating function
consists 0 a composition of arithmetic functions (addition and subtraction)
and randem constants (in the range —1.000 to +1.000). The arithmetic-
performin 7 sub-tree specifies the numerical value of a component by return-
ing a floz ing-point value that is interpreted on a logarithmic scale as the
value for the component in a range of 10 orders of magnitude (using a unit of
measure that is appropriate for the particular type of component).

The tv o-argument resistor-creating R function causes the highlighted
componert to be changed into a resistor. The value of the resistor in kilo
Ohms is soecified by its arithmetic-performing sub-tree.

Figure 8.2 shows a modifiable wire Z0 connecting nodes 1 and 2 of a
partial circuit containing four capacitors (C2, C3, C4, and C5). The circle
indicates “hat Z0 has a writing head (i.e., is the highlighted component and
that Z0 is subject to subsequent modification).

Figure 8.3 shows the result of applying the R function to the modifiable
wire Z0 of Fig. 8.2. The circle indicates that the newly created R1 has a
writing head so that R1 remains subject to subsequent modification.

Similaily, the two-argument capacitor-creating C function causes the high-
lighted component to be changed into a capacitor whose value in micro
Farads is specified by its arithmetic-performing sub-trees.

The onzs-argument Q_ D_PNP diode-creating function causes a diode to be
inserted i1 lieu of the highlighted component. This function has only one
argument because there is no numerical value associated with a diode and
thus no arithmetic-performing sub-tree. In practice. the diode is implemented
here using a pnp transistor whose collector and base are connected to each
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Fig. 8.2 Modifiable wire ZO.
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Fig. 8.3 Result of applying the R function.

other. The Q_D_NPN function inserts a diode using an npn transistor in a
similar manner.

There are also six one-argument transistor-creating functions
(Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_ NPN,
Q_GND_EMIT_PNP, Q_POS_EMIT_PNP, Q_NEG_COLL_PNP) that insert
a bipolar junction transistor in lieu of the highlighted component and that
directly connect the collector or emitter of the newly created transistor to a
fixed point of the circuit (the positive power supply, ground, or the negative
power supply). For example, the Q_POS_COLL_NPN function inserts a
bipolar junction transistor whose collector is connected to the positive power
supply.

Each of the functions in the family of six different three-argument transis-
tor-creating O_3_NPN functions causes an npn bipolar junction transistor to
be inserted in place of the highlighted component and one of the nodes to
which the highlighted component is connected. The O_3_NPN function
creates five new nodes and three modifiable wires. There is no writing head
on the new transistor, but there is a writing head on each of the three new
modifiable wires. There are 12 members (called Q_3_NPNO, ...,
Q_3_NPN11) in this family of functions because there are two choices of
nodes (1 and 2) to be bifurcated and then there are six ways of attaching the
transistor’s base, collector, and emitter after the bifurcation. Similarly the
family of 12 Q_3_PNP functions causes a pnp bipolar junction transistor to
be inserted.

Figure 8.4 shows the result of applying the O_3_NPNO function, thereby
creating transistor Q6 in lieu of the resistor R1 of Fig. 8.3.

4.3 Topology-modifying functions

Each topology-modifying function in a program tree points to an associated
highlighted component and modifies the topology of the developing circuit.
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Fig. 8.4 3esult of applying transistor-creating Q_3_NPNO function to resistor
R1 of Fig. € 3 transforming it into transistor Q6.
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Fig. 8.5 Result after applying the SERIES function to resistor R1 of Fig. 8.3,
thereby transforming it into resistors R7 and R1 and wire Z6.

The thr2e-argument SERIES division function creates a series composition
of the highlighted component (with a writing head), a copy of it (with a
writing head), one new modifiable wire (with a writing head), and two new
nodes. Fig. 8.5 illustrates the result of applying the SERIES division function
to resistor R1 from Fig. 8.3.

The fo.r-argument PARALLELO parallel division function creates a paral-
lel compcsition consisting of the original highlighted component (with a
writing head), a copy of it (with a writing head), two new modifiable wires
(each witl' a writing head), and two new nodes. Figure 8.6 shows the result of
applying >ARALLELO to the resistor R1 from Fig. 8.3. The one-argument
polarity-reversing FLI P function reverses the polarity of the highlighted
componer t.
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Fig. 8.6 Result of the PARALLELO function.
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Fig. 8.7 Result of applying the T_GND_O function to resistor R1 of Fig. 8.3,
thereby creating a connection to ground.

There are six three-argument functions (T_GND_0, T_GND_1,T_POS_0,
T_POS_1, T_NEG_O0, T_NEGC_1) that insert two new nodes and two new
modifiable wires, and then make a connection to ground, positive power
supply, or negative power supply, respectively. Figure 8.7 shows the
T_GND_O function connecting resistor R1 of Fig. 8.3 to ground.

There are two three-argument functions (PAIR_CONNECT_0 and
PAIR_CONNECT_1) that enable distant parts of a circuit to be connected
together. The first PATR_CONNECT to occur in the development of a circuit
creates two new wires, two new nodes, and one temporary port. The next
PAIR_CONNECT creates two new wires and one new node, connects the
temporary port to the end of one of these new wires, and then removes the
temporary port.

The one-argument NOOP function has no effect on the highlighted com-
ponent; however, it delays activity on the developmental path on which it
appears in relation to other developmental paths in the overall program
tree.

The zero-argument END function causes the highlighted component
to lose its writing head, thereby ending that particular developmental
path.

The zero-argument SAFE_CUT function causes the highlighted compo-
nent to be removed from the circuit provided that the degree of the nodes at
both ends of the highlighted component is three (i.e., no dangling conipo-
nents or wires are created).

5. Preparatory steps

Before applying genetic programming to a problem of circuit design, seven
major preparatory steps are required: (1) identify the suitable embryonic
circuit, (2) determine the architecture of the overall circuit-constructing
program trees, (3) identify the terminals of the program trees, (4) identify the
primitive functions contained in these program trees, (5) create the fitness
measure, (6) choose parameters, and (7) determine the termination criterion
and method of result designation.



5.1 Embryonic circuit

The embry dnic circuit used on a particular problem depends on the circuit’s
number of nputs and outputs .

For exanple, in the robot controller circuit, the circuit has two inputs,
VSOURCE.1 and VSOURCE?2, not just one. Moreover, each input needs its
own separzte source resistor (RSOURCE!I and RSOURCE?2). Consequently,
the embryo has three modifiable wires Z0, Z1, and 72 in order to provide full
connectivily between the two inputs and the one output. All development
then origin ates from these three modifiable wires.

There is often considerable flexibility in choosing the embryonic circuit. For
example, a1 embryo with two modifiable wires (Z0 and Z1) was used for the
lowpass fil'er. In some problems, such as the amplifier, the embryo contains
additional fixed components because of additional problem-specific functional-
ity of the hirness (as described in Koza, Bennett, Andre, and Keane 1997).

5.2 Program architecture

Since ther: is one result-producing branch in the program tree for each
modifiable wire in the embryo, the architecture of each circuit-constructing
program tr2e depends on the embryonic circuit. One result-producing branch
was used 7or the frequency discriminator and the computational circuit; two
were used for the lowpass filter problem; and three were used for the robot
controller and amplifier. The architecture of each circuit-constructing
program tree also depends on the use, if any, of automatically defined func-
tions. Automatically defined functions and architecture-altering operations
were used in the frequency discriminator, robot controller, and amplifier. For
these problems, each program in the initial population of programs had a
uniform architecture with no automatically defined functions. In later genera-
tions, the aumber of automatically defined functions, if any, emerged as a
consequerice of the architecture-altering operations.

5.3 Function and terminal sets

The function set for each design problem depended on the type of electrical
componer.ts that were used to construct the circuit. Capacitors, diodes, and
transistors were used for the computational circuit, the robot controller, and
the amplifier. Resistors (in addition to inductors and capacitors) were used for
the frequency discriminator. When transistors were used, functions to provide
connectivity to the positive and negative power supplies were also included.
For the computational circuit, the robot controller, and the amplifier, the
function sct, Fecs-initial for each construction-continuing sub-tree was

Fccs-initie.. = {R, C, SERIES, PARALLELO, PARALLELl, FLIP,
NOOP, ©_GND_0, T_GND_1, T_POS_0, T_POS_1, T_NEG_O,
T_NEG_1, PAIR_CONNECT_O0, PAIR_CONNECT_1, OQ_D_NPN,
O_D_PNF, O_3_NPNO, .., Q_3_NPN11, Q_3_PNPO, .., Q_3_PNP11,
Q_POS_COLL_NPN, Q_GND_EMIT_NPN, Q_NEG_EMIT_NPN,
Q_GND_FEMIT PNP, O_ POS_EMIT_PNP, Q_NEG_COLL_PNP}.

Preparatory steps
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For the npn transistors, the Q2N3904 model was used. For pnp transis-
tors, the Q2N3906 model was used.

The initial terminal set, Tces-initial, for each construction-continuing sub-
tree was Tces-initial = {END, SAFE_CUT}.

The initial terminal set, Taps-initial, for each arithmetic-performing sub-
tree consisted of Taps-initial = {«},
where « represents floating-point random constants from —1.0 to +1.0.

The function set, Faps, for each arithmetic-performing sub-tree was,

Faps = {+, -}.

The terminal and function sets were identical for all result-producing
branches for a particular problem.

For the lowpass filter and frequency discriminator, there was no need
for functions to provide connectivity to the positive and negative power
supplies.

For the frequency discriminator, the robot controller, and the amplifier, the
architecture-altering operations were used and the set of potential new func-
tions, Fpotential, was

Fpotential = {ADF0, 2DF1, ...}.

The set of potential new terminals, Tpotential, for the automatically
defined functions was

Tpotential = {ARG0}.

The architecture-altering operations change the function set, Fccs for each
construction-continuing sub-tree of all three result-producing branches and
the function-defining branches, so that

Fccs = Fees-initial = Fpotential.

The architecture-altering operations generally change the terminal set for
automatically defined functions, Taps-adf, for each arithmetic-performing
sub-tree, so that

Taps-adf = Taps-initial = Tpotential.

5.4 Fitness measure

The fitness measure varies for each problem. The high-level statement of
desired circuit behavior is translated into a well-defined measurable quantity
that can be used by genetic programming to guide the evolutionary process.
The evaluation of each individual circuit-constructing program tree in the
population begins with its execution. This execution progressively applies
the functions in each program tree to an embryonic circuit, thereby creating
a fully developed circuit. A netlist is created that identifies each component
of the developed circuit, the nodes to which each component is connected,
and the value of each component. The netlist becomes the input to the

~217,000-line SPICE (Simulation Program with Integrated Circuit Emphasis)

simulation program Quarles et al. 1994. SPICE then determines the behav-
ior of the circuit. It was necessary to make considerable modifications in



SPICE so that it could run as a submodule within the genetic programming
system.

5.4.1 Lowpass filter

A simple filter is a one-input, one-output electronic circuit that receives a
signal as “ts input and passes the frequency components of the incoming
signal that lie in a specified range (called the passband) while suppressing the
frequency components that lie in all other frequency ranges (the stopband).

The desired lowpass LC filter should have a passband below 1000 Hz and
a stopband above 2000 Hz. The circuit is driven by an incoming AC voltage
source with a 2 volt amplitude. If the source (internal) resistance RSOURCE
and the lcad resistance RLOAD in the embryonic circuit are each 1 kilo
Ohm, the i 1coming 2 volt signal is divided in half.

The att: nuation of the filter is defined in terms of the output signal relative
to the reference voltage (half of 2 volt here). A decibel is a unitless measure
of relative voltage that is defined as 20 times the common (base 10) logarithm
of the ratio between the voltage at a particular probe point and a reference
voltage.

In this problem, a voltage in the passband of exactly 1 volt and a voltage
in the stopdand of exactly O volts is regarded as ideal. The (preferably small)
variation within the passband is called the passband ripple. Similarly, the
incoming signal is never fully reduced to zero in the stopband of an actual
filer. The ‘preferably small) variation within the stopband is called the stop-
band ripple. A voltage in the passband of between 970 millivolts and 1 volt
(i.e., a pas sband ripple of 30 millivolts or less) and a voltage in the stopband
of between 0 volts and 1 millivolts (i.e., a stopband ripple of 1 millivolts or
less) is re;arded as acceptable. Any voltage lower than 970 millivolts in the
passband und any voltage above 1 millivolts in the stopband is regarded as
unacceptable.

A fifth-order elliptic (Cauer) filter with a modular angle ® of 30 degrees
(i.e., the z-csin of the ratio of the boundaries of the passband and stopband)
and a reflection coefficient p of 24.3 per cent is required to satisfy these
design go:ls.

Since the high-level statement of behavior for the desired circuit is
expressed in terms of frequencies, the voltage VOUT is measured in the fre-
quency domain. SPICE performs an AC small signal analysis and report the
circuit’s behavior over five decades (between 1 Hz and 100 000 Hz) with
each decale being divided into 20 parts (using a logarithmic scale), so that
there are a total of 101 fitness cases.

Fitness is measured in terms of the sum over these cases of the absolute
weighted Jeviation between the actual value of the voltage that is produced
by the circuit at the probe point VOUT and the target value for voltage. The
smaller tk 2 value of fitness, the better. A fitness of zero represents an (unat-
tainable) : eal filter.

Specifically, the standardized fitness is

100
Fle) = 2[W(d<n>,nd<ﬁ>l
i=0
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where f; is the frequency of fitness case /; d(x) is the absolute value of the dif-
ference between the target and observed values at frequency x; and W(y,x) is
the weighting for difference y at frequency x.

The fitness measure is designed to not penalize ideal values, to slightly
penalize every acceptable deviation, and to heavily penalize every unaccept-
able deviation. Specifically, the procedure for each of the 61 points in the 3-
decade interval between 1 Hz and 1000 Hz for the intended passband is as
follows:

e If the voltage equals the ideal value of 1.0 volt in this interval, the devi-
ation is 0.0.

e If the voltage is between 970 millivolts and 1 volt, the absolute value of
the deviation from 1 volt is weighted by a factor of 1.0.

e If the voltage is less than 970 millivolts, the absolute value of the devi-
ation from 1 volt is weighted by a factor of 10.0.

The acceptable and unacceptable deviations for each of the 35 points from
2000 Hz to 100 000 Hz in the intended stopband are similarly weighed (by
1.0 or 10.0) based on the amount of deviation from the ideal voltage of
0 volts and the acceptable deviation of 1 millivolts.

For each of the five ‘don’t care’ points between 1000 and 2000 Hz, the
deviation is deemed to be zero.

The number of ‘hits’ for this problem (and all other problems herein) is
defined as the number of fitness cases for which the voltage is acceptable or
ideal or that lie in the ‘don’t care’ band (for a filter).

Many of the random initial circuits and many that are created by the
crossover and mutation operations in subsequent generations cannot be simu-
lated by SPICE. These circuits receive a high penalty value of fitness (108)
and become the worst-of-generation programs for each generation.

For details, see Koza et al. 1996b.

5.4.2 Tri-state frequency discriminator

Fitness is the sum, over 101 fitness cases, of the absolute weighted deviation
between the actual value of the voltage that is produced by the circuit and the
target value.

The three points that are closest to the band located within 10 per cent of
256 Hz are 229.1 Hz, 251.2 Hz, and 275.4 Hz. The procedure for each of
these three points is as follows: If the voltage equals the ideal value of 1/2
volts in this interval, the deviation is 0.0. If the voltage is more than 240 mil-
livolts from 1/2 volts, the absolute value of the deviation from 1/2 volts is
weighted by a factor of 20. If the voltage is more than 240 millivolts of 1/2
volts, the absolute value of the deviation from 1/2 volts is weighted by a
factor of 200. This arrangement reflects the fact that the ideal output voltage
for this range of frequencies is 1/2 volts, the fact that a 240 millivolts discrep-
ancy is acceptable, and the fact that a larger discrepancy is not acceptable.

Similar weighting was used for the three points (2291 Hz, 2512 Hz,
2754 Hz) that are closest to the band located within 10 per cent of 2560 Hz.

The procedure for each of the remaining 95 points is as follows: if the
voltage equals the ideal value of 0 volts, the deviation is 0.0. If the voltage is



within 240 millivolts of 0 volts, the absolute value of the deviation from
0 volts is weighted by a factor of 1.0. If the voltage is more than 240 millivolts
from O volts, the absolute value of the deviation from O volts is weighted by a
factor of 10. For details, see Koza et al. 1997b.

5.4.3 Computational circuit

SPICE is called to perform a DC sweep analysis at 21 equidistant voltages
between -250 millivolts and +250 millivolts. Fitness is the sum, over these
21 fitnes: cases, of the absolute weighted deviation between the actual value
of the vc tage that is produced by the circuit and the target value for voltage.
For detai s, see Koza er al. 1997a.

5.4.4 Kobot controller circuit

The fitness of a robot controller was evaluated using 72 randomly chosen
fitness cuses each representing a different target point. Fitness is the sum,
over the 72 fitness cases, of the travel times. If the robot came within a
capture radius of 0.28 meters of its target point before the end of the 80 time
steps allowed for a particular fitness case, the contribution to fitness for that
fitness c: se was the actual time. However, if the robot failed to come within
the capti.re radius during the 80 time steps, the contribution to fitness was
0.160 hc 1rs (i.e., double the worst possible time).

SPICE performs a nested DC sweep, which provides a way to simulate the
DC behavior of a circuit with two inputs. It resembles a nested pair of FOR
loops in a computer program in that both of the loops have a starting value
for the voltage, an increment, and an ending value for the voltage. For each
voltage value in the outer loop, the inner loop simulates the behavior of the
circuit by stepping through its range of voltages. Specifically, the starting
value for voltage is —4 volt, the step size is 0.2 volt, and the ending value is
+4 volt. These values correspond to the dimensions of the robot’s world of
64 squars meters extending 4 meters in each of the four directions from the
origin of a coordinate system (i.e., 1 volt equals 1 meter). For details, see
Koza et al. 1997.

5.4.5 60 dB amplifier

SPICE vias requested to perform a DC sweep analysis to determine the circuit’s
response for several different DC input voltages. An ideal inverting amplifier
circuit would receive the DC input, invert it, and multiply it by the
amplification factor. A circuit is flawed to the extent that it does not achieve the
desired : mplification, the output signal is not perfectly centered on 0 volts (i.e.,
it is biascd), or the DC response is not linear. Fitness is calculated by summing
an amplification penalty, a bias penalty, and two non-linearity penalties — each
derived Irom these five DC outputs. For details, see Bennett et al. 1996.

5.5 Ccntrol parameter

The poy alation size, M, was 640 000 for all problems. Other parameters were
substanrally the same for each of the five problems and can be found in the
referenc 2s cited above.

Preparatory steps
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5.6 Implementation on parallel computer

Each problem was run on a medium-grained parallel Parsytec computer
system (Andre and Koza 1996) consisting of 64 80-MHz PowerPC 601
processors arranged in an 8 by 8 toroidal mesh with a host PC Pentium type
computer. The distributed genetic algorithm was used with a population size
of O =10 000 at each of the D = 64 demes (semi-isolated subpopulations).
On each generation, four boatloads of emigrants, each consisting of B = 2 per
cent (the migration rate) of the node’s subpopulation (selected on the basis of
fitness) were dispatched to each of the four adjacent processing nodes.

6. Results

In all five problems, fitness was observed to improve over successive genera-
tions. A large majority of the randomly created initial circuits of generation 0
were not able to be simulated by SPICE; however, most were simulatable
after only a few generations. Satisfactory results were generated in every case
on the first or second trial. When two runs were required, the first produced
an almost satisfactory result. This rate of success suggests that the capabili-
ties of the approach and current computing system have not been fully
exploited.

6.1 Lowpass filter

Many of the runs produced lowpass filters having a topology similar to that
employed by human engineers. For example, in generation 32 of one run, a
circuit (Fig. 8.8) was evolved with a near-zero fitness of 0.00781. The circuit
was 100 per cent compliant with the design requirements in that it scored 101
hits (out of 101). After the evolutionary run, this circuit (and all evolved cir-
cuits herein) were simulated anew using the commercially available
MicroSim circuit simulator to verify performance. This circuit had the recog-
nizable ladder topology of a Butterworth or Chebychev filter (i.e., a composi-
tion of series inductors horizontally with capacitors as vertical shunts).
Figure 8.9 shows the behavior in the frequency domain of this evolved
lowpass filter. As can be seen, the evolved circuit delivers about 1 volt for
all frequencies up to 1000 Hz and about 0 volts for all frequencies above

2000 Hz.
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Fig. 8.8 Evolved 7-mng ladder lowpass filter.
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In another run, a 100 per cent compliant recognizable ‘bridged T’;
arrangen'ent was evolved. In yet another run using automatically defined
function:, a 100 per cent compliant circuit emerged with the recognizable
elliptic topology that was invented and patented by Cauer. When invented,
the Cauer filter was a significant advance (both theoretically and commer-
cially) o er the Butterworth and Chebychev filters.

Thus, genetic programming rediscovered the ladder topology of the
Butterwcrth and Chebycheyv filters, the ‘bridged T’ topology, and the elliptic
topology

6.2 Tri-state frequency discriminator

The evolved three-way tri-state frequency discriminator circuit from genera-
tion 106 scores 101 hits (out of 101). Figure 8.10 shows this circuit (after
expansion of its automatically defined functions). The circuit produces the
desired cutputs of 1 volt and 1/2 volts (each within the allowable tolerance)
for the tv/o specified bands of frequencies and the desired near-zero signal for
all other frequencies.

6.3 Computational circuit

The gen:tically evolved computational circuit for the square root from gener-
ation 60 (Fig. 8.11), achieves a fitness of 1.68, and has 36 transistors, two
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Fig. 8.10) Evolved frequency discriminator.
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Fig. 8.11 Evolved square root circuit.

diodes, no capacitors, and 12 resistors (in addition to the source and load
resistors in the embryo). The output voltages produced by this best-of-run
circuit are almost exactly the required values.

6.4 Robot controller circuit

The best-of-run time-optimal robot controller circuit (Fig. 8.12) appeared
in generation 31, scores 72 hits, and achieves a near-optimal fitness of
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Fig. 8.12 Evolved robot controller.
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Fig. 8.13 Genetically evolved amplifier.

1.541 hc 1rs. In comparison, the optimal value of fitness for this problem is
known to be 1.518 hours. This best-of-run circuit has 10 transistors and
4 resisto:s. The program has one automatically defined function that is called
twice (incorporated into the figure).

The best circuit from generation 109 (Fig. 8.13) achieves a fitness of
0.178. Based on a DC sweep, the amplification is 60 dB here (i.e., 1000-to-1
ratio) and the bias is 0.2 volt. Based on a transient analysis at 1000 Hz, the
amplification is 59.7 dB; the bias is 0.18 volts; and the distortion is very low
(0.17 per cent). Based on an AC sweep, the amplification at 1000 Hz is
59.7 dB; the flatband gain is 60 dB; and the 3dB bandwidth is 79 333 Hz. Thus,
a high-gain amplifier with low distortion and acceptable bias has been evolved.

7. Other circuits

Numero s other circuits have been similarly designed, including asymmetric
bandpas: filters (Koza et al. 1996¢), crossover filters (Koza et al. 1996a),
double passband filters (Koza et al. 1996), amplifiers (Koza et al. 1997), a
temperature-sensing circuit, and a voltage reference circuit (Koza et al.
1997).

8. Conclusion

Genetic programming evolved the topology and sizing of five different proto-
typical 1alog electrical circuits, including a low pass filter, a tri-state fre-
quency «iscriminator circuit, a 60 dB amplifier, a computational circuit for
the squa-e root, and a time-optimal robot controller circuit. The problem-
specific information required for each of the eight problems is minimal and
consists Hrimarily of the number of inputs and outputs of the desired circuit,

Conclusion
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the types of available components, and a fitness measure that restates the
high-level statement of the circuit’s desired behavior as a measurable mathe-
matical quantity. All five of these genetically evolved circuits constitute
instances of an evolutionary computation technique solving a problem that is
usually thought to require human intelligence.
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