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Summary-Many pattern recognition machines may be con-
sidered to consist of two principal parts, a receptor and a categorizer.
The receptor makes certain measurements on the unknown pattern
to be recognized; the categorizer determines from these measure-
ments the particular allowable pattern class to which the unknown
pattern belongs. This paper is concerned with the study of a particu-
lar class of categorizers, the linear decision function. The optimum
linear decision function is the best linear approximation to the opti-
mum decision function in the following sense:

1) "Optimum" is taken to mean minimum loss (which includes
minimum error systems).

2) "Linear" is taken to mean that each pair of pattern classes is
separated by one and only one hyperplane in the measure-
ment space.

This class of categorizers is of practical interest for two reasons:

1) It can be empirically designed without making any assump-
tions whatsoever about either the distribution of the receptor
measurements or the a priori probabilities of occurrence of
the pattern classes, providing an appropriate pattern source is
available.

2) Its implementation is quite simple and inexpensive.

Various properties of linear decision functions are discussed. One
such property is that a linear decision function is guaranteed to per-
form at least as well as a minimum distance categorizer. Procedures
are then developed for the estimation (or design) of the optimum
linear decision function based upon an appropriate sampling from
the pattern classes to be categorized. Finally, the concepts and pro-
cedures thus developed are applied for illustrative purposes to the
recognition of hand-printed numbers.

INTRODUCTION

T HIS PAPER' is concerned with the practical de-
sign of a class of pattern recognition machines
which is of interest for two reasons:

1) There is no need to make assumptions about the
probability distributions of the various measure-
ments made by the recognition machine.

2) This class of machines is amenable to an economic
implementation.

Marill and Gree.n [16] have described the general
pattern recognition system in a very clear manner.
They note that it consists of two principal parts, a re-
ceptor and a categorizer:
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1) "The receptor has as its input a physical sample to
be recognized, and as its output a set ... of quan-
tities which characterize the physical sample.
These quantities will be called measurements of the
sample... "

2) "The output . . . of the receptor constitutes the
input to the categorizer. The categorizer is a de-
vice which assigns each of its . . . inputs to one of
a finite number . .. of categories . . . "

The measurements which a receptor makes on the
input sample may be either continuous or discrete, and
a given receptor may be required to make measure-
ments of both types. For instance, a character recogni-
tion machine might have a receptor which makes the
following measurements on an unknown character: the
number of closures, cusps and straight lines (discrete),
and the length and direction of the straight lines (con-
tinuous).
The categorizer must apply some sort of decision cri-

terion to the receptor output to decide to which of the
allowable pattern classes, if any, the input pattern be-
longs. Or the categorizer may reject the pattern as be-
ing unrecognizable if the recognition decision is unreli-
able in some sense. If the machine attempts a recogni-
tion and is wrong, then it is said that the machine has
made an error. Note that a rejection will not be con-
sidered as an error.

The Decision Theory Model of Pattern
Recognition [5], [19]

Let the p allowable pattern classes be denoted si,
1 <i <p, each having a priori probability of occurrence
xi, where

p

'D= 1.

When an unknown pattern is presented to the recep-
tor, the receptor makes certain measurements, n in num-
ber, upon it. The receptor output for a particular input
pattern is the set of numbers (MI, M2, ., m,) =m.
This set defines the coordinates of the point represent-
ing the input pattern in an n-dimensional measurement
space M.
We assume the existence of a probability function (or

density) over M, 3(MIS). Thus ,3(m|si) is the condi-
tional probability that a certain measurement m will be
made, given a pattern from class i at the receptor.
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Let there also exist a probability function (or density)
b(D| Al), so that b(djl m) is the probability that the

categorizer will make the decisioni dJ, 0<j.p, giveni the
imieasuremiient m. (j=0 corresponids to rejectioni; t <j<p
corresponds to classificationi inlto onie of the p patterni

classes.) (DI Al) is referred to as the decision function or

decision criterion. Note that the categorizer is nothing
more than the implementation of the flnction b(D ill).

Let a loss (or cost) fuLIlCtiOl C(S, D) niow be dlefinlecl
such that C(sj, dj) =cij is the loss (cost) associated with
mnakinig the decisioii dj wxleni the actual iniput state xxIs

si. The desired decision is di wheni the ilnput state is si;
therefore, the usual case requlires th-cat

Cij > C(>o > Ci,

where cio is the loss associated with rejectioii wheni the

iniput state is si.
TFhe probability of making a decisioni d- wheni the

iil)ut state is si is

p(dj si) = J (m si)6(sj m)dm.

The loss wlheni si is the inlput state (called the conidi-
tional loss) and when the decisioni fuLnctioni b(DI Ill) is
Llsed is tlheni

r'

c(Si,a=) CO. 0(m si)6(dj m)dm. (1)

Since the distributioni of states is given by wi,

1<i<p, the expected loss for the patternl recognition

system is

I, p

C() = cijwi,3(m s )6(dj m)dni. (2)
i= 1 0jf

TIhe optimumii categorizer is defined as the implemenita-
tion of that decision function &* whiclh minimiizes the
expected loss C(5) under the appropriate a priori dis-

tributioin wi, 1 < i <P, (Bayes strategy).

Thie geineral solution to this probleimi h1as beeni giveni

by Chow [6]. He shows that (2) is minimi;iized by usinig a

certain nioniranidonmized decisioni criterioni (i.e., b(DI m) is

ntityt for one decisioni dd, anid zero for all others).
It has also beeni showNrni [10] that if all losses dtLie to

m1iisrecogniitioni are of value c, all-losses (lue to rejection
are of value c(, atnd all losses due to correct recogniition
are zero, wher-e

c > co > 0;

then minimilizinig the loss is equivalent to nminiiiiiziiig the
error rate for a given rejectioni rate.

Refereince to Chow vill slhow that the optimiiumIl de-
cisioni funictioni depenids, aside fromii the loss ftunctioni,
only uponl the quatitities

cowi(msS), 1 <i<p.

UJnfortLunIatelV, these probability fmiuctions, part-icu-
larlv f(d .Il 5), are usually uniknown to the designier, and
therefoI-e ctategorizers based oll the o)ptimum lecision
funlCt iOI are ilot, ini genleral p)ract icall\ realizable.
Ther-e are at least two xva\S arOnnld this diffiCIltV:

1) Assnlinie a certaiii formii for the probability fltnc-
tioII 0(1 l S). A comimilloni assumiiptioni is that of
niormalitv andCI inidepenidenice: Giveni a certain p)at-
terni class, aIssLumne that the measurementts madlke
by the receptor are iormiialN- (istributed,, and that
erach m11easurement is in(lependenlt of the otlhers.

2) MaIkIlse nio assumptions about the particular dlistri-
butionis inivolvecl, but rather make certami restric-
tionis oni the structure of the categorizer. TIheni
sear-ch tlhrough all l)ossible struCt Lt-es of t;his type
to tind the categorizer which is optimIIUImI withl
respect to a sampl)lHing of pat terns l'f-omii the real
world.

(learly, ineither of these approaches will vield a trulI
optilmluImL categorizer, the first because of questioniable
assumptions, the seconld because of structural limita-
tioins. IHlowever, the use of either approach niow makes
the problemiiiatinageable, anid optimiiumil is reinterpreted
to mean miniuim loss wit-hini the framework of the apl
proach.

Linear Decision Functions

There is aniother practical advanitage thcat is realizedl
by the seconid approach, namely one of econiomic feasi-
bilitv. Eveni if the Optilmlull decision funiction were
knvown, its imiiplemiienitation would require, in general,
the use of a digital com-puter or other comiiplex equip-
miienit. The cost of such equipiment may, in many cases,
ouitweigh the advantages of imechainized categorization).
I-lowever, if the desiginer caln limnit his search to tilose
structures which are economically feasible, anid if the
optimiluIml structure in this class works well eniough foi
the giveni purpose, thenl a techiically feasible as wvell as
ain economically feasible solutioin has beenl fouind.

'T'his paper is concerned wvith the studV of jLst sucI a

c(lass of categorizers. To describe this class, consider a

rephrasing of the optiiuml decisioii criterioni. Note that
everx point ii the miieasuLremilenlt space All is preassigined
to a particUlar patterin class or to the rejectioni (lass bv
the decisioin criterion, since it is ilonranidomiized. 'T'huLIS,
there is a sLubset 11j of -AI corresp)onding to eacl 1 )ossible
decisioll d, 0<j<p. F"Lurtlher-, these subsets aI-re n1o1-
overilappinig siiice the decision futinctioni is nloniranidoumt-
izedl. TIhe divisioni of 11 into these subsets then uniquely
idenitifies a certain (lecision fuimctioin. \Ve (CotUldl e(quall
well consider the decisioni fuiction to be represen-ted bV
the boundaries betwveen the subsets. (Somiie lihertx is
takeni here, siiice it will be assumedl that a con'tillnOLu S

bounidary cani be passedl through a (liscrete space.) Fo!-
instanice, in Fig. 1 is showni a two-dimensionl neiasure-
mnenit space (the rece)tor nmkes oill' tIwo measurements
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Fig. 1-Domains of three pattern classes in measurement space, as

defined by optimum and optimum linear decision functions.

on an input pattern) in which are shown the boundaries
(the solid lines) between three different pattern classes,
A, B, and C. (For simplicity, rejection regions are not
included.) A boundary will, in general, be some sort of
curved surface. In fact, the domain of a particular pat-
tern class may not even be singly connected.
The class of categorizers to be discussed herein may

be loosely described as the optimum linear approxima-
tion to the true boundaries, under the further constraint
of only one boundary per pair of pattern classes (such
as those shown dotted in Fig. 1). Optimum, as previ-
ously mentioned, is taken to mean minimum loss under
the above constraints. Because of the linear properties
of this decision criterion, a categorizer of this class will
be said to implement a linear decision function. Although
the primary purpose of the development is to study the
synthesis of such a categorizer when the probability dis-
tributions are unknown, the problem of finding the opti-
mum linear decision function when these distributions
are known will also be discussed.

Implementation of a Linear Decision Function

Of particular interest is the economical realization of
a categorizer based upon a linear decision function. In
an n-dimensional measurement space, a linear decision
function will comprise a set of n-dimensional hyper-
planes. An n-dimensional hyperplane is represented by
that set of all points (xi, * , x4) in M which satisfy a
linear relation of the form

aixi + a2X2 + - * * + a.x. + ao = 0

for a given set of ai's. The fact that the actual bound-
aries are only portions of hyperplanes, i.e., each hyper-
plane usually terminates on other hyperplanes (Fig. 1),
is of little consequence. As will be shown in the next sec-
tion, the representation of each boundary by a full hy-
perplane is equivalent.

It will be shown later that, in order to classify a
point m in M, it is only necessary to determine on which
side of each hyperplane this point lies. This is deter-

I n n
1, IE ,j, 2 aj!Mj+ aO0

= j=JO J=I

Fig. 2-Implementation of a hyperplane.

mined by the sign of the quantity'
n

camimi + ao.
i=i

(3)

Consequently, in order to classify a point m (that is,
recognize an input pattern), it is only necessary to
evaluate a set of quantities like (3). But such a calcu-
lation can be done with several varieties of very inex-
pensive networks, such as the resistive adder shown in
Fig. 2 (in which the voltages corresponding to the
measurement values are inverted for negative as). This
supports the statement of economy.

SOME PROPERTIES OF LINEAR DECISION FUNCTIONS

The Classifying Procedure

Before discussing some of the properties of linear de-
cision functions, the classification procedure will first be
discussed. Fig. 3 illustrates a measurement space in
which the domains of three pattern classes are shown,
as determined by a linear decision function. The
boundaries, which are really truncated hyperplanes, will
be represented by the complete hyperplanes as indicated
by the dotted lines. It will be seen that the truncation is
automatically taken into account by the classifying pro-
cedure. Since there is one and only one boundary per
pair of pattern classes, Fig. 3 shows three boundaries
separating the three classes. The boundary separating
the ith and jth classes will be denoted Bij. Further, in
schematic representation as in Fig. 3, each hyperplane
Bij will be identified by the pair of numbers, i, j, placed
in such a way as to show which side of B j corresponds
to class i, and which to class j.

In order to classify a certain measurement, we note
which side of each boundary it is on. If it is on the ith
side of all boundaries Bik, 1 <k <p, k #i, theni this pat-
tern belongs to pattern class i. Using this criterion, point
A in Fig. 3 is clearly identified as a member of pattern
class 2.

Note that the point designated B cannot belong to

2 Note that this linear form equated to zero defines a structure
which is commonly found in the automata field. It goes by various
names, such as artificial neuron [141, associative unit [211, [22], and
Adaline [26], [27]. In this paper, it will simply-be called by its already
well-established name of "hyperplane."

0 0 9
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Fig. 3-Geomiietric represenitationi of a linear decision funiction.

any of the three classes, anid is hence rejected. This is
not the normal sort of rejectioni due to an unreliable de-
cision; rather it is a type of rejectioni inherent in a linlear
decisioin fuinctioni.
One further comlment is appropriate concerning the

determiniation of which side of a hyperplane a poinit lies.
Consider a hyperplanie B represented by the set of
poitnts {x} satisfying

ai + ao =O°, (4)

where

ai2 1 (5)
i=l

The distance s from the hyperplane of a poinit with co-
ordinates mi, 1< i < n, is

s ai1mi + ao. (6)

Hence, the distanice of a poinlt to the hyperplane (4) is
simply giveni by substituting the coordinates of the
point into the expressioni for the hyperplaine (as in
(6)), providing the expression is in a niormalized forin,
that is, that (5) holds. The poinit is on one side of the
hyperplane if (6) is positive, and oni the other if (6) is
tnegative. Which side of the hyperplane is to be positive
or negative is completely arbitrary, since multiplica-
tion of (4) by -1 chaniges the sigIn of (6), but does niot
change the hyperplanie.

Some Theorems Pertaining to Linear Decision Futnctions
Onie may rightly ask just why he should conisider a

lInear decision function. Is there any guarantee that it
will work? In general, this question cani only be an-
swered by designing the categorizer, and then deciding
whether the resulting system is good enough. However,
some confidence in linear decision functions may be ob-
tained from the following theorem.

Theorem 1: For aniy categorizer based upon minimiz-

RP3

(b)
Fig. 4-The relation of a miniimum distance categorizer to a linear

decision fuinctiotn. (a) Minimtum distance categorizer. (b) Linear
decisioni functioni eq lnivalenit.

inig a Euclidean distance3 to a set of reference poinlts,
there exists a categorizer based oni a linear decisionl
funictioni which is at least as good. This includes cate-
gorizers which n1aximize a norimalized cross-correlationi
funiction, anid those which minimize a Hlammllling dis-
tanice.

Proof: Fig. 4(a) illustrates a imiinimiiutmi distaiice cate-
gorizer. A miieasuremnenit A is identified with the class
represenited by that reference point to which it is closest
in a Euclidean senise. Consider reference points 1 anid 2
(RP1 and RP2) anid the hyperplane B12 which is the
perpenidicular bisector of the linie segmenit joinling RPI
anid RP2 [Fig. 4(b)]. Theni the statemiient that a point A
is closer to RPI thani to RP2 is equivalenit to the state-
miienit that the poinit- lies omi the 1 side of BJ.3. By cotn-
structillg suclh a hyperplane for every plir of reference
poinlts a linear (lecisioni funictioni equivalent to the
miniiuIII distance decisioi funictioin is obtainied. 'There-
fore, minimiiilumii Euclideani distance decisioni funlctionis
are a subclass of liiiear decision funlctionis. (Sebestyen
[23], [24] has conisideredl non-Euclidean m11in1iMumlll dis-
tance decisioni funictionis, wlich are niot a suLbclass of
liniear decisioni fuLlCtiOlnS.)

It is waell kniowni that imiaxiiimizinig ani appropriately
nlormlalizedC cross-correlationi funLCtiOnl or minimiiizinig a

Hamming distanice is equivalenit to minimiiizinig a Eu-
clidean distanice.
The upper bounid oni the iiunuber of hyperplanes re-

quired for a linlear decisioni functioni is determiined byr
Inotinlg that, for every' pattern class, there will be one
hyperplanie separatinig it fromii every other pattern

I If x and y are two poinits with co-ordinates xi, yi, 1 <i<n, theiI
the Eticlidean distance s between x and v is

S - [~E (ti - yi)2].
izl
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class. If there are n pattern classes, there will then be
n(n-1) such hyperplanes. But this has counted each
hyperplane twice. Therefore,

Theorem 2: For n pattern classes, a linear decision
function comprises n(n- 1)/2 hyperplanes.

It is shown in Highleyman [12] that not all the hyper-
planes are always needed. Consequently, we will have
occasion to refer to complete linear decision functions, in
which all of the n(n -1)/2 hyperplanes are present, and
incomplete linear decision functions in which some hy-
perplanes are not included.

Theorem 3: (Uniqueness) A complete linear decision
function will classify any measurement into no more
than one allowable pattern class.

Proof: Assume that a complete linear decision func-
tion has classified a measurement into both classes i and
j. But because of the completeness criterion, this linear
decision function contains a hyperplane Bij which will
indicate either that the point cannot belong to class i
or that it cannot belong to class j (assuming that a
point lying on a boundary is categorized according to
some convention), thus contradicting the assumption.
It has already been demonstrated that some measure-
ments may not be classified into any of the allowable
pattern classes by a linear decision function, complete or
otherwise; these are the patterns which are rejected (see
Fig. 3).

Theorem 4: The points in a measurement space which
are identified with a particular class by a linear decision
function form a convex set.4

Proof: This is proven in the theory of linear al-
gebra -[9 ].
The suggestion is sometimes made that perhaps a

linear transformation on the measurement space may
group like patterns closer together and separate unlike
patterns, so that a linear decision function may perform
better under the transformation than otherwise. That
this is an invalid suggestion is demonstrated by the next
theorem which is not proven here; its proof may be
found in Highleyman [12].

Theorem 5: The categorization defined by a linear
decision function is invariant under a nonsingular affine
transformation5 on the measurement space.

THE SEQUENTIAL SYNTHESIS OF A
LINEAR DECISION FUNCTION

Justification of Sequential Synthesis

The complete and accurate determination of a linear
decision function requires the simultaneous determina-
tion of the several hyperplanes defining it. To see this
more clearly, consider Fig. 5 in which a linear decision
function categorizing three classes in a measurement

4A convex set is one in which a line segment joining any two
points belonging to the set is contained within the set.

5 A nonsingular affine transformation is a nonsingular linear trans-
formation followed by a translation.

space is illustrated. Let the closed curves shown in this
figure represent, for purposes of discussion, the domains
in measurement space of classes 1 and 2. In general, the
losses associated with the various possibilities for mis-
recognition or rejection are different. Therefore, the
boundary B12, for instance, must be chosen so as to mini-
mize the loss, given by (2), associated with various fac-
tors, such as:

1) The misclassification of members of class 1 into
class 2 (the horizontally hatched area);

2) the misclassification of members of class 2 into
class 1 (the vertically hatched area);

3) the misclassification of members of other classes
into class 1;

4) the misclassification of members of other classes
into class 2;

5) the rejection of members of various classes (the
dotted area).

Fig. 5-Illustrating the requirement of simultaneous synthesis.

Note that the members of classes 1 and 2 which are
already misclassified into other classes (in this case, into
class 3 as illustrated by the cross-hatched area in Fig.
5) are not to be considered in the determination of the
optimum B12; these are members which are going to be
misclassified anyway, regardless of the position of B12.
Therefore, in order to optimize B12, the other bound-
aries, B13 and B23 in this case, must be known. But their
determination also depends on B12, by the same argu-
ment. Therefore, all of the boundaries comprising an
optimum linear decision function must be determined
simultaneously (simultaneous synthesis).

However, for a moderate number of allowable pattern
classes n the number of hyperplanes n(n - 1)/2 compris-
ing a complete linear decision function becomes large,
and the problem might easily become unmanageable. It
would certainly be a more palatable procedure if each
hyperplane could be determined independently of the
others (sequential synthesis). In particular, consider a
subotpimum linear decision function defined by a set of
hyperplanes, one for each pair of the allowable pattern
classes, in which each hyperplane is determined by
minimizing the loss associated with the total confusion
between the two particular classes which it separates.
That this is usually a good approximation to the opti-
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miiuiii linear decision function is shown in Highley-
man (12).
Even if it were deeimed that this approximation is

not good enough, the concept of sequential determina-
tioIn is still valid, for the approximation may be made
better by an iterative process. First determine the hv-
perplanes independently, giving an initial linear deci-
sion function L1. Then, onl0y those members of each
class which are correctly recognized by LI are used to
recomipute independently the hyperplanes, givilig
another linear decision function L2. This process can be
repeated until nlo significanit imnprovemeint in perform-
anice is observed. Thus, to a better anid better approxi-
mation, only those members of a particular pair of
classes not misrecognized as belonging to somiie other
class are used to determine the appropriate hyperplane.
According to the previous argumlent, this theni ap-
proaches the conditioni of sinmultaneous sy nthesis.

Upper Bound on the Expected System Loss, as
Determined from the Constituient Hyperplanes

When one has determined a hyperplane Bij one can
associate with it an expected loss Cij(Bij), depending
upon its performance in separatinig the two classes i and
j, upon the loss coefficients cij and cj, associated re-
spectively with confusinig the ith class with the jth class
and vice versa, and upoIn the a priori probabilities wi
and wj of occurrence of the classes i and j:

Cii(Bij) = icijf fd(m si)drn
Hj (Bij)

Some Special Cases of Optimium Ilyperplanes
It is shown in Highleyman [12] that, for the follow-

ing two class problems, the optimiiumi decisioni function
is a liear decision function:

1) The two classes are equally probable a priori, have
equal losses associated with m isrecogniitioni, and
have probabilityr distributions over the imieasure-
menit space which are unimilodal, spherically symi-
miietrical, anid identical except for a displacei-nent
of nmodes.

2) The two classes are equally probable a priori, have
equal losses associated with misrecogniition, and
halve probability distributionis over the miieasure-
miient space which are Gaussian and which have
equal covariance miatrices.

3) The convex hulls of thle points in Imieasuremiient
space cointained in eaclh pattern class are nioniniter-
secting.

The following theorem will be important later in the
design and testing of practical machimes.

Let us say that a set of q points in a space of n dimiien-
sions, where q<n+1, is nondegenerate if the poinits cani-
not be contained in a linear subspace of q - 1 dimnenisionis.
In Fig. 6 are shown three nondegenerate points in two
dimensions, and four nondegenerate points in three di-
nmensions. Note that, in each case, the points canl be
separated into any two categories desired by an n-di-
mensional hyperplane. This is generalized in the next
theoremii, which is proven in Highleymnan [12], but
which should be intuitively acceptable from the above
example.

+ jcjif /8(m sj)dm,
Hi (Bij)

where

fI(Bij)
(a)... dm

indicates integration over the half space which includes
all points identified as class i by Bij. It is of interest to
relate the expected loss for the hyperplanes to the ex-
pected loss for the system; this relation is given by
Theorem 6.

Theorem 6: The expected loss associated with a linear
decision function is not greater than the sum of the ex-
pected losses associated with its constituent hyper-
planes.
The proof to this theorem is given ini Highleyman

[12] and is burdensome and not particularly enlighten-
ing. In the hope that the theorem is easily accepted, the
proof will not be repeated here.
A useful corollary follows:
Corollary: If the expected loss for each of the con-

stituent hyperplanes of a linear decision function L is
zero, then the expected loss for L is also zero.

Fig. 6-Linear separability of nondegenierate points.
(a) Two dimenisionls. (b) Three dimenisions.

Theorem 7: Let S be a set of q nonidegenierate points
in an n-dimensional space, q<n+I. Let Si conisist of
any k of these points, and S2 COnlSiSt of the remiiaining
q - k points. Then SI and S2 are linearly separable.

This theorem and the two following corollaries will
be important later in the discussion of the practical it-
terpretation and use of linear decision functions.

Corollary 1: Let S be a set of q points in an n-dimen-
sional space such that any subset of S containing

1506 -1-itn
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no more than n+1 points is nondegenerate. Let
m<q<n+m-1. Then S can be separated into m non-
empty sets by a linear decision function.

Proof: By the corollary to Theorem 6, it is only neces-
sary to show that each of the m sets is linearly separable.
Let S be separated into the sets Si, * *, Sm. Con-
sider the case in which q = n+m-1, and the sets
Si, * * , Sm.- each contain one point from S, leaving
n points from S to comprise Sm. Then Sm and Sk,
1 < k <m -1, are linearly separable by Theorem 7, since
their union contains n+1 points. In any other possible
case, the number of points contained in the union of any
two sets Si and Sj will be less than n+ 1, thus proving
the corollary.

Corollary 2: Let S be a set of q points in an n-dimen-
sional space such that any subset of S containing no
more than n+1 points is nondegenerate. Let

mn
q <-2

-2

m(n + 1)
q < -,.

n even

n odd.

Then S can be separated into m subsets each of size no
greater than (n+ 1)/2 by a linear decision function.

Proof: The union of any two subsets will contain at
most n nondegenerate points if n is even, n+1 nonde-
generate points if n is odd. Therefore, each pair of
subsets is linearly separable by Theorem 7, and the
corollary is then proved by invoking the corollary to
Theorem 6.

DETERMINATION OF THE OPTIMUM LINEAR
BOUNDARY SEPARATING Two CLASSES

This section will deal with the problem of determin-
ing the optimum (minimum loss) hyperplane which
separates a pair of classes. In the general case, which is
treated here, the loss associated with misrecognition of
a member from one class is not necessarily the same as
that loss for the other class. Recall, however, that when
the losses are equal, then minimum loss corresponds to
minimum error.
Three cases will be discussed. In the first, it is as-

sumed that the pertinent conditional probability func-
tions over the measurement space 3(m |si) are contin-
uous, and that these probabilities and the a priori proba-
bilities of occurrence coi are known. In the second case,
it is assumed that nothing is known about the proba-
bilities 3(m si), and that the a priori probabilities wo
may or may not be known. The determination of the
optimum hyperplane is then based upon an appropriate
sampling from the pattern classes. The third case is simi-
lar to the second case, but is applicable only when many
independent measurements are made on the input pat-
tern. Although it is a slightly more restrictive case, it
leads to a better estimate of the hyperplane. The second
and third cases are the cases of practical interest.

The Optimum Hyperplane for the Case of
Known Distributions

Let ,3(misi) be the probability density function of
class i over the measurement space, wi be the a priori
probability of occurrence of class i, and cij be the loss
associated with misidentifying a member of class i with
class j. Denote a hyperplane which separates the classes
i and j by Bij, and let it be defined in the coordinate sys-
tem (x1, * , x^) by the equation

Xi = E akXk + ao.
k=2

(7)

Let v(m Isi, Bij) be the conditional probability density
function of class i over the boundary B j:

v(m I si, Bii) = 3(m |s)

r I(m s )dm'

fBij ' * * dm' denotes integration over the boundary B,j.
Define the weighted conditional probability density
function of class i over the boundary B j by

r(m I si, Bij) = cijciv(m si, Bi3).

Theorem 8: The optimum linear boundary B,j, sepa-
rating two classes i and j which have weighted condi-
tional proability density functions over Bij given by

r= r(m si, Bij)

rj T(mI sj, Bj),

must satisfy the following conditions:

1) The integrals of rT and Tj over Bij must be equal.
2) The means of ri and Tj must be equal.

Proof: Let Bij be oriented such that the half-space
identified as class i corresponds to

n

XI < E akXk + aO.
k=2

The expected loss is then

C(B1j) = cijf dXn dx2f n 3(m si)dxl
-x co E atk.Vk+Ce°

k=2

n

oo 00 E akXk+o

+ cjiJjw dx,, * * * dx2 k-2 #3(m sj)dxi. (8)
-00 -00 -00

We wish to find the coefficients of the hyperplane Bj,
which correspond to extreme points of (8). First differ-
entiate (8) with respect to ao:

-C(B1j) = - ridm + f i7dm = 0,
a3o Bij Bij
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which is conditioni 1 of the tlheoretmi. Next, differenitiate
(8) with respect to ak, 2 < k < n:

OC(B?-j)rr
xCBJ.h7iddm + j x..Tjdmn = 0,

2 < k < 1t.

A similar expression may be obtained for k = 1 by rewrit-
ing (7) and thus (8) in termls of some other coordiinate.
This set of conditions, i.e., for 1 < k < n, corresponds to
condition 2 of the theoren-m.

In general, there will be several hyperplatnes satis-
fyinig the conditions of Theorem 8. Somne of these will
correspond to maximiia of C(Bij), others to miinima.
These nmust then be searched to determine which cor-
responds to the absolute minimumii of C(Bij).

the niumber of samiiples from class i which are mllis-
identified by I3,K as class j, anid likewise for ej.

2) The a priori probabilities Wk are kniowtn. ake mi
samiiples fromn class i anid mr samnples fronii class j
such that

m,I-=: 'rtn

(9)

(It will be assunmed that w,' and wj' are such that
(9) can be mlet exactly.) Identify each of these m
samples according to Bj, Let es be the nurmiber of
samples from class i misidentified by B ij as class J
and likewise for ej.

Then the maximum likelihood estimnate in either case for
the conditional loss, C(Bij), is

The Optimum Estimate for the Hyperplane for the Case
of Unknown Distributions
We will now assume that the designer has no knowl-

edge concerning the form of the probability function
,B(m| si), but he may or may not know the a priori
probabilities wi. We will assume the existence of all such
probabilities and probability functions, whether ktnown
or not.

If a hyperplane Bij is passed through M such as to di-
vide classes i and j in some fashion, then a certain por-
tion of the members of classes i and j will be misidenti-
fied by Bij. Let pi be the probability of miiisidentificationl
of a menmber from class i, given B? and a memaber of
class i (pi is the integral of f3(mI si) over the half-space
on the j side of Bij). Then the cotnditional loss associ-
ated with Bjj (see (1)) is

C(B j) = cjjwj'p i-+ cji'/pj
= cije + c,iie,

where

(JOI -

co i + wij

coil
co(-

C);-+_W

anid ei= oi'pi is the probability of misrecognitiotn, given
Bij, of a member from class i when patterns are chosen
randomly from classes i anid j accordinig to wi' anid wj/.

Theorem 9: Construct a hyperplane B ij in the imieas-
urement space Ml which divides ll into two half spaces,
all the points in one being identified as class i, the poinits
in the other being identified as class j. Conisider two
sampling procedures designed to estimate the condi-
tional cost C(B,j):

1) The a priori probabilities Wk are unkiiowni. Let it
be assumed that there exists a patterni source
which will generate patterns from classes i atnd j
randomly according to wc' and wj'. Draw a pat-
tern fromn this source, identify it, and then deter-
mine the identification according to Bij. Thiis lat-
ter identification will either be in error or will be
correct. Repeat this experiment m times. Let e, be

^A( c, jei + c,..ejC(Bij) = m
II

(10)

The proof is based on the fact that mi and mj are bi-
nomially distributed. Since the theorem is intuitively ac-
ceptable, the proof is not given here, but may be found
in Highleyman [12].

If we take samples from a pair of classes according to
either sampling procedure, there will be a set of hyper-
planes (infinite in number) which will mninintiize the
maximnumn likelihood estinmate of the conditional loss
(10). It is quite reasonable, then, to choose onie of the
hyperplanes fromii this set as the estimate of the opti-
mum hyperplane separating the two classes. That is, it
is clear from (10) that we will search for a hyperplane
which will minimize the loss associated with the sample
points. This is also intuitively quite reasonable.

Note that Theorem 9 and the resultinig procedure is
independenit of the probability functionis over the
irmeasuremenit space. Hence, one need make (:)assump-
tionls conicerning the form of these functionis, nior need
one concern himself with the dependenicies between the
various measurements.

A Computation Algorithm for the Case of
Unknown Distributions

In this section will be outlinied anl iteration algorithmii
which will be useful for determiinling that boundary
which miiinilizes the maximumi likelihood estimate of
the coniditional loss for the boundary. rhe detailed
iteratiotn equations are giveni in Highleymiian [ 1 2 ]. There
has beeni some work by others conicerninig simiiilar bouLnd-
aries when the mneasuremiietnt space is a binary space
[17], [18], [26], [27], or wheni the classes are Gaussiani
distributed in measurement space (discriminant funlc-
tionls [2], [7], [25] vield a good approximiationi for this
case).

Fig. 7(a) illustrates this problem for two classes, k andcl
1. Samples from class k are shown by crosses, from class
I by circles. A boundary Bk is indicated. Let US niumuber
these samples frotm 1 to m, there beinig a total of mn

I15(8S Ju.ne
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samples, and define a weight Tj' for the jth sample
point 1 <j <m such that

T'=0 if the point is on the correct side of Bkl;
T= ckl if the point represents a sample from class k

on the 1 side of Bkl;
T=cilk if the point represents a sample from class I

on the k side of Bkl.

It is clear, then, that minimizing the estimate of the
conditional loss (10) is equivalent to minimizing

m

T'(ai) = E (11)
j=1

where the ao, 0<i< n, are the coefficients of the hyper-
plane Bkl defined by (4).

T'(ao) is an (n+1)-dimensional function for a system
with n measurements. A convenient way to determine a
minimum point of this function would be to use a
gradient method, such as the method of steepest de-
scent [1], [4], [20]. However, T'(ai) is a discontin-
Uous function of the cai, and thus has no nmeaningful
gradient.

However, it is possible to approximate Tj' by some
function Tj(sj, X) which is continuous everywhere, and
which has the property

lim Tj(sj, A) = Tj'

where Tj is written as a function of the distance of the
jth point from the hyperplane to emphasize this continu-
ous dependence. Such a function is shown in Fig. 7(b),
in which sj is the distance of the jth point from the
boundary Bkl, and will be considered to be positive if
the point j is on the correct side of the boundary. The
quantity cj in Fig. 7(b) is equal to Ckl if the jth point rep-

x

x
x

xK K

a

0

0 0 0
0

0 o

0

(a)

resents a member from class k; C = Cik otherwise. If the
function

m

T(ae, A) = E Tj(sj, A)
j=l

(12)

were to be minimized for some finite X with respect to
the ai, and then X increased and (12) minimized again,
and this process repeated, one would expect the hyper-
plane to converge to one of the set of hyperplanes mini-
mizing (11). This minimization process can now make
use of the method of steepest descent.
There are many functions which would be suitable

for Tj(X). One convenient one is the cumulative Gaus-
sian distribution with zero mean and standard devia-
tion 1/V2X; it will be denoted G(Xsj). Thus

Tj(sj, A) = cj[1 -G(Xsj)], (13)

where

a [G(Xsj) A_ e(X8j)2

asj \,/r

The algorithm then consists of determining the direc-
tion of the gradient of (12), using some suitable function
for Tj(sj, X) such as (13). Some reasonable initial guess
for the hyperplane and some value for X ate used as a
starting point. The approximate minimum of (12) is de-
termined by the method of steepest descent, and the
process is then repeated with a larger value of A. When
the desired accuracy is achieved, the iteration is termi-
nated.

A Computational Algorithm for the Case of Many
Independent Measurements with Unknown Distributions
We next consider the case of a large number of inde-

pendent measurements whose distributions are other-
wise unknown. The distances of members of pattern
class i from a given hyperplane may be said to be dis-
tributed according to a probability density function
1i(s). 7i(s) is in general unknown. However, in many
cases, one may estimate it quite accurately by the fol-
lowing argument.

Recall that the distance of a point m from a hyper-
plane is given by

n

S = a-mi + ao,
i=l

where mi is the ith coordinate of the point (the ith
measurement), and the aci are the normalized coeffi-
cients of the hyperplane. But mi is a random variable,
and hence, if n is large, s is a weighted sum of a large
number of random variables. If the dependencies be-
tween the random variables are weak, one may then
reasonably expect fronm the Central Limit Theorem [8]
that the distributioni of s is approximated by a normal
distribution. Of course, if the measurements mi are in-
dependent and normally distributed, then the normal-
ity of s follows immediately for any n.

Sj

(b)
Fig. 7-Illustrating the iterative algorithm.
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Consequently, -qi(s) is, to a good approxinaltioll in
many cases, a normal density funiction. Its meani and
variance canl be easily estimated fromii the samples
which are to be used to design the liinear decisioni fuLnc-
tioII. Usinig this normality concept, onie can develop) all
algorithmi for estimatinig the optimiluiml hvperplanie sepa-
rating the two classes. We are initerested in chloosinlg
that hvperplane that mninimizes the estimiiate of the ex-
pected error, or confusion, betweeni the two classes.
However, it is possible to estimate the error associated
with a hyperplane by estimating the normal distribu-
tion of the distanice of the mnemiibers of each class fromii
the hyperplanie, anid determininig the area uinder the
tails of these two distributions falling oni the wronig side
of the hyperplane. This nmight be expected to be a bet-
ter estimate of the error thani the proportioni of poinlts
misrecognized, since inore iniformiiationi is used inl the
estimiiate, providing the assumption ot normally dis-
tributed distances is valid.

Consequently, it would be quite reasonable to choose,
as anl estimnate of the optimumii linear boundary, that
hyperplanie which miniimizes the niormr-al estimiiate of
error rather than the estimnate based oni the proportioni
of mnisclassified samuples, providing again that the as-
sumptioni of normality holds. A comlputationial al-
gorithm based onl mininmizing this normal estimate of
error, using the method of steepest descenit, is developed
in Highleymiani [12], where confidence iintervals for this
and the preceding estinmate are also developed. rhese
confidenice initervals illustrate that this latter estimnate is
indeed the better of the two. Note that the resulting
hyperplane for each local miiinimuml is unique, in con-
trast to the previous algorithm in which the hyperplanie
could be any onle chosen fromn, in general, anl infiniite set.

An Example of Categorization

To show the relation between these various ap-
proaches to the problem of categorization (the opti-
mnum decision function, the optimum linear decision
function based on knowledge of the distributionis, and
the optimilumii linear decision functioin based onl sam-
plinig), the following two-class problemil was solved usinig
each technique.

Problem: There are two pattern classes, 1 and 2, upon
which two miieasurements, x anid y, are miiade. The mleas-
urements are independent and normally distributed
with the following paramiieters:

Class 1: a1x = 1 A x= 1

a'ly = 0.5 pl1y = 1

Class 2: 0s - 0.1 A 2x = 2

02 2 g2y = 0

The a priori probabilities of occurrence and the mis-
recognition losses are the same for each class. Deter-
mine the boundaries between the classes in the meas-

urement space x, y.

In Fig. 8 are shown the 18 contours of the classes 1

and 2. Also showni are the bounlidaries based oni the
previouslx menitioned approaches:

1) Ihe optimum decisioni funlctioni for the two-class
Gaussiani case is well kniowni [2 .1 [161. IThe result
is the hyperbolic boundary slhownl, giveni by t-he
equationi

- 99x2 + 3.75v' + 398x - 83- 393 = 0.

The regioni idenitified as class 2 is that between the
two curves of the hy!perbola.

2) The optimumii linear decision functioni, giveni comII-
plete kniowledge of the distributionis, is worked out
for this case in Flighleyimaiia [12], ani(d is baxsed on
the uise of 7'heorem 8. The result is

y 1.04vx - 1.32. (14)
I'his is shown as the "theoretical" linear boundary
in Fig. 8.

2

y

CLASS ii

yOPTIMUM
BOUNDARY-).

\ CLASS272

II
II /

I / K/1/

l

/ I-'

I/ I

/Z

3 X2

Fig. 8 .Ai example of some of the approaches to (cttegorization.

3) The optimum linear decisioni funictioni based on
sanmpling was determined usinig the first iterationl
algorithmn (normally distributed distaltnces were
not assumed, although in this case they are
normiially distributed). A randoml numiber geni-
erator was programined for the IBM 7090 digital
conmputer which generated niumbers according to
the above distributions.

One hundred samlple poinits were taken fromii each
class, atid various initial boundaries were tried:

x = 1

x- 2.5

y- x - 1

y = 4.2. - 6.8.

-~~~~~~~~~~~~~~~~I i
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12Htghleyman: Linear Decision Functions

Each of the final boundaries were slightly different, but
the important point is that each one categorized the
points in exactly the same manner. (Thirty-nine points
were always misclassified.) An example of one of the
final boundaries is

y = 0.816x - 1.11

0 / 2 3 *f 5 6 7 8 9

0 ) ;3'q5 Co 7 83 1

(15)

which is plotted in Fig. 8 as the linear boundary marked
"experimental." Compare (14) to (15); the difference
illustrates the sampling error.

EXPERIMENTAL APPLICATION THE RECOGNITION
OF HAND-PRINTED NUMBERS

The recognition of hand-printed numbers was at-
tempted with a linear decision function. The set of
measurements which was used involved quantizing the
number into a 12 X 12 binary matrix. A matrix ele-
ment was given a weight of one if it contained a mark
and a weight of zero if it contained no mark. The quan-
tized number was then positioned in the matrix by
aligning its center of gravity with the center of the
matrix. Hence, a 144-dimensional binary measurement
space was used. This set of measurements is a rather un-
sophisticated set in that the measures are not at all in-
variant within a particular class; thus, one would not
be too surprised if a linear decision function did not per-
form very well.6 However, the attempt is still interest-
ing since it will allow the testing of the preceding ideas in
some detail.

Estimating the Linear Decision F-unction
The data used to estimate the optimum linear deci-

sion function was gathered in the following manner. A
subject was asked to print neatly the ten numbers on a
piece of quadruled paper at a size approximating the
ruled boxes. Fifty different people were asked, result-
ing in a sample size of 50 for each of the ten pattern
classes. These data were then automatically reduced to
a 12X12 matrix (encoded on IBM punched cards) by
an optical matrix scanner constructed by the author.7

In Fig. 9 is shown an example of some of this design
data, illustrating approximately the range of size and
neatness obtained. In Fig. 10 are shown examples of
some of the quantized numbers.

Forty-five hyperplanes are required in the complete
linear decision function categorizing the ten numbers.
It was assumed that all losses due to misrecognition are
equal (minimum error), and that all a priori probabili-
ties are equal. Each hyperplane was determined by first
finding a hyperplane which correctly categorized the
maximum number of sample points (according to the

6 A very effective set of measurements has been proposed by Ka-
mentsky [151 for the recognition of hand-printed numbers. This in-
volves using a "flying-polar" scan which is capable of determining
the number of closures and cusps (partial closures) and the orienta-
tion of cUsps in a character.

7 These are the same data used in the Bledsoe-Browning compari-
son, reported in Bledsoe [31, and Highleyman and Kamentsky [111.

1 %14967890

Fig. 9-Some examples of the hand-printing design data.

00000 000000
000 1 0000
O 0 01 1 11 0 0 0
0 00 1 10 0 0
000000 1 000
00000 1 0000
0 0 0 0 1 0 0 00
0 00 1 000 0 00
0 0 1 100 10
0 0 1 1 1 111 1 0
00 00000
00000000o0000

000000000000
000000000000
000 00000
0 0 0 0o o
00 0 1 00 0
0 0 0 0 0 1/0 0 0 0
0 0 0000 1 0 0 0 0
0 0 00 1 1 000
0000000 1000
0 0 0 0 0 0 0 1 0 0
0000000 000
000000 0000

2 3

000000000000
00000O QA0000000000 0000oo
00000 /1 00000
0000. 1(0 00000
00 0 0 1 0 0
O O O 1 1 1 1 0

0 000O 00
0000 O0. 00
o o o' o1 0o0
00000000000
000000000000

000000000000
000000000000
0 0 0 0 0 0 000 0 0
0 0 0 1 0 00
0 00 1)q1 0
0 01O O 0 9 0
000o FQ 0
0 0 0 1 1 1 000
0 00)' 1 00 0
000 0 0 0 0
00 Ti 0 0 000
0000 0000 00 0

6 8

Fig. 10-Examples of quantized forms of
the hand-printed numbers

first computational algorithm), and then by "trimming
up" that hyperplane so that the normal estimate of
error was minimized (according to the second compu-
tational algorithm). About 35 seconds, on the average,
was required to determine a hyperplane, given an ini-
tial position.

For each pair of pattern classes, four initial hyper-
planes were tried. One of these was that hyperplane
which was the perpendicular bisector of the line seg-
ment joining the means of the two classes. The other
three initial hyperplanes were parallel to this one (i.e.,
the direction cosines were the same) and corresponded
to an a0 of 0, -5 and +5. Each of these initial condi-
tions led to a hyperplane better than any of the other
initial conditions in at least one of the 45 cases, thus
illustrating the importance of trying several initial hy-
perplanes.

In Fig. 11 is shown the estimated optimum hyper-
plane B21 which separates the numbers 2 and 1. The
coefficients ai, 1 <i<n, are shown arranged in a
matrix corresponding to the receptor matrix. The posi-
tive side of B21 corresponds to the number 2. One
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0
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Fig. I1 The hyperplanle B12.

would then expect that those coefficienits which cor-
responded to imatrix elemenits in which a imiark fromii a
two was likely to occur anid a mark fromn a onie was nlot
likelv to occur would be weighted positively, an_ud vice
versa for those elements in which a imiarkzr fromii a onie is
mlore likely to occur. Contours are drawnl around re-
giOlns of large positive and negative weight in Fig. 11,
and the niegative regions are shaldedl. One sees that the
above inituitive observatiotn does inideed hold.
The resulting liiiear decisioni funictioni miiiscategorized

five patternis (1.0 per cenit) and rejected onie patterni
(0.2 per cenit) of the total designi samiiple of 500, as
showni in the conifusionI miiatrix of Table I (tlhe R columnn
indicates the iniput patternis rejectedl by the inhlerenit
rejection of the liniear decisioni fuinction). Also shlow in
the table are the values of the error-rate estimiiates based
oni the normality assumption. However, onie caniniot ('oii-
clude that these percenitages are any sort of vatlid esti-
miiate for the performanice of the systemii, since the\' are
based onl the samnples used to designi the sxvstein. hi
fact, since only 100 points are beinig separated in 144 di-
menisionis by eachi hyperplane, one imiight expect fromii
Theorem 7 that the linear decisioni fulnction ought to do
well otn the designi data. The savinig grace hlere is the
fact that the mieasurement space is binary, an1d there-
fore the samiiple poinits are highly degenerate in the
senise of 7heorem 7. It is therefore lnot to be expected

TABI E I

Recognized As

0 9 8 7 6 5 4 3 2 1 R

50

0.004 0.000 0.014 0.021 0.005 0.010 (0.009 0.005 0.000

48 1 1

.004 0.030 1.118 0.003 0.001 1.686 0.001 0.044 0.000

50

o000 0.184 0.005 0.038 0.033 0. 133 0.296 0).034 0.007

0.236 0.001

0.005 0.052
I-l

0.002 0.033

1.771 0.039

2
0.001 0.694

0.041 0.034

0.000 0.002

-1

0.oo0

0.oo(

0.011

10.042

0. 037

0.001

0.000

50

0.067

0.013

0.000 0.00v3 0.022 0.111

I0.018 0.024 '0(.029 0.136

50

0.061

(.000

0.011 0.068 10.002 0.o000

0.009

2 0.026 0.152 0.001

7 0.157 0.003 0.027

o.ooo 0.000 I0.000

Correct 494 (98.8%)
Error 5 ( 1.0%)
Reject 1 ( 0.2%)

0.002 0.032

47 1

0.894

49
1 .990

0.003 0.003

0.000

( .010

0.002

50

Contusion imatrix for the design sample: Upper numbers give the categorization
mates of error, in per cent.

of the design data; lower numllbers give the niormiial esti-
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that any set of points, no greater in numnber thani n+1
(145 in this case), will be linearly separable in general
in this measurement space.

Testing the Linear Decision Function

The resulting system was tested with 120 additionial
samples (12 samples of each number) gathered in the
same manner as the design data. Fig. 12 shows this test
sample. The confusion matrix of Table II represents the
categorization of these samples.
The resulting estimate of the system error rate, re-

jection rate, and correct recognition rate, from the re-
sults shown in Table II, are 19.2 per cent (23 poinlts),
19.2 per cent (23 points) and 61.6 per cent (74 points),
respectively. From confideniee intervals given in High-
leyman [12] covering this sort of test, one can then
state that, with probability 0.95, the intervals 0.13-
0.28, 0.13-0.28, and 0.52-0.70 include the system error
probability, rejectioni probability, and correct recogni-
tionl probability, respectively.

It is not surprising to find the estimated performance
of this linear decision function to be so poor. This can
be blamed on two factors: 1) a poor choice of measure-
ments, inthat the measurements used were very depend-
ent upon the distortions and various noise effects
(smudging, etc.) which might occur, and 2) a design
sample size which is too small, leading to a poor esti-
mate of the optimum hyperplanes. This latter poinit is
emphasized by the difference in the results obtained
with the design sample and with the test sample (98.8
per cent recognition vs 61.8 per cent). If the designi
sample were sufficiently large, one would expect the
results based on the two samples to be comparable;
hence, one miiight expect that, for a large design samiple
size, the performance of the resulting machine would be
somewhere between the two results obtained herein.
However, this is niot so important, since this experi-
ment was nlot meant to result in the design of a prac-
tical character recognition machine, but was rather
meanit to test certaini aspects of the theory previously
developed.

CONCLU SION

This paper has discussed the properties and designi
of a particular class of categorizer, the liinear decision
function, which is of practical interest for two reasons:

1) It cani be empirically designed without making any
assumptions whatsoever about either the distri-
bution of the receptor measurements or the a
priori probabilities of occurrence of the pattern
classes, providing an appropriate pattern source is
available.

2) Its hardware realization is quite economic.

It is not guaranteed that a linear decision function will
always performn well, although it is guaranteed that it
will perform better than (or at least as well as) the mini-
mum distance categorizer which is popular in the pres-
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Fig. 12-The test sample.

TABLE I I

Recognized As

0 9 8 7 6 5 4 3 3

0

9

8

7

Input 6
Class

5

4

3

2

1

Correct
Error
Reject

74
23
23

1 R

3

4

3

1

3

3

1

(61.6%)
(19.2%)
(19.2%)

Conftisioti matrix for the test samlple.

ent-day art. Nor is it a simiple miiatter to predict in ad-
vance whether a linear decision function has a chance of
working (this problem is discussed in Highleyman [13]).

Consequently, if one is interested in a linear decision
function type of categorizer, his best approach is ac-

tually to design the categorizer and estimate its per-
formance. If the estimated performance is good enough,
then the designer has succeeded in designing an eco-

nomic categorizer. If the performance is not good
enough, the designer has two choices:

9
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PROCEEDINGS OF THE IRJE

1) Search for a better set of measurements, a set
which is more invariant to the natural perturba-

-tions of patterns contained within a class (the
results of the experiment on hand-printing illus-
trate the importance of invariant mneasuremlenits);
or

2) go to a different type (usually a more complicated
type) of categorizer.

One area which has not been discussed in this paper
is the problem of minimizing a linear decision function.
It often happens that not all of the hyperplanes are
needed, i.e., some may fall outside of the convex regions
determined by the others. The linear decision function
may also be used to detect redundancy in the measure-
ments. This problem is discussed further in Highleyman
[12], where it is experimentally shown that the linear
decision function for the hand-printing case discussed
herein may be reduced from 144 measurements and 45
boundaries to 110 measurements and 39 boundaries.
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