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Abstract

We present the Natural Questions corpus, a

question answering dataset. Questions con-

sist of real anonymized, aggregated queries

issued to the Google search engine. An an-

notator is presented with a question along

with a Wikipedia page from the top 5 search

results, and annotates a long answer (typi-

cally a paragraph) and a short answer (one

or more entities) if present on the page,

or marks null if no long/short answer is

present. The public release consists of

307,373 training examples with single an-

notations; 7,830 examples with 5-way an-

notations for development data; and a fur-

ther 7,842 examples 5-way annotated se-

questered as test data. We present experi-

ments validating quality of the data. We also

describe analysis of 25-way annotations on

302 examples, giving insights into human

variability on the annotation task. We intro-

duce robust metrics for the purposes of eval-

uating question answering systems; demon-

strate high human upper bounds on these

metrics; and establish baseline results using

competitive methods drawn from related lit-

erature.

1 Introduction

In recent years there has been dramatic progress in

machine learning approaches to problems such as

machine translation, speech recognition, and im-

age recognition. One major factor in these suc-

cesses has been the development of neural meth-

ods that far exceed the performance of previous
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approaches. A second major factor has been the

existence of large quantities of training data for

these systems.

Open-domain question answering (QA) is a

benchmark task in natural language understand-

ing (NLU), which has significant utility to users,

and in addition is potentially a challenge task that

can drive the development of methods for NLU.

Several pieces of recent work have introduced QA

datasets (e.g. Rajpurkar et al. (2016), Reddy et al.

(2018)). However, in contrast to tasks where it

is relatively easy to gather naturally occurring ex-

amples,1 the definition of a suitable QA task, and

the development of a methodology for annotation

and evaluation, is challenging. Key issues include

the methods and sources used to obtain questions;

the methods used to annotate and collect answers;

the methods used to measure and ensure annota-

tion quality; and the metrics used for evaluation.

For more discussion of the limitations of previous

work with respect to these issues, see section 2 of

this paper.

This paper introduces Natural Questions2 (NQ),

a new dataset for QA research, along with methods

for QA system evaluation. Our goals are three-

fold: 1) To provide large-scale end-to-end train-

ing data for the QA problem. 2) To provide a

dataset that drives research in natural language un-

derstanding. 3) To study human performance in

providing QA annotations for naturally occurring

questions.

In brief, our annotation process is as fol-

lows. An annotator is presented with a (ques-

tion, Wikipedia page) pair. The annotator returns

a (long answer, short answer) pair. The long an-

1For example for machine translation/speech recognition

humans provide translations/transcriptions relatively easily.
2Available at: https://ai.google.com/research/NaturalQuestions.



swer (l) can be an HTML bounding box on the

Wikipedia page—typically a paragraph or table—

that contains the information required to answer

the question. Alternatively, the annotator can re-

turn l = NULL if there is no answer on the page, or

if the information required to answer the question

is spread across many paragraphs. The short an-

swer (s) can be a span or set of spans (typically en-

tities) within l that answer the question, a boolean

‘yes’ or ‘no’ answer, or NULL. If l = NULL then

s = NULL, necessarily. Figure 1 shows examples.

Natural Questions has the following properties:

Source of questions The questions consist of

real anonymized, aggregated queries issued to the

Google search engine. Simple heuristics are used

to filter questions from the query stream. Thus the

questions are “natural”, in that they represent real

queries from people seeking information.

Number of items The public release contains

307,373 training examples with single annota-

tions, 7,830 examples with 5-way annotations for

development data, and 7,842 5-way annotated

items sequestered as test data. We justify the use

of 5-way annotation for evaluation in Section 5.

Task definition The input to a model is a ques-

tion together with an entire Wikipedia page. The

target output from the model is: 1) a long-answer

(e.g., a paragraph) from the page that answers the

question, or alternatively an indication that there

is no answer on the page; 2) a short answer where

applicable. The task was designed to be close to

an end-to-end question answering application.

Ensuring high quality annotations at scale

Comprehensive guidelines were developed for the

task. These are summarized in Section 3. Annota-

tion quality was constantly monitored.

Evaluation of quality Section 4 describes post-

hoc evaluation of annotation quality. Long/short

answers have 90%/84% precision respectively.

Study of variability One clear finding in NQ is

that for naturally occurring questions there is often

genuine ambiguity in whether or not an answer is

acceptable. There are also often a number of ac-

ceptable answers. Section 4 examines this vari-

ability using 25-way annotations.

Robust evaluation metrics Section 5 intro-

duces methods of measuring answer quality that

accounts for variability in acceptable answers. We

demonstrate a high human upper bound on these

measures for both long answers (90% precision,

Example 1

Question: what color was john wilkes booth’s hair

Wikipedia Page: John Wilkes Booth

Long answer: Some critics called Booth “the handsomest man

in America” and a “natural genius”, and noted his having an “as-

tonishing memory”; others were mixed in their estimation of his

acting. He stood 5 feet 8 inches (1.73 m) tall, had jet-black hair

, and was lean and athletic. Noted Civil War reporter George Al-

fred Townsend described him as a “muscular, perfect man” with

“curling hair, like a Corinthian capital”.

Short answer: jet-black

Example 2

Question: can you make and receive calls in airplane mode

Wikipedia Page: Airplane mode

Long answer: Airplane mode, aeroplane mode, flight mode,

offline mode, or standalone mode is a setting available on many

smartphones, portable computers, and other electronic devices that,

when activated, suspends radio-frequency signal transmission by

the device, thereby disabling Bluetooth, telephony, and Wi-Fi.

GPS may or may not be disabled, because it does not involve trans-

mitting radio waves.

Short answer: BOOLEAN:NO

Example 3

Question: why does queen elizabeth sign her name elizabeth r

Wikipedia Page: Royal sign-manual

Long answer: The royal sign-manual usually consists of the

sovereign’s regnal name (without number, if otherwise used), fol-

lowed by the letter R for Rex (King) or Regina (Queen). Thus, the

signs-manual of both Elizabeth I and Elizabeth II read Elizabeth

R. When the British monarch was also Emperor or Empress of In-

dia, the sign manual ended with R I, for Rex Imperator or Regina

Imperatrix (King-Emperor/Queen-Empress).

Short answer: NULL

Figure 1: Example annotations from the corpus.

85% recall), and short answers (79% precision,

72% recall).

We propose NQ as a new benchmark for re-

search in question answering. In Section 6.4 we

present baseline results from recent models devel-

oped on comparable datasets (Clark and Gardner,

2018), as well as a simple pipelined model de-

signed for the NQ task. We demonstrate a large gap

between the performance of these baselines and a

human upper bound. We argue that closing this

gap will require significant advances in NLU.

2 Related Work

The SQuAD (Rajpurkar et al., 2016), SQuAD

2.0 (Rajpurkar et al., 2018), NarrativeQA (Ko-

cisky et al., 2018), and HotpotQA (Yang et al.,

2018) datasets contain questions and answers writ-

ten by annotators who have first read a short

text containing the answer. The SQuAD datasets

contain questions/paragraph/answer triples from

Wikipedia. In the original SQuAD dataset, anno-

tators often borrow part of the evidence paragraph

to create a question. Jia and Liang (2017) showed

that systems trained on SQuAD could be easily



fooled by the insertion of distractor sentences that

should not change the answer, and SQuAD 2.0 in-

troduces questions that are designed to be unan-

swerable. However, we argue that questions writ-

ten to be unanswerable can be identified as such

with little reasoning, in contrast to NQ’s task of

deciding whether a paragraph contains all of the

evidence required to answer a real question. Both

SQuAD tasks have driven significant advances in

reading comprehension, but systems now outper-

form humans and harder challenges are needed.

NarrativeQA aims to elicit questions that are not

close paraphrases of the evidence by separate sum-

mary texts. No human performance upper bound

is provided for the full task and, while an extrac-

tive system could theoretically perfectly recover

all answers, current approaches only just outper-

form a random baseline. NarrativeQA may just be

too hard for the current state of NLU. HotpotQA

is designed to contain questions that require rea-

soning over text from separate Wikipedia pages.

As well as answering questions, systems must also

identify passages that contain supporting facts.

This is similar in motivation to NQ’s long answer

task, where the selected passage must contain all

of the information required to infer the answer.

Mirroring our identification of acceptable vari-

ability in the NQ task definition, HotpotQA’s au-

thors observe that the choice of supporting facts is

somewhat subjective. They set high human upper

bounds by selecting, for each example, the score

maximizing partition of four annotations into one

prediction and three references. The reference la-

bels chosen by this maximization are not represen-

tative of the reference labels in HotpotQA’s evalu-

ation set, and it is not clear that the upper bounds

are achievable. A more robust approach is to keep

the evaluation distribution fixed, and calculate an

acheivable upper bound by approximating the ex-

pectation over annotations—as we have done for

NQ in Section 5.

The QuAC (Choi et al., 2018) and CoQA

(Reddy et al., 2018) datasets contain dialogues be-

tween a questioner, who is trying to learn about

a text, and an answerer. QuAC also prevents the

questioner from seeing the evidence text. Con-

versational question answering is an exciting new

area, but it is significantly different from the single

turn question answering task in NQ. In both QuAC

and CoQA, conversations tend to explore evidence

texts incrementally, progressing from the start to

the end of the text. This contrasts with NQ, where

individual questions often require reasoning over

large bodies of text.

The WikiQA (Yang et al., 2015) and MS Marco

(Nguyen et al., 2016) datasets contain queries

sampled from the Bing search engine. WikiQA

contains only 3,047 questions. MS Marco con-

tains 100,000 questions with free-form answers.

For each question, the annotator is presented with

10 passages returned by the search engine, and is

asked to generate an answer to the query, or to say

that the answer is not contained within the pas-

sages. Free-form text answers allow more flexi-

bility in providing abstractive answers, but lead to

difficulties in evaluation (BLEU score (Papineni

et al., 2002) is used). MS Marco’s authors do

not discuss issues of variability or report qual-

ity metrics for their annotations. From our ex-

perience these issues are critical. DuReader (He

et al., 2018) is a Chinese language dataset con-

taining queries from Baidu search logs. Like NQ,

DuReader contains real user queries; it requires

systems to read entire documents to find answers;

and it identifies acceptable variability in answers.

However, as with MS Marco, DuReader is reliant

on BLEU for answer scoring, and systems already

out-perform a humans according to this metric.

There are a number of reading comprehension

benchmarks based on multiple choice tests (Mi-

haylov et al., 2018; Richardson et al., 2013; Lai

et al., 2017). The TriviaQA dataset (Joshi et al.,

2017) contains questions and answers taken from

trivia quizzes found online. A number of Cloze-

style tasks have also been proposed (Hermann

et al., 2015; Hill et al., 2015; Paperno et al., 2016;

Onishi et al., 2016). We believe that all of these

tasks are related to, but distinct from, answering

information seeking questions. We also believe

that, since a solution to NQ will have genuine util-

ity, it is better equipped as a benchmark for NLU.

3 Task Definition and Data Collection

Natural Questions contains (question, wikipedia

page, long answer, short answer) quadruples

where: the question seeks factual information; the

Wikipedia page may or may not contain the infor-

mation required to answer the question; the long

answer is a bounding box on this page contain-

ing all information required to infer the answer;

and the short answer is one or more entities that

give a short answer to the question, or a boolean



1.a where does the nature conservancy get its funding

1.b who is the song killing me softly written about

2 who owned most of the railroads in the 1800s

4 how far is chardon ohio from cleveland ohio

5 american comedian on have i got news for you

Table 1: Matches for heuristics in Section 3.1.

‘yes’ or ‘no’. Both the long and short answer

can be NULL if no viable candidates exist on the

Wikipedia page.

3.1 Questions and Evidence Documents

All the questions in NQ are queries of 8 words or

more that have been issued to the Google search

engine by multiple users in a short period of time.

From these queries, we sample a subset that either:

1. start with ‘who’, ‘when’, or ‘where’ directly

followed by: a) a finite form of ‘do’ or a modal

verb; or b) a finite form of ‘be’ or ‘have’ with

a verb in some later position;

2. start with ‘who’ directly followed by a verb

that is not a finite form of ‘be’;

3. contain multiple entities as well as an adjec-

tive, adverb, verb, or determiner;

4. contain a categorical noun phrase immediately

preceded by a preposition or relative clause;

5. end with a categorical noun phrase, and do not

contain a preposition or relative clause.3

Table 1 gives examples. We run questions

through the Google search engine and keep those

where there is a Wikipedia page in the top 5 search

results. The (question, Wikipedia page) pairs are

the input to the human annotation task described

next.

The goal of these heuristics is to discard a large

proportion of queries that are non-questions, while

retaining the majority of queries of 8 words or

more in length that are questions. A manual in-

spection showed that the majority of questions in

the data, with the exclusion of question beginning

with “how to”, are accepted by the filters. We

focus on longer queries as they are more com-

plex, and are thus a more challenging test for deep

NLU. We focus on Wikipedia as it is a very im-

portant source of factual information, and we be-

lieve that stylistically it is similar to other sources

of factual information on the web; however like

3We pre-define the set of categorical noun phrases used

in 4 and 5 by running Hearst patterns (Hearst, 1992) to

find a broad set of hypernyms. Part of speech tags and

entities are identified using Google’s Cloud NLP API:

https://cloud.google.com/natural-language

any dataset there may be biases in this choice. Fu-

ture data-collection efforts may introduce shorter

queries, “how to” questions, or domains other than

Wikipedia.

3.2 Human Identification of Answers

Annotation is performed using a custom annota-

tion interface, by a pool of around 50 annotators,

with an average annotation time of 80 seconds.

The guidelines and tooling divide the annota-

tion task into three conceptual stages, where all

three stages are completed by a single annotator in

succession. The decision flow through these is il-

lustrated in Figure 2 and the instructions given to

annotators are summarized below.

Question Identification: contributors deter-

mine whether the given question is good or bad.

A good question is a fact-seeking question that

can be answered with an entity or explanation.

A bad question is ambigous, incomprehensible,

dependent on clear false presuppositions, opinion-

seeking, or not clearly a request for factual

information. Annotators must make this judgment

solely by the content of the question; they are not

yet shown the Wikipedia page.

Long Answer Identification: for good ques-

tions only, annotators select the earliest HTML

bounding box containing enough information for a

reader to completely infer the answer to the ques-

tion. Bounding boxes can be paragraphs, tables,

list items, or whole lists. Alternatively, annotators

mark ‘no answer’ if the page does not answer the

question, or if the information is present but not

contained in a single one of the allowed elements.

Short Answer Identification: for examples

with long answers, annotators select the entity or

set of entities within the long answer that answer

the question. Alternatively, annotators can flag

that the short answer is ‘yes’, ‘no’, or they can flag

that no short answer is possible.

3.3 Data Statistics

In total, annotators identify a long answer for

49% of the examples, and short answer spans or

a yes/no answer for 36% of the examples. We

consider the choice of whether or not to answer

a question a core part of the question answering

task, and do not discard the remaining 51% that

have no answer labeled.

Annotators identify long answers by selecting

the smallest HTML bounding box that contains all



start

Good question?

Long answer?

Yes/No answer?

Short answer?

Bad question: 14%

No answer: 37%

Yes/No answer: 1%

Short answer: 35%
Long answer only: 13%

no

yes

no

yes

yes

no

yes

no

Figure 2: Annotation decision process with path pro-

portions from NQ training data. Percentages are pro-

portions of entire dataset. 49% of all examples have a

long answer.

of the information required to answer the question.

These are mostly paragraphs (73%). The remain-

der are made up of tables (19%), table rows (1%),

lists (3%), or list items (3%).4 We leave further

subcategorization of long answers to future work,

and provide a breakdown of baseline performance

on each of these three types of answers in Sec-

tion 6.4.

4 Evaluation of Annotation Quality

This section describes evaluation of the quality of

the human annotations in our data. We use a com-

bination of two methods: first, post-hoc evaluation

of correctness of non-null answers, under consen-

sus judgments from 4 “experts”; second, k-way

annotations (with k = 25) on a subset of the data.

Post-hoc evaluation of non-null answers leads

directly to a measure of annotation precision. As

is common in information-retrieval style problems

such as long-answer identification, measuring re-

call is more challenging. However we describe

how 25-way annotated data gives useful insights

into recall, particularly when combined with ex-

pert judgments.

4We note that both tables and lists may be used purely for

the purposes of formatting text, or they may have their own

complex semantics—as in the case of Wikipedia infoboxes.

4.1 Preliminaries: the Sampling Distribution

Each item in our data consists of a four-tuple

(q, d, l, s) where q is a question, d is a document, l
is a long answer, and s is a short answer. Thus we

introduce random variables Q, D, L and S corre-

sponding to these items. Note that L can be a span

within the document, or NULL. Similarly S can be

one or more spans within L, a boolean, or NULL.

For now we consider the three-tuple (q, d, l).
The treatment for short answers is the same

throughout, with (q, d, s) replacing (q, d, l).
Each data item (q, d, l) is IID sampled from

p(l, q, d) = p(q, d)× p(l|q, d)

Here p(q, d) is the sampling distribution (probabil-

ity mass function (PMF)) over question/document

pairs. It is defined as the PMF corresponding to the

following sampling process:5 first, sample a ques-

tion at random from some distribution; second,

perform a search on a major search engine using

the question as the underlying query; finally, ei-

ther: (1) return (q, d) where d is the top Wikipedia

result for q, if d is in the top 5 search results for

q; (2) if there is no Wikipedia page in the top 5

results, discard q and repeat the sampling process.

Here p(l|q, d) is the conditional distribution

(PMF) over long answer l conditioned on the pair

(q, d). The value for l is obtained by: (1) sam-

pling an annotator uniformly at random from the

pool of annotators; (2) presenting the pair (q, d) to

the annotator, who then provides a value for l.
Note that l is non-deterministic due to two

sources of randomness: (1) the random choice of

annotator; (2) the potentially random behaviour

of a particular annotator (the annotator may give

a different answer depending on the time of day

etc.).
We will also consider the distribution

p(l, q, d|L 6= NULL) =
p(l, q, d)

P (L 6= NULL)
if l 6= NULL

= 0 otherwise

where P (L 6= NULL) =
∑

l,q,d:l 6=NULL
p(l, q, d).

Thus p(l, q, d|L 6= NULL) is the probability of see-

5More formally, there is some base distribution pb(q)
from which queries q are drawn, and a deterministic func-

tion s(q) which returns the top-ranked Wikipedia page in

the top 5 search results, or NULL if there is no Wikipedia

page in the top 5 results. Define Q to be the set of queries

such that s(q) 6= NULL, and b =
∑

q∈Q pb(q). Then

p(q, d) = pb(q)/b if q ∈ Q and d 6= NULL and d = s(q),
otherwise p(q, d) = 0.



ing the triple (l, q, d), conditioned on L not being

NULL.

We now define precision of annotations. Con-

sider a function π(l, q, d) that is equal to 1 if l is a

“correct” answer for the pair (q, d), 0 if the answer

is incorrect. The next section gives a concrete def-

inition of π. The annotation precision is defined

as

Ψ =
∑

l,q,d

p(l, q, d|L 6= NULL)× π(l, q, d)

Given a set of annotations S =
{(l(i), q(i), d(i))}

|S|
i=1 drawn IID from

p(l, q, d|L 6= NULL), we can derive an esti-

mate of Ψ as Ψ̂ = 1
|S|

∑

(l,q,d)∈S π(l, q, d).

4.2 Expert Evaluations of Correctness

We now describe the process for deriving “ex-

pert” judgments of answer correctness. We used

four experts for these judgments. These experts

had prepared the guidelines for the annotation pro-

cess.6 In a first phase each of the four experts in-

dependently annotated examples for correctness.

In a second phase the four experts met to discuss

disagreements in judgments, and to reach a single

consensus judgment for each example.

A key step is to define the criteria used to de-

termine correctness of an example. Given a triple

(l, q, d), we extracted the passage l′ correspond-

ing to l on the page d. The pair (q, l′) was then

presented to the expert. Experts categorized (q, l′)
pairs into the following three categories:

Correct (C): It is clear beyond a reasonable doubt

that the answer is correct.

Correct (but debatable) (Cd): A reasonable per-

son could be satisfied by the answer; however

a reasonable person could raise a reasonable

doubt about the answer.

Wrong (W): There is not convincing evidence

that the answer is correct.

Figure 3 shows some example judgments. We

introduced the intermediate Cd category after ob-

serving that many (q, l′) pairs are high quality an-

swers, but raise some small doubt or quibble about

whether they fully answer the question. The use

of the word “debatable” is intended to be literal:

(q, l′) pairs falling into the Cd category could liter-

ally lead to some debate between reasonable peo-

ple as to whether they fully answer the question or

not.

6The first four authors of this paper.

Example 1

Question: who played will on as the world turns Long answer:

William “Will” Harold Ryan Munson is a fictional character on the

CBS soap opera As the World Turns. He was portrayed by Jesse

Soffer on recurring basis from September 2004 to March 2005,

after which he got a contract as a regular. Soffer left the show on

April 4, 2008 and made a brief return in July 2010. Judgment:

Correct. Justification: It is clear beyond a reasonable doubt that

the answer is correct.

Example 2

Question: which type of rock forms on the earth’s crust Long

answer: Igneous and metamorphic rocks make up 90-95% of

the top 16 km of the Earth’s crust by volume. Igneous rocks

form about 15% of the Earth’s current land surface. Most of

the Earth’s oceanic crust is made of igneous rock. Judgment:

Correct (but debatable). Justification: The answer goes a long

way to answering the question, but a reasonable person could raise

objections to the answer.

Example 3

Question: who was the first person to see earth from space

Long answer: Yuri Alekseyevich Gagarin was a Soviet pilot and

cosmonaut. He was the first human to journey into outer space

when his Vostok spacecraft completed an orbit of the Earth on 12

April 1961. Judgment: Correct (but debatable). Justification: It

is likely that Gagarin was the first person to see earth from space,

but not guaranteed. For example it is not certain that “space” and

“outer space” are the same, or that there was a window in Vostok.

Figure 3: Examples with consensus expert judgments, and

justification for these judgments. See figure 6 for more ex-

amples.

Given this background, we will make the fol-

lowing assumption:

Answers in the Cd category should be very useful

to a user interacting with a question-answering

system, and should be considered to be high-

quality answers; however an annotator would be

justified in either annotating or not annotating the

example.

For these cases there is often disagreement be-

tween annotators as to whether the page contains

an answer or not: we will see evidence of this

when we consider the 25-way annotations.

4.3 Results for Precision Measurements

We followed the following procedure to derive

measurements of precision: (1) We sampled ex-

amples IID from the distribution p(l, q, d|L 6=
NULL). We call this set S . We had |S| = 139.

(2) Four experts independently classified each of

the items in S into the categories C, Cd, W . (3)

The four experts met to come up with a consen-

sus judgment for each item. For each example

(l(i), q(i), d(i)) ∈ S , we define c(i) to be the con-

sensus judgment. The above process was repeated

to derive judgments for short answers.

We can then calculate the percentage of exam-



Quantity Long answer Short answer

Ψ̂ 90% 84%

Ê(C) 59% 51%

Ê(Cd) 31% 33%

Ê(W) 10% 16%

Table 2: Precision results (Ψ̂) and empirical estimates

of the proportions of C, Cd, and W items.

ples falling into the three expert categories; we de-

note these values as Ê(C), Ê(Cd) and Ê(W).7 We

define Ψ̂ = Ê(C) + Ê(Cd). We have explicitly in-

cluded samples C and Cd in the overall precision as

we believe that Cd answers are essentially correct.

Table 2 shows the values for these quantities.

4.4 Variability of Annotations

We have shown that an annotation drawn from

p(l, q, d|L 6= NULL) has high expected precision.

Now we address the distribution over annotations

for a given (q, d) pair. Annotators can disagree

about whether or not d contains an answer to q—

that is whether or not L = NULL. In the case that

annotators agree that L 6= NULL, they can also dis-

agree about the correct assignment to L.

In order to study variability, we collected

24 additional annotations from separate annota-

tors for each of the (q, d, l) triples in S . For

each (q, d, l) triple, we now have a 5-tuple

(q(i), d(i), l(i), c(i), a(i)) where a(i) = a
(i)
1 . . . a

(i)
25

is a vector of 25 annotations (including l(i)), and

c(i) is the consensus judgment for l(i). For each i
also define

µ(i) =
1

25

25
∑

j=1

[[a
(i)
j 6= NULL]]

to be the proportion of the 25-way annotations that

are non-null.

We now show that µ(i) is highly correlated with

annotation precision. We define

Ê[(0.8, 1.0]] =
1

|S|

|S|
∑

i=1

[[0.8 < µ(i) ≤ 1]]

to be the proportion of examples with greater than
80% of the 25 annotators marking a non-null long
answer, and

Ê[(0.8, 1.0], C] =
1

|S|

|S|
∑

i=1

[[0.8 < µ(i) ≤ 1 and c(i) = C]]

7More formally, let [[e]] for any statement e be 1 if e is

true, 0 if e is false. We define Ê(C) = 1
|S|

∑|S|
i=1[[c

(i) = C]].

The values for Ê(Cd) and Ê(W) are calculated in a similar

way.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6 C
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W
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Figure 4: Values of Ê[(θ1, θ2]] and

Ê[(θ1, θ2], C/Cd/W] for different intervals (θ1, θ2].
The height of each bar is equal to Ê[(θ1, θ2]],
the divisions within each bar show Ê[(θ1, θ2], C],
Ê[(θ1, θ2], Cd], and Ê[(θ1, θ2],W].

to be the proportion of examples with greater than

80% of the 25 annotators marking a non-null long

answer and with c(i) = C. Similar definitions ap-

ply for the intervals (0, 0.2], (0.2, 0.4], (0.4, 0.6]
and (0.6, 0.8], and for judgments Cd and W .

Figure 4 illustrates the proportion of annota-

tions falling into the C/Cd/W categories in differ-

ent regions of µ(i). For those (q, d) pairs where

more than 80% of annotators gave some non-null

answer, our expert judgements agree that these an-

notations are overwhelmingly correct. Similarly,

when fewer than 20% of annotators gave a non-

null answer, these answers tend to be incorrect. In

between these two extremes, the disagreement be-

tween annotators is largely accounted for by the

Cd category—where a reasonable person could ei-

ther be satisfied with the answer, or want more in-

formation. Later, in Section 5, we make use of

the correlation between µ(i) and accuracy to de-

fine a metric for the evaluation of answer quality.

In that section, we also show that a model trained

on (l, q, d) triples can outperform a single annota-

tor on this metric by accounting for the uncertainty

of whether or not an answer is present.

As well as disagreeing about whether (q, d)
contains a valid answer, annotators can disagree

about the location of the best answer. In many

cases there are multiple valid long answers in mul-

tiple distinct locations on the page.8 The most ex-

treme example of this that we see in our 25-way

annotated data is for the question ‘name the sub-

stance used to make the filament of bulb’ paired

with the Wikipedia page about incandescent light

bulbs. Annotators identify 7 passages that discuss

8As stated earlier in this paper, we did instruct annotators

to select the earliest instance of an answer when there are

multiple answer instances on the page. However there are

still cases where different annotators disagree on whether an

answer earlier in the page is sufficient in comparison to a later

answer, leading to differences between annotators.



tungsten wire filaments.

Short answers can be arbitrarily delimited and

this can lead to extreme variation. The most ex-

treme example of this that we see in the 25-way

annotated data is the 11 distinct, but correct, an-

swers for the question ‘where is blood pumped af-

ter it leaves the right ventricle’. Here, 14 annota-

tors identify a substring of ‘to the lungs’ as the best

possible short answer. Of these, 6 label the en-

tire string, 4 reduce it to ‘the lungs’, and 4 reduce

it to ‘lungs’. A further 6 annotators do not con-

sider this short answer to be sufficient and choose

more precise phrases such as ‘through the semilu-

nar pulmonary valve into the left and right main

pulmonary arteries (one for each lung)’. The re-

maining 5 annotators decide that there is no ade-

quate short answer.

For each question, we ranked each of the unique

answers given by our 25 annotators according to

the number of annotators that chose it. We found

that by just taking the most popular long answer,

we could account for 83% of the long answer an-

notations. The two most popular long answers ac-

count for 96% of the long answer annotations. It is

extremely uncommon for a question to have more

than three distinct long answers annotated. Short

answers have greater variability, but the most pop-

ular short answer still accounts for 64% of all short

answer annotations. The three most popular short

answers account for 90% of all short answer anno-

tations.

5 Evaluation Measures

NQ includes 5-way annotations on 7,830 items for

development data, and we will sequester a fur-

ther 7,842 items, 5-way annotated, for test data.

This section describes evaluation metrics using

this data, and gives justification for these metrics.

We choose 5-way annotations for the following

reasons: first, we have evidence that aggregating

annotations from 5 annotators is likely to be much

more robust than relying on a single annotator (see

Section 4). Second, 5 annotators is a small enough

number that the cost of annotating thousands of

development and test items is not prohibitive.

5.1 Definition of an Evaluation Measure

Based on 5-Way Annotations

Assume that we have a model fθ with parame-

ters θ which maps an input (q, d) to a long answer

l = fθ(q, d). We would like to evaluate the ac-

curacy of this model. Assume we have evaluation

examples {q(i), d(i), a(i)} for i = 1 . . . n, where

q(i) is a question, d(i) is the associated Wikipedia

document, and a(i) is a vector with components

a
(i)
j for j = 1 . . . 5. Each a

(i)
j is the output from

the j’th annotator, and can be a paragraph in d(i),
or can be NULL. The 5 annotators are chosen uni-

formly at random from a pool of annotators.

We define an evaluation measure based on the

5 way annotations as follows. If at least 2 out of

5 annotators have given a non-null long answer on

the example, then the system is required to output

a non-null answer that is seen at least once in the 5

annotations; conversely if fewer than 2 annotators

give a non-null long answer, the system is required

to return NULL as its output.

To make this more formal, define the function

g(a(i)) to be the number of annotations in a(i)

that are non-null. Define a function hβ(a, l) that

judges the correctness of label l given annotations

a = a1 . . . a5. This function is parameterized by

an integer β. The function returns 1 if the label l
is judged to be correct, and 0 otherwise:

Definition 1 (Definition of hβ(a, l)) If g(a) ≥ β
and l 6= NULL and l = aj for some j ∈ {1 . . . 5}
Then hβ(a, l) = 1; Else If g(a) < β and l =
NULL Then hβ(a, l) = 1; Else hβ(a, l) = 0.

We used β = 2 in our experiments.9

The accuracy of a model is then

Aβ(fθ) =
1

n

n
∑

i=1

hβ(a
(i), fθ(q

(i), d(i)))

The value for Aβ is an estimate of accuracy

with respect to the underlying distribution, which

we define as Āβ(fθ) = E[hβ(a, fθ(q, d))].
Here the expectation is taken with respect

to p(a, q, d) = p(q, d)
∏5

j=1 p(aj |q, d) where

p(aj |q, d) = P (L = aj |Q = q,D = d); hence

the annotations a1 . . . a5 are assumed to be drawn

IID from p(l|q, d).10

We discuss this measure at length in this sec-

tion. First, however, we make the following criti-

cal point:

9This is partly motivated through the results on 25-way

annotations (see section 4.4), where for µ(i) ≥ 0.4 over 93%

(114/122 annotations) are in the C or Cd categories, whereas

for µ(i) < 0.4 over 35% (11/17 annotations) are in the W
category.

10This isn’t quite accurate as the annotators are sampled

without replacement; however it simplifies the analysis.



It is possible for a model trained on (l(i), q(i), d(i))
triples drawn IID from p(l, q, d) to exceed the per-

formance of a single annotator on this measure.

In particular, if we have a model p(l|q, d; θ),
trained on (l, q, d) triples, which is a good ap-

proximation to p(l|q, d), it is then possible to use

p(l|q, d; θ) to make predictions that outperform a

single random draw from p(l|q, d). The Bayes op-

timal hypothesis (see (Devroye et al., 1997)) for

hβ , defined as argmaxf Eq,d,a[[hβ(a, f(q, d))]] is

a function of the posterior distribution p(·|q, d),11

and will generally exceed the performance of a

single random annotation, Eq,d,a[[
∑

l p(l|q, d) ×
hβ(a, l)]].

We also show this empirically, by constructing

an approximation to p(l|q, d) from 20-way annota-

tions, then using this approximation to make pre-

dictions that significantly outperform a single an-

notator.

Precision and Recall During evaluation, it is of-

ten beneficial to separately measure false positives

(incorrectly predicting an answer), and false neg-

atives (failing to predict a answer). We define the

precision (P ) and recall (R) of fθ:

t(q, d, a, fθ) = hβ(a, fθ(q, d))[[fθ(q, d) 6= NULL]]

R(fθ) =

∑n
i=1 t(q

(i), d(i), a(i), fθ)
∑n

i=1[[g(a
(i) ≥ β]]

P (fθ) =

∑n
i=1 t(q

(i), d(i), a(i), fθ)
∑n

i=1[[fθ(q
(i), d(i)) 6= NULL]]

5.2 Super-Annotator Upper Bound

To place an upper bound on the metrics intro-

duced above we create a ‘super-annotator’ from

the 25-way annotated data introduced in Sec-

tion 4. From this data, we create four tu-

11Specifically, for an input (q, d), if we define l∗ =
argmaxl 6=NULL p(l|q, d), γ = p(l∗|q, d), and γ̄ =
p(NULL|q, d), then the Bayes optimal hypothesis is to output

l∗ if P (hβ(a, l
∗) = 1|γ, γ̄) ≥ P (hβ(a, NULL) = 1|γ, γ̄),

and to output NULL otherwise. Implementation of this strat-

egy is straightforward if γ and γ̄ are known; this strategy

will in general give a higher accuracy value than taking a sin-

gle sample l from p(l|q, d) and using this sample as the pre-

diction. In principle a model p(l|q, d; θ) trained on (l, q, d)
triples can converge to a good estimate of γ and γ̄. Note that

for the special case γ + γ̄ = 1 we have P (hβ(a, NULL) =
1|γ, γ̄) = γ̄5 + 5γ̄4(1 − γ̄) and P (hβ(a, l

∗) = 1|γ, γ̄) =
1−P (hβ(a, NULL) = 1|γ, γ̄). It follows that the Bayes opti-

mal hypothesis is to predict l∗ if γ ≥ α where α ≈ 0.31381,

and to predict NULL otherwise. α is 1 − ᾱ where ᾱ is the

solution to ᾱ5 + 5ᾱ4(1− ᾱ) = 0.5.

ples (q(i), d(i), a(i), b(i)). The first three terms in

this tuple are the question, document, and vec-

tor of 5 reference annotations. b(i) is a vec-

tor of annotations b
(i)
j for j = 1 . . . 20 drawn

from the same distribution as a(i). The super-

annotator predicts NULL if g(b(i)) < α, and l∗ =
argmaxl∈d

∑20
j=1[[l = bj ]] otherwise.

Table 3 shows super-annotator performance for

α = 8, with 90.0% precision, 84.6% recall,

and 87.2% f-measure. This significantly ex-

ceeds the performance (80.4% precision/67.6% re-

call/73.4% f-measure) for a single annotator. We

subsequently view the super-annotator numbers

as an effective upper bound on performance of a

learned model.

6 Baseline Performance

The Natural Questions corpus is designed to pro-

vide a benchmark with which we can evaluate the

performance of question answering systems. Ev-

ery question in NQ is unique under exact string

match, and we split questions randomly in NQ into

separate train/development/test sets. To facili-

tate comparison, we introduce baselines that ei-

ther make use of high level dataset regularities, or

are trained on the 307k examples in the training

set. Here, we present well-established baselines

that were state of the art at the time of submis-

sion. We also refer readers to Alberti et al. (2019)

for more recent advances in modeling. All of our

baselines focus on the long and short answer ex-

traction tasks. We leave boolean answers to future

work.

6.1 Untrained Baselines

NQ’s long answer selection task admits several

untrained baselines. The first paragraph of a

Wikipedia page commonly acts as a summary

of the most important information regarding the

page’s subject. We therefore implement a long

answer baseline that simply selects the first para-

graph for all pages.

Furthermore, since 79% of the Wikipedia pages

in the development set also appear in the training

set, we implement two ‘copying’ baselines. The

first of these simply selects the most frequent an-

notation applied to a given page in the training set.

The second selects the annotation given to the train

set question closest to the eval set question ac-

cording to TFIDF weighted word overlap. These

three baselines are reported as ‘First paragraph’,



Long answer Dev Long answer Test Short answer Dev Short answer Test

P R F1 P R F1 P R F1 P R F1

First paragraph 22.2 37.8 27.8 22.3 38.5 28.3 – – – – – –

Most frequent 43.1 20.0 27.3 40.2 18.4 25.2 – – – – – –

Closest question 37.7 28.5 32.4 36.2 27.8 31.4 – – – – – –

DocumentQA 47.5 44.7 46.1 48.9 43.3 45.7 38.6 33.2 35.7 40.6 31.0 35.1

DecAtt + DocReader 52.7 57.0 54.8 54.3 55.7 55.0 34.3 28.9 31.4 31.9 31.1 31.5

Single annotator† 80.4 67.6 73.4 – – – 63.4 52.6 57.5 – – –

Super-annotator† 90.0 84.6 87.2 – – – 79.1 72.6 75.7 – – –

Table 3: Precision (P), recall (R), and the harmonic mean of these (F1) of all baselines, a single annotator, and the

super-annotator upper bound. The human performances marked with † are evaluated on a sample of 5 annotations

from the 25-way annotated data introduced in Section 5.

‘Most frequent’, and ‘Closest question’ in Table 3

respectively.

6.2 Document-QA

We adapt the reference implementation12 of

Document-QA (Clark and Gardner, 2018) for the

NQ task. This system performs well on the

SQuAD and TriviaQA short answer extraction

tasks, but it is not designed to represent: (i) the

long answers that do not contain short answers,

and (ii) the NULL answers that occur in NQ.

To address (i) we choose the shortest available

answer span at training, differentiating long and

short answers only through the inclusion of spe-

cial start and end of passage tokens that identify

long answer candidates. At prediction time, the

model can either predict a long answer (and no

short answer), or a short answer (which implies

a long answer).

To address (ii), we tried adding special NULL

passages to represent the lack of answer. However,

we achieved better performance by training on the

subset of questions with answers and then only

predicting those answers whose scores exceed a

threshold.

With these two modifications, we are able to ap-

ply Document-QA to NQ. We follow Clark and

Gardner (2018) in pruning documents down to

the set of passages that have highest TFIDF sim-

ilarity with the question. Under this approach,

we consider the top 16 passages as long answers.

We consider short answers containing up to 17

words. We train Document-QA for 30 epochs with

batches containing 15 examples. The post-hoc

score threshold is set to 3.0. All of these values

were chosen on the basis of development set per-

12https://github.com/allenai/

document-qa

formance.

6.3 Custom Pipeline (DecAtt + DocReader)

One view of the long answer selection task is that

it is more closely related to natural language infer-

ence (NLI) (Bowman et al., 2015; Williams et al.,

2018) than short answer extraction. A valid long

answer must contain all of the information re-

quired to infer the answer. Short answers do not

need to contain this information—they need to be

surrounded by it.

Motivated by this intuition, we implement a

pipelined approach that uses a model drawn from

the NLI literature to select long answers. Then

short answers are selected from these using a

model drawn from the short answer extraction lit-

erature.

Long answer selection Let t(d, l) denote the se-

quence of tokens in d for the long answer can-

didate l. We then use the Decomposable Atten-

tion model (Parikh et al., 2016) model to pro-

duce a score for each question, candidate pair

xl = DecAtt(q, t(d, l)). To this we add a 10 di-

mensional trainable embedding rl of the long an-

swer candidate’s position in the sequence of candi-

dates13; an integer ul containing the number of the

words shared by q and t(d, l); and a scalar vl con-

taining the number of words shared by q and t(d, l)
weighted by inverse document frequency. The

long answer score zl is then given as a linear func-

tion of the above features zl = w
⊤[xl, rl, ul, vl]+b

where w
⊤ and b are the trainable weight vector

and bias respectively,

Short answer selection Given a long answer,

the Document Reader model (Chen et al., 2017),

13Specifically, we have a unique learned 10 dimensional

embedding for each position 1 . . . 19 in the sequence, and a

20th embedding used for all positions ≥ 20.



abbreviated DocReader, is used to extract short an-

swers.

Training The long answer selection model is

trained by minimizing the negative log-likelihood

of the correct answer l(i) with a hyperparameter η
that down-weights examples with the NULL label:

−

n
∑

i=1

(

log
exp(zl(i))
∑

l exp(zl)

)

× (1− η[[l(i) = NULL]])

We found that the inclusion of η is useful in ac-

counting for the asymmetry in labels—since a

NULL label is less informative than an answer lo-

cation. Varying η also seems to provide a more

stable method of setting a model’s precision point

than post-hoc thresholding of prediction scores.

An analogous strategy is used for the short answer

model where examples with no entity answers are

given a different weight.

6.4 Results

Table 3 shows results for all baselines as well as

a single annotator, and the super-annotator intro-

duced in Section 5. It is clear that there is a

great deal of headroom in both tasks. We find that

Document-QA performs significantly worse than

DecAtt+DocReader in long answer identification.

This is likely due to the fact that Document-QA

was designed for the short answer task only.

To ground these results in the context of compa-

rable tasks, we measure performance on the subset

of NQ that has non NULL labels for both long and

short answers. Freed from the decision of whether

or not to answer, DecAtt+DocReader gets 68.0%

F1 on the long answer task, and 40.4% F1 on the

short answer task. We also examine performance

of the short answer extraction systems in the set-

ting where the long answer is given, and a short

answer is known to exist. With this simplification,

short answer F1 increases 57.7% for DocReader.

Under this restriction NQ roughly approximates

the SQuAD 1.1 task. From the gap to the super-

annotator upper bound we know that this task is

far from being solved in NQ.

Finally, we break the long answer identification

results down according to long answer type. From

Table 3 we know that DecAtt+DocReader predicts

long answers with 54.8% F1. If we only measure

performance on examples that should have a para-

graph long answer, this increases to 65.1%. For

tables and table rows it is 66.4%. And for lists

and list items it is 32.0%. All other examples have

a NULL label. Clearly, the model is struggling to

learn some aspect of list formatted data from the

6% of the non NULL examples that have this type.

7 Conclusion

We argue that progress on question answering has

been hindered by a lack of appropriate training and

test data. To address this, we present the Natural

Questions corpus. This is the first large publicly

available dataset to pair real user queries with high

quality annotations of answers in documents. We

also present metrics to be used with NQ, for the

purposes of evaluating the performance of ques-

tion answering systems. We demonstrate a high

upper bound on these metrics and show that ex-

isting methods do not approach this upper bound.

We argue that for them to do so will require sig-

nificant advances in NLU. Figure 5 shows exam-

ple questions from the dataset. Figure 6 shows ex-

ample question/answer pairs from the dataset, to-

gether with expert judgments and statistics from

the 25-way annotations.



when are hops added to the brewing process what does the word china mean in chinese

when will the white house christmas tree be lit what is the meaning of sator in latin

who lives in the imperial palace in tokyo how old was demi lovato when she did camp rock

when does season 15 of ncis come out what did dorothy ask the wizard of oz

where does the last name hogan come from how many episodes in season 2 breaking bad

how many parts of 50 shades of grey are there systemic lupus erythematosus is a condition that sometimes

when does the second season of shooter start who is the author of the book arabian nights

where is blood pumped after it leaves the right ventricle where is the bowling hall of fame located

who owns the rights to through the keyhole what happens when you eat a banana and drink soda

when did the us military start hiring civilian employees who played will on as the world turns

who won the election for mayor of cleveland when did the soviet union entered world war ii

where is the world s largest ice sheet located today who wrote the song then you can tell me goodbye

meaning of the cats in the cradle song who was married to steve mcdonald in coronation street

where do dust storms occur in the us who is the voice of tony the tiger

when did the watts riot start and end what was a key government influence on the constitution of japan

when did kendrick lamars first album come out who sings now you re just somebody i used to know

where does the energy in a nuclear explosion come from where did union pacific and central pacific meet

Figure 5: Examples from the questions with 25-way annotations.

Example A1 Question: when are hops added to the brewing process Wikipedia Page: Brewing

Long answer: (Cd) After mashing, the beer wort is boiled with hops (and other flavourings if used) in a large tank known as a “copper”

or brew kettle, though historically the mash vessel was used and is still in some small breweries. The boiling process is where chemical

reactions take place, including sterilization of the wort to remove unwanted bacteria, releasing of hop flavours, bitterness and aroma

compounds through isomerization, stopping of enzymatic processes, precipitation of proteins, and concentration of the wort. Finally,

the vapours produced during the boil volatilise off-flavours, including dimethyl sulfide precursors. The boil is conducted so that it is

even and intensea continuous “rolling boil”. The boil on average lasts between 45 and 90 minutes, depending on its intensity, the hop

addition schedule, and volume of water the brewer expects to evaporate. At the end of the boil, solid particles in the hopped wort are

separated out, usually in a vessel called a “whirlpool”. Short answer: (Cd) The boiling process Long answer stats: 13/25, 4/25;

Short answer stats: 5/25, 1/25

Example A2 Question: what does the word china mean in chinese Wikipedia Page: Names of China

Long answer: (Cd) The names of China include the many contemporary and historical appellations given in various languages for

the East Asian country known as Zhongguo (/) in its official language. China, the name in English for the country, was derived from

Portuguese in the 16th century, and became popular in the mid 19th century. It is believed to be a borrowing from Middle Persian,

and some have traced it further back to Sanskrit. It is also generally thought that the state of Qin that later formed the Qin dynasty is

the ultimate source of the name, although there are other suggestions. Short answer: NULL Long answer stats: 6/25, 3/25; Short

answer stats: 3/25, 22/25

Example A3 Question: who lives in the imperial palace in tokyo Wikipedia Page: Tokyo Imperial Palace

Long answer: (C) The Tokyo Imperial Palace (, Kkyo, literally “Imperial Residence”) is the primary residence of the Emperor of

Japan. It is a large park-like area located in the Chiyoda ward of Tokyo and contains buildings including the main palace (, Kyden), the

private residences of the Imperial Family, an archive, museums and administrative offices. Short answer: (C) The Imperial Family

Long answer stats: 23/25, 21/25; Short answer stats: 22/25, 3/25

Example A4 Question: what did dorothy ask the wizard of oz Wikipedia Page: The Wonderful Wizard of Oz

Long answer: (W) Dorothy is a young girl who lives with her Aunt Em and Uncle Henry and her little dog Toto on a farm in the

Kansas prairie. One day, Dorothy and Toto are caught up in a cyclone that deposits her farmhouse into Munchkin Country in the

magical Land of Oz. The falling house has killed the Wicked Witch of the East, the evil ruler of the Munchkins. The Good Witch of the

North arrives with three grateful Munchkins and gives Dorothy the magical Silver Shoes that once belonged to the Wicked Witch. The

Good Witch tells Dorothy that the only way she can return home is to go to the Emerald City and ask the great and powerful Wizard

of Oz to help her. As Dorothy embarks on her journey, the Good Witch of the North kisses her on the forehead, giving her magical

protection from harm. Short answer: (W) only way she can return home is to go to the Emerald City and ask the great and powerful

Wizard of Oz to help her Long answer stats: 9/25, 6/25; Short answer stats: 4/25, 1/25

Figure 6: Answer annotations for 4 examples from figure 5 that have long answers that are paragraphs (i.e., not

tables or lists). We show the expert judgment (C/Cd/W) for each non-null answer. “Long answer stats” a/25,

b/25 have a = number of non-null long answers for this question, b = number of long answers the same as that

shown in the figure. For example for question A1, 13 out of 25 annotators give some non-null answer, and 4 out of

25 annotators give the same long answer After mashing . . .. “Short answer stats” has similar statistics for short

answers.
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