
Recent Developments in the
Evolution of Morphologies and
Controllers for Physically
Simulated Creatures¤

Tim Taylor
International Centre for

Computer Games and
Virtual Entertainment
(IC CAVE)

University of Abertay Dundee
Bell Street
Dundee DD1 1HG U.K.
http://www.iccave.com
http://www.abertay-

dundee.ac.uk
tim.taylor@abertay.ac.uk

Colm Massey
Department of Zoology
Oxford University
South Parks Road
Oxford OX1 3PS U.K.
colm.massey@zoo.ox.ac.uk

Keywords
morphological evolution, brain–body
evolution, virtual creature evolution,
physics engine

Abstract Karl Sims’ work [25, 26] on evolving body shapes
and controllers for three-dimensional , physically simulated
creatures generated wide interest on its publication in 1994.
The purpose of this article is threefold: (a) to highlight a
spate of recent work by a number of researchers in
replicating, and in some cases extending, Sims’ results using
standard PCs (Sims’ original work was done on a Connection
Machine CM-5 parallel computer). In particular, a
re-implementation of Sims’ work by the authors will be
described and discussed; (b) to illustrate how off-the-shelf
physics engines can be used in this sort of work, and also to
highlight some de�ciencies of these engines and pitfalls
when using them; and (c) to indicate how these recent
studies stand in respect to Sims’ original work.

1 Introduction

There can be few readers of this journal who are unaware of Karl Sims’ captivating
work in evolving virtual creatures in a three-dimensional physically simulated environ-
ment [25, 26]. Sims’ work was published in 1994, yet despite the considerable interest
it generated (and indeed continues to generate) in the arti�cial life, graphics, and an-
imation communities, it is remarkable how little work has been published since then
on replicating and extending his results.

There has been a reasonable amount of work on the evolution of controllers for
physically modeled creatures with �xed or parameterized morphologies [1, 5, 11, 13,
18, 23, 24, 28], along with studies employing other adaptive techniques to automate
the generation of controllers for �xed morphology creatures [27]. There have also been
a number of studies of various kinds of developmental scheme for the evolution of
morphology alone (i.e., without controllers) [6, 8, 10]. However, few studies have
followed Sims’ lead in evolving both the creature’s morphology (body shape) and its
controller. Dellaert and Beer studied the development of morphology and controllers
for simple agents in discrete, two-dimensional grid worlds [7]. Ventrella has published
a series of papers describing ongoing experiments on the evolution of morphology
and controllers for creatures in continuous, physically modeled environments [29–32].
However, his interest in the ecology and coevolution of large populations of creatures
has dictated the use of somewhat simpler morphologies and controllers than those used
by Sims, and a simpli�ed physical environment (e.g., Ventrella’s more recent models
are two-dimensional [30–32]).

¤ The authors conducted the work described here while employed at MathEngine PLC (http://www.mathengine.com).

c° 2001 Massachusetts Institute of Technology Arti�cial Life 7: 77–87 (2001)



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

Table 1. Recent published work with evolving creatures’ morphologies and controllers.

Authors Physics Simulation Technology Comments
Engine (see text for details)

Komosinski et al. [14, 15] Own Finite element Evolved swimmers

methods and crawlers
Taylor, Massey MathEngine General Lagrange Evolved swimmers

multiplier constraint and crawlers
solver with Baumgarte
stabilization

Lipson, Pollack [19] Own Relaxation by energy Created real robots
minimization for from evolved
quasi-static motion virtual crawlers

Bongard, Paul [4] MathEngine General Lagrange Investigating

multiplier constraint morphological
solver with Baumgarte symmetry and
stabilization locomotive ef�ciency

of crawlers
Ray [22] MathEngine General Lagrange User-guided

multiplier constraint aesthetic
solver with Baumgarte evolution
stabilization

One of the reasons why Sims’ system produced such good results was that he mod-
eled the physics of a three-dimensional environment to a suf�ciently accurate degree
that objects moved realistically when subjected to forces and torques. Hence the beau-
tiful movements produced by many of his evolved creatures were due just as much to
the accurately modeled physical environments as they were to the creatures’ individual
controllers.

Two possible reasons why more people have not embarked upon similar research
are that (a) these sorts of evolutionary system require considerable computational power
(Sims ran his original work on a Connection Machine CM-5 parallel computer), and (b)
programming the physics of the environment such that it is suf�ciently accurate yet
also computationally ef�cient is a considerable challenge.

However, the power of standard PCs has now reached a point where they are
capable of running evolutionary systems such as these at a tolerable speed. Also, a
number of off-the-shelf physics engines are now available (some of which are free
or carry a nominal fee for academic use), liberating arti�cial life researchers from the
chore of programming this component themselves [12, 20, 21]. These two factors
have contributed to a welcome increase in research activity in this area within the last
couple of years. This work is summarized in Table 1. In Section 2, our own work in
re-implementing Sims’ system on a PC is described, and our experience of using an
off-the-shelf physics engine for this type of work is discussed. In Section 3, the other
studies listed in Table 1 are also brie�y described. We conclude by relating these new
studies to Sims’ original work and by suggesting some possible lines of future research.

2 A Re-implementation of Sims’ Work Using the MathEngine Physics Engine

We now describe our own work in this area, conducted in 1999 and early 2000. Our
project was in the �rst batch of a recent spate of studies to use MathEngine’s com-
mercially available physics engine, a version of which (SDK 1.1) is available free for

78 Arti�cial Life Volume 7, Number 1



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

academic use [20]. The system was basically a re-implementation of that written by
Karl Sims in 1994. The differences were more technical than scienti�c: (a) We used
MathEngine’s physics engine, rather than code designed speci�cally for the application,
to provide a realistic physical environment for the creatures to live in; and (b) we per-
formed our experiments on mid-range PCs (mostly 400 MHz Celerons) rather than the
Connection Machine parallel computer used by Sims.

One technical difference between the MathEngine physics simulation and that used
by Sims is that MathEngine employed a general Lagrange multiplier-based constraint
solver [2] with Baumgarte stabilization [3] for modeling joints and contacts, whereas
Sims used a combination of Featherstone’s reduced coordinate approach [9] for the
jointed bodies, with the penalty method for resolving contacts. Although Feather-
stone’s method is fast—O(N ) with respect to number of degrees of freedom—and was
clearly suf�cient to generate a large range of complex character interactions for Sims,
constraint-solving approaches can potentially handle more challenging simulations in-
volving multiple contacts and loops in the creatures’ morphologies.

Another major difference is in the way we implemented the effectors to control
the relative motion of body parts. Sims’ effectors worked by applying forces directly
between body parts. In contrast, we used orientation-based proportional-derivative
(PD) actuators [28] acting on ball-and-socket joints. The input to these controllers was
interpreted as a desired orientation for the joint, and the controller would exert a torque
on the joined parts to move them toward this orientation. Early experiments indicated
that the use of more sophisticated effectors such as these led to the much more rapid
evolution of useful movements.1

Most other technical details of the system’s design were identical to Sims’ system,
and the reader is therefore referred to his papers for a full description [25, 26]. Here we
will only give an outline of the design and will focus instead on the practical problems
and issues we encountered when building the system.

Each creature is built up from a genetic description in the form of a nested directed
graph. The genetic information describes both the creature’s morphology and its control
architecture. This representation provides modularity to the mapping from genotype
to phenotype and naturally leads to features such as duplication and recursion of body
parts. One difference between our work and Sims’ is that we used cylinders with
hemispherical ends (“sphyls”), rather than cuboids, as the basic body parts, because
collision detection can be performed much more ef�ciently on sphyls. The controller
was an “augmented” neural network exactly as described by Sims [26].

A run was started by randomly generating a population of genotypes. Each geno-
type in turn was translated into a physical creature and then evaluated in a physically
simulated environment for its performance at a given task. We used two basic envi-
ronments, sea and land. The sea environment included a simplistic model of �uid drag
(a retarding force was applied to each sphyl, proportional to the square of the compo-
nent of its velocity perpendicular to its long axis), and the land environment included
gravity, a ground plane, and frictional forces for ground contacts.

We used a number of different �tness functions for scoring the success of each crea-
ture in its environment, but they all basically rewarded creatures for movement. The
de�nition of the �tness function in fact turned out to be surprisingly dif�cult to get right,
even when we just wanted to reward creatures for moving forward. A straightforward

1 New types of actuators are now available with the latest versions of the MathEngine and Havok dynamics toolkits, which give
a much greater level of control and stability to the joint effectors. These are referred to as “force limited velocity constraints”
(FLVCs) in the MathEngine Dynamics Toolkit (version 2.0) [20] and “dashpots” in Havok (version 1.3) [12]. Dashpots are PDs but
they can handle much stiffer joints (allowing for greater control). FLVCs allow the user to specify an exact relative velocity, which
the solver will generate, provided that the force required to achieve it is not in excess of a user-speci� ed limit. This is ideal for
modeling realistic virtual muscle responses.

Arti�cial Life Volume 7, Number 1 79



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

function that simply measured the distance moved by the creature’s center of mass over
the period of evaluation had a tendency to select for creatures that (in the �uid environ-
ment) produced an initial thrust to move away from their starting position but showed
no further movement and soon slowed to a halt. Such creatures would have high �tness
relative to most of the randomly generated creatures in the early generations and would
therefore be selected. However, it is clear that their �tness could be improved if they
repeated the thrust movement to swim further and faster. Unfortunately it appeared
that in many cases where these “one push” creatures were selected in the initial gener-
ations, the population reached an evolutionary impasse (a local optimum in the �tness
landscape) and had no easy mutational routes to higher �tness. It is also possible that,
in some cases at least, if we had evaluated each creature for a longer period, then there
would have been more selection pressure for creatures generating repeated thrust. This
highlights a dilemma that we came across many times when experimenting with this
system; no matter how long we evaluated each creature, we could never be sure that
it would continue to exhibit the same behavior continuously, if simulated for periods
longer than the evaluation time. There is a trade-off in evaluation time: A longer time
generates more con�dence (but no guarantee) that the creatures will perform the se-
lected behaviors continuously, even after the duration of the evaluation period, whereas
a shorter time is desirable from a practical point of view of running the genetic algorithm
and evaluating hundreds of individuals over tens of generations in a reasonable time.

There are various ways that can be imagined to improve the �tness function to
solve these problems. Sims himself experimented with a variety of functions [26]. For
example, for swimming, he gave the velocities of a creature during the �nal phase of
the test period a stronger relative weight in the total �tness value. This was apparently
successful at rewarding continuing movement over that from a single initial push. In our
implementation we found that this kind of function did lead to some improvements,
but the population was still liable to get stuck at a local optimum fairly frequently,
where one-push creatures were selected in the early generations. Additionally, if the
distance moved by the creature was being measured at various time slices throughout
the evaluation period (so that these various distances can be weighted and summed to
give a �nal �tness score), we needed to decide whether to score distance moved in any
direction at any one time slice equally (in which case there was no pressure to evolve
creatures that swam in a straight line over the whole evaluation period), or whether to
reward only distance moved in one particular direction (and if so, in which direction).
It was not dif�cult to make pragmatic decisions about such choices, but the point is
that the choice of �tness function even for seemingly straightforward behaviors is not
trivial and usually requires considerable experimentation to get right. The function that
successfully produces the desired behaviors can often be somewhat more complicated
than might initially have been thought.

Even the method used to measure the position of a creature at a given instant was
not straightforward. In most runs we used the center of mass. However, in some runs
creatures evolved that would initially adopt a compact, folded con�guration, then as
the evaluation period proceeded they would “unfold” in a particular direction. This
unfolding had the effect of shifting the creature’s center of mass, thereby increasing
its �tness. Again, if this trick was selected in the early generations of a run, it was
sometimes dif�cult for the population to jump out of this local �tness optimum and �nd
continuous movements that would generate higher �tness scores. We experimented
with various other ways of measuring distance moved, such as using the distance moved
by the body part that had moved least over the duration of the evaluation. The general
problem is, no matter what �tness function is used, there often seems to be a way for
creatures to score highly on it while not performing the sort of behavior that we, as
designers of the function, had hoped for. This problem is not insurmountable; with a

80 Arti�cial Life Volume 7, Number 1



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

more careful speci�cation of the function all “undesired” behaviors could presumably
be detected and given low �tness scores. However, this need for careful design of very
speci�c, detailed �tness functions runs counter to one of our goals of implementing
the system, namely, to use it as a method of automatically generating creatures given
only a high level speci�cation of the required behavior. Nevertheless, while the use of
very speci�c �tness functions can certainly increase the chances of evolving the desired
behaviors in any given run, even using straightforward �tness functions will sometimes
produce the desired results (as will be demonstrated in the rest of this section), so our
goal was at least partially ful�lled.

One way to help prevent the runs getting stuck in local �tness optima would be to
maintain the genetic diversity of the population by introducing some kind of incomplete
mixing (e.g., by using an island model genetic algorithm [33]). We have performed some
initial experiments with incomplete mixing, but not enough at this stage to say how
effective this strategy is at solving the problem.

The preceding issues aside, our evolutionary runs proceeded in much the same way
as described by Sims [26]. We placed upper limits on the number of body parts a
creature could have (this limit was generally in the range of 4–10), and on the number
of controller components within each body part (typically, 5–8). We also introduced
bias terms (which were parameters of the system) that favored the selection of oscillator
components (sine and saw wave generators) over other sorts of controller components
when the initial randomly generated population of creatures was being created (or
when new controller components were added to existing networks by mutations).
These terms could be adjusted to vary the probability of the generation of creatures
that displayed oscillatory movements.

Other typical settings for our runs were as follows. The population size was gen-
erally 300, and runs lasted for 50–100 generations. The top 20% of genotypes from
each generation were transmitted unaltered to the next generation. The remaining 80%
of the new generation was created by selecting single parents by tournament selec-
tion (with tournament size 2 and a 90% probability of selecting the �tter of the two
creatures) and reproducing them asexually (i.e., copying them) with probability 40%,
by crossover with another genotype with probability 30%, or by grafting with another
genotype with probability 30% (the difference between crossover and grafting is de-
scribed by Sims [26]). For reproduction by crossover or grafting, the second parent was
chosen with a uniform random distribution from the elite 20% of genotypes from the
parent population. Mutations were then applied stochastically to the newly generated
genotypes (excluding the elite 20%). The probability of mutation was de�ned in terms
of the mean number of mutations per genotype plus the standard deviation (we typ-
ically used a value of 2.0 for both of these, rounding all numbers selected from this
distribution to the nearest integer, and counting negative numbers as zero).

The integration step for the physics engine was generally 0.05 seconds. We used
evaluation periods in the range of 10–50 s of simulated time, which (without visual-
ization) ran somewhat faster than real time. Like Sims, we improved the speed of the
system by prematurely aborting the evaluation of creatures that did not perform well.
First, any creatures that had no controller connections to their actuators were discarded
without evaluation, as they would be unable to generate any movements at all. In
addition, the interim �tness of each creature was measured after one-third and one-half
of the total evaluation period had elapsed. If, after one-third of the period, the creature
had not moved at all then that creature’s evaluation was aborted. Similarly, if, after
half of the period, it had moved by a distance less than one-�fth2 of that moved over
the total evaluation period by the least �t elite creature of the previous generation (i.e.,

2 This � gure was chosen after a small amount of experimentation with different values.

Arti�cial Life Volume 7, Number 1 81



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

the least �t creature from the previous generation that was transmitted directly to the
current generation), then the evaluation was also aborted.

A number of checks were also made to overcome limitations in the simulation soft-
ware. Despite various attempts to limit the magnitude of the forces applied to joints,
creatures would still sometimes evolve whose movements entailed forces and velocities
that were too great for the physics engine to resolve at the given size of the integration
step. In these cases, the physics engine tended to accumulate numerical errors to a
point where the creature unrecoverably exploded (i.e., the constraint solver failed to
converge on a solution, and the integrator then generated incorrect velocities, giving the
impression that the body parts had blown apart in random directions). The choice of
integration step size for the physics engine is clearly another compromise that must be
made with this sort of system; a smaller step size produces a more stable simulation than
a larger step size but takes longer to run in real time for a given duration of simulated
time. The MathEngine SDK does generate some runtime warnings that indicate that this
kind of situation is imminent. We kept a tally of the number of such warnings that each
creature generated and aborted the simulation of any creature that had generated more
than a certain threshold number of them. We also checked whether a creature had
actually exploded throughout its evaluation (by checking for high velocities, etc.) and
immediately aborted any that had. Note that we were using MathEngine’s SDK 1.1 for
this work; subsequent experience with using their latest offering (the Dynamics Toolkit
2.0 alpha release) suggests that the software is now much more stable. However, our
more recent experiences with using both MathEngine and other physics engines (e.g.,
Havok [12]) for this sort of work suggest that they all have some weaknesses in stability
of simulation in certain situations. Unfortunately, it is in the nature of evolutionary al-
gorithms that such weaknesses will almost inevitably be encountered. A recent review
article has tested the stability of the MathEngine, Havok, and Ipion engines in a variety
of situations [16, 17]. Although these products are improving, the current situation is
that, no matter which physics engine is used, it is likely that a certain number of stability
checks of the type just described will be required in any evolutionary system of this kind.

A typical run (i.e., population size 300, 50–100 generations) would take 4–8 hr on
a single PC. A large proportion of the evolved swimmers were snake-like creatures of
various sorts (examples are shown in Plates 1 and 2). A certain amount of subjective
selection was employed to create a variety of different creatures; we would often inspect
runs after a small number of generations had passed and only proceed with those
in which interesting or unusual creatures (both fairly subjective criteria) seemed to
be evolving. A number of different strategies were observed, including the use of
various kinds of appendages to push against the water (e.g., Plates 3 and 4), and the
adoption of a spiraling, “corkscrew”-type motion (e.g., Plates 5 and 6). We had less
time to investigate the evolution of crawlers, but the results we obtained included
creatures that used their whole body for locomotion (e.g., Plate 7) and others that
employed controlled movement of appendages to push the whole body forward (e.g.,
Plate 8). Pictures and movies of a wider variety of the evolved creatures are available
online at http://computing.tay.ac.uk/timtaylor/demos/mathengine/. These examples
demonstrate that the evolutionary process is a useful tool for exploring interesting
regions of the vast space of different creature designs describable with the genetic
system used; it is a creative machine for generating suitable and interesting forms and
behaviors, not limited by the preconceptions of a human designer’s imagination.

3 Other Recent Work

Komosinski and colleagues have developed a system called Framsticks [14, 15], in
which the morphology of creatures composed of connected “sticks” (modeled as a pair

82 Arti�cial Life Volume 7, Number 1



Plate 1. Tadpole. Plate 2. Long-nosed snake.

Plate 3. Breast stroke. Plate 4. Two-legged kicker.

Plate 5. Corkscrew 1. Plate 6. Corkscrew 2.

Plate 7. Archer. Plate 8. Spider.



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

of �exibly joined particles using �nite element methods), together with their neural
network controllers, can evolve. The design of the system is fairly general (e.g., it can
handle the simulation of multiple creatures existing in the environment concurrently),
although the evolutionary results reported so far concern only selection for simple
behaviors such as swimming and walking in single creatures.

Lipson and Pollack have evolved morphologies for creatures composed of collections
of bars and linear actuators connected by ball-and-socket joints, along with their neural
network controllers [19]. The creatures were modeled using a “quasi-static” simulation
method, where each frame is assumed to be statically stable; although it is not a general
simulation, it is ef�cient to implement and can adequately simulate certain kinds of low-
momentum motion such as crawling. Their reported results to date have concentrated
on evolving crawlers. The major innovation of this work is that Lipson and Pollack have
designed the “building blocks” of their creatures in such a way that creatures evolved in
simulation can subsequently be automatically manufactured as physical robots using a
commercial rapid prototyping (“3D printing”) machine. When this process is complete,
the linear actuators just have to be snapped into place, and the robot connected to an
of�ine power supply and computer to simulate the controller. It was found that the
physical robots manufactured in this way behaved in a qualitatively similar fashion to
their simulated counterparts (although quantitative differences emerged due largely to
the simpli�ed simulation techniques).

Bongard and Paul studied the evolution of morphologies and controllers for crawling
creatures (using MathEngine’s SDK 1.1) [4]. Speci�cally, they looked at the relationship
between the level of bilateral symmetry in the evolved creatures and their locomotive
ef�ciency (quanti�ed according to a variety of measures). They found that creatures
with a higher degree of bilateral symmetry tended to exhibit greater locomotive ef�-
ciency than creatures with less bilateral symmetry. Their study is a good example of
how this technology may be used as a tool for investigating fairly general questions
about the consequences of evolutionary selection pressures on both morphology and
behavior.

Finally, Ray has applied user-guided evolution to a derivative of Sims’ system (again
using MathEngine’s SDK 1.1) [22]. Rather than using an explicit �tness function, the
system displays creatures as they are being simulated and allows the user to select
whichever ones she prefers to be used as parents for the next generation. In this
respect Ray’s work is similar to Dawkins’ “biomorphs” (although the biomorphs were
only static two-dimensional structures) [6]. An interesting aspect of his work is that,
rather than trying to avoid the sorts of stability problems with the physics engine as
discussed in the previous section, Ray actually embraced them as another source of
interesting behavior; some of his evolved creatures were actually selected (by Ray
himself) such that their body parts would �y apart at some instances, but they would
always eventually restore themselves to their “proper” con�gurations (i.e., where the
joint constraints were satis�ed). In other words, he selected creatures that caused
some degree of constraint violation when simulated but rejected those that got into
situations where these violations were unrecoverable by the physics engine. Ray was
more concerned with the aesthetic appeal of the creatures’ behaviors rather than their
adherence to “real world” physics. His work demonstrates that it can also be interesting
(from an aesthetic point of view, and also, perhaps, from a scienti�c one) to simulate
environments that behave somewhat differently from real-world physics.

4 Directions for Future Work

The studies described in the previous section all point to interesting directions for
future research. Additionally, the continuing increase in available computing power

84 Arti�cial Life Volume 7, Number 1



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

greatly expands the possibilities for studying coevolutionary systems (with two or more
interacting creatures simulated concurrently) in three-dimensional physically modeled
environments. The feature sets of the physics engines mentioned here continue to
expand, making it easier to study the evolution of creatures modeled not just as rigid
bodies, but in other ways (e.g., soft bodies) as well. The inclusion of a wider variety
of actuators, and placing more characteristics of the actuators under genetic control,
would create the potential for new types of movement to evolve.

Furthermore, experimentation with lifetime learning techniques, in conjunction with
purely genetic approaches, could be rewarding. With the ready availability of low cost,
high performance computers and physics engines, it is likely that the recent research in-
terest in the evolution of morphologies and controllers for physically modeled creatures
will continue to grow. A workshop on the topic at the recent Seventh International
Conference on Arti�cial Life was well attended and produced a lively discussion (see
http://computing.tay.ac.uk/timtaylor/cobb/ for details). As a result of the workshop,
a mailing list was set up to promote discussion on the various scienti�c and technical
issues involved in the subject. Instructions for joining this mailing list can be found at
http://www.alife.org/mailman/listinfo.cgi/ec2m-list.

Acknowledgments
The authors thank the two anonymous reviewers for their comments and suggestions
on a draft of this paper, and Will Wray of MathEngine for comments on our description
of the simulation software.

References
1. Arnold, D. (1997). Evolution of legged locomotion. Unpublished master’s thesis, School of

Computing Science, Simon Fraser University, Burnaby, Canada.

2. Baraff, D. (1996). Linear-time dynamics using Lagrange multipliers. In H. Rushmeier (Ed.),
Computer graphics (SIGGRAPH 96 Proceedings) (pp. 137–146). New York: ACM
SIGGRAPH.

3. Baumgarte, J. (1972). Stabilization of constraints and integrals of motion in dynamical
systems. Computer Methods in Applied Mechanics and Engineering, 1, 1–16.

4. Bongard, J. C., & Paul, C. (2000). Investigating morphological symmetry and locomotive
ef�ciency using virtual embodied evolution. In J.-A. Meyer, A. Berthoz, D. Floreano,
H. Roitblat, & S. W. Wilson (Eds.), From animals to animats: Proceedings of the Sixth
International Conference on the Simulation of Adaptive Behavior (pp. 420–429).
Cambridge, MA: MIT Press.

5. Cliff, D., & Miller, G. F. (1996). Co-evolution of pursuit and evasion II: Simulation methods
and results. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From
animals to animats 4: Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior (pp. 506–515). Cambridge, MA: MIT Press.

6. Dawkins, R. (1986). The blind watchmaker. Harlow, UK: Longman.

7. Dellaert, F., & Beer, R. D. (1996). A developmental model for the evolution of complete
autonomous agents. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.),
From animals to animats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior (pp. 393–401). Cambridge, MA: MIT Press.

8. Eggenberger, P. (1997). Evolving morphologies of simulated 3D organisms based on
differential gene expression. In P. Husbands & I. Harvey (Eds.), Proceedings of the Fourth
European Conference on Arti�cial Life (pp. 205–213). Cambridge, MA: MIT Press.

9. Featherstone, R. (1987). Robot dynamics algorithms. Boston: Kluwer.

10. Fleischer, K. (1996). Investigations with a multicellular developmental model. In
C. G. Langton & K. Shimohara (Eds.), Arti�cial life V: Proceedings of the Fifth International

Arti�cial Life Volume 7, Number 1 85



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

Workshop on the Synthesis and Simulation of Living Systems (pp. 229–230). Cambridge, MA:
MIT Press.

11. Gritz, L., & Hahn, J. K. (1997). Genetic programming evolution of controllers for 3-D
character animation. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, &
R. L. Riolo (Eds.), Genetic programming 1997: Proceedings of the Second Annual
Conference (pp. 139–146). San Francisco: Morgan Kaufmann.

12. Havok GPI from Telekinesys Research Ltd. http://www.havok.com

13. Ijspeert, A. J. (2000). A 3-D biomechanical model of the salamander. In J.-C. Heudin (Ed.),
Proceedings of the Second International Conference on Virtual Worlds (pp. 225–234).
Heidelberg: Springer.

14. Komosinski, M., & Ulatowski, S. (1999). Framsticks: Towards a simulation of a nature-like
world, creatures and evolution. In D. Floreano, J. D. Nicoud, F. Mondada (Eds.), Advances
in arti�cial life: Proceedings of the Fifth European Conference on Arti�cial Life
(pp. 261–265). Heidelberg: Springer.

15. Komosinski, M., & Rotaru-Varga, A. (2000). From directed to open-ended evolution in a
complex simulation model. In M. A. Bedau, J. S. McCaskill, N. H. Packard, & S. Rasmussen
(Eds.), Arti�cial life VII: Proceedings of the Seventh International Conference on Arti�cial
Life (pp. 293–299). Cambridge, MA: MIT Press.

16. Lander, J., & Hecker, C. (2000). Physics engines, part one: The stress tests. Game
Developer, 7(9), 15–20. (Available online at http://www.gdmag.com)

17. Lander, J., & Hecker, C. (2000). Physics engines, part two: The rest of the story. Game
Developer, 7(10), 13–18. (Available online at http://www.gdmag.com)

18. Lee, W.-P., Hallam, J., & Lund, H. H. (1996). A Hybrid GP/GA approach to co-evolving
controllers and robot bodies to achieve �tness-speci�c tasks. In Proceedings of the 1996
IEEE Conference on Evolutionary Computation (pp. 384–389). Piscataway, NJ: IEEE Press.

19. Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms.
Nature, 406, 974–978.

20. MathEngine Dynamics Toolkit 2.0 (and SDK 1.1) from MathEngine PLC,
http://www.mathengine.com

21. McMillan, S. DynaMechs (Version 3.0) [computer software].
http://www.sourceforge.lkams.kernel.org/dynamechs/

22. Ray, T. S. (2000). Aesthetically evolved virtual pets. In C. C. Maley & E. Boudreau (Eds.),
Arti�cial Life 7 Workshop Proceedings (pp. 158–161). Available online at
http://www.hip.atr.co.jp/»ray/pubs/alife7a/

23. Reeve, R. (1999). Generating walking behaviors in legged robots. Unpublished doctoral
dissertation, Division of Informatics, University of Edinburgh, Scotland.

24. Reil, T. (1999). Arti�cial evolution of neural controllers in a real-time physics environment.
Unpublished master’s thesis, University of Sussex, England.

25. Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. Brooks &
P. Maes (Eds.), Arti�cial life IV: Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems (pp. 28–39). Cambridge, MA: MIT Press.

26. Sims, K. (1994). Evolving virtual creatures. In A. Glassner (Ed.), Computer graphics
(SIGGRAPH 94 Proceedings) (pp. 15–22). New York: ACM SIGGRAPH.

27. Terzopoulos, D., Tu, X., & Grzeszczuk, R. (1994). Arti�cial �shes: Autonomous locomotion,
perception, behavior, and learning in a simulated physical world. Arti�cial Life, 1, 327–351.

28. Van de Panne, M., & Fiume, E. (1993). Sensor-actuator networks. In J. T. Kajiya (Ed.),
Computer graphics (SIGGRAPH 93 Proceedings) (pp. 335–342). New York: ACM
SIGGRAPH.

29. Ventrella, J. (1994). Explorations in the emergence of morphology and locomotion
behavior in animated characters. In R. Brooks & P. Maes (Eds.), Arti�cial life IV:
Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living

86 Arti�cial Life Volume 7, Number 1



T. Taylor and C. Massey Morphological and Controller Evolution for Simulated Creatures

Systems (pp. 436–441). Cambridge, MA: MIT Press.

30. Ventrella, J. (1996). Sexual swimmers: Emergent morphology and locomotion without a
�tness function. In P. Maes, M. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From
animals to animats 4: Proceedings of the Fourth International Conference on the
Simulation of Adaptive Behavior (pp. 484–493). Cambridge, MA: MIT Press.

31. Ventrella, J. (1998). Attractiveness vs. ef�ciency: How mate preference affects locomotion
in the evolution of arti�cial swimming organisms. In C. Adami, R. K. Belew, H. Kitano, &
C. E. Taylor (Eds.), Arti�cial life VI: Proceedings of the Sixth International Conference on
Arti�cial Life (pp. 178–186). Cambridge, MA: MIT Press.

32. Ventrella, J. (1999). Animated arti�cial life. In J.-C. Heudin (Ed.), Virtual worlds: Synthetic
universes, digital life and complexity (pp. 67–94). New York: Perseus Books.

33. Whitley, D., Rana, S., & Heckendorn, R. B. (1999). Exploiting separability in search: The
island model genetic algorithm. Journal of Computing and Information Technology 7 (1),
33–47.

Arti�cial Life Volume 7, Number 1 87




