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Global change issues are complex and outcomes are 
difficult to predict (Clark et al., 2001). To guide deci-
sions in an uncertain world, researchers and decision 
makers may consider a range of alternative plausible 
models to better reflect what we do and do not know 
about the processes involved (Polasky et al., 2011). 
Forecasts or predictions from possible models can in-
dicate what outcomes are most likely to result under 
what decisions or actions. This has made model-based 
forecasts a cornerstone for scientifically based decision 
making. By comparing outcomes predicted by a model 
to future observations, a decision maker can not only 
plan for the uncertainty, but also learn which models 
are most trustworthy. The value of iterative learning 
has long been reflected in the theory of adaptive man-
agement (Walters & Hilborn, 1978) as well as in actual 
adaptive management practices such as Management 
Strategy Evaluation (MSE) (Punt et al., 2016) used in 
fisheries, and is a central tenet of a rapidly growing in-
terest in ecological forecasting (Dietze et al., 2018). But, 
do iterative learning approaches always lead to better 
decisions?

In this paper, I demonstrate that the model that makes 
the better prediction (defined as a strictly proper score, 
Gneiting and Raftery (2007)) is not necessarily the model 
that makes the better policy (defined in terms of utility, 
e.g. expected net present value, Clark (1990)). I show that 
our best methods for learning about model structure or 
parameters by repeatedly comparing forecasts to obser-
vations can be counter-productive. Put another way, the 
value of information (VOI, as measured by the expected 
utility given that information minus the utility without 
it; see Howard (1966) and Katz et al. (1987)) can actually 
be negative. When VOI is negative, the decision maker 
may become trapped into accepting mediocre outcomes 
derived from a model that makes accurate forecasts, 
even when a less accurate model that would generate 
better outcomes is available. This trap is invisible to the 
manager unless sufficient alternative models outside the 
original set are introduced. I will present two examples 
of this ‘forecast trap’ and examine how it arises as a re-
sult of non-uniqueness of models (Oreskes et al., 1994; 
Schindler & Hilborn, 2015) with respect to either of these 
objectives.
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Abstract

Encouraged by decision makers’ appetite for future information on topics 

ranging from elections to pandemics, and enabled by the explosion of data and 

computational methods, model-based forecasts have garnered increasing influence 

on a breadth of decisions in modern society. Using several classic examples from 

fisheries management, I demonstrate that selecting the model or models that 

produce the most accurate and precise forecast (measured by statistical scores) 

can sometimes lead to worse outcomes (measured by real-world objectives). This 

can create a forecast trap, in which the outcomes such as fish biomass or economic 

yield decline while the manager becomes increasingly convinced that these actions 

are consistent with the best models and data available. The forecast trap is not 

unique to this example, but a fundamental consequence of non-uniqueness of 

models. Existing practices promoting a broader set of models are the best way to 

avoid the trap.
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The forecast trap is not the only mechanism by which 
some model-choice methods lead to worse outcomes. 
Previous work has long acknowledged the panoply of ways 
in which model-based decision making can go astray due 
to conflicting incentives, implementation errors or lack 
of resources for monitoring and updating (e.g. Ludwig 
et al., 1993). Another widely recognised problem is that 
of over-fitting (Burnham & Anderson, 1998), in which the 
model that best fits historical data fails to best predict 
future data (Ginzburg & Jensen, 2004). Under such cir-
cumstances, it is easy to see how an over-fit model would 
also lead to bad outcomes. However, over-fitting plays no 
role in the forecast trap, where model predictions are as-
sessed only using probabilistic forecasts, and not obser-
vations which had previously been used to fit the models. 
Formally, these scores satisfy the ‘proper scoring’ rule of 
Gneiting and Raftery (2007), which proves no other prob-
abilistic prediction Q(x) will have a better expected score 
than that of the true model (i.e. generative process), P(x)
. Gneiting and Raftery (2007)‘s proof of proper scoring 
has since become a critical tool to avoid over-fitting when 
choosing models to make decisions, but as I illustrate, will 
not prevent the forecast trap.

First, I will introduce a motivating example in which 
we will consider two reasonable process-based models, 
A and B. Model A will produce very accurate forecasts, 
but lead to much worse outcomes than Model B. Though 
I will establish that these accurate forecasts in Model A 
are not the result of chance or of over-fitting the data, this 
example may raise more questions than answers. To get 
a better understanding of when the forecast trap arises, 
I will turn to a simpler ecological model, to which we 
may apply more sophisticated decision tools of iterative 
forecasting and adaptive management. We will see that 
these approaches do not avoid the forecast trap either. 
No collection of such examples can establish precisely 
how common the forecast trap may be in real-world ap-
plications. The examples do establish unequivocally that 
achieving incrementally ever-more-accurate forecasts 
does not guarantee better decisions. I conclude by point-
ing to a range of established and emerging approaches 
to quantitative decision making which are not based on 
forecasts. As sophisticated forecasting techniques be-
come more common place in conservation and ecology, 
the forecast trap is a reminder that we should not forget 
about these alternatives.

A note on models and data

I will use the term ‘model’ to refer to any set of equations 
or code that can be used to produce a forecast. This term 
thus includes not only process-based models, but could also 
statistical forecasting methods, non-parametric approaches 
such as empirical dynamical modelling (Ye et al., 2015), or 
machine learning. Most such models must first be cali-
brated to historical data before they can produce a forecast, 

for example, by parameter fitting, expert knowledge or 
some other means. Different choices for those parameters 
create different forecasts, I will refer to those different pa-
rameterisations as different models. It is of course possible 
for a decision-maker to consider forecasts coming from 
multiple structurally different models simultaneously, and 
potentially assigning different weights to each model. As 
more data become available, it is possible to update model 
parameters, or equivalently, update the weights assigned 
across models. I will examine such approaches for model 
ensembles and model updating further on.

I shall focus on examples involving fisheries manage-
ment to illustrate principles shared in many ecological 
systems. Fisheries are a significant economic and con-
servation concern worldwide and their management 
remains an important debate (e.g. Costello et al., 2016; 
Worm et al., 2006, 2009). Moreover, fisheries man-
agement has been a proving grounds for theoretical 
and practical decision-making issues (e.g. Clark, 1973; 
Ludwig & Walters, 1982; Reed, 1979; Walters, 1981) aris-
ing in a wide range of other contexts, including invasive 
species (Boettiger, 2021), infectious diseases (Li et al., 
2017; Shea et al., 2014), fire management (Richards et al., 
1999), conservation planning and prioritisation (Chadès 
et al., 2008; Wilson et al., 2006), climate policy (Nitzbon 
et al., 2017) and much else (Lande et al., 1994; Ludwig 
et al., 1993; Polasky et al., 2011).

In these examples, we will focus on situations in which 
our ‘data’ come from a model simulation rather than em-
pirical sources. Simulations are simplifications of the 
real world—just because a method works in a simulation 
is no guarantee that it works in reality. Conversely, if 
decision methods are not reliable even when applied to 
simulated cases, we should be even more cautious in how 
we use them. Simulations also allow us to consider many 
replicates and conduct experiments that would be often 
impossible or unethical to perform in the real world: for 
instance, does a given fishery experience better long-
term outcomes when managed according to forecasts 
derived from model 1 or from model 2?

A MOTIVATING EX A M PLE

To better understand how a model can produce a more 
accurate forecast and yet still lead to a worse decision, it 
may be helpful to start with a concrete example in which 
a manager faces a trade-off between cormorant conser-
vation and fish harvest. Figure 1 shows both the forecasts 
and realised management outcomes of two alternative 
three-species models, ‘A’ and ‘B’ (see Appendix A) in 
predicting the population dynamics of striped bass (an 
economically important fishery) and double-crested cor-
morants (a target species for conservation) which both 
feed on a population of river herring (whose abundance 
we assume is not measured). Model A accurately fore-
casts the abundance of both bass and cormorants well 



      |  3BOETTIGER

into the future, but the optimal management strategy de-
rived from its forecasts leads to steadily declining species 
abundances and overall disappointing net utility. Model 
B produces substantially less accurate forecasts, but nev-
ertheless achieves better outcomes. The net utility under 
model B is in fact nearly identical to the maximum util-
ity attainable given the true model, while management 
under model A achieves only 38% of that utility.

This management problem is motivated by a real-
world example of a herring fishery as described in Brias 
and Munch (2021), in which our manager seeks to balance 
multiple objectives of sustaining the cormorant popu-
lation while maximising the economic value from har-
vesting both herring and striped bass. In the scenarios 
depicted in Figure 1, I have used the richer five-species 
model introduced by Brias and Munch (2021) to drive 
the underlying dynamics, which includes three compet-
ing species of herring that are preyed upon by both the 
bass and the cormorants. Here, the manager seeks to 
maximise utility given by the weighted sum of the indi-
vidual objectives (Brias & Munch, 2021), placing 50% of 
the weight on the conservation objective and splits the 
remaining weight evenly over the harvests for predator 
(bass) and prey (herring) species. I have assumed a par-
tially observable system—in this case, the manager mea-
sures only the abundance of bass and cormorant species, 
and not of the three herring species. In this scenario, I 
have further assumed the manager must choose a fixed 
fishing effort for herring and for the bass harvest, I will 
consider more dynamic decision processes later, but it is 
worth noting that in many real-world conservation set-
tings policy choices are highly constrained and frequent 

adjustment of those policies may be costly or impossible. 
Likewise, the assumptions of partially observable system 
and imperfect models are characteristic of ecological de-
cision making. Equations and code for all models in this 
example are presented in Appendix A.

Both models A and B can be seen as alternative at-
tempts to approximate the ‘true’ model (generative pro-
cess), which in real systems is always unknown and more 
complex than any model thereof. Model A assumes a 
three-species Ricker model which closely matches the 
trophic structure of the ‘true’ five-species model, lump-
ing the three competing herring species into a single 
variable. Because herring abundance is not observed di-
rectly, the model parameters related to herring growth 
are less accurate than other parameters. Model B also 
lumps herring species together into a single variable, but 
fails to reflect the trophic relationship between bass and 
herring. Model B also oversimplifies the relationship be-
tween cormorant and herring population. This does not 
make Model B an unreasonable model out-of-hand—
all models contain such simplifications (e.g. our ‘true’ 
model does not model the trophic relationship between 
the herring and its food sources or environmental con-
ditions explicitly either). Both models are consistent with 
the limited historical data available to them.

A N ITERATIVE 
DECISION EX A M PLE

While this example demonstrates that the model which 
provides the better forecast does not necessarily lead 

F I G U R E  1   Forecast performance and realised outcomes from management of a five-species system under either model. Based on forecast 
performance alone, Model A clearly performs better, accurately predicting steady declines. Model B predicts overly optimistic outcomes for 
Bass population levels, and overly pessimistic outcomes for cormorants, with observed dynamics falling well outside the predicted range. 
Despite this, net utility achieved under this management regime is virtually optimal, while the declines under model A result in net utility that 
is only 38% of optimal
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to a better decision, it may raise more questions than 
it answers. Why does this happen? Is this an isolated 
example or not? Can this forecast trap be resolved by 
more sophisticated approaches to model selection and 
decision making? I now consider scenarios involving 
iterative forecasts and adaptive management: in which 
the manager monitors outcomes, compares forecasts to 
observations and updates model estimates. Such sequen-
tial decision processes are not merely iterative versions of 
single-decision problems, but are much more challeng-
ing. In the opening example, the manager had to choose 
the harvest policy for each fish species at the start of the 
scenario and stick with it. The ability to select new ac-
tions in response to new observations turns that decision 
into a game of chess: each turn, the manager must con-
sider not only their next move, but also all possible series 
of moves.

How do we translate a model-based forecast into a 
decision policy? It is impossible to discuss outcomes 
associated with a forecast without first agreeing on this 
process. In practice, decision makers may use a forecast 
in a wide variety of ways in selecting a course of action, 
including ways which may run counter to the stated 
objectives of management (Ludwig et al., 1993). In 
principle at least, the field of decision theory provides 
a formal mechanism for determining the optimal strat-
egy given a model forecast. For instance, a wide range 
of ecological conservation and management problems 
can be expressed as a Markov Decision Process (MDP) 
problems (Marescot et al., 2013). Existing computer 
algorithms such as stochastic dynamic programming 
(SDP) take a probabilistic model forecast (more pre-
cisely, the probability P(xt+1|xt, at) of the system being 
in state xt+1 in the next iteration given that it was previ-
ously in state xt and the manager selected action at) and 
the desired management objective (i.e. to maximise the 
expected biomass of species protected or the expected 
dollar profit of a fishery (see Clark, 1990; Halpern 
et al., 2013)) as input, and return the decision policy 
which maximises that objective (Marescot et al., 2013). 
This provides a principled way to associate a decision 
policy with any given forecast model.

Two features of this approach are worth emphasising. 
As before, the resulting decision is derived directly from 
the forecast model and the desired objective. The SDP 
algorithm is a reasonable description of the approach 
any ideal manager would use—considering all possible 
outcomes from all possible sequences of actions and se-
lecting the best sequence. For complex models, this pro-
cess is too laborious even for a computer, and is often 
simplified by considering only a selection of predeter-
mined policies (as in MSE, Punt et al., 2016), or scenar-
ios (as in scenario analysis, Polasky et al. (2011)). Such 
shortcuts are often necessary for complex real-world 
models, but open additional room for error: the policy 
we derive from a given forecast may perform poorly not 
because the model forecast was at fault, but because of 

those simplifying assumptions about possible policies. 
To ensure that the forecast trap is not a result of such 
assumptions about possible policies, we will consider a 
problem simple enough to solve directly with SDP. The 
resulting decision policy is optimal, so long as the fore-
cast model is correct. In this way, the SDP merely stands 
in for a mathematically precise way in which forecasts 
are turned into decisions. Recognising the SDP-derived 
policy (A) comes directly from the forecast model, and 
(B) gives the optimal policy for said forecast, seems to 
suggest that whichever model makes the better forecast 
will surely also lead to better outcomes (as measured in 
terms of whatever utility we have chosen to maximise). 
While this intuition is no doubt often accurate, our pur-
pose here is to demonstrate that it is by no means guar-
anteed: it is also possible for the model which makes the 
better forecast to lead to worse outcomes.

Let us consider the management of single species in 
which we seek to maximise the long-term net harvest. In 
this scenario, the manager estimates the population size 
each year and must set the total allowable catch (TAC) 
for that season. The underlying dynamics are unknown, 
but the manager is presented with any of a variety of 
forecast models which can predict the future stock sizes 
given the current population size and proposed TAC. 
Our manager does not know which of these models is 
the most accurate a priori. Instead, the manager will be 
able to compare the population size predicted by each 
forecast (under the chosen TAC) to the measurement of 
the population size in the following year before coming 
up with the next year’s catch limit.

Faced with a collection of models, a manager can seek 
either to identify the best model to use, or to consider an 
integrative assessment which uses the whole ensemble of 
models to represent the manager’s uncertainty about the 
underlying process. I will consider both approaches in 
turn. Figure 2 compares forecasts generated by two of the 
candidate models to observations drawn from simula-
tions of the underlying process. As before, these are true 
forecasts: the model forecasts are generated first, they 
have not been fit to these observations. In the un-fished 
scenario (top panels), both models try to predicting the 
same un-fished equilibrium dynamics. In the second sce-
nario (lower panel), the manager uses the optimal SDP 
policy derived from each forecast to determine the TAC 
for the following year, and compares the observed stock 
size to that which the model predicted given that fishing 
quota. In both cases, model 2 provides far more accu-
rate forecasts, as seen in the error bars and confirmed by 
the distribution of proper scores (Figure 2c,d; Gneiting 
& Raftery, 2007). Model and simulation details are pro-
vided in Appendix B.

Despite the clearly superior predictive accuracy of 
model 2 in both scenarios, the outcomes from manage-
ment under model 2 are substantially worse. We can as-
sess such outcomes in less abstract terms than forecasting 
skill, such as economic value them manager sought to 
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optimise (in dollars) or the ecological value (unharvested 
biomass) (Figure 3).

A manager operating under model 2 would have lit-
tle indication that the model was flawed: both future 
stock sizes and expected harvest yields consistently 
match model predictions. This manager would be stuck 
in the forecast trap, incorrectly mistaking a degraded 
ecological state and reduced economic outcomes as the 
best that can be achieved because future observations 
continue to validate this model. Had we been able to 
include Model 3 in our forecast comparisons, it would 
equal or outperform the forecasting skill of both model 
1 and model 2 (as guaranteed by the theorem of Gneiting 

and Raftery (2007)), while also matching the economic 
utility of model 1 (as guaranteed by the theorem of Reed 
(1979)). In practice, we never have access to the generat-
ing model, so it is reasonable to expect model selection 
to determine the better approximation. As we see here, 
the better approximation for forecasting future states 
does not in fact lead to better outcomes.

Adaptive management

Rather than selecting a single best model (or best pa-
rameter value), a manager could choose to integrate over 

F I G U R E  2   Forecast performance of each model. Panels A, B: Step ahead predictions of stock size under unfished (a) and fished (b) 
scenarios. Error bars indicating the 95% confidence intervals around each prediction, while stars denote the observed value in that year. 
Because the models make different decisions each year in the fished scenario, the observed stock size in years 2, 3, etc., under the management 
of model 1 (blue stars) is different from that under model 2 (red stars). Panels C, D: corresponding distribution of proper scores across all 
predictions (100 replicates of 100 timesteps). Higher scores are better, confirming that model 2 makes the better forecasts

(a) (c)

(d)(b)

F I G U R E  3   Ecological and economic performance of each forecast. Harvest quotas derived from model 1 result in a significantly higher 
fish stock size than under Model 2 (panel A). Economic returns under model 1 are also substantially higher (panel B)

(a) (b)
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possible outcomes generated from all candidate models. 
Updating posterior distributions over parameters and/
or weights assigned to different models are examples of 
this kind of adaptive management (Ludwig & Walters, 
1982; Punt et al., 2016). I illustrate the application of 
such an adaptive management strategy, following clas-
sic examples for parameter (Ludwig & Walters, 1982) or 
structural (Smith & Walters, 1981) model uncertainty. I 
first consider only the same two models considered in 
the previous example. I later consider a larger suite of 
42  models, spanning the parameter space of Gordon–
Schaefer curves. To avoid failure to explore sufficiently 
(see exploration–exploitation trade-off, e.g. Walters, 
1981), I assign prior belief of 99% weight on the optimally 
performing model, model 1.

For comparison, I consider the baseline case in which 
the manager does not update posterior distribution over 
which models/parameter values are correct (the man-
ager still chooses a new TAC after each observation, 
but does not update their belief in the model, i.e. does 
not learn over time). The difference between the perfor-
mance with and without learning is known as the ‘Value 
of Information’ (Howard, 1966). In both two-model and 
42-model scenarios, the VOI is strongly negative. The 
two-model case achieves a net present value to −58% 
of the value of having used model 1 alone (Figure 4). 
Including all 42 models reduces this to a value of −32%. 

Both harvests and fish biomass remain significantly 
lower under adaptive learning scenarios.

The reason for model 1’s seemingly contradictory 
ability to make good decisions but bad forecasts be-
comes obvious once we compare both curves to that of 
the underlying model, model 3. Looking at plots of the 
growth rate curves for each model (Figure 5a), it is hardly 
surprising that all model selection approaches prefer the 
closely overlapping curve of model 2 to the no-where-
close curve of model 1 as the better approximation of 
model 3. Nevertheless, the decision policy derived from 
model 1 forecasts is indistinguishable from that based on 
the true model (Figure 5b), while the policy derived from 
model 2 forecasts lead to over-harvesting. Being closest 
to the true model’s forecast skill never guarantees that 
we are closest to the true model’s optimal policy.

How can the very different forecasts from model 1 and 
model 3 could produce exactly the same optimal man-
agement policy (Figure 5b) under the SDP algorithm? 
Analytic solutions offer more insight as to when and why 
very different forecasts can generate the identical pol-
icy. Such a solution was first provided by Reed (1979), 
who demonstrated the optimal policy in the case con-
sidered here would be the so-called ‘bang-bang’ policy. 
Intuitively, one can think of this as maintaining the bio-
mass at the most productive size: the maximum popu-
lation growth rate (position of the peak of the growth 
curves in Figure 5a), though this is only precisely true 

F I G U R E  4   Adaptive management under model uncertainty. Solid lines trace the trajectories of the state (fish stock, circles) and action 
(harvest quota, triangles), under adaptive management (learning). Dotted lines trace the corresponding trajectories if iterative learning 
is omitted, leaving the prior belief fixed throughout the simulation (planning). Colour indicates the belief that model 1 is correct (blue), 
with an initial prior belief of 99%. Panel A: Management over the two candidate models, Model 1 and Model 2. Within a single iteration of 
adaptive management, the belief over models switches from a prior belief that heavily favoured model 1 to a posterior that favours model 2 
with near certainty. Future iterations reinforce the belief in model 2, resulting in both depressed harvests and low stock sizes (solid lines). If 
no iterative learning updates are performed, stock sizes and realised harvests (and thus economic profit) are both higher. Panel B: given 42 
candidate models over a broad range of parameter values, adaptive management quickly reduces the probability of model 1, and substantially 
underperforms management without learning (dotted lines). While outcomes improve marginally relative to the two-model case (panel A), they 
remain significantly worse than had no iterative learning been included

(a) (b)
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without discounting (� = 1): the optimal stock size x̂ is 
the solution to f (x̂) = x̂∕� when stochasticity is suffi-
ciently small (Reed, 1979). Thus, all models in which the 
peak growth rate occurs at the same stock size will have 
the same optimal policy. These are not merely bad mod-
els getting lucky—all such models correctly capture the 
crucial feature relevant to the decision. In more complex 
models, such features are more difficult or impossible to 
identify analytically, but this does not mean they do not 
exist. For instance, Recent mathematical breakthroughs 
such as Holden and Conrad (2015), Hening et al. (2019), 
and Hening (2021) have proven that the optimal harvest 
control rule in age-structured and predator–prey systems 
maintain similar bang-bang dynamics. This means that 
the optimal policy of such very complex models will once 
again be shared by infinite number of simpler models.

DISCUSSION

The forecast trap illustrated in both examples can best 
be understood as a problem of non-uniqueness (Oreskes 
et al., 1994). Even modestly complex models can suc-
cessfully predict the observed dynamics, but for wrong 
mechanistic reasons (Schindler & Hilborn, 2015; Schnute 
& Richards, 2001). In both examples, a decision maker 
who accepts the model which leads to very accurate pre-
dictions as the basis for their decision making winds up 
in the forecast trap: accepting poor ecological and eco-
nomic outcomes as the best possible option. The space 
of possible models is infinitely large when measured 
against any a scalar metric such as mean forecast skill or 
expected net utility. Perhaps it should be no surprise then 
that many models will achieve the same policy outcomes 
or achieve comparable predictive accuracy. Just as the 

forecast skill is not unique, both examples also demon-
strated that the optimal policy is not unique to the ‘true 
model’—many models will result in the same policy and 
achieve the same outcomes, despite making very differ-
ent forecasts.

The forecast trap is likely to be more common in 
contexts in which systems are more complex, partially 
observed, and available actions are constrained—all 
features which are particularly common to ecological 
management and conservation. Because simplicity of the 
second example allows analytic theory to reveal a precise 
explanation, it is tempting to assume the trap is only a 
consequence of examining overly simple models. In fact, 
the opposite is true. In the second example, the ‘true’ 
model is simple enough to be covered by a suitable can-
didate set of models (e.g. a Gaussian Process, Boettiger 
et al. (2015)), which would resolve the trap given suffi-
cient data. In reality, our models never span the true 
process. Partially observed systems increase the space of 
possible models that achieve comparable predictive ac-
curacy. Constraints on action space such as adjustment 
costs (Boettiger et al., 2016) or piecewise-linear control 
rules (Punt, 2010) increase the space of models which will 
result in the same policy. Both of these aspects make the 
forecast trap easier to encounter in our opening example.

The forecast trap demonstrates that for certain en-
sembles of candidate models, the VOI (Howard, 1966; 
Katz et al., 1987) can in fact be negative. Consequently, 
methods to select models or re-estimate parameters can 
lead to worse outcomes than had these new observations 
simply been ignored. Crucially, a manager implement-
ing the optimal policy from the most predictive model 
sees no indication that their models are wrong—the de-
clining ecosystem and economic returns observed under 
model A in the first example or under iterative learning 

F I G U R E  5   Panel A: Population growth curves of each model. The positive equilibrium of each model occurs where the curve crosses the 
horizontal axis. Note that while Model 2 is a better approximation to the truth (Model 3), Model 1 better approximates the stock size which 
leads to maximum growth. Panel B: The optimal control policy under Model 1 is nearly identical to that under the true Model 3, while the 
optimal policy under Model 2 suppresses stock to a much lower escapement level

(a) (b)
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in the second example are completely consistent with 
and predicted by the models. Only by winding back the 
clock, making decisions based over the original uncer-
tainty without learning (Figure 4), can we see that better 
outcomes could have been achieved. The policy derived 
without learning reflects greater uncertainty: it is thus 
more robust.

A way forward

In practice, managers rarely rely only on forecasting 
skill to assess models, nor determine policies directly 
from forecasts alone. In both examples presented 
above, the forecast trap is most likely in circumstances 
where the collection of candidate models is insuffi-
ciently broad. Management practice tends to empha-
sise approaches which broaden rather than narrow 
down this candidate set. This reflects the view that ‘the 
primary values of ecosystem models are as heuristic 
tools for communication and for developing scenarios 
to express uncertainties and test policies’ rather than 
as a source of reliable forecasts (Schindler & Hilborn, 
2015). Such practices include:

a.	 emphasising a better articulation of uncertainty a 
priori;

b.	 active exploration of alternative policies can reveal 
when the model set is inadequate;

c.	 methods for generating strategies that are robust to the 
sort of uncertainty described here.

A central role of models is to help articulate uncer-
tainty around possible outcomes rather than make pre-
cise predictions. As Schindler and Hilborn (2015) note, 
‘current approaches to verification and validation of 
ecosystem models likely produce overly optimistic im-
pressions of the reliability of forecasts underlying man-
agement and conservation prescriptions’. Forecasts 
based on non-mechanistic models such as empirical 
dynamical modelling (EDM, Brias & Munch, 2021; Ye 
et al., 2015) may help in articulating a broader ensemble 
of scenarios (Boettiger et al., 2015). In contrast, if such 
approaches are selected solely on forecasting skill, they 
may increase the probability of the forecast trap. The 
danger of an insufficiently broad model ensemble is well 
understood in many disciplines which use scenario plan-
ning to assist policy in accounting for irreducible uncer-
tainties (Peterson et al., 2003).

Second, a manager may also escape the forecast trap 
by exploring actions which are never recommended from 
any of the available forecasts. For example, a manager 
looking at the low stocks and poor harvests achieved 
under model 2 could decide experimentally to reduce 
fishing quota. This will allow the population to enter a 
range of state space where discrepancies between model 
2 and observations are more obvious. Runge et al. (2016) 

describe how such ‘double-loop learning’ can be used to 
identify when the entire model set is inaccurate, a prob-
lem which is not solved by ‘single-loop’ adaptive man-
agement in our examples above. Schindler and Hilborn 
(2015) also underscore the value of flexible policies, 
rather than ‘managing solely within the range of past 
variation; active probing is usually needed’, and contrast 
this to a typical interpretation of the ‘precautionary 
principle’ often cited as a reason to avoid exploratory 
actions. However, just because active exploration can es-
cape the forecast trap does not mean it is always a good 
idea.

Third, managers may emphasise policy robustness 
over forecast skill (Schindler & Hilborn, 2015). In many 
formal treatments, this is not qualitatively different 
from the analysis considered here: a manager simply 
chooses a different utility function, such as minimising 
‘regret’ rather than maximising expected value (Polasky 
et al., 2011). Such approaches are just as vulnerable to 
bad outcomes (as defined by their own utility func-
tions) whenever models are selected only on the basis 
of forecast skill. Alternative approaches may not seek 
any such optimisation, emphasise the viability (Aubin, 
1991) of possible policy under constraints. In practice, 
robust design may emphasise acceptable performance 
across the widest possible array of scenarios (e.g. can-
didate models). This acts more like a sensitivity anal-
ysis of utility with respect to underlying assumptions, 
rather than an optimisation routine (e.g. Fischer et al., 
2009; Punt et al., 2016). Computationally, the former is 
much simpler, allowing researchers to evaluate the per-
formance of a policy on more complex simulations for 
which calculating the optimal policy would be prohibi-
tively difficult.

Finally, it is worth noting that decisions do not need 
to be premised on a forecast at all, but can be premised 
entirely on the basis of past experience: ‘If the fish stock 
size has gone up, increase harvest slightly, otherwise, de-
crease slightly’. Such a policy is not optimal, but it is ro-
bust across a wide range of unimodal stock–recruitment 
curves without ever estimating a predictive model. This 
is the basis of the so-called ‘model-free’ reinforcement 
learning algorithms such as DQN (Mnih et al., 2015) 
and SAC (Haarnoja et al., 2018), which train deep neu-
ral networks to learn a policy without ever attempting to 
predict future states of the underlying process. Training 
such artificial intelligence agents across a wide suite of 
simulations, a process known as curriculum learning 
(Graves et al., 2017), mimics the scenario analyses and 
search for robust policies. Such approaches have been 
used to train agents to play 2600 Atari console games at 
superhuman ability (Mnih et al., 2015), outperform race-
car drivers (Wurman et al., 2022) and control nuclear 
fusion reactions (Degrave et al., 2022). Such approaches 
are also not yet well understood, introducing new risks 
as well as new possibilities (Dulac-Arnold et al., 2019; 
Henderson et al., 2019).



      |  9BOETTIGER

ACK NOW LEDGEM EN TS
The author acknowledges support from NSF CAREER 
Award #1942280 and helpful discussions with Melissa 
Chapman. The author is also deeply grateful to the 
Michael Runge, Chih-hao Hsieh, Antoine Brias and 
other anonymous reviewers whose detailed feedback and 
insights have greatly shaped the paper and my own un-
derstanding of these issues.

DATA AVA I LA BI LI T Y STAT EM EN T
All simulation data generated for analyses here, 
along with code required for the analysis, are avail-
able in the Zenodo Data archive, https://doi.org/10.5281/
zenodo.4660620.

AU T HOR CON TR I BU T ION
This is a single-author paper.

PEER R EV I EW
The peer review history for this article is available at 
https://publo​ns.com/publo​n/10.1111/ele.14024.

OPEN R E SEA RCH BA DGE S

This article has earned an Open Materials badge for 
making publicly available the digitally-shareable data 
necessary to reproduce the reported results. The data is 
available at: https://doi.org/10.5281/zenodo.4660621.

ORCI D
Carl Boettiger   https://orcid.org/0000-0002-1642-628X 

R E F ER E NC E S
Aubin, J.P. (1991) Viability theory. Birkhauser, Boston: Systems & 

Control.
Boettiger, C. (2021) Ecological management of stochastic systems 

with long transients. Theoretical Ecology, 14, 663–671.
Boettiger, C., Bode, M., Sanchirico, J.N., LaRiviere, J., Hastings, A. & 

Armsworth, P.R. (2016) Optimal management of a stochastically 
varying population when policy adjustment is costly. Ecological 
Applications, 26, 808–817.

Boettiger, C., Mangel, M. & Munch, S. (2015) Avoiding tipping points 
in fisheries management through Gaussian process dynamic 
programming. Proceedings of the Royal Society B: Biological 
Sciences, 282, 20141631.

Brias, A. & Munch, S.B. (2021) Ecosystem based multi-species man-
agement using Empirical Dynamic Programming. Ecological 
Modelling, 441, 109423.

Burnham, K.P. & Anderson, D.R. (1998) Model selection and infer-
ence. Practical use of the information-theoretic approach. New 
York, NY: Springer, pp. 75–117. ISBN 978-1-4757-2917-7. https://
doi.org/10.1007/978-1-4757-2917-7

Chadès, I., McDonald-Madden, E., McCarthy, M.A., Wintle, B., 
Linkie, M. & Possingham, H.P. (2008) When to stop managing or 
surveying cryptic threatened species. Proceedings of the National 
Academy of Sciences, 105, 13936–13940.

Clark, C.W. (1973) Profit maximization and the extinction of animal 
species. Journal of Political Economy, 81, 950–961.

Clark, C.W. (1990) Mathematical bioeconomics: the optimal management 
of renewable resources, 2nd edn. Hoboken: Wiley-Interscience.

Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., 
Foley, J.A. et al. (2001) Ecological forecasts: an emerging imper-
ative. Science, 293, 657–660.

Costello, C., Ovando, D., Clavelle, T., Strauss, C.K., Hilborn, R., 
Melnychuk, M.C. et al. (2016) Global fishery prospects under 
contrasting management regimes. Proceedings of the National 
Academy of Sciences, 113, 5125–5129.

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, 
F. et al. (2022) Magnetic control of tokamak plasmas through 
deep reinforcement learning. Nature, 602, 414–419.

Dietze, M.C., Fox, A., Beck-Johnson, L.M., Betancourt, J.L., 
Hooten, M.B., Jarnevich, C.S. et al. (2018) Iterative near-
term ecological forecasting: needs, opportunities, and chal-
lenges. Proceedings of the National Academy of Sciences, 115, 
1424–1432.

Dulac-Arnold, G., Mankowitz, D. & Hester, T. (2019). Challenges 
of Real-World Reinforcement Learning. arXiv:1904.12901 [cs, 
stat].

Fischer, J., Peterson, G.D., Gardner, T.A., Gordon, L.J., Fazey, I., 
Elmqvist, T. et al. (2009) Integrating resilience thinking and op-
timisation for conservation. Trends in Ecology & Evolution, 24, 
549–554.

Ginzburg, L.R. & Jensen, C.X.J. (2004) Rules of thumb for judg-
ing ecological theories. Trends in Ecology & Evolution, 19, 
121–126.

Gneiting, T. & Raftery, A.E. (2007) Strictly proper scoring rules, 
prediction, and estimation. Journal of the American Statistical 
Association, 102, 359–378.

Graves, A., Bellemare, M.G., Menick, J., Munos, R. & Kavukcuoglu, 
K. (2017). Automated curriculum learning for neural networks. 
arXiv:1704.03003 [cs].

Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. (2018) Soft actor-
critic: off-policy maximum entropy deep reinforcement learning 
with a stochastic actor. arXiv:1801.01290 [cs, stat].

Halpern, B.S., Klein, C.J., Brown, C.J., Beger, M., Grantham, H.S., 
Mangubhai, S. et al. (2013) Achieving the triple bottom line in 
the face of inherent trade-offs among social equity, economic re-
turn, and conservation. Proceedings of the National Academy of 
Sciences, 110, 6229–6234.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. & 
Meger, D. (2019) Deep reinforcement learning that matters. 
arXiv:1709.06560 [cs, stat].

Hening, A. (2021) Coexistence, extinction, and optimal harvesting in 
discrete-time stochastic population models. Journal of Nonlinear 
Science, 31, 1.

Hening, A., Nguyen, D.H., Ungureanu, S.C. & Wong, T.K. (2019) 
Asymptotic harvesting of populations in random environments. 
Journal of Mathematical Biology, 78, 293–329.

Holden, M.H. & Conrad, J.M. (2015) Optimal escapement in 
stage-structured fisheries with environmental stochasticity. 
Mathematical Biosciences, 269, 76–85.

Howard, R. (1966) Information value theory. IEEE Transactions on 
Systems Science and Cybernetics, 2, 22–26.

Katz, R.W., Brown, B.G. & Murphy, A.H. (1987) Decision-analytic 
assessment of the economic value of weather forecasts: the fal-
lowing/planting problem. Journal of Forecasting, 6, 77–89.

Lande, R., Engen, S. & Saether, B.-E. (1994) Optimal harvesting, 
economic discounting and extinction risk in fluctuating popula-
tions. Nature, 372, 88–90.

Li, S.-L., Bjørnstad, O.N., Ferrari, M.J., Mummah, R., Runge, M.C., 
Fonnesbeck, C.J. et al. (2017) Essential information: uncertainty 
and optimal control of Ebola outbreaks. Proceedings of the 
National Academy of Sciences, 114, 5659–5664.

Ludwig, D., Hilborn, R. & Walters, C. (1993) Uncertainty, resource 
exploitation, and conservation: lessons from history. Science, 
260, 17–36.

Ludwig, D. & Walters, C.J. (1982) Optimal harvesting with imprecise 
parameter estimates. Ecological Modelling, 14, 273–292.

https://doi.org/10.5281/zenodo.4660620
https://doi.org/10.5281/zenodo.4660620
https://publons.com/publon/10.1111/ele.14024
https://doi.org/10.5281/zenodo.4660621
https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0002-1642-628X
https://doi.org/10.1007/978-1-4757-2917-7
https://doi.org/10.1007/978-1-4757-2917-7


10  |      THE FORECAST TRAP

Marescot, L., Chapron, G., Chadès, I., Fackler, P.L., Duchamp, C., 
Marboutin, E. et al. (2013) Complex decisions made simple: a 
primer on stochastic dynamic programming. Methods in Ecology 
and Evolution, 4, 872–884.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., 
Bellemare, M.G. et al. (2015) Human-level control through deep 
reinforcement learning. Nature, 518, 529–533.

Nitzbon, J., Heitzig, J. & Parlitz, U. (2017) Sustainability, collapse 
and oscillations in a simple World-Earth model. Environmental 
Research Letters, 12, 074020.

Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994) Verification, 
validation, and confirmation of numerical models in the earth 
sciences. Science, 263, 641–646.

Peterson, G.D., Cumming, G.S. & Carpenter, S.R. (2003) Scenario 
planning: a tool for conservation in an uncertain world. 
Conservation Biology, 17, 358–366.

Polasky, S., Carpenter, S.R., Folke, C. & Keeler, B. (2011) Decision-
making under great uncertainty: environmental management in an 
era of global change. Trends in Ecology & Evolution, 26, 398–404.

Punt, A.E. (2010) Harvest control rules and fisheries management. In: 
Grafton, R.Q., Hilborn, R., Squires, D., Tait, M. & Williams, 
M. (Eds.) Handbook of marine fisheries conservation and manage-
ment. Oxford: Oxford University Press.

Punt, A.E., Butterworth, D.S., de Moor, C.L., De Oliveira, J.A.A. & 
Haddon, M. (2016) Management strategy evaluation: best prac-
tices. Fish and Fisheries, 17, 303–334.

Reed, W.J. (1979) Optimal escapement levels in stochastic and deter-
ministic harvesting models. Journal of Environmental Economics 
and Management, 6, 350–363.

Richards, S.A., Possingham, H.P. & Tizard, J. (1999) Optimal fire 
management for maintaining community diversity. Ecological 
Applications, 9, 880–892.

Runge, M.C., Stroeve, J.C., Barrett, A.P. & McDonald-Madden, E. 
(2016) Detecting failure of climate predictions. Nature Climate 
Change, 6, 861–864.

Schindler, D.E. & Hilborn, R. (2015) Prediction, precaution, and pol-
icy under global change. Science, 347, 953–954.

Schnute, J.T. & Richards, L.J. (2001) Use and abuse of fishery models. 
Canadian Journal of Fisheries and Aquatic Sciences, 58, 10–17.

Shea, K., Tildesley, M.J., Runge, M.C., Fonnesbeck, C.J. & Ferrari, 
M.J. (2014) Adaptive management and the value of information: 

learning via intervention in epidemiology. PLoS Biology, 12, 
9–12.

Smith, A.D.M. & Walters, C.J. (1981) Adaptive management of stock-
recruitment systems. Canadian Journal of Fisheries and Aquatic 
Sciences, 38, 690–703.

Walters, C.J. (1981) Optimum escapements in the face of alterna-
tive recruitment hypotheses. Canadian Journal of Fisheries and 
Aquatic Sciences, 38, 678–689.

Walters, C.J. & Hilborn, R. (1978) Ecological optimization and adap-
tive management. Annual Review of Ecology and Systematics, 9, 
157–188.

Wilson, K.A., McBride, M.F., Bode, M. & Possingham, H.P. 
(2006) Prioritizing global conservation efforts. Nature, 440, 
337–340.

Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., 
Halpern, B.S. et al. (2006) Impacts of biodiversity loss on ocean 
ecosystem services. Science, 314(5800), 787–790.

Worm, B., Hilborn, R., Baum, J.K., Branch, T.A., Collie, J.S., 
Costello, C. et al. (2009) Rebuilding global fisheries. Science, 
325(5940), 578–585.

Wurman, P.R., Barrett, S., Kawamoto, K., MacGlashan, J., 
Subramanian, K., Walsh, T.J. et al. (2022) Outracing champion 
Gran Turismo drivers with deep reinforcement learning. Nature, 
602, 223–228.

Ye, H., Beamish, R.J., Glaser, S.M., Grant, S.C.H., Hsieh, C.-H., 
Richards, L.J. et al. (2015) Equation-free mechanistic ecosystem 
forecasting using empirical dynamic modeling. Proceedings of 
the National Academy of Sciences, 112, E1569–E1576.

SU PPORT I NG I N FOR M AT ION
Additional supporting information may be found in the 
online version of the article at the publisher’s website.

How to cite this article: Boettiger, C. (2022) The 
forecast trap. Ecology Letters, 00, 1–10. Available 
from: https://doi.org/10.1111/ele.14024

https://doi.org/10.1111/ele.14024

	The forecast trap
	Abstract
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	AUTHOR CONTRIBUTION
	PEER REVIEW
	OPEN RESEARCH BADGES

	REFERENCES


