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Preface

This new edition reflects the development of the field of hypothesis
testing since the original book was published 27 years ago, but the basic
structure has been retained . In particular, optimality considerations con­
tinue to provide the organizing principle. However, they are now tempered
by a much stronger emphasis on the robustness properties of the resulting
procedures. Other topics that receive greater attention than in the first
edition are confidence intervals (which for technical reasons fit better here
than in the companion volume on estimation, TPE*), simultaneous in­
ference procedures (which have become an important part of statistical
methodology), and admissibility. A major criticism that has been leveled
against the theory presented here relates to the choice of the reference set
with respect to which performance is to be evaluated. A new chapter on
conditional inference at the end of the book discusses some of the issues
raised by this concern.

In order to accommodate the wealth of new results that have become
available concerning the core material, it was necessary to impose some
limitations. The most important omission is an adequate treatment of
asymptotic optimality paralleling that given for estimation in TPE. Since
the corresponding theory for testing is less satisfactory and would have
requ ired too much space, the earlier rather perfunctory treatment has been
retained. Three sections of the first edition were devoted to sequential
anal ysis. They are outdated and have been deleted, since it was not possible
to do justice to the extensive and technically demanding expansion of this
area . This is consistent with the decision not to include the theory of
optimal experimental design. Together with sequential analysis and survey
sampling, this topic should be treated in a separate book. Finally, although
there is a section on Bayesian confidence intervals, Bayesian approaches to

• Theon ' of Point Estimation [Lehmann (1983»).
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viii PREFACE

hypothesis testing are not discussed, since they playa less well-defined role
here than do the corresponding techniques in estimation.

In addition to the major changes, many new comments and references
have been included, numerous errors corrected, and some gaps filled. I am
greatly indebted to Peter Bickel,John Pratt, and Fritz Scholz, who furnished
me with lists of errors and improvements, and to Maryse Loranger and Carl
Schaper who each read several chapters of the manuscript. For additional
comments I should like to thank Jim Berger, Colin Blyth, Herbert Eisenberg,
Jaap Fabius, Roger Farrell, Thomas Ferguson, Irving Glick, Jan Hemelrijk,
Wassily Hoeffding, Kumar Jogdeo, the late Jack Kiefer, Olaf Krafft, Wil­
liam Kruskal, John Marden, John Rayner, Richard Savage, Robert Wijs­
man, and the many colleagues and students who made contributions of
which I no longer have a record.

Another indebtedness I should like to acknowledge is to a number of
books whose publication considerably eased the task of updating. Above all,
there is the encyclopedic three-volume treatise by Kendall and Stuart , of
which I consulted particularly the second volume, fourth edition (1979)
innumerable times. The books by Ferguson (1967), Cox and Hinkley (1974),
and Berger (1980) also were a great help. In the first edition, I provided
references to tables and charts that were needed for the application of the
tests whose theory was developed in the book. This has become less
important in view of the four-volume work by Johnson and Kotz: Distribu­
tions in Statistics (1969-1972). Frequently I now simply refer to the ap­
propriate chapter of this reference work.

There are two more books to which I must refer:
A complete set of solutions to the problems of the first edition was

published as Testing Statistical Hypotheses: Worked Solutions. [Kallenberg
et al. (1984)]. I am grateful to the group of Dutch authors for undertaking
this labor and for furnishing me with a list of errors and corrections
regarding both the statements of the problems and the hints to their
solutions.

The other book is my Theory of Point Estimation [Lehmann (1983)],
which combines with the present volume to provide a unified treatment of
the classical theories of testing and estimation, both by confidence intervals
and by point estimates. The two are independent of each other, but cross
references indicate additional information on a given topic provided by the
other book. Suggestions for ways in which the two books can be used to
teach different courses are given in comments for instructors following this
preface .

lowe very special thanks to two people. My wife, Juliet Shaffer, critically
read the new sections and gave advice on many other points . Wei Yin Loh



PREFACE IX

read an early version of the whole manuscript and checked many of the new
problems. In addition, he joined me in the arduous task of reading the
complete galley proofs. As a result, many errors and oversights were
corrected.

The research required for this second edition was supported in part by
the National Science Foundation, and I am grateful for the Foundation's
continued support of my work. Finally, I should like to thank Linda
Tiffany, who converted many illegible pages into beautifully typed ones.
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Preface to the First Edition

A mathematical theory of hypothesis testing in which tests are derived as
solutions of clearly stated optimum problems was developed by Neyman
and Pearson in the 1930s and since then has been considerably extended.
The purpose of the present book is to give a systematic account of this
theory and of the closely related theory of confidence sets, together with
their principal applications . These include the standard one- and two-sam­
ple problems concerning normal, binomial, and Poisson distributions; some
aspects of the analysis of variance and of regression analysis (linear hy­
pothesis); certain multivariate and sequential problems. There is also an
introduction to nonparametric tests, although here the theoretical approach
has not yet been fully developed. One large area of methodology, the class
of methods based on large-sample considerations, in particular X2 and
likelihood-ratio tests, essentially has been omitted because the approach and
the mathematical tools used are so different that an adequate treatment
would require a separate volume. The theory of these tests is only briefly
indicated at the end of Chapter 7.

At present the theory of hypothesis testing is undergoing important
changes in at least two directions. One of these stems from the realization
that the standard formulation constitutes a serious oversimplification of the
problem. The theory is therefore being reexamined from the point of view of
Wald's statistical decision functions. Although these investigations throw
new light on the classical theory, they essentially confirm its findings. I have
retained the Neyman-Pearson formulation in the main part of this book,
but have included a discussion of the concepts of general decision theory in
Chapter 1 to provide a basis for giving a broader justification of some of the
results. It also serves as a background for the development of the theories of
hypothesis testing and confidence sets.

Of much greater importance is the fact that many of the problems, which
traditionally have been formulated in terms of hypothesis testing, are in
reality multiple decision problems involving a choice between several deci-

Xl



xii PREFACE TO THE FIRST EDITION

sions when the hypothesis is rejected. The development of suitable proce­
dures for such problems is at present one of the most important tasks of
statistics and is finding much attention in the current literature. However,
since most of the work so far has been tentative, I have preferred to present
the traditional tests even in cases in which the majority of the applications
appear to call for a more elaborate procedure, adding only a warning
regarding the limitations of this approach. Actually, it seems likely that the
tests will remain useful because of their simplicity even when a more
complete theory of multiple decision methods is available.

The natural mathematical framework for a systematic treatment of
hypothesis testing is the theory of measure in abstract spaces. Since intro­
ductory courses in real variables or measure theory frequently present only
Lebesgue measure, a brief orientation with regard to the abstract theory is
given in Sections 1 and 2 of Chapter 2. Actually, much of the book can be
read without knowledge of measure theory if the symbol fp(x)dp.(x) is
interpreted as meaning either fp(x)dx or Ep(x), and if the measure-theo­
retic aspects of certain proofs together with all occurrences of the letters a.e.
(almost everywhere) are ignored. With respect to statistics, no specific
requirements are made, all statistical concepts being developed from the
beginning. On the other hand, since readers will usually have had previous
experience with statistical methods, applications of each method are indi­
cated in general terms, but concrete examples with data are not included.
These are available in many of the standard textbooks.

The problems at the end of each chapter, many of them with outlines of
solutions, provide exercises, further examples, and introductions to some
additional topics. There is also given at the end of each chapter an
annotated list of references regarding sources, both of ideas and of specific
results. The notes are not intended to summarize the principal results of
each paper cited but merely to indicate its significance for the chapter in
question. In presenting these references I have not aimed for completeness
but rather have tried to give a usable guide to the literature.

An outline of this book appeared in 1949 in the form of lecture notes
taken by Colin Blyth during a summer course at the University of Cali­
fornia. Since then, I have presented parts of the material in courses at
Columbia, Princeton, and Stanford Universities and several times at the
University of California. During these years I greatly benefited from com­
ments of students, and I regret that I cannot here thank them individually.
At different stages of the writing I received many helpful suggestions from
W. Gautschi, A. Heyland, and L. J. Savage, and particularly from Mrs. C.
Striebel, whose critical reading of the next to final version of the manuscript
resulted in many improvements. Also, I should like to mention gratefully
the benefit I derived from many long discussions with Charles Stein.
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It is a pleasure to acknowledge the generous support of this work by the
Office of Naval Research; without it the book would probably not have
been written. Finally, I should like to thank Mrs. J. Rubalcava, who typed
and retyped the various drafts of the manuscript with unfailing patience,
accuracy, and speed.

E. L. LEHMANN

Berkeley. California
JUlie 1959



Comments for Instructors

The two companion volumes, Testing Statistical Hypotheses (TSH)
and Theory of Point Estimation (TPE), between them provide an introduc­
tion to classical statistics from a unified point of view. Different optimality
criteria are considered, and methods for determining optimum procedures
according to these criteria are developed. The application of the resulting
theory to a variety of specific problems as an introduction to statistical
methodology constitutes a second major theme.

On the other hand, the two books are essentially independent of each
other. (As a result, there is some overlap in the preparatory chapters; also,
each volume contains cross-references to related topics in the other.) They
can therefore be taught in either order. However, TPE is somewhat more
discursive and written at a slightly lower mathematical level, and for this
reason may offer the better starting point.

The material of the two volumes combined somewhat exceeds what can
be comfortably covered in a year's course meeting 3 hours a week, thus
providing the instructor with some choice of topics to be emphasized. A
one-semester course covering both estimation and testing can be obtained ,
for example, by deleting all large-sample considerations, all nonparametric
material , the sections concerned with simultaneous estimation and testing,
the minimax chapter of TSH, and some of the applications. Such a course
might consist of the following sections: TPE: Chapter 2, Section 1 and a
few examples from Sections 2,3 ; Chapter 3, Sections 1-3; Chapter 4,
Sections 1-4. TSH: Chapter 3, Sections 1-3,5 ,7 (without proof of Theorem
6); Chapter 4, Sections 1-7 ; Chapter 5, Sections 1-4,6-8; Chapter 6,
Sections 1-6,11; Chapter 7, Sections 1-3,5-8,11,12; together with material
from the preparatory chapters (TSH Chapter 1,2 ; TPE Chapter 1) as it is
needed.

xv
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CHAPTER 1

The General Decision

Problem

1. STATISTICAL INFERENCE AND STATISTICAL
DECISIONS

The raw material of a statistical investigation is a set of observations; these
are the values taken on by random variables X whose distribution Po is at
least partly unknown. Of the parameter 8, which labels the distribution, it is
assumed known only that it lies in a certain set n, the parameter space.
Statistical inference is concerned with methods of using this observational
material to obtain information concerning the distribution of X or the
parameter 8 with which it is labeled. To arrive at a more precise formula­
tion of the problem we shall consider the purpose of the inference.

The need for statistical analysis stems from the fact that the distribution
of X, and hence some aspect of the situation underlying the mathematical
model, is not known. The consequence of such a lack of knowledge is
uncertainty as to the best mode of behavior. To formalize this, suppose that
a choice has to be made between a number of alternative actions. The
observations, by providing information about the distribution from which
they came, also provide guidance as to the best decision. The problem is to
determine a rule which, for each set of values of the observations, specifies
what decision should be taken. Mathematically such a rule is a function l),

which to each possible value x of the random variables assigns a decision
d = l)(x), that is, a function whose domain is the set of values of X and
whose range is the set of possible decisions.

In order to see how l) should be chosen, one must compare the conse­
quences of using different rules. To this end suppose that the consequence
of taking decision d when the distribution of X is Po is a loss, which can be
expressed as a nonnegative real number L (8, d) . Then the long-term
average loss that would result from the use of l) in a number of repetitions

1



2 THE GENERAL DECISION PROBLEM [1.2

of the experiment is the expectation £[L(0,8(X»] evaluated under the
assumption that Po is the true distribution of X. This expectation, which
depends on the decision rule 8 and the distribution Po, is called the risk
function of 8 and will be denoted by R (0, 8). By basing the decision on the
observations, the original problem of choosing a decision d with loss
function L(O, d) is thus replaced by that of choosing 8, where the loss is
now R(O, 8).

The above discussion suggests that the aim of statistics is the selection of
a decision function which minimizes the resulting risk. As will be seen later,
this statement of aims is not sufficiently precise to be meaningful; its proper
interpretation is in fact one of the basic problems of the theory.

2. SPECIFICAnON OFA DECISION PROBLEM

The methods required for the solution of a specific statistical problem
depend quite strongly on the three elements that define it : the class
PlJ = {Po,°En} to which the distribution of X is assumed to belong; the
structure of the space D of possible decisions d; and the form of the loss
function L. In order to obtain concrete results it is therefore necessary to
make specific assumptions about these elements. On the other hand , if the
theory is to be more than a collection of isolated results, the assumptions
must be broad enough either to be of wide applicability or to define classes
of problems for which a unified treatment is possible.

Consider first the specification of the class PlJ. Precise numerical assump­
tions concerning probabilities or probability distributions are usually not
warranted. However, it is frequently possible to assume that certain events
have equal probabilities and that certain others are statistically independent.
Another type of assumption concerns the relative order of certain infinitesi­
mal probabilities, for example the probability of occurrences in an interval
of time or space as the length of the interval tends to zero. The following
classes of distributions are derived on the basis of only such assumptions,
and are therefore applicable in a great variety of situations.

The binomial distribution b(p, n) with

x=O, ... ,n , O~p~l.

This is the distribution of the total number of successes in n independent
trials when the probability of success for each trial is p.

The Poisson distribution P( 1') with

(2)
"xri x = x) = ,e-",
x .

x=O,l, ... , 0<1'.



1.2] SPECIFICATION OF A DECISION PROBLEM 3

This is the distribution of the number of events occurring in a fixed interval
of time or space if the probability of more than one occurrence in a very
short interval is of smaller order of magnitude than that of a single
occurrence, and if the numbers of events in nonoverlapping intervals are
statistically independent. Under these assumptions, the process generating
the events is called a Poisson process. Such processes are discussed, for
example, in the books by Feller (1968), Karlin and Taylor (1975), and Ross
(1980).

The normal distribution Na, (12) with probability density

1 [1 2](3) p(x) = ~ exp --2(X-~) ,
v2'1T(1 2(1

- 00 < x, ~ < 00, 0 < (1.

Under very general conditions, which are made precise by the central limit
theorem, this is the approximate distribution of the sum of a large number
of independent random variables when the relative contribution of each
term to the sum is small.

We consider next the structure of the decision space D. The great variety
of possibilities is indicated by the following examples.

Example 1. Let XI" ' " X; be a sample from one of the distributions (1)-(3),
that is, let the X's be distributed independently and identically according to one of
these distributions. Let 8 be p, T, or the pair a, a) respectively, and let y = y(8)
be a real-valued function of 8.

(i) If one wishes to decide whether or not y exceeds some specifiedvalue Yo' the
choice lies between the two decisions do: y > Yo and dl : y ~ Yo ' In specific
applications these decisions might correspond to the acceptance or rejection of a lot
of manufactured goods, of an experimental airplane as ready for flight testing, of a
new treatment as an improvement over a standard one, and so on. The loss function
of course depends on the application to be made. Typically, the loss is 0 if the
correct decision is chosen, while for an incorrect decision the losses L (y, do) and
L (y, dI) are increasing functions of Iy - Yo I.

(ii) At the other end of the scale is the much more detailed problem of
obtaining a numerical estimate of y. Here a decision d of the statistician is a real
number, the estimate of y, and the losses might be L(y, d) = v(y)w(ld - yD.
where w is a strictly increasing function of the error Id- yl.

(iii) An intermediate case is the choice between the three alternatives do : y < Yo,
d, : y > YI' d2 : Yo s Ys YI' for example accepting a new treatment, rejecting it, or
recommending it for further study.

The distinction illustrated by this example is the basis for one of the
principal classifications of statistical methods. Two-decision problems such
as (i) are usually formulated in terms of testing a hypothesis which is to be
accepted or rejected (see Chapter 3). It is the theory of this class of problems
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with which we shall be mainly concerned here. The other principal branch
of statistics is the theory of point estimation dealing with problems such as
(ii). This is the subject of TPE. The intermediate problem (iii) is a special
case of a multipledecision procedure. Some problems of this kind are treated
in Ferguson (1967, Chapter 6); a discussion of some others is given in
Chapter 7, Section 4.

Example 2. Suppose that the data consist of samples X;j' j = 1, ... , ni , from
normal populations N(~i' 0

2), i = 1, . . . , s.

(i) Consider first the case s = 2 and the question of whether or not there is a
material difference between the two populations. This has the same structure as
problem (iii) of the previous example. Here the choice lies between the three
decisions do : 1~2 - ~d s A, d1 : ~2 > ~1 + A, d2 : ~2 < ~1 - A, where A is pre­
assigned. An analogous problem, involving k + 1 possible decisions, occurs in the
general case of k populations. In this case one must choose between the decision
that the k distributions do not differ materially, do :maxl~j - tl s A, and the
decisions dk : maxl~j - ~il > A and ~k is the largest of the means.

(ii) A related problem is that of ranking the distributions in increasing order of
their mean ~.

(iii) Alternatively, a standard ~o may be given and the problem is to decide
which, if any, of the population means exceed the standard.

Example 3. Consider two distributions-to be specific, two Poisson distribu­
tions P("1)' P("2)-and suppose that "1 is known to be less than "2 but that
otherwise the ,,'s are unknown. Let Z1" ' " Z; be independently distributed, each
according to either P( "1) or P( "2)' Then each Z is to be classified as to which of the
two distributions it comes from. Here the loss might be the number of Z's that are
incorrectly classified, multiplied by a suitable function of "1 and "2' An example of
the complexity that such problems can attain and the conceptual as well as
mathematical difficulties that they may involve is provided by the efforts of
anthropologists to classify the human population into a number of homogeneous
races by studying the frequencies of the various blood groups and of other genetic
characters.

All the problems considered so far could be termed action problems. It
was assumed in all of them that if 8 were known a unique correct decision
would be available, that is, given any 8, there exists a unique d for which
L(8, d) = O. However, not all statistical problems are so clear-cut. Fre­
quently it is a question of providing a convenient summary of the data or
indicating what information is available concerning the unknown parameter
or distribution. This information will be used for guidance in various
considerations but will not provide the sole basis for any specific decisions.
In such cases the emphasis is on the inference rather than on the decision
aspect of the problem. Although formally it can still be considered a
decision problem if the inferential statement itself is interpreted as the
decision to be taken, the distinction is of conceptual and practical signifi-
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cance despite the fact that frequently it is ignored.* An important class of
such problems, estimation by interval, is illustrated by the following exam­
ple . (For the more usual formulation in terms of confidence intervals, see
Chapter 3, Section 5, and Chapter 5, Sections 4 and 5.)

Example 4. Let X = (Xl" .. , Xn ) be a sample from N (~, ( 2 ) and let a decision
consist in selecting an interval [l., I] and stating thai it contains ~ . Suppose that
decision procedures are restricted to intervals [l.( X) , L( X)] whose expected length
for all ~ and a does not exceed ko where k is some preassigned constant. An
appropriate loss function would be 0 if the decision is correct and would otherwise
depend on the relative position of the interval to the true value of f In this case
there are many correct decisions corresponding to a given distribution Na, ( 2 ) .

It remains to discuss the choice of loss function," and of the three
elements defining the problem this is perhaps the most difficult to specify.
Even in the simplest case, where all losses eventually reduce to financial
ones, it can hardly be expected that one will be able to evaluate all the
short- and long-term consequences of an action. Frequently it is possible to
simplify the formulation by taking into account only certain aspects of the
loss function. As an illustration consider Example l(i) and let L( (J , do) = a
for y«(J) :::;; Yo and L«(J, d1) = b for y«(J) > Yo' The risk function becomes

(4) {
ap/I {«5(X) = do}

R((J,«5)= bP/I{«5(X)=dd
if y:::;; Yo'

if y > Yo '

and is seen to involve only the two probabilities of error, with weights which
can be adjusted according to the relative importance of these errors.
Similarly, in Example 3 one may wish to restrict attention to the number of
misclassifications.

Unfortunately, such a natural simplification is not always available, and
in the absence of specific knowledge it becomes necessary to select the loss
function in some conventional way, with mathematical simplicity usually an
important consideration. In point estimation problems such as that consid­
ered in Example l(ii), if one is interested in estimating a real-valued
function y = y( (J) it is customary to take the square of the error, or
somewhat more generally to put

(5) L((J, d) = v((J)(d _ y)2.

*For a more detailed discussion of this distinction see, for example, Cox (1958), Blyth
(1970), and Barnett (1982).

"Some aspects of the choice of model and loss function are discussed in Lehmann (1984,
1985).
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Besides being particularly simple mathematically, this can be considered as
an approximation to the true loss function L provided that for each fixed fJ,
L(fJ, d) is twice differentiable in d, that L(fJ, y(fJ)) = 0 for all fJ, and that
the error is not large.

It is frequently found that, within one problem, quite different types of
losses may occur, which are difficult to measure on a common scale.
Consider once more Example l(i) and suppose that Yo is the value of y
when a standard treatment is applied to a situation in medicine, agriculture,
or industry. The problem is that of comparing some new process with
unknown y to the standard one. Turning down the new method when it is
actually superior, or adopting it when it is not, clearly entails quite different
consequences. In such cases it is sometimes convenient to treat the various
loss components, say L 1, L 2 , ••• , L" separately. Suppose in particular that
r = 2 and that L 1 represents the more serious possibility. One can then
assign a bound to this risk component, that is, impose the condition

(6) EL1(fJ, ~(X)) ~ a,

and subject to this condition minimize the other component of the risk.
Example 4 provides an illustration of this procedure. The length of the
interval [~, L] (measured in a-units) is one component of the loss function,
the other being the loss that results if the interval does not cover the true f

3. RANDOMIZAnON; CHOICE OF EXPERIMENT

The description of the general decision problem given so far is still too
narrow in certain respects. It has been assumed that for each possible value
of the random variables a definite decision must be chosen. Instead, it is
convenient to permit the selection of one out of a number of decisions
according to stated probabilities, or more generally the selection of a
decision according to a probability distribution defined over the decision
space; which distribution depends of course on what x is observed. One
way to describe such a randomized procedure is in terms of a nonran­
domized procedure depending on X and a random variable Y whose values
lie in the decision space and whose conditional distribution given x is
independent of fJ.

Although it may run counter to one's intuition that such extra randomi­
zation should have any value, there is no harm in permitting this greater
freedom of choice. If the intuitive misgivings are correct, it will tum out that
the optimum procedures always are of the simple nonrandomized kind.
Actually, the introduction of randomized procedures leads to an important
mathematical simplification by enlarging the class of risk functions so that it
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becomes convex. In addition, there are problems in which some features of
the risk function such as its maximum can be improved by using a
randomized procedure.

Another assumption that tacitly has been made so far is that a definite
experiment has already been decided upon so that it is known what
observations will be taken. However, the statistical considerations involved
in designing an experiment are no less important than those concerning its
analysis. One question in particular that must be decided before an investi­
gation is undertaken is how many observations should be taken so that the
risk resulting from wrong decisions will not be excessive. Frequently it turns
out that the required sample size depends on the unknown distribution and
therefore cannot be determined in advance as a fixed number. Instead it is
then specified as a function of the observations and the decision whether or
not to continue experimentation is made sequentially at each stage of the
experiment on the basis of the observations taken up to that point.

Example 5. On the basis of a sample Xl" ' " Xn from a normal distribution
Na, (12) one wishes to estimate ~ . Here the risk function of an estimate, for
example its expected squared error, depends on (1. For large (1 the sample contains
only little information in the sense that two distributions Nal' (12) and Na2 ' (12)

with fixed difference ~2 - ~l become indistinguishable as (1 ~ 00, with the result
that the risk tends to infinity. Conversely, the risk approaches zero as (1 ~ 0, since
then effectively the mean becomes known. Thus the number of observations needed
to control the risk at a given level is unknown. However, as soon as some
observations have been taken, it is possible to estimate (12 and hence to determine
the additional number of observations required.

Example 6. In a sequence of trials with constant probability p of success, one
wishes to decide whether p s ! or p > !. It will usually be possible to reach a
decision at an early stage if p is close to 0 or 1 so that practically all observations
are of one kind, while a larger sample will be needed for intermediate values of p .
This difference may be partially balanced by the fact that for intermediate values a
loss resulting from a wrong decision is presumably less serious than for the more
extreme values.

Example 7. The possibility of determining the sample size sequentially is
important not only because the distributions P9 can be more or less informative but
also because the same is true of the observations themselves. Consider, for example,
observations from the uniform distribution over the interval (8 - !, 8 + t) and the
problem of estimating 8. Here there is no difference in the amount of information
provided by the different distributions P9• However, a sample Xl' X2 , .. • , x" can
practically pinpoint 8 if maxlX - X,I is sufficiently close to I, or it can give
essentially no more information tban a single observation if maxl~ - X,I is close to
O. Again the required sample size should be determined sequentially.

Except in the simplest situations, the determination of the appropriate
sample size is only one aspect of the design problem. In general, one must
decide not only how many but also what kind of observations to take. In
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clinical trials, for example, when a new treatment is being compared with a
standard procedure, a protocol is required which specifies to which of the
two treatments each of the successive incoming patients is to be assigned.
Formally, such questions can be subsumed under the general decision
problem described at the beginning of the chapter, by interpreting X as the
set of all available variables, by introducing the decisions whether or not to
stop experimentation at the various stages, by specifying in case of con­
tinuance which type of variable to observe next, and by including the cost of
observation in the loss function .

The determination of optimum sequential stopping rules and experimen­
tal designs is outside the scope of this book. Introductions to these subjects
are provided, for example, by Chernoff (1972), Ghosh (1970), and
Govindarajulu (1981).

4. OPTIMUM PROCEDURES

At the end of Section 1 the aim of statistical theory was stated to be the
determination of a decision function 8 which minimizes the risk function

(7) R(8,8) = EI/[L(8,8(X))] .

Unfortunately, in general the minimizing 8 depends on 8, which is
unknown. Consider, for example, some particular decision do, and the
decision procedure 8(x) == do according to which decision do is taken
regardless of the outcome of the experiment. Suppose that do is the correct
decision for some 80 , so that L(80 , do) = O. Then 8 minimizes the risk at 80
since R( 80 , 8) = 0, but presumably at the cost of a high risk for other values
of 8.

In the absence of a decision function that minimizes the risk for all 8, the
mathematical problem is still not defined, since it is not clear what is meant
by a best procedure. Although it does not seem possible to give a definition
of optimality that will be appropriate in all situations, the following two
methods of approach frequently are satisfactory.

The nonexistence of an optimum decision rule is a consequence of the
possibility that a procedure devotes too much of its attention to a single
parameter value at the cost of neglecting the various other values that might
arise. This suggests the restriction to decision procedures which possess a
certain degree of impartiality, and the possibility that within such a re­
stricted class there may exist a procedure with uniformly smallest risk. Two
conditions of this kind, invariance and unbiasedness, will be discussed in
the next section.
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Instead of restnctmg the class of procedures, one can approach the
problem somewhat differently. Consider the risk functions corresponding to
two different decision rules 81 and 82, If R(O,81) < R(O,82 ) for all 0, then
81 is clearly preferable to 82, since its use will lead to a smaller risk no
matter what the true value of °is. However, the situation is not clear when
the two risk functions intersect as in Figure 1. What is needed is a principle
which in such cases establishes a preference of one of the two risk functions
over the other, that is, which introduces an ordering into the set of all risk
functions . A procedure will then be optimum if its risk funct ion is best
according to this ordering. Some criteria that have been suggested for
ordering risk functions will be discussed in Section 6.

A weakness of the theory of optimum procedures sketched above is its
dependence on an extraneous restricting or ordering principle, and on
knowledge concerning the loss function and the distributions of the observ­
able random variables which in applications is frequently unavailable or
unreliable. These difficulties, which may raise doubt concerning the value of
an optimum theory resting on such shaky foundations, are in principle no
different from those arising in any application of mathematics to reality .
Mathematical formulations always involve simplification and approxima­
tion , so that solutions obtained through their use cannot be relied upon
without additional checking. In the present case a check consists in an
overall evaluation of the performance of the procedure that the theory
produces, and an investigation of its sensitivity to departure from the
assumptions under which it was derived.

The optimum theory discussed in this book should therefore not be
understood to be prescriptive. The fact that a procedure 8 is optimal
according to some optimality criterion does not necessarily mean that it is
the right procedure to use, or even a satisfactory procedure. It does show
how well one can do in this particular direction and how much is lost when
other aspects have to be taken into account.
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The aspect of the formulation that typically has the greatest influence on
the solution of the optimality problem is the family 9' to which the
distribution of the observations is assumed to belong. The investigation of
the robustness of a proposed procedure to departures from the specified
model is an indispensable feature of a suitable statistical procedure, and
although optimality (exact or asymptotic) may provide a good starting
point, modifications are often necessary before an acceptable solution is
found. It is possible to extend the decision-theoretic framework to include
robustness as well as optimality. Suppose robustness is desired against some
class 9" of distributions which is larger (possibly much larger) than the
given 9'. Then one may assign a bound M to the risk to be tolerated over
9" . Within the class of procedures satisfying this restriction, one can then
optimize the risk over 9' as before. Such an approach has been proposed
and applied to a number of specific problems by Bickel (1984).

Another possible extension concerns the actual choice of the family 9',
the model used to represent the actual physical situation . The problem of
choosing a model which provides an adequate description of the situation
without being unnecessarily complex can be treated within the decision­
theoretic formulation of Section 1 by adding to the loss function a compo­
nent representing the complexity of the proposed model. For a discussion of
such an approach to modelselection, see Stone (1981).

5. INVARIANCE ANDUNBIASEDNESS·

A natural definition of impartiality suggests itself in situations which are
symmetric with respect to the various parameter values of interest: The
procedure is then required to act symmetrically with respect to these values.

Example B. Suppose two treatments are to be compared and that each is
applied n times. The resulting observations Xn , .. . , X1n and X21, . . . , X2n are
samples from Nal' (

2) and Na2' (
2) respectively. The three available decisions

are do: 1~2 - ~d ~ tJ., dl : ~2 > ~I + tJ., d2 : ~2 < ~l - tJ. , and the loss is Wi } if
decision d} is taken when d, would have been correct. If the treatments are to be
compared solely in terms of the ~'s and no outside considerations are involved, the
losses are symmetric with respect to the two treatments so that WOl = W02 , WlO = W20 '

W12 = W21• Suppose now that the labeling of the two treatments as 1 and 2 is
reversed, and correspondingly also the labeling of the X's, the ~'s, and the decisions
dI and d2' This changes the meaning of the symbols, but the formal decision
problem, because of its symmetry, remains unaltered. It is then natural to require
the corresponding symmetry from the procedure 8 and ask that 8(XII' • .• , X l n,
X 21, · ··,X2n) = do, dl , or d2 as 8(X21" ",X2n'Xn"" ,xl n) = do, d2 , or d1
respectively. If this condition were not satisfied, the decision as to which population

'The concepts discussed here for general decision theory will be developed in more
specialized form in later chapters. The present section may therefore be omitted at first reading.
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has the greater mean would depend on the presumably quite accidental and
irrelevant labeling of the samples. Similar remarks apply to a number of further
symmetries that are present in this problem.

Example 9. Consider a sample Xl" ' " Xn from a distribution with density
l1~tf[(x - nj(1) and the problem of estimating the location parameter j , say the
mean of the X 's, when the loss is (d - n2/ 11 2, the square of the error expressed in
e-units. Suppose that the observations are originally expressed in feet, and let
X: = aX, with a = 12 be the corresponding observations in inches. In the trans­
formed problem the density is 11' -tf[(x' - f) jl1'j with f = at 11' = ae. Since
(d' - f)2 jG'2 = (d - ~)2jG2 , the problem is formally unchanged. The same esti­
mation procedure that is used for the original observations is therefore appropriate
after the transformation and leads to 8( aXt , .. . , aX,,) as an estimate of f = a~, the
parameter ~ expressed in inches. On reconverting the estimate into feet one finds
that if the result is to be independent of the scale of measurements, 8 must satisfy
the condition of scale invariance

8( aXt , . . . , aX,,)
-----=8(Xt , · · ·,Xn ) ·

a

The general mathematical expression of symmetry is invariance under a
suitable group of transformations. A group G of transformations g of the
sample space is said to leave a statistical decision problem invariant if it
satisfies the following conditions:

(i) It leaves invariant the family of distributions 9' = {Po, 0 En}, that is,
for any possible distribution Po of X the distribution of gX, say Po', is
also in 9'. The resulting mapping 0' = gO of Q is assumed to be onto'
nand 1 : 1.

(ii) To each g E G, there corresponds a transformation g* = h(g) of the
decision space D onto itself such that h is a homomorphism, that is,
satisfies the relation h(g\g2) = h(g\)h(g2)' and the loss function L is
unchanged under the transformation, so that

L{gO, g*d) = L(O, d) .

Under these assumptions the transformed problem, in terms of X' = gX,
0' = gO, and d' = g*d, is formally identical with the original problem in
terms of X, 0, and d. Given a decision procedure 8 for the latter, this is
therefore still appropriate after the transformation. Interpreting the trans­
formation as a change of coordinate system and hence of the names of the
elements, one would, on observing x', select the decision which in the new

t The term onto is used to indicate that gU is not only contained in but actually equals (2;

that is, given an y fJ ' in (2, there exists fJ in 12 such that gfJ = fJ ' .



12 THE GENERAL DECISION PROBLEM [1.5

system has the name c5(x'), so that its old name is g*-Ic5(x'). If the decision
taken is to be independent of the particular coordinate system adopted, this
should coincide with the original decision c5(x), that is, the procedure must
satisfy the invariance condition

(8) c5{gx) = g*c5{x) for all x E X, g E G.

Example 10. The model described in Example 8 is invariant also under the
transformations Xi = Xi} + c, E; = E; + c. Since the decisions do, dl , and d2
concern only the differences E2 - El , they should remain unchanged under these
transformations, so that one would expect to have g*d, = d, for i = 0,1 ,2 . It is in
fact easily seen that the loss function does satisfy L(g8, d) = L(8, d) , and hence
that g*d = d . A decision procedure therefore remains invariant in the present case
if it satisfies 8(gx) = 8(x) for all g E G, x E X.

It is helpful to make a terminological distinction between situations like
that of Example 10 in which g*d = d for all d, and those like Examples 8
and 9 where invariance considerations require c5(gx) to vary with g. In the
former case the decision procedure remains unchanged under the trans­
formations X' = gX and is thus truly invariant; in the latter, the procedure
varies with g and may then more appropriately be called equivariant rather
than invariant." Typically, hypothesis testing leads to procedures that are
invariant in this sense; estimation problems (whether by point or interval
estimation), to equivariant ones. Invariant tests and equivariant confidence
sets will be discussed in Chapter 6. For a brief discussion of equivariant
point estimation, see Bondessen (1983); a fuller treatment is given in TPE,
Chapter 3.

Invariance considerations are applicable only when a problem exhibits
certain symmetries. An alternative impartiality restriction which is appli­
cable to other types of problems is the following condition of unbiasedness.
Suppose the problem is such that for each 8 there exists a unique correct
decision and that each decision is correct for some 8. Assume further that
L (81, d) = L (82, d) for all d whenever the same decision is correct for
both 81 and 82, Then the loss L(8, d') depends only on the actual decision
taken, say d', and the correct decision d. The loss can thus be denoted by
L(d, d') and this function measures how far apart d and d' are. Under
these assumptions a decision function c5 is said to be unbiased with respect
to the loss function L, or L-unbiased, if for all 8 and d'

EeL(d', c5{X)) ~ e.u», c5{X))

where the subscript 8 indicates the distribution with respect to which the

tThis distinction is not adopted by all authors.
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expectation is taken and where d is the decision that is correct for 8. Thus 8
is unbiased if on the average 8( X) comes closer to the correct decision than
to any wrong one. Extending this definition, 8 is said to be L-unbiased for
an arbitrary decision problem if for all 8 and 8'

(9) EuL(8',8(X)) ~ EuL(8 ,8(X» .

Example 11. Suppose that in the problem of estimating a real-valued parameter
oby confidence intervals, as in Example 4, the loss is 0 or 1 as the interval [1" L]
does or does not cover the true O. Then the set of intervals [1,( X), L( X)] is
unbiased if the probability of covering the true value is greater than or equal to the
probability of covering any false value.

Example 12 In a two-decision problem such as that of Example l(i), let Wo and
WI be the sets of O-values for which do and d, are the correct decisions. Assume
that the loss is 0 when the correct decision is taken, and otherwise is given by
L(O, do) = a for 0 E WI' and L(O, dl ) = b for 0 E Wo oThen

{
aPo { 8( X) = do}

EoL( 0' , 8( X» = bP
o
{ 8( X) = dd

so that (9) reduces to

aPo{ 8(X) = do} ~ bPo{ 8(X) = dd

if 0' E WI'

if 0' E wo,

for 0 E wo,

with the reverse inequality holding for 0 E WI ' Since Po {8( X) = do} + Po {8( X)
= d l } = 1, the unbiasedness condition (9) becomes

(10)

a
Po { 8( X) = dd s a + b

a
Po { 8( X) = d l } ~ a + b

for 0 E wo,

for 0 E WI '

Example 13. In the problem of estimating a real-valued function y(O) with the
square of the error as loss, the condition of unbiasedness becomes

Eo[8( X) - y( O')f ~ Eo[8( X) - y( 0)]2 for all 0,0' .

On adding and subtracting h(O) = Eo8(X) inside the brackets on both sides, this
reduces to

[h(O) - y(0,)]2 ~ [h(O) - y(O)f for all 0,0' .

If h(0) is one of the possible values of the function y, this condition holds if and
only if

(11) Eo8(X) = y( 0) .
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In the theory of point estimation, (11) is customarily taken as the definition of
unbiasedness. Except under rather pathological conditions, it is both a necessary
and sufficient condition for 8 to satisfy (9). (See Problem 2.)

6. BAYES ANDMINIMAX PROCEDURES

We now turn to a discussion of some preference orderings of decision
procedures and their risk functions . One such ordering is obtained by
assuming that in repeated experiments the parameter itself is a random
variable e, the distribution of which is known. If for the sake of simplicity
one supposes that this distribution has a probability density p( 0), the
overall average loss resulting from the use of a decision procedure 8 is

(12) r(p, 8) = f£oL(O, 8(X))p(0) dO = fR(O, 8)p(0) dO

and the smaller r(p, 8), the better is 8. An optimum procedure is one that
minimizes r(p,8) and is called a Bayes solution of the given decision
problem corresponding to the a priori density p. The resulting minimum of

.r(p, 8) is called the Bayes risk of 8.
Unfortunately, in order to apply this principle it is necessary to assume

not only that 0 is a random variable but also that its distribution is known.
This assumption is usually not warranted in applications. Alternatively, the
right-hand side of (12) can be considered as a weighted average of the risks;
for p ( (J) == 1 in particular, it is then the area under the risk curve. With this
interpretation the choice of a weight function p expresses the importance
the experimenter attaches to the various values of O. A systematic Bayes
theory has been developed which interprets p as describing the state of
mind of the investigator towards O. For an account of this approach see, for
example, Berger (1985).

If no prior information regarding 0 is available, one might consider the
maximum of the risk function its most important feature . Of two risk
functions the one with the smaller maximum is then preferable , and the
optimum procedures are those with the minimax property of minimizing the
maximum risk. Since this maximum represents the worst (average) loss that
can result from the use of a given procedure, a minimax solution is one that
gives the greatest possible protection against large losses. That such a
principle may sometimes be quite unreasonable is indicated in Figure 2,
where under most circumstances one would prefer 81 to 82 although its risk
function has the larger maximum.

Perhaps the most common situation is one intermediate to the two just
described. On the one hand, past experience with the same or similar kind
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of experiment is available and provides an indication of what values of 0 to
expect; on the other, this information is neither sufficiently precise nor
sufficiently reliable to warrant the assumptions that the Bayes approach
requires. In such circumstances it seems desirable to make use of the
available information without trusting it to such an extent that catastrophi­
cally high risks might result if it is inaccurate or misleading. To achieve this
one can place a bound on the risk and restrict consideration to decision
procedures 8 for which

(13) R(O,8) s C for all O.

[Here the constant C will have to be larger than the maximum risk Co of the
minimax procedure, since otherwise there will exist no procedures satisfying
(13).] Having thus assured that the risk can under no circumstances get out
of hand, the experimenter can now safely exploit his knowledge of the
situation, which may be based on theoretical considerations as well as on
past experience; he can follow his hunches and guess at a distribution p for
O. This leads to the selection of a procedure 8 (a restricted Bayes solution),
which minimizes the average risk (12) for this a priori distribution subject to
(13). The more certain one is of p, the larger one will select C, thereby
running a greater risk in case of a poor guess but improving the risk if the
guess is good.

Instead of specifying an ordering directly, one can postulate conditions
that the ordering should satisfy. Various systems of such conditions have
been investigated and have generally led to the conclusion that the only
orderings satisfying these systems are those which order the procedures
according to their Bayes risk with respect to some prior distribution of O.
For details, see for example Blackwell and Girshick (1954), Ferguson (1967),
Savage (1972), and Berger (1985).
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7. MAXIMUM LIKELIHOOD

[1.7

Another approach, which is based on considerations somewhat different
from those of the preceding sections , is the method of maximum likelihood .
It has led to reasonable procedures in a great variety of problems, and is
still playing a dominant role in the development of new tests and estimates.
Suppose for a moment that X can take on only a countable set of values
Xl' x 2, • • • , with Po(x) = Po{ X = x }, and that one wishes to determine the
correct value of 0, that is, the value that produced the observed x. This
suggests considering for each possible 0 how probable the observed X

would be if 0 were the true value. The higher this probability, the more one
is attracted to the explanation that the 0 in question produced x, and the
more likely the value of 0 appears. Therefore, the expression Po(x) consid­
ered for fixed X as a function of 0 has been called the likelihood of O. To
indicate the change in point of view, let it be denoted by Lx<0). Suppose
now that one is concerned with an action problem involving a countable
number of decisions, and that it is formulated in terms of a gain function
(instead of the usual loss function), which is 0 if the decision taken is
incorrect and is a(O) > 0 if the decision taken is correct and 0 is the true
value. Then it seems natural to weight the likelihood Lx<0) by the amount
that can be gained if 0 is true, to determine the value of 0 that maximizes
a (0) Lx<0) and to select the decision that would be correct if this were the
true value of 0, Essentially the same remarks apply in the case in which
Po(x) is a probability density rather than a discrete probability.

In problems of point estimation, one usually assumes that a(O) is
independent of O. This leads to estimating 0 by the value that maximizes the
likelihood Lx< 0), the maximum-likelihood estimate of O. Another case of
interest is the class of two-decision problems illustrated by Example l(i). Let
"'0 and "'1 denote the sets of O-values for which do and dl are the correct
decisions, and assume that a(O) = ao or a l as 0 belongs to "'0 or "'1

respectively. Then decision do or d, is taken as alsuPOe", LX<0) < or
• I

> aosupo e "'oLx< 0), that IS, as

(14)
sup Lx(O)
Oe"'o--=---->
sup LAO)
Oe"'t

al
or <­

ao

This is known as a likelihood-ratio procedure.•

"This definition differs slightly from the usual one where in the denominator on the
left-hand side of (14) the supremum is taken over the set Wo U Wt . The two definitions agree
whenever the left-hand side of (14) is s; I, and the procedures therefore agree if at < ao.
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Although the maximum-likelihood principle is not based on any clearly
defined optimum considerations, it has been very successful in leading to
satisfactory procedures in many specific problems. For wide classes of
problems, maximum-likelihood procedures have also been shown to possess
various asymptotic optimum properties as the sample size tends to infinity.
[An asymptotic theory of likelihood-ratio tests has been developed by Wald
(1943) and Le Cam (1953, 1979); an overview with additional references is
given by Cox and Hinkley (1974). The corresponding theory of maximum­
likelihood estimators is treated in Chapter 6 of TPE.] On the other hand,
there exist examples for which the maximum-likelihood procedure is worse
than useless ; where it is, in fact, so bad that one can do better without
making any use of the observations (see Chapter 6, Problem 18).

8. COMPLETE CLASSES

None of the approaches described so far is reliable in the sense that the
resulting procedure is necessarily satisfactory. There are problems in which
a decision procedure ~o exists with uniformly minimum risk among all
unbiased or invariant procedures, but where there exists a procedure ~l not
possessing this particular impartiality property and preferable to ~o . (Cf.
Problems 14 and 16.) As was seen earlier, minimax procedures can also be
quite undesirable, while the success of Bayes and restricted Bayes solutions
depends on a priori information which is usually not very reliable if it is
available at all. In fact, it seems that in the absence of reliable a priori
information no principle leading to a unique solution can be entirely
satisfactory.

This suggests the possibility, at least as a first step, of not insisting on a
unique solution but asking only how far a decision problem can be reduced
without loss of relevant information. It has already been seen that a decision
procedure ~ can sometimes be eliminated from consideration because there
exists a procedure ~' dominating it in the sense that

(15)
R(8, 8') ~ R(8, 8)

R(8, ~') < R(8,~)

for all 8

for some 8.

In this case ~ is said to be inadmissible; 8 is called admissible if no such
dominating ~' exists. A class rc of decision procedures is said to be complete
if for any ~ not in rc there exists ~' in rc dominating it. A complete class is
minimal if it does not contain a complete subclass. If a minimal complete
class exists, as is typically the case, it consists exactly of the totality of
admissible procedures.
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It is convenient to define also the following variant of the complete class
notion. A class re is said to be essentially complete if for any procedure 8
there exists 8' in re such that R( 8, 8') s R( 8,8) for all 8. Clearly, any
complete class is also essentially complete. In fact, the two definitions differ
only in their treatment of equivalent decision rules, that is, decision rules
with identical risk function. If 8 belongs to the minimal complete class re,
any equivalent decision rule must also belong to re. On the other hand, a
minimal essentially complete class need contain only one member from such
a set of equivalent procedures.

In a certain sense a minimal essentially complete class provides the
maximum possible reduction of a decision problem. On the one hand, there
is no reason to consider any of the procedures that have been weeded out.
For each of them, there is included one in re that is as good or better. On
the other hand, it is not possible to reduce the class further. Given any two
procedures in re, each of them is better in places than the other, so that
without additional information it is not known which of the two is prefer­
able.

The primary concern in statistics has been with the explicit determination
of procedures, or classes of procedures, for various specific decision prob­
lems. Those studied most extensively have been estimation problems, and
problems involving a choice between only two decisions (hypothesis testing),
the theory of which constitutes the subject of the present volume. However,
certain conclusions are possible without such specialization. In particular,
two results concerning the structure of complete classes and minimax
procedures have been proved to hold under very general assumptions:*

(i) The totality of Bayes solutions and limits of Bayes solutions con­
stitute a complete class.

(ii) Minimax procedures are Bayes solutions with respect to a least
favorable a priori distribution, that is, an a priori distribution that maxi­
mizes the associated Bayes risk, and the minimax risk equals this maximum
Bayes risk. Somewhat more generally, if there exists no least favorable
a priori distribution but only a sequence for which the Bayes risk tends to
the maximum, the minimax procedures are limits of the associated sequence
of Bayes solutions.

9. SUFFICIENT STATISTICS

A minimal complete class was seen in the preceding section to provide the
maximum possible reduction of a decision problem without loss of informa-

"Precise statements and proofs of these results are given in the book by Wald (1950). See
also Ferguson (1967) and Berger (1985).
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tion . Frequently it is possible to obtain a less extensive reduction of the
data, which applies simultaneously to all problems relating to a given class
[JJ = {Pe, 0 E Q} of distributions of the given random variable X. It
consists essentially in discarding that part of the data which contains no
information regarding the unknown distribution Pe, and which is therefore
of no value for any decision problem concerning O.

Example U. Trials are performed with constant unknown probability p of
success. If X; is 1 or 0 as the i th trial is a success or failure, the sample (Xl' ... , Xn )

shows how many successes there were and in which trials they occurred. The second
of these pieces of information contains no evidence as to the value of f,' Once the
total number of successes IX; is known to be equal to t , each of the ~~) possible
positions of these successesis equally likely regardless of p . It follows that knowing
IX; but neither the individual X; nor p , one can, from a table of random numbers,
construct a set of random variables Xi, . . . , X~ whose joint distribution is the same
as that of Xl" '" Xn • Therefore, the information contained in the X; is the same as
that contained in IX; and a table of random numbers.

Example 15. If Xl" ' " Xn are independently normally distributed with zero
mean and variance 0 2, the conditional distribution of the sample point over each of
the spheres, IX;2 = constant, is uniform irrespective of 0 2 . One can therefore
construct an equivalent sample Xi, . . . , X~ from a knowledge of I X;2 and a
mechanism that can produce a point randomly distributed over a sphere.

More generally, a statistic T is said to be sufficient for the family
[JJ = {Pe, 0 E Q} (or sufficient for 0, if it is clear from the context what set
Q is being considered) if the conditional distribution of X given T = t is
independent of O. As in the two examples it then follows under mild
assumptions" that it is not necessary to utilize the original observations X.
If one is permitted to observe only T instead of X, this does not restrict the
class of available decision procedures. For any value t of T let XI be a
random variable possessing the conditional distribution of X given t. Such a
variable can , at least theoretically, be constructed by means of a suitable
random mechanism. If one then observes T to be t and XI to be x', the
random variable X' defined through this two-stage process has the same
distribution as X. Thus, given any procedure based on X, it is possible to
construct an equivalent one based on X' which can be viewed as a
randomized procedure based solely on T. Hence if randomization is per­
mitted (and we shall assume throughout that this is the case), there is no loss
of generality in restricting consideration to a sufficient statistic.

It is inconvenient to have to compute the conditional distribution of X
given t in order to determine whether or not T is sufficient. A simple check
is provided by the following factorization criterion .

"These are connected with difficulties concerning the behavior of conditional probabilities.
For a discussion of these difficulties see Chapter 2, Sections 3-5 .
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Consider first the case that X is discrete, and let Po(x) = Po{X= x ].
Then a necessary and sufficient condition for T to be sufficient for () is that
there exists a factorization

(16) Po(x) = go[T(x)]h(x),

where the first factor may depend on () but depends on x only through
T(x), while the second factor is independent of ().

Suppose that (16) holds, and let T(x) = t. Then Po{T = t} = I:Po(x')
summed over all points x' with T(x') = t, and the conditional probability

Po(x)
Po{X= xlT= t} = Po{T= t}

h(x)

I:h(x')

is independent of (). Conversely, if this conditional distribution does not
depend on () and is equal to, say k(x, t), then Po(x) = Po{T = t}k(x, t) ,
so that (16) holds .

Example 16. Let Xl"'" Xn be independently and identically distributed
according to the Poisson distribution (2). Then

TEx ,e- n•

x ) = np.(xp " . , n n X

j

!

j-l

and it follows that LX; is a sufficient statistic for T.

In the case that the distribution of X is continuous and has probability
density p{(x), let X and T be vector-valued, X= (Xl"' " Xn) and
T = (Tl, . . . , T,) say. Suppose that there exist functions Y = (Yl, · · ·, Yn-r)
on the sample space such that the transformation

(17) (Xl" '" x,) - (TI(x), .. . , T,(x), Yl(x) , ... , Yn-r(x))

is 1 : 1 on a suitable domain, and that the joint density of T and Y exists
and is related to that of X by the usual formula

(18) p{(x) = PI' Y(T(x), Y(x)) . IJI,

where J is the Jacobian of (Tl , •. . , T,., YI , . . • , Yn - r ) with respect to

(Xl" . • , x n ) . Thus in Example 15, T = VI:X/, Yl , • • • , Yn - l can be taken to
be the polar coordinates of the sample point. From the joint density
PI' Y(t, y) of T and Y, the conditional density of Y given T = t is obtained
as

(19)
pI'Y(t,y)

pJII(y) = jpI'Y(t, y') dy'
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provided the denominator is different from zero. Regularity conditions for
the validity of (18) are given by Tukey (1958).

Since in the conditional distribution given t only the Y's vary, T is
sufficient for fJ if the conditional distribution of Y given t is independent of
fJ. Suppose that T satisfies (19). Then analogously to the discrete case, a
necessary and sufficient condition for T to be sufficient is a factorization of
the density of the form

(20) pi( x) = 88[T( x )] h(x ) .

(See Problem 19.) The following two examples illustrate the application of
the criterion in this case. In both examples the existence of functions Y
satisfying (17)-(19) will be assumed but not proved. As will be shown later
(Chapter 2, Section 6), this assumption is actually not needed for the
validity of the factorization criterion.

Example 17. Let Xl"'" Xn be independently distributed with normal prob­
ability density

2 -n/2 ( 1" 2 ~" n 2)p~o(x)=(2W'0) exp --2 ,-,X; +2,-,X;--2~ .
. 20 0 20

Then the factorization criterionshows (L¥; ,E Xl) to be sufficient for (t 0) .

Example 18. Let Xl' " '' Xn be independently distributed according to the
uniform distribution U(O, 8) overthe interval(0,8). Then Pu(x) = 8- n u(maxX;, 8),
where u(a, b) is 1 or°as a ~ b or a > b, and hence max X; is sufficient for 8.

An alternative criterion of Bayes sufficiency, due to Kolmogorov (1942),
provides a direct connection between this concept and some of the basic
notions of decision theory. As in the theory of Bayes solutions, consider the
unknown parameter 8 as a random variable e with an a priori distribution,
and assume for simplicity that it has a density p( fJ). Then if T is sufficient,
the conditional distribution of E> given X = x depends only on T(x) .
Conversely, if p(fJ) ¢ 0 for all fJ and if the conditional distribution of E>
given x depends only on T(x), then T is sufficient for fJ .

In fact , under the assumptions made, the joint density of X and E> is
P8(x) p ( fJ). If T is sufficient, it follows from (20) that the conditional density
of E> given x depends only on T(x). Suppose, on the other hand, that for
some a priori distribution for which p(fJ) ¢ 0 for all fJ the conditional
distribution of E> given x depends only on T(x). Then

Pe(x)p(fJ) = f8[T(x)]

fPe,(x)p(fJ') dfJ'

and by solving for P8(x) it is seen that T is sufficient.
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x=O,1,2.... .

Any Bayes solution depends only on the conditional distribution of e
given x (see Problem 8) and hence on T(x). Since typically Bayes solutions
together with their limits form an essentially complete class, it follows that
this is also true of the decision procedures based on T. The same conclusion
had already been reached more directly at the beginning of the section.

For a discussion of the relation of these different aspects of sufficiency in
more general circumstances and references to the literature see Le Cam
(1964) and Roy and Ramamoorthi (1979). An example of a statistic which is
Bayes sufficient in the Kolmogorov sense but not according to the definition
given at the beginning of this section is provided by Blackwell and
Ramamoorthi (1982).

By restricting attention to a sufficient statistic, one obtains a reduction of
the data, and it is then desirable to carry this reduction as far as possible.
To illustrate the different possibilities, consider once more the binomial
Example 14. If m is any integer less than nand Tl = Ei'=lXj, T2 =
E7=m+ 1Xj' then (Tl , T2 ) constitutes a sufficient statistic, since the condi­
tional distribution of Xl" ' " X" given T, = t l , T2 = t 2 is independent of p.
For the same reason, the full sample (Xl"'" X,,) itself is also a sufficient
statistic. However, T = E7_lXj provides a more thorough reduction than
either of these and than various others that can be constructed. A sufficient
statistic T is said to be minimal sufficient if the data cannot be reduced
beyond T without losing sufficiency. For the binomial example in particu­
lar, E7_lXj can be shown to be minimal (Problem 17). This illustrates the
fact that in specific examples the sufficient statistic determined by inspection
through the factorization criterion usually turns out to be minimal. Explicit
procedures for constructing minimal sufficient statistics are discussed in
Section 1.5 of TPE.

10. PROBLEMS

Section 2

1. The following distributions arise on the basis of assumptions similar to those
leading to (1)-(3).

(i) Independent trials with constant probability p of success are carried out
until a preassigned number m of successes has been obtained. If the
number of trials required is X + m, then X has the negative binomial
distribution Nbi p , m):

P{ X = x } = ( m +: - 1)r" (1 - p)' ,

(ii) In a sequence of random events, the number of events occurring in any
time interval of length l' has the Poisson distribution peAT), and the
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numbers of events in nonoverlapping time intervals are independent.
Then the "waiting time" T, which elapses from the starting point , say
t = 0, until the first event occurs, has the exponential probability density

p(t)='Ae- Xt , t~O.

Let ~, i ~ 2, be the time elapsing from the occurrence of the (i - 1)st
event to that of the ith event. Then it is also true, although more difficult
to prove, that T\ , T2 , . . . are identically and independently distributed. A
proof is given, for example, in Karlin and Taylor (1975).

(iii) A point X is selected "at random" in the interval (a, b), that is, the
probability of X falling in any subinterval of (a, b) depends only on the
length of the subinterval, not on its position. Then X has the uniform
distribution U( a, b) with probability density

p(x) = 1/(b - a), a < x < b.

[(ii): If t > 0, then T> t if and only if no event occurs in the time interval
(0, t) .]

Section 5

2. Unbiasedness in point estimation . Suppose that 'I is a continuous real-valued
function defined over n which is not constant in any open subset of n, and
that the expectation h(O) = Eg8(X) is a continuous function of 0 for every
estimate 8( X) of '1(0). Then (11) is a necessary and sufficient condition for
8( X) to be unbiased when the loss function is the square of the error .
[Unbiasedness implies that '1 2(0') - '1 2(0) ~ 2h(0)[y(0') - '1(0)] for all
0,0 ' . If 0 is neither a relative minimum or maximum of 'I, it follows that there
exist points 0' arbitrarily close to 0 both such that '1(0) + y( 0') ~ and
~ 2h(0), and hence that '1(0) = h(O). That this equality also holds for an
extremum of 'I follows by continuity, since 'I is not constant in any open set.]

3. Median unbiasedness.

(i) A real number m is a median for the random variable Y if P{ Y ~ m} ~ t,
P{Y ~ m} ~ t. Then all real ai' a2 such that m s a\ s a2 or m ~ a\
~ a2 satisfy ElY - ad ~ ElY - a21·

(ii) For any estimate 8(X) of '1(0) , let m-(O) and m+(O) denote the
infimum and supremum of the medians of 8(X), and suppose that they
are continuous functions of O. Let '1(0) be continuous and not constant
in any open subset of n. Then the estimate 8(X) of y( 0) is unbiased
with respect to the loss function L(O, d) = 1'1(0) - dl if and only if '1(0)
is a median of 8(X) for each O. An estimate with this property is said to
be median-unbiased.

4. Nonexistence of unbiased procedures. Let Xl " '" Xn be independently dis­
tributed with density (l/a)j(x - ~)/a), and let 0 = a, a) . Then no estima-
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tor of ~ exists which is unbiased with respect to the loss function (d - nk j a'' ,

Note. For more general results concerning the nonexistence of unbiased
procedures see Rojo (1983).

5. Let CC be any class of procedures that is closed under the transformations of a
group G in the sense that 6 E 'i implies g*6g- 1 E 'i for all g E G. If there
exists a unique procedure 60 that uniformly minimizes the risk within the class
'i, then 60 is invariant.' If 60 is unique only up to sets of measure zero, then it
is almost invariant, that is, for each g it satisfies the equation 6(gx) = g*6(x)
except on a set Ng of measure O.

6. Relation of unbiasedness and inuariance.

(i) If 60 is the unique (up to sets of measure 0) unbiased procedure with
uniformly minimum risk, it is almost invariant.

(ii) If G is transitive and G* commutative, and if among all invariant
(almost invariant) procedures there exists a procedure 60 with uniformly
minimum risk, then it is unbiased .

(iii) That conclusion (ii) need not hold without the assumptions concerning
G* and Gis shown by the problem of estimating the mean ~ of a normal
distribution Na, a2) with loss function a- d)2ja 2. This remains
invariant under the groups G1: gx = x + b, - 00 < b < 00 and G2 : gx
= ax + b,O < a < 00 , -00 < b < 00 . The best invariantestimate rela­
tive to both groups is X, but there does not exist an estimate which is
unbiased with respect to the given loss function .

[(i): This follows from the preceding problem and the fact that when /) is
unbiased so is g*6g- l .

(ii): It is the defining property of transitivity that given 0, 0' there exists g
such that 0' = gO. Hence for any 0, 0'

EoL( 0', 60 ( X)) = EoL(gO , 60 ( X)) = EoL( 0, g*-160 ( X)) .

Since G* is commutative, g*-160 is invariant, so that

R(0,g*-160 ) ~ R(0,60 ) = EoL(0,60 ( X)) .]

Section 6

7. Unbiasedness in interval estimation . Confidence intervals 1= (1:, I) are unbi­
ased for estimating °with loss function L(O, /) = (0 -1:)2 + (I - 0)2
provided E[t(1: + I)] = °for all 0, that is, provided the midpoint of I is an
unbiased estimate of °in the sense of (11).

t Here and in Problems 6,7,11 ,15 , and 16 the term "invariant" is used in the general sense
(8) of " invariant or equivariant".
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8. Structure of Bayes solutions.

25

(i) Let 8 be an unobservable random quantity with probability density
p(8), and let the probability density of X be Po(x) when 8 = 8. Then 8
is a Bayes solution of a given decision problem if for each x the decision
8(x) is chosen so as to minimize fL(8, 8( x»'IT(8Ix) d8 , where 'IT(8Ix)
= p(8)po (x)/fp(8 ') Po'(x) d8' is the conditional (a posteriori) probabil­
ity density of 8 given x.

(ii) Let the problem be a two-decision problem with the losses as given in
Example 12. Then the Bayes solution consists in choosing decision do if

aP{8ewdx} <bP{ 8 e wolx}

and decision d1 if the reverse inequality holds. The choice of decision is
immaterial in case of equality.

(iii) In the case of point estimation of a real-valued function g( 8) with loss
function L(8, d) = (g(8) - d)2, the Bayes solution becomes 8(x) =

E[g(8)lx]. When instead the loss function is L(8, d) = Ig(8) - dl, the
Bayes estimate 8(x) is any median of the conditional distribution of
g(8) given x .

[(i): The Bayes risk r(p,8) can be written as f[fL(8, 8(x»'IT(8Ix) d8] X

p( x) dx, where p(x) = fp(8 ')po '(x) d8'.
(ii): The conditional expectation fL(8 , do)'IT(8Ix) d8 reduces to aP{8 e
wdx}, and similarly for d1.]

9. (i) As an example in which randomization reduces the maximum risk,
suppose that a coin is known to be either standard (HT) or to have heads
on both sides (HH). The nature of the coin is to be decided on the basis
of a single toss, the loss being 1 for an incorrect decision and 0 for a
correct one. Let the decision be HT when T is observed, whereas in the
contrary case the decision is made at random, with probability p for HT
and 1 - p for HH. Then the maximum risk is minimized for p = t.

(ii) A genetic setting in which such a problem might arise is that of a couple,
of which the husband is either dominant homozygous (AA) or hetero­
zygous (Aa) with respect to a certain characteristic, and the wife is
homozygous recessive (aa). Their child is heterozygous, and it is of
importance to determine to which genetic type the husband belongs.
However, in such cases an a priori probability is usually available for the
two possibilities. One is then dealing with a Bayes problem, and randomi­
zation is no longer required. In fact, if the a priori probability is p that
the husband is dominant, then the Bayes procedure classifies him as such
if p > t and takes the contrary decision if p < t.
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10. Unbiasedness and minimax. Let °= 00 U °1 where 00' °1 are mutually
exclusive, and consider a two-decision problem with loss function L(8, d;) = a;
for 8 E OJ (j '" i) and L(8, d;) = 0 for 8 E 0; (i = 0,1) .

(i) Any minimax procedure is unbiased.

(ii) The converse of (i) holds provided Pe(A) is a continuous function of 8
for all A, and if the sets 00 and °1 have at least one common boundary
point.

[(i): The condition of unbiasedness in this case is equivalent to sup R8(8) .$

aoal/(ao + al) . That this is satisfied by any minimax procedure is seen by
comparison with the procedure 6(x) = do or = d l with probabilities al/(ao
+ al) and ao/( ao + al) respectively.
(ii): If 80 is a common boundary point, continuity of the risk function implies
that any unbiased procedure satisfies R8(80) = aoal/(ao + a l ) and hence
supR8(8) = aoal/(ao + al)·J

11. Invariance and minimax. Let a problem remain invariant relative to the
groups G, G, and G* over the spaces !!C, 0 , and D respectively. Then a
randomized procedure y. is defined to be invariant if for all x and g the
conditional distribution of Yx given x is the same as that of g* -IYgx-

(i) Consider a decision procedure which remains invariant under a finite
group G = {gl" '" gN } . If a minimax procedure exists, then there exists
one that is invariant.

(ii) This conclusion does not necessarily hold for infinite groups, as is shown
by the following example. Let the parameter space ° consist of all
elements 8 of the free group with two generators, that is, the totality of
formal products 'lT1 •• • 'lTn (n = 0, 1, 2, . . . ) where each 'IT; is one of the
elements a, a-I, b, b- I and in which all products aa- I, a-la, bb" , and
b- I b have been canceled. The empty product (n = 0) is denoted bye.
The sample point X is obtained by multiplying 8 on the right by one of
the four elements a, a-I, b, s:' with probability ~ each, and canceling if
necessary, that is, if the random factor equals 'lTn-

l • The problem of
estimating 8 with L(8, d) equal to 0 if d = 8 and equal to 1 otherwise
remains invariant under multiplication of X, 0, and d on the left by an
arbitrary sequence 'IT_ m • • • 'IT_ 2'IT-I (m = 0,1, . . . ). The invariant proce­
dure that minimizes the maximum risk has risk function R(8, 6) :; ~.

However, there exists a noninvariant procedure with maximum risk ~ .

[(i): If Y. is a (possibly randomized) minimax procedure, an invariant minimax
procedure Y; is defined by P(Y; = d) = I:~-IP(YgiX = g;*d)/N.
(ii): The better procedure consists in estimating 8 to be 'lT1 • •• 'lTk-I when
'lT1 • • ·'lTk is observed (k ~ 1), and estimating 8 to be a, a-I, b, s:' with
probability ~ each in case the identity is observed. The estimate will be correct
unless the last element of X was canceled, and hence will be correct with
probability ~ ~ .J
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Section 7

12. (i) Let X have probability density plJ(x) with 8 one of the values 81" " , 8n ,

and consider the problem of determining the correct value of 8, so that
the choice lies between the n decisions dl = 81 " , . , d; = 8n with gain
a(8;) if d, = 8; and 0 otherwise. Then the Bayes solution (which maxi­
mizes the average gain) when 8 is a random variable taking on each of the
n values with probability l /n coincides with the maximum-likelihood
procedure.

(ii) Let X have probability density plJ(x) with 0 s 8 s 1. Then the maxi­
mum-likelihood estimate is the mode (maximum value) of the a posteriori
density of e given x when e is uniformly distributed over (0,1) .

13. (i) Let XI" ' " Xn be a sample from N( t (2 ) , and consider the problem of
deciding between Wo: ~ < 0 and WI : ~ ~ O. If x = Ex;/n and C =
(a l /ao) 2/n, the likelihood-ratio procedure takes decision do or d l as

1.10]

{nx < k or > k ,

VE( x, - X)2

where k = -~ if C> 1 and k = ";(1 - C)/C if C < 1.

(ii) For the problem of deciding between wo : 0 < 00 and WI : 0 ~ 00, the
likelihood ratio procedure takes decision do or d, as

E(x; - X)2

nol
< or > k ,

where k is the smaller root of the equation Cx = ex - I if C > 1, and the
larger root of x = Ce X - I if C < 1, where C is defined as in (i),

Section 8

14. Admissibility of unbiased procedures.

(i) Under the assumptions of Problem 10, if among the unbiased procedures
there exists one with uniformly minimum risk, it is admissible.

(ii) That in general an unbiased procedure with uniformly minimum risk need
not be admissible is seen by the following example. Let X have a Poisson
distribution truncated at 0, so that PIJ(X= x} = 8xe- IJ/[x!(1 - e- IJ )]

for x = 1,2, .. . . For estimating y(8) = e- IJ with loss function L(8, d)
= (d - e- IJ )2, there exists a unique unbiased estimate, and it is not
admissible.

[(ii): The unique unbiased estimate 80 ( x ) = (-lY+ I is dominated by 81(x)
= 0 or 1 as x is even or odd .]
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15. Admissibility of invariant procedures. If a decision problem remains invariant
under a finite group, and if there exists a procedure 80 that uniformly
minimizes the risk among all invariant procedures , then 80 is admissible.
[This follows from the identity R(8, 8) = R(g8, g*8g- 1

) and the hint given in
Problem ll(i).]

16. (i) Let X take on the values 8 - 1 and 8 + 1 with probability t each. The
problem of estimating 8 with loss function L(8, d) = min(18 - dl,l)
remains invariant under the transformation gX = X + c, g8 = 8 + c,
g*d = d + c. Among invariant estimates, those taking on the values
X-I and X + 1 with probabilities p and q (independent of X)
uniformly minimize the risk.

(ii) That the conclusion of Problem 15 need not hold when G is infinite
follows by comparing the best invariant estimates of (i) with the estimate
81(x) which is X + 1 when X < 0 and X-I when X ~ O.

Section 9

17. In n independent trials with constant probability p of success, let X; = 1 or 0
as the i th trial is a success or not. Then E7-1 X; is minimal sufficient.
[Let T = EX; and suppose that V = f(T) is sufficient and that f(k l ) = ...
= f(k r ) = u. Then P{T = tlV = u} depends on p.]

18. (i) Let Xl' . . . ' Xn be a sample from the uniform distribution V(O, 8),
o< 8 < 00, and let T = max( Xl' ... , Xn ) . Show that T is sufficient, once
by using the definition of sufficiency and once by using the factorization
criterion and assuming the existence of statistics 1'; satisfying (17}-(19).

(ii) Let Xl' . . . ' X; be a sample from the exponential distribution E( a, b)
with density (l/b)e -(X-a) /b when x ~ a (-00 < a < 00, 0 < b) . Use
the factorization criterion to prove that (min(X1, ... , Xn ) , E7-1X;) is
sufficient for a, b, assuming the existence of statistics 1'; satisfying
(17}-(19) .

19. A statistic T satisfying (17}-(19) is sufficient if and only if it satisfies (20).
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CHAPTER 2

The Probability

Background

1. PROBABILITY AND MEASURE

The mathematical framework for statistical decision theory is provided by
the theory of probability, which in turn has its foundations in the theory of
measure and integration. The present and following sections serve to define
some of the basic concepts of these theories, to establish some notation, and
to state without proof some of the principal results. In the remainder of the
chapter, certain special topics are treated in more detail.

Probability theory is concerned with situations which may result in
different outcomes. The totality of these possible outcomes is represented
abstractly by the totality of points in a space 1l'. Since the events to be
studied are aggregates of such outcomes, they are represented by subsets of
1l'. The union of two sets CI , C2 will be denoted by CI U C2 ' their
intersection by CI () C2' the complement of C by C= 1l' - C, and the
empty set by o. The probability P( C) of an event C is a real number
between 0 and 1; in particular

(1) p(O) = 0 and P(1l') = 1.

Probabilities have the property of countable additivity,

(2) p(UC;) = LP(C;) if C; () S = 0 for all i * j.

Unfortunately it turns out that the set functions with which we shall be
concerned usually cannot be defined in a reasonable manner for all subsets
of !!l' if they are to satisfy (2). It is, for example, not possible to give a
reasonable definition of "area" for all subsets of a unit square in the plane.

34



2.1] PROBABILITY AND MEASURE 35

The sets for which the probability function P will be defined are said to
be "measurable". The domain of definition of P should include with any set
C its complement C, and with any countable number of events their union.
By (1), it should also include fl' . A class of sets that contains fl' and is
closed under complementation and countable unions is a a-field. Such a
class is automatically also closed under countable intersections.

The starting point of any probabilistic considerations is therefore a space
fl', representing the possible outcomes, and a a-field rl of subsets of fl' ,
representing the events whose probability is to be defined. Such a couple
(fl', tG') is called a measurable space, and the elements of tG' constitute the
measurable sets. A countably additive nonnegative (not necessarily finite) set
function J.L defined over tG' and such that J.L(O) = 0 is called a measure. If it
assigns the value 1 to fl', it is a probability measure. More generally, J.L is
finite if J.L(fl') < 00 and a-finite if there exist C1, C2, • •• in tG' (which may
always be taken to be mutually exclusive)such that UCi = fl' and J.L( Ci ) < 00

for i = 1,2, . . . . Important special cases are provided by the following
examples.

Example 1. Lebesgue measure. Let fl be the n-dimensional Euclidean space
E", and 'e the smallest a-field containing all rectangles"

R = {( Zl , • •• , zn) : ai < Zi :0;; b., i = 1, .. . , n} .

The elements of 'e are called the Borelsets of En . Over 'e a unique measure p. can
be defined, which to any rectangle R assigns as its measure the volume of R,

n

p.(R) = n (b i - a;) .
i -I

The measure p. can be completed by adjoining to 'e all subsets of sets of measure
zero. The domain of p. is thereby enlarged to a a-field 'e ', the class of Lebesgue­
measurable sets. The term Lebesgue measure is used for p. both when it is defined
over the Borel sets and when it is defined over the Lebesgue-measurable sets.

This example can be generalized to any nonnegative set function JI, which
is defined and countably additive over the class of rectangles R. There exists
then, as before, a unique measure J.L over (fl', tG') that agrees with JI for all
R. This measure can again be completed; however, the resulting a-field
depends on J.L and need not agree with the a-field tG" obtained above.

Example 2. Countingmeasure. Suppose that fl is countable, and let 'e be the
class of all subsets of fl . For any set C.define p.(C) as the number of elements of C

'If w(z) is a statement concerning certain objects z; then (z : w( z)} denotes the set of all
those z for which w(z ) is true .
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if that number is finite, and otherwise as +00. This measure is sometimes called
counting measure.

In applications, the probabilities over (~, ~) refer to random experi­
ments or observations, the possible outcomes of which are the points
z E~. When recording the results of an experiment, one is usually inter­
ested only in certain of its aspects, typically some counts or measurements.
These may be represented by a function T taking values in some space !T.

Such a function generates in !T the a-field ~' of sets B whose inverse
image

C = T- 1( B) = {z : Z E ~, T(z) E B}

is in ~, and for any given probability measure P over (~, ~) a probability
measure Q over (!T, ~') defined by

(3) Q(B) = p{T-1(B)) .

Frequently, there is given a a-field ~ of sets in !T such that the
probability of B should be defined if and only if B E ~. This requires that
T-1(B) E ~ for all B E ~, and the function (or transformation) T from
(~,~) into" (!T,~) is then said to be ~measurable. Another implication
is the sometimes convenient restriction of probability statements to the sets
B E ~ even though there may exist sets B ~ ~ for which T-1(B) E ~ and
whose probability therefore could be defined.

Of particular interest is the case of a single measurement in which the
function T is real-valued. Let us denote it by X, and let d be the class of
Borel sets on the real line ~. Such a measurable real-valued X is called a
random variable, and the probability measure it generates over (~, d) will
be denoted by P x and called the probability distribution of X. The value
this measure assigns to a set A E d will be denoted interchangeably by
pX(A) and P(X E A). Since the intervals {x: x ~ a} are in d, the
probabilities F( a) = P( X s a) are defined for all a. The function F, the
cumulative distribution function (edt) of X, is nondecreasing and continuous
on the right, and F( - 00) = 0, F( +00) = 1. Conversely, if F is any
function with these properties, a measure can be defined over the intervals
by P{a < X ~ b} = F(b) - F(a). It follows from Example 1 that this
measure uniquely determines a probability distribution over the Borel sets.
Thus the probability distribution Px and the cumulative distribution func­
tion F uniquely determine each other. These remarks extend to probability

"The term into indicates that the range of T is in Y ; if Tun = Y . the transformation is
said to be from !Z onto Y .
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distributions over an n-dimensional Euclidean space, where the cumulative
distribution function is defined by

F(a I , .. · , an) = P{XI S; a I , .. ·, X; S; an}.

In concrete problems, the space (~, <f), corresponding to the totality of
possible outcomes, is usually not specified and remains in the background .
The real starting point is the set X of observations (typically vector-valued)
that are being recorded and which constitute the data, and the associated
measurable space (~, d), the sample space. Random variables or vectors
that are measurable transformations T from (~, d) into some (or, ~) are
called statistics . The distribution of T is then given by (3) applied to all
B E ~. With this definition, a statistic is specifiedby the function T and the
a-field ~. We shall, however, adopt the convention that when a function T
takes on its values in a Euclidean space, unless otherwise stated the a-field
~ of measurable sets will be taken to be the class of Borel sets. It then
becomes unnecessary to mention it explicitly or to indicate it in the
notation.

The distinction between statistics and random variables as defined here is
slight. The term statistic is used to indicate that the quantity is a function of
more basic observations ; all statistics in a given problem are functions
defined over the same sample space (~, d). On the other hand, any
real-valued statistic T is a random variable, since it has a distribution over
(!T, ~), and it will be referred to as a random variable when its origin is
irrelevant. Which term is used therefore depends on the point of view and to
some extent is arbitrary.

2. INTEGRATION

According to the convention of the preceding section, a real-valued function
f defined over (~, d) is measurable if r I(B) E.s# for every Borel set B
on the real line. Such a function f is said to be simple if it takes on only a
finite number of values. Let u be a measure defined over (~, .s#), and let f
be a simple function taking on the distinct values a I , . . . , am on the sets
AI" '" Am' which are in d, since f is measurable. If JL(A;) < 00 when
a; =1= 0, the integral of f with respect to ,." is defined by

(4) !Idp. = I:a;,.,,(A ;).

Given any nonnegative measurable function I, there exists a nondecreas­
ing sequence of simple functions In converging to f. Then the integral of I
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is defined as

(5)
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which can be shown to be independent of the particular sequence of In's
chosen. For any measurable function I its positive and negative parts

(6) r(x) = max[j(x) ,O] and r(x) = max[ -/(x),O]

are also measurable, and

I(x) = r(x) - r(x).

If the integrals of rand r are both finite, then I is said to be integrable,
and its integral is defined as

jldp. = jr dp. - [r dp. .

If of the two integrals one is finite and one infinite, then the integral of I is
defined to be the appropriate infinite value; if both are infinite, the integral
is not defined.

Example 3. Let!!" be the closed interval [a, b1, SJI be the class of Borel sets or
of Lebesgue measurable sets in !!",and p. be Lebesgue measure. Then the integral of
/ with respect to Jl. is written as f!:/(x) dx, and is called the Lebesgue integral of f.
This integral generalizes the Riemann integral in that it exists and agrees with the
Riemann integral of f whenever the latter exists.

Example 4. Let!!" be countable and consist of the points Xl' X2' • • . ; let SJI be
the class of all subsets of !!", and let Jl. assign measure b, to the point x. . Then f is
integrable provided Ef( xJbj converges absolutely, and ffdp. is given by this sum.

Let P x be the probability distribution of a random variable X, and let T
be a real-valued statistic. If the function T( x) is integrable, its expectation is
defined by

(7) E(T) = j T(x) dpX(x).

It will be seen from Lemma 2 in Section 3 below that the integration can be
carried out alternatively in r-space with respect to the distribution of T
defined by (3), so that also

(8) E(T) = jtdPT(t).
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The definition (5) of the integral permits the basic convergence theorems:

Theorem 1. Let fn be a sequence of measurable functions, and let
fn(x) ~ f(x) for all x. Then

jfndp. ~ jfdp.

if either one of the following conditions holds:
(i) Lebesgue monotone-convergence theorem : the fn's are nonnegative

and the sequence is nondecreasing;
or

(ii) Lebesgue dominated-convergence theorem: thereexists an integrable
function g such that Ifn(x)1 ~ g(x) for all nand x.

For any set A E SiI, let IA be its indicator function defined by

(9)

and let

IA{x) = lor 0 as x E A or x E A,

(1O) ~fdp. = j fIA dp:

If p. is a measure and f a nonnegative measurable function over (,q-, SiI),
then

(11) v(A) = jfdp.
A

defines a new measure over (,q-, SiI). The fact that (11) holds for all A E SiI
is expressed by writing

(12)
dv

dv = fdp. or f = dp.·

Let p. and v be two given a-finite measures over (,q-, SiI). If there exists a
function f satisfying (12), it is determined through this relation up to sets of
measure zero, since

j f dp. = j g dp.
A A

for all A Ed
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implies that f = g a.e. p..* Such an f is called the Radon-Nikodym
derivative of I' with respect to p., and in the particular case that I' is a
probability measure, the probability density of II with respect to p..

The question of existence of a function f satisfying (12) for given
measures p. and II is answered in terms of the following definition. A
measure II is absolutely continuous with respect to p. if

p.(A) =: 0 implies I'(A) = O.

Theorem 2. (Radon-Nikodym.) If p. and II are a-finite measures over
(!!E, d), then there exists a measurable function f satisfying (12) if and only if
II is absolutely continuous with respect to p..

The direct (or Cartesian) product A X B of two sets A and B is the set of
all pairs (x, y) with x E A, y E B. Let (!!E, d) and (o/,~) be two
measurable spaces, and let d X ~ be the smallest a-field containing all sets
A X B with A Ed and B E ~. If p. and II are two a-finite measures over
(!!E, d) and (0/, ~) respectively, then there exists a unique measure A =
p. X I' over (!!Ex 0/, ss:»: ~), the product of p. and 1', such that for any
A Ed, BE~,

(13) A(A X B) = p.(A)I'(B).
Example 5. Let!l', o/J be Euclidean spaces of m and n dimensions, and let

J#, f!l be the e-fields of Borel sets in these spaces. Then !l' X o/J is an (m + n)­
dimensional Euclidean space, and J# X f!l the class of its Borel sets.

Example 6. Let Z = (X, Y) be a random variable defined over (!E X '!!I, .JI1! X !!l) ,
and suppose that the random variables X and Y have distributions PK, pY over
(!l',J#) and ('!¥, !!l). Then X and Y are said to be independent if the probability
distribution pZ of Z is the product px X pY.

In terms of these concepts the reduction of a double integral to a
repeated one is given by the following theorem.

Theorem 3. (Fubini.) Let p. and II be a-finite measures over (!!E, d) and
(0/, ~) respectively, and let A= p. X 1'. If f(x, y) is integrable with respect
to A,' then

(i) for almost all (I') fixed y, the function f(x, y) is integrable with
respect to p.,

(ii) the function ff(x, y) dp.(x) is integrable with respect to II, and

(14) ff(x, y) dA(x, y) = f[ff(X, y) dP.(X)] dll(Y)·

•A statement that holds for all points x except possibly on a set of !L-measure zero is said to
hold a.e. 1£; or to hold (.JII,!L) if it is desirable to indicate the a-field over which 1£ is defined.
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According to the definition of Section 1, a statistic is a measurable transfor­
mation T from the sample space (~,.1#) into a measurable space (Y, f!J).
Such a transformation induces in the original sample space the subfield*

(15) .1#0 = T- 1( f!J ) = {T- 1(B) : B E f!J} .

Since the set T- 1[T(A)] contains A but is not necessarily equal to A, the
a-field.1#o need not coincide with .1# and hence can be a proper subfield of
.1#. On the other hand , suppose for a moment that Y= T(~), that is, that
the transformation T is onto rather than into Y . Then

(16) T[T-1(B)] = B for all B E f!J,

so that the relationship Ao = T- 1
( B) establishes a 1 : 1 correspondence

between the sets of.1#o and f!J, which is an isomorphism-that is, which
preserves the set operations of intersection, union, and complementation.
For most purposes it is therefore immaterial whether one works in the space
(~, .1#0) or in (Y, f!J). These generate two equivalent classes of events, and
therefore of measurable functions, possible decision procedures, etc. If the
transformation T is only into Y , the above 1 : 1 correspondence applies to
the class f!J' of subsets of Y' = T(~) which belong to f!J, rather than to f!J
itself. However, any set B E f!J is equivalent to B' = B () Y' in the sense
that any measure over (~, .1#) assigns the same measure to B' as to B.
Considered as classes of events, .1#0 and f!J therefore continue continue to
be equivalent, with the only difference that f!J contains several (equivalent)
representations of the same event.

As an example, let ~ be the real line and .1# the class of Borel sets, and
let T(x) = x 2• Let Y be either the positive real axis or the whole real axis,
and let f!J be the class of Borel subsets of Y . Then.1#o is the class of Borel
sets that are symmetric with respect to the origin. When considering, for
example, real-valued measurable functions, one would, when working in
.9=space, restrict attention to measurable functions of x 2• Instead, one could
remain in the original space, where the restriction would be to the class of
even measurable functions of x. The equivalence is clear. Which representa­
tion is more convenient depends on the situation.

That the correspondence between the sets Ao = T-1(B) E.1#o and BE
f!J establishes an analogous correspondence between measurable functions
defined over (~, .1#0) and (Y, f!J) is shown by the following lemma.

·We shall use this term in place of the more cumbersome "sub-a-field".
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Lemma 1. Let the statistic T from (.¥, d) into (S-,!!A) induce the
subfield do' Then a real-valued Sll-measurable function f is do-measurable if
and only if there exists a !!A-measurable function g such that

f(x) = g[T(x)]

for all x .

Proof. Suppose first that such a function g exists. Then the set

{x : f( x) < r} = T- 1
( {t : g( t) < r })

is in do , and f is do-measurable. Conversely, if f is do-measurable, then
the sets

. . + 1
Ain = {x: ;n <f(x) s ~}, i = 0, ±l, ±2, . .. ,

are (for fixed n) disjoint sets in do whose union is .¥, and there exist
Bin E !!A such that A in = T- 1( Bin). Let

e; = Bin n U Bjn·
j*" i

Since A in and Ajn are mutually exclusive for i :1= j, the set T-l(Binn Bjn) is
empty and so is the set T-1(Binn Bi~)' Hence, for fixed n, the sets Bi~ are
disjoint, and still satisfy A in = T-l(Bi~)' Defining

i
fn(x) = 2n if x E A in,

one can write

i = 0, ±l , ±2, .. . ,

fn(x) = gn [T(x)],

where

g.(l) ~ {i- for t E Bi~' i = 0, ±l, ±2, ... ,

otherwise.

Since the functions gn are !!A-measurable, the set B on which gn(t) con­
verges to a finite limit is in !!A. Let R = T(.¥) be the range of T. Then for
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for all x E!!(', so that R is contained in B. Therefore, the function g
defined by g( t) = lim gn(t) for t E Band g( t) = 0 otherwise possesses the
required properties.

The relationship between integrals of the functions f and g above is
given by the following lemma.

Lemma 2. Let T be a measurable transformation from (!!(' , d) into
(Y, 14), J.L a a-finite measure over (!!(', d), and g a real-valued measurable
function of t. If J.L* is the measure defined over (Y, 14) by

(17) J.L*(B) = J.L[T-1(B)] for all BE 14 ,

then for any B E 14,

(18) ( g[T(x)] dJ.L(x) = f.g(t) dJ.L*(t)
Jrl(B) B

in the sense that if either integral exists, so does the other and the two are
equal.

Proof. Without loss of generality let B be the whole space Y . If g is
the indicator of a set Bo E 14, the lemma holds, since the left- and
right-hand sides of (18) reduce respectively to J.L[T-1(Bo)] and J.L*(Bo)'
which are equal by the definition of J.L*. It follows that (18) holds succes­
sively for all simple functions, for all nonnegative measurable functions, and
hence finally for all integrable functions.

4. CONDITIONAL EXPECTATION AND PROBABILITY

If two statistics induce the same subfield do, they are equivalent in the
sense of leading to equivalent classes of measurable events. This equivalence
is particularly relevant to considerations of conditional probability. Thus if
X is normally distributed with zero mean , the information carried by the
statistics lXI, X 2, e- X2

, and so on, is the same. Given that IXI = t, X 2 =
t 2, e - x

2 = e - (2, it follows that X is ± t, and any reasonable definition of
conditional probability will assign probability t to each of these values. The
general definition of conditional probability to be given below will in fact
involve essentially only do and not the range space !7 of T. However, when
referred to do alone the concept loses much of its intuitive meaning, and
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the gap between the elementary definition and that of the general case
becomes unnecessarily wide. For these reasons it is frequently more con­
venient to work with a particular representation of a statistic, involving a
definite range space (5'", ffl) .

Let P be a probability measure over (~, SiI), T a statistic with range
space (5'", ffl) , and Silo the subfield it induces. Consider a nonnegative
function I which is integrable (SiI, P), that is, Jll-measurable and P-inte­
grable. Then fAI dP is defined for all A E SiI and therefore for all Ao E Silo .
It follows from the Radon-Nikodym theorem (Theorem 2) that there exists
a function 10 which is integrable (Silo, P) and such that

(19) f IdP = f 10dP
Ao Ao

for all Ao E Silo,

and that 10 is unique (Silo, P). By Lemma 1, 10 depends on x only through
T( x). In the example of a normally distributed variable X with zero mean,
and T = X 2, the function 10 is determined by (19) holding for all sets Ao
that are symmetric with respect to the origin, so that lo(x) = H/(x) +
I(- x)].

The function 10 defined through (19) is determined by two properties:

(i) Its average value over any set Ao with respect to P is the same as that
of I;

(ii) It depends on x only through T(x) and hence is constant on the sets
D; over which T is constant.

Intuitively, what one attempts to do in order to construct such a function
is to define lo(x) as the conditional P-average of lover the set Dx ' One
would thereby replace the single averaging process of integrating I repre­
sented by the left-hand side with a two-stage averaging process such as an
iterated integral. Such a construction can actually be carried out when X is
a discrete variable and in the regular case considered in Chapter 1, Section
9; lo(x) is then just the conditional expectation of I(X) given T(x). In
general, it is not clear how to define this conditional expectation directly.
Since it should, however, possess properties (i) and (ii), and since these
through (19) determine 10 uniquely (Silo, P), we shall take lo(x) of (19) as
the general definition of the conditional expectation E[f(X)IT(x)]. Equiv­
alently, if lo(x) = g[T(x)] one can write

E[j(X)lt] = E[J(X)IT= t] = g(t),

so that E[f( X)lt] is a ffl-measurable function defined up to equivalence
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(£2, PT) . In the relationship of integrals given in Lemma 2, if p. = P x then
p.* = P", and it is seen that the function g can be defined directly in terms
of f through

(20) ( f(x) dpX(x) = fg(t} dpT(t}
Jrl(B) B

for all BE £2,

which is equivalent to (19).
So far, f has been assumed to be nonnegative. In the general case, the

conditional expectation of f is defined as

E [J(x ) It1= E [r (X) It1- E [r (X ) It ].

Example 7. Order statistics. Let Xl " ' " X" be identically and independently
distributed random variables with a continuous distribution function , and let

T(xl, · · ·, X,,) = (X(1) " " 'X(")

where X(1 ) :::; ... :::; x(,,) denote the ordered x 's. Without loss of generality one can
restrict attention to the points with x(1) < . . . < x(,,)' since the probability of two
coordinates being equal is O. Then !f is the set of all n-tuples with distinct
coordinates, !T the set of all ordered n-tuples, and .Pi' and f!l are the classes of
Borel subsets of !f and !T. Under T- 1 the set consisting of the single point
a = (a l , . . . , a,,) is transformed into the set consisting of the n! points (ai l" ' " a i . )

that are obtained from a by permuting the coordinates in all possible ways. It
follows that ~) is the class of all sets that are symmetric in the sense that if Ao
contains a point x = (Xl" ' " X,,) , then it also contains all points (Xi "' " X, ).

For any integrable function I, let I •

1
lo(x) = - LI(x, " " ,xi ),n! I •

where the summation extends over the n! permutations of (x I' .. . , x,,) . Then 10 is
~)-measurable, since it is symmetric in its n arguments . Also

f I(X" ... ,x,,)dP(x.) . .. dP(x,,) = f l(xi"" ,X i ) dP( x l )· · · dP( x,,),
Au Ao 1 , t

so that 10 satisfies (19). It follows that lo(x) is the conditional expectation of I(X)
given T(x).

The conditional expectation of I(X) given the above statistic T(x) can also be
found without assuming the X's to be identically and independently distributed.
Suppose that X has a density h(x) with respect to a measure !J. (such as Lebesgue
measure), which is symmetric in the variables Xl" ' " X" in the sense that for any
A E.Pi' it assigns to the set {x :(XiI ' .. . , Xi.) E A} the same measure for all
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permutations (i. , . . . , ill )' Let

LI( X;I ' . . . , X;n) h(X ;I ' . . . , X;n) .
10(x."",XII) = "'h( x , , . . . ,X;) ,

f.., ' I It

here and in the sums below the summation extends over the n! permutations
of (x.' 00 " XII)' The function 10 is symmetric in its n arguments and hence do·
measurable . For any symmetric set Ao, the integral

110(x\ " " , xlI)h(Xj " " ' X}' ) dp,(x\, . oo,xlI)Ao I"

has the same value for each permutation (x1I, . . . , xjn), and therefore

110(X., . 00,xlI)h(x\, 00 .,XII) dp,(x\, oo ., XII)
An

1=1 10(x\, ,00,xlI)- Lh(x; ,00.,X;) dp,(x\, oo .,XII)An n! I n

= 1I(x., oo .,x,,)h(x\,.oo,x,,) dp,(x\, . oo , x ll ) ·

An

It follows that lo(x) = E[f(X)IT(x)] .
Equivalent to the statistic T(x) = (x(ll"' " X(II)' the set of order statistics, is

U(x) = (Lx;,L.xl, oo .,L.x;). This is an Immediate consequence of the fact, to be
shown below, that if T(xo) = to and V(xo) = uo, then

T- \({ to}) = V- \({ UO }) = S

where {to} and {UO} denote the sets consisting of the single point to and uO
respectively, and where S consists of the totality of points x = (x\, . 00 , XII) ob­
tained by permuting the coordinates of XO = (x? , . . . , x~) in all possible ways.

That r-\ ({ to}) = S is obvious. To see the corresponding fact for V-\, let

V(x) = (LX;, LX;xi , L X;XjXk"" ,X.X2 ... XII) '
i i <j i<j<k

so that the components of V( x) are the elementary symmetric functions v\ =
Ex;, . . . , VII = X• . . . XII of the n arguments X\, . . . , x.: Then

( ) ( ) II ,,- \ 11- 2 ( 1) IIX - x. 00. X - XII = X - V\X + V2X - ' " + - VII'

Hence V( x") = vO = (v?, 00 • , v~) implies that V- \ ({ vo}) = S. That then also
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u -I ({ UO }) = S folIows from the 1 : 1 correspondence between u and v established
by the relations (known as Newton's identities),'

( )
~ - l t:

U~-VIU ~ I+V2U~ -2- " '+ -1 v~ _lul+(-1) kv~=O, 1 s k s n.

It is easily verified from the above definition that conditional expectation
possesses most of the usual properties of expectation. It follows of course
from the nonuniqueness of the definition that these properties can hold only
(!!J, PT). We sta te this formally in the following lemma.

Lemma 3. If T is a statistic and the functions f , g, . . . are integrable
(d , P), then a.e . (!!J, p T)

(i) E[af( X) + bg( X)lt] = aE[f( X)It] + bE[g( X)lt];
(i i) E[h(T)f( X)lt] = h(t)E[f( X)lt] ;

(iii) 11:-:;; f(x) :-:;; b(d. P) implies a :-:;; E[f( X)ltJ s b;

(iv) 1/',1 :-:;; g, !,,(x) --- f(x)(d , P) implies E[!,,( X)ltJ --- E[f( X)lt] .

A further useful result is obtained by specializing (20) to the case that B
is the whole space .'T. One then has

Lemma 4. If Elf( X)I < 00 , and if g(t) = E[f( X)lt] , then

(21) Ef(X)=Eg(T) ,

that is, the expectation can be obtainedas the expected value of the conditional
expectation.

Since P{ X E A} = E[IA( X )], where IA denotes the indicator of the set
A, it is natural to define the conditionalprobability of A given T = t by

(22) P(Alt) = E[IA(X)lt].

In view of (20) the defining equation for P(Alt) can therefore be written as

(23) p X(A () T-1(B)) = f dpX( x)
An r1(B)

= f p(Alt) dpT(t}
B

for all B E !!J .

It is an immediate consequence of Lemma 3 that subject to the appropriate

'For a proof of these relations see for example Turnbull (1952), Theory of Equations, 5th
ed., Oliver and Boyd, Edinburgh , Section 32.
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null-set* qualifications, P(Alt) possesses the usual properties of probabili­
ties, as summarized in the following lemma.

Lemma 5. If T is a statistic with range space (5', Pi), and
A, B, AI' A z" " are sets belonging to d, then a.e. (Pi , p T

)

(i) 0 s P(Alt) s 1;

(ii) if the sets AI' Az, . . ' are mutually exclusive,

p(UA;lt) = LP(A;lt) ;

(iii) A c B implies P(Alt) ~ P(Blt).

Accord ing to the definition (22), the conditional probability P( Alt) must
be considered for fixed A as a Pi-measurable function of t. This is in
contrast to the elementary definition in which one takes t as fixed and
considers P(Alt) for varying A as a set function over d. Lemma 5 suggests
the possibility that the interpretation of P(Alt) for fixed t as a probability
distribution over d may be valid also in the general case. However, the
equality P(A I U Azlt) = P(Atlt) + P(Azlt), for example, can break down
on a null set that may vary with Al and A z, and the union of all these null
sets need no longer have measure zero.

For an important class of cases, this difficulty can be overcome through
the non uniqueness of the functions P(Alt), which for each fixed A are
determined only up to sets of measure zero in t. Since all determinations of
these functions are equivalent, it is enough to find a specific determination
for each A so that for each fixed t these determinations jointly constitute a
probability distribution over d . This possibility is illustrated by Example 7,
in which the conditional probability distribution given T(x) = t can be
taken to assign probability lin! to each of the n! points satisfying T(x) = t.
Sufficient conditions for the existence of such conditional distributions will
be given in the next section. For counterexamples see Blackwell and Dubins
(1975) .

5. CONDITIONAL PROBABILITY DISTRIBUTIONSt

We shall now investigate the existence of conditional probability distribu­
tions under the assumption, satisfied in most statistical applications, that :!£
is a Borel set in a Euclidean space. We shall then say for short that :!£ is

"This term is used as an alternative to the more cumbersome " set of measure zero."
t This section may be omitted at first reading. Its principal application is in the proof of

Lemma 8(ii) in Section 7. which in tum is used only in the proof of Theorem 3 of Chap ter 4.
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Euclidean and assume that, unless otherwise stated, d is the class of Borel
subsets of ~.

Theorem 4. If ~ is Euclidean, there exist determinations of the functions
P(Alt) such that for each t, P(Alt) is a probability measure overd.

Proof. By setting equal to 0 the probability of any Borel set in the
complement of ~, one can extend the given probability measure to the class
of all Borel sets and can therefore assume without loss of generality that ~
is the full Euclidean space. For simplicity we shall give the proof only in the
one-dimensional case. For each real x put F(x, t) = P« - 00, xJlt) for
some version of this conditional probability function , and let r1, r2, .• •

denote the set of all rational numbers in some order. Then ri < rj implies
that F( r., t) s F( r

l
, t) for all t except those in a null set Nij , and hence that

F( x, t) is nondecreasing in x over the rationals for all t outside of the null
set N' = UN;j' Similarly, it follows from Lemma 3(iv) that for all t not in a
null set Nil , as n tends to infinity lim Fir, + l in , t) = Ftr.; t) for i =
1,2, . . . , lim F(n , t) = 1, and lim F( - n, t) = O. Therefore, for all t outside
of the null set N' U Nil , F( x , t) considered as a function of x is properly
normalized, monotone, and continuous on the right over the rationals. For t
not in N' U Nil let F*(x , t) be the unique function that is continuous on
the right in x and agrees with F(x, t) for all rational x . Then F*(x, t) is a
cumulative distribution function and therefore determines a probability
measure P*(Alt) over d. We shall now show that P*(Alt) is a conditional
probability of A given t, by showing that for each fixed A it is a
86'-measurable function of t satisfying (23). This will be accomplished by
proving that for each fixed A E d

P*{Alt) = p{Alt) (86', p T ) .

By definition of P" this is true whenever A is one of the sets (- 00 , x] with
x rational. It holds next when A is an interval (a, b] = (- 00, b] - (- 00 , a]
with a, b rational, since P" is a measure and P satisfies Lemma 5(ii).
Therefore, the desired equation holds for the field .ffl' of all sets A which are
finite unions of intervals (a ; bi ] with rational end points. Finally, the class
of sets for which the equation holds is a monotone class (see Problem 1) and
hence contains the smallest a-field containing .ffl', which is d . The measure
P*(Alt) over d was defined above for all t not in N' U Nil. However, since
neither the measurability of a function nor the values of its integrals is
affected by its values on a null set, one can take arbitrary probability
measures over d for t in N' U Nil and thereby complete the determination.

If X is a vector-valued random variable with probability distribution P x
and T is a statistic defined over (~, d), let pXlt denote any version of the
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family of conditional distributions P(Alt) over .1# guaranteed by Theorem
4. The connection with conditional expectation is given by the following
theorem.

Theorem 5. If X is a vector-valued random variable and Elf(X)1 < 00,

then

(24) E[f(X)ltl = !f(x) dpXI1(x) (8it, p T ) .

Proof. Equation (24) holds if f is the indicator of any set A E.1#. It
then follows from Lemma 3 that it also holds for any simple function and
hence for any integrable function.

The determination of the conditional expectation E[f(X)It] given by the
right-hand side of (24) possesses for each t the usual properties of an
expectation, (i), (iii), and (iv) of Lemma 3, which previously could be
asserted only up to sets of measure zero depending on the functions f, g, . . .
involved. Under the assumptions of Theorem 4 a similar strengthening is
possible with respect to (ii) of Lemma 3, which can be shown to hold except
possibly on a null set N not depending on the function h. It will be
sufficient for the present purpose to prove this under the additional assump­
tion that the range space of the statistic T is also Euclidean. For a proof
without this restriction see for example Billingsley(1979).

Theorem 6. If T is a statistic with Euclidean domain and range spaces
(~,.1#) and (!!T,8it), there exists a determination pX11 of the conditional
probability distribution and a null set N such that the conditional expectation
computed by

E[f(X)ltl = !f(x) dpXII(x)

satisfies for all t ~ N

(25) E[h(T)f(X)lt] = h(t)E[f(X)lt] .

Proof. For the sake of simplicity and without essential loss of generality
suppose that T is real-valued. Let pXII(A) be a probability distribution over
.1# for each t , the existence of which is guaranteed by Theorem 4. For
B E 8it, the indicator function IB(t) is 8it-measurable and

1. IB(t) dpT(t) = pT(B' () B) = pX(T-1B' () T-1B)
B '

for all B' E 8it .
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Thus by (20)

51

I B ( r ) = P XII (T- 1B) a.e. r",

Let Bn , n = 1,2, . . . , be the intervals of .r with rational end points. Then
there exists a P-null set N = UNn such that for t (/: N

IBn(t) = pXII(T-1Bn )

for all n. For fixed t (/: N, the two set functions pXII(T-1B) and IB(t) are
probability distributions over !fl, the latter assigning probability 1 or 0 to a
set as it does or does not contain the point t. Since these distributions agree
over the rational intervals Bn , they agree for all B E !fl . In particular, for
t (/: N, the set consisting of the single point t is in !fl, and if

A(t) = {x : T(x) = t},

it follows that for all t (/: N

(26)

Thus

pXII(A(t») = 1.

!h [T(x )lJ(x) dPXII(X) = £(t)h [T(x )lJ(x) dPXII(X)

= h(t) !f(x) dpXII(X)

for t (/: N, as was to be proved.

It is a consequence of Theorem 6 that for all t (/: N, E(h(T)It] = h(t)
and hence in particular P(T E Bit) = 1 or 0 as t E B or t (/: B.

The conditional distributions pX11 still differ from those of the elemen­
tary case considered in Chapter 1, Section 9, in being defined over (.?l, SII)
rather than over the set A(t) and the a-field SII(t) of its Borel subsets.
However , (26) implies that for t (/: N

pXII(A) = pXII(A n A(t»).

The calculations of conditional probabilities and expectations are therefore
unchanged if for t (/: N, P XII is replaced by the distribution PXII, which is
defined over (A(t), SII(t» and which assigns to any subset of A(t) the same
probability as p XII.
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Theorem 6 establishes for all t rt. N the existence of conditional probabil­
ity distributions pXII, which are defined over (A(t), d(t) and which by
Lemma 4 satisfy

(27) E[j(X)] = fy_J~(,f(X) dPXI,(x)] dpT(t)

for all integrable functions f . Conversely, consider any family of distribu­
tions satisfying (27), and the experiment of observing first T, and then, if
T = t, a random quantity with distribution PXII. The result of this two-stage
procedure is a point distributed over (q', d) with the same distribution as
the original X. Thus PXII satisfies this" functional" definition of conditional
probability.

If (,q', d) is a product space (ffx C[J/, ~ X ~), then A(t) is the product
of C[J/ with the set consisting of the single point t. For t rt. N, the conditional
distribution pX11 then induces a distribution over (C[J/, ~), which in analogy
with the elementary case will be denoted by P YII. In this case the definition
can be extended to all of ff by letting P YII assign probability 1 to a
common specified point Yo' for all tEN. With this definition, (27) becomes

(28) Ef(T, Y) = fy[f/(t, y) dPYI,(y)] dpT(t) .

As an application, we shall prove the following lemma, which will be
used in Section 7.

Lemma 6. Let (ff,~) and (C[J/,~) be Euclidean spaces, and let P[- Y be
a distribution over the product space (q', d) = (ffx C[J/, ~ X ~). Suppose
that another distribution Plover (q', d) is such that

dPI(t, y) = a(y)b(t) dPo(t, y),

with a(y) > 0 for all y. Then under PI the marginal distribution of T and a
version of the conditional distribution of Y given t are given by

dP[(t) = b(l)[fa(y) dPll'(y)] dP[(t)

and

dPtl'(y) = a(y) dPd'I'(y)

f<gta(y') dPd'I'(y') .
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Proof. The first statement of the lemma follows from the equation

Pd T E B}=El[IB(T)] = Eo[IB(T)a(Y)b(T)]

= ~b(t)[f'19'a(y) dP!I'(y)] dP[(t).

To check the second statement, one need only show that for any integrable f
the expectation Et!(Y, T) satisfies (28), which is immediate. The denomina­
tor of dPtl' is positive, since a(y) > 0 for all y.

6. CHARACfERIZAnON OF SUFFICIENCY

We can now generalize the definition of sufficiency given in Chapter 1,
Section 9. If 9 = {Pe, 0 E Q} is any family of distributions defined over a
common sample space (~, SII), a statistic T is sufficient for 9 (or for 0) if
for each A in SII there exists a determination of the conditional probability
function Pe(Alt) that is independent of O. As an example suppose that
Xl " . . , X; are identically and independently distributed with continuous
distribution function Fe, 0 E Q. Then it follows from Example 7 that the set
of order statistics T( X) = (X(l)" .. , X(n») is sufficient for O.

Theorem 7. If ~ is Euclidean, and if the statistic T is sufficient for 9,
then there exist determinations of the conditional probability distributions
Pe(Alt) which are independent of 0 and such that for each fixed t, P(Alt) is a
probability measureover SII.

Proof. This is seen from the proof of Theorem 4. By the definition of
sufficiency one can, for each rational number r, take the functions F( r, t) to
be independent of 0, and the resulting conditional distributions will then
also not depend on (J.

In Chapter 1 the definition of sufficiency was justified by showing that in
a certain sense a sufficient statistic contains all the available information. In
view of Theorem 7 the same justification applies quite generally when the
sample space is Euclidean. With the help of a random mechanism one can
then construct from a sufficient statistic T a random vector X' having the
same distribution as the original sample vector X. Another generalization of
the earlier result, not involving the restriction to a Euclidean sample space,
is given in Problem 12.

The factorization criterion of sufficiency, derived in Chapter 1, can be
extended to any dominated family of distributions, that is, any family
9 = {Pe, 0 E Q} possessing probability densities Pe with respect to some
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a-finite measure J.l. over (~, SII). The proof of this statement is based on the
existence of a probability distribution A = LC;P8 (Theorem 2 of the Ap­
pendix), which is equivalent to fJJ in the sense that for any A E SII

(29) A(A) = 0 if and only if P8(A) = 0 for all (J E Q.

Theorem 8. Let fJJ = {P8, (J E Q} be a dominated family of probability
distributions over (~, SII), and let A= LC;P8 satisfy (29). Then a statistic T
with range space (!T,~) is sufficient for ' fJJ if and only if there exist
nonnegative f!4-measurable functions g8(t) such that

(30) dP8(x) = g8[T(x)] dA(X)

for all 0 E Q.

Proof. Let SIlo be the subfield induced by T, and suppose that T is
sufficient for 0. Then for all 0 E Q, Ao E SIlo , and A E SII

f p(A IT(x)) dP8(x) = P8(A n Ao);
Ao

and since A = LC;P8,,

f P(A IT(x)) dA(X) = A(A n Ao),
Ao

so that P(AIT(x» serves as conditional probability function also for A. Let
g8(T(x» be the Radon-Nikodym derivative dP8(x)/dA(X) for (SIlo , A). To
prove (30) it is necessary to show that g8(T(x» is also the derivative of P8
for (SII, A). If Ao is put equal to ~ in the first displayed equation, this
follows from the relation

P8(A) = jP(AIT(x)) dP8(x) = jE>.[IA(x)IT(x)] dP8(x)

= jE>.[IAx)IT(x)]g8(T(x)) dA(X)

= jE>.[g8(T(x))IAx)IT(x)] dA(X)

= fg8(T(x))IA(X) dA(X) = ~g8(T(x)) dA(X) .
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over do .

Here the second equality uses the fact, established at the beginning of the
proof, that P(AIT(x» is also the conditional probability for A; the third
equality holds because the function being integrated is do-measurable and
because dP(J = g(J dA for (do, A); the fourth is an application of Lemma
3(ii); and the fifth employs the defining property of conditional expectation.

Suppose conversely that (30) holds. We shall then prove that the condi­
tional probability function P,,(Alt) serves as a conditional probability
function for all P E 9. Let g(J(T(x» = dP(J(x)/dA(X) on d and for fixed
A and (J define a measure" over d by the equation dv = IAdP(Jo Then over
do, d,,(x)/dP(J(x) = E(J[IA(X)IT(x)], and therefore

d,,(x)
dA(X) = P(J [AIT(x)] g(J(T(x))

On the other hand, d,,(x)/dA(X) = IA(x)g(J(T(x» over d, and hence

d,,(x)
dA(X) = E,,[IAX)g(J(T(X))IT(x)]

= p,,[AIT(x)]g(J(T(x)) overdo '

It follows that P,,(AIT(x»g(J(T( x» = P(J(AIT(x»g(J(T(x» (do, A) and
hence (do, P(J). Since g(J(T(x» :# 0 (do, P(J), this shows that P(J(AIT(x»
= P,,(AIT(x» (do, P(J), and hence that P,,(AIT(x» is a determination of
P(J(AIT(x».

Instead of the above formulation, which explicitly involves the distribu­
tion A, it is sometimes more convenient to state the result with respect to a
given dominating measure J.I..

Corollary t. (Factorization theorem.) If the distributions P(J of 9 have
probability densities Pe = dP(J/dp. with respect to a a-finite measure p., then T
is sufficient for 9 if and onlyif there exist nonnegative fIA-measurable functions
g(J on T and a nonnegative .s;/-measurable function h on !!( such that

(31) P(J(x) = g(J[T(x)]h(x) (d,p.).

Proof. Let A = LCiP(J satisfy (29). Then if T is sufficient, (31) follows
from (30) with h = dA/d~. Conversely, if (31) holds,

dA(X) = Lcig(J,[T(x)]h(x) dp.(x) = k[T(x)]h(x) dp.(x)

and therefore dP(J(x) = g3(T(x» dA(X), where g3(t) = g(J(t)/k(t) when
k(t) > 0 and may be defined arbitrarily when k(t) = O.
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For extensions of the factorization theorem to undominated families, see
Ghosh, Morimoto, and Yamada (1981) and the literature cited there.

7. EXPONENTIAL FAMILIES

An important family of distributions which admits a reduction by means of
sufficient statistics is the exponential family, defined by probability densities
of the form

(32) po(x) = C(8)exp [ t Q/8)1}(X)]h(X)
j-l

with respect to a a-finite measure p. over a Euclidean sample space (~, .fI1).
Particular cases are the distributions of a sample X = (Xl"'" Xn ) from a
binomial, Poisson, or normal distribution. In the binomial case, for exam­
ple, the density (with respect to counting measure) is

y> 0,(33)

(~)pX(l-pr-x= (l- prexP[x log(l ~p)](~).
Example 8. If YI , ... , y" are independently distributed, each with density (with

respect to Lebesgue measure)

y(<!I2H]exp[ - y /(2(12)]

Po(y) = (2(12)//2ru/2) ,

then the joint distribution of the Y's constitutes an exponential family. For (1 = 1,
(33) is the density of the X2-distribution with f degrees of freedom; in particular,
for f an integer this is the density of r..~_1 X}, where the X's are a sample from the
normal distribution N(O,I).

Example 9. Consider n independent trials, each of them resulting in one of the
s outcomes EI , . . • , E, with probabilities PI" '" Ps respectively. If Xij is 1 when
the outcome of the i th trial is Ej and 0 otherwise, the joint distribution of the X's is

P{ x - x X - x } - pEx'IpEx'2 pEx"11 - 11"'" ns - ns - I 2 •.. s ,

where all X ij = °or 1 and r.. jXi j = 1. This forms an exponential family with
7j(x) = r..:'_IXij (j = 1, . . . , s - 1). The joint distribution of the T's is the multi­
nomial distribution M( n; PI" ' " Ps) given by

(34) P{TI = 11, . . . ,7;-1 = Is-d

n!

II!. " IS_I!(n - 11 - ••• -Is-I)!

I I ( ),,-rl- " '-IJ -lXPI1
• • • Ps~i 1 - PI - . .. -Ps-I .
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If Xl"'" Xn is a sample from a distribution with density (32), the joint
distribution of the X's constitutes an exponential family with the sufficient
statistics L7_l1j(X;), j = 1, ... , k. Thus there exists a k-dimensional suffi­
cient statistic for (Xl"'" Xn ) regardless of the sample size. Suppose
conversely that Xl"'" Xn is a sample from a distribution with some
density h(x) and that the set over which this density is positive is
independent of O. Then under regularity assumptions which make the
concept of dimensionality meaningful, if there exists a k-dimensional suffi­
cient statistic with k < n, the densities Po( x) constitute an exponential
family. For a proof and discussion of regularity conditions see, for example,
Barankin and Maitra (1963), Brown (1964), Barndortf-Nielsen and Pedersen
(1968), and Hipp (1974).

Employing a more natural parametrization and absorbing the factor h (x)
into /l, we shall write an exponential family in the form dPo(x) =
h(x) d/l(x) with

(35) p,(x) ~ C(8)ex{ty;(X)].
For suitable choice of the constant C(0), the right-hand side of (35) is a
probability density provided its integral is finite. The set n of parameter
points 0 = (0 1" " , 0d for which this is the case is the natural parameter
space of the exponential family (35).

Optimum tests of certain hypotheses concerning any OJ are obtained in
Chapter 4. We shall now consider some properties of exponential families
required for this purpose.

Lemma 7. The natural parameter space of an exponential family is
convex.

Proof. Let (01" " , Ok) and (O{, ... , Ok) be two parameter points for
which the integral of (35) is finite. Then by HOlder's inequality,

fexp[L[aOj + (1 - a)Oj]1j(x)] d/l(x)

s [fexP[LOj1j(X)] d/l(x)r[fexP[}:Oj1j(x)] d/l(X)r-
a

< 00

for any 0 < a < 1.

If the convex set n lies in a linear space of dimension < k, then (35) can
be rewritten in a form involving fewer than k components of T. We shall
therefore, without loss of generality , assume n to be k-dimensional.
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It follows from the factorization theorem that T(x) = (Ti(x) , .. . , Tk(x»
is sufficient for fJJ= {P/I' 0 E ~}.

Lemma 8. Let X be distributed according to the exponential family

dPl.(x) - C(8. ~)ex{t,8,lI,(X) + j~//l;(X)] dp(x).

Then there exist measures A/I and ", over s- and r-dimensional Euclidean
space respectively such that

(i) the distribution of T = (Ti" "'~) is an exponential family of the
form

(36) dP{;,(t) = C(O, t'})exp ( i: {ih) dA/I(t),
J=1

(ii) the conditional distribution of V = (Vi" '" Vr ) given T = t is an
exponential family of the form

(37) dPFI'(U) = c,(o)exp( .r. o;u;) d",(u),
, - I

and hence in particular is independent of t'}.

Proof. Let «(}O, f(0) be a point of the natural parameter space, and let
p.* = Pi&, ;,0. Then

x C(O,{i)
dP/I .;'(x) = C(OO, t'}0)

xexp[,t, (8, - 8,')lI,(x) +t (e, - ~l)1j(x)] dp'(x),

and the result follows from Lemma 6, with

dA/I( r) = exp( - L, t'}?t;) [IeXP[itl(0; - 0;°) u;] dN6~';,0( U)] dPlo. ;,0( r)

and

d",(u) = exp( - L,O;ou;) dN6~';,0(u).
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Theorem 9. Let cp be any function on (j/", SII) for which the integral

(38) !cp(x)exp[ t Olj(X)] d/-L(x)
j-1

considered as a function of the complex variables OJ = ~j + iTJj (j = 1, . .. , k)
exists for all a1"'" ~d E n and is finite. Then

(i) the integralis an analytic function of each of the 0' s in the region R of
parameter points for which a1"' " ~k) is an interior point of the natural
parameter space n;

(ii) the derivatives of all orders with respect to the 0' s of the integral (38)
can be computed under the integral sign.

Proof. Let ap, ..., ~2) be any fixed point in the interior of n, and
consider one of the variables in question, say 01, Breaking up the factor

cp(x)exp[(~g + iTJ~)T2(x) + '" +(~2 + iTJ2)Tk(x)]

into its real and complex part and each of these into its positive and
negative part, and absorbing this factor in each of the four terms thus
obtained into the measure /-L, one sees that as a function of 01 the integral
(38) can be written as

!exp[01T1(X)] d/-L1(X) - !exp[01T1(X)] d/-L2(x)

+i!exp[01T1(X)] d/-L3(x) - i!exp[01T1(X)] d/-L4(x) .

It is therefore sufficient to prove the result for integrals of the form

1/1(01) = !exp[01T1(X)] d/-L(x).

Since ap, ...,~2) is in the interior of n, there exists ~ > 0 such that 1/1(01)
exists and is finite for all 01 with 1~1 - ~PI s ~. Consider the difference
quotient

1/1(01) -I/I(OP) _ jexP[01T1(X)] - exp[OpT1(x)] (
0-00 - 0-00 d/-L X).

1 1 1 1
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The integrand can be written as

exp[0?T
1
(x )] [exP[(01 - 0?)T1(x )] - 1]

0
1

- O? .

Applying to the second factor the inequality

Iexp( a;) - 11 s exp( 81al)
for [z] ~ 8,

the integrand is seen to be bounded above in absolute value by

1 1
8"lexp( 0?T1 + 81Tll)I~ 8"lexp[ (O? + 8)T1] + exp](O? - 8)T1 ] I

for 101 - O?I ~ 8. Since the right-hand side is integrable, it follows from the
Lebesgue dominated-convergence theorem [Theorem 1(ii)] that for any
sequence of points Ofn> tending to O?, the difference quotient of 1/J tends to

JT1(x )exp [0?T1(x)] dp. (x) .

This completes the proof of (i), and proves (ii) for the first derivative. The
proof for the higher derivatives is by induction and is completely analogous.

8. PROBLEMS

Section 1

1. Monotone class. A class !F of subsets of a space is a field if it contains the
whole space and is closed under complementation and under finite unions; a
class vi( is monotone if the union and intersection of every increasing and
decreasing sequence of sets of vi( is again in vI(. The smallest monotone class
vi(0 containing a given field !F coincides with the smallest a-field JlI contain­
ing !F.

[One proves first that vi(0 is a field. To show, for example, that A n B E vi(0

when A and B are in vi(0' consider, for a fixed set A E!F, the class vi(A of all
B in vi(0 for which A n B E vi(o- Then vi(A is a monotone class containing
!F, and hence vi(A = vi(o- Thus A n B E vi(A for all B. The argument can
now be repeated with a fixed set B E vi(0 and the class vi(B of sets A in vi(0

for which A n B E vi(o- Since vi(0 is a field and monotone, it is a a-field
containing !F and hence contains JlI. But any a-field is a monotone class so
that also vi(0 is contained in JlI.]



2.8] PROBLEMS

Section 2

61

a.e. X.

a.e. J1., 1'.

2. Radon-Nikodym derivatives.

(i) If X and J1. are a-finite measures over (~, Jaf) and J1. is absolutely
continuous with respect to X, then

ffdJ1. = ff:~ dX

for any J1.-integrable function f .
(ii) If X, J1., and I' are a-finite measures over (!!l" , Jaf) such that I' is

absolutely continuous with respect to J1. and J1. with respect to X, then

dl' dl' dJ1.
-=--
dX dJ1. dX

(iii) If J1. and I' are a-finite measures, which are equivalent in the sense that
each is absolutely continuous with respect to the other, then

dl'=(dJ1.) -1
dJ1. dl'

(iv) If J1.k ' k = 1,2, . . . , and J1. are finite measures over (~,Jaf) such that
Lk_1J1.k(A) = J1.(A) for all A EJaf , and if the J1.k are absolutely continu­
ous with respect to a a-finite measure X, then J1. is absolutely continuous
with respect to X, and

n

d L J1.k
k=l

dX
i: dJ1.k
k-l dX '

lim
n-oo

n

d L J1.k
k=l

dX

dJ1.
=-

dX
a.e. X.

[(i): The equation in question holds when f is the indicator of a set, hence
when f is simple, and therefore for all integrable f.
(ii): Apply (i) with f= dl'ldJ1. .]

3. If f(x) > 0 for all xES and J1. is a-finite, then fsfdJ1. = 0 implies J1.(S) = o.
[Let SII be the subset of S on which f(x) ~ l in. Then J1.(S) .s LJ1.(S,,) and
J1.(SII) ~ nfsJdJ1. s nfsfdJ1. = 0.]

Section 3

4. Let (~, Jaf) be a measurable space, and Jafo a a-field contained in Jaf. Suppose
that for any function T, the a-field gj is taken as the totality of sets B such
that T - 1(B) E Jaf. Then it is not necessarily true that there exists a function T
such that T-1(gj) = Ji'o.
[An example is furnished by any Jafo such that for all x the set consisting of
the single point x is in Jafo.]
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Section 4

5. (i) Let!J' be any family of distributions X = (Xl' . . . , X,,) such that

[2.8

P{(X; ,Xi+l, ... , X" , Xl , ... ,X;-I) EA} =P{(Xl, .. . ,X,,) EA}

for all Borel sets A and all i = 1, . . . , n. For any sample point (Xl' ... ' X,,)
define (Yl " .. ' YII) = (Xi' Xi+l' · · · , X", Xl' · · ·' Xi-I)' where Xi = X(1) =
min( Xl' . . . , XII). Then the conditional expectation of I(X) given Y = Y
is

1
10(Yl , ... , y,,) = - [J(Yl , . . . , Y,,) +1(Y2 , ... , Y" , Yl)

n

+ .. . +(f(Y,, 'Yl ' · ··'Y,,-I)] .

(ii) Let G = {gl' . . . ' g,} be any group of permutations of the coordinates
Xl' . . . , XII of a point X in n-space , and denote by gx the point obtained
by applying g to the coordinates of x. Let !J' be any family of
distributions P of X = (Xl' . . . , X,,) such that

(39) P{gX E A} = P{ X E A} for all g E G.

For any point X let t = T(x) be any rule that selects a unique point
from the r points gkX' k = 1, .. . , r (for example the smallest first
coordinate if this defines it uniquely, otherwise also the smallest second
coordinate, etc.). Then

1 '
E[J(X)lt] = - L I(gk t ) .

r k -l

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance
condition (39) but are given by

dP( x) = h(x) d}l( x),

where }l is invariant in the sense that }l { x : gx E A} = }l( A). Then

r

E[J(X)lt] = k~/(gkt)h(gkt)
r

L h(gk t)
k -l

Section 5

6. Prove Theorem 4 for the case of an n-dimensional sample space.
[The condition that the cumulative distribution function is nondecreasing is
replaced by P{Xl < Xl ~ xi, . . . , XII < X, ~ x~} ~ 0; the condition that it is
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continuous on the right can be stated as limm_ooF(xl + 11m , . . . , x; + 11m)
= F(XI' '' ' 'X II ) , )

7. Let!l' = '!!Ix.r, and suppose that Po, PI are two probability distributions
given by

dPo(y , t) = f(y)g(t) dp.(y) dv(t),

dPI(y , r) = h(y , r) dp.(y) dv(t) ,

where h(y, t)lf(y)g(t) < 00 . Then under PI the probability density of Y
with respect to p. is

[
h(y, T) Iy - y]pi(y) =f(y)Eo f(y)g(T) - .

[We have

f f
h(y,t)

pi(y) = s: h(y, t) dv(t) = f(y) s: rl .\ _1.\ g(t) dv(t) .]

Section 6

8. Symmetric distributions.

(i) Let 9 be any family of distributions of X = (XI " .. , X,,) which are
symmetric in the sense that

p{ (.\';" ... , .\';J E A} = P{ (XI' " '' X,,) E A}

for all Borel sets A and all permutations (il" .. , i,,) of (1, . . . , n). Then
the statistic T of Example 7 is sufficient for 9, and the formula given in
the first part of the example for the conditional expectation E[f( X)IT(x))
is valid.

(ii) The statistic Y of Problem 5 is sufficient.

(iii) Let XI" ' " X" be identically and independently distributed according to
a continuous distribution P E 9, and suppose that the distributions of
9 are symmetric with respect to the origin. Let V; = 1.\';1 and IV; = Jl( i) '

Then (WI' . . . , IV;,) is sufficient for 9 .

9. Sufficiency of likelihood ratios. Let Po, PI be two distributions with densities
Po' Pi - Then T(x) = PI(x )Ipo(x) is sufficient for 9 = {Po' PI}'
[This follows from the factorization criterion by writing PI = T · Po' Po =
1 . Po .)
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10. Pairwise sufficiency. A statistic T is pairwise sufficient for 9 if it is sufficient
for every pair of distributions in 9 .

(i) If 9 is countable and T is pairwise sufficient for 9, then T is sufficient
for 9 .

(ii) If 9 is a dominated family and T is pairwise sufficient for 9, then T is
sufficient for 9 .

[(i): Let 9 = {Po, PI" " }, and let do be the sufficientsubfield induced by T.
Let A = LCi Pi (Ci > 0) be equivalent to 9. For each j = 1,2, .. . the probabil­
ity measure Aj that is proportional to (coin) Po + c/j is equivalent to
(~)' ~} . Thus by pairwise sufficiency, the derivative fj = dPo/[(coln) dPo +
cj dPj ) ] is do·measurable. Let S, = (x : fj(x) = O} and S = Ui_ISj ' Then
S edo, Po(S) = 0, and on !I"- S the derivative dPoldL'J=I Cj~ equals
(L'j_11I fj) - I which is do·measurable. It then follows from Problem 2 that

dA

n

dL Cj~
}=odPo

n

dL Cj~
} =o

dPo = ----=--
dA

is also do·measurable.
(ii): Let A = LJ=ICjPU be equivalent to 9 . Then pairwise sufficiency of T
implies for any 80 that}dPu/(dPuo+ dA) and hence dPu/dA is a measurable
function of T.]

11. If a statist ic T is sufficient for 9, then for every function I which is
(d, Pu)-integrable for all 8 e n there exists a determination of the conditional
expectation function Eu[f(X)lt] that is independent of 8.
[If !I" is Euclidean, this follows from Theorems 5 and 7. In general, if I is
nonnegative there exists a nondecreasing sequence of simple nonnegative
functions In tending to I. Since the conditional expectation of a simple
function can be taken to be independent of 8 by Lemma 3(i), the desired result
follows from Lemma 3(iv).]

12. For a decision problem with a finite number of decisions, the class of
procedures depending on a sufficient statistic T only is essentially complete.
[For Euclidean sample spaces this follows from Theorem 4 without any
restriction on the decision space. For the present case, let a decision procedure
be given by 8(x) = (8(1)(x),oo .,8(n1)(x» where 8(i)(x) is the probability
with which decision d, is taken when x is observed. If T is sufficient and
1J(i)(t) = E[8(i)(X)lt], the procedures 8 and 1J have identical risk functions.]
[More general versions of this result are discussed, for example, by Elfving
(1952) , Bahadur (1955), Burkholder (1961), LeCam (1964), and Roy and
Ramamoorthi (1979).]
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Section 7

13. Let Xi (i = 1, .. . , s) be independently distributed with Poisson distribution
P(A;), and let To = LXj, T; = Xi' A = LA j . Then To has the Poisson distribu­
tion P( A), and the conditional distribution of TI , . . . , 1;-I given To = to is the
multinomial distribution (34) with n = to and p; = AjA.
[Direct computation.)

14. Life testing. Let XI" ' " XII be independently distributed with exponential
density (20) -le- x / 28 for x ~ 0, and let the ordered X's be denoted by
Y1 :::; Y2 :::; • • • :::; ~ . It is assumed that YI becomes available first, then Y2 ,

and so on, and that observation is continued until ~ has been observed. This
might arise, for example, in life testing where each X measures the length of
life of, say, an electron tube, and n tubes are being tested simultaneously.
Another application is to the disintegration of radioactive material, where n is
the number of atoms, and observation is continued until r a-particles have
been emitted.

(i) The joint distribution of l;, .. . , ~ is an exponential family with density

1 n! l ty;+(n-r)Yr]__ ex _'=--"1 _

(20r (n - r)! p - 20 '
0:::;YI:::; • .• s Yr '

(ii) The distribution of [L~-I1'; + (n - r)~l/O is X2 with 2r degrees of
freedom.

(iii) Let YI , Y2 , . .. denote the time required until the first, second, . . . event
occurs in a Poisson process with parameter 1/20' (see Chapter 1,
Problem 1). Then ZI = YI/O', Z2 = (Y2 - YI)/O', Z3 = (lJ ­
Y2 )/0', . . . are independently distributed as X2 with 2 degrees of free­
dom, and the joint density of YI , ... , ~ is an exponential family with
density

1 (Yr )
(20') r exp - 2iY ' 0:::;YI:::; ' " s Yr '

The distribution of ~/O' is again X2 with 2r degrees of freedom.
(iv) The same model arises in the application to life testing if the number n

of tubes is held constant by replacing each burned-out tube with a new
one, and if YI denotes the time at which the first tube burns out, Y2 the
time at which the second tube burns out, and so on, measured from some
fixed time.

[(ii): The random variables Z; = (n - i + 1)(1'; - 1'; -1)/0 (i = 1,. .. , r) are
independently distributed as X2 with 2 degrees of freedom, and [L~-I 1'; +
(n - r)~l/O = L~_IZi ')
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15. For any 8 which is an interior point of the natural parameter space, the
expectations and covariances of the statistics ~ in the exponential family (35)
are given by

E[~(X)]
alog C(8)

a~
(j=I, ... ,k),

E[T;(X)~(X)] - [ET;(X)E~(X)] = _ a
2

10g C( 8)
----j VVj

(i ,j=I, . . . , k ) .

16. Let °be the natural parameter space of the exponential family (35), and for
any fixed tr + 1, ... , tk (r < k) let 0e, .....9, be the natural parameter space of
the family of conditional distributions given 1',.+ 1 = tr+ l' ... , Tk = tk :

(i) Then 0e, .....9, contains the projection °91•. .. • 9, of °onto 81" " , 8r •

(ii) An example in which°91•.. .• 9, is a proper subset of 0e
l
..... 9, is the family

of densities

P9
192

( x, y) = C(81 , 82 )exp( 81x + 82 y - xy),
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CHAPTER 3

Uniformly Most Powerful Tests

l. STATING THE PROBLEM

We now begin the study of the statistical problem that forms the principal
subject of this book,* the problem of hypothesis testing. As the term
suggests, one wishes to decide whether or not some hypothesis that has been
formulated is correct. The choice here lies between only two decisions:
accepting or rejecting the hypothesis. A decision procedure for such a
problem is called a test of the hypothesis in question.

The decision is to be based on the value of a certain random variable X,
the distribution Pu of which is known to belong to a class fJJ = {Pu,
nEO}. We shall assume that if n were known, one would also know
whether or not the hypothesis is true. The distributions of fJJ can then be
classified into those for which the hypothesis is true and those for which it is
false . The resulting two mutually exclusive classes are denoted by Hand K,
and the corresponding subsets of °by 0H and OK respectively, so that
H U K = fJJ and 0H U OK = 0 . Mathematically, the hypothesis is equiv­
alent to the statement that Pu is an element of H . It is therefore convenient
to identify the hypothesis with this statement and to use the letter H also to
denote the hypothesis. Analogously we call the distributions in K the
alternatives to H, so that K is the class of alternatives.

Let the decisions of accepting or rejecting H be denoted by do and d1

respectively. A nonrandomized test procedure assigns to each possible value
x of X one of these two decisions and thereby divides the sample space into
two complementary regions So and Sl ' If X falls into So the hypothesis is
accepted; otherwise it is rejected. The set So is called the region of
acceptance, and the set Sl the region of rejection or critical region .

·The related subject of confidence intervals is treated in Chapter 3, Section 5; Chapter 5,
Sections 6, 7; Chapter 6, Sections 11-13; Chapter 7, Section 8; Chapter 8, Section 6; and
Chapter 10, Section 4.

68
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When performing a test one may arrive at the correct decision, or one
may commit one of two errors: rejecting the hypothesis when it is true (error
of the first kind) or accepting it when it is false (error of the second kind).
The consequences of these are often quite different. For example, if one tests
for the presence of some disease, incorrectly deciding on the necessity of
treatment may cause the patient discomfort and financial loss. On the other
hand, failure to diagnose the presence of the ailment may lead to the
patient's death.

It is desirable to carry out the test in a manner which keeps the
probabilities of the two types of error to a minimum. Unfortunately, when
the number of observations is given, both probabilities cannot be controlled
simultaneously. It is customary therefore to assign a bound to the probabil­
ity of incorrectly rejecting H when it is true, and to attempt to minimize the
other probability subject to this condition. Thus one selects a number a
between 0 and 1, called the level of significance, and imposes the condition
that

(I) PIJ (l>{ X) = dd = PIJ {X E Sd s a for all 0 E nu .

Subject to this condition, it is desired to minimize PIJ {8( X) = do} for 0 in
nK or, equivalently, to maximize

(2) PIJ{8{X) = dl } = PIJ{XE Sd for all 0 E nK .

Although usually (2) implies that

(3) SUpPIJ{XE Sl} = a,
nl/

it is convenient to introduce a term for the left-hand side of (3): it is called
the size of the test or critical region Sl ' The condition (1) therefore restricts
consideration to tests whose size does not exceed the given level of signifi­
cance. The probability of rejection (2) evaluated for a given 0 in QK is
called the power of the test against the alternative O. Considered as a
function of 0 for all 0 E n, the probability (2) is called the power function
of the test and is denoted by f3(O) .

The choice of a level of significance a will usually be somewhat arbitrary,
since in most situations there is no precise limit to the probability of an
error of the first kind that can be tolerated . Standard values, such as .01 or
.05, were originally chosen to effect a reduction in the tables needed for
carrying out various tests. By habit, and because of the convenience of
standardization in providing a common frame of reference. these values



70 UNIFORMLY MOST POWERFUL TESTS [3.1

gradually became entrenched as the conventional levels to use. This is
unfortunate, since the choice of significance level should also take into
consideration the power that the test will achieve against the alternatives of
interest. There is little point in carrying out an experiment which has only a
small chance of detecting the effect being sought when it exists. Surveys by
Cohen (1962) and Freiman et al. (1978) suggest that this is in fact the case
for many studies. Ideally, the sample size should then be increased to permit
adequate values for both significancelevel and power. If that is not feasible,
one may wish to use higher values of a than the customary ones. The
opposite possibility, that one would like to decrease a, arises when the latter
is so close to 1 that a can be lowered appreciably without a significant loss
of power (cf. Problem 50). Rules for choosing a in relation to the attainable
power are discussed by Lehmann (1958), Arrow (1960), and Sanathanan
(1974), and from a Bayesian point of view by Savage (1962, pp. 64-66). See
also Rosenthal and Rubin (1985).

Another consideration that may enter into the specification of a signifi­
cance level is the attitude toward the hypothesis before the experiment is
performed. If one firmly believes the hypothesis to be true, extremely
convincing evidence will be required before one is willing to give up this
belief, and the significance level will accordingly be set very low. (A low
significance level results in the hypothesis being rejected only for a set of
values of the observations whose total probability under the hypothesis is
small, so that such values would be most unlikely to occur if H were true.)

In applications, there is usually available a nested family of rejection
regions, corresponding to different significance levels. It is then good
practice to determine not only whether the hypothesis is accepted or
rejected at the given significance level, but also to determine the smallest
significance level & = &(x), the significance probability or p-value,* at which
the hypothesis would be rejected for the given observation. This number
gives an idea of how strongly the data contradict the hypothesis, and
enables others to reach a verdict based on the significance level of their
choice (cf. Problem 9 and Chapter 4, Problem 2). For various questions of
interpretation and some extensions of the concept, see Dempster and
Schatzoff (1965), Stone (1969), Gibbons and Pratt (1975), Cox (1977), Pratt
and Gibbons (1981, Chapter 1) and Thompson (1985). The large-sample
behavior of p-values is discussed in Lambert and Hall (1982), and their
sensitivity to changes in the model in Lambert (1982). A graphical proce­
dure for assessing the p-values of simultaneous tests of several hypotheses is
proposed by Schweder and Spjetvoll (1982).

*For a related concept, which compares the "acceptability" of two or more parameter
values. see Spjetvoll (1983).
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Significance probabilities, with the additional information they provide,
are typically more appropriate than fixed levels in scientific problems,
whereas a fixed predetermined a is unavoidable when acceptance or rejec­
tion of H implies an imminent concrete decision. A review of some of the
issues arising in this context, with references to the literature, is given in
Kruskal (1978).

A decision making aspect is often imposed on problems of scientific
inference by the tendency of journals to publish papers only if the reported
results are significant at a conventional level such as 5%. The unfortunate
consequences of such a policy have been explored, among others, by
Sterling (1959) and Greenwald (1975).

Let us next consider the structure of a randomized test. For any value x
such a test chooses between the two decisions, rejection or acceptance, with
certain probabilities that depend on x and will be denoted by 1[>(x) and
1 - 1[>( x) respectively. If the value of X is x, a random experiment is
performed with two possible outcomes Rand R, the probabilities of which
are 1[>( x) and 1 - 1[>(x). If in this experiment R occurs, the hypothesis is
rejected, otherwise it is accepted. A randomized test is therefore completely
characterized by a function 1[>, the critical junction , with °.s; I[>(x) .s; 1 for
all x. If I[> takes on only the values 1 and 0, one is back in the case of a
nonrandomized test. The set of points x for which 1[>( x) = 1 is then just the
region of rejection, so that in a nonrandomized test I[> is simply the indicator
function of the critical region.

If the distribution of X is P(j, and the critical function I[> is used, the
probability of rejection is

E(jI[>(X) = jl[>(x) dP(j( x) ,

the conditional probability 1[>(x) of rejection given x, integrated with
respect to the probability distribution of X. The problem is to select I[> so as
to maximize the power

(4) /39 ( ()) = E(jl[> ( X) for all () E OK

subject to the condition

(5) E(jl[>( X) s a for all () E 0H.

The same difficulty now arises that presented itself in the general discussion
of Chapter 1. Typically, the test that maximizes the power against a
particular alternative in K depends on this alternative, so that some
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additional principle has to be introduced to define what is meant by an
optimum test. There is one important exception: if K contains only one
distribution, that is, if one is concerned with a single alternative , the
problem is completely specified by (4) and (5). It then reduces to the
mathematical problem of maximizing an integral subject to certain side
conditions. The theory of this problem, and its statistical applications,
constitutes the principal subject of the present chapter. In special cases it
may of course turn out that the same test maximizes the power for all
alternatives in K even when there is more than one. Examples of such
uniformly most powerful (UMP) tests will be given in Sections 3 and 7.

In the above formulation the problem can be considered as a special case
of the general decision problem with two types of losses. Corresponding to
the two kinds of error, one can introduce the two component loss functions,

L1(0, d1) = 1 or 0 as oE nH or 0 E nK'

L1(0 ,do)=O for all 0

and

L2(0, do) = 0 or 1 as oE nH or 0 E nK '

L2 ( 0, d1) = 0 for all O.

With this definition the minimization of EL 2 ( 0, ~(X)) subject to the
restriction EL1(0, ~(X)) ~ a is exactly equivalent to the problem of hy­
pothesis testing as given above.

The formal loss functions L 1 and L 2 clearly do not represent in general
the true losses. The loss resulting from an incorrect acceptance of the
hypothesis, for example, will not be the same for all alternatives. The more
the alternative differs from the hypothesis, the more serious are the conse­
quences of such an error. As was discussed earlier, we have purposely
forgone the more detailed approach implied by this criticism. Rather than
working with a loss function which in practice one does not know, it seems
preferable to base the theory on the simpler and intuitively appealing notion
of error. It will be seen later that at least some of the results can be justified
also in the more elaborate formulation .

2. THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

A class of distributions is called simple if it contains only a single distribu­
tion, and otherwise is said to be composite. The problem of hypothesis
testing is completely specified by (4) and (5) if K is simple. Its solution is
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easiest and can be given explicitly when the same is true of H. Let the
distributions under a simple hypothesis H and alternative K be Po and PI'
and suppose for a moment that these distributions are discrete with Pi ( X =

x} = P/x) for i = 0, 1. If at first one restricts attention to nonrandomized
tests, the optimum test is defined as the critical region S satisfying

(6)

and

L po(x)::; a
xE S

L Pl(x) = maximum.
xES

It is easy to see which points should be included in S. To each point are
attached two values, its probability under Po and under Pl' The selected
points are to have a total value not exceeding a on the one scale, and as
large as possible on the other. This is a situation that occurs in many
contexts. A buyer with a limited budget who wants to get" the most for his
money" will rate the items according to their value per dollar. In order to
travel a given distance in the shortest possible time, one must choose the
speediest mode of transportation, that is, the one that yields the largest
number of miles per hour. Analogously in the present problem the most
valuable points x are those with the highest value of

Pl{x)
r{x) = po{x) '

The points are therefore rated according to the value of this ratio and
selected for S in this order, as many as one can afford under restriction (6).
Formally this means that S is the set of all points x for which r(x) > c.
where c is determined by the condition

PO{XES}= L Po{x)=a.
x:rex» ~ ,.

Here a difficulty is seen to arise. It may happen that when a certain point is
included, the value a has not yet been reached but that it would be
exceeded if the next point were also included. The exact value a can then
either not be achieved at all, or it can be attained only by breaking the
preference order established by r(x). The resulting optimization problem
has no explicit solution. (Algorithms for obtaining the maximizing set S are
given by the theory of linear programming.) The difficulty can be avoided,



74 UNIFORMLY MOST POWERFUL TESTS [3.2

however, by a modification which does not require violation of the r-order
and which does lead to a simple explicit solution, namely by permitting
randomization.* This makes it possible to split the next point, including
only a portion of it, and thereby to obtain the exact value a without
breaking the order of preference that has been established for inclusion of
the various sample points. These considerations are formalized in the
following theorem, the fundamental lemma of Neyman and Pearson.

Theorem 1. Let Po and PI be probability distributions possessing densities
Po and PI respectively with respect to a measure p..t

(i) Existence. For testing H : Po against the alternative K: PI there
exists a test ep and a constant k such that

(7)

and

(8) ep(x) = {~

Eoep( X) = a

when PI(X) > kpo(x),

when PI(x) < kpo(x).

(ii) Sufficient condition for a most powerful test. If a test satisfies
(7) and (8) for some k, then it is most powerful for testingPo against PI at
level a.

(iii) Necessary condition for a most powerful test. If ep is most power­
ful at level a for testingPo against PI' thenfor some k it satisfies (8) a.e. p.. It
also satisfies (7) unless there exists a test of size < a and with power l.

Proof. For a = 0 and a = 1 the theorem is easily seen to be true
provided the value k = + 00 is admitted in (8) and 0 . 00 is interpreted as O.
Throughout the proof we shall therefore assume 0 < a < l.

(i): Let a(c) = Po{PI(X) > cPo(X)}, Since the probability is computed
under Po, the inequality need be considered only for the set where Po( x) > 0,
so that a(c) is the probability that the random variable PI(X)/PO(X)
exceeds c. Thus 1 - a( c) is a cumulative distribution function, and a( c) is
nonincreasing and continuous on the right, a( c - 0) - a( c) =
Po{PI(X)/PO(X) = c}, a( - 00) = 1, and a(oo) = O. Given any 0 < a < 1,
let Co be such that a(co) ~ a ~ a( Co - 0), and consider the test ep defined

"In practice. typically neither the breaking of the r-order nor randomization is considered
acceptable . The common solution, instead. is to adopt a value of a that can be attained exactly
and therefore does not present this problem.

t There is no loss of generality in this assumption. since one can take p. = Po + Pl '
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r
when Pl(X) > coPo(x),

a - a(co)
when Pl(X) = coPo(x),tP(x) =

oa(co - 0) - a(co)

when Pl(X) < coPo(x) .
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Here the middle expression is meaningful unless a(co) = a( Co - 0); since
then Po{ Pl(X) = coPo(X)} = 0,4> is defined a.e. The size of 4> is

{
Pl( X ) } a-a(co) {Pl(X) }

£otP(X) = Po Po(X) > Co + a(c
o

_ 0) _ a(c
o)

Po Po(X) = Co = a,

so that Co can be taken as the k of the theorem.
It is of interest to note that Co is essentially unique. The only exception is

the case that an interval of c's exists for which a( c) = a. If (c', c") is such
an interval , and

{
Pl(X) }

C = x : Po(x) > 0 and c' < Po(x) < c" ,

then Po(C) = a(c') - a(c" - 0) = O. By Problem 3 of Chapter 2, this
implies JL(C) = 0 and hence P1(C) = O. Thus the sets corresponding to two
different values of c differ only in a set of points which has probability 0
under both distributions, that is, points that could be excluded from the
sample space.

(ii): Suppose that tP is a test satisfying (7) and (8) and that tP* is any
other test with £otP*( X) ~ a. Denote by S+ and S- the sets in the sample
space where 4>(x) - tP*(x) > 0 and < 0 respectively. If x is in S+, 4>(x)
must be > 0 and Pl(X) ~ kpo(x). In the same way Pl(X) ~ kpo(x) for all
x in S -, and hence

!( tP - tP*)(Pl - kpo) dp: = ( (tP - 4>*)(Pl - kpo) dJL ~ o.Js+us-

The difference in power between 4> and 4>* therefore satisfies

/(4) - 4>*)Pl dJL ~ k /(4) - 4>*)PodJL ~ 0,

as was to be proved .
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(iii): Let ep* be most powerful at level a for testing Po against PI' and let
ep satisfy (7) and (8). Let S be the intersection of the set S+u S -, on which
ep and ep* differ, with the set {x : PI(X) =1= kpo(x)} , and suppose that
p.(S) > O. Since (ep - ep*)(PI - kpo) is positive on S, it follows from
Problem 3 of Chapter 2 that

f (ep - ep*)(PI - kpo) dp. = f(ep - ep*)(PI - kpo) dp. > 0
S + us- S

and hence that ep is more powerful against PI than ep* . This is a contradic­
tion, and therefore p.(S) = 0, as was to be proved .

If ep* were of size < a and power < 1, it would be possible to include in
the rejection region additional points or portions of points and thereby to
increase the power until either the power is 1 or the size is a. Thus either
Eoep*( X) = a or Elep*( X) = l.

The proof of part (iii) shows that the most powerful test is uniquely
determined by (7) and (8) except on the set on which PI(x) = kpo(x) . On
this set, ep can be defined arbitrarily provided the resulting test has size a .
Actually, we have shown that it is always possible to define ep to be constant
over this boundary set. In the trivial case that there exists a test of power 1,
the constant k of (8) is 0, and one will accept H for all points for which
PI(X) = kpo(x) even though the test may then have size < a .

It follows from these remarks that the most powerful test is determined
uniquely (up to sets of measure zero) by (7) and (8) whenever the set on
which PI(X) = kpo(x) has p.-measure zero. This unique test is then clearly
nonrandomized. More generally, it is seen that randomization is not re­
quired except possibly on the boundary set, where it may be necessary to
randomize in order to get the size equal to a . When there exists a test of
power 1, (7) and (8) will determine a most powerful test, but it may not be
unique in that there may exist a test also most powerful and satisfying (7)
and (8) for some a' < a.

Corollary 1. Let 13 denote the power of the most powerful level-a test
(0 < a < 1) for testing Po against Pl' Then a < 13 unless Po = Pl'

Proof. Since the level-a test given by ep(x) == a has power a, it is seen
that a::; 13. If a = 13 < 1, the test ep(x) == a is most powerful and by
Theorem l(iii) must satisfy (8). Then Po(x) = PI(X) a.e. p., and hence
Po = Pl'

An alternative method for proving the results of this section is based on
the following geometric representation of the problem of testing a simple
hypothesis against a simple alternative. Let N be the set of all points (a, 13)
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for which there exists a test cj> such that

a = Eocj>(X), /3 = EIcj>( X).

This set is convex, contains the points (0,0) and (1,1), and is symmetric
with respect to the point (t.t) in the sense that with any point (a, /3) it also
contains the point (l - a,l - /3). In addition, the set N is closed. [This
follows from the weak compactness theorem for critical functions, Theorem
3 of the Appendix; the argument is the same as that in the proof of
Theorem 5(i).]

For each value °< ao < 1, the level-e., tests are represented by the
points whose abscissa is 5; ao' The most powerful of these tests (whose
existence follows from the fact that N is closed) corresponds to the point on
the upper boundary of N with abscissa ao. This is the only point corre­
sponding to a most powerful level-e., test unless there exists a point (a, 1) in
N with a < ao (Figure 1b).

As an example of this geometric approach, consider the following alter­
native proof of Corollary 1. Suppose that for some°< ao < 1 the power of
the most powerful level-o., test is ao. Then it follows from the convexity of
N that (a , /3) E N implies /3 5; a, and hence from the symmetry of N that
N consists exactly of the line segment connecting the points (0,0) and (1,1) .
This means that feppo dp. = fepPI dp. for all cj> and hence that Po = PI (a.e.
p.), as was to be proved. A proof of Theorem 1 along these lines is given in a
more general setting in the proof of Theorem 5.

The Neyman-Pearson lemma has been generalized in many directions.
An extension to the case of several side conditions is given in Section 6, and
this result is further generalized in Section 8. A sequential version, due to

_,.........: I ! • IX

(a)

Figure 1

fJ
1

o

,. ,(1 ,1)

(b)



78 UNIFORMLY MOST POWERFUL TESTS [3.3

Wald and Wolfowitz (1948, 1950), plays a fundamental role in sequential
analysis [see, for example, Ghosh (1970)]. Extensions to stochastic processes
are discussed by Grenander (1950) and Dvoretzky, Kiefer, and Wolfowitz
(1953), and a version for abstract spaces by Grenander (1981, Section 3.1).
A modification due to Huber, in which the distributions are known only
approximately, is presented in Section 3 of Chapter 9.

An extension to a selection problem, proposed by Birnbaum and
Chapman (1950), is sketched in Problem 23. Generalizations to a variety of
decision problems with a finite number of actions can be found, for
example, in Hoel and Peterson (1949), Karlin and Rubin (1956), Karlin and
Truax (1960), Lehmann (1961), Hall and Kudo (1968) and Spjetvoll (1972).

3: DISTRIBUTIONS WITH MONOTONE
LIKELIHOOD RATIO

The case that both the hypothesis and the class of alternatives are simple is
mainly of theoretical interest, since problems arising in applications typi­
cally involve a parametric family of distributions depending on one or more
parameters. In the simplest situation of this kind the distributions depend
on a single real-valued parameter 8, and the hypothesis is one-sided, say
H : 8 s 80 , In general, the most powerful test of H against an alternative
81 > 80 depends on 81 and is then not UMP. However, a UMP test does
exist if an additional assumption is satisfied. The real-parameter family of
densities Po(x) is said to have monotone likelihood ratio" if there exists a
real-valued function T(x) such that for any 8 < 8' the distributions Po and
Po' are distinct, and the ratio Po,(x)/Po(x) is a nondecreasing function of
T(x).

Theorem 2. Let 8 be a real parameter, and let the random variable X
have probability density Po(x) with monotone likelihood ratio in T(x).

(i) For testing H : (J s 80 against K : (J > 80 , there exists a UMP test,
which is given by

(9) ~(x) ~ Gwhen T(x) > C,

when T(x) = C,

when T(x) < C,

"This definition is in terms of specific versions of the densities Pg. If instead the definition is
to be given in terms of the distributions Pg , various null-set 'considerations enter which are
discussed in Pfanzagl (1967).
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where C and yare determined by

(10)

(ii) The power function

Eoocp( X) = a.

f3( 0) = Eocp( X)

of this test is strictly increasing for all points 0 for which 0 < f3( 0) < 1.
(iii) For all 0', the test determined by (9) and (10) is UMP for testing

H' : 0 ~ 0' against K': 0 > 0' at level a' = 13(0').
(iv) For any 0 < 00 the test minimizes f3( 0) (the probability of an error of

the first kind) among all tests satisfying (10).

Proof. (i) and (ii): Consider first the hypothesis Ho: 0 = 00 and some
simple alternative 01 > 00 , The most desirable points for rejection are those
for which r(x) = Po (x)/po (x) = g[T(x)] is sufficiently large. If T(x) <

1 0

T(x'), then r(x) ~ r(x') and x' is at least as desirable as x . Thus the test
which rejects for large values of T(x) is most powerful. As in the proof of
Theorem l(i), it is seen that there exist C and y such that (9) and (10) hold.
By Theorem l(ii), the resulting test is also most powerful for testing Po,
against Po" at level a' = f3( 0') provided 0' < 0". Part (ii) of the present
theorem now follows from Corollary 1. Since f3( 0) is therefore nondecreas­
ing, the test satisfies

(11) Eocp(X) s a for 0 s 00 ,

The class of tests satisfying (11) is contained in the class satisfying Eo </>( X)
o

~ a. Since the given test maximizes PUll) within this wider class, it also
maximizes f3( 01) subject to (11); since it is independent of the particular
alternative 01 > 00 chosen, it is UMP against K.

(iii) is proved by an analogous argument.
(iv) follows from the fact that the test which minimizes the power for

testing a simple hypothesis against a simple alternative is obtained by
applying the fundamental lemma (Theorem 1) with all inequalities reversed.

By interchanging inequalities throughout , one obtains in an obvious
manner the solution of the dual problem, H: 0 ~ 00 , K: 0 < 00 ,

The proof of (i) and (ii) exhibits the basic property of families with
monotone likelihood ratio : every pair of parameter values 00 < 01 estab­
lishes essentially the same preference order of the sample points (in the
sense of the preceding section). A few examples of such families, and hence
of UMP one-sided tests, will be given below. However, the main appli-
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cations of Theorem 2 will come later, when such families appear as the set
of conditional distributions given a sufficient statistic (Chapters 4 and 5)
and as distributions of a maximal invariant (Chapters 6, 7, and 8).

Example 1. Hypergeometric. From a lot containing N items of a manufac­
tured product, a sample of size n is selectedat random, and each item in the sample
is inspected. If the total number of defective items in the lot is D, the number X of
defectives found in the sample has the hypergeometric distribution

P { X = x} = PD ( x) = (~) ~ ~ \= ~) , max(0, n + D - N) s x s min ( n, D) .

Interpreting PD(x) as a density with respect to the measure p. that assigns to any set
on the real line as measure the number of integers 0,1,2,. .. that it contains, and
noting that for values of x within its range

Pf)+I(X) =\ D+l N-D-n+x
Pf)(x) N-D D+l-x

oor 00

if n + D + 1 - N :::;; x :::;; D,

if x = n + D - N or D + 1,

it is seen that the distributions satisfy the assumption of monotone likelihood ratios
with T(x) = x . Therefore there exists a UMP test for testing the hypothesis
H : D :::;; Do against K: D > Do, which rejects H when X is too large, and an
analogous test for testing H' : D ~ Do.

An important class of families of distributions that satisfy the assump­
tions of Theorem 2 are the one-parameter exponential families.

Corollary 2. Let 0 be a realparameter, and let X haveprobability density
(with respect to some measure JL)

(12) h(X) = C( O)eQ(II)T(x)h (x),

where Q is strictly monotone. Then there exists a UMP test $ for testing
H : 0 s 00 against K : 0 > 00 , If Q is increasing,

$(x)=l,y,O as T( x) > , = , < C,

where C mid yare determined by Ello$ ( X) = a. If Q is decreasing, the
inequalities are reversed.

A converse of Corollary 2 is given by Pfanzagl (1968), who shows under
weak regularity conditions that the existence of UMP tests against one-sided
alternatives for all sample sizes and one value of a implies an exponential
family.
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As in Example 1, we shall denote the right-hand side of (12) by PIJ(x)
instead of Pe(x) when it is a probability, that is, when X is discrete and JL is
counting measure.

Example 2. Binomial The binomial distributions b(p , n) with

Pp ( x) = (~) pX(1 - pr-x

satisfy (12) with T(x) = x, 8 = p, Q(p) = 10g[pj(1 - p)) . The problem of testing
H: p ~ Po arises, for instance, in the situation of Example 1 if one supposes that
the production process is in statistical control, so that the various items constitute
independent trials with constant probability p of being defective. The number of
defectives X in a sample of size n is then a sufficient statistic for the distribution of
the variables X; (i = 1, . . . , n), where X; is 1 or °as the ith item drawn is defective
or not, and X is distributed as b(p, n). There exists therefore a UMP test of H,
which rejects H when X is too small.

An alternative sampling plan which is sometimes used in binomial situations is
inverse binomial sampling. Here the experiment is continued until a specified number
m of successes-for example, cures effected by some new medical treatment-have
been obtained. If Y; denotes the number of trials after the (i - 1)st success up to
but not including the ith success, the probability that Y; = Y is pqY for y = 0,1, . .. ,
so that the joint distribution of YI , ... , Ym is

Pp(YI"' " Ym) = pmq>= v" Yk=O,I, . .. , k=I, .. . ,m .

This is an exponential family with T(y) = LY; and Q(p) = 10g(1 - p). Since
Q(p) is a decreasing function of p, the UMP test of H : p ~ Po rejects H when T
is too small. This is what one would expect, since the realization of m successes in
only a few more than m trials indicates a high value of p . The test statistic T, which
is the number of trials required in excess of m to get m successes, has the negative
binomial distribution [Chapter 1, Problem l(i))

P( r) = (m + ( - 1) m Im-l pq, (=0,1, .. ..

Example 3. Poisson. If XI" ' " Xn are independent Poisson variables with
E( X,) = A, their joint distribution is

AXt + . . . +x.

P() - IIA
A Xl" ' " XII = e .

Xl! ' " XII!

This constitutes an exponential family with T(x) = LX;, and Q(A) = log A. One­
sided hypotheses concerning A might arise if A is a bacterial density and the X's
are a number of bacterial counts, or if the X's denote the number of a-particles
produced in equal time intervals by a radioactive substance, etc. The UMP test of
the hypothesis A~ Ao rejects when LX; is too large. Here the test statistic LX; has
itself a Poisson distribution with parameter nA.
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Instead of observing the radioactive material for given time periods or counting
the number of bacteria in given areas of a slide, one can adopt an inverse sampling
method. The experiment is then continued, or the area over which the bacteria are
counted is enlarged, until a count of m has been obtained. The observations consist
of the times TI , • •• , Tm that it takes for the first occurrence, from the first to the
second, and so on. If one is dealing with a Poisson process and the number of
occurrences in a time or space interval 'T has the distribution

P(x) = (X'Tr -hT
x! e , x = 0,1, . . . ,

then the observed times are independently distributed, each with the exponential
probability density Xe- hl for I ~ °[Problem l(ii) of Chapter 1]. The joint densities

Ph( II'···' 1m ) = xmexp( -X .£:, Ii)'
,-1

11'· ··' 1m ~ 0,

form an exponential family with T(tl' .. . ' 1m ) = Eli and Q(X) = -X. The UMP
test of H: X ~ Xo rejects when T = ET; is too small. Since 2XT; has density ~e-u/2

for u ~ 0, which is the density ofax2-distribution with 2 degrees of freedom, 2XT
has a X2-distribution with 2m degrees of freedom. The boundary of the rejection
region can therefore be determined from a table of x2•

The formulation of the problem of hypothesis testing given at the
beginning of the chapter takes account of the losses resulting from wrong
decisions only in terms of the two types of error. To obtain a more detailed
description of the problem of testing H : 0 ~ 00 against the alternatives
o> 00 , one can consider it as a decision problem with the decisions do and
d1 of accepting and rejecting H and a loss function L(O, d;) = Li(O).
Typically, Lo(O) will be 0 for 0 s 00 and strictly increasing for 0 ~ 00 , and
L 1( 0) will be strictly decreasing for 0 s 00 and equal to 0 for 0 ~ 00 , The
difference then satisfies

(13) L1(0) - Lo(O) ~ 0 as 0 ~ 00 •

The following theorem is a special case of complete class results of Karlin
and Rubin (1956) and Brown, Cohen, and Strawderman (1976).

Theorem 3.

(i) Under the assumptions of Theorem 2, the family of tests given by (9)
and (10) with 0 ~ a ~ 1 is essentially complete provided the loss function
satisfies (13).

(ii) This family is also minimal essentially complete if the set of points x
for which Po(x) > 0 is independent of o.
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Proof. (i): The risk function of any test 4> is

R(8, 4» = j P8 (x )( 4> (x) L1( 8) + [1 - 4> (x)] t.; ( 8)} dp. (x )

= jP8(x){Lo(8) + [L1(8) - Lo(8)]4>(x)} dp.(x),

and hence the difference of two risk functions is

R(8,4>') - R(8,4» = [L1(8) - Lo(8)]j(4>'- 4»P8dP. .

This is s 0 for all 8 if

13</>,(8) - 13</>(8) = j(4)' - 4»P8dp. ~ 0 for 8 ~ 80 .

Given any test 4>, let E804> (X) = a. It follows from Theorem 2(i) that there
exists a UMP level-a test ep' for testing 8 = 80 against 8 > 80 , which
satisfies (9) and (10). By Theorem 2(iv), ep' also minimizes the power for
8 < 80 . Thus the two risk functions satisfy R( 8, ep') ~ R( 8,4» for all 8, as
was to be proved.

(ii): Let 4>0 and 4>0' be of sizes a < a' and UMP for testing 80 against
8 > 80 , Then 13</>.( 8) < 13</» 8) for all 8 > 80 unless 13</>.( 8) = 1. By consider­
ing the problem of testing 8 = 80 against 8 < 80 it is seen analogously that
this inequality also holds for all 0 < 00 unless 13</>..( 0) = O. Since the
exceptional possibilities are excluded by the assumptions, it follows that
R (8, 4>') ~ R (8, 4» as 8 ~ 80 , Hence each of the two risk functions is better
than the other for some values of 8.

The class of tests previously derived as UMP at the various significance
levels a is now seen to constitute an essentially complete class for a much
more general decision problem, in which the loss function is only required
to satisfy certain broad qualitative conditions. From this point of view, the
formulation involving the specification of a level of significance can be
considered as a simple way of selecting a particular procedure from an
essentially complete family.

The property of monotone likelihood ratio defines a very strong ordering
of a family of distributions. For later use, we consider also the following
somewhat weaker definition. A family of cumulative distribution functions
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Fe on the real line is said to be stochastically increasing (and the same term
is applied to random variables possessing these distributions) if the distribu­
tions are distinct and if 8 < 8' implies Fe(x) ~ Fe,(x) for all x. If then
X and X' have distributions Fe and F/ respectively, it follows that
P{ X> x} s P{ X' > x } for all x, so that X' tends to have larger values
than X. In this case the variable X' is said to be stochastically larger than
X. This relationship is made more intuitive by the following characterization
of the stochastic ordering of two distributions.

Lemma 1. Let Fo and FI be two cumulative distribution functions on the
real line. Then FI(x),s; Fo(x) for all x if and only if there exist two
nondecreasing functions fo and fl' and a random variable V, such that (a)
fo(v) s fl(v) for all v, and (b) the distributions of fo(V) and fl(V) are Fo
and F1 respectively.

Proof. Suppose first that the required fo' fl' and V exist. Then

F1(x) = P{I, (V) s x} ,s; P{ fo(V) s x} = Fo(x)

for all x. Conversely, suppose that FI(x),s; Fo(x) for all x, and let
f(y) = inf{x : F;(x - 0) ,s; y,s; F;(x)}, i = 0,1. These functions are non­
decreasing and for f = f , F; = F satisfy

f[F(x)] ,s; x and F[j(y)] ~y for all x and y .

It follows that v s F(x o) implies f(y) s f[F(xo)] ,s; X o and that con­
versely f(y) ,s; X o implies F[f(y)] s F(xo) and hence y .s F(xo), so that
the two inequalities f(y) s X o and y,s; F(x o) are equivalent. Let V be
uniformly distributed on (0,1). Then P{f(V),s; x} = P{V,s; F;(x)}
= F;(x) . Since FI(x) s Fo(x) for all x implies fo(y) ,s; fl(y) for all y , this
completes the proof.

One of the simplest examples of a stochastically ordered family is a
location parameter family, that is, a family satisfying

Fe(x) = F(x - 8) .

To see that this is stochastically increasing, let X be a random variable with
distribution F( x). Then 8 < 8' implies

F(x - 8) = P{X,s; x - O} ~ P{X,s; x - O'} = F(x - 0') ,

as was to be shown.
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Another example is furnished by families with monotone likelihood ratio.
This is seen from the following lemma, which establishes some basic
properties of these families.

Lemma 2. Let Pe(x) be a family of densities on the real line with
monotone likelihoodratio in x.

(i) If 1/J is a nondecreasing function of x, then Ee1/J( X) is a nondecreasing
function of 0; if Xl" ' " Xn are independently distributed with density Pe and
1/J ' is a function of x I' .. . , Xn which is nondecreasing in each of its arguments,
then Ee1/J'( Xl' . . . , Xn ) is a nondecreasing function of O.

(ii) For any 0 < (J', the cumulative distribution functions of X under 0
and (J' satisfy

Fe.(x) ~ Fe(x) forallx .

(iii) Let 1/J be a function with a single change of sign. More specifically,
suppose there exists a value Xo such that 1/J(x) ~ 0 for x < Xo and 1/J(x) ~ 0
for x ~ xo' Then there exists (Jo such that Ee1/J( X) ~ 0 for (J < (Jo and
Ee1/J( X) ~ 0 for 0 > (Jo, unless Ee1/J( X) is eitherpositive for all 0 or negative
for all (J .

(iv) Suppose that Pe(x) is positive for all (J and all x, that Pe,(x)jPe(x)
is strictly increasing in x for (J < (J', and that 1/J(x) is as in (iii) and is =I' 0
with positive probability. If Eeo1/J( X) = 0, then Ee1/J( X) < 0 for (J < 00 and
> 0 for (J > (Jo'

Proof. (i): Let (J < (J ', and let A and B be the sets for which Pe'(x) <
Pe(x) and Pe'(x) > Pe(x) respectively. If a = supA(x) and b = infB1/J (x ),
then b - a ~ 0 and

f 1/J (Pe' - Pe) du. ~ af (Pe' - Pe) dp. + bf (Pe' - Pe) dp.
A B

= (b - a) fB(pe' - Pe) dp. ~ 0,

which proves the first assertion. The result for general n follows by
induction.

(ii): This follows from (i) by letting 1/J(x) = 1 for x> Xo and 1/J(x) = 0
otherwise.

(iii) : We shall show first that for any 0' < 0", Ee.1/J( X) > 0 implies
Ee,,1/J(X) ~ O. If Pe,,(xo)/Pe'(x o) = 00, then Pe'(x) = 0 for x ~ Xo and
hence Ee,1/J(X) ~ O. Suppose therefore that Pe,,(xo)/Pe'( xo) = c < 00 .
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Then I/J(x) ~ 0 on the set S = {x: PII'(x) = 0 and PII"(x) > O}, and

[ PII"
EII"I/J(X) ~ },I/J-PII' dp.

S PII'

~ fXo- CI/JPII' dp. + rS:>CI/JPII' dp. = cEII,I/J(X) ~ o.
-00 Xo

The result now follows by letting 80 = inf{8: EIII/JeX) > O}.
(iv): The proof is analogous to that of (iii).
Part (ii) of the lemma shows that any family of distributions with

monotone likelihood ratio in x is stochastically increasing. That the con­
verse does not hold is shown for example by the Cauchy densities

1 1

'Tt 1 + (x - 8)2'

The family is stochastically increasing, since 8 is a location parameter;
however, the likelihood ratio is not monotone . Conditions under which a
location parameter family possesses monotone likelihood ratio are given in
Chapter 9, Example 1.

Lemma 2 is a special case of a theorem of Karlin (1957, 1968) relating
the number of sign changes of EIII/J(X) to those of I/J(x) when the densities
PII(X) are totally positive (defined in Problem 27). The application of totally
positive-or equivalently, variation diminishing-distributions to statistics
is discussed by Brown, Johnstone, and MacGibbon (1981); see also Problem
30.

4. COMPARISON OF EXPERIMENTS·

Suppose that different experiments are available for testing a simple hy­
pothesis H against a simple alternative K. One experiment results in a
random variable X, which has probability densities f and g under Hand K
respectively; the other leads to the observation of X' with densities f' and
g' , Let {3(0:) and {3'(0:) denote the power of the most powerfullevel-o: test
based on X and X'. In general, the relationship between {3(0:) and {3 '(0:)
will depend on 0:. However, if {3'( 0:) ~ {3( 0:) for all 0:, then X or the
experiment (f, g) is said to be more informative than X'. As an example,
suppose that the family of densities PII(X) is the exponential family (12) and

"This section constitutes a digress ion and may be omitted.
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that / = /' = P8o' g = P8
2
' g' = P8

1
, where 00 < 01 < 02' Then (f, g) is

more informative than (f', g') by Theorem 2.
A simple sufficient condition" for X to be more informative than X' is

the existence of a function h(x, u) and a random quantity U, independent
of X and having a known distribution, such that the density of Y = h(X, U)
is /' or g' as that of X is / or g. This follows, as in the theory of sufficient
statistics, from the fact that one can then construct from X (with the help of
U) a variable Y which is equivalent to X'. One can also argue more
specifically that if </>(x') is the most powerful level-a test for testing /'
against g' and if t/;(x) = E</>[h(x, U)], then Et/;(X) = E</>(X') under both
Hand K. The test t/;(x) is therefore a level-a test with power /3'(a), and
hence /3(a) ~ /3'(a) .

When such a transformation h exists, the experiment (f, g) is said to be
sufficient for (f', g'). If then Xl" '" Xn and Xi, . .. , X~ are samples from
X and X' respectively, the first of these samples is more informative than
the second one. It is also more informative than (Zl" ' " Zn) where each Z;
is either Xi or X;' with certain probabilities.

Example 4. 2 X 2 Table. Two characteristics A and B, which each member of
a population mayor may not possess, are to be tested for independence. The
probabilities p = P(A) and 7T = P(B), that is, the proportions of individuals
possessing properties A and B, are assumed to be known. This might be the case,
for example, if the characteristics have previously been studied separately but not in
c,9!ljunction. The probabilities of the four possible combinations AB, AB, AB, and
AB under the hypothesis of independence and under the alternative that P(AB) has
a specified value pare

Under H: Under K:

B B B B
A I p7T p(1 - 7T) P p-p
A (1-p)7T (1 - P )(1 - 7T) 7T-p 1-p-7T+p

The experimental material is to consist of a sample of size s. This can be selected,
for example, at random from those members of the population possessing property
A. One then observes for each member of the sample whether or not it possesses
property B, and hence is dealing with a sample from a binomial distribution with
probabilities

p
H : P(BIA) = 7T and K : P(BIA) = - .

p

Alternatively, one can draw the sample from one of the other categories B, B, or A,

"For a proof that this condition is also necessary see Blackwell (1951b).
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obtaining in each case a sample from a binomial distribution with probabilities
given by the following table:

Population
Sampled Probability H K

A P(BIA) 'TT pip
B P(AI~) p pl'TT
iJ P(AI~) p (p - p)/(1 - 'TT)
A P(BIA) 'TT ('TT - p)/(1 - p)

Without loss of generality let the categories A, A, B, and iJ be labeled so that
p :S 'TT :s t. We shall now show that of the four experiments, which consist in
observing an individual from one of the four categories, the first one (sampling from
A) is most informative and in fact is sufficient for each of the others .

To compare A with B, let X and X' be 1 or 0, and let the probabilities of their
being equal to 1 be given by the first and the second row of the table respectively.
Let U be uniformly distributed on (0,1) and independent of X, and let Y =

ht X, U) = 1 when X = 1 and U:s pI'TT, and Y = 0 otherwise. Then P{Y = I} is p
under H and pl'TT under K, so that Y has the same distribution as X'. This proves
that X is sufficient for X', and hence is the more informative of the two. For the
comparison of A with iJ define Y to be 1 when X = 0 and U :S pl(1 - 'TT), and to
be 0 otherwise. Then the probability that Y = 1 coincides with the third row of the
table. Finally, the probability that Y = 1 is given by the last row of the table if one
defines Y to be equal to 1 when X = 1 and U:s ('TT - p)/(1 - p) and when X = 0
and U> (1 - 'TT - p)/(1 - p).

It follows from the general remarks preceding the example that if the experimen­
tal material is to consist of s individuals, these should be drawn from category A,
that is, the rarest of the four categories, in preference to any of the others . This is
preferable also to drawing the s from the population at large, since the latter
procedure is equivalent to drawing each of them from either A or A with probabili­
ties p and 1 - P respectively.

The comparison between these various experiments is independent not only of a
but also of p. Furthermore, if a sample is taken from A, there exists by Corollary 2
a UMP test of H against the one-sided alternatives of positive dependence,
P( BIA) > 'TT and hence p > p_'TT, according to which the probabilities of AB and AB
are larger, and those of AB and AB smaller, than under the assumption of
independence. This test therefore provides the best power that can be obtained for
the hypothesis of independence on the basis of a sample of size s.

Example 5, In a Poisson process the number of events occurring in a time
interval of length v has the Poisson distribution P( hV). The problem of testing h O
against h( for these distributions arises also for -spatial distributions of particles
where one is concerned with the number of particles in a region of volume v. To see
that the experiment is the more informative the longer the interval v, let v < w and
denote by X and Y the number of occurrences in the intervals (t, t + v) and
(t + v, t + w) . Then X and Yare independent Poisson variables and Z = X + Y is
a sufficient statistic for h. Thus any test based on X can be duplicated by one based
on Z, and Z is more informative than X. That it is in fact strictly more informative
in an obvious sense is seen from the fact that the unique most powerful test for
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testing Ao against Al depends on X + Y and therefore cannot be duplicated from
X alone.

Sometimes it is not possible to count the number of occurrences but only to
determine whether or not at least one event has taken place. In the dilution method
in bacteriology , for example, a bacterial culture is diluted in a certain volume of
water, from which a number of samples of fixed size are taken and tested for the
presence or absence of bacteria. In general, one observes then for each of n intervals
whether an event occurred. The result is a binomial variable with probability of
success (at least one occurrence)

p = 1 - e- II /,

Since a very large or small interval leads to nearly certain success or failure, one
might suspect that for testing Ao against Al intermediate values of v would be more
informative than extreme ones. However, it turns out that the experiments (Aov, Al v)
and (Aow, AIW) are not comparable for any values of v and w. (See Problem 19.)
For a discussion of how to select v in this and similar situations see Hodges (1949).

The definition of an experiment C being more informative than an
experiment C' can be extended in a natural way to probability models
containing more than two distributions by requiring that for any decision
problem a risk function that is obtainable on the basis of C' can be
matched or improved upon by one based on C. Unfortunately, interesting
pairs of experiments permitting such a strong ordering are rare. (For an
example, see Problems 11 and 12 of Chapter 7). LeCam (1964) initiated a
more generally applicable method of comparison by defining a measure of
the extent to which one experiment is more informative than another. A
survey of some of the principal concepts and results of this theory is given
by Torgersen (1976).

5. CONFIDENCE BOUNDS

The theory of UMP one-sided tests can be applied to the problem of
obtaining a lower or upper bound for a real-valued parameter (J . The
problem of setting a lower bound arises, for example, when (J is the
breaking strength of a new alloy; that of setting an upper bound , when (J is
the toxicity of a drug or the probability of an undesirable event. The
discussion of lower and upper bounds is completely parallel, and it is
therefore enough to consider the case of a lower bound, say ~.

Since ~ = ~(X) will be a function of the observations, it cannot be
required to fall below (J with certainty, but only with specified high
probability. One selects a number 1 - a, the confidence level, and restricts
attention to bounds ~ satisfying

(14) Po {~( X) .s (J} ~ 1 - a for all (J .
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The function ~ is called a lower confidence bound for 0 at confidence level
1 - a; the infimum of the left-hand side of (14), which in practice will be
equal to 1 - a, is called the confidence coefficient of ~ .

Subject to (14), ~ should underestimate 0 by as little as possible. One can
ask, for example, that the probability of ~ falling below any 0' < 0 should
be a minimum. A function ~ for which

(15) Pld~(X) s O'} = minimum

for all 0' < 0 subject to (14) is a uniformly most accurate lower confidence
bound for 0 at confidence level 1 - a.

Let L (0, ~) be a measure of the loss resulting from underestimating 0, so
that for each fixed 0 the function L(O,~) is defined and nonnegative for
~ < 0, and is nonincreasing in its second argument. One would then wish to
minimize

(16) EIJL(O,~)

subject to (14). It can be shown that a uniformly most accurate lower
confidence bound ~ minimizes (16) subject to (14) for every such loss
function L. (See Problem 21.)

The derivation of uniformly most accurate confidence bounds is facili­
tated by introducing the following more general concept, which will be
considered in more detail in Chapter 5. A family of subsets S(x) of the
parameter space Q is said to constitute a family of confidence sets at
confidence level 1 - a if

(17) PIJ {O E S( X)} ~ 1 - a forall 0 E Q,

that is, if the random set S( X) covers the true parameter point with
probability ~ 1 - a. A lower confidence bound corresponds to the special
case that S( x) is a one-sided interval

S(x) = {O: ~(x) s 0 < eo} .

Theorem 4.
(i) For each 00 E Q let A( 00 ) be the acceptance region of a level-a test for

testing H(00 ) : 0 = 00 , and for each sample point x let S(x) denote the set of
parameter values

S(x) = {O:xEA(O),OEQ} .

Then S(x) is a family of confidence sets for 0 at confidence level 1 - a.
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(ii) If for all 00 , A( 00 ) is UMP for testing H( 00 ) at level a against the
alternatives K( 00 ) , then for each 00 in n, S( X) minimizes the probability

Po {00 E S( X) } for all 0 E K (00 )

among all level-(1 - a) families of confidence sets for o.
Proof. (i): By definition of S(x),

(18)

and hence

OES(x) if and only if xEA(O),

PO{OES(X)} =Po{XEA(O)} ~ I-a.

(ii): If S *(x) is any other family of confidence sets at level 1 - a, and if
A*(O) = {x : 0 E S*(x)}, then

Po{XEA*(O)} =Po{OES*(X)} ~ I-a,

so that A*(Oo) is the acceptance region of a level-a test of H(Oo)' It follows
from the assumed property of A(Oo) that for any 0 E K(Oo)

Po{ X E A*(Oo)} ~ Po{ X E A(Oo)}

and hence that

Po{00 E S*(X)} ~ Po{00 E S(X)},

as was to be proved.
The equivalence (18) shows the structure of the confidence sets S(x) as

the totality of parameter values 0 for which the hypothesis H( 0) is accepted
when x is observed. A confidence set can therefore be viewed as a combined
statement regarding the tests of the various hypotheses H( 0), which exhibits
the values for which the hypothesis is accepted [0 E S(x)] and those for
which it is rejected [0 E S(x)] .

Corollary 3. Let the family of densities po(x), 0 E n, have monotone
likelihood ratio in T( x), and suppose that the cumulative distribution function
Fo(t) of T = T( X) is a continuous function in each of the variables t and 0
when the other is fixed .

(i) There exists a uniformly most accurate confidence bound ~ for 0 at
each confidence level 1 - a.
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(ii) If x denotes the observed values of X and t = T(x), and if the
equation

(19) Fe(t)=I-a

has a solution (J = 0 in Q, then this solution is unique and ~(x) = O.
Proof. (i) : There exists for each (Jo a constant C( (Jo) such that

Peo{ T > C((Jo)) = a,

and by Theorem 2, T > C( (Jo) is a UMP level-a rejection region for testing
(J = (Jo against (J > (Jo' By Corollary 1, the power of this test against any
alternative (Jl > (Jo exceeds a, and hence C( (Jo) < C( (Jl) so that the function
C is strictly increasing; it is also continuous. Let A( (Jo) denote the accep­
tance region T ~ C«(Jo), and let S(x) be defined by (18). It follows from the
monotonicity of the function C that S(x) consists of those values (J E Q
which satisfy ~ .s (J, where

~ = inf { (J : T(x) s C( (J)}.

By Theorem 4, the sets {(J: ~(x) .s (J}, restricted to possible values of the
parameter, thus constitute a family of confidence sets at level 1 - a, which
minimize Pe{~ ~ (J'} for all (J E K«(J'), that is, for all (J > (J'. This shows ~

to be a uniformly most accurate confidence bound for (J.
(ii) : It follows from Corollary 1 that Fe(t) is a strictly decreasing

function of (J at any point t for which 0 < Fe(/ ) < 1, and hence that (19)
can have at most one solution. Suppose now that t is the observed value of
T and that the equation Fe( t) = 1 - a has the solution 0E Q. Then
Fe(/) = 1 - a, and by definition of the function C, C( 0) = t. The inequality
t ~ C( (J) is then equivalent to C( 0) ~ C( (J) and hence to 0 .s (J . It follows
that ~ = 0, as was to be proved.

Under the same assumptions, the corresponding upper confidence bound
with confidence coefficient 1 - a is the solution 8 of the equation Pe{T ~

t} = 1 - a or equivalently of Fe(t) = a.

Example 6. Exponential waiting times. To determine an upper bound for the
degree of radioactivity Aof a radioactive substance, the substance is observed until
a count of m has been obtained on a Geiger counter. Under the assumptions of
Example 3, the joint probability density of the times T; (i = 1, . . . •m) elapsing
between the (i - 1)st count and the ith one is

p( 1\, . . . , In,) = Am e->.E/i • 1\, .. . • 1m ~ O.

If T = I:T; denotes the total time of observation, then 2AT has a X2-distribution
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with 2m degrees of freedom, and, as was shown in Example 3, the acceptance region
of the most powerful test of HCA o) : A = AO against A < AO is HoT s C, where C
is determined by the equation

l c 2
X2m = 1 - a .

o

The set S(t1, • • • , tm ) defined by (18) is then !!Ie set of values .\ such that
A ~ Cj2T, and it follows from Theorem 4 that A = Cj2T is a uniformly most
accurate upper confidence bound for A. This result can also be obtained through
Corollary 3.

If the variables X or T are discrete, Corollary 3 cannot be applied
directly, since the distribution functions Fo(1) are not continuous, and for
most values 80 the optimum tests of H : 0 = 00 are randomized. However,
any randomized test based on X has the following representation as a
nonrandornized test depending on X and an independent variable U
distributed uniformly over (0,1). Given a critical function ep, consider the
rejection region

R = {(x, u) : u ~ ep(x)}.

Then

P{(X,U) ER} =P{U~ep(X)}= Eep(X),

whatever the distribution of X, so that R has the same power function as ep
and the two tests are equivalent. The pair of variables (X, U) has a
particularly simple representation when X is integer-valued. In this case the
statistic

T=X+ U

is equivalent to the pair (X, U), since with probability 1

X = [T], U= T- [T],

where [T] denotes the largest integer .s T. The distribution of T is
continuous, and confidence bounds can be based on this statistic.

Example 7. Binomial An upper bound is required for a binomial probability
p-for example, the probability that a batch of polio vaccine manufactured accord­
ing to a certain procedure contains any live virus. Let Xl"'" x" denote the
outcomes of n trials, X, being 1 or 0 with probabilities p and q respectively, and let
X = LX; . Then T = X + U has probability density

([;]) p[l]qn-[I] , O~t<n+l.
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This satisfies the conditions of Corollary 3, and the upper confidence bound p is
therefore the solution, if it exists, of the equation

Pp{T<t}=a,

where t is the observed value of T. A solution does exist for all values a ::s; t ::s; n + a .
For n + a < t, the hypothesis H(po): p = Po is accepted against the alternatives
p < Po for all values of Po and hence p = 1. For t < a, H(po) is rejected for all
values of Po and the confidence set S(t) is therefore empty. Consider instead the
sets S*(t) which are equal to S(t) for t ~ a and which for t < a consist of the
single point p = O. They are also confidence sets at level 1 - a, since for all p ,

Pp{pES*(T)} ~Pp{pES(T)}=1 -a.

On the other hand, Pp{ p' E S*(T)} = Pp{ p' E S(T)} for all p' > 0 and hence

Pp{ p' E S*(T)} = Pp{ p' E S(T)} for all p' > p .

Thus the family of sets S*(t) minimizes the probability of covering p' for all
p' > P at confidence level 1 - a . The associated confidence bound p*(t) = p(t) for
t ~ a and p*(t) = 0 for t < a is therefore a uniformly most accurate upper
confidence bound for p at level 1 - a.

In practice, so as to avoid randomization and obtain a bound not dependent on
the extraneous variable U, one usually replaces T by X + 1 = [T] + 1. Since p*(t)
is a nondecreasing function of t, the resulting upper confidence bound p*([t] + 1)
is then somewhat larger than necessary; as a compensation it also gives a corre­
spondingly higher probability of not falling below the true p.

References to tables for the confidence bounds and a careful discussion of
various approximations can be found in Hall (1982) and Blyth (1984).

Let ~ and iJ be lower and upper bounds for 8 with confidence coeffi­
cients 1 - a 1 and 1 - a2' and suppose that ~(x) < iJ(x) for all x. This will
be the case under the assumptions of Corollary 3 if a1 + a2 < 1. The
intervals (~, iJ) are then confidence intervals for 8 with confidence coefficient
1 - a 1 - a2; that is, they contain the true parameter value with probability
1 - a 1 - a2' since

Po {8 s 8 s iJ} = 1 - a 1 - a2 for all 8.

If ~ and iJ are uniformly most accurate, they minimize EoLl(8,~) and
EoL2(8, iJ) at their respective levels for any function L 1 that is nonincreas­
ing in ~ for ~ < 8 and 0 for ~ ~ 8 and any L 2 that is nondecreasing in iJ for
iJ> 8 and 0 for iJ s 8. Letting

L(8;~ , iJ) = Ll(8,~) + L2(8, iJ),
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the intervals (fl, 8) therefore minimize EoL(O; fl, 8) subject to

Po {fl > O} s at ,

An example of such a loss function is

Po {8 < O} s a 2 •

{

8- 0

L(O; fl, 8) = 8- 0

O-fl

if 8 s 8 ~ 8,
if 8 < fl,
if 8 < 0,

which provides a natural measure of the accuracy of the intervals. Other
possible measures are the actual length 8 - fl of the intervals, or, for
example, a( 8 - fl)2 + b(8- 8)2, which gives an indicat ion of the distance
of the two end points from the true value.*

An important limiting case corresponds to the levels at = a 2 = !. Under
the assumptions of Corollary 3 and if the region of positive density is
independent of 8 so that tests of power 1 are impossible when a < 1, the
upper and lower confidence bounds 8 and fl coincide in this case. The
common bound satisfies

Po {fl s O} = Po {fl ~ 8} = L

and the estimate fl of 8 is therefore as likely to underestimate as to
overestimate the true value. An estimate with this property is said to be
median unbiased . (For the relation of this to other concepts of unbiasedness ,
see Chapter 1, Problem 3.) It follows from the above result for arbitrary at
and a 2 that among all median unbiased estimates, fl minimizes EL(8, fl)
for any monotone loss function, that is, any loss function which for fixed 8
has a minimum of 0 at fl = 0 and is nondecreasing as fl moves away from 8
in either direction. By taking in particular L(O, fl) = 0 when \0 - fll s D..
and = 1 otherwise, it is seen that among all median unbiased estimates, fl
minimizes the probability of differing from 8 by more than any given
amount; more generally it maximizes the probability

Po {- D.. t s 8 - fl ~ D.. 2 }

for any D..1' D.. 2 ~ O.
A more detailed assessment of the position of 8 than that provided by

confidence bounds or intervals corresponding to a fixed level y = 1 - a is
obtained by stating confidence bounds for a number of levels, for example

'Proposed by Wolfowitz (1950).
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upper confidence bounds corresponding to values such as y = .05, .1, .25, .5,
.75, .9, .95. These constitute a set of standard confidence bounds,* from
which different specific intervals or bounds can be obtained in the obvious
manner.

6. A GENERALIZAnON OFTHEFUNDAMENTAL LEMMA

The following is a useful extension of Theorem 1 to the case of more than
one side condition.

Theorem 5. Let fl"",fm + 1 be real-valued functions defined on a
Euclidean space !!l and integrable p., and suppose that for given constants
cl' . .• , Cm there exists a critical function cP satisfying

(20) fCP/; dp. = C;, i = 1, ... , m.

Let ~ be the class of critical functions cP for which (20) holds.
(i) Among all members of ~ there exists one that maximizes

fCPfm+l dp..

(ii) A sufficient condition for a member of CC to maximize

fCPfm+l dp.

is the existence of constants k 1, •• • , k m such that

m

cp(x) = 1 when fm+l(x) > L k;/;(x),
;=1

(21)
m

cp(x) = 0 when fm+l(x) < L kJ;(x) .
;=1

(iii) If a member of CC satisfies (21) with k 1, ••• , k m ~ 0, then it maxi­
mizes

fCPfm+l dp.

*Suggested by Tukey (1949).
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among all criticalfunctions satisfying

(22) f et>fi dp. ::5; c., i=l, .. . ,m.

(iv) The set M of points in m-dimensional space whose coordinates are

(fet>fl du ;... , fet>fmdP.)

for some criticalfunction et> is convex and closed. If (c. , . . . , cm) is an inner
point* of M, then thereexist constants k l, ... , k m and a test et> satisfying (20)
and (21), and a necessary condition for a memberof ~ to maximize

f et>fm+1 dp.

is that (21) holds a.e. p..

Here the term" inner point of M" in statement (iv) can be interpreted as
meaning a point interior to M relative to m-space or relative to the smallest
linear space (of dimension ::5; m) containing M. The theorem is correct with
both interpretations but is stronger with respect to the latter, for which it
will be proved.

We also note that exactly analogous results hold for the minimization of
fepfm+ I du ,

Proof. (i): Let {et>n} be a sequence of functions in ~ such that fepn fm+ I dp.
tends to sUP.pfepfm+I du, By the weak compactness theorem for critical
functions (Theorem 3 of the Appendix), there exists a subsequence {epn }
and a critical function et> such that '

f et>n/k dp. -. f et>fk dp. for k = 1, . .. , m + 1.

It follows that et> is in ~ and maximizes the integral with respect to fm+1 dp.
within ~.

(ii) and (iii) are proved exactly as was part (ii) of Theorem 1.
(iv): That M is closed follows again from the weak compactness theorem,

and its convexity is a consequence of the fact that if et>1 and et>2 are critical
functions, so is aet>1 + (1 - a)et>2 for any 0 ::5; a ::5; 1. If N (see Figure 2) is

•A discussion of the problem when this assumption is not satisfied is given by Dantzig and
Wald (1951).
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the totality of points in (m + I)-dimensional space with coordinates

(fep/l dJL, .. . , feplm+l dJL)'

where ep ranges over the class of all critical functions, then N is convex and
closed by the same argument. Denote the coordinates of a general point in
M and N by (u I , .. . , um) and (u I , .. . , um+ l ) respectively. The points of N,
the first m coordinates of which are cI , . .. , cm' form a closed interval
[c*, c**).

Assume first that c* < c**. Since (c l , ... , cm' c**) is a boundary point
of N, there exists a hyperplane IT through it such that every point of N lies
below or on IT. Let the equation of IT be

m+1 m
L ku, = L k.c, + km+lc**.
i- 1 i=l

Since (c I l " " cm) is an inner point of M, the coefficient k m+ 1 '1= O. To see
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this, let c* < C< c**, so that (c. , ... , cm' c) is an inner point of N. Then
there exists a sphere with this point as center lying entirely in N and hence
below II. It follows that the point (cl, . . . , cm' c) does not lie on II and
hence that k m + 1 =F O. We may therefore take k m + 1 = - 1 and see that for
any point of N

m m

um+l - L ku, .s C:'~l - L k .c..
;-1 ; = 1

That is, all critical functions cP satisfy

fCP(lm+l -f kJ;) dp. .s fCP**(lm+l - .f k J ;) du;
/- 1 / = 1

where CP** is the test giving rise to the point (cl, ... , Cm' c**). Thus CP** is
the critical function that maximizes the left-hand side of this inequality.
Since the integral in question is maximized by putting cP equal to 1 when
the integrand is positive and equal to 0 when it is negative, CP** satisfies (21)
a.e. p..

If c* = c**, let (cl, ... , c;") be any point of M other than (cl, . .. , cm)'
We shall show now that there exists exactly one real number c' such that
(c], , c~" c') is in N. Suppose to the contrary that (cl"" c;", c') and
(c l, , c;" , c') are both in N, and consider any point (c l', . . . , c;;', c") of N
such that (c l, ... , cm) is an interior point of the line segment joining
( , , ) d ( " ") S h . . . ( ) .<i- . .. ,cm an Cl, . . . , Cm· uc a point exists smce Cl, . .. , Cm IS an
inner point of M. Then the convex set spanned by the three points
(r], ... ,c;",(), (c], . .. , c;" , c' ), and (cl', , c;;' , c" ) is contained in Nand
contains points (c l " ' " cm'~) and (c., , Cm' c) with £ < C, which is a
contradiction. Since N is convex, contains the origin, and has at most one
point on any vertical line Ul = cl,..., Urn = c;", it is contained in a
hyperplane, which passes through the origin and is not parallel to the
U m + I-axis. It follows that

m

fCPlm+l dp. = L kJCP/; dp.
i> 1

for all cp. This arises of course only in the trivial case that

m

/m+l = L kf,
;- 1

and (21) is satisfied vacuously.

a.e . p.,
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Corollary 4. Let PI" '" Pm' Pm+l be probability densities with respect to
a measure p. , and let 0 < a < 1. Then there exists a test q, such that
E;q,(X) = a (i = 1, ... , m) and Em+lq,(X) > a, unless Pm+l = E'!'_lk ;p;,
a.e. JL .

Proof. The proof will be by induction over m. For m = 1 the result
reduces to Corollary 1. Assume now that it has been proved for any set of m

distributions, and consider the case of m + 1 densities PI" ' " Pm + l' If
PI" '" Pm are linearly dependent, the number of P; can be reduced and the
result follows from the induction hypothesis. Assume therefore that
PI" . . , Pm are linearly independent. Then for each j = 1, . . . , m there exist
by the induction hypothesis tests q,j and </>} such that Eiq,/ X) = E;q,j( X) =
a for all i = 1, .. . , j - 1, j + 1, .. . , m and Ejq,/ X) < a < Ej</>} ( X) . It
follows that the point of m-space for which all m coordinates are equal to a
is an inner point of M, so that Theorem 5(iv) is applicable. The test
q,(x) == a is such that E;q,( X) = a for i = 1, ... , m. If among all tests
satisfying the side conditions this one is most powerful, it has to satisfy (21).
Since 0 < a < 1, this implies

m

Pm+l = L k .p,
;-1

a.e . JL,

as was to be proved.
The most useful parts of Theorems 1 and 5 are the parts (ii), which give

sufficient conditions for a critical function to maximize an integral subject
to certain side conditions. These results can be derived very easily as follows
by the method of undetermined multipliers.

Lemma 3. Let Fl, . . . , Fm + l be real-valued functions defined overa space
U, and consider the problem of maximizing Fm+l(u) subject to F;(u) =

c, (i = 1, ... , m). A sufficient condition for a point UO satisfying the side
conditions to be a solution of the given problem is that among all points of U it
maximizes

m

Fm+l(u) - L kiF;(u)
i -I

for some k l , ... , k m.

When applying the lemma one usually carries out the maximization for
arbitrary k's, and then determines the constants so as to satisfy the side
conditions.
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Proof. If u is any point satisfying the side conditions, then

m m

Fm+ 1(u) - L k ;F;(u) =s; Fm+ 1(uO) - L k;F;(u°),
; = 1 ;=1

and hence Fm + 1( u ) s Fm + 1( uo).

As an application consider the problem treated in Theorem 5. Let U be
the space of critical functions cP , and let F;( CP) = Ni; dp: Then a sufficient
condition for cP to maximize Fm+ 1(CP) , subject to F;( CP) = c., is that it
maximizes Fm+ 1(CP) - Ek jF;(CP) = JUm+1 - Ek;/;)CP dp: This is achieved
by setting CP(x) = 1 or 0 as fm +1(x) > or < Ek ;i;(x).

7. lWO-SIDED HYPOTHESES

UMP tests exist not only for one-sided but also for certain two-sided
hypotheses of the form

(23) H : () s ()1 or () ~ ()2 (()1 < ()2)'

Such testing problems occur when one wishes to determine whether given
specifications have been met concerning the proportion of an ingredient in a
drug or some other compound, or whether a measuring instrument, for
example a scale, is properly balanced. One then sets up the hypothesis that
() does not lie within the required limits, so that an error of the first kind
consists in declaring () to be satisfactory when in fact it is not. In practice,
the decision to accept H will typically be accompanied by a statement of
whether () is believed to be s ()1 or ~ ()2' The implications of Hare,
however, frequently sufficiently important so that acceptance will in any
case be followed by a more detailed investigation. If a manufacturer tests
each precision instrument before releasing it and the test indicates an
instrument to be out of balance, further work will be done to get it properly
adjusted. If in a scientific investigation the inequalities () s ()1 and () ~ ()2

contradict some assumptions that have been formulated, a more complex
theory may be needed and further experimentation will be required. In such
situations there may be only two basic choices, to act as if ()1 < () < ()2 or to
carry out some further investigation, and the formulation of the problem as
that of testing the hypothesis H may be appropriate. In the present section
the existence of a UMP test of H will be proved for exponential families.

Theorem 6.
(i) For testing the hypothesis H : () s ()1 or () ~ ()2 «()1 < ()2) against the

alternatives K : ()1 < () < ()2 in the one-parameter exponential family (12)
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there exists a UMP test given by

(24) ~(x) - {~,
when Cl < T(x) < C2 (c, < C2 ) ,

when T(x) = Cj , i = 1,2,

when T(x) < Cs or > C2 •

where the C'sand y's are determined by

(25) Eo.f/l( X) = E02f/l( X) = a .

(ii) This test minimizes Eof/l( X) subject to (25) for all () < ()l and > ()2.

(iii) For 0 < a < 1 the power function of this test has a maximum at a
point ()o between ()l and ()2 and decreases strictly as () tends awayfrom ()o in
either direction, unless there exist two values tl , t2 such that Po{T(X) = ttl
+ Po{T(X) = t2 } = 1 for all ().

Proof. (i): One can restrict attention to the sufficient statistic T = T( X),
the distribution of which by Lemma 8 of Chapter 2 is

dPo(t) = C«()) eQ(O)1 dv(t),

where Q( () is assumed to be strictly increasing. Let ()l < ()' < ()2' and
consider first the problem of maximizing Eo,tfI(T) subject to (25) with
cj>(x) = tfI[T(x)]. If M denotes the set of all points (Eottfl(T), E021[;(T» as 1[;
ranges over the totality of critical functions, then the point (a, a) is an inner
point of M. This follows from the fact that by Corollary 1 the set M
contains points (a, ul ) and (a, U2) with Ul < a < U2 and that it contains all
points (u, u) with 0 < u < 1. Hence by part (iv) of Theorem 5 there exist
constants k l , k 2 and a test tflo(1) such that f/lo(x) = tflo[T(x)] satisfies (25)
and that 1[;0(1) = 1 when

k lC( ()l) eQ(Ot)1 + k
2C(

()2) eQ(02)1 < C( ()') eQ(O')1

and therefore when

a l ebt1+ a2 eb21< 1 (b l < 0 < b2 ) ,

and tfI 0(1) = 0 when the left-hand side is > 1. Here the a's cannot both be
s 0, since then the test would always reject. If one of the a's is s 0 and
the other one is > 0, then the left-hand side is strictly monotone, and the
test is of the one-sided type considered in Corollary 2, which has a strictly
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monotone power function and hence cannot satisfy (25). Since therefore
both a's are positive, the test satisfies (24). It follows from Lemma 4 below
that the C 's and y's are uniquely determined by (24) and (25), and hence
from Theorem 5(iii) that the test is UMP subject to the weaker restriction
Eo tJi(T) s a (i = 1,2) . To complete the proof that this test is UMP for
testing H, it is necessary to show that it satisfies EotJi(T) :s; a for () s ()I

and () ~ ()2' This follows from (ii) by comparison with the test tJi(t) == a .
(ii): Let ()' < ()I' and apply Theorem 5(iv) to minimize Eo'</>( X) subject

to (25). Dividing through by eQ(O\) I , the desired test is seen to have a
rejection region of the form

a l e",1 + a2 e"21< 1 (b l < 0 < b2 ) .

Thus it coincides with the test tJio(t) obtained in (i). By Theorem 5(iv) the
first and third conditions of (24) are also necessary, and the optimum test is
therefore unique provided P{T = Cj } = O.

(iii): Without loss of generality let Q«() = (). It follows from (i) and the
continuity of {3( () = Eo</>( X) that either {3( () satisfies (iii) or there exist
three points ()' < ()" < () '" such that {3( ()") :s; {3( ()') = {3( () III) = c, say.
Then 0 < C < I, since {3«()') = 0 (or 1) implies </>(t) = 0 (or 1) a.e. p and
this is excluded by (25). As is seen by the proof of (i), the test maximizes
Eo"</>( X) subject to Eo,</>( X) = Eoon </>( X) = c for all () , < ()" < ()", . How­
ever, unless T takes on at most two values with probability 1 or all (),
Po', Po", Po on are linearly independent, which by Corollary 4 implies {3( ()")
> c.

In order to determine the C's and y's, one will in practice start with
some trial values Cr, yt, find C2*,Yt such that {3 *( 81) = a, and compute
{3 *( ()2)' which will usually be either too large or too small. For the selection
of the next trial values it is then helpful to note that if {3 *( ()2) < a , the
correct acceptance region is to the right of the one chosen, that is, it satisfies
either CI > Ct or CI = Ct and YI < yt, and that the converse holds if
{3 *( ()2) > a. This is a consequence of the following lemma.

Lemma 4. Let Po(x) satisfy the assumptions of Lemma 2(iv).

(i) If </> and </>* are two tests satisfying (24) and Eo\</>(T) = Eo1</>*(T),
and if </>* is to the right of </>, then {3«() < or > {3*«() as () > ()I or < ()I '

(ii) If </> and </>* satisfy (24) and (25), then </> = </>* with probability one.

Proof. (i): The result follows from Lemma 2(iv) with 1f; = </>* - </>.
(ii): Since Eo</>(T) = Eo</>*(T), </>* lies either to the left or the right of </>,

1 \

and application of (i) completes the proof.
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Although a UMP test exists for testing that 8::; (Jl or ~ (J2 in an
exponential family, the same is not true for the dual hypothesis H:
81 ::; (J ::; (J2 or for testing (J = (Jo (Problem 31). There do , however, exist
UMP unbiased tests of these hypotheses, as will be shown in Chapter 4.

8. LEAST FAVORABLE DISTRIBUTIONS

It is a consequence of Theorem 1 that there always exists a most powerful
test for testing a simple hypothesis against a simple alternative. More
generally, consider the case of a Euclidean sample space; probability
densities !o, 8 E w, and g with respect to a measure p.; and the problem of
testing H: !o , (J E w, against the simple alternative K : g. The existence of a
most powerful level-a test then follows from the weak compactness theorem
for critical functions (Theorem 3 of the Appendix) as in Theorem 5(i).

Theorem 1 also provides an explicit construction for the most powerful
test in the case of a simple hypothesis. We shall now extend this theorem to
composite hypotheses in the direction of Theorem 5 by the method of
undetermined multipliers. However, in the process of extension the result
becomes much less explicit. Essentially it leaves open the determination of
the multipliers, which now take the form of an arbitrary distribution. In
specific problems this usually still involves considerable difficulty .

From another point of view the method of attack, as throughout the
theory of hypothesis testing, is to reduce the composite hypothesis to a
simple one. This is achieved by considering weighted averages of the
distributions of H . The composite hypothesis H is replaced by the simple
hypothesis HA that the probability density of X is given by

hA(x) = !!o(X) dA((J),
w

where A is a probability distribution over w. The problem of finding a
suitable A is frequently made easier by the following consideration. Since H
provides no information concerning (J and since HA is to be equivalent to H
for the purpose of testing against g, knowledge of the distribution A should
provide as little help for this task as possible. To make this precise suppose
that 8 is known to have a distribution A. Then the maximum power PA that
can be attained against g is that of the most powerful test <PA for testing HA
against g. The distribution A is said to be least favorable (at level a) if for
all N the inequality PA s Ph' holds.

Theorem 7. Let a a-field be defined over w such that the densities !o(x)
are jointly measurable in (J and x . Suppose that over this a-field there exists a
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probability distribution A such that the most powerful level-a test epA for
testing HA against g is of size :s:; a also with respect to the original hypothesis
H.

(i) The test epA IS most powerful for testing H against g.
(ii) If epA is the unique mostpowerful level-a test for testingHAagainst g,

it is also the unique most powerful test of H against g.
(iii) The distribution A is leastfavorable .

Proof. We note first that hA is again a density with respect to p., since
by Fubini's theorem (Theorem 3 of Chapter 2)

!hA(x) dp.(x) = f dA(O) !fe(x) dp.(x) = f dA(O) = 1.
w w

Suppose that epA is a level-a test for testing H, and let ep* be any other
level-a test. Then since Eeep*( X) s a for all 0 E w, we have

! ep*(x )hA(x) dp,(x) = f Eeep*(X) dA(O) s a.
w

Therefore ep* is a level-a test also for testing HA and its power cannot
exceed that of epA' This proves (i) and (ii). If N is any distribution, it follows
further that epA is a level-a test also for testing HN' and hence that its power
against g cannot exceed that of the most powerful test, which by definition
is f3N.

The conditions of this theorem can be given a somewhat different form
by noting that epA can satisfy j..,E/JepA(X) dA(O) = a and E/JepA(X) :s:; a for
all 0 E W only if the set of (J's with Ee<PA( X) = a has A-measure one.

Corollary 5. Suppose that A is a probability distribution over wand that
w' is a subset of w with A(w') = 1. Let epA be a test such that

(26) ~A(X) ~ {:

if g ( x) > k!fe(x ) dA (0),

if g(x) < k!fe(x) dA(O).

Then epA is a most powerful level-a test for testing H against g provided

(27) Ee'epA(X) = sup EeepA(X) = a
/JE w

for 0' E w'.
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Theorems 2 and 6 constitute two simple applications of Theorem 7. The
set w' over which the least favorable distribution A is concentrated consists
of the single point 00 in the first of these examples and of the two points 01

and O2 in the second. This is what one might expect, since in both cases
these are the distributions of H that appear to be "closest" to K. Another
example in which the least favorable distribution is concentrated at a single
point is the following.

Example 8. Sign test. The quality of items produced by a manufacturing
process is measured by a characteristic X such as the tensile strength of a piece of
material, or the length of life or brightness of a light bulb. For an item to be
satisfactory X must exceed a given constant u, and one wishes to test the hypothesis
H: P ~ Po , where

p=P{X~u}

is the probability of an item being defective. Let Xl' . . . ' Xn be the measurements of
n sample items, so that the X's are independently distributed with common
distribution about which no knowledge is assumed. Any distribution on the real line
can be characterized by jhe probability P together with the conditional probability
distributions P_ and P+ of X given X ~ u and X > u respectively . If the
distributions P_ and P+ have probability densities P_ and P+ ' for example with
respect to JL = P_+ P+' then the joint density of Xl' .. . ' Xn at a sample point
XI" • • , XII satisfying

X;I' · ·· ' x;m s U < xh " ' " xj._m

is

pnI(l - p)"-n1 p_(x;) .. . p-(x;Jp+(xj) . . . p+(xj._J .

Consider now a fixed alternative to H, say (PI' P_, P+), with PI < Po. One
would then expect the least favorable distribution A over H to assign probability 1
to the distribution (Po, P_, P+) since this appears to be closest to the selected
alternative. With this choice of A, the test (26) becomes

cf>A(X) = lor 0 (
p ) n1( q ) n -m

as p~ q~ > or < C,

and hence as m < or > C. The test therefore rejects when the number M of
defectives is sufficiently small, or more pecisely, when M < C and with probability
y when M = C, where

(28) P{M<C}+yP{M=C}=a for p = Po .

The distribution of M is the binomial distribution b(p, n), and does not depend on
P+ and P_. As a consequence, the power function of the test depends only on p
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and is a decreasing function of p , so that under H it takes on its maximum for
P = Po . This proves A to be least favorable and c/>" to be most powerful. Since the
test is independent of the particular alternative chosen, it is UMP.

Expressed in terms of the variables Z, = X; - U, the test statistic M is the
number of variables :::; 0, and the test is the so-called sign test (cf. Chapter 4,
Section 9). It is an example of a nonparametric test, since it is derived without
assuming a given functional form for the distribution of the X's such as the normal,
uniform, or Poisson, in which only certain parameters are unknown.

The above argument applies, with only the obvious modifications, to the case
that an item is satisfactory if X lies within certain limits: U < X < v. This occurs,
for example, if X is the length of a metal part or the proportion of an ingredient in
a chemical compound, for which certain tolerances have been specified. More
generally the argument applies also to the situation in which X is vector-valued.
Suppose that an item is satisfactory only when X lies in a certain set S, for
example, if all the dimensions of a metal part or the proportions of several
ingredients lie within specified limits. The probability of a defective is then

p=P{XES},

and P_ and P+ denote the conditional distributions of X given XES and XES
respectively. As before, there exists a UMP test of H : p ~ Po' and it rejects H when
the number M of defectives is sufficientlysmall, with the boundary of the test being
determined by (28).

A distribution A satisfying the conditions of Theorem 7 exists in most of
the usual statistical problems, and in particular under the following assump­
tions. Let the sample space be Euclidean, let w be a closed Borel set in
s-dimensional Euclidean space, and suppose that lo(x) is a continuous
function of () for almost all x. Then given any g there exists a distribution
A satisfying the conditions of Theorem 7 provided

lim jlo.(x) dp.(x) = 0
n~oo S

for every bounded set S in the sample space and for every sequence of
vectors ()n whose distance from the origin tends to infinity.

From this it follows, as did Corollaries 1 and 4 from Theorems 1 and 5,
that if the above conditions hold and if 0 < a < 1, there exists a test of
power f3 > a for testing H :10' () E w, against g unless g = flo dA( () for
some A. An example of the latter possibility is obtained by letting 10 and g
be the normal densities N«(), oJ) and N(O, ot) respectively with oJ < of.
(See the following section.)

The above and related results concerning the existence and structure of
least favorable distributions are given in Lehmann (1952) (with the require­
ment that w be closed mistakenly omitted), in Reinhardt (1961), and in
Krafft and Witting (1967), where the relation to linear programming is
explored .
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9. TESTING THE MEAN AND VARIANCE OF A
NORMAL DISTRIBUTION

[3.9

Because of their wide applicability, the problems of testing the mean ~ and
variance a 2 of a normal distribution are of particular importance. Here and
in similar problems later, the parameter not being tested is assumed to be
unknown, but will not be shown explicitly in a statement of the hypothesis.
We shall write, for example, a ::s; ao instead of the more complete statement
a ::s; ao, - 00 < ~ < 00. The standard (likelihood-ratio) tests of the two
hypotheses a s ao and ~ s ~o are given by the rejection regions

(29)

and

(30)

I:(X;-X)2~C

In (x - ~o)

V
1 2

- -I:(x; - x)
n - 1

The corresponding tests for the hypotheses a ~ ao and ~ ~ ~o are obtained
from the rejection regions (29) and (30) by reversing the inequalities. As will
be shown in later chapters , these four tests are UMP both within the class of
unbiased and within the class of invariant tests (but see Chapter 5, Section 4
for problems arising when the assumption of normality does not hold
exactly). However, at the usual significance levels only the first of them is
actually UMP.

Let Xl" ' " X; be a sample from Na, ( 2
) , and consider first the

hypotheses HI : a ~ ,ao and H2 : a ::s; ao, and a simple alternative K: ~ = ~1'

a = a1• It seems reasonable to suppose that the least favorable distribu­
tion A in the (t a )-plane is concentrated on the line a = ao. Since Y =
EX;/n = X and U = E(X; - X)2 are sufficient statistics for the parameters
(t a), attention can be restricted to these variables. Their joint density
under HA is

C u(n-3)/2exp (- ~)fexp[- ~(y - ~)2] dA(~),
o 2a~ 2C1~

while under K it is

C U(n-3)/2exp (- ~)exp [- ~(y - ~1)2] .
1 2at 2at
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The choice of A is seen to affect only the distribution of Y. A least
favorable A should therefore have the property that the density of Y under
H/\,

f I::'~ exp [ - 2:~ (y - <)2] dA( <),

comes as close as possible to the alternative density,

In [n/27Ta[ exp - 2a[ (y - ~I)Z] .

At this point one must distinguish between HI and Hz. In the first case
a l < ao- By suitable choice of A the mean of Y can be made equal tc ~I' but
the variance will if anything be increased over its initial value aJ. This
suggests that the least favorable distribution assigns probability 1 to the
point ~ = ~I' since in this way the distribution of Y is normal both under H
and K with the same mean in both cases and the smallest possible
difference between the variances. The situation is somewhat different for Hz,
for which ao < aI - If the least favorable distribution A has a density, say N ,
the density of Y under II/\ becomes

r In [n ]-00 /27Ta
o

exp - 2aJ (y - ~)z N(~) d~.

This is the probability density of the sum of two independent random
variables, one distributed as N(O, aJIn) and the other with density N( ~). If
A is taken to be N(~I,(a[ - aJVn), the distribution of Y under H/\
becomes N(~I' aUn), the same as under K .

We now apply Corollary 5 with the distributions A suggested above. For
HI it is more convenient to work with the original variables than with Yand
U. Substitution in (26) gives q>(x) = 1 when

(27Tan -
n

/
z
exp [-~ E(x; - ~If]

(27TaJ)-n/zexp [- 2:J E(x; - ~I)Z]
> C,
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that is, when

(31)
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L(X; - ~d2 s C.

[3.9

To justify the choice of A, one must show that

P{L(X; - ~1)2 s cit a}

takes on its maximum over the half plane a ~ ao at the point ~ = ~I'

a = ao' For any fixed a, the above is the probability of the sample point
falling in a sphere of fixed radius, computed under the assumption that the
X's are independently distributed as N( t a 2). This probability is maxi­
mized when the center of the sphere coincides with that of the distribution,
that is, when ~ = ~I' (This follows for example from Problem 25 of Chapter
7.) The probability then becomes

( ", ( X; - ~1 ) 2 CI ) {", 2 C}P I..J a s ~ ~I,a = P I..JV; s a 2 '

where VI" ' " VII are independently distributed as N(O, 1). This is a decreas­
ing function of a and therefore takes on its maximum when a = ao'

In the case of H2, application of Corollary 5 to the sufficient statistics
(Y,U) gives 4>(Y, u) = 1 when

C U(n-3l/2exp (- ~)exp [- ~(Y - ~1)2]
I 2a 2 2a2

I I

COU(n- 3l/2exp ( - 2:~ )fexp [ - 2:~ (Y - ~)2] N(~) d~

= C'exp [ - ~ ( : f - :J)] ~ c,

that is, when

(32) U=L(X;-X)2~C.

Since the distribution of L:(X; - X) 2/a 2 does not depend on ~ or a, the
probability P{I:( X; - X) 2 ~ C I~, a} is independent of ~ and increases
with a, so that the conditions of Corollary 5 are satisfied. The test (32),
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being independent of ~1 and 111, is UMP for testing 11 .:5; 110 against 11 > 110,

It is also seen to coincide with the likelihood-ratio test (29). On the other
hand, the most powerful test (31) for testing 11 ~ 110 against 11 < 110 does
depend on the value ~l of ~ under the alternative.

It has been tacitly assumed so far that n > 1. If n = 1, the argument
applies without change with respect to HI' leading to (31) with n = 1.
However, in the discussion of Hz the statistic U now drops out, and Y
coincides with the single observation X. Using the same A as before, one
sees that X has the same distribution under HA as under K, and the test If>A
therefore becomes If>A(X) == a. This satisfies the conditions of Corollary 5
and is therefore the most powerful test for the given problem. It follows that
a single observation is of no value for testing the hypothesis Hz, as seems
intuitively obvious, but that it could be used to test HI if the class of
alternatives were sufficiently restricted.

The corresponding derivation for the hypothesis ~ .:5; ~o is less straight­
forward. It turns out" that Student's test given by (30) is most powerful if
the level of significance a is ~ t, regardless of the alternative ~1 > ~o , 11 1,

This test is therefore UMP for a ~ t. On the other hand , when a < t the
most powerful test of H rejects when E(x; - a)Z .:5; b, where the constants a
and b depend on the alternative ai' (1 1) and on a. Thus for the significance
levels that are of interest, a UMP test of H does not exist. No new problem
arises for the hypothesis ~ ~ ~o, since this reduces to the case just consid­
ered through the transformation 1'; = ~o - (Xi - ~o) ·

10. PROBLEMS

Section 2

1. Let Xl' . . . • X" be a sample from the normal distribution N(t (1
2

) .

(i) If 11 = 110 (known), there exists a UMP test for testing H: ~ ~ ~o against
~ > ~o, which rejects when 1:(X; - ~o) is too large.

(ii) If ~ = ~o (known), there exists a UMP test for testing H: 11 ~ 110 against
K : 11 > 110 , which rejects when1:(X; - ~0)2 is too large.

2. UMP test for U(0, 8). Let X = (Xl" .. , X;,) be a sample from the uniform
distribution on (0, 8).

(i) For testing H : 8 ~ 80 against K : 8 > 80 any test is UMP at level a for
which Esoep(X) = a, Esep(X) ~ a for 8 ~ 80 , and ep(x) = 1 when
max(xl' " '' x,,) > 80 ,

(ii) For testing H: 8 = 80 against K : 8 ,;: 80 a unique UMP test exists, and
is given by ep( x) = 1 when max(xl" ' " x,,) > 80 or max(x ••. . . , XII) ~ 80

':;a . and ep(x) = °otherwise.

"See Lehmann and Stein (1948).



112 UNIFORMLY MOST POWERFUL TESTS [3.10

[(i): For each () > ()o determine the ordering established by r(x) =

PIJ(x)/PlJo(x) and use the fact that many points are equivalent under this
ordering.
(ii): Determine the UMP tests for testing () = ()o against () < ()o and combine
this result with that of part (i).]

3. UMP test for exponential densities. Let XI' ... ' Xn be a sample from the
exponential distribution E( a, b) of Chapter 1, Problem 18, and let ,\(1) =

min( XI , .. . , Xn ) .

(i) Determine the UMP test for testing H: a = ao against K : a :I: ao when
b is assumed known.

(ii) The power of any MP level-a test of H : a = ao against K: a = al < ao
is given by

/l*(a
l

) = 1 - (1 - a)e-n(aO-a1)/b.

(iii) For the problem of part (i), when b is unknown, the power of any level a
test which rejects when

X(I) - ao
E[ X; - X(1)] s CI or ;;:: C2

against any alternative (ai' b) with al < ao is equal to fJ*( al) of part (ii)
(independent of the particular choice of CI and C2 ) .

(iv) The test of part (iii) is a UMP level-a test of H: a = ao against
K : a * ao (b unknown).

(v) Determine the UMP test for testing H : a = ao , b = bo against the
alternatives a < ao, b < boo

(vi) Explain the (very unusual) existence in this case of a UMP test in the
presence of a nuisance parameter [part (iv)] and for a hypothesis specify­
ing two parameters [part (v)].

[(i): the variables 1'; = e"x.r» are a sample from the uniform distribution on
(0, e- a / b ) . ]

Note. For more general versions of parts (iiHiv) see Takeuchi (1969) and
Kabe and Laurent (1981).

4. The following example shows that the power of a test can sometimes be
increased by selecting a random rather than a fixed sample size even when the
randomization does not depend on the observations . Let XI , . . . .X, be inde­
pendently distributed as N( (), 1), and consider the problem of testing H : () = 0
against K : () = ()I > o.

(i) The power of the most powerful test as a function of the sample size n is
not necessarily concave.
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(ii) In particular for a = .005, (JI = t, better power is obtained by taking 2
or 16 observations with probability t each than by taking a fixed sample
of 9 observations.

(iii) The power can be increased further if the test is permitted to have
different significance levels a l and a2 for the two sample sizes and it is
required only that the expected significance level be equal to a = .005.
Examples are: (a) with probability t take nl = 2 observations and
perform the test of significance at level al = .001, or take n2 = 16
observations and perform the test at level a2 = .009; (b) with probability
t take n l = 0 or n2 = 18 observations and let the respective significance
levels be a l = 0, a2 = .01.

Note. This and related examples were discussed by Kruskal in a semi­
nar held at Columbia University in 1954. A more detailed investigation
of the phenomenon has been undertaken by Cohen (1958).

5. If the sample space !l is Euclidean and Po, PI have densities with respect to
Lebesgue measure, there exists a nonrandomized most powerful test for testing
Po against PI at every significance level a.·
[This is a consequence of Theorem 1 and the following lemma.' Let f ~ 0 and
fAf(x) dx = a. Given any 0 ~ b ~ a, there exists a subset B of A such that
fBf(x) dx = b.]

6. Fully informative statistics. A statistic T is fully informative if for every
decision problem the decision procedures based only on T form an essentially
complete class. If 9 is dominated and T is fully informative, then T is
sufficient.
[Consider any pair of distributions Po, PI E 9 with densities Po' PI' and let
gi = p;/(Po + PI)' Suppose that T is fully informative, and let do be the
subfie1d induced by T. Then do contains the subfield induced by (go, gl)
since it contains every rejection region which is unique most powerful for
testing Po against PI (or PI against Po) at some level a. Therefore, T is
sufficient for every pair of distributions (Po, PI)' and hence by Problem 10 of
Chapter 2 it is sufficient for 9.]

Section 3

7. Let X be the number of successes in n independent trials with probability P
of success, and let l/l(x) be the UMP test (9) for testing P s Po against P > Po
at level of significance a.

(i) For n = 6, Po = .25 and the levels a = .05, .1, .2 determine C and y,
and find the power of the test against PI = .3, .4, .5, .6, .7.

"For more general results concerning the possibility of dispensing with randomized
procedures. see Dvoretzky. Waldo and Wolfowitz (1951).

tFor a proof of this lemma see Halmos (1974. p. 174.) The lemma is a special case of a
theorem of Lyapounov (see Blackwell (1951a).)
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(ii) If Po = .2 and a = .05, and it is desired to have power p ~ .9 against
PI = .4, determine the necessary sample size (a) by using tables of the
binomial distribution, (b) by using the normal approximation. *

(iii) Use the normal approximation to determine the sample size required
when a = .05, P= .9, Po = .01, PI = .02.

8. (i) A necessary and sufficient condition for densities PII(x) to have mono­
tone likelihood ratio in x, if the mixed second derivative
a2IogplI(x)/ao ax exists, is that this derivative is ~ 0 for all 0 and x.

(ii) An equivalent condition is that

a2PII(X) aplI(x) aplI(x)
PII(X) aoax ~ ao ax forallOandx .

9. Let the probability density PII of X have monotone likelihood ratio in T(x),
and consider the problem of testing H : 0 ;5; 00 against 0 > fJo. If the distribu­
tion of T is continuous, the p-value Ii of the UMP test is given by Ii = Pllo{ T
~ r}, where t is the observed value of T. This holds also without the
assumption of continuity if for randomized tests Ii is defined as the smallest
significance level at which the hypothesis is rejected with probability 1.

10. Let Xl' . .. ' Xn be independently distributed with density (2fJ)-le- x / 2I1 , x ~ 0,
and let YI ;5; •• • ;5; y" be the ordered X's . Assume that YI becomes available
first, then Y2 , and so on, and that observation is continued until Y,. has been
observed. On the basis of YI , ... , Y,. it is desired to test H : fJ ~ fJo = 1000 at
level a = .05 against fJ < fJo.

(i) Determine the rejection region when r = 4, and find the power of the test
against fJI = 500.

(ii) Find the value of r required to get power p ~ .95 against this alternative.

[In Problem 14, Chapter 2, the distribution of [L~_IYi + (n - r)y"JlfJ was
found to be X2 with 2r degrees of freedom.]

11. When a Poisson process with rate ~ is observed for a time interval of length 'T,
the number X of events occurring has the Poisson distribution P(~'T). Under
an alternative scheme, the process is observed until r events have occurred, and
the time T of observation is then a random variable such that 2~T has a
X2-distribution with 2r degrees of freedom. For testing H : ~ ;5; ~o at level a
one can, under either design, obtain a specified power p against an alternative
~l by choosing 'T and r sufficiently large.

(i) The ratio of the time of observation required for this purpose under the
first design to the expected time required under the second is ~ 'T/ r .

(ii) Determine for which values of ~ each of the two designs is preferable
when ~o = I , ~I = 2, a = .05, P= .9.

"Tables and approximations are discussed, for example, in Chapter 3 of Johnson and Kotz
(1969) .
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12. Let X = (XI" .. , Xn ) be a sample from the uniform distribution U«(), () + 1).

(i) For testing H : () s ()o against K: () > ()o at level a there exists a UMP
test which rejects when min( XI' .. . , Xn ) > ()o + C( a) or
max( XI , . .. , Xn ) > ()o + 1 for suitable C( a).

(ii) The family U«(), () + 1) does not have monotone likelihood ratio. [Ad­
ditional results for this family are given in Birnbaum (1954) and Pratt
(1958).]

[(ii) By Theorem 2, monotone likelihood ratio implies that the family of UMP
tests of H: () ~ ()o against K : () > ()o generated as a varies from 0 to 1 is
independent of ()o].

13. Let X be a single observation from the Cauchy density given at the end of
Section 3.

(i) Show that no UMP test exists for testing () = 0 against () > O.
(ii) Determine the totality of different shapes the MP level-a rejection region

for testing () = ()o against () = ()I can take on for varying a and ()l - ()o .

14. Extension of Lemma 2. Let Po and PI be two distributions with densities
Po, PI such that PI(X)/PO(x) is a nondecreasing function of a real-valued
statistic T( x).

(i) If T has probability density P; when the original distribution is Pi' then
PI(t)/Po(t) is nondecreasing in t.

(ii) Eo\fl(T) ~ EI\fI(T) for any nondecreasing function \fl.

(iii) If PI(X)/PO(x) is a strictly increasing function of t = T(x), so is
PI (t)/Po(t), and Eo\fl(T) < EII/;(T) unless \fI[T(x)] is constant a.e.
(Po + PI) or Eo\fl(T) = EII/;(T) = ±oo .

(iv) For any distinct distributions with densities Po , PI '

[
PI(X) ] [ PI(X) ]

- 00 s Eolog Po( X) < Ellog Po( X) s 00 .

[(i): Without loss of generality suppose that PI(X)/PO( x) = T(x) . Then for
any integrable .p,

j.p(tjPI(t) dv(t) = jCP[T(x)]T(x)po(x) dp.(x) = jCP(t)tpQ(t) dJl(t),

and hence PI (t)/Po( t) = t a.e.
(iv): The possibility Eolog[PI(X)/po(X)] = 00 is excluded, since by the
convexity of the function log,

[
PI ( X) ] [ PI ( X) ]

Eolog Po( X) s log Eo Po( X) = O.
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Similarly for EI . The strict inequality now follows from (iii) with T( x) =

PI(X)/PO(x).]

15. If FQ , FI are two cumulative distribution functions on the real line, then
FI(x) s FQ(x) for all x if and only if Eo1/J(X) s EI1/J(X) for any nondecreas­
ing function 1/J.

Section 4

16. If the experiment (f, g) is more informative than (f', g') , then (g , f) is more
informative than (g', f').

17. Conditionsfor comparability.

(i) Let X and X' be two random variables taking on the values 1 and 0, and
suppose that P{ X = I} = Po' P{ X' = I} = Po or that P{ X = I} = PI '
P{ X' = I} = Pl ' Without loss of generality let Po < Po' Po < PI ' Po < Pl '
(This can be achieved by exchanging X with X' and by exchanging the
values 0 and 1 of one or both of the variables.) Then X is more
informative than X' if and only if (1 - PI)(1 - Po) :s; (1 - Po)(1 - pl).

(ii) Let VO,VI be independently uniformly distributed over (0,1), and let
Y = 1 if X = 1 and VI s 'YI and if X = 0 and Vo:S; 'Yo and Y = 0
otherwise. Under the assumptions of (i) there exist 0 s 'Yo, 'YI s 1 such
that P{Y = I} = P; when P{X = I} = Pi (i = 0,1) provided (1 - pd(1
- Po) :s; (1 - Po)(1 - pl). This inequality, which is therefore sufficient
for a sample XI"' " Xn from X to be more informative than a sample
Xl" " ,X~ from X', is also necessary. Similarly, the condition POPI :s;
Po pi is necessary and sufficient for a sample from X' to be more
informative than one from X.

[(i): The power {l(a) of the most powerful level-a test of Po against PI based
on X is «rc/»« if a :s; Po' and PI + qlqol(a - Po) if Po :s; a . One obtains
the desired result by comparing the graphs of {l(a) and {l'(a).
(ii): The last part of (ii) follows from a comparison of the power {In(a) and
Il,; (a) of the most powerful level a tests based on E X; and E Xi for a close to
1. The dual condition is obtained from Problem 16.]

18. For the 2 X 2 table described in Example 4, and under the assumption
P s 'TT s ! made there, a sample from iJ is more informative than one from A.
On the other hand, samples from B and iJ are not comparable.
[A necessary and sufficient condition for comparability is given in the preced­
ing problem.]

19. In the experiment discussed in Example 5, n binomial trials with probability of
success P = 1 - e-~I' are performed for the purpose of testing A = Ao against
A = AI ' Experiments corresponding to two different values of v are not
comparable.
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Section 5

20. (i) For n = 5,10 and 1 - a = .95, graph the upper confidence limits p and
p* of Example 7 as functions of t = x + u.

(ii) For the same values of n and a l = a2 = .05, graph the lower and upper
confidence limits p and p.

3.10]

21. Confidence bounds withminimumrisk. Let L«(J,~) be nonnegative and nonin­
creasing in its second argument for ~ < (J , and equal to 0 for ~ ~ (J . If ~ and
~* are two lower confidence bounds for (J such that

Po{~ s (J'} s Po{~* s (J '} for all (J ' s (J ,

then

EoL«(J,~) s EoL«(J,!!*).

[Define two cumulative distribution functions F and F* by F(u) = Po (~ =:;
u}/Po{!!* s (J}, F*(u) = Po{~* s u}/Po{~* s (J} for u < (J , and F(u) =
F*(u) = 1 for u ~ (J . Then F(u) s F*(u) for all u, and it follows from
Problem 15 that

Eo [ L ( (J , ~)] = Po {~ * s (J }f L ( (J, u) dF( u)

s Po {~* s (J} f L( (J, u) dF*( u) = Eo[ L( (J ,~*)] .]

Section 6

22. If fJ ( (J) denotes the power function of the UMP test of Corollary 2, and if the
function Q of (12) is differentiable, then fJ'((J) > 0 for all (J for which
Q'«(J) > O.
[To show that {J'«(Jo) > 0, consider the problem of maximizing, subject to
Eoo<!> (X) = a, the derivative fJ'( (Jo) or equivalently the quantity
Eoo[T(X)<!>(X)].]

23. Optimum selection procedures. On each member of a population n measure­
ments (XI" . . , X,,) = X are taken, for example the scores of n aptitude tests
which are administered to judge the qualifications of candidates for a certain
training program. A future measurement Y such as the score in a final test at
the end of the program is of interest but unavailable. The joint distribution of
X and Y is assumed known.

(i) One wishes to select a given proportion a of the candidates in such a way
as to maximize the expectation of Y for the selected group. This is
achieved by selecting the candidates for which E(Ylx) ~ C, where C is
determined by the condition that the probability of a member being
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selected is Q. When E(Ylx) = C, it may be necessary to randomize in
order to get the exact value Q .

(ii) If instead the problem is to maximize the probability with which in the
selected population Y is greater than or equal to some preassigned score
Yo ' one selects the candidates for which the conditional probability
pry ~ Yolx} is sufficiently large.

[(i): Let lfJ(x) denote the probability with which a candidate with measure­
ments x is to be selected. Then the problem is that of maximizing

f[JypY1X(y) 1fJ( x) dY] p X(x) dx

subject to

f lfJ(x)pX(x) dx = a.]

24. The following example shows that Corollary 4 does not extend to a countably
infinite family of distributions. Let Pn be the uniform probability density on [0,
1 + lin], and Po the uniform density on (0,1).

(i) Then Po is linearly independent of (PI' P2' . . . ), that is, there do not exist
constants CI' C2,' " such that Po = ECnPn·

(ii) There does not exist a test IfJ such that flfJPn = a for n = 1,2, . . . but
!l/Jpo> a.

25. Let FI , ••• , F", + I be real-valued functions defined over a space U. A sufficient
condition for Uo to maximize Fm +1 subject to F;(u) ~ C; (i = 1, ... , m) is that
it satisfies these side conditions, that it maximizes F",+I(U) - EkiF;(u) for
some constants k, ~ 0, and that F;(uo) = C; for those values i for which
k; > O.

Section 7

26. For a random variable X with binomial distribution b(p, n), determine the
constants Cj , 't, (i = 1,2) in the UMP test (24) for testing H : P s .2 or s .7
when a = .1 and n = 15. Find the power of the test against the alternative
P =.4.

27. Totally positive families. A family of distributions with probability densities
Pe(x), 8 and x real-valued and varying over n and !!£ respectively, is said to
be totally positive of order r (TPr ) if for all XI < . . . < x; and 81 < . . . < 8"

(33) s, =IPe,(xd
Pe.(xI)

Pe,(x,,)

Pe (x ) I~ °. "
for all n=I,2, ... ,r.
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It is said to be strictly totally positive of order r (STP,) if strict inequality
holds in (33). The family is said to be (strictly) totally positive of order infinity
if (33) holds for all n = 1,2, .. .. These definitions apply not only to probabil­
ity densities but to any real-valued functions P8(x) of two real variables.

(i) For r = 1, (33) states that Pu(x) ~ 0; for r = 2, that Pu(x) has mono­
tone likelihood ratio in x.

(ii) If a(8) > 0, b(x) > 0, and Pu(x) is STP" then so is a(8)b(x)pu(x).

(iii) If a and b are real-valued functions mapping 0 and !l' onto 0 ' and !l"
and are strictly monotone in the same direction, and if Pe (x) is (S)TP"
then P8.(x') with 8' = a- I(8) and x' = b-I(x) is (S)TP, over (O' ,!l").

28. Exponential families . The exponential family (12) with T(x) = x and Q(8)
= 8 is STPoo' with 0 the natural parameter space and !l' = (- 00, 00).
[That the determinant leU jxJI, i, j = 1, . . . , n, is positive can be proved by
induction. Divide the ith column by eU'x" i = 1, . . . , n; subtract in the
resulting determinant the (n - l)st column from the nth, the (n - 2)nd from
the (n - 1)st, . . . , the 1st from the 2nd; and expand the determinant obtained
in this way by the first row. Then 6.n is seen to have the same sign as

~n = IelJ;Xj - eTJ ,Xj-11, i , j = 2, . . . , n,

where 11; = 8j - 8i - If this determinant is expanded by the first column one
obtains a sum of the form

a 2(e'l2
X2 - e'l2 X,) + . . . +an(e'ln

X2 - e'ln X,) = h(X2) - h(x.)

= (X2 - xl)h'(Y2)'

where XI < Y2 < x2' Rewriting h'(Y2) as a determinant of which all columns
but the first coincide with those of s; and proceeding in the same manner
with the other columns, one reduces the determinant to le'lI))I, i, j = 2, .. . , n,
which is positive by the induction hypothesis.]

29. STP3 • Let 8 and x be real-valued, and suppose that the probability densities
Pe ( x) are such that Pe :( x )jPe (x) is strictly increasing in x for 8 < 8' . Then
the following two conditions are equivalent : (a) For 8. < 82 < 83 and k l , k 2 ,

k 3 > 0, let

g(x) = klpu,(x) - k 2PU2
( X) + k 3PU3( X) .

If g( x.) = g( X3) = 0, then the function g is positive outside the interval
(XI' X3) and negative inside. (b) The determinant 6.3 given by (33) is positive
for all 8. < 82 < 83 , Xl < X2 < x3. [It follows from (a) that the equation
g( x) = 0 has at most two solutions.)
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[That (b) implies (a) can be seen for XI < X2 < X3 by considering the determi­
nant

g(XI)

PB
2
( XI)

PB
3
( XI)

g(X2)

PB
2

( x2 )

PBJX2)

g(X3)

PB
2
( X3)

PB3( X3)

Suppose conversely that (a) holds. Monotonicity of the likelihood ratios
implies that the rank of A3 is at least two, so that there exist constants
k1, k 2, k 3 such that g(xI) = g(x3) = O. That the k's are positive follows
again from the monotonicity of the likelihood ratios.]

30. Extension of Theorem 6. The conclusions of Theorem 6 remain valid if the
density of a sufficientstatistic T (which without loss of generality will be taken
to be X), say PB( X), is STP3 and is continuous in x for each 8.
[The two properties of exponential families that are used in the proof of
Theorem 6 are continuity in x and (a) of the preceding problem.]

31. For testing the hypothesis H': 81 s 8 s 82 (81 s 82 ) against the alternatives
8 < 81 or 8 > 82 , or the hypothesis 8 = 80 against the alternatives 8 oF 80 , in
an exponential family or more generally in a family of distributions satisfying
the assumptions of Problem 30, a UMP test does not exist.
(This follows from a consideration of the UMP tests for the one-sided
hypotheses HI: 8 ~ 81 and H2 : 8 .s 82 ,]

Section 8

32. Let the variables X; (i = 1, . . . , s) be independently distributed with Poisson
distribution P(~i)' For testing the hypothesis H :'L~j .s a (for example, that
the combined radioactivity of a number of pieces of radioactive material does
not exceed a) , there exists a UMP test, which rejects when 'LX; > C.
[If the joint distribution of the X's is factored into the marginal distribution of
'LX; (Poisson with mean 'L~j) times the conditional distribution of the vari­
ables Y; = X;/'LX; given 'LX; (multinomial with probabilities Pi = ~;/'L~j)'

the argument is analogous to that given in Example 8.]

33. Confidence bounds for a median. Let XI" ' " Xn be a sample from a continu­
ous cumulative distribution function F. Let ~ be the unique median of F if it
exists, or more generally let ~ = inf{~' : F( 0 = t}.

(i) If the ordered X's are X(I) < . . . < X(n)' a uniformly most accurate
lower confidence bound for ~ is § = X(k) with probability p, §= X(k+ I)

with probability 1 - p, where k and p are determined by

n (n) 1 n (n) 1PL . ---;;+(1-p) L . ---;;=1-a .
j-k J 2 j-k+l J 2
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(ii) This bound has confidence coefficient 1 - a for any median of F.

(iii) Determine most accurate lower confidence bounds for the 100p-per­
centile ~ of F defined by ~ = inf{ f : F( n = p} .

[For fixed ~o the problem of testing H : ~ = ~o against K : ~ > ~o is equivalent
to testing H' : P = t against K' : P < t ·)

34. A counterexample. Typically, as a varies the most powerful level-a tests for
testing a hypothesis H against a simple alternative are nested in the sense that
the associated rejection regions, say Ra, satisfy Ra eRa' for any a < a' . This
relation always holds when H is simple, but the following example shows that
it need not be satisfied for composite H. Let X take on the values 1,2,3,4
with probabilities under distributions Po, PI' Q:

1 2 3 4

Po .1.- ..!. .a. ..!.
13 13 13 13

PI ..!. .1.- .i, ~
13 13 13 13

Q ..!. .l. .l. 4
13 13 13 TI

Then the most powerful test for testing the hypothesis that the distribution of
X is Po or PI against the alternative that it is Q rejects at level a = fJ when
X = 1 or 3, and at level a = fJ when X = 1 or 2.

35. Let X and Y be the number of successes in two sets of n binomial trials with
probabilities PI and P2 of success.

(i) The most powerful test of the hypothesis H: P2 :S PI against an alterna­
tive (PI' P2) with PI < P2 and PI + P2 = 1 at level a < t rejects when
Y - X > C and with probability y when Y - X = C.

(ii) This test is not UMP against the alternatives PI < P2.

[(i): Take the distribution A assigning probability 1 to the point PI = P2 = t
as an a priori distribution over H. The most powerful test against (pi, P2) is
then the one proposed above. To see that A is least favorable, consider the
probability of rejection f3(PI' P2) for PI = P2 = p. By symmetry this is given
by

2f3(p,p) = P{IY - XI> C} + yP{IY - XI = C} .

Let X; be 1 or 0 as the i th trial in the first series is a success or failure, and let
Y; be defined analogously with respect to the second series. Then Y - X =

r;'=l(Y; - X;), and the fact that 2f3(p,p) attains its maximum for P = t can
be proved by induction over n.
(ii): Since f3(p, p) < a for P ", t, the power f3(PI' P2) is < a for alternatives
PI < P2 sufficiently close to the line PI = P2 ' That the test is not UMP now
follows from a comparison with l/I(x, y) == a.)
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36. Sufficient stat istics with nuisance parameters.

(i) A statistic T is said to be partially sufficient for 8 in the presence of a
nuisance parameter 1/ if the parameter space is the direct product of the
set of possible 8- and 1/-values, and if the following two conditions hold:
(a) the conditional distribution given T = t depends only on 1/; (b) the
marginal distribution of T depends only on 8. If these conditions are
satisfied, there exists a UMP test for testing the composite hypothesis
H : 8 = 80 against the composite class of alternatives 8 = 81, which
depends only on T.

(ii) Part (i) provides an alternative proof that the test of Example 8 is UMP.

[Let I/Io(t) be the most powerful level a test for testing 80 against 81 that
depends only on t , let 1/1 (x) be any level-a test, and let 1/1(t) = E~l [ 1/1 ( X) It].
Since E9,I/I(T) = E9,. ~ll/l( X), it follows that 1/1 is a level-a test of H and its
power, and therefore the power of 1/1, does not exceed the power of %.]
Note . For further discussion of this and related concepts of partial sufficiency
see Dawid (1975), Sprott (1975), Basu (1978), and Barndorff-Nielsen (1978).

Section 9

37. Let XI, ,, ,,Xm and lj, ... , y" be independent samples from N(tl) and
N( 1/,1), and consider the hypothesis H : 1/ S Eagainst K : 1/ > E. There exists
a UMP test, and it rejects the hypothesis when Y - X is too large.
[If EI < 1/1 is a particular alternative, the distribution assigning probability 1 to
the point 1/ = E= (mEl + n1/I)/(m + n) is least favorable.]

38. Let Xl" ' " Xm ; Yl , ... , y" be independently, normally distributed with means
E and 1/, and variances a2 and 'T 2 respectively, and consider the hypothesis
H:'T S a against K: a < 'T .

(i) If E and 1/ are known, there exists a UMP test given by the rejection
region E( lj - 1/)2/E( X; - E)2 ~ C.

(ii) No UMP test exists when Eand 1/ are unknown.

Additional Problems

39. Let Po, PI' P2 be the probability distributions assigning to the integers 1, . . . ,6
the following probabilities:

1 2 3 4 5 6

Po .03 .02 .02 .01 0 .92
PI .06 .05 .08 .02 .01 .78
P2 .09 .05 .12 0 .02 .72

Determine whether there exists a level-a test of H : P = Po which is UMP
against the alternatives PI and P2 when (i) a = .01; (ii) a = .05; (iii) a = .07.
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40. Let the distribution of X be given by

'xH 0 1 2 3

where 0 < 8 < .1. For testing H : 8 = .05 against 8 > .05 at level a = .05,
determine which of the following tests (if any) is UMP :

(i) q,(0) = I, q,(1) = q,(2) = q,(3) = 0;

(ii) q,(1) = .5, q,(0) = q,(2) = q,(3) = 0;

(iii) q,(3) = 1, q,(0) = q,(1) = q,(2) = O.

41. Let Xl' . . . ' x" be independently distributed, each uniformly over the integers
1,2, . . . , 8. Determine whether there exists a UMP test for testing H : 8 = 80 at
level 1/86' against the alternatives (i) 8 > 80 ; (ii) 8 < 80 ; (iii) 8 "* 80 ,

42. Let X, be independently distributed as N(itJ., 1), i = 1, .. . , n. Show that there
exists a UMP test of H : tJ. .s 0 against K : tJ. > 0, and determine it as
explicitly as possible.

Note. The following problems (and some of the Additional Problems in later
chapters) refer to the gamma, Pareto , Weibull, and inverse Gaussian distribu­
tions. For more information about these distributions, see Chapter 17, 19, 20,
and 25 respectively of Johnson and Kotz (1970).

43. Let Xl' . . . ' X" be a sample from the gamma distribution I'(g, b) with density

1
f( g) bKxg -1e - ' Ih, O<x,O<b,g.

Show that there exist a UMP test for testing

(i) H : b .s bo against b > bo when g is known;

(ii) H: g s go against g> go when b is known.

In each case give the form of the rejection region.

44. A random variable X has the Pareto distribution P( C, T) if its density is
CT' /X " +I,O < T < X, 0 < c.

(i) Show that this defines a probability density .

(ii) If X has distribution P( C, T), then Y = log X has exponential distribu­
tion Ea, b) with ~ = log T , b = l/c.

(iii) If Xl' .. . ' X" is a sample from P( C, T), use (ii) and Problem 3 to obtain
UMP tests of (a) H : T = TO against T"* TO when b is known ; (b)
H : C= co' T = TO against c> Co' T < TO '
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45. A random variable X has the Weibull distribution W(b, c) if its density is

C(X) "-lb t e -(x /b l', X> 0, b, C > O.

(i) Show that this defines a probability density.

(ii) If Xl"'" Xn is a sample from W(b, c), with the shape parameter C

known, show that there exists a UMP test of H : b ~ bo against b > bo
and give its form.

46. Consider a single observation X from W(l, c) .

(i) The family of distributions does not have monotone likelihood ratio in x.

(ii) The most powerful test of H : C = 1 against C = 2 rejects when X < k l
and when X> k 2 • Show how to determine kl and k 2 •

(iii) Generalize (ii) to arbitrary alternatives cl > 1, and show that a UMP test
of H: C = 1 against C > 1 does not exist.

(iv) For any Cl > 1, the power function of the MP test of H: C = 1 against
C = Cl is an increasing function of c.

47. Let Xl" ' " Xn be a sample from the inverse Gaussian distribution I(p., 1')
with density

/ l' exp( _._1' (X _ p./) ,
2'1Tx3 2xp.2

X> 0, 1', P. > O.

Show that there exists a UMP test for testing

(i) H: p. .s P.o against p. > p.o when l' is known;

(ii) H: l' ~ TO against l' > TO when p. is known.

In each case give the form of the rejection region.

(iii) The distribution of V = T(X; - p.)2/X;p.2 is xl, and hence that of
TL[(X; - p.)2/X;p.2] is x~ .

[Let Y=min(X; ,p.2/X;), Z=T(Y-p.)2/p.2y. Then Z= V and Z is xl
[Shuster (1968)].]

Note . The UMP test for (ii) is discussed in Chhikara and Folks (1976).

48. Let X be distributed according to P9 ' (J E n, and let T be sufficient for (J. If
q>(X) is any test of a hypothesis concerning (J, then "'(T) given by "'(I) =

E(q>(X)It] is a test depending on T only, an its power function is identical
with that of q>(X).
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49. In the notation of Section 2, consider the problem of testing Ho : P = Po
against HI : P = PI' and suppose that known probabilities 'ITo = 'IT and 'lT1 =
1 - 'iT can be assigned to Ho and HI prior to the experiment.

(i) The overall probability of an error resulting from the use of a test cp is

'lTEocp( X) + (1 - 'IT) EI[1 - cp( X)] .

(ii) The Bayes test minimizing this probability is given by (8) with k = 'lT0/'lT1•

(iii) The conditional probability of Hi given X = x, the posteriorprobability
of H; is

'IT;Pi( X)

'lToPo(X) + 'lTIPI(X) ,

and the Bayes test therefore decides in favor of the hypothesis with the
larger posterior probability.

50. (i) For testing Ho : (J = 0 against HI : (J = (JI when X is N((J, 1), given any
o < a < 1 and any 0 < 'IT < 1 (in the notation of the preceding problem),
there exists (JI and x such that (a) Ho is rejected when X = x but (b)
P(Holx) is arbitrarily close to 1.

(ii) The paradox of part (i) is due to the fact that a is held constant while the
power against (JI is permitted to get arbitrarily close to 1. The paradox
disappears if a is determined so that the probabilities of type I and type
II error are equal [but see Berger and Sellke (1984)].

[For a discussion of such paradoxes, see Lindley (1957), Bartlett (1957) and
Schafer (1982).]

51. Let Xl " ' " X, be i.i.d. with density Po or PI' so that the MP level-a test of
H : Po rejects when Il;'= I r( Xi) ~ c,,, where r( X,) = PI ( X,)/Po( Xi) ' or equiv­
alently when

(34)
1

In O)ogr(x,) - Eo[Jogr(x,)]} ~ i ;

(i) It follows from the central limit theorem (Chapter 5, Theorem 3) that
under H the left side of (34) tends in law to N(O, 0 2) with 0 2 =

Varo[log r(X,)] provided 0
2 < 00 .

(ii) From (i) it follows that k; --+ OUa where cII(ua ) = 1 - a.

(iii) The power of the test (34) agaisnt PI tends to 1 as n --+ 00.

[(iii): Problem 14(iv).]

52. Let XI " '" X" be independent N( (J, y), 0 < y < 1 known, and Y1, · · · , Y"
independent N((J,I). Then X is more informative than Y according to the
definition at the end of Section 4.
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[If V, is N(O, 1 - y), then X; + V, has the same distribution as ~ .l

Note. If a is unknown, it is not true that a sample from N(0, y( 2 ) ,

0< Y < 1, is more informative than one from N(O, ( 2 ) ; see Hansen ad
Torgersen (1974).

53. Let [, g be two probability densities with respect to JL. For testing the
hypothesis H: 0 :5 00 or 0 ~ 01 (0 < 00 < 0\ < 1) against the alternatives
00 < 0 < 01 in the family 9= (()f( x) + (1 - O)g(x), 0:5 ():5 I} , the test
<p(x) == a is UMP at level a.
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CHAPTER 4

Unbiasedness: Theory and

First Applications

1. UNBIASEDNESS FOR HYPOTHESIS TESTING

A simple condition that one may wish to impose on tests of the hypothesis
H : 8 E QH against the composite class of alternatives K: 0 E QK is that
for no alternative in K should the probability of rejection be less than the
size of the test. Unless this condition is satisfied, there will exist alternatives
under which acceptance of the hypothesis is more likely than in some cases
in which the hypothesis is true . A test $ for which the above condition
holds, that is, for which the power function {3<j>( 0) = Eo$ ( X) satisfies

(1)

{3<j> (0) s a

{3<j>( 0) ~ a

if 0 E QH'

if 0 E QK '

is said to be unbiased. For an appropriate loss funct ion this was seen in
Chapter 1 to be a particular case of the general definition of unbiasedness
given there. Whenever a UMP test exists, it is unbiased, since its power
cannot fall below that of the test $( x) == a.

For a large class of problems for which a UMP test does not exist , there
does exist a UMP unbiased test. This is the case in particular for certain
hypotheses of the form 0 s 00 or 0 = 00 , where the distribution of the
random observables depends on other parameters besides O.

When {3<j>(0) is a continuous function of 0, unbiasedness implies

(2) {3<j> (0) = a for all 0 in w,

where w is the common boundary of QH and QK' that is, the set of points ()
that are points or limit points of both Q}{ and QI\ ' Tests satisfying this

134
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condition are said to be similar on the boundary (of H and K). Since it is
more convenient to work with (2) than with (1), the following lemma plays
an important role in the determination of UMP unbiased tests.

Lemma 1. If the distributions Po are such that thepowerfunction of every
test is continuous, and if </10 is UMP among all tests satisfying (2) and is a
level-a test of H, then </10 is UMP unbiased.

Proof. The class of tests satisfying (2) contains the class of unbiased
tests, and hence </10 is uniformly at least as powerful as any unbiased test.
On the other hand, </10 is unbiased, since it is uniformly at least as powerful
as </I(x) == a .

2. ONE-PARAMETER EXPONENTIAL FAMIUES

Let °be a real parameter, and X = (Xl' ... ' Xn ) a random vector with
probability density (with respect to some measure J1.)

Po(x) = C(O)eOT(Xlh(x) .

It was seen in Chapter 3 that a UMP test exists when the hypothesis H and
the class K of alternatives are given by (i) H: °s 00' K: °> 00 (Corollary
2) and (ii) H: °s 01 or °~ 02 (01 < 02)' K : 01 < °< O2 (Theorem 6), but
not for (iii) H : 01 s °s 02' K :°< 01 or °> 02. We shall now show that
in case (iii) there does exist a UMP unbiased test given by

(3) ~(x) - {~.
when T(x) < Clor > C2 ,

when T(x) = Cj , i = 1,2,

when Cl < T(x) < C2 ,

where the C's and y's are determined by

(4) Eo.</I( X) = Eo 2</1 ( X) = a .

The power function Eo </I ( X) is continuous by Theorem 9 of Chapter 2,
so that Lemma 1 is applicable. The set w consists of the two points 01 and
02' and we therefore consider first the problem of maximizing Eo,</I( X) for
some 0' outside the interval [°1,°2 ), subject to (4). If this problem is
restated in terms of 1 - </I (x), it follows from part (ii) of Theorem 6,
Chapter 3, that its solution is given by (3) and (4). This test is therefore
UMP among those satisfying (4), and hence UMP unbiased by Lemma 1. It
further follows from part (iii) of the theorem that the power function of the



136 UNBIASEDNESS: THEORY AND FIRST APPLICATIONS [4.2

test has a minimum at a point between 01 and O2 , and is strictly increasing
as 0 tends away from this minimum in either direction .

A closely related problem is that of testing (iv) H: 0 = 00 against the
alternatives 0 .;: 00 , For this there also exists a UMP unbiased test given by
(3), but the constants are now determined by

(5)

and

(6)

EsJep(X)] = a

EsJT(X)ep(X)] = EsJT(X)]a .

To see this, let 0' be any particular alternative, and restrict attention to
the sufficient statistic T, the distribution of which by Chapter 2, Lemma 8, is
of the form

dPs(t) = C(O) e'" dv(t) .

Unbiasedness of a test t/J(t) implies (5) with ep(x) = t/J[T(x»); also that the
power function 13(0) = Es[t/J(T») must have a minimum at 0 = 00 , By
Theorem 9 of Chapter 2 the function 13(0) is differentiable, and the
derivative can be computed by differentiating Est/J(T) under the expecta­
tion sign, so that for all tests t/J(t)

C'( 0)
f3'(O) = Es[TtJt(T)] + C(O) Es[t/J(T)] .

For t/J(t) == a, this equation becomes

C'( 0)
0= EiT) + C(O) .

Substituting this in the expression for 13'(0) gives

13'(0) = E,[Tt/J(T)] - Es(T)Es[t/J(T)],

and hence unbiasedness implies (6) in addition to (5).
Let M be the set of points (Esol t/J(T»), EsolTt/J(T»)) as t/J ranges over the

totality of critical functions . Then M is convex and contains all points
(u, uEso(T» with 0 < u < 1. It also contains points (a, u2 ) with U 2 >
aEfJ (T). This follows from the fact that there exist tests with Es [t/J(T») = ao 0

and 13'(00 ) > 0 (see Problem 22 of Chapter 3). Since similarly M contains
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points (a, u1 ) with U1 < aE8o(T), the point (a, aE8o(T» is an inner point of
M. Therefore, by Theorem 5(iv) of Chapter 3 there exist constants k 1, k 2
and a test 1/I(t) satisfying (5) and (6) with </>(x) = 1/I[T(x)], such that
1/I(t) = 1 when

C((0 )( k 1 + k 2t) e801 < C(8') e8' 1

and therefore when

a1 + a 2t < ebl
•

This region is either one-sided or the outside of an interval. By Theorem 2
of Chapter 3 a one-sided test has a strictly monotone power function and
therefore cannot satisfy (6). Thus 1/I(t) is 1 when t < C1 or > C2, and
the most powerful test subject to (5) and (6) is given by (3). This
test is unbiased, as is seen by comparing it with </>(x) == a. It is then also
UMP unbiased, since the class of tests satisfying (5) and (6) includes the
class of unbiased tests.

A simplification of this test is possible if for 8 = 80 the distribution of T
is symmetric about some point a, that is, if P8

o{
T < a - u} = P 8o{ T > a +

u} for all real u. Any test which is symmetric about a and satisfies (5) must
also satisfy (6), since E8 [T1/I(T)] = E8 [(T - a)1/I(T)] + aE8 1/I(T) = aao 0 0

= E8o(T )a. The C's and y's are therefore determined by

a
P83T < Cd + Y1P8o{ T = C1 } = 2'

C2 = 2a - c1, Y2 = Y1 '

The above tests of the hypotheses 81 ~ 8 s 82 and 8 = 80 are strictly
unbiased in the sense that the power is > a for all alternatives 8. For the
first of these tests, given by (3) and (4), strict unbiasedness is an immediate
consequence of Theorem 6(iii) of Chapter 3. This states in fact that the
power of the test has a minimum at a point 80 between 81 and 82 and
increases strictly as 8 tends away from 80 in either direction. The second of
the tests, determined by (3), (5), and (6), has a continuous power function
with a minimum of a at 8 = 80 , Thus there exist 81 < 80 < 82 such that
f3( ( 1) = f3( ( 2 ) = c where a ~ c < 1. The test therefore coincides with the
UMP unbiased level-c test 'of the hypothesis 81 s 8 s 82, and the power
increases strictly as 8 moves away from 80 in either direction. This proves
the desired result.
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Example 1. BinomiIIL Let X be the number of successes in n binomial trials

with probability P of success. A theory to be tested assigns to P the value Po, so that
one wishes to test the hypothesis H: P = Po. When rejecting H one will usually
wish to state also whether p appears to be less or greater than Po. If, however, the
conclusion that p '* Po in any case requires further investigation, the preliminary
decision is essentially between the two possibilities that the data do or do not
contradict the hypothesis p = Po. The formulation of the problem as one of
hypothesis testing may then be appropriate.

The UMP unbiased test of H is given by (3) with T(X) = X. The condition (5)
becomes

Cz-1 2

L (~)Poqo-X + L (1 - 1'J( ~.)pflqo-C I = 1 - a,
x-C.+1 i-1 I

and the left-hand side of this can be obtained from tables of the individual
probabilities and cumulative distribution function of X. The condition (6), with the
help of the identity

x(~)Poqo-X = npo(: := Upo-lqbn-ll-(X-l)

reduces to

Cz-1
~ (n-1)'-- x-l (n-

x-C
1

+1 x-I Po qo l)-(x-il

2 (n-l)+ L (1 - 1';) C _ 1 p~l -lqbn -l) -(CI-l) = 1 - a,
;-1 I

the left-hand side of which can be computed from the binomial tables.
As n increases, the distribution of (X - npo)/ fnpoqo tends to the normal

distribution N(O,1). For sample sizes which are not too small, and values of Po
which are not too close to °or 1, the distribution of X is therefore approximately
symmetric. In this case, the much simpler "equal tails" test, for which the C's and
l' 's are determined by

Ct-1

L (~)Poqo-X + 1'l( ~l)pf·qo-c.
x-o

(
n ) n a

= 1'2 C
2

pfzqo-Cz + L (~)Poqo-X = "2'
x-Cz+1

is approximately unbiased, and constitutes a reasonable approximation to the
unbiased test. Of course, when n is sufficiently large, the constants can be de­
termined directly from the normal distribution.
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Example 2. Normal variance. Let X = ~ Xl , ... , Xn ) be a sample from a nor­
mal distribution with mean 0 and variance a , so that the density of the X's is

( V2~a ) n exp( - 2~2 LX;) .

Then T(x) = tx; is sufficient for a 2, and has probability density (l/a 2)!n(y/a2),

where

1 (n/2) -le-(y/2) ,
/,,(y) = 2n / 2f(n/2)Y y> 0,

is the density ofax2-distribution with n degrees of freedom. For varying a, these
distributions form an exponential family, which arises also in problems of life
testing (see Problem 14 of Chapter 2), and concerning normally distributed variables
with unknown mean and variance (Section 3 of Chapter 5). The acceptance region
of the UMP unbiased test of the hypothesis H : a = ao is

x 2

C1 s L ---I s C2
ao

with

fC2!n(Y) dy = 1 - a
C1

and

fC~2Y!n(Y) dy = (1 - a) Eao(tX?)al =n(l-a).

For the determination of the constants from tables of the x2-distribution, it is
convenient to use the identity

Y!n(Y) = n!n+2(Y)'

to rewrite the second condition as

(C 2
), !n+2(Y) dy = 1 - a .

C1

Alternatively, one can integrate f[2Y!n(Y) dy by parts to reduce the second condi-
. I

non to

cr/2 e: C1/2 = Cj /2 «: C2I2.
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[For tables giving C1 and C2 see Pachares (1961).] Actually, unless n is very small
or 00 very close to 0 or 00, the equal-tails test given by

1
~ foo afn(y)dy= fn(y)dY=2

o C2

is a good approximation to the unbiased test. This follows from the fact that T,
suitably normalized, tends to be normally and hence symmetrically distributed for
large n.

UMP unbiased tests of the hypotheses (iii) H: 81 s 8 s 82 and (iv)
H: 8 = 80 against two-sided alternatives exist not only when the family
Po( x) is exponential but also more generally when it is strictly totally
positive (STPoo)' A proof of (iv) in this case is given in Brown, Johnstone,
and MacGibbon (1981); the proof of (iii) follows from Chapter 3, Problem
30.

3. SIMILARITY AND COMPLETENESS

In many important testing problems, the hypothesis concerns a single
real-valued parameter, but the distribution of the observable random vari­
ables depends in addition on certain nuisance parameters . For a large class
of such problems a UMP unbiased test exists and can be found through the
method indicated by Lemma 1. This requires the characterization of the
tests </>, which satisfy

El/cp(X) = a

for all distributions of X belonging to a given family flJx = {PI/, 8 E w}.
Such tests are called similar with respect to flJx or w, since if cP is
nonrandomized with critical region S, the latter is "similar to the sample
space" f!£ in that both the probability Po {XES} and Po {X E f!£} are
independent of 8 E w.

Let T be a sufficient statistic for flJx, and let flJT denote the family {pI,
8 E w} of distributions of T as 8 ranges over w. Then any test satisfying

(7) E[</>(X)ltl = a a.e. flJT·

is similar with respect to flJx, since then

EI/[</>(X)] = EI/{E[cp(X)IT]} = a for all 8 E w.

·A statement is said to hold a.e. !1' if it holds except on a set N with P(N) = 0 for all
P E 9 .
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A test satisfying (7) is said to have Neyman structure with respect to T. It is
characterized by the fact that the conditional probability of rejection is a on
each of the surfaces T = t. Since the distribution on each such surface is
independent of (J for (J E tAl, the condition (7) essentially reduces the
problem to that of testing a simple hypothesis for each value of t. It is
frequently easy to obtain a most powerful test among those having Neyman
structure, by solving the optimum problem on each surface separately. The
resulting test is then most powerful among all similar tests provided every
similar test has Neyman structure. A condition for this to be the case can be
given in terms of the following definition .

A family ~ of probability distributions P is complete if

(8)

implies

(9)

Ep[J(X)] = 0

f(x) = 0

for all P E ~

a.e. ~.

In applications, ~ will be the family of distributions of a sufficient statistic.

Example 3. Consider n independent trials with probability p of success, and let
X; be 1 or 0 as the i th trial is a success or failure. Then T = Xl + .. . +X; is a
sufficient statistic for p, and the family of its possible distributions is fFJ = {b{ p, n) ,
o :0;; p :0;; I} . For this family (8) implies that

i: I( 1)( ~) p' = 0
1-0

for all 0 < P < 00,

where p = p/{l - p). The left-hand side is a polynomial in p, all the coefficients of
which must be zero. Hence I(I) = 0 for 1 = 0, .. . ,n and the binomial family of
distributions of T is complete.

Example 4. Let Xl" ' " Xn be a sample from the uniform distribution U(O, 8),
o < 8 < 00. Then T = max(Xl , . . . , Xn ) is a sufficient statistic for 8, and (8)
becomes

/1(/) dP{(/) = nO-nf/(/) ' I n- l dt = 0 for all 8.

Let 1(/) = r(t) -1(/) wherer and 1 denote the positive and negative parts of
1 respectively. Then

JI+(A) =jr(t)tn
-

l dt and JI -(A) = j1(/)tn
-

1 dt
A A

are two measures over the Borel sets on (O, 00), which agree for all intervals and
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hence for all A. This implies r (t) = r (t) except possibly on a set of Lebesgue
measure zero, and hence I(t) = 0 a.e. fJ'T.

Example 5. Let Xl" '" Xm ; Yl ,. .. , Y,. be independently normally distributed
as N(t 0 2) and N(t 'T 2 ) respectively. Then the joint density of the variables is

C(~. 0, 'T)exp( - ~ I:Xl + -; LX; -~ L.yl + ~2 LYj) '
20 0 2'T 'T

The statistic

T = (L X; •L X;2 , L lj. L lj2)

is sufficient; it is, however, not complete. since E(Elj/n - EX;/m) is identically
zero. If the Y's are instead distributed with a mean E(Y) = 1/ which varies
independently of t the set of possible values of the parameters ()l = -1/202

•

()2 = ~/02, ()3 = -1/2'T2 , ()4 = 1//'T2 contains a four-dimensional rectangle. and it
follows from Theorem 1 below that fJ'T is complete.

Completeness of a large class of families of distributions including that of
Example 3 is covered by the following theorem.

Theorem t. Let X be a random vector with probability distribution

dPe(x) = C(8)exp[ t 8;1j(X)] dp.(x).
j-l

and let Y'T be the family of distributions of T = (T1( X)• . . . • T; (X» as 8
ranges over the set w. Then Y'T is complete provided w contains a k-dimen­
sional rectangle .

Proof. By making a translation of the parameter space one can assume
without loss of generality that w contains the rectangle

1= {(81 ..... 8k):-a~8j~a.j=1•.. .• k).

Let f(t) = r(t) - ri» be such that

Eef(T) = 0 for all 8 E w.

Then for all 8 E I. if v denotes the measure induced in T-space by the
measure p..

f eEejljr(t) dv(t) = f eEejljr(t) dv(t)



4.3] SIMILARITY AND COMPLETENESS 143

and hence in particular

jr(t) dv(t) = jF(t) dv(t) .

Dividing f by a constant, one can take the common value of these two
integrals to be 1, so that

dP+(t) = r(t) dv(t) and dP-(t) = F(t) dv(t)

are probability measures, and

j ef.9j lJdP+ (t) = j ef.9j l j dP- (t)

for all 0 in I. Changing the point of view, consider these integrals now as
functions of the complex variables OJ = ~j + i1/j' j = 1, . . . , k. For any
fixed fJ l , . .. , OJ-I' OJ+l''' ' ' Ok' with real parts strictly between -a and +a,
they are by Theorem 9 of Chapter 2 analytic functions of OJ in the strip
Rj : - a < ~j < a, - 00 < 1/j < 00 of the complex plane. For °2" " , Ok
fixed, real, and between - a and a, equality of the integrals holds on the
line segment {(~l' 1/1): -a < ~l < a, 1/1 = O} and can therefore be ex­
tended to the strip R l , in which the integrals are analytic. By induction the
equality can be extended to the complex region {(Ol"' " Ok) :aj , 1/j) E Rj
for j = 1, .. . , k}. It follows in particular that for all real (1h, · · · , 1/k)

j eif.'1J1JdP+(t) = je if.'1J'JdP-(t) .

These integrals are the characteristic functions of the distributions P+and
P- respectively, and by the uniqueness theorem for characteristic functions,"
the two distributions P" and P- coincide. From the definition of these
distributions it then follows that r(t) = ro» a.e. v, and hence that
f(t) = 0 a.e. [pT, as was to be proved.

Example 6. Nonparametr;c completeness. Let Xl" ' " XN be independently
and identically distributed with cumulative distribution function F E fF, where fF
is the family of all absolutely continuous distributions. Then the set of order
statistics T(X) = (.~1) " ' " X(N» was shown to be sufficient for fF in Chapter 2,
Section 6. We shall now prove it to be complete. Since, by Example 7 of Chapter 2,
T'(X) = O:X;,L\'?, . . . ,[Xf) is equivalent to T(X) in the sense that both induce
the same subfield of the sample space, T' (X) is also sufficient and is complete if

"See for example Section 26 of Billingsley (1979).
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and only if T(X) is complete. To prove the completeness of T'(X) and thereby that
of T( X), consider the family of densities

f(x) = C«(Jl"'" (IN)exp(_X2N + (JIX + ... +(JN XN),

where C is a normalizing constant. These densities are defined for all values of the
(J's since the integral of the exponential is finite, and their distributions belong to~.

The density of a sample of size N is

CNexp( - LxjH + (JILxj + . . . +(JNLxf)

and these densities constitute an exponential family~. By Theorem 1, T'(X) is
complete for ~, and hence also for ~, as was to be proved.

The same method of proof establishes also the following more general result. Let
Xi}' j = 1, . . . , N; , i = 1, . . . , c, be independently distributed with absolutely con­
tinuous distributions F;, and let Xfl) < .. . < XfN,) denote the N; observations
X;(, .. . , X;N

i
arranged in increasing order. Then the set of order statistics

("i l ) , .. . , "iN!) , .. . , ~l) , • . . , ~Nc»)

is sufficient and complete for the family of distributions obtained by letting
F(, . . . ,F,. range over all distributions of ~. Here completeness is proved by
considering the subfamily~ of ~ in which the distributions F; have densities of
the form

/;( x) = C;( (J;l"'" (JiN.)exp( - X2N, + (JilX + ... + (J;Ni
XNi).

The result remains true if ~ is replaced by the family ~ of continuous
distributions. For a proof see Problem 12 or Bell, Blackwell,and Breiman (1960).

For the present purpose the slightly weaker property of bounded com­
pleteness is appropriate, a family fJJ of probability distributions being
boundedly complete if for all bounded functions f, (8) implies (9). If fJJ is
complete it is a fortiori boundedly complete.

Theorem 2. Let X be a random variable with distribution P E fJJ, and let
T be a sufficient statistic for fJJ. Then a necessary and sufficient condition for
all similar tests to have Neyman structure with respect to T is that the family
fJJT of distributions of T is boundedly complete.

Proof. Suppose first that fJJT is boundedly complete, and let l/l( X) be
similar with respect to fJJ. Then

E[l/l(X) - a] = 0 for all P E fJJ

and hence, if 1/J(t) denotes the conditional expectation of l/l(X) - a given t,

E1/J(T) = 0 for all p T E fJJT.
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Since t/!(t) can be taken to be bounded by Lemma 3 of Chapter 2, it follows
from the bounded completeness of fJ'T that t/!(t) = 0 and hence E[q>(X)lt]
= a a.e. fJ'T, as was to be proved .

Conversely suppose that fJ'T is not boundedly complete. Then there
exists a function f such that If(t)1 ~ M for some M, that Ef(T) = 0 for all
pT E fJ'T, and f(T) *" 0 with positive probability for some pT E fJ'T. Let
q>(t) = cf(t) + a, where c = min (a, 1 - a)/M. Then q> is a critical func­
tion, since 0 ~ q>(t) ~ 1, and it is a similar test, since Eq>(T) = a for all
pT E fJ'T. But q> does not have Neyman structure, since q>(T) *" a with
positive probability for at least some distribution in fJ'T.

4. UMP UNBIASED TESTS FOR MULTIPARAMETER
EXPONENTIAL FAMILIES

An important class cf hypotheses concerns a real-valued parameter in an
exponential family, with the remaining parameters occurring as unspecified
nuisance parameters. In many of these cases, UMP unbiased tests exist and
can be constructed by means of the theory of the preceding section.

Let X be distributed according to

(10)

dP/;,(x) = C(8, ~)exP[8U(X)+ ,t ~iT;(X)] dp.(x),
1 ~1

(8,~)En,

and let ~ = (~1" '" ~d and T = (T1, • • • , Td. We shall consider the prob­
lems" of testing the following hypotheses Hj against the alternatives Kj>
j = 1, . . . , 4 :

HI: 8 .s 80
H 2 : 8 ~ 81 or 8 ;;::. 82
H 3 : 81 ~ 8 s 82

H4 : 8 = 80

K 1 : 8 > 80

K 2 : 81 < 8 < 82
K 3 : 8 < 81 or 8 > 82

K 4 : 8 *" 80 ,

We shall assume that the parameter space n is convex, and that it has
dimension k + 1, that is, that it is not contained in a linear space of
dimension < k + 1. This is the case in particular when n is the natural
parameter space of the exponent 11 family. We shall also assume that there
are points in n with 8 both < and > 80 , 81, and 82 respectively.

"Such problems are also treated in Johansen (1979), which in addition discusses large­
sample tests of hypotheses specifying more than one parameter.
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Attention can be restricted to the sufficient statistics (U, T) which have
the joint distribution

(11) dpt{(u, t) = C(O, ,'})exp(ou + .E,'};t;) dvi u, t),
,-I

(iJ,,'}) EO.

When T = t is given, U is the only remaining variable and by Lemma 8 of
Chapter 2 the conditional distribution of U given t constitutes an exponen­
tial family

dP,UI'( u) = Ct ( O)e'u dv,(u).

In this conditional situation there exists by Corollary 2 of Chapter 3 a UMP
test for testing HI with critical function 4>1 satisfying

(12) ~(u, I) ~ {io(l)
when u> Co(t),
when u = Co ( t ),

when u < Co ( t ),

where the functions Co and 'Yo are determined by

(13) E,J4>I(U, T)lt] = a for all t .

For testing Hz in the conditional family there exists by Theorem 6 of
Chapter 3 a UMP test with critical function

(14) ~(u, I)~ G'(I)
when C1(t) < u < Cz(t),
when u = C;(t), i = 1,2,

when u < C1(t) or > Cz(t),

where the C's and 'Y's are determined by

(15) E,\[4>z(U, T)lt] = E'2[4>Z(U, T)lt] = a.

Consider next the test 4>3 satisfying

(16) ~(u , I) - {~(I)
when u < C1( r ) or > Cz(t ),

when u = C;( t ) , j = 1, 2,

when C1(t) < u < Cz(t),
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with the C 's and y's determined by

(17) EdIJ>3(U, T)lt] = Ee2[1J>3(U, T)lt] = a .

When T = t is given, this is (by Section 2 of the present chapter) UMP
unbiased for testing H 3 and UMP among all tests satisfying (17).

Finally, let 1J>4 be a critical function satisfying (16) with the C's and y's
determined by

(18)

and

(19)

EeJIJ>4(U,T)It] =a

EeJUIJ>4(U, T)It] = aEeJUlt].

Then given T = t, it follows again from the results of Section 2 that 1J>4 is
UMP unbiased for testing H4 and UMP among all tests satisfying (18) and
(19).

So far, the critical functions IJ>j have been considered as conditional tests
given T = t . Reinterpreting them now as tests depending on U and T for
the hypotheses concerning the distribution of X (or the joint distribution of
U and T) as originally stated, we have the following main theorem.*

Theorem 3. Define the critical functions IJ>! by (12) and (13); 1J>2 by (14)
and (15); 1J>3 by (16) and (17); 1J>4 by (16), (18), and (19). These constitute
UMP unbiased level-a tests for testing the hypotheses HI" ' " H4 respectively
when the joint distribution of U and T is given by (11).

Proof. The statistic T is sufficient for iJ if 0 has any fixed value, and
hence T is sufficient for each

- , = {( 0, iJ) : (0, it) En, 0 = OJ} , j = 0,1, 2.

By Lemma 8 of Chapter 2, the associated family of distributions of T is
given by

dPl,.,~(t) = C(Oj' iJ)exp(,tliJ/r) dVe,(t) , (OJ' iJ) E W I ' j=0 ,1 ,2 .

Since by assumption n is convex and of dimension k + 1 and contains

•A somewhat different asymptot ic optimality property of these tests is established hy
Michel (1979).
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points on both sides of 0 = OJ' it follows that wj is convex and of dimension
k. Thus wj contains a k-dimensional rectangle; by Theorem 1 the family

fJJI = { p~,,, : (0, t'}) E wj }

is complete; and similarity of a test 4> on wj implies

E//[4>(U, T)lt] = a.
J

(1) Consider first HI' By Theorem 9 of Chapter 2 the power function of
all tests is continuous for an exponential family. It is therefore enough to
prove 4>1 to be UMP among all tests that are similar on Wo (Lemma 1), and
hence among those satisfying (13). On the other hand, the overall power of a
test 4> against an alternative (0, t'}) is

(20) E//,,,[4>(U, T)] = f[f4>(u, t) dP//UI'(u)] dPl.,,(t).

One therefore maximizes the overall power by maximizing the power of the
conditional test, given by the expression in brackets, separately for each t.
Since 4>1 has the property of maximizing the conditional power against any
o> 00 subject to (13), this establishes the desired result.

(2) The proof for H2 and H3 is completely analogous. By Lemma 1, it
is enough to prove 4>2 and 4>3 to be UMP among all tests that are similar on
both "'1 and "'2' and hence among all tests satisfying (15). For each t, ep2
and 4>3 maximize the conditional power for their respective problems
subject to this condition and therefore also the unconditional power.

(3) Unbiasedness of a test of H4 implies similarity on Wo and

a
ao [E//, ,,4>(U, T)] = 0 on Wo o

The differentiation on the left-hand side of this equation can be carried out
under the expectation sign, and by the computation which earlier led to (6),
the equation is seen to be equivalent to

E// ,,,[U4>(U, T) - aU] = 0 on "'0 '

Therefore, since fJJl is complete, unbiasedness implies (18) and (19). As in
the preceding cases, the test, which in addition satisfies (16), is UMP among
all tests satisfying these two conditions. That it is UMP unbiased now
follows, as in the proof of Lemma 1, by comparison with the test 4>( u, t) == a.
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(4) The functions </>1" ' " </>4 were obtained above for each fixed t as a
function of u. To complete the proof it is necessary to show that they are
jointly measurable in u and t, so that the expectation (20) exists. We shall
prove this here for the case of </>1 ; the proof for the other cases is sketched in
Problems 14 and 15. To establish the measurability of </>1 ' one needs to show
that the functions Co(t) and yo(t) defined by (12) and (13) are r-measur­
able. Omitting the subscript 0, and denoting the conditional distribution
function of U given T = t and for 8 = 80 by

F, (u) = PSo{ U s u It},

one can rewrite (13) as

F,(C) - y[F,(C) - F,(C - 0)] = 1 - a .

Here C = C(t) is such that F,(C - 0) ~ 1 - a ~ F,(C), and hence

C(t) = F,-1(1 - a)

where F,- l( y) = inf{ u : F,(u) ~ y }. It follows that C( t) and y( t) will both
be measurable provided F,(u) and F,(u - 0) are jointly measurable in u
and t and F,-1(1 - a) is measurable in t.

For each fixed u the function F,(u) is a measurable function of t, and for
each fixed t it is a cumulative distribution function and therefore in
particular nondecreasing and continuous on the right. From the second
property it follows that F,(u) ~ c if and only if for each n there exists a
rational number r such that u;S; r < u + lin and F,(r) ~ c. Therefore, if
the rationals are denoted by '1' '2" . . ,

{(u, r }: F,(u) ~ c} = nu{(u,t}:O s rj - u <~ , F,(,;) ~ c} .
n I n

This shows that F,(u) is jointly measurable in u and t. The proof for
F,(u - 0) is completely analogous. Since F,-l(y) ~ u if and only if F,(u) ~
y , F,- 1(y) is t-measurable for any fixed y and this completes the proof.

The test </>1 of the above theorem is also UMP unbiased if Q is replaced
by the set Q' = Q () {(8, {}): 8 ~ 80 }, and hence for testing H' : 8 = 80
against 8 > 80 , The assumption that Q should contain points with 8 < 80
was in fact used only to prove that the boundary set Wo contains a
k-dimensional rectangle, and this remains valid if Q is replaced by Q' .
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The remainder of this chapter as well as the next chapter will be
concerned mainly with applications of the preceding theorem to various
statistical problems. While this provides the most expeditious proof that the
tests in all these cases are UMP unbiased, there is available also a variation
of the approach, which is more elementary. The proof of Theorem 3 is quite
elementary except for the following points: (i) the fact that the conditional
distributions of U given T = t constitute an exponential family, (ii) that the
family of distributions of T is complete, (iii) that the derivative of
E(J, ~<p(U, T) exists and can be computed by differentiating under the
expectation sign, (iv) that the functions <PI" '" <P4 are measurable. Instead
of verifying (i) through (iv) in general, as was done in the above proof, it is
possible in applications of the theorem to check these conditions directly for
each specific problem, which in some cases is quite easy.

Through a transformation of parameters, Theorem 3 can be extended to
cover hypotheses concerning parameters of the form

k

0* = aoO + L ai~i>
i=1

ao* 0,

This transformation is formally given by the following lemma, the proof of
which is immediate.

Lemma 2. The exponential family of distributions (10) can also be written
as

dP/~(x) = K(O*, ~)exp[O*U*(x) + L~iT;*(x)] dp,(x)

where

U* .s:
a 'o

a j

T;* = T; - - U.
ao

Application of Theorem 3 to the form of the distributions given in the
lemma leads to UMP unbiased tests of the hypothesis Hl* : 0* .s 00 and the
analogously defined hypotheses H2*, H3*, H4*.

When testing one of the hypotheses Hj one is frequently interested in the
power {3(0', ~) of <Pj against some alternative 0'. As is indicated by the
notation and is seen from (20), this power will usually depend on
the unknown nuisance parameters ~. On the other hand, the power of the
conditional test given T = t,

,8(O'lt) = E(J' [<p( u,T) It]'

is independent of ~ and therefore has a known value.
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The quantity {3(O'lt) can be interpreted in two ways: (i) It is the
probability of rejecting H when T = t. Once T has been observed to have
the value t, it may be felt, at least in certain problems, that this is a more
appropriate expression of the power in the given situation than {3( 0', {}),
which is obtained by averaging {3(O'It) with respect to other values of t not
relevant to the situation at hand . This argument leads to difficulties, since in
many cases the conditioning could be carried even further and it is not clear
where the process should stop. (ii) A more clear-cut interpretation is
obtained by considering {3(O'It) as an estimate of {3(O', {}). Since

EIi,,/}[{3(O'IT)] = f3(O', {}),

this estimate is unbiased in the sense of Chapter 1, equation (11). It follows
further from the theory of unbiased estimation and the completeness of the
exponential family that among all unbiased estimates of {3(0', {}) the
present one has the smallest variance. (See TPE, Chapter 2.)

Regardless of the interpretation, {3(O'lt) has the disadvantage compared
with an unconditional power that it becomes available only after the
observations have been taken. It therefore cannot be used to plan the
experiment and in particular to determine the sample size, if this must be
done prior to the experiment. On the other hand, a simple sequential
procedure guaranteeing a specified power {3 against the alternatives 0 = 0'
is obtained by continuing taking observations until the conditional power
{3( O'lt) is ~ {3.

The general question of whether to interpret measures of performance
such as the power of a test or coverage probability of a family of confidence
statements conditionally, and if so, conditionally on what aspects of the
data, will be considered in Chapter 10.

5. COMPARING lWO POISSON OR BINOMIAL
POPULATIONS

A problem arising in many different contexts is the comparison of two
treatments or of one treatment with a control situation in which no
treatment is applied. If the observations consist of the number of successes
in a sequence of trials for each treatment, for example the number of cures
of a certain disease, the problem becomes that of testing the equality of two
binomial probabilities. If the basic distributions are Poisson, for example in
a comparison of the radioactivity of two substances, one will be testing the
equality of two Poisson distributions.

When testing whether a treatment has a beneficial effect by comparing it
with the control situation of no treatment, the problem is of the one-sided
type. If ~2 and ~l denote the parameter values when the treatment is or is
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not applied, the class of alternatives is K: ~2 > ~l. The hypothesis is ~2 = ~l

if it is known a priori that there is either no effect or a beneficial one; it is
~2 ~ ~l if the possibility is admitted that the treatment may actually be
harmful. Since the test is the same for the two hypotheses, the second
somewhat safer hypothesis would seem preferable in most cases.

A one-sided formulation is sometimes appropriate also when a new
treatment or process is being compared with a standard one, where the new
treatment is of interest only if it presents an improvement. On the other
hand, if the two treatments are on an equal footing, the hypothesis ~2 = ~l

of equality of two treatments is tested against the two-sided alternatives
~2 =1= ~l ' The formulation of this problem as one of hypothesis testing is
usually quite artificial, since in case of rejection of the hypothesis one will
obviously wish to know which of the treatments is better.* Such two-sided
tests do, however, have important applications to the problem of obtaining
confidence limits for the extent by which one treatment is better than the
other. They also arise when the parameter ~ does not measure a treatment
effect but refers to an auxiliary variable which one hopes can be ignored.
For example, ~l and ~2 may refer to the effect of two different hospitals in a
medical investigation in which one would like to combine the patients into a
single study group. (In this connection, see also Chapter 7, Section 3.)

To apply Theorem 3 to this comparison problem it is necessary to express
the distributions in an exponential form with (J = fal' ~2)' for example
(J = ~2 - ~l or ~21~1' such that the hypotheses of interest become equivalent
to those of Theorem 3. In the present section the problem will be considered
for Poisson and binomial distributions; the case of normal distributions will
be taken up in Chapter 5.

We consider first the Poisson problem in which X and Yare indepen­
dently distributed according to P( A) and P(J.L), so that their joint distribu­
tion can be written as

e-("+I£) [J.L ]
P{ X = x, Y = y} = " exp ylog \" + (x + y)log A .

x.y. 1\

By Theorem 3 there exist UMP unbiased tests of the four hypotheses
HI' ... ' H4 concerning the parameter (J = 10g(J.L/A) or equivalently concern­
ing the ratio p = J.L/A. This includes in particular the hypotheses J.L ~ A (or
J.L = A) against the alternatives J.L > A, and J.L = A against J.L =1= A. Comparing
the distribution of (X, y) with (10), one has U = Yand T = X + Y, and by
Theorem 3 the tests are performed conditionally on the integer points of the

·For a discussion of the comparison of two treatments as a three-decision problem, see
Bahadur (1952) and Lehmann (1957).
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line segment X + Y = t in the positive quadrant of the (x, y) plane. The
conditional distribution of Y given X + Y = t is (Problem 13 of Chapter 2)

x )t-:»
P{Y=yIX+ Y=t} = U)(x:ILf(x+IL ' y=O,I, . .. ,t,

the binomial distribution corresponding to t trials and probability p =
IL/(X + IL) of success. The original hypotheses therefore reduce to the
corresponding ones about the parameter p of a binomial distribution. The
hypothesis H : p. ~ aX, for example, becomes H : p s a/t« + 1), which is
rejected when Y is too large. The cutoff point depends of course, in addition
to a, also on t . It can be determined from tables of the binomial, and for
large t approximately from tables of the normal distribution.

In many applications the ratio P = ILIX is a reasonable measure of the
extent to which the two Poisson populations differ, since the parameters X
and IL measure the rates (in time or space) at which two Poisson processes
produce the events in question. One might therefore hope that the power of
the above tests depends only on this ratio, but this is not the case. On the
contrary, for each fixed value of P corresponding to an alternative to the
hypothesis being tested, the power fJ(X, IL) = fJ(X, pX) is an increasing
function of X, which tends to 1 as X --+ 00 and to a as X --+ 0. To see this
consider the power fJ(plt) of the conditional test given t. This is an
increasing function of t, since it is the power of the optimum test based on t
binomial trials . The conditioning variable T has a Poisson distribution with
parameter X(1 + p), and its distribution for varying X forms an exponential
family. It follows (Lemma 2 of Chapter 3) that the overall power E[fJ(pIT)]
is an increasing function of A. As A --+°or 00, T tends in probability to °
or 00, and the power against a fixed alternative P tends to a or l.

The above test is also applicable to samples Xl' . .. ' Xm and YI , · · · , Yn

from two Poisson distributions. The statistics X = L~IX; and Y = Lj=llj
are then sufficient for A and IL, and have Poisson distributions with
parameters m); and nIL respectively. In planning an experiment one might
wish to determine m = n so large that the test of, say, H : P ~ Po has power
against a specified alternative PI greater than or equal to some preassigned
13. However, it follows from the discussion of the power function for n = 1,
which applies equally to any other n, that this cannot be achieved for any
fixed n, no matter how large. This is seen more directly by noting that as
X --+ 0, for both P = Po and P = PI the probability of the event X = Y = °
tends to 1. Therefore, the power of any level-a test against P = PI and for
varying Xcannot be bounded away from a. This difficulty can be overcome
only by permitting observations to be taken sequentially. One can for
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example determine to so large that the test of the hypothesis P ~ Po/{l + Po)
on the basis of to binomial trials has power ~ f3 against the alternative
PI = PI/(l + PI)· By observing (Xl' YI), (X2, Y2), .. . and continuing until
E( Xi + ¥;) ~ to' one obtains a test with power ~ f3 against all alternatives
with P ~ Pl.·

The corresponding comparison of two binomial probabilities is quite
similar. Let X and Y be independent binomial variables with joint distribu­
tion

} ( m ) xm-x(n) y n-yP{X=x,Y=y = x Plql Y P2q2

_(m)( n) m n [(1 P2 PI)- X Y ql q2exP y og- - log-
q2 ql

PI]+(x + y)log- .
ql

The four hypotheses HI ' . . . , H4 can then be tested concerning the parame­
ter

8 = IOg( P2IPI),
q2 ql

or equivalently concerning the odds ratio (also called cross-product ratio)

P = P21PI .
q2 ql

This includes in particular the problems of testing Hi: P2 s PI against
P2 > PI and H4:P2 = Pt against P2 "* Pt· As in the Poisson case, U = Y
and T = X + Y, and the test is carried out in terms of the conditional
distribution of Yon the line segment X + Y = t. This distribution is given
by

(21) P{Y=yIX+ Y=t} = Ct(p)(t~y)(;)pY, y = 0,1 , . . . , t,

•A discussion of this and alternative procedures for achieving the same aim is given by
Birnbaum (1954).



4.5]

where

COMPARING TWO POISSON OR BINOMIAL POPULATIONS

1

CJp) = I ( m ,)( n,)py'
L t - Y Y

.v'=o

155

In the particular case of the hypotheses Hi and H;', the boundary value (Jo

of (13), (18), and (19) is 0, and the corresponding value of p is Po = 1. The
conditional distribution then reduces to

P{Y=yIX+ Y= t} =
(/~y)(;)
(m;n) ,

which is the hypergeometric distribution.
Tables of critical values by Finney (1948) are reprinted in Biometrika

Tables for Statisticians, Vol. 1, Table 38 and are extended in Finney,
Latscha, Bennett, Hsu , and Horst (1963, 1966). Somewhat different ranges
are covered in Armsen (1955), and related charts are provided by Bross and
Kasten (1957) . Extensive tables of the hypergeometric distributions have
been computed by Lieberman and Owen (1961). Various approximations
are discussed in Johnson and Kotz (1969, Section 6.5) and by Ling and
Pra tt (1984) ; see also Cressie (1978).

The UMP unbiased test of PI = P2 ' which is based on the (conditional)
hypergeometric distribution, requires randomization to obtain an exact
conditional level a for each t of the sufficient statistic T. Since in practice
randomization is usually unacceptable, the one-sided test is frequently
performed by rejecting when Y ~ C(T), where C(t) is the smallest integer
for which P { Y ~ C( T) IT = t} s a . This conservative test is called
Fisher 's exact test [after the treatment given in Fisher (1934)], since the
probabilities are calculated from the exact hypergeometric rather than an
approximate normal distribution. The resulting conditional levels (and
hence the unconditional level) are often considerably smaller than a , and
this results in a substantial loss of power. An approximate test whose overall
level tends to be closer to a is obtained by using the normal approximation
to the hypergeometric distribution without continuity correction. [For a
comparison of this test with some competitors, see e.g. Garside and Mack
(1976) .] A nonrandomized test that prov ides a conservative overall level. but
that is less conservative than the " exact" test , is described by Boschloo
(1970) and by McDonald, Davis, and Milliken (1977). Convenient entries
into the extensive literature on these and related aspects of 2 x 2 tables can
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be found in Conover (1974), Kempthorne (1979), and Cox and Plackett
(1980); see also Haber (1980), Barnard (1982), Overall and Starbuck (1983),
and Yates (1984). For extensions to r X c tables, see Mehta and Patel
(1983) and the literature cited there.

6. TESTING FOR INDEPENDENCE IN A 2 X 2 TABLE

The problem of deciding whether two characteristics A and B are indepen­
dent in a population was discussed in Section 4 of Chapter 3 (Example 4),
under the assumption that the marginal probabilities p(A) and p(B) are
known. The most informative sample of size s was found to be one selected
entirely from that one of the four categories A, A, B, or E, say A, which is
rarest in the population. The problem then reduces to testing the hypothesis
H: p = p(B) in a binomial distribution b(p, s).

In the more usual situation that p(A) and p(B) are not known, a sample
from one of the categories such as A does not provide a basis for dis­
tinguishing between the hypothesis and the alternatives. This follows from
the fact that the number in the sample possessing characteristic B then
constitutes a binomial variable with probability p(BIA), which is com­
pletely unknown both when the hypothesis is true and when it is false. The
hypothesis can, however, be tested if samples are taken both from categories
A and A or both from B and E. In the latter case, for example, if the
sample sizes are m and n, the numbers of cases possessing characteristic A
in the two samples constitute independent variables with binomial distri­
butions b(Pl' m) and b(P2 ' n) respectively, where Pl = P(AIB) and P2 =
P(AIE). The hypothesis of independence of the two characteristics, p(AIB)
= p(A), is then equivalent to the hypothesis Pl = P2' and the problem
reduces to that treated in the preceding section.

Instead of selecting samples from two of the categories, it is frequently
more convenient to take the sample at random from the population as a
whole. The results of such a sample can be summarized in the following
2 X 2 contingency table, the entries of which give the numbers in the
various categories:

A A

~I X X'I M
B Y Y' N

T T'I s
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The joint distribution of the variables X, X', Y, and Y' is multinomial,
and is given by

P{X=x, X'=x' , Y=y, Y'=y'}

s!___v: '{' ,
x!x'!y!y'! ABPABP1BP1B

s! (PAB PAB PAB)
= , ,p}oexp x log- + x' log- + Y log- .

x!x !y!y ! PAB PAB PAB

Lemma 2 and Theorem 3 are therefore applicable to any parameter of the
form

PAB PAB PAB
8* = aolog - + allog - + a2Iog-.

PAB PAB PAB

Putting a l = a2 = 1, ao = -1, A = e'" = (PABPAB)/(PABPAB)' and de­
noting the probabilities of A and B in the population by PA = PAB + PAB'
PB = PAB + PAB' one finds

I-A
PAB = PAPB + -A-PABPAB'

I-A
PAB = PAPB - -A-PABPAB'

I-A
PAB = PAPB - -A-PABPAB'

I-A
PAB = PAPB + -A-PABPAB'

Independence of A and B is therefore equivalent to A = 1, and A < 1 and
A > 1 correspond to positive and negative dependence respectively.'

The test of the hypothesis of independence, or any of the four hypotheses
concerning A, is carried out in terms of the conditional distribution of X
given X + X' = m, X + Y = t. Instead of computing this distribution

t~ is equivalent to Yule's measure of association, which is Q = (1 - ~ )/(1 + ~). For a
discussion of this and related measures see Goodman and Kruskal (1954, 1959), Edwards
(1963), and Haberman (1982).
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directly, consider first the conditional distribution subject only to the
condition X + X' = m, and hence Y + Y' = s - m = n. This is seen to be

P{ X = x, Y = Y IX + X' = m}

= (~) (n ) ( PA B) x ( Pi B) m - x ( PA.B ) Y ( Pi~ ) n - Y ,

Y PB PB PB PB

which is the distribution of two independent binomial variables, the number
of successes in m and n trials with probability PI = PAB/PB and P2 =
PAB/PB' Actually, this is clear without computation, since we are now
dealing with samples of fixed size m and n from the subpopulations B and
E, and the probability of A in these subpopulations is PI and P2' If now the
additional restriction X + Y = t is imposed, the conditional distribution of
X subject to the two conditions X + X' = m and X + Y = t is the same as
that of X given X + Y = t in the case of two independent binomials
considered in the previous section. It is therefore given by

P{X=xIX+X'=m, X+ Y=t} =C/(p)(~)L~Jpl-x,

x = 0, ... , t,

that is, by (21) expressed in terms of x instead of y. (Here the choice of X
as testing variable is quite arbitrary; we could equally well again have
chosen Y.) For the parameter p one finds

p = P2/PI = PiBPAB = Ii.
q2 ql PABPiB

From these considerations it follows that the conditional test given X + X'
= m, X + Y = t, for testing any of the hypotheses concerning Ii is identi­
cal with the conditional test given X + Y = t of the same hypothesis
concerning p = Ii in the preceding section, in which X + X I = m was given
a priori. In particular, the conditional test for testing the hypothesis of
independence Ii = 1, Fisher's exact test, is the same as that of testing the
equality of two binomial p's and is therefore given in terms of the
hypergeometric distribution.

At the beginning of the section it was pointed out that the hypothesis of
independence can be tested on the basis of samples obtained in a number of
different ways. Either samples of fixed size can be taken from A and A or
from Band B, or the sample can be selected at random from the
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population at large. Which of these designs is most efficient depends on the
cost of sampling from the various categories and from the population at
large, and also on the cost of performing the necessary classification of a
selected individual with respect to the characteristics in question. Suppose,
however, for a moment that these considerations are neglected and that the
designs are compared solely in terms of the power that the resulting tests
achieve against a common alternative. Then the following results" can be
shown to hold asymptotically as the total sample size s tends to infinity:

(i) If samples of size m and n (m + n = s) are taken from Band E
or from A and A, the best choice of m and n is m = n = s/ 2.

(ii) It is better to select samples of equal size s/2 from Band Ethan
from A and ,4 provided IPB - tl > IpA - tl·

(iii) Selecting the sample at random from the population at large is
worse than taking equal samples either from A and A or from B
and E.

These statements, which we shall not prove here , can be established by
using the normal approximation for the distribution of the binomial vari­
ables X and Y when m and n are fixed, and by noting that under random
sampling from the population at large, M/ sand N/ s tend in probability to
PBand Pn respectively.

7. ALTERNATIVE MODELS FOR2 x 2 TABLES

Conditioning of the multinomial model for the 2 X 2 table on the row (or
column) totals was seen in the last section to lead to the two-binomial model
of Section 5. Similarly, the multinomial model itself can be obtained as a
conditional model in some situations in which not only the marginal totals
M, N, T, and T' are random but the total sample size s is also a random
variable. Suppose that the occurrence of events (e.g. patients presenting
themselves for treatment) is observed over a given period of time, and that
the events belonging to each of the categories AB, AB, AE, AE are governed
by independent Poisson processes, so that by (2) of Chapter 1 the num­
bers X, X', Y, Y' are independent Poisson variables with expectations
h AB, h AB, hAn' hAn, and hence s is a Poisson variable with expectation

h = h AB+ hAB+ hAn + hAn'
It may then be of interest to compare the ratio hAB/h ABwith hAn/hAn

and in particular to test the hypothesis H : hAB/h ABs hAn/hAn' The joint
distribution of X, X', Y, Y' constitutes a four-parameter exponential family,

"These results were conjectured by Berkson and proved by Neyman in a course on x2
,
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which can be written as

p ( X = X, X' = X', Y = y, y' = y')

1 {(AABAlil)= I'I' II exp xlog A -A- + (x' + x)logAlB
x.x .y.y. AB AB

+(y + x )log AAil + (y' - x )log Alil}'

Thus, UMP unbiased tests exist of the usual one- and two-sided hypotheses
concerning the parameter () = AABAlil/AlBAAil' These are carried out in
terms of the conditional distribution of X given

X' + X= m, y + X = t, X + X' + Y + Y' = s,

where the last condition follows from the fact that given the first two it is
equivalent to Y' - X = s - t - m. By Problem 13 of Chapter 2, the condi­
tional distribution of X, X', Y given X + X' + Y + Y' = s is the multi­
nomial distribution of Section 6 with

AAB
PAB=T '

AlB
PlB=T'

AAil
PAil = T'

AlB
Plil=T

The tests therefore reduce to those derived in Section 6.
The three models discussed so far involve different sampling schemes.

However, frequently the subjects for study are not obtained by any sam­
pling but are the only ones readily available to the experimenter. To create a
probabilistic basis for a test in such situations, suppose that Band iJ are
two treatments, either of which can be assigned to each subject, and that A
and A denote success or failure (e.g. survival, relief of pain, etc.). The
hypothesis of no difference in the effectiveness of the two treatments (i.e.
independence of A and B) can then be tested by assigning the subjects to
the treatments, say m to B and n to E, at random, i.e. in such a way that all
possible (~) assignments are equally likely. It is now this random assign­
ment which takes the place of the sampling process in creating a probability
model, thus making it possible to calculate significance.

Under the hypothesis H of no treatment difference, the success or failure
of a subject is independent of the treatment to which it is assigned. If the
numbers of subjects in categories A and A are t and t ' respectively
(t + t ' = s), the values of t and t ' are therefore fixed, so that we are now
dealing with a 2 x 2 table in which all four margins t, t ', m, n are fixed.
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Then anyone of the four cell counts X, X', Y, Y' determines the other three.
Under H, the distribution of Y is the hypergeometric distribution derived as
the conditional null distribution of Y given X + Y = t at the end of Section
5. The hypothesis is rejected in favor of the alternative that treatment lJ
enhances success if Y is sufficiently large. Although this is the natural test
under the given circumstances, no optimum property can be claimed for it,
since no clear alternative model to H has been formulated. *

Consider finally the situation in which the subjects are again given rather
than sampled, but Band lJ are attributes (for example, male or female,
smoker or nonsmoker) which cannot be assigned to the subjects at will.
Then there exists no stochastic basis for answering the question whether
observed differences in the rates X/M and Y/N correspond to differences
between Band lJ, or whether they are accidental. An approach to the
testing of such hypotheses in a nonstochastic setting has been proposed by
Freedman and Lane (1982).

The various models for the 2 X 2 table discussed in Sections 6 and 7 may
be characterized by indicating which elements are random and which fixed:

(i) All margins and s random (Poisson).

(ii) All margins are random, s fixed (multinomial sampling).

(iii) One set of margins random, the other (and then a fortiori s) fixed
(binomial sampling).

(iv) All margins fixed. Sampling replaced by random assignment of
subjects to treatments.

(v) All aspects fixed; no element of randomness .

In the first three cases there exist UMP unbiased one- and two-sided tests of
the hypothesis of independence of A and B. These tests are carried out by
conditioning on the values of all elements in (i)-(iii) that are random, so
that in the conditional model all margins are fixed. The remaining random­
ness in the table can be described by anyone of the four cell entries; once it
is known, the others are determined by the margins. The distribution of
such an entry under H has the hypergeometric distribution given at the end
of Section 5.

The models (i)-(iii) have a common feature. The subjects under observa­
tion have been obtained by sampling from a population, and the inference
corresponding to acceptance or rejection of H refers to that population.
This is not true in cases (iv) and (v).

"The one-sided test is of course UMP against the class of alternatives defined by the right
side of (21), but no reasonable assumptions have been proposed that would lead to this class.
For suggestions of a different kind of alternative see Gokhale and Johnson (1978).



162 UNBIASEDNESS: THEORY AND FIRST APPLICATIONS [4.8

In (iv) the subjects are given, and a probabilistic basis is created by
assigning them at random, m to B and n to B. Under the hypothesis H of
no treatment difference, the four margins are fixed without any condi­
tioning, and the four cell entries are again determined by anyone of them,
which under H has the same hypergeometric distribution as before. The
present situation differs from the earlier three in that the inference cannot
be extended beyond the subjects at hand.*

The situation (v) is outside the scope of this book, since it contains no
basis for the type of probability calculations considered here. Problems of
this kind are however of great importance, since they arise in many
observational (as opposed to experimental) studies. For a related discussion,
see Finch (1979).

8. SOME THREE-FACTOR CONTINGENCY TABLES

When an association between A and B exists in a 2 X 2 table, it does not
follow that one of the factors has a causal influence on the other. Instead,
the explanation may, for example, lie in the fact that both factors are
causally affected by a third factor C. If C has K possible outcomes
Ct , ••• , CK , one may then be faced with the apparently paradoxical situa­
tion that A and B are independent under each of the conditions Ck

(k = 1, .. . , K) but exhibit positive (or negative) association when the tables
are aggregated over C, that is, when the K separate 2 X 2 tables are
combined into a single one showing the total counts of the four categories.
[An interesting example is discussed by Bickelet al. (1977); see also Lindley
and Novick (1981).] In order to determine whether the association of A and
B in the aggregated table is indeed "spurious", one would test the hypothe­
sis, (which arises also in other contexts) that A and B are conditionally
independent given C; for all k = 1, ... , K, against the alternative that there
is an association for at least some k.

Let Xk , Xl, Yk , YI denote the counts in the 4K cells of the 2 X 2 X K
table which extends the 2 X 2 table of Section 6 to the present case.

Again, several sampling schemes are possible. Consider first a ran­
dom sample of size s from the population at large. The joint distribution
of the 4K cellcounts then is multinomial with probabilities PABCk'

PABCk' PASCk' PASCk for the outcomes indicated by the subscripts. If b. k

"For a more detailed treatment of the distinction between population models [such as
(i}-(iii») and randomization models [such as (iv»). see Lehmann (1975).
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denotes the AB odds ratio for C, defined by

A _ PABC.PABC. _ PABIC.PABIC.
Uk - - ,

PABC.PABC. PABIC.PABIC.

where PABIC.' ... denotes the conditional probability of the indicated event
given Ck , then the hypothesis to be tested is D. k = 1 for all k.

A second sche!De t~es saJ!lples of size Sk from Ck and classifies the
subjects as AB, AB, AB, or AB. This is the case of K independent 2 X 2
tables, in which one is dealing with K quadrinomial distributions of the
kind considered in the preceding sections. Since the kth of these distribu­
tions is also that of the same four outcomes in the first model conditionally
given Ci; we shall denote the probabilities of these outcomes in the present
model again by PABIC.' ... . _

To motivate the next sampling scheme, suppose that A and A represent
success or failure of a medical treatment, Band B that the treatment is
applied or the subject is used as a control, and Ck the kth hospital taking
part in this study. If samples of size nk and mk are obtained and are
assigned to treatment and control respectively, we are dealing with K pairs
of binomial distributions. Letting Yk and Xk denote the number of successes
obtained by the treatment subjects and controls in the kth hospital, the
joint distribution of these variables by Section 5 is

[n(7:)(;:) Q1'k'Q2k ]exp( LYklog s, + L (Xk + Yk)log ~:: ),

where Pi» and qw (Pu and qu) denote the probabilities of success and
failure under B (under In

The above three sampling schemes lead to 2 X 2 X K tables in which
respectively none, one, or two of the margins are fixed. Alternatively, in
some situations a model may be appropriate in which the 4K variables
Xk, X", Yk, Y': are independent Poisson with expectations hABC.' . .. . In this
case, the total sample size s is also random.

For a test of the hypothesis of conditional independence of A and B
given C; for all k (i.e. that D. I = ... = D. k = 1), see Problem 43 of
Chapter 8. Here we shall consider the problem under the simplifying
assumption that the D. k have a common value D., so that the hypothesis
reduces to H: D. = 1. Applying Theorem 3 to the third model (K pairs of
binomials) and assuming the alternatives to be D. > 1, we see that a UMP
unbiased test exists and rejects H when EYk > C( Xl + YI , · · · , XK + YK ),
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where C is determined so that the conditional probability of rejection, given
that Xk + Yk = tk , is a for all k = 1, . .. , K. It follows from Section 5 that
the conditional joint distribution of the Yk under H is

PH[Y1 = ./1'·· · . YK = YK IX, + Yk = t k , k = 1, .. . , K]

~ n (,."\)(;:)
(m\:n k

)

The conditional distribution of EYk can now be obtained by adding the
probabilities over all (Yl"'" YK) whose sum has a given value. Unless the
numbers are very small, this is impractical and approximations must be
used [see Cox (1966) and Gart (1970)].

The assumption H': ~l = . . . = ~ K = ~ has a simple interpretation
when the successes and failures of the binomial trials are obtained by
dichotomizing underlying unobservable continuous response variables. In a
single such trial, suppose the underlying variable is Z and that success
occurs when Z > 0 and failure when Z s O. If Z is distributed as F( Z - n
with location parameter r, we have P = 1 - F( - nand q = F( - n. Of
particular interest is the logisticdistribution , for which F( x) = 1/(1 + e- X).
In this case P = er/(1 + er), q = 1/(1 + er), and hence log(p/q) = r.
Applying this fact to the success probabilities

we find that

Plk = 1 - F(-r1k ) , P2k = 1 - F(- r2k ) .

( P2k !Plk)(Jk = log ~ k = log - - = r2k - rlk ,
q2k qlk

so that r2k = rlk + (Jk' In this model, H' thus reduces to the assumption
that r2k = rlk + (J , that is, that the treatment shifts the distribution of the
underlying response by a constant amount 8.

If it is assumed that F is normal rather than logistic, F(x) = ~(x) say,
then r = ~ - 1( p), an i constancy of r2k - rlk requires the much more
cumbersome condition ~l -l( P2k) - ~ -l(Plk) = constant. However, the
funct ions log(p/q) and ~ "I\P) agree quite well in the range .1 s P s .9
[see Cox (1970. p. 28)], and the assumption of constant 6. k in the logistic
response model is therefore close to the corresponding assumption for an
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underlying normal response.· [The so-called loglinear models, which for
contingency tables correspond to the linear models to be considered in
Chapter 7 but with a logistic rather than a normal response variable,
provide the most widely used approach to contingency tables. See, for
example, the books by Cox (1970), Haberman (1974), Bishop, Fienberg, and
Holland (1975), Fienberg (1980), Plackett (1981), and Agresti (1984).]

The UMP unbiased test, derived above for the case that the B- and
C-margins are fixed, applies equally when any two margins, anyone margin,
or no margins are fixed, with the understanding that in all cases the test is
carried out conditionally, given the values of all random margins.

The test is also used (but no longer UMP unbiased) for testing H: Al =
. .. = AK = 1 when the A's are not assumed to be equal but when the
Ak - 1 can be assumed to have the same sign, so that the departure from
independence is in the same direction for all the 2 X 2 tables. A one- or
two-sided version is appropriate as the alternatives do or do not specify the
direction. For a discussion of this test, the Cochran-Mantel-Haenszel test,
and some of its extensions see the reviews by Landis, Heyman, and Koch
(1978), Darroch (1981), and Somes and O'Brien (1985).

Consider now the case K = 2, with mk and nk fixed, and the problem of
testing H' : A2 = Al rather than assuming it. The joint distribution of the
X's and Y's given earlier can then be written as

[bl (::)(;:) qlkkq2t]

(
A2 \"' Pli )x exp Y210gA + (Yl + Y2)logAI + "",(Xi + y;)log- ,
~l qli

and H' is rejected in favor of A2 > Al if Y2 > C, where C depends on
Yl + Y2, Xl + Yl and X2 + Y2, and is determined so that the conditional
probability of rejection given Yl + Y2 = IV, Xl + Yl = II ' X2+ Y2 = 12 is
a. The conditional null distribution of Yl and Y2, given Xk + Yk = Ik
(k = 1,2), by (21) with A in place of p is

C, (A)C, (A)( ~l )(nl
) ( ':2 )(n 2

)AYI+Y2,
I 2 11 Yl Yl 12 Y2 Y2

and hence the conditional distribution of Y2, given in addition that Y1 + Y2

-The problem of discriminating between a logistic and normal response model is discussed
by Chambers and Cox (1967).
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= w, is of the form

k(t1, t2, W)(y +~l_ w)( W~ y)( t2m~y)(:2).

Some approximations to the critical value of this test are discussed by Birch
(1964); see also Venable and Bhapkar (1978). [Optimum large-sample tests
of some other hypotheses in 2 x 2 x 2 tables are obtained by Cohen,
Gatsonis, and Marden (1983).]

9. THESIGN TEST

To test consumer preferences between two products, a sample of n subjects
are asked to state their preferences. Each subject is recorded as plus or
minus as it favors product B or A. The total number Yof plus signs is then
a binomial variable with distribution b(p, n). Consider the problem of
testing the hypothesis P = t of no difference against the alternatives P 4: t.
(As in previous such problems, we disregard here that in case of rejection it
will be necessary to decide which of the two products is preferred.) The
appropriate test is the two-sided sign test, which rejects when IY- tnl is
too large. This is UMP unbiased (Section 2).

Sometimes the subjects are also given the possibility of declaring them­
selves as undecided. If P_, P+' and Po denote the probabilities of prefer­
ence for product A, product B, and of no preference respectively, the
numbers X, Y, and Z of decisions in favor of these three possibilities are
distributed according to the multinomial distribution

(22)
n!__ pX Y

x!y!z! -P+Po (x+y+z=n),

and the hypothesis to be tested is H: p += P_. The distribution (22) can
also be written as

n' ( P )Y( P )Z(23 _ .- + 0 (1 - P - P r
) x!y!z! 1 - Po - P+ 1 - Po - P+ 0 +,

and is then seen to constitute an exponential family with U = Y, T = Z,
0= 10g[p+/(1 - Po - p+)], ,., = 10g[poI(1- Po - p+»). Rewriting the hy­
pothesis H as p += 1 - Po - P+' it is seen to beequivalent to 0 = O. There
exists therefore a UMP unbiased test of H, which is obtained by considering
z as fixed and determining the best unbiased conditional test of H given
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z = z. Since the conditional distribution of Y given z is a binomial
distribution b(p, n - z) with p = P+/(P+ + p_), the problem reduces to
that of testing the hypothesis p = 1in a binomial distribution with n - z
trials, for which the rejection region is IY - 1<n - z) I > C(z). The UMP
unbiased test is therefore obtained by disregarding the number of cases in
which no preference is expressed (the number of ties), and applying the sign
test to the remaining data .

The power of the test depends strongly on Po' which governs the
distribution of Z. For large Po' the number n - z of trials in the conditional
binomial distribution can be expected to be small, and the test will thus
have little power. This may be an advantage in the present case, since a
sufficiently high value of Po' regardless of the value of p +/p _, implies that
the population as a whole is largely indifferent with respect to the products.

The above conditional sign test applies to any situation in which the
observations are the result of n independent trials, each of which is either a
success (+), a failure ( - ), or a tie. As an alternative treatment of ties, it is
sometimes proposed to assign each tie at random (with probability 1each)
to either plus or minus. The total number Y' of plus signs after the ties have
been broken is then a binomial variable with distribution bt«, n), where
." = P++ 1Po' The hypothesis H becomes ." = 1, and is rejected when
IY' - 1nl > C, where the probability of rejection is a when." = 1. This test
can be viewed also as a randomized test based on X, Y, and Z, and it is
unbiased for testing H in its original form, since p + is = or * p _ as ." is
= or * 1. Since the test involves randomization other than on the
boundaries of the rejection region, it is less powerful than the UMP
unbiased test for this situation, so that the random breaking of ties results in
a loss of power.

This remark might be thought to throw some light on the question of
whether in the determination of consumer preferences it is better to permit
the subject to remain undecided or to force an expression of preference.
However, here the assumption of a completely random assignment in case
of a tie does not apply. Even when the subject is not conscious of a definite
preference, there will usually be a slight inclination toward one of the two
possibilities, which in a majority of the cases will be brought out by a forced
decision. This will be balanced in part by the fact that such forced decisions
are more variable than those reached voluntarily. Which of these two factors
dominates depends on the strength of the preference.

Frequently, the question of preference arises between a standard product
and a possible modification or a new product. If each subject is required to
express a definite preference, the hypothesis of interest is usually the
one-sided hypothesis p + ~ p _, where + denotes a preference for
the modification. However, if an expression of indifference is permitted, the
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hypothesis to be tested is not P+5. P_ but \rather P+5. Po+ P_, since
typically the modification is of interest only if it is actually preferred. As
was shown in Chapter 3, Example 8, the one-sided sign test which rejects
when the number of plus signs is too large is UMP for this problem.

In some investigations, the subject is asked not only to express a
preference but to give a more detailed evaluation, such as a score on some
numerical scale. Depending on the situation, the hypothesis can then take
on one of two forms. One may be interested in the hypothesis that there is
no difference in the consumer's reaction to the two products . Formally, this
states that the distribution of the scores Xl' .. " X; expressing the degree of
preference of the n subjects for the modified product is symmetric about the
origin. This problem, for which a UMP unbiased test does not exist without
further assumptions, will be considered in Chapter 6, Section 10.

Alternatively, the hypothesis of interest may continue to be H : P+= p_ .
Since p _= P { X < O} and p += P{ X > O}, this now becomes

H : P{X> O} = P{X< O}.

Here symmetry of X is no longer assumed even when P{ X < O} = P{ X>
O} . If no assumptions are made concerning the distribution of X beyond the
fact that the set of its possible values is given, the sign test based on the
number of X's that are positive and negative continues to be UMP
unbiased.

To see this, note that any distribution of X can be specified by the
probabilities

p_=P{X<O}, p+= P{X> O}, Po = P{X = O},

and the conditional distributions F_ and F+ of X given X < 0 and X > 0
respectively. Consider any fixed distributions F~, F~, and denote by $"0
the family of all distributions with F _= F~, F += F~ and arbitrary
p _, p +' Po. Any test that is unbiased for testing H in the original family of
distributions $" in which F_ and F+ are unknown is also unbiased for
testing H in the smaller family $"0' We shall show below that there exists a
UMP unbiased test CPo of H in $"0. It turns out that CPo is also unbiased for
testing H in $" and is independent of F~, F~. Let cp be any other unbiased
test of H in $", and consider any fixed alternative, which without loss of
generality can be assumed to be in $"0. Since cp is unbiased for $", it is
unbiased for testing p+= p_ in $"0; the power of CPo against the particular
alternative is therefore at least as good as that of cp. Hence CPo is UMP
unbiased.

To determine the UMP unbiased test of H in ~o, let the densities of F~
and F ~ with respect to some measure p. be / ~ and f~. The joint density of
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the X 's at a point (Xl' . •. ' x n ) with

Xi '·· ·' X i < 0 = Xl· = ... = Xl· < x; , ... , X k1 r 1 s 1 '"

is

p'-Pop~f~(xi ) ... f~(xi )n(Xk ) . . .n(Xk ).
1 rim

The set of statistics (r, s, m) is sufficient for (p_, Po' P+), and its distribu­
tion is given by (22) with X = r, y = m, Z = s. The sign test is therefore
seen to be UMP unbiased as before.

A different application of the sign test arises in the context of a 2 X 2
table for matched pairs. In Section 5, success probabilities for two treat­
ments were compared on the basis of two independent random samples.
Unless the population of subjects from which these samples are drawn is
fairly homogeneous, a more powerful test can often be obtained by using a
sample of matched pairs (for example, twins or the same subject given the
treatments at different times). For each pair there are then four possible
outcomes: (0,0), (0,1), (1,0) , and (1,1), where 1 and 0 stand for successand
failure, and the first and second number in each pair of responses refer to
the subject receiving treatment 1 or 2 respectively.

The results of such a study are sometimes displayed in a 2 X 2 table,

o
1

o
x
Y

1

X'
y'

which despite the formal similarity differs from that considered in Section 6.
If a sample of s pairs is drawn, the joint distribution of X, Y, X', Y' as
before is multinomial, with probabilities Poo, POI' PIO' Pu- The success
probabilities of the two treatments are 'lT1 = PIO + Pu for the first and
'lT2 = POI + Pu for the second treatment, and the hypothesis to be tested is
H: 'lT1 = 'lT2 or equivalently PIO = POI' rather than PIOPOI = PooPu as it was
earlier.

In exponential form, the joint distribution can be written as

(24) s!piI (POI PIO poo)'I exp y log- + (X' + y)log- + X log- .
X!X .y !y '! PIO Pu Pu

There exists a UMP unbiased test, McNemar's test, which rejects H in
favor of the alternatives PIO < POI when Y> C(X' + Y, X), where the
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conditional probability of rejection given X' + Y = d and X = x is a for
all d and x. Under this condition, the numbers of pairs (0,0) and (1,1) are
fixed, and the only remaining variables are Y and X' = d - Y which
specify the division of the d cases with mixed response between the
outcomes (0,1) and (1,0). Conditionally, one is dealing with d binomial
trials with success probability P = POl/(POl +PlO), H becomes P = t, and
the UMP unbiased test reduces to the sign test. [The issue of conditional
versus unconditional power for this test is discussed by Frisen (1980).]

The situation is completely analogous to that of the sign test in the
presence of undecided opinions, with the only difference that there are now
two types of ties, (0,0) and (1,1), both of which are disregarded in
performing the test.

10. PROBLEMS

Section 1

1. Admissibility. Any UMP unbiased test 4>0 is admissible in the sense that
there cannot exist another test 4>1 which is at least as powerful as 4>0 against
all alternatives and more powerful against some.
[If 4> is unbiased and 4>' is uniformly at least as powerful as 4>, then 4>' is also
unbiased.]

2. p-values. Consider a family of tests of H : 8 = 80 (or 8 :5; 80 ) , with level-a
rejection regions Sa such that (a) PSo{ X E Sa} = a for all 0 < a < 1, and (b)
Sao = (Ia>aoSa for all 0 < ao < 1, which in particular implies Sa C Sa' for
a < a' .

(i) Then the p-value a is given by a = a(x) = inf{ a : x E Sa}.
(ii) When 8 = 80 , the distribution of a is the uniform distribution over (0, 1).

(iii) If the tests Sa are unbiased, the distribution of a under any alternative 8
satisfies

Ps{a :5; a} ~ PSo{a :5; a} = a,

so that it is shifted toward the origin.

If p-values are available from a number of independent experiments, they can
be combined by (ii) and (iii) to provide an overall test* of the hypothesis.
[a :5; a if and only if x E Sa' and hence Ps{a :5; a} = Ps{X E Sa} = Pa (8) ,
which is a for 8 = 80 and ~ a if 8 is an alternative to H.]

"For discussions of such tests see for example Koziol and Perlman (1978), Berk and Cohen
(1979), Mudholkar and George (1979), Scholz (1982), and the related work of Marden (1982).
Associated confidence intervals are proposed by Littell and Louv (1981).
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Section 2

3. Let X have the binomial distribution b(p, n), and consider the hypothesis
H :p = Po at level of significance a . Determine the boundary values of the
UMP unbiased test for n = 10 with a = .1, Po = .2 and with a = .05, Po = .4,
and in each case graph the power functions of both the unbiased and the
equal-tails test.

4. Let X have the Poisson distribution P( 'T), and consider the hypothesis
H : 'T = 'To . Then condition (6) reduces to

4.10]

C2-1 T. x - I 2 T.C,-I

L (0_ 1)' e- To + L (1 - y;) (Co_ 1)' e-To
= 1 - a,

x-C.+I X • i-I I'

provided C1 > 1.

5. Let T,,/O have a X2-distribution with n degrees of freedom. For testing
H :°= 1 at level of significance a = .05, find n so large that the power of the
UMP unbiased test is ~ .9 against both °~ 2 and °s t. How large does n
have to be if the test is not required to be unbiased?

6. Let X and Y be independently distributed according to one-parameter ex­
ponential families, so that their joint distribution is given by

dP8! . 8
2

( x, y) = C(°1) e 8•T(x) d",( x) K( 02) e 82U( y ) dJl(y ) .

Suppose that with probability 1 the statistics T and U each take on at least
three values and that (a, b) is an interior point of the natural parameter space.
Then a UMP unbiased test does not exist for testing H : 01 = a, O2 = b
against the alternatives 9. oF a or 92 oF b.*
[The most powerful unbiased tests against the alternatives °1 "* a, 02 = b and
01 = a, O2 "* b have acceptance regions C1 < T(x) < C2 and K 1 < U( y) <
K 2 respectively. These tests are also unbiased against the wider class of
alternatives K: °1 "* a or 02 "* b or both.]

7. Let (X, Y) be distributed according to the exponential family

dP8r-82( X, y) = C(°1 , 02)e8.x+82Y d",(x, y) .

The only unbiased test for testing H : 01 s a, 02 s b against K : 01 > a or
02 > b or both is t/I(x, y) == a .

"For counterexamples when the conditions of the problem are not satisfied, see Kallenberg
(1984) .
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[Take a = b = 0, and let fJ(°\,°2 ) be the power function of any level-a test.
Unbiasedness implies fJ(O, °2) = a for 02 < 0 and hence for all °2, since
fJ(O, 02) is an analytic function of 02 ' For fixed 02 > 0, fJ(O\, 02) considered as
a function of 0\ therefore has a minimum at 0\ = 0, so that afJ(0\,02)/ao\
vanishes at 0\ = 0 for all positive °2 , and hence for all °2 , By considering
alternatively positive and negative values of 02 and using the fact that the
partial derivatives of all orders of fJ(O\, 02) with respect to 0\ are analytic, one
finds that for each fixed 02 these derivatives all vanish at 0\ = 0 and hence
that the function fJ must be a constant. Because of the completeness of (X, Y),
fJ(O\, 02) == a implies 4'(x, y) == a.]

8. For testing the hypothesis H: °= 00 (00 an interior point of 0) in the
one-parameter exponential family of Section 2, let rc be the totality of tests
satisfying (3) and (5) for some - 00 s C\ s C2 s 00 and 0 s 1\, 12 s 1.

(i) rc is complete in the sense that given any level-a test 4'0 of H there
exists 4' E rc such that 4' is uniformly at least as powerful as 4'0'

(ii) If 4'\, 4'2 E rc, then neither of the two tests is uniformly more powerful
than the other.

(iii) Let the problem be considered as a two-decision problem, with decisions
do and d, corresponding to acceptance and rejection of H, and with loss
function L(O, d;) = L;(O), i = 0,1. Then rc is minimal essentially com­
plete provided L\ (0) < Lo(0) for all °'* °0 ,

(iv) Extend the result of part (iii) to the hypothesis H': 0\ ~°~°2 ,

[(i): Let the derivative of the power function of cfIo at 00 be fJ~o(Oo) = p. Then
there exists .p E "" such that p; (80 ) = p and .p is UMP among all tests
satisfying this condition.
(ii) : See Chapter 3, end of Section 7.
(iii): See Chapter 3, proof of Theorem 3.]

Section 3

9. Let X\ , .. . , X; be a sample from (i) the normal distribution N(aa, ( 2 ) , with a
fixed and 0 < a < 00; (ii) the uniform distribution U(°- ! ,°+ !), - 00 < °
< 00 ; (iii) the uniform distribution U(O\, 02)' -00 < 0\ < O2 < 00 . For these
three families of distributions the following statistics are sufficient: (i), T =

(EXi,L\'l); (ii) and (iii), T = (min(X\, ... , Xn ) , max(X\, .. . , Xn }} . The family
of distributions of T is complete for case (iii), but for (i) and (ii) it is not
complete or even boundedly CO;;Plete.
[(i): The distribution of [Xi/ xl does not depend on e.]

10. Let Xi' ''' ' Xm and Y\, . .. , y" be samples from Na, ( 2
) and »«. or 2

) . Then
T = (EXi,Dj,[Xi2,D?), which in Example 5 was seen not to be complete, is
also not boundedly complete.
[Let f(t) be 1 or -1 as ji - :x is positive or not.]
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11. Counterexample. Let X be a random variable taking on the values
-1,0.1,2, . . . with probabilities

Po{ X = -I} = 8; P8{X= x} = (1- 8)28x, x = 0.1 •. . . .

Then gJ = {P8 , 0 < 8 < I} is boundedly complete but not complete .

12. The completeness of the order statistics in Example 6 remains true if the family
$' is replaced by the family~ of all continuous distributions.
[To show that for any integrable symmetric function l/J . !l/J(x1,... ,
x,,) dF(x l ) dF(x,,) = 0 for all continuous F implies l/J = 0 a.e., replace F
by a l F1 + +a" F,., where 0 < a, < 1. Ea j = 1. By considering the left side
of the resulting identity as a polynomial in the a's one sees that
!l/J(XI" ' " x,,) dFI(XI) ' " dF,.(x,,) = 0 for all continuous F; . This last equa­
tion remains valid if the F; are replaced by la ( x) F( x ), where la ( x) = 1 if
X:$; a, and = 0 otherwise. This implies that l/J'= 0 except on a set which has
measure 0 under F X .• . X F for all continuous F.)

13. Determine whether T is complete for each of the following situations:

(i) XI ' . .. , X" are independently distributed according to the uniform distri ­
bution over the integers 1,2•. . . , 8 and T = max( XI' . . . , X,,).

(ii) X takes on the values 1.2.3 .4 with probabilities pq,p2q• pq2,1 - 2pq
respectively. and T = X.

Section 4

14. Measurability of testsof Theorer: 3. The function l/J3 defined by (16) and (17)
is jointly measurable in u and t.
[With C1 = v and C2 = w, the determining equations for v. W , 'YI ' 'Y2 are

(25) F, ( v -) + [1 - F, ( w)] + 'YI [ F, ( v) - F, (v - )]

+'Y2[F,(W) - F,(w -)] = a

and

(26) G,(v - ) + [1 - G, ( w)] + 'YI [ G,( v) - G,(v - )]

+'Y2[G,( w) - G,( w -)] = a.

where

(27) F,(u) = r C,(81) e81Y dJl,(y),
-00

G,(u) = r C,(82)e
82Y dJl,(y)

-00

denote the conditional cumulative distribution function of U given t when
8 = 81 and 8 = 82 respectively.
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(1) For each 0 ~ y ~ a let v(y, t) = F;1(y) and w(y, t) = F;-I(1 - a + y),
where the inverse function is defined as in the proof of Theorem 3. Define
'YI (y, t) and 'Y2 (y, t) so that for v = v(y, t) and w = w(y, t),

F;( v -) + 'YI [F;( v) - F;( v - )] = y,

1- F;(w) + 'Y2[F;(w) - F;(w - )] = a - y.

(2) Let H(y, t) denote the left-hand side of (26), with v = v(y, r), etc. Then
H(O, t) > a and Hi«, t) < a . This follows by Theorem 2 of Chapter 3 from
the fact that v(O, t) = - 00 and w( a, t) = 00 (which shows the conditional
tests corresponding to y = 0 and y = a to be one-sided), and that the
left-hand side-of (26) for any y is the power of this conditional test.
(3) For fixed t, the functions

HI ( y , t) = G, (v -) + 'YI [ G, ( v) - G, ( v - )]

and

H2(y, t) = 1 - G,(w) + 'Y2[ G,(w) - G,(w -)]

are continuous functions of y. This is a consequenceof the fact, which follows
from (27), that a.e. fJJT the discontinuities and flat stretches of F; and G,
coincide.
(4) The function H(y, t) is jointly measurable in y and t. This follows from
the continuity of H by an argument similar to the proof of measurability of
F; ( u) in the text. Define

y(t) = inf{y : H(y,t) < a},

and let v(t) = v[y(t), t], etc. Then (25) and (26) are satisfied for all t. The
measurability of v(t), w(t), 'YI (r), and 'Y2(t) defined in this manner will follow
from measurability in t of y(t) and F;1[y(t)]. This is a consequence of the
relations, which hold for all real c,

{t :y(t) <c} = U {t :H(r,t) <a},
r<c

where r indicates a rational, and

{t:F;I[y(t)] ~c} = {t :y(t) - F; ( c) ~O} .]

15. Continuation. The function 1/14 defined by (16), (18), and (19) is jointly
measurable in u and t.
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[The proof, which otherwise is essentially like that outlined in the preceding
problem, requires the measurability in z and t of the integral

g(z,t) = r- udF,(u) .
-00

This integral is absolutely convergent for all t, since F, is a distribut ion
belonging to an exponential family. For any z < 00, g(z, t) = lim gn(z, t),
where

00 ( j ) [( j - 1 ) ( j )]gil ( z , r) = j~l Z - 2n F, z - ---r- - 0 - F, z - 2n - 0 ,

and the measurability of g follows from that of the functions gn' The
inequalities corresponding to those obtained in step (2) of the preceding
problem result from the property of the conditional one-sided tests established
in Problem 22 of Chapter 3.]

16. The UMP unbiased tests of the hypotheses HI ' " '' H4 of Theorem 3 are
unique if attention is restricted to tests depending on U and the T 's.

Section 5

17. Let X and Y be independently distributed with Poisson distributions P( A)
and P(p.). Find the power of the UMP unbiased test of H: Po 5 A, against the
alternatives A = .1, Po = .2; A = 1, Po = 2; A = 10, Po = 20; A = .1, Po = .4; at
level of significance a = .1.
[Since T = X + Y has the Poisson distribution P(A + Po) , the power is

00 (A+)I
fJ=LfJ(t) Po - (>..+1')

1-0 t! e ,

where fJ( t) is the power of the conditional test given t against the alternative
in question .]

18. Sequential comparison of two binomials. Consider two sequences of binomial
trials with probabilities of success PI and P2 respectively, and let P =

(P2/q2) -:- (PI/ql)'

(i) If a < fJ , no test with fixed numbers of trials m and n for testing
H: P = Po can have power ~ fJ against all alternatives with P = Pl '

(ii) The following is a simple sequential sampling scheme leading to the
desired result. Let the trials be performed in pairs of one of each kind,
and restrict attention to those pairs in which one of the trials is a success
and the other a failure. If experimentation is continued until N such
pairs have been observed, the number of pairs in which the successful
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trial belonged to the first series has the binomial distribution b( 'IT, N)
with 'IT = Plq2/(Plq2 + P2QI) = 1/(1 + p). A test of arbitrarily high
power against PI is therefore obtained by taking N large enough.

(iii) If P1/P2 = >., use inversebinomial sampling to devisea test of H : >. = >'0
against K: x> >'0 '

19. Positive dependence. Two random variables (X, Y) with c.d.I, F(x, y) are
said to be positively quadrant dependent if F(x, y) ~ F(x, oo)F(oo , y) for all
x, y .• For the case that (X, Y) takes on the four pairs of values (0,0), (0,1),
(1,0), (1,1) with probabilities Poo, P01' P\O, Pl1' (X, Y) are positivelyquadrant
dependent if and only if the odds ratio A = P01P\OlPooPl1 s 1.

20. Runs. Consider a sequence of N dependent trials, and let X; be 1 or 0 as the
ith trial is a success or failure. Suppose that the sequence has the Markov
property!

P{X; = 1IxI , .. ·, xi- d = P{X; = 1lxi-d

and the property of stationarity according to which P{X; = I} and P{X; =

1Ixi_l} are independent of i , The distribution of the X's is then specified by
the probabilities

PI = P{X; = 11X;-1 = I} and Po = P{X; = 11X;-1 = O}

and by the initial probabilities

'lT1 = P{XI = I} and 'ITo = 1 - 'lT1 = P {XI = O}.

(i) Stationarity implies that

Po-- ,
'lT
1 = Po + ql

ql
'ITo = Po + ql .

(ii) A set of successive outcomes Xi,Xi+I" "'Xi+ } is said to form a run of
zeros if X i = Xi+1 = ... = xi +} = 0, and Xi_I = lor i = 1, and Xi+}+1

= 1 or i + j = N. A run of ones is defined analogously. The probability
of any particular sequence of outcomes (XI' ... , X N) is

1
Po + ql pgpi-Vqjq(j'-u,

"For a systematic discussion of this and other concepts of dependence, see Tong (1980,
Chapter 5).

"Statistical inference in these and more general Markov chains is discussed, forexample, in
Anderson and Goodman (1957), Goodman (1958), Billingsley (1961), Denny and Wright
(1978), and Denny and Yakowitz (1978).
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where m and n denote the numbers of zeros and ones, and u and v the
numbers of runs of zeros and ones in the sequence.

21. Continuation . For testing the hypothesis of independence of the X's , H : Po
= PI' against the alternatives K : Po < PI' consider the run test, which rejects
H when the total number of runs R = U + V is less than a constant C( m)
depending on the number m of zeros in the sequence. When R = C( m), the
hypothesis is rejected with probability y( m), where C and y are determined
by

PH{R < C(m)lm} + y(m)PH{R = C(m)lm} = a .

(i) Against any alternative of K the most powerful similar test (which is at
least as powerful as the most powerful unbiased test) coincides with the
run test in that it rejects H when R < C( m). Only the supplementary
rule for bringing the conditional probability of rejection (given m) up to
a depends on the specific alternative under consideration.

(ii) The run test is unbiased against the alternatives K.
(iii) The conditional distribution of R given m, when H is true, is"

2( m- 1)(n - 1)
,-1 ,-1
(m;:; n)P{R=2,}=-

P{ R = 2, + I} =
(~~ll)(n-;l) +(m~l)(;=i)

(m;:;n)

[(i): Unbiasedness implies that the conditional probability of rejection given m
is a for all m. The most powerful conditional level-a test rejects H for those
sample sequences for which l1(u, v) = (Po/PI)"(ql/qo)U is too large. Since
Po < PI and ql < qo and since Iv - ul can only take on the values 0 and 1, it
follows that

11(1,1) > l1(1,2), l1(2,1) > l1(2,2) > l1(2,3), l1(3,2) > . . .

Thus only the relation between l1(i, i + 1) and l1(i + 1, i) depends on the
specific alternative, and this establishes the desired result.
(ii): That the above conditional test is unbiased for each m is seen by writing
its power as

,8(Po,pdm) = (1 - y)P{R < C(m)lm} + yP{R:5 C(m)lm},

·This distribution is tabled by Swed and Eisenhart (1943) and can be obtained from the
hypergeometric distribution [Guenther (1978)). For further discussion of the run test, see
Wolfowitz (1943).
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since by (i) the rejection regions R < C( m) and R < C( m) + 1 are both
UMP at their respective conditional levels.
(iii) : When H is true, the conditional probability given m of any set of m
zeros and n ones is 1/( m~ n). The number of ways of dividing n ones into,

groups is (~ =: ~), and that of dividing m zeros into, + 1 groups is ( m ~ 1) .

The conditional probability of getting, + 1 runs of zeros and r runs of ones is
therefore

(m~I)(;=n
(m;:;n)

To complete the proof, note that the total number of runs is 2, + 1 if and only
if there are either, + 1 runs of zeros and r runs of ones or r runs of zeros and
r + 1 runs of ones.]

22. (i) Based on the conditional distribution of X 2 , . •. , X n given Xl = Xl in the
model of Problem 20, there exists a UMP unbiased test of H : Po = PI

against PI > Po for every a .
(ii) For the same testing problem, without conditioning on Xl there exists a

UMP unbiased test if the initial probability WI is assumed to be com­
pletely unknown instead of being given by the value stated in (i) of
Problem 20.

[The conditional distribution of X2 , • • • , X; given Xl is of the form

C(XI ; Po, PI' s«. ql) p{IPtoqi'Q5°h(YI ' Y2' Z!. Z2) '

where YI is the number of times a 1 follows a 1, Yo the number of times a 1
follows a 0, and so on, in the sequence Xl' X2 , . .. , Xn • [See Billingsley (1961,
p. 14).]

23. Rank-sum test. Let YI , . . . , YN be independently distributed according to the
binomial distributions b(p;, n;), i = 1, . . . , N, where

1
P;= 1 + e-ca+!JXj) .

This is the model frequently assumed in bioassay, where X; denotes the dose,
or some function of the dose such as its logarithm, of a drug given to n,
experimental subjects, and where Y; is the number among these subjects which
respond to the drug at level x.. Here the x, are known, and a and fJ are
unknown parameters .

(i) The joint distribution of the Y's constitutes an exponential family, and
UMP unbiased tests exist for the four hypotheses of Theorem 3, concern­
ing both a and fJ .



Suppose in particular that X; = Iii, where Ii is known, and that n; = 1
for all i. Let n be the number of successes in the N trials, and let these
successes occur in the SI st, S2 nd, .. . , snth trial, where SI < S2 < ., . <
Sn ' Then the UMP unbiased test for testing H: fJ = ° against the
alternatives fJ > °is carried out conditionally, given n, and rejects when
the rank sum I:7_lsj is too large.

Let YI , ... , YM and ZI" ' " ZN be two independent sets of experiments
of the type described at the beginning of the problem, corresponding,
say, to two different drugs. If Y; is distributed as b(p;, mj ) and Zj as
b(~, n), with

4.10]

(ii)

(iii)
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1
P;= 1 + e-(a+{Ju,) ,

1
~ = 1 + e-(y+8vj) '

179

then UMP unbiased tests exist for the four hypotheses concerning y - a
and 8 - fJ.

Section 8

24. In a 2 X 2 X 2 table with ml = 3, nl = 4; m2 = 4, n2 = 4; and II = 3,
11 = 4, 12 = 12= 4, determine the probabilities that P(YI + Y2 ~ klX; + Y; =
l j , i = 1,2) for k = 0,1,2,3.

25. In a 2 X 2 X K table with li k = Ii, the test derived in the text as UMP
unbiased for the case that the B and C margins are fixed has the same
property when any two, one, or no margins are fixed.

26. Let X;jk' (i, j , k = 0,1 , / = 1, . . . , L) denote the entries in a 2 X 2 X 2 X L
table with factors A, B, C, and D, and let

r _ PABcD,P1BcD,PABcD,P1BcD,
i :

PA BCD,P1BCD,PABCD,P1BCD,

Then

(i) under the assumption r, = r there exists a UMP unbiased test of the
hypothesis r s ro for any fixed ro;

(ii) When / = 2, there exists a UMP unbiased test of the hypothesis r l = r2

-in both cases regardless of whether 0, 1, 2 or 3 of the sets of margins are
fixed.

Section 9

27. In the 2 X 2 table for matched pairs, show by formal computation that the
conditional distribution of Y given X' + Y = d and X = X is binomial with
the indicated p.
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28. Consider the comparison of two success probabilities in (a) the two-binomial
situation of Section 5 with m = n, and (b) the matched-pairs situation of
Section 9. Suppose the matching is completely at random, that is, a random
sample of 2n subjects, obtained from a population of size N (2n ~ N), is
divided at random into n pairs, and the two treatments B and B are assigned
at random within each pair.

(i) The UMP unbiased test for design (a) (Fisher's exact test) is always more
powerful than the UMP unbiased test for design (b) (McNemar's test).

(ii) Let X; (respectively Y;) be 1 or 0 as the 1st (respectively 2nd) member of
the i th pair is a success or failure. Then the correlation coefficient of X;
and Y; can be positive or negative and tends to zero as N ..... 00.

[(ii): Assume that the kth member of the populatioa has probability of success
p~k) under treatment A and l/) under A.)

29. In the 2 X 2 table for matched pairs, in the notation of Section 9, the
correlation between the responses of the two members of a pair is

Pi: - 'lTl'IT2

For any given values of 'lT1 < 'lT2, the power of the one-sided McNemar test of
H : 'IT\ = 'lT2 is an increasing function of p.
[The conditional power of the test given X + Y = d, X = x is an increasing
function p = POi/(POI + PIO)')
Note. The correlation p increases with the effectiveness of the matching, and
McNemar's test under (b) of Problem 28 soon becomes more powerful than
Fisher's test under (a). For detailed numerical comparisons see Wacholder and
Weinberg (1982) and the references given there.

Additional Problems

30. Let X, Y be independent binomial b(p, m) and b(p2, n) respectively. De­
termine whether (X, Y) is complete when

(i) m = n = 1,

(ii) m = 2, n = 1.

31. Let X\, .. . , Xn be a sample from the uniform distribution over the integers
1, . .. , 8 , and let a be a positive integer.

(i) The sufficient statistic X(n) is complete when the parameter space is
O={8:8~a}.

(ii) Show that X(II) is not complete when g = {6: 6 ~ a}, a ~ 2, and find a
complete sufficient statistic in this case.
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32. Negative binomial. Let X, Y be independently distributed according to nega­
tive binomial distributions Nbt p-; m) and Nb(P2' n) respectively, and let
qi = 1 - Pi'

(i) There exists a UMP unbiased test for testing H :°= q2/ql :::;; 00 and
hence in particular H' : PI s P2 .

(ii) Determine the conditional distribution required for testing H' when
m=n=l.

33. Let X; (i = 1,2) be independently distributed according to distributions from
the exponential families (12) of Chapter 3 with C, Q, T, and h replaced by Ci ,

Qi' 1;, and hi' Then there exists a UMP unbiased test of

(i) H: Q2(02) - QI(OI) s c and hence in particular of Q2(02) :::;; Ql(OI);

(ii) H: Q2(02) + QI(OI):::;; c.

34. Let X, Y, Z be independent Poisson variables with means A,p., JI. Then there
exists a UMP unbiased test of H : AP. s Jl2 .

35. Random sample size. Let N be a random variable with a power-series
distribution

P(N = n) = a(n)A
n

C(A) , n = 0,1, . . . (A > 0, unknown).

When N = n, a sample XI"'" Xn from the exponential family (12) of
Chapter 3 is observed . On the basis of (N, XI' " . , XN ) there exists a UMP
unbiased test of H: Q(O):::;; c.

36. The UMP unbiased test of H: A = 1 derived in Section 8 for the case that the
B- and C-margins are fixed (where the conditioning now extends to all random
margins) is also UMP unbiased when

(i) only one of the margins is fixed;

(ii) the entries in the 4K cells are independent Poisson variables with means
AABC " ' " and A is replaced by the corresponding cross-ratio of the A'S.
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CHAPTER 5

U nbiasedness: Applications

to Normal Distributions;

Confidence Intervals

I. STATISTICS INDEPENDENT OF A SUFFICIENT
STATISTIC

A general expression for the UMP unbiased tests of the hypotheses Hi : () s
()o and H4 : () = ()o in the exponential family

(1) dPe.,.,(x) = C((),~)exp[()U(x) + Lt');T;(x)] dp.(x)

was given in Theorem 3 of the preceding chapter. However, this turns out to
be inconvenient in the applications to normal and certain other families of
continuous distributions, with which we shall be concerned in the present
chapter. In these applications, the tests can be given a more convenient
form, in which they no longer appear as conditional tests in terms of U
given t , but are expressed unconditionally in terms of a single test statistic.
The following are three general methods of achieving this.

(i) In many of the problems to be considered below, the UMP unbiased
test 4>0 is also UMP invariant , as will be shown in Chapter 6. From
Theorem 6 of Chapter 6 it is then possible to conclude that 4>0 is UMP
unbiased. This approach, in which the latter property must be taken on faith
during the discussion of the test in the present chapter, is the most
economical of the three, and has the additional advantage that it derives the
test instead of verifying a guessed solution as is the case with methods (ii)
and (iii).

(ii) The conditional descriptions (12), (14), and (16) of Chapter 4 can be
replaced by equivalent unconditional ones, and it is then enough to find an

188
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unbiased test which has the indicated structure. This approach is discussed
in Pratt (1962).

(iii) Finally, it is often possible to show the equivalence of the test given
by Theorem 3 of Chapter 4 to a test suspected to be optimal, by means of
Theorem 2 below. This is the course we shall follow here; the alternative
derivation (i) will be discussed in Chapter 6.

The reduction by method (iii) depends on the existence of a statistic
V = h(U, T), which is independent of T when (J = (Jo, and which for each
fixed I is monotone in U for HI and linear in U for H4• The critical function
</>1 for testing HI then satisfies

(2) ~(v) ~ Go
when v> Co,

when v = Co,

when v < Co,

where Co and 'Yo are no longer dependent on I, and are determined by

(3) E'O</>I(V) = a.

Similarly the test </>4 of H4 reduces to

(4) ~(v) ~ G.
when v < CI or v > C2 ,

when v = c., i = 1,2,

when CI < v < C2 ,

where the C's and 'Y's are determined by

(5)

and

(6)

E,J </>4 ( V)] = a

E,JV</>4(V)] = aE,o(V) .

The corresponding reduction for the hypotheses H2 : (J ::; (JI or (J ~ (J2

and H3 : (JI s (J s (J2 requires that V be monotone in U for each fixed I,
and be independent of T when (J = (Jl and (J = (J2 ' The test </>3 is then given
by (4) with the C's and 'Y 's determined by

(7) E't</>3(V) = E"z</>3(V) = a.
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The test for H 2 as before has the critical function

ep2(V; a) = 1 - ep3(V; 1 - a).

This is summarized in the following theorem.

Theorem 1. Suppose that the distribution of X is given by (1) and that
V = h(U, T) is independent of T when (J = (Jo' Then epi is UMP unbiased for
testing HI provided the function h is increasing in u for each t, and ep4 is UMP
unbiased for H 4 provided

h(u, r) = a(t)u + b(t) with a(t) > O.

The tests ep2 and ep3 are UMP unbiased for H2 and H3 if V is independent of T
when (J = (JI and (J2' and if h is increasing in u for each t.

Proof. The test of HI defined by (12) and (13) of Chapter 4 is equiv­
alent to that given by (2), with the constants determined by

PBO{V> Co(t)lt} + yo(t)PBo{V= Co(t)lt} = a .

By assumption, V is independent of T when (J = (Jo, and Co and Yo
therefore do not depend on t. This completes the proof for HI' and that for
H 2 and H 3 is quite analogous.

The test of H4 given in Section 4 of Chapter 4 is equivalent to that
defined by (4) with the constants C, and Yj determined by EBo[ ep4(V, t) It] = a
and

[
V - b(t) ] [V - b(t) ]

EBo ep4(V, r) a(t) t = aEBo a(t) t,

which reduces to

EBofVep4(V, t)lt] = aEBJVlt].

Since V is independent of T for 8 = 80, so are the C's and y's as was to be
proved.

To prove the required independence of V and T in applications of
Theorem 1 to special cases, the standard methods of distribution theory are
available: transformation of variables, characteristic functions, and the
geometric method. Frequently, an alternative approach, which is particu­
larly useful also in determining a suitable statistic V, is provided by the
following theorem.
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Theorem 2. (Basu). Let the family of possible distributions of X be
9 = {P~, & E w}, let T be sufficient for 9, and suppose that the family 9 T

of distributions of T is boundedly complete. If V is any statistic whose
distribution does not depend on &, then V is independent of T.

Proof. For any critical function cp, the expectation E~cp(V) is by
assumption independent of &. It therefore follows from Theorem 2 of
Chapter 4 that E[ cp(V)lt] is constant (a.e. 9 T

) for every critical function cp,
and hence that V is independent of T.

For converse aspects of this theorem see Basu (1958), Koehn and
Thomas (1975), Bahadur (1979), and Lehmann (1980).

Corollary 1. Let 9 be the exponential family obtained from (1) by letting
o have some fixed value. Then a statistic V is independent of T for all &
provided the distribution of V does not depend on &.

Proof. It follows from Theorem 1 of Chapter 4 that 9 T is complete
and hence boundedly complete, and the preceding theorem is therefore
applicable.

Example 1. Let Xl"'" Xn be independently, normally distributed 'with mean ~

and variance 0 2. Suppose fi!,.St that 0 2 is fixed at oJ. Then the assumptions of
Corollary 1 hold with T = X = EXjn and -{} proportional to t Let f be any
function satisfying

If

f(x l + C''' ''Xn + c) =f(Xl' '' ''Xn)

v = f( Xl" '" Xn),

for all real c.

then also V = f( Xl - t .. ., Xn - n Since the variables X; - ~ are distributed as
N(O, oJ), which does not involve t the distribution of V does not depend on ~ . It
follows from Corollary 1 that any such statistic V, and therefore in particular
V = E( X; - X)2, is independent of X. This is true for all a.

Suppose, on the other hand, that ~ is fixed at ~o. Then Corollary 1 applies with
T = E( X; - ~o) 2 and -{} = -1/20 2• Let f be any function such .that

and let

f(CXl ""'CX II ) =f(Xl" "'Xn) for all C > 0,

V=f(Xl-~O" ",Xn-~O) '

Then V is unchanged if each X; - ~o is replaced by (X; - ~o)/o, and since these
variables are normally distributed with zero mean and unit variance, the distribution
of V does not depend on e. It follows that all such statistics V, and hence for
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example

x-~O

/r..( X; - X)2
and

X-~o

.te: 2'
Vr..(X;-~O)

are independent of L(X; - ~O)2. This, however, does not hold for all ~, but only
when ~ = ~o.

Example 2 Let UI/af and U2/ai be independently distributed according to
X2-distributions with /1 and /2 degrees of freedom respectively, and suppose that
ai/af = a. The joint density of the U's is then

Cufh / 2
)-1 u~Iz/2)-lexp[- 2~i (aul + U2)]

so that Corollary 1 is applicable with T = aUI + U2 and {} = -1/2af. Since the
distribution of

U2 U2/ ai
V=-=a--

UI UI/af

does not depend on a2' V is independent of aUI + U2. For the particular case that
a2 = ai' this proves the independence of U2/UI and UI + U2.

Example 3. Let (XI' .. . , Xn ) and (YI , .. . , y,,) be samples from normal distribu­
tions N(€, ( 2) and N(1/, .,.2) respectively. Then T = (X, LX;2, Y, Ly;2) is sufficient
for a. (12. 11, 'I' 2) and the family of distributions of T is complete. Since

r.. ( X; - X)( Y; - Y)
V = -r=====:========-

/r..(X; - X)2r..(Y; _ y)2

is unchanged when X; and Y; are replaced by (X; - ~)/(1 and (Y; - 1/)/"'. the
distribution of V does not depend on any of the parameters, and Theorem 2 shows
V to be independent of T.

2. TESTING THE PARAMETERS OFANORMAL
DISTRIBUTION

The four hypotheses (1 s (10' (1 ~ (10' ~ s ~o , ~ ~ ~o concerning the variance
(12 and mean ~ of a normal distribution were discussed in Chapter 3,
Section 9. and it was pointed out there that at the usual significance levels
there exists a UMP test only for the first one. We shall now show that the
standard (likelihood-ratio) tests are UMP unbiased for the above four
hypotheses as well as for some of the corresponding two-sided problems.
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For varying ~ and e, the densities

n/2 ( ne ) (1 ~)(8) (2'1TlJ 2)- exp - 2lJ2 exp - 2lJ2 LX; + lJ2 LX;

of a sample Xl"' " Xn from Na, lJ2) constitute a two-parameter exponen­
tial family, which coincides with (1) for

(J = __1_ _ n~
2lJ2 ' iJ-~, U(x)=Lx;, T(x)=x= LX;

n

By Theorem 3 of Chapter 4 there exists therefore a UMP unbiased test of
the hypothesis (J ~ (Jo, which for (Jo = -1j2lJ~ is equivalent to H: lJ ~ lJo'
The rejection region of this test can be obtained from (12) of Chapter 4,
with the inequalities reversed because the hypothesis is now (J ~ (Jo ' In the
present case this becomes

LX; s Co(x)

where

Pao{ LX? s Co(.X) Ix} = Q.

If this is written as

LX;- nx2 s Co(x),

it follows from the independence of EX? - nX 2 = E(X; - X)2 and X
(Example 1) that Co(x) does not depend on x. The test therefore rejects
when E(x; - X)2 :s; Co, or equivalently when

(9)
_)2

E(x; - X :s; Co ,
lJ~

with Co determined by P;{E(X; - X)2/lJ~ :s; Co} = Q . Since E(X;-_ 0

X) 2/ lJ~ has a X2-distribution with n - 1 degrees of freedom, the determin­
ing condition for Co is

(10) ~CoX~_I(Y) dy = Q

where X~ _ I denotes the density of a X2 variable with n - 1 degrees of
freedom.
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The same result can be obtained through Theorem 1. A statistic V =
h(U, T) of the kind required by the theorem-that is, independent of X for
(1 = (10 and all ~-is

" -2V= ,l.,(X; - X) = U - nT 2
•

This is in fact independent of X for all ~ and (12. Since h(u, t) is an
increasing function of u for each t, it follows that the UMP unbiased test
has a rejection region of the form V ~ CO.

This derivation also shows that the UMP unbiased rejection region for
H: (1 s (11 or (1 ~ (12 is

(n) C1 < E(x; - if < C2

where the C's are given by

(12) j Cl a
2 JC I 2

2 IX~_1(Y) dy = 2 "iX~_1(Y) dy = a .
Cl/at Cl/a!

Since h(u, t) is linear in u, it is further seen that the UMP unbiased test
of H : (1 = (10 has the acceptance region

(13)
E(x; - X)2 < q

C' < 2
1 (10

with the constants determined by

(14) j C' 1 jC2
2X~_1(Y) dy = --1 YX~-1(Y) dy = 1 - a.

C{ n- C{

This is just the test obtained in Example 2 of Chapter 4 with L(x; - X)2
in place of LX; and n - 1 degrees of freedom instead of n , as could have
been foreseen. Theorem 1 shows for this and the other hypotheses consid­
ered that the UMP unbiased test depends only on V. Since the distributions
of V do not depend on t and constitute an exponential family in (1, the
problems are thereby reduced to the corresponding ones for a one-parame­
ter exponential family, which were solved previously.

The power of the above tests can be obtained explicitly in terms of the
X2-distribution. In the case of the one-sided test (9) for example, it is given
by

{E(X; - X)2 < CO(1~} = lCoaJla2x~_1(y) dy./3((1)=Pa (12 - (12 0
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The same method can be applied to the problems of testing the hypothe­
ses ~ s ~o against ~ > ~o and ~ = ~o against ~ #: ~o. As is seen by
transforming to the variables X, - ~o, there is no loss of generality in
assuming that ~o = 0. It is convenient here to make the identification of (8)
with (1) through the correspondence

n~
(J = 2'

o

1
it = - - U(x) = x T(x) = '\'x2

202' , L. "

Theorem 3 of Chapter 4 then shows that UMP unbiased tests exist for the
hypotheses (J s °and (J = 0, which are equivalent to ~ s °and ~ = 0.
Since

x
V=t=====

VE(Xj - X)2

U

VT - nU 2

is independent of T = EX? when ~ = °(Example 1), it follows from
Theorem 1 that the UMP unbiased rejection region for H : ~ s °is V ~ CO
or equivalently

(15)

where

(16)

t(x) ~ Co,

t(x) = ';;x

Vn ~ 1 E(x j - X)2 .

In order to apply the theorem to H' : ~ = 0, let W = XI VEX? This~
also independent of EX? when ~ = 0, and in addition is linear in U = X.
The distribution of W is symmetric about°when ~ = 0, and conditions (4),
(5), (6) with W in place of V are therefore satisfied for the rejection region
[w] ~ C' with P€ -o{ IWI ~ C'} = a. Since

t(x) = I(n - l)n W(x)
VI - nW2(x) ,

the absolute value of t(x) is an increasing function of IW(x)l, and the
rejection region is equivalent to

(17) It(x)l~ C.
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(18)

From (16) it is seen that t X is the ratio of the two independent random

variables {iiX/a and I:(X; - X)2/{n - l)a 2. The denominator is dis­
tributed as the square root ofax2-variable with n - 1 degrees of freedom,
divided by n - 1; the distribution of the numerator, when ~ = 0, is the
normal distribution N(O, 1). The distribution of such a ratio is Student's
t-distribution with n - 1 degrees of freedom, which has probability density

1 rUn) 1

t n
-

1{y ) = V7T{n _ 1) r[Hn - 1)] ( y 2 )tn •

1+-­
n-l

The distribution is symmetric about 0, and the constants Co and C of the
one- and two-sided tests are determined by

1
00 100 a

(19) tn -1 ( y) dy = a and tn -1 ( Y) dy = -2 ·
~ c

For ~ '* 0, the distribution of t( X) is the so-called noncentral r-distri­
bution, which is derived in Problem 3. Some properties of the power
function of the one- and two-sided t-test are given in Problems 1, 2, and 4.
We note here that the distribution of t( X), and therefore the power of the
above tests, depends only on the noncentrality parameter 8 = {ii ~/a. This
is seen from the expression of the probability density given in Problem 3,
but can also be shown by the following direct argument. Suppose that
~'Ia' = ~/a ,p 0, and denote the common value of ~'/~ and a'ia bye,
which is then also different from zero. If X/ = eX; and the X; are distrib­
uted as Na, a2), the variables X/ have distribution N(f, a'2). Also
t( X) = t( X'), and hence t( X') has the same distribution as t( X), as was to
be proved . [Tables of the power of the r-test are discussed, for example, in
Chapter 31, Section 7 of Johnson and Kotz (1970, Vol. 2).J

If ~l denotes any alternative value to ~ = 0, the power fJa, a) = /(8)
depends on a. As a -+ 00 , 8 -+ 0, and

fJ(~I ,a) -+/{O) = fJ(O ,a) = a ,

since / is continuous by Theorem 9 of Chapter 2. Therefore, regardless of
the sample size, the probability of detecting the hypothesis to be false when
~ 2 ~l > °cannot be made 2 fJ > a for all a. This is not surprising, since
the distributions N(O, a 2) and Nal' a 2) become practically indistinguish­
able when a is sufficiently large. To obtain a procedure with guaranteed
power for ~ 2 ~1' the sample size must be made to depend on a. This can be
achieved by a sequential procedure, with the stopping rule depending on an
estimate of a, but not with a procedure of fixed sample size. (See Problems
26 and 28).
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The tests of the more general hypotheses ~ ;:5; ~o and ~ = ~o are reduced
to those above by transforming to the variables X, - ~o. The rejection
regions for these hypotheses are given as before by (15), (17), and (19), but
now with

vn(X-~o)

V
I 2

--L:(xj-x)
n - 1

((x) = --;=,:::::::====

It is seen from the representation of (8) as an exponential family with
o= n~/a2 that there exists a UMP unbiased test of the hypothesis a ;:5;

~/a2 ;:5; b, but the method does not apply to the more interesting hypothesis
a ;:5; ~ ;:5; b;" nor is it applicable to the corresponding hypothesis for
the mean expressed in a-units : a s: ~/a ;:5; b, which will be discussed in
Chapter 6.

When testing the mean ~ of a normal distribution, one may from
extensive past experience believe a to be essentially known. If in fact a is
known to be equal to ao, it follows from Problem 1 of Chapter 3 that there
exists a UMP test q,o of H : ~ ;:5; ~o against K : ~ > ~o, which rejects when
(X -~o)/ao is sufficiently large, and this test is then uniformly more
powerful than the r-test (15). On the other hand, if the assumption a = ao is
in error, the size of q,o will differ from a and may greatly exceed it. Whether
to take such a risk depends on one's confidence in the assumption and the
gain resulting from the use of q,o when a is equal to ao. A measure of this
gain is the deficiency d of the r-test with respect to q,o , the number of
additional observations required by the r-test to match the power of q,o
when a = ao. Except for very small n, d is essentially independent of
sample size and for typical values of a is of the order of 1 to 3 additional
observations. [For details see Hodges and Lehmann (1970). Other ap­
proaches to such comparisons are reviewed, for example, in Rothenberg
(1984).]

3. COMPARING THEMEANS AND VARIANCES OF lWO
NORMAL DISTRIBUTIONS

The problem of comparing the parameters of two normal distributions
arises in the comparison of two treatments, products, etc., under conditions
similar to those discussed in Chapter 4 at the beginning of Section 5. We
consider first the comparison of two variances a 2 and T 2, which occurs for
example when one is concerned with the variability of analyses made by two

*This problem is discussed in Section 3 of Hodges and Lehmann (1954).
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different laboratories or by two different methods, and specifically the
hypotheses H: 'T 2/a2s do and H' : 'T 2/a2= do.

Let X = (Xl" ' " Xm ) and Y = (Yl , . . . , Yn ) be samples from the normal
distributions N(~, ( 2 ) and N(1/, 'T 2 ) with joint density

(
1 2 1 2 m~ _ n1/ _)

C(t1/,a,'T)exp -2a2LXj - 2'T2LYj + -;rx+ -;;3Y .

This is an exponential family with the four parameters

1
0= - 2'T2'

1
,«)1 = - 2a2 '

n1/
,«) = -2'

2 'T
'«)J = m~

a 2

and the sufficient statistics

U= Ll?, t; = LX/, T2 = Y, TJ = X.

It can be expressed equivalently (see Lemma 2 of Chapter 4), in terms of the
parameters

1 1
0* = --2 + -2A 2'

2'T uoa

and the statistics

,«);*=,«)j (i=1 ,2,3)

U* = ~ y2
t... J '

1
Tl* = LX/ + do L lj2, T2* = Y, TJ* = X.

The hypotheses 0* ~ 0 and 0* = 0, which are equivalent to Hand
H' respectively, therefore possess UMP unbiased tests by Theorem 3 of
Chapter 4.

When 'T 2 = doa
2, the distribution of the statistic

L(lj - y)2/d o
V = ----'--"-----,--

L(Xj- 1')2

L(lj - y)2/'T2

L(Xj- 1')2/a2

does not depend on a, ~, or 1/, and it follows from Corollary 1 that V is
independent of (Tl*, T2*, TJ*). The UMP unbiased test of H is therefore



5.3] TWO NORMAL DISTRIBUTIONS 199

given by (2) and (3), so that the rejection region can be written as

(20)
[(lj - y)2/AO(n - 1)

" - 2 ~ CO '"",,(Xi - X) /(m - 1)

When ,.2 = Aoa
2, the statistic on the left-hand side of (20) is the ratio of the

two independent X2 variables [(lj - y)2/,.2 and [(Xi - X)2/a2, each
divided by the number of its degrees of freedom. The distribution of such a
ratio is the F-distribution with n - 1 and m - 1 degrees of freedom, which
has the density

r[t(m + n- 2)] (n - 1 )~(n-i)
(21) Fn- l.m-i(Y) = r[t(m - l)]r[t(n - 1)] m - 1

IX y ,(n-i)-i

(
1 +~ ) ~(m+n-2) .

m -l Y

The constant Co of (20) is then determined by

(22) f~Fn-i m-i(Y) dy = a.
Co •

In order to apply Theorem 1 to H' let

L(lj - y)2/110
W= .

[(Xi - X)2 + (l/Ao)[(lj _ y)2

This is also independent of T* = (Ti*, T2*, T3* ) when ,.2 = Aoa
2, and is

linear in U*. The UMP unbiased acceptance region of H' is therefore

(23) c, .:5 W.:5 C2

with the constants determined by (5) and (6) where V is replaced by W. On
dividing numerator and denominator of W by a 2 it is seen that for
,.2 = Aoa

2, the statistic W is a ratio of the form Wi/(Wi + W2 ) , where Wi
and W2 are independent X2 variables with n - 1 and m - 1 degrees of
freedom respectively. Equivalently, W = Y/(1 + Y), where Y = Wi/W2

and where (m - l)Y/(n - 1) has the distribution Fn- i,m-i' The distribu-
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tion of W is the beta-distribution" with density

(24)

r [Hm + n - 2)] w~(n-3)(1 _ W)~(m-3),
B~(n-l).~(m-l)(W) = r[t(m - l)]r[t(n - 1)]

O<W<l.

The conditions (5) and (6), by means of the relations

n-1
E(W) =

and

n-1
WB~(n_l),~(m_l)(W)= m + n _ 2B~(n+l),~(m-l)(W),

become

(25) ~~2B~(n_l),~(m_l)(W)dw = ~~2B~(n+l),~(m_l)(W) dw = 1 - a.

The definition of V shows that its distribution depends only on the ratio
7' 2/a 2, and so does the distribution of W. The power of the tests (20) and
(23) is therefore also a function only of the variable A = 'f2/a2; it can be
expressed explicitly in terms of the F-distribution, for example in the first
case by

P(A) = pI E(lj - Y):/'f
2
(n - 1) ~ eoA O )

\ E(X; - X) /a 2(m - 1) A

1
00

= FCo.1o/~ n-l,m-l(Y) dy.

The hypothesis of equality of the means ~, 1/ of two normal distributions
with unknown variances a2 and 1'2, the so-called Behrens-Fisher problem, is

·The relationship W = Y/(1 + Y) shows the F- and beta-distributions to be equivalent.
Tables of these distributions are discussed in Chapters 24 and 26 of Johnson and Kotz (1970,
Vol. 2). Critical values of F are tabled by Mardia and Zamroch (1978), who also provide
algorithms for the associated computations.
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not accessible by the present method. (See Example 5 of Chapter 4; for a
discussion of this problem see the next section and Chapter 6, Section 6.)
We shall therefore consider only the simpler case in which the two variances
are assumed to be equal. The joint density of the X's and Y's is then

(26) C(~, 1), 0)exp[ - 2:2(Lx; + LY/) + 0~2 LX; + :2 LYj] ,

which is an exponential family with parameters

1)

0= 2'
o

~
il = 2'1 0

1
il 2 = - 20 2

and the sufficient statistics

U= Llj, T1 = LX;, T2= LX? + Llj2.

For testing the hypotheses

H: 1) - ~ ~ 0 and H': 1) - ~ = 0

it is more convenient to represent the densities as an exponential family
with the parameters

ili = il 2
ilt = m~ + n1)

(m + n)02'
1)-~

0* = (1 1) 2'
-+-0
m n

and the sufficient statistics

U* = Y-X, T1* = mX +nY, T2* = LX? + L lj2.

That this is possible is seen from the identity

m~x + n1)Y =
(y - x)( 11 - ~)

1 1
-+-
m n

(mx + ny)(m~ + n1))
+------

m + n

It follows from Theorem 3 of Chapter 4 that UMP unbiased tests exist for
the hypotheses 0* s 0 and 0* = 0, and hence for H and H'.
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When 11 = ~, the distribution of

¥-x
V = -;:========

JL(Xj - X)2 + L(lj _ ¥)2

U*

_I 1 2 mn 2

yT2* - m + n T1* - m + n U*

does not depend on the common mean ~ or on 0, as is seen by replacing Xi
with (Xi - ~)/o and lj with (lj - ~}/o in the expression for V, and V is
independent of (T1*, T2*). The rejection region of the UMP unbiased test of
H can therefore be written as V ~ CO or

(27) t(X, Y) ~ Co,

where

(- -jrr:-flY-X) - +-
(28) t(X, Y) = m n

v'[L(Xi - xf + L(lj - y)2]/(m + n - 2)

The statistic t( X, Y) is the ratio of the two independent variables

Y-X

v(~ + ~)02
and

L(Xi - X)2 + L(lj _ ¥)2
(m + n - 2)0 2

The numerator is normally distributed with mean (11 - ~)/ Vm- 1 + n- 1
0

and unit variance; the denominator, as the square root ofaX2 variable with
m + n - 2 degrees of freedom, divided by m + n - 2. Hence t( X, Y) has a
noncentral t-distribution with m + n - 2 degrees of freedom and non­
centrality parameter

11-~

_I!-+~o
Ym n

l) = --
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When in particular 1/ - ~ = 0, the distribution of t( X, Y) is Student's
r-distribution, and the constant Co is determined by

(29) f:tm+n-z(Y) dy = a.

As before, the assumptions required by Theorem 1 for H' are not
satisfied by V itself but by a function of V,

y-x
W=---;::==========

LXz + LY z - (LX,+ L~)Z
I J m + n

which is related to V through

W

V= V ~Wz
1 - m + n

Since W is a function of V, it is also independent of (T1*, Tz*) when 1/ = ~;

in addition it is a linear function of U * with coefficientsdependent only on
T *. The distribution of W being symmetric about 0 when 1/ = t it follows,
as in the derivation of the corresponding rejection region (17) for the
one-sample problem, that the UMP unbiased test of H' rejects when IWI is
too large, or equivalently when

(30) It(X, Y) I> C.

The constant C is determined by

1
00 a

C tm+n-Z(Y) dy = "2 .

The power of the tests (27) and (30) depends only on (1/ - ~)/(J and is
given in terms of the noncentral t-distribution. Its properties are analogous
to those of the one-sample r-test (Problems 1, 2, and 4).

4. ROBUSTNESS

Optimality theory postulates a statistical model and then attempts to
determine a best procedure for that model. Since model assumptions tend to
be unreliable, it is necessary to go a step further and ask how sensitive the
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procedure and its optimality are to the assumptions. In the normal models
of the preceding section, three assumptions are made: Independence, iden­
tity of distribution, and normality. In the two-sample r-test, there is the
additional assumption of equality of variance. We shall consider the effects
of nonnormality and inequality of variance in the present section, and that
of dependence in the next.

The natural first question to ask about the robustness of a test concerns
the behavior of the significance level. If an assumption is violated, is the
significance level still approximately valid? Such questions are typically
answered by combining two methods of attack : The actual significancelevel
under some alternative distributions is either calculated exactly or, more
usually, estimated by simulation. In addition, asymptotic results are ob­
tained which provide approximations to the true significancelevel for a wide
variety of models.

We here restrict ourselves to a brief sketch of the latter approach. For
this purpose we require the following basic results from probability theory.
[For a more detailed discussion, see for example Cramer (1946); TPE,
Chapter 5; and Serfling (1980).] The first is the simplest form of the central
limit theorem.

Theorem 3. (Central limit theorem.) Let Xl' ... ' X; be independently
identically distributed with mean E(X;) = ~ and Var(X;) = (12 < 00. Then
for all real t

p{ [,;"(: -~) s t} -+ cI»{t),

where cI» denotes the cumulative distribution function of the standard normal
distribution N(O,l).

When the cumulative distribution functions of a sequence of random
variables T; tend to a continuous limiting cumulative distribution function
G as above, we shall say that T; converges to G in law. If T; and T,: are
independent and converge to N(a , b2) and N(a' , b,2) respectively, then
T; ± T,: converges to N(a ± a', b2 + b,2).

If T; converges in law to N(O,1), then bTn + a (b :1= 0) converges in law
to N(a, b2 ) . The following result concerns the corresponding limit behavior
when a and b are replaced by random variables which tend to a and b in
probability.

Theorem 4. If T; converges in law to some distribution G and if An' B;
are random variables converging in probability to a and b * °respectively,
then BnTn + An has the same limit distribution as bTn + a.
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Corollary 2. If T; tends in law to G (continuous) and if cn ~ G, then

P{Tn ~ c,} ~ G(c).

The last of the auxiliary results concerns the asymptotic behavior of
functions of asymptotically normal variables.

Theorem S. If Tn is a sequence of random variables for which Iii(Tn - 8)
tends in law to N(O, 7'2), then for any function f for which f'( 8) exists and is

'* 0,

1ii[J(Tn ) - f(8)]

tends in law to N(O, 7'2[/'(8)]2).

Consider now the one-sample problem of Section 2, so that Xl' . .. ' Xn

are independently distributed as N(~, 0'
2

) . Tests of H : ~ = ~o are based on
the test statistic

Iii(x-~o) Iii(X-~o)/S
t(X) = = -,

S 0' 0'

where S2 = L(Xj - X)2/(n - 1). When ~ = ~o and the X's are normal,
t( X) has the t-distribution with n - 1 degrees of freedom. Suppose, how­
ever, that the normality assumption fails and the X's instead are distributed
according to some other distribution F with mean ~o and finite variance.
Then by Theorem 3, Iii(X -~o)/O' has the limit distribution N(O,l);
furthermore S/O' tends to 1 in probability (see, for example, TPE, Chapter
5). By Theorem 4, t(X) therefore has the limit distribution N(O, 1) regard­
less of F. This shows in particular that the t-distribution tends to N(O, 1) as
n ~ 00 .

To be specific, consider the one-sided r-test which rejects when t( X) ~ Cn'
where P { t( X) ~ Cn } = a when F is normal . It follows from Corollary 2
and the asymptotic normality of the t-distribution that

C
n
~ Ua = (>-1(1 - a) .

(If this were not the case, a subsequence of the Cn would converge to a
different limit, and this would lead to a contradiction.)

Let an(F) be the true probability of the rejection region t ~ Cn when the
distribution of the X's is F. Then an(F) = PF{t ~ Cn} has the same limit
as P~{t ~ ua } , which is a. For sufficiently large n, the actual size an(F)
will therefore be close to the nominal level a; how close depends on F and
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n, For entries to the literature dealing with this dependence, see Cressie
(1980), Tan (1982), and Benjamini (1983).

To study the corresponding test of variance, suppose first that the mean ~

is O. When F is normal, the UMP test of H : 0 = 0 0 against 0 > 0 0 rejects
when 'f..x//ol is too large, where the null distribution of 'f..x//ol is X~' By
Theorem 3, .;n('f..X/ - nol)/n tends in law to N(O, 20~) as n - 00, since
Var(X/) = 20~. If the rejection region is written as

Ex/ - n0
2
o

{f1i0 2 ~ cn ,
o

it follows that C" - ua•

Suppose now instead that the X's are distributed according to a distri­
bution F with E(Xi) = 0, E(X/) = Var Xi = 0 2, and Var X/ = y2. Then
'f..( X/ - nol)/.;n tends in law to N(O, y2) when 0 = 00' and the size
a,,(F) of the test tends to

. ( EX/ - nol ) _ _ ( Uallol )
hm P PC 2 ~ Ua - 1 cI> •

v2n 0 0 y

Depending on y, which can take on any positive value, the sequence a,,(F)
can thus tend to any limit < t. Even asymptotically and under rather small
departures from normality (if they lead to big changes in y), the size of the
x2-test is thus completely uncontrolled.

For sufficiently large n, the difficulty is easy to overcome. Let Y; = X/,
E(Y;) = 11 = 0

2. The test statistic then reduces to In(Y -110) . To obtain an
asymptotically valid test, it is onl necessary to divide by a suitable

estimator of /Var Y; such as 'f..( Y; - y)2/n . (However, since y;2 = xi4,
small changes in the tail of Xi may have large effects on y;2, and n may
have to be rather large for the asymptotic result to give a good approxima­
tion.)

When ~ is unknown, the normal theory test for 0 2 is based on 'f..( Xi -
X)2, and the sequence

1 ["'( -)2 2] 1 ('" 2 2) 1_2.;n I-J Xi - X - noo =.;n I-JXi - noo - In nX

again has the limit distribution N(O, y2) . To see this, note that the distri­
bution of 'f..( Xi - X) 2 is independent of t and put ~ = O. Since .;n X has a
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(normal) limit distribution, nX2 is bounded in probability,* and nX2/ ..;n
tends to zero in probability. The result now follows from that for ~ = 0 and
Theorem 4.

The above results carry over to the corresponding two-sample problems.
For the r-test , an extension of the one-sample argument shows that as
~, n -. 00 , (Y=X)/ /I/m + I/n 0 tends in law to N(O, 1) while [E(Xj ­

X)2 + EO} - y)2l/(m + n - 2)0 2 tends in probability to 1 for samples
Xl' ... ' Xm ; YI , . . . , Yn from any common distribution F with finite vari­
ance . Thus, the actual size am.n(F) tends to a for any such F.

On the other hand, the F-test for variances, just like the one-sample
x2-test, is extremely sensitive to the assumption of normality. To see this,
express the rejection region in terms of log S~ - log S}, where S} = E(Xj

- X)2/(m - 1) and S~ = EO}- y)2/(n - I), and suppose that as m
and n -. 00, m/(m + n) remains fixed at p. By the result for the one-sam­
ple problem and Theorem 5 with f(u) = log u, it is seen that f,n[log S}­
log 0 2] and ..;n[log S~ - log 0 2] both tend in law to N(O, 12/04) when the
X 's and Y 's are distributed as F, and hence that 1m + n [log S~ - log S}]
tends in law to the normal distribution with mean 0 and variance

1
2

( 1 1) 1
2

0 4 ; + 1 - p = p(I - p )04'

In the particular case that F is normal, 1 2 = 204 and the variance of the
limit distribution is 2/p(I - p). For other distributions 12/04 can take on
any positive value and, as in the one-sample case, an( F) can tend to any
limit < 1. [For an entry into the extensive literature on more robust
alternatives, see for example Conover, Johnson, and Johnson (1981) and
Tiku and Balakrishnan (1984).]

Having found that the size of the one- and two-sample t-tests is relatively
insensitive to nonnormality (at least for large samples), let us turn to the
corresponding question concerning the power of these tests. By similar
asymptotic calculations, it can be shown that the same conclusion holds:
Power values of the r-tests obtained under normality are asymptotically
valid also for all other distributions with finite variance. This is a useful
result if it has been decided to employ a t-test and one wishes to know what
power it will have against a given alternative ~/o or (1/ - ~)/o, or what
sample sizes are required to obtain a given power.

It is interesting to note that there exists a modification of the r-test,
whose size is independent of F not only asymptotically but exactly, and

"See, for example , TPE, Chapter 5, Problem 1.24.
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whose asymptotic power is equal to that of the r-test , This permutation
version of the r-test will be discussed in Sections 10-14. It may seem that
such a test has all the properties one could hope for . However, this
overlooks the basic question of whether the r-test itself, which is optimal
under normality, will retain a high standing with respect to its competitors
under other distributions. The r-tests are in fact not robust in this sense .
Tests which are preferable when a broad spectrum of distributions F is
considered possible will be discussed in Chapter 6, Section 9. A permutation
test with this property has been proposed by Lambert (1985).

The above distinction between robustness of the performance of a given
test and robustness of its relative efficiency with respect to alternative tests
has been pointed out by Tukey and McLaughlin (1963) and Box and Tiao
(1964), who have described these concepts as robustness of validity or
criterion robustness, and as robustness of efficiency or inference robustness,
respectively.

As a last problem, consider the level of the two-sample r-test when
the variances Var( X;) = (J

2 and V Yo = -r 2 are in fact not equal. As be­

fore, one finds that (Y-X)/ (J2/m + -r 2/ n tends in law to N(O,l) as
m, n -+ 00, while S; = E(X; - X)2/(m - 1) and S~ = EO} - y)2/(n ­
1) respectively tend to (J2 and -r 2 in probability. If m and n tend to 00

through a sequence with fixed proportion m/(m + n) = p, the squared
denominator of t,

m-1 n-1
D 2 = sl + S~

m+n-2 m+n-2 '

tends in probability to p(J2 + (1 - p)-r2
, and the limit of

D

~
2 -r2

-+-
m nY-X

~
2 -r2

-+-
m n

1

_/2-+~
Vm n

t = --:::

is normal with mean zero and variance

(31)
(1 - p)(J2 + p-r 2

p(J2 + (1 - p)-r2 •

When m = n, so that p = t, the r-test thus has approximately the right
level even if (J and r are far apart. The accuracy of this approximation for
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1

different values of m = n and 7'/(J is discussed by Ramsey (1980) and
Posten, Yeh, and Owen (1982). However, when p =1= t, the actual size of the
test can differ greatly from the nominal level a even for large m and n. An
approximate test of the hypothesis H : 11 = ~ when (J, 7' are not assumed
equal (the Behrens-Fisher problem), which asymptotically is free of this
difficulty, can be obtained through Studentization", i.e., by replacing D 2

with (l/m)S; + (l/n)S~ and referring the resulting statistic to the stan­
dard normal distribution. This approximation is very crude, and not reliable
unless m and n are fairly large. A refinement, the Welch approximate t-test,
refers the resulting statistic not to the standard normal but to the r-distribu­
tion with a random number of degrees of freedom f given by

1 ( R )2 1 1
f = 1 + R m - 1 + (1 + R)2 . n - 1 '

where

(l/m)S; t

R = (l/n)S~ .

When the X's and Y's are normal, the actual level of this test has been
shown to be quite close to the nominal level for sample sizes as small as
m = 4, n = 8 and m = n = 6 [see Wang (1971)]. A further refinement will
be mentioned in Chapter 6, Section 6.

The robustness of the level of Welch's test against nonnormality is
studied by Yuen (1974), who shows that for heavy-tailed distributions the
actual level tends to be considerably smaller than the nominal level (which
leads to an undesirable loss of power), and who proposes an alternative.
Some additional results are discussed in Scheffe (1970) and in TUm and
Singh (1981). The robustness of some quite different competitors of the
r-test is investigated in Pratt (1964).

5. EFFECT OF DEPENDENCE

The one-sample r-test arises when a sequence of measurements Xl' . . . , X; is
taken of a quantity ~, and the X's are assumed to be independently
distributed as Na, (J2). The effect of nonnormality on the level of the test
was discussed in the preceding section. Independence may seem like a more
innocuous assumption. However, it has been found that observations occur-

·Studentization is defined in a more general context at the end of Chapter 7, Section 3.
t For a variant, see Fenstad (1983).
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ring close in time or space are often positively correlated [Student (1927),
Hotelling (1961), Cochran (1968)]. The present section will therefore be
concerned with the effect of this type of dependence.

Lemma 1. Let Xl" .. ' Xn be jointly normally distributed with common
marginal distribution N(0,0 2) and with correlation coefficients Pij =
corr(X;, Xi). As n -. 00, suppose that

(a)

(b)

and

(c)

_ 0 2 n n

VarX=2:L L Pij-' 0,
n i-I j -l

Var( ~L x/ ) -.°

1
- LLPij -. y.
n i+j

Then

(i) the distribution of the t-statistic (16) tends to the normal distribution
N(O, 1 + y) ;

(ii) if y =1= 0, the level of the t-test is not robust even asymptotically as
n -. 00. Specifically, if y > 0, the asymptotic level of the t-test carried out at
nominal level a is

1 - 41 ( », ),ff+Y > 1 - 4l(u a ) = a .

Proof. (i): Since the X; are jointly normal, the numerator IiiX of t is
also normal, with mean zero and variance

Var(IiIX) ~.+ + ~ 'fEP'}l
and hence tends in law to N(O, 0

2(1 + y». The denominator of t is the
square root of

1 ~ n_
D 2 = --I-JX/ - --X 2

•
n-1 n-1
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It follows from the Chebyshev inequality (Problem 18) that EX//(n - 1)
tends in probability to E(X/) = 0'2 and [n/(n - 1)]X2 to zero, so that
D -+ 0' in probability. By Theorem 4, the distribution of I therefore tends to
N(O,1 + y).

The implications (ii) are obvious.

Under the assumptions of Lemma 1, the joint distribution of the X's is
determined by 0'

2 and the correlation coefficients Pi}' with the asymptotic
level of the r-test depending only on y. The following examples illustrating
different correlation structures show that even under rather weak depen­
dence of the observations, the assumptions of Lemma 1 are satisfied with
y '* 0, and hence that the level of the r-test is quite sensitive to the
assumption of independence.

MODEL A. (CLUSTER SAMPLING). Suppose the observations occur in s
groups (or clusters) of size m, and that any two observations within a group
have a common correlation coefficient P, while those in different groups are
independent. (This may be the case, for instance, when the observations
within a group are those taken on the same day or by the same observer, or
involve some other common factor.) Then (Problem 20)

0'2

VarX= -[1 + (m - l)p],
ms

which tends to zero as s -+ 00; and analogously assumption (b) is seen to
hold. Since y = (m - l)p, the level of the r-test is not asymptotically robust
as s -+ 00 . In particular, the test overstates the significance of the results
when P > 0.

To provide a specific structure leading to this model, denote the observa­
tions in the ith group by Xij (j = 1, ... , m), and suppose that Xij = Ai +
U;}, where Ai is a factor common to the observations in the ith group. If the
A's and U's (none of which are observable) are all independent with normal
distributions N(~, 0']) and N(O, 0'6) respectively, then the joint distribution
of the X's is that prescribed by Model A with 0'2 = a] + 0'6 and P = 0']/0'2.

MODEL B. (MOVING-AVERAGE PROCESS). When the dependence of
nearby observations is not due to grouping as in Model A, it is often
reasonable to assume that Pi} depends only on Ij - il and is nonincreasing
in Ii - il. Let Pi,i+k then be denoted by Pk' and suppose that the correla­
tion between Xi and Xi+k is negligible for k > m (m an integer < n) , so
that one can put P« = °for k > m. Then the conditions for Lemma 1 are
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satisfied (Problem 22) with

m

r = 2 L Pk '
k-l

In particular, if PI" ' " Pm are all positive, the r-test is again too liberal.
A specific structure leading to Model B is given by the moving-average

process

m

Xi = ~ + L fJ/l;+j'
j-O

where the U's are independent N(O, oJ). The variance 0 2 of the X's is then
0 2 = 02E'!' IJ~ ando j-OPj

Pk =

m-k

L fJifJi+k
i-O

m

L fJ/
j -O

o

for k ~ m,

for k> m.

MODEL C. (FIRST-ORDER AUTOREGRESSIVE PROCESS). A simple model
for dependence in which the Ipkl are decreasing in k but :P 0 for all k is
the first-order autoregressive process defined by

Xi+! = ~ + fJ(Xi - ~) + U;+l' IfJl < 1, i = 1, ... , n,

with the U; independent N(O, oJ). If Xl is Na,7'2), the marginal distri­
bution of Xi for i > 1 is normal with mean ~ and variance 0/ = fJ 20i~ 1 + oJ.
The variance of Xi will thus be independent of i provided 7'2 = oJ/(I - fJ2).
For the sake of simplicity, we shall assume this to be the case, and take ~ to
be zero. From

Xi+ k = fJkXi + fJk-lU;+l + fJ k- 2U;+2 + ... +fJU;+k-l + U;+k

it then follows that Pk = fJk, so that the correlation between Xi and Xj
decreases exponentially with increasing Ij - iI- The assumptions of Lemma
1 are again satisfied, and r = 2fJ/(I - fJ). Thus, in this case too, the level
of the r-test is not asymptotically robust. [Some values of the actual
asymptotic level when the nominal level is .05 or .01 are given by Gastwirth
and Rubin (1971).]
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It is seen that in general the effect of dependence on the level of the t-test
is more serious than that of nonnormality. Unfortunately, it is not possible
to robustify the test against general dependence through Studentization, as
can be done for unequal variances in the two-sample case. This would
require consistent estimation of y and hence of the Pi}' which is unavailable,
since the number of unknown parameters far exceeds the number of
observations.

The difficulty can be overcome if enough information is available to
reduce the general model to one, such as A-C,* depending only on a finite
number of parameters which can then be estimated consistently. Some
specific procedures of this type are discussed by Albers (1978), [and for an
associated sign test by Falk and Kohne (1984)). Such robust procedures will
in fact often also be insensitive to the assumption of normality, as can be
shown by appealing to an appropriate central limit theorem for dependent
variables [see e.g. Billingsley (1979)). The validity of these procedures is of
course limited to the particular model assumed, including the value of a
parameter such as m in Models A and B.

The results of the present section easily extend to the case of the
two-sample r-test, when each of the two series of observations shows
dependence of the kind considered here.

6. CONFIDENCE INTERVALS ANDFAMILIES OFTESTS

Confidence bounds for a parameter 0 corresponding to a confidence level
1 - a were defined in Chapter 3, Section 5, for the case that the distribution
of the random variable X depends only on O. When nuisance parameters ii
are present the defining condition for a lower confidence bound ~ becomes

(32) PI/.b{~(X) ~ O} ~ 1 - a for all 0, ii.

Similarly, confidence intervals for 0 at confidence level 1 - a are defined as
a set of random intervals with end points ~(X), 8(X) such that

(33) PI/.b{~(X) .s 0 s 8(X)} ~ 1 - a for all 0, ii.

The infinum over (0, ii) of the left-hand side of (32) and (33) is the
confidence coefficient associated with these statements.

As was already indicated in Chapter 3, confidence statements permit a
dual interpretation. Directly, they provide bounds for the unknown parame-

"Models of a sequence of dependent observations with various covariance structures are
discussed in books on time series such as Anderson (1971) and Box and Jenkins (1970).
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ter (J and thereby a solution to the problem of estimating (J. The statement
~ ~ (J s jj is not as precise as a point estimate, but it has the advantage that
the probability of it being correct can be guaranteed to be at least 1 - a.
Similarly, a lower confidence bound can be thought of as an estimate ~

which overestimates the true parameter value with probability ~ a. In
particular for a = t, if ~ satisfies

P8 ,,,{~ s (J} = P8,,,{~ ~ (J} = t,

the estimate is as likely to underestimate as to overestimate and is then said
to be median unbiased. (See Chapter 1, Problem 3, for the relation of this
property to a more general concept of unbiasedness.) For an exponential
family given by (10) of Chapter 4 there exists an estimator of (J which
among all median unbiased estimators uniformly minimizes the risk for any
loss function L ( (J, d) that is monotone in the sense of the last paragraph of
Chapter 3, Section 5. A full treatment of this result including some prob­
abilistic and measure-theoretic complications, is given by Pfanzagl (1979).

Alternatively, as was shown in Chapter 3, confidence statements can be
viewed as equivalent to a family of tests. The following is essentially a
review of the discussion of this relationship in Chapter 3, made slightly
more specific by restricting attention to the two-sided case. For each (Jo let
A ( (Jo) denote the acceptance region of a level-a test (assumed for the
moment to be nonrandomized) of the hypothesis H( (Jo) : (J = (Jo. If

S(x) = {(J : x E A((J)}

then

(34)

and hence

(JES(x) if and only if xEA((J),

(35) P8, ,,{ (J E S(X)} ~ 1 - a for all (J , t).

Thus any family of level-o acceptance regions, through the correspondence
(34), leads to a family of confidence sets at confidence level 1 - a.

Conversely, given any class of confidence sets S( x) satisfying (35), let

(36) A((J) = {x: (J E S(x)} .

Then the sets A( (Jo) are level-a acceptance regions for testing the hypotheses
H«(Jo) : (J = (Jo , and the confidence sets S(x) show for each (Jo whether for
the particular x observed the hypothesis (J = (Jo is accepted or rejected at
level a.
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Exactly the same arguments apply if the sets A( 00) are acceptance
regions for the hypotheses °~ 00' As will be seen below, one- and two-sided
tests typically, although not always, lead to one-sided confidence bounds
and to confidence intervals respectively.

Example 4. Normal mean. Confidence intervals for the mean ~ of a normal
distribution with unknown variance can be obtained from the acceptance regions
A(~o) of the hypothesis H : ~ = ~o . These are given by

If,l(x - ~o) I
v'I(x; - x)2/(n - 1)

where C is determined from the t-distribution so that the probability of this
inequality is 1 - a when ~ = ~o . [See (17) and (19) of Section 2.) The set S(x) is
then the set of es satisfying this inequality with ~ = ~o, that is, the interval

C / 1-- -; C / 1 2
(37) x-- --'I(x;-x) ~~~x+- --'I(xi-x) .f,l n-1 f,l n-1

The class of these intervals therefore constitutes confidence intervals for ~ with
confidence coefficient 1 - a .

The length of the intervals (37) is proportional to /'[,( Xi - X)2 , and their
expected length to a. For large 0, the intervals will therefore provide little informa­
tion concerning the unknown t This is a consequence of the fact, which led to
similar difficulties for the corresponding testing problem, that two normal distribu­
tions N(~o , 0

2) and Nal,0
2) with fixed difference of means become indis­

tinguishable as 0 tends to infinity. In order to obtain confidence intervals for ~

whose length does not tend to infinity with 0 , it is necessary to determine the
number of observations sequentially so that it can be adjusted to e. A sequential
procedure leading to confidence intervals of prescribed length is given in Problems
26 and 27.

However, even such a sequential procedure does not really dispose of the
difficulty, but only shifts the lack of control from the length of the interval to the
number of observations. As 0 - 00, the number of observations required to obtain
confidence intervals of bounded length also tends to infinity. Actually, in practice
one will frequently have an idea of the order of magnitude of a, With a sample
either of fixed size or obtained sequentially, it is then necessary to establish a
balance between the desired confidence 1 - n, the accuracy given by the length / of
the interval, and the number of observations n one is willing to expend. In such an
arrangement two of the three quantities 1 - lX, I, and n will be fixed, while the third
is a random variable whose distribution depends on 0, so that it will be less well
controlled than the others. If 1 - lX is taken as fixed, the choice between a
sequential scheme and one of fixed sample size thus depends essentially on whether
it is more important to control/or n.
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To obtain lower confidence limits for t consider the acceptance regions

{n(x - ~o)
-========= s Co{L(xi - x)2/(n - 1)

for testing ~ :s; ~o against ~ > ~o' The sets S(x) are then the one-sided intervals

_ Co) 1
x- {n Yn_1 L(xi - X)2 :s;~,

the left-hand sides of which therefore constitute the desired lQ..wer bounds f If a = !,
the constant Co is 0; the resulting confidence bound S= X is a median unbiased
estimate of ~ , and among all such estimates it uniformly maximizes

p{-~l s ~ - ~ s ~2}

(For a proof see Chapter 3, Section 5.)

for all ~l' ~2 ~ O.

7. UNBIASED CONFIDENCE SETS

Confidence sets can be viewed as a family of tests of the hypotheses
fJ E H(fJ') against alternatives fJ E K(fJ') for varying fJ'. A confidence level
of 1 - a then simply expresses the fact that all the tests are to be at level a,
and the condition therefore becomes

(38) po./}{(J'ES(X)}~1-a for all fJ E H( (J') and all ~ .

In the case that H( fJ') is the hypothesis fJ = fJ' and S( X) is the interval
[~( X), 8(X»), this agrees with (33). In the one-sided case in which H(fJ') is
the hypothesis fJ s fJ' and S( X) = {fJ : ~(X) :s;; fJ}, the condition reduces
to Po, /}{~(X) .s fJ'} ~ 1 - a for all fJ' ~ fJ , and this is seen to be equivalent
to (32). With this interpretation of confidence sets, the probabilities

(39) p//,/}{ fJ' E S(X)}, fJ E K( fJ'),

are the probabilities of false acceptance of H(fJ') (error of the second kind).
The smaller these probabilities are, the more desirable are the tests.

From the point of view of estimation, on the other hand, (39) is the
probability of covering the wrong value 0'. With a controlled probability of
covering the t~e value, the confidence sets will be more informative the less
likely they are to cover false values of the parameter. In this sense the
probabilities (39) provide a measure of the accuracy of the confidence sets.
A justification of (39) in terms of loss functions was given for the one-sided
case in Chapter 3, Section 5.
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In the presence of nuisance parameters , UMP tests usually do not exist,
and this implies the nonexistence of confidence sets that are uniformly most
accurate in the sense of minimizing (39) for all (J' such that (J E K( (J ') and
for all -&. This suggests restricting attention to confidence sets which in a
suitable sense are unbiased. In analogy with the corresponding definition for
tests, a family of confidence sets at confidence level 1 - a is said to be
unbiased if

(40) PD.;}{(J'ES(X}}~l-a

for all (J' such that (J E K ( (J') and for all -& and (J,

so that the probability of covering these false values does not exceed the
confidence level.

In the two- and one-sided cases mentioned above, the condition (40)
reduces to

and

PD.;}{~ s (J' ~ if} ~ 1- a

PD.;}{~ s (J') ~ 1 - a

for all (J' .;. (J and all -&

for all (J' < (J and all -&.

With this definition of unbiasedness, unbiased families of tests lead to
unbiased confidence sets and conversely. A family of confidence sets is
uniformly most accurate unbiased at confidence level 1 - a if it minimizes
the probabilities

PD.;}{O' E S(X)} for all 0' such that 0 E K«(J'} and Ior all d and 0,

subject to (38) and (40). The confidence sets obtained on the basis of the
UMP unbiased tests of the present and preceding chapter are therefore
uniformly most accurate unbiased. This applies in particular to the con­
fidence intervals obtained in the preceding sections. Some further examples
are the following.

Exampk 5. Normal varilurce. If Xl' .. . • X; is a sample from Na. 0
2), the

UMP unbiased test of the hypothesis 0 = 00 is given by the acceptance region (13)

2
~(x - x) c'
i... I s 2'

C{ s o~

where C{ and q are determined by (14). The most accurate unbiased confidence
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intervals for (12 are therefore

1 2 2 1 2
- '" (x - x) < (1 < - "" ( x - x) .qi-J' - -qi-J I

[Tables of q and q are provided by Tate and Klett (1959).] Similarly, from (9)
and (10) the most accurate unbiased upper confidence limits for (12 are

2 1 E 2(1 <- (x-x)- Co I ,

where

100 2
Xn-I(Y) dy = 1 - a.

Co

The corresponding lower confidence limits are uniformly most accurate (without the
restriction of unbiasedness) by Chapter 3, Section 9.

Example 6. Dilference 0/ means. Confidence intervals for the difference !:J. =
1/ - ~ of the means of two normal distributions with common variance are obtained
from tests of the hypothesis 1/ - ~ = !:J.o. If Xl' .. . ' Xm and 1;, ... , y" are distrib­
uted as N(~, (12) and N(1/, (12) respectively, and if lj' = !i - !:J. o, 1/' = 1/ - !:J. o, the
hypothesis can be expressed in terms of the variables x, and lj' as 1/' - ~ = o.
From (28) and (30) the UMP unbiased acceptance region is then seen to be

10 - x - !:J. o) IIV~ + ~
VlE(x; - X)2 + L(>J - y)2]/(m + n - 2)

where C is determined by the equation following (30). The most accurate unbiased
confidence intervals for 1/ - ~ are therefore

(41)

where

o - x) - CS ~ 1/ - Ls 0 - z) + CS

S2 = (2- +~) I:(x; - x)2+I:(>J - y)2
m n m+n-2

The one-sided intervals are obtained analogously.

Example 7. Ratio 0/variances. If Xl' . . . ' Xm and Yl , • .. , y" are samples from
N(t (12) and N(1/, 7'2), most accurate unbiased confidence intervals for!:J. = 7'2/(12
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are derived from the acceptance region (23) as

(42)
1 - C2 [(JIJ - ji)2 'T2 1 - CI [(JIJ _ ji)2
-- 2~2~-- 2'

C2 [(Xi- X) a CI [(Xi-X)

where CI and C2 are determined from (25).· In the particular case that m = n, the
intervals take on the simpler form

(43)
1 [(JIJ_ji)2 'T2 k[(JIJ-ji)2
- 2~2~ 2 '
k [(Xi -X) a [(Xi-X)

where k is determined from the F-distribution. Most accurate unbiased lower
confidence limits for the variance ratio are

(44)
1 [( JIJ - ji)2j ( n - 1) 'T2

Ii=- <-- r ~ 2 - 2
'"1) £,.(X; - X) j(m - 1) a

with Co given by (22). If in (22) a is taken to be !, this lower confidence limit ~
becomes a median unbiased estimate of 'T

2j a2• Among all such estimates it
uniformly minimizes

p{ -iii s :: - ~ s li 2 } for all iii' li 2 ~ O.

(For a proof see Chapter 3, Section 5).

So far it has been assumed that the tests from which the confidence sets
are obtained are nonrandomized. The modifications that are necessary when
this assumption is not satisfied were discussed in Chapter 3. The rando­
mized tests can then be interpreted as being nonrandomized in the space of
X and an auxiliary variable V which is uniformly distributed on the unit
interval. If in particular X is integer-valued as in the binomial or Poisson
case, the tests can be represented in terms of the continuous variable
X + V. In this way, most accurate unbiased confidence intervals can be
obtained, for example, for a binomial probability P from the UMP unbiased
tests of H : p = Po (Example 1 of Chapter 4). It is not clear a priori that the
resulting confidence sets for p will necessarily by intervals. This is, however,
a consequence of the following Lemma.

•A comparison of these limits with those obtained from the equal-tails test is given by
Scheffe (1942); some values of CI and C2 are provided by Ramachandran (1958).
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Lemma 2. Let X be a real-valuedrandom variable with probability density
Po(x) which has monotone likelihood ratio in x. Suppose that UMP unbiased
tests of the hypotheses H( 80 ) : 8 = 80 exist and are given by the acceptance
regions

C1(80 ) ;S; x;S; C2(80 ) ,

and that they are strictly unbiased. Then the functions C;(8) are strictly
increasing in 8, and the most accurate unbiased confidence intervals for 8 are

Ci 1(x ) ;S; e« C11(x ).

Proof. Let 80 < 81, and let Po(8) and P1( 8 ) denote the power functions
of the above tests 4>0 and 4>1 for testing 8 = 80 and 8 = 81, It follows from
the strict unbiasedness of the tests that

EOJ4>1(X) - 4>o(X)] = P1(80 ) - a > 0 > a - Po(81)

=Ed4>1(X) - 4>o(X)] ,

Thus neither of the two intervals [C1(8;), C2(8;)] (i = 0,1) contains the
other, and it is seen from Lemma 2(iii) of Chapter 3 that C;(80) < C;(81)

for i = 1,2. The functions C; therefore have inverses, and the inequalities
defining the acceptance region for H(O) are equivalent to Ci 1( x ) ;S; 0 ;S;

C11( x), as was to be proved.
The situation is indicated in Figure 1. From the boundaries x = C1( 8)

and x = C2(8) of the acceptance regions A(8) one obtains for each fixed
value of x the confidence set S(x) as the interval of 8 's for which
C1(8) ;S; x ;S; C2(8).

8 -C2(8)

C1(8)

<': ' t 'Ii %
x

Figure 1
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By Section 2 of Chapter 4, the conditions of the lemma are satisfied in
particular for a one-parameter exponential family, provided the tests are
nonrandomized. In cases such as that of binomial or Poisson distributions,
where the family is exponential but X is integer-valued so that randomiza ­
tion is required, the intervals can be obtained by applying the lemma to the
variable X + V instead of X, where V is independent of X and uniformly
distributed over (0, 1).

In the binomial case, a table of the (randomized) uniformly most
accurate unbiased confidence intervals is given by Blyth and Hutchinson
(1960). The best choice of nonrandomized intervals and some large-sample
approximations are discussed (and tables provided) by Blyth and Still
(1983) and Blyth (1984). For additional discussion and references see
Johnson and Kotz (1969, Section 3.7) and Ghosh (1979).

In Lemma 2, the distribution of X was assumed to depend only on O.
Consider now the exponential family (1) in which nuisance parameters are
present in addition to O. The UMP unbiased tests of 0 = 00 are then
performed as conditional tests given T = t, and the confidence intervals for
o will as a consequence also be obtained conditionally . If the conditional
distributions are continuous, the acceptance regions will be of the form

C1(0; r) .s U:$; C2(0; r),

where for each t the functions C; are increasing by Lemma 2. The
confidence intervals are then

CZ-1(u; r) :$; O:$; C11(u; r).

If the conditional distributions are discrete, continuity can be obtained as
before through addition of a uniform variable.

Example 8. Poisson ratio. Let X and Y be independent Poisson variables with
means X and p., and let P = p.IX. The conditional distribution of Y given X + Y = 1
is the binomial distribution bt p , I) with

P
P=l+p '

The UMP unbiased test I/I(Y, I) of the hypothesis p = Po is defined for each 1 as the
UMP unbiased conditional test of the hypothesis p = Po/(l + Po). If

p(/) 5,p 5,p(/)

are the associated most accurate unbiased confidence intervals for p given I, it
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follows that the most accurate unbiased confidence intervals for p./X are

p(t) P. p(t)
---<-<--

I-p(t)-X-l-p(t) ·

The binomial tests which determine the functions p(t) and p(t) are discussed in
Example 1 of Chapter 4. -

8. REGRESSION

The relation between two variables X and Y can be studied by drawing an
unrestricted sample and observing the two variables for each subject,
obtaining n pairs of measurements (Xl' YI ) , . . . , (Xn , Yn ) (see Section 15
and Chapter, 5, Problem 10). Alternatively, it is frequently possible to
control one of the variables such as the age of a subject, the temperature at
which an experiment is performed, or the strength of the treatment that is
being applied. Observations YI , ... , Yn of Y can then be obtained at a
number of predetermined levels Xl" ' " x; of x. Suppose that for fixed X

the distribution of Y is normal with constant variance 0 2 and a mean which
is a function of x , the regression of Y on x, and which is assumed to be
linear,

E[Ylx] = a + fix.

If we put Vi = (Xi - x)/ VE(xj - x)2 and y + SVi = a + /3x;, so that
EVi = 0, Ev; = 1, and

x
- - S )2 'a - y {'[(x

j
_ X

the joint density of Y1, • • ·, Yn is

«5

fi = V'[(x
j

_ X)2 '

1 [1
(J2;"or exp - 202 L(Y; - Y - 8V;)t

These densities constitute an exponential family (1) with

U = LV;¥;, TI = L ¥;2, T2 =L: ¥;
8 1 Y

(} =- ~ =-- ~2 =2 ·2 ' I 202 '0 0
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This representation implies the existence of UMP unbiased tests of the
hypotheses ay + b8 = c where a, b, and c are given constants, and
therefore of most accurate unbiased confidence intervals for the parameter

P = ay + b8.

To obtain these confidence intervals explicitly, one requires the UMP
unbiased test of H: P= Po' which is given by the acceptance region

(45)

where

IbLUi~ + aY -Pol!V(a2In) + b2

V[L(~ - yf - (LUi~)2]/(n - 2)

f C (n -2( Y) dy = 1 - a .
- c

:s;C

(See Problem 33 and Chapter 7, Section 7, where there is also a discussion
of the robustness of these procedures against nonnormality.) The resulting
confidence intervals for p are centered at bI:ui~ + aY, and their length is

L = 2C\ / [a
2

+ b2] L(~ - yf - (LUi~)2
n n -2

It follows from the transformations given in Problem 33 that [I:(~ _ Y) 2 ­
(I:Ui~)2l/0'2 has a X2.distribution with n - 2 degrees of freedom and hence
that the expected length of the intervals is

.0?
E(L) = 2C"O'V -;; + b2

•

In particular applications, a and b typically are functions of the x's. If
these are at the disposal of the experimenter and there is therefore some
choice with respect to a and b, the expected length of L is minimized by
minimizing (a 2In) + b2

• Actually, it is not clear that the expected length is
a good criterion for the accuracy of confidence intervals, since short
intervals are desirable when they cover the true parameter value but not
necessarily otherwise. However, the same result holds for other criteria
such as the expected value of Cii - p) 2 + (p - p) 2 or more generally of
I.Wi - pI) + 12 (I p - EI), where 11 and 12 are increasing functions of their
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arguments. (See Problem 33.) Furthermore, the same choice of a and b also
minimizes the probability of the intervals covering any false value of the
parameter. We shall therefore consider (a 2jn) + b2 as an inverse measure
of the accuracy of the intervals.

Example 9. Slope of regression line. Confidence levels for the slope P=

81 J,£(x j - x) 2
are obtained from the above intervals by letting a = °and b =

II J,£(xj - X)2 . Here the accuracy increases with '£(xj - X)2, and if the xj must
be chosen from an interval [CO, Cd, it is maximized by putting half of the values at
each end point. However, from a practical point of view, this is frequently not a
good design, since it permits no check of the linearity of the regression.

Example 10. Ordinate of regression line. Another parameter of interest is the
value a + pXo to be expected from an observation Yat x = Xo' Since

8(xo - x) ,
- + )2a + pXo - Y JL (x

j
- x

the constants a and bare a=l, b=(Xo-x)/!'£(Xj-X)2 . The maximum
accuracy is obtained by minimizing Ix - xol and, if x = Xo cannot be achieved
exactly, also maximizing '£(xj - x)2.

Example 11. lnterapt of regression line. Frequently it is of interest to estimate
the point x at which a + px has a preassigned value. One may for example wish to
find the dosa e x = -alp at which E(Ylx) = 0, or equivalently the value v =

(x - x)1 '£(xj - X)2 at which y + Bo = 0. Most accurate unbiased confidence
sets for the solution - y18 of this equation can be obtained from the UMP
unbiased tests of the hypotheses - y18 = vo' The acceptance regions of these tests
are given by (45) with a = 1, b = Vo, and Po = 0, and the resulting confidence sets
for v are the sets of values v satisfying

v2[C2S2 - ('£v;y;)2] - 2vY('£v;Y;) +..:( C2S2 - ny2 ) ~ 0,
n

where S2 = [,£(Y; - y)2 - ('£v;y;)2]/(n - 2). If the associated quadratic equation
in v has roots y, ii, the confidence statement becomes

and

ysvs;;ii

vS!lorv~ii

when

when

ILV;Y;I > C
S

ILv;Y;1 < C.
S
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The somewhat surprising possibility that the confidence sets may be the outside
of an interval actually is quite appropriate here. When the line y = y + 8v is nearly
parallel to the v-axis, the intercept with the v-axis will be large in absolute value,
but its sign can be changed by a very small change in angle. There is the further
possibility that the discriminantof the quadratic polynomial is negative,

ny2 + (L Vi Y; )2 < C2S2 ,

in which case the associated quadratic equation has no solutions. This condition
implies that the leading coefficient of the quadratic polynomial is positive, so that
the confidence set in this case becomes the whole real axis. The fact that the
confidencesets are not necessarily finite intervals has led to the suggestion that their
use be restricted to the cases in which they do have this form. Such usage will
howeveraffect the probability with whichthe sets cover the true value and hence the
validity of the reported confidence coefficient."

9. BAYESIAN CONFIDENCE SETS

The left side of the confidence statement (35) denotes the probability that
the random set S(X) will contain the constant point (J . The interpretation
of this probability statement, before X is observed, is clear: it refers to the
frequency with which this random event will occur. Suppose for example
that X is distributed as N( (J, 1), and consider the confidence interval

X - 1.96 < (J < X + 1.96

corresponding to confidence coefficient y = .95. Then the random interval
(X - 1.96, X + 1.96) will contain (J with probability .95. Suppose now that
X is observed to be 2.14. At this point, the earlier statement reduces to the
inequality 0.18 < (J < 4.10, which no longer involves any random element.
Since the only unknown quantity is (J, it is tempting (but not justified) to say
that (J lies between 0.18 and 4.10 with probability .95.

To attach a meaningful probability to the event (J E S(x) when x is
fixed requires that (J be random. Inferences made under the assumption that
the parameter (J is itself a random (though unobservable) quantity with a
known distribution are called Bayesian, and the distribution A of (J before
any observations are taken its prior distribution . After X = x has been
observed, inferences concerning (J can be based on its conditional distribu­
tion given x , the posterior distribution. In particular, any set S(x) with the
property

p[(J E S(x)IX = xl ~ y for all x

• A method for obtaining the size of this effect was developed by Neyman. and tables have
been computed on its basis by Fix. This work is reported by Bennett (1957).



226 UNBIASEDNESS: APPLICATIONS; CONFIDENCE INTERVALS [5.9

is a 100)'% Bayesian confidence set or credible region for O. In the rest of
this section, the random variable with prior distribution A will be denoted
bye, with 0 being the value taken on by e in the experiment at hand.

Example 12 Normal mean. Suppose that 8 has a normal prior distribution
N(p., b2

) and that given 8 = 8, the variables Xl' " . , Xn are independent N (8, ( 2
) ,

a known. Then the posterior distribution of 8 given Xl" •• , x; is normal with mean
(Problem 34)

'l/
x

= E[ 81x] = nx/a
2

+ p./b
2

n/a2 + l/b2

and variance

1
T} = Var[81x] = n/a2 + l/b' .

Since [8 - 'I/,lIT. then has a standard normal distribution, the interval I(x) with
endpoints

nX/a 2 + p./b2 1.96
---.:...--::----.:...~±r=~====:=-

n/a2 + l/b
2 In/a2 + l/b2

satisfies pre E I(x)IX = x] = .95 and is thus a 95% credible region.
For n = 1, P. = 0, a = 1, the interval reduces to

X 1.96

--1-± J 1
1 + b2 1 + b2

which for large b is very close to the confidence interval for 8 stated at the
beginning of the section. But now the statement that 8 lies between these limits with
probability.95 is justified, since it is a probability statement concerning the random
variable 8 .

The distribution N(p., b2 ) assigns higher probability to 8-values near p. than to
those further away. Suppose instead that no information whatever about 8 is
available, so that one wishes to model a state of complete ignorance. This could be
done by assigning the same probability density to all values of 8, that is, by
assigning to 8 the probability density 'IT( 8) =C, - 00 < 8 < 00 . Unfortunately, the
resulting 'IT is not a probability density, since f~ ",,'IT( 8) d8 = 00 . However, if this
fact is ignored and the posterior distribution of 8 given X is calculated in the usual
way, it turns out (Problem 35) that 'IT( 81x) is the density of a genuine probability
distribution, namely N(p., a2/n), the limit of the earlier posterior distribution as
b -+ 00 . The improper (since it integrates to infinity), noninformative prior density
'IT( 8) =C thus leads approximately to the same results as the normal prior N(p., b2 )

for large b, and can be viewed as an approximation to the latter.
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Unlike confidence sets, Bayesian credible regions provide exactly the
desired kind of probability statement even after the observations are known.
They do so, however, at the cost of an additional assumption: that 0 is
random and has a known prior distribution. Interpretations of such prior
distributions as ways of utilizing past experience or as descriptions of a state
of mind are discussed briefly in Chapter 4, Section 1 of TPE. Detailed
accounts of the Bayesian approach and its application to credible regions
can be found for example in Lindley (1965), Box and Tiao (1973), and
Berger (1985); some frequency properties of such regions are discussed in
Rubin (1984). The following examples provide a few illustrations and
additional comments.

Example 13. Let X be binomial b(p, n), and suppose that the prior distribu­
tion for P is the beta distribution" B( a, b) with density Cpa - 1(1 - p )b-l, 0 < P < 1,
o < a, b. Then the posterior distribution of p given X = x is the beta distribution
Bt a + x, b + n - x) (Problem 36). There are of course many sets S(x) whose
probability under this distribution is equal to the prescribed coefficient y. A choice
that is frequently recommended is the HPD (highest probability density) region,
defined by the requirement that the posterior density of p given x be ~ k.

With a beta prior, only the following possibilities can occur: for fixed x,

(a) 'IT(plx) is decreasing,
(b) 'IT( p Ix) is increasing,
(c) 'IT(plx) is increasing in (0, Po) and decreasing in (Po, 1) for some Po,
(d) 'IT(plx) is Ll-shaped, i.e. decreasing in (O,Po) and increasing in (Po,l) for

some Po.

The HPD region then is of the form

(a) p < K(x) ,
(b) p> K(x) ,
(c) K1(x) < p < K 2(x),

(d) P < K1(x) or p > K 2(x),

where the K's are determined by the requirement that the posterior probability of
the region, given x, bey; in cases (c) and (d) this condition must be supplemented
by

'IT[K1(x)lx] = 'IT[K2(x)lx] .

In general, if 'IT«(Jlx) denotes the posterior density of (J , the HPD region is
defined by

'IT( (Jlx) ~ k

'This is the so-called conjugate of the binomial distribution: for a more general discussion
of conjugate distributions. see TPE, Chapter 4, Section 1.
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with C determined by the size condition

P['IT(8Ix) ~ k] = y.

Example 14. Two-parameter normal: estimating the mean. Let Xl' . . " Xn be
independent N(~, 0 2), and for the sake of simplicity suppose that a,0) has the
joint improper prior density given by

1
'IT ( ~, 0) d~ do = d~ - do

o
for all - 00 < ~ < 00, 0 < 0 ,

which is frequently used to model absence of information concerning the parame­
ters. Then the joint posterior density of (t 0) given x = (Xl ' ... , xn ) is of the form

1 ( 1 n )'IT(~,olx)d~do=C(x)--;;+Texp --2 L(~-X;)2 d~do.
o 20 i- l

Determination of a credible region for ~ requires the marginal posterior density of ~

given x, which is obtained by integrating the joint posterior density with respect to
a. These densities depend only on the sufficient statistics x and S2 = [(Xi - X)2,
and the posterior density of ~ is of the form (Problem 37)

A(X)[ n<:_X)2]n
I
2

1 + S2

Here x and S enter only as location and scale parameters, and the linear function

f,l(~-x)

1= S/~

of ~ has the r-distribution with n - 1 degrees of freedom. Since this agrees with the
distribution of I for fixed ~ and 0 given in Section 2, the credible 100(1 - a)%
region

f,l (~ - x) I < CI _

S/~

is formally identical with the confidence intervals (37). However, they are derived
under different assumptions, and their interpretation differs accordingly.
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Example 15. Two-partlltleter IIOI7tUI1: estimating a. Under the assumptions of
the preceding example, credible regions for a are based on the posterior distribution
of a given x, obtained by integrating the joint posterior density of (e , a) with
respect to e. Using the fact that E(e - x;)2 = na - X)2 + E(x; - X)2, it is seen
(Problem 38) that given x, the conditional (posterior) distribution ofE(x; - X)2/a2
is X2 with n - 1 degrees of freedom . As in the case of the mean, this agrees with the
sampling distribution of the same quantity when a is a (constant) parameter, given
in Section 2. (The agreement in both cases of two distributions derived under such
different assumptions is a consequence of the particular choice of the prior distribu­
tion and the fact that it is invariant in the sense of TPE, Section 4.4.) A change of
variables now gives the posterior density of a and shows that 'IT( alx) is of the form
(c) of Example 13, so that the HPD region is of the form K1(x) < a < K 2(x) with
0< K1(x) < K 2(x) < 00 .

Suppose that a credible region is required, not for a, but for a" for some r > O.
For consistency, this should then be given by [K1(x)]' < o" < [K2(x)]', but this is
not the case, since the relative height of the density of a random variable at two
points is not invariant under monotone transformations of the variable. In fact, in
the present case, the HPD region for aT will become one-sided for sufficiently large
r although it is two-sided for r = 1 (Problem 38).

Such inconsistencies do not occur if the HPD region is replaced by
the equal-tails interval (C1( x ), C2( x )) for which P[8 < C1(x ) IX = x] =

P[8 > C2( x ) IX = x] = (1 - 1)/2.* More generally inconsistencies under
transformations of e are avoided when the posterior distribution of e is
summarized by a number of its percentiles corresponding to the standard
confidence points mentioned in Chapter 3, Section 5. Such a set is a
compromise between providing the complete posterior distribution and
providing a single interval corresponding to only two percentiles.

Both the confidence and the Bayes approach present difficulties: the first,
the problem of postdata interpretation; the second, the choice of a prior
distribution and the interpretation of the posterior coverage probabilities if
there is no clear basis for this choice. It is therefore not surprising that
efforts have been made to find an approach without these drawbacks. The
first such attempt, from which most later ones derive, is due to Fisher [1930;
for his final account see Fisher (1973)].

To discuss Fisher's concept of fiducial probability, consider once more
the example at the beginning of the section, in which X is distributed as
N(O,l). Since then X - 0 is distributed as N(O,l), so is 0 - X, and hence

p(O - X 5. y) = ()(y) for all y .

For fixed X = x, this is the formal statement that a random variable 0 has
distribution N(x, 1). Without assuming 8 to be random, Fisher calls N(x, 1)
the fiducial distribution of 8. Since this distribution is to embody the

·They also do not occur when the posterior distribution of 8 is discrete.
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information about °provided by the data, it should be unique, and Fisher
imposes conditions which he hopes will ensure uniqueness. This leads to
some technical difficulties, but more basic is the question of how to interpret
fiducial probability. In a series of independent repetitions of the experiment
with arbitrarily varying 0i' the quantities °1 - Xl' °2 - X2, . . . will con­
stitute a sequence of independent standard normal variables. From this fact,
Fisher attempts to derive the fiducial distribution N(x,l) of ° as a
frequency distribution with respect to an appropriate reference set. How­
ever, this argument is difficult to follow and unconvincing. For summaries
of the fiducial literature and of later related developments by Dempster,
Fraser, and others, see Pedersen (1978), Buehler (1980), Dawid and Stone
(1982), and the encyclopedia articles by Fraser (1978), Edwards (1983),
Buehler (1983), and Stone (1983).

Fisher's effort to define a suitable frame of reference led him to the
important concept of relevant subsets, which will be discussed in Chapter 10.

10. PERMUTATION TESTS

For the comparison of a treatment with a control situation in which no
treatment is given, it was shown in Section 3 that the one-sided r-test is
UMP unbiased for testing H: T/ = ~ against T/ - ~ = A > 0 when the
measurements Xl " ' .' Xm and YI , . . . , Yn are samples from normal popula­
tions Na, ( 2) and N(T/, ( 2) . It was further shown in Section 4 that the level
of this test is (asymptotically) robust against nonnormality-that is, that
except for small m or n the level of the test is approximately equal to the
nominal level a when the X's and Y's are samples from any distributions
with densities f(x) and f(y - A) with finite variance. If such an approxi­
mate level is not satisfactory, one may prefer to try to obtain an exact
level-a unbiased test (valid for all f) by replacing the original normal model
with the nonparametric model for which the joint density of the variables is

(46) f(x l ) · · · f(xm)f(YI - A) ... f(Yn - A), fE~,

where we shall take ~ to be the family of all probability densities that are
continuous a.e.

lf there is much variation in the population being sampled, the sensitivity
of the experiment can frequently be increased by dividing the population
into more homogeneous subgroups, defined for example by some character­
istic such as age or sex. A sample of size N, (i = 1, . .. , c) is then taken from
the i th subpopulation: m i to serve as controls, and the other n i = N, - m i

to receive the treatment. If the observations in the ith subgroup of such a
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stratifiedsample are denoted by

(Xil, · · · , X;m; 1';1'" '' 1';n) = (Z;l"'" Z;N)', , ,

the density of Z = (Z11"'" ZcN) is

(47)
c

Ptl(Z) = n [/;(X;l) '" /;(X;m)/;(Yil - A) . .. /;(Y;n - A)] .
i =- l I I

Unbiasedness of a test ep for testing A = 0 against A > 0 implies that for all

fl"'" fe

(48) f ep (z )Po (z ) dz = a (dz = dz11 .. • dzcN}

Theorem 6. If f7 is the family of all probability densities f that are
continuous a.e., then (48) holds for all fl"'" fc E f7 if and only if

(49)
1

Nl!'~ L ep(z') = a
c' z'eS(z)

a.e .,

where S( z) is the set of points obtained from z by permuting for each
i = 1, .. . , c the coordinates Z;j (j = 1, . .. , N;) within the itb subgroup in all
N1! .. . Ne! possible ways.

Proof. To prove the result for the case c = 1, note that the set of order
statistics T(Z) = (Z(l)"'" Z(N») is a complete sufficient statistic for f7
(Chapter 4, Example 6). A necessary and sufficient condition for (48) is
therefore

(50) E[ep(Z)IT(z)] = a a.e.

The set S(z) in the present case (c = 1) consists of the N! points
obtained from z through permutation of coordinates, so that S( z) =
(z' : T( z') = T( z)}. It follows from Section 4 of Chapter 2 that the condi ­
tional distribution of Z given T( z) assigns probability 1/N! to each of the
N! points of S(z). Thus (50) is equivalent to

(51 )
1

N! L ep(z') = a
z'es(z)

a.e.,

as was to be proved. The proof for general c is completely analogous and is
left as an exercise (Problem 44.)
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The tests satisfying (49) are called permutation tests. An extension of this
definition is given in Problem 54.

11. MOST POWERFUL PERMUTAnON TESTS

For the problem of testing the hypothesis H : Ii = 0 of no treatment effect
on the basis of a stratified sample with density (47) it was shown in the
preceding section that unbiasedness implies (49). We shall now determine
the test which, subject to (49), maximizes the power against a fixed alterna­
tive (47) or more generally against an alternative with arbitrary fixed density
h(z).

The power of a test q, against an alternative h is

jq,(z)h(z) dz = jE[q,(Z)lt] dpT(t).

Let t = T(z) = (Z(l)" . " Z(N»' so that S(z) = S(t). As was seen in Exam­
ple 7 and Problem 5 of Chapter 2, the conditional expectation of q,(Z)
given T(Z) = t is

t[;(t) =

E q,(z)h(z)
zeS(t)

E h(z)
zeS(t)

To maximize the power of q, subject to (49) it is therefore necessary to
maximize t[;(t) for each t subject to this condition. The problem thus
reduces to the determination of a function q, which, subject to

1
= a,E q,(z)N1!. .. N

e
!

z e S( t )

maximizes

h(z)

~ h(z') '
z'eS(t)

E q,(;) -
zeS(t)

By the Neyman-Pearson fundamental lemma, this is achieved by rejecting
H for those points z of S(t) for which the ratio

h(z )N1!. .. Ne !

~ h(z')
z'eS(t)
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is too large. Thus the most powerful test is given by the critical function

(52) ~(z) ~ G
when h(z) > C [T( Z )],

when h(z) = C [T( z)],
when h(z) < C [T( z)] .

To carry out the test, the NI ! .. . Ne! points of each set S(z) are ordered
according to the values of the density h. The hypothesis is rejected for the k
largest values and with probability y for the (k + l)st value, where k and y
are defined by

k + y = aNI! ' " Ne !.

Consider now in particular the alternatives (47). The most powerful permu­
tation test is seen to depend on A and the /;, and is therefore not UMP.

Of special interest is the class of normal alternatives with common
variance:

t, = N(~i'a2).

The most powerful test against these alternatives, which turns out to be
independent of the ~i' a 2

, and A, is appropriate when approximate normal­
ity is suspected but the assumption is not felt to be reliable. It may then be
desirable to control the size of the test at level a regardless of the form of
the densities Ii and to have the test unbiased against all alternatives (47).
However, among the class of tests satisfying these broad restrictions it is
natural to make the selection so as to maximize the power against the type
of alternative one expects to encounter, that is, against the normal alterna­
tives.

With the above choice of /; , (47) becomes

[
I e ( mi

(53) h(z) = (y'2;"a)-Nexp - 2a 2 i~l j'f:
1
(zij - ~i)2

+ £ (Zij-~i-A)2)].
j=m;+l

Since the factor exp[- 'f.;r:.7:'I(Zij - 02/2a 2] is constant over S(t), the test
(52) therefore rejects H when exp(A'f.i'f.7:'mi+1Zij) > C[T(z)] and hence
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when

(54)
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c n; c N;

L LYij = L L Zij> C[T(z)] .
i- I j- 1 i -I j -mi+1

[5.11

Of the N1! . . • Ne! values that the test statistic takes on over S( t), only

(~:) ... (~:)

are distinct, since the value of the statistic is the same for any two points z'
and z" for which (z;l"' " z;m) and (z;{, .. . , z;:.,) are permutations of each
other for each i, It is therefore enough to compare these distinct values, and
to reject H for the k' largest ones and with probability y' for the (k' + 1)st,
where

k' + y' = a( ~: )...(~:).
The test (54) is most powerful against the normal alternatives under

consideration among all tests which are unbiased and of level a for testing
H: A = 0 in the original family (47) with f1"'" fe E $'.* To complete the
proof of this statement it is still necessary to prove the test unbiased against
the alternatives (47). We shall show more generally that it is unbiased
against all alternatives for which Xii (j = 1, . . . , m;), Y;k (k = 1, . . . , n ;)
are independently distributed with cumulative distribution functions F;, G,
respectively such that l';k is stochastically larger than Xii' that is, such that
Gi(z) ~ F;(z) for all z. This is a consequence of the following lemma.

Lemma 3. Let Xl" .. , Xm, Y1, • • • , Yn be samples from continuous distri­
butions F, G, and let ep(x1, • • • , x m; YI"'" Yn) be a critical function such that
(a) its expectation is a whenever G = F, and (b) Yi ~ yf for i = 1, .. . , n
implies

ep(x l , · .. , x m; YI'" '' Yn) ~ ep(x l , · .. , x m; Y{, · ··, y~) .

Then the expectation f3 = f3( F, G) of ep is ~ a for all pairs of distributions
for which Y is stochastically larger than X; it is ~ a if X is stochastically
larger than Y.

Proof. By Lemma 1 of Chapter 3 there exist functions f, g and inde­
pendent random variables VI'" '' Vm + n such that the distributions of f(V;)

"For a closely related result , see Oden and Wedel (1975).
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and g( V:) are F and G respectively and that f (z) s g( z) for all z. Then

EtP [J(V1 ), · · · , f(Vm); f(Vm+ 1) , · · · , f(Vm+ n)] = a

and

EtP [J( VI)'" ., f( Vm); g( Vm+ 1)"'" g( Vm+ n)] = p.

Since for all (VI" ' " Vm+ n),

tP [J( VI)' .. . , f( Vm); f( Vm+ 1)' . .. , f( Vm+ n)]

~ tP[J(Vl) , .. . ,f(vm); g(vm+ 1) , · .. , g(vm+ n)],

the same inequality holds for the expectations of both sides, and hence
a s e.

The proof for the case that X is stochastically larger than Y is completely
analogous.

The lemma also generalizes to the case of c vectors (X;I" ' " X;m ~

Y;1' .. . , Y;n ) with distributions (F;, G;). If the expectation of a function tP is
then a when F; = G; and tP is nondecreasing in each Yij when all other
variables are held fixed, it follows as before that the expectation of tP is ~ a
when the random variables with distribution G; are stochastically larger
than those with distribution F;.

In applying the lemma to the permutation test (54) it is enough to
consider the case c = 1, the argument in the more general case being
completely analogous . Since the rejection probability of the test (54) is a
whenever F = G, it is only necessary to show that the critical function tP of
the test satisfies (b). Now tP = 1 if E;::'\IZ; exceeds sufficientlymany of the
sums E;:+:+IZji' and hence if sufficiently many of the differences

m+n m+n
'" Z·- '" z ,L.- I L.-};

;=m+l ;-m+l

are positive. For a particular permutation (Jl" '" Jm+n)

m+n m+n p p

L z; - L z)'. = L zs· - L zr'
, I I

;=m+l ;=m+l ;=1 ; = 1

where '1 < . .. <: denote those of the integers Jm+ l' . . . , Jm+ n that are
~ m, and 51 < . . . < 5p those of the integers m + 1, ... , m + n not
included in the set (Jm+l"'" Jm+n)' If Ez s - EZr is positive and Y; s Y!,

, I
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that is, z; .:5: z; for i = m + 1, .. . , m + n, then the difference LZ':
i

- LZ'i is
also positive and hence I/> satisfies (b).

The same argument also shows that the rejection probability of the test is
.:5: a when the density of the variables is given by (47) with A .:5: O. The test
is therefore equally appropriate if the hypothesis A = 0 is replaced by
A.:5: O.

Except for small values of the sample sizes N;, the amount of computa­
tion required to carry out the permutation test (54) is very large. Computa­
tional methods are discussed by Green (1977) and John and Robinson
(1983b) . Alternatively, several large-sample approximations for the critical
value are available; see, for example, Robinson (1982).

A particularly simple approximation relates the permutation test to the
corresponding r-test. On multiplying both sides of the inequality

LYj> C [T(z)]

by (11m) + (lin) and subtracting (Lx; + EYj)/m, the reiection re 'on for

c = 1 becomes y - x > C[T(z)] or W = <Y - x)1 Ef_l(Z; - zf >
C[T(z)], since the denominator of W is constant over S(z) and hence
depends only on T(z). As was seen at the end of Section 3, this is equivalent
to

(55)
(Y-x)/rr:f

vIf(~ ; ~ x)Z + L(Yj - y)2]/(m + n - 2)

The rejection region therefore has the form of a r-test in which the constant
cutoff point Co of (27) has been replaced by a random one. It turns out that
when the hypothesis is true, so that the 2 's are identically and indepen­
dently distributed, and if EI21 3 < 00 and min is bounded away from zero
and infinity as m and n tend to infinity, the difference between the random
cutoff point C[T(2)] and Co tends to zero in probability. In the limit, the
permutation test therefore becomes equivalent to the r-test given by
(27)-(29).* It follows that the permutation test can be approximated/or large
samples by the standardt-test, Exactly analogous results hold for c > 1; the
appropriate t-test is provided in Chapter 7, Problem 9.

*This equivalence is not limited to the behavior under the hypothesis . For large samples. it
is shown by Hoeffding (1952) and Bickel and van Zwet (1978. Theorem 7.2) that also the power
of the permutation test is approximately equal to that of the r-test. For some implications and
further references see Lambert (1985).
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The problem of testing for the effect of a treatment was considered in
Section 3 under the assumption that the treatment and control measure­
ments Xl " ' " Xm and YI , .. • , Yn constitute samples from normal distribu­
tions, and in Sections 10 and 11 without relying on the assumption of
normality. We shall now consider in somewhat more detail the structure of
the experiment from which the data are obtained, resuming for the moment
the assumption that the distributions involved are normal.

Suppose that the experimental material consists of m + n patients,
plants, pieces of material, or the like, drawn at random from the population
to which the treatment could be applied. The treatment is given to n of
these while the other m serve as controls . The characteristic that is to be
influenced by the treatment is then measured in each case, leading to
observations Xl' " . , Xm; YI , · · . , Yn•

To be specific, suppose that the treatment is carried out by injecting a
drug and that m + n ampules are assigned to the m + n patients. The ith
measurement can be considered as the sum of two components. One, say 11;,
is associated with the ith patient; the other, V;, with the ith ampule and the
circumstances under which it is administered and under which the measure­
ments are taken. The variables 11; and V; are assumed to be independently
distributed, the V's with normal distribution N(Tj, 0 2) or Na, 0

2) as the
ampule contains the drug or is one of those used for control. If in addition
the U's are assumed to constitute a random sample from N(p., of), it
follows that the X's and Y's are independently normally distributed with
common variance 0

2 + of and means

E(X)=p.+t E(Y) = p. + Tj.

Except for a change of notation their joint distribution is then given by (26),
and the hypothesis Tj = ~ can be tested by the standard r-test.

Unfortunately, under actual experimental conditions, it is frequently not
possible to ensure that the patients or other experimental units constitute a
random sample from the population of such units. They may be patients in
a certain hospital at a given time, or volunteers for an experiment , and may
constitute a haphazard rather than a random sample. In this case the U's
would have to be considered as unknown constants, since they are not
obtained by any definite sampling procedure. This assumption is ap­
propriate also in a different context. Suppose that the experimental units are
all the machines in a shop or fields on a farm. If the experiment is
performed only to determine the best method for this particular shop or
farm, these experimental units are the only relevant ones; that is, a repli-
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cation of the experiment would consist in comparing the two treatments
again for the same machines or fields rather than for a new batch drawn at
random from a large population. In this case the units themselves, and
therefore the u's, are constant.

Under the above assumptions the joint density of the m + n measure­
ments is

__1 _ . exp[-~( f. (x; - v. - ~)2 + i: (Yj - um +j _ 1/)2)].
20 ;-1 j-l

Since the u's are completely arbitrary, it is clearly impossible to distinguish
between H: 1/ = ~ and the alternatives K : 1/ > ~. In fact, every distribution
of K also belongs to H and vice versa, and the most powerful level-a test
for testing H against any simple alternative specifying ~, 1/, 0, and the u's
rejects H with probability a regardless of the observations.

Data which could serve as a basis for testing whether or not the
treatment has an effect can be obtained through the fundamental device of
randomization. Suppose that the N = m + n patients are assigned to the N
ampules at random, that is, 'in such a way that each of the N! possible
assignments has probability liN! of being chosen. Then for a given
assignment the N measurements are independently normally distributed
with variance 0 2 and means ~ + uj i (i = 1, . .. , m) and 1/ + uj i (i = m +
1, ... , m + n). The overall joint density of the variables

(Zl"'" ZN) = (Xl'" '' Xm ; Y1, · .. , Yn )

is therefore

1 1

(56) N! (jl • .~.jN) (/fiTO)N

xexp [ - _1 (~(x. _ u, _ ~}2 + t (y. _ u, _ 1/)2)]20 2 '-' , J. , Jm+ .
; -1 ;-1

where the outer summation extends over all N! permutations (j1" . . , iN) of
(1, . . . , N). Under the hypothesis 1/ = ~ this density can be written as

1 1 [1 N ]
(57) N! . L . (f[;o)NexP - 20 2 .L (z;- rjf '

U... .. .}N) /=1

where rj j = uj i + ~ = uj i + 1/.
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Without randomization, a set of y's which is large relative to the x-values
could be explained entirely in terms of the unit effects U; . However, if these
are assigned to the y's at random, they will on the average balance those
assigned to the x's. As a consequence, a marked superiority of the second
sample becomes very unlikely under the hypothesis, and must therefore be
attributed to the effectiveness of the treatment.

The method of assigning the treatments to the experimental units com­
pletely at random permits the construction of a level-a test of the hypothesis
11 = t whose power exceeds a against all alternatives 11 - ~ > O. The actual
power of such a test will however depend not only on the alternative value
of 11 - t which measures the effect of the treatment, but also on the unit
effects U; . In particular, if there is excessive variation among the u's, this
will swamp the treatment effect (much in the same way as an increase in the
variance (12 would), and the test will accordingly have little power to detect
any given alternative 11 - ~.

In such cases the sensitivity of the experiment can be increased by an
approach exactly analogous to the method of stratified sampling discussed
in Section 10. In the present case this means replacing the process of
complete randomization described above by a more restricted randomiza­
tion procedure. The experimental material is divided into subgroups, which
are more homogeneous than the material as a whole, so that within each
group the differences among the u's are small. In animal experiments, for
example, this can frequently be achieved by a division into litters. Random­
ization is then applied only within each group. If the ith group contains N;
units, n; of these are selected at random to receive the treatment, and the
remaining m; = N; - n; serve as controls (f..N; = N, f..m ; = m , f..n; = n) .

An example of this approach is the method of matched pairs. Here the
experimental units are divided into pairs, which are as like each other as
possible with respect to all relevant properties, so that within each pair the
difference of the u's will be as small as possible. Suppose that the material
consists of n such pairs, and denote the associated unit effects (the U's of
the previous discussion) by U1' U{; . .. ; Un' U,:. Let the first and second
member of each pair receive the treatment or serve as control respectively,
and let the observations for the ith pair be X; and Y;. If the matching is
completely successful, as may be the case, for example, when the same
patient is used twice in the investigation of a sleeping drug, or when
identical twins are used, then U;' = U; for all i, and the density of the X's
and y's is

(58) '~ '2nexp[ - 2~2 [L:(x ; - ~ - U;)2 + L:(y; - 11 - U;)2]].
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The UMP unbiased test for testing H: 1J = ~ against 1J > ~ is then given in
terms of the differences W; = 1'; - X; by the rejection region

(59) .fnW!)_l_ L (W; - w)2 > C.
Vn-1

(See Problem 48.)
However, usually one is not willing to trust the assumption uj = u; even

after matching, and it again becomes necessary to randomize. Since as a
result of the matching the variability of the u's within each pair is
presumably considerably smaller than the overall variation, randomization
is carried out only within each pair. For each pair, one of the units is
selected with probability t to receive the treatment, while the other serves as
control. The density of the X's and Y's is then

1 1 n{ [ 1 ](60) 2n (..jf;a)2n)] exp - 2a2[(x; - ~ - U;)2 + (y; -1J - Uj)2]

+exp[ - 2: 2 [(x; - ~ - uj)2 + (y; - 1J - U;)2]]} .

Under the hypothesis 1J = ~, and writing

Zil = Xj' Zj2 = y;o ril = ~ + U j' rj 2 = 1J + uj

this becomes

(i=l, ... ,n),

1 1 [1 n2 ]
(61) 2" L {,n;;; )2n exP - 2a2 .L L (zij - r:j )2 .

."a ,-1]=1

Here the outer summation extends over the 2n points r = (tIl' ... , t~2) for
which (t:i , t:2 ) is either (til' ti2 ) or (ti2 , til)'

13. PERMUTAnON TESTS AND RANDOMIZAnON

It was shown in the preceding section that randomization provides a basis
for testing the hypothesis 1J = ~ of no treatment effect, without any assump­
tions concerning the experimental units. In the present section, a specific
test will be derived for this problem. When the experimental units are
treated as constants, the probability density of the observations is given by
(56) in the case of complete randomization and by (60) in the case of
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matched pairs. More generally, let the experimental material be divided into
c subgroups, let the randomization be applied within each subgroup, and let
the observations in the ith subgroup be

(2il , · 00' 2 iN) = (Xii" ' " Xim,; Y;I' · ··' Y;nJ

For any point u = (un" ", ucN)' let S(u) denote as before the set of
NI! . . . N,.! points obtained from ~ by permuting the coordinates within
each subgroup in all NI! . . . Nc! possible ways. Then the joint density of the
2 's given u is

1 1
( ) L - N
62 NIl. .. N,.! u'eS(u) (If;a)

[

I e ( m, N; )]xexp--
2
L L(Zij-~-U~j)2+ L (Zij-1j-U~)2 ,

2a ;- 1 j=1 j=m; +1

and under the hypothesis of no treatment effect

(63)

1 1 [1 c N; ]
Pa .r(z) = N' N' L (If; )NexP - -22 L L (Zij - t!j)2 .

I·· ·· c· reSm 7Ta a ;=1 j=1

It may happen that the coordinates of u or t are not distinct. If then
some of the points of S( u) or S(n also coincide, each should be counted
with its proper multiplicity. More precisely, if the N1! . .• Nc! relevant
permutations of N} + .. . + N; coordinates are denoted by gk' k =
1•. .. , NI ! . .. Nc !' then S(n can be taken to be the ordered set of points
gkt. k = 1, . . 0 , NI ! . .. Nc !' and (63), for example, becomes

1 NIL . . N,.! 1 (1 )
Paor(z) = N' N' L (JF )NexP - -221z - gkn

2

I.. .. C O k=1 V~7T a a

where lul 2 stands for Lf-ILJ~IUlj'

Theorem 7. A necessary and sufficient condition for a critical function <t>

to satisfy

(64) j<t>(Z)Pa.r(Z) dz s a (dz = dzn ... dZ,.N ),.
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(65)
1

Nl!.--::NI L ep(z') s a
c: z'ES(z)

a.e.

The proof will be based on the following lemma.

Lemma 4. Let A be a set in Nsspace with positive Lebesgue measure
J.L(A). Then for any ( > 0 thereexist real numbers a > 0 and ~l"' " ~N such
that

P { ( Xl ' ... , XN) E A} ~ 1 - e,

where the X's are independently normally distributed with means E(X;) = ~;

and variance al = a2
•

I

Proof. Suppose without loss of generality that J.L(A) < 00. Given any
11 > 0, there exists a square Q such that

J.L(Q () 1) s 1J1L(Q) ·

This follows from the fact that almost every point of A has metric density
1,* or from the more elementary fact that a measurable set can be ap­
proximated in measure by unions of disjoint squares. Let a be such that

1 fa ( t
2

)fiii _aexp -2 dt = (1- ~r/N,

and let

1J=':(fiii)N.
2 2a

If al"' " ~N) is the center of Q, and if a = b/o = (1/2a)[J.L(Q)]l/N, where
2b is the length of the side of Q. then

; N 1- _exp[- 212L(x; - ~y] dx l · • · dx N(v2'1Ta) AnQ a

~ ~ N fexp[- 212L(X; - t)2] dx., .. dx.;
(2'1Ta) Q a

[
1 a ( t

2
) ] N (= 1 - - f exp - - dt = -.& -u 2 2

'See for example Hobson (1927).
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On the other hand,

1 [1
(..ff:;(J)N hnQexp - 2(J2 [(Xi - ~;)2] dx1 • • • dX N

< 1
- ({i;(J)NJ1.(.4 n Q) < .:2 '

and by adding the two inequalities one obtains the desired result.

Proof of the theorem. Let cp be any critical function, and let

1
I/J(z) =, , [ cp(z') .

N1• • • · Nc • z'ES(z)

If (65) does not hold, there exists 'T/ > 0 such that I/J(z) > a + 'T/ on a set A
of positive measure. By the Lemma there exists (J > 0 and r = <ru, ' .. ,rcN )

such that P{ Z E A} > 1 - 71 when Zu," " ZcN are independently nor­
mally distributed with common variance (J2 and means E(Zij) = rij. It
follows that

(66)

jcp(z)Pa.r(z) dz = jl/J(z)pa,\(z) dz

~ f I/J (z ) ~ Nexp[-~ [ [ (z - t. Y] dz
A ( 2'IT 0 ) 20 IJ IJ

> (a + 71)(1 - 71) ,

which is > a , since a + 71 < 1. This proves that (64) implies (65). The
converse follows from the first equality in (66).

Corollary 3. Let H be the class of densities

{Pa .r(z):(J>O, -00 <rij< oo}.

A complete family of tests for H at level of significance a is the class of tests rc
satisfying

a.e.
1

N1 !. .. NI [ cp(z')=a
c ' Z'ES( z)

(67)
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Proof. The corollary states that for any given level-a test 4>0 there exists
an element 4> of rt which is uniformly at least as powerful as 4>0. By the
preceding theorem the average value of 4>0 over each set S(z) is ~ a. On
the sets for which this inequality is strict, one can increase 4>0 to obtain a
critical function 4> satisfying (67), and such that 4>o(z) ~ 4>(z) for all z.
Since against all alternatives the power of 4> is at least that of 4>0' this
establishes the result. An explicit construction of 4>, which shows that it can
be chosen to be measurable, is given in Problem 51.

This corollary shows that the normal randomization model (62) leads
exactly to the class of tests that was previously found to be relevant when
the U's constituted a sample but the assumption of normality was not
imposed. It therefore follows from Section 11 that the most powerful level-a
test for testing (63) against a simple alternative (62) is given by (52) with
h(z) equal to the probability density (62). If 1/ - ~ = A, the rejection region
of this test reduces to

[
1 (" ( N; N; )](68) E exp 2" E E ziju:j + t::. E (Zij - U:j) > C [T(z)],

u'ES(u) a i=1 j-l j -m;+1

since both LLZij and LLZlj are constant on S(z) and therefore functions
only of T( z), It is seen that this test depends on t::. and the unit effects Uij'

so that a UMP test does not exist.
Among the alternatives (62) a subclass occupies a central position and is

of particular interest. This is the class of alternatives specified by the
assumption that the unit effects u, constitute a sample from a normal
distribution. Although this assumption cannot be expected to hold
exactly-in fact, it was just as a safeguard against the possibility of its
breakdown that randomization was introduced-it is in many cases reason­
able to suppose that it holds at least approximately. The resulting subclass
of alternatives is given by the probability densities

(69)
1

({[;a)N

[
1 c ( m · N. )]x exp -2"2 L [(Zij -Ui-~)2+ t (z ij-Ui-1/)2 .
a i=1 j -I j=m;+1

These alternatives are suggestive also from a slightly different point of
view. The procedure of assigning the experimental units to the treatments at
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random within each subgroup was seen to be appropriate when the varia­
tion of the u's is small within these groups and is employed when this is
believed to be the case. This suggests, at least as an approximation, the
assumption of constant U;j = U;, which is the limiting case of a normal
distribution as the variance tends to zero, and for which the density is also
given by (69).

Since the alternatives (69) are the same as the alternatives (53) of Section
11 with u; - ~ = ~;, U; - 7/ = ~; - A, the permutation test (54) is seen to be
most powerful for testing the hypothesis 7/ = ~ in the normal randomization
model (62) against the alternatives (69) with 7/ - ~ > O. The test retains this
property in the still more general setting in which neither normality nor the
sample property of the U's is assumed to hold. Let the joint density of the
variables be

(' [m. N ]
(70) L n rlJ,(z;j - u:j -~) ri /;(z;j - u:j - 7/) ,

u'eS(u) i=1 j=1 j=m,+1

with /; continuous a.e. but otherwise unspecified.* Under the hypothesis
H: 11 = t this density is symmetric in the variables (zil"'" ZiN) of the ith
subgroup for each i, so that any permutation test (49) has rejection
probability ex for all distributions of H. By Corollary 3, these permutation
tests therefore constitute a complete class, and the result follows.

14. RANDOMIZATION MODEL AND CONFIDENCE
INTERVALS

In the preceding section, the unit responses U; were unknown constants
(parameters) which were observed with error, the latter represented by the
random terms V;. A limiting case assumes that the variation of the V's is so
small compared with that of the u's that these error variables can be taken
to be constant, i.e. that V; = v. The constant v can then be absorbed into
the u's, and can therefore be assumed to be zero. This leads to the following
two-sample randomization model:

N subjects would give "true" responses U I' ... , UN if used as controls.
The subjects are assigned at random, n to treatment and m to control. If
the responses are denoted by XI"'" Xm and Yt , •• • , Yn as before, then
under the hypothesis H of no treatment effect, the X's and Y's are a
random permutation of the u's. Under this model, in which the random

•Actually. all that is needed is that II" ..,/,. E ~. where ~ is any family containing all
normal distributions .
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assignment of the subjects to treatment and control constitutes the only
random element, the probability of the rejection region (55) is the same as
under the more elaborate models of the preceding sections.

The corresponding limiting model under the alternatives assumes that the
treatment has the effectof adding a constant amount 1:1 to the unit response,
so that the X's and Y's are given by (u i " ' " ui ; ui + 1:1 , ••. , ui + 1:1)

1 '" m+ 1 m +n

for some parmutation (il" . . , iN) of (1, . . . , N).
These models generalize in the obvious way to stratified samples. In

particular, for paired comparisons it is assumed under H that the unit
effects (u i' uj) are constants, of which one is assigned at random to
treatment and the other to control. Thus the pair (Xi' Y;) is equal to (u i' uj)
or (u ;, u;) with probability t each, and the assignments in the n pairs are
independent; the sample space consists of 2n points each of which has
probability (t)n. Under the alternative, it is assumed as before that 1:1 is
added to each treated subject, so that P(Xi = U i' Y; = u; + 1:1) = P(Xi = ui,
Y; = u, + 1:1) = t. The distribution generated for the observations by such a
randomization model is exactly the conditional distribution given T( z) of
the preceding sections. In the two-sample case, for example, this common
distribution is specified by the fact that all permutations of (Xl"' " Xm ;

Y1 - 1:1 , •. •, Yn - 1:1) are equally likely. As a consequence, the power of the
test (55) in the randomization model is also the conditional power in the
two-sample model (46). As was pointed out in Chapter 4, Section 4, the
conditional power ,B(I:1IT(z» can be interpreted as an unbiased estimate of
the unconditional power ,BF(I:1) in the two-sample model. The advantage of
,B(AIT(z» is that it depends only on A, not on the unknown F. Approxima­
tions to ,8(I:1IT(z» are discussed by Robinson (1973, 1982), John and
Robinson (1983a), and Gabriel and Hsu (1983).

The tests (54), which apply to all three models-the sampling model (47),
the randomization model, and the intermediate model (70)-can be inverted
in the usual way to produce confidence sets for 1:1 . We shall now determine
these sets explicitly for the paired comparisons and the two-sample case.
The derivations will be carried out in the randomization model. However,
they apply equally in the other two models, since the tests, and therefore the
associated confidence sets, are identical for the three models.

Consider first the case of paired observations (Xi ' y;), i = 1, . . . , n. The
one-sided test rejects H : 1:1 = 0 in favor of 1:1 > 0 when L7-1Yi is among the
K largest of the 2 n sums obtained by replacing Yi by Xi for all, some, or
none of the values i = 1, ... , n. (It is assumed here for the sake of simplicity
that a = K/2n

, so that the test requires no randomization to achieve the
exact level a.) Let d, = Yi - X i = 2Yi - ti , where ti = X i +Y i is fixed. Then
the test is equivalent to rejecting when Ed, is one of the K largest of the 2"
values E ± d ; since an interchange of Y i with X i is equivalent to replacing
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d, by - d .. Consider now testing H: A = Ao against A > Ao. The test then
accepts when L(d; - Ao) is one of the 1= 2n

- K smallest of the 2n sums
L ± (d, - Ao), since it is now Y; - Ao that is being interchanged with X; .

We shall next invert this statement, replacing Ao by A, and see that it is
equivalent to a lower confidence bound for A.

In the inequality

(71) L(d; - A) < L[±(d; - A)],

suppose that on the right side the minus sign attaches to the td, - A) with
i = i l , . . . , i r and the plus sign to the remaining terms. Then (71) is
equivalent to

d, + . . . +d , - rA < 0
'I 'r ' or

d + '" +d
II I, < A.

r

Thus, L(d; - A) is among the I smallest of the L ± (d , - A) if and only if
at least 2n

- I of the M = 2n
- 1 averages (d, + . . . +d, )/r are < A, i.e.

I r

if and only if 8(K) < A, where 8(1) < . .. < 8(M) is the ordered set of
averages (d;, + . . , +d;)/r, r = 1, .. . , M. This establishes 8(K) as a lower
confidence bound for A at confidence level y = K/2n• [Among all con­
fidence sets that are unbiased in the model (47) with m; = n ; = 1 and
c = n; these bounds minimize the probability of falling below any value
t:i < A for the normal model (53).]

By putting successively K = 1,2, .. . , 2n
, it is seen that the M + 1 inter­

vals

(72) ( - 00, 8(1»)' (8(1),8(2»)'" ., (80 -1 - 1) ' 8(M»)' (8 M, 00)

each have probability l/(M + 1) = 1/2n of containing the unknown A.
The two-sided confidence intervals (8(K),8(2n_K» with y = (2 n

-
1

­

K)/2 n - 1 correspond to the two-sided version of the test (54) with error
probability (1 - y)/2 in each tail. A suitable subset of the points
8(1)' .. . , 8( M) constitutes a set of confidence points in the sense of Chapter 3,
Section 5.

The inversion procedure for the two-group case is quite analogous. Let
(XI " ' " x m' YI"'" Yn) denote the m control and n treatment observations,
and suppose without loss of generality that m s; n. Then the hypothesis
A = Ao is accepted against A > Ao if Lj_I(Yj - Ao) is among the I smallest
of the ( m: n) sums obtained by replacing a subset of the (Yj - Ao)'S with
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x's. The inequality

"(y - A ) < (x . + . . . +x .) + [yo+ . .. +y. - (n - r)A],t- J 0 '. I, 11 J.-,

with (il" ' " ir' jl"'" jn-r) a permutation of (1, . . . , n), is equivalent to
Y + . .. +Y. - rA < x · + .. . +x · , or

'. I, 0 '. I,

(73) yil .. ... t, - xi l • . . .• i , < Ao·

Note that the number of such averages with r ~ 1 (i.e. omitting the empty
set of subscripts) is equal to

f (~)(i)=(m;n)-l=M
K-l

(Problem 57). Thus, H: A = Ao is accepted against A > Ao at level a =
1 - I/(M + 1) if and only if at least K of the M differences (73) are less
than Ao, and hence if and only if ~(K) < Ao, where ~(1) < .. . < ~(M)

denote the ordered set of differences (73). This establishes ~(K) as a lower
confidence bound for A with confidence coefficient y = 1 - a.

As in the paired comparisons case, it is seen that the intervals (72) each
have probability l/(M + 1) of containing A. Thus, two-sided confidence
intervals and standard confidence points can be derived as before. For the
generalization to stratified samples, see Problem 58.

Algorithms for computing the order statistics ~(1)" '" ~(M) in the paired­
comparison and two-sample cases are discussed by Tritchler (1984). If M is
too large for the computations to be practicable, reduced analyses based on
either a fixed or random subset of the set of all M + 1 permutations are
discussed, for example, by Gabriel and Hall (1983) and Vadiveloo (1983).
[See also Problem 60(i).] Different such methods are compared by Forsythe
and Hartigan (1970). For some generalizations, and relations to other
subsampling plans, see Efron (1982, Chapter 9).

15. TESTING FOR INDEPENDENCE IN A BIVARIATE
NORMAL DISTRIBUTION

So far, the methods of the present chapter have been illustrated mainly by
the two-sample problem. As a further example, we shall now apply two of
the formulations that have been discussed, the normal model of Section 3
and the nonparametric one of Section 10, to the hypothesis of independence
in a bivariate distribution.
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The probability density of a sample (Xl' Yl ), . . . ,( Xn , Yn ) from a bi­
variate normal distribution is

(74) 1 [1 ( 1
(2"'OT/1- p2rexp - 2(1 _ p2) 02 [(X; - ~)2

2p 1 2)]- - [(X; - ~)(y; - 1/) + 2 [(y; - 1/) .
a-r T

Here a, 0
2) and (1/, T

2) are the mean and variance of X and Y respectively,
and p is the correlation coefficient between X and Y. The hypotheses
p :$ Po and p = Po for arbitrary Po cannot be treated by the methods of the
present chapter, and will be taken up in Chapter 6. For the present, we shall
consider only the hypothesis p = 0 that X and Yare independent, and the
corresponding one-sided hypothesis p :$ O.

The family of densities (74) is of the exponential form (1) with

U = [XiY;,

and

t, = [X?, T = ~y2
2 i...; I , T3 = [Xi' T4 = [ Y;

p
0----- 2)'- OT(l - P

-1
_<1. - 2)'vl - 20 2(1 _ p

-1
_<1. - 2) 'v2 - 2T 2(1 _ p

~3 = 1 ~ p2 (0~2 - ::), ~4 = 1 ~ p2 ( :2 -::).
The hypothesis H : p s 0 is equivalent to 0 s O. Since the sample correla­
tion coefficient

[(X;-X)(Y;- Y)
R = -;====~====7

/[(X; - X)2[(y; _ y)2

is unchanged when the Xi and Y; are replaced by (X; - ~)/o and (Y; - 1/)/T,
the distribution of R does not depend on ~, 1/, 0, or T, but only on p. For
o= 0 it therefore does not depend on ~l"' " ~4' and hence by Theorem 2,
R is independent of (Tl , ... , T4 ) when 0 = O. It follows from Theorem 1
that the UMP unbiased test of H rejects when

(75) R ~ Co'
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or equivalently when

(76)
R

J(l - R2)/(n - 2) > KO
•

The statistic R is linear in U, and its distribution for p = 0 is symmetric
about O. The UMP unbiased test of the hypothesis p = 0 against the
alternative p :# 0 therefore rejects when

(77)
IRI

/(1 - R 2 )/ (n _ 2) > K I
•

Since .;n-:::2R/';l - R2 has the t-distribution with n - 2 degrees of
freedom when p = 0 (Problem 64), the constants Ko and K I in the above
tests are given by

(78) 1.
00 1.00 a

tn - 2( y ) dy = a and t n - 2( y ) dy = -.
~ ~ 2

Since the distribution of R depends only on the correlation coefficient p, the
same is true of the power of these tests.

Paralleling the work of Section 4, let us ask how sensitive the level of the
test (76) is to the assumption of normality. Suppose that (Xl' YI ) , . . • ,

(Xn , Yn ) are a sample from some bivariate distribution F with finite second
moment and correlation coefficient p. In the normal case, the condition
p = 0 is equivalent to the independence of X and Y. This is not true in
general, and it then becomes necessary to distinguish between

HI : X and Yare independent

and the broader hypothesis that X and Yare uncorrelated,

H2 : p = O.

Assuming HI to hold, consider the distribution of

c[ [X;Y; --]vn -- -XY
nI t(X; - X)2 . [(Y; - y)2

.;nR = ----",==
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Since the distribution of R is independent of ~ = E(X;) and 11 = E(Y;),
suppose without loss of generality that ~ = 11 = O. Then the limit distribu­
tion of ,;n(r. X;Y;/n ) is normal with mean zero and variance

Var( X;y;) = E( X/)E( Y;2) = 0
27" 2.

The term (,;n X)Y tends to zero in probability, since ,;nX is bounded in
probability and Y tends to zero in probability. Finally, the denominator
tends in probability to 07". It follows that ,;nR tends in law to the standard
normal distribution for all F with finite second moments. If an(F) is the
rejection probability of the one- or two-sided test (76) or (77) when F is the
true distribution, it follows that an ( F) tends to the nominal level a as
n -+ 00. For studies of how close an(F) is to a for different F and n, see
for example Kowalski (1972) and Edgell and Noon (1984).

Consider now the distribution of ,;nR under H2• The limit argument is
the same as under HI with the only difference that Var(X;Y;) need no
longer be equal to Var X; . Var Y; = 0

27" 2. The limit distribution of ,;nR is
therefore normal with mean zero and variance Var(X;Y;)/[Var X; . Var Y;),
which can take on any value between 0 and 00 (Problem 79). Even
asymptotically, the size of the tests (76) and (77) is thus completely
uncontrolled under H2• [It can of course be brought under control by
appropriate Studentization; see Problem 72 and the papers by Hsu (1949),
Steiger and Hakstian (1982, 1983), and Beran and Srivastava (1985).)

Let us now return to HI' Instead of relying on the robustness of R, one
can obtain an exact level-a unbiased test of independence for a nonpara­
metric model, in analogy to the permutation test of Section 10. For any
bivariate distribution of (X, Y), let Yx denote a random variable whose
distribution is the conditional distribution of Y given x. We shall say that
there is positive regression dependence between X and Y if for any x < x'
the variable Yx ' is stochastically larger than Yx ' Generally speaking, larger
values of Y will then correspond to larger values of X; this is the intuitive
meaning of positive dependence. An example is furnished by any normal
bivariate distribution with p > O. (See Problem 68.) Regression dependence
is a stronger requirement than positive quadrant dependence, which was
defined in Chapter 4, Problem 19. However, both reflect the intuitive
meaning that large (small) values of Y will tend to correspond to large
(small) values of X.

As alternatives to HI consider positive regression dependence in a general
bivariate distribution possessing a probability density with respect to Le­
besgue measure . To see that unbiasedness implies similarity, let Fl , F2 be
any two univariate distributions with densities /1' /2 and consider the
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one-parameter family of distribution functions

(79) FI(x)F2(y ){ 1 + a[l- FI(x)][l - F2 (y )] } , 0:::;; a:::;; 1.

This is positively regression dependent (Problem 69), and by letting a -+ 0
one sees that unbiasedness of </> against these distributions implies that the
rejection probability is a when X and Yare independent, and hence that

fep(xl, .. ·, x n; YI"' " Yn)/I(XI) . . . Il(xn)/2(YI) . .. 12(Yn) dxdy = a

for all probability densities 11 and 12' By Theorem 6 this in turn implies

1
--2 L</>(X; , . . . , X;; YJ' , • • • , Y

J
' ) = a .

(n!) 1 "1 "

Here the summation extends over the (n!)2 points of the set S(x, y), which
is obtained from a fixed point (x, y) with x = (Xl"'" x,}, Y = (YI, . . . , Yn)
by permuting the x-coordinates and the j-coordinates, each among them­
selves in all possible ways.

Among all tests satisfying this condition, the most powerful one against
the normal alternatives (74) with p > 0 rejects for the k' largest values of
(74) in each set S(x, y), where k'/(n!)2 = a. Since Ex;, Ey/, Ex;, Ey; are
all constant on S(x, y), the test equivalently rejects for the k' largest values
of EX;Yi in each S(x, y).

Of the (n!)2 values that the statistic EX;Y; takes on over S(x, y), only n!
are distinct, since the statistic remains unchanged if the X's and Y's are
subjected to the same permutation. A simpler form of the test is therefore
obtained, for example by rejecting H for the k largest values of EX(i)Yj , of
each set S(x, Y), where X(l) < . . . < x(n) and kin! = a. The test can be
shown to be unbiased against all alternatives with positive regression
dependence. (See Problem 48 of Chapter 6.)

In order to obtain a comparison of the permutation test with the
standard normal test based on the sample correlation coefficient R, let
T(X,Y) denote the set of ordered X's and y's,

T(X, Y) = (X(l)" ' " X(n); }(l) "'" }(n»)'

The rejection region of the permutation test can then be written as

LX;Y; > C[T(X, Y)],
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or equivalently as

PROBLEMS

R > K[T(X, Y)].

253

It again turns out* that the difference between K[T(X, Y)] and the
cutoff point Co of the corresponding normal test (75) tends to zero, and that
the two tests become equivalent in the limit as n tends to infinity. Sufficient
conditions for this are that 0;, o~ > 0 and E(IXI3), E(lYI 3) < 00 . For
large n, the standard normal test (75) therefore serves as an approximation
for the permutation test, which is impractical except for small sample sizes.

16. PROBLEMS

Section 2

1. Let Xl" ' " Xn be a sample from N(t 0
2)

. The power of Student's r-test is an
increasing function of ~/o in the one-sided case H : ~ s 0, K: ~ > 0, and of
I~II0 in the two-sided case H : ~ = 0, K: ~ ':F O.
[If

I 1 ~ -2
S = - i.. (X; - X) ,

n - 1

the power in the two-sided case is given by

1- p{_ CS _ In~ s In(¥-~) s cs _ In~}
o 0 0 0 0

and the result follows from the fact that it holds conditionally for each fixed
value of Slo.]

2. In the situation of the previous problem there exists no test for testing
H: ~ = 0 at level a , which for all 0 has power ~ P> a against the alterna­
tives a, 0) with ~ = ~l > O.
[Let P( ~l' 0) be the power of any level a test of H, and let P( 0) denote the
power of the most powerful test for testing ~ = 0 against ~ = ~l when 0 is
known. Then infopal ' o):s; infoP(o) = a.]

3. (i) Let Z and V be independently distributed as N( 8,1) and X2 with I
degrees of freedom respectively. Then the ratio Z ~ IVII has the
noncentral t-distribution with I degrees of freedom and noncentrality

*For a proof see Fraser (1957).
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parameter 6, the probability density of which is*

1 100 I

h(t) = 21<f-\)f(U).;;J 0 y ,<I- I )

X ap( - Jy)apHhff-8)'] dy

or equivalently

1 ( 1 16
2

)
Pa(t) = 2I<l- \) f (t/ ).;;J exp -2/+t2

[5.16

I [( ) 2]1 , <1+ 1) 00 1 6t
X (-) 1 vfexp - - v - I"i+f2 dv.

1+ t
2

0 2 1+ t 2

Another form is obtained by making the substitution w = tlY / Ii in
(80).

(ii) If Xl' . .. ' x" are independently distributed as N(t (12), then Inx
+VE( X, - X)2/(n - 1) has the noncentral r-distribution with n - 1

degrees of freedom and noncentrality parameter 6 = In~/o .

[(i): The first expression is obtained from the joint density of Z and V by
transforming to t = z -i- M and v.)

4 . Let Xl' .. . ' X" be a sample from N (~, (12). Denote the power of the one-sided
r-test of H: ~ ~ 0 against the alternative ~/o by fJa/o), and by fJ*(~/o) the
power of the test appropriate when 0 is known. Determine fJa/o) for
n = 5,10,15, a = .05, ~/o = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and in each case
compare it with fJ*(~/o). Do the same for the two-sided case.

5. Let Zl' . .. ' Z" be independently normally distributed with common variance
0

2 and means E(Z;) = ~;(i = 1, . . . , s) , E(Z;) = 0 (i = s + 1, ... , n) . There
exist UMP unbiased tests for testing ~l ~~? and ~l =~? given by the
rejection regions

Zl - ~:)

n

L Z//(n - s)
; - s+1

IZI - r?1
n

L Zp/(n-s)
;-s + 1

When ~I = ~:) , the test statistic has the r-distribution with n - s degrees of
freedom .

*A system atic account of this distribution can be found in John son and Kotz (1970. Vol. 2.
Chapter 31) and in Owen (1985).
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6. Let XI"' " x" be independently normally distributed with common variance
a 2 and means ~., ... , ~". and let Z, = E'j=. a i j ~ be an orthogonal transfor­
mation (that is, E;'=. aijaik = 1 or 0 as j = k or j ,;, k) . The Z's are normally
distributed with common variance a2 and means tj = Eaii~j'

[The density of the Z 's is obtained from that of the X's by substituting
Xi = Ebjjzj , where (bi ) is the inverse of the matrix (a i;) . and multiplying by
the Jacobian, which is 1.]

7. If X••. .. , X" is a sample from N(~. a2). the UMP unbiased tests of ~ :::; 0 and
~ = 0 can be obtained from Problems 5 and 6 by making an orthogonal
transformation to variables Z., . .. , Z" such that ZI = Iii X.
[Then

n n n n

L zl = L zl - zf = L xl - nX2 = L (x, - x(]
i - 2 i - I i- I i=1

8. Let XI' X2 , . •. be a sequence of independent variables distributed as N( t ( 2 ) .

and let y" = [nX,, +1 - (XI + .. . +X,,)l! vn(n + 1) . Then the variables
Y" Y2 , . • • are independently distributed as N(0. a2).

Section 3

9. Let XI" '" x" and Y...... y" be independent samples from Na, ( 2
) and

N( 71, T
2) respectively. Determine the sample size necessary to obtain power

~ f3 against the alternatives Tla > t:.. when a = .05. f3 = .9, t:.. = 1.5. 2, 3, and
the hypothesis being tested is H : TI a s 1.

10. If m = n, the acceptance region (23) can be written as

(
s~ t:..oSi ) 1 - C

max /loS; ' S~ :::; -C-'

where si = E( X, - X)2, S~ = E( Yi - y)2 and where C is determined by

l c a
o B" _I.,,_I(W) dw = 2'

11. Let Xl . . .. ' X", and YI•. . .• y" be samples from Na. ( 2 ) and N(1j, ( 2 ). The
UMP unbiased test for testing 71 - ~ = 0 can be obtained through Problems 5
and 6 by making an orthogonal transformation from (Xl •. . . • X"" YI, · · . • Y,,)
to (ZI" '" Z", +,,) such that ZI = (Y -X)/V(1!m) + (lin). Z2 = (Lx, +
EY,)I/m + n .

12. Exponential densities. Let XI" ' " x" be a sample from a distribution with
exponential density a -I e -(x -hl/u for x ~ b.
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u ~ 0.

(i) For testing a = 1 there exists a UMP unbiased test given by the accep­
tance region

CI s 2E[x; - min(xI""'Xn ) ] s C2 ,

where the test statistic has a X2-distribution with 2n - 2 degrees of
freedom when a = 1, and CI, C2 are determined by

lC2X~n_2(Y) dy = lC2X~n(Y) dy = 1 - a.
C1 C1

(ii) For testing b = °there exists a UMP unbiased test given by the accep­
tance region

nmin(XI" "'Xn )

When b = 0, the test statistic has probability density

n-l
p( u) = (1 + ur '

[These distributions for varying b do not constitute an exponential family, and
Theorem 3 of Chapter 4 is therefore not directly applicable.
(i) : One can restrict attention to the ordered variables X(I) < . . . < X(nl'
since these are sufficient for a and b, and transform to new variables
Z\ = nX(\1' Z; = (n - i + 1)[X(i) - Xli-I)] for i = 2, .. . , n, as in Problem 14
of Chapter 2. When a = 1, 2 1 is a complete sufficient statistic for b, and the
test is therefore obtained by considering the conditional problem given ZI'
Since E7_2Z; is independent of ZI' the conditional UMP unbiased test has the
acceptance region CI s E7_2Z; s C2 for each ZI, and the result follows.
(ii): When b = 0, E7_1 Z; is a complete sufficient statistic for a, and the test is
therefore obtained by considering the conditional problem given E7_lz; , The
remainder of the argument uses the fact that Zt/1:7_ IZ; is independent of
E;'_\ Z; when b = 0, and otherwise is similar to that used to prove Theorem 1.]

13. Extend the results of the preceding problem to the case, considered in Problem
10, Chapter 3, that observation is continued only until X(11" ' " X(r) have been
observed.

Section 4

14. Corollary 2 remains valid if c; is replaced by a sequence of random variables
c" tending to c in probability.

15. (i) Let X\, . .. , x" be a sample from N(t a2 ) . The power of the one-sided
one-sample r-test against a sequence of alternatives (tn' a) for which
Intil/a -- 8 tends to ~(8 - uo ) '
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(ii) The result of (i) remains valid if X\, .. . , Xn are a sample from any
distribution with mean ~ and finite variance (12.

16. Generalize Problem 15(i) and (ii) to the two-sample r-test.

17. (i) Given p, find the smallest and largest value of (31) as (12/T2 varies from
°to 00 .

(ii) For nominal level a = .05 and p = 1, .2, .3, .4, determine the smallest and
the largest asymptotic level of the r-test as (12/T2 varies from °to 00 .

Section 5

18. The Chebyshev inequality. For any random variable Y and constants a> °
and c,

E(Y - C)2 ~ a2P( IY - c] ~ a) .

19. If Y" is a sequence of random variables and c a constant such that E(y" - C)2

-+ 0, then for any a > 0,

P(IY" - c] ~ a) -+ 0,

that is, Y" tends to c in probability.

20. Verify the formula for Var(X) in Model A.

21. In Model A, suppose that the number of observations in group i is n., If
ni :::; M and s -+ 00, show that the assumptions of Lemma 1 are satisfied and
determine y.

22. Show that the conditions of Lemma 1 are satisfied and y has the stated value:
(i) in Model B; (ii) in Model C.

23. Determine the maximum asymptotic level of the one-sided r-test when a = .05
and m = 2,4,6: (i) in Model A; (ii) in Model B.

24. Let X; = ~ + U;, and suppose that the joint density of the U's is spherically
symmetric, that is, a function of EU;2 only,

/(u\, o.. , un) = q([ul) .

Then the null distribution of the one-sample t-statistic is independent of q and
hence the same as in the normal case, namely Student's t with n - 1 degrees
of freedom.
[Write t as

{nXI/EX]

JE( X; - X)2/( n - I)L\j2 '
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and use the fact that when ~ = 0, the density of XI"' " XII is constant over
the spheres Ex; = c and hence the conditional distribution of the variables

X;I lEX] given EX] = c is uniform over the conditioning sphere and hence

independent of q.]
Note . This model represents one departure from the normal-theory assump­
tion, which does not affect the level of the test. The effect of a much weaker
symmetry condition more likely to arise in practice is investigated by Efron
(1969).

Section 6

25. On the basis of a sample X = (XI' " . , XII) of fixed size from N(~, (12) there
do not exist confidence intervals for ~ with positive confidence coefficient and
of bounded length.
[Consider any family of confidence intervals 6(X) ± LI2 of constant length
L. Let ~I"' " ~2N be such that It - ~jl > L whenever i * j. Then the sets
S; = (x: 16(x) - ~;I ~ L12} (i = 1, . . . ,2N) are mutually exclusive. Also,
there exists (10 > °such that

1
Ip(,.o{XE S;} - p(l .o{XE S;}I ~ 2N for (1 > (10'

as is seen by transforming to new variables Jj = (~ - ~1)/(1 and applying
Lemmas 2 and 4 of the Appendix. Since min;P(I ' o{ XES;} s 1/2N, it
follows for (1 > (10 that min; p(,.o{ XES;} s liN, and hence that

infPt .o{16(X) - ~I ~ !:.} s ~ .
( .0 2 N

The confidence coefficient associated with the intervals 6( X) ± LI2 is there­
fore zero, and the same must be true a fortiori of any set of confidence
intervals of length ~ L.]

26. Stein's two-stage procedure.

(i) If mS2/(12 has a X2 = distribution with m degrees of freedom, and if the
conditional distribution of Y given S = s is N(O, (12/S2), then Y has
Student's r-distribution with m degrees of freedom .

(ii) Let XI' X2 , . .. be independently distributed as N(t (12). Let Xo =

E:'~IX;lno, S2 = E7~1(X; - Xo)2/ ( no - 1), and let a l = . . . = all o =

a, a"o+1 = . . . = all = b, and n ~ no be measurable functions of S .
Then

n

S2 La;
i-I

n

L a;(X; - n
;-1Y= ,

has Student's distribution with no - 1 degrees of freedom .
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(iii) Consider a two-stage sampling scheme ill' in which S2 is computed from
an initial sample of size no, and then n - no additional observations are
taken. The size of the second sample is such that

n = max{ no + 1, [:2] + I}

where c is any given constant and where [y] denotes the largest integer
~ y . There then exist numbers a l, ... , an such that al = . . . =
a"o' a"o+1 = .. . = an' 1:7_laj = 1, 1:7_la; = c1S 2

• It follows from (ii)
that 1:7-1 a,(X; - ~)/ IC has Student's r-distribution with no - 1 degrees
of freedom.

(iv) The following sampling scheme il 2, which does not require that the
second sample contain at least one observation, is slightly more efficient
than ill for the applications to be made in Problems 27 and 28. Let no,
S2, and c be defined as before ; let

n = max{ no,[ :2] + I},

a; = lin (i = 1, .. . , n), and X= 1:7_lajX; . Then In(X -~)/S has again
the r-distribution with no - 1 degrees of freedom.

[(ii): Given S = s , the quantities a, b, and n are constants, 1:7~laj(X; - ~) =

noa( Xo -~) is distributed as N(O, noa 2
0

2
) , and the numerator of Y is

therefore normally distributed with zero mean and variance 0 21:;'_1a], The
result now follows from (i).]

27. Confidence intervals of fixed length for a normal mean.

(i) In the two-stage procedure ill defined in part (iii) of the preceding
problem, let the number c be determined for any given L > 0 and
0< y < 1 by

fL/2~ (no-I(y) dy = y,
-L/2~

where ( " 0- 1 denotes the density of the r-distribution with no - 1 degrees
of freedom . Then the intervals 1:7-1aj X; ± LI2 are confidence intervals
for ~ of length L and with confidence coefficient y.

(ii) Let c be defined as in (i), and let the sampling procedure be il 2 as
defined in part (iv) of Problem 26. The intervals X±LI2 are then
confidence intervals of length L for ~ with confidence coefficient ~ y,
while the expected number of observations required is slightly lower than
under ill .
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[(i): The probability that the intervals cover ~ equals

n

\
L .L a;( X; - n L),-\

P€.o - 21C s IC s 21C = y.

(ii): The probability that the intervals cover ~ equals

{ f,l I X - ~ 1 f,lL} {f,lIX-~1 L}
P€.o S s 2S ~ P€.o S s 21C =y.]

[5.16

28. Two-stage t-tests with power independent of a.

(i) For the procedure TIl with any given c, let C be defined by

trxltllo_1(Y) dy = a.

Then the rejection region O:::'-la;X; - ~o)/IC > C defines a level-a test
of H : ~ ~ ~o with strictly increasing power function {J,.a) depending
only on t

(ii) Given any alternative €l and any a < {J < I , the number c can be
chosen so that {J,.(~l) = {J.

(iii) The test with rejection region f,I(X - €o)/ S > C based on TI2 and the
same c as in (i) is a level-a test of H which is uniformly more powerful
than the test given in (i).

(iv) Extend parts (iHiii) to the problem of testing ~ = ~o against ~ *' ~o .

[(i) and (ii) : The power of the test is

{J,.(n = JrxI tllo -1(y) dy.
C-(E-Eo)/~

(iii): This follows from the inequality f,l1~ - €oVS ~ I€ - €oV lC.j
29. Let S(x) be a family of confidence sets for a real-valued parameter (J, and let

p,fS(x)j denote its Lebesgue measure. Then for every fixed distribution Q of X
(and hence in particular for Q = P80 where (Jo is the true value of (J)

EQ{p,[S(X)]} = 1 Q{(J E S(X)} d(J
9"'90

provided the necessary measurability conditions hold.
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[Write the expectation on the left side as a double integral, apply Fubini's
theorem, and note that the integral on the right side is unchanged if the point
8 = 80 is added to the region of integration.]

30. Use the preceding problem to show that uniformly most accurate confidence
sets also uniformly minimize the expected Lebesgue measure (length in the
case of intervals) of the confidence sets."

Section 7

31. Let XI"' " Xn be distributed as in Problem 12. Then the most accurate
unbiased confidence intervals for the scale parameter a are

2 2
- E[x; - min(xp . .. , xn)] ~ a~ - E[x; - min( x l , · .. , xn)]'
C2 C1

32. Most accurate unbiased confidence intervals exist in the following situations:

(i) If X, Y are independent with binomial distributions b( PI' m) and
b(P2 ' n), for the parameter PIQ2/P2QI'

(ii) In a 2 X 2 table, for the parameter t:. of Chapter 4, Section 6.

Section 8

33. (i) Under the assumptions made at the beginning of Section 8, the UMP
unbiased test of H: P = Po is given by (45).

(ii) Let (p, p) be the associated most accurate unbiased confidence intervals
for p-= ay + b8, where p = p(a, b), p = p(a , b). Then if /1 and /2 are
increasing functions, the-expected value of /1 (Ip - pD+ /2 (Ip - pDisan
increasing function of a2/n + b2

• -

[(i): Make any orthogonal transformation from YI" ' " Yn to new variables

ZI' " ' ' z" such that ZI = E;[bv; + (a/n)]YJ/(a2/n) + b2, Z2 = E;(av;­

b)yJ /a 2 + nb", and apply Problems 5 and 6.
(ii): If a?/n + bi < ai/n + bi, the random variable Ip(a2' b2) - pi is sto­
chastically larger than Ip(a l , bl ) - o], and analogously for p.]

Section 9

34. Verify the posterior distribution of e given x in Example 12.

35. If XI" '" x" are independent N(8,1) and 8 has the improper prior 7T(8) == 1,
determine the posterior distribution of 8 given the X's.

36. Verify the posterior distribution of P given x in Example 13.

"For the corresponding result concerning one-sided confidence bounds. see Madansky
(1962) .
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37. In Example 14, verify the marginal posterior distribution of ~ given x.

38. In Example IS, show that

(i) the posterior density 7T(alx) is of type (c) of Example 13;

(ii) for sufficiently large r, the posterior density of o' given x is no longer of
type (c).

39. If X is normal N(8,1) and 8 has a Cauchy density b/{ 7T[b2 + (8 - JL)2]),
determine the possible shapes of the HPD regions for varying JL and b.

40. Let 8 = (81 " " , 8s ) with 8; real-valued, X have density Po (x), and e a prior
density 71'(8). Then the l00y% HPD region is the l00y% credible region R
that has minimum volume.
[Apply the Neyman-Pearson fundamental lemma to the problem of minimiz­
ing the volume of R.]

41. Let XI' "'' Xm and Y1, . .. , y" be independently distributed as N( t a2
) and

N(T/, a 2 ) respectively, and let (€, T/ , a) have the joint improper prior density
given by

1
7T(~ , T/, a) d~ dT/ do = d~ dT/ . - de

a
for all - 00 < ~, T/ < 00 , 0 < a.

Under these assumptions, extend the results of Examples 14 and 15 to
inferences concerning (i) T/ - ~ and (ii) a.

42. Let X... . . , Xm and Y" . .. , y" be independently distributed as Na , ( 2 ) and
N(T/, 'T 2

) , respectively and let (t T/ , a, T) have the joint improper prior density
7Ta ,1J, a, 'T) d~ d1J do ds = d~ d1J (l/a) do (1/'T) dr. Extend the result of Ex­
ample 15 to inferences concerning 'T 2/ a2 •

Note . The posterior distribution of 'II - ~ in this case is the so-called
Behrens-Fisher distribution. The credible regions for T/ - ~ obtained from this
distribution do not correspond to confidence intervals with fixed coverage
probability, and the associated tests of H : 'II = ~ thus do not have fixed size
(which instead depends on T/a). From numerical evidence [see Robinson
(1976) for a summary of his and earlier results] it appears that the confidence
intervals are conservative, that is, the actual coverage probability always
exceeds the nominal one.

43. Let TI , • • • , 'F. - I have the multinomial distribution (34) of Chapter 2, and
suppose that (p I , .. . , p,_I) has the Dirichlet prior density D (aI ' , as) with
density proportional to p'tl- I .. . p,u,-I, where Ps = 1- (PI + +Ps-I)'

Determine the posterior distribution of (Pi' ... ' Ps-I) given the T's.

Section 10

44. Prove Theorem 6 for arbitrary values of c.
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Section 11

263

45. If c = 1, m = n = 4, a = .1 and the ordered coordinates z(1)" ' " Z(N) of a
point Z are 1.97,2.19,2 .61,2.79,2.88,3 .02,3.28,3.41, determine the points of
S( z) belonging to the rejection region (54).

46. Confidence intervals for a shift.

(i) Let XI" ' " Xm ; YI , . . . , y" be independently distributed according to
continuous distributions F(x) and G(y) = F(y - 6) respectively.
Without any further assumptions concerning F, confidence intervals for 6
can be obtained from permutation tests of the hypotheses H(6 0 ) : 6 = 6 0 ,

Specifically, consider the point (ZI" ' " zm+n) = (XI"' " Xm' YI ­
6 , .. . ,Yn - 6) and the (m ~ n) permutations i l < . . . < im; im+ 1 <
. .. < i m +" of the integers 1, ... , m + n. Suppose that the hypothesis
H(6) is accepted for the k of these permutations which lead to the
smallest values of

I
m+n m IL z;/n - L z;/m

j-m+I j=1

where

k = (1 - a)( m~ n).

Then the totality of values 6 for which H( 6) is accepted constitute an
interval, and these intervals are confidence intervals for 6 at confidence
level 1 - Q .

(ii) Let ZI' ... ' ZN be independently distributed, symmetric about (J, with
distribution F( z - (J), where F( z) is continuous and symmetric about O.
Without any further assumptions about F, confidence intervals for (J can
be obtained by considering the 2N points ZI, . .. , Z;" where Z: = ±(Z;
- (Jo), and accepting H«(Jo): (J = (Jo for the k of these points which lead
to the smallest values of LIZ:I, where k = (1 - a) 2N

•

[(i): A point is in the acceptance region for H( 6) if

IL(Y;n- 6) _ L:;/=IY_X_6
1

is exceeded by at least (m~ n) - k of the quantities IY' - x' - y61, where
(xi, . .. , X~" Y{, . .. , 1,;) is a permutation of (XI' .. . , xm' YI ' ... , Yn), the quan­
tity y is determined by this permutation, and IYI s 1. The desired result now
follows from the following facts (for an alternative proof, see Section 14): (a)
The set of 6's for which (ji - x - 6)2 ~ (ji' - x' - y6)2 is, with probability
one, an interval containing Y- X. (b) The set of 6's for which (ji - x - 6)2
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is exceeded by a particular set of at least (m;:; n) - k of the quantities
tV - x' - yl1)2 is the intersection of the corresponding intervals (a) and
hence is an interval containing ji - x. (c) The set of l1's of interest is the union
of the intervals (b) and, since they have a nonempty intersection, also an
interval.]

Section 12

47. In the matched-pairs experiment for testing the effect of a treatment, suppose
that only the differences Z, = Y; - X; are observable. The Z's are assumed to
be a sample from an unknown continuous distribution, which under the
hypothesis of no treatment effect is symmetric with respect to the origin. Under
the alternatives it is symmetric with respect to a point f > o. Determine the
test which among all unbiased tests maximizes the power against the alterna­
tives that the Z's are a sample from N(f, ( 2 ) with f > O.
[Under the hypothesis, the set of statistics (I:7_1 zl, ... ,I:7_1 zln) is sufficient;
that it is complete is shown as the corresponding result in Theorem 6. The
remainder of the argument follows the lines of Section 11.]

48. (i) If Xl' . . . ' Xn ; Y1, ••. , y" are independent normal variables with common
variance a2 and means E(X;) = Ci' E(Y;) = t + l1, the UMP unbiased
test of l1 = 0 against l1 > 0 is given by (59).

(ii) Determine the most accurate unbiased confidence intervals for l1.

[(i): The structure of the problem becomes clear if one makes the orthogonal
transformation X: = (Y; - X;)/fi, Y;' = (X; + y;)/fi .]

49. Comparison of two designs. Under the assumptions made at the beginning of
Section 12, one has the following comparison of the methods of complete
randomization and matched pairs. The unit effects and experimental effects 0;
and V; are independently normally distributed with variances al, a2 and
means E(O;) = Ii and E(V;) = C or 'II as V; corresponds to a control or
treatment. With complete randomization, the observations are X; = 0; + V;
(i = 1, ... , n) for the controls and Y; = u,,+i + v,,+i (i = 1, . . . , n) for the
treated cases, with E(X;) = Ii + t E(Y;) = Ii + 'II. For the matched pairs, if
the matching is assumed to be perfect, the X's are as before, but Y; = 0; +
V,r+i. UMP unbiased tests are given by (27) for complete randomization and
by (59) for matched pairs. The distribution of the test statistic under an
alternative l1 = 'II - C is the noncentral t-distribution with noncentrality

parameter V;l1/ V2( a2 + an and 2n - 2 degrees of freedom in the first

case, and with noncentrality parameter V;l1/ fi a and n - 1 degrees of
freedom in the second. Thus the method of matched pairs has the disadvantage
of a smaller number of degrees of freedom and the advantage of a larger
noncentrality parameter. For a = .05 and l1 = 4, compare the power of the
two methods as a function of n when a l = 1, a = 2 and when a l = 2, a = 1.

50. Continuation. An alternative comparison of the two designs is obtained by
considering the expected length of the most accurate unbiased confidence
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intervals for t:. = 'II - ~ in each case. Carry this out for varying n and
confidence coefficient 1 - a = .95 when a l = I, a = 2 and when a l = 2,
a = 1.

Section 13

51. Suppose that a critical function 1/10 satisfies (65) but not (67), and let a < t.
Then the following construction provides a measurable critical function 1/1
satisfying (67) and such that I/Io(z) ~ I/I( z) for all z. Inductively, sequences of
functions 1/11 '1/12' ... and "'0 ' "'I' ... are defined through the relations

and

"'m(Z) = [ I/Im(Z')
z' e S(z ) NI ! · · · N , 'c'

m=O,I, ... ,

{

I/Im- I( Z) + [a - "'m_I(Z)]
I/Im(z) = if both I/Im -I (z) and "'m-I(z) are

I/Im -I (z) otherwise .

< a,

The function 1/1 (z) = lim I/Im(z) then satisfies the required condi tions.
[The functions I/Imare nondecreasing and between 0 and 1. It is further seen by
induction that 0 ~ a - "'m(z) ~ (1 - y)m[a - "'o(z»), where y = 1/
NI! · · ·N).)

52. Consider the problem of testing H : 'II = ~ in the family of densities (62) when
it is given that a > c > 0 and that the point (ru , .. . , i.. ) of (63) lies in a
bounded region R containing a rectangle, where c and Ii are known. Then
Theorem 7 is no longer applicable . However, unbiasedness of a test 1/1 of H
implies (67), and therefore reduces the problem to the class of permutation
tests.
[Unbiasedness implies !1/I(z)P".r(z) dz = a and hence

a = f",(z)P" .r(z) dz = f",(z) (~a)Nexp[- 2~2 [[(Zii - riJ2]

for all a > c and r in R. The result follows from completeness of this last
family.)

53. To generalize Theorem 7 to other designs, let Z = (ZI" . . , ZN) and let
G = {gl ' .. . ' g,} be a group of permutations of N coordinates or more
generally a group of orthogonal transformations of N-space. If

i .: 1 (1 )
(81) P" .r(z) = - [ (~ ) NexP -2"2lz - gkrl 2

,
'k-I y2'fTa a
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where Izl2 = Ezl, then J4.(z)Po.r(z) dz s; a for all C1 > 0 and all r implies

(82)
1

L If>(z'):S; a
r z' ES( z)

a.e .,

where S( z) is the set of points in N-space obtained from z by applying to it
all the transformations gk' k = 1, .. . , r.

54. Generalization of Corollary 3. Let H be the class of densities (81) with C1 > 0
and - 00 < r; < 00 (i = 1, ... , N). A complete family of tests of H at level of
significance a is the class of permutation tests satisfying

(83)
1
- L If>(z')=a
r z'ES(z)

a .e.

Section 14

55. If c = 1, m = n = 3, and if the ordered x's and y's are respectively
1.97,2.19,2.61 and 3.02,3.28,3.41 , determine the points 8(1» .. . ,8(19) defined
as the ordered values of (73).

56. If c = 4, m, = n; = 1, and the pairs (x;, y;) are (1.56,2.01), (1.87,2.22),
(2.17,2.73), and (2.31,2.60), determine the points 8(1» . .. , 8(15) which define
the intervals (72).

57. If m , n are positive integers with m :s; n, then

f (~)(i) = (m;:; n)_1.
K-l

58. (i) Generalize the randomization models of Section 14 for paired compari­
sons (nl = . . . = n(. = 2) and the case of two groups (c = 1) to an
arbitrary number c of groups of sizes n l , .. . , n(..

(ii) Generalize the confidence intervals (72) and (73) to the randomization
model of part (i).

59. Let Z., . . . , Z" be i.i.d. according to a continuous distribution symmetric
about 0, and let 1(1) < ' " < 1( M) be the ordered set of M = 2" - 1
subsarnples (Z;t + . .. +Z;)/r, r ~ 1. If 1(0) = -00, 1(M+I) = 00, then

1
P8[1(i)<O<1( i+l)] = M+l for all i = 0,1 , .. . , M.

[Hartigan (1969).]

60. (i) Given n pairs (X I' YI)' .. . ,( X" , Y,,) , let G be the group of 2" permuta­
tions of the 2" variables which interchange Xi and Yi in all, some, or none
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of the n pairs. Let Go be any subgroup of G, and let e be the number of
elements in Go . Any element g E Go (except the identity) is characterized
by the numbers i1, .. . , if (r ~ 1) of the pairs in which X i and Yi have
been switched. Let d, = Yi - Xi' and let 6(1) < . .. < 6(r -1) denote the
ordered values (d i 1 + .. . +d,)/r corresponding to Go. Then (72) con­
tinues to hold with e - 1 in place of M.

(ii) State the generalization of Problem 59 to the situation of part (i).

[Hartigan (1969).]

61. The preceding problem establishes a 1 : 1 correspondence between e - 1
permutations T of Go which are not the identity and e - 1 nonempty subsets
{i l , ... , if} of the set {I, ... , n}. If the permutations T and T' correspond
respectively to the subsets R = {i1, . . . , if} and R' = {il, .. . . i,}. then the
group product T'Tcorresponds to the subset (R ().5) U (R () S) = (R U S)
- (R () S). [Hartigan (1969).]

62. Determine for each of the following classes of subsets of {I, ... , n} whether
(together with the empty subset) it forms a group under the group operation of
the preceding problem: All subsets {i l , ... , if} with

(i) r = 2;

(ii) r = even;

(iii) r divisible by 3.
(iv) Give two other examples of subgroups Go of G.

Note . A class of such subgroups is discussed by Forsythe and Hartigan
(1970).

63. Generalize Problems 60(i) and 61 to the case of two groups of sizes m and n
(c = 1).

Section 15

64. (i) If the joint distribution of X and Y is the bivariate normal distribution
(70), then the conditional distribution of Y given X is the normal
distribution with variance T 2 (1 - p2) and mean 'II -I- (pT/a)(x - n

(ii) Let (XI' YI ) , . . . , (X", y,,) be a sample from a bivariate normal distribu­
tion, let R be the sample correlation coefficient, and sU'ppose that p = o.
Then the conditional distribution of..;t1'=2 R/~2 given Xl • • • .• X"

is Student's r-distribution with n - 2 degrees of freedom provided
L( Xi - X)2 > O. This is therefore also the unconditional distribution of
this statistic.

(iii) The probability density of R itself is then

(84) 1 r[Hn - 1)] (1 _ r2):" -2.
p(r) = .;; r[Hn - 2)]
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[(ii): If Vi = (Xi - X)/V'£(X j - X)2 SO that '£vi = 0, '£v; = 1, the statistic

can be written as

LViY;

J[L y;2 - ny 2- (I:v;Y;)2]/(n - 2)

Since its distribution depends only on p one can assume '1/ = 0, T = 1. The
desired result follows from Problem 6 by making an orthogonal transformation
from (YI, . . . , Y,,) to (ZI' ···' Zn) such that Zl = {;Y, Z2 = '£v;Y; .]

65. (i) Let (XI' YI ) , .. . ,( Xn , Yn ) be a sample from the bivariate normal distribu­
tion (70), and let Sr = '£( X; - X)2, Sf = '£( Y; - y)2, Sl2 = '£( X; ­
X)( Y; - Y). There exists a UMP unbiased test for testing the hypothesis
T/ a = t:J.. Its acceptance region is

1t:J.2S2
- S21

I 2 C< ,
V( t:J.2Sr + Sf)2 - 4t:J.2Sr2 -

and the probability density of the test statistic is given by (84) when the
hypothesis is true.

(ii) Under the assumption T = a, there exists a UMP unbiased test for testing

'1/ = t with acceptance region iY - XV /Sf + Sf - 2Sl2 S C. On multi­
plication by a suitable constant the test statistic has Student's t-distribu­
tion with n - 1 degrees of freedom when '1/ = t (Without the assumption
T = a, this hypothesis is a special case of the one considered in Chapter 8,
Example 2.)

[(i): The transformation U = f:.X + Y, V = X - (l/t:J.)Y reduces the problem
to that of testing that the correlation coefficient in a bivariate normal distribu­
tion is zero.
(ii) : Transform to new variables V; = Y; - X;, U; = Y; + X;.]

66. (i) Let (XI' YI ) , ... ,( Xn , y,.) be a sample from the bivaria~ normal_distribu-
tion (74), and let Sf = '£(X; - X)2, Sl2 = '£(X; - X)(Y; - Y), sf =

'£(Y, - Y)2.

Then (s], Sl2' Sf) are independently distributed of (X, Y), and their joint
distribution is the same as that of (f.7:lx:2, '£7:lX;'y,', '£7:ly,'2), where
(X;', Y,'), i = 1, . . . , n - I, are a sample from the distribution (74) with ~ = '1/
= O.

(ii) Let Xl' . . . ' Xnr and YI , ••• , Ynr be two samples from N(O,1) . Then the
joint density of Sr = '£X;2, Sl2 = '£X;Y" Sf = '£y,2 is

1 I__( 2 2 _ 2 ),(nr -3l [ .L( 2 2)]
4'ITr(m _ 1) SlS2 S12 exp - 2 SI + S2

for Sf2 s srsi, and zero elsewhere.
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(iii) The joint density of the statistics (sf, S12 ' Si) of part (i) is

(85)
(

2 2 2 i ( n - 4 )

SIS2 - S12) [1 (Sf 2pS12 s?)]lexp- ----+-
4wr(n-2)(oTVI- p2)"- 2(I- p2) 0

2
ar T

2

for S[z s sfs?, and zero elsewhere.

[(i): Make an orthogonal transformation from XI"' " X; to X{,. . . , X~ such
that x,; = {n X, and apply the same orthogonal transformation also to
Y1. · · · , y" . Then

y,: ,,; {nY,
n-l n

L X;Y,' = L (X, - X)(y, - Y),
i-I i-I

n-l n

L x,/2 = L (x, - x)2,
i-I i-I

n-l n

L y,/2 = L (y, - Y(
i-I i-I

The pairs of variables (X{ , Y\), . . . ,( X~ , Y:) are independent, each with a
bivariate normal distribution with the same variances and correlation as those
of (X, Y) and with means E(Xf) = E(Y,/) = °for i = 1, ... , n - 1.
(ii): Consider first the joint distribution of S12 = LX;Y, and si = Ly,2 given

XI" ' " Xm • Letting ZI = S12/ VLX; and making an orthogonal transforma­
tion from Y1, • •• , Ym to ZI" . . , Zm so that si = L:"_I Z;, the variables ZI and
L7~2 Z; = si - Zf are independently distributed as N(O,I) and X~ -I re­
spectively . From this the joint conditional density of S12 = Sl ZI and si is
obtained by a simple transformation of variables. Since the conditional distri­
bution depends on the x's only through sf, the joint density of Sf, S12'si is
found by multiplying the above conditional density by the marginal one of S~.

which is X;,. The proof is completed through use of the identity

r[!(m-l)]r(!m)= (;r(m-l)
2m - 2

(iii): If (X', Y/) = (X{, Y{; . . . ; X~" Y:,) is a sample from a bivariate normal
distribution with ~ = 7J = 0, then T = (L X;2 ,L X;Y,',L y,/2) is sufficient for
(J = (0, p, T), and the density of T is obtained from that given in part (ii) for
(Ju = (1,0,1) through the identity [Chapter 3, Problem 14 (i)]

T x: Y'(
P9(t) = iIo(t) P9 ' x', y')

x: Y'( .P9
0

' x'; y')

The result now follows from part (i) with m = n - 1.]
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67. If (XI' Yd, . . . ,(Xn , y,,) is a sample from a bivariate normal distribution, the
probability density of the sample correlation coefficient R is*

(86)
2n - 3

pp(r) = (1 _l)~(n-1)(1 _ r2)~(n -4)
'/T(n - 3)!

~ k
X L r 2 [Hn+ k - 1)] (2pr)

k-O k!

or alternatively

(87)
n - 2 I

pp(r) = -'/T-(1 - p2)'(n-l)(1 - r2) ~( n -4)

1 /n-2 1
X( I ~d/.

Jo (1 - pr/)"- 1 - /2

Another form is obtained by making the transformation / = (1 - v)/(1 - pro)
in the integral on the right-hand side of (87). The integral then becomes

(88)
1 1 (1 - v) n-2

(1 _ pr)~(2n-3) 10 .ffV [1 - !v(1 + pr)]-1/2dv.

Expanding the last factor in powers of v, the density becomes

(89)

where

(90)

n-2r(n-l) I__ (1 2)2(n -l) IIf; r(n _ n - p (1 - r2)2(n-4)(I_ pr)-n+ t

XF(l.l. 11+ pr)2 t2,n- 2;--2 '

eo r(a + j) r(b + j) r(c) xi

F(a,b,c ,x) = L r(a) r(b) f(c+j)j!
J-O

is a hypergeometric function .
[To obtain the first expression make a transformation from (Sf , sf, S12) with
density (85) to (Sf, sf, R) and expand the factor exp{ pS12/(1 - p2)or ] =

"The distribution of R is reviewed by Johnson and K01z (1970, Vol. 2, Section 32) and
Patel and Read (1982) .
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exp{prsls2/(l - p2)O'T} into a power series. The resulting series can be
integrated term by term with respect to sf and si. The equivalence with the
second expression is seen by expanding the factor (1 - prt)-(n-l) under the
integral in (87) and integrating term by term.]

68. If X and Y have a bivariate normal distribution with correlation coefficient
p > 0, they are positively regression-dependent.
[The conditional distribution of Y given x is normal with mean n + p'TO-1(x
- 0 and variance 'T2(1 - p2). Through addition to such a variable of the
positive quantity p'TO-1(x' - x) it is transformed into one with the conditional
distribution of Y given x' > x.]

69. (i) The functions (79) are bivariate cumulative distributions functions.

(ii) A pair of random variables with distribution (79) is positively regression­
dependent.

70. If X, Y are positively regression dependent, they are positively quadrant
dependent.
[Positive regression dependence implies that

(91) P[Y~YIX~xl ~P[Y~YIX~x'l for all x < x' and Y,

and (91) implies positive quadrant dependence.]

71. There exist bivariate distributions F of (X, y) for which p = 0 and
Var(XY)/[Var(X)Var(Y)] takes on any given positive value.

Additional Problems

72. Let (X" Y;) , i = 1, ... , n, be i.i.d. according to a bivariate distribution F with
E(Xh E(y;2) < 00.

(i) If R is the sample correlation coefficient, then r;;R is asymptotically
normal with mean 0 and variance Var( Xi Y; )IVar X; Var K.

(ii) The variance of part (i) can take on any value between 0 and 00 .

(iii) For testing H2 : p = 0 against p > 0, define a denominator D; and
critical value Cn such that the rejection region R/ D; ~ Cn has probability
an (F) ...... a for all F satisfying H2 •

73. Shape parameter of a gamma distribution . Let Xl' . . . ' X; be a sample from
the gamma distribution I'(g, b) defined in Problem 43 of Chapter 3.

(i) There exist UMP unbiased tests of H : g s go against g > go and of
H' : g = go against s» go, and their rejection regions are based on
W = n(x,/X).

(ii) There exist uniformly most accurate confidence intervals for g based
on W.
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[Shorack (1972).)

Notes .
(1) The null distribution of W is discussed in Bain and Engelhardt (1975),

Glaser (1976), and Engelhardt and Bain (1978).
(2) For g = 1, I'(g, b) reduces to an exponential distribution, and (i) be­

comes the UMP unbiased test for testing that a distribution is exponential
against the alternative that it is gamma with g > 1 or with g "* 1.

(3) An alternative treatment of this and some of the following problems is
given by Bar-Lev and Reiser (1982).

74. Scale parameter of a gamma distribution . Under the assumptions of the
preceding problem, there exists

(i) A UMP unbiased test of H : b ~ bo against b > bo which rejects when
LX; > C(I1X;) .

(ii) Most accurate unbiased confidence intervals for b.

[The conditional distribution of LX; givennX;, which is required for carrying
out this test, is discussed by Engelhardt and Bain (1977).)

75. Gamma two-sample problem . Let Xl"'" Xm ; YI , ... , y" be independent sam­
ples from gamma distributions I'(g, bl)' r(g2' b2 ) respectively.

(i) If gl' g2 are known, there exists a UMP unbiased test of H : b2 = bl
against one- and two-sided alternatives, which can be based on a beta
distribution.
[Some applications and generalizations are discussed in Lentner and
Buehler (1963).)

(ii) If gl' g2 are unknown, show that a UMP unbiased test of H continues to
exist, and describe its general form.

(iii) If b2 = bl .= b (unknown), there exists a UMP unbiased test of g2 = gl
against one- and two-sided alternatives; describe its general form.

[(i): If Y; (i = 1,2) are independent r(g;, b), then YI + Y2 is r(g, + g2' b)
and YI/(YI + Y2 ) has a beta distribution.]

76. Let XI" '" X; be a sample from the Pareto distribution P(c, T), both parame­
ters unknown . Obtain UMP unbiased tests for the parameters c and T.

[Problem 12, and Problem 44 of Chapter 3.]

77. Inverse Gaussian distribution:" Let Xl"'" X; be a sample from the inverse
Gaussian distribution I(p., T), both parameters unknown.

(i) There exists a UMP unbiased test of p. ~ P.o against p. > P.o, which
rejects when X> C[L(X; + 1/X;»), and a corresponding UMP unbiased

"For additional information concerning inference in inverse Gaussian distributions, see
Folks and Chhikara (1978).
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test of J.L = J.Lo against J.L * J.Lo·
[The conditional distribution needed to carry out this test is given by
Chhikara and Folks (1976).]

(ii) There exist UMP unbiased tests of H : T = TO against both one- and
two-sided hypotheses based on the statistic V = L(I/X; - I/X).

(iii) When T = TO ' the distribution of TOV is X~-\ '

[Tweedie (1957).]

78. Let X\, ,, ,,Xm and Y\, ... , y" be independent samples from I(J.L, 0) and
I ('" T) respectively.

(i) There exist UMP unbiased tests of T2/ T\ against one- and two-sided
alternatives.

(ii) If T= 0, there exist UMP unbiased tests of 11/J.L against one- and
two-sided alternatives.

[Chhikara (1975).]

79. Consider a one-sided, one-sample, level-a r-test with rejection region t( X) ~ en '
where X = (X\, . .. , Xn ) and t( X) is given by (16). Let an (F) be the rejection
probability when X\, ... , Xn are i.i.d. according to a distribution FE§', with
§' the class of all distributions with mean zero and finite variance. Then for
any fixed n, no matter how large, SUPFEjOan(F) = 1.
[Let F be a mixture of two normals, F = yN(I, 02) + (1 - y)N(J.L,02) with
y + (1 - y) J.L = O. By taking y sufficiently close to 1, one can be virtually
certain that all n observations are from N(I,0 2

) . By taking 0 sufficiently
small, one can make the power of the r-test against the alternative N(I,0 2)

arbitrarily close to 1. The result follows.]

Note. This is a special case of results of Bahadur and Savage (1956); for
further discussion, see Loh (1985).
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CHAPTER 6

Invariance

1. SYMMETRYAND INVARIANCE

Many statistical problems exhibit symmetries, which provide natural restric­
tions to impose on the statistical procedures that are to be employed.
Suppose, for example, that Xl"' " X; are independently distributed with
probability densities P8 (Xl)"' " P8 (x,). For testing the hypothesis H : 0l

1 n

= ... = On against the alternative that the O's are not all equal, the test
should be symmetric in Xl" ' " x n' since otherwise the acceptance or
rejection of the hypothesis would depend on the (presumably quite irrele­
vant) numbering of these variables.

As another example consider a circular target with center 0, on which
are marked the impacts of a number of shots. Suppose that the points of
impact are independent observations on a bivariate normal distribution
centered on O. In testing this distribution for circular symmetry with respect
to 0, it seems reasonable to require that the test itself exhibit such
symmetry. For if it lacks this feature, a two-dimensional (for example,
Cartesian) coordinate system is required to describe the test, and acceptance
or rejection will depend on the choice of this system, which under the
assumptions made is quite arbitrary and has no bearing on the problem.

The mathematical expression of symmetry is invariance under a suitable
group of transformations. In the first of the two examples above the group is
that of all permutations of the variables Xl"'" xn since a function of n
variables is symmetric if and only if it remains invariant under all permuta­
tions of these variables. In the second example, circular symmetry
with respect to the center 0 is equivalent to invariance under all rotations
about O.

In general, let X be distributed according to a probability distribution
P(j, 8 E n, and let g be a transformation of the sample space fE. All such
transformations considered in connection with invariance will be assumed

282
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to be 1 : 1 transformations of ~ onto itself. Denote by gX the random
variable that takes on the value gx when X = x, and suppose that when the
distribution of X is Pu, (J E 0, the distribution of gX is Pu' with (J' also in
O. The element (J' of 0 which is associated with (J in this manner will be
denoted by g(J, so that

(1) r, {gX E A} = PgU{ X E A} .

Here the subscript (J on the left member indicates the distribution of X, not
that of gX. Equation (1) can also be written as Pu(g-IA) = Pgu(A) and
hence as

(2) Pgu(gA) = Pu(A).

The parameter set 0 remains invariant under g (or is preserved by g) if
gO E 0 for all (J E 0, and if in addition for any (J' E 0 there exists (J E 0
such that gO = (J'. These two conditions can be expressed by the equation

(3) gO = O.

The transformation g of 0 onto itself defined in this way is 1 : 1 provided
the distributions Pu corresponding to different values of (J are distinct. To
see this let g(J1 = g(J2' Then Pgu1(gA) = Pgu2(gA) and therefore Pu1(A) =
PU2( A) for all A, so that (JI = (J2 '

Lemma 1. Let g, g' be two transformations preserving O. Then the
transformations g'g ands' defined by

(g'g)x = g'(gx) and g(g-Ix) = x

also preserve 0 and satisfy

for all x E ~

(4) g'g=g" g and (g-I) = (g)-I.

Proof. If the distribution of X is Pu, then that of gX is PgUand that of
g'gX = g'( gX) is therefore Pgogu. This establishes the first equation of (4);
the proof of the second one is analogous.

We shall say that the problem of testing H: (J E 0 H against K : (J E 0 K

remains invariant under a transformation g if g preserves both 0H and OK'
so that the equation

(5) gOH = °H
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holds in addition to (3). Let ~ be a class of transformations satisfying these
two conditions, and let G be the smallest class of transformations contain­
ing ~ and such that g, g' E G implies that g'g and s' belong to G. Then
G is a group of transformations, all of which by Lemma 1 preserve both U
and UH' Any class ~ of transformations leaving the problem invariant can
therefore be extended to a group G. It follows further from Lemma 1 that
the class of induced transformations g form a group G. The two equations
(4) express the fact that Gis a homomorphism of G.

In the presence of symmetries in both sample and parameter space
represented by the groups G and G, it is natural to restrict attention to tests
ep which are also symmetric, that is, which satisfy

(6) ep(gX) = ep(x) for all x E X and g E G.

A test ep satisfying (6) is said to be invariant under G. The restriction to
invariant tests is a particular case of the principle of invariance formulated
in Section 5 of Chapter 1. As was indicated there and in the examples
above, a transformation g can be interpreted as a change of coordinates.
From this point of view, a test is invariant if it is independent of the
particular coordinate system in which the data are expressed.

A transformation g, in order to leave a problem invariant, must in
particular preserve the class .III of measurable sets over which the distribu­
tions Po are defined. This means that any set A E.III is transformed into a
set of .III and is the image of such a set, so that gA and g-lA both belong to
~. Any transformation satisfying this condition is said to be bimeasurable.
Since a group with each element g also contains s'. its elements are
automatically bimeasurable if all of them are measurable. If g' and g are
bimeasurable, so are g'g and g -1. The transformations of the group G
above generated by a class ~ are therefore all bimeasurable provided this is
the case for the transformations of ~.

2. MAXIMAL INVARIANTS

If a problem is invariant under a group of transformations, the principle of
invariance restricts attention to invariant tests. In order to obtain the best of
these, it is convenient first to characterize the totality of invariant tests.

Let two points Xl' x 2 be considered equivalent under G,

Xl - X 2 (modG),

if there exists a transformation g E G for which X2 = gxl. This is a true
equivalence relation, since G is a group and the sets of equivalent points,
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the orbits of G, therefore constitute a partition of the sample space. (Cf,
Appendix, Section 1.) A point x traces out an orbit as all transformations g
of G are applied to it; this means that the orbit containing x consists of the
totality of points gx with g E G. It follows from the definition of invariance
that a function is invariant if and only if it is constant on each orbit.

A function M is said to be maximal invariant if it is invariant and if

(7) M(x 1) = M(x 2) implies X2 = gX1 for some g E G,

that is, if it is constant on the orbits but for each orbit takes on a different
value. All maximal invariants are equivalent in the sense that their sets of
constancy coincide .

Theorem 1. Let M(x) be a maximal invariant with respect to G. Then a
necessary and sufficient condition for cp to be invariant is that it depends on x
only through M(x), that is that there exists a function h for which cp(x) =
h[M(x)] for all x.

Proof. If cp(x) = h[M(x)] for all x, then cp(gx) = h[M(gx)] =
h[M(x)] = cp(x) so that cp is invariant. On the other hand, if cp is invariant
and if M(x 1) = M(x 2)' then x 2 = gX1 for some g and therefore CP(X2) =
cp(x1) ·

Example 1. (i) Let x = (Xl " ' " x n ) , and let G be the group of translations

gx = (Xl + c, .. . , X n + c) , -oo<c<oo.

Then the set of differences y = (Xl - X n, • • • , Xn -l - xn ) is invariant under G. To
see that it is maximal invariant suppose that Xi - X n = Xi - x i, for i = 1, . . . , n - l.
Putting xi, - x; = c, one has x i = Xi + c for all i, as was to be shown. The
function y is of course only one representation of the maximal invariant. Others are
for example (Xl - Xl,X2 - X3" "'Xn- 1 - x n ) or the redundant (Xl - x " " ,xn
- x) . In the particular case that n = 1, there are no invariants. The whole space is a
single orbit, so that for any two points there exists a transformation of G taking one
into the other. In such a case the transformation group G is said to be transitive .
The only invariant functions are then the constant functions .p(x) == c.

(ii) if G is the group of transformations

gx = ( CXl " '" ex,,) , c,,;, 0,

a special role is played by any zero coordinates. However, in statistical applications
the set of points for which none of the coordinates is zero typically has probability
1; attention can then be restricted to this part of the sample space, and the set of
ratios Xl /X"" ",X" _I/X" is a maximal invariant. Without this restriction, two
points x , x ' are equivalent with respect to the maximal invariant partition if among
their coordinates there are the same number of zeros (if any), if these occur at the
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same places, and if for any two nonzero coordinates Xi' Xi the ratios xjxi and
xj / x; are equal.

(iii) Let x = (XI" . . , xn ) , and let G be the group of all orthogonal transforma­
tions X' = Tx of n-space. Then Ix; is maximal invariant, that is, two points x and
x* can be transformed into each other by an orthogonal transformation if and only
if they have the same distance from the origin. The proof of this is immediate if one
restricts attention to the plane containing the points x, x* and the origin.

Example 2. (i) Let x = (XI" . . , x n ) , and let G be the set of n! permutations
of the coordinates of x . Then the set of ordered coordinates (order statistics)
x(1):5: ••• :5: x(n) is maximal invariant. A permutation of the Xi obviously does not
change the set of values of the coordinates and therefore not the Xli) ' On the other
hand, two points with the same set of ordered coordinates can be obtained from
each other through a permutation of coordinates.

(ii) Let G be the totality of transformations x; = f( Xi)' i = 1, . .. , n, such that
f is continuous and strictly increasing, and suppose that attention can be restricted
to the points all of whose n coordinates are distinct. If the Xi are considered as n
points on the real line, any such transformation preserves their order. Conversely, if
Xl" ' " X" and Xl" ' " X~ are two sets of points in the same order, say Xi < .. . <
Xi and x; < .. . < x; , there exists a transformation f satisfying fue required
conditions 1and such that x; = f( Xi) for all i. It can be defined for example as
f(x) = X + (x; - Xi ) for X :5: Xi , f(x) = X + (X; - Xi ) for X ~ Xi , and to be

1 I 1 "rr If.

linear between Xi and Xi for k = 1, . . . , n - 1. A formal expression for the
maximal invariant'in this cas~ is the set of ranks (r l , . .. , rn ) of (XI' .. . , x,). Here
the rank ri of Xi is defined through

Xi = xl',)

so that ri is the number of x's :5: Xi' In particular ri = 1 if Xi is the smallest x,
ri = 2 if it is the second smallest, and so on.

Example 3. Let X be an n X s matrix (s :5: n) of rank s, and let G be the group
of linear transformations gx = xB, where B is any nonsin~ular s X s matrix. Then
a maximal invariant under G is the matrix t(x) = x(x'x)- x', where X' denotes the
transpose of x . Here (X'X)-I is meaningful because the s X s matrix x'x is
nonsingular; in fact, it will be shown in Lemma 1 of Chapter 8 that x'x is positive
definite.

That t( x) is invariant is clear, since

t(gx) = xB(B'x'xB)-IB,X' = x(X'X)-I X' = t(x) .

To see that t(x) is maximal invariant, suppose that

( , )-1, (' )-1XI XIXI XI = X2 X2 X2 X2 '

Since (X;X;) -I is positive definite, there exist nonsingular matrices C, such that
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(X;X;) -l = C;C( and hence
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(XICI)(XICI)' = (X2C2)(X2C2)'·

As will be shown in Chapter 8, Section 2, this implies the existence of an orthogonal
matrix Q such that x2C2 = XICIQ and thus X2 = x.B with B = CIQCil , as was to
be shown.

In the special case s = n, we have t(x) = I, so that there are no nontrivial
invariants. This corresponds to the fact that in this case G is transitive, since any
two nonsingular n X n matrices Xl and X2 satisfy X2 = Xl B with B = xIIX2'

This result can be made more intuitive through a geometric interpretation.
Consider the s-dimensional subspace S of R" spanned by the s columns of x . Then
P = x(X'X) -IX' has the property that for any y in R", the vector Py is the
projection of y onto S. (This will be proved in Chapter 7, Section 2.) The invariance
of P expresses the fact that the projection of y onto S is independent of the choice
of vectors spanning S. To see that it is maximal invariant, suppose that the
projection of every y onto the spaces S, and S2 spanned by two different sets of s
vectors is the same. Then Sl = S2' so that the two sets of vectors span the same
space. There then exists a nonsingular transformation taking one of these sets into
the other.

A somewhat more systematic way of determining maximal invariants is
obtained by selecting, by means of a specified rule, a unique point M(x) on
each orbit. Then clearly M( X) is maximal invariant. To illustrate this
method, consider once more two of the earlier examples.

Example 1(i) (continued). The orbit containing the point Cal" . . , an) under the
group of translations is the set {(al + c, . . . , an + c), - 00 < C < eo}, which is a
line in Ell'

(a) As representative point M(x) on this line, take its intersection with the
hyperplane XII = O. Since then an + c = 0, this point corresponds to the value
c = -an and thus has coordinates (al - an" . " an-l - an,O). This leads to the
maximal invariant (X l - Xn, · ·· , Xn- l - xn).

(b) An alternative point on the line is its intersection with the hyperplane
Ex; = O. Then C = -G, and M(a) = (al - G,... , an - G).

(c) The point need not be specified by an intersection property. It can for
instance be taken as the point on the line that is closest to the origin. Since the value
of c minimizing E(a j + C)2 is C = -G, this leads to the same point as (b).

Example 1(iii) (continued). The orbit containing the point (a l, . . . , an) under the
group of orthogonal transformations is the hypersphere containing (ai' . . . , an) and
with center at the origin. As representative point on this sphere, take its north pole,
i.e. the point with a1 = ... = an-l = O. The coordinates of this point are

(0, ... , 0, VEa;) and hence lead to the maximal invariant Ex;' (Note that in this
example, the determination of the orbit is essentially equivalent to the determination
of the maximal invariant.)

Frequently, it is convenient to obtain a maximal invariant in a number of
steps, each corresponding to a subgroup of G. To illustrate the process and
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a difficulty that may arise in its application. let x = (x,•...• X n ) . suppose
that the coordinates are distinct. and consider the group of transformations

gx = (ax i + b•...• aXn + b). a '* O. - 00 < b < 00 .

Applying first the subgroup of translations x; = x, + b. a maximal in­
variant is Y = (YI. · .. . Yn-I) with Y; = x j - x ; Another subgroup consists
of the scale changes x;' = ax.. This induces a corresponding change of scale
in the Y 's: Y!' = aYj. and a maximal invariant with respect to this group
acting on the y-space is Z = (ZI . .. .. zn-2) with Z; = Y;/Yn-I' Expressing
this in terms of the x 's, we get Zj = (x, - xn)/(xn- I - x,} , which is
maximal invariant with respect to G.

Suppose now the process is carried out in the reverse order. Application
first of the subgroup x;' = aXj yields as maximal invariant u =
(u l ••• •• Un-I) with U j = x;/xn. However. the translations x; = x, + b do
not induce transformations in u-space. since (x, + b)/(xn + b) is not a
function of x;/xn•

Quite generally, let a transformation group G be generated by two
subgroups D and E in the sense that it is the smallest group containing D
and E. Then G consists of the totality of products emdm. .. eldl for
m = 1,2, . . . , with d, E D, e j E E( i = 1, . .. , m ).t The following theorem
shows that whenever the process of determining a maximal invariant in
steps can be carried out at all, it leads to a maximal invariant with respect
to G.

Theorem 2. Let G be a group of transformations. and let D and E be two
subgroups generating G. Suppose that Y = s(x) is maximal invariant with
respect to D, and that for any e E E

(8) s(XI) = s(x2) implies s(exl) = s(ex 2 ) .

If Z = t(y) is maximal invariant under the group E* of transformations e*
defined by

e*y=s(ex) when Y = s(x),

then Z = t[s(x)] is maximal invariant with respect to G.

Proof. To show that t[s(x)] is invariant, let x' = gx, g = emdm. . . eldl.
Then

t[s(x')]=t[s(emdm ... eldlx)] = t[e:s(dm . .. eldlx))

= t[s(em-1dm- 1... e1d1x)),

"See Section 1 of the Appendix.
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and the last expression can be reduced by induction to t[s(x)] . To see that
t[s(x)] is in fact maximal invariant, suppose that t[s(x')] = t[s(x)] . Setting
y' = s(x'), y = s(x), one has t(y') = t(y), and since t(y) is maximal
invariant with respect to E*, there exists e* such that y' = e*y. Then
s(x') = e*s(x) = s(ex), and by the maximal invariance of s(x) with respect
to D there exists dE D such that x' = dex. Since de is an element of G
this completes the proof.

Techniques for obtaining the distribution of maximal invariants are
discussed by Andersson (1982), Eaton (1983), Farrell (1985), and Wijsman
(1985).

3. MOSTPOWERFUL INVARIANT TESTS

The class of all invariant functions can be obtained as the totality of
functions of a maximal invariant M(x). Therefore, in particular the class of
all invariant tests is the totality of tests depending only on the maximal
invariant statistic M. The latter statement, while correct for all the usual
situations, actually requires certain qualifications regarding the class of
measurable sets in M-space. These conditions will be discussed at the end of
the section ; they are satisfied in the examples below.

Example 4. Let X = (XI" . . , X,,), and suppose that the density of X is
f(x i - B,. . . , x; - fJ) under Hi (i = 0,1), where fJ ranges from - 00 to 00. The
problem of testing Ho against HI is invariant under the group G of transformations

gx = (XI + c , ... , x" + c) , -oo<c<oo,

which in the parameter space induces the transformations

gO = 0 + c.

By Example 1, a maximal invariant under G is Y = (XI - X" , . . . , X,, _I - X,,). The
distribution of Y is independent of fJ and under Hi has the density

f OO /;( YI + Z , . . . , Y,, _I + z , z) dz.
-00

When referred to Y, the problem of testing Ho against HI therefore becomes one of
testing a simple hypothesis against a simple alternative. The most powerful test is
then independent of fJ, and therefore UMP among all invariant tests. Its rejection
region by the Neyman-Pearson lemma is

fOO I,(Y, + z". "Y,, -1 + z,z) dz foo II(xl + u, .. . , x" + u) du
-00

00 = 0000 > C.f 10(Y' + z" "'Y,,-1 + z,z) dz f lo(xi + u, . . . ,x" + u) du
- 00 -00
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A general theory of separate families of hypotheses (in which the family K
of alternatives does not adjoin the hypothesis H but, as in Example 4, is
separated from it) was initiated by Cox (1961, 1962). A bibliography of the
subject is given in Pereira (1977); see also Loh (1985).

Before applying invariance, it is frequently convenient first to reduce the
data to a sufficient statistic T. If there exists a test <Po(T) that is UMP
among all invariant tests depending only on T, one would like to be able to
conclude that <Po(T) is also UMP among all invariant tests based on the
original X. Unfortunately, this does not follow, since it is not clear that for
any invariant test based on X there exists an equivalent test based on T,
which is also invariant. Sufficient conditions for <Po(T) to have this property
are provided by Hall, Wijsman, and Ghosh (1965) and Hooper (1982a), and
a simple version of such a result (applicable to Examples 5 and 6 below) will
be given by Theorem 6 in Section 5. The relationship between sufficiency
and invariance is discussed further in Berk (1972) and Landers and Rogge
(1973).

Example 5. If Xl "'" X; is a sample from N( t (2
) , the hypothesis H : 0 ~ 00

remains invariant under the tr~formations X( ~ X; + C, - 00 < C < 00. In terms
of the sufficient statistics Y = X, S2 = I:( X; - X)2 these transformations become
Y' = Y + c, (S2)' = S2, and a maximal invariant is S2. The class of invariant tests
is therefore the class of tests depending on S2. It follows from Theorem 2_of
Chapter 3 that there exists a UMP invariant test, with rejection region I:( X; - X)2
s C. This coincides with the UMP unbiased test (9) of Chapter 5.

Example 6. If Xl" '" Xm and Yl , .. . , y" are samples from N t 0
2 and

N(Tj, 1'2), a set of sufficient statistics is T, = X, T2 = Y, 1; = I:( X; - X)2 , and

t; = /I:( lj - y)2 . The problem of testing H: 1'2 /02~ Ao remains invariant
under the transformations T{ = Tl + cl ' T{ = T2 + C2' T{ = 1;, TI = T4 , - 00 <
Cl' C2 < 00, and also under a common change of scale of all four variables. A
maximal invariant with respect to the first group is (1;, ~). In the space of this
maximal invariant, the group of scale changesinduces the transformations T{' = c1;,
TI' = c~, 0 < c, which has as maximal invariant the ratio ~/1; . The statistic
Z = [~2/(n - 1)] -i- [1;2/(m - 1)] on division byA = 1'2/02 has an F-distribution
with density given by (21) of Chapter 5, so that the density of Z is

C(A)z~(n-3)

(
n - 1 r:A+--z
m-1

z> O.

For varying A, these densities constitute a family with monotone likelihood ratio, so
that among all tests of H based on Z, and therefore among all invariant tests, there
exists a UMP one given by the rejection region Z> C. This coincides with the
UMP unbiased test (20) of Chapter 5.
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Example 7. In the method of paired comparisons for testing whether a treat­

ment has a beneficial effect, the experimental material consists of n pairs of
subjects. From each pair, a subject is selected at random for treatment while the
other serves as control. Let X; be 1 or 0 as for the ith pair the experiment turns out
in favor of the treated subject or the control, and let Pi = P{ X; = I}. The
hypothesis of no effect, H :Pi = t for i = 1, ... , n, is to be tested against the
alternatives that Pi > t for all i.

The problem remains invariant under all permutations of the n variables
Xl' . . . , x", and a maximal invariant under this group is the total number of
successes X = XI + . . . + Xn . The distribution of X is

P{ X = k} = q . . , q " Pi1 Pi.I ni-J . . . ,
q i\ s.,

where q, = 1 - Pi and where the summation extends over all (Z) choices of
subscripts iI < . .. < ik : The most powerful invariant test against an alternative
( PI ' ... • p;') rejects H when

1 P' ,
f( k) = _ " ~ Pi.

(n)'- , ... - ,>C.
k q,\ s;

To see that f is an increasing function of k, note that a, = n/« > 1, and that

[[ajai1. . . ail = (k + 1)[ai\ . . . aik+\
j

and

[[a i , .. . ail = (n - k)La i l .. • ai•·
j

Here, in both equations, the second summation on the left-hand side extends over
all subscripts i l < .. . < t, of which none is equal to j , and the summation on the
right-hand side extends over all subscripts il < . . . < ik+ 1 and il < . . . < i k
respectively without restriction. Then

1 1
f(k+l)=( )[ai . . . «. = (n)[[aj.ai . .. «.

k : 1 1 .+\ (n - k) k j I •

1
> (z) [ail ' " ail = f( k),

as was to be shown. Regardless of the alternative chosen, the test therefore rejects
when k > C, and hence is UMP invariant. If the ith comparison is considered plus
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or minus as X; is 1 or 0, this is seen to be another example of the sign test. (Cf.
Chapter 3, Example 8, and Chapter 4, Section 9.)

Sufficient statistics provide a simplification of a problem by reducing the
sample space; this process involves no change in the parameter space.
Invariance, on the other hand, by reducing the data to a maximal invariant
statistic M, whose distribution may depend only on a function of the
parameter, typically also shrinks the parameter space. The details are given
in the following theorem.

Theorem 3. If M(x) is invariant under G, and if v(8) is maximal
invariant under the induced group G, then the distribution of M( X) depends
only on v(8).

Proof. Let v( 81) = v(82 ) , Then 82 = g81, and hence

PoJM(X) E B} = Pgo1{M(X) E B} = Po\{M(gX) E B}

= PoJM(X) E B} .

This result can be paraphrased by saying that the principle of invariance
identifies all parameter points that are equivalent with respect to G.

In application, for instance in Examples 5 and 6, the maximal invariants
M(x) and 8 = v(8) under G and G are frequently real-valued, and the
family of probability densities PB( m) of M has monotone likelihood ratio.
For testing the hypothesis H: 8 s 80 there exists then a UMP test among
those depending only on M, and hence a UMP invariant test. Its rejection
region is M ~ C, where

(9) [~:)PBo(m) dm = a .
C

Consider this problem now as a two-decision problem with decisions do
and d 1 of accepting or rejecting H, and a loss function L (8, d;) = L ;(8).
Suppose that L;( 8) depends only on the parameter 8, L;( 8) = L;( 8) say,
and satisfies

(10) L;(8) - La(8) ~ 0 as 8 ~ 80 ,

It then follows from Theorem 3 of Chapter 3 that the family of rejection
regions M ~ C(a), as a varies from 0 to 1, forms a complete family of
decision procedures among those depending only on M, and hence a
complete family of invariant procedures. As before, the choice of a particu­
lar significance level a can be considered as a convenient way of specifying
a test from this family.
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At the beginning of the section it was stated that the class of invariant
tests coincides with the class of tests based on a maximal invariant statistic
M = M( X). However, a statistic is not completely specified by a function,
but requires also specification of a class ff/ of measurable sets. If in the
present case ff/ is the class of all sets B for which M-l(B) Ed, the desired
statement is correct. For let f/l(x) = t/J[M(x)] and f/l by ~measurable, and
let C be a Borel set on the line. Then f/l-l(C) = M-l[t/J-l(C)] Ed and
hence t/J-l(C) E ff/, so that t/J is ff/-measurable and f/l(x) = t/J[M(x)] is a
test based on the statistic M.

In most applications, M(x) is a measurable function taking on values in
a Euclidean space and it is convenient to take ff/ as the class of Borel sets. If
f/l(x) = t/J[M(x)] is then an arbitrary measurable function depending only
on M(x), it is not clear that t/J(m) is necessarily ff/-measurable. This
measurability can be concluded if !![ is also Euclidean with d the class of
Borel sets, and if the range of M is a Borel set. We shall prove it here only
under the additional assumption (which in applications is usually obvious,
and which will not be verified explicitly in each case) that there exists a
vector-valued Borel-measurable function Y(x) such that [M(x), Y(x)] maps
!![ onto a Borel subset of the product space .K x d.J/, that this mapping is
1 : 1, and that the inverse mapping is also Borel-measurable. Given any
measurable function f/l of x, there exists then a measurable function f/l' of
(m, y) such that f/l(x) == q{[M(x), Y(x)]. If f/l depends only on M(x), then
f/l' depends only on m, so that f/l'(m, y) = t/J(m) say, and t/J is a measurable
function of m ," In Example l(i) for instance, where x = (Xl" ' " x n )

and M(x) = (Xl - x n , • •• , xn - 1 - x n ) , the function Y(x) can be taken as
Y(x) = x n•

4. SAMPLE INSPECflON BY VARIABLES

A sample is drawn from a lot of some manufactured product in order to
decide whether the lot is of acceptable quality. In the simplest case, each
sample item is classified directly as satisfactory or defective (inspection by
attributes), and the decision is based on the total number of defectives.
More generally, the quality of an item is characterized by a variable Y
(inspect ion by variables), and an item is considered satisfactory if Yexceeds
a given constant u. The probability of a defective is then

p=P{Y~u}

and the problem becomes that of testing the hypothesis H : p ~ Po.

"The last statement is an immediate consequence, for example, of Theorem B, Section 34,
of Halmos (1974).
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As was seen in Example 8 of Chapter 3, no use can be made of the actual
value of Y unless something is known concerning the distribution of Y. In
the absence of such information, the decision will be based, as before,
simply on the number of defectives in the sample. We shall consider the
problem now under the assumption that the measurements Y1' •• • ' Yn con­
stitute a sample from N( 1/, a 2). Then

f u 1 [1P= -co &a exp - 2a 2 (y - 1/)2] dy = ell ( u: 1/),

where

f
y 1

cIl(y) = -exp( -tt 2
) dt

- co &
denotes the cumulative distribution function of a standard normal distribu­
tion, and the hypothesis H becomes (u - 1/)/a ~ cIl-1( po). In terms of the
variables Xi = Y; - u, which have mean ~ = 1/ - u and variance a2, this
reduces to

~
H: - s 80a

with 80 = - cIl-1( Po). This hypothesis, which was considered in Chapter 5,
Section 2, for 80 = 0, occurs also in other contexts. It is appropriate when
one is interested in the mean eof a normal distribution, expressed in a-units
rather than on a fixed scale.

For testin H, attention can be restricted to the pair of variables X and

S = E( Xi - X)2, since they form a set of sufficient statistics for a, a),
which satisfy the conditions of Theorem 6 of the next section. These
variables are independent, the distribution of X being N(~, a2/n) and that
of S/a being Xn-l. Multiplication of X and S by a common constant
c> 0 transforms the parameters into ~' = c~, a' = ca, so that ~/a and
hence the problem of testing H remain invariant. A maximal invariant
under these transformations is xis or

Inx
t=-==--s/.;n:::T ,

the distribution of which depends only on the maximal invariant in the
parameter space 8 = ~/a (cf. Chapter 5, Section 2). Thus, the invariant tests
are those depending only on t, and it remains to find the most powerful test
of H: 8 ~ 80 within this class.
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The probability density of t is (Chapter 5, Problem 3)

P8(t) = C{'Oexp[ - ~(tV n: 1 - ~ r]w~(n-2)exp( -~w) dw,

where ~ = In8 is the noncentrality parameter, and this will now be shown
to constitute a family with monotone likelihood ratio . To see that the ratio

fex+~h!~ -6,)}l<.-2)exp( -lw) dw

r( r) = [ 2]
10

00

exp - ~ (tV n: 1 - ~o) w~(n-2)exp( - ~w) dw

is an increasing function of t for ~o < ~l' suppose first that t < 0 and let
v = - tJw/( n - 1) . The ratio then becomes proportional to

100 [ (n -1)V
2

]
o j(v)exp -(~l - ~o)v - 2t 2 dv

1~ [ (n - 1)v' ]
o j(v)exp - 2t 2 dv

= f exp]-(~l - ~o)V]g,2(V) dv

where

j(v) = exp( -~ov)vn-lexp( -v2/ 2)

and

j(v)exp[- (n - 1)V
2

]

2t 2

faooj(z)expl- (n -1)z2
21 2 dz.

Since the family of probability densities g,2 (v) is a family with monotone
likelihood ratio, the integral of exp[-(~l - ~o)v] with respect to this
density is a decreasing function of t 2 (Problem 14 of Chapter 3), and hence
an increasing function of t for t< O. Similarly one finds that r(t) is an
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increasing function of t for t > 0 by making the transformation v =
tJw/( n - 1) . By continuity it is then an increasing function of t for all t .

There exists therefore a UMP invariant test of H: ~/a s 80 , which
rejects when t > C, where C is determined by (9). In terms of the original
variables 1'; the rejection region of the UMP invariant test of H: P ~ Po
becomes

(11)
In(y - u)

> C.
VL(Yi - y)2/(n - 1)

If the problem is considered as a two-decision problem with losses Lo(p)
and L I (p) for accepting or rejecting p ~ Po' which depend only on p and
satisfy the condition corresponding to (10), the class of tests (11) constitutes
a complete family of invariant procedures as C varies from - 00 to 00.

Consider next the comparison of two products on the basis of samples
Xl' ... ' Xm ; YI , ••• , Yn from N(~, ( 2

) and N(1/, ( 2). 1f

p=cp(u:~), ?T=cp(u:1/),

one wishes to test the hypothesis p ~ ?T, which is equivalent to

H:1/~~.

The statistics X, Y, and S = Vr,( Xi - X)2 + r,( lj - y)2 are a set of
sufficient statistics for ~,1/, a. The problem remains invariant under the
addition of an arbitrary common constant to X and Y, which leaves Y - X
and S as maximal invariants. It is also invariant under multiplication of X,
Y, and S, and hence of Y - X and S, by a common positive constant, which
reduces the data to the maximal invariant (Y - X)/S. Since

~
1

(y - x)/ - + -
m n

s/Jm + n - 2

has a noncentral r-distribution with noncentrality parameter l) = {mn(1/
- c)/ Jm + na, the UMP invariant test of H: 1/ - C~ 0 rejects when
t > C. This coincides with the UMP unbiased test (27) of Chapter 5, Section
3. Analogously, the corresponding two-sided test (30) of Chapter 5, with
rejection region ItI ~ C, is UMP invariant for testing the hypothesis p = ?T

against the alternatives p :1= ?T (Problem 9).
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Let G be a group of transformations leaving a family 9 = {Po, 0 En} of
distributions of X invariant. A test q, is said to be equivalent to an invariant
test if there exists an invariant test t/t such that <p( x) = t/t (x) for all x
except possibly on a 9-null set N; q, is said to be almost invariant with
respect to G if

(12) <p ( gx) = q, (x ) for all x E Jl - Ng , g E G

where the exceptional null set Ng is permitted to depend on g. This concept
is required for investigating the relationship of invariance to unbiasedness
and to certain other desirable properties. In this connection it is important
to know whether a UMP invariant test is also UMP among almost invariant
tests . This turns out to be the case under assumptions which are made
precise in Theorem 4 below and which are satisfied in all the usual
applications.

If <p is equivalent to an invariant test, then q,(gx) = q,(x) for all
x ~ N U g-lN. Since Po(g-lN) = Pgo(N) = 0, it follows that q, is then
almost invariant. The following theorem gives conditions under which
conversely any almost invariant test is equivalent to an invariant one.

Theorem 4. Let G be a group of transformations of Jl, and let d and !!l
be a-fields of subsets of Jl and G such that for any set A E d the set of pairs
(x, g) for which gx E A is measurable dx !!l. Suppose further that there
exists a a-finite measure II over G such that II(B) = 0 implies II(Bg) = 0 for
all g E G. Then any measurable function that is almost invariant under G
(where "almost " refers to some a-finite measure J1.) is equivalent to an
invariant function.

Proof. Because of the measurability assumptions, the function q,(gx)
considered as a function of the two variables x and g is measurable d X !!l .
It follows that <p(gx) - q,(x) is measurable dx !!l, and so therefore is the
set S of points (x , g) with <p(gx) "* <p(x). If q, is almost invariant, any
section of S with fixed g is a J1.-null set. By Fubini's theorem (Theorem 3 of
Chapter 2) there exists therefore a J1.-null set N such that for all x E Jl - N

q,(gx) = <p(x) a.e. II.

Without loss of generality suppose that II(G) = 1, and let A be the set of
points x for which

fq,(g'X) dll(g') = q,(gx) a.e. II.
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f(x, g) =lj4>(g'x) dv(g') - 4>(gx) I,

[6.5

then A is the set of points x for which

jf(x, g) dv(g) = O.

Since this integral is a measurable function of x, it follows that A is
measurable. Let

~(x) ~ U.;(gX) dv(g) if x E A,

if x ~ A.

Then 1/1 is measurable and 1/I(x) = 4>(x) for x ~ N, since 4>(gx) = 4>(x)
a.e . v implies that f4>(g'x) dv(g') = 4>(x) and that x EA. To show that 1/1
is invariant it is enough to prove that the set A is invariant. For any point
x E A, the function 4>(gx) is constant except on a null subset N, of G. Then
4>( ghx) has the same constant value for all g ~ Nxh- \ which by assump­
tion is again a v-null set; and hence hx E A, which completes the proof.

Additional results concerning the relation of invariance and almost
invariance are given by Berk and Bickel (1968) and Berk (1970). In
particular, the basic idea of the following example is due to Berk (1970).

Example 8. Counterexomple. Let Z, Y1, .• . , y" be independently distributed as
N(O,l), and consider the 1 : 1 transformations Y! = Yi (i = 1, . .. , n) and

z' = z except for a finitenumber of points al" ' " ak for
which a: = aj; for some permutation (JI"' " Jk) of (1, . . . , k).

I( the group G is generated by taking for (al"" ,ad, k = 1,2, , all finite sets
and for (JI" '" A) all permutations of (1,.. . , k), then (z, YI' , Yn) is almost
invariant. It is howevernot equivalent to an invariant function, since (YI" . . , Yn) is
maximal invariant.

Corollary 1. Suppose that the problem of testing H: 0 E w against K : 0
E 0 - w remains invariant under G and that the assumptions of Theorem 4
hold. Then if 4>0 is UMP invariant, it is also UMP within the class of almost
invariant tests.
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Proof. If cp is almost invariant, it is equivalent to an invariant test '" by
Theorem 4. The tests cp and '" have the same power function, and hence CPo
is uniformly at least as powerful as cp.

In applications, 9 is usually a dominated family, and JL any a-finite
measure equivalent to 9 (which exists by Theorem 2 of the Appendix). If cp
is almost invariant with respect to 9, it is then almost invariant with respect
to JL and hence equivalent to an invariant test. Typically, the sample space 1£
is an n-dimensional Euclidean space, .91 is the class of Borel sets, and the
elements of G are transformations of the form y = f(x, 7"), where 7" rariges
over a set of positive measure in an m-dimensional space and f is a
Borel-measureable vector-valued function of m + n variables. If fA is taken
as the class of Borel sets in m-space, the measurability conditions of the
theorem are satisfied.

The requirement that for all g E G and B E fA

(13) /I(B) = 0 implies /I(Bg) = 0

is satisfied in particular when

(14) /I(Bg) = /I(B) for all g E G, B E fA.

The existence of such a right invariant measure is guaranteed for a large
class of groups by the theory of Haar measure. Alternatively, it is usually
not difficult to check the condition (13) directly.

Example 9. Let G be the group of all nonsingular linear transformations of
n-space. Relative to a fixed coordinate system the elements of G can be represented
by nonsingular n X n matrices A = (a ij), A' = (a;j)" .. with the matrix product
serving as the group product of two such elements. The a-field !fI can be taken to be
the class of Borel sets in the space of the n 2 elements of the matrices, and the
measure v can be taken as Lebesgue measure over !fl. Consider now a set S of
matrices with v(S) = 0, and the set S* of matrices A'A with A' E S and A fixed.
If a = maxlaijl, C' = A'A, and C" = AliA, the inequalities la;j - a;jl ~ ( for all
i, j imply I<j - <jl ~ nae. Since a set has v-measure zero if and only if it can be
covered by a union of rectangles whose total measure does not exceed any given
( > 0, it follows that v(S*) = 0, as was to be proved.

In the preceding chapters, tests were compared purely in terms of their
power functions (possibly weighted according to the seriousness of the
losses involved). Since the restriction to invariant tests is a departure from
this point of view, it is of interest to consider the implications of applying
invariance to the power functions rather than to the tests themselves. Any
test that is invariant or almost invariant under a group G has a power
function which is invariant under the group G induced by G in the
parameter space.
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To see that the converse is in general not true, let Xl' X2 , X3 be
independently, normally distributed with mean ~ and variance 0' 2, and
consider the hypothesis 0' ~ 0'0. The test with rejection region

IX2 - XII> k

IX3 - X21 > k

when X < 0,

when X~ 0

is not invariant under the group G of transformations Jf[ = Xi + C, but its
power function is invariant under the associated group G.

The two properties, almost invariance of a test ep and invariance of its
power function, become equivalent if before the application of invariance
considerations the problem is reduced to a sufficientstatistic whose distribu­
tions constitute a boundedly complete family.

Lemma 2. Let the family gJT = {P[, 8 EO} of distributions of T be
boundedly complete, and let the problem of testing H : 8 E 0 H remain in­
variant under a group G of transformations of T. Then a necessary and
sufficient condition 1.or the power function of a test I/I(t) to be invariant under
the induced group Gover 0 is that I/I(t) is almost invariant under G.

Proof. For all 8 E 0 we have Eg,I/I(T) = E,I/I(gT). If 1/1 is almost
invariant, E,I/I(T) = E,I/I(gT) and hence Eg,I/I(T) = E,I/I(T), so that the
power function of 1/1 is invariant. Conversely, if E,I/I(T) = Eg,I/I(T), then
E,I/I(T) = E,I/I(gT), and it follows from the bounded completeness of [pT

that "'(gt) = "'(t) a.e, gJT.

As a consequence, it is seen that UMP almost invariant tests also possess
the following optimum property.

Theorem S. Under the assumptions of Lemma 2, let v(8) be maximal
invariant with respect to G, and suppose that among the tests of H based on
the sufficient statistic T there exists a UMP almost invariant one, say 1/10(1).
Then 1/10(1) is UMP in the class of all tests based on the original observations
X, whose power function depends only on v( 8) .

Proof. Let ep(x) be any such test, and let I/I(t) = E[ep(X)lt]. The
power function of I/I(t), being identical with that of ep(x), depends then
only on v( 8), and hence is invariant under G. It follows from Lemma 2 that
I/I(t) is almost invariant under G, and 1/10(1) is uniformly at least as
powerful as I/I(t) and therefore as ep(x).

Exampk 10. For the hypothesis3:"S a2 concerning the variances of two
normal distributions, the statistics (X, Y,sl, s~) constitute a complete set of
sufficient statistics. It was shown in Example 6 that there exists a UMP invariant
test with respect to a suitable group G, which has rejection region sUsl> Co.
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Since in the present case almost invariance of a test with respect to G implies that it
is equivalent to an invariant one (Problem 12), Theorem 5 is applicable with
v(O) = A = T

2/ a2, and the test is therefore UMP among all tests whose power
function depends only on A.

Theorem 4 makes it possible to establish a simple condition under which
reduction to sufficiency before the application of invariance is legitimate.

Theorem 6. Let X be distributed according to Po, 8 E ~, and let T be
sufficient for 8. Suppose G leaves invariant the problem of testing H : 8 E ~H

and that T satisfies

T(x 1 ) = T(X2) implies T(gx 1 ) = T(gx 2 ) for all g E G,

so that G induces a group Gof transformations of T-space through

gT(x) = T(gx) .

(i) If cp(x) is any invariant test of H, there exists an almost invariant test
0/ based on T, which has the same power function as !po

(ii) If in addition the assumptions of Theorem 4 are satisfied, the test 0/
of (i) can be taken to be invariant.

(iii) If there exists a test %(T) which is UMP among all G-invariant
tests based on T, then under the assumptions of (ii), % is also UMP among
all G-invariant tests based on X.

This theorem justifies the derivation of the UMP invariant tests of
Examples 5 and 6.

Proof. (i): Let o/(t) = E[cp(X)lt]. Then 0/ has the same power function
as cpo To complete the proof, it suffices to show that o/(t) is almost
invariant, i.e. that

0/ (gt) = 0/ (t )

It follows from (1) that

(a.e. (JJT).

Eo[cp(gX)lgt] = Ego[cp(X)lt] (a.e . po).

Since T is sufficient, both sides of this equation are independent of 8.
Furthermore cp(gx) = !p(x) for all x and g, and this completes the proof.
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Part (ii) follows immediately from (i) and Theorem 4, and part (iii) from
(ii),

6. UNBIASEDNESS AND INVARIANCE

The principles of unbiasedness and invariance complement each other in
that each is successful in cases where the other is not. For example, there
exist UMP unbiased tests for the comparison of two binomial or Poisson
distributions, problems to which invariance considerations are not applica­
ble. UMP unbiased tests also exist for testing the hypothesis (1 = (10 against
(1 <1= (10 in a normal distribution, while invariance does not reduce this
problem sufficiently far. Conversely, there exist UMP invariant tests of
hypotheses specifying the values of more than one parameter (to be consid­
ered in Chapter 7) but for which the class of unbiased tests has no UMP
member. There are also hypotheses, for example the one-sided hypothesis
g/(1 ~ 00 in a univariate normal distribution or P ~ Po in a bivariate one
(Problem 10) with 00' Po <1= 0, where a UMP invariant test exists but the
existence of a UMP unbiased test does not follow by the methods of
Chapter 5 and is an open question.

On the other hand, to some problems both principles have been applied
successfully. These include Student's hypotheses gs go and g= go concern­
ing the mean of a normal distribution, and the corresponding two-sample
problems ." - g~ do and ." - g= do when the variances of the two
samples are assumed equal. Other examples are the one-sided hypotheses
0'2 ~ oJ and T 2/ o2 ~ ~o concerning the variances of one or two normal
distributions. The hypothesis of independence p = 0 in a bivariate normal
distribution is still another case in point (Problem 10). In all these examples
the two optimum procedures coincide. We shall now show that this is not
accidental but is the case whenever the UMP invariant test is UMP also
among all almost invariant tests and the UMP unbiased test is unique. In
this sense, the principles of unbiasedness and of almost invariance are
consistent.

Theorem 7. Suppose that for a given testing problem there exists a UMP
unbiased test 4>* which is unique (up to sets of measure zero), and that there
also exists a UMP almost invariant test with respect to some group G. Then
the latter is also unique (up to sets ofmeasure zero), and the two tests coincide
a.e.

Proof. If U( a) is the class of unbiased level-a tests, and if g E G, then
4> E U( a) if and only if 4>g E U( a).t Denoting the power function of the

t<l>g denotes the critical function which assigns to x the value .p(gx).



6.6] UNBIASEDNESSAND INVARIANCE 303

test 4> by f3.p ( fJ), we thus have

f3.p.g(fJ) = f3.p.(gfJ) = sup f3.p(gfJ) = sup f3.pg(fJ)
<j>E U(a) <j>E U(a)

= sup f3.pg(fJ) = f3.p.(fJ) .
<j>gEU(a)

It follows that 4>* and 4>*g have the same power function, and, because of
the uniqueness assumption, that 4>* is almost invariant. Therefore, if 4>' is
UMP almost invariant, we have f3.p,(fJ) ~ f3.p.(fJ) for all fJ. On the other
hand, CP' is unbiased, as is seen by comparing it with the invariant test
CP(x) == a, and hence {3.p,(fJ) ~ {3.p.(fJ) for all B, Since cJI and CP* therefore
have the same power function, they are equal a.e. because of the uniqueness
of 4>*, as was to be proved.

This theorem provides an alternative derivation for some of the tests of
Chapter 5. In Theorem 3 of Chapter 4, the existence of UMP unbiased tests
was established for one- and two-sided hypotheses concerning the parame­
ter fJ of the exponential family (10) of Chapter 4. For this family, the
statistics (U, T) are sufficient and complete, and in terms of these statistics
the UMP unbiased test is therefore unique. Convenient explicit expressions
for some of these tests, which were derived in Chapter 5, can instead be
obtained by noting that when a UMP almost invariant test exists, the same
test by Theorem 7 must also be UMP unbiased. This proves for example
that the tests of Examples 5 and 6 of the present chapter are UMP
unbiased.

The principles of unbiasedness and invariance can be used to supplement
each other in cases where neither principle alone leads to a solution but
where they do so when applied in conjunction. As an example consider a
sample XI"'" Xn from N(~, oZ) and the problem of testing H: VA = fJo
=I: 0 against the two-sided alternatives that ~/o =;:. fJo' Here sufficiency
and invariance reduce the problem to the consideration of t = Inxl
Vr.(X i - x) ZI (n - 1) . The distribution of this statist ic is the noncen tral

r-distribution with noncentrality parameter ~ = In~/o and n - 1 degrees
of freedom . For varying ~, the family of these distributions can be shown to
be STPoo [Karlin (1968, pp. 118-119; see Chapter 3, Problem 27] and hence
in particular STP3• It follows by Problem 29 of Chapter 3 that among all
tests of H based on I , there exists a UMP unbiased one with acceptance
region CI .s I s Cz, where CI , Cz are determined by the conditions

P6" { CI ~ I s Cz} = 1 - a and
ap6 { CI ~ I ~ Cz} I = o.

a~ 6=6 0
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In terms of the original observations, this test then has the property of being
UMP among all tests that are unbiased and invariant. Whether it is also
UMP unbiased without the restriction to invariant tests is an open problem.

An analogous example occurs in the testing of the hypotheses H: P = Po
and H' : Pl ;:5; P ;:5; P2 against two-sided alternatives on the basis of a sample
from a bivariate normal distribution with correlation coefficient p. (The
testing of P ;:5; Po against P > Po is treated in Problem 10.) The distribution
of the sample correlation coefficienthas not only monotone likelihood ratio
as shown in Problem 10, but is in fact STPoo [Karlin (1968, Section 3.4)].
Hence there exist tests of both Hand H I which are UMP among all tests
that are both invariant and unbiased.

Another case in which the combination of invariance and unbiasedness
appears to offer a promising approach is the Behrens-Fisher problem. Let
Xl"'" Xm and Yl , .. . , Yn be samples from normal distributions Na, ( 2

)

and N(1J, 7"2) respectively. The problem is that of testing H : 1J;:5; ~ (or
1J = ~) without assuming equality of the variances a 2 and '1"2. A set of
sufficient statistics for a, 1J, a, '1") is then (X,Y, S;, S~), where S; = E(X;
- ~)2/("!.. - 1) and S~ = E(lj - ~/ILn - 1). Adding the same constant
to X and Y reduces the problem to Y - X, S;, S~, and multi lication of all
variables by a common positive constant to (Y - X)j S; + S~ and sUS;.
One would expect any reasonable invariant rejection region to be of the
form

(15) Y - X > (S~)
- g s;

for some suitable function g. If this test is also to be unbiased, the
probability of (15) must equal a when 1J = ~ for all values of 7"/o, It has
been shown by Linnik and others that only pathological functions g with
this property can exist. [This work is reviewed by Pfanzagl (1974).] How­
ever, approximate solutions are available which provide tests that are
satisfactory for all practical purposes. These are the Welch approximate
r-solution described in Chapter 5, Section 4, and the Welch-Aspin test. Both
are discussed, and evaluated, in Scheffe (1970) and Wang (1971); see also
Chernoff (1949), Wallace (1958), and Davenport and Webster (1975).

The property of a test <Pl being UMP invariant is relative to a particular
group Gl , and does not exclude the possibility that there might exist another
test <P2 which is UMP invariant with respect to a different group G2• Simple
instances can be obtained from Examples 8 and 11.

Example 8. (continued). If G1 is the group G of Example 8, a UMP invariant
test of H : () :5: ()() against () > ()o rejects when Y1 + .. . + Y" > C. Let G2 be the
group obtained by interchanging the role of Z and Y1• Then a UMP invariant test
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with respect to G2 rejects when Z + Y2 + . . . + Yn > C. Analogous UMP invariant
tests are obtained by interchanging the role of Z and anyone of the other Y's, and
further examples by applying the transformations of G in Example 8 to more than
one variable. In particular, if it is applied independently to all n + 1 variables, only
the constants remain invariant, and the test cf> == a is UMP invariant.

Example 11.* For another example, let (Xli' Xu) and (X21' X22) be indepen­
dent and have bivariate normal distributions with zero means and covariance
matrices

(

0 2

PO:02
POI02)

a} (
Aor

and ApOI 0 2

AP O
I 0 2 ) .

Ao}

Suppose that these matrices are nonsingular, or equivalently that Ipi '" 1, but that
ai' O2, P, and A are otherwise unknown. The problem of testing A = 1 against
A > 1 remains invariant under the group GI of all nonsingular transformations

X/I = bX;1

X/2 = alX;1 + a2X;2'
(a2,b>O) .

Since the probability is 0 that Xli Xn = Xu X21' the 2 X 2 matrix (X;j) is nonsingu­
lar with probability 1, and the sample space can therefore be restricted to be the set
of all nonsingular such matrices. A maximal invariant under the subgroup corre­
sponding to b = 1 is the pair (Xli' X21). The argument of Example 6 then shows
that there exists a UMP invariant test under GI which rejects when xii/xli > C.

By interchanging 1 and 2 in the second subscript of the X's one sees that under
the corresponding group G2 the UMP invariant test rejects when Xi2/xl2 > c.

A third group leaving the problem invariant is the smallest group containing both
G1 and G2 , namely the group G of all common nonsingular transformations

XfJ = ail X;I + au X;2

X;'2 = °21 X;. + 022 X;2 '
(i = 1,2) .

Given any two nonsingular sample points Z = (X;) and Z' = (X/j ) , there exists a
nonsingular linear transformation A such that Z' = AZ. There are therefore no
invariants under G, and the only invariant size-a test is cf> == a . It follows vacuously
that this is UMP invariant under G.

7. ADMISSIBILITY

Any UMP unbiased test has the important property of admissibility (Prob­
lem 1 of Chapter 4), in the sense that there cannot exist another test which
is uniformly at least as powerful and against some alternatives actually more
powerful than the given one. The corresponding property does not neces­
sarily hold for UMP invariant tests, as is shown by the following example.

"Due 10 Charles Stein,
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Example 11. (contiluud). Under the assumptions of Example11 it was seen that
the UMP invariant test under G is the test cP == a which has power fJ(A) == a . On
the other hand, Xu and X21 are independently distributed as N(O, or) and
N(O, Aol). On the basis of these observations there exists a UMP test for testing
A = 1 against A > 1 with rejection region xii/xli> C (Chapter 3 Problem 38).
The power function of this test is strictly increasing in A and hence > a for all
A>l.

Admissibility of optimum invariant tests therefore cannot be taken for
granted but must be established separately for each case.

We shall distinguish two slightly different concepts of admissibility. A
test 'Po will be called a-admissible for testing H : 0 E S2 H against a class of
alternatives 0 E S2' if for any other level-a test 'P

(16) E/l'P(X) ~ E/l'Po(X) for all 0 E S2'

implies E/l'P( X) = E/l'Po( X) for all 0 E S2'. This definition takes no account
of the relationship of E/l'P( X) and E/l'Po( X) for 0 E S2H beyond the
requirement that both tests are of level a. A concept closer to the
decision-theoretic notion of admissibility discussed in Chapter 1, Section 8,
defines 'Po to be d-admissible for testing H against S2' if (16) and

(17) E/l'P( X) s E/l'Po( X) for all 0 E S2 H

jointly imply E/l'P(X) = E/l'Po(X) for all 0 E S2 H U S2' (see Problem 20).
Any level-a test 'Po that is a-admissible is also d-admissible provided no

other test 'P exists with E/l'P( X) = E/l'Po( X) for all 0 E ~, but E/l'P( X) *
E/l'Po(X) for some 0 E S2 H • That the converse does not hold is shown by the
following example.

Example 12 Let X be normally distributed with mean ~ and known variance
0

2
. For testing H : ~ S -1 or ~ 1 against 0' : ~ = 0, there exists a level-a test CPo,

which rejects when CI S X S C2 and accepts otherwise, such that (Problem 21)

and

E(cpo(X) S E(__ ICPo(X) = a

E(cpo( X) S E(_ + I CPo ( X) = a' < a

for ~ S -1

for ~ ~ +1.

A slight modification of the proof of Theorem 6 of Chapter 3 shows that CPo is the
unique test maximizing the power at ~ = 0 subject to

E(cp(X) s a for ~ S -1 and E(cp(X) S a' for ~ ~ 1,

and hence that CPo is d-admissible.
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On the other hand, the test cP with rejection region IXI ~ C, where E€_-ICP(X)
= E€ _ICP(X) = a, is the unique test maximizing the power at ~ = 0 subject to
E€cp( X) s a for ~ s -1 or ~ I, and hence is more powerful against Q' than CPo ,
so that CPo is not a-admissible.

A test that is admissible under either definition against U' is also
admissible against any U" containing U' and hence in particular against the
class of all alternatives UK = U - UH' The terms a- and d-admissible
without qualification will be reserved for admissibility against UK' Unless a
UMP test exists, any a-admissible test will be admissible against some
U' c UK and inadmissible against others. Both the strength of an admissi­
bility result and the method of proof will depend on the set U'.

Consider in particular the admissibility of a UMP unbiased test men­
tioned at the beginning of the section. This does not rule out the existence of
a test with greater power for all alternatives of practical importance and
smaller power only for alternatives so close to H that the value of the power
there is immaterial. In the present section, we shall discuss two methods for
proving admissibility against various classes of alternatives.

Theorem 8. Let X be distributed according to an exponential family with
density

Po(x) = c(o)exp ( t Oj1j(x))
J=l

with respect to a a-finite measure p. over a Euclidean sample space (,q[ , JII) ,
and let U be the natural parameter space of this family. Let UH and U, be
disjoint nonempty subsets of U, and suppose that CPo is a test of H: 0 E UH

based on T = (TI , ••. , T,) with acceptance region Ao which is a closed convex
subset of RS possessing the following property: If Ao II {La;!; > c} is empty
for some c, there exists a point O· E U and a sequence An ~ 00 such that
O· + Ana E U' [where An is a scalar and a = (a l , ... , as)]' Then if A is any
other acceptance region for H satisfying

Po(X E A) s po(X E Ao) for all 0 E U',

A is contained in Ao, except for a subset of measure 0, i.e. p.(A II 10 ) = o.
Proof. Suppose to the contrary that p.(A II 10) > O. Then it follows

from the closure and convexity of Ao that there exist a E R S and a real
number c such that

(18) Ao II {t: La;t; > c} is empty
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(19) A () {t: La;t; > c} has positive p-measure,

that is, the set A protrudes in some direction from the convex set Ao. We
shall show that this fact and the exponential nature of the densities imply
that

(20) P9(A) > P9(Ao) for some 0 E ~',

which provides the required contradiction. Let CPo and cP denote the
indicators of 10 and A respectively, so that (20) is equivalent to

j [CPo ( t) - cP ( t )] dPq( r) > 0

If 0 = 0* + Ana E ~', the left side becomes

for some 0 E ~'.

C(lJ*+ Ana) ec)... j[cpo(t) _ cp(t)]e A.(Ea;';-C)dP
9.(t).

Let this integral be I: + r;, where I: and r; denote the contributions
over the regions of integration {t : Ea;t; > c} and {t : Ea;t; s c} respec­
tively. Since I;; is bounded, it is enough to show that I: --. 00 as n --. 00.

By (18), fPo(t) = 1 and hence CPo(t) - cp(t) ~ 0 when 'La;!; > C, and by (19)

p { CPo (r) - fP ( r) > 0 and La;t; > c} > o.

This shows that I: --. 00 as An --. 00 and therefore completes the proof.

Corollary 2. Under the assumptions of Theorem 8, the test with accep­
tance region A 0 is d-admissible. If its size is a and thereexists a finite point 00

in the closure nH of ~H for which E9oCPo( X) = a , then CPo is also a-admissi­
ble.

Proof,

(i) Suppose cP satisfies (16). Then by Theorem 8, CPo(x) ~ cp(x) (a.e.
p). If CPo(x) < cp(x) on a set of positive measure , then E9cpo( X ) <
E9CP ( X) for all 0 and hence (17) cannot hold .

(ii) By the argument of part (i), (16) implies a = E9oCPo( X) < E9ocp( X),
and hence by the continuity of E9CP ( X) there exists a point 0 E ~H

for which a < E9CP ( X) . Thus cP is not a level-a test.
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Theorem 8 and the corollary easily extend to the case where the competi­
tors q> of q>o are permitted to be randomized, but the assumption that q>o is
nonrandomized is essential. Thus, the main applications of these results are
to the case that JL is absolutely continuous with respect to Lebesgue
measure. The boundary of Ao will then typically have measure zero, so that
the closure requirement for Ao can be dropped.

Example 13. Normal mean. If Xl" ' " X; is a sample from the nognal distribu­
tion Na, (12), the family of distributions is exponential with T1 = X, T2 = EX?,
8\ = n~/02, 82 = -1/20

2
. Consider first the one-sided problem H: 8\ s 0, K: 8\

> 0 with a < ! . Then the acceptance region of the r-test is A: T\/ [!; s C
(C > 0), which is convex [Problem 22(i)]. The alternatives 8 E 0' c K will satisfy
the conditions of Theorem 8 if for any half plane 0\ t1 + 02 t2 > C that does not
intersect the set t1 .:;;; C..;t; there exists a ray (8( + A01, 8; + A02) in the direction
of the vector (0\ , a 2) for which (8( + A01, 8; + Aa 2) E 0' for all sufficiently large
A. In the present case, this condition must hold for all 0 \ > 0 > 02 ' Examples of
sets 0' satisfying this requirement (and against which the r-test is therefore
admissible) are

~
0i : 8\ > k1 or 2 > k;(1

and

0" 8\ ~
2' ";-8 > k 2 or - > k'2 0 2 '

On the other hand , the condition is not satisfied for 0' : ~ > k (Problem 22).
Analogously , the acceptance region A: T1

2 .:;;; CT2 of the two-sided r-test for
testing H: 01 = 0 against 0\ ,;: 0 is convex, and the test is admissible against
12; : 1~/(121 > k , and 12; : I~/ol > k 2 •

In decision theory, a quite general method for proving admissibility
consists in exhibiting a procedure as a unique Bayes solution. In the present
case, this is justified by the following result, which is closely related to
Theorem 7 of Chapter 3.

Theorem 9. Suppose the set {x: fo( x) > O} is independent of 0, and let
a a-field be defined over the parameter space 0, containing both 0 Hand OK
and such that the densities fo(x) (with respect to JL) of X are jointly
measurable in 0 and x. Let Ao and Al be probability distributions over this
a-field with AO(OH) = AI(OK) = 1, and let

h;(x) = !fo(x) dA ;(O) .



310 INVARIANCE [6.7

Suppose 'Po is a nonrandomized test of H against K defined by

'Po(X) = {6 h1(x) >; k
if ho(x) <':: ,

and that J.L{x: h1(x)/ho(x) = k} = 0.
(i) Then 'Po is d-admissible for testing H against K.

(ii) Let sUPOHEg'PO(X)=a and w= {O:Eg'Po(X)=a}. If wcOH
and A o(w) = 1, then 'Po is also a-admissible.

(iii) If A1 assigns probability 1 to 0' c OK' the conclusions of (i) and (ii)
apply with 0' in place of OK'

Proof. (i): Suppose 'P is any other test, satisfying (16) and (17) with
0' = OK' Then also

j Eg'P(X) dAo(O) s j Eg'Po(X) dAo(O)

and

j Eg'P(X) dA1(O) ~ j Eg'Po(X) dA1(O).

By the argument of Theorem 7 of Chapter 3, these inequalities are equiv­
alent to

f'P(x)ho(x) dJ.L(x) s f'Po(x)ho(x) dJ.L(x)

and

j'P(x)h1(x) dJ.L(x) ~ j'Po(x)h1(x) dJ.L(x),

and the h;(x) (i = 0,1) are probability densities with respect to J.L . This
contradicts the uniqueness of the most powerful test of ho against h1 at
level j'Po(x)ho(x) dJ.L(x).

(ii): By assumption, jEg'Po(x)dAo(O) = a, so that 'Po is a level-a test of
ho. If 'P is any other level-a test of H satisfying (16) with 0' = OK' it is also
a level-a test of ho and the argument of part (i) can be applied as before.

(iii) : This follows immediately from the proofs of (i) and (ii).

Example 13. (continued). In the two-sided normal problem of Example 13 with
H : ~ = 0, K : ~ :;: 0 consider the class g~. b of alternatives a,a) satisfying

(21)
1

2 - -2'a - a + "1
b'IJ

~= --2 '
a+'IJ

-00<"1<00
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for some fixed a, b > 0, and the subset CAl of o.H of points (0, ( 2 ) with a2 < 1/a .
Let Ao, Al be distributions over CAl and o.~,h defined by the densities [Problem
23(i)]

Co
AO(Tj) = (a + Tj2r/2

and

AI(Tj) = Cl e ( n / 2)hV / ( a + 'l 2 )

(a + Tj2r/2

Straightforward calculation then shows [Problem 23(ii)] that the densities ho and hi
of Theorem 9 become

- (a / 2)L X;Coe
ho(x) = {Lx?

and

clexP(-~LX?+ b
2(LX;)2)

2 2Lx?
,hl(x) = VLX?

so that the Bayes test 'Po of Theorem 9 rejects when :x 2lEx? > k and hence
reduces to the two-sided r-test,

The condition of part (ii) of the theorem is clearly satisfied so that the r-test is
both d- and a-admissible against o.~ , b:

When dealing with invariant tests, it is of particular interest to consider admissi­
bility against invariant classes of alternatives. In the case of the two-sided test 'Po,
this means sets 0.' depending only on 1~/al. It was seen in Example 13 that 'Po is
admissible against 0.' : 1~/al ~ B for any B, that is, against distant alternatives, and
it follows from the test being UMP unbiased or from Example 13 (continued) that
'Po is admissible against 0.' : 1~/al s A for any A > 0, that is, against alternatives
close to H. This leaves open the question whether 'Po is admissible against sets
0.' : 0 < A < 1~/al < B < 00 , which include neither nearby nor distant alternatives.
It was in fact shown by Lehmann and Stein (1953) that 'Po is admissible for testing
H against 1~lla = 8 for any 8 > 0 and hence that it is admissible against any
invariant 0.'. It was also shown there that the one-sided r-test of H : ~ = 0 is
admissible against Va = 8' for any 8' > O. These results will not be proved here.
The proof is based on assigning to log a the uniform density on (- N, N) and
letting N -> 00, thereby approximating the " improper" prior distribution which
assigns to log a the uniform distribution on ( - 00, 00), that is, Lebesgue measure.

That the one-sided r-test 'PI of H: ~ < 0 is not admissible against all 0.' is
shown by Brown and Sackrowitz (1984), who exhibit a test 'P satisfying

E( , o'P( X) < E( , o'Pl (X) for all ~ < 0, 0 < a < 00
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and

E~ .ocp(X) > E~.oCPI(X)
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for all 0 < ~I < ~ < ~2 < 00, 0 < 0 < 00 .

[6.7

Example 14. Normal variance. For testing the variance 0 2 of a normal distribu­
tion on the basis of a sample XI" ' " Xn from N(~, ( 2

) , the Bayes approach of
Theorem 9 easily proves a-admissibility of the standard test against any location
invariant set of alternatives 0', that is, any set 0' depending only on 0 2. Consider
first the one-sided hypothesis H : 0 ~ 00 and the alternatives 0' : 0 = 0 1 for any
0 1 > 00 , Admissibility of the UMP invariant (and unbiased) rejection region E( X; ­
X)2 > C follows immediately from Chapter 3, Section 9, where it was shown that
this test is Bayes for a pair of prior distributions (A o, AI): namely, Al assigning
probability 1 to any point (~I' ( 1), and A o putting 0 = 00 and assigning to ~ the
normal distribution N(~I,(of - oJ)/n). Admissibility of E(X; - X)2 ~ C when
the hypothesis is H : 0 ~ 00 and 0' = (a, 0) : 0 = od, 0 1 < 00' is seen by inter­
changing s, and AI' 00 and 0 1,

A similar approach proves a-admissibility of any size-a rejection region

(22) '" - 2c:(X; - X) s CI or ~ C2

for testing H : 0 = 00 against 0' : {0 = od U {o = 02} (01 < 00 < ( 2 ) , On 0/1,
where the only variable is ~, the distribution Ao for ~ can be taken as the normal
distribution with an arbitrary mean ~I and variance (of - oJ )/n. On 0' , let the
conditional distribution of ~ given 0 = O2 assign probability 1 to the value ~I' and
let the conditional distribution of ~ given 0 = 0 1 be Nal' (of - of )/n). Finally,
let AI assign probabilities p and 1 - p to 0 = 0 1 and 0 = O2, respectively. Then
the rejection region satisfies (22), and any constants C1 and C2 for which the test
has size a can be attained by proper choice of p [Problem 24(i)].

The results of Examples 13 and 14 can be used as the basis for proving
admissibility results in many other situations involving normal distributions.
The main new difficulty tends to be the presence of additional (nuisance)
means. These can often be eliminated by use of the following lemma.

Lemma 3. For any given 0
2 and M 2 > 0

2 there exists a distribution A a

such that

1
I(z) = j __ e-<1/2a2xz - n2dA (0

~o a

is the normal density with mean zero and variance M 2.

Proof. Let () = rio, and let () be normally distributed with zero mean
and variance ,.2. Then it is seen [Problem 24(ii)] that

1 [ 1 ]I ( z) = exp - z 2
~0{l+7i 20 2(1 + ,.2) .
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The result now follows by letting 7'2 = (M 2/ (J2 ) - 1, so that (J2(1 + 7'2) =
M 2

•

Example 15. Let Xl' .. . ' Xm ; YI, ... , y" be samples from N( t (2 ) and N( 1/,7'2)
respectively, and consider the problem of testing H: 7'/0 = 1 against 7'/0 = tJ. > l.

(i) Suppose first that ~ = 1/ = O. If Ao and Al assign probability 1 to the
points (00 , 7'0 = 00) and (01, 7'1 = tJ.0I ) respectively, the ratio hl/ho of Theorem 9 is
proportional to

exp{ - ~ [(_1 _~) [~2 - (~ - ~) [ xl]},
2 tJ.20f 05 J 05 Of

and for suitable choice of critical value and 0 1 < 00 ' the rejection region of the
Bayes test reduces to

[~2 tJ.20f - 05
__J_ >
[xl 05- Of

The values 05 and of can then be chosep ~ give this test ~y preassigned size:....a .
(ii) If ~ and 1/ are unknown. then X, Y, sI = E( X; - X)2, s~ = E( lJ - y)2

are sufficient statistics, and sI and s~ can be represented as S; = E~lIU? ,
S~ = Ej:: J'?,with the U;, Jj independent normal with means 0 and variances 0 2

and 7'2 respectively.
To a and 7' assign the distributions Ao and Al of part (i) and conditionally,

given a and 7', let ~ and 1/ be independently distributed according to Aoa, AOT over
nil and Ala, Ah over nK , with these four conditional distributions determined
from Lemma 3 in such a way that

J im - Jim -__ e -<m/ 2a5)( X- n2 dA (~) = __ e-(m/ 2at )( x- n2 dA (")
~ Oao ~ Oa, .. ,
VL.~ VL.~

and analogously for 1/. This is possible by choosing the constant M 2 of Lemma 3
greater than both 05 and or With this choice of priors, the contribution from x
and y to the ratio hl /h o of Theorem 9 disappears, so that hl/ho reduces to the
expression for this ratio in part (i), with EX;2 and Eyf replaced by E(x; - X)2 and
E(y, - y)2 respectively.

This approach applies quite generally in normal problems with nuisance
means, provided the prior distribution of the variances (J2, 7'2, •• • assigns
probability 1 to a bounded set, so that M 2 can be chosen to exceed all
possible values of these variances.

Admissibility questions have been considered not only for tests but
also for confidence sets. These will not be treated here (but see Chap­
ter 9, Example 10); a convenient entry to the literature is Cohen and
Strawderman (1973). For additional results, see Hooper (1982b) and Arnold
(1984).
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8. RANK TESTS

[6.8

One of the basic problems of statistics is the two-sample problem of testing
the equality of two distributions. A typical example is the comparison of a
treatment with a control, where the hypothesis of no treatment effect is
tested against the alternatives of a beneficial effect. This was considered in
Chapter 5 under the assumption of normality, and the appropriate test was
seen to be based on Student's I. It was also shown that when approximate
normality is suspected but the assumption cannot be trusted, one is led to
replacing the r-test by its permutation analogue, which in tum can be
approximated by the original r-test.

We shall consider the same problem below without, at least for the
moment, making any assumptions concerning even the approximate form of
the underlying distributions, assuming only that they are continuous. The
observations then consist of samples Xl"'" Xm and YI , .• • , Yn from two
distributions with continuous cumulative distribution functions F and G,
and the problem becomes that of testing the hypothesis

HI: G = F.

If the treatment effect is assumed to be additive, the alternatives are
G(y) = F(y - d). We shall here consider the more general possibility that
the size of the effect may depend on the value of y (so that d becomes a
nonnegative function of y) and therefore test HI against the one-sided
alternatives that the Y's are stochastically larger than the X 's,

K I : G(z) s F( z ) for all z, and G =P F.

An alternative experiment that can be performed to test the effect of a
treatment consists of the comparison of N pairs of subjects, which have
been matched so as to eliminate as far as possible any differences not due to
the treatment. One member of each pair is chosen at random to receive the
treatment while the other serves as control. If the normality assumption of
Chapter 5, Section 12, is dropped and the pairs of subjects can be consid­
ered to constitute a sample, the observations (Xl' YI ) , • • • , (XN , YN ) are a
sample from a continuous bivariate distribution F. The hypothesis of no
effect is then equivalent to the assumption that F is symmetric with respect
to the line y = x:

H2 : F(x, y) = F(y, x).

Another basic problem, which occurs in many different contexts, con­
cerns the dependence or independence of two variables. In particular, if
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( XI' YI), ... , (XN' YN) is a sample from a bivariate distribution F, one will
be interested in the hypothesis

H) : F(x, y) = GI(x )G2(y)

that X and Yare independent, which was considered for normal distribu­
tions in Section 15 of Chapter 5. The alternatives of interest may, for
example, be that X and Yare positively dependent. An alternative formula­
tion results when x, instead of being random, can be selected for the
experiment. If the chosen values are Xl < . .. < X Nand F; denotes the
distribution of Y given X i' the Y's are independently distributed with
continuous cumulative distribution functions FI , . '0' FNo The hypothesis of
independence of Y from X becomes

H4 : FI = . . . = FN ,

while under the alternatives of positive regression dependence the variables
1'; are stochastically increasing with i .

In these and other similar problems, invariance reduces the data so
completely that the actual values of the observations are discarded and only
certain order relations between different groups of variables are retained. It
is nevertheless possible on this basis to test the various hypotheses in
question, and the result ing tests frequently are nearly as powerful as the
standard normal tests. We shall now carry out this reduction for the four
problems above.

The two-sample problem of testing HI against K I remains invariant
under the group G of all transformations

X; = p(x;), Yj = p(Y) (i=l, .. . ,m, j=l , ... , n )

such that p is continuous and strictly increasing. This follows from the fact
that these transformations preserve both the continuity of a distribution and
the property of two variables being either identically distributed or one
being stochastically larger than the other. As was seen (with a different
notation) in Example 3, a maximal invariant under G is the set of ranks

(R'; S') = (R 1,... , R'",; S{, . .. , S:)

of XI" ' " Xm ; YI, , Yn in the combined sample. Since the distribution of
(R1,... , R'",; S{, , S:) is symmetric in the first m and in the last n
variables for all distributions F and G, a set of sufficient statistics for
(R', S') is the set of the X-ranks and that of the Y-ranks without regard to
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the subscripts of the X's and Y's. This can be represented by the ordered
X-ranks and Y-ranks

R1 < . .. < Rm and Sl < .. . < Sn'

and therefore by one of these sets alone since each of them determines the
other. Any invariant test is thus a rank test, that is, it depends only on the
ranks of the observations, for example on (Sl" '" Sn)'

That almost invariant tests are equivalent to invariant ones in the present
context was shown first by Bell (1964). A streamlined and generalized
version of his approach is given by Berk and Bickel (1968) and Berk (1970),
who also show that the conclusion of Theorem 6 remains valid in this case.

To obtain a similar reduction for H2, it is convenient first to make the
transformation Z; = Y; - X;, JV; = X;+ Y;. The pairs of variables (Z;, JV;)
are then again a sample from a continuous bivariate distribution. Under the
hypothesis this distribution is symmetric with respect to the w-axis, while
under the alternatives the distribution is shifted in the direction of the
positive z-axis. The problem is unchanged if all the w's are subjected to the
same transformation w: = A(W;), where A is 1: 1 and has at most a finite
number of discontinuities, and (Z1" '" ZN) constitutes a maximal invariant
under this group. [Cf. Problem 2(ii).)

The Z's are a sample from a continuous univariate distribution D, for
which the hypothesis of symmetry with respect to the origin,

H5. : D(z) + D(-z) = 1 for all z,

is to be tested against the alternatives that the distribution is shifted toward
positive a-values. This problem is invariant under the group G of all
transformations

Z: = p(z;) (i = 1, . . . , N)

such that p is continuous, odd, and strictly increasing. If Z; , . . . , z; < 0 <
1 m

Zit' . .• , Zj. where i1 < .. . < t; and i, < .. . < i: let sl " ' " s~ denote
the ranks of zit' . . . , Zj. among the absolute values IZ11, . . . , IzNI, and r{, . . . , r;
the ranks of Iz; I, .. . , Iz; I among IZ11, . . · , IZNI. The transformations p

1 '"
preserve the sign of each observation, and hence in particular also the
numbers m and n. Since p is a continuous, strictly increasing function of
[z], it leaves the order of the absolute values invariant and therefore the
ranks r;' and sj. To see that the latter are maximal invariant, let (Z1" '" ZN)

and (zl" ' " zJv) be two sets of points with m' = m, n' = n, and the same r;'
and sj. There exists a continuous , strictly increasing function on the positive
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real axis such that Iz[l = P(lzil) and p(O) = O. If p is defined for negative z
by p( - z) = - p(z), it belongs to G and z; = p(z;) for all i, as was to be
proved. As in the preceding problem, sufficiency permits the further reduc­
tion to the ordered ranks rl < ... < rm and SI < . . . < s; This retains
the information for the rank of each absolute value whether it belongs to a
positive or negative observation, but not with which positive or negative
observation it is associated.

The situation is very similar for the hypotheses H3 and H4 • The problem
of testing for independence in a bivariate distribution against the alterna­
tives of positive dependence is unchanged if the Xi and 1'; are subjected to
transformations X/ = p(Xi ) , 1';' = A(1';) such that p and A are continuous
and strictly increasing. This leaves as maximal invariant the ranks
(Ri, ... , RN) of (Xl"'" XN) among the X's and the ranks (S{, . .. , Sf.) of
(YI,. .. , YN) among the Y's. The distribution of (Ri, S{), . .. ,(RN,Sf.) is
symmetric in these N pairs for all distributions of (X, Y). It follows that a
sufficient statistic is (SI"' " SN) where (1, SI)" ' " (N, SN) is a permutation
of (Ri, S{), . . . , (RN,Sf.) and where therefore S, is the rank of the variable
Y associated with the ith smallest X.

The hypothesis H4 that YI , •• • , Yn constitutes a sample is to be tested
against the alternatives K 4 that the 1'; are stochastically increasing with i.
This problem is invariant under the group of transformations y[ = p(y;)
where p is continuous and strictly increasing. A maximal invariant under
this group is the set of ranks SI" '" SN of YI, · .. , YN.

Some invariant tests of the hypotheses HI and H 2 will be considered in
the next two sections. Corresponding results concerning H 3 and H4 are
given in Problems 46-48.

9. THE lWO-SAMPLE PROBLEM

The problem of testing the two-sample hypothesis H: G = F against the
one-sided alternatives K that the Y's are stochastically larger than the X 's
is reduced by the principle of invariance to the consideration of tests based
on the ranks SI < . .. < S; of the Y's. The specification of the S, is
equivalent to specifying for each of the N = m + n positions within the
combined sample (the smallest, the next smallest, etc.) whether it is occupied
by an x or a y . Since for any set of observations n of the N positions are
occupied by y's and since the (~) possible assignments of n positions to
the y's are all equally likely when G = F, the joint distribution of the S,
under H is

(23) P{SI=SI"",Sn=Sn} =1j(~)
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for each set 1 s SI < S2 < .. . < Sn .:::;; N. Any rank test of H of size

a = k/(~)

therefore has a rejection region consisting of exactly k points (SI"'" sn)'
For testing H against K there exists no UMP rank test, and hence no

UMP invariant test. This follows for example from a consideration of two
of the standard tests for this problem, since each is most powerful among all
rank tests against some alternative. The two tests in question have rejection
regions of the form

(24) h(SI) + ... +h(sJ > C.

One, the Wilcoxon two-sample test, is obtained from (24) by letting h(s) = s,
so that it rejects H when the sum of the y-ranks is too large. We shall show
below that for sufficiently small Ii, this is most powerful against the
alternatives that F is the logistic distribution F(x) = 1/(1 + e- X

) , and that
G(y) = F(y - Ii). The other test, the normal-scores test, has the rejection
region (24) with h(s) = E(Jt(s»' where »-(1) < ... < »-(N) is an ordered
sample of size N from a standard normal distribution." This is most
powerful against the alternatives that F and G are normal distributions with
common variance and means ~ and 1/ = ~ + Ii, when Ii is sufficiently small.

To prove that these tests have the stated properties it is necessary to
know the distribution of (SI" .. , Sn) under the alternatives. If F and G
have densities f and g such that f is positive whenever g is, the joint
distribution of the S; is given by

(25)
[
g(Jt(SI») g(Jt(sn»)]j(N)

P{SI = SI"' " S; = sn} = E f(Jt(sl») ... f(Jt(sn») n'

where Jt(l) < . .. < Jt(N) is an ordered sample of size N from the distribu­
tion. F. (See Problem 29.) Consider in particular the translation (or shift)
alternatives

g(y) = f(y - Ii),

and the problem of maximizing the power for small values of Ii. Suppose

t Tables of the expected order statistics from a normal distribution are given in Biometrika
Tables for Statisticians, Vol. 2, Cambridge U. P., 1972, Table 9. For additional references, see
David (1981, Appendix, Section 3.2).
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that f is differentiable and that the probability (25), which is now a
function of ~ , can be differentiated with respect to I:J. under the expectation
sign. The derivative of (25) at ~ = 0 is then

a I [f'(V(SI ») f'(V(S.»)]!(N)
-Pa{ SI = SI' ·· ·' S; = sn} = -E f(V: ) ... f(V:) n l '
a~ a-o (s.) (s.)

Since under the hypothesis the probability of any ranking is given by (23), it
follows from the Neyman-Pearson lemma in the extended form of Theorem
5, Chapter 3, that the derivative of the power function at ~ = 0 is
maximized by the rejection region

(26)
n [f'( V(s,») ]- L E > C.

;=1 f(V(s,»)

The same test maximizes the power itself for sufficientlysmall ~. To see this
let S denote a general rank point (SI' . . 0' sn)' and denote by s(J) the rank
point giving the jth largest value to the left-hand side of (26). If

a = k/( ~) ,

the power of the test is then

k k[l a I ]f3(I:J.) = L PA(s(J») = L - + I:J.-Pa(s(j)) + 0 o • •

j=1 j=1 (~) es a-o

Since there is only a finite number of points s, there exists for each j a
number ~ j > 0 such that the point s(J) also gives the jth largest value to
Pa( s) for all ~ < ~j . If ~ is less than the smallest of the numbers

s. JO-1 (N)J ' - , . .. , n '

the test also maximizes P( I:J.).
If f(x) is the normal density N(~, (12), then

_ f'(x) d
f(x) = - dxlogf(x) = x -~

(12 '
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and the left-hand side of (26) becomes

~s;) - ~ 1
LE 2 = -;; LE(»(s;»)

where »(1) < .. . < »(N) is an ordered sample from N(O, 1). The test that
maximizes the power against these alternatives (for sufficiently small 6.) is
therefore the normal-scores test.

In the case of the logistic distribution,

and hence

1
( ) - x 'F x-I + «:

e- x

f(x) = (1 + e-x)2'

f'(x) =2F(x)-1.
- f(x)

The locally most powerful rank test therefore rejects when I:E[F(~s;»] > C.
lf V has the distribution F and 0 s y s 1,

P{F(V) ~y} =p{V~F-l(y)}=F[F-1(y)] =y,

so that U = F(V) is uniformly distributed over (0,1).* The rejection region
can therefore be written as I:E(l.{s) > C, where l.{1) < . . . < l.{N) is an
ordered sample of size N from the uniform distribution U(O,I). Since
E(l.{ s) = s;/(N + 1), the test is seen to be the Wilcoxon test.

Both the normal-scores test and the Wilcoxon test are unbiased against
the one-sided alternatives K . In fact, let ep be the critical function of any
test determined by (24) with h nondecreasing. Then ep is nondecreasing in
the y's, and the probability of rejection is a for all F = G. By Lemma 3 of
Chapter 5 the test is therefore unbiased against all alternatives of K.

It follows from the unbiasedness properties of these tests that the most
powerful invariant tests in the two cases considered are also most powerful
against their respective alternatives among all tests that are invariant and
unbiased. The nonexistence of a UMP test is thus not relieved by restricting
the tests to be unbiased as well as invariant. Nor does the application of the
unbiasedness principle alone lead to a solution, as was seen in the discussion
of permutation tests in Chapter 5, Section 11. With the failure of these two

"This transformation, which takes a random variable with continuous distribut ion F into a
uniformly distributed variable, is known as the probability integral transformation.
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principles, both singly and in conjunction, the problem is left not only
without a solution but even without a formulation. A possible formulation
(stringency) will be discussed in Chapter 9. However, the determination of a
most stringent test for the two-sample hypothesis is an open problem.

Both tests mentioned above appear to be very satisfactory in practice.
Even when F and G are normal with common variance, they are nearly as
powerful as the t-test. To obtain a numerical comparison, suppose that the
two samples are of equal size, and consider the ratio n*In of the number of
observations required by two tests to obtain the same power f3 against the
same alternative. Let m = n and m* = n* = g(n) be the sample sizes
required by one of the rank tests and the t-test respectively, and suppose (as
is the case for the tests under consideration) that the ratio n*In tends to a
limit e independent of a and f3 as n -+ 00 . Then e is called the asymptotic
efficiency of the rank test relative to the t-test. Thus, if in a particular case
e = 1-, then the rank test requires approximately twice as many observations
as the t-test to achieve the same power.

In the particular case of the Wilcoxon test, e turns out to be equal to
3/7T - 0.95 when F and G are normal distributions with equal variance.
When F and G are not necessarily normal but differ only in location, e
depends on the form of the distribution. It is always ~ 0.864, but may
exceed 1 and can in fact be infinite." The situation is even more favorable
for the normal-scores test. Its asymptotic efficiency relative to the t-test is
always ~ 1 when F and G differ only in location; it is 1 in the particular
case that F is normal (and only then).

The above results do not depend on the assumption of equal sample
sizes; they are also valid if min and m*In* tend to a common limit p as
n -+ 00 where 0 < P < 00 . At least in the case that F is normal, the
asymptotic results agree well with those found for very small samples. For a
more detailed discussion of these and related efficiency results, see for
example, Lehmann (1975), Randles and Wolfe (1979), and Blair and
Higgins (1980).

It was seen in Chapter 5, Sections 4 and 11, that both the size and the
power of the t-test and its permutation version are robust against nonnor­
mality, that is, that the actual size and power, at least for large m and n, are
approximately equal to the values asserted by the normal theory even when
F is not normal. The two tests are thus performance-robust: under mild
assumptions on F, their actual performance is, asymptotically, independent
of F. However, as was pointed out in Chapter 5, Section 4, the insensitivity
of the power to the shape of F is not as advantageous as may appear at first
sight, since the optimality of the r-test is tied to the assumption of normal-

t Upper bounds for certain classes of distributions are given by Loh (1984).
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ity. The above results concerning the efficiency of the Wilcoxon and
normal-scores tests show in fact that for many distributions F the r-test is
far from optimal, so that the efficiency and optimality properties of t are
quite nonrobust.

The most ambitious goal in the nonparametric two-sample shift model
(46) of Chapter 5 would be to find a test which asymptotically preserves the
optimality for arbitrary F which the r-test possesses exactly in the normal
case. Such a test should have asymptotic efficiency 1 not with respect to a
fixed test, but for each possible true F with respect to the tests which are
asymptotically most powerful for that F. Such adaptive tests (which achieve
simultaneous optimality by adapting themselves to the unknown F) do in
fact exist if F is sufficiently smooth, although they are not yet practical.
Their possibility was first suggested by Stein (1956b), whose program has
been implemented for point-estimation problems [see for example Beran
(1974), Stone (1975), and Bickel (1982)], but not yet for testing problems.

For testing H: G = F against the two-sided alternatives that the Y's are
either stochastically smaller or larger than the X's, two-sided versions of the
rank tests of this section can be used. In particular, suppose that h is
increasing and that h(s) + h(N + 1 - s) is independent of s, as is the case
for the Wilcoxon and normal-scores statistics. Then under H, the statistic
Eh(sj) is symmetrically distributed about nEf_1h(i)lN = p., and (24) sug­
gests the rejection region

1 I n m IlI:h(sj) - p.1 = N m I: h(sj) - n, .I: h(r;) > C.
;-1 1-1

The theory here is still less satisfactory than in the one-sided case. These
tests need not even be unbiased [Sugiura (1965)], and it is not known
whether they are admissible within the class of all rank tests. On the other
hand, the relative asymptotic efficiencies are the same as in the one-sided
case.

The two-sample hypothesis G = F can also be tested against the general
alternatives G '* F. This problem arises in deciding whether two products,
two sets of data, or the like can be pooled when nothing is known about the
underlying distributions. Since the alternatives are now unrestricted, the
problem remains invariant under all transformations x; = !(x;), Y; = !(Yj)'
i = 1, .. . , m, j = 1, . . . , n, such that! has only a finite number of discon­
tinuities . There are no invariants under this group, so that the only invariant
test is q,(x, y) == a. This is however not admissible, since there do exist tests
of H that are strictly unbiased against all alternatives G '* F (Problem 41).
One of the tests most commonly employed for this problem is the Smirnov
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test. Let the empirical distribution functions of the two samples be defined by

a
S (z)=-,

xl· ·· · ·xm m

b
S (z)=-,yl ·····yn n

where a and b are the numbers of x's and y's less or equal to z
respectively. Then H is rejected according to this test when

sup ISXl .....xJz) - SY\ .....Yn(z) I> c.
z

Accounts of the theory of this and related tests are given, for example, in
Hajek and Sidak (1967), Durbin (1973), and Serfling (1980).

Two-sample rank tests are distribution-free for testing H: G = F but not
for the nonparametric Behrens-Fisher situation of testing H: 1] = ~ when
the X's and Y's are samples from F«x - ~)/o) and F«y - 1])/7') with
0,7' unknown. A detailed study of the effect of the difference in scales on
the levels of the Wilcoxon and normal-scores tests is provided by Pratt
(1964).

to. THE HYPOTHESIS OF SYMMETRY

When the method of paired comparisons is used to test the hypothesis of no
treatment effect, the problem was seen in Section 8 to reduce through
invariance to that of testing the hypothesis

Hi. : D(z) + D(-z) = 1 for all z,

which states that the distribution D of the differences Z, = r; - Xi (i =

1, ... ; N) is symmetric with respect to the origin. The distribution D can be
specified by the triple (p , F, G) where

p=P{Z::;;O} , F(z) = P{IZI::;; zlZ < o},

G(z) = P{Z::;; zlZ > O},

and the hypothesis of symmetry with respect to the origin then becomes

H :p=!,G=F.

Invariance and sufficiency were shown to reduce the data to the ranks
SI < ... < S; of the positive Z's among the absolute values IZ11,··· , IZNI.
The probability of SI = SI"'" S; = s; is the probability of this event given



324 INVARIANCE [6.10

that there are n positive observations multiplied by the probability that the
number of positive observations is n. Hence

P{S} = s}, . . . , Sn = sn}

= (~){1- prpN-nPF,G{S} = s}, . .. , Sn = snln}

where the second factor is given by (25). Under H, this becomes

1
P{S} = s}, . . . , S; = sn} = 2N

for each of the

N

L (~) = 2
N

n-O

n-tuples (s}, .. . , sn) satisfying 1 ~ s} < ... < sn ~ N. Any rank test of
size a = k/2N therefore has a rejection region containing exactly k such
points (s}, ... , sn)'

The alternatives K of a beneficial treatment effect are characterized by
the fact that the variable Z being sampled is stochastically larger than some
random variable which is symmetrically distributed about O. It is again
suggestive to use rejection regions of the form h(s}) + . . . +h(sn) > C,
where however n is no longer a constant as it was in the two-sample
problem, but depends on the observations. Two particular cases are the
Wilcoxon one-sample test, which is obtained by putting h(s) = s, and the
analogue of the normal-scores test with h(s) = E(~s» where ~}) < . . .
< ~N) are the ordered values of IV}I, ..., IVNI, the V's being a sample from
N(O,l). The W's are therefore an ordered sample of size N from a
distribution with density ..j2/'1T e- w 2

/
2 for w ~ O.

As in the two-sample problem, it can be shown that each of these tests is
most powerful (among all invariant tests) against certain alternatives, and
that they are both unbiased against the class K. Their asymptotic efficien­
cies relative to the r-test for testing that the mean of Z is zero have the same
values 3/'1T and 1 as the corresponding two-sample tests, when the distribu­
tion of Z is normal.

In certain applications, for example when the various comparisons are
made under different experimental conditions or by different methods, it
may be unrealistic to assume that the variables Z}, . .. , ZN have a common
distribution. Suppose instead that the Z; are still independently distributed
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but with arbitrary continuous distributions D;. The hypothesis to be tested
is that each of these distributions is symmetric with respect to the origin.

This problem remains invariant under all transformations z; = f;(z;)
i = 1, .. . , N, such that each /; is continuous, odd, and strictly increasing. A
maximal invariant is then the number n of positive observations , and it
follows from Example 8 that there exists a UMP invariant test, the sign test,
which rejects when n is too large. This test reflects the fact that the
magnitude of the observations or of their absolute values can be explained
entirely in terms of the spread of the distributions D;, so that only the signs
of the Z's are relevant.

Frequently, it seems reasonable to assume that the Z's are identically
distributed, but the assumption cannot be trusted. One would then prefer to
use the information provided by the ranks s, but require a test which
controls the probability of false rejection even when the assumption fails. As
is shown by the following lemma, this requirement is in fact satisfied for
every (symmetric) rank test. Actually, the lemma will not require even the
independence of the Z's; it will show that any symmetric rank test
continues to correspond to the stated level of significance provided only the
treatment is assigned at random within each pair.

Lemma 4. Let I/> (z \' . .. , Z N) be symmetric in its N variables and such
that

(27) EDI/>(Zl' .'" ZN) = a

when the Z's are a sample from any continuous distribution D which is
symmetric with respect to the origin. Then

(28) EI/>(Z\, . .. , ZN) = a

a.e .,=a(29)

if the joint distribution of the Z's is unchanged under the 2N transformations
Z{= ±Z\, ... ,Z;.= ±ZN'

Proof. The condition (27) implies

L 1J>(±Zj\"'" ±ZjJ
L 2N.N'

(J•. .. . . iN) •

where the outer summation extends over all N! permutations (j\, . . . , j N)
and the inner one over all 2N possible choices of the signs + and -. This is
proved exactly as was Theorem 6 of Chapter 5. If in addition I/> is
symmetric, (29) implies

(30)
L I/>(±z\, .. . , ±ZN)

2N = a .
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Suppose that the distribution of the Z's is invariant under the 2N transfor­
mations in question. Then the conditional probability of any sign combina­
tion of ZI"'" ZN given IZ11, . . . , IZNI is 1/2N

• Hence (30) is equivalent to

(31) £[$(ZI"'" ZN)IIZ11, .. · , IZNI] = a a.e.,

and this implies (28) which was to be proved.
The tests discussed above can be used to test symmetry about any known

value 00 by applying them to the variables Z, - 00 , The more difficult
problem of testing for symmetry about an unknown point 0 will not be
considered here. Tests of this hypothesis are discussed, among others, by
Antille, Kersting, and Zucchini (1982), Bhattacharya, Gastwirth, and Wright
(1982), Boos (1982), and Koziol (1983).

As was pointed out in Section 5 of Chapter 5, the one-sample r-test is
not robust against dependence. Unfortunately, this is also true-although
to a somewhat lesser extent-of the sign and one-sample Wilcoxon tests
[Gastwirth and Rubin (1971)].

11. EQUIVARIANTCONFIDENCE SETS

Confidence sets for a parameter 0 in the presence of nuisance parameters tJ
were discussed in Chapter 5 (Sections 6 and 7) under the assumption that 0
is real-valued. The correspondence between acceptance regions A(Oo) of the
hypotheses H(Oo) : 0 = 00 and confidence sets S(x) for 0 given by (34) and
(35) of Chapter 5 is, however, independent of this assumption ; it is valid
regardless of whether 0 is real-valued, vector-valued, or possibly a label for
a completely unknown distribution function (in the latter case, confidence
intervals become confidence bands for the distribution function). This
correspondence, which can be summarized by the relationship

(32) OES(x) if and only if xEA(O),

was the basis for deriving uniformly most accurate and uniformly most
accurate unbiased confidence sets. In the present section, it will be used to
obtain uniformly most accurate equivariant confidence sets.

We begin by defining equivariance for confidence sets. Let G be a group
of transformations of the variable X preserving the family of distributions
{Po. I}' (0, tJ) E Q} and let Gbe the induced group of transformations of Q.
If g(0, tJ) = (0', tJ'), we shall suppose that 0' depends only on g and 0 and
not on tJ, so that g induces a transformation in the space of O. In order to
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keep the notation from becoming unnecessarily complex, it will then be
convenient to write also 0' = gO. For each transformation g E G, denote by
g* the transformation acting on sets S in O-space and defined by

(33) g*S = {gO: °E S},

so that g* S is the set obtained by applying the transformation g to each
point °of S. The invariance argument of Chapter 1, Section 5, then
suggests restricting consideration to confidence sets satisfying

(34) g*S(x) = S(gx) for all x E f!{, g E G.

We shall say that such confidence sets are equioariant under G. This
terminology avoids the impression created by the term invariance (used by
some authors and in the first edition of this book) that the confidence sets
remain unchanged under the transformation X' = gx. If the transformation
g is interpreted as a change of coordinates, (34) means that the confidence
statement does not depend on the coordinate system used to express the
data. The statement that the transformed parameter gO lies in S(gx) is
equivalent to stating that °E g* -IS( gx), which is equivalent to the original
statement °E S(x) provided (34) holds.

Example 16. Let X, Y be independently normally distributed with means t 1/
and unit variance, and let G be the group of all rigid motions of the plane, which is
generated by all translations and orthogonal transformations. Here g = g for all
g E G. An example of an equivariant class of confidence sets is given by

S( x, y) = {( ~, 1/) : (x - ~)2 + (y - 1/)2 ~ C} ,

the class of circles with radius IC and center (x , y) . The set g*S(x, y ) is the set of
all points ga,1/) with (t 1/) E S(x, y), and hence is obtained £y subjecting
S(x, y) to the rigid motion g. The result is the circle with radius IC and center
g( x , y), and (34) is therefore satisfied.

In accordance with the definitions given in Chapters 3 and 5, a class of
confidence sets for °will be said to be uniformly most accurate equivariant
at confidence level 1 - a if among all equivariant classes of sets S(x) at
that level it minimizes the probability

PO.{I{O' E S(X)} for all 0' *' 0.

In order to derive confidence sets with this property from families of UMP
invariant tests, we shall now investigate the relationship between equi­
variance of confidence sets and invariance of the associated tests.
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Suppose that for each 80 there exists a group of transformations Goo
which leaves invariant the problem of testing H( 00) : 0 = 00' and denote by
G the group of transformations generated by the totality of groups Go.

Lemma 5.
(i) Let S( x) be any class of confidence sets that is equivariant under G,

and let A (0) = {x : 0 E S(x)}; then the acceptance region A (0) is invariant
under Go for each O.

(ii) If in addition, for each 00 the acceptance region A(Oo) is UMP
invariant for testing H( 00) at level IX, the class of confidence sets S(x) is
uniformly most accurate among all equivariant confidence sets at confidence
level 1 - a.

Proof. (i) : Consider any fixed 0, and let g E Go. Then

gA(O) = {gx: 0 E S(x)} = {x : 0 E S(g-IX)} = {x: 0 E g*-IS(X)}

= {x : gO E S(x)} = {x : 0 E S(x)} = A (0) .

Here the third equality holds because S(x) is equivariant , and the fifth one
because g E Go and therefore gO = O.

(ii): If S'(x) is any other equivariant class of confidence sets at the
prescribed level, the associated acceptance regions A'(0) by (i) define
invariant tests of the hypotheses H(O). It follows that these tests are
uniformly at most as powerful as those with acceptance regions A(0) and
hence that

Po.,,{8' E S(X)} s po .,,{O' E S'(X)} for all 0' '* 0,

as was to be proved.
It is an immediate consequence of the lemma that if UMP invariant

acceptance regions A(O) have been found for each hypothesis H(O) (in­
varian t with respect to Go), and if the confidence sets S(x) = {O: x E A(0)}
are equivariant under G, then they are uniformly most accurate equivariant.

Example 17. Under the assumptions of Example 16, the problem of testing
~ = ~()' TJ = TJo is invariant under the group G~o.'10 of orthogonal transformations
about the point ao, TJo) :

X' - ~o = au( X - ~o) + a12(Y - TJo),

Y' -TJo = a21(X - Eo) + a22(Y -TJo).

where the matrix (a ij) is orthogonal. There exists under this group a UMP invariant
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test. which has the acceptance region (Problem 8 of Chapter 7)

(X - ~0)2 + (Y -1)0)2 ~ C.

329

Let Go be the smallest group containing the groups G(. ~ for all ~, 1). Since this is a
subgroup of the group G of Example 16 (the two groups actually coincide, but this
is immaterial for the argument), the confidence sets (X - ~)2 + (Y - 1)2 ~ Care
equivariant under Go and hence uniformly most accurate equivariant.

Example 18. Let Xl " ' " Xn be independently normally distributed with mean
~ and variance (J 2. Confidence intervals for ~ are based on the hypotheses Hao) : ~
= ~o. which are invariant under the groups G(o of transformations X; = a(X, - ~o)

+~o(a *" 0). The UMP invariant test of H(~o) has acceptance region

I(n -1)nIX-~ol
s C,

VL( x, - X)2

and the associated confidence intervals are

(35) X- 1/ C ., JL(x,-X)2~~~X+ l_f_
C

_ 1\ VL(x,-X)2.

The group G in the present case consists of all transformations g : X; = aX, + b
(a *" 0). which on ~ induces the transformation g:f = a~ + b. Application of the
associated transformation s' to the interval (35) takes it into the set of points
a~ + b for which ~ satisfies (35), that is. into the interval with end points

- laiC f " - 2
aX +b - I VL( Xi - X) ,

n( n - 1)
- laiC f" - 2

aX +b + I ( ) VL (X, - X)n n - 1

Since this coincides with the interval obtained by replacing Xi in (35) with aX, + b,
the confidence intervals (35) are equivariant under Go and hence uniformly most
accurate equivariant.

Example 19. In the two-sample problem of Section 9, assume the shift model in
which the X's and Y's have densities f(x) and g(y) = f(y - ~) respectively, and
consider the problem of obtaining confidence intervals for the shift parameter ~

which are distribution-free in the sense that the coverage probability is independent
of the true f . The hypothesis H(~o) : ~ = ~o can be tested, for example, by means
of the Wilcoxon test applied to the observations X" lJ - ~o' and confidence sets for
~ can then be obtained by the usual inversion process. The resulting confidence
intervals are of the form D(k) < ~ < D(mn+l-k) where D(1) < . . . < D(mn) are the
mn ordered differences lJ - x, . [For details see Problem 39 and for fuller accounts
nonparametric books such as Lehmann (1975) and Randles and Wolfe (1979).] By
their construction, these intervals have a coverage probability 1 - a which is
independent of f. However, the invariance considerations of Sections 8 and 9 do not
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apply. The hypothesis H(t..o) is invariant under the transformations X: = p(~),

Y,' = p(Y, - t.. o) + t..o with p continuous and strictly increasing, but the shift
model , and hence the problem under consideration, is not invariant under these
transformations .

12. AVERAGE SMALLEST EQUIVARIANT
CONFIDENCE SETS

In the examples considered so far, the invariance and equivariance proper­
ties of the confidence sets corresponded to invariant properties of the
associated tests. In the following examples this is no longer the case.

Example 20. Let Xl' . . . ' X; be a sample from N(t ( 2
) , and consider the

problem of estimating a2•

The model is invariant under translations X: = X, + a, and sufficiency and
invariance reduce the data to S2 = L(~ - X)2. The problem of estimating a2 by
confidence sets also remains invariant under scale changes X: = b~ , S' = bS,
a' = bo (0 < b), although these do not leave the corresponding problem of testing
the hypothesis a = ao invariant. (Instead, they leave invariant the family of these
testing problems, in the sense that they transform one such hypothesis into another.)
The totality of equivariant confidence sets based on S is given by

(36)
a 2

S2 E A,

where A is any fixed set on the line satisfying

(37) PO - l(;2 EA) = 1 - a.

That any set a2 E S2 . A is equivariant is obvious. Conversely, suppose that
a2 E C( S2) is an equivariant family of confidence sets for a2• Then C( S2) must
satisfy b2C(S2) = C(b2S2) and hence

a2 1
a2 E C(S2) if and only if 2" E 2"C(S2) = C(l) ,

S S

which establishes (36) with A = C(l).
Among the confidence sets (36) with A satisfying (37) there does not exist one

that uniformly minimizes the probability of covering false values (Problem 55).
Consider instead the problem of determining the confidence sets that are physically
smallest in the sense of having minimum Lebesgue measure. This requires mini­
mizing fA dv subject to (37). It follows from the Neyman-Pearson lemma that the
minimizing A* is

(38) A* = {v:p(v) > C},
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where p(v) is the density of V = 1/S 2 when a = 1, and where C is determined by
(37). Since p( v) is unimodal (Problem 56), these smallest confidence sets are
intervals, aS 2 < a 2 < bS 2. Values of a and b are tabled by Tate and Klett (1959),
who also table the corresponding (differen~ values a', b' for the uniformly most
accurate unbiased confidence intervals a'S < a2 < b'S2 (given in Example 5 of
Chapter 5).

Instead of minimizing the Lebesgue measure fA dv of the confidence sets A, one
may prefer to minimize the scale-invariant measure

(39)
1

f - dv.
A V

To an interval (a, b), (39) assigns, in place of its length b - a, its logarithmic length
log b - log a = log(b/a). The optimum solution A** with respect to this new
measure is again obtained by applying the Neyman-Pearson lemma, and is given by

(40) A** = {v : vp ( v) > C},

which coincides with the uniformly most accurate unbiased confidence sets [Problem
57(i)].

One advantage of minimizing (39) instead of Lebesgue measure is that it then
does not matter whether one estimates a or a2 (or a' for some other power of r),
since under (39), if (a, b) is the best interval for a, then (a', b') is the best interval
for o' [Problem 57(ii)].

Example 21. Let X; (i = 1, . .. , r) be independently normally distributed as
N ( ( , 1). A slight generalization of Example 17 shows that uniformly most accurate
equivariant confidence sets for (~l' . . . , t) exist with respect to the group G of all
rigid transformations and are given by

(41) L(Xi-u2~c.

Suppose that the context of the problem does not possess the symmetry which
would justify invoking invariance with respect to G, but does allow the weaker
assumption of invariance under the group Go of translations X: = X; + a.. The
totality of equivariant confidence sets with respect to Go is given by

(42) (Xl - ~l "' " X, - t) E A,

where A is any fixed set in r-space satisfying

(43) P~I= ... _~,=O«Xl" ' " X,) E A) = 1 - lX .

Since uniformly most accurate equivariant confidence sets do not exist (Problem
55), let us consider instead the problem of determining the confidence sets of
smallest Lebesgue measure. (This measure is invariant under Go .) This is given by
(38)with v=(vl, · · · ,v,)andp(v)thedensityof(Xl , · · ·,X,)when~1 = ... =t
= 0, and hence coincides with (41).
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Example 22. In the preceding example , suppose that the X; are distributed as
N(t, 02) with 02 unknown, and that a variable S2 is available for estimating 02.
Of S2 assume that it is independent of the X's and that S2/02 has a X2-distribu­
tion with f degrees of freedom.

The estimation of (EI ,. .. , E,) by confidence sets on the basis of X's and S2
remains invariant under the group Go of transformations

X;' = bX; + ai' S' = bS, t = bt + a. , 0' = bo ,

and the most general equivariant confidence set is of the form

(44) (
XI - EI x, - E,)

S ,···,-S- eA ,

where A is any fixed set in r-space satisfying

(45) p(\_ . . . - (,-0 [( ; , ... , ~) e A] = 1 - a.

The confidence sets (44) can be written as

(46) (EI,· · .,E,) e(XI , . . . , Xr ) -SA,

where - SA is the set obtained by multiplying each point of A by the scalar - S.
To see (46), suppose that C( XI " ' " X,; S) is an equivariant confidence set for

(Ei - . . . , E,.). Then the r-dimensional set C must satisfy

C(bXI + al" '" bXr + ar; bS) = b[ C(XI , .. . , X,; S)] + (al" ' " ar)

for all a l • . . . , a, and all b > O. It follows that (EI , . . . , E,) e C if and only if

(
XI - El Xr - E,) (XI " '" X,) - C(XI, · · ·, X,; S) _ ._

S •.. . , S e S -C(O, . . . , O, l)- A.

The equivariant confidence sets of smallest volume are obtained by choosing for A
the set A* given by (38) with v=(vI , ... , vr ) and p(v) the joint density of
(XI/S, . . . , Xr/S) when EI = . .. = Er = O. This density is a decreasing funct ion
of LV; (Problem 58), and the smallest equivariant confidence sets are therefore given
by

(47) [( X; - 0 2
5: CS2

•

[Under the larger group G generated by all rigid transformations of (XI'" . , Xr )

together with the scale changes XI = bX;, S ' = bS, the same sets have the stronger
property of being uniformly most accurate equivariant; see Problem 59.)

Examples 20-22 have the common feature that the equivariant con­
fidence sets S(X) for (J = «(Jl"'" (J,) are characterized by an r-valued
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pivotal quantity, that is, a function h(X, 8) = (hl(X, 8), . . . , hr(X, 8)) of
the observations X and parameters 8 being estimated that has a fixed
distribution, and such that the most general equivariant confidence sets are
of the form

(48) h(X,8) EA

for some fixed set A .* When the functions hi are linear in 8, the confidence
sets C(X) obtained by solving (48) for 8 are linear transforms of A (with
random coefficients), so that the volume or invariant measure of C( X) is
minimized by minimizing

(49) ! P(VI" ' " vJ dVI ... do,
A

for the appropriate p. The problem thus reduces to that of minimizing (49)
subject to

(50) Po {h(X,8o) EA) =!p(vl, ... ,vr)dvl . .. du;> 1- a,
o A

where p(vI, . . . ,vr) is the density of the pivotal quantity h(X,8). The
minimizing A is given by

(51) {
p (VI' ... , vr ) }

A* = v: > C ,
p(v l , · · · , Vr)

with C determined by (50).
The following is one more illustration of this approach.

Example 23. Let Xl' .. . ' Xm and Yl , . . . , y" be samples from N( t 0
2) and

N( T/ , ,.2) respectively, and consider the problem of estimating f::,. = ,.2/0 2. Sufficiency
and invarianc~under translations XL = X; + ai' lj' = lj + a2 reduce the data to
S~ = L(X; - X)2 andS~ = L(lj - y)2 . The problem of estimating f::,. also remains
invariant under the scale changes

X: = blX;, lj' = b2lj ,

which induce the transformations

o< bl , b2 < 00 ,

(52) Sx = bISX ' Sy = b2S y , 0' = b.« , ,.' = b2,. ·

"More general results concerning the relationship of equivariant confidence sets and pivotal
quantities are given in Problems 78-81.
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The totalilf of equivariant confidence sets for t:. is given by t:.1 V E A, where
V = S~/Sx and A is any fixed set on the line satisfying

( 53) P<1-I( ~ E A) = 1 - a .

To see this, suppose that CCSx, Sy) are any equivariant confidence sets for t:. .
Then C must satisfy

(54)
bi

C(bISX,b2Sy) = "2 C( Sx , S y) ,
bl

and hence t:. E CC Sx»Sy) if and only if the pivotal quantity VIt:. satisfies

s sIt:. S2
v= S~ ES~C(Sx,Sy)=C(1,1)=A.

As in Example 20, one may now wish to choose A so as to minimize either its
Lebesgue measure fA dv or the invariant measure fA (1/v) dv. The resulting con­
fidence sets are of the form

( 55) p ( v) > C and vp( v) > C

respectively. In both cases, they are intervals Vlb < t:. < Via [Problem 60(i)]. The
values of a and b minimizing Lebesgue measure are tabled by Levy and Narula
(1974); those for the invariant measure coincide with the uniformly most accurate
unbiased intervals [Problem 60(ii»).

13. CONFIDENCE BANDSFORA DISTRIBUTION
FUNCTION

Suppose that X = (Xl' ... ' Xn ) is a sample from an unknown continuous
cumulative distribution function F, and that lower and upper bounds Lx
and M x are to be determined such that with preassigned probability 1 - a
the inequalities

Lx(u) s F(u) s Mx(u) for all u

hold for all continuous cumulative distribution functions F. This problem is
invariant under the group G of transformations

X;' = g(X;), i = 1, . . . , n ,

where g is any continuous strictly increasing function. The induced trans­
formation in the parameter space is gF = F(g-l).
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If S( x) is the set of continuous cumulative distribution functions

S(x) = {F: LAu) s F(u) s Mx(u) for all u},

then

g*S( x) = {gF: Lx( u) s F( u) s MA u) for all u}

= {F: Lxlg-I(u)] s F(u) s Mx[g-I(U)] for all u}.

For an equivariant procedure, this must coincide with the set

S(gx) = {F: Lg(x,). ...g( x)u) s F(u) ~ Mg(Xl) .....g(x.)(u) for all u}.

The condition of equivariance is therefore

Lg( Xl).....g( Xn )[g(U)] = Lx(u), Mg(Xl) .....g(x.)[g(u)] = Mx(u)

for all x and u.

To characterize the totality of equivariant procedures, consider the
empirical distribution function (EDF) T, given by

i
Tx(u) r : for x(i) ~ u < x U + I ) ' i = 0, . . . , n,

where x(1) < . . . < x(n) is the ordered sample and where x(O) = - 00 ,

x (n + I) = 00 . Then a necessary and sufficient condition for Land M to
satisfy the above equivariance condition is the existence of numbers
ao, . .. , an; aD , ... , a~ such that

Lx(u) = a., MAu) = a: for xU) < u < X U+ I)'

That this condition is sufficient is immediate. To see that it is also necessary,
let u, u' be any two points satisfying xU) < u < u' < xu+ I) ' Given any
YI' . . . , Yn and v with YU) < v < Yu+ 1)' there exist g, g' E G such that

g(Y( i») = g'(Y(i)) = Xli) ' g(v) = U, g'(V) = U' .

If Lx' M; are equivariant, it then follows that LAu') = L/v) and LAu) =
L\.(v), and hence that LAu') = LAu) and similarly MAu') = MAu), as
was to be proved. This characterization shows L, and M; to be step
functions whose discontinuity points are restricted to those of Tx •
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Since any two continuous strictly increasing cumulative distribution
functions can be transformed into one another through a transformation g,
it follows that all these distributions have the same probability of being
covered by an equivariant confidence band. (See Problem 66.) Suppose now
that F is continuous but no longer strictly increasing. If I is any interval of
constancy of F, there are no observations in I, so that I is also an interval
of constancy of the sample cumulative distribution function. It follows that
the probability of the confidence band covering F is not affected by the
presence of I and hence is the same for all continuous cumulative distribu ­
tion functions F.

For any numbers a., a~ let 11;, !X; be determined by

i
a.=--11, n ;,

i
a' = - + !X., n , .

Then it was seen above that any numbers 11 0 , •• • , I1 n; !Xo, . . . , !Xn define a
confidence band for F, which is equivariant and hence has constant prob­
ability of covering the true F. From these confidence bands a test can be
obtained of the hypothesis of goodness of fit F = Fo that the unknown F
equals a hypothetical distribution Fo• The hypothesis is accepted if Fo lies
entirely within the band, that is, if

-11 ; < Fo(u) - TAu) < !X;

for all x(i> < u < X(;+l> and all i = 1, . . . , n .

Within this class of tests there exists no UMP member, and the most
common choice of the l1's is 11; = !X; = 11 for all i. The acceptance region of
the resulting Ko/mogorov test can be written as

(56) sup IFo( u) - t; (u) I< 11.
-oo<u<oo

Tables of the null distribution of the Kolmogorov statistic are given by
Birnbaum (1952). For large n, aeProximate critical values can be obtained
from the limit distribution K of [n sup 1F0(u) - TAu)l, due to Kolmogorov
and tabled by Smirnov (1948). Derivations of K can be found, for example,
in Feller (1948), Hajek and Sidak (1967), and Billingsley (1968).

Alternative goodness-of-fit tests are based on other measures of the
distance between the cumulative distribution functions Fo and Tx • Surveys
dealing with properties of such tests, including tests for goodness of fit when
the hypothesis specifiesa parametric family rather than a single distribution,
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are provided by Durbin (1973), Kendall and Stuart (1979, Chapter 30),
Neuhaus (1979), and Tallis (1983).

14. PROBLEMS

Section 1

1. Let G be a group of measurable transformations of (~, JJI) leaving 9 = {Po,
(J En} invariant, and let T( x) be a measurable transformation to (ff, !fI).
Suppose that T(xl) = T(X2) implies T(gxl) = T(gx2) for all g E G, so that
G induces a group G* on ff through g*T(x) = T(gx), and suppose further
that the induced transformations g* are measurable !fl . Then G* leaves the
family 9 T = {pI, (J En} of distributions of T invariant.

Section 2

2. (i) Let ~ be the totality of points x = (XI" . . , x,,) for which all coordinates
are different from zero, and let G be the group of transformations
x; = cx i, e > O. Then a maximal invariant under G is
(sgn x"' XI/X" , . . . , X,, _I/X,,) where sgn X is 1 or -1 as x is positive or
negative.

(ii) Let ~ be the space of points x = (XI" .. , x,,) for which all coordinates
are distinct, and let G be the group of all transformations x; = !(x;),
i = 1, . .. , n, such that! is a 1: 1 transformation of the real line onto
itself with at most a finite number of discontinuities. Then G is transitive
over ~.

[(ii): Let x = (XI"' " x,,) and x' = (x], ... , x~) be any two points of ~. Let
11" . . ,1" be a set of mutually exclusive open intervals which (together with
their end points) cover the real line and such that xj E lj' Let 'i, .. . , l~ be a
corresponding set of intervals for x;,.. . , x~ . Then there exists a transforma­
tion ! which maps each lj continuously onto ';, maps xj into xj, and maps
the set of n - 1 end points of ll"'" '" onto the set of end points of
'r, .. .,l,; .]

3. (i) A sufficient condition for (8) to hold is that D is a normal subgroup of G.

(ii) If G is the group of transformations x' = ax + b, a :;, 0, - 00 < b < 00,

then the subgroup of translations x' = x + b is normal but the subgroup
x' = ax is not.

[The defining property of a normal subgroup is that given d e D, g E G, there
exists d' E D such that gd = d'g. The equality S(XI) = S(X2) implies X2 = dXI
for some d e D, and hence eX2 = edx, = d'ex.. The result (i) now follows,
since S is invariant under D.]
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Section 3

4. Let X, Y have the joint probability density [i x , y). Then the integral h(z) =

J~"J (y - z, y) dy is finite for almost all z, and is the probability density of
Z= Y- X.
[Since P{Z5.b}=J'!..ooh(z)dz, it is finite and hence h is finite almost
everywhere.]

338

5. (i) Let X = (Xl' . . . , Xn) have probability density (1/0 n)f[(XI ­
~)/O" ",(xn - ~)/O], where -00 < ~ < 00 , 0<0 are unknown, and
where I is even. The problem of testing I = 10 against I = II remains
invariant under the transformations xf = ax, + b (i = 1, ... , n), a ", 0,
- 00 < b < 00 , and the most powerful invariant test is given by the
rejection region

f oo 100 2vn- Il(VXl + u"",VXn + u) dodu-00 0

f oo 100 2> C vn- lo(vxl + u" " ,vXn + u) dodu,-00 0

(ii) Let X = (Xl" ' " Xn) have probability density I (Xl - Ej_lWlA, .. . , x.;
- Ej-lW"j,8), where k < n, the w's are given constants, the matrix (Wi)
is of rank k, the ,8's are unknown, and we wish to test 1=10 against
1=11 ' The problem remains invariant under the transformations xf = Xi
+ E;_lWi/Yj' - 00 < Yl" '" Yk < 00, and the most powerful invariant
test is given by the rejection region

j . .. j/l(Xl - I:WIA"" ,xn - LwnA} d,8l, .. ·, d,8k
---------------- > c.
j .. . jlo(x i - LwlA" ",xn - LwnA} d,8l , · .. ,d,8k

[A maximal invariant is given by y =

(
n n n)

Xl - L alrx" X2 - L a2r x" " " Xn- k - L «:«.»,
r-n-k+l r-n-k+l r-n-k+l

for suitably chosen constants air']

6. Let Xl"' " Xm; Yl , . .. , Y" be samples from exponential distributions with
densities a-Ie-(.<-€ l/a for X ~ t and T-le-(y-rll/T for y ~ 1}.

(i) For testing T/a 5. ~ against T/a > ~ , there exists a UMP invariant test
with respect to the group G: X: = aX; + b, J}' = aJ} + c, a> 0, - 00
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< b, e < 00. and its rejection region is

L: [y - rnin( YI ' ... , Yn) ] c
) > .

L:[X; - rnin(xl , · · ·,xm ) ]

339

(ii) This test is also UMP unbiased.

(iii) Extend these results to the case that only the r smallest X's and the s
smallest Y's are observed.

[(ii): See Problem 12 of Chapter 5.]

7. If X. , . .. • x" and YI,. .. ,y" are samples from Na.0 2) and N(1/,-r 2 ) respec­
tively, the problem of testing -r 2 = 0 2 against the two-sided alternatives
-r 2 =1' 0

2 remains invariant under the group G generated by the transformations
x,' = aX, + b. Y;' = aY; + c, a =1' 0, and XI = Y; , Y;' = x,. There exists a
UMP invariant test under G with rejection region

_ (L:(y;_y)2 L:(X,-X)2)
W - max 2' 2 ~ k .

L:(x, - X) L:(y; - P)

[The ratio of the probability densities of W for -r 2/ 02= !:J. and -r2/ 02= 1 is
proportional to [(1 + w)/(!:J. + w)]n-I + [(1 + w)/(1 + !:J.w)]n-I for w ~ 1.
The derivative of this expression is ~ 0 for all !:J. .]

Section4

8. (i) When testing H : P 5 Po against K: P > Po by means of the test corre­
sponding to (11), determine the sample size required to obtain power fJ
against P = PI' a = .05, fJ = .9 for the cases Po = .1, PI = .15, .20, .25;
Po = .05. PI = .10, .15•.20•.25; Po = .01. PI = .02•.05,.10, .15, .20.

(ii) Compare this with the sample size required if the inspection is by
attributes and the test is based on the total number of defectives.

9. Two-sided t-test .

(i) Let Xl" ' " X" be a sample from N( t 0
2)

. For testing ~ = 0 against
~ =1' 0, there exists a UMP invariant test with respect to the group
XI = eX" c =1' O. given by the two-sided r-test (17) of Chapter 5.

(ii) Let X1 . . .. ,Xm and YI , . .. ,y" be samples from N(t02) and N(1/.02)
respectively. For testing 1/ = ~ against 1/ =1' ~ there exists a UMP in­
variant test with respect to the group XI = aX, + b. Jj' = aJj + b,
a =1' 0, given by the two-sided r-test (30) of Chapter 5.

[(i): Sufficiencyand invariance reduce the problem to Itl, which in the notation
of Section 4 has the probability density P8 (t) + h ( - t) for t > O. The ratio of
this density for 8 = 81 to its value for 8 = 0 is proportional to /(f(e 8tl' +
e-8" ')gr2(u) du, which is an increasing function of t 2 and hence of Itl.]
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10. Testing a correlation coefficient. Let (Xl' yl)•... '(Xn , y") be a sample from a
bivariate normal distribution.

(i) For testing P S Po against P > Po there exists a UMP invariant test with
respect to the group of all transformations X[ = aX; + b, Y;' = CY; + d
for which a. C > O. This test rejects when the sample correlation coeffi­
cient R is too large.

(ii) The problem of testing P = 0 against p=;'O remains invariant in addition
under the transformation Y;' = - Y;, X[ = X;. With respect to the group
generated by this transformation and those of (i) there exists a UMP
invariant test. with rejection region IRI ~ c.

[(i) : To show that the probability density pp(r) of R has monotone likelihood
ratio, apply the condition of Chapter 3. Problem 8(i), to the expression (88)
given for this density in Chapter 5. Putting t = pr + 1, the second derivative
a2 10g pp(r)/ap Br up to a positive factor is

00

L c;cjt;+j- 2[U - i)2(t - 1) + (i + j)]
i.j-O

2[ .f c;t;]2
,-0

To see that the numerator is positive for all t > 0, note that it is greater than

00 00

2Lc/-2 L cjtj [U - i)2( t - 1) + ( i + j )].
; - 0 j-;+l

Holding i fixed and using the inequality cj + 1 < tCj' the coefficient of t! in the
interior sum is ~ 0.]

11. For testing the hypothesis that the correlation coefficient p of a bivariate
normal distribution is s Po. determine the power against the alternative
p = PI when the level of significance a is .05, Po = .3. PI = .5. and the sample
size n is 50,100,200.

Section5

12. Almost invariance of a test If> with respect to the group G of either Problem
6(i) or Example 6 implies that If> is equivalent to an invariant test.

Section6

13. Show that

(i) GI of Example 11 is a group ;

(ii) the test which rejects when xiiiXfl > C is UMP invariant under G1;

(iii) the smallest group containing G, and G2 is the group G of Example 11.
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14. Consider a testing problem which is invariant under a group G of transforma­
tions of the sample space, and let 't' be a class of tests which is closed under G,
so that ~ E 't' implies ~g E 't', where ~g is the test defined by ~g( x) =

~(gx) . If there exists an a.e. unique UMP member ~o of re, then ~o is almost
invariant.

15. Envelope power function. Let S( a) be the class of all level-a tests of a
hypothesis H, and let /3:(8) be the envelopepower function, defined by

/3:(8) = sup /3</>(8),
</>ES(a)

where fJ</> denotes the power function of ~ . If the problem of testing H
is invariant under a group G, then fJ:(8) is invariant under the induced
group G.

16. (i) A generalization of equation (1) is

!f(x) dPo(x) = f f(g -Ix} dPgo(X) .
A gA

(ii) If Po, is absolutely continuous with respect to POo' then PgOI is absolutely
continuous with respect to PgOOand

dPo dPgo
- ' (x) = -' (gx)
dPoo dPgoO

(a.e. poJ.

(a.e. p,).

(iii) The distribution of dPo/dPoo( X) when X is distributed as Poo is the
same as that of dPgo/dPgoO(X') when X' is distributed as PgOo'

17. Invariance of likelihoodratio. Let the family of distributions 9' = {Po, 8 E Q}
be dominated by p., let Po = dPo/dp., let p.g-I be the measure defined by
p.g-l(A) = p.[g-I(A)]. and suppose that p, is absolutely continuous with
respect to p.g-I for all g E G.

(i) Then

dp.
Po(x) = Pgo(gx)-d- I (gx)

p,g

(ii) Let Q and w be invariant under G, and countable . Then the likelihood
ratio sUPoPo( x)/sup",po(x) is almost invariant under G.

(iii) Suppose that Po(x) is continuous in 8 for all x, that Q is a separable
pseudometric space, and that Q and w are invariant. Then the likelihood
ratio is almost invariant under G.

18. Inadmissible likelihood-ratio test. In many applications in which a UMP
invariant test exists, it coincides with the likelihood-ratio test. That this is,
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however, not always the case is seen from the following example. Let PI' " . , P"
be n equidistant points on the circle x2 + y2 = 4, and QI" '" QIl on the
circle x 2 + y2 = 1. Denote the origin in the (x, y) plane by 0 , let 0 < a ~ t
be fixed, and let (X, y) be distributed over the 2n + 1 points
PI' ... , P,.. QI' .. . , QIl' 0 with probabilities given by the following table:

H
K

Pi

aln
p;/n

Qi

(1 - 2a)ln
o

o
a

(n - l)ln

where L.Pi = 1. The problem remains invariant under rotations of the plane by
the angles 2ks:I n (k = 0, 1, ... , n - 1). The rejection region of the
likelihood-ratio test consists of the points PI" ' .' P,.. and its power is l in . On
the other hand, the UMP invariant test rejects when X = Y = 0, and has
power (n - l)ln .

19. Let G be a group of transformations of !!E, and let SiI be a a-field of subsets of
!!E, and !J. a measure over (!!E, SiI). Then a set A E SiI is said to be almost
invariant if its indicator function is almost invariant.

(i) The totality of almost invariant sets forms a a-field Silo, and a critical
function is almost invariant if and only if it is Silo-measurable.

(ii) Let 9 = {Po, 8 EO} be a dominated family of probability distributions
over (!!E , SiI), and suppose that g8 = 8 for all g E G, 8 E O. Then the
a-field Silo of almost invariant sets is sufficient for 9 .

[Let "A = L.C;Po, be equivalent to 9 . Then

dPo dPg - . o dPo
--;n:(gx) = ~ cdP - 10 (x) = --;n:(x)

"-,, g j

(a.e. "A),

so that dPold"A is almost invariant and hence Silo-measurable.)

Section 7

20. The definition of d-admissibility of a test coincides with the admissibility
definition given in Chapter 1, Section 8 when applied to a two-decision
procedure with loss 0 or 1 as the decision taken is correct or false.

21. (i) The following example shows that a-admissibility does not always imply
d-admissibility. Let X be distributed as U(O, 8), and consider the tests !PI
and !P2 which reject when respectively X < 1 and X < t for testing
H : 8 = 2 against K : 8 = 1. Then for a = ~, !PI and !P2 are both
a-admissible but !P2 is not d-admissible.

(ii) Verify the existence of the test !Po of Example 12.
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The acceptance region TIl {f; ::; C of Example 13 is a convex set in the
(T1, T2 ) plane .

In Exam~ 13, the conditions of Theorem 8 are not satisfied for the sets
A : Til yT2 s C and QI : ~ > k.

In Example 13 (continued) show that there exist Co' CI such that Ao(11)
and Al (11) are probability densities (with respect to Lebesgue measure).

Verify the densi ties h0 and hI '

24. Verify

(i) the admissibility of the rejection region (22);

(ii) the expression for l( Z) given in the proof of Lemma 3.

25. Let XI" ' " Xm ; YI , • • • , Yn be independent N( t a2
) and N( 11 , a2

) respec­
tively. The one-sided r-test of H : 8 = Va ::; 0 is admissible against the
alternatives (i) 0 < 8 < 81 for any 81 > 0; (ii) S > 82 for any 82 > O.

26. For the model of the preceding problem, generalize Example 13 (continued) to
show that the two-sided r-test is a Bayes solution for an appropriate prior
distribution.

6.14]

22. (i)

(ii)

23. (i)

(ii)

Section 9

27. Wilcoxon two-sample test. Let Vi) = 1 or 0 as X; < lj or X; > lj, and let
V = EEU,1 be the number of pairs X;. lj with X; < lj.

(i) Then V = ES, - tn(n + 1), where SI < . . . < S; are the ranks of the
y's, so that the test with rejection region V> C is equivalent to the
Wilcoxon test.

(ii) Any given arrangement of x 's and y 's can be transformed into the
arrangement x . .. xy . . . y through a number of interchanges of neighbor­
ing elements. The smallest number of steps in which this can be done for
the observed arrangement is mn - V.

28. Expectation and variance of Wilcoxonstatistic. If the X 's and Y's are samples
from continuous distributions F and G respectively, the expectation and
variance of the Wilcoxon statistic V defined in the preceding problem are
given by

(57) E( ~) = P{ X < Y} = f FdG

and

(58) mnvar(~) = fFdG+(n-l)f(1-G)2 dF

+ (m - 1) f F2dG - (m + n - 1)(J FdGr
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Under the hypothesis G = F. these reduce to

[6.14

( 59) E(~) =~.
mn 2 var( ~) =

m+n+1

12mn

29. (i) Let ZI •. ..• ZN be independently distributed with densities II. ·..,IN'
and let the rank of Z; be denoted by T; . If I is any probability density
which is positive whenever at least one of the f is positive. then

(60)
1 [/I( ~/I )) IN( ~/N»)]

P{TI=tl. · .. . TN=tN} = N!E I(~/) ' " I(~/N») •

where ~I) < . .. < ~N) is an ordered sample from a distribution with
density I.

(ii) If N = m + n. II = ... = 1m = I, Im+1 = . . . = Im+n = g. and
SI < ... < S; denote the ordered ranks of Zm+I •. . .• Zm+n among all
the Z's, the probability distribution of SI' .. . • S; is given by (25).

[(i): The probability in question is 1... III(ZI) .. . IN(zN)dzl . .. dzN in­
tegrated over the set in which Z; is the t,th smallest of the z's for i = 1•. . .• N.
Under the transformation w" = Zi the integral becomes I .· . III (w")
. . . I N(W,N) dw, .. . dwN• integrated over the set WI < ' " < WN. The desired
result now follows from the fact that the probability density of the order
statistics ~I) < .. . < ~ N) is N!/(wl) '" l(wN) for wI < . .. < wN·)

30. (i) For any continuous cumulative distribution function F. define F- I (0) =
-00 , F- I(y) = inf{x : F(x) = y} forO <y < 1, p-1(1) = 00 if F(x)
< 1 for all finite x, and otherwise inf{ x : F(x) = I} . Then F[ p-I(y»)
= y for all 0 s y .s 1, but p-I[F(y») may be < y.

(ii) Let Z have a cumulative distribution function G(z) = h[F(z»). where F
and h are continuous cumulative distribution functions , the latter de­
fined over (0,1) . If Y = F( Z), then P{ Y < y} = h(y) for all 0 s y s 1.

(iii) If Z has the continuous cumulative distribution function F. then F( Z)
is uniformly distributed over (0.1) .

[(ii): P{ F(Z) < y} = P{Z < F-I(y)} = F[p-I(y») = y.)

31. Let Z; have a continuous cumulative distribution function F; (i = 1, . .. , N),
and let G be the group of all transformations Z: = I(Zi) such that I is
continuous and strictly increasing.

(i) The transformation induced by I in the space of distributions is F;' =

F';(r 1
) .

(ii) Two N-tuples of distributions (Fl •.. . , FN) and (F{, . . . • FN) belong to
the same orbit with respect to G if and only if there exist continuous
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distribution functions hi' . . . , hN defined on (0,1) and strictly increasing
continuous distribution functions F and F' such that F; = h, (F) and
F;' = hj(F').

[(i): P{f(Z;) ~Y} = P{Zj ~FI(y)} = F;[FI(y»).
(ii): If F; = h,(F) and the F;' are on the same orbit, so that F;' = F;U- I),

then F;' = hj(F') with F' = F(F 1
) . Conversely, if F; = hj(F), F;' = hj(F'),

then F;' = F;U- I ) with f= F' -I(F).)

32. Under the assumptions of the preceding problem, if F; = h,(F), the distribu­
tion of the ranks TI, . . . , TN of ZI' .. . ' ZN depends only on the h i r not on F.
If the hj are differentiable, the distribution of the T; is given by

(61) P{T
1
=tl, ... ,TN=t

N}
= E[h;(l{I,J . . hN(l{'N))]

N! '

where l{ 1) < . . . < l{ N) is an ordered sample of size N from the uniform
distribution U(O,l).
[The left-hand side of (61) is the probability that of the quantities
F(Zl)' . .. ' F(ZN)' the ith one is the r.th smallest for i = 1, . . . , N. This is
given by J...Jhi (YI) ... hN(YN) dy integrated over the region in which Y; is
the t, th smallest of the y's for i = 1, . . . , N. The proof is completed as in
Problem 29.)

33. Distribution of orderstatistics.

(i) If ZI' . .. ' ZN is a sample from a cumulative distribution function F
with density f, the joint density of 1'; = Z(5,l' i = 1, ... , n, is

N!f(YI) · · · f(y,,)

(62) (Sl - 1)!(s2 - Sl - I)! . . . (N - s,,)!

X[F(YI»)',-I[F(Y2) - F(YI»)" -5,-I .. . [1 - F(y,,)]N -5.

for YI < . . . < y".

(ii) For the particular case that the Z 's are a sample from the uniform
distribution on (0, 1), this reduces to

(63)
N!

(SI - 1)!(s2 - Sl - l)!. . . (N - s,,)!

5, - I ( ) 5,- 5, - 1 (1 ) N - 5.
YI Y2 - YI . . . - Y" .

For n = 1, (63) is the density of the beta-distribution B,.N-s+I' which
therefore is the distribution of the single order statistic Z(s) from U(O,l).
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(iii) Let the distribution of YI, . .. , Y" be given by (63), and let Vi be defined
by Y, = ViVi+ I'" v" (or i = 1, .. . , n. Then the joint distribution of the
Vi is

N! n

(SI _ 1)!. . .(N _ )' n v:,-I(1 '- v) S,+,-s,-1
S" • ,=1 '

(S,,+I = N + 1),

so that the Vi are independently distributed according to the beta-distri­

bution Bs,.s'+1<s, :

[(i): If YI = Z(S'» ' ''' y" = Z( Sn) and Y,,+I"'" YN are the remaining Z's in
the original order of their subscripts , the joint density of YI, . . . , Y" is N(N ­
1) .. . (N - n + 1)/ .. . I!(Y,,+I)'" !(YN) dy,,+ I' " dYN integrated over the re­
gion in which SI - 1 of the y 's are < YI' S2 - SI - 1 between YI and Y2 , . . . ,
and N - s; > Y". Consider any set where a particular SI - 1 of the y's is
< Yl' aparticular S2 - SI - 1 of them is between YI and Y2' and so on. There
are N !j(SI - I)! . .. (N - sn)! of these regions, and the integral has the same
value over each of them, namely [F(Yl)]S\-I[F(Y2) - F(YI)]S2 - S\ -I ... [I­
F(y,,)]N- sn . ]

34. (i) If XI"'" Xm and YI, . . . , y" are samples with continuous cumulative
distribution functions F and G = h(F) respectively, and if h is differen­
tiable, the distribution of the ranks SI < .. . < S" of the Y's is given by

(64) P{SI = SI, " " s" = s,,} =
E[ h'{ {{SI»)' " h'{ {{sn))]

(m;:;n)

where {{I) < ... < {{m+,,) is an ordered sample from the uniform
distribution U(O, 1).

(ii) If in particular G = r«, where k is a positive integer, (64) reduces to

(65) P{SI = SI , ... , S" = S" }

= (mk; n) Ii r(Sj + jk - j)
m j-l r(s)

r(Sj+l)

r(Sj+1 + jk - j) .

35. For sufficiently small 0 > 0, the Wilcoxon test at level

a = k!( ~), k a positive integer ,

maximizes the power (among rank tests) against the alternatives (F, G) with
G = (1 - O)F+ OF2

•
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36. An alternative proof of the optimum property of the Wilcoxon test for
detecting a shift in the logistic distribution is obtained from the preceding
problem by equating F(x - 0) with (1 - O)F(x) + OF2(x), neglecting powers
of 0 higher than the first. This leads to the differential equation F - OF' =

(1 - 0) F + 0F2 , the solution of which is the logistic distribution.

37. Let~) be a family of probability measures over (¥, SII), and let ~ be a class
of transformations of the space !!f . Define a class .901 of distributions by
F, E.9Ol if there exists Fo E ~ and f E ~ such that the distribution of f( X)
is Fl when that of X is Fo . If tP is any test satisfying (a) EFotP (X) = a for all
Fo E~, and (b) tP(x) 5 tP[f(x») for all x and all f E ~, then tP is unbiased
for testing ~ against 30; .

38. Let Xl"' " Xm ; Y1, • • • , Y" be samples from a common continuous distribution
F. Then the Wilcoxon statistic U defined in Problem 27 is distributed symmet­
rically about tmn even when m "" n.

39. (i) If Xl" ' " Xm and Y1, • . • , Y" are samples from F(x) and G(y) = F( y
- ~) respectively (F continuous), and D(1) < . .. < D(mll) denote the
ordered differences lj - X;, then

p[ D(kl < t!. < D(mll +l-k)] = Po[k 5 U 5 mn - k),

where U is the statistic defined in Problem 27 and the probability on the
right side is calculated for t!. = O.

(ii) Determine the above confidence interval for t!. when m = n = 6,
the confidence coefficient is ~, and the observations are x :
.113, .212, .249, .522,.709, .788, and y : .221,.433, .724, .913, .917, 1.58.

(iii) For the data of (ii) determine the confidence intervals based on Student's
t for the case that F is normal.

[(i) : DU ) $ a < Du + 1) if and only if VA = mn - i , where VA is the statistic V
of Problem 27 calculated for the observations

Xl ' . .. , Xm ; Yl - t!., . . . , YII - t!. .]

40. (i) Let X, X' and Y, Y' be independent samples of size 2 from continuous
distributions F and G respectively. Then

p = P{ max( X, X') < min( Y, Y')} + P{ max( Y, Y') < min( X, X')}

= t +2/!.,

where t!. = f(F - G)2 d[(F + G)/2].

(ii) t!. = 0 if and only if F = G.



348 INVARIANCE [6.14

[(i): p = 1(1 - F)2 dG2 + 1(1 - G)2 dF2, which after some computation re­
duces to the stated form.
(ii): fj. = 0 implies F(x) = G(x) except on a set N which has measure zero
both under F and G. Suppose that G(xl ) - F(x l ) = 1) > O. Then there exists
Xl) such that G(xo) = F(xo) + h and F(x) < G(x) for Xo :5 X :5 XI ' Since
G(x.) - G(xo) > 0, it follows that fj. > 0.]

41. Continuation .

(i) There exists at every significance level a a test of H: G = F which has
power > a against all continuous alternatives (F, G) with F *" G.

(ii) There does not exist a noncandomized unbiased rank test of H against
all G *" F at level

a=1/(m~n) .

[(i) : let X;, X:; y;, Y;' (i = 1, . . . , n) be independently distributed, the X's with
distribution F, the Y's with distribution G, and let V; = 1 if max(X;, Xf) <
min( y;, Y;') or max(Y;, Y;') < min( X;, Xf), and V; = 0 otherwise. Then E V; has
a binomial distribution with the probability p defined in Problem 40, and the
problem reduces to that of testing p = t against p > t.
(ii): Consider the particular alternatives for which P{ X < Y} is either 1 or 0.]

Section 10

42. (i) Let m and n be the numbers of negative and positive observations among
Z., . .. , ZN' and let SI < . . . < S; denote the ranks of the positive Z's
among IZII,... , IZNI. Consider the N + tN(N - 1) distinct sums Z; + Zj
with i = j as well as i *" j . The Wilcoxon signed rank statistic ESj is
equal to the number of these sums that are positive.

(ii) If the common distribution of the Z's is D, then

E(LS}) = tN(N + 1) - ND(O) - tN(N - 1)ID( -z) dD(z) .

[(i) Let K be the required number of postive sums. Since Z; + Zj is positive
if and only if the Z corresponding to the larger of IZil and IZjl is positive,
K = E~_IE;_IU;j' where U;j = 1 if Zj> 0 and IZil:5 Zj and U;j = 0 other­
wise.]

43. Let ZI' .. . ' ZN be a sample from a distribution with density f(z - 8), where
f( z) is positive for all z and f is symmetric about 0, and let m , n, and the S}
be defined as in the preceding problem.

(i) The distribution of n and the S} is given by

(66) ,P{the number of positive Z 's is n and S. = $1" ' " S; = s; }

= 2.
E

[f( ~rl ) + 0) ...f( ~rm) + O)f( ~'il - 0) ...f( ~s.) - 0)]
2N f( ~l))'" f( ~ N)) ,
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where V(l) < . .. < V( N) is an ordered sample from a distribution with
density 2f( v) for v > 0, and °otherwise.

(ii) The rank test of the hypothesis of symmetry with respect to the origin,
which maximizes the derivative of the power function at 8 = °and hence
maximizes the power for sufficiently small 8 > 0, rejects, under suitable
regularity conditions, when

[

n 1'( V(s) ]
-E L > C.

} -I f( V( Sj))

(iii) In the particular case that f(z) is a normal density with zero mean, the
rejection region of (ii) reduces to I:E(V(s) > C, where V(l) < .. .
< V( N) is an ordered sample from a x-di~tribution with 1 degree of
freedom.

(iv) Determine a density f such that the one-sample Wilcoxon test is
most powerful against the alternatives f(z - 8) for sufficiently small
positive 8.

[(i): Apply Problem 29(i) to find an expression for P{ SI = Sl" ' " S; = s"
given that the number of positive Z's is n }.]

44. An alternative expression for (66) is obtained if the distribution of Z is
characterized by (p, F , G). If then G = h(F) and h is differentiable, the
distribution of n and the S, is given by

( 67)

where {{I) <

pm(1 - pr E[ h'( {{ SI») . . . h'( {{ sn»)] '

< {{N) is an ordered sample from U(O,I).

45. Unbiased tests of symmetry. Let Z\ , . . . , ZN be a sample, and let cf> be any
rank test of the hypothesis of symmetry with respect to the origin such that
Zi ~ z; for all i implies cf>(Zt , . . . , ZN) ~ cf>(zi , . . . , Ztv). Then cf> is unbiased
against the one-sided alternatives that the Z's are stochastically larger than
some random variable that has a symmetric distribution with respect to the
origin .

46. The hypothesis of randomness. Let ZI" ' " ZN be independently distributed
with distributions FI , . .. , FN , and let T; denote the rank of Z, among the Z 's.
For testing the hypothesis of randomness FI = . .. = FN against the alterna­
tives K of an upward trend, namely that Z, is stochastically increasing with i,
consider the rejection regions

( 68)

and

(69)

Lit, > C

LiE( V(t,») > C,
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where V(I) < ... < V(N) is an ordered sample from a standard normal
distribution and where t, is the value taken on by T; .

(i) The second of these tests is most powerful among rank tests against the
normal alternatives F = N(y + i8, 0 2) for sufficientlysmall 8.

(ii) Determine alternatives against which the first test is a most powerful
rank test.

(iii) Both tests are unbiased against the alternatives of an upward trend ; so is
any rank test 1/1 satisfying 1/1 ( ZI' ••• , ZN) ~ 1/1 ( zl' . .. , ZTv) for any two
points for which i < i. Zi < Zj implies z; < z; for all i and j.

[(iii): Apply Problem 37 with rc the class of transformations zj = ZI' z; = /;( Zi)
for i > 1, where Z < f2(Z) < .. . < fN(Z) and each f i is nondecreasing.Tf ~
is the class of N-tuples (FI , • • • , FN ) with FI = . . . = FN , then ~ coincides
with the class K of alternatives.]

47. In the preceding problem let U; j = 1 if (j - i)(Zj - Zi) > 0, and = 0 other­
wise.

(i) The test statistic LiT; can be expressed in terms of the U's through the
relation

N
LiT;= LU-i)U + N(N+1)(N+2)
I- I I<J IJ 6

(ii) The smallest number of steps [in the sense of Problem 27(ii)] by which
(ZI' . .. ' ZN) can be transformed into the ordered sample (Z(II' · · ·' Z(N)
is [N(N-1)/2]-U, where U=Li <jU; j . This suggests U>C as
another rejection region for the preceding problem.

[(i): Let ~ ; = 1 or 0 as z,s Zj or z, > Zj . Then 1j = L~_I~j' and ~j = ii,
1 U 0 0 • • Ex · .. N °T - ..N o..N V 0 for - i j as I <J or I ";?J . pressing i-j _IJ j - i-;=IJi-i=1 ij 1D terms 0

the U's and using the fact that U;j = l1i' the result follows by a simple
calculation .]

48. The hypothesis of independence. Let (XI' YI), . . . , (XN , YN ) be a sample from a
bivariate distribution, and (~1)' ZI)' ... , (~N)' ZN) be the same sample
arranged according to increasing values of the X's, so that the Z's are a
permutation of the Y's. Let R, be the rank of X; among the X's, S, the rank
of 1'; among the Y's, and T; the rank of Z, among the Z's, and consider the
hypothesis of independence of X and Y against the alternatives of positive
regression dependence.

(i) Conditionally, given (X(1)" ' .' X(N), this problem is equivalent to test­
ing the hypothesis of randomness of the Z's against the alternatives of
an upward trend.
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(ii) The test (68) is equivalent to rejecting when the rank correlation coeffi­
cient

[ ( R; - R)( S; - 05) = _~ [( R _ N + 1 ) (s _N + 1 )

V[(R;-R)2[(S;-S)2 N
3-N

I 2 I 2

is too large.

(iii) An alternative expression for the rank correlation coefficient" is

6 '" 2 6 . 21- 3 t...(S;-R;) =1- 3 [(T;-l) .
N -N N -N

(iv) The test U > C of Problem 47(ii) is equivalent to rejecting when Kendall's
r-statistic" L ;<Xij/N(N-1) is too large where V;j is +1 or -1 as
OJ - Y;)( Ai - X;) is positive or negative.

(v) The tests (ii) and (iv) are unbiased against the alternatives of positive
regression dependence.

Section 11

49. In Example 16, a family of sets S(x, y) is a class of equivariant confidence sets
if and only if there exists a set 9t of real numbers such that

S(x,y) = U {(~,7I) :(x-n2+(Y-7I)2=r2} .
re9t

50. Let Xl" ' " XII ; Yl , .. . ,y" be samples from N(~, 11
2) and N( 71 , T

2) respec­
tively. Then the confidence intervals (43) of Chapter 5 for T

2
/11 2

, which can be
written as

[(}j - yf
k[( X; - X)2

T
2

5 25
11

k[(}j _ y)2

[(X; - xf '

are uniformly most accurate equivariant with respect to the smallest group G
containing the transformations X: = aX + b, Y;' = aY + c for all a*" 0, b, c
and the transformation X: = dY;, Y;' = X;/d for all d *" 0.
ICr. Problem 7.]

51. (i) One-sided equivariant confidence limits. Let () be real-valued, and sup­
pose that for each ()o, the problem of testing () 5 ()o against () > ()o (in
the presence of nuisance parameters {;) remains invariant under a group

"For further material on these statistics see Kendall (1970); Aiyar, Guillier, and Albers
(1979); and books on nonparametric inference.
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G90 and that A(80 ) is a UMP invariant acceptance region for this
hypothesis at level a . Let the associated confidence sets S(x) = {8: x E

A(8)} be one-sided intervals .S(x) = {8: ~ (x) s 8}, and suppose they
are equivariant under all G9 and hence under the group G generated by
these. Then the lower confidence limits ~(X) are uniformly most accurate
equivariant at confidence level 1 - a in the sense of minimizing
P9• ,,{~( X) s 8'} for all 8' < 8.

(ii) Let XI' . . " Xn be independently distributed as N(t 0 2). The upper
confidence limits 0

2 ~ L(X; - X)2jCo of Example 5, Chapter 5, are
uniformly most accurate equivariant under the group Xi = X; + c, - 00

< c < 00. They are also equivariant (and hence uniformly most accurate
equivariant) under the larger group Xi = aX; + c, - 00 < a, C < 00.

52. Counterexample. The following example shows that the equivariance of S(x)
assumed in the paragraph following Lemma 5 does not follow from the other
assumptions of this lemma. In Example 8, let n = 1, let G(1) be the group G of
Example 8, and let G(2) be the corresponding group when the roles of Z and
Y = Yl are reversed. For testing H(80 ) : 8 = 80 against 8 '" 80 let G90 be
equal to GO) augmented by the transformation Y' = 80 - (YI - 80 ) when
8 ~ 0, and let G90 be equal to G(2) augmented by the transformation Z' = 80
- (Z - 80 ) when 8> 0. Then there exists a UMP invariant test of H(80 )

under G90 for each 80 , but the associated confidence sets S(x) are not
equivariant under G = {Gs, - 00 < 8 < oo}.

53. (i) Let XI' .. " X; be independently distributed as N(t 0
2), and let 8 = ~jo.

The lower confidence bounds ~ for 8, which at confidence level 1 - a are
uniformly most accurate invariant under the transformations Xi = aX;,
are

8 = CI( .[nX )
- VE(X;-X)2 j ( n - l )

where the function C(8) is determined from a table of noncentral t so
that

(
.[n X )Ps ~ C(8) = 1 - a.

VE(X; - X)2 j(n -1)

(ii) Determine ~ when the x's are 7.6, 21.2, 15.1, 32.0, 19.7, 25.3, 29.1, 18.4
and the confidence level is 1 - a = .95.

54. (i) Let (Xl ' Yl ) , ... , (Xn , y") be a sample from a bivariate normal distribu­
tion, and let

-I ( E(X; - x)( Y; - Y) )
p=C ,
- VE(X; - X)2E(Y; _ y)2
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where C(p) is determined such that

(
[(X;-X)(y;-y) )

Pp ~C{p)
/[(X; - X)2[(y; _ y)2

= 1- a.

353

Then p is a lower confidence limit for the population correlation coeffi­
cient pat confidence level 1 - a; it is uniformly most accurate invariant
with respect to the group of transformations X; = aX; + b, Y;' = cY; + d,
with ac > 0, - 00 < b, d < 00 .

(ii) Determine p at level 1 - a = .95 when the observations are (12.9, .56),
(9.8, .92), (13.1, .42), (12.5,1.01), (8.7, .63), (10.7, .58), (9.3, .72), (11.4, .64).

Section 12

55. In Examples 20 and 21 there do not exist equivariant sets that uniformly
minimize the probability of covering false values.

56. In Example 20, the density p(v) of V = 1/S2 is unimodal .

57. Show that in Example 20,

(i) the confidence sets a2/ S2 E AU with A** given by (40) coincide with
the uniformly most accurate unbiased confidence sets for a 2

;

(ii) if (a, b) is best with respect to (39) for a, then (a r
, br

) is best for o'
(r> 0).

58. Let Xl •. . .• X, be independent N(O,l), and let S2 be inds>endent of the X's
and distributed as X;. Then the distribution of (XI/Sill, . . . • Xr/S..;;) is a
central multivariate t-distribution, and its density is

_ r(HII + r)) ( 1 2) -~(v+r)
p(v1 . · ··.vr ) - r/2 l+-Ev;

('lTII) r(II/2) II

59. The confidence sets (47) are uniformly most accurate equivariant under the
group G defined at the end of Example 22.

60. In Example 23. show that

(i) both sets (55) are intervals;

(ii) the sets given by vp( v) > C coincide with the intervals (42) of Chapter 5.

61. Let Xl •. . .• Xm ; Yl , .. . , y" be independently normally distributed as N( t (2
)

and N( T/, ( 2
) respectively. Determine the equivariant confidence sets for T/ - (

that have smallest Lebesgue measure when

(i) a is known;

(ii) a is unknown.
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62. Generalize the confidence sets of Example 18 to the case that the X; are
Na;, d;( 2 ) where the d's are known constants.

63. Solve the problem corresponding to Example 20 when

(i) Xl" ' " X" is a sample from the exponential density Ea,o), and the
parameter being estimated is 0;

(ii) Xl " '" X" is a sample from the uniform density U(~,~ + T), and the
parameter being estimated is T.

64. Let Xl " ' " x" be a sample from the exponential distribution E( ~, 0) . With
respect to the transformations X[ = bX; + a determine the smallest equiv­
ariant confidence sets

(i) for 0, both when size is defined by Lebesgue measure and by the
equivariant measure (39) ;

(ii) for~ .

65. Let Xi; (j = 1, .. . , n;; i = 1, ... , s) be samples from the exponential distribu­
tion E(~; , 0). Determine the smallest equivariant confidence sets for (~l ' .. . , t)
with respect to the group X[j = bX;j + ai .

Section 13

66. If the confidence sets S(x) are equivariant under the group G, then the
probability P8 {8 E S( X)} of their covering the true value is invariant under
the induced group G.

67. Consider the problem of obtaining a (two-sided) confidence band for an
unknown continuous cumulative distribution function F.

(i) Show that this problem is invariant both under strictly increasing and
strictly decreasing continuous transformations X[ = f( X;), i = 1, .. . , n ,
and determine a maximal invariant with respect to this group.

(ii) Show that the problem is not invariant under the transformation

(

X
X[ = ~ - 1

X; + 1

if IX;I ~ 1,
if 0<X;<1,
if -1 < X; < O.

[(ii): For this transformation g, the set g*S(x) is no longer a band.]

Additional Problems

68. Let Xl" '" x" be a sample from a distribution with density

1 (Xl) (XII)-;;;f ~ ..·f ~ ,
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where I(x) is either zero for x < 0 or symmetric about zero. The most
powerful scale-invariant test for testing H: 1=10 against K : I = II rejects
when

LX! un-III (ux I) .. . II (ux n) du
o > c.

!oooun -I/o(ux l ) ... /o(uxn) do

69. Normal us. double exponential. For lo(x) = e-
x 2

/
2/ & , II(x) = e-1xl/ 2,

the test of the preceding problem reduces to rejecting when /r.x;/r.lxil < c.
(Hogg, 1972.)

Note . The corresponding test when both location and scale are unknown is
obtained in Uthoff (1973). Testing normality against Cauchy alternatives is
discussed by Franck (1981).

70. Uniform us. triangular.

(i) For lo( x) = 1 (0 < x < I), II(x) = 2x (0 < x < I) , the test of Problem
68 reduces to rejecting when T = x(nJ!:x < C.

(ii) Under 10' the statistic 2n log T is distributed as X~ n '

(Quesenberry and Starbuck, 1976.)

71. Show that the test of Problem 5(i) reduces to

(i) [x( nl - x(1)l/S < c for normal vs, uniform;
(ii) [x - xod/S < c for normal vs. exponential;

(iii) [x - x o d / [x(n) - xod < c for uniform vs. exponential.

(Uthoff,1970 .)
Note . When testing for normality, one is typically not interested in distinguishing
the normal from some other given shape but would like to know more generally
whether the data are or are not consonant with a normal distribution. This is a
special case of the problem of testing for goodness of fit, briefly referred to at the
end of Section 13. Methods particularly suitable for testing normality are discussed
for example in Shapiro, Wilk, and Chen (1968), Hegazy and Green (1975),
D'Agostino (1982), Hall and Welsh (1983), and Spiegelhalter (1983), and for testing
exponentiality in Galambos (1982), Brain and Shapiro (1983), Spiegelhalter (1983),
Deshpande (1983), Doksum and Yandell (1984), and Spurrier (1984). See also Kent
and Quesenberry (1982).

72. The UMP invariant test of Problem 69 is also UMP similar.
[Consider the problem of testing a = 0 vs. a > 0 in the two-parameter
exponential family with density

(
a I-a)

C(a,T)exp --2 LX; - --Llx;! ,
2T T

O:s;a<1.]
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Note . For the analogous result for the tests of Problem 70, 71, see
Quesenberry and Starbuck (1976).

73. The following UMP unbiased tests of Chapter 5 are also UMP invariant under
change in scale:

(i) The test of g :=; go in a gamma distribution (Problem 73 of Chapter 5).

(ii) The test of bl :=; b2 in Problem 75(i) of Chapter 5.

74. Let XI"'" x" be a sample from Na, a2
) , and consider the UMP invariant

level-a test of H: ~/a :=; 80 (Section 6.4). Let an(F) be the actual significance
level of this test when XI" ' " X; is a sample from a distribution F with
E(X,) = t Var(X,) = a2 < 00 . Then the relation an(F) -> a will not in
general hold unless 80 = o.
[Use the fact that the joint distribution of j; (X -~) and j; (S2 - a2) tends
to the bivariate normal distribution with mean zero and covariance matrix

(
a2 J.L3)
J.L3 J.L4 - a2 '

where S2 = E(X, - X)2/n and J.Lk = E(X, - ~)k. See for example Serfling
(1980).]

75. The totality of permutations of K distinct numbers al"' " a K for varying
a., • . . , aK can be represented as a subset CK of Euclidean K-space RK, and
the group G of Example 8 as the union of C2 , C3 , • •• • Let I' be the measure
over G which assigns to a subset B of G the value Er_2 J.L K(B () CK), where
J.LK denotes Lebesgue measure in EK • Give an example of a set BeG and an
element g E G such that I'(B) > 0 but I'(Bg) = O.
[If a, b, c, d are distinct numbers, the permutations g, g' taking (a , b) into
(b,a) and (c, d) into (d, c) respectively are points in C2 , but gg' is a point in
C4 · ]

76. The Kolmogorov test (56) for testing H : F = Fo (Fo continuous) is consistent
against any alternative FI ~ Fo, that is, its power against any fixed FI tends to
1 as n -> 00.

[The critical value /). = /).n of (56) corresponding to a given a satisfies j; /). -> K
for some K > 0 as n -> 00 . Let a be any value for which FI ( a) ~ Fo (a), and
usethefactsthat(a) IFo(a) - Tx(a)l:=; supIFo(u) - Tx(u)land(b) if F= FI ,

the statistic Tx(a) has a binomial distribution with success probability p =

F)(a) ~ Fo(a).] [Massey (1950).]

Note . For exact power calculations in both the continuous and discrete case,
see for example Niederhausen (1981) and GIeser (1985).

77. (i) Let XI' . . . , Xm ; YI , . . . , Y,. be LLd. according to a continuous distribution
F, let the ranks of the Y's be SI < . .. < Sn' and let T = h(SI)
+ .. . +h(SII)' Then if either m = n or h(s) + h(N + 1 - s) is inde­
pendent of s, the distribution of T is symmetric about nE~_lh(i)/N.
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(ii) Show that the two-sample Wilcoxon and normal-scores statistics are
symmetrically distributed under H, and determine their centers of sym­
metry.

[(i): Let S: = N + 1 - S;, and use the fact that T' = 'Lh(Sj) has the same
distribution under HasT.]
Note . The following problems explore the relationship between pivotal quan­
tities and equivariant confidence sets. For more details see Arnold (1984).
Let X be distributed according Pe." , and consider confidence sets for 8 that
are equivariant under a group G*, as in Section 11. If w is the set of possible
8-values, define a group Gon flEx w by g(8, x) = (gx, g8).

78. Let V( X, 8) be any pivotal quantity [i.e, have a fixed probability distribution
independent of (8, ~)], and let B be any set in the range space of V with
probability P(V E B) = 1 - Q . Then the sets S(x) defined by

(70) 8 E S( x) if and only if V( 8, x) E B

are confidence sets for 8 with confidence coefficient 1 - Q .

79. (i) If Gis transitive over flEx w and V(X, 8) is maximal invariant under G,
then V( X, 0) is pivotal.

(ii) By (i), any quantity W( X, 8) which is invariant under G is pivotal; give
an example showing that the converse need not be true.

80. Under the assumptions of the preceding problem, the confidence set S( x) is
equivariant under G*.

81. Under the assumptions of Problem 79, suppose that a family of confidence sets
S( x) is equivariant under G*. Then there exists a set B in the range space of
the pivotal V such that (70) holds. In this sense, all equivariant confidence sets
can be obtained from pivotals.
[Let A be the subset of flEx w given by A = {(x, 8): 8 E S(x)} . Show that
gA = A, so that any orbit of G is either in A or in the complement of A. Let
the maximal invariant V( x, 8) be represented as in Section 2 by a uniquely
defined point on each orbit, and let B be the set of these points whose orbits
are in A. Then V(x , 8) E B if and only if (x, 8) EA .]

Note. Problem 80 provides a simple check of the equivariance of confidence
sets. In Example 21, for instance, the confidence sets (41) are based on the
pivotal vector (XI - ~I" .. , X, - t), and hence are equivariant.

15. REFERENCES
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CHAPTER 7

Linear Hypotheses

1. A CANONICAL FORM

Many testing problems concern the means of normal distributions and are
special cases of the following general univariate linear hypothesis. Let
Xl ' . . . , X" be independently normally distributed with means ~l" "'~"

and common variance 0'2. The vector of means" ~ is known to lie in a given
s-dimensional linear subspace IT0 (s < n), and the hypothesis H is to be
tested that ~ lies in a given (s - r )-dimensional subspace IT", of ITo
(r :::;; s). -

Example 1. In the two-sample problem of testing equality of two normal means
(considered with a different notation in Chapter 5, Section 3), it is given that ~; = ~

for i = 1, . . .• n t and t = "I for i = n\ + 1, . .. • n\ + n2' and the hypothesis to be
tested is "I = f The space ITo is then the space of vectors

(~" '.,~,"I •. . . ,"I) =Hl, .. . ,I,O•... ,O) +"1(0, . .. ,0.1 •. . .• 1)

spanned by (1, . . . •1,0•. . . ,0) and (0, .. . , 0, 1, . . . •1), so that s = 2. Similarly. IT", is
the set of all vectors a.....~) = H1 •. . . •1), and hence r = 1.

Another hypothesis that can be tested in this situation is "I = ~ = O. The space
IT w is then the origin, s - r = 0 and hence r = 2. The more general hypothesis
~ = ~()' "I = "10 is not a linear hypothesis, since ITw does not contain the origin.
However, it reduces to the previous case through the transformation X: = X; - ~o

(i = 1, . . .• n l ) , X: = Xi - "10 (i = n\ + 1•. . . • n\ + n2)'

Example 2. The regression problem of Chapter 5. Section 8, is essentially a
linear hypothesis. Changing the notation to make it conform with that of the present
section. let ~; = a + Pt; , where a,p are unknown, and the t, known and not all
equal. Since ITo is the space of all vectors a(l , . . . , I ) + P(1t, . . . , tIl) ' it has
dimension s = 2. The hypothesis to be tested may be a = 13 = 0 (r = 2) or it may

'Throughout this chapter, a fixed coordinatesystemis assumed given in n-space. A vector
with components ~l"' " t, is denoted by t and an n X 1 column matrix with elements
E1• • • • • En by E. -

365
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only specify that one of the parameters is zero (r = 1). The more general hypotheses
a = an. fJ = fJo can be reduced to the previous case by letting X: = X; - ao - fJot;.
since then E( Xf) = a' + fJ't; with a' = a - ao, fJ' = fJ - fJo ·

Higher polynomial regression and regression in several variables also fall under
the linear-hypothesis scheme. Thus if ~; = a + fJt; + yt; or more generally g; = a
+ fJt; + yU;, where the t, and U; are known, it can be tested whether one or more
of the regression coefficients a, fl, y are zero, and by transforming to the variables
X;' - an - fJot; - You; also whether these coefficients have specified values other
than zero.

In the general case, the hypothesis can be given a simple form by making
an orthogonal transformation to variables Y1, · · · , Yn

(1 ) Y= ex, e=(C;j) i,j=l, ... ,n ,

such that the first s row vectors f1' " ., f s of the matrix e span II o, with
£r + 1" ' " £s spanning II .... Then Ys + 1 = = Yn = 0 if and only if X is
in II 0 ' and Y1 = . .. = Yr = ~+ 1 = = Yn = 0 if and only if X
is in II ... . Let 1/; = E(Y;), so that 1/ = e~. Then since ~ lies in II o a priori
and in II ... under H, it follows that 1/; = 0 for i = s+ 1, ... , n in both
cases, and 1/; = 0 for i = 1, ... , r when H is true. Finally, since the
transformation is orthogonal, the variables Y1, • • • , Yn are again indepen­
dently normally distributed with common variance a2, and the problem
reduces to the following canonical form.

The variables Y1" ' " Yn are independently, normally distributed with
common variance a 2 and means E(Y;) = 1/; for i = 1, ... , sand E(Y;) = 0
for i = s + 1, . . . , n, so that their joint density is

(2) I; )n exp [- -A(i: (y;- 1/;)2 + . i: y?)].
'IT a a ,=1 ,=s+l

The 1/'s and a 2 are unknown, and the hypothesis to be tested is

(3) H: 1/1 = . . . = 1/ r = 0 (r~s<n).

Example 3. To illustrate the determination of the transformation (1), consider
once more the regression model t = a + fJt; of Example 2. It was seen there that
II n is spanned by (1, ... ,1) and (t1,. .. , til) ' If the hypothesis being tested is fl = 0,
II '" is the one-dimensional space spanned by the first of these vectors. The row
vector £2 is in II", and oflength 1, and hence £2 = (1/ In, ...,1/ In). Since £1 is
in II n• of length 1, and orthogonal to £2' its coordinates are of the form a + bt.,
i = 1, .. . • n. where a and b are determined by the conditions L( a + bt;) = 0 and
L(a + ht;)2 = 1. The solutions of these equations are a = < bi, b =
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1/ Vr..{ t, - i)2 , and therefore a + bt, = (r, - i)/ Vr..{ tj - i)2 , and

r..X;(/, - i) r..{X; - X)(l i - i)
Y, = = .

Vr..{ Ij - i)2 Vr..{ Ii - i)2

The remaining row vectors of C can be taken to be any set of orthogonal unit
vectors which are orthogonal to TIn ; it turns out not to be necessary to determine
them explicitly.

If the hypothesis to be tested is a = 0, TI", is spanned by (11" ' " I,,), so that the
i th coordinate of £2 is IJ,;r:;J . The coordinates of £. are again of the form
a + bt, with a and b now determined by the equations r.. a + bl I = °and

r..(a + bl,)2 = 1. The solutions are b = -anijLI], a = r..IJ/nr..{lj - i)2, and
therefore

Y1 =
_nL_I"----]_ (_ i )

L{t
i-i)2

X-LIJLtiX; ,

In the case of the hypothesis a = f3 = 0, TI", is the origin and £.' £2 can be taken as
any two orthogonal unit vectors in TIn. One possible choice is that appropriate to
the ~othesis f3 = 0, in which case Y. is the linear function given there and Y2
= -In X.

The general linear-hypothesis problem in terms of the Y's remains
invariant under the group G1 of transformations Y;' = Y; + c; for i = r +
1, . . . ,s; Y;' = Y; for i = 1, ... , r; s + 1, .. . , n. This leaves Y1, . · . , Yr and
Y, + I' . . . , Y" as maximal invariants. Another group of transformations leav­
ing the problem invariant is the group G2 of all orthogonal transformations
of YI , • . . , Yr' The middle set of variables having been eliminated, it follows
from Chapter 6, Example l(iii), that a maximal invariant under G2 is
U = [~= 1y;2, Ys+1" .. , Y". This can be reduced to U and V = [7=s+ 1y;2 by
sufficiency. Finally, the problem also remains invariant under the group G3

of scale changes Y;' = cY;, c '* 0, for i = 1, ... , n. In the space of U and V
this induces the transformation U· = c2U, V· = c2V, under which W =
U/ V is maximal invariant. Thus the principle of invariance reduces the data
to the single statistic"

(4) W=

r

L y;2
;=1

n

L y;2
;=5+ 1

*A corresponding reduction without assuming normality is discussed by lagers (1980),
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Each of the three transformation groups G; (i = 1,2,3) which lead to the
above reduction induces a corresponding group 0; in the parameter space.
The group 01 consists of the translations 'Il~ = 'Il; + c; (i = r + 1, ... , s),
'Il~ = 'Il; (i = 1, . .. , r), a' = a, which leaves ('Ill" '" 'Ilr , a) as maximal in­
variants. Since any orthogonal transformation of Y1, • • • , Y, induces the
same transformation on 'Ill"' " 'Ilr and leaves a2 unchanged, a maximal
invariant under O2 is O::~-l'1l;, ( 2

) . Finally the elements of 03 are the
transformations 'Il~ = c'll;, a' = Icla, and hence a maximal invariant with
respect to the totality of these transformations is

(5)

r

1: 'Il;
1/12=~

a 2

It follows from Theorem 3 of Chapter 6 that the distribution of W depends
only on 1/12, so that the principle of invariance reduces the problem to that
of testing the simple hypothesis H: 1/1 = O. More precisely, the probability
density of W is (cf. Problems 2 and 3)

w~r-1+k

(1 + w)i<r+n-s)+k '
PI/- ( w) = e- ~¥-2 ~ ( t1/l

2
) kc: Ck-~

k-O ... -:---;----(6)

where

ck =
r[Hr+n-s)+k]

rOr + k)r[t(n - s)] .

For any 1/11 the ratio p¥-\(w)/Po(w) is an increasing function of w, and it
follows from the Neyman-Pearson fundamental lemma that the most
powerful invariant test for testing 1/1 = 0 against 1/1 = 1/11 rejects when W is
too large, or equivalently when

(7)

r

1: Y//r
; - 1

n

1: y;2/(n - s)
;-s+l

The cutoff point C is determined so that the probability of rejection is a
when 1/1 = o. Since in this case W· is the ratio of two independent X2

variables, each divided by the number of its degrees of freedom, the
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distribution of W* is the F-distribution with r and n - s degrees of
freedom, and hence C is determined by

(8) 100 F, n-s(Y) dy = a.
c '

The test is independent of \fI1' and hence is UMP among all invariant tests.
By Theorem 5 of Chapter 6, it is also UMP among all tests whose power
function depends only on \fI2.

The rejection region (7) can also be expressed in the form

(9)

r

Ey?
i-I

, n

El'?+ E Y/
i-I i -s+l

When \fI = 0, the left-hand side is distributed according to the beta-distribu­
tion with rand n - s degrees of freedom [defined through (24) of Chapter
5], so that C' is determined by

(10) f;,B~r. ~(n-s)( y) dy = a.

(11)

For an alternative value of \fI, the left-hand side of (9) is distributed
according to the noncentral beta-distribution with noncentrality parameter
\fI , the density of which is (Problem 3)

( 1 2)k

( )
_ _ ~,y2 ~ 2 \fI ( )

g,y Y - e c: k' B~r+k.~(n-s) Y .
k-O .

The power of the test against an alternative \fI is therefore*

fJ (\fI) = 11
g,y(y ) dy.

c'

In the particular case r = 1, the rejection region (7) reduces to

(12)
IY11

n

E Y?/(n - s)
i - s+ l

*Tables of the power of the F·test are provided by Tiku (1967,1972) [reprinted in Graybill
(1976»)and Cohen (1977); charts are given in Pearson and Hartley (1972). Various approxima­
tions are discussed by Johnson and Kotz (1970).
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This is a two-sided t-test, which by the theory of Chapter 5 (see for example
Problem 5 of that chapter) is UMP unbiased. On the other hand, no UMP
unbiased test exists for r > l.

The F-test (7) shares the admissibility properties of the two-sided r-test
discussed in Chapter 6, Section 7. In particular, the test is admissible against
distant alternatives 1/12 ~ 1/Ii (Problem 6) and against nearby alternatives
1/12 s 1/1~ (Problem 7). It was shown by Lehmann and Stein (1953) that the
test is in fact admissible against the alternatives 1/12 = 1/Ii for any 1/11 and
hence against all invariant alternatives.

2. LINEAR HYPOTHESES AND LEAST SQUARES

In applications to specific problems it is usually not convenient to carry out
the reduction to canonical form explicitly. The test statistic W can be
expressed in terms of the original variables by noting that E7-s+1Y? is the
minimum value of

s n n

1: (Y; -1l;)2 + 1: y;2 = 1: [Y; - E(Y;)]2
;-1 ;-s+1 ;=1

under unrestricted variation of the ll'S. Also, since the transformation
y = ex is orthogonal and orthogonal transformations leave distances
unchanged,

n n

1: [Y; - E(Y;)]2 = L (X; - ~;)2 .
; - 1 ; -1

Furthermore, there is a 1 : 1 correspondence between the totality of s-tuples
(1l1' . . . ' lls) and the totality of vectors gin ITo. Hence

(13)
n n

1: y;2 = 1: (X; - ~y,
;-s+1 ;=1

where the ~'s are the least-squares estimates of the ~'s under 0, that is, the
values that minimize E7_1(X; - ~y subject to ~ in ITo.

In the same way it is seen that -

r

LY/+
; - 1

n n :It 2

1: Y/ = L (X; - ~;)
;-s+1 ;=1

where the ~'s are the values that minimize E(X; - ~;)2 subject to ~ in IT",.
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nn

o

Figure 1

The test (7) therefore becomes

(14) W* =
[

n A 2 n ]
L(Xi-~i) - .L(Xi-~i)2 /r
,=1 , -I C

n > ,
L (Xi - ~i)2/(n - s )
i-I

where C is determined by (8). Geometrically the vectors ~ and ~ are thC%.
projections of %on ITo and IT"" so that the triangle formed by s.t. and ~
has a right angle at ~. (Figure 1.) Thus the denominator and numerator of
W *, except for the-factors 1/(n - s) and 1/~, are the squares of the
distances between %and ~ and between ~ and ~ respectively. An alterna-
tive expression for w* is therefore - -

(15)

n A

L(t-£J/r
i-I

n
~ A 2
L (Xi - ~i) /(n - s)
i=1

It is desirable to express also the noncentrality parameter ",2 = r.~_11/;;(]2

in terms of the ~'s. Now X = C- 1y, ~ = C- I 1/, and

(16)
, n A 2 n

L l? = L ( Xi - ~i) - L (Xi - tY·
i = 1 i ~ 1 i=I

If the right-hand side of (16) is denoted by f( X), it follows that r.~-I1/7 =
fa)·
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A slight generalization of a linear hypothesis is the inhomogeneous
hypothesis which specifies for the vector of means ~ a subhyperplane II ~ of
IIo not passing through the origin. Let II", denote the subspace of IIo
which passes through the origin and is parallel to II~ . If ~o is any point of
II~ , the set II~ consists of the totality of points ~ = ~* -+= ~o as ~* ranges
over II", . Applying the transformation (1) with respect to II-"" the-vector of
means 1/ for ~ E II~ is then given by 1/ = C~ = C~* + C~o in the canoni­
cal form (2), -and the totality of these vectors is therefore characterized by
the equations 1/1 = 1/~, . .. , 1/, = 1/~, 1/s+ 1 = ... = 1/n = .0, where 1/? is the
ith coordinate of C~o. In the canonical form, the inhomogeneous hypothesis
~ E II~ therefore becomes 1/;= 1/? (i = 1, ... , r). This reduces to the homo­
geneous case on replacing Y; with Y; - 1/?' and it follows from (7) that the
UMP invariant test has the rejection region

(17)

r

L (Y; - 1/?)2/r
;-1
Ii"

L y;2/(n - s )
;-s+l

and that the noncentrality parameter is 1/12 = L~_l(1/ ; - 1/?)2/o2.

In applications it is usually most convenient to apply the transformation
X; - ~? directly to (14) or (15). It follows from (17) that such a transforma­
tion always leaves the denominator unchanged. This can also be seen
geometrically, since the transformation is a translation of n-space parallel to
IIo and therefore leaves the distance [(X; - ~y from X to II o un­
changed. The noncentrality parameter can be computed as before by
replacing X with ~ in the transformed numerator (16).

Some examples of linear hypotheses, all with r = 1, were already dis­
cussed in Chapter 5. The following treats two of these from the present
point of view.

Example 4. Let Xl" ' " Xn be independently, normally distributed with com­
mon mean p, and variance 0 2, and consider the hypothesis H: p, = O. Here ITo is
the line gl = . . . = gn' IT", is the origin, and s and r are both equal to 1. From the
identity

'" 2 '" -2 - 2L, ( X; - p,) = L, ( X; - X) + n( X - p,) , (_ X)X=L-;;

it is seen that ~i = X, while t = O. The test statistic and 1J!2 are therefore given by

nX2 np,2
W= and 1/-2=- .

E(X; - X)2 0
2
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Under the hypothesis, the distribution of (n - I)W is that of the square of a
variable having Student's r-distribution with n - 1 degrees of freedom.

Example 5. In the two-sample problem considered in Example 1, the sum of
squares

n. n

L(X;_~)2+ L (X;_1)2
i -I i-n.+1

is minimized by

nl X
~ = X!\)= L -l. ,

i-I n\

while under the hypothesis 1) - ~ = 0

A n X
1) = X!2) = L t:

i -n\ +1 n2

A A vii)~ = ~ = 1'= n\A; + n2X!2)
n

The numerator of the test statistic (15), is therefore

n\(X!\) - 1')2 + n2(X!2) - 1')2 = n\n2 [X!2) - X!\)f
n\ + n2

The more general hypothesis 1) - ~ = (Jo reduces to the previous case on replacing
X; with X; - (Jo for i = n\ + 1, .. . , n, and is therefore rejected when

(X!2) - X!\) - (Jo)2/( 2- + 2-)
n\ n2

nl n ~
I:(X;-X!\»)2+ L (X;_X!2»)2/(n l+n2- 2)

i - I i - n\ + 1

The noncentrality parameter is 1jI2 = (1) - ~ - (Jo)2/(I/nl + l/n2)a2. Under the
hypothesis, the square root of the test statistic has the r-distribution with nl + n2 - 2
degrees of freedom.

A

Explicit formulae for the £i and £i can be obtained by introducing a
coordinate system into the parameter space. Suppose in such a system, ITn
is defined by the equations

s

~i = L aijPj ,

j -I

i = 1, ... , n,
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or, in matrix notation,

(18)

LINEAR HYPOTHESES

~ = A B ,
nxl nXssxl

[7.3

where A is known and of rank s, and fJl" '" fJs are unknown parameters. If
PI" '" Ps are the least-squares es~mators minimizing L;(X; - Lja;jfJj )2, it
is seen by differentiation that the fJj are the solutions of the equations

A'AfJ = A'X

and hence are given by

P= (A'A)-lA'X.

(That A'A is nonsingular is shown in Lemma 1 of Chapter 8.) Thus, we
obtain

~ = A(A'A)-lA'X.

Since ~ = ~(X) is the projection of X into the space ITo spanned by the s
columns of A, the formula ~ = A(A'A)-1A'X shows that P = A(A'A)-lA'
has the property claimed for it in Example 3 of Chapter 6, that for any X in
R", PX is the projection of X into ITo.

3. TESTS OF HOMOGENEIlY

The UMP invariant test obtained in the preceding section for testing the
equality of the means of two normal distributions with common variance is
also UMP unbiased (Section 3 of Chapter 5). However, when a number of
populations greater than 2 is to be tested for homogeneity of means, a UMP
unbiased test no longer exists, so that invariance considerations lead to a
new result. Let X ;j (j = 1, . . . , n;; i = 1, . . . , s) be independently distrib­
uted as N(p.;, (J2), and consider the hypothesis

H :P.l= .. . =p.s·

This arises, for example, in the comparison of a number of different
treatments, processes, varieties, or locations, when one wishes to test whether
these differences have any effect on the outcome X. It may arise more
generally in any situation involving a one-way classification of the outcomes,
that is, in which the outcomes are classified according to a single factor.
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The hypothesis H is a linear hypothesis with r = s - 1, with ITo given
by the equations ~;i = ~;k for j, k = 1, ... , n, i = 1, . .. , s and with IT", the
line on which all n = En; coordinates ~;i are equal. We have

LL(X;i - IL;)2 = LL(X;i - X;.)2 + Ln;(X;.- ILY

with X;.= E'J'=lXij/n;, and hence ~;i = X; .. Also,

LL(X;i - IL)2 = LL(X;i - X.r + n(X..- IL)2

with X..= EEXij/n, so that t, = X.. . Using the form (15) of W·, the test
therefore becomes

(19) W· =
Ln;(X;.- x .i/(s - 1)

2 > C.
LL(X;i - X;.) /(n - s)

The noncentrality parameter is

0
2

1/;2 = Ln;(IL; - ILi

with

LnjILj
IL.= -n-'

The sum of squares in both numerator and denominator of (19) admits
three interpretations, which are closely related: (i) as the two components in
the decomposition of the total variation

LL(X;i - X..)2 = LL(Xji - Xj.)2+ Lnj(Xj.- x .i,

of which the first represents the variation within, and the second the
variation between populations; (ii) as a basis, through the test (19), for
comparing these two sources of variation; (iii) as estimates of their expected
values, (n - S)02 and (s - 1)02+ En;(ILj - IL.)2 (Problem 13). This
breakdown of the total variation, together with the various interpretations
of the components, is an example of an analysis of variance,* which will be
applied to more complex problems in the succeeding sections.

"For conditions under which such a breakdown is possible, see Albert (1976).
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We shall now digress for a moment from the linear hypothesis scheme to
consider the hypothesis of equality of variances when the variables Xij are
distributed as N(p.;, a/), i = 1, ... , s. A UMP unbiased test of this hy­
pothesis was obtained in Chapter 5, Section 3, for the case s = 2, but does
not exist for s > 2 (see, for example, Problem 6 of Chapter 4). Unfor­
tunately, neither is there available for this problem a group for which there
exists a UMP invariant test. To obtain a test, we shall now give a
large-sample approximation, which for sufficiently large n essentially re­
duces the problem to that of testing the equality of s means.

It is convenient first to reduce the observations to the set of sufficient
statistics X;.= LjXij/n; and S/ = L/Xij - X;.)2, i = 1, ... , s. The hy­
pothesis

H: a1 = ... = as

remains invariant under the transformations X;) = Xij + C;, which in the
space of sufficient statistics induce the transformations Sj2 = S/, Xj.= X;.
+ c; . A set of maximal invariants under this group are sf,...,s}. Each
statistic S/ is the sum of squares of n; - 1 independent normal variables
with zero mean and variance a/, and it follows from the central limit
theorem that for large n;

(
s/ 2)

In; - 1 n; _ 1 - a;

is approximately distributed as N(O, 2a;4). This approximation is inconveni­
ent for the present purpose, since the unknown parameters a; enter not only
into the mean but also the variance of the limiting distribution.

The difficulty can be avoided through the use of a suitable variance­
stabilizing transformation. Such transformations can be obtained with the
help of Theorem 5 of Chapter 5, which shows that if .;n(Tn - fJ) is
asymptotically normal with variance 1'2(fJ), then {n[f(Tn ) - f(fJ)] is
asymptotically normal with variance 1' 2( fJ)[f'( fJ)V Thus f is variance­
stabilizing [i.e., the distribution of f(Tn ) has approximately constant vari­
ance] if f'(fJ) is proportional to 1/1'(fJ).

This applies to the present case with n = n; - 1, Tn = S//(n; - 1),
fJ = a/, and 1'2 = 2fJ 2

, and leads to the transformation f(fJ) = log fJ for
which the derivative is proportional to l/fJ. The limiting distribution of
In; - 1 {log[S//(n; - 1)] -loga/} is the normal distribution with zero
mean and variance 2, so that for large n, the variable Z; = 10g(S//tn, - 1)]
has the approximate distribution N(t; , ar) with t; = log a/,ar = 2/
(n; - 1).
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The problem is now reduced to that of testing the equality of means of s
independent variables Z; distributed as N(r; , 0;) where the 0; are known.
In the particular case that the n, are equal, the variances 0; are equal and
the asymptotic problem is a simpler version (in that the variance is known)
of the problem considered at the beginning of the section . The hypothesis
r1 = . .. = rs is invariant under addition of a common constant to each of
the Z's and under orthogonal transformations of the hyperplanes which are
perpendicular to the line Z1 = .. . = Zs' The UMP invariant rejection
region is then

1:{Z;-2)2 >C
~

a

where 0 2 is the common variance of the Z; and where C is determined by

(20) 100 2
Xs-1(Y) dy = a.

c

In the more general case of unequal 0;, the problem reduces to a linear
hypothesis with known variance through the transformation Z: = Z;/o ;,
and the UMP invariant test under a suitable group of linear transformations
rejects when

(21) 1: -;(z;_1:Z/0!)2
= 1:( Z;)2

0; 1:1/0j 0;

2)2(1: Z/ 0 j > C
1: (1/0])

(see Problem 14), where C is again determined by (20). This rejection
region, which is UMP invariant for testing r1 = . . . = rs in the limiting
distribution, can then be said to have this property asymptotically for
testing the original hypothesis H: a l = .. . = as.

When applying the principle of invariance, it is important to make sure
that the underlying symmetry assumptions really are satisfied. In the prob­
lem of testing the equality of a number of normal means P.l"' " P.s for
example, all parameter points, which have the same value of 1/12 = En ;( p. ; ­
p. .)2/ a 2, are identified under the principle of invariance. This is appropriate
only when these alternatives can be considered as being equidistant from the
hypothesis. In particular, it should then be immaterial whether the given
value of 1/12 is built up by a number of small contributions or a single large
one. Situations where instead the main emphasis is on the detection of large
individual deviations do not possess the required symmetry, and the test
based on (19) need no longer be optimum.
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The robustness properties against nonnormality of the t-test, and the
nonrobustness of the F-test for variances, found in Chapter 5, Section 4 for
the two-sample problem, carry over to the comparison of more than two
means or variances. Specifically, the size and power of the F-test (19) of
H : Pl = ... = Ps is robust for large n; if the Xij (j = 1, . .. , n i ) are
samples from distributions F(x - Pi) where F is an arbitrary distribution
with finite variance. [A discussion of the corresponding permutation test
with references to the literature can be found for example in Robinson
(1983). For an elementary treatment see Edgington (1980).] On the other
hand, the test for equality of variances described above (or Bartlett's test,'
which is the classical test for this problem) is highly sensitive to the
assumption of normality, and therefore is rarely appropriate. More robust
tests for this latter hypothesis are reviewed in Conover, Johnson, and
Johnson (1981).

That the size of the test (19) is robust against nonnormality follows from
the fact that if the Xii' j = 1, , n i ' are independent samples from
F(x - Pi)' then under H : Pl = = Ps

(i) the distribution of the numerator of W*, multiplied by (s - 1)/(12,
tends to the X;-l distribution provided n;/n ..... Pi > 0 for all i and

(ii) the denominator of w* tends in probability to (12.

To see (i), assume without loss of generality that Pl = . . . = Ps = O.
Then the variables [iI;Xi' are independent, each with a distribution which
by the central limit theorem tends to N(O, (12) as ni ..... 00 for any F with
finite variance. It follows (see Section 5.1, Theorem 7 of TPE) that for any
function h, the limit distribution of h(fl;Xl""" jn; Xs ' ) is the distribu­
tion of h(Ul , .. . , 0.) where Ul , ... , 0. are independent N(O, (12), provided

{(Ul, . . . ,u.) :h(ul , . .. ,US ) =c}

has Lebesgue measure 0 for any c. Suppose that n;/n = Pi as n l , .. . , ns
tend to infinity. This condition is satisfied for

h(fl;xl.,. . . ,jn;xS ' ) = Ln;(X;.- x.l,

and the limit distribution of the numerator of w* is (for all F with finite
variance) what it is when F is normal, namely (12 times X;-l' A slight
modification shows the result to remain true if n;/n ..... Pi'

t For a discussion of this test. see for example Cyr and Manoukian (1982) and Glaser
(1982).
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Part (ii) is a special case of the following more general result: Let
Xl'.'" X; be independently distributed, X; according to Ftx, - JL;) with
E (X;) = JL; and Var (Xi) = (J 2 < 00, and suppose that for each n the vector
(JLl' ... , JLn) is known to lie in an s-dimensional space ITo with s fixed.
Then the denominator D of (14) tends to (J2 in probability as n ~ 00 .

This can be seen from the canonical form (7) of W -, in which

1 n n [1 n ] 1 s
D = -- L )? = -- - L Y? - -- L y;2

n-si=s+l n-s ni=l n-si=l

and the fact that Ey;21n = EX/In. Since E(Y;) = 0 for i = s + 1, . .. , n,
assume, without loss of generality for the distribution of E7_s+1y;2, that
E(Xi ) = E(Y;) = 0 for all i. Then by the law of large numbers EX/In
tends in probability to E(X/) = (J2. On the other hand, we shall now show
that the second term on the right side of D tends in probability to zero. The
result then follows.

To see this, it is enough to show that each of Y?, .. ., Y.,2 is bounded in
probability. Now Y; = EeU)Xi' where the vectors (e~t), . . . , eJ:») are or­
thogonal and of length 1. Therefore, by the Chebyshev inequality

1 (J2
p{y2> a2) < -E(Le~n)x)2 = _

I - a2 IJ J a2

and this completes the proof.
Another robustness aspect of the s-sample F-test concerns the assump­

tion of a common variance. Here the situation is even worse than in the
two-sample case. If the Xi} are independently distributed as N(JL;, (J/) and
if s > 2, the size of the F-test (19) of H: JLl = . . . = IL s is not asymptoti­
cally robust as n; ~ 00, n;IEn j ~ Pi' regardless of the values of the P;
[Scheffe (1959)]. More appropriate tests for this generalized Behrens-Fisher
problem have been proposed by Welch (1951), James (1951), and Brown
and Forsythe (1974a), and are further discussed by Clinch and Kesselman
(1982). The corresponding robustness problem for more general linear
hypotheses is treated by James (1954) and Johansen (1980); see also
Rothenberg (1984).

The linear model F-test-as was seen to be the case for the t-test-is
highly nonrobust against dependence of the observations. Tests of the
hypothesis that the covariance matrix is proportional to the identity against
various specified forms of dependence are considered in King and Hillier
(1985).

The test (19), although its level and power are asymptotically indepen­
dent of the distribution F, tends to be inefficient if F has heavier tails than
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the normal distribution. More efficient tests are obtained by generalizing the
considerations of Sections 8 and 9 of Chapter 6. Suppose the Xi) are
samples of size n j from continuous distributions F; (i = 1, ... , s) and that
we wish to test H : F1 = . . . = £.. Invariance, by the argument of Chapter
6, Section 8, then reduces the data to the ranks Ri) of the Xi) in the
combined sample of n = En i observations. A natural analogue of the
two-sample Wilcoxon test is the Kruskal-Wallis test, which rejects H when
En j(R j.- R ••)2 is too large. For the shift model F;(y) = F(y - JLj), the
asymptotic efficiency of this test relative to (19) is the same as that of the
Wilcoxon to the r-test in the case s = 2. The theory of this and related rank
tests is developed in books on nonparametric statistics such as Hajek
and Sidilk (1967), Lehmann (1975), Randles and Wolfe (1979), and
Hettmansperger (1984).

Unfortunately, such rank tests are available only for the very simplest
linear models. An alternative approach capable of achieving similar
efficiencies for much wider classes of linear models can be obtained through
large-sample theory. It replaces the least-squares estimators by estimators
with better efficiency properties for nonnormal distributions and obtains an
asymptotically valid significancelevel through "Studentization",* that is, by
dividing the statistic by a suitable estimator of its standard deviation.
Different ways of implementing such a program are reviewed, for example,
by Draper (1981, 1983), McKean and Schrader (1982), and Ronchetti
(1982). [For a simple alternative of this kind to Student's r-test, see Prescott
(1975).]

Sometimes, it is of interest to test the hypothesis H : JLl = . .. = JL s

considered at the beginning of the section, against only the ordered alterna­
tives JLl ~ .•. s JL s rather than against the general alternatives of any
inequalities among the JL's. Then the F-test (19) is no longer reasonable;
more powerful alternative tests for this and other problems involving
ordered alternatives are discussed in Barlow et al. (1972).

4. MULTIPLE COMPARISONS

Testing equality of a number of means as a simple choice between accep­
tance and rejection usually leaves many questions unanswered. In particu­
lar, when the hypothesis is rejected one would like to obtain more detailed

·This term (after Student, the pseudonym of W. S. Gosset) is a misnomer. The procedure of
dividing the sample mean X by its estimated standard deviation and referring the resulting
statistic to the standard normal distribution (without regard to the distribution of the X 's) was
used already by Laplace. Student's contribution consisted in pointing out that if the X 's are
normal. the approximate normal distribution of the r-statistic can be replaced by its exact
distribution-Student's r.
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information about the relative positions of the means. In order to determine
just where the differences in the J1. 's occur, one may want to begin by testing
the hypothesis Hs: J1.l = '" = J1. s' as before, with the F-test (19). If this
test accepts, the means are judged to exhibit no significant differences, the
set {J1.l"'" J1. s } is declared homogeneous, and the procedure terminates. If
H, is rejected, a search for the source of the differences can be initiated by
proceeding to a second stage, which consists in testing the s hypotheses

Hs-l,i : J1.l = . . . = J1. i-l = J1.i+l = . . . = J1. s

by means of the appropriate F-test for each. This requires the obvious
modification of the numerator of (19), while the denominator is being
retained at all the steps. This is justified by the assumption of a common
variance (J 2 of which the denominator is an estimate. For any hypothesis
that is accepted, the associated set of means and all its subsets are judged
not to have shown any significant differences and are not tested further. For
any rejected hypothesis the s - 1 subsets of size s - 2 are tested [except
those that are subsets of an (s - Ij-set whose homogeneity has been
accepted], and the procedure is continued in this way until nothing is left to
be tested.

It is clear from this description that a particular set of J1. 's is declared
heterogeneous if and only if the hypothesis of homogeneity is rejected for it
and all sets containing it.

Instead of the F-tests, other tests of homogeneity could be used at the
various stages. When the sample sizes n i = n are equal, as we shall assume
throughout the remainder of this section, the most common alternative is
based on the Studentized range statistic

(22)
maxIXj .- Xi~

{r:[(Xij - Xil/sn(n - 1)

where the maximum is taken over all pairs (i, j) within the set being tested.
We shall here restrict attention to procedures where the test statistics are
either For Studentized range, not necessarily the same at all stages.

To complete the description of the procedure, once the test statistics have
been chosen , it is necessary to specify the critical values which they must
exceed for rejection, or equivalently, the significance levels at which the
various tests are to be performed. Suppose all tests at a given stage are
performed at the same level, and denote this level by tXk when the equality
of k means is being tested, and the associated critical values by Ck ,

k = 2, . . . , s.
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Before discussing the best choice of a's let us consider some specific
methods that have been proposed in the literature. Additional properties
and uses of some of these will be mentioned at the end of the section.

(i) Tukey's T-method. This procedure employs the Studentized range
test at each stage with a common critical value Ck = C for all k. The
method has an unusual feature which makes it particularly simple to apply.
In general, in order to determine whether a particular subset So of means
should be called nonhomogeneous, it is necessary to proceed stagewise since
the homogeneity of So itself is not tested unless homogeneity has been
rejected for all sets containing So. However, with Tukey's T-method it is
only necessary to test So itself. If the Studentized range of So exceeds C, so
will that of any set containing So, and So is declared nonhomogeneous. In
the contrary case, homogeneity of So is accepted. The two facts which
jointly eliminate the need for a stagewise procedure in this case are (a) that
the range, and hence the Studentized range, of So cannot exceed that of any
set S containing So, and (b) the constancy of the critical value. The next
method applies this idea to a procedure based on F-tests.

(ii) Gabriel's simultaneous test procedure. F-statistics do not have
property (a) above. However, this property is possessed by the statistics vF,
where v is the number of numerator degrees of freedom (Problem 16).
Hence a procedure based on F-statistics with critical values Ck = C/(k - 1)
satisfies both (a) and (b), since k - 1 is the number of numerator degrees of
freedom when k means are being tested, that is, at the (s - k + 1)st stage.
This procedure, which in this form was proposed by Gabriel (1964), permits
the testing of many additional hypotheses and when these are included
becomes Scheffe's S-method, which will be discussed in Sections 9 and 10.

(iii) Fisher's least-significant-difference method employs an F-test at the
first stage, and Studentized range tests with a common critical value
Cs -1 = .. . = C2 at all succeeding stages. The constants Cs and C2 are
related by the fact that the first stage F-test and the pairwise t-test of the
last stage have the same level.

The usual descriptions of (iii) and (i) consider only the first and last stage
of these procedures, and omit the conclusions which can be drawn from the
intermediate stages.

Several classes of procedures have been defined by prescribing the
significance levels ak , which can then be applied to the chosen test statistic
at each stage. Examples are:

(iv) The Newman-Keuls levels:

ak = a.
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(V) The Duncan levels:

a
k

= 1 - yk-1.

(vi) The Tukey levels:

383

1 < k < s - 1,

k = s - 1, s.{
I - yk /2 ,

a -
k - 1 _ v'/' ,

In both (v) and (vi), y = 1 - a 2 •

Most of the above methods and some others are reviewed and their
justification discussed by Spjetvoll (1974); comparisons of different methods
are provided, for example, by Einot and Gabriel (1975).

Let us now consider the choice of the levels ak more systematically. In
generalizing the usual significance level a for a single test, it is desirable to
control some overall measure of the extent to which a procedure leads to
false rejections. One such measure is the maximum probability a o of at least
one false rejection, that is, of rejecting homogeneity of at least one set of iL'S
which is in fact homogeneous. The probability of at least one false rejection

for a given (iLl'"'' iL s) will be denoted by a(iL1'" ' ' iLs)' so that a o =
sup a( iLl' . .. , iL s)' where the supremum is taken over all s-tuples (iLl ' .. . , iL s)'

In order to study the best choice of a2 , • • • , as subject to

(23) a o ::s: a6

for a given level a6' let us simplify the problem by assuming 0
2 to be

known, say 0
2 = 1. Then the F-tests (19) are replaced by the x2-tests with

rejection region Ln ;(X;.- X..)2 > C, and the Studentized range tests are
replaced by the range tests which reject when the range of the subgroup
being tested is too large.

Theorem 1. Suppose that at each stage eithera X2• or a range test is used
(not necessarily the same at all stages) and that the iL 's fall into r distinct
groups of sizes VI"'" o, (LV; = s), say

(24) iL;, = . . . = iL;,.•' JLiV1+ 1 = .. . = Jli('1+ ('2"' "

where (i1"'" is) is a permutation of (1, .. . , s). Then

(25)
r

supa(iL1, · · ·,iL.) = 1- TI(l- av ) ,
; = 1 '

where a 1 = 0 and the supremum is taken overall (iLl" ' " iLs) satisfying (24).
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Proof. Since false rejection can occur only when at least one of the
hypotheses

(26) H{: IL ; = .. . = IL;".'
I

H' · 11. . = ... =IL · , . ..
2 · '-' (.11 + 1 1('I+ V2

is rejected,

a (ILl' ... , ILJ ;:<; P (rejecting at least one H;')

= 1 - P (accepting all the H/)

r

= 1 - TI (1 - avJ
;=1

Here the last equality follows from the fact that the test statistics for testing
the hypotheses H{, . . . , H: are independent.

To see that the upper bound is sharp, let the distances between the
different groups of means (24) all tend to infinity. Then the probability of
accepting homogeneity of any set containing {IL;, . .. , IL; } as a proper

1 t'l

subset, and therefore not reaching the stage at which H{ is tested, tends to
zero. The same is true for H2,..., H:, and hence a(IL1' . .. ' ILs) tends to the
right side of (25).

It is interesting to note that sup a(IL1'· . . ' ILs) depends only on a2,. ··, as
and not on whether X2_ or range statistics are used at the various stages. In
fact, Theorem 1 remains true for many other statistics (Problem 17).

It follows from Theorem 1 that a procedure with levels (a2' .· .' as)
satisfies (23) if and only if

r

(27) TI (1 - avJ ~ 1 - a6
; = 1

forall (vl, ... , vr ) with LV;=S.

To see how to choose a2, . .. , as subject to (23) or (27), let us say that
(a 2, . . . , as) is inadmissible if there exists another set of levels (a2, .. . , a~)
satisfying (27) and such that

(28) a; s a; for all t, with strict inequality for some i,

These inequalities imply that the procedure with the levels a; has uniformly
better chance of detecting existing inhomogeneities than the procedure
based on the a;. The definition is thus in the spirit of a-admissibility
discussed in Chapter 6, Section 7.
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Lemma 1. Under the assumptions of Theorem 1, necessary conditions for
(a 2 , • • • , a s) to be admissible are

(i) a2 :$; " ' :$; as and

(ii) as = as- 1 = a6'

Proof. (i) : Suppose to the contrary that there exists k such that ak+ 1 <
a k , and consider the procedure in which a; = a; for i =1= k + 1 and a"+1 =
a k • To show that ao:$; a6' we need only show that n(l - a~) ~ 1 - a6 for
all (VI " '" vr ) . If none of the v's is equal to k + 1, then a~' = a v for all i,
and the result follows . Otherwise replace each V that is equal to' k + 1 by
two v's-one equal to k and one equal to I-and denote the resulting set of
v's by WI " ' " wr " Then

r r'

fl (1 - a~) = fl (1 - a,.,) ~ 1 - at·
;=1 ' ; = 1 '

(ii): The left side of (27) involves as if and only if r = 1, VI = s. Thus the
only restriction on as is as :$; at, and the only admissible choice is as = a6'
The argument for as - 1 is analogous.

Part (ii) of this lemma shows that procedures (i) and (ii) are inadmissible
since in both as- 1 < as. The same argument shows Duncan's set of levels to
be inadmissible. [However, choices (i), (ii), and (v) can be justified from
other points of view; see for example Spjetvoll (1974) and comment 5 at the
end of the section.] It also follows from the lemma that for s = 3 there is a
unique best choice of levels, namely a 2 = a 3 = at.

Having fixed ao = as = as- 1 = a6' how should we choose the remaining
a's? In order to have a reasonable chance of detecting existing inhomogene­
ities for all patterns, we should like to have none of the a's too small. In
view of part (i) of Lemma 1, this aim is perhaps best achieved by maximiz­
ing a 2 •

Lemma 2. Under the assumptions of Theorem 1, the maximum value of
a 2 subject to (23) is

(29) a2 = 1 - (1 - (6)[S/2) -1

where [A] denotes the largest integer :$; A.

Proof. Instead of fixing a o at at and maximizing a 2, it IS more
convenient instead to fix a 2, at , say a, and then to minimize ao' The lemma
will be proved by showing that the resulting minimum value of ao is

at = 1 - (1 - a)[s/2].
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Suppose first that s is even. Since a 2 is fixed at a, it follows from Theorem
1 that the right side of (25) can be made arbitrarily close to a6' This is seen
by letting VI = . . . = vs/ 2 = 2. When s is odd, the same argument applies
if we put an additional V equal to 1.

Lemmas 1 and 2 show that any procedure with a2 = as, and hence
Fisher's least-significant-differenceprocedure and the Newman-Keuls choice
of levels, is admissible for s = 3 but inadmissible for s ~ 4. The second of
these statements is seen from the fact that a o ~ a6 implies a 2 ~ 1 - (1 ­
ati)[s/2]-1 < ati when s ~ 4. The choice as = a2 thus violates Lemma l(ii).

Once a 2 has been fixed at the value given by Lemma 2, it turns out that
subject to (23) there exists a unique optimal choice of the remaining a's
when s is odd, and a narrow range of choices when s is even.

Theorem 2. When s is odd, then a 3, • . . , as are maximized, subject to
(23) and (29), by

(30) aj = 1 - (1 - a2)[;/2l ,

and these values can be attained simultaneously.

Proof. If we put y; = 1 - a; and y = Y2' then by (27) and (29) any
procedure satisfying the conditions of the theorem must satisfy

nYV
i
~ y[s/2] = y(s-I)/2.

Let i be odd, and consider any configuration in which VI = i and all the
remaining v's are equal to 2. Then

y;y(s-;)/2 ~ y(s-I)/2,

and hence

(31) y; ~ y;* = 1 - aj.

An analogous argument proves (31) for even i.
Consider now the procedure defined by y; = y;*. This clearly satisfies

(29), and it only remains to show that it also satisfies (23) or equivalently
(27), and hence that

ny[Vi/2] ~ y(s-I)/2

or that

i: [V;] .s s - 1
1=1 2 2 '
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Now [[v;/2] = (s - b)/2, where b is the number of odd v's (including
ones). Since s is odd, b ~ 1, and this completes the proof.

Note that the levels (30) are close to the Tukey levels (vi), which are
admissible but do not satisfy (29).

When s is even, a uniformly best choice is not available. In this case, the
Tukey levels (vi) satisfy (29), are admissible, and constitute a reasonable
choice . [See Lehmann and Shaffer (1979).]

Even in the simplified version with known variance the multiple testing
problem considered in the present section is clearly much more difficult than
the testing of a single hypothesis; the solution presented above still ignores
many important aspects of the problem.

1. Choice of test statistic. The most obvious feature that has not been
dealt with is the choice of test statistics. Unfortunately it does not appear
that the invariance considerations which were so helpful in the case of a
single hypothesis playa similar role here.

2. Order relation of significant means. Whenever two means X;., Xj'
are judged to differ, we should like to state not only that J.L ; *' J.L j ' but that if
X;.< JS. then also J.L; < J.Lj' Such additional statements introduce the possi­
bility of additional errors (stating J.L ; < J.L j when in fact J.L; > J.Lj)' and it is
not obvious that when these are included, the probability of at least one
error is still bounded by a6' [This problem of directional errors has been
solved in a simpler situation in Shaffer (1980).]

3. Nominal versus true levels. The levels a2, • • • , as, sometimes called
nominal levels, are the levels at which the hypotheses J.L; = J.Lj' J.L; = J.Lj =
J.Lk"" are tested. They are however not the true probabilities of falsely
rejecting the homogeneity of these sets, but only the upper bounds of these
probabilities with respect to variation of the remaining J.L's. The true
probabilities tend to be much smaller (particularly when s is large), since
they take into account that homogeneity of a set So is rejected only if it is
also rejected for all sets S containing So.

4. Interpretability. The totality of acceptance and rejection statements
resulting from a multiple comparison procedure typically does not lead to a
simple pattern of means. This is illustrated by the possibility that the
hypothesis of homogeneity is rejected for a set S but for none of its subsets.
As another example, consider the case s = 3, where it may happen that the
hypotheses J.L ; = J.L j and J.L j = J.L k are accepted but J.L; = J.L k is rejected. The
number of such" inconsistencies" and the corresponding difficulty of inter­
preting the results may be formidable . Measures of the complexity of the
totality of statements as a third criterion (besides level and power) are
discussed by Shaffer (1981).
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5. Procedures (i) and (ii) can be inverted to provide simultaneous
confidence intervals for all differences #Lj - #Lj' The T-method (discussed in
Problems 65-68) was designed to give simultaneous intervals for all dif­
ferences #Lj - #Lj; it can be extended to cover also all contrasts in the #L'S,
that is, all linear functions LCj#Lj with LCj = 0, but against more complex
contrasts the intervals tend to be longer than those of Scheffe's S-method,
which was intended for the simultaneous consideration of all contrasts. [For
a comparison of the two methods, see for example Scheffe (1959, Section
3.7) and Arnold (1981, Chapter 12).] It is a disadvantage of the remaining
(truly stagewise) procedures of this section that they do not permit such an
inversion.

6. To control the rate of false rejections, we have restricted attention to
procedures controlling the probability of at least one error. This is some­
times called the error rateper experiment, since it counts any experiment as
faulty in which even one false rejection occurs. Instead, one might wish to
control the expected proportion or number of false rejections. An optimality
theory based on the latter criterion is given in Spjetvoll (1972).

7. The optimal choice of the ak discussed in this section can be further
improved, at the cost of considerable additional complication, by permitting
the a's to depend on the outcomes of the other tests. This possibility is
discussed, for example, in Marcus, Peritz, and Gabriel (1976); see also Holm
(1979) and Shaffer (1984).

8. If the variance (12 is unknown, the dependence introduced by the
common denominator S when Xi is replaced by X;/S invalidates Theorems
1 and 2, and no analogous results are available in this case.

5. TWO-WAY LAYOUT: ONE OBSERVAnON PER CELL

The hypothesis of equality of several means arises when a number of
different treatments, procedures, varieties, or manifestations of some other
factors are to be compared. Frequently one is interested in studying the
effects of more than one factor, or the effects of one factor as certain other
conditions of the experiment vary, which then play the role of additional
factors. In the present section we shall consider the case that the number of
factors affecting the outcomes of the experiment is two.

Suppose that one observation is obtained at each of a number of levels of
these factors, and denote by Xij (i = 1, .. . , a; j = 1, ... , b) the value
observed when the first factor is at the ith and the second at the jth level. It
is assumed that the Xij are independently normally distributed with con­
stant variance (12, and for the moment also that the two factors act
independently (they are then said to be additive), so that ~jj is of the form
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a; + f3j. Putting JL = a~ + f3: and «, = a; - a~, f3j = f3/ - f3: , this can be
written as

(32) ~jj = JL + aj + f3j, ~aj = ~f3j = 0,

where the a's and f3 's (the main effects of A and B) and JL are uniquely
determined by (32) as"

(33) a j = ~j.- ~ •• , f3j = t j - ~ •• , JL = ~ ...

Consider the hypothesis

(34) H: a 1 = . . . = aa = 0

that the first factor has no effect on the outcome being observed. This arises
in two quite different contexts. The factor of interest, corresponding say to a
number of treatments, may be f3, while a corresponds to a classification
according to, for example, the site on which the observations are obtained
(farm, laboratory, city, etc.). The hypothesis then represents the possibility
that this subsidiary classification has no effect on the experiment so that it
need not be controlled. Alternatively, a may be the (or a) factor of primary
interest. In this case, the formulation of the problem as one of hypothesis
testing would usually be an oversimplification, since in case of rejection of
H, one would require estimates of the a's or at least a grouping according to
high and low values.

The hypothesis H is a linear hypothesis with r = a-I, s = 1 + (a - 1)
+ (b - 1) = a + b - 1, and n - s = (a - l)(b - 1). The least-squares
estimates of the parameters under Q can be obtained from the identity

~L(Xij - ~jJ2 = ~~(Xij - JL - aj - f3J2

= ~L [(Xij - X;.- X' j + X..) + (X;.- X..- a j)

+ ( X'j - X..- f3J + (X..- JL)] 2

= ~~(Xjj - Xj.- X' j + x.l + b~(Xj'- X..- aj)2

+a~(X'j - X..- f3j)2 + ab(X..- JLf,

"The replacing of a subscript by a dot indicates that the variable has been averaged with
respect to that subscript.
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which is valid because in the expansion of the third sum of squares the
cross-product terms vanish. It follows that

and that

a;= X;.- x.., Pj = X. j - x.. , p. = x..,

LL(Xij - ~;j)2 = LL(Xij - x;.- x., + X..t
A

Under Athe ~othesis H we still have Pj = X.j - X.. and A= X.. , and
hence ~;j - ~;j = X;.- X... The best invariant test therefore rejects when

(35)
b'L(X•.- X.il(a -1)

z > c.
LL(X;j - X;.- X.j + X..) I(a - l)(b - 1)

The noncentrality parameter, on which the power of the test depends, is
given by

(36)
2 bL(~;.- ti bLex;

'" = =--0 2 0 2 .

This problem provides another example of an analysis of variance. The
total variation can be broken into three components,

LL(Xij - X.r = bL(X;.- x.i + aL(X.j - X..)2

+ LL (Xij - X;.- X.j + X..t
Of these, the first contains the variation due to the ex's, the second that due
to the f3 ' so The last component, in the canonical form of Section 1, is equal
to E7- s+1Y/' It is therefore the sum of squares of those variables whose
means are zero even under 11. Since this residual part of the variation, which
on division by n - s is an estimate of 0 2, cannot be put down to any effects
such as the ex's or {3's, it is frequently labeled "error," as an indication that
it is due solely to the randomness of the observations, not to any differences
of the means. Actually, the breakdown is not quite as sharp as is suggested
by the above description. Any component such as that attributed to the ex's
always also contains some "error," as is seen for example from its expecta-
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E[(Xi .- x.i = (a - 1)(12 + b[o}.
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Instead of testing whether a certain factor has any effect, one may wish to
estimate the size of the effect at the various levels of the factor. Other
parameters, which it is sometimes interesting to estimate, are the average
outcomes (for example yields) ~l""" ~a' when the factor is at the various
levels. If (Ji = J.L + a i = ~i' , confidence sets for «(JI" .. , (Ja) are obtained by
considering the hypotheses H( (J0) : (Ji = (JiO (i = 1, ... , a). For testing (JI =
. . . ~ (Ja = 0, the least-squares estimates of the ~ij are ~ij = Xi.+ X' j - X..
and ~ij = X' j - X... The denominator sum of squares is therefore LL(Xij
- Xi.- X' j + X..)2 as before, while the numerator sum of squares is

[[(~i} -lijt = b[Xr

The general hypothesis reduces to this special case on replacing Xi} with the
variable Xi} - (J? Since s = a + b - 1 and r = a, the hypothesis H( (Jo) is
rejected when

b[( Xi.- (J?)2/a
2 > C.

[[(Xij - Xi.- X' j + X..) /(a - l)(b - 1)

The associated confidence sets for «(JI" . . , (Ja) are the spheres

[( (Ji _ x
i
.)2~ aCLL (Xij - Xi.- X' j + x.l

(a - l)(b - l)b

When considering confidence sets for the effects a l , . . . , aa one must take
account of the fact that the a's are not independent. Since they add up to
zero, it would be enough to restrict attention to a l , . . . , aa-l' However, an
easier and more symmetric solution is found by retaining all the a's. The
rejection region of H : a i = a? for i = 1, ... , a (with La? = 0) is obtained
from (35) by letting Xi} = Xi} - a?, and hence is given by

b[(X
i
.- X..- a?)2 > CLL(Xij - Xi.- X' j + x.i

b - 1

The associated confidence set consists of the totality of points (aI' ... , aa)
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satisfying La; = 0 and
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L [a; _ (X;.- X ..)]2 ~ CLL(Xij - X;.- X' j + x.l
bib - 1)

In the space of (a l , ... , aa)' this inequality defines a sphere whose center
(Xl .- X.. , ... , Xa .- X..) lies on the hyperplane La; = O. The confidence
sets for the a's therefore consist of the interior and surface of the great
hyperspheres obtained by cutting the a-dimensional spheres with the hyper­
plane La; = O.

In both this and the previous case, the usual method shows the class of
confidence sets to be invariant under the appropriate group of linear
transformations, and the sets are therefore uniformly most accurate in­
variant.

A rank test of (34) analogous to the Kruskal-Wallis test for the one-way
layout is Friedman's test, obtained by ranking the s observations Xlj' ... , X,j
separately from 1 to s at each level j of the second factor. If these ranks are
denoted by Rlj, .. . , R'j' Friedman's test rejects for large values of L(R;.­
R ..)2. Unless s is large, this test suffers from the fact that comparisons are
restricted to observations at the same level of factor 2. The test can be
improved by "aligning" the observations from different levels, for example,
by subtracting from each observation at the jth level its mean X' j for that
level, and then ranking the aligned observations from 1 to abo For a
discussion of these tests and their efficiency see Lehmann (1975, Chapter 6),
and for an extension to tests of (34) in the model (32) when there are several
observations per cell, Mack and Skillings (1980). Further discussion is
provided by Hettmansperger (1984).

That in the experiment described at the beginning of the section there is
only one observation per cell, and that as a consequence hypotheses about
the a's and f3's cannot be tested without some restrictions on the means ~;j'

does not of course justify the assumption of additivity. Rather, the other
way around, the experiment should not be performed with just one observa­
tion per cell unless the factors can safely be assumed to be additive. Faced
with such an experiment without prior assurance that the assumption holds,
one should test the hypothesis of additivity. A number of tests for this
purpose are discussed, for example, in Hegemann and Johnson (1976) and
in Marasinghe and Johnson (1981).

6. lWO-WAY LAYOUT: m OBSERVAnONS PER CELL

In the preceding section it was assumed that the effects of the two factors a
and f3 are independent and hence additive. The factors may, however,
interact in the sense that the effect of one depends on the level of the other.
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Thus the effectiveness of a teacher depends for example on the quality or
the age of the students, and the benefit derived by a crop from various
amounts of irrigation depends on the type of soil as well as on the variety
being planted. If the additivity assumption is dropped, the means ~ ij of Xij
are no longer given by (32) under n but are completely arbitrary. More than
ab observations, one for each combination of levels, are then required, since
otherwise s = n. We shall here consider only the simple case in which the
number of observations is the same at each combination of levels.

Let Xijk (i = 1, ... , a; j = 1, ... , b; k = 1, . . . , m) be independent nor­
mal with common variance (12 and mean E(Xijd = ~ij' In analogy with the
previous notation we write

~ ij = L+ai'- L) + (~ 'j - ~ .•) + (~ij - ~ i '- t j + ~ ..)

= JL + ai + f3j + Yij

with Liai = L jf3j = LiYij = LjYij = O. Then ai is the average effect of factor
1 at level i, averaged over the b levels of factor 2, and a similar interpreta­
tion holds for the f3 'so The y's are called interactions, since Yij measures the
extent to which the joint effect ~ij - ~ .• of factors 1 and 2 at levels i and j
exceeds the sum ai .- L) + (t j - L) of the individual effects. Consider
again the hypothesis that the a's are zero. Then r = a-I, s = ab, and
n - s = (m - l)ab. From the decomposition

LLL(Xijk - ~ij)2 = LLL(Xijk - xijl + mLL(Xij'- ~;J2

and

LL (Xij'- ~iJ2 = LL (Xij'- Xi..- X.j.+ X...- Yij)2

+bL(xi..- X...- af + aL(X.j.- X...- f3j)2

+ab(X...- JL)2

it follows that

fL =fi=f..= X... , iii = f i .- f ..= Xi ••- X... ,

Pj = Pj = f'j - f ..= X.j.- X... ,

y = Y~ · · = X - X - X + XIJ IJ i j - i - 'j ' ••• ,
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and hence that

LLL(Xijk - ~iJ2 = LLL(Xijk - Xij/,

LLL(~ij-lijt = mbL(Xi..- x..i.

The most powerful invariant test therefore rejects when

mbL( X,..- X...)2/(a - 1)
2 > C,

LLL( Xijk - Xij.) /(m - l)ab
W* = -(37)

and the noncentrality parameter in the distribution of W * is

(38)
mbL(~i.- ~.i

0
2

mbLa1

0 2

Another hypothesis of interest is the hypothesis H I that the two factors
are additive, t

H': Yij = 0 for all t, j.

The least-squares estimates of the parameters are easily derived as before,
and the UMP invariant test is seen to have the rejection region (Problem 22)

mLL(Xij.- Xi..- X.j.+ X..//(a - l)(b - 1)
(39) W* = 2 > c.

LLL( Xijk - Xij.) /(m - l)ab

Under H', the statistic W* has the F-distribution with (a - l)(b - 1) and
(m - l)ab degrees of freedom; the noncentrality parameter for any alterna­
tive set of y's is

(40) ",2 = mLLYi~
0 2

fA test of H' against certain restricted alternatives has been proposed for the case of one
observation per cell by Tukey (1949); see Hegemann and Johnson (1976) for further discussion .
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The decomposition of the total variation into its various components, in
the present case, is given by

LLL (Xjj k - x..l = mb L(Xj.. - x..l + ma L(X.j .- x..l

+m LL(Xjj .- Xi ••- X.j .+ X...)2

+ LLL (Xij k - Xij.t

Here the first three terms contain the variation due to the a's, /3 's and y 's
respectively, and the last component corresponds to error. The tests for the
hypotheses that the a's, /3 's, or y's are zero, the first and third of which
have the rejection regions (37) and (39), are then obtained by comparing the
a, /3, or y sum of squares with that for error.

An analogous decomposition is possible when the y's are assumed a
priori to be equal to zero. In that case, the third component which
previously was associated with y represents an additional contribution to
error, and the breakdown becomes

LLL (Xij k - x..l = mb L(Xi ••- x..l + ma L (X.j .- x..l
+ LLL(Xij k - Xi ••- X. j .+ x..l,

with the last term corresponding to error. The hypothesis H : a 1 =
au = 0 is then rejected when

mbL(Xj ••- X..i/(a - 1)
2 > c.

LLL(Xjj k - X,..- X'j '+ X...) /(fbm - a - b + 1)

Suppose now that the assumption of no interaction, under which this test
was derived, is not justified. The denominator sum of squares then has a
noncentral X2-distribution instead of a central one; and is therefore sto­
chastically larger than was assumed (Problem 25). It follows that the actual
rejection probability is less than it would be for LLYi] = O. This shows that
the probability of an error of the first kind will not exceed the nominal level
of significance, regardless of the values of the y's. However, the power also
decreases with increasing LLYi]/a 2 and tends to zero as this ratio tends to
infinity.

The analysis of variance and the associated tests derived in this section
for two factors extend in a straightforward manner to a larger number of
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factors (see for example Problem 26). On the other hand, if the number of
observations is not the same for each combination of levels (each cell),
explicit formulae for the least-squares estimators may no longer be avail­
able, but there is no difficulty in computing these estimators and the
associated UMP invariant tests numerically. However, in applications it is
then not always clear how to define main effects, interactions, and other
parameters of interest, and hence what hypothesis to test. These issues are
discussed, for example, in Hocking and Speed (1975) and Speed, Hocking,
and Hackney (1978). See also TPE, Chapter 3, Example 4.4, and Arnold
(1981, Section 7.4).

Of great importance are arrangements in which only certain combina­
tions of levels occur, since they permit reducing the size of the experiment.
Thus for example three independent factors, at m levels each, can be
analyzed with only m2 observations, instead of the m3 required if 1
observation were taken at each combination of levels, by adopting a
Latin-square design (Problem 27).

The class of problems considered here contains as a special case the
two-sample problem treated in Chapter 5, which concerns a single factor
with only two levels. The questions discussed in that connection regarding
possible inhomogeneities of the experimental material and the randomiza­
tion required to offset it are of equal importance in the present, more
complex situations. If inhomogeneous material is subdivided into more
homogeneous groups, this classificationcan be treated as constituting one or
more additional factors. The choice of these groups is an important aspect
in the determination of a suitable experimental design.] A very simple
example of this is discussed in Problems 49 and 50 of Chapter 5.

Multiple comparison procedures for two-way (and higher) layouts are
discussed by Spjetvoll (1974); additional references can be obtained from
the bibliography of R. G. Miller (1977).

7. REGRESSION

Hypotheses specifying one or both of the regression coefficients a, fJ when
Xl"' " X; are independently normally distributed with common variance
(12 and means

(41) ~; = a + fJt;

t For a discussion of various designs and the conditions under which they are appropriate
see. for example. Cox (1958). John (1971), John and Quenouille (1977), and Box, Hunter, and
Hunter (1978). Optimum properties of certain designs, proved by Wald, Ehrenfeld, Kiefer, and
others, are discussed by Kiefer (1958, 1980) and Silvey (1980). The role of randomization ,
treated for the two-sample problem in Chapter 5, Section 12, is studied by Kempthome (1955),
Wilk and Kempthome (1955), Scheffe (1959), and others; see, for example, Lorenzen (1984).
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are essent ially linear hypotheses , as was pointed out in Example 2. The
hypotheses H : a = ao and H2 : /3 = /30 were treated in Chapter 5, Section
8, where they were shown to possess UMP unbiased tests. We shall now
consider HI and H2, as well as the hypothesis H3 : a = ao, /3 = /30' from
the present point of view. By the general theory of Section 1 the resulting
tests will be UMP invariant under suitable groups of linear transformations.
For the first two cases, in which r = 1, this also provides, by the argument
of Chapter 6, Section 6, an alternative proof of their being UMP unbiased.

The space ITo is the same for all three hypotheses . It is spanned by the
vectors (1, ... ,1) and (t l , ... , tn ) and has therefore dimension s = 2 unless
the t, are all equal, .which we shall assume not to be the case. The
least-squares estimates a and /3 under n are obtained by minimizing
E( X; - a - /3tY. For any fixed value of /3, this is achieved by the value
a = X - /3i, for which the sum of squares reduces to E[(X; - X) ­
/3(t ; - i)]2. By minimizing this with respect to /3 one finds

(42)

and

A [(X; - X)(t; - i)
/3= [(t

j
- i )2 '

a = X -fii;

"( A)2" ( - 2 A" - 2'-- X;- a - /3t ; = /..i X; - X) - /32/..i(t; - t)

is the denominator sum of squares for all three hypotheses. The numerator
of the test statistic (7) for testing the two hypotheses a = 0 and /3 = 0 is Y? ,
and for testing a = /3 = 0 is y I

2 + Yf.
For the hypothesis a = 0, the statistic YI was shown in Example 3 to be

equal to

Since then

(
_ _[tiX;)
X -t [tJ

[tJ = a
n [(tj - if

[(t
j

- i)2
n [tJ

[(t
j

- i)2
E(YI ) = all n [tJ

the hypothesis a = ao is equivalent to the hypothesis E(YI ) = T1Y =
aovnE(tj - i)2;r.tJ, for which the rejection region (17) is (n - s)(YI -
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117)2/E7.s+1l'? > Co and hence

(43)
la - aolvn'L(tj - i)2/'L tJ

> CO'
V'L(X; - a - pt;f/(n - 2)

For the hypothesis 13 = 0, Y1 was shown to be equal to

'L(X; - X)(t; - i) = PV'L(tj _ i)2 .
V'L(tj - i)2

Since then E(Y1) = pi£.( tj - i)2, the hypothesis 13 = Po is equivalent to

E(Y1) = 117 = PoVE(tj - i)2 and the rejection region is

(44)
IP - PoIV'L(tj - i)2

y'L(X; - a - ptY/(n - 2)

For testing a = 13 = 0, it was shown in Example 3 that

Y1 = PV'L(tj - i)2. Y, - vnX = vn(a + Pi);

and the numerator of (7) is therefore

y2 + y2
1 2

2

n(a + pi)2 + p2'L(tj - i)2
2

The more general hypothesis a = ao, 13 = Po is equivalent to E(Y1) = 117,
E(Y2) = 11~, where 11~ = PoVr.(tj - i)2, 11~ = vn(ao+ Poi); and the rejec­
tion region (17) can therefore be written as

[n(a - a o)2+ 2ni(a - ao)(p - Po) + 'Lt;(P - 130)2]/2
(45) A 2 > C.

'L(X; - a - Pt;) /(n - 2)

The associated confidence sets for (a, 13) are obtained by reversing this
inequality and replacin$ ao and Po by a and p. The resulting sets are
ellipses centered at (a, 13).
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The simple regression model (41) can be generalized in many directions ;
the means ~i may for example be polynomials in t, of higher than the first
degree (see Problem 30), or more complex functions such as trigonometric
polynomials; or they may be functions of several variables, t i , u., Vi' Some
further extensions will now be illustrated by a number of examples.

Example 6. A variety of problems arise when there is more than one regression­
line. Suppose that the variables Xij are independently normally distributed with
common variance and means

(46) (i = Q i + P;tij (j=l . .. . , ni ; i = l , . .. ,b) .

The hypothesis that these regression lines have equal slopes

H :Pl = . . . = PI>

may occur for example when the equality of a number of growth rates is to be
tested . The ~arameter space TIo has dimension s = 2b provided none of the sums
'L/ Ii; - Ii ') is zero; the number of constraints imposed by the hypothesis is
r = b - 1. The minimum value of 'L'L(X;} - t)2 under 1'2 is obtained by minimiz­
ing 'L;< Xi; - a, - Pil,)2 for each i, so that by (42).

ai = X;. - P;1i' .
L( Iii - lil
J

L(X;i - x;.)( Iii - Ii')

Pi=-:....J-----

Under H, one must minimize 'L'L(X;i - Q j - Pl ij)2, which for any fixed pleads
to Q i = X;.- Pli' and reduces the sum of squares to 'L'L[(X;i - Xi') - P(tii - l i .)]2.
Minimizing this with respect to P. one finds

~ LL(Xi) - x; .)(Iii - Ii')
P = 2 'LL (Ii) - Ii ')

&i = X;. - ~Ii' .

Since

X;; -li} = Xii - ai - Pili} = (Xii - X;.) - Pi( Ii} - Ii ')

and

t, -l;; = (a, - &i) + liApi -~) = (Pi - ~)(I;; - Ii')'
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(47)

[(,8; - p)2[(I;j - I;l/(b - 1)
; ---"J_' __--:-

[[[(X;j - X;.) - ,8;(I;j - 1;.)]2/(n - 2b)

where the left-hand side under H has the F-distribution with b - 1 and n - 2b
degrees of freedom.

Since

£(,8;) = P; and r-\;~

the noncentrality parameter of the distribution (or an alternative set of P's is
0/2 = E;(P; - iJ)2Ej{tij - 1;.)2/a2, vo:here iJ = £(~). In the particular case that the
n; and the I;j are independent of i, P reduces to P = EP;lb.

Example 7. The regression model (46) arises in the comparison of a number of
treatments when the experimental units are treated as fixed and the unit effects ";j

(defined in Chapter 5, Section 11) are proportional to known constants I;j ' Here I;j
might for example be a measure of the fertility of the i , jth piece of land or the
weight of the i, j th experimental animal prior to the experiment. It is then
frequently possible to assume that the proportionality factor P; does not depend on
the treatment, in which case (46) reduces to

(48) ~;j = a; + PI;j

and the hypothesis of no treatment effect becomes

H: a. = .. . = ab '

The space TIo coincides with TI", of the previous example, so that s = b + 1 and

A LL(X;j - X;.)( tij - t;.)P= -=--.--.:....--"----~

LL(tij - t;.)

Minimization of LL(Xij - a - Ptij )2 gives

:: LL(Xij-X..)(tij-t..)
P=_......:..-..::......-_~

LL(tij - t..)

(X; = Xi' - Pt i • •

A

it = X.. - /3t .. ,

where X..= EEX;j/n, 1..= EEI;;ln, n = En;. The sum of squares in the numerator
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of W* in (15) is thus

LL (C - t r= LL [( X;.- X..) + /J( til - ti.) - P( ti} - t..)r.
The hypothesis H is therefore rejected when

(49)
LL [( X; .- X..) + /J( til - ti . ) - P( ti} - t..)r/(b - 1)

LL[(Xii - Xi.) - /J(tiJ- ti.)j2/ (n - b - 1)
> C,

where under H the left-hand side has the F-distribution with b - 1 and n - b - 1
degrees of freedom .

The hypothesis H can be tested without first ascertaining the values of the t ,} ; it
is then the hypothesis of no effect in a one-way classification considered in Section
3, and the test is given by (19). Actually, since the unit effects ui} are assumed to be
constants, which are now completely unknown, the treatments are assigned to the
units either completely at random or at random within subgroups. The appropriate
test is then a randomization test for which (19) is an approximation.

Example 7 illustrates the important class of situations in which an
analysis of variance (in the present case concerning a one-way classification)
is combined with a regression problem (in the present case linear regression
on the single "concomitant variable" I). Both parts of the problem may of
course be considerably more complex than was assumed here. Quite gener­
ally, in such combined problems one can test (or estimate) the treatment
effects as was done above, and a similar analysis can be given for the
regression coefficients. The breakdown of the variation into its various
treatment and regression components is the so-called analysis of covariance.

8. ROBUSTNESSAGAINST NONNORMALITY

The F-test for the equality of a set of means was shown to be robust against
nonnormal errors in Section 3. The proof given there extends without much
change to the analysis of variance tests of Sections 5 and 6, but the situation
is more complicated for regression tests.

As an example, consider the simple linear-regression situation (41). More
specifically, let VI' V2, ••• be a sequence of independent random variables
with common distribution F, which has mean °and finite variance (J2, and
let

X; = a + PI; + U; .

If F is normal, the distribution of Pgiven by (42) is N(O, (J2/E(/; - i)2) for
all sample sizes and therefore also asymptotically. However, for nonnormal
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F, the exact distribution of ~ will depend on the t's in a more complicated
way. An asymptotic theory requires a sequence of constants tI , t2 , •• • • A
sufficient condition on this sequence for asymptotic normality of ~ can be
obtained from the following lemma, which we shall not prove here but
which is an easy consequence of the Lindeberg form of the central limit
theorem. [See for example Arnold (1981, Theorem 10.3).]

Lemma 3. Let YI , Y2 , . . . be independently identically distributed with
mean zero and finite variance (12, and let cI , c2 , . . . be a sequence of

constants. Then a sufficient condition for [7-I cj Y;/ /[c; to tend in law to
N(O, (12) is that

(50)
max c2

I
j -I, . . . ! n

n

1:. cJ
j- I

-.0 as n -. 00 .

The condition (50) prevents the c's from increasing so fast that the last
term essentially dominates the sum, in which case there is no reason to
expect asymptotic normality. Applying the lemma to the estimator ~ of /3,
we see that

~ 1:.(Xj - ex - /3t j)(t j - 1)
/3-/3= 1:.(t;-i)2

and it follows that

(~ - /3)/1:.(tj - i)2
(1

tends in law to N(O,1) provided

(51)
max Ir, - i)2
1:.(t

j
_ i)2 -. O.

Example 8. The condition (51) holds in the case of equal spacing t ; = a + iA,
but not when the t's grow exponentially, for example, when t, = 2; (Problem 31).

In case of doubt about normality we may, instead of relying on the above
result, prefer to utilize tests based on the ranks of the X's, which are exactly
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distribution-free and which tend to be more efficient when F is heavy-tailed.
Such tests are discussed in the nonparametric books cited in Section 3; see
also Aiyar, Guillier, and Albers (1979).

Lemma 3 holds not only for a single sequence c1' c2 , • •• , but also when
the c's are allowed to change with n so that they form a triangular array C;n'

i = 1, ... , n, n = 1,2, . .. , and the condition (51) generalizes analogously.
Let us next extend (51) to arbitrary linear hypotheses with r = 1. The

model will be taken to be in the parametric form (18) where the elements a;}

may depend on n, but s remains fixed. Throughout, the notation will
suppress the dependence on n. Without loss of generality suppose that
A'A = I, so that the columns of A are mutually orthogonal and of length 1.
Consider the hypothesis

s

H: 8 = [b/l} = 0
j ~l

where the b's are constants with r.b} = 1. Then

8= 8b = r.b/l} = r. d;X;,

where by (18)

(52) d, = [aijb} .

By the orthogonality of A, r. dl = r.b} = 1, so that under H,

E( 8) = 0 and Var( 8) = 0
2.

Thus, H is rejected when the t-statistic

(53)
181

~c.

{'[(X; - ~Y/(n - s )

It was shown in Section 3 that the denominator tends to 0
2 in probability,

and it follows from Lemma 3 that 8 tends in law to N(O, ( 2
) provided

(54) max d 2 -+ 0
I

as n -+ 00 .

Under this condition, the level of the t-test is therefore robust against
nonnormali ty.
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So far, b = (b l , ... , bs ) has been fixed. To determine when the level of
(53) is robust for all b with EbJ = 1, it is only necessary to find the
maximum value of d, as b varies. By the Schwarz inequality

d? = (Laijbj )2s i: alj '
J J -I

with equality holding when bj = aijl VEkalk' The desired maximum of d]
is therefore Ejalj, and

(55)
s

max L alj - 0
I j -I

as n r-r sx:

is a sufficient condition for the asymptotic normality of every Db'
The condition (55) depends on the choice of coordinate system in the

parameter space, and in particular on the assumed orthogonality of A. To
obtain a condition that is coordinate-free, consider an arbitrary change of
coordinates fJ* = B-IfJ, where B is nonsingular. Then ~ = AfJ = ABfJ* =
A*fJ* with A* = AB. To be independent of the coordinate system, the
condition on A must therefore be invariant under the group G of transfor­
mations A - AB for all nonsingular B. It was seen in Example 3 of
Chapter 6 that the maximal invariant under G is PA = A(A'A)-IA', so that
the condition must depend only on PA- We are therefore looking for a
function of PA which reduces to Lja;j when the columns of A are
orthogonal. In this case PA = AA', and Ejalj is the ith diagonal element of
PA • If ITij denotes the ijth element of PA , (55) is thus equivalent to the
Huber condition

(56) maxIl.; - 0
I

as n - 00 ,

which is coordinate-free.
If IT;; ~ M; for all i = 1,.. . , n, then also ITij s M; for all i and j. This

follows from the fact (see Example 3 of Chapter 6) that there exists a
nonsingular E with P = EE', on applying the Schwarz inequality to the
ijth element of EE'. It follows that (56) is equivalent to

(57) maxIT.. - 0. . IJ
I . J

as n - 00.

Theorem 3. Let X; =~; + U; (i = 1, . . _, n) , where the U's are iid
according to a distribution F with E(U;) = 0, Var(U;) = (J2, and where for
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each n the vector ~ = al"'" ~n) is known to lie in an s-dimensional linear
subspace IIhn) of R" given by (18) and satisfying (56). Then the size an(F) of
the normal theory test given by (7) and (8) for testing H : ~ E IISn), where
IIsn) is any subspace of IIhn) of fixed dimension s - r (0 < r s: s), satisfies
an(F) -. a as n -. 00.

Proof. It was seen earlier that when (56) holds, the distribution of
0h = 'LbjPj tends to N(O, (12) for any b with 'Lb} = 1. By the Cramer-Wold
theorem [see for example Billingsley (1979), Theorem 29.4)], this implies
that PI '" .,Ps have a joint s-variate normal limit distribution with mean 0
(under H) and covariance matrix (12/. Without loss of generality suppose
that P; = 1/;, where the 1/'S are given by the canonical form of Section 1.
Then the columns of A are orthogonal and of length 1, and P; = 1';. By
standard multivariate asymptotic theory (Theorem 1.7 of TPE), the limit
distribution of 'L;_11';2 = 'L;-IP? under H is then that of a sum of squares
of independent normal variables with means zero and variance (12, that is,
(12X;, independent of F. The robustness of the level of (7) now follows from
the fact, shown in Section 3, that the denominator of W * tends to (12 in
probability.

For evaluating II;;, it is helpful to note that £;=A'LJ-lII;jXj (i =
1, . .. , n) , so that II ;; is simply the coefficient of X; in ~;, which must be
calculated in any case to carry out the test.

As an example, consider once more the regression example that opened
the section. From (42), it is seen that the coefficient of X; in £; = Ii + Pt; is
II ;; = l/n + (t, - i)2j'L(tj - i) 2, and (56) is thus equivalent to the condi­
tion (51) found earlier for this example.

As a second example, consider a two-waylayout with m observations per
cell, and the additive model ~;jk =AE(X;jk) = P. + a; + {3j (i = 1, .. . , a;
j = 1, . .. , b), La; = LfJj = O. Then !;; jk = X;..+ X. j.- X ••. , and it is seen
that for fixed a and b, (56) holds as m -. 00 .

The condition (56) guarantees asymptotic robustness for all linear hy­
potheses II w c II o. If one is concerned only with a particular hypothesis, a
weaker condition will suffice (Problem 40).

9. SCHEFFE'S S-METHOD: A SPECIAL CASE

If Xl" ' " X, are independent normal with common variance (12 and
expectations E(X;) = a + {3t ;, confidence sets for (a, {3) were obtained in
the preceding section. A related problem is that of determining confidence
bands for the whole regression line ~ = a + {3t, that is, functions
L'(t; X), M'(t; X) such that

(58) P{ L'(t; X) .:s; a + fJt .:s; M'(t; X) for all t} = y.
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The problem of obtaining simultaneous confidence intervals for a con­
tinuum of parametric functions arises also in other contexts. In the present
section, a general problem of this kind will be considered for linear models .
Confidence bands for an unknown distribution function were treated in
Section 13 of Chapter 6.

Suppose first that Xl"'" X, are independent normal with variance
0

2 = 1 and with means E(Xj ) = ~j, and that simultaneous confidence
intervals are required for all linear functions EUj~j';0 generality is lost by
dividing EUj~j and its lower and upper bound by Eu;, so that attention
can be restricted to confidence sets

(59) S(x) : L(u; x) s LUj~j s M(u; x ) for all u E U,

where x, u denote both the vectors with coordinates x .; u, and the r X 1
column matrices with these elements, and where U is the set of all u with
Eu; = 1. The sets S(x) are to satisfy

(60) PE[S(X)] = Y for all ~=(~l,o .. ,t)o

Since u=(ul, ... ,Ur)E U if and only if -u=(-ul,ooo,-Ur)E U,
the simultaneous inequalities (59) imply L( - u; x) ~ - EUj~j ~ M( - U; x),
and hence

-M( -u; x) ~ Lujt ~ -L( -u; x)

and

max (L(u; x), - M( -u; x)) ~ LUj~j ~ min (M(u; x), -L( -u; x)).

Nothing is therefore lost by assuming that Land M satisfy

(61) L(u; x) = -M( -u; x).

The problem of determining suitable confidence bounds L(u; x) and
M (u; x) is invariant under the group G1 of orthogonal transformations

Gl : gx = Qx, g~ = Q~

Writing EUj~j = u'~, we have

(Q an orthogonal r X r matrix).

g*S(x) = {Q~: Li u; x) ~ u'~ ~ M(u; x) for all u E U}

= {~: Li u; x) ~ U'(Q-l~) ~ M(u; x) for all u E U}

= {~: L(Q-lu; x) ~ u'~ ~ M(Q-1u; x) for all u E U},
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where the last equality uses the fact that U is invariant under orthogonal
transformations of u.

Since

S(gx) = {~ : L(u; Qx):s; u'~:s; M(u ; Qx) for all u E U},

the confidence sets S(x) are equivariant under GI if and only if

L(u ; Qx) = L(Q -Iu; x),

or equivalently if

M(u ,Qx) =M(Q-Iu;x),

(62) L(Qu; Qx) = L{u; x) , M{Qu; Qx) = M(u ; x)

forall x, Q and u E U,

that is, if Land M are invariant under common orthogonal transformations
of u and x .

A function L of u and x is invariant under these transformations if and
only if it depends on u and x only through u'x, x'x, and u'u [Problem
42(i)] and hence (since u'u = 1) if there exists h such that

(63) L{u; x) = h(u'x, x 'x) .

A second group of transformations leaving the problem invariant is the
group of translations

G2 : gx = x + a, g~ = ~ + a

where x + a = (Xl + a l , ... , x, + ar)' An argument paralleling that lead­
ing to (62) shows that L(u; x) is equivariant under G2 if and only if
[Problem 42(ii)]

(64) u», x + a) = L(u; x) + La;u; for all x , a, and u.

The function h of (63) must therefore satisfy

h[u'{x + a),{x + a)'(x + a)] = h{u'x, x'x) + a'u

forall a,x and u E U,

and hence, putting x = 0,

hl u'a, a'a) = a'u + h{O,O).
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A necessary condition (which clearly is also sufficient) for S(x) to be
equivariant under both G1 and G2 is therefore the existence of constants c
and d such that

S(X) = {~ : LU jX j - c s LUj~j s LU jX j+ d for all UE U} .

From (61) it follows that c = d, so that the only equivariant families S(x)
are given by

(65) S(X) = {~ : ILuj(x j - ~j) Is c for all U E U} .

The constant c is determined by (60), which now reduces to

(66) po{ILUjXjl~ c for all UE U} = y.

By the Schwarz inequality (LujXy s LX?, since Lul = 1, and hence

(67) ILUjXjl~C forall uEU ifandonlyif LX?~C2.

The constant c in (65) is therefore given by

(68) p(x; ~ c2
) = y.

In (65), it is of course possible to drop the restriction U E U by writing (65)
in the equivalent form

(69) S(x) = {~ : ILuj(x j - ~j)l~ cVLul for all U}.

So far attention has been restricted to the confidence bands (59). How­
ever, confidence sets do not have to be intervals, and it may be of interest to
consider more general simultaneous confidence sets

(70) S(X) : LUj~j E A(u, x) for all U E U.

For these sets, the equivariance conditions (62) and (64) become respectively
(Problem 43)

(71)

and

A(Qu, Qx) = A(u, x) for all x , Q and U E U

(72) A(u, x + a) = A(u , x) + u'a for all u, x, and a.
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The first of these is equivalent to the condition that the set A( u, x) depends
on u E U and x only through u'x and x'x. On the other hand putting
x = 0 in (72) gives

A(u, a) = A(u,O) + u'a,

It follows from (71) that A( u,0) is a fixed set Al independent of u, so that

(73) A(u, x) = Al + u'x .

The most general equivariant sets (under GI and G2 ) are therefore of the
form

(74) LUi(Xi - ~i) E A for all u E U,

where A = -AI'
We shall now suppose that r> 1 and then show that among all A which

define confidence sets (74) with confidence coefficient ~ v, the sets (65) are
smallest! in the very strong sense that if A o = [-co, co] denotes the set (65)
with confidence coefficient v, then Ao is a subset of A .

To see this, note that if Y; = Xi - ~i' the sets A are those satisfying

(75) P(LUiY; E A for all u E U) ~ y.

Now the set of values taken on by LUiYi for a fixed Y = (YI"' " Yr) as u
ranges over U is the interval (Problem 43)

I(y) = [-/LY?, +/LY?] .

Let c* be the largest value of c for which the interval [ - c, c] is contained in
A . Then the probability (75) is equal to

P{ I(Y) C A} = P{ I(Y) C [ -c*, c*]} .

Since P{I(Y) C A} ~ 't, it follows that c* ~ co' and this completes the
proof.

It is of interest to compare the simultaneous confidence intervals (65) for
all LUi~i' u E U, with the joint confidence spheres for al'" ., ~r) given by
(41) of Chapter 6. These two sets of confidence statements are equivalent in
the following sense.

fA more general definition of smallness is due to Wijsman (1979). It has been pointed out to
me by Professor Wijsman that his concept is equivalent to that of tautness defined by Wynn
and Bloomfield (1971).
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Theorem 4. The parameter vector al , • •• , ~r) satisfies L( Xi - ~y s c2

if and only if it satisfies (65).

Proof. The result follows immediately from (67) with Xi replaced by

Xi - ~i'

Another comparison of interest is that of the simultaneous confidence
intervals (69) for all U with the corresponding interval

(76) S'(x) = {~: ILUi(Xi - ~;) I.::; c'VLu;}

for a single given u. Since LUi(Xi - ~;)/ VLU; has a standard normal
distribution, the constant c' is determined by p(xi .::; C,2) = Y instead of
by (68). If r > 1, the constant c2 = c; is clearly larger than C,2 = ci. The
lengthening of the confidence intervals by the factor cr/cl in going from
(76) to (69) is the price one must pay for asserting confidence y for all LUi~i
instead of a single one.

In (76), it is assumed that the vector U defines the linear combination of
interest and is given before any observations are available. However, it often
happens that an interesting linear combination LUi~i to be estimated is
suggested by the data. The intervals

(77) ILUi(Xi - ~i) I.::; cVLu;

with c given by (68) then provide confidence limits for Luit at confidence
level v. since they are included in the set of intervals (69). [The notation ui

in (77) indicates that the u's were suggested by the data rather than fixed in
advance.]

Example 9. Two groups. Suppose the data exhibit a natural split into a lower and
upper group, say ~;I""'~ik and ~h " "'~j'-k ' with averages Land L, and that
c.!!nfidence limits are required for ~+ - L . Letting X_= (X;I + ... +X;)/k and
X + = (Ail + . .. +"1,_)/(r - k) denote the associated averages of the X's , we see
that

(78) - - [I 1 - - - - VIIX-X-c -+-_/l'._l'.<X-X+c -+--
+ - k r - k .:> '0+ '0- - + - k r - k

with c given by (68) provide the desired limits . Similarly

(79)
_ c _ _ c
X- -<l'.<X+-- {k - '0-- - {k'

_ c _ _ C

X+- .~ .::;~+.::; X++ .~
yr-k yr-k
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provide simultaneous confidence intervals for the two group means separately, with c
again given by (68). [Fora discussion of relatedexamples and issues see Peritz (1965) .]

Instead of estimating a data-based function r.Ui~i' one may be interested
in testing it. At level a = 1 - y, the hypothesis r.Ui~i = 0 is rejected when
the confidence intervals (77) do not cover the origin, i.e. when

II:UiXil ~ ctf..u; .

Equivariance with respect to the group G1 of orthogonal transformations
assumed at the beginning of this section is appropriate only when all linear
combinations r.Ui~i with u E U are of equal importance. Suppose instead
that interest focuses on the individual means, so that simultaneous con­
fidence intervals are required for ~l' •• • , ~r' This problem remains invariant
under the translation group G2• However, it is no longer invariant under G1,

but only under the much smaller subgroup Go generated by the n! permuta­
tions and the 2" changes of sign of the X's. The only simultaneous intervals
that are equivariant under Go and G2 are given by [Problem 44(i)]

(80) S(X) = {~: Xi - A ~ ~i ~ Xi + A for all i},

where A is determined by

(81) p[S(X)] = P(max 11';1 ~ A) = y

with Y1, •• . , Yr being independent N(O,l).
These maximum-modulus intervals for the ~'s can be extended to all

linear combinations r.Ui~i of the ~'s by noting that the right side of (80) is
equal to the set [Problem 45(ii)]

(82) {~ : ILUi(Xi - ~JI~ ALluil for all u},
which therefore also has probability y, but which is not equivariant under
G1. A comparison of the intervals (82) with the Scheffe intervals (69) shows
[Problem 44(iii)] that the intervals (82) are shorter when r.Uj~j = ~i (i.e.
when uj = 1 for j = i, and uj = 0 otherwise), but that they are longer for
example when u\ = .. . = ur •

10. SCHEFFE'S S·METHOD FOR GENERAL
LINEAR MODELS

The results obtained in the preceding section for the simultaneous estima­
tion of all linear functions r.Ui~i when the common variance of the variables
Xi is known easily extend to the general linear model of Section 1. In the
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canonical form (2), the observations are n independent normal random
variables with common unknown variance 0'2 and with means £(1';) = 1/;
for i = 1, . .. , r, r + 1, ... , s and £(1';) = 0 for i = s + 1, . .. , n. Simulta­
neous confidence intervals are required for all linear functions L~_lU;1/; with
u E U, where U is the set of all u = (u 1' '' . ' ur ) with L~=lU; = 1. Invari­
ance under the translation group 1';' = 1';+ a;, i = r + 1, ... , s, leaves
Y1, •• ·, Yr; Ys + 1' •• " Yn as maximal invariants, and sufficiency justifies re­
stricting attention to Y = (Y1, ••• , Yr ) and S2 = Lj_S+llJ2. The confidence
intervals corresponding to (59) are therefore of the form

(83)
r

L(u; y, S) .:5: L U;lI;.:5: M(u; y, S)
i=1

for all u E U,

and in analogy to (61) may be assumed to satisfy

(84) L(u; y, S) = -M( -u; y, S).

By the argument leading to (63), it is seen in the present case that
equivariance of L(u; y, S) under G1 requires that

L(u; y, S) = h(u'y, y'y, S),

and equivariance under G2 requires that L be of the form

r

Li u; y, S) = L u.y, - c(S) .
i-1

Since 0' 2 is unknown, the problem is now also invariant under the group of
scale changes

G3 : y! = by, (i = 1, . .. , r), S' = bS (b > 0).

Equivariance of the confidence intervals under G3 leads to the condition
[Problem 45(i)]

and hence to

L(u; by, bS) = bL(u; y, S) for all b> 0,

bLuiy; - c(bS) = b[LuiYi - c(S)),

or c(bS) = bc(S). Putting S = 1 shows that c(S) is proportional to S.
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Thus

SCHEFFE'S S-METHOD FOR GENERAL LINEAR MODELS 413

L(u; y , S) = LU;Y; - cS, M(u ; Y, S) = LU;Y; + dS,

and by (84), c = d, so that the equivariant simultaneous intervals are given
by

(85) LU;Y; - cS .s LU;l1; .s LU;Y; + cS for all U E U.

Since (85) is equivalent to

L(Y; - 11;)2 s c2 ,

S2

the constant c is determined from the F-distribution by

[
L Y/fr n - s 2] _ ( n - s 2)_

(86) Po 2/( s --c - Po F,..n- s s --C - y.
S n-s) r r

As in (69), the restriction U E U can be dropped; this only requires

replacing c in (85) and (86) by ClLU; = c/VarEu;l';/02.
As in the case of known variance, instead of restricting attention to the

confidence bands (85), one may wish to permit more general simultaneous
confidence sets

(87) LU;l1; E A(u; Y, S) .

The most general equivariant confidence sets are then of the form [Problem
45(ii)]

(88)
LU;(Y; - 11;) E A

S
for all U E U,

and for a given confidence coefficient, the set A is minimized by Ao =
[- c. c], so that (88) reduces to (85).

For applications, it is convenient to express the intervals (85) in terms of
the original variables X; and t. Suppose as in Section 1 that Xl •.. . ' XII are
independently distributed as N(~; , 02), where ~ = (~l" ' " ~,,) is assumed to
lie in a given s-dimensional linear subspace- lIn (s < n) . Let V be an
r-dimensional subspace of lIn (r < s), let t be the least squares estimates
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of the ~'s under ITo, and let S2 = [(X; - ~y. Then the inequalities

(89)

Var(Lv;i;)
0'20'2

Var(Lv;~;) s LV;~; s LvJ; + cSLvJ; - cS

for all v E V,

with c given by (86), provide simultaneous confidence intervals for Ev;~; for
all v E V with confidence coefficient y.

This result is an immediate consequence of (85) and (86) together with
the following three facts, which will be proved below:

(i) If E:_lu;TJ; = Ej_lVj~j' then E:_lu;Y; = Ej_lVj~j;

(ii) E7_s+ly;2 = Ej_l(Xj - ~j)2.

To state (iii), note that the TJ'S are obtained as linear functions of the es
through the relationship

(90) (TJl,· ··,TJr,TJr+l,···,TJs ,O, . . . ,O)' = Cal""'~n)'

where C is defined by (1) and the prime indicates a transpose. This is seen
by taking the expectation of both sides of (1). For each vector u =
(u 1" ' " u r ) , (90) expresses LU;TJ; as a linear function LVJ")~j of the ~'s.

(iii) As u ranges over r-space, v(u) = (v\u), .. . , v~U» ranges over V.

Proof of (i). Recall from Section 2 that

n s n

L (Xj - ~j)2 = L (Y; -TJ;)2 + L 1)2.
j=1 i=1 j-s+l

Since the right side is minimized by TJ; = Y; and the left side by ~j = Cthis
shows that

(Yl .. . Ys 0 .. · 0)' = Cal '" En)',

and the result now follows from comparison with (90).

Proof of (ii). This is just equation (13).
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P .1.1 ( ... ) S' - ~n t: h ~ - ~ (u)t. • h (u)rooj OJ Ill. mce 1'/; - L.j_1C;j'Dj' we ave L.U;1'/; - L.Vj 'Dj WIt Vj
- ~r Th th t (u) - ( (u) (U» lin bi- L.;_lU;C;j' US e vee ors v - VI , . .. , u; are ear com ma-
tions, with weights U1, ••• , u., of the first r row vectors of C. Since the space
spanned by these row vectors is V, the result follows.

The set of linear functions LV;~;, V E V, for which the interval (89) does
not cover the origin-that is, for which v satisfies

(91) lL:v;t;l> cS
Var(L:v;t;)

17
2

-is declared significantly different from 0 by the intervals (89). Thus (91) is
a rejection region at level a = 1 - y of the hypothesis H: LV;~; = 0 for all
v E V in the sense that H is rejected if and only if at least one v E V
satisfies (91). If IT... denotes the (s - r)-dimensional space of vectors
v E ITo which are orthogonal to V, then H states that ~ E IT... , and the
rejection region (91) is in fact equivalent to the F-test of H: ~ E IT... of
Section 1. In canonical form, this was seen in the sentence following (85).

To implement the intervals (89) in specific situations in which the
corresponding intervals for a single given function LVi~; are known, it is
only necessary to designate the space V and to obtain its dimension r, the
constant C then being determined by (86).

Example 10. AU contrasts. Let X;j (j = 1, .. . , n;; i = 1, ... , s) be indepen­
dently distributed as N(~;, (12), and suppose V is the space of all vectors v =

( VI' . .. , v,,) satisfying

(92) LV; =0.

Any function Ev;~; with v E V is called a ~ontrgst among the ~; . The set of
contrasts includes in particular the differences ~+ - L discussed in Example 9. The
space TIn is the set of all vectors al'· · ·' ~l ; ~2" '" ~2; ~s" ' " t) and has dimen­
sion s, while V is the subspace of vectors TIn that are orthogonal to (1, . . . ,I) and
hence has dimension r = s - 1. It was seen in Section 3 that ~; = X;., and if the
vectors of V are denoted by

(
WI , .• . , WI ; W2 , •• • , W2 ; Ws , ••• , Ws ) ,

n 1 nl n2 n2 ns ns

the simultaneous confidence intervals (89) become (Problem 47)

{?W/ {?W/
(93) Lw;X;.- cS -:!> LW;~;:!> Lw;X;.+ cS -

n; n;

for all (WI" • . , ws ) satisfying LWi = 0,

withS! = EE( X;j - X;.)2 .
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In the present case the space TI.., is the set of vectors with all coordinates equal,
so that the associated hypothesis is H: el = .. . = es ' The rejection region (91) is
thus equivalent to that given by (19).

Instead of testing the overall homogeneity hypothesis H, we may be interested in
testing one or more subhypotheses suggested by the data. In the situation corre­
sponding to that of Example 9 (but with replications), for instance, interest may
focus on the hypotheses HI: e;\ = .. . = e;k and H2 : ~h = . . . = ~j' -k' A level a
simultaneous test of HI and H2 is given by the rejection region

E(!)n ;( X; .- X!!))2/(k - 1)
-~-..:..-_~.....:...-.::-..-----=- > C,

S2/(n - s)

E(2l n;( X; .- X!:l)2/(s - k - 1)
-~---=-_---.:......:-:._----.:.... > C,

S2/(n - s)

where E(I) ,E(2), X!! 1, X!:l indicate that the summation or averaging extends over the
sets (i1" ' " id and (JI" ' " is-d respectively, S2 = EE(X;j - X; .)2, a = 1 - 'I,
and the constant C is given by (86) with r = s and is therefore the same as in (19),
rather than being determined by the Fk-l. n- s and £' -k-I.n-s distributions . The
reason for this larger critical value is, of course, the fact the HI and H2 were
suggested by the data. The present procedure is an example of Gabriel's simulta­
neous test procedure mentioned in Section 4.

Example 11. Two-way wyout. As a second example, consider first the additive
model in the two-way classification of Section 5 or 6, and then the more general
interaction model of Section 6.

Suppose X;j are independent N(~;j' 0
2) (i = 1, .. . , a; i = 1, . . . , b), with ~;j

given by (32), and let V be the space of all linear functions Ew;a; = Ew;<e;.- L).
As was seen in Section 5, s = a + b - 1. To determine r, note that V can also be
represented as E; _lw;e;. withAEw; = 0 [Problem 46(i)], which spows that r = a-I.
The least-squares estimators t were found in Section 5 to be t j = X;.+ X'j - X.. ,
so that ~;.= X;. and S2 = EE(X;j - X; .- X' j + X••)2. The simultaneous confidence
intervals (89) therefore can be written as

rr:;r rr:;r
Lw;X;.- csy "t: .$Lw;~;. s Lw;X;.+ csy "t:

a

for all w with L W; = O.
i - I

If there are m observations in each cell, and the model is additive as before, the on?,
changes required are to replace X; . by X; •., S2 by LLE(X; jk - X; ..- X.j.+ X...) ,
and the expression under the square root by Ewl/bm.

Let us now drop the assumption of additivity and consider the general linear
model ~;jk = 1L + a; + Pj + 'I;j' with 1L and the a's, P's, and 'I'S defined as in
Section 6. The dimension s of TIn is then ab, and the least-squares estimators of
the parameters were seen in Section 6 to be

p. = X... , a; = X; ..- X... , ~ = X.j . - X...,

Yij = X; j'- X; .•- X.j.+ X•.. .
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The simultaneous intervals for all Lwiai, or for all LWi~i" with LWi = 0, are
therefore unchanged except for the replacement of S2 = L( X;jk - X; ..- X.j.+
X . . . )2 by S2 = L( X;jk - Xij.)2 and of n - s = n - a - b + 1 by n - s = n - ab
= (m - l)ab in (86).

Analogously, one can obtain simultaneous confidence intervals for the totality of
linear functions LW;i'Yii ' or equivalently the set of functions Lwijtj. for the totality
of w's satisfying L iWij = LjWt; = 0 [Problem 46(ii),(iii)].

Example 12. Regression line. As a last example consider the problem of obtain­
ing confidence bands for a regression line, mentioned at the beginning of the
section. The problem was treated for a single value 10 in Chapter 5, Section 8 (with
a different notation) and in Section 7 of the present chapter . The simultaneous
confidence intervals in the present case become

A [ 1 (I _ i)2 ]1 /2
(94) a+ PI - :S - + _2 5 a + fJI

n [(1i - / )

2 ]1/21 (1 - i)
s.+Pt+cs[;+ L(t,-i)' '

where aand /J are given by (33),

, " ( A)2" - 2 A2 " 2S- = L... X; - a- fJli = £.., ( X; - X) - fJ £.., (Ii ~ i)

and c is determined by (86) with r = s = 2. This is the Working-Hotelling
confidence band for a regression line.

At the beginning of the section, the Scheffe intervals were derived as the
only confidence bands that are equivariant under the indicated groups. If
the requirement of equivariance (particular under orthogonal transforma­
tions) is dropped, other bounds exist which are narrower for certain sets of
vectors u at the cost of being wider for others [Problems 45(iii) and 68]. A
general method that gives special emphasis to a given subset is described by
Richmond (1982). Some optimality results not requiring equivariance but
instead permitting bands which are narrower for some values of t at the
expense of being wider for others are provided, among others, by Bohrer
(1973), Cima and Hochberg (1976), Richmond (1982), Naiman (1984a, b),
and Piegorsch (1985a, b). If bounds are required only for a subset, it may be
possible that intervals exist at the prescribed confidence level, which are
uniformly narrower than the Scheffe intervals. This is the case for example
for the intervals (94) when t is restricted to a given finite interval. For a
discussion of this and related problems, and references to the literature, see
for example Wynn and Bloomfield (1971) and Wynn (1984).
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11. RANDOM-EFFECTS MODEL: ONE-WAY
CLASSIFICAnON

[7.11

In the factorial experiments discussed in Sections 3, 5, and 6, the factor
levels were considered fixed, and the associated effects (the p.'s in Section 3,
the a's, P's and 'Y's in Sections 5 and 6) to be unknown constants.
However, in many applications, these levels and their effects instead are
(unobservable) random variables. If all the effects are constant or all
random, one speaks of fixed-effects model (model I) or random-effects model
(model II) respectively, and the term mixed model refers to situations in
which both types occur. Of course, only the model I case constitutes a linear
hypothesis according to the definition given at the beginning of the chapter.
In the present section we shall treat as model II the case of a single factor
(one-way classification), which was analyzed under the model I assumption
in Section 3.

As an illustration of this problem, consider a material such as steel,
which is manufactured or processed in batches. Suppose that a sample of
size n is taken from each of s batches and that the resulting measurements
Xjj (j = 1, . .. , n; i = 1, . . . , s) are independently normally distributed with
variance (12 and mean ~j. If the factor corresponding to i were constant,
with the same effect a j in each replication of the experiment, we would have

and

~j = p. + a j (Laj = 0)

Xjj = p. + a j + U;j

where the U;j are independently distributed as N(O, (12). The hypothesis of
no effect is ~t = .. . = ~s or equivalently at = . .. = as = O. However,
the effect is associated with the batches, of which a new set will be involved
in each replication of the experiment; and the effect therefore does not
remain constant. Instead, we shall suppose that the batch effects constitute a
sample from a normal distribution, and to indicate their random nature we
shall write Aj for aj' so that

(95) Xij = p. + Aj + U;j.

The assumption of additivity (lack of interaction) of batch and unit effect,
in the present model, implies that the A's and U 's are independent. If the
expectation of Aj is absorbed into p., it follows that the A's and U's are
independently normally distributed with zero means and variances (11 and
(12 respectively. The X's of course are no longer independent.
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The hypothesis of no batch effect, that the A's are zero and hence
constant, takes the form

H :ol=o.

This is not realistic in the present situation, but is the limiting case of the
hypothesis

0 2
A

H(do) : 2" ;S; do
o

that the batch effect is small relative to the variation of the material within a
batch. These two hypotheses correspond respectively to the model I hy­
potheses La~ = 0 and La~/02 ;S; do .

To obtain a test of H(do) it is convenient to begin with the same
transformation of variables that reduced the corresponding model I problem
to canonical form. Each set (Xil , .•• , X;n) is subjected to an orthogonal
transformation Y; j = L'k _1Cjk X;k such that Y;1 = InX; . . Since Clk = 1/ In
for k = 1, .. . , n (see Example 3), it follows from the assumption of ortho­
gonality that L'k_1Cjk = 0 for j = 2, ... , n and hence that Y;j = L'k-1CjkU;k
for j > 1. The Y;j with j > 1 are therefore independently normally distrib­
uted with zero mean and variance 02. They are also independent of U; . since
(InU;. Y;2 ·· · Y;n)' = C(U;1 U;2 · ·· U;n)' (a prime indicates the transpose of a
matrix). On the other hand, the variables Y;1 = InX;.= In(JL + A; + U; .)
are also independently normally distributed but with mean InJL and vari­
ance 0

2 + no] , If an additional orthogonal transformation is made from
(Yll , . · · , Ys1) to (211, • .• , 2 s1) such that 2 11 = {iy.1, the Z's are indepen­
dently normally distributed with common variance 0 2 + nol and means
£(Zl1) = {Si/ JL and £(Zil) = 0 for i> 1. Putting Zij = Y;j for j> 1 for
the sake of conformity, the joint density of the 2 's is then

(96) (277) - ns/20- <n- 1)s( 0 2 + nolrs/ 2

[
1 ( 2 s ) 1 s n ]

x exp - 2( 2 2) (Zll - &JL) + L Z ;~ - -22 L L Z;~ •
o + nOA ;=2 0 ;=1 j=2

The problem of testing H(do) is invariant under addition of an arbitrary
constant to 2 11, which leaves the remaining Z's as a maximal set of
invariants. These constitute samples of size s(n - 1) and s - 1 from two
normal distributions with means zero and variances 0 2 and '1"2 = 0 2 + no].
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The hypothesis H(6.o) is equivalent to .,.2/(12 ~ 1 + 6.on, and the problem
reduces to that of comparing two normal variances, which was considered in
Example 6 of Chapter 6 without the restriction to zero means. The UMP
invariant test, under multiplication of all Z;j by a common positive con­
stant, has the rejection region

(97)

where

1
W* = 1 + 6.on

S;/(s - 1)
S2/(n _ 1)s > C,

s s n s n

sl = L Z;1 and S2 = L L zt = L L Y;J.
;-2 i-I j-2 ; -1 j -2

The constant C is determined by

£00F..-l,(n-l)s(Y) dy = a.

Since

n n

L Y;; - Y;f = L 0;; - nO;:
j-l j-l

and

s s

L Z;1- Zfl = L Y;f - sY.L
;-1 i-I

the numerator and denominator sums of squares of W*, expressed in terms
of the X's, become

s s n

S; = n L (X;.- x.i and S2 = L L (X;j - X;.)2.
i-I i-lj-l

In the particular case 6. 0 = 0, the test (97) is equivalent to the corre­
sponding model I test (19), but they are of course solutions of different
problems, and also have different power functions. Instead of being distrib­
uted according to a noncentral X2-distribution as in model I, the numerator
sum of squares of W* is proportional to a central x2-variable even when the
hypothesis is false, and the power of the test (97) against an alternative
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value of A is obtained from the F-distribution through

{3(A) = PL\{W* > C} = h:L\on J:.-l,(n-l)Ay) dy.
--c
l+~n

The family of tests (97) for varying Ao is equivalent to the confidence
statements

(98) A = ~ [ sl/(s - 1) ]
- n CS 2/(n _ l)s - 1 5 A.

The corresponding upper confidence bounds for A are obtained from the
tests of the hypotheses A~ Ao. These have the acceptance regions W· ~ C',
where W* is given by (97) and C' is determined by

{~~-l.(n-l)S = 1 - a,

and the resulting confidence bounds are

(99) 1 [ sl/(s - 1) _ 1] = L1 .
A 5 -;; C'S2/(n _ l)s

Both the confidence sets (98) and (99) are equivariant with respect to the
group of transformations generated by those considered for the testing
problems, and hence are uniformly most accurate equivariant.

When ~ is negative, the confidence set (~, (0) contains all possible
values of the parameter A. For small a, this will happen with high
probability (1 - a for A = 0), as must be the case, since ~ is then required
to be a safe lower bound for a quantity which is equal to or near zero. Even
more awkward is the possibility that L1 is negative, so that the confidence set
( - 00 , K) is empty." An interpretation is suggested by the fact that this
occurs if and only if the hypothesis A ~ Ao is rejected for all positive values
of Ao. This may be taken as an indication that the assumed model is not
appropriate,t although it must be realized that for small A the probability of
the event K < 0 is near a even when the assumptions are satisfied, so that
this outcome will occasionally be observed.

The tests of A 5 Ao and A ~ Ao are not only UMP invariant but also
UMP unbiased, and UMP unbiased tests also exist for testing A = Ao

"Such awkward confidence sets are discussed further at the end of Chapter 10, Section 4.
t For a discussion of possibly more appropriate alternative models. see Smith and Murray

(1984) .
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against the two-sided alternatives d * do. This follows from the fact that
the joint density of the Z's constitutes an exponential family. The con­
fidence sets associated with these three families of tests are then uniformly
most accurate unbiased (Problem 48). That optimum unbiased procedures
exist in the model II case but not in the corresponding model I problem is
explained by the different structure of the two hypotheses. The model II
hypothesis 0] = 0 imposes one constraint, since it concerns the single
parameter 0]. On the other hand, the corresponding model I hypothesis
L:=la; = 0 specifies the values of the s parameters al, ... , as' and since
s - 1 of these are independent, imposes s - 1 constraints.

A UMP invariant test of d s do does not exist if the sample sizes n; are
unequal. An invariant test with a weaker optimum property for this case is
obtained by Spjetvoll (1967).

Since d is a ratio of variances, it is not surprising that the test statistic
W* shares the great sensitivity to the assumption of normality found in
Chapter 5, Section 4 for the corresponding two-sample problem. More
robust alternatives are discussed, for example, by Arvesen and Layard
(1975).

12. NESTED CLASSIFICAnONS

The theory of the preceding section does not carry over even to so simple a
situation as the general one-way classification with unequal numbers in the
different classes (Problem 51). However, the unbiasedness approach does
extend to the important case of a nested (hierarchical) classification with
equal numbers in each class. This extension is sufficiently well indicated by
carrying it through for the case of two factors; it follows for the general case
by induction with respect to the number of factors.

Returning to the illustration of a batch process, suppose that a single
batch of raw material suffices for several batches of the finished product. Let
the experimental material consist of ab batches, b coming from each of a
batches of raw material, and let a sample of size n be taken from each. Then
(95) becomes

(100) X;jk = /l + A; + Bij + U;jk

(i=l, . . . ,a; j=l, .. . .b; k=l, .. . ,n)

where A; denotes the effect of the ith batch of raw material, Bij that of the
jth batch of finished product obtained from this material, and U;jk the effect
of the k th unit taken from this batch. All these variables are assumed to be
independently normally distributed with zero means and with variances 0],
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aJ, and a 2 respectively. The main part of the induction argument consists in
proving the existence of an orthogonal transformation to variables Zijk the
joint density of which, except for a constant, is

(101) exp[- (2 \ b 2) ((zlll-';abn p)2+ £Zi~l)
2 a + naB + naA i -2

1 ab 1 ab ]

- 2(a2+ n( 2) .L L Zi~l - -22 L L i: Zl-k .
B 1=1 j-2 a . 1 . 1 k j/- j= - 2

As a first step, there exists for each fixed i, j an orthogonal transforma­
tion from (Xijl, .. . , Xijn) to (Y;jl' .. . , Y;jn) such that

Y;jl = .;nXij.= .;np + .;n(Ai + Bij + Uij.).

As in the case of a single classification, the variables Y;jk with k > 1
depend only on the U's, are independently normally distributed with zero
mean and variance a2, and are independent of the U;j . . On the other hand,
the variables Y;jl have exactly the structure of the Y;j in the one-way
classification,

Y;jl = p' + Ai + U;j,

where p' = .;np, Ai = .;nAi' U;j = .;n(Bij + U;j')' and where the variances
of Ai and U;j are aA2 = na] and a,2 = a2+ n~ respectively. These vari­
ables can therefore be transformed to variables Zijl whose density is given
by (96) with Zijl in place of Zij" Putting Zijk = Y;jk for k > 1, the joint
density of all Zijk is then given by (101).

Two hypotheses of interest can be tested on the basis of (101)­
H l : a]/(a 2 + naJ) s;; ~o and H2: aJ/a2 s;; ~o, which state that one or the
other of the classifications has little effect on the outcome. Let

a

S] = L Zi~l'
;=2

a b

SJ = L L Zi~l '
i-l j - 2

a b n

S2 = L L L Zi~k '
i=l j-l k-2

To obtain a test of Hl , one is tempted to eliminate S2 through invariance
under multiplication of Zijk for k > 1 by an arbitrary constant. However,
these transformations do not leave (101) invariant, since they do not always
preserve the fact that a2 is the smallest of the three variances a2, a2+ naJ,
and a 2 + naJ + bno], We shall instead consider the problem from the
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point of view of unbiasedness. For any unbiased test of Hi' the probability
of rejection is a whenever al/(a 2+ na~) = ~o, and hence in particular
when the three variances are a2, 'Tl, and (1 + bn~o)'Tl for any fixed 'Tl and
all a2 < 'Tl. It follows by the techniques of Chapter 4 that the conditional
probability of rejection given S2 = S2 must be equal to a for almost all
values of s 2. With S2 fixed, the joint distribution of the remaining variables
is of the same type as (101) after the elimination of Zm, and a UMP
unbiased conditional test given S2 = S2 has the rejection region

(102)
1 Sl/(a - 1) ~ C

1
•

W1* = 1 + bn~o . S~/(b - l)a

Since sl and S~ are independent of S2, the constant C1 is determined by
the fact that when al/(a 2 + na~) = ~o, the statistic W1* is distributed as
Fa - 1. ( b - l )a and hence in particular does not depend on s. The test (102) is
clearly unbiased and hence UMP unbiased.

An alternative proof of this optimality property can be obtained using
Theorem 7 of Chapter 6. The existence of a UMP unbiased test follows
from the exponential family structure of the density (101), and the test is the
same whether 'T 2 is equal to a2+ na~ and hence ~ a2, or whether it is
unrestricted. However, in the latter case, the test (102) is UMP invariant and
therefore is UMP unbiased even when 'T 2 ~ a 2

•

The argument with respect to H2 is completely analogous and shows the
UMP unbiased test to have the rejection region

(103)
1 S~/(b - l)a

W* = . ~ C2 ,
2 1 + n~o S2/(n - l)ab

where C2 is determined by the fact that for a~/a2 = ~o, the statistic W2* is
distributed as f(b-l)a.(n-l)ab '

It remains to express the statistics sl, S~, and S2 in terms of the X's.
From the corresponding expressions in the one-way classification, it follows
that

a

sl = E Z;~l - zlu = b E(Y;'l - Y"1)2,
;-1

S~ = t [i. Z;~l - Z;~l] = EE(Y;jl - Y;'1)2,
;=1 j-l



7.12]
and

Hence

NESTED CLASSIFICATIONS

S2 = i: t [t Y;]k - Y;]l] = L:L:[ i: U;]k - nu;].]
;=1 ) = 1 k=1 ; ) k-l

= L: L: L:(U;jk - u;jl.
; ) k
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(104) s] = bnL:(X;..- x ..i, si = nL:L:(X;j'- x;.l,

S2 = L L L(X;jk - X;j.f

It is seen from the expression of the statistics in terms of the Z's that
their expectations are E[S]/(a - 1)] = a2+ nai + bnal, E[Si/(b - l)a]
= a2+ nai, and E[S2/(n - l)ab] = a2. The decomposition

L L L (X;jk - X...)2 = S] + si + S2

therefore forms a basis for the analysis of the variance of X;jk'

Var( Xijk) = a] + ai + a2

by providing estimates of the components of variance a], aJ, and a2, and
tests of certain ratios of these components.

Nested two-way classifications also occur as mixed models. Suppose for
example that a firm produces the material of the previous illustrations in
different plants. If a; denotes the effect of the ith plant (which is fixed, since
the plants do not change in the replication of the experiment), Bij the batch
effect, and U;jk the unit effect, the observations have the structure

(105) Xijk = P. + a ; + Bij + U;jk'

Instead of reducing the X's to the fully canonical form in terms of the
Z's as before, it is convenient to carry out only the reduction to the Y's
(such that Y;jl = InXij.) and the first of the two transformations which take
the Y's into the Z's. If the resulting variables are denoted by W;jk' they
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satisfy JV;1l = {b 1';.1' JV;jk = 1';jk for k > 1 and

a

L (JV;1l - W.ll )2= s1,
i=1

a b

L L JV;;1 = si,
i-I j -2

o b n

L L L JV;;k = S2
i=1 j -l k=2

where s1, si, and S2 are given by (104). The joint density of the W's is,
except for a constant,

[
1 (0 0 b )

(106) exp - (2 2) L (Will - P. - ay + L L Wi~1
2 a + naB i - I i=1 j= 2

lob n ]
- -2 L L L Wi~k •

2a i = 1 j -l k-2

This shows clearly the different nature of the problem of testing that the
plant effect is small,

La;
H : a1 = . . . = ao = 0 or H': 2 2 ~ do

a + naB

and testing the corresponding hypothesis for the batch effect: aJ/a2~ do .
The first of these is essentially a model I problem (linear hypothesis). As
before, unbiasedness implies that the conditional rejection probability given
S2 = S2 is equal to a a.e. With S2 fixed, the problem of testing H is a
linear hypothesis, and the rejection region of the UMP invariant conditional
test given S2 = S2 has the rejection region (102) with do = o. The constant
C1 is again independent of S2, and the test is UMP among all tests that are
both unbiased and invariant. A test with the same property also exists for
testing H'. Its rejection region is

S2/(0 - 1) C'
If >,

Si!(b - 1)0 -

where C' is determined from the noncentral F-distribution instead of, as
before, the (central) F-distribution.

On the other hand, the hypothesis aJ/a 2~ do is essentially model II . It
is invariant under addition of an arbitrary constant to each of the variables
JV;1l' which leaves Ef-lE~-2JV;;1 and Ef-lE~-IEk-2JV;;k as maximal in­
variants, and hence reduces the structure to pure model II with one
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classification. The test is then given by (103) as before. It is both UMP
invariant and UMP unbiased.

A two-factor mixed model in which there is interaction between the two
factors will be considered in Example 2 of Chapter 8. Very general mixed
models (containing general type II models as special cases) are discussed,
for example, by Harville (1978), J. Miller (1977), and Brown (1984), but see
the note following Problem 63.

The different one- and two-factor models are discussed from a Bayesian
point of view, for example, in Box and Tiao (1973) and Broemeling (1985).
In distinction to the approach presented here, the Bayesian treatment also
includes inferences concerning the values of the individual random compo­
nents such as the batch means ~i of Section 11.

13. PROBLEMS

1. Expected sums of squares. The expected values of the numerator and de­
nominator of the statistic W· defined by (7) are

(
r Y2) 1 r [n Y2]

E L -' = ,,2+ - L r17 and E L -=- = ,,2.
;=1 r r i - I i - s+l n s

2. Noncentral X2-distribution· .

(i) If X is distributed as N(!/t, 1), the probability density of V = X2 is
pf( v) =. f.f'-OPk(!/t )fu+ 1(v), where Pk(!/t) = (!/t2/2)ke-( lj2),y2/k! and
where fu + 1 is the probability density ofax2-variable with 2k + 1
degrees of freedom.

(ii) Let Y•• . . . , y,. be independently normally distributed with unit variance
and means lI •• .. . , lI, . Then U = f.Y? is distributed according to the
noncentral X2-distribution with r degrees of freedom and noncentrality
parameter !/t2 = f.~_.lI;. which has probability density

(107)
00

pf(u) = L Pk(!/t)f,·+u(u) .
k -O

Here Pd!/t) and j,+u (u) have the same meaning as in (i), so that the
distribution is a mixture of X2-distributions with Poisson weights.

[(i): This is seen from

e- ~(,y2+1')( e,y.,t> + .- ~ .,t»

pf( v) = 2/27TV

"The literature on noncentral X2• including tables. is reviewed in Chapter 28 of Johnson
and Kotz (1970. Vol. 2). in Chou. Arthur . Rosenstein, and Owen (1984). and in Tiku (1985a).
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by expanding the expression in parentheses into a power series, and using the
fact that f(2k) = 2u -'f(k)f(k + t)/f; .
(ii): Consider an orthogonal transformation to Z" .. . , Z, such that Z, =

E'IJ; Y;/o/. Then the Z's are independent normal with unit variance and means
£(Z,) = 0/ and £(Z;) = 0 for i > 1.]

3. Noncentral F- and beta-distributionI Let Y" . .. , Y,.; Y.+ I' .. ·' Yn be indepen­
dently normally distributed with common variance (12 and means £(Y;) =

'IJ;(i = 1, ... , r); £(Y;) = 0 (i = s + 1, .. . , n).

(i) The probability density of W = E~_, y;2IL7-s+1y;2 is given by (6). The
distribution of the constant multiple (n - s) W/ r of W is the noncentral
F-distribution.

(ii) The distribution of the statistic B = E~_, y;2/O:~-I y;2 + E7-s+1y;2) is the
noncentral beta-distribution, which has probability density

(108)
00

L Pk(o/)gtr+k.t(n-s)(b),
k-O

where

(109)
) q-If(p+q bP - I(l-b) ,

gp.q(b) = f(p)f(q) O~b~l

is the probability density of the (central) beta-distribution.

4. (i) The noncentral X2 and F distributions have strictly monotone likelihood
ratio .

(ii) Under the assumptions of Section 1, the hypothesis H' : 0/2 s o/~ (% > 0
given) remains invariant under the transformations G; (i = 1,2,3) that
were used to reduce H : 0/ = 0, and there exists a UMP invariant test with
rejection region W> C. The constant C' is determined by Po/-o{ W > C}
= a, with the density of W given by (6).

[(i): Let j(z) = E'f_obkzkIL'f_oakzk where the constants ab b, are > 0 and
Eakzk andEbkzk converge for all z > O,andsupposethat bk/ak < bk+l/ak+1
for all k. Then

( :E akzk)2
k-O

LL(n - k)(akb" - anbk)zk+ll-I
k<n/'( z) = ~'-------,:----

is positive, since (n - k)( akb" - a"bd > 0 for k < n, and hence j is increas­
ing.]

t For literature on noncentral F. see Johnson and Kotz (1970. Vol. 2) and Tiku (1985b).



7.13] PROBLEMS 429

Note. The noncentral X2• and F-distributions are in fact STPoo [see for
example Marshall and Olkin (1979) and Brown, Johnstone and MacGibbon
(1981»), and there thus exists a test of H: I/J = I/Jo against I/J * I/Jo which is
UMP among all tests that are both invariant and unbiased.

5. Best average power.

(i) Consider the general linear hypothesis H in the canonical form given by
(2) and (3) of Section 1, and for any 'IJr+ I' .. . , 'IJs' a, and p let S =

S( 'IJr+ I" . . , 'IJs' a; p) denote the sphere {('Ill" ' " 'IJr) : E~_I'lJUa2 = p2}.
If P.p ('Ill' .. . , 'IJs' a) denotes the power of a test ep of H, then the test (9)
maximizes the average power

1P.p ( 'Ill , .. . , 'IJs' a) dA
S

idAs

for every 'IJr+I" ' " 'IJs, a, and p among all unbiased (or similar) tests.
Here dA denotes the differential of area on the surface of the sphere .

(ii) The result (i) provides an alternative proof of the fact that the test (9) is
UMP among all tests whose power function depends only on E~_ I'lJUa2 .

[(i): if U = E~_IY?' V = E7-s+I}'?, unbiasedness (or similarity) implies that
the conditional probability of rejection given ~+ I' . . . , y. , and U + V equals a
a.e. Hence for any given 'IJr+ I' .. . , 'IJs' a, and p, the average power is maxi­
mized by rejecting when the ratio of the average density to the density under H
is larger than a suitable constant C(Yr+ 1" '" Ys , u + v), and hence when

(

r 'IJiYi)
g(YI, · .. ,Yr;'IJI, .. · , 'IJr ) = i exp L -2 dA > C(Yr+I" "'Ys ,U+V) '

S i- I a

As will be indicated below, the function g depends on YI"'" Yr only through
U and is an increasing function of u. Since under the hypothesis U/(U + V) is
independent of ~+ I' . . . , y. and U + V, it follows that the test is given by (9).
The exponent in the integral defining g can be written as E~_I'lJiy;/a2 =

(p.;ucosp)/a, where P is the angle (O:S;p:S;'IT) between ('IJI,.. . ,'IJr) and
(YI, . . . , Yr)' Because of the symmetry of the sphere, this is unchanged if P is
replaced by the angle y between ('Ill"' " 'IJr) and an arbitrary fixed vector .
This shows that g depends on the Y's only through u; for fixed 'Ill" ' " 'IJ r ' a
denote it by h(u). Let S' be the subset of S in which 0 :s; y:s; '17'/2. Then

1[ (p.;uCOSy) ( -p.;ucos y)]
h( u) = exp + exp dA,

s a a

which proves the desired result .)
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6. Use Theorem 8 of Chapter 6 to show that the F-test (7) is a-admissible against
0' : 1/1 ~ 1/1, for any 1/1, > O.

7. Given any 1/12 > 0, apply Theorem 9 and Lemma 3 of Chapter 6 to obtain the
F-test (7) as a Bayes test against a set 0' of alternatives contained in the set
0< 1/1::::; 1/12'

Section 2

8. Under the assumptions of Section 1 suppose that the means t are given by

s

~; = L a;/Ji,
j-l

where the constants aij are known and the matrix A = (aij) has full rank, and
where the fJj are unknown parameters. Let 8 = Ej_,e)Jj be a given linear
combination of the fJj .

(i) If Pi d~notes the values of the fJj minimizing E( X; - ~;)2 and if 0 =
Et_,ejfJj = E'J_,d;X;, the rejection region of the hypothesis H:
8 = 80 is

(110)
10 - 8ol/ [rA

YL(X; - 02/(n - s)

where the left-hand side under H has the distribution of the absolute
value of Student's t with n - s degrees of freedom.

(ii) The associated confidence intervals for 8 are

(111) O-k
A )2

L(X;-( ::::;8::::;0+k
n-s

L(X;_i;)2

n-s

with k = eo/Ed;. These intervals are uniformly most accurate equi­
variant under a suitable group of transformations.

[(i): Consider first the hypothesis 8 = 0, and suppose without loss of general­
ity that 8 = fJ,; the general case can be reduced to this by making a lin­
ear transformation in the space of the fJ's. If g" .. . , gs denote the column
vectors of the matrix A which by assumption span TID, then
~ = fJ,g, + . .. + fJsgs' and since ~ is in TID, also ~ = p,g, + . . . +Psgs' The
space II", defined by the hypothesis fJl = 0 is spanned by the vectors g2" .. , gs
and also by the row vectors f2"'" fs of the matrix C of (1), while f, is
orthogonal}o TI", . By (1), the vectorAX is given by X=E7-,¥;f;, and its
projection { on TID therefore satisfies { = E: _, ¥;f; . Equating the two expres-
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sions for ~ and taking the inner product of both sides of this equation with fl
gives Yl ,; filE7-lQilCl;' since the f'S are an orthogonal set of unit vectors.
This shows that Yl is proportional to fil and, since the variance of lJ. is the

same as that of the X's, that IYll = IfitV lEd; . The result for testing PI = 0
now follows from (12) and (13). The test for PI = M is obtained by making
the transformation X;* = X; - QilM·
(ii): The invariance properties of the intervals (111) can again be discussed
without loss of generality by letting 8 be the parameter Pl' In the canonical
form of Section 1, one then has E(Yl ) = 1Jl = API with IAI = 1/ lEd? while
1J2' . . . , 1J, do not involvePl' The hypothesis PI = PP is therefore equivalent to
1Jl = 1J? with 1J? = APr, This is invariant (a) under addition of arbitrary
constants to Y2 , .. ·, y.; (b) under the transformations lJ.* = - (Yl - 1J?) + 1J?;
(c) under the scale changes Y;* = cY; (i = 2, .. . , n), yr - 1J?* = c(Yl - 1J?).
The confidence intervals for 8 = PI are then uniformly most accurate equi­
variant under the group obtained from (a), (b), and (c) by varying 1J?]

9. Let X; j (j= 1, .. . ,m j ) and Y;k (k= 1,. .. ,n;) be independently normally
distributed with common variance a2 and means E(X;j) = ~; and E(Y;) = t
+ !!.. . Then the UMP invariant test of H : !!.. = 0 is given by (110) with 8 = !!..,
80 = 0 and

m ; n;

L X;j + E (Y;k - 8)
,;_1 k -l

N;
t=--

m ·nL -'-' (Y;.- X; .)
; N;

8= -- m .n .
E-'-'
; N;

where N; = m, + n..

10. Let XI" ' " x" be independently normally distributed with known variance aJ
and means E( X;) = ~j' and consider any linear hypothesis with s ~ n (instead
of s < n which is required when the variance is unknown). This remains
invariant under a subgroup of that employed when the variance was unknown,
and the UMP invariant test has rejection region

(112) E(x, - t)2- L(X; - 0 2
= L(~j - tr > CaJ

with C determined by

(113) jOOx;(y) dy = a .
c

11. Consider two experiments with observations (Xl" '" Xn ) and (YI , · .. , Y,,)
respectively, where the X; and Y; are independent normal with variance
a2 = 1 and means E(X;) = c;8;, E(Y;) = 8;. Then the experiment based on
the Y; is more informative than that based on the Xj if and only if Ic;1~ 1 for
all i.
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[If l/c; = 1 + d, with d, > 0, let Y,' = Y, + Vi, where Vi is N(O, d;) and
independent of Y, . Then c,Y,' has the same distribution as X;. Conversely, if
c, > 1, the UMP unbiased test of H: 8; = 8 against 8; > ° based on
( XI , , X,,) is more powerful than the corresponding test based on
(YI , , Y" ).]

12. Under the assumptions of the preceding problem suppose that E(X;) = t =

Ej_lo;A, E(Y,) = 1/; = Ej-1b;A with the n X s matrices A = (a ;j) and
B = (b; j) of rank s. Then the experiment based on the Y, is more informative
than that based on the X; if and only if B'B - A'A is nonnegative definite.
[There exists a nonsingular matrix F such that F'A'AF = I and F'B'BF = A,
where I is the identity and A is diagonal . The transformation X' = FX,
Y' = FY reduces the situation to that of Problem 11.]

Note . The results of Problems 11 and 12 no longer hold when 0 2 is unknown.
See Hansen and Torgersen (1974).

Section 3

13. If the variables Xi} (j = 1, .. . , n;; i = 1, .. . , s) are independently distributed
as N(p.;, ( 2 ) , then

E[En;(X;.- x.i] = (s - 1)02 + En;(p.; - p.i,

E[EE(X;j - x;i] = (n - S)02 .

14. Let 2 1" " , Z, be independently distributed as N(r;, a;), i = 1, .. . , s, where
the 0 ; are known constants.

(i) With respect to a suitable group of linear transformations there exists a
UMP invariant test of H: t1 = .. . = ts given by the rejection region
(21).

(ii) The power of this test is the integral from C to 00 of the noncentral
x 2-density with s - 1 degrees of freedom and noncentrality parameter )..2
obtained by substituting t for Z; in the left-hand side of (21).

15. (i) If XI" '" Xn is a sample from a Poisson distribution with mean E( X;)
= ).., then {n(IX - IX) tends in law to N(O,~) as n -> 00 .

(ii) If X has the binomial distribution b(p, n), then {n[arcsinJX/n ­
arcsin{i] tends in law to N(O,n as n -> 00 .

(iii) If (XI' YI ) , . . . ,( Xn , y") is a sample from a bivariate normal distribution,
then as n -> 00 (in the notation of Chapter 5, Section 15)

[
l+R l+ P]{n log-- - log-- -> N(O,4).
1-R 1-p
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Note . Certain refinements of these transformations arc discussed by
Anscombe (1948), Freeman and Tukey (1950), and Hotelling (1953).
Transformations of data to achieve approximately a normal linear model
are considered by Box and Cox (1964); for later developments stemming
from this work see Bickel and Doksum (1981), Box and Cox (1982), and
Hinkley and Runger (1984).

Section 4

16. Show that

r+l ( y, + .. . + Y.)2 r ( y, + . . . + Y.)2L Y - \ r+ \ _ L Y _ 1 r > 0
; - 1 I r + 1 i-I I r - .

17. (i) For the validity of Theorem 1 it is only required that the probability of
rejecting homogeneity of any set containing {JL; , . ••, JL; } as a proper, v,
subset tends to 1 as the distance between the different groups (26) all
-+ 00, with the analogous condition holding for H5., ... , H:.

(ii) The condition of part (i) is satisfied for example if homogeneity of a set S
is rejected for large values ofEIX;.- X..I, where the sum extends over the
subscripts i for which JL; E S.

18. In Lemma 1, show that as - \ = at is necessary for admissibility.

19. Prove Lemma 2 when s is odd.

20. Show that the Tukey levels (vi) satisfy (29) when s is even but not when s is
odd .

21. The Tukey T-method leads to the simultaneous confidence intervals

(114)
cs

I( Aj.- X;.) - (JLj - JL;) Is 'sn( n - r for all i, j .

[The probability of (114) is independent of the JL'S and hence equal to 1 - as.]

Section 6

22. The linear-hypothesis test of the hypothesis of no interaction in a two-way
layout with m observations per cell is given by (39).

23. In the two-way layout of Section 6 with a = b = 2, denote the first three terms
in the partition of EEE(X;jk - X;j.)2 by S;, SJ, and SiB' corresponding to
the A, B, and AB effects (i.e. the a's, {J's, and y's), and denote by HA , HB ,

and HA R the hypotheses of these effects being zero. Define a new two-level
factor B' which is at level 1 when A and B are both at level 1 or both at level



434 LINEAR HYPOTHESES

2, and which is at level 2 when A and B are at different levels. Then

[7.13

HB• = HAB , SB ' = SAB' HAB, = HB , SAB' = SB'

so that the B-effect has become an interaction, and the AB-interaction the
effect of the factor B'. [Shaffer (1977b).]

24. The size of each of the following tests is robust against nonnormality:

(i) the test (35) as b --+ 00,

(ii) the test (37) as mb --+ 00 ,

(iii) the test (39) as m --+ 00.

Note. Nonrobustness against inequality of variances is discussed in Brown
and Forsythe (1974a).

25. Let X>, denote a random variable distributed as noncentral X2 with f degrees
of freedom and noncentrality parameter '),,2. Then X>,, is stochastically larger
than X>, if A < A'.
[It is enough to show that if Y is distributed as N(O,I), then (Y + A')2 is
stochastically larger than (Y + A)2. The equivalent fact that for any z > 0,

P{ IY+ A'I s z} S P{ IY+ Ais z },

is an immediate consequence of the shape of the normal density function. An
alternative proof is obtained by combining Problem 4 with Lemma 2 of
Chapter 3.]

26. Let X;jk (i = 1, . . . , a; i - 1, ... , b; k = 1, . . . , m) be independently normally
distributed with common variance a 2 and mean

E( X;jk) = II- + a; + Pj + Yk (La; = LPj = LYk = 0).

Determine the linear hypothesis test for testing H: al = . . . = a
Q

= O.

27. In the three-factor situation of the preceding problem, suppose that a = b = m.
The hypothesis H can then be tested on the basis of m2 observations as
follows. At each pair of levels (i, j) of the first two factors one observation is
taken, to which we refer as being in the i th row and the j th column. If the
levels of the third factor are chosen in such a way that each of them occurs
once and only once in each row and column, the experimental design is a Latin
square. The m2 observations are denoted by X;j(kl' where the third subscript
indicates the level of the third factor when the first two are at levels i and j. It
is assumed that E(X;j(k) = ~;j(k) = II- + a; + Pj + Yk' with Ea; = EPj = EYk
= 0.

(i) The parameters are determined from the ~ 's through the equations

~;'(') = II- + a;, t j ( . ) = II- + ~, ~"(k) = II- + Yk' ~ ..(.)=II- .
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(Summation over j with i held fixed automatically causes summation
also over k .)

(ii) The least-squares estimates of the parameters may be obtained from the
identity

[[ [X;j(k) - ~;j(k,]2
; j

= m[[x;O(') - x ••(o) - a;f + m[[x.j(O) - x oo(.) _ pj l2

+m[[Xo'(k) - xo.(o) - rd 2 + m2[x.O(0) - ILf

+[[ [X;j(k) - x;o(.) - xOj(o) - X"(k) + 2x••(.)]2.
i k

(iii) For testing the hypothesis H: a l = ... = am = 0, the test statistic W·
of (15) is

m[ [X;O(O) - X••(.)]2
2 •

[[ [X;j(k) - X;.(o) - X.j(.) - X"(k) + 2X••(.)] /( m - 2)

The degrees of freedom are m - 1 for the numerator and (m - 1)(m - 2)
for the denominator, and the noncentrality parameter is ",2 = mEa;/0 2.

Section 7

28. In a regression situation, suppose that the observed values ~ and lj of the
independent and dependent variable differ from certain true values Xl and lj'
by errors 1l.J, V; which are independently normally distributed with zero means
and variances 0& and o~o The true values are assumed to satisfy a linear
relation : lj' = a + PXlo However, the variables which are being controlled,
and which are therefore constants, are the ~ rather than the Xj. Writing xj

for ~, we have xj = Xl + 1l.J, lj = lj' + Jj, and hence lj = a + pXj + »j,
where »j = Jj - P1l.J . The results of Section 7 can now be applied to test that
P or a + pXo have a specified value.

29. Let Xl • •. . ' Xm ; Yl , . 0" y" be independently normally distributed with com­
mon variance 0

2 and means E(X;) = a + P(u; - u), E(lj) = r + 8(vj - 0),
where the u's and v's are known numbers. Determine the UMP invariant tests
of the linear hypotheses H: P = 8 and H: a = v, P= 8.

30. Let Xl" ' " Xn be independently normally distributed with common variance
0 2 and means t = a + Pt; + rt;, where the t, are known. If the coefficient
vectors (tt , . . . , t:), k = 0,1,2, are linearly independent, the parameter space
TIo has dimension s = 3, and the least-squares estimates a, /J, y are the
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unique solutions of the system of equations

aLtf + PLtf+1 + YLtf+2 = Ltf~ (k = 0,1,2) .

[7.13

The solutions are linear functions of the X's, and if y = Ec;~, the hypothesis
Y = 0 is rejected when

lyVVLC;

YL(~ - a - Pt; - ytt)2/(n - 3)

Section 8

31. Verify the claims made in Example 8.

32. Let ~jk (k=1, . . . ,n;j; i = 1, . .. ,a; j=1, . . . , b) be independently nor­
mally distributed with mean E(~jd = e;j and variance C1 2• Then the test of
any linear hypothesis concerning the e;j has a robust level provided n;j -> 00

for all i and j.

33. In the two-way layout of the preceding problem give examples of submodels
TIUl and TIll) of dimensions S1 and S2, both less than ab, such that in one
case the condition (56) continues to require nij -> 00 for all i and j but
becomes a weaker requirement in the other case.

34. Suppose (56) holds for some particular sequence TI~n) with fixed s. Then it
holds for any sequence TI~n) c TIbn) of dimension s' < s.
[If TIu is spanned by the s columns of A, let TID be spanned by the first s'
columns of A.J

35. Let {c lI } and {<,} be two increasing sequences of constants such that
<,jclI -> 1 as n -> 00 . Then {cn } satisfies (56) if and only if {c:.} does.

36. Let CII = Uo + U1n + . . . + Uk nk
, U; ~ 0 for all i. Then c; satisfies (56).

[Apply Problem 35 with c~ = nk .]

37. (i) Under the assumptions of Problem 30, express the condition (56) in terms
of the t's.

(ii) Determi-ie whether the condition of part (i) is equivalent to (51).

38. If~; = a + Pt;+ YU;, express the condition (56) in terms of the t's and u's.

39. Show that E7-1n;; = s.
[Since the TI;; are independent of A, take A to be orthogonal.]

40. Show how to weaken (56) if a robustness condition is required only for testing
a particular subspace TI", of TIu.
[Suppose that TI", is given by PI = . . . = P, = 0, and use (54).]

41. Give an example of an analysis of covariance (46) in which (56) does not hold
but the level of the F-test of H: a l = . . . = ab is robust against nonnor­
mality.
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Section 9

A function L satisfies the first equation of (62) for all u, x, and
orthogonal transformations Q if and only if it depends on u and x only
through u'x, x'x, and u'u .

A function L is equivariant under G2 if and only if it satisfies (64).

For the confidence sets (70), equivariance under G1 and G2 reduces to
(71) and (72) respectively.

For fixed (YI" '" Y,), the statements LU;Y; E A hold for all (UI"'" u,)

with LU; = 1 if and only if A contains the interval I(y) = [- ILY?,

+ ILy?].
(iii) Show that the statement following (74) ceases to hold when r = 1.

44. Let X; (i = 1, ... , r) be independent N( L 1).

7.13]

42. (i)

(ii)

43. (i)

(ii)

(i) The only simultaneous confidence intervals equivariant under Go are
those given by (80).

(ii) The inequalities (80) and (82) are equivalent.

(iii) Compared with the Scheffeintervals (69), the intervals (82) for LUj~j are
shorter when LUj~j = t and longer when U1 = ... = u. ,

[(ii): For a fixed U= (ul''''' u,), LU;Y; is maximized subject to IY;I~ !:J. for
all i, by Y; = !:J. when u; > 0 and Y; = -!:J. when U; < 0.]

45. (i)

(ii)

46. (i)

(ii)

(iii)

47. (i)

(ii)

Section 10

The confidence intervals L(u; Y, S) = LU;Y; - c(S) are equivariant un­
der G3 if and only if L(u; by, bS) = bL(u; Y, S) for all b > O.

The most general confidence sets (87) which are equivariant under G1,

G2 , and G) are of the form (88).

In Example 11, the set of linear functions Lw;a; = LW;(t.- L) for all w
can also be represented as the set of functions Lw;t. for all w satisfying
LWi = O.

The set of linear functions UW;/Yij = LLW;j(t j.- ~; ..- t j.+ t ..) for
all W is equivalent to the set UWij~ij' for all W satisfying L;W;j = L jW;j
= O.

Determine the simultaneous confidence intervals (89) for the set of linear
functions of part (ii),

In Example 10, the simultaneous confidence intervals (89) reduce to (93).

What change is needed in the confidence intervals of Example 10 if the
v's are not required to satisfy (92), i.e. if simultaneous confidence inter­
vals are desired for all linear functions LV;~; instead of all contrasts?
Make a table showing the effect of this change for s = 2,3,4,5; n, = n =

3,5,10.
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Section 11

48. (i) The test (97) of H: A s Ao is UMP unbiased .

(ii) Determine the UMP unbiased test of H : A = Ao and the associated
uniformly most accurate unbiased confidence sets for A.

438

49. In the model (95), the correlation coefficient p between two observations
X;j ' X;k belonging to the same class, the so-called intraclass correlation coeffi­
cient, is given by p = a]/(a] + a2 ) .

Section 12

50. The tests (102) and (103) are UMP unbiased .

51. If X;j is given by (95) but the number n, of observations per batch is not
constant, obtain a canonical form corresponding to (96) by letting Y;1
= F: X; • . Note that the set of sufficient statistics has more components than
when n, is constant.

52. The general nested classification with a constant number of observations per
cell, under model II, has the structure

X; jk . .. = P. + Aj + Bij + Cjj k + . . . + U; jk .. . ,

i = 1, .. . , a; j = 1, .. . , b; k = 1, ... , c; .. . .

(i) This can be reduced to a canonical form generalizing (101).

(ii) There exist UMP unbiased tests of the hypotheses

a2
A

HA : 2 2 2 sAo,cd .. . aB + d .. . ac + ... +a

a2
B

HB : 2 2 sAo ·
d ... ac + ... +a

53. Consider the model II analogue of the two-way layout of Section 6, according
to which

(115) X;jk = p. + Aj + Bj + c., + Ejj k

(i=I, .. . ,a; j=I, . .. ,b; k=I, .. . , n) ,

where the Aj , ~ , Cjj , and Ejj k are independently normally distributed with
mean zero and with variances a;; aj, al, and a2 respectively. Determine tests
which are UMP among all tests that are invariant (under a suitable group) and
unbiased of the hypotheses that the following ratios do not exceed a given
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constant (which may be zero):

(i) ol/o2;

(ii) o}/(nol + ( 2);
(iii) aJ/(nol + ( 2).

Note that the test of (i) requires n > 1, but those of (ii) and (iii) do not.
[Let S} = nbE(~ ..- x...)2. SJ = naE(X.j.- X•••)2. s'E = nll(~j'- ~ ..­
X.j .+ X...)2, S2 = EEE(~jk - ~j.)2, and make a transformation to new
variables Zijk (independent, normal, and with mean zero except when i = j =
k = 1) such that

a

sl = L Zi~l'
i-2

b

SJ = L Z;jl'
j-2

a b

s'E = L L Zi~I'
i-2 j-2

a b n

S2 = L L [Zi~k ']
i-I j-l k-2

54. Consider the mixed model obtained from (115) by replacing the random
variables Ai by unknown constants ai satisfying Eo, = O. With (ii) replaced by
(ii') Eaf/(na'E + ( 2), there again exist tests which are UMP among all tests
that are invariant and unbiased, and in cases (i) and (iii) these coincide with
the corresponding tests of Problem 53.

55. Consider the following generalization of the univariate linear model of Section
1. The variables ~ (i = 1•... , n) are given by X, = ~i + U;, where (UI,·· · . Un)
have a joint density which is spherical, that is. a function ofE7_luf. say

/(UI, .. . . lJ,,) = q([U;2).

The parameter spaces IIo and II", and the hypothesis H are as in Section 1.

(i) The orthogonal transformation (1) reduces (XI ' " '' Xn ) to canonical
variables (YI , ... , Y,.) with Y; = T/i + V;. where T/i = 0 for i = s +
1•.. . , n. H reduces to (3). and the V's have joint density q( VI' . • •• vn ) .

(ii) In the canonical form of (i), the problem is invariant under the groups GI •

G2 • and G3 of Section 1, and the statistic W· given by (7) is maximal
invariant.

56. Under the assumptions of the preceding problem. the null distribution of W·
is independent of q and hence the same as in the normal case. namely. F with
r and n - s degrees of freedom.
[See Chapter 5, Problem 24].

Note. The analogous multivariate problem is treated by Kariya (1981). who
also shows that the test (9) of Chapter 8 continues to be UMP invariant
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provided q is a nonincreasing convex function. The same method shows that
this conclusion holds under the same conditions also in the present case. For a
review of work on spherically and elliptically symmetric distributions, see
Chmielewski (1981).

Additional Problems

57. Consider the additive random-effects model

X jk = J.L + Ai + Bj + U;jk (i=l , . . . ,a; j=l, .. . ,b; k=l, . . . ,n),

where the A's, B's, and U's are independent normal with zero means and
variances a], aJ, and a2 respectively. Determine

(i) the joint density of the X's,

(ii) the UMP unbiased test of H : aVa2 S 6.

58. For the mixed model

Xi} = J.L + a, + ~ + U;j (i=l, . . . ,a; j=l, . . . ,n),

where the B's and u's are as in Problem 57 and the a's are constants adding
to zero, determine (with respect to a suitable group leaving the problem
invariant)

(i) a UMP invariant test of H: al = = au;

(ii) a UMP invariant test of H: ~l = = ~a = 0 (~i = J.L + ai ) ;

(iii) a test of H: aVa 2 S 6 which is both UMP invariant and UMP unbi­
ased.

59. Let (Xl)" .. , Xpj ) , j = 1, .. . , n, be a sample from a p-variate normal distribu­
tion with mean <EI" "'~p) and covariance matrix ~ = (ai}) where aij = a2

when j = i, and aij = pa2 when j *" i. Show that the covariance matrix is
positive definite if and only if p > -l/(p - 1).
[For fixed a and p < 0, the quadratic form (1/a 2)LLa

ijYiJ'j = LY? + PLLYiJ'j
takes on its minimum value over LY? = 1 when all the y's are equal.]

60. Under the assumptions of the preceding problem, determine the UMP in­
variant test (with respect to a suitable G) of H: ~l = .. . = ~p"

[Show that this model agrees with that of Problem 58 if p = al!( a1 + a2 ) ,

except that instead of being positive, p now only needs to satisfy p > -l/(p
- 1).]

61. Permitting interactions in the model of Problem 57 leads to the model

X;jk = J.L + Ai + Bj + Cij + U;jk (i = 1, ... , a; j = 1, ... , b; k = 1, . . . , n) .
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where the A's, B's, C's, and U's are independent normal with mean zero and
variances a}, a~, ai, and a2•

(i) Give an example of a situation in which such a model might be
appropriate.

(ii) Reduce the model to a convenient canonical form along the lines of
Sections 5 and 8.

(iii) Determine UMP unbiased tests of (a) H\ : a~ = 0; (b) H2 : ai = O.

62. Formal analogy with the model of Problem 61 suggests the mixed model

X; jk = P. + a i + Bj + Cij + ii,

with the B's, C's, and U's as in Problem 61. Reduce this model to a canonical
form involving X... and the sums of squares

L(X; ..- X.••- a;)2

nai + a2

LL(X;j'- X; ..- X.j.+ x..l
nai + a2

L L( X.j . - x..l
ano] + nai + a2

'

L L L( X;jk - X; ..- X.j.+ x..l
a2

63. Among all tests that are both unbiased and invariant under suitable groups
under the assumptions of Problem 62, there exist UMP tests of

(i) HI : a\ = . . . = a" = 0;

(ii) H2 : a~/( n ai + ( 2
) s C;

(iii) H3 : a2/a2 s C.

Note. The independence assumptions of Problems 62 and 63 often are not
realistic. For alternative models, derived from more basic assumptions, see
Scheffe (1956, 1959). Relations between the two types of models are discussed
in Hocking (1973), Cohen and Miller (1976), and Kendall, Stuart, and Ord
(1983).

64. Let (X\ j\ " " ,X\jn; X2j\" " ,X2jn ; . .. ; X"j\, ,, ,,X"jn),j=l, .. . ,b,bea
sample from an-variate normal distribution. Let E(X;jk) = ~i' and denote by
~;; ' the matrix of covariances of (X;j\ ' " '' X; jn) with (X;'j\ ' " '' X;'jn)' Sup­
pose that for all i, the diagonal elements of ~ii are = -r 2 and the off-diagonal
elements = PI -r 2 , and that for; oF if all n2 elements of ~ii' are = P2-r 2.

(i) Find necessary and sufficient conditions on p\ and P2 for the overall
abn X abn covariance matrix to be positive definite.

(ii) Show that this model agrees with that of Problem 62 for suitable values of
p\ and P2 '
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65. Tukey :s T-Method. Let X; (i = 1, .. . , r) be independent N(L I), and con­
sider simultaneous confidence intervals

(116) L[(i,j) ; x) s ~j - t s M[(i ,j); x) for all i *" j .

The problem of determining such confidence intervals remains invariant under
the group Go of all permutations of the X's and under the group G2 of
translations gx = x + a.

(i) In analogy with (61), attention can be restricted to confidence bounds
satisfying

(117) L[(i,j);x) = -M[(j,i);x).

(ii) The only simultaneous confidence intervals satisfying (117) and equi­
variant under Go and G2 are those of the form

(118) S( x) = {~: xj - x, - £\ < ~j - ~; < xj - x, + £\ for all i *" j} .

(iii) The constant £\ for which (118) has probability y is determined by

(119) po{ maxIAj - X;I < £\} = po{ XCn ) - Xci) < £\} = v,

where the probability Po is calculated under the assumption that ~I =

.. . =t·
66. In the preceding problem consider arbitrary contrasts [c;~; , [c; = O. The

event

(120) I( x, - X;) - (~j - ~;) I~ £\ for all i *" j

is equivalent to the event

£\
(121) ILc;X; - Lc;~;1 s 2" Lkl for all c with L c, = 0,

which therefore also has probability y. This shows how to extend the Tukey
intervals for all pairs to all contrasts.
[That (121) implies (120) is obvious . To see that (120) implies (121), let
y; = Xi - ~; and maximize l[c;y;1 subject to I~ - y;! ~ £\ for all i and j . Let
P and N denote the sets {i : c, > O} and {i: c, < O}, so that

LC;y; = L c;y; - L Ic;IY;·
i e P i e N

Then for fixed c, the sum [c;y; is maximized by maximizing the Y; 's for i E P
and minimizing those for i E N. Since I~ - Y;I ~ £\, it is seen that [c;y; is
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maximized by y; = fj./2 for i E P, Yi = -fj./2 for i E N. The minimization of
tc;y, is handled analogously.)

67. (i) Let X;j (j = 1, . . . , n; i = 1, .. . , s) be independent N( t, 02), 0 2 un-
known. Then the problem of obtaining simultaneous confidence intervals
for all differences ~j - ~i is invariant under Go, G2 , and the scale
changes G3•

(ii) The only equivariant confidence bounds based on the sufficient statistics
X" and S2 = Et( X;j - X;.)2 and satisfying the condition corresponding
to (117) are those given by

(122)

(123)

ti
S(x) = {x: x.i . - x;.-~ S::; ~j -~;

vn - s

ti
+ ---S::;xj.-x;. ~

for all i * j}

with ti determined by the null distribution of the Studentized range

P. { max IX,.- X;.I }
o S/~ <ti =y.

(iii) Extend the results of Problem 66 to the present situation.

68. Construct an example [i.e., choose values n l = . .. = ns = n and a and a
particular contrast (c l , .. . , cs ») for which the Tukey confidence intervals (121)
are shorter than the Scheffe intervals (93), and an example in which the
situation is reversed.

69. Dunnett's method. Let XOj (j = 1, .. . , m) and X;k (i = 1, . .. , s; k =

1, . . . , n) represent measurements on a standard and s competing new treat­
ments, and suppose the X's are independently distributed as Nao, 0 2) and
Na,.0 2

) respectively. Generalize Problems 65 and 67 to the problem of
obtaining simultaneous confidence intervals for the s differences t - ~o

(i=I • . . . ,s).

70. In generalization of Problem 66, show how to extend the Dunnett intervals of
Problem 69 to the set of all contrasts .
[Use the fact that the event Iy; - Yol ::; fj. for i = 1, . . . ,s is equivalent to the
event It;_oc;y;\ s AE;_dc;1 for all (co, ... , c.) satisfying t;_oci = 0.)
Note . As is pointed out in Problems 45(iii) and 68, the intervals resulting
from the extension of the Tukey (and Dunnett) methods to all contrasts are
shorter than the Scheffe intervals for the differences for which these methods
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were designed and for contrasts close to them, and longer for some other
contrasts. For details and generalizations, see for example Miller (1981),
Richmond (1982), and Shaffer(1977a).

71. In the regression model of Problem 8, generalize the confidence bands of
Example 12 to the regression surfaces

(i) ht(et,· ··,es ) = Ej-IeA;
(ii) h2(e2,. .. , es ) = PI + Ej_2ej Pj •
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CHAPTER 8

Multivariate Linear Hypotheses

1. A CANONICAL FORM

The univariate linear models of the preceding chapter arise in the study of
the effects of various experimental conditions (factors) on a single character­
istic such as yield, weight, length of life, or blood pressure . This characteris­
tic is assumed to be normally distributed with a mean which depends on the
various factors under investigation, and a variance which is independent of
these factors. We shall now consider the multivariate analogue of this
model , which is appropriate when one is concerned with the effect of one or
more factors simultaneously on several characteristics, for example the effect
of a change in the diet of dairy cows on both fat content and quantity of
milk.

The multivariate generalization of a real-valued normally distributed
random variable is a random vector (XI"' " Xp ) with the multivariate
normal probability density

(l) ~ exp[ -! [[ai/xi - t)(Xj - ~J],
(21T) iP

where the matrix A = (a ;j) is posit ive definite, and IAI denotes its determi­
nant. The means and covariance matrix of the X's are given by

(2) E(X;) = t, E(X; - t)(Xj - ~J = G;j. (G;) = A -I.

Consider now n independent multivariate normal vectors Xa =
(Xal " ' " Xa p ) , a = 1, . . . , n, with means E(Xa; ) = ~a; and common co­
variance matrix A - I . As in the univariate case, a multivariate linear
hypothesis is defined in terms of two linear subspaces ITo and IT", of
n-dimensional space having dimensions s < nand 0 ~ s - r < s. I t is
assumed known that for all i = 1, ... , p, the vectors ali" ..,~Il;) lie in ITo;
the hypothesis to be tested specifies that they lie in IT", . This problem is

453



454 MULTIV ARIATE LINEAR HYPOTHESES [8.1

reduced to canonical form by applying to each of the p vectors ( Xli ' . . . , Xni)
the orthogonal transformation (1) of Chapter 7. If

(

~ll
X= :

Xn1

~1P]
Xnp

and the transformed variables are denoted by Xa~ ' the transformation may
be written in matrix form as

X* = ex,

where e = (cap) is an orthogonal matrix.
To obtain the joint distribution of the X;; consider first the covariance of

any two of them, say Xa~ = L~_ICayXYi and Xpj = L8=ICP8X8j' Using the
fact that the covariance of Xyi and X8j is zero when y "* 8 and aij when
y = 8, we have

n n

Cov(Xa~' Xpj} = L L CayCP8COV(XYi ' X8j}
y=18=1

n {aij
= ail L CayCpy = 0

y-l

when a = {3,

when a"* /3.

The rows of X* are therefore again independent multivariate normal vectors
with common covariance matrix A -1. It follows as in the univariate case
that the vectors of means satisfy

t:« , =' " = t.., = 0'Os+1 ., 'Om

under ~, and that the hypothesis becomes

H ' t:» = .. . = t.~ = 0• '01, 'Orr

(i=l , ... ,p)

(l=l, .. . , p).

Changing notation so that y's, U's, and Z's denote the first r, the next
s - r, and the last m = n - s sample vectors, we therefore arrive at the
following canonical form. The vectors Ya, Up , Z; (a = 1, .. . , r; {3 = 1, . . . ,
s - r ; y = 1, .. . , m) are independently distributed according to p-variate
normal distributions with common covariance matrix A -1. The means of
the Z's are given to be zero, and the hypothesis H is to be tested that the
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means of the Y's are zero. If

Y=

Yll

Yr1

YIp I z.,
and Z =

Yrp IZm1

Zt
p

] ,

Zmp

invariance and sufficiencywill be shown below to reduce the observations to
the p X P matrices Y'Y and Z'Z. It will then be convenient to have an
expression of these statistics in terms of the original pbservajions.

As in the univariate case, let ali"'" L) and ali" . . , t;) denote the
projections of the vector (Xl i" .. , Xn;) on ITo and ITw ' Then

n

L (Xai - ti)(Xaj - tJ
a=l

is the inner product of two vectors, each of which is the difference between a
given vector and its projection on ITo. It follows that this quantity is
unchanged under orthogonal transformations of the coordinate system in
which the variables are expressed. Now the transformation

c( ~"JXm

may be interpreted as expressing the vector (Xli"' " Xn;) in a new coordi­
nate system, the first s coordinate axes of which lie in ITo. The projection
on ITo of the transformed vector (Yw " " Yri, Uli, · · · , lJ.-r.i' Zli,"" Zm;)
is (Y1i, .. . , Yri, U1i, ... , u, -r. i' 0, ,0), so that the difference between the
vector and its projection is (0, ,0, Zli'" . , Zmi)' The ijth element of Z'Z
is therefore given by

(3)
m n

L ZyiZyj = L (Xai - t i)( x., - tJ.
y-1 a=l

Analogously, the projection of the transformed vector (Y1i,· · ·, Yri,
UIi , . · . , Us - r. i, 0, . . . ,0) on ITw is (0, .. . ,0, U1i, · · · , Us - r. i,
0, .. . ,0), and the difference between the projections on ITo and ITw is
therefore (Y1i, . .. , y"i'0, . .. , 0, . . . ,0). It follows that the sum Lp= 1YpiYPj is
equal to the inner product (for the ith and jth vector) of the difference of
these projections. On comparing this sum with the expression of the same
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inner product in the original coordinate system, it is seen that the ijth
element of Y'Y is given by

(4)
rnA A

I: Yp;YPj = I: (t; - t;)(t j - tJ
P=l a=l

2. REDUCI10N BY INVARIANCE

The multivariate linear hypothesis, described in the preceding section in
canonical form, remains invariant under certain groups of transformations.
To obtain maximal invariants under these groups we require, in addition to
some of the standard theorems concerning quadratic forms, the following
lemma.

Lemma 1. If M is any m X p matrix, then

(i) M'M is positive semidefinite,

(ii) the rank of M'M equals the rank of M, so that in particular M'M is
nonsingular if and only if m ~ p and M is of rank p.

Proof . (i): Consider the quadratic form Q = u'(M'M)u. If w = Mu,
then

Q = w'w ~ O.

(ii): The sum of squares w'w is zero if and only if the vector w is zero,
and the result follows from the fact that the solutions u of the system of
equations Mu = 0 form a linear space of dimension p - p, where p is the
rank of M.

We shall now consider three groups under which the problem remains
invariant.

G1• Addition of an arbitrary constant dp; to each of the variables Up;
leaves the problem invariant, and this eliminates the U's , since the Y's and
Z's are maximal invariant under this group.

G2• In the process of reducing the problem to canonical form it was
seen that an orthogonal transformation

y* = cy

affects neither the independence of the row vectors of Y nor the covariance
matrix of these vectors. The means of the Y*'s are zero if and only if those
of the Y's are, and hence the problem remains invariant under these
transformations.
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The matrix Y'Y of inner products of the column vectors of Y is invariant
under G2, since y*'y* = Y'C'CY = Y'Y. The matrix Y'Y will be proved to
be maximal invariant by showing that Y'Y = y*'y* implies the existence of
an orthogonal matrix C such that y* = CY. Consider first the case, = p.
Without loss of generality the p column vectors of Y can be assumed to be
linearly independent, since the exceptional set of Y 's for which this does
not hold has measure zero. The equality Y'Y = y*'y* implies that C =
y*y- l is orthogonal and that y* = CY, as was to be proved. Suppose next
that' > p . There is again no loss of generality in assuming the p column
vectors of Y to be linearly independent. Since for any two p-dimensional
subspaces of r-space there exists an orthogonal transformation taking one
into the other, it can be assumed that (after a suitable orthogonal transfor­
mation) the p column vectors of Y and y* lie in the same p-space, and the
problem is therefore reduced to the case r = p. If finally r < p, the first r
column vectors of Y can be assumed to be linearly independent. Denoting
the matrices formed by the first r and last p - r columns of Y by Y1 and
Y2, so that

Y=(Yl Y2 ) ,

one has Yt'Y1* = Y{Y1, and by the previous argument there exists an
orthogonal matrix B such that Y1* = BY1• From the relation Yl*'Y2* = Y{Y2

it now follows that Y2* = (yl*,)-IY{Y2 = BY2 , and this completes the
proof.

Similarly the problem remains invariant under the orthogonal transfor­
mations

Z* = DZ,

which leave Z'Z as maximal invariant. Alternatively the reduction to Z'Z
can be argued from the fact that Z'Z together with the Y's and U 's form a
set of sufficient statistics. In either case the problem under the groups G1
and G2 reduces to the two matrices V = Y'Yand S = Z'Z.

G3• We now impose the restriction m ~ p (see Problem 1), which
assures that there are enough degrees of freedom to provide a reasonable
estimate of the covariance matrix, and consider the transformations

y* = YB, Z* = ZB,

where B is any nonsingular p x p matrix. These transformations act
separately on each of the independent multivariate normal vectors
(Ypl , . •. , Ypp)' (ZY1' ... ' Zyp)' and clearly leave the problem invariant. The
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induced transformation in the space of V = Y'Y and S = Z'Z is

V* = B'VB, S* = B'SB.

Since IB'(V - AS)BI = IBI 2IV - ASI, the roots of the determinantal equa­
tion

(5) IV- ASI = 0

are invariant under this group. To see that they are maximal invariant,
suppose that the equations IV- ASI = 0 and IV* - AS*' = 0 have the
same roots. One may again without loss of generality restrict attention to
the case that p of the row vectors of Z are linearly independent, so that the
matrix Z has rank p, and that the same is true of Z* . The matrix S is then
positive definite by Lemma 1, and it follows from the theory of the
simultaneous reduction to diagonal form of two quadratic forms! that there
exists a nonsingular matrix B I such that

BWBI = A, BiSBI = I,

where A is a diagonal matrix whose elements are the roots of (5) and I is
the identity matrix. There also exists B2 such that

BW*B2 = A, B5.S*B2 = I,

and thus B = BIB;1 transforms V into V* and S into S* .

Of the roots of (5), which constitute a maximal set of invariants, some
may be zero. In fact, since these roots are the diagonal elements of A, the
number of nonzero roots is equal to the rank of A and hence to the rank of
V = Bi-1ABil, which by Lemma 1 is min(p, r). When this number is
> 1, a UMP invariant test does not exist. The case p = 1 is that of a
univariate linear hypothesis treated in Section 1 of Chapter 7. We shall now
consider the remaining possibility that r = 1.

When r = 1, the equation (5), and hence the equivalent equation

IVS- I
- All = 0,

has only one nonzero root. All coefficients of powers of A of degree
< p - 1 therefore vanish in the expression of the determinant as a poly­
nomial in A, and the equation becomes

(-Ay + W( _Ay-l = 0,

"See for example Anderson (1984, Appendix A, Theorem A.2.2).
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where W is the sum of the diagonal elements (trace) of VS- 1
• If Sij denotes

the ijth element of S-1 and the single Y-vector is (Y1, • •• , Yp ) , an easy
computation shows that

(6)
p p

W = L L Si jl:lj .
i = 1 )=1

A necessary and sufficient condition for a test to be invariant under G1, G2,

and G3 is therefore-that it depends only on W.
The distribution of W depends only on the maximal invariant in the

parameter space; this is found to be

(7)
p P

",2 = L L ai/ '1 i7J j '
i=1 j=1

where 7Ji = E(l:) , and the probability density of W is given by (Problems
5-7)

(8) ()

1 00 ( 1./,2) k I
PI} W = e-,1}2 L l't' W ,p-l+k

k' Ck
k-O . (1 + W ) ~(m+ 1)+k .

This is the same as the density of the test statistic in the univariate case,
given as (6) of Chapter 7, with r = P and n - s = m + 1 - p. For any
"'0 < "'1 the ratio PI}\(w)jPl}o(w) is an increasing function of w, and it
follows from the Neyman-Pearson lemma that the most powerful invariant
test for testing H: 711 = . ,. = 7Jp = °rejects when W is too large, or
equivalently when

(9) m + 1 - P W> C.

P

The quantity mW, which for P = 1 reduces to the square of Student's t, is
essentially Hotelling's T 2-statistic, to which it specializes in the one-sample
test to be considered in the next section. The constant C is determined from
the fact that for'" = °the statistic (m + 1 - p)WIp has the F-distribution
with P and m + 1 - P degrees of freedom. As in the univariate case, there
also exists a UMP invariant test of the more general hypothesis H' :
",2 s "'~, with rejection region W> C .

3. THE ONE- ANDlWO·SAMPLE PROBLEMS

The simplest special case of a linear hypothesis with r = 1 is the hypothesis
H : ~1 = . .. = ~p = 0, where (Xa1, • •• , Xap ) , a = 1, .. . , n, is a sample
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from a p-variate normal distribution (1) with unknown mean (~l" ' " ~p)'

covariance matrix I = A -1, and p s n - 1. It is seen from Example 4 of
Chapter 7 that

A n XfJ;
~a;= E -= X.;,

fJ-I n

A

t;=O.

By (3), the ijth element S;j of S = Z'Z is therefore

n

S;j = E (Xa; - X.;)(Xaj - X. j),
a=l

and by (4)

Y;lj = nX,;X' j •

With these expressions the test statistic is the quantity W of (6), and the test
is given by (9) with s = 1 and hence with m = n - s = n - 1. The statistic
T 2 = (n - l)W is known as Hotelling's T 2

• The noncentrality parameter
(7) in the present case reduces to ",2 = LLa;j~;~j'

The test shares the robustness properties of the corresponding univariate
r-test discussed in Chapter 5, Section 4. Suppose that (Xal , ••• , Xap ) is a
sample from any p-variate distribution F with vector mean zero and finite,
nonsingular covariance matrix I , and write

(10) T 2 = EEvnX.;(n -l)SijvnX ' j"

Using the fact that Sij/(n - 1) tends in probability to aij and that
(vn X. 1, • •• , vnX. p ) has a p-variate normal limit distribution with covari­
ance matrix I , it is seen (Problem 8) that the null distribution of T 2 tends
to the x;-distribution as n - 00 . Thus, asymptotically the significancelevel
of the T 2-test is independent of F. However, for small n, the differences
may be substantial. For details see for example Everitt (1979), Davis (1982),
Srivastava and Awan (1982), and Seber (1984).

The T 2-test was shown by Stein (1956) to be admissible against the class
of alternatives ",2 ~ c for any c > 0 by the method of Theorem 8 of
Chapter 6. Against the class of alternatives ",2 s c admissibility was proved
by Kiefer and Schwartz (1965) [see Problem 47, and also Schwartz (1967)
and (1969)].

The problem of testing H against one-sided alternatives such as K : t ~ 0
for all i, with at least one inequality strict, is treated by Perlman (1969) and
in Barlow et al. (1972), which gives a survey of the literature. Minimal



8.3] THE ONE- AND TWO-SAMPLE PROBLEMS 461

complete classes for this and related problems are discussed by Marden
(1982) .

Most accurate equivariant confidence sets for the unknown mean vector
aI"' " ~p) are obtained from the UMP invariant test of H : ~ j = ~jO

(; = 1, . . . , p), which has acceptance region

nLL(X.j - ~iO){n - 1)Sij(X'j - ~jo) s; C.

The associated confidence sets are therefore ellipsoids

(11) nLL(~j - X. j)(n - 1)Sjj(~j - X) s C

centered at (X.I , • • • , X.p ) ' These confidence sets are equivariant under the
groups GCG3 of Section 2 (Problem 9), and by Lemma 4 of Chapter 6 are
therefore uniformly most accurate among all equivariant confidence sets at
the specified level.

Consider next the two-sample problem in which (X~p, . .. , X~~), a =
1, . . . , n l , and (XJi) , .. . , XJ~), f3 = 1, . . . , n2' are independent samples
from multivariate normal distributions with common covariance matrix
A -1 and means apl, ..., ~~I» and (~f), . .. , ~~2» . Suppose that p .s nI +
n2 - 2,* and consider the hypothesis H : ~P) = ~f) for; = 1, . . . , p. Then
s = 2, and it follows from Example 5 of Chapter 7 that for all a and f3

and

t(l) = XlI)
fatal -, , ~w = X!:)

Hence

n. nz
~ XlI) + ~ X(2)
LJ a, LJ p,

~(l) = ~(2) = a-I p=1 = X.
,,"al ""p, + n "ni 2

n\ nz
S), = ~ (X(~) - X(I»)(X(l) - Xl I») + ~ (X(2) - X(2»)(X(2) - X(2»)

IJ LJ a' °1 aJ OJ LJ p, ., PJ oJ'
a -I P=l

and the expression for Y;lj can be simplified to

yy = (X(I) - X-)( XlI) - X-) + (X(2) - X-)( X(2) - X- )
j j n i -i j oj j n2 «i j oj j .

$A test of H for the case that p > n\ + nz - 2 is discussed by Dempster (1958).
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Since m = n - 2, T 2 = mW is given by

(12) T 2 = n(n - 2)( X!1) -X!2»)'S-1(X!1) -X!2»),

where n = n + nand X(k) = (X(k) ... X(k», k = 1 21 2 • ·1 . p ' , .

As in the one-sample problem, this test is robust against nonnormality
for large n1 and n2 (Problem 10). In the two-sample case, the robustness
question arises also with respect to the assumption of equal covariances for
the two samples. The result here parallels that for the corresponding
univariate situation: if n1/n 2 - 1, the asymptotic distribution of T 2 is the
same when ~1 and ~2 are unequal as when they are equal; if n1/n 2 - P =F 1,
the limit distribution of T 2 derived for L1 = L 2 no longer applies when the
covariances differ (Problem 11).

Tests of the hypothesis ~P) = ~~2) (i = 1, ... , p) when the covariance
matrices are not assumed to be equal (i.e. for the multivariate Behrens-Fisher
problem) have been proposed by James (1954) and Yao (1965) and are
studied further in Subrahmaniam and Subrahmaniam (1973,1975) and
Johansen (1980). Their results are summarized in Seber (1984). For related
work, see Dalal (1978), Dalal and Fortini (1982), and Anderson (1984). The
effect of outliers is studied by Bauer (1981).

Both the One- and the two-sample problem are examples of multivariate
linear hypotheses with r equal to 1, so that a UMP invariant test exists and
is of the T 2 type (9). Other problems with r = 1 arise in multivariate
regression (Problem 13) and in some repeated-measurement problems (Sec­
tion 5).

Instead of testing the value of a mean vector or the equality of two mean
vectors in the one- and the two-sample problem respectively, it may be of
interest to test the corresponding hypotheses L = Lo or L1 = L 2 concern­
ing the covariance matrices. Since the resulting tests, as in the univariate
case, are extremely sensitive to the assumption of normality, they are not
very useful and we shall not consider them here. They are treated from an
invariance point of view by Arnold (1981) and by Anderson (1984), who
also discusses more robust alternatives. In the one-sample case, another
problem of interest is that of testing the hypothesis of independence of two
sets of components from each other. For the case p = 2, this was considered
in Chapter 5, Section 13. For general p, see Problem 45.

4. MULTIVARIATEANALYSIS OF VARIANCE (MANOVA)

When the number r of vector constraints imposed by H On a multivariate
linear model with p > 1 exceeds 1, a UMP invariant test no longer exists.
Tests based on various functions of the roots Ai of (5) have been proposed
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for this case, among them

(i) the Lawley-Hotelling trace test , which rejects for large values of
LA;;

(ii) the likelihood-ratio test (Wilks A), which rejects for small values of
lVI/IV + SI or equivalently of nl/(l + A;) (Problem 18);

(iii) the Pillai-Bartlett trace test, which rejects for large values of
LA;/(l + A;);

(iv) Roy's maximum-root test, which rejects for large values of max A;.

Since these test statistics are all invariant under the groups GCG3 of
Section 1, their distribution depends only on the maximal invariants in the
parameter space, which are the nonzero roots of the equation

(13) IB - A~I = 0,

where ~ is the common covariance matrix of (Xa1, • . • , Xa p ) and B is the
p X P matrix with (i , j)th element

n ~ ~

L E({a; - t;}E(tJ - tJ
a=l

Some comparisons of the power of the tests (i)-(iv) are given among
others by Pillai and Jayachandran (1967), Olson (1976), and Stevens (1980),
and suggest that there is little difference in the power of (i)-(iii), but
considerable difference with (iv). This last test tends to be more powerful
against alternatives that approximate the situation in which (13) has only
one nonzero root, that is, alternatives in which all but one of the roots are
close to zero and there is one (positive) root that is widely separated from
the others (see Problem 19 for an example). On the other hand, the
maximum-root test tends to be less powerful than the other three when (13)
has several roots which differ considerably from zero.

The lack of difference among (i)-(iii) is supported by a corresponding
asymptotic result. To motivate the asymptotics, consider first the s-sample
problem in which (X~t), .. . , X~;»), a = 1, . . . , nk, k = 1, . . . , s, are sam­
ples of size nk from p-variate normal distributions with mean a1k), . . . , ~~k»)

and common covariance matrix ~. For testing H: ~}l) = . . . = ~}S) for all
i = 1, .. . , p, the matrices V and S have elements (Problem 16)

(14) V;J= Lnk( X!;k) - X.;)( X.~) - X.J
k



464

and

(15)
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s n4
S. = '" '" (X(k) - X(k»)( X(k) - X(k»)

y ~ ~ ~ ., ~ ~'

k -I a=1

[8.4

where X.; = LnkX!;)/Ln k. Under the hypothesis, the joint distribution of
the V;j is independent of nI' . . . , ns' while S;/(n - s) tends in probability
to the (i, j)th element "ij of ~.

Analogously, in other analysis-of-variance situations, as the cell sizes
tend to infinity, the distribution of V under H remains constant while
Sij/( n - s) tends in probability to ";}"

Let AI' ... , Aa denote the a = min( p, r) nonzero roots of

(16) IV - ASI =Iv- (n - S)A_
S_!= 0,

n-s

and Ai, . .. , A~ the nonzero roots of

(17) IV - A~I = 0,

the null distribution of which we suppose to be independent of n. Then it is
plausible and easy to show (Problem 21) that «n - S)A1, . . . ,(n - S)Aa )

tends in law to (Ai, . .. , A~) and hence that the distribution of T, = (n ­
S)LA; tends to that of LAi as n -+ 00 . If

A
T2 = (n - S)[-'-A and T3 = (n - s)logn(l + AJ,

1 + ;

we shall now show that T2 - T1 and T3 - T1 tend to zero in probability, so
that TI , T2, and T3 are asymptotically equivalent and in particular have the
same limit distribution.

(a) The convergence of the distribution of (n - S)A; implies that
A; -+ 0 in probability and hence that T2 - T1 tends to zero in
probability.

(b) The expansion 10g(1 + x) = x[1 + 0(1)] as x -+ 0 gives

(n-s)logn(l+A;) = (n-s)[log(I+A;) = (n-s)[A ;+Rn ,

where R; -+ 0 in probability by (a).
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Thus, the distributions of TI , T2 , and T3 all tend to that of LA~. On the
other hand, the distribution of the normalized maximum-root statistic
(n - s)max A; tends to the quite different distribution of max A~.

The null distribution of LA~ is the limit distribution of TI , T2 , and T3
and therefore provides a first, crude approximation to the distribution of
these statistics under H. We shall now show that this limit distribution is X2

with rp degrees of freedom.
To see this, consider the linear model in its canonical form of Section 1,

in which the rows of the r X p matrix Y are independent p-variate normal
with common covariance matrix I and mean n = E(y), but where I is
now assumed to be known. Under H, the matrix n is the r X p zero matrix.
There exists a nonsingular transformation Y· = YB such that the covari­
ance matrix B'IB of the rows of Y· is the identity matrix. The variables
Ya~ (ex = 1, ... , r; i = 1, . . . , p) are then independent normal with means
'II:; = E(Ya~) and unit variance. The hypothesis becomes H: 'II:; = 0 for all
ex and i, and the UMP invariant test (under orthogonal transformations of
the pr-dimensional sample space) rejects when LLYa~2 > C. The test statis­
tic LLYaf is the trace of the matrix V* = Y·'Y· = B'VB and is therefore
the sum of the roots of the equation IB'VB - AIl = O. Since 1= B'IB,
they are also the roots of IV - AIl = 0 and hence LLYai2 = LA~, and this
completes the proof.

More accurate approximations, and tables of the null distributions of the
four tests, are given in Anderson (1984) and Seber (1984). p-values are also
provided by the standard computer packages.

The robustness against nonnormality of tests for univariate linear hy­
potheses extends to the joint distribution of the roots A; of (5) as it did for
the single root in the case r = 1. This is seen by showing that, as before,
Sij/( n - s) tends in probability to a;j' and that the joint distribution of the
variables Y;j (i = 1, .. . ,r; j = 1, ... , p) and hence of the elements of V
tends to a limit which is independent of the underlying error distribution
(see for example Problems 20 and 21). For more details, see Arnold (1981).
Simulation studies by Olson (1974) suggest that of the four tests, the size of
(iii) is the most and that of (iv) the least robust.

Discussion of multivariate linear models from a Bayesian point of view
can be found, for example, in Box and Tiao (1973), in Press and Shigemasu
(1985), and in the references cited there.

S. FURTHER APPLICATIONS

The invariant tests of multivariate linear hypotheses discussed in the preced­
ing sections apply to the multivariate analogue of any univariate linear
hypothesis, and the extension of the univariate to the corresponding multi-
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variate test is routine. In addition, these tests have applications to some
hypotheses that are not multivariate linear hypotheses as defined in Section
1 but which can be brought to this form , through suitable transformation
and reduction.

In the linear hypotheses of Section 1, the parameter vectors being tested
are linear combinations

n n

L cp.,~., = L cp.,E(X.,),
y=l y=l

JI = 1, .. . , r

where the X., are the n independent rows of the observation matrix X. We
shall now instead consider linear combinations of the corresponding column
vectors, and thus of the (dependent) components of the p-variate distribu­
tion.

Example 1. Let (X..1, ..• , Xaq , Xa• q + 1, .. • , Xe , 2q ) , a = 1, ... , n, be a sample
from a multivariate normal distribution, and consider the problem of testing
H : ~q+i = ~i for i = 1, . . . , q. This might arise for example when X..1, •• . , Xaq and
X...q+ 1" ' " Xa•2q are q measurements taken on the same subject before and after a
certain treatment, or on the left and right sides of the subject.

Example 2 Let (Xa1, ... , Xap ) ' a = 1, .. . , n, be a sample from a p-variate
normal distribution, and consider the problem of testing the hypothesis H: ~l =
... = ~p ' As an application suppose that a shop has p machines for manufacturing
a certain product, the quality of which is measured by a random variable X. In an
experiment involving n workers, each worker is put on all p machines, with Xai
being the result of the ath worker on the ith machine. If the n workers are
considered as a random sample from a large population, the vectors (Xa1, •• . , Xap )

may be assumed to be a sample from a p-variate normal distribution. Of the two
factors involved in this experiment one is fixed (machines) and one random
(workers), in the sense that a replication of the experiment would employ the same
machines but a new sample of workers. The hypothesis being tested is that the fixed
effect is absent. The test in this mixed model is quite different from the correspond­
ing model I test where both effects are fixed, and which was treated in Section 5 of
Chapter 7.

An important feature of such repeated measurement designs is that the p
component measurements are measured on a common scale, so that it is
meaningful to compare them. (This is not necessary in the general linear­
hypothesis situations of the earlier sections, where the comparisons are
made separately for each fixed component over different groups of subjects.)
Although both Examples 1 and 2 are concerned with a single multivariate
sample, this is not a requirement of such designs . Both examples extend for
instance to the case of several groups of subjects (corresponding to different
conditions or treatments) on all of which the same comparisons are made
for each measurement.
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Quite generally, consider the multivariate linear model of Section 1 in
which each of the p column vectors of the matrix

(
~ ll

~= :
~nl

~lp

~np

is assumed to lie in a common s-dimensional linear subspace II fl of
n-dimensional space. However, the hypothesis H is now different. It specifies
that each of the row vectors of ~ lies in a (p - d)-dimensional subspace II~

of p-space. In Example 1, s = 1, P - d = q; in Example 2, s = p - d = l.
As a first step toward a canonical form, make a transformation Y= XE,

E nonsingular, such that under H the first d columns of ~ = E(Y) are
equal to zero. This is achieved by any E the last p - d columns of which
span II~. The rows of Yare then again independent, normally distributed
with common covariance matrix, which is now E'''i.E. Also, since each
column of ~ is a linear combination of the columns of the matrix ~ = E( X),
the columns of ~ lie in ITfl. If we write

Y= (Y1
d

Yz)
p -d '

~ = (~l
d

~z)
p -d '

the matrix ~l under H reduces to the n X d zero matrix.
Next , subject Y to an orthogonal transformation CY, with the first s

rows of C spanning II fl, and denote the resulting matrix by

(18) CY= (~ U) s
V - :

d p -d -I

Then it follows from Chapter 7, Section 1 that the rows of (18) are p-variate
normal with common covariance matrix E'''i.E and with means

E(Y) = 71 , E(Z) = 0, E(U) = P, E(V) = 0.

In this canonical form, the hypothesis becomes H: 71 = 0.
The problem of testing H remains invariant under the group G1 of

adding arbitrary constants to the /s elements of U, which leaves Y, Z, and V
as maximal invariants. The next step is to show that invariance considera­
tions also permit the discarding of V.
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Let G2 be the group of transformations

(19) V* = ZB + VC, Z* = Z, Y* = Y,

where B is any d X I and C any nonsingular I X I matrix. Before applying
the principle of invariance, it will be convenient to reduce the problem by
sufficiency. The matrix Y together with the matrices of inner products Z'Z,
V'V, and Z'V form a set of sufficientstatistics, and it follows from Theorem
6 of Chapter 6 that the search for a UMP invariant test can restrict
attention to these sufficient statistics (Problem 24). We shall now show that
under the transformations (19), the matrices Y and Z'Z are maximal
invariant on the basis of Y, Z'Z, V'V, and Z'V.

To prove this, it is necessary to show that for any given m X I matrix
V** there exist Band C such that V* = ZB + VC satisfies

Z'V* = Z'V** and V*'V* = V**'V**.

Geometrically, these equations state that there exist vectors (VIi, . . . , V";;),
i = 1, . .. , I in the space S spanned by the columns of Z and V which have
a preassigned set of inner products with each other and with the column
vectors of Z.

Consider first the case 1= 1. If d + 1 ~ m, one can assume that Z and
the column of V span S, and one can then take V** = V*. If d + 1 < m,
then Z and the column of V may be assumed to be linearly independent.
There then exists a rotation about the columns of Z as axis, which takes V**
into a vector lying in S, and this vector has the properties required of V*.

The proof is now completed by repeated application of the result for this
special case. It can be applied first to the vector (Vn, ... , Vml ), to determine
the first column of B and a number cn to which one may add zeros to
construct the first column of C. By adjoining the transformed vector
(VIi, , V"it) to the columns of Z and applying the result to the vector
(VI2' ' Vm2), one obtains a vector (VI~ ' ... ' V"'*2) which lies in the space
spanned by (Vw . .. , Vml), (VI2' ... ' Vm2) and the column vectors of Z, and
which in addition has the preassigned inner products with (VIi, .. . , V"it),
with the columns of Z and with itself. This second step determines the
second column of B and two numbers C12' C22 to which zeros can be added
to provide the second column of C. Proceeding inductively in this way, one
obtains for C a triangular matrix with zeros below the main diagonal, so
that C is nonsingular. Since Z, V, and V** can be assumed to have maximal
rank, it follows from Lemma 1 and the equation v*'v* = V**'V** that the
rank of V* is also maximal, and this completes the proof.

Thus invariance reduces consideration to the matrices Y and Z, the rows
of which are independently distributed according to a d-variate normal
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distribution with common unknown covariance matrix. The expectations are
E(Y) = 1/, E(Z) = 0, and the hypothesis being tested is H : 1/ = 0, a
multivariate linear hypothesis with r = s. In particular when s = 1, as was
the case in Examples 1 and 2, there exists a UMP invariant test based on
Hotelling's T 2• When s> 1, the tests of Section 4 become applicable. In
either case, the tests require that m ~ d.

In the reduction to canonical form, the p X P matrix E could have been
restricted to be orthogonal. However, since the covariance matrix of the
rows is unknown (rather than being proportional to the identity matrix as
was the case for the columns), this restriction is unnecessary, and for
applications it is convenient not to impose it.

It is also worth noting that

(~)=CYI'

so that (Y, Z) is equivalent to YI' In terms of (YI, Y2 ) , the invariance
argument thus reduces the data to the maximal invariant YI'

Example 1. (continued). For the transformation XE take

Da; = Xa.q+ ; - Xa;, Wa; = Xa;, a=1, .. . ,n, i=1, ... , q.

By the last remark preceding the example, invaqance then reduces the data to the
matrix (Da;), which :wasprevious~y ~eno~ed b~ Yi . The (Dal, . .. , Da!l) constitute a
sample from a q-vanate normal distribution With mean (81" •• , 8q), {j ; = ~q+; - ~;.

The hypothesis H reduces to 8; = 0 for all i , and the UMP invariant test is
Hotelling's one-sample test discussed in Section 3 (with q in place of p).

To illustrate the case s > 1, suppose that the experimental subjects consist of two
groups, and denote the p = 2q measurements on each subject by

and

(Xal, · · ·, Xaq; Xa.q+ I, · · ·, Xa.2q),

(Xp"i, ... ,Xlq; X;q+I, ... , X/lq) ,

a = 1, .. . ,nl

{J=1, ... ,n2·

Consider the hypothesis H: ~q+ ; =~;, ~:+ ; =~: for i =1, . .. , q, which might
arise under the same circumstances as in the one-sample case. The same argument as
before now reduces the data to the two samples

and

(Dal' · ·· ,Daq),

(Dp"i , ... , Dl q),

a=1 , .. . ,nl '

{J=1 , . .. ,n2'
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with means (SI " . . , Sq) and (Sf, , S:), and the hypothesis being tested becomes
H : SI = ... = Sq = 0, Sf = = S: = O. This is a multivariate linear hy-
pothesis with r = s = 2 and p = q, which can be tested by the tests of Section 4.

A linear hypothesis concerning the row vectors aal" ' " ~ap) has been
seen in this section to be reducible to the linear hypothesis 1J = 0 on the
reduced variables Y and Z. To consider the robustness of the resulting tests
against nonnormality in the original variables, mppose that Xa j = ~aj + Wa j ,

where (Wa1, .. . , Wap)' a = 1, . . . , n, is a sample from a p-variate distribu­
tion F with mean zero, where the f and H are as at the beginning of the
section. As before, let XE = Y = (Y1Y2 ) . Then the rows of Y - E(Y) will
be independent and have a common distribution, and the n rows of Y1 will
therefore be independently distributed according to d-variate distributions
ns: - ~al"'" Yad - ~ad)' The vectors (~li"'" ~nj), i = 1, . .. , d, all lie
in ITo, and under H they are all equal to zero. It follows that if the size of
the normal-theory test of this reduced problem is robust against nonnormal­
ity (in F), the test is also robust against nonnormality in the original
distribution F. In particular, the tests of Examples 1 and 2 are therefore
robust against nonnormality.

In some multivariate studies of the kind described in Section 1, observa­
tions are taken not only on the characteristics of interest but also on certain
covariates.

Example 3. Consider the two-sample problem of Section 3, where
(~~), . . . , ~~) and (x,W, ..., Xh~» represent p measurements under treatments 1
and 2 on random samples of n\ and n2 subjects respectively, but suppose that in
addition q control measurements (~~~+1 ' "'' ~~~+q) and (Xh~~+\ , · .. , Xh~~+q)
are available on each subject. The n = nl + n2 (p + q)-vectors of X's are assumed
to be independently distributed according to (p + q)-variate normal distributions
with common covariance matrix and with expectations E(XlP) = t, E(XM) = 1/;
for ;=1, . .. , p and E(~J)=E(XJ;»=II; for ;=p+1, ... ,p+q. The hy­
pothesis being tested is H : t = 1/; for; = 1, ... , p . It is hoped that the control
measurements through their correlations with the p treatment measurements will
make it possible to obtain a test with increased power despite the fact that these
auxiliary observations have no direct bearing on the hypothesis.

More generally, suppose that the total set of measurements on the ath
subject is Xa = (Xa1,... , Xap' Xa,p+l" ' " Xa,p+q), and that the vectors
Xa' a = 1, . .. , n are independent, (p + q)-variate normal with common
covariance matrix. For i = 1, .. . , p, the mean vectors ali" ' " ~nj) are
assumed as in Section 1 to lie in an s-dimensional subspace ITo of n-space,
the hypothesis specifying that (~li"'" ~n;) lies in an (s - r )-dimensional
subspace IT", of ITo. For i = P + 1, . . . , p + q, the vectors (~li" ' " ~n;) are
assumed to lie in IT", under both the hypothesis and the alternatives.
Application of the orthogonal transformation ex of Section 1 to the
augmented data matrix and some of the invariance considerations of the
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present section result in the reduced canonical form

(~ ~)
p q

m=n - s

where the r + m rows are independent (p + q )-variate normal with com­
mon covariance matrix and means

E(Y) = 1/, E(2) = 0, E(U) = 0, E(V) = 0.

The hypothesis being tested is H : 1/ = 0. This problem bears a close formal
resemblance to that considered for the model (18), with the important
difference that the expectations E (U) = v are now assumed to be zero. A
number of invariant tests making use of the auxiliary variables U and V
have been proposed, and it is shown in Marden and Perlman (1980) for the
case r = 1 that some of these are substantially more powerful than the
corresponding T 2-test based on Y and 2 alone. For reduction by invari­
ance, comparative power, and admissibility of various tests in the case of
general r, see Kariya (1978) and Marden (1983), where there is also a survey
of the literature. A detailed theoretical treatment of this and related testing
problems is given by Kariya (1985).

6. SIMULTANEOUS CONFIDENCE INTERVALS

In the preceding sections, the tests and confidence sets of Chapter 7 were
generalized from the univariate to the multivariate linear model. The present
section is concerned with the corresponding generalization of Scheffe's
simultaneous confidence intervals (Chapter 7, Section 9). In the canonical
form of Section 2, the means of interest are the expectations 1/;j = E( Y;),
i = 1, .. . , r , j = 1, ... , p. We shall here consider simultaneous confidence
intervals not for all linear functions L.L.C;j1/;j' but only those of the form*

r p P (r )L L U;Vj1/ij = L vj L U;1/ij •
;=1 )=1 )=1 ;=1

This is in line with the linear hypotheses of Section 1 in that the same linear
function L.U;1/ij is considered for each of the p components of the multi­
variate distribution. The objects of interest are linear combinations of these
functions. [For a more general discussion, see Wijsman (1979, 1980).]

'Simultaneous confidence intervals for other linear functions (based on the Lawley­
Hotelling trace test) are discussed by Anderson (1984. Section 8.7.3).
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When r = 1, one is dealing with a single vector (1j i- . .. , 1jp), and the
simultaneous estimation of all linear functions Ej=lVj 1jj is conceptually very
similar to the univariate case treated in Chapter 7, Section 9.

Example 4. Contrasts in the s-sample problem. Consider the comparison of two
products, of which p quality characteristics (~Il" "'~\p) and (~Zl" "'~Zp) are
measured on two samples. The parametric functions of interest are the linear
combinations LVjaZj - ~1j) ' Since for fixed j only the difference ~Zj - ~\j is of
interest, invariance permits restricting attention to the variables lj = (XZj ­

Xl j ) / fi and S, and hence r = 1. If instead there are s > 2 groups, one may be
interested in all contrasts L:_1W;~i j' LW; = O. One may wish to combine the same
contrasts from the p different components into LVj(LWi~ij)' LW; = 0, and is then
dealing with the more general case in which r = s - 1.

As in the univariate case, it will be assumed without loss of generality
that Eu; = 1 so that u E U, and the problem becomes that of determining
simultaneous confidence intervals

(20) u», v; y , S) s U'1jV s ui«. v; y, S) for all u E U and all v

with confidence coefficient y. The argument of the univariate case shows
that attention may be restricted to Land M satisfying

(21) L(u,v;y,S) = -M(-u,v;y,S) .

We shall show that there exists a unique set of such intervals that remain
invariant under a number of groups, and begin by noticing that the problem
remains invariant under the group G1 of Section 2, which leaves the sample
matrices Y and Z as maximal invariants to which attention may therefore
be restricted.

Consider next the group G2 of Section 2, that is, the group of orthogonal
transformations y* = QY, 1j* = Q1j. The argument of Chapter 7, Section 9
with respect to the same group shows that Land M depend on u, y only
through u'y and y'y, so that

L(u, v; y, S) = L\(u'y, y'y; v, S), ui«, v; y, S) = M1(u'y, y'y; v, S) .

Apply next the group G1of translations y* = Y + a, 1j* = 1j + a, where a
is an arbitrary r X p matrix. Since u'1j*v = U'1jV + u'ao, equivariance re­
quires that

L1(u'(y + a),(y + a)'(y + a);v, S) = L\(u'y, y'y; v, S) + u'ao;

and hence, putting y = 0, L1(0,0; v, S) = L2(v, S), and replacing a by y,

L\(u'y, y'y; v, S) = u'yv + Lz(v, S)

and the analogous condition for M.
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In order to determine L 2 , consider the group G3 of Section 2, that is, the
group of linear transformations y* = YB, Z* = ZB, and thus S* = B'SB.
An argument paralleling that for G2 shows that an equivariant L 2 and M2
must satisfy

(22) L2(Bv, S) = L2(v, B'SB), M2(Bv, S) = M2 ( v, B'SB)

for all nonsingular B, positive definite S, and all v. In particular, when
S = lone has

L2(v,I) = L2(Bv,I) for all orthogonal B

so that L2(v, l) = L3(v'v). With B = S-1/2, so that B'SB = I, and w =
S - 1/2V, (22) then reduces to

L 2 ( w, S) = L3 ( w'Sw).

Thus,

L(u, v; y, S) = u'yo + L3(v'Sv), ui«, v; y, S) = u'yv + M3(v'Sv),

and by (21), L3(v'Sv) = -M3(v'Sv).
The derivation of the simultaneous confidence intervals will now be

completed by an invariance argument that does not involve a transforma­
tion of the observations (Y, S) but only a reparametrization of the linear
functions U'TJv. If v is replaced by cv for some positive c, then U'TJV
becomes CU'TJV, and equivariance therefore requires that

L3(cv'Svc) = cL3(v'Sv) for all v, Sand c> O.

For o'So = 1, this gives L3(C
2 ) = cL3(1) = kc, say, and hence

L3 ( v'Sv) = kJv'Sv.

The only confidence intervals satisfying all of the above equivariance
conditions are therefore given by

(23) lu'TJv - u'yvl .:s;; kJv'Sv for all u E U and all v.

It remains to evaluate the constant k, for which the probability (23) equals
the given confidence coefficient y. This requires determining the maximum

(24)
[u'( TJ - y) v]2

max
uEU,V v'Sv
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For fixed v, it follows from the Schwarz inequality that the numerator of
(24) is maximized for

(lJ-Y)v

yv'(lJ - y)'(lJ - y)V

and that the maximum is equal to

(25) max [u'(lJ - y)vp = v'(lJ - y)'(lJ - y)v .
uEU

Substitution of this maximum value into (24) leaves a maximization prob­
lem which is solved by the following lemma.

Lemma 2. Let Band S be symmetric p X P matrices, and suppose that S
is positive definite . Then the maximum of

v'Bv
f(v) = v'Sv

is equal to the largest root Amax of the equation

(26) IB - ASI = 0,

and the maximum is attained for any vector v which is proportional to an
eigenvector corresponding to this root, that is, any v satisfying (B - AmaxS)V
= O.

Proof. Since f( cv) = f( v) for all c .;: 0, assume without loss of gener­
ality that v'Sv = 1, and subject to this condition, maximize v'Bv. There
exists a nonsingular transformation w = Av for which

v'Bv = LA;W/, v'Sv=LW/=1

where Al ~ A2 ~ • • • ~ Ap are the roots of (26). In terms of the w's it is
clear that the maximum value of f( v) is obtained by putting WI = 1 and the
remaining w's equal to zero, and that the maximum value is AI' That the
maximizing vector is an associated eigenvector is seen in terms of the w's by
noting that w' = (1,0, ... ,0) satisfies (A - AIl)w = 0, where A is the
diagonal matrix whose diagonal entries are the A'S.

Application of this lemma, with B = (lJ - Y)'( lJ - Y), shows that

[u'(lJ - Y)V]2 = AI(Y -lJ, S),
max v'SvuEU. v
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where Al = Al (Y - 1/, S) is the maximum root of

(27) I(Y -1/)'(Y -1/) - ASI = O.

Since the distribution of Y - 1/ is independent of 1/, the constant k in (23)
is thus determined by

PTj=O[AI(Y, S) s k 2
] = Y

and hence coincides with the critical value of Roy's maximum-root test at
level a = 1 - y. In particular when r = 1, the statistic (m + 1 - p)A1/ P
has the F-distribution with p and m + 1 - p degrees of freedom.

As in the univariate case, one may wish to permit more general simulta­
neous confidence sets

U'1/V E A(u, v; y, s) for all u E U, v.

If the restriction to intervals is dropped, equivariant confidence sets are no
longer unique, and by essentially repeating the derivation of the intervals it
is easy to show that (Problem 30) the most general equivariant confidence
sets are of the form

(28)
u'(1/-Y)v

";v'Sv E A for all u E U and all v,

where A is any fixed one-dimensional set. However, as in the univariate
case, if the confidence coefficient of (28) is y, the set A contains the interval
( - k, k) for which the probability of (23) is y, and the intervals (23) are
therefore the smallest confidence sets at the given level.

There are three confidence statements which, though less detailed, are
essentially equivalent to (23):

(i) It follows from (25) that (23) is equivalent to the statement

(29) v'(1/ - Y)'(l1- y)v ~ kVSv forallv.

These inequalities provide simultaneous confidence ellipsoids for all vectors
l1 V •

(ii) Alternatively, one may be interested in simultaneous confidence sets
for all vectors U'l1 , u E U. For this purpose, write

[u'(l1- Y)/J]2 v'(l1- y)'uu'(l1- y)v

v'Sv v'Sv

By Lemma 2, the maximum (with respect to v) of this ratio is the largest
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root of

(30)
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I( T/ - Y )'uu'(T/ - y) - ASI= o.

[8.6

As was seen in Section 2, with Y in place of u'(T/ - y), this equation has
only one nonzero root, which is equal to

u'(T/ - y)S-l(T/ - y)'u,

and (23) is therefore equivalent to

(31) u'(T/ - y)S-l(T/ - y)'u ~ k 2 for all u E U.

This provides the desired simultaneous confidence ellipsoids for the vectors
U'T/, u E U.

Both (29) and (31) can be shown to be smallest equivariant confidence
sets under some of the transformation groups considered earlier in the
section (Problem 31).

(iii) Finally, it is seen from the definition of A1 that (23) is equivalent to
the inequalities

(32) A1(Y -T/, S) ~ k 2
,

which constitute the confidence sets for T/ obtained from Roy's maximum­
root test.

As in the univariate case, the simultaneous confidence intervals (23) for
U'T/V for all u E U and all v have the same form as the uniformly most
accurate unbiased confidence intervals

(33) IU'T/V - u'yvi ~ kolv'Sv

for a single given u E U and v (Problem 32). Clearly, k o < k, since the
probability of (33) equals that of (23). The increase from k o to k is the price
paid for the stronger assertion, which permits making the confidence
statements

liI'T/V - iI'yvl ~ klv'Sv

for any linear combinations iI'T/v suggested by the data.
The simultaneous confidence intervals of the present section were derived

for the model in canonical form. For particular applications, Y and S must
be expressed in terms of the original variables X. (See for example,
Problems 33, 34.)
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7. X2. TESTS: SIMPLE HYPOTHESIS AND UNRESTRICTED
ALTERNATIVES

UMP invariant tests exist only for rather restricted classes of problems,
among which linear hypotheses are perhaps the most important. However,
when the number of observations is large, there frequently exist tests which
possess this property at least approximately. Although a detailed treatment
of large-sample theory is outside the scope of this book, we shall indicate
briefly some theory of two types of tests possessing such properties: x2-tests
and likelihood-ratio tests. In both cases the approximate optimum property
is a consequence of the asymptotic equivalence of the problem with one of
testing a linear hypothesis. This relationship will be sketched in the next
section. As preparation we discuss first a special class of X2 problems.

It will be convenient to begin by considering the linear hypothesis model
with known covariance matrix . Let Y = (Y1, ••• , Yq ) have the multivariate
normal probability density

M [1 q q ](34) --! exp -"2 L L Gi/Yi - lJ;)(Yj - lJ)
(2?T),q i=lj=l

with known covariance matrix A -1. The point of means lJ = (lJl"' " lJ q ) is
known to lie in a given s-dimensional linear space ITo with s ~ q; the
hypothesis to be tested is that lJ lies in a given (s - r )-dimensional linear
subspace ITw of IT0 (r s s). This problem (which was considered in
canonical form in Section 4) is invariant under a suitable group G of linear
transformations, and there exists a UMP invariant test with respect to G,
given by the rejection region

(35) LLGi/Y; - ~;)(Yj - ~J - LLGij(Yi - ~;)(Yj - ~)

= LLGij(~; - ~;)(~j - ~J

~ C.

Here ~ is the point of ITo which is closest to the sample point Y in the
metric defined by the quadratic form 'L'LGijx;xj, that is, "':.hich minimizes
the quantity 'L'LG;/Y; - lJ;)( Yj - lJj) for lJ in ITo. Similarly ~ is the point in
ITw minimizing this quantity.

When the hypothesis is true, the left-hand side of (35) has a X2-distribu­
tion with r degrees of freedom, so that C is determined by

(36) [\;(z) dz = a.
c
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When lJ is not in IT"" the probability of rejection is

(37) fcOOPA(Z) dz,

where PA(z) is the noncentral X2-density of Chapter 7, Problem 2 with r
degrees of freedom and noncentrality parameter X2, obtained by replacing
Yi' ~i' ~i in (35) with their expectations, or equivalently, if (35) is considered
as a function of y, by replacing y with lJ throughout. This expression for
the power is valid even when the assumed model is not correct so that
E(Y) = lJ does not lie in ITo. For the particular case that lJ E ITo, the
second term in this expression for X2 equals O. A proof of the above
statements is obtained by reducing the problem to a linear hypothesis
through a suitable linear transformation. (See Problem 35).

Returning to the theory of x2-tests, which deals with hypotheses concern­
ing multinomial distributions," consider n multinomial trials with m possi­
ble outcomes. If P = (PI' . .. ' Pm) denotes the probabilities of these
outcomes and Xi the number of trials resulting in the ith outcome, the
distribution of X = (Xl' . .. ' Xm ) is

n!
(38) P(xl,· · ·,xm ) =, ,pfl ... p:''!'

Xl · • •• x m •
(LXi = n , LPi = 1).

The simplest X2 problems are those of testing a hypothesis H: P = 7T where
7T = (7TI , •• • , 7Tm ) is given, against the unrestricted alternatives P '* 7T . As
n -. 00, the power of the tests to be considered will tend to one against any
fixed alternative. (A sequence of tests with this property is called consistent.)
In order to study the power function of such tests for large n, it is of interest
to consider a sequence of alternatives p(n) tending to 7T as n -. 00 . If the
rate of convergence is faster than 1/.;n, the power of even the most
powerful test will tend to the level of significance a. The sequences reflecting
the aspects of the power that are of greatest interest, and which are most
likely to provide a useful approximation to the actual power for large but
finite n, are the sequences for which .;n(p(n) - 7T) tends to a nonzero limit,
so that

(39)
t::.

P(n) = 7T. + .;n' + R(n)
" ,n

say, where .;nR~n) tends to zero as n tends to infinity.

*For an alternative approach to such hypotheses see Hoeffding (1965).
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Let

(40) Y
X- n. = I 7Ti

I -

Then [;:11', = 0, and the mean of 1', is zero under H and tends to a, under
the alternatives (39). The covariance matrix of the Y's is

(41) aij = -7Ti7Tj if i *- j , a i i = 7Ti (l - 7T;)

when H is true, and tends to these values for the alternatives (39). As
n --. 00 , the distribution of Y= (Y1, • • • , Ym - 1) tends to the multivariate
normal distribution with means £(1',) = 0 under Hand £(1',) = !!. i for the
sequence of alternatives (39), and with covariance matrix (41) in both cases.
[A proof assuming H is given for example by Cramer (1946, Section 30.1).
It carries over with only the obvious changes to the case that H is not true.]
The density of the limiting distribution is

(42) cexp ~ Imi21
(Yi - !!.;)2 +

i= 1 7Ti

(

m-l ) 2

j~1 (Yj - !!. j)

7Tm

and the hypothesis to be tested becomes H :!!.1 = . . . = !!.m -1 = O.
According to (35), the UMP invariant test in this asymptotic model

rejects when

m-1 Y/ 1 (m - 1 ) 2
[-+- [Yj >C
i=1 7Ti 7Tm j=1

and hence when

(43)
~ (Pi - 7T;)2

n c: > C
i= 1 7Ti

where Pi = X;/n and C is determined by (36) with r = m - 1. [The
accuracy of the x2-approximation to the exact null distribution of the test
statistic in this case is discussed for example by Radlow and Alf (1975). For
more accurate approximations in this and related problems, see McCullagh
(1985) and the literature cited there .] The limiting power of the test against
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the sequence of alternatives (39) is given by (37) with '~.2 = L;:1~~/'lTi' This
provides an approximation to the power for fixed n and a particular
alternative P if one identifies P with p(n) for this value of n. From (39) one
finds approximately ~i = {ii(Pi - 'IT;), so that the noncentrality parameter
becomes

(44)
2 m ( 2A = n L Pi - 'lTi)

i=1 'lTi

Example 5. Suppose the hypothesis is to be tested that certain events (births,
deaths, accidents) occur uniformly over a stated time interval such as a day or a
year. If the time interval is divided into m equal parts and Pi denotes the
probability of an occurrence in the ith subinterval, the hypothesis becomes H: Pi =
11m for i = 1, . . . , m. The test statistic is then

m 1 )2
mn L (Pi - m '

i - 1

where Pi is the relative frequency of occurrence in the ith subinterval. The
approximate power of the test is given by (37) with r = m - 1 and X2 =

mnI:7:'dpi - (ljm)]2.

Unbiasedness of the test (43) and a local optimality property among tests
based on the frequencies Pi are established by Cohen and Sackrowitz (1975).

Example 5 illustrates the use of the x2-test (43) for providing a particu­
larly simple alternative to goodness-of-fit tests such as that of Kolmogorov,
mentioned at the end of Chapter 6, Section 13. However, when not only the
frequencies Pi but also the original observations Xi are available, reduction
of the data through grouping results in tests that tend to be less efficient
than those based on the Kolmogorov or related statistics. For further
discussion of X2 and its many generalizations, comparison with other
goodness-of-fit tests, and references to the extensive literature, see Kendall
and Stuart (1979, Section 30.60). The choice of the number m of groups is
considered, among others, by Quine and Robinson (1985) and by
Kallenberg, Oosterhoff, and Schriever (1985).

8. XI-AND LIKELIHOOD-RATIO TESTS

It is both a strength and a weakness of the x2-test of the preceding section
that its asymptotic power depends only on the weighted sum of squared
deviations (44), not on the signs of these deviations and their distribution
over the different values of i . This is an advantage if no knowledge is
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available concerning the alternatives, since the test then provides equal
protection against all alternatives that are equally distant from H: p = 7T in
the metric (44). However, frequently one does know the type of deviations
to be expected if the hypothesis is not true, and in such cases the test can be
modified so as to increase its asymptotic power against the alternatives of
interest by concentrating it on these alternatives.

To derive the modified test, suppose that a restricted class of alternatives
to H has been defined

K: p EY', p:l= 7T.

Let the surface Y' have a parametric representation

and let

p;=I;(OI" "'O,) , i = 1, . . . , m ,

7T.='(00 00), J; 1 , . •. , s •

Suppose that the OJ are real-valued, that the derivatives a/;IaOj exist and
are continuous at 0°, and that the Jacobian matrix (a1;/aO) has rank s at
0°. If o(n) is any sequence such that

(45) In(OP) - 0/) - ~j'

the limiting distribution of the variables (YI , . . . , Ym - l ) of the preceding
section is normal with mean

(46) s a/;I£(Y;) = s, = L /jj ao
j= I J 80

and covariance matrix (41). This is seen by expanding /; about the point 0°
and applying the limiting distribution (42). The problem of testing H
against all sequences of alternatives in K satisfying (45) is therefore
asymptotically equivalent to testing the hypothesis

Lli = . . . = Ll m - l = 0

in the family (42) against the alternatives K:(LlI, .. . ,Ll m - l ) E II o where
II o, is the linear space formed by the totality of points with coordinates

(47)
s al;

- "~.-Ll . - LJ J ao I 0
I )-1 J 8
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We note for later use that for any fixed n, the totality of points

D. ;
P ='TT.+ r: >

; I yn
i = 1, ... , m ,

with the D. ; satisfying (47), constitute the tangent plane to Y at 'TT, which
will be denoted by Y.

Let (~1 " '" ~m) be the values minimizing L:"=I(Y; - D.y/'TT; subject to
the cond itions (D.1, ... , D. m - 1) E ITo and D. m = -(D.1 + ... +D. m - 1) . Then
by (35), the asymptotically UMP invariant test rejects H in favor of K if

m m m

L Y/ L(Y; -~Y L A 2D. ;
; = 1 ;=1 = ..t:.!..- > C--- ,

'TT; 'TT; 'TT;

or equivalently if

m m m

n L (p; - 'TT;)2 nL( p;-p;)2 n L (p; - 'TTy

(48) ;= 1 ;= 1 ;=1 > C,- =
'TT; 'TT; 'TT;

where the p; minimize L(P; - PY/'TT; subject to p E Y. The constant C is
determined by (36) with r = s. An asymptotically equivalent test, which,
however, frequently is more difficult to compute explicitly, is obtained by
lett ing the p; be the minimizing values subject to p E Y instead of p E Y.
An approximate expression for the power of the test against an alternative p
is given by (37) with "A2 obtained from (48) by substituting Pt for P; when
the p;are considered as functions of the Pi '

Example 6. Suppose that in Example 5, where the hypothesis of a uniform
distribution is being tested, the alternatives of interest are those of a cyclic
movement, which may be represented at least approximately by a sine wave

1 r: .Pi = - + P sm( u - 8) du,
m ( ; - 1)2f1/ m

j = l, oo ., m .

Here p is the amplitude and 8 the phase of the cyclic disturbance. Putting
~ = pcos 8, 11 = psin 8, we get

1
P; = -(1 + a;~ + b;lI),

m
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where
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'" '"a; = 2m sin- sin(2i - 1)-,
m m

'" '"b; = -2m sin- cos(2 i - 1)- .
m m

The equations for P, d~fine the surface Y, which in the present case is a plane, so
that it coincides with Y .

The quantities t ~ minimizing E(,,; - PYI"'; subject to p E Y are

Ea;,,;
~= --2 '

Ea;",;

Eb;,,;

~ = Eb;",;

with "'; = 11m . Let m > 2. Using the fact that Ea; = Eb, = Ea .b, = 0 and that

m '" m '" mL sirr' (2i - 1)- = L cos! (2i - 1)- = - ,
; - 1 m ; -1 m 2

the test becomes after some simplification

[
m ",]2 [m ",]2

2n L ,,;sin(2i - 1)- + 2n L ,,;cos(2i - 1)- > C,
; -1 m ;-1 m

where the number of degrees of freedom of the left-hand side is s = 2. The
noncentrality parameter determining the approximate power is

(
'fT )2 ( '" )2 '">..2 = n ~m sin m + n 11 m sin m = np2m2sin2 m

The x2-tests discussed so far were for simple hypotheses. Consider now
the more general problem of testing H: p E Y against the alternatives
K : p E!/', P ~ Y where Yc!/' and where!/' and Y have parametric
representations

!/' : p; = ! ;( 01" . . , OJ, Y: p; = ! j(O?, . . . , Oro , 0r+l" ' " 0.) .

The basis for a large-sample analysis of this problem is the fact that for
large n a sphere of radius pl..;n can be located which for sufficiently large p
contains the true point p with arbitrarily high probability. Attention can
therefore be restricted to sequences of points p(n) E!/' which tend to some
fixed point 'TT E Y at the rate of 1/..;n. More specifically, let 'TTj =
/;(O?, . .. , 0so), and let o(n) be a sequence satisfying (45). Then the variables
(Yl" ' " Ym - 1) have a normal limiting distribution with covariance matrix
(41) and a vector of means given by (46). Let ITo be defined as before, let
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IT'" be the linear space

s Bp,
IT . 6. . = L l)j-ao

", ' I . I 0
j=r+1 J (J

and consider the problem of testing that p(n) is a sequence in H for which
o(n) satisfies (45) against all sequences in K satisfying this condition. This is
asymptotically equivalent to the problem, discussed at the beginning of
Section 7, of testing (6.1" " , 6.m - 1) E IT", in the family (42) when it is
given that (6.1" " , 6. m - 1) E ITo. By (35), the rejection region for this
problem is

( :: )2 ( A )2
L Yi - 6. i _ L Yi - 6.i > C,

'1Ti '1Ti

where the ~i and Ri minimize [(Yi - 6. i)2/'1Ti subject to 6. m =
-(6.1 + . .. +6. m - 1) and (6.1, ,, , , 6. m - 1) in ITo and IT", respectively. In
terms of the original variables, the rejection region becomes

(49)
:: )2nL(Vi-Pi

'1Ti

A )2
nL(vi - Pi > C.

'1Ti

Here the Pi and Pi minimize

(50)
L (Vi - p;)2

'1Ti

when P is restricted to lie in the tangent plane at '1T to !/' and ff
respectively, and the constant C is determined by (36).

The above solution of the problem depends on the point '1T, which is not
given. A test which is asymptotically equivalent to (49) and does not depend
on '1T is obtained if Pi and Pi are replaced by pt and pt* which minimize
(50) for P restricted to !/' and ff instead of to their tangents, and if further
'1Ti is replaced in (4~) and (50) by a suitable estimate, for example by Vi' This
leads to the rejec:ion region

(V - **)2 (V _ *)2 ( * _ **)2
(51) nL i Pi _ nL i Pi = nL Pi Pi > C,

Vi Vi Vi
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where the pi* and pi minimize

(52)
L (p; - p;)2

P;

subject to p E .r and p E.9 respectively, and where C is determined by
(36) as before. An approximation to the power of the test for fixed n and a
particular alternative p is given by (37) with A2 obtained from (51) by
substituting P, for P; when the pi and pi* are considered as functions of
the P;.t

A more general large-sample approach, which unlike X2 is not tied to the
multinomial distribution, is based on the method of maximum likelihood.
We shall here indicate this theory only briefly, and in particular shall state
the main facts without the rather complex regularity assumptions required
for their validity.*

Let Po(x), 0 = (01" " , Or)' be a family of univariate probability densi­
ties, and consider the problem of testing, on the basis of a (large) sample
Xl' . . . , Xn , the simple hypothesis H: 0; = 0;°, i = 1, . .. , r . Let °=
(° 1" " , Or) be the maximum-likelihood estimate of 0, that is, the parameter
vector maximizing Po(Xl ) ' " PO(xn ) . Then asymptotically as n - 00, atten­
tion can be restricted to the 0;, since they are "asymptotically sutticient",!
The power of the tests to be considered will tend to one against any fixed
alternative, and the alternatives of interest, as in the X2 case, are sequences
o}n) satisfying

(53) In( o/n) - On - t:.; .

If ~ = In (0; - 0;°), the limiting distribution of Yl , . .. , Yr is the multi­
variate normal distribution (34) with

(54) a;j = a;j( 00) = _ E( a
2

10g Po( X) )
ee, aOj 10=0°

and with 1'/; = 0 under Hand 1'/; = t:.; for the alternatives satisfying (53).

tA proof of the above statements and a discussion of certain tests which are asymptotically
equivalent to (48) and sometimes easier to determine explicitly are given. for example. in Fix,
Hodges. and Lehmann (1959).

*For a detailed treatment and references to the literature see Serfling (1980. Section 4.4).
§This was shown by Wald (1943); for a definition of asymptotic sufficiency and further

results concerning this concept see LeCam (1956. 1960).
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By (35), the UMP invariant test in this asymptotic model rejects when

(55)
r r

- E E a;jn(O; - O;o)(Oj - 0/) > C.
i-lj-l

Under H, the left-hand side has a limiting X2-distribution with r degrees of
freedom, while under the alternatives (53) the limiting distribution is non­
central X2 with noncentrality parameter

(56)
r r

';".2 = lim " "a ..n (o .(n) - 0°)( o .(n) - 0°)i-J i-J IJ I I J J '
i-I j-l

The approximate power against a specific alternative 0 is therefore given by
(37), with >..2 obtained from (56) by substituting 0 for o(n).

The test (55) is asymptotically equivalent to the likelihood-ratio test,
which rejects when

(57)
p,{X1)··· p,{Xn )

An = () () ~ k.
P9 0 Xl . •. P9 0 X n

(58)

This is seen by expanding L~_llog P90(Xv) about L~_llog p,(xv ) and using
the fact that at 0 = 0 the derivatives aLlog P9(Xv)/ao;are zero. Applica­
tion of the law of large numbers shows that - 2log An differs from the
left-hand side of (55) by a term tending to zero in probability as n -. 00 . In
particular, the two statistics therefore have the same limiting distribution.

The extension of this method to composite hypotheses is quite analogous
to the corresponding extension in the X2 case. Let 0 = (01, ••• ,0,) and
H: 0; = O? for i = 1, . . . , r (r < s). If attention is restricted to sequences
o(n) satisfying (53) for i = 1, ... , s and some arbitrary 0ro+l" '" 0,°, the
asymptotic problem becomes that of testing 1/1 = . .. = 1/ r = 0 against
unrestricted alternatives (1/1, ... ,1/,) for the distrib~tions (34) with aij =
a ij( 0°) given by (54). Then ~; = 1'; for all i, while ~; = 0 for i = 1, ... , r
and = 1'; for i = r + 1, ... , s, so that the UMP invariant test is given by
(55). The coefficients aij = a;iOo) depend on 0ro+l"'" 0,° but as before an
aSYIl}ptotically equivalent test statistic is obtained by replacing a;i0°) with
a;i0) . Again, the statistic is also asymptotically equivalent to minus twice
the logarithm of the likelihood ratio , and the test is therefore asymptotically
equivalent to the likelihood-ratio test," which rejects when

p,{x l ) · · · p,{xn )
A = > k

n pj{x l ) ... pj{xn ) -

"Tbe asymptotic theory of likelihood-ratio tests has been extended to more general types of
problems, including in particular the case of restricted classes of alternatives, by Chernoff
(1954). See also Serfling (1980).
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where b is the maximum-likelihood estimate of () under H, and where
- 2 log An as before has a limiting X2-distribution with r degrees of
freedom.

Example 7. Independence in a two-dimensional contingency table. In generaliza­
tion of the multinomial model for a 2 X 2 table discussed in Chapter 4, Section 6,
consider a twofold classification of n subjects, drawn at random from a large
population, into classes AI" ' " Au and BI , .. . , B" respectively. If nij denotes the
number of subjects belonging to both Ai and Bj , the joint probability of the ab
variables n; j is

(59)
N!

Dn
'
Dp7u

i . I j" " j J
,J

(Ln;j = n, LPij = 1) .

The hypothesis to be tested is that the two classifications are independent, that is,
that Pi, is of the form

(60) H : Pi} = PiP;

for some Pi' P; satisfying LPi = LP; = 1.
Alternative, asymptotically equivalent tests are provided by (51) and the likeli­

hood-ratio test. Since the minimization required by the former leads to a system of
equations that cannot be solved explicitly, let us consider the likelihood-ratio
approach. In the unrestricted multinomial model, the probability (59) is maximized
by Pij = niJn; under H, the maximizing probabilities are given by

Ani_

Pi =-; ' s. _ n'j
Pj - n

where ni. = Ljnij/b and n' j = Linij/a (Problem 39). Substitution in (58) gives

n-»IJ
i ,J

ne-n«- :I' 'J
i J

A = -=-

Since under n the Pij are subject only to the restriction LLPij = 1, it is seen that
s = ab - 1. Similarly, s - r = (a - 1) + (b - 1) and hence -210g A, under H,
has a limiting X2-distribution with r = (ab - 1) - (a + b - 2) = (a - 1)(b - 1)
degrees of freedom. The accuracy of the x2-approximation, and possible improve­
ments, in this and related problems are discussed by Lawal and Upton (1984) and
Lewis, Saunders, and Westcott (1984), and in the literature cited in these papers.

For further work on two- and higher-dimensional contingency tables, see for
example the books by Haberman (1974), Bishop, Fienberg, and Holland (1975), and
Plackett (1981), and the paper by Goodman (1985).
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9. PROBLEMS

[8.9

Section 2

1. (i) If m < p , the matrix S, and hence the matrix S/m (which is an unbiased
estimate of the unknown covariance matrix of the underlying p-variate
distribution), is singular. If m ~ p , it is nonsingular with probability 1.

(ii) If r + m 5 p, the test q,(y, u, z) E IX is the only test that is invariant
under the groups G, and G3 of Section 2.

[(ii): The V's are eliminated through G,. Since the r + m row vectors of the
matrices Y and Z may be assumed to be linearly independent, any such set of
vectors can be transformed into any other through an element of G3 .]

2. (i) If p < r + m, and V = Y'Y, S = Z'Z, the p X P matrix V + S is
nonsingular with probability 1, and the characteristic roots of the equa­
tion

(61) IV - X( V + S) I = 0

constitute a maximal set of invariants under G1, G2 , and G3 .

(ii) Of the roots of (61), p - min(r, p) are zero and p - min(m, p) are
equal to one. There are no other constant roots, so that the number of
variable roots, which constitute a maximal invariant set, is min (r, p) +
min(m, p) - p .

[The mult iplicity of the root X = 1 is p minus the rank of S, and hence
p - min(m, p). Equation (61) cannot hold for any constant A'" 0,1 for
almost all V, S, since for any p. '" 0, V + p.S is nonsingular with probability 1.]

3. (i) If A and Bare k X m and m X k matrices respectively, then the product
matrices AB and BA have the same nonzero characteristic roots.

(ii) This provides an alternative derivation of the fact that W defined by (6) is
the only nonzero characteristic root of the determinantal equation (5).

[(i): If x is a nonzero solution of the equation ABx = Xx with X", 0, then
y = Bx is a nonzero solution of BAy = Xy.]

4. In the case r = 1, the statistic W given by (6) is maximal invariant under the
group induced by G, and G3 on the statistics Y;, Va; (i = 1, . . . , p; IX =

1, . . . , S - 1), and S = Z'Z.
[There exists a nonsingular matrix B such that B'SB = I and such that only
the first coordinate of YB is nonzero. This is seen by first finding B, such that
B(SB, = I and then an orthogonal Q such that only the first coordinate of
YB,Q is nonzero.]

5. Let Z,,; (IX = 1, . .. , m; i = 1, .. . , p) be independently distributed as N(O,1),
and let Q = Q(Y) be an orthogonal m X m matrix depending on a random
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variable Y that is independent of the Z 's, If Z;; is defined by

( ZD . .. Z:'i) = ( Zli . .. Zmi)Q/•

489

then the Z;; are independently distributed as N(O.I) and are independent
of Y.
[For each Y. the conditional distribution of the (Zli' " Zmi)Q /(y). given
Y = y. is as stated .]

6. Let Z be the m X p matrix (Zai)' where p ;5; m and the Zai are independently
distributed as N(O.I). let S = Z/Z. and let SI be the matrix obtained by
omitting the last row and column of S. Then the ratio of determinants ISVISd
has a x 2-distribution with m - p + 1 degrees of freedom.
[Let q be an orthogonal matrix (dependent on Zl1 .... . Zml) such that
(Zl1 .. . Zml)Q/ = (R 0 .. . 0). where R2 = L::=IZ~I ' Then

R 0 .. .
Z~2 ) ( ~

Zi2 ... Zip

Zi2 Zi2 . . . Zi2 Zip
S = Z/Q/QZ = I

Zip Zip ... Z:'p J \ 0 Z:'2 ... Z:'p

where the Z;; denote the transforms under Q. The first of the matrices on the
right-hand side is equal to the product

($)(*)'
where Z* is the (m - 1) X (p - 1) matrix with elements Z;; (a = 2•. . . • m;
i = 2•. . . • p). I is the (p -1) X (p -1) identity matrix. Zr is the column
vector (ZI"2' " Zl"p)' . and 0 indicates a row or column of zeros. It follows that
lSI is equal to R2 multiplied by the determinant of Z*/Z*. Since SI is the
product of the m X (p - 1) matrix obtained by omitting the last column of Z
multiplied on the left by the transpose of this m X (p - 1) matrix. lSI!is equal
to R 2 multiplied by the determinant of the matrix obtained by omitting the
last row and column of Z* /Z* . The ratio ISl/lSd has therefore been reduced
to the corresponding ratio in terms of the Z;; with m and p replaced by
m - 1 and p - 1. and by induction the problem is seen to be unchanged if m
and p are replaced by m - k and p - k for any k < p . In particular. ISl/lSd
can be evaluated under the assumption that m and p have been replaced by
m - (p - 1) and p - (p - 1) = 1. In this case. the matrix Z / is a row matrix
(Zl1 ' " Zm -pHI); the determinant of S is lSI = L~I:f+IZ~I' which has a
X~I - p +I-distribution; and since S is a 1 X 1 matrix. lSI1is replaced by 1.]

7. Null distribution of Hotelling's T 2• The statistic W = YS- I Y/ defined by (6).
where Y is a row vector. has the distribution of a ratio. of which the numerator
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and denominator are distributed independently, as noncentral X2 with non­
centrality parameter 1/12 and p degrees of freedom and as central X2 with
m + 1 - P degrees of freedom respectively.
[Since the distribution of W is unchanged if the same nons ingular transforma­
tion is applied to (Y1,. . • , ~) and each of the m vectors (Zal" . . , Z ap), the
common covariance matrix of these vectors can be assumed to be the identity
matrix. Let Q be an orthogonal matrix (depending on the Y's) such that
(Y1 . , . ~)Q = (0 0 .. . T), where T 2 = EJ·?' Since QQ' is the identity
matrix, one has

W=(YQ)(Q'S-IQ)(Q'Y') =(0 '" OT)(Q'S-IQ)(O . .. 0 T)' .

Hence W is the product of T 2 , which has a noncentral x2-distribution with p
degrees of freedom and noncentrality parameter 1/12 , and the element which
lies in the pth row and the pth column of the matrix Q'S-IQ = (Q'SQ)-l =

(Q'Z'ZQ)-l . By Problems 5 and 6, this matrix is distributed independently of
the Y's, and the reciprocal of the element in question is distributed as

X;' -P+l ']
Note . An alternative derivation of this distribution begins by obtaining the
distribution of S, known as the Wishart distribution. This is essentially a
p-variate analogue of X2 and plays a central role in tests concerning covari­
ance matrices. [See for example Seber (1984).]

Section 3

8. Let (Xal , . . • , Xa p ) ' a = 1, ... , n, be a sample from any p-variate distribution
with zero mean and finite nonsingular covariance matrix I . Then the distri­
bution of T 2 defined by (10) tends to X2 with p degrees of freedom.

9. The confidence ellipsoids (11) for al"' " ~p) are equivariant under the groups
G1-G3 of Section 2.

10. The two-sample test based on (12) is robust against nonnormality as n l and
n2 -> 00.

11. The two-sample test based on (12) is robust against heterogeneity of covari­
ances as nl and n2 -> 00 when nl/n2 -> 1, but not in general.

12. Inversion of the two-sample test based on (12) leads to confidence ellipsoids
for the vector (WI - ~p I , .. . , ~~2) - ~~l I) which are uniformly most accurate
equivariant under the groups G1-G3 of Section 2.

13. Simple multivariate regression. In the model of Section 1 with

(62) ~I'; = a; + fJ;tl , (v=I, .. . ,n ; i=I , .. . ,s),

the UMP invariant test of H : fJl = . .. = fJp = 0 is given by (6) and (9), with
n

Y; = P; , S;; = L [XI'; - /X; - P;tl,J[ X,,; - /X; - Pit,,]
v-I

A _ I ( -)2 A A -

where fJ; = I:X" ;(t,, - t)/ VI: t; - t , a ; = X. ; - f3;t .
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14. Let (1';'1 " , . , 1';'p)' v = 1, .. . , n, be a sample from a p-variate distribution F
. h d covari . ~ d I Z(II) - ~II Y / ~wit mean zero an covanance matnx ..., an et ; - "-, ,_\cl , /' ; V"- I,=IC"

for some sequence of constants cl ' c2" " . Then (ZI"), . . . , Z~"» tends in law
to N(O, I) provided the c's satisfy the condition (50) of Chapter 7.
[By the Cramer-Wold theorem [see for example Serfling (1980)], it is enough to
prove that La;Z?) -+ N(O, a'Ia) for all 0= (0\, . .. , all) with La; = I, and
this follows from Lemma 3 of Chapter 7.]

15. Suppose X;'I = ~"; + 0.", where the t ,; are given by (62) and where
(l!"I' . .. ' o.'p)' v = 1, . . . , n, is a sample from a p-variate distribution with
mean 0 and covariance matrix I . The size of the test of Problem 13 is robust
for this model as n -+ 00 .

[Apply Problem 14 and the univariate robustness result of Chapter 7, Section
8.]
Note. This problem illustrates how the robustness of a univariate linear test
carries over to its multivariate analogue . For a general result see Arnold (1981,
Section 19.8).

Section 4

16. Verify the elements of V and S given by (14) and (15).

17. Let V and S be p X P matrices, V of rank a .s; p and S nonsingular, and let
A\, . . . , Aa denote the nonzero roots of IV - ASI = O. Then

(i) 1-'; = 1/(1 + A;), i = 1, . . . , a, are the a smallest roots of

( 63) IS - 1-'( V + S) I = 0

(the other p - a being = 1);

(ii) o, = 1 + A; are the a largest roots of

(64) IV + S - uSI = o.

18. Under the assumptions of Problem 17, show that

1 IVIn 1 + A; = IV + SI .

[The determinant of a matrix is equal to the product of its characteristic roots .]

19. (i) If (13) has only one nonzero root, then B is of rank 1. In canonical form
B=17/ , and there then exists a vector (a1, .. . ,ap ) and constants
C1' .• • , C" such that

(65) (7/, ,1 " '" 7/"p) = C,,( a\, ... , ap) for v = 1, .. . , r.

(ii) For the s-sample problem considered in Section 4, restate (65) in terms of
the means (~Ik) , . . . , ~~k) of the text.
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20. Let (X"I" ' " X"p), a = 1, ... , n, be independently distributed according to
p-variate distributions F( X"I - ~"l " . . , x"p - t p ) with finite covariance ma­
trix ~, and suppose the es satisfy the linear model assumptions of Section 1.
Then under H, S;j(n - s) tends in probability to the (ij)th element aij
of ~ .

[See the corresponding univariate result of Chapter 7, Section 3.]

21. Let (X~t), . .. , x;,~», a = 1, . . . , nk' k = 1, .. . , s, be samples from p-variate
d· ibuti F( /:(k) /:(k» ith fi . . . ~ distn uuons XI - "'I , • • • , xp - "'p Wl mte covanance matnx ~, an
let AI"' " Au be the nonzero roots of (16) and (At, ... , A~) those of (17), with
V and S given by (14) and (15). Then the joint distribution of «n ­
S)AI, . .. , (n - s)A u ) tends to that of (At, .. . , A~) as n ..... 00.

22. Give explicit expressions for the elements of V and S in the multivariate
analogues of the following situations:

(i) The hypothesis (34) in the two-way layout (32) of Chapter 7.

(ii) The hypothesis (34) in the two-way layout of Section 6 of Chapter 7.

(iii) The hypothesis H' : Y;j = 0 for all i , j , in the two-way layout of Section
6 of Chapter 7.

23. The probability of a type-I error for each of the tests of the preceding problem
is robust against nonnormality: in case (i) as b ..... 00 ; in case (ii) as mb ..... 00 ;

in case (iii) as m ..... 00.

Section 5

24. The assumptions of Theorem 6 of Chapter 6 are satisfied for the group (19)
applied to the hypothesis H: '1/ = 0 of Section 5.

25. Let XV;} ( i = 1, . .. , a; j = 1, . . . , b), v = 1, .. . , n, be n independent vectors,
each having an ab-variate normal distribution with covariance matrix ~ and
with means given by

E(X,,;J = p. + a, + {3j' La; = L{3j = O.

(i) For testing the hypothesis H : al = '" = au = 0, give explicit expres­
sions for the matrices Y and Z of (18) and the parameters '1/ = E(Y)
being tested.

(ii) Give an example of a situation for which the model of (i) might be
appropriate.

26. Generalize both parts of the preceding problem to the two-group case in which
Xm (A = 1, . . . , nl) and Xm (p - 1, . .. , n2) are nl + n2 independent vec­
tors, each having an ab-variate normal distribution with covariance matrix ~
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and with means given by
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E( ..¥1 Jl ) = II. + a(l) + fJ(l)
AI] r-I I ]'

~ a(1) = ~ a(2) = 0i..J, i.J , ,

and where the hypothesis being tested is

E( X(2l) = II. + a(2l + fJ(2)
JI'l r-2 I J '

LfJP> = LfJPl = 0,

H: ap) = . . . = a~\) = aFl = . .. = a~2) = O.

27. As a different generalization, let (XA,.I" . . , XA,.p) be independent vectors, each
having a p-variate normal distribution with common covariance matrix ~ and
with expectation

E( XA,,; ) = p.(i) + a~l + fJ;i) , L a~i) = L fJ;i) = 0
x

for all i ,

and consider the hypothesis that each of p.U), a~), fJ;i) (A = 1, ... , a; JI =

1, . .. , b) is independent of i.

(i) Give explicit expressions for the matrices Y and Z and the parameters
1J = E(Y) being tested.

(ii) Give an example of a situation in which this problem might arise.

28. Let X be an n X p data matrix satisfying the model assumptions made at the
beginning of Sections 1 and 5, and let X" = ex, where e is an orthogonal
matrix, the first s rows of which span TIo. If y* and Z denote respectively
the first s and last n - s rows of X*, then E(Y*) = 1J* say, and E(Z) = O.
Consider the hypothesis Ho : V'TJ* V = 0, where V' and V are constant matrices
of dimension a X s and p X b and of ranks a and b respectively.

(i) The hypotheses of both Section 1 and Section 5 are special cases of Ho.
(ii) The problem can be put into canonical form y** (s X p) and Z**

«n - s) X p), where the n rows of y** and Z** are independent
p-variate normal with common covariance matrix and with means
E(Y**) = 1J**,andwhere Ho becomes Ho : 1Jr/ = ofor all i = 1, .. . , a,
j = 1, . . . , b.

(iii) Determine groups leaving this problem invariant and for which the first
a columns of y** are maximal invariants, so that the problem reduces
to a multivariate linear hypothesis in canonical form.

29. Consider the special case of the preceding problem in which a = b = 1, and let
V' = u' = (UI" ' " U.), V' = v' = (VI"' " vp). Then for testing Ho : u'1J*v = 0
there exists a UMP invariant test which rejects when u'y*v/(v'Sv)u'u ~ c.
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Section 6

30. The only simultaneous confidence sets for all U'1/v. U E U, v that are
equivariant under the groups GI-G3 of the text are those given by (28).
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31. Prove that each of the sets of simultaneous confidence intervals (29) and (31) is
smallest among all families that are equivariant under a suitable group of
transformations.

32. Under the assumptions made at the beginning of Section 6, show that the
confidence intervals (33)

(i) are uniformly most accurate unbiased.

(ii) are uniformly most accurate equivariant, and

(iii) determine the constant ko.

33. Write the simultaneous confidence sets (23) as explicitly as possible for the
following cases:

(i) The one-sample problem of Section 3 with 1/; = ~j (i = 1, . . . , p).

(ii) The two-sample problem of Section 3 with 1/ j = ~j2) - ~:1).

34. Consider the s-sample situation in which (x:.tl, .. ..x:.;l), v = 1•. . .• nk'
k = 1, ... • s, are independent normal p-vectors with common covariance ma­
trix I and with means (~lk)•. . .• ~~k). Obtain as explicitly as possible the
smallest simultaneous confidence sets for the set of all contrast vectors
a::uk~lkl, . . . •LUk~~kl). LUk = O.
[Example 10 of Chapter 7 and Problem 16.]

Section 7

35. The problem of testing the hypothesis H : 1/ E TIw against 11 E TIo- w ' when
the distribution of Y is given by (34), remains invariant under a suitable group
of linear transformations, and with respect to this group the test (35) is UMP
invariant. The power of this test is given by (37) for all points (1/1' · · . • 1/q)'

36. Let Xl •. ..• x" be i.i.d. with cumulative distribution function F. let al < ' "
< am -I be any given real numbers. and let ao = - 00, am = 00 . If "; is the
number of X's in (aj_l , aj), the X2-test (43) can be used to test H : F = Fo
with 'fTj = Fo(a j) - Fo(a j_l ) for i = 1. .. . , m.

(i) Unlike the Kolmogorov test, this x2-test is not consistent against all
FI '* Fo as n -> 00 with the a's remaining fixed.

(ii) The test is consistent against any FI for which

FI(a;) - FI(aj_l) '* Fo(a;} - fQ(a;-d

for at least one i.
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Section 8

37. Let the equation of the tangent !J at 7T be Pi = 7T;(1 + ail~1 + . . . +a;s~s)'
and suppose that the vectors (a;I" ' " a;s) are orthogonal in the sense that
'E.aikai/7Ti = 0 for all k if: I.

8.9]

(i) If (~I" ' " t) minimizes 'E.( Pi - Pi)2/7Ti subject to P E !J,
'E.,«,pJ'E.;a}/TT; .

(ii) The test statistic (48) for testing H : P = 7T reduces to

then ~j =

s ( m )2
n L L aijPi

j=1 i -I
m

L a}j7Ti
i -I

38. In the multinomial model (38), the maximum-likelihood estimators Pi of the
P's are Pi = xJn.
[The following are two methods for proving this result: (i) Maximize
log P( XI' . . . , x m ) subject to 'E. Pi = 1 by the method of undetermined multi­
pliers. (ii) Show that npt· ~ n(xJny' by considering n numbers of which X i

are equal to pJx; for i = 1, .. . , m and noting that their geometric mean is
less than or equal to their arithmetic mean.)

39. In Example 7, show that the maximum-likelihood estimators Pij' Pi' and P;
are as stated.

40. In the situation of Example 7, consider the following model in which the row
margins are fixed and which therefore generalizes model (iii) of Chapter 4,
Section 7. A sample of n ; subjects is obtained from class Ai (i = 1, . . . , a), the
samples from different classes being independent. If nij is the number of
subjects from the i th sample belonging to Bj (j = 1, .. . , b), the joint distribu­
tion of (nil, . . . , n ih) is multinomial, say, M(n i; Plli" ",Phl;)' Determine the
likelihood-ratio statistic for testing the hypothesis of homogeneity that the
vector (Pili" . . , Phi;) is independent of i , and specify its asymptotic distribu­
tion.

41. The hypothesis of symmetry in a square two-way contingency table arises when
one of the responses AI " ' " Au is observed for each of N subjects on two
occasions (e.g. before and after some intervention). If nij is the number of
subjects whose responses on the two occasions are (A ;, A), the joint distribu­
tion of the n;j is given by (59) with a = b. The hypothesis H of symmetry
states that Pi} = Pji for all i , j, that is, that the intervention has not changed
the probabilities. Determine the likelihood-ratio statistic for testing H, and
specify its asymptotic distribution. [Bowker (1948).]
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42. In the situation of the preceding problem. consider the hypothesis of marginal
homogeneity H' : Ps» = P+ j for all i, where P;+ = Li=IPij' P+j = Li- IPjj'

(i) !he maximum-likelihood estimates of the pjj under H' are given by
Pij = nj}!(l + >.o j - >.0). where the >.o's are the solutions of the equations
Ljnj}!(l + >.o j - >.oj) = L jnij/(1 + >.oj - >.o j)' (These equations have no
explicit solutions .)

(ii) Determine the number of degrees of freedom of the limiting xZ-distribu­
tion of the likelihood-ratio criterion .

43. Consider the third of the three sampling schemes for a 2 X 2 X K table
discussed in Chapter 4, Section 8. and the two hypotheses

HI: iii = . .. = Ii K = 1 and Hz: iii = . . . = Ii K •

(i) Obtain the likelihood-ratio test statistic for testing HI'

(ii) Obtain equations that determine the maximum-likelihood estimates of
the parameters under Hz. (These equations cannot be solved explicitly.)

(iii) Determine the number of degrees of freedom of the limiting xZ-distribu-
tion of the likelihood-ratio criterion for testing (a) HI' (b) Hz.

[For a discussion of these and related hypotheses. see. for example Shaffer
(1973), Plackett (1981). or Bishop. Fienberg, and Holland (1975). and the
recent study by Liang and Self (1985).]

Additional Problems

44. In generalization of Problem 8 of Chapter 7. let (Xvi' . ..• Xvp)' v = 1, . . . • n.
be independent normal p-vectors with common covariance matrix ~ and with
means

s
" - '\' a a(i)lib,,; - i...J vjP} ,

j -I

where A = (a.) is a constant matrix ofrank s and where the fJ's are unknown
parameters. If OJ = Lej~(i). give explicit expressions for the elements of V and
S for testing the hypothesis H : OJ = 0;0 (i = 1,. . . •p).

45. Testing for independence. Let X = (Xa;). i = 1•. .. , P. a = 1, . . . , N. be a
sample from a p-variate normal distribution; let q < p , max(q, P - q) ~ N;
and consider the hypothesis H that (Xli' . . .• Xl q ) is independent of
(XI q+ I • ... ,Xlp)' that is. that the covariances ajj = E(Xaj - U(Xaj - ~j) are
zero for all i s q, j> q. The problem of testing H remains invariant under
the transformations X~ = Xaj + b, and X· = XC, where C is any nonsingu-
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lar p x p matrix of the structure
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C= (Cll 0)
o C22

with Cll and Cn being q X q and (p - q) X (p - q) respectively.

(i) A set of maximal invariants under the induced transformations in the
space of the sufficient statistics X' i and the matrix S, partitioned as

(
Sll

S = S21
SI2) ,
S22

are the q roots of the equation

IS12Sn1S21 - ASlll = o.

(ii) In the case q = 1, a maximal invariant is the statistic R 2 =

SI2S221S21/Sll ' which is the square of the multiple correlation coefficient
between Xll and (X12 , • • • , X1p ) ' The distribution of R2 depends only on
the square p2 of the population multiple correlation coefficient, which is
obtained from R2 by replacing the elements of S with their expected
values 0 i j '

(iii) Using the fact that the distribution of R2 has the density [see for
example Anderson (1984»)

(1 _ R2)~( N -P-2)(R2) ~(P -l)-I(1 _ p2) ~(N - l)

r[t(N - 1)] r[t(N - p)]

X f (p2)h(R 2)hr 2[HN- 1) + h]
h-O hlr[Hp -l)+h]

and that the hypothesis H for q = 1 is equivalent to p = 0, show that the
UMP invariant test rejects this hypothesis when R 2 > Co .

(iv) When p = 0, the statistic

R2 N- P

1 - R2 • P - 1

has the F-distribution witn p - 1 and N - P degrees of freedom.

[(i): The transformations X* = XC with C22 = I induce on S the transforma­
tions

(Sll' SI2 ' Sn) -. (Sll ' CllSI2' CllSnCJ1)

with the maximal invariants (Sll' SI2S221S21)' Application to these invariants
of the transformations x* = XC with Cll = I completes the proof.)
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46. The UMP invariant test of independence in part (ii) of the preceding problem
is asymptotically robust against nonnormality.

47. Bayes character and admissibilityof Hotelling's r:
(i) Let (X"I"'" X"p), a = 1, . . . ; n, be a sample from a p-variate normal

distribution with unknown mean ~ = (~I" .. , ~p) and covariance matrix
~ = A -I, and with p ~ n - 1. Then the one-sample r 2-test of H : ~ = 0
against K: ~ "* 0 is a Bayes test with respect to prior distributions Ao
and Al which generalize those of Chapter 6, Example 13 (continued).

(ii) The test of part (i) is admissible for testing H against the alternatives
1/;2 ~ c for any c > O.

[If w is the subset of points (O,~) of 0H satisfying ~-I = A + 11''1} for some
fixed posit ive definite p XP matrix A and arbitrary 'I} = ('I}I " . . , 'l}p), and
O~. h is the subset of points a,~) of OK satisfying ~-I = A + 11''1}, ~' = b~11'

for the same A and some fixed b> 0, let Ao and Al have densities defined
over w and 0A.b respectively by

Ao('I}) = ColA + 11''I}I- n
/

2

and

{
nb2 }

AI('I}) =CdA + 11''I}I- n
/

2exp T['I}(A + 11''I})-I11'] .

(Kiefer and Schwartz, 1965).]
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CHAPTER 9

The Minimax Principle

1. TESTS WITH GUARANTEED POWER

The criteria discussed so far, unbiasedness and invariance, suffer from the
disadvantage of being applicable, or leading to optimum solutions , only in
rather restricted classes of problems. We shall therefore turn now to an
alternative approach, which potentially is of much wider applicability.
Unfortunately, its application to specific problems is in general not easy,
and has so far been carried out successfully mainly in cases in which there
exists a UMP invariant test.

One of the important considerations in planning an experiment is the
number of observations required to insure that the resulting statistical
procedure will have the desired precision or sensitivity. For problems of
hypothesis testing this means that the probabilities of the two kinds of
errors should not exceed certain preassigned bounds, say a and 1 - /3, so
that the tests must satisfy the conditions

(1)
E8CP( X) s a

E8 CP ( X) ~ /3

for 0 E 0H'

for 0 E OK'

If the power function E8CP ( X) is continuous and if a < /3, (1) cannot hold
when the sets °Hand OK are contiguous. This mathematical difficulty
corresponds in part to the fact that the division of the parameter values 0
into the classes °Hand OK for which the two different decisions are
appropriate is frequently not sharp . Between the values for which one or the
other of the decisions is clearly correct there may lie others for which the
relative advantages and disadvantages of acceptance and rejection are
approximately in balance. Accordingly we shall assume that °is partitioned
into three sets

°= 0H + Of + OK'

504



9.1] TESTS WITH GUARANTEED POWER 505

of which fl 1 designates the indifference zone, and fl K the class of parameter
values differing so widely from those postulated by the hypothesis that false
acceptance of H is a serious error, which should occur with probability at
most 1 - 13.

To see how the sample size is determined in this situation, suppose that
Xl' X2 , . . . constitute the sequence of available random variables, and for a
moment let n be fixed and let X = (Xl" ' " Xn). In the usual applicational
situations (for a more precise statement, see Problem 1) there exists a test lJ!n
which maximizes

(2) infEIIlJ!(X)
UK

among all level-a tests based on X. Let I3n = infoKEIIlJ!n(X), and suppose
that for sufficiently large n there exists a test satisfying (1). [Conditions
under which this is the case are given by Berger (1951) and Kraft (1955).]
The desired sample size, which is the smallest value of n for which I3n ~ 13,
is then obtained by trail and error. This requires the ability of determining
for each fixed n the test that maximizes (2) subject to

(3) EIIlJ!( X) ::s; a for 8 E flu '

A method for determining a test with this maximin property (of maxi­
mizing the minimum power over fl K ) is obtained by generalizing Theorem 7
of Chapter 3. It will be convenient in this discussion to make a change of
notation, and to denote by wand w' the subsets of fl previously denoted by
flu and fl K • Let fJ' = {PII , 8 E w U w'} be a flbnily of probability distribu­
tions over a sample space (~, .JII) with densities Po = dPII/dp. with respect
to a a-finite measure p" and suppose that the densities Pe(x) considered as
functions of the two variables (x, 8) are measurable (.JIIx PJ) and ( .JII x PJ'),
where PJ and PJ' are given a-fields over wand e', Under these assumptions,
the following theorem gives conditions under which a solution of a suitable
Bayes problem provides a test with the required properties.

Theorem 1. For any distributions A and A' overPJ and PJ', let qJA. A' be
the most powerful test for testing

h(x) = fPII(X) dA(8)
w

at level a against

h'(x) = {plI(X) dN(8)
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and let 13A. A' be its power against the alternative h', If there exist A and A'
such that

sup E//CPA. A'( X) ;S; a,

(4)
w

inf E//CPA. A'( X) = 13A. A"
w'

then:
(i) CPA . N maximizes infw,E//cp(X) amongall level-a tests of the hypothe­

sis H: fJ E wand is the unique test with this property if it is the unique most
powerful level-a test for testing h against h',

(ii) The pair of distributions A, A' is least favorable in the sense that for
any otherpair P, P' we have

13A. A' ;s; 13•.• ,.

Proof. (i): If cp* is any other level-a test of H, it is also of level a for
testing the simply hypothesis that the density of X is h, and the power of
cp* against h' therefore cannot exceed 13A.N' It follows that

in!E//cp*(X);s; f E//cp*(X) dA'(fJ);s; 13A.A' = in!E//CPA.A'(X),
W w ' W

and the second inequality is strict if CPA. A' is unique.
(ii): Let P, P' be any other distributions over (w, fA) and (w', fA'), and let

g(x) = f p//(x) dp(fJ),
w

g'(x) = {.PII(x) dp'( fJ).

Since both CPA . Nand CP•.•' are level-a tests of the hypothesis that g(x) is the
density of X, it follows that

13•.• , ~ jCPA .A'(X)g'(x) dp.(x) ~ i~,fE//CPA .A'(X) = 13A .N·

Corollary 1. Let A, A' be two probability distributions and C a constant
such that

1 if f,P//(x)dA'(fJ) > Cfp//(x)dA(fJ)
w w

(5) CPA.A'(X) = {Y if f p//(x) dA'(fJ) = Cf p//(x) dA(fJ)
w' w

0 if !.p//(x) dA'(fJ) < Cf p//(x) dA(fJ)
w w
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is a size-a test for testing that the density of X is f",Pe(x) dA( 0) and such that

(6)

where

A(wo) = A'(wo) = 1,

Wo = {0: 0 E wand EeCPA. A'( X) = sup Ee'CPA. A'( X)}
(J'E'"

Wo = {O : 0 E w' and EeCPA A'( X) = inf Ee'CPA A'( X)} .
. O'Ew"

Then the conclusions of Theorem 1 hold.

Proof. If h, h', and {3A. A' are defined as in Theorem 1, the assumptions
imply that CPA. A' is a most powerful level-a test for testing h against h', that

SUpEeCPA.A'(X) = f EeCPA.A'(X) dA(O) = a,
'" '"

and that

in!EeCPA ,A'(X) = f EeCPA.A'(X) dA'(O) = {3A .A'·
'" w'

The condition (4) is thus satisfied and Theorem 1 applies.

Suppose that the sets nH' nI' and nK are defined in terms of a
nonnegative function d, which is a measure of the distance of 0 from H, by

nH = {O: d(O) = o},

nK = {O:d(O)~~} .

nl = {O :O < d(O) < ~} ,

Suppose also that the power function of any test is continuous in 0. In
the limit as ~ = 0, there is no indifference zone. Then nK becomes the set
{O : d(O) > O}, and the infimum of {3(0) over nK is ~ a for any level-a
test. This infimum is therefore maximized by any test satisfying {3(0) ~ a
for all 0 E nK' that is, by any unbiased test, so that unbiasedness is seen to
be a limiting form of the maximin criterion. A more useful limiting form,
since it will typically lead to a unique test, is given by the following
definition. A test CPo is said to maximize the minimumpowerlocally" if, given

*A different definition of local minimaxity is given by Girl and Kiefer (1964).
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any other test cP, there exists Ao such that

(7) inf /3'1'0(I)) ~ inf /3'1' ( (J )
"'A "'A

for all 0 < A < Ao,

where WA is the set of (J's for which d( (J) ~ A.

2. EXAMPLES

In Chapter 3 it was shown for a family of probability densities depending
on a real parameter (J that a UMP test exists for testing H: (J ~ (Jo against
(J > (Jo provided for all (J < (J' the ratio P9,(X)/P6(X) is a monotone
function of some real-valued statistic . This assumption, although satisfied
for a one-parameter exponential family, is quite restrictive, and a UMP test
of H will in fact exist only rarely. A more general approach is furnished by
the formulation of the preceding section. If the indifference zone is the set of
(J's with 80 < 8 < (J1 ' the problem becomes that of maximizing the mini­
mum power over the class of alternatives w' : (J ~ 81, Under appropriate
assumptions, one would expect the least favorable distributions A and A' of
Theorem 1 to assign probability 1 to the points (Jo and 81, and hence the
maximin test to be given by the rejection region P6

1(X)/P60(X)
> C. The

following lemma gives sufficient conditions for this to be the case.

Lemma 1. Let Xl"' " X; be identically and independently distributed
with probability density f6(x), where (J and x are real-valued, and suppose that
for any 8 < 8' the ratio f6.(x)/f6(x) is a nondecreasing function of x. Then
the level-a test cP of H which maximizes the minimum power over w' is given
by

(8) ~(Xl"" x.J ~ {i if r(xl , , x n ) > C,

if r(xl , ,xJ = C,

if r(xl ,· .. , x n ) < C,

where r(xl, . . . , x n ) = f6\(x I ) •• • f6\(xn)/f60(x1) • •• f60(xn ) and where C and
yare determinedby

(9) E60cp(XI , · · · , Xn ) = a.

Proof. The function cp(x1, ••• , xn ) is nondecreasing in each of its argu­
ments, so that by Lemma 2 of Chapter 3

E6CP( Xl" '" Xn ) s E6,cp( Xl"'" Xn )
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when 8 < 8'. Hence the power function of cp is monotone and cp is a level-a
test. Since cp = CPA. A" where A and A' are the distributions assigning
probability 1 to the points °0 and °1, the condition (4) is satisfied, which
proves the desired result as well as the fact that the pair of distributions
(A, A') is least favorable.

Example 1. Let 8 be a location parameter, so that le(x) = g(x - 8), and
suppose for simplicity that g(x) > 0 for all x. We will show that a necessary and
sufficient condition for Ie(x) to have monotone likelihood ratio in x is that -log g
is convex. The condition of monotone likelihood ratio in x,

g(x-8') g(x'-8')
----:--,..,- < .
g(x - 8) - g(x' - 8)

is equivalent to

for all x < x' , 8 < 8',

logg(x' - 8) + logg(x - 8') ~ logg(x - 8) + logg(x' - 8') .

Since x - 8 = t(x - 8') + (1 - t)(x' - 8) and x' - 8' = (1 - t)(x - 8') +
t(x ' - 8), where t = (x ' - x)/(x' - x + 8' - 8), a sufficient condition for this to
hold is that the function -log g is convex. To see that this condition is also
necessary, let a < b be any real numbers, and let x - 8' = a, x ' - 8 = b, and
x' - 8' = x - 8. Then x - 8 = hx' - 8 + x - 8') = t(a + b), and the condition
of monotone likelihood ratio implies

Hlog g( a) + log g( b)] s log g [Ha + b)] .

Since log g is measurable, this in tum implies that -log g is convex.*

A density g for which -log g is convex is called strongly unimodal. Basic
properties of such densities were obtained by Ibragimov (1956). Strong
unimodality is a special case of total positivity. A density of the form
g( x - 8) which is totally positive of order r is said to be a Polya frequency
function of order r . It follows from Example 1 that g(x - 8) is a Polya
frequency function of order 2 if and only if it is strongly unimodal. [For
further results concerning Polya frequency functions and strongly unimodal
densities, see Karlin (1968), Marshall and Olkin (1979), Huang and Ghosh
(1982), and Loh (1984a, b).]

Two distributions which satisfy the above condition [besides the normal
distribution, for which the resulting densities P8(XI , • •. , x,) form an
exponential family] are the double exponential distribution with

g(x) = ie- ixi

*See Sierpinski (1920).
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and the logistic distribution, whose cumulative distribution function is

1
G(x) = 1 + e-x'

so that the density is g(x) = e- X/(1 + e- x )2.

Example 2. To consider the corresponding problem for a scale parameter, let
/(J(x) = (J-Ih(x/(J) where h is an even function. Without loss of generality one may
then restrict x to be nonnegative, since the absolute values IXII, ..., IXn l form a set
of sufficient statistics for (J. If 1'; = log X; and T/ = log (J, the density of 1'; is

h(eY-~)eY-~ .

By Example 1, if h(x) > 0 for all x ~ 0, a necessary and sufficient condition for
/(J .(x)//(J (x) to be anondecreasingfunction of x for all (J < (J' is that -log{ eYh(eY)]
or equivalently -log h(e") is a convex function of y . An example in which this
holds-in addition to the normal and double-exponential distributions, where the
resulting densities form an exponential family-is the Cauchy distribution with

1 1
h(x)=;I+x2 '

Since the convexity of -log h(y) implies that of -log h(eY), it follows that if h
is an even function and h(x - (J) has monotone likelihood ratio, so does h(x/8).
When h is the normal or double-exponential distribution, this property of h(x/(J)
follows therefore also from Example 1. That monotone likelihood ratio for the
scale-parameter family does not conversely imply the same property for the associ­
ated location parameter family is illustrated by the Cauchy distribution. The
condition is therefore more restrictive for a location than for a scale parameter.

The chief difficulty in the application of Theorem 1 to specific problems
is the necessity of knowing, or at least being able to guess correctly, a pair of
least favorable distributions (A, A'). Guidance for obtaining these distribu­
tions is sometimes provided by invariance considerations. If there exists a
group G of transformations of X such that the induced group Gleaves both
wand w' invariant, the problem is symmetric in the various O's that can be
transformed into each other under G. It then seems plausible that unless A
and A' exhibit the same symmetries, they will make the statistician's task
easier, and hence will not be least favorable.

Example 3. In the problem of paired comparisons considered in Example 7 of
Chapter 6, the observations X; (i = 1, . . . , n) are independent variables taking on
the values 1 and 0 with probabilities Pi and q; = 1 - Pi- The hypothesis H to be
tested specifies the set e : max Pi ~ }. Only alternatives with Pi ~ } for all i are
considered, and as w' we take the subset of those alternatives for which max Pi ~ }
+ 8. One would expect A to assign probability 1 to the point PI = . . . Pn = }, and
A' to assign positive probability only to the n points (PI" ' " Pn) which have n - 1
coordinates equal to } and the remaining coordinate equal to } + 8. Becauseof the
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symmetry with regard to the n variables, it seems plausible that A' should assign
equal probability l in to each of these n points . With these choices, the test epA. A'

rejects when

n (t + 8) x ,L -1- > C.
; -1 2

This is equivalent to
n

LX, > C,
;- 1

which had previously been seen to be UMP invariant for this problem . Since the
critical function epA. A,(Xl " ' " X,,) is nondecreasing in each of its arguments , it
follows from Lemma 2 of Chapter 3 that P, ::;; p; for i = 1, . . . , n implies

Ep\ . ..p.cPA.A'(X., ,, ,, X,,)::;; Ep1. .p~CPA . A , ( Xl' · '" X;,)

and hence the conditions of Theorem 1 are satisfied.

Example 4. Let X = (XI" .. , X,,) be a sample from N( ~, ( 2
) , and consider the

problem of testing H: 0 = 00 against the set of alternatives w' : 0 ::;; 0 1 or 0 ~ O2
(0. < 0 0 < ( 2), This problem remains invariant under the !!:ansformations X: =

X; + c which in the parameter space induce the group G of transformations
f = ~ + c, 0' = a. One would therefore expect the least favorable distribution A
over the line w: - 00 < ~ < 00, 0 = 00' to be invariant under G. Such invariance
implies that A assigns to any interval a measure proportional to the length of the
interval. Hence A cannot be a probability measure and Theorem 1 is not directly
applicable. The difficulty can be avoided by approximating A by a sequence of
probability distributions, in the present case for example by the sequence of normal
distributions N(O, k) , k = 1,2, ... .

In the particular problem under consideration, it happens that there also exist
least favorable distributions A and A', which are true probability distributions and
therefore not invariant. These distributions can be obtained by an examination of
the corresponding one-sided problem in Chapter 3, Section 9, as follows. On w,
where the only variable is ~, the distribution A of ~ is taken as the normal
distribution with an arbitrary mean ~l and with variance (of - oJ )In . Under A' all
probability should be concentrated on the two lines 0 = 0 1 and 0 = O2 in the a, 0)

plane, and we put A' = pNI + qN2 , where N1 is the normal distribution with mean
~l and variance (of - Of )In, while N2 assigns probability 1 to the point ai' ( 2)' A
computation analogous to that carried out in Chapter 3, Section 9, then shows the
acceptance region to be given by

p [ -1 _ 2 n _ 2]
0,,-1

0
exp 20):(x;-x) --22(X-~.)

• 2. 02

q [-1{ 2 2}]+~exp 22 L(Xj-X) + n ( X - ~ I )

[

.,., ] < C,
1 -1 2 n 1

--exp -L(X - x) - -(x - ~lt
00' - 10 2 205 I 2of
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which is equivalent to
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CI s L(x; - X)2 s C2.

[9.3

The probability of this inequality is independent of t and hence CI and C2 can be
determined so that the probability of acceptance is 1 - a when 0 = 00, and is equal
for the two values 0 = 01 and 0 = O2,

It follows from Section 7 of Chapter 3 that there exist p and C which lead to
these values of CI and C2 and that the above test satisfies the conditions of
Corollary 1 with CAlO = CAl, and with wO consisting of the two lines 0 = 01 and
0=02 '

3. COMPARING lWO APPROXIMATE HYPOTHESES

As in Chapter 3, Section 2, let Po '* PI be two distributions possessing
densities Po and PI with respect to a measure p.. Since distributions even at
best are known only approximately, let us assume that the true distributions
are approximately Po or PI in the sense that they lie in one of the families

(10) flJj = {Q: Q = (1 - (j)Pj + (;Gj}, j = 0,1,

with (0' (1 given and the G, arbitrary unknown distributions. We wish to
find the level-a test of the hypothesis H that the true distribution lies in fIJ0'

which maximizes the minimum power over fIJI ' This is the problem consid­
ered in Section 1 with 0 indicating the true distribution, nH = fIJ0' and
nK = fIJI'

The following theorem shows the existence of a pair of least favorable
distributions A and A' satisfying the conditions of Theorem 1, each
assigning probability 1 to a single distribution, A to Qo E flJo and A' to
Ql E fIJI' and exhibits the Qi explicitly.

Theorem 2. Let

PI(X) b
(1 - (o)Po(x) if -~- < ,

I Po(x)
qo(x)={ (l-(O)Pl(X) PI(X) ~ b

b if Po(x) ,

(11)
PI(X)

(1 - (I)PI(X) if -->a,
I Po(x)

qI(X) = {
PI(X)

a(l - (I)PO(X) if ~-- < a.
I Po(x) -
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(i) For all °< f; < 1, there exist unique constants a and b such that qo
and ql are probability densities with respect to ,.,.; the resulting q; are
members of fJ'; (i = 0, 1).

(ii) There exist ~o' ~1 such that for all f; ~ ~; the constants a and b satisfy
a < b and that the resulting qo and ql are distinct.

(iii) If f; ~ ~; for i = 0,1, the families fJ'o and fJ'1 are nonoverlapping and
the pair (qo, ql) is least favorable, so that the maximin test of fJ'o
against fJ'1 rejects when ql(X)/qO(x) is sufficiently large.

Note . Suppose a < b, and let

Then

r( x) = PI( x)
Po(x) ,

ql(x) 1 - (I
r*(x) = -- , and k =--

qo(x) 1 - (0

(12)
{

ka

r*( x) = kr( x)

kb

when r( x) :s a,

when a < r(x) < b,

when b s. r( x) .

The maximin test thus replaces the originalprobability ratio with a censored version .

Proof. The proof will be given under the simplifying assumption that
Po(x) and Pl(X) are positive for all x in the sample space.

(i): For ql to be a probability density, a must satisfy the equation

(13)
1

P1[r(X) > a] + aPo[r(X) ~ a] =--.
1 - f 1

If (13) holds, it is easily checked that ql E 9'1 (Problem 10). To prove
existence and uniqueness of a solution a of (13), let

y(c) = P1[r(X) > c] + cPo[r(X) s c].

Then

(14) y(o) = 1 and y(c) - 00 as c - 00 .

Furthermore (Problem 12)

(15) Y(C+A)-y(C)=Aj Po(x)d,.,.(x)
r(x)~ ('

+ j [c + A - r(x)] Po(x) d,.,.(x).
(' <r(x)~('+.:l
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It follows from (15) that °s y( C+ d) - y( c) ~ d, so that y is continuous
and nondecreasing. Together with (14) this establishes the existence of a
solution. To prove uniqueness, note that

(16) y(C + d) - y(c) ~ df Po(x) dp.(x)
r(x)« '

and that y( c) = 1 for all c for which

(17) Pi[r(x) s c] = ° (i=0,1).

If Co is the supremum of the values for which (17) holds, (16) shows that y
is strictly increasing for c > Co and this proves uniqueness. The proof for b
is exactly analogous (Problem 11).

(ii): As £1 ..... 0, the solution a of (13) tends to co' Analogously, as
£1 ..... 0, b ..... 00 (Problem 11).

(iii): This will follow from the following facts:

(a) When X is distributed according to a distribution in flJo' the
statistic r*(X) is stochastically largest when the distribution of X is

Qo'
(b) When X is distributed according to a distribution in fIJI' r*(X) is

stochastically smallest for Ql'
(c) r*( X) is stochastically larger when the distribution of X is Ql than

when it is Qo'

These statements are summarized in the inequalities

(18)

Qo[r*(X) < t] ~ Qo[r*(X) < t] ~ Ql[r*(X) < t] ~ Qifr*(X) < t]

for all t and all Q: E fIJi'

From (12), it is seen that (18) is obvious when t ~ ka or t > kb. Suppose
therefore that ak < t s bk, and denote the event r*(X) < t by E. Then
Qo(E) ~ (1 - £o)Po(E) by (10). But r*(x) < t ~ kb implies r(X) < b
and hence Qo(E) = (1 - t:o)Po(E). Thus Qo(E) ~ Qo(E), and analo­
gously Ql(E) .s Q1(E). Finally, the middle inequality of (18) follows from
Corollary 1 of Chapter 3.

If the t: 's are sufficiently small so that Qo .,. Ql' it follows from (a)-(c)
that flJo and fIJI are nonoverlapping.

That (Qo, Qd is least favorable and the associated test !p is maximin now
follows from Theorem 1, since the most powerful test !p for testing Qo
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against Ql is a nondecreasing function of ql(X)/qO(X). This shows that
Eep(X) takes on its sup over 9'0 at Qo and its inf over 9'1 at Ql' and this
completes the proof.

Generalizations of this theorem are given by Huber and Strassen (1973,
1974). See also Rieder (1977) and Bednarski (1984). An optimum permuta­
tion test, with generalizations to the case of unknown location and scale
parameters, is discussed by Lambert (1985).

When the data consist of n identically, independently distributed ran­
dom variables Xl"'" Xn , the neighborhoods (10) may not be appropriate,
since they do not preserve the assumption of independence. If P; has
density

(19) p;(X l,· .. , x n ) = /;(xl)· .. f;(xn ) (i=O,I),

a more appropriate model approximating (19) may then assign to X =
(Xl" '" Xn ) the family 9';* of distributions according to which the Xj are
independently distributed, each with distribution

(20) (1 - £;)F;(x) + £;G;(x),

where F; has density /; and where as before the G; are arbitrary.

Corollary 2. Suppose qo and ql defined by (11) with x = xj satisfy (18)
and hence are a least favorable pair for testing 9'0 against 9'1 on the basis of
the single observation ~. Then the pair of distributions with densities
q;(x1). . . q;(xn ) (i = 0,1) is least favorable for testing 9'6 against 9'i, so
that the maximin test is given by

(21) ep(Xl" ' " xn ) = (~ if fI [ql(X) ]
j=l qo(x) ~ c.

Proof. By assumption, the random variables lj = q1(Xj)/qo(X) are
stochastically increasing as one moves successively from Q& E 9'0 to Qo to
Ql to Qi E 9'1' The same is then true of any function !J.'(Yl,· .. , Yn ) which
is nondecreasing in each of its arguments by Lemma 1 of Chapter 3, and
hence of ep defined by (21). The proof now follows from Theorem 2.

Instead of the problem of testing Po against PI' consider now the
situation of Lemma 1 where H : 8 s 80 is to be tested against 8 ~ 81

(80 < 81) on the basis of n independent observations Xj' each distributed
according to a distribution F8(xj ) whose density f8(x) is assumed to have
monotone likelihood ratio in Xj'
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A robust version of this problem is obtained by replacing Fe with

(22) (1 - ()Fe(x) + (G(xj ) , j = 1, . . . , n,

where e is given and for each 8 the distribution G is arbitrary . Let fiJr
and fiJi· be the classes of distributions (22) with 8 :S: 80 and 8 ~ 81
respectively; and let fiJt and fiJi be defined as in Corollary 2 with fe in
place of /; . Then the maximin test (21) of fiJt against fiJi retains 'this
property for testing fiJ6* against fiJi·.

This is proved in the same way as Corollary 2, using the additional fact
that if Fe' is stochastically larger than Fe, then (1 - ()Fe, + t:G is stochasti­
cally larger than (1 - t:)Fe + t:G.

4. MAXIMIN TESTS AND INVARIANCE

When the problem of testing 0H against OK remains invariant under a
certain group of transformations, it seems reasonable to expect the existence
of an invariant pair of least favorable distributions (or at least of sequences
of distributions which in some sense are least favorable and invariant in the
limit), and hence also of a maximin test which is invariant. This suggests the
possibility of bypassing the somewhat cumbersome approach of the preced­
ing sections. If it could be proved that for an invariant problem there always
exists an invariant test that maximizes the minimum power over OK'
attention could be restricted to invariant tests; in particular, a UMP
invariant test would then automatically have the desired maximin property
(although it would not necessarily be admissible). These speculations turn
out to be correct for an important class of problems, although unfortunately
not in general. To find out under what conditions they hold, it is convenient
first to separate out the statistical aspects of the problem from the group­
theoretic ones by means of the following lemma.

Lemma 2. Let fiJ= {Pe, 8 EO} be a dominated family of distributions
on (9:, .JJI), and let G be a group of transformations of (9:, .JJI), such that the
induced group Gleaves the two subsets 0H and OK of °invariant. Suppose
that for any critical function cP there exists an (almost) invariant critical
function 1/J satisfying

(23) iWEgeCP(X) :s: Ee1/J(X) :S: S"!Egecp(X)

for all 8 E 0. Then if there exists a level-a test CPo maximizing infoKEeCP(X),
there also exists an (almost) invariant test with thisproperty.
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Proof. Let infoKEI/CPo(X) = P, and let 1/10 be an (almost) invariant test
such that (23) holds with cP = CPo, 1/1 = 1/10' Then

and

EI/1/Io(X) s s~EgI/CPo(X) s a
G

EI/1/Io(X) ~ ig.fEgI/CPo(X) ~ P
G

for all () E nH

for all () E nK ,

(24)

as was to be proved.

To determine conditions under which there exists an invariant or almost
invariant test 1/1 satisfying (23), consider first the simplest case that G is a
finite group, G = {gl" ' " gN} say. If 1/1 is then defined by

1 !II

1/I(x) = N L cp(g;x),
;-1

it is clear that 1/1 is again a critical function , and that it is invariant under G.
It also satisfies (23), since El/cp(gX) = Egl/cp( X) so that E1/1/I( X) is the
average of a number of terms of which the first and last member of (23) are
the minimum and maximum respectively.

An illustration of the finite case is furnished by Example 3. Here the
problem remains invariant under the n! permutations of the variables
( Xl' ... , Xn ) . Lemma 2 is applicable and shows that there exists an in­
variant test maximizing infoKEl/cp( X). Thus in particular the UMP invariant
test obtained in Example 7 of Chapter 6 has this maximin property and
therefore constitutes a solution of the problem .

The definition (24) suggests the possibility of obtaining t/J(x) also in
other cases by averaging the values of cp(gx) with respect to a suitable
probability distribution over the group G. To see what conditions would be
required of this distribution, let P4 be a a-field of subsets of G and v a
probability distribution over (G, P4). Disregarding measurability problems
for the moment, let t/J be defined by

(25) 1/I(x) = fcp(gx) dv(g) .

Then 0 .s 1/1 ~ 1, and (23) is seen to hold by applying Fubini's theorem
(Theorem 3 of Chapter 2) to the integral of 1/1 with respect to the distribu­
tion PI/' For any go E G,

1/I(gox) = fcp(ggox) dv(g) = fcp(hx) dv*(h)
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where h = ggo and where v* is the measure defined by

v*(B) = v(Bgo1
) for all B E fA,

into which v is transformed by the transformation h = ggo' Thus t/J will
have the desired invariance property, t/J(gox) = t/J(x) for all go E G, if v is
right invariant, that is, if it satisfies

(26) v(Bg) = v(B) for all B E fA, g E G.

The measurability assumptions required for the above argument are :
(i) For any A Ed, the set of pairs (x , g) with gx E A is measurable
(d X fA). This insures that the function t/J defined by (25) is again measur­
able. (ii) For any B E fA, g E G, the set Bg belongs to fA.

Example 5. If G is a finite group with elements gl " ' " gN' let 91 be the class of
all subsets of G and II the probability measure assigning probability ljN to each of
the N elements . The condition (26) is then satisfied, and the definition (25) of '" in
this case reduces to (24).

Example 6. Consider the group G of orthogonal n X n matrices I', with the
group product f l r2 defined as the corresponding matrix product. Each matrix can
be interpreted as the point in n2-dimensional Euclidean space whose coordinates are
the n2 elements of the matrix. The group then defines a subset of this space; the
Borel subsets of G will be taken as the a-field 91. To prove the existence of a right
invariant probability measure over (G, 91).* we shall define a random orthogonal
matrix whose probability distribution satisfies (26) and is therefore the required
measure . With any nonsingular matrix x = (x i j ) , associate the orthogonal matrix
Y = f(x) obtained by applying the following Gram-Schmidt orthogonalization
process to the n row vectors Xi = (Xii' • . . ' x i n ) of x : YI is the unit vector in the
direction of XI ; Y2 the unit vector in the plane spanned by Xl and X 2' which is
orthogonal to YI and forms an acute angle with X 2 ; and so on. Let Y = ( Yij) be the
matrix whose i th row is Yi'

Suppose now that the variables Xij (i, j = 1, . . . • n) are independently distrib­
uted as N(O, I), let X denote the random matrix (X;j)' and let Y = f(X). To show
that the distribution of the random orthogonal matrix Y satisfies (26), consider any
fixed orthogonal matrix T and any fixed set B E 91. Then P{ Y E Bf} = P{ Yf' E

B} and from the definition of f it is seen that Yf ' = f( Xr'). Since the n2 elements
of the matrix Xf' have the same joint distribution as those of the matrix X. the
matrices f( Xf ') and f( X) also have the same distribution, as was to be proved.

Examples 5 and 6 are sufficient for the applications to be made here.
General conditions for the existence of an invariant probability measure, of
which these examples are simple special cases, are given in the theory of
Haar measure. [This is treated, for example, in the books by Halmos (1974),

*A more detailed discussion of this invariant measure is given by James (1954).
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Loomis (1953), and Nachbin (1965). For a discussion in a statistical setting,
see Eaton (1983), Farrell (1985), and for a more elementary treatment
Berger (1985).]

5. THE HUNT-STEINTHEOREM

Invariant measures exist (and are essentially unique) for a large class of
groups, but unfortunately they are frequently not finite and hence cannot be
taken to be probability measures. The situation is similar and related to that
of the nonexistence of a least favorable pair of distributions in Theorem 1.
There it is usually possible to overcome the difficulty by considering instead
a sequence of distributions, which has the desired property in the limit.
Analogously we shall now generalize the construction of 1/J as an average
with respect to a right-invariant probability distribution, by considering a
sequence of distributions over G which are approximately right-invariant
for n sufficiently large.

Let 9' = {Pe, (J EO} be a family of distributions over a Euclidean space
(q", SII) dominated by a a-finite measure p., and let G be a group of
transformations of (q", SII) such that the induced group Gleaves 0 in­
variant.

Theorem 3. (Hunt-Stein .) Let f!J be a a-fieldof subsets of G such thatfor
any A E SII the set of pairs (x, g) with gx E A is in SIIx 8d and for any
B E f!J and g E G the set Bg is in f!J. Suppose that there exists a sequence of
probability distributions v" over (G, f!J) which is asymptotically right-invariant
in the sense that for any g E G, B E f!J

(27) lim Iv,,(Bg) - v,,(B) 1=0.
"-00

Then given any critical function fP, there exists a critical function 1/J which is
almost invariant and satisfies (23).

Proof. Let

1/J,,(x) = jfP(gx) dv,,(g),

which as before is measurable and between 0 and 1. By the weak compact­
ness theorem (Theorem 3 of the Appendix) there exists a subsequence {1/J,,}
and a measurable function 1/J between 0 and 1 satisfying ,

lim j1/J"iPdp. = j1/Jpdp.
/ .... 00
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for all p,-integrable functions p, so that in particular

lim E91/1n(X) = E91/1(X)
i-+ 00 '

for all (J E U. By Fubini's theorem

E91/1n;(X) = j[E9CP(gX)] d"n;(g) = j Eg9CP(X) d"n;(g)

so that

i~fEg9CP(X) s E91/1ni(X) s S~pEg9CP(X),

and 1/1 satisfies (23).
In order to prove that 1/1 is almost invariant we shall show below that for

all x and g,

(28) 1/In(gx) - 1/In(x) .... O., .

k= O, .. . ,m,

Let IA(x) denote the indicator function of a set A E SII. Using the fact that
IgA(gx) = IA(x), we see that (28) implies

j 1/l (x ) dP9(X) = .lim j1/lni(x)IA(x) dP9(x)
A '-00

= ;1!.~ j 1/In;(gx ) IgA gx) dP9(x)

= j 1/1 (x )IgA(x) dPg9(x) =~1/1 (gx) dP9(x)

and hence 1/1 ( gx) = 1/1 (x) (a.e. 9i'), as was to be proved.
To prove (28), consider any fixed x and any integer m, and let G be

partitioned into the mutually exclusive sets

Bk={hEG:ak<cp(hx)~ak+ ~},

where ak = (k - l)/m. In particular, Bo is the set {h E G: cp(hx) = O} . It
is seen from the definition of the sets Bk that

m m m( 1)L ak"ni(Bk)~ L 1. cp(hx) d"n;(h) s L ak + - "n;(Bk)
k-O k-O Bk k-O m

m 1
~ L ak"n(Bk) + -

k-O' m
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1

m mil
L 1. _?(hgx) d"n,(h) - L ak"n;(Bkg- 1

) ~- ,
k-O BAg k-O m

from which it follows that

I~n,(gx) - ~n;(x) Is Llakl·I"n;(Bkg- 1
) - "n;(Bk)I+ ~ .

By (27) the first term of the right-hand side tends to zero as i tends to
infinity, and this completes the proof.

When there exist a right-invariant measure " over G and a sequence of
subsets G; of G with Gn~ Gn+ 1, U Gn = G, and ,,(Gn) = en < 00, it is
suggestive to take for the probability measures "n of Theorem 3 the
measures "Ien truncated on Gn• This leads to the desired result in the
example below. On the other hand, there are cases in which there exists such
a sequence of subsets of G; but no invariant test satisfying (23) and hence
no sequence "n satisfying (27).

Example 7. Let x = (Xl " •• , X n ) , ~ be the class of Borel sets in n-space, and
G the group of translations (Xl + g, ... , Xn + g), - 00 < g < 00. The elements of
G can be represented by the real numbers, and the group product gg' is then the
sum g + s'. If £J is the class of Borel sets on the real line, the measurability
assumptions of Theorem 3 are satisfied. Let II be Lebesguemeasure, which is clearly
invariant under G, and define lin to be the uniform distribution on the interval
I ( - n, n) = {g : - n s g ~ n}. Then for all B E £J, g E G,

1 I~IJd B) - lin ( Bg) I= -I II [ B n I( - n , n)] - II [ B n I( - n - g, n - g)] 1~ -2 '
2n n

so that (27) is satisfied.
This argument also covers the group of scale transformations (axl" ' " axn),

o < a < 00 , which can be transformed into the translation group by taking loga­
rithms.

When applying the Hunt-Stein theorem to obtain invariant minimax
tests, it is frequently convenient to carry out the calculation in steps, as was
done in Theorem 7 of Chapter 6. Suppose that the problem remains
invariant under two groups D and E, and denote by y = s(x) a maximal
invariant with respect to D and by E* the group defined in Theorem 2,
Chapter 6, which E induces in y-space. If D and E* satisfy the conditions
of the Hunt-Stein theorem, it follows first that there exists a maximin test
depending only on y = s(x), and then that there exists a maximin test
depending only on a maximal invariant z = t(y) under E* .
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Example 8. Consider a univariate linear hypothesis in the canonical form in
which YI , , y" are independently distributed as N( 1/;. a2 ) , where it is given that
1/s+ I = = 1/n = 0, and where the hypothesis to be tested is 1/1 = .. . = 1/r = O.
It was shown in Section 1 of Chapter 7 that this problem remains invariant under
certain groups of transformations and that with respect to these groups there exists a
UMP invariant test. The groups involved are the group of orthogonal transforma­
tions, translation groups of the kind considered in Example 7, and a group of scale
changes. Since each of these satisfies the assumptions of the Hunt-Stein theorem,
and since they leave invariant the problem of maximizing the minimum power over
the set of alternatives

(29)
r 2
~!!!- .,,2c: 2 ~ 't'l
i-I a

(IfI > 0),

it follows that the UMP invariant test of Chapter 7 is also the solution of this
maximin problem. It is also seen slightly more generally that the test which is UMP
invariant under the same groups for testing

r 2
~!!!- .,,2c: 2 s 't' o
i-I a

(Problem 4 of Chapter 7) maximizes the minimum power over the alternatives (29)
for Ifo < Ifl'

Example 9. (Stein.) Let G be the group of all nonsingular linear transforma­
tions of p-space. That for p > 1 this does not satisfy the conditions of Theorem 3 is
shown by the following problem, which is invariant under G but for which the UMP
invariant test does not maximize the minimum power. Generalizing Example 1 of
Chapter 6, let X = (XI '" . , ~), Y = (Y1, .. • , l'e) be independently distributed
according to p-variate normal distributions witn zero means and nonsingular
covariance matrices E(X;~) = ai i and E(Y;lJ) = Aai j , and let H : A .s Ao be
tested against A ~ AI (Ao < AI)' the aij being unknown.

This problem remains invariant if the two vectors are subjected to any common
nonsingular transformation, and since with probability 1 this group is transitive over
the sample space, the UMP invariant test is trivially cp(x, y) == a. The maximin
power against the alternatives A ~ AI that can be achieved by invariant tests is
therefore a . On the other hand, the test with rejection region Y?/ Xf > C has a
strictly increasing power function fJ( A),whose minimum over the set of alternatives
A ~ AI is fJ(AI) > fJ(Ao) = a.

It is a remarkable feature of Theorem 3 that its assumptions concern only
the group G and not the distributions PfJ •* When these assumptions hold for
a certain G it follows from (23) as in the proof of Lemma 2 that for any

*These assumptions are essentially equivalent to the condition that the group G is
amenable . Amenability and its relationship to the Hunt-Stein theorem are discussed by Bondar
and Milnes (1982) and (with a different terminology) by Stone and von Randow (1968).
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testing problem which remains invariant under G and possesses a UMP
invariant test, this test maximizes the minimum power over any invariant
class of alternatives. Suppose conversely that a UMP invariant test under G
has been shown in a particular problem not to maximize the minimum
power, as was the case for the group of linear transformations in Example 9.
Then the assumptions of Theorem 3 cannot be satisfied. However, this does
not rule out the possibility that for another problem remaining invariant
under G, the UMP invariant test may maximize the minimum power.
Whether or not it does is no longer a property of the group alone but will in
general depend also on the particular distributions.

Consider in particular the problem of testing H: ~1 = .. . = ~p = 0 on
the basis of a sample (Xa1, •• • , Xap )' a = 1, .. . , n, from a p-variate normal
distribution with mean E(XaJ = ~i and common covariance matrix (a ij) =
(a ij) - 1. This was seen in Section 3 of Chapter 8 to be invariant under a
number of groups, including that of all nonsingular linear transformations
of p-space, and a UMP invariant test was found to exist. An invariant class
of alternatives under these groups is

(30)
~~ aij~i~j .1,2
'--'-- 2 ~ 'rl 'a

Here Theorem 3 is not applicable, and the question whether the T 2-test
of H : 0/ = 0 maximizes the minimum power over the alternatives

(31) LLaij~i~j= o/i
[and hence a fortiori over the alternatives (30)] presents formidable difficul­
ties. The minimax property was proved for the case p = 2, n = 3 by Giri,
Kiefer , and Stein (1963), for the case p = 2, n = 4 by Linnik, Pliss, and
Salaevskii (1968), and for p = 2 and all n ~ 3 by Salaevskii (1971). The
proof is effected by first reducing the problem through invariance under the
group G1 of Example 11 of Chapter 6, to which Theorem 3 is applicable,
and then applying Theorem 1 to the reduced problem. It is a consequence of
this approach that it also establishes the admissibility of T 2 as a test of H
against the alternatives (31). In view of the inadmissibility results for point
estimation when p ~ 3 (see TPE, Sections 4.5 and 4.6), it seems unlikely
that T 2 is admissible for p ~ 3, and hence that the same method can be
used to prove the minimax property in this situation.

The problem becomes much easier when the minimax property is consid­
ered against local or distant alternatives rather than against (31). Precise
definitions and proofs of the fact that T 2 possesses these properties for all p
and n are provided by Giri and Kiefer (1964) and in the references given in
Chapter 8, Section 3.
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The theory of this and the preceding section can be extended to con­
fidence sets if the accuracy of a confidence set at level 1 - a is assessed by
its volume or some other appropriate measure of its size. Suppose that the
distribution of X depends on the parameters 0 to be estimated and on
nuisance parameters ~, and that p. is a a-finite measure over the parameter
set CAl = {O : (0, ~) E {2}, with CAl assumed to be independent of ~. Then the
confidence sets S( X) for 0 are minimax with respect to p. at level 1 - a if
they minimize

supEII."p.[S(X)]

among all confidence sets at the given level.
The problem of minimizing Ep.[S( X)] is related to that of minimizing

the probability of covering false values (the criterion for accuracy used so
far) by the relation (Problem 26)

(32) Ello ,"p.[S(X)] = £.,tJoPllo,"[O E S(X)] dp.(O),

which holds provided p. assigns measure zero to the set {O = 0o}. (For the
special case that 0 is real-valued and p. Lebesgue measure, see Problem 29
of Chapter 5.)

Suppose now that the problem of estimating 0 is invariant under a group
G in the sense of Chapter 6, Section 11 and that p. satisfies the invariance
condition

(33) p. [S(gx)] = p. [S(x)] .

If uniformly most accurate equivariant confidence sets exist, they minimize
(32) among all equivariant confidence sets at the given level, and one may
hope that under the assumptions of the Hunt-Stein theorem, they will also
be minimax with respect to p. among the class of all (not necessarily
equivariant) confidence sets at the given level. Such a result does hold and
can be used to show for example that the most accurate equivariant
confidence sets of Examples 17 and 18 of Chapter 6 minimize their
maximum expected Lebesgue measure . A more general class of examples is
provided by the confidence intervals derived from the UMP invariant tests
of univariate linear hypotheses such as the confidence spheres for 0; = p. + a j

or for a; given in Section 5 of Chapter 7.
Minimax confidence sets S( x) are not necessarily admissible; that is,

there may exist sets S'(x) having the same confidence level but such that

EII ."p.[S'(X)] s EII ."p.[S(X)] for all 0, {}

with strict inequality holding for at least some (0, ~).
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Example 10. Let X; (i = 1, ... , s) be independently normally distributed with
mean E( X;) = 8; and variance 1, and let G be the group generated by translations
X; + c, (i = 1, .. . ,s) and orthogonal transformations of (XI "'" Xs ) ' (G is the
Euclidean group of rigid motions in s-space.) A slight generalization of Example 17
of Chapter 6 shows the confidence sets

(34) L (8; - X;)2 s c

to be uniformly most accurate equivariant. The volume /L[S(X») of any confidence
set S(X) remains invariant under the transformations g E G, and it follows from
the results of Problems 30 and 31 and Examples 7 and 8 that the confidence sets
(34) minimize the maximum expected volume. However, very surprisingly, they are
not admissible unless s = 1 or 2. This result, which will not be proved here, is
closely related to the inadmissibility of XI" ' " Xs as a point estimator of (81, .. . , 8s )

for a wide variety of loss functions. The work on point estimation, which is
discussed in TPE, Sections 4.5 and 4.6, for squared error loss, provides an easier
access to these ideas than the present setting. A convenient entry into the literature
on admissibility of confidence sets is Hwang and Casella (1982).

The inadmissibility of the confidence sets (34) is particularly surprising in that
the associated UMP invariant tests of the hypotheses H: 8; = 8; (i = 1, .. . , s) are
admissible (Problems 28, 29). 0

6. MOST STRINGENT TESTS

One of the practical difficulties in the consideration of tests that maximize
the minimum power over a class 0 K of alternatives is the determination of
an appropriate OK' If no information is available on which to base the
choice of this set and if a natural definition is not imposed by invariance
arguments, a frequently reasonable definition can be given in terms of the
power that can be achieved against the various alternatives. The envelope
power function P: was defined in Chapter 6, Problem 15, by

/30*( 8) = sup P", (8),

where P", denotes the power of a test q> and where the supremum is taken
over all level-a tests of H. Thus /30*( 8) is the maximum power that can be
attained at level a against the alternative 8. (That it can be attained follows
under mild restrictions from Theorem 3 of the Appendix.) If

St.* = {8: /3:(8) = ~}.

then of two alternatives 81 E St.~, 82 E St.~, 81 can be considered closer to
H, equidistant, or further away than 82 as ~1 is <, =, or > ~2'

The idea of measuring the distance of an alternative from H in terms of
the available information has been encountered before. If for example
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Xl' . . . ' X; is a sample from N(t a 2), the problem of testing H: ~ ~ 0 was
discussed (Chapter 5, Section 2) both when the alternatives ~ are measured
in absolute units and when they are measured in a-units. The latter
possibility corresponds to the present proposal, since it follows from invari­
ance considerations (Problem 15 of Chapter 6) that 13:(~, a) is constant on
the lines ~/a = constant.

Fixing a value of !!:. and taking as nK the class of alternatives 0 for which
13:(0) ~ !!:., one can determine the test that maximizes the Ininimum power
over nK . Another possibility, which eliIninates the need of selecting a value
of !!:., is to consider for any test !P the difference 13:(0) - 13rp(0). This
difference measures the amount by which the actual power 13rp( 0) falls short
of the maximum power attainable. A test that minimizes

(35) sup [13:( 0) - 13rp( 0)]
O-w

is said to be most stringent. Thus a test is most stringent if it Ininimizes its
maximum shortcoIning.

Let !P~ be a test that maximizes the minimum power over S~*, and hence
minimizes the maximum difference between 13:(0) and 13rp(O) over S~*.If!p~

happens to be independent of !!:., it is most stringent. This remark makes it
possible to apply the results of the preceding sections to the deterInination
of most stringent tests. Suppose that the problem of testing H: 0 E w
against the alternatives 0 E n - w remains invariant under a group G, that
there exists a UMP almost invariant test !Po with respect to G, and that the
assumptions of Theorem 3 hold. Since 13:(0) and hence the set Sl~ is
invariant under G (Problem 15 of Chapter 6), it follows that !Po maximizes
the Ininimum power over S~* for each !!:. , and !Po is therefore most stringent.

As an example of this method consider the problem of testing
H: P» . . . , Pn ~ t against the alternative K : Pi > t for all i, where Pi is
the probability of success in the ith trial of a sequence of n independent
trials. If Xi is 1 or 0 as the ith trial is a success or failure, then the problem
remains invariant under permutations of the X's, and the UMP invariant
test rejects (Example 7 of Chapter 6) when ~Xi > C. It now follows from
the remarks above that this test is also most stringent.

Another illustration is furnished by the general univariate linear hypothe­
sis. Here it follows from the discussion in Example 8 that the standard test
for testing H: '1'11 = . . . = 1/r = 0 or H' :E~_l1/T/a2 s o/~ is most strin­
gent .

When the invariance approach is not applicable, the explicit deterInina­
tion of most stringent tests typically is difficult. The following is a class of
problems for which they are easily obtained by a direct approach. Let the
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distributions of X constitute a one-parameter exponential family, the den­
sity of which is given by (12) of Chapter 3, and consider the hypothesis
H: () = (}o' Then according as () > (}o or () < (}o, the envelope power 13:( ())
is the power of the UMP one-sided test for testing H against () > (}o or
() < (}o' Suppose that there exists a two-sided test CPo given by (3) of Chapter
4, such that

(36) sup [13:((}) - 13qoo((})] = sup [13:((}) - 13qoo((})] ,
8<80 8>80

and that the supremum is attained on both sides, say at points (}1 < (}o < (}2'

If 13qoo( ();) = 13;, i = 1,2, an application of the fundamental lemma [Theorem
5(iii) of Chapter 3] to the three points (}1' (}2' (}o shows that among all tests cP
with 13qo«(}I) ~ 131 and 13./(}2) ~ 132, only CPo satisfies 13qo«(}o) s a. For any
other level-a test, therefore, either 13qo( (}1) < 131 or 13qo( (}2) < 132' and it
follows that CPo is the unique most stringent test. The existence of a test
satisfying (36) can be proved by a continuity consideration [with respect to
variation of the constants C; and y; which define the boundary of the test
(3) of Chapter 4] from the fact that for the UMP one-sided test against the
alternatives () > (}o the right-hand side of (36) is zero and the left-hand side
positive, while the situation is reversed for the other one-sided test.

7. PROBLEMS

Section 1

1. Existence of maximin tests. Let (.¥, .91) be a Euclidean sample space, and let
the distributions Pe, 8 E G, be dominated by a a-finite measure over (.¥, .91).
For any mutually exclusive subsets GH , GK of G there exists a level-a test
maximizing (2).
[Let p = sup[infoKEecp( X»), where the supremum is taken over all level-a tests
of H : 8 E GH • Let CPn be a sequence of level-a tests such that infoKEeCPn (X)
tends to p. If CPn is a subsequence and cP a test (guaranteed by Theorem 3 of
the Appendix) such that EeCPn(X) tends to Eecp(X) for all 8 E G, then cP is a
level-a test and infoKEecp(X)'= p.)

2. Locally most powerful tests. Let d be a measure of the distance of an
alternative 8 from a given hypothesis H. A level-a test CPo is said to be locally
most powerful (LMP) if, given any other level-a test cP , there exists A such that

(37) P"'o( 8) ~ P",( 8) for all 8 with 0 < d(8) < A.

Suppose that 8 is real-valued and that the power function of every test is
continuously differentiable at 80 ,
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(i) If there exists a unique level-a test CPo of H : (J = (Jo maximizing P; «(Jo),
then CPo is the unique LMP level-a test of H against (J > (Jo for
d«(J) ... (J - (Jo .

(ii) To see that (i) is not correct without the uniqueness assumption, let X
take on the values 0 and 1 with probabilities Po(O) = t - (J3, Po(l) ...
t + (J3, - t < (J3 < t, and consider testing H: (J = 0 against K : () > O.
Then every test cp of size a maximizes P;(O), but not every such test is
LMP. [Kallenberg et al. (1984).]

(iii) The following- is another counterexample to (i) without uniqueness, in
which in fact no LMP test exists. Let X take on the values 0,1 ,2 with
probabilities

Po ( x) = a + ([ () + () 2Sin(i)]
Po(O) = 1 - po(l) - Po(2) ,

for x = 1,2,

where -1 S () s 1 and ( is a sufficientlysmall number. Then a test cp at
level a maximizes /3'(0) provided

cp(l) + cp(2) = 1;

but no LMP test exists.
(iv) A unique LMP test maximizes the minimum power locally provided its

power function is bounded away from a for every set of alternatives
which is bounded away from H.

(v) Let Xl "'" Xn be a sample from a Cauchy distribution with unknown
location parameter (J, so that the joint density of the X's is 'l'T-

nn 7_dl
+ (Xi - (J)2r 1. The LMP test for testing (J = 0 against (J > 0 at level
a < t is not unbiased and hence does not maximize the minimum power
locally.

[(iii): The unique most powerful test against (J is

{
cp(l)
cp(2) = 1 if Sin(~ ) ~ sin( ~ ) ,

and each of these inequalities holds at values of (J arbitrarily close to O.
(v): There exists M so large that any point with X i ~ M for all i = 1, .. . , n
lies in the acceptance region of the LMP test. Hence the power of the test tends
to zero as (J tends to infinity.]

3. A level-a test CPo is locally unbiased (loc. unb.) if there exists Ao > 0 such that
P<po«(J) ~ a for all (J with 0 < d«(J) < Ao; it is LMP locounb. if it is locounb.

-Due to John Pratt.
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and if, given any other loc. unb. level-a test <P, there exists d such that (37)
holds. Suppose that (J is real-valued and that d( (J) = I(J - (Jol, and that the
power function of every test is twice continuously differentiable at (J = (Jo .

(i) If there exists a unique test <Po of H : (J = (Jo against K: (J ", (Jo which
among allloc. unb. tests maximizes fJ"( (Jo), then <Po is the unique LMP
loc. unb. level-a test of H against K.

(ii) The test of part (i) maximizes the minimum power locally provided its
power function is bounded away from a for every set of alternatives that
is bounded away from H.

[(ii): A necessary condition for a test to be locally minimax is that it is loc.
unb .]

Section 2

4. Let the distribution of X depend on the parameters «(J, ii) =

«(JI' . . . , (Jr' iiI' . .. , iis)' A test of H : (J = (J0 is locally strictly unbiased if for
each ii, (a) fJ",«(Jo, ii) = a, (b) there exists a (J-neighborhood of (J0 in which
fJ",«(J, ii) > a for (J ", (J0.

(i) Suppose that the first and second derivatives

a I a
2

IfJ~( {;) = a(J fJ",( (J, ii) and fJ:;( ii) = a(J a(J fJ",( (J, ii)
I 00 I J 00

exist for all critical functions <p and all ii. Then a necessary and sufficient
condi tion for <p to be locally strictly unbiased is that fJ~ (ii) = 0 for all i
and {;, and that the matrix (fJ:/( ii») is positive definite for all ii.

(ii) A test of H is said to be of type E (type D is s = 0 so that there are no
nuisance parameters) if it is locally strictly unbiased and among all tests
with this property maximizes the determinant I(fJ~j)I.· (This determinant
under the stated conditions turns out to be equal to the Gaussian curvature
of the power surface at (Jo.) Then the test <Po given by (7) of Chapter 7
testing the general linear univariate hypothesis (3) of Chapter 7 is of
type E.

[(ii): With (J = (1JI " .. , 1Jr) and ii = (1Jr+ I' . .. , 1Js' a) , the test <Po ' by Problem
5 of Chapter 7, has the property of maximizing the surface integral

t[fJ",(1J ,a2
) - al dA

"An interesting example of a type-D test is provided by Cohen and Sackrowitz (1975), who
show that the x2-test of Chapter 8. Example 5 has this property.
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among all similar (and hence all locally unbiased) tests where S =

{('IIll" " 'IIr) :E~-I'II7 =la 2
} . Letting p tend to zero and utilizing the condi­

tions

f3~{ 1'i) = 0, [ 'IIi'llj dA =0 for i 4: i. ['117 dA = k{pa),

one finds that CPo maximizes E~_If3~i('II, a2
) among all locally unbiased tests.

Since for any positive definite matrix, J(f3~)1 ~ nf3~, it follows that for any
locally strictly unbiased test cp,

1(f3~j)1 s ne s [E~~ir s [E~~~r= [f3;~r =1(f3~)I·]

5. Let ZI"'" Z; be identically independently distributed according to a con­
tinuous distribution D, of which it is assumed only that it is symmetric about
some (unknown) point. For testing the hypothesis H : D(O) = t, the sign test
maximizes the minimum power against the alternatives K: D(O) s q (q < t).
[A pair of least favorable distributions assign probability 1 respectively to the
distributions F E H, G E K with densities

1 - 2q q )IIXIJ
I{x) = 2{1 - q) ( 1 - q ,

g{x) = (I _ 2q)( _q )Il
XlI

1 - q

where for all x (positive, negative, or zero) [x] denotes the largest integer
~ x.]

6. Let le(x) = 8g(x) + (1 - 8)h(x) with 0 s 8 ~ 1. Then le(x) satisfies
the assumptions of Lemma 1 provided g(x)/h(x) is a nondecreasing function
of x.

7. Let x = (XI""'Xn ) , and let ge(x,~) be a family of probability densities
depending on 8 = (81" • • , 8r ) and the real parameter ~, and jointly measurable
in x and ~. For each 8, let he(~) be a probability density with respect to a
a-finite measure II such that Pe(x) = !ge(x, ~)hea) dll(~) exists. We shall
say that a function I of two arguments U = (uI , ..• , ur ) , v = (VI" ' " Vs) is
nondecreasing in (u , v) if [tu', v)/I(u, v) ~ [t u', v')/I(u, v') for all (u, v)
satisfying u, ~ ut, vj ~ V; (i = 1, .. . , r; j = 1, . .. , s). Then Pe(x) is nonde­
creasing in (x, 8) provided the product ge(x, ~)he(n is (a) nondecreasing in
(x,8) for each fixed ~; (b) nondecreasing in (8,~) for each fixed x ; (c)
nondecreasing in (x,~) for each fixed 8.
[Interpreting ge(x, ~) as the conditional density of x given t and he(~) as the
a priori density of t let p(~) denote the a posteriori density of ~ given x, and
let p'a) be defined analogously with 8' in place of 8. That Pe(x) is nonde-
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creasing in its two arguments is equivalent to

fgo(x"~) p(n d,,(n s fgO,(x',n p'(n d,,(n ·
go(x,n go,(x,n

By (a) it is enough to prove that

f
go(x', n ,

D = (t) [p (~) - p(nJ d,,(~) ~ O.
go x , ..

531

Let L = {~: p'a)/p(~) < I} and S+ = {~ : p'a)/p(~) ~ I} . By (b) the set
S _ lies entirely to the left of S+. It follows from (c) that there exists as b
such that

D= af. [p'(n - p(nJ d,,(~) + bf. [p'(n - p(~)J d,,(n,
s_ s+

and hence that D = (b - a) f. [p '(~) - pa») d"a) ~ 0.)
s+

8. (i) Let X have binomial distribution b( p, n), and consider testing H : p = Po
at level a against the alternatives OK : r/« S }Po/qo or ~ 2po/qo . For
a = .05 determine the smallest sample size for which there exists a test
with power ~.8 against OK if Po = .1, .2, .3, .4, .5.

(ii) Let Xl' " '' Xn be independently distributed as Na, (12). For testing
(1 = 1 at level a = .05, determine the smallest sample size for which there
exists a test with power ~ .9 against the alternatives (12 S } and (12 ~ 2.

[See Problem 5 of Chapter 4.)

9. Double-exponential distribution. Let Xl" ' " X; be a sample from the
double-exponential distribution with density }e-1x - O/. The LMP test for
testing 8 S 0 against 8 > 0 is the sign test, provided the level is of the form

1 m

a=-2:(n)
2n k k'-0

so that the level-a sign test is nonrandomized.
[Let R k (k = 0, .. . , n) be the subset of the sample space in which k of the
X's are positive and n - k are negative. Let 0 S k < I < n, and let Sk' S, be
subsets of Rk, R, such that PO(Sk) = Po(S,) "* O. Then it follows from a
consideration of Po (Sk) and Po (S,) for small 8 that there exists t:. such that
Po(Sd < Po(S,) for 0 < 8 < t:.. Suppose now that the rejection region of a
nonrandomized test of 8 = 0 against 8 > 0 does not consist of the upper tail
of a sign test. Then it can be converted into a sign test of the same size by a
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finite number of steps, each of which consists in replacing an Sk by an S, with
k < I , and each of which therefore increases the power for 8 sufficiently small.]

Section 3

10. If (13) holds, show that ql defined by (11) belongs to 9'1 '

11. Show that there exists a unique constant b for which qo defined by (11) is a
probability density with respect to ~, that the resulting qo belongs to 9'0 ' and
that b --+ 00 as (0 --+ O.

12. Prove the formula (15).

13. Show that if 9'0 '" 9'1 and (0' (I are sufficiently small, then Qo '" QI'

14. Evaluate the test (21) explicitly for the case that Pi is the normal distribution
with mean ~i and known variance a2

, and when ( 0 = (I '

15. Determine whether (21) remains the maximin test if in the model (20) G, is
replaced by Gij'

16. Write out a formal proof of the maximin property outlined in the last
paragraph of Section 3.

Section 4

17. Let XI" ' " Xn be independently normally distributed with means E(X;) = ~i

and variance 1. The test of H : ~I = . . . = ~n = 0 that maximizes the mini­
mum power over w' :r.~i ~ d rejects when r.X; ~ c.
[If the least favorable distribution assigns probability 1 to a single point,
invariance under permutations suggests that this point will be P-I = . . . = P-n
= din].

18.· (i) In the preceding problem determine the maximin test if to ' is replaced
by r.ai~i ~ d, where the a's are given positive constants.

(ii) Solve part (i) with Var(X;) = 1 replaced by Var(X;) = al (known).

[(i): Determine the point (~r,...,~:) in w' for which the MP test of H against
K: (~r, . .. , ~: ) has the smallest power, and show that the MP test of H
against K is a maximin solution.]

Section 5

19. Let X = (XI" . . , Xp ) and Y = (YI , .. . , ~) be independently distributed
according to p-variate normal distributions with zero means and covariance
matrices E(X;X.;) = aij and E(Y;lj) = !::J.a;j '

(i) The problem of testing H: !::J. s !::J.o remains invariant under the group G
of transformations X· = XA, Y· = YA, where A = (a i j) is any nonsin­
gular p X P matrix with aij = 0 for i > j , and there exists a UMP
invariant test under G with rejection region yI

2I xf > c.

*Due to Fritz Scholz.
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(ii) The test with rejection region Y?jXI
2 > C maximizes the minimum

power for testing d S; do against d ~ d l (do < d l ) .

[(ii): That the Hunt-Stein theorem is applicable to G can be proved
in steps by considering the group Gq of transformations X~ =

alX1 + . . . +aqXq, X: = X; for i = 1, . .. , q - 1, q + 1, . . . ,p, succes­
sively for q "" 1, . . . , P - 1. Here aq '" 0, since the matrix A is nonsingu­
lar if and only if au '" 0 for all i. The group product ("YI, ... , Yq ) of two
such transformations (al , . . . , aq) and (fJI" .. ' fJq) is given by YI "" a1fJq
+ fJl' Y2 "" a2fJq + fJ2' · ·· ' Yq-I "" aq_IfJq + fJq-I' Yq "" aqfJq, which
shows Gq to be isomorphic to a group of scale changes (multiplication of
all components by fJq) and translations [addition of (fJI' . . . ' fJq- l ,0)]. The
result now follows from the Hunt-Stein theorem and Example 7, since the
assumptions of the Hunt-Stein theorem, except for the easily verifiable
measurability conditions, concern only the abstract structure (G, £I) , and
not the specific realization of the elements of G as transformations of
some space .]

20. Suppose that the problem of testing 0 E 0H against 8 E OK remains invariant
under G, that there exists a UMP almost invariant test CPo with respect to G,
and that the assumptions of Theorem 3 hold. Then CPo maximizes
info [w(8)Eecp(X) + u(8)] for any weight functions w(8) ~ 0, u(8) that areK _

invariant under G.

Section 6

21. Existence of most stringent tests. Under the assumptions of Problem 1 there
exists a most stringent test for testing 8 E 0H against 8 E °-0H.

22. Let {0t.} be a class of mutually exclusive sets of alternatives such that the
envelope power function is constant over each 0t. and that Unto = °-0H'
and let % maximize the minimum power over 0t.. If CPt. = cp is independent of
d , then cp is most stringent for testing 8 EON.

23. Let (ZI ' . '. ' ZN) "" (XI' .. . ' Xm , Y1, · · · , Yn ) be distributed according to the
joint density (56) of Chapter 5, and consider the problem of testing H: 71 "" ~

against the alternatives that the X's and Y's are independently normally
distributed with common variance 0 2 and means 71 '" ~ . Then the permutation
test with rejection region IY - XI > crT( Z»), the two-sided version of the test
(55) of Chapter 5, is most stringent.
[Apply Problem 22 with each of the sets 0t. consisting of two points (~I ' 711, 0),
a2' 71 2, 0) such that

_n_ 8,
~I = r - m + n

n
€2 "" r + --8,

m + n

for some r and 8.)

m
711 =r+ --8;

m+n

~8712 = r - m + n
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Additional Problems

24. Let XI"'" X; be independent normal variables with variance 1 and means
~I' • • • , ~n' and consider the problem of testing H : ~I = . .. = ~n = 0 against
the alternatives K = {KI , • •• , Kn } , where K; : ~j = 0 for j '" i, ~; = ~ (known
and positive). Show that the problem remains invariant under permutation of
the X's and that there exists a UMP invariant test 4>0 which rejects when
Ee-(Xj > C, by the following two methods.

534

(i) The order statistics X(1) < . . . < X(n) constitute a maximal invariant.

(ii) Let 10 and h denote the densities under H and K; respectively. Then the
level-a test 4>0 of H vs. K' :1= (ljn)Eh is UMP invariant for testing
H vs. K.

[(ii): If 4>0 is not UMP invariant for H vs. K, there exists an invariant test 4>1
whose (constant) power against K exceeds that of 4>0' Then 4>1 is also more
powerful against K'.]

25. The UMP invariant test 4>0 of Problem 24

(i) maximizes the minimum power over K;
(ii) is admissible.

(iii) For testing the hypothesis H of Problem 24 against the alternatives
K' = {KI , ... , Kn , K{, .. . , K~}, where under Ks : ~j = 0 for all j'" i,
~; = -~, determine the UMP test under a suitable group G', and show
that it is both maximin and invariant.

[ii): Suppose 4>' is uniformly at least as powerful as 4>0' and more powerful for
at least one K;, and let

4>*( XI" '" x
n

) = E4>'( x;" ... , x;)
n! '

where the summation extends over all permutations. Then 4>* is invariant, and
its power is independent of i and exceeds that of 4>0 ']

26. Show that the UMP invariant test of Problem 24 is most stringent.

27. For testing H :10 against K : {II" ' " Is}, suppose there exists a finite group
G = {gl" '" gN } which leaves H and K invariant and which is transitive in
the sense that given h,fj' (1 S, j, j') there exists g E G such that gh = h" In
generalization of Problems 24, 25, determine a UMP invariant test, and show
that it is both maximin against K and admissible.

28. To generalize the results of the preceding problem to the testing of H: 1 vs.
K : {1o, 8 E w}, assume:

(i) There exists a group G that leaves H and K invariant.
(ii) G is transitive over w.

(iii) There exists a probability distribution Q over G which is right-invariant
in the sense of Section 4.
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Determine a UMP invariant test, and show that it is both maximin against K
and admissible .

29. Let Xl"' " Xn be independent normal with means 01 " " , On and variance 1.

(i) Apply the results of the preceding problem to the testing of H : 01 = . . .

= On = 0 against K :EO? = r2
, for any fixed r > O.

(ii) Show that the results of (i) remain valid if H and K are replaced by
H' :E O? .::;; r~ , K' :EO? ~ rr (ro < rl ) .

30. Suppose in Problem 29(i) the variance 0
2 is unknown and that the data consist

of XI"'" Xn together with an independent random variable S2 for which
S2/02 has a X2-distribution .1f K is replaced by EO?/02 = r2, then

(i) the confidence sets E(O; - XY/S2 .::;; C are uniformly most accurate
equivariant under the group generated by the n-dimensional generaliza­
tion of the group Go of Example 17 of Chapter 6, and the scale changes
X: = cX;, S,2 = c2S2.

(ii) The confidence sets of (i) are minimax with respect to the measure p.
given by

1
p.[ C( X , S2)] = 2" [volume of C( X, S2)] .

o

[Use polar coordinates with 02 = EO?,]

31. Locally uniformly most powerful tests. If the sample space is finite and
independent of 0, the test 'Po of Problem 2(i) is not only LMP but also locally
uniformly most powerful (LUMP) in the sense that there exists a value A > 0
such that 'Po maximizes /3", (0) for all °with 0 < °-00 < A.
[See the argument following (19) of Chapter 6, Section 9.]

32. The following two examples show that the assumption of a finite sample space
is needed in Problem 31.

(i) Let Xl' " '' Xn be i.i.d. according to a normal distribution N( 0,0 2
) and

test H : 0 = 00 against K : 0 > 00 '

(ii) Let X and Y be independent Poisson variables with E( X) =.\ and
E( Y) = .\ + 1, and test H:.\ =.\0 against K:.\ > .\0' In each case,
determine the LMP test and show that it is not LUMP.

[Compare the LMP test with the most powerful test against a simple
alternative.]
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CHAPTER 10

Conditional Inference

1. MIXTURES OF EXPERIMENTS

The present chapter has a somewhat different character from the preceding
ones. It is concerned with problems regarding the proper choice and
interpretation of tests and confidence procedures, problems which-despite
a large literature-have not found a definitive solution. The discussion will
thus be more tentative than in earlier chapters, and will focus on conceptual
aspects more than on technical ones.

Consider the situation in which either the experiment Iff of observing a
random quantity X with density Pe (with respect to p.) or the experiment .'F
of observing an X with density qu (with respect to v) is performed with
probability P and q = 1 - P respectively. On the basis of X, and knowl­
edge of which of the two experiments was performed, it is desired to test
Ho: () = ()o against Hl : () = ()l' For the sake of convenience it will be
assumed that the two experiments have the same sample space and the same
a-field of measurable sets. The sample space of the overall experiment
consists of the union of the sets

¥o = {(I, x) : I = 0, x E.¥} and .¥l = {(I, x) : I = 1, x E .¥ }

where I is °or 1 as Iffor .'F is performed.
A level-a test of Ho is defined by its critical function

1fl;(x)=Ifl(i,x)

and must satisfy

(1) pEo[<Po(X)IIff] + qEo[lfll(X)I.'F] = pjlflopuodP. + qjlfllquodv s a.

Suppose that p is unknown, so that Ho is composite. Then a level-a test of

539
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Ho satisfies (1) for all 0 < P < 1, and must therefore satisfy

(2) a o = f4>OP9
0

dp. s a and a 1 = f4>lq9
0

dv s a.

As a result, a UMP test against HI exists and is given by

(3) 4>o(x) = (~ 'f P9.(X) >o 1 ---Co P9
o
(X) <: 0'

where the c, and y; are determined by

4>1(X) = (~1 if Q91(X) >-co Q9
o
(X) <: l'

(4) E9J4>0(X)ltf] = E9J4>I(X)I§] = a.

The power of this test against HI is

(5)

with

fJ( p) = PfJo + QfJl

(6) Po = Ed4>o(X)ltf], fJ1 = E9.[4>I(X)I§]·

The situation is analogous to that of Chapter 4, Section 4, and , as was
discussed there, it may be more appropriate to consider the conditional
power P; when 1= i, since this is the power pertaining to the experiment
that has been performed. As in the earlier case, the conditional power fJl
can also be interpreted as an estimate of the unknown fJ( p), which is
unbiased, since

E(fJ/) = PfJo+ QfJl = fJ(p) .

So far, the probability P of performing experiment tf has been assumed
to be unknown. Suppose instead that the value of P is known, say P = t.
The hypothesis H can be tested at level a by means of (3) as before, but the
power of the test is now known to be t<Po + fJd. Suppose that Po = .3,
PI = .9, so that at the start of the experiment the power is t(.3 + .9) = .6.
Now a fair coin is tossed to decide whether to perform tf (in case of heads)
or ~ (in case of tails). If the coin shows heads, should the power be
reassessed and scaled down to .3?

Let us postpone the answer and first consider another change resulting
from the knowledge of p. A level-a test of H now no longer needs to satisfy
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(2) but only the weaker condition

(7) ~ [14»OP8o dp: + 14»lQ8o dV] s a.

The most powerful test against K is then again given by (3), but now with
Co = cl = C and Yo = Yl = Ydetermined by (Problem 3)

(8)

where

HaO+al)=a,

(9) ao = Ed4»o(X)IIf], a l = E8J4»1(X)I§"] ·

As an illustration of the change, suppose that experiment §" is reason­
ably informative, say that the power /31 given by (6), is .8, but that If has
little ability to distinguish between P8

0
and P8

1
' Then it will typically not

pay to put much of the rejection probability into ao; if /30 [given by (6)] is
sufficiently small, the best choice of ao and a l satisfying (8) is approxi­
mately ao :::: 0, a l :::: 2a. The situation will be reversed if §" is so informa­
tive that §" can attain power close to 1 with an a l much smaller than a/2.

When P is known, there are therefore two issues. Should the procedure
be chosen which is best on the average over both experiments, or should the
best conditional procedure be preferred; and, for a given test or confidence
procedure, should probabilities such as level, power, and confidence coeffi­
cient be calculated conditionally, given the experiment that has been selected,
or unconditionally? The underlying question is of course the same: Is a
conditional or unconditional point of view more appropriate?

The answer cannot be found within the model but depends on the
context. If the overall experiment will be performed many times, for
example in an industrial or agricultural setting, the average performance
may be the principal feature of interest, and an unconditional approach
suitable. However, if repetitions refer to different clients, or are potential
rather than actual, interest will focus on the particular event at hand, and
conditioning seems more appropriate. Unfortunately, as will be seen in later
sections , it is then often not clear how the conditioning events should be
chosen .

The difference between the conditional and the unconditional approach
tends to be most striking, and a choice between them therefore most
pressing, when the two experiments If and §" differ sharply in the amount
of information they contain, if for example the difference 1/31 - /301 in (6) is
large. To illustrate an extreme situation in which this is not the case,
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suppose that ef and :F consist in observing X with distribution N( 0,1) and
N( -0,1) respectively, that one of them is selected with known probabilities
p and q respectively, and that it is desired to test H: 0 = 0 against
K : 0 > O. Here ef and :F contain exactly the same amount of information
about O. The unconditional most powerful level-a test of H against 01 > 0
is seen to reject (Problem 5) when X > c if ef is performed, and when
X < - c if :F is performed, where Po( X > c) = a. The test is UMP against
o> 0, and happens to coincide with the UMP conditional test.

The issues raised here extend in an obvious way to mixtures of more than
two experiments. As an illustration of a mixture over a continuum, consider
a regression situation. Suppose that Xl' . . . ' X; are independent, and that
the conditional density of Xi given t i is

~f(Xi-:-Pt;) .

The t ; themselves are obtained with error. They may for example be
independently normally distributed with mean c; and known variance 1"2,

where the ci are the intended values of the t; Then it will again often be the
case that the most appropriate inference concerning a, 13, and CJ is condi­
tional on the observed values of the t's (which represent the experiment
actually being performed). Whether this is the case will, as before, depend
on the context.

The argument for conditioning also applies when the probabilities of
performing the various experiments are unknown, say depend on a parame­
ter ,'), provided ,') is unrelated to 0, so that which experiment is chosen
provides no information concerning O. A more precise statement of this
generalization is given at the end of the next section .

2. ANCILLARY STATISTICS

Mixture models can be described in the following general terms. Let {efz'

z E .2'} denote a collection of experiments of which one is selected accord ­
ing to a known probability distribution over .2'. For any given z, the
experiment tlz consists in observing a random quantity X, which has a
distribution PI/( ·Iz). Although this structure seems rather special, it is
common to many statistical models.

Consider a general statistical model in which the observations X are
distributed according to PI/' 8 E n, and suppose there exists an ancillary
statistic, that is, a statistic Z whose distribution F does not depend on 8.
Then one can think of X as being obtained by a two-stage experiment:
Observe first a random quantity Z with distribution F; given Z = z,
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observe a quantity X with distribution Po( -jz). The resulting X is distrib­
uted according to the original distribution Po. Under these circumstances,
the argument of the preceding section suggests that it will frequently be
appropriate to take the conditional point of view.* (Unless Z is discrete,
these definitions involve technical difficulties concerning sets of measure
zero and the existence of conditional distributions, which we shall disregard.)

An important class of models in which ancillary statistics exist is ob­
tained by invariance considerations. Suppose the model fJJ = {Po, 8 EO}
remains invariant under the transformations

X -+ gX, 8 -+ g8; g E G, g E G,

and that G is transitive over n.t

Theorem 1. If fJJ remains invariant under G and if Gis transitive over 0,
then a maximal invariant T (and hence any invariant) is ancillary.

Proof. It follows from Theorem 3 of Chapter 6 that the distribution of a
maximal invariant under G is invariant under G. Since G is transitive, only
constants are invariant under G. The probability Po(T E B) is therefore
constant, independent of 8, for all B, as was to be proved.

As an example, suppose that X = (Xl' ... , Xn ) is distributed according
to a location family with joint density f(x 1 - 8, ... , x, - 8). The most
powerful test of H : 8 = 80 against K: 8 = 81 > 80 rejects when

(10)
f(x 1 - 81" " , xn - 81)

( )
> c.

f Xl - 80 " " , X n - 80 -

Here the set of differences r; = Xi - X; (i = 1, . . . , n - 1) is ancillary.
This is obvious by inspection and follows from Theorem 1 in conjunction
with Example l(i) of Chapter 6. It may therefore be more appropriate to
consider the testing problem conditionally given Y1 = Yl" '" Yn- 1 = Yn-l'
To determine the most powerful conditional test, transform to Y1, · · · , Yn ,

where Yn = Xn- The conditional density of Yn given Yl"'" Yn -1 is

(11) PO(YnIYl"'" Yn -l) = f(Yl + Yn - 8, , Yn 1 + Yn - 8, Yn - 8)

jf(Yl + u, , Yn -l + u, u) du '

"A distinction between experimental mixtures and the present situation, relying on aspects
outside the model, is discussed by Basu (1964) and Kalbfleisch (1975).

t The family PI' is then a group family; see TPE, Chapter I, Section 3.
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and the most powerful conditional test rejects when

(12)
P81(YnIYl, ·· ·,Yn 1)
P8

o(YnIYl'
" '' Yn-l) > C(Yl" ' " Yn-l)'

In terms of the original variables this becomes

(13)
f(x l - 81" " , X n - 81)

f(x
l

- 8
0
" " , X

n
- 80) > c(xl - x n, · ··, X n- l - xJ .

The constant c(xl - Xn, . .. , Xn- l - xn) is determined by the fact that the
conditional probability of (13), given the differences of the x's, is equal to a
when 8 = 80 ,

For describing the conditional test (12) and calculating the critical value
C(Yl" '" Yn-l)' it is useful to note that the statistic Yn = X; could be
replaced by any other Yn satisfying the equivariance condition"

(14) Yn(x l + a, . . . , xn + a) = Yn(x l, .. . , xn) + a for all a.

This condition is satisfied for example by the mean of the X's, the median,
or any of the order statistics. As will be shown in the following Lemma 1,
any two statistics Yn and Y; satisfying (14) differ only by a function of the
differences 1'; = Xi - Xn (i = 1, . .. , n - 1). Thus conditionally, given the
values Yl"'" Yn-l ' Yn and Y: differ only by a constant, and their condi­
tional distributions (and the critical values C(Yl" '" Yn-l) differ by the
same constant. One can therefore choose Yn , subject to (14), to make the
conditional calculations as convenient as possible.

Lemma 1. If Yn and Y; bothsatisfy (14), then theirdifference 6. = Y; ­
Yn depends on (Xl" '" xn) only through the differences (x, - xn,· . . , xn- l
- x;).

Proof. Since Yn and Y; satisfy (14),

6.(Xl + a, . .. , x n + a) = 6.(xl, .. . , xJ

Putting a = - x n' one finds

for all a.

6.(Xl' ... , xn) = 6.(xl - xn,· · ·, xn- l - xn,O),

which is a function of the differences.

"For a more detailed discussion oC equivariance, see TPE. Chapter 3.
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The existence of ancillary statistics is not confined to models that remain
invariant under a transitive group G. The mixture and regression examples
of Section 1 provide illustrations of ancillaries without the benefit of
invariance. Further examples are given in Problems 8-13 .

If conditioning on an ancillary statistic is considered appropriate because
it makes the inference more relevant to the situation at hand, it is desirable
to carry the process as far as possible and hence to condition on a maximal
ancillary. An ancillary Z is said to be maximal if there does not exist an
ancillary U such that Z = f(U) without Z and U being equivalent. [For a
more detailed treatment, which takes account of the possibility of modifying
statistics on sets of measure zero without changing their probabilistic
properties, see Basu (1959).]

Conditioning, like sufficiency and invariance, leads to a reduction of the
data. In the conditional model, the ancillary is no longer part of the random
data but has become a constant. As a result , conditioning often leads to a
great simplification of the inference. Choosing a maximal ancillary for
conditioning thus has the additional advantage of providing the greatest
reduction of the data.

Unfortunately, maximal ancillaries are not always unique, and one must
then decide which maximal ancillary to choose for conditioning. [This
problem is discussed by Cox (1971) and Becker and Gordon (1983).] If
attention is restricted to ancillary statistics that are invariant under a given
group G, the maximal ancillary of course coincides with the maximal
invariant.

Another issue concerns the order in which to apply reduction by
sufficiency and ancillarity.

EXIlIIIpIe1. Let (X" Y;), i = 1, ... , n, be independently distributed according to
a bivariate normal distribution with E(X;) = E(Y;) = 0, Var(X;) = Var(Y;) = 1,
and unknown correlation coefficient p. Then Xl" ' " Xn are independently distrib­
uted as N(O, 1) and are therefore ancillary. The conditional density of the Y's given
Xl = Xl" ' " x" = x; is

(
1 . 2)

Cexp - 2(1 _ p2) [(y; - px;) ,

with the sufficient statistics (Ly;2,Lx;Y;).
Alternatively, one could begin by noticing that (Yl ,. . . , y") is ancillary. The

conditional distribution of the X 's given Yl = Yl" ' " Y" = Yn then admits the
sufficient statistics (L x,2 ,L X, y;). A unique maximal ancillary V does not exist in
this case, since both the X's and Y's would have to be functions of V. Thus V
would have to be equivalent to the full sample (Xl' Yl ) , . . . , (Xn , y"), which is not
ancillary .
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Suppose instead that the data are first reduced to the sufficient statistics T =

(Exl + El'? ,EX; Y;). Based on T, no nonconstant ancillaries appear to exist." This
example and others like it suggest that it is desirable to reduce the data as far as
possible through sufficiency, before attempting further reduction by means of
ancillary statistics .

Note that contrary to this suggestion, in the location example at the
beginning of the section, the problem was not first reduced to the sufficient
statistics X(l) < ... < X(n) ' The omission can be justified in hindsight by
the fact that the optimal conditional tests are the same whether or not the
observations are first reduced to the order statistics.

In the structure described at the beginning of the section, the variable Z
that labels the experiment was assumed to have a known distribution. The
argument for conditioning on the observed value of Z does not depend on
this assumption. It applies also when the distribution of Z depends on an
unknown parameter 11, which is independent of fJ and hence by itself
contains no information about fJ, that is, when the distribution of Z
depends only on 11, the conditional distribution of X given Z = z depends
only on fJ, and the parameter space Q for (fJ, 11) is a Cartesian product
Q = Q/J X Q", with

(15) (fJ,11)EQ - fJEQ/Jand 11EQ".

(the parameters fJ and 11 are then said to be variation-independent, or
unrelated.)

Statistics Z satisfying this more general definition are called partial
ancillary or S-ancillary. (The term ancillary without modification will be
reserved here for a statistic that has a known distribution.) Note that if
X = (T, Z) and Z is a partial ancillary, then T is a partial sufficientstatistic
in the sense of Chapter 3, Problem 36. For a more detailed discussion of this
and related concepts of partial ancillarity, see for example Basu (1978) and
Barndorff-Nielsen (1978).

Example 2. Let X and Y be independent with Poisson distributions P(A) and
P(p,), and let the parameter of interest be 0 = p,/A. It was seen in Chapter 4,
Section 4 that the conditional distribution of Y given Z = X + Y = z is binomial
b(p, z) with p = p,/(A + p,) = 0/(0 + 1) and therefore depends only on 0, while
the distribution of Z is Poisson with mean {) = A + p. . Since the parameter space
o< A, p. < 00 is equivalent to the Cartesian product of 0 < 0 < 00,0 < {) < 00, it
follows that Z is S-ancillary for O.

The UMP unbiased level-a test of H : p. .:S A against p. > A is UMP also among
all tests whose conditional level given z is a for all z: (The class of conditional tests
coincides exactly with the class of all tests that are similar on the boundary p. = A.)

"So far, nonexistence has not been proved. It seems likely that a proof can be obtained by
the methods of Unni (1978).
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When Z is S-ancillary for 8 in the presence of a nuisance parameter t1,
the unconditional power f3( 8, t1) of a test q> of H: 8 = 80 may depend on t1
as well as on 8. The conditional power ,8(t1lz) = Ee[q>(X)lz] can then be
viewed as an unbiased estimator of the (unknown) f3( 8, t1), as was discussed
at the end of Chapter 4, Section 4. On the other hand, if no nuisance
parameters t1 are present and Z is ancillary for 8, the unconditional power
f3( 8) = Eeq>( X) and the conditional power f3( 81z) provide two alternative
evaluations of the power of q> against 8, which refer to different sampling
frameworks, and of which the latter of course becomes available only after
the data have been obtained .

Surprisingly, the S-ancillarity of X + Y in Example 2 does not extend to
the corresponding binomial problem.

Example J. Let X and Y have independent binomial distributions b(PI' m)
and b(P2' n) respectively. Then it was seen in Chapter 4, Section 5 that the
conditional distribution of Y given Z = X + Y = z depends only on the cross­
product ratio A = P2QI/PIQ2 (Qi = 1 - Pi)' However, Z is not S-ancillary for A.
To see this, note that S-ancillarity of Z implies the existence of a parameter {;
unrelated to A and such that the distribution of Z depends only on {;. As A
changes, the family of distributions (PI)' {; E Ol)} of Z would remain unchanged.
This is not the case, since Z is binomial when A = 1 and not otherwise (Problem
15). Thus Z is not S-ancillary.

In this example, all unbiased tests of H : A = Ao have a conditional level given z
that is independent of z, but conditioning on z cannot be justified by S-ancillarity.

Closely related to this example is the situation of the multinomial 2 X 2
table discussed from the point of view of unbiasedness in Chapter 4, Sec­
tion 6.

Example 4. In the notation of Chapter 4, Section 6, let the four cell entries of a
2 x 2 table be X, X' , Y, Y' with row totals X + X' = M, Y + Y' = N, and column
totals X + Y = T, X' + Y' = T', and with total sample size M + N = T + T' = s.
Here it is easy to check that (M, N) is S-ancillary for 8 = (81,82 ) =
(PAB/PB' PAa/Pa) with {; = PB' Since the cross-product ratio Acan be expressed as
a function of (81, 82 ) , it may be appropriate to condition a test of H : A = Ao on
( M, N). Exactly analogouslyone finds that (T, T') is S-ancillary for 8' = (8(, 82) =

(PAB/PA' PiB/Pi), and since A is also a function of (8(,82), it may be equally
appropriate to condition a test of H on (T, T') . One might hope that the set of all
four marginals (M, N, T, T') = Z would be S-ancillary for A. However, it is seen
from the preceding example that this is not the case.

Here, all unbiased tests have a constant conditional level given z. However,
S-ancillarity permits conditioning on only one set of margins (without giving any
guidance as to which of the two to choose), not on both.

Despite such difficulties, the principle of carrying out tests and con­
fidence estimation conditionally on ancillaries or S-ancillaries frequently
provides an attractive alternative to the corresponding unconditional proce-
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dures, primarily because it is more appropriate for the situation at hand.
However, insistence on such conditioning leads to another difficulty, which
is illustrated by the following example.

EXIlmPIe 5. Consider N populations II;, and suppose that an observation X;
from II; has a normal distribution Nai> 1). The hypothesis to be tested is
H: ~\ = . .. = ~N' Unfortunately, N is so large that it is not practicable to take an
observation from each of the populations; the total sample size is restricted to be
n < N. A sample II l 1, .. . , Ill. of n of the N populations is therefore selected at

random, with probability 1/(~) for each set of n, and an observation ~, is
obtained from each of the populations IIJ, in the sample.

Here the variables 11, • . • ,1" are ancillary, and the requirement of conditioning
on ancillaries would restrict any inference to the n populations from which
observations are taken. Systematic adherence to this requirement would therefore
make it impossible to test the original hypothesis H.· Of course, rejection of the
partial hypothesis ~I . ... . J. : ~it = . . . = ~J. would imply rejection of the original
H. However, acceptance of ~1 .. ... J. would permit no inference concerning H.

The requirement to condition in this case runs counter to the belief that a sample
may permit inferences concerning the whole set of populations, which underlies
much of statistical practice.

With an unconditional approach such an inference is provided by the test with
rejection region

L [~, - (~ k~l »:)r~ c,

where c is the upper a-percentage point of X2 with n - 1 degrees of freedom. Not
only does this test actually have unconditional level a, but its conditional level given
1\ = jl' . .. , 1" = i; also equals a for all (j\, . .. , j,,). There is in fact no differencein
the present case between the conditional and the unconditional test: they will accept
or reject for the same sample points. However, as has been pointed out, there is a
crucial difference between the conditional and unconditional interpretations of the
results.

If Pit J'< ~JI' . . . '~J'> denotes the conditional power of this test given
1\ = j\, , 1" = j", its unconditional power is

~ p. .(~, ... ,~)
'- 11· ··· ·1. 11 1.

(~)

summed over all (~) n-tuples i. < .. . < j". As in the case with any test, the
conditional power given an ancillary (in the present case 1\, . . . , 1,,) can be viewed
as an unbiased estimate of the unconditional power.

"For other implications of this requirement. called the weak conditionality principle. see
Birnbaum (1962) and Berger and Wolpert (1984).
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Although conditional tests are often sensible and are beginning to be
employed in practice [see for example Lawless (1972, 1973, 1978) and
Kappenman (1975)], not much theory has been developed for the resulting
conditional models. Since the conditional model tends to be simpler than
the original unconditional one, the conditional point of view will frequently
bring about a simplification of the theory. This possibility will be illustrated
in the present section on some simple examples.

Exampk 6. Specializing the example discussed at the beginning of Section 1,
suppose that a random variable is distributed according to N«(J, af) or N«(J, (6) as
I = 1 or 0, and that P(I = 1) = P(I = 0) = t. Then the most powerful test of
H : (J = (Jo against (J = (Jl (> (Jo) based on (I, X) rejects when

x - H(Jo + (Jl) ~ k .
2aF

A UMP test against the alternatives (J > (Jo therefore does not exist. On the other
hand, if H is tested conditionally given 1= i, a UMP conditional test exists and
rejects when X> c, where P(X > c, I I = i) = a for i = 0,1.

The nonexistence of UMP unconditional tests found in this example is
typical for mixtures with known probabilities of two or more families with
monotone likelihood ratio, despite the existence of UMP conditional tests in
these cases.

Exampk 7. Let Xl' ... ' Xn be a sample from a normal distribution N (~, a2~2
) ,

~ > 0, with known coefficient of variation a > 0, and consider the problem of
testin H : ~ = ~o against K: ~ > ~o· Here T = (Tl , T2 ) with Tl = X, T2

= (lin )EX? is sufficient, and Z = T1IT2 is ancillary. If we let V = .;;T21a, the
conditional density of V given Z = z is equal to (Problem 18)

(16) p(vlz) = ;vn-lexp{ -~[~ - z~r} ·

The density has monotone likelihood ratio, so that the rejection region V> C(z)
constitutes a UMP conditional test.

Unconditionally, Y = X and S2 = E( X; - X)2 are independent with joint den ­
sity

(17) (
n 2 1 2)

CS(n - 3V2exp - 2a 2e(y -~) - 2a2eS ,

and a UMP test does not exist. [For further discussion of this example, see Hinkley
(1977).]
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An important class of examples is obtained from situations in which the
model remains invariant under a group of transformations that is transitive
over the parameter space, that is, when the given class of distributions
constitutes a group family. The maximal invariant V then provides a natural
ancillary on which to condition, and an optimal conditional test may exist
even when such a test does not exist unconditionally. Perhaps the simplest
class of examples of this kind are provided by location families under the
conditions of the following lemma.

Lemma 2. Let Xl"'" X; be independently distributed according to
f (x i - (J), with f strongly unimodal. Then the family of conditional densities of
Yn = X; given 1'; = Xi - X; (i = 1, . .. , n - 1) has monotone likelihood
ratio.

Proof. The conditional density (11) is proportional to

(18) f(Yn + Yl - (J) • . . f(Yn + Yn-l - (J)f(Yn - (J).

By taking logarithms and using the fact that each factor is strongly
unimodal, it is seen that the product is also strongly unimodal, and the
result follows from Example 1 of Chapter 9.

Lemma 2 shows that for strongly unimodal f there exists a UMP
conditional test of H : (J ~ (Jo against K : (J > (Jo, which rejects when

(19) Xn > c(Xl - Xn, · · · , Xn- l - Xn)·

Conditioning has reduced the model to a location family with sample size
one. The double-exponential and logistic distributions are both strongly
unimodal (Section 9.2), and thus provide examples of UMP conditional
tests. In neither case does there exist a UMP unconditional test unless
n=l.

As a last class of examples, we shall consider a situation with a nuisance
parameter. Let Xl"'" Xm and Yl , . . . , Yn be independent samples from
location families with densities f(x l - ~, . .. , xm- ~) and g(Yl - 1/, .. . ,
Yn - 1/) respectively, and consider the problem of testing H: 1/~ ~ against
K: 1/ > ~. Here the differences U; = Xi - Xm and ~ = lj - Yn are ancillary.
The conditional density of X = Xm and Y = Yn given the u's and v's is
seen from (18) to be of the form

(20) fu*(x - ~)g:(y - 1/),

where the subscripts u and v indicate that r and g* depend on the u 's and
v's respectively. The problem of testing H in the conditional model remains
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invariant under the transformations: x' = x + c, y' = y + c, for which
Y - X is maximal invariant. A UMP invariant conditional test will then
exist provided the distribution of Z = Y - X, which depends only on
A = Tj - ~, has monotone likelihood ratio. The following lemma shows that
a sufficient condition for this to be the case is that fu* and s: have
monotone likelihood ratio in x and y respectively.

Lemma 3. Let X, Y be independently distributed with densities f*( x - n
g*( y - Tj) respectively. If f* and g* have monotone likelihood with respect to
~ and Tj, then the family of densities of Z = Y - X has monotone likelihood
ratio with respect to A = Tj - ~.

Proof. The density of Z is

(21) htl.(z) = fg*(y - A)f*(y - z) dy.

To see that htI.(z) has monotone likelihood ratio, one must show that for
any A < A', htl.,(z)/htl.(z) is an increasing function of z. For this purpose,
write

htl.,(z) _ g*(y - A'). g*(y - A)f*(y - z) dy.

h.(z) - f g'(Y - II) fg.(u - lI)j(u - z) du

The second factor is a probability density for Y,

(22) pAy) = Czg*{y - A)f*{y - z),

which has monotone likelihood ratio in the parameter z by the assumption
made about f*. The ratio

(23)
htl.,{z) _ g*{y - A')
htl.{z) - f g*{y _ A) pz{y) dy

is the expectation of g*(Y - A')/g*(Y - A) under the distribution pz(y).
By the assumption about g*, g*(y - A')/g*(y - A) is an increasing func­
tion of y, and it follows from Lemma 2 of Chapter 3 that its expectation is
an increasing function of z.

It follows from (18) that fu*(x - ~) and g:(y - Tj) have monotone
likelihood ratio provided this condition holds for f(x - ~) and g(y - Tj),

i.e. provided f and g are strongly unimodal. Under this assumption, the
conditional distribution htl.(z) then has monotone likelihood ratio by Lemma
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3, and a UMP conditional test exists and rejects for large values of Z. (This
result also follows from Problem 7 of Chapter 9).

The difference between conditional tests of the kind considered in this
section and the corresponding (e.g., locally most powerful) unconditional
tests typically disappears as the sample size(s) tend(s) to infinity. Some
results in this direction are given by Liang (1984); see also Barndorff­
Nielsen (1983).

The following multivariate example provides one more illustration of a
UMP conditional test when unconditionally no UMP test exists. The results
will only be sketched. The details of this and related problems can be found
in the original literature reviewed by Marden and Perlman (1980) and
Marden (1983).

Example B. The normal multivariate two-sample problem with covariates was
seen in Chapter 8, Example 3, to reduce to the canonical form (the notation has
been changed) of m + 1 independent normal vectors of dimension P = PI + P2'

Y = ( YI l2 ) and ZI , .. . , ZnJ'

with common covariance matrix }; and expectations

E( YI) = 1/1' E(Y2)=E(ZI)= . . . =E(Zm)=O.

The hypothesis being tested is H : 1/1 = o. Without the restriction E(Y2 ) = 0, the
model would remain invariant under the group G3 of transformations (Chapter 8,
Section 2): y* = YB, Z* = ZB, where B is any nonsingular p X P matrix. How­
ever, the stated problem remains invariant only under the subgroup G' in which B
is of the form [Problem 22(i)]

If

(
BlI

B = B
21

PI

o )PI

B22 P2

P2

(
SlI

Z'Z = S = S21 S12 ) and }; = ( };1I
S22 };21

};12) ,
};22

the maximal invariants under G' are the two statistics D = Y2Sii 1 Y{ and

(Y1 - S12 S221l2)(SlI - SI2S221S21rl(YI - S12 S22IY2)'
N = ~_....:..:....-=-...:..:...:c.-..:..:._...:..:....-=--..:..:..::...-~--=----=.=-=~

1 + D

and the joint distribution of (N, D) depends only on the maximal invariant
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The statistic D is ancillary [Problem 22(ii)], and the conditionaldistributionof N
given D = d is that of the ratio of two independent x2-variables: the numerator
noncentral X2 with p degrees of freedom and noncentrality parameter 1:1/(1 + d),
and the denominator central X2 with m + 1 - P degrees of freedom. It follows
from Chapter 7, Section 1, that the conditional density has monotone likelihood
ratio. A conditionally UMP invariant test therefore exists, and rejects H when
(m + 1 - p)N/p > C, where C is the critical value of the F-distribution with p
and m + 1 - P degrees of freedom. On the other hand, a UMP invariant (uncondi­
tional) test does not exist; comparisons of the optimal conditional test with various
competitors are providedby Marden and Perlman(1980).

4. RELEVANT SUBSETS

The conditioning variables considered so far have been ancillary statistics,
i.e. random variables whose distribution is fixed, independent of the param­
eters governing the distribution of X, or at least of the parameter of interest.
We shall now examine briefly some implications of conditioning without
this constraint. Throughout most of the section we shall be concerned with
the simple case in which the conditioning variable is the indicator of some
subset C of the sample space, so that there are only two conditioning events
1= 1 (i.e. X E C) and 1=0 (i.e. X E C, the complement of C) . The
mixture problem at the beginning of Section 1, with ~l = C and ~o = C, is
of this type.

Suppose X is distributed with density PrJ, and R is a level-a rejection
region for testing the simple hypothesis H : (J = (Jo against some class of
alternatives. For any subset C of the sample space, consider the conditional
rejection probabilities

(24) a c = POo( X E RIC) and ac = POo( X ERIC),

and suppose that a c > a and a c < a . Then we are in the difficulty
described in Section 1. Before X was observed, the probability of falsely
rejecting H was stated to be a. Now that X is known to have fallen into C
(or C), should the original statement be adjusted and the higher value a c
(or lower value ac) be quoted? An extreme case of this possibility occurs
when C is a subset of R or R, since then P(X E R IX E C) = 1 or O.

It is clearly always possible to chose C so that the conditional level ac
exceeds the stated a. It is not so clear whether the corresponding possibility
always exists for the levels of a family of confidence sets for (J, since the
inequality must now hold for all (J .
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Definition. A subset C of the sample space is said to be a negatively
biased relevant subset for a family of confidence sets S( X) with uncondi­
tional confidence level y = 1 - a if for some e > 0

(25) "Yc(fJ) = Po [0 E S(X)IXE C] s Y - ( for all 0,

and a positively biasedrelevant subset if

(26) Po [0 E S(X)IXE C] ~ Y + ( for all O.

The set C is semirelevant, negatively or positively biased, if respectively

(27)

or

(28)

Po [0 E S(X)IX E C] s Y

Po [0 E S(X)IX E C] ~ Y

for all 0

for all 0,

with strict inequality holding for at least some O.

Obvious examples of relevant subsets are provided by the subsets ~o

and ~1 of the two-experiment example of Section l.
Relevant subsets do not always exist. The following four examples

illustrate the various possibilities.

Example 9. Let X be distributed as N(8 ,1), and consider the standard con­
fidence intervals for 8:

S( X) = {8: X - c < 8 < X + c},

where ~ ( c) - ~ ( - c) = y. In this case, there exists not even a semirelevant subset.
To see this, suppose first that a positively biased semirelevant subset C exists, so

that

A( 8) = Po[ X - c < 8 < X + c and X E C] - yPo[ X E C] ~ 0

for all 8, with strict inequality for some 80 • Consider a prior normal density A(8)
for (J with mean 0 and variance -r2, and let

P(x) = p[x - c < e < x + clx],

where e has density A(8). The posterior distribution of e given x is then normal
with mean -r2x/(1 + -r2) and variance -r2/ (1 + r 2 ) [Problem 24(i)), and it follows
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as m -> 00.

Next let h(O) = {l;1'A(O) = e- 02
/

2T2 and

D = !h(O)A(O) dO:$; {l;1'!A(O){Po[X- c < 0 < X+ c and XE C]

c
-Eo[fJ(X)IC<X)]} dO + - .

l'

The integral on the right side is the difference of two integrals each of which equals
P[ X - c < e < X + c and X E Cj, and is therefore 0, so that D :$; c/v,

Consider now a sequence of normal priors Am(O) with variances 1'~ -> 00, and
the corresponding sequences hm(O) and Dm. Then O:$; Dm s cl1'm and hence
Dm -> o. On the other hand, Dm is of the form Dm = f~ooA(O)hm(O) dO, where
A(0) is continuous, nonnegative, and > 0 for some 00 . There exists lJ > 0 such that
A(O) ~ !A(Oo) for 10 - 00 1 < lJ and hence

o; ~ to+6tA(00)hm(0) dO -> lJA(Oo) > 0
00-6

This provides the desired contradiction.

That also no negatively semirelevant subsets exist is a consequence of the
following result.

Theorem 2. Let S(x) be a family of confidence sets for 0 such that
Po[0 E S( X)] = y for all 0, and suppose that 0 < Po(C) < 1 for all O.

(i) If C is semirelevant, then its complement C is semirelevant with
opposite bias.

(ii) If there exists a constant a such that

1 > po(C) > a > 0 for all 0

and C is relevant , then Cis relevant with opposite bias.

Proof. The result is an immediate consequence of the identity

Po(C)[ydO) - rl = [1 - Po(C)][y - yc(O)].
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The next example illustrates the situation in which a semirelevant subset
exists but no relevant one.

Exampk 10. Let X be N(8,1), and consider the uniformly most accurate lower
confidence bounds !l = X - c for 8, where ~(c) = y. Here S(X) is the interval
[X - c, 00) and it seems plausible that the conditional probability of 8 E S( X) will
be lowered for a set C of the form X ~ k. In fact

(

~(c) - ~ ( k - 8 )

(29) P8(X-cs8IX~k)= 0 1-~(k-8)
when 8> k - c,

when 8 < k - c.

The probability (29) is always < y, and tends to y as 8 -+ 00. The set X ~ k is
therefore semire1evant negatively biased for the confidence sets S( X) .

We shall now show that no relevant subset C with P8(C) > 0 exists in this case.
It is enough to prove the result for negatively biased sets; the proof for positive bias
is exactly analogous. Let A be the set of x-values - 00 < x < C + 8, and suppose
that C is negatively biased and relevant, so that

If

P8 [X E AIC] s y - £ for all 8.

then

a(8) = P8(XE C), b(8) = P8(XEA () C),

(30) b(8) s (y - £)a(8) for all 8.

The result is proved by comparing the integrated coverage probabilities

A(R) = fR a(8) d8,
-R

B(R) = fR b(8) d8
-R

with the Lebesgue measure of the intersection C () (- R, R) ,

p.(R) = fR Ic(x) dx,
-R

where Ic(x) is the indicator of C, and showing that

(31)
A(R) B(R)
p.( R) -+ 1, p.( R) -+ Y as R -+ 00 .

This contradicts the fact that by (30),

B(R) ~ (y - £)A(R)

and so proves the desired result .

for all R,
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To prove (31), suppose first that p.(oo) < 00 . Then if q, is the standard normal
density

A(oo) = foo d8] q,(x - 8) dx = ] dx = p.(oo),
-00 C C

and analogously B(oo) = yp.(oo), which establishes (31).
When p.(oo) = 00, (31) will be proved by showing that

(32) A(R) = p.(R) + K\(R), B(R) = yp.(R) + K 2(R),

where K\(R) and K 2(R) are bounded. To see (32), note that

p.( R) = LR/c(:x) dx = LR/c< x) [Loo

oo
q,( x - 8) d8] dx

= L:[f~/c<xH(x - 8) dX] d8,

while

(33) A(R) = f~R[J_:IC<X)q,( x - 8) dX] d8 .

A comparison of each of these double integrals with that over the region - R < x
< R, -R < 8 < R, shows that the difference A(R) - p.(R) is made up of four
integrals, each of which can be seen to be bounded by using the fact that
f1tlq,(t) dt < 00 [Problem 24(ii)]. This completes the proof.

Example 11. Let X\, ... , Xn be independently normally distributed as Na, 0 2),

and consider the uniformly most accurate equivariant (and unbiased) confidence
intervals for ~ given by (28) of Chapter 6.

It was shown by Buehler and Feddersen (1963) and Brown (1967) that in this
case there exist positively biased relevant subsets of the form

(34)
IXI

C'- <k. S - .

In particular, for confidence level y =.5 and n = 2, Brown shows that with
C : IXVIX2 - X\I ~ HI + fi), the_conditional level is > t for all values of ~ and
o, It follows from Theorem 2 that C is negatively biased semirelevant, and Buehler
(1959) shows that any set C·: S ~ k has the same property. These results are
intuitively plausible, since the length of the confidence intervals is proportional to S,
and one would expect short intervals to cover the true value less often than long
ones.

Theorem 2 does not show that C is negatively biased relevant, since the
probability of the set (34) tends to zero as ~/o -+ 00 . It was in fact proved by
Robinson (1976) that no negatively biased relevant subset exists in this case.
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The calculations for C throw some light on the common practice of stating
confidence intervals for ~ only when a preliminary test of H : ~ = 0 rejects the
hypothesis. For a discussion of this practice see Olshen (1973), and Meeks and
D'Agostino (1983).

The only type of example still missing is that of a positively biased
relevant subset. It was pointed out by Fisher (1956a,b) that the Welch-Aspin
solution of the Behrens-Fisher problem (discussed in Chapter 6, Section 6)
provides an illustration of this possibility. The following are much simpler
examples of both negatively and positively biased relevant subsets.

Example 12. An extreme form of both positively and negatively biased subsets
was encountered in Chapter 7, Section 11, where lower and upper confidence
bounds ~ s t:. and t:. s ~ were obtained in (98) and (99) for the ratio t:. = 0}/02 in
a model II one-way classification. Since

p(~ s t:.1~ < 0) = 1 and p(t:. s ~I~ < 0) = 0,

the sets Ct : ~ < 0 and C2 : ~ < 0 are relevant subsets with positive and negative
bias respectively.

The existence of conditioning sets C for which the conditional coverage
probability of level-y confidence sets is 0 or 1, such as in Example 12 or
Problems 27,28 are an embarrassment to confidence theory, but fortunately
they are rare. The significanceof more general relevant subsets is less clear,*
particularly when a number of such subsets are available. Especially awk­
ward in this connection is the possibility [discussed by Buehler (1959)] of the
existence of two relevant subsets C and C' with nonempty intersection and
opposite bias .

If a conditional confidence level is to be cited for some relevant subset C,
it seems appropriate to take account also of the possibility that X may fall
into C and to state in advance the three confidence coefficients y, Ye, and
Ye' The (unknown) probabilities Po(C) and Po(C) should also be consid­
ered . These points have been stressed by Kiefer, who has also suggested the
extension to a partition of the sample space into more than two sets. For an
account of these ideas see Kiefer (l977a, b), Brownie and Kiefer (1977), and
Brown (1978).

Kiefer's theory does not consider the choice of conditioning set or
statistic. The same question arose in Section 2 with respect to conditioning
on ancillaries . The problem is similar to that of the choice of model. The
answer depends on the context and purpose of the analysis, and must be
determined from case to case.

*For a discussion of this issue. see Buehler (1959). Robinson (1976, 1979a), and Bondar
(1977).
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Section 1

1. Let the experiments ~ and 3&" consist in observing X : N(t aJ) and
X : Na, at) respectively (ao < a l ) , and let one of the two experiments be
performed, with P(~) = P( 3&") = t. For testing H : ~ = 0 against ~ = ~l '

determine values ao, aI' ~l' and a such that

(i) a o < a l ; (ii) ao > aI'

where the a i are defined by (9).

2. Under the assumptions of Problem 1, determine the most accurate invariant
(under the transformation X' = - X) confidence sets S( X) with

p(~ E S( X)I~ + p(~ E S( X) IS') = 2y.

Find examples in which the conditional confidence coefficients Yo given ~ and
YI given ~ satisfy

(i) Yo < YI; (ii) Yo > YI '

3. The test given by (3), (8), and (9) is most powerful under the stated assump­
tions.

4. Let Xl" ' " X; be independently distributed, each with probability p or q as
N(t aJ) or Na, af).

(i) If p is unknown, determine the UMP unbiased test of H : ~ = 0 against
K : ~> O.

(ii) Determine the most powerful test of H against the alternative ~l when it
is known that p = t, and show that a UMP unbiased test does not exist
in this case.

(iii) Let ak (k = 0, ... , n) be the conditional level of the unconditional most
powerful test of part (ii) given that k of the X's came from Na, aJ)
and n - k from N( t af). Investigate the possible values a o, ai' .. . , an"

5. With known probabilities p and q perform either ~ or 3&", with X distributed
as N(8, 1) under ~ or N( -8,1) under 3&". For testing H : 8 = 0 against 8> 0
there exist a UMP unconditional and a UMP conditional level-a test. These
coincide and do not depend on the value of p .

6. In the preceding problem, suppose that the densities of X under cf and 3&" are
ee:" and (1/8)e- x / o respectively. Compare the UMP conditional and un­
conditional tests of H : 8 = 1 against K : 8 > 1.



560 CONDITIONAL INFERENCE

Section 2

7. Let X, Y be independently normally distributed as N(8 ,1), and let

V= Y- X

and

W = { Y - X if X + Y > 0,
X - Y if X + Ys O.

(i) Both V and W are ancillary, but neither is a function of the other.

(ii) (V, W) is not ancillary .

[Basu (1959).)

[10.5

8. An experiment with n observations XI" '" Xn is planned, with each X;
distributed as N(8,1). However, some of the observations do not materialize
(for example, some of the subjects die, move away, or tum out to be
unsuitable). Let Ij = 1 or 0 as ~ is observed or not, and suppose the Ij are
independent of the X's and of each other and that P(Ij = 1) = p for all j.

(i) If p is known, the effective sample size M = "i.lj is ancillary .

(ii) If p is unknown, there exists a UMP unbiased level-a test of H: 8 s 0
vs. K : 8 > D. Its conditional level (given M = m) is am = a for all
m = D, ... , n.

9. Consider n tosses with a biased die, for which the probabilities of 1, . . . , 6
points are given by

1

1 - 8

12

2

2 -8

12

3

3 - 8

12

4

1 + 8

12

5

2+8

12

6

3+8

12

and let X; be the number of tosses showing i points.

(i) Show that the triple ZI = XI + Xs, Z2 = X2 + X4 , Z3 = X3 + X6 is a
maximal ancillary; determine its distribution and the distribution of

XI"'" X6 given ZI = ZI' Z2 = Z2 ' Z3 = Z3 '

(ii) Exhibit five other maximal ancillaries .

[Basu (1964).)

10. In the preceding problem, suppose the probabilities are given by

1

1 - 8
6

2

1 - 28

6

3

1 - 38

6

4

1 + 8
6

5

1 + 28

6

6

1 + 38

6

Exhibit two different maximal ancillaries .
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11. Let X be uniformly distributed on (8,8 + 1),0 < 8 < 00, let [X] denote the
largest integer ~ X, and let V = X - [X] .

(i) The statistic V( X) is uniformly distributed on (0,1) and is therefore
ancillary .

(ii) The marginal distribution of [X] is given by

{
[8]

[Xl = [8] + 1
with probability 1 - V(8) ,
with probability V(8) .

(iii) Conditionally, given that V = v, [X] assigns probability 1 to the value
[8] if V(8) ~ v and to the value [8] + 1 if V(8) > v.

[Basu (1964).]

12. Let X, Y have joint density

p( x ,y) = 2f(x)f(y)F(8xy),

where f is a known probability density symmetric about 0, and Fits
cumulative distribution function. Then

(i) p(x, y) is a probability density.

(ii) X and Yeach have marginal density f and are therefore ancillary, but
(X, Y) is not.

(iii) X · Y is a sufficient statistic for 8.

[Dawid (1977).]

13. A sample of size n is drawn with replacement from a population consisting of
N distinct unknown values {al, . . . , aN } . The number of distinct values in the
sample is ancillary.

14. Assuming the distribution (22) of Chapter 4, Section 9, show that Z is
S-ancillary for p = P+/(P+ + p_).

15. In the situation of Example 3, X + Y is binomial if and only if Ii = 1.

16. In the situation of Example 2, the statistic Z remains S-ancillary when the
parameter space is g = {(X, IL) : IL ~ X}.

17. Suppose X = (U, Z), the density of X factors into

pu( x) = c(8 ,,'})go(u; z)h,,( z ) k( u, z ),

and the parameters 8, ,'} are unrelated. To see that these assumptions are not
enough to insure that Z is S-ancillary for 8, consider the joint density

C( 8, ,'}) e" }<u-O)2 - }<: _ ,,)2I( u, z) ,
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where I( u, z) is the indicator of the set {(u, z) : u S z }.
[Basu (1978).]

[10.5

Section 3

18. Verify the density (16) of Example 7.

19. Let the real-valued function f be defined on an open interval.

(i) If f is logconvex, it is convex.

(ii) If f is strongly unimodal, it is unimodal .

20. Let XI"'" Xm and YI , . . . , Y,. be positive, independent random variables
distributed with densities f(x/o) and g(y/'r) respectively. If f and g have
monotone likelihood ratios in (x, 0) and ( y,1') respectively, there exists a
UMP conditional test of H : 1'/0 sAo against 1'/0> Ao given the ancillary
statistics U; = X;/Xm and lj = lj/Yn (i = 1, . . . , m - 1; j = 1, .. . , n - 1).

21. Let VI" ' " v" be independently distributed as N(O, 1), and given VI =

VI " ' " v" = Vn , let X; (i = 1, .. . , n) be independently distributed as N(8vj ,1).

(i) There does not exist a UMP test of H : 8 = 0 against K : 8 > O.

(ii) There does exist a UMP conditional test of H against K given the
ancillary (VI" .. , v,,).

[Buehler (1982).]

22. In Example 8,

(i) the problem remains invariant under G' but not under G3 ;

(ii) the statistic D is ancillary.

Section 4

23. In Example 9, check directly that the set C = {x: x S - k or x ~ k} is not a
negatively biased semirelevant subset for the confidence intervals (X - c,
X+ c).

24. (i) Verify the posterior distribution of 8 given x claimed in Example 9.

(ii) Complete the proof of (32).

25. Let X be a random variable with cumulative distribution function F. If
EIXI < 00, then J~ ooF(x) dx and JO'[1 - F(x)] dx are both finite.
[Apply integration by parts to the two integrals.]

26. Let X have probability density f(x - 8), and suppose that EIXI < 00. For the
confidence intervals X - c < 8 there exist semirelevant but no relevant sub­
sets.
[Buehler (1959).]
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27. Let Xl" ' " x" be independently distributed according to the uniform distribu­
tion U(8, 8 + 1).

(i) Uniformly most accurate lower confidence bounds fl for 8 at confidence
level 1 - a exist and are given by

fl = max(X(I) - k, X(II) - 1),

where X(I) = min(X I , · · · , XII)' X(II) = max(XI, .. ·, X,,), and (1 - k)" =
a .

(ii) The set C: x( II) - x(\) ~ 1 - k is a relevant subset with Po(fl ~ 81C) =
1 for all 8.

(iii) Determine the uniformly most accurate conditional lower confidence
bounds fl(v) given the ancillary statistic V = X(II) - X(I) = v, and com­
pare them with fl.

[The conditional distribution of Y = X(1) given V = v is U(8, 8 + 1 - v) .]
[Pratt (1961), Barnard (1976).]

28. (i) Under the assumptions of the preceding problem, the uniformly most
accurate unbiased (or invariant) confidence intervals for 8 at confidence
level 1 - a are

fl = max( X(1) + d, X(II)) - 1 < 8 < min( X(1)' X(II) - d) = B,

where d is the solution of the equation

2d" = a

2d" - (2d - 1) II = a

if a < 1/2"- 1 ,

if a > 1/2"- 1
•

(ii) The sets Cl : X(II) - X(I) > d and C2 : X(II) - X(I) < 2d - 1 are relevant
subsets with coverage probability

Po [fl < 8 < BICI] = 1 and Po [fl < 8 < BIC2] = o.
(iii) Determine the uniformly most accurate unbiased (or invariant) condi­

tional confidence intervals fl(v) < 8 < B(v) given V = v at confidence
level 1 - a, and compare fl(v), B(v), and B(v) - fl(v) with the corre­
sponding unconditional quantities .

[Welch (1939), Pratt (1961), Kiefer (1977a).]

29. Instead of conditioning the confidence sets 8 E S( X) on a set C, consider a
randomized procedure which assigns to each point x a probability IJ!(x) and
makes the confidence statement 8 E S( x) with probability IJ!( x) when x is
observed.*

"Randomized and nonrandomized condit ioning is interpreted in terms of betting strategies
by Buehler (1959) and Pierce (1973).
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(i) The randomized procedure can be represented by a nonrandomized
conditioning set for the observations (X, U), where U is uniformly
distributed on (0,1) and independent of X, by letting C = {(x , u) : u <
Ii'(x)} .

(ii) Extend the definition of relevant and semirelevant subsets to randomized
conditioning (without the use of U) .

(iii) Let 8 E S(X) be equivalent to the statement X E A(8). Show that Ii' is
positively biased semirelevant if and only if the random variables Ii'(X)
and I A(8)( X ) are positively correlated, where I A denotes the indicatorof
the set A.

30. The nonexistence of (i) semirelevant subsets in Example 9 and (ii) relevant
subsets in Example 10 extends to randomized conditioning procedures.

6. REFERENCES

Conditioning on ancillary statistics was introduced by Fisher (1934, 1935,
1936).* The idea was emphasized in Fisher (1956b) and by Cox (1958), who
motivated it in terms of mixtures of experiments providing different amounts
of information. The consequences of adopting a general principle of condi­
tioning in mixture situations were explored by Birnbaum (1962) and Durbin
(1970). Following Fisher's suggestion (1934), Pitman (1938) developed a
theory of conditional tests and confidence intervals for location and scale
parameters.

The possibility of relevant subsets was pointed out by Fisher (1956a, b).
Its implications (in terms of betting procedures) were developed by Buehler
(1959), who in particular introduced the distinction between relevant and
semirelevant, positively and negatively biased subsets, and proved the
nonexistence of relevant subsets in location models. The role of relevant
subsets in statistical inference, and their relationship to Bayes and admissi­
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and Bondar (1977) among others.

Fisher (1956a, b) introduced the idea of relevant subsets in the context of
the Behrens-Fisher problem. As a criticism of the Welch-Aspin solution, he
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*Fisher's contributions to this topic are discussed in Savage (1976, pp. 467-469).
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Appendix

1. EQUIVALENCE RELAnONS; GROUPS

A relation : x - y among the points of a space !!£ is an equivalence relation
if it is reflexive, symmetric, and transitive, that is, if

(i) x - x for all x E !!£;

(ii) x - y implies y - x;

(iii) x - y, y - z implies x - z.

Example 1. Consider a class of statistical decision procedures as a space, of
which the individual procedures are the points. Then the relation defined by 8 - 8'
if the procedures 8 and 8' have the same risk function is an equivalencerelation. As
another example consider all real-valued functions defined over the real line as
points of a space. Then f - g if f(x) = g(x) a.e. is an equivalence relation.

Given an equivalence relation, let D, denote the set of points of the space
that are equivalent to x. Then D, = D; if x - y, and Dx () D; = 0 other­
wise . Since by (i) each point of the space lies in at least one of the sets Dx ' it
follows that these sets, the equivalence classes defined by the relation - ,
constitute a partition of the space.

A set G of elements is called a group if it satisfies the following
conditions.

(i) There is defined an operation, group multiplication, which with any
two elements a, bEG associates an element c of G. The element c
is called the product of a and b and is denoted by abo

(ii) Group multiplication obeys the associative law

(ab)c = a(bc).

(iii) There exists an element e E G, called the identity, such that

ae = ea = a

569

for all a E G.
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(iv) For each element a E G, there exists an element a-I E G, its
inverse, such that

aa- 1 = a- 1a = e.

Both the identity element and the inverse a-I of any element a can
be shown to be unique.

Example 2. The set of all n X n orthogonal matrices constitutes a group if
matrix multiplication and inverse are taken as group multiplication and inverse
respectively, and if the identity matrix is taken as the identity element of the group.
With the same specification of the group operations, the class of all nonsingular
n X n matrices also forms a group. On the other hand, the class of all n X n
matrices fails to satisfy condition (iv).

If the elements of G are transformations of some space onto itself, with
the group product ba defined as the result of applying first transformation a
and following it by b, then G is called a transformation group. Assumption
(ii) is then satisfied automatically. For any transformation group defined
over a space !!( the relation between points of X given by

x - y if there exists a E G such that y = ax

is an equivalence relation. That it satisfies conditions (i), (ii), and (iii)
required of an equivalence follows respectively from the defining properties
(iii), (iv), and (i) of a group .

Let re be any class of 1 : 1 transformations of a space, and let G be the
1 f 11 fi . ad ± 1 ± 1 ± 1 • h rLJ_cass 0 a mte pr ucts a1 a2 ... am , WIt a1,.. . ,amE"I>, m-

1,2, .. . , where each of the exponents can be +1 or -1 and where the
elements ai' a2 , • • • need not be distinct. Then it is easily checked that G is
a group, and is in fact the smallest group containing re.

2. CONVERGENCE OF DISTRIBUTIONS

When studying convergence properties of functions it is frequently conveni­
ent to consider a class of functions as a realization of an abstract space ,f;;

of points f in which convergence of a sequence fn to a limit f, denoted by
fn -+ f, has been defined.

Example 3. Let p. be a measure over a measurable space (~, sI).

(i) Let$' be the class of integrable functions. Then In converges to I in the
mean if·

(1) jlln - II dp. --+ O.

"Here and in the examples that follow, the limit I is not unique. More specifically, if
In --> I, then In --> g if and only if 1= g (a.e. p.). Putting 1- g when 1= g (a.e, p.),
uniqueness can be obtained by working with the resulting equivalence classes of functions
rather than with the functions themselves.
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(ii) Let.% be a uniformly bounded class of measurable functions The sequence
I. is said to converge to I weakly if

(2) I Inpdp. - Ilpdp.

for all functions p that are integrable p. .
(iii) Let.% be the class of measurable functions. Then In converges to I

pointwise if

(3) In(x) - I(x) a.e. p. .

A subset ~o of ~ is dense in ~ if, given any I E ~, there exists a
sequence in ~o having I as its limit point. A space ~ is separable if there
exists a countable dense subset of ~. A space ~ such that every sequence
has a convergent subsequence whose limit point is in ~ is compact.* A
space ~ is a metric space if for every pair of points I, g in ~ there is
defined a distance dt f, g) ~ 0 such that

(i) dt ], g) = 0 if and only if I = g;

(ii) dt], g) = d(g, f);
(iii) dt ], g) + d(g, h) ~ di], h) for all I,g, h.

The space is pseudometric if (i) is replaced by

(if) dt f , f) = 0 for all I E ~.

A pseudometric space can be converted into a metric space by introduc­
ing the equivalence relation 1- g if dt], g) = O. The equivalence classes
F, G, . . . then constitute a metric space with respect to the distance D(F, G)
= dt ], g) where IE F, g E G.

In any pseudometric space a natural convergence definition is obtained
by putting In ~ I if dUn' f) ~ O.

EXIlIIIfJIe 4. The space of integrable functions of Example 3(i) becomes a
pseudometric space if we put

dU, g) = III - gldp.

and the induced convergence definition is that given by (1).

Example 5. Let fP be a family of probability distributions over (~, ~). Then
fP is a metric space with respect to the metric

(4) d(P ,Q) = sup Ip(A) - Q(A)I ·
AeJII

*The term compactness is more commonly used for an alternative concept, which coincides
with the one given here in metric spaces. The distinguishing term sequential compactness is then
sometimes given to the notion defined here.
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Lemma 1. If ff is a separable pseudometric space, then every subset of ff
is also separable.

Proof. By assumption there exists a dense countable subset {fn} of ff.
Let

Sm .n = {f : dU,fn) < ~},

and let A be any subset of ff. Select one element from each of the
intersections A n Sm, n that is nonempty, and denote this countable collec­
tion of elements by A o. If a is any element of A and m any positive integer,
there exists an element fn such that d(a, fn ) < 11m. Therefore a belongs
to Sm, n.,' the intersection A n Sm.n

m
is nonempty, and there exists therefore

an element of A o whose distance to a is < 21m. This shows that A o is
dense in A, and hence that A is separable.

Lemma 2. A sequence fn of integrable functions converges to f in the mean
if and only if

(5) ffn dp. --. ffdp.
A A

uniformly for A E SII.

Proof. That (1) implies (5) is obvious, since for all A E SII

I~fn dp. - ~fdP.1 s JJfn - fl dp. .

Conversely, suppose that (5) holds , and denote by An and A~ the set of
points x for which fn(x) > f(x) and fn(x) < f(x) respectively . Then

Jlfn - fl dp. = f Un - j) dp. - j,u. -j) dp. -. O.
A. An

Lemma 3. A sequence fn of uniformly bounded functions converges to a
boundedfunction f weakly if and only if

(6) ffn dp. --. jfdp.
A A

for all A with p.(A) < 00.

Proof. That weak convergence implies (6) is seen by taking for p in (2)
the indicator function of a set A, which is integrable if p.(A) < 00 . Con-
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versely (6) implies that (2) holds if p is any simple function s = Ea.l, with
all the p.(A;) < 00. Given any integrable function p, there exists, by the
definition of the integral, such a simple function s for which flp - sl dp: <
f./3M, where M is a bound on the Ill's. We then have

IfUn - I)Pdp.1 s IJln(P - s) dp.1 + Ifl(s - p) dp.1 + IJUn - l)sdp.l ·

The first two terms on the right-hand side are < f./3, and the third term
tends to zero as n tends to infinity. Thus the left-hand side is < f. for n
sufficiently large, as was to be proved.

Lemma 4.* Let I andIn' n = 1,2, ... , be nonnegative integrable functions
with

f I dp: = fin dp. = 1.

Then pointwiseconvergence olin toI implies thatIn -. I in the mean.

Proof. If gn = In - I, then gn ~ -I, and the negative part g;; =

max( - gn' 0) satisfies \g;;1 s f. Since gn(x) -. 0 (a.e. p.), it follows from
Theorem l(ii) of Chapter 2 that fg;; dp. -. 0, and fg: dp. then also tends
to zero, since ts, dp. = O. Therefore flgnl dp. = f(g: + g;;) dp. -. 0, as was
to be proved.

Let P and Pn , n = 1,2, .. . , be probability distributions over (.¥, d)
with densities Pn and P with respect to p.. Consider the convergence
definitions

(a) Pn -. P (a .e. p.);
(b) flPn - pi dp. -. 0;
(c) fgPn dp. -. fgpdp. for all bounded measurable g;

and

(b') Pn(A) -. P(A) uniformly for all A Ed;

(c') Pn(A) -. P(A) for all A Ed.

Then Lemmas 2 and 4 together with a slight modification of Lemma 3
show that (a) implies (b) and (b) implies (c), and that (b) is equivalent to (b')
and (c) to (c'). It can further be shown that neither (a) and (b) nor (b) and
(c) are equivalent."

·Schelfe (1947).
t Robbins. (1948).
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3. DOMINATED FAMILIES OF DISTRIBUTIONS

[3

Let .It be a family of measures defined over a measurable space (~, d).
Then .It is said to be dominated by a a-finite measure p. defined over
(~, d) if each member of .It is absolutely continuous with respect to p. .
The family .It is said to be dominated if there exists a a-finite measure
dominating it. Actually, if .It is dominated there always exists a finite
dominating measure. For suppose that .It is dominated by p. and that
~= UA i with p.( A;) finite for all i, If the sets Ai are taken to be mutually
exclusive, the measure v(A) = Lp.(A n A;)/2ip.(A;) also dominates .It and
is finite.

Theorem 1.· A family 9 of probability measures over a Euclidean space
(~, d) is dominated if and onlyif it is separable with respect to the metric (4)
or equivalently with respect to the convergence definition

P; -. P if r,(A) -. P ( A) uniformly for A E d .

Proof. Suppose first that 9 is separable and that the sequence {Pn} is
dense in 9 , and let p. = LPn/2

n. Then p.(A) = 0 implies Pn(A) = 0 for all
n, and hence P(A) = 0 for all P E 9 . Conversely suppose that 9 is
dominated by a measure p., which without loss of generality can be assumed
to be finite . Then we must show that the set of integrable functions dP/ dp.
is separable with respect to the convergence definition (5) or, because of
Lemma 2, with respect to convergence in the mean. It follows from Lemma
1 that it suffices to prove this separability for the class §' of all functions f
that are integrable p. . Since by the definition of the integral every integrable
function can be approximated in the mean by simple functions, it is enough
to prove this for the case that §' is the class of all simple integrable
functions. Any simple function can be approximated in the mean by simple
functions taking on only rational values, so that it is sufficient to prove
separability of the class of functions LrilA where the r's are rational and
the A's are Borel sets, with finite p.-measure'since the f's are integrable. It is
therefore finally enough to take for §' the class of functions lA' which are
indicator functions of Borel sets with finite measure. However, any such set
can be approximated by finite unions of disjoint rectangles with rational
end points. The class of all such unions is denumerable, and the associated
indicator functions will therefore serve as the required countable dense
subset of §'.

• Berger. (1951).
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An examination of the proof shows that the Euclidean nature of the
space (.¥, SII) was used only to establish the existence of a countable
number of sets A; E SII such that for any A E SII with finite measure there
exists a subsequence A; with J-L(A;) ~ J-L(A). This property holds quite
generally for any a-field d which has a countable number of generators, that
is, for which there exists a countable number of sets B; such that SII is the
smallest a-field containing the B;.t It follows that Theorem 1 holds for any
a-field with this property. Statistical applications of such a-fields occur in
sequential analysis, where the sample space .¥ is the union .¥ = U;.¥; of
Borel subsets .¥; of i-dimensional Euclidean space. In these problems, .¥; is
the set of points (Xl' " ., X;) for which exactly i observations are taken. If
SII; is the a-field of Borel subsets of .¥;, one can take for SII the a-field
generated by the SII;, and since each SII; possesses a countable number of
generators, so does SII.

If SII does not possess a countable number of generators, a somewhat
weaker conclusion can be asserted. Two families of measures .It and .;V are
equivalent if J-L(A) = 0 for all J-L E.It implies v(A) = 0 for all v E';v and
vice versa.

Theorem 2.:t A family 9 of probability measures is dominated by a
a-finite measure if and only if 9 has a countable equivalent subset.

Proof. Suppose first that 9 has a countable equivalent subset
{Pl , P2 , . •. } . Then 9 is dominated by J-L = LPn/2

n
• Conversely, let 9 be

dominated by a a-finite measure J-L, which without loss of generality can be
assumed to be finite. Let 2 be the class of all probability measures Q of the
form LC;P; , where P; E 9 , the c 's are positive, and LC; = 1. The class 2 is
also dominated by J-L , and we denote by q a fixed version of the density
dQ/dJ-L. We shall prove the fact, equivalent to the theorem, that there exists
Qo in 2 such that Qo(A) = 0 implies Q(SII) = 0 for all Q E 2 .

Consider the class ~ of sets C in SII for which there exists Q E 2 such
that q( x) > 0 a.e. J.L on C and Q(C) > O. Let J-L(C;) tend to SUP'il'J.L(C), let
q;(x) > 0 a.e. on C;, and denote the union of the C; by Co' Then q6(x) =
Lc;q;(x) agrees a.e. with the density of Qo = Lc;Q; and is positive a.e. on
Co, so that Co E ~. Suppose now that Qo(A) = 0, let Q be any other
member of 2, and let C = (x: q(x) > O} . Then Qo(A nCo) = 0, and
therefore J-L(A nCo) = 0 and Q(A nCo) = O. Also Q(A n Co n C) = O.
Finally, Q(A n Co n C) > 0 would lead to J-L(Co U [A n Co n CD >
J-L( Co) and hence to a contradiction of the relation J-L( Co) = sUP'il' J-L( C) , since
A n Co n C and therefore Co U [A n Co n C] belongs to ~.

"A proof of this is given for example by Halmos (1974. Theorem B of Section 40).
*Halmos and Savage (1948).



576 APPENDIX

4. THE WEAK COMPACfNESS THEOREM

[4

The following theorem forms the basis for proving the existence of most
powerful tests, most stringent tests, and so on.

Theorem 3.t (Weak compactness theorem.) Let J1. be a a-finite measure
over a Euclidean space, or moregenerally overany measurable space (~, SII)
for which SII has a countable number of generators. Then the set of measurable
functions <P with 0 :::;; <P :::;; 1 is compact with respect to the weak convergence
(2).

Proof. Given any sequence {<Pn}' we must prove the existence of a
subsequence {<Pnj} and a function <P such that

lim f <PnjP dJ1. = f <pp dJ1.

for all integrable p. If J1.* is a finite measure equivalent to J1., then p* is
integrable J1.* if and only if p = (dJ1.* /dJ1.)p* is integrable J1., and jeppdJ1. =
fepp* dJ1.* for all <p. We may therefore assume without loss of generality that
J1. is finite. Let {Pn} be a sequence of p's which is dense in the p's with
respect to convergence in the mean. The existence of such a sequence is
guaranteed by Theorem 1 and the remark following it. If

<1'n( p) = f<PnP dJ1.,

the sequence <1'n( p) is bounded for each p. A subsequence <1'nk can be
extracted such that <1'nk(Pm) converges for each Pm by the following diago­
nal process. Consider first the sequence of numbers {<1'n( PI)} which pos­
sesses a convergent subsequence <1'ni(PI)' <1'n2(PI)"" . Next the sequence
<1'n;( P2)' <1'n2( P2)'. .. has a convergent subsequence cl>n;'( P2), <1'n'/ P2), · . . .
Continuing in this way, let n 1 = nt, n2 = n'{, n3 = n;", ... . Then nl < n2
< ... , and the sequence {<1'n .} converges for each Pm' It follows from the
inequality ,

If(<pnj - <Pn,)PdJ1.1 s If(<Pnj - <Pn,) r; dJ1.1 + 2 flp - Pml dJ1.

that <1'n(P) converges for all p. Denote its limit by <1'(p), and define a set,

t Banach (1932). The theorem is valid even without the assumption of a countable number
of generators; see Nolle and Plachky (1967), and Aloaglu's theorem, given for example in
Royden (1968, Chapter 10, Theorem 17).
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function eIl* over .JIf by putting
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eIl*(A) = eIl(IA) '

Then eIl* is nonnegative and bounded, since for all A, eIl*(A) s p.(A). To
see that it is also countably additive let A = U Ak where the Ak are disjoint.
Then eIl*(A) = limell:'(U Ak ) and

1
1 epn jdp. - LeIl*(Ak ) I :$11 m epni dp. - i: eIl*(A k ) I

UA k Uk_1A k k -l

+11 co epnj dp. - f eIl*(A k ) I·
Uk_m+1Ak k=m+l

Here the second term is to be taken as zero in the case of a finite sum
A = Uk'_lAk, and otherwise does not exceed 2p.(U:f_m+lAk)' which can be
made arbitrarily small by taking m sufficiently large. For any fixed m the
first term tends to zero as i tends to infinity. Thus eIl* is a finite measure
over (,q[, .JIf). It is furthermore absolutely continuous with respect to p.,
since p.(A) = 0 implies eIln(l,of) = 0 for all i, and therefore eIl(lA) = eIl*(A)
= O. We can now apply the Radon-Nikodym theorem to get

eIl*(A) = ~epdp.

with 0 s ep .s 1. We then have

f epn dp. -+ f ep dp.
,of' A

for all A ,

for all A,

and weak convergence of the epn j to ep follows from Lemma 3.
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Absolute continuity (of one measure with
respect to another) , 40. See also
Equivalence , of two measures ; Radon­
Nikodym derivative

Action problem, 4
Adaptive test, 322
Additivity of effects, 388; in model II, 418 ;

test for, 392
Admissibility, 17; Bayes method for proving,

309; of confidence sets, 313; in exponential
families, 307; of invariant procedures, 28,
311 ; of multiple comparison procedures ,
384; of UMP invariant tests, 305; of UMP
unbiased tests, 170;of unbiased procedures,
27,305 . See also Alpha -admissibility ;
d-admissibility ; Inadmissibility

a. e., see Almost everywhere
Aggregation (of several contingency tables),

162
Almost everywhere (a . e.) , 40 , 140
Almost invariance :ofdecision procedures, 24;

of likelihood ratio , 341; relation to
invariance, 297, 298, 316, 340; relation to
invariance of power function, 300; relation
to maximin tests, 516; relation to
unbiasedness, 302; of sets, 342; of tests,
297,298. See also Invariance

Aloaglu's theorem, 576
Alpha -admissibility , 306, 342, 384
Alternatives (to a hypothesis) , 68
Amenable group, 522 , 536
Analysis of covariance, 40 I
Analysis of variance , 375, 395, 444, 446;

different models for , 418; for one-way
classification, 375; in random effects
model, 425 ; robustness ofF-tests, 401;

for two-way classification, 390, 395. See
also Linear hypothesis ; Linear model

Ancillary statistic, 542, 560, 564 , 565, 566;
and invariance , 543; maximal, 545, 560;
and sufficiency, 545 . See also Partial
ancillarity

Approximate hypotheses : extended Neyman­
Pearson lemma for, 512, 515

Arcsine transformation for binomial variables,
432,445

Association, 162; spurious, 162; Yule's
measure of, 157. See a/so Dependence,
positive

Asymptotic (relative) efficiency, 321
Asymptotic normality : of functions of

asymptotically normal variables, 205; of
mean, 204. See a/so Central limit theorem

Asymptotic optimality, vii, 477, 485
Attributes : paired comparisons by, 169,291,

510,526; sample inspection by, 80, 293
Autoregressive process (first order), 212
Average power, maximum, 429

Bartlett's test for variances, 378
Basu's theorem , 191
Bayesian confidence sets , see Credible region
Bayesian inference, 15,70,227,427,465,

511,564
Bayes risk, 14
Bayes solution , 14, 18,25,33; to maximize

minimumpower, 505; to prove admissibility,
309; restricted, 15.See a/so Credible region;
Prior distribution

Bayes sufficiency, 21, 22, 31
Bayes test, 125,343,430,465,498
Behrens-Fisher distribution , 262
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Behrens-Fisher problem, 209, 262, 304 , 360,
361,558,564,566; for many samples , 379;
multivariate, 462; nonparametric, 323 .
See also Welch-Aspin test

Beta distribution , 200, 272; as distribution of
order statistics, 345; noncentral, 369, 428;
relation to F -distribution, 200; relation to
gamma distribution , 272; in testing linear
hypotheses, 369; in testing ratio of variances ,
200,255

Bimeasurable transformation, 284
Binomial distribution b(p,n), 2; in comparing

two Poisson distributions, 153; completeness
of, 141; as exponential family, 56, 81; as
log-linear model in bio-assay, 178; variance
stabilizing transformation for, 432, 445.
See also Contingency tables; Multinomial
distribution ; Negative binomial
distribution Nb; Two by two table

Binomial probabilities: comparison of two,
121,154,159,161 ,175,180,183,261 ;
confidence bounds for, 93, 117; confidence
intervals for, 219, 221; credible region for,
227; one-sided test for, 93,113,167; two­
sided test for, 1I8, 138, 167, 171. See also
Contingency tables; Independence, test for;
Median; Paired comparisons ; Sample
inspection ; Sign test

Binomial trials, 7; obtained by dichotomizing
continuous variables , 164; sufficient
statistics for, 19, 28. See also Inverse
sampling

Bioassay, 178
Bivariate distribution(general): class of one­

parametric families of, 251 ; testing for
independence or lack of correlation in,
250, 350. See also Dependence, positive

Bivariate normal correlation coefficient :
confidence bounds for, 353; distribution of,
267,270; test for, 249, 304, 340

Bivariate normal distribution, 249, 267, 271;
ancillary statistics in, 545;joint distribution
of second moments in, 268; test for
independence in, 249, 253, 271; testing
parameters in, 268, 305

Borel set, 35
Bounded completeness , 144, 172, 191,300;

example of, without completeness, 173. See
alsoCompleteness of family of distributions

Canonical form: for model II two-way layout,
438, 441; for multivariate linear hypothesis,

454; for multivariate linear hypothesis with
covariates, 471; for nested classification in
model II, 423 , 438; for repeated
measurement model, 467; for univariate
linear hypothesis, 366, 370

Cartesian product, 40
Cauchy distribution, 86, 1I5, 510 , 567
Causal influence, 162
CDF, see Cumulative distribution function
Center of symmetry : confidence intervals for,

263. See also Symmetry
Central limit theorem, 204; for dependent

variables, 213; Lindeberg form of, 402
Chebyshev inequality , 257
Chi-squared distribution, 56, 139; in estimating

normal variance , 218, 229; as exponential
family, 56; as limit for likelihood ratio, 487;
in multivariate distribution theory , 490 ;
non-central, 427, 428, 434, 447, 500;
relation to beta-distribution, 200; relation
to exponential distribution , 64 , 82, 114;
relation to F-distribution, 199; relation to
t-distribution, 196; for testing linear
hypotheses with known variance or
covariance matrix , 431, 477; in testing
normal variance, 110, 139, 194,290; for
total waiting time in Poisson process, 92.
Seealso Gamma distribution; Normal one­
sample problem, the variance; Wishart
distribution

Chi-squared test, 477, 480, 500, 502;
restricted, 481, 500, 501; in r X c
contingency tables , 487; for testing
goodness of fit, 480, 494; for testing
uniform distribution, 480, 482

Cluster sampling, 211
Cochran-Mantel-Haenszel test, 165
Coefficient of variation, 549; confidence

boundsfor,352,356;testsfor,294,303
Comparison of experiments, 86,114,116,159,

167,223,264,339
Completeness of a class of decision

procedures, 17, 18; of classes of one-sided
tests, 82, 83, 461; ofclass oftwo-sided tests,
172; relation to sufficiency, 64. See also
Admissibility

Completeness of family of distributions, 141,
172, 173, 180; of binomial distributions,
141; for exponential distributions , 256; of
exponential families, 142; of normal
distributions, 142, 172; of order statistics,
163,173,183,187; relations to bounded
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completeness, 144, 173; of uniform
distributions, 141, 172

Completion of measure, 35
Complexity: of multiple comparison

procedure, 387
Components of variance, 425 , 558 . See also

Random effects model
Composite hypothesis , 72; large-sample tests

for, 483 ; vs. simple alternative, 104
Conditional distribution, 48; in bivariate

normal distributions, 267 ; example of
nonexistence, 48 , 67; in exponential
families, 58 , 146; in Poisson distribution,
65

Conditional expectation, 44 , 47 , 50
Conditional independence, 162; test of, 163
Conditional inference, ix, 541, 558 , 564, 566
Conditionality principle, weak , 548
Conditional power, 151, 170,246,541,547
Conditional probability, 43, 47, 48, 66
Conditional test, 182, 549 ; most powerful,

540,543
Confidence bands : for cumulative distribution

function , 334 , 354 ; in linear models, 406;
for regression line, 417, 444 ; for regression
surface, 444. See also Simultaneous
confidence intervals

Confidence bounds, 89; impossible, 421 , 558;
with minimum risk, 117; in monotone
likelihood ratio families, 91; in presence of
nuisance parameters, 213; randomized, 93;
relation to median unbiased estimates, 95,
214 ; relation to one-sided tests, 214 ;
standard, 96, 229 ; uniformly most
accurate, 90

Confidence coefficient, 90, 213 ; conditional,
558

Confidence ellipsoids , 461, 490
Confidence intervals , ix, 68, 94; of bounded

length, 258, 259; for center of symmetry,
263 ; distribution-free, 247 , 263, 329 ;
empty, 421, 558 ; history of, 126;
interpretation of, 214, 225 ; logarithmically
shortest, 331; loss functions for, 6, 24, 94,
95; minimax, 524 ; for parameters suggested
by data, 410 ; in randomization models, 247 ;
randomized, 219; unbiased, 13,24,217.
See also Simultaneous confidence intervals

Confidence level, 89
Confidence sets , 90; admissibility of, 313 ;

average smallest, 330 ; conditional , 541;
derived from a pivotal quantity, 333, 357;

equivariant, 327, 333 , 524 ; example of
inadmissible, 525; minimax, 524; relation
with tests , 90, 214, 216; of smallest
Lebesgue measure , 261 ,330,524; unbiased,
217 ; which are not intervals, 225 . See also
Credible region; Equivariant confidence
sets; Relevant and semirelevant subsets;
Simultaneous confidence sets

Conservative test, 155
Consistency of sequence of tests, 356, 478,

494
Consumer preferences, 166, 167
Contingency tables: general, 165; loglinear

models for , 165; models for, 161,495;
r X c tables, 156,487,495; three factor,
162 ; 2 X 2 X K, 162, 165, ~79;

2 X 2 X 2 X L, 179. See also Two by
two tables

Continuity correction, 155
Contrasts, 388,415; in multivariate case , 472,

494
Convergence: in law, 204 ; in mean, 570;

pointwise , 571 ; in probability, 257 ; weak,
571

Convergence theorem : for densities, 573 ;
dominated, 39; for functions of random
variables, 205 ; monotone, 39. See also
Cramer-Wold theorem

Correlation coefficient : in bivariate normal
distribution, 249; confidence bounds for,
353; intraclass, 438 ; testing value of, 249,
304 , 340. See also Bivariate distribution;
Dependence, positive; Multiple correlation
coefficient; Rank correlation coefficient;
Sample correlation coefficient R

Countable additivity , 34
Countable generators of o-field, 575
Counting measure, 35
Covariance matrix , 453 ; estimation of, 488;

special structure, 440, 441; tests for, 379,
462

Covariates, 470, 552
Cramer-Wold theorem, 491
Credible region, 226; equal tails , 229; highest

probability density , 227, 262
Critical function, 71
Critical region, 68
Cross product ratio, see Odds ratio
Cumulative distribution function (cdf), 36, 62;

confidence bands for , 334, 354 ; empirical,
323, 335; inverse of, 344 . See also
Kolmogorov test for goodness of fit
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d-admissibility, 306, 342. See also
Admissibility

Data Snooping, 410, 476
Decision problem: specification of, 2
Decision space, 2, 3
Decision theory , 29, 33;and inference , 4,5 , 71
Deficiency, 197
Dependence, positive, 157, 176,210,251 ,

271,315,350; measures of , 157. See also
Correlation coefficient ; Independence

Design of experiments, 7, 8,159,396,447.
See also Random assignment; Sample size

Directional error, 387
Direct product , 40
Dirichlet distribution, 262
Distribution, see thefollowing families of

distributions: Beta, Binomial , Bivariate
normal, Cauchy, Chi-squared, Dirichlet,
Double exponential, Exponential, F,
Gamma, Hypergeometric, Inverse
Gaussian , Logistic , Multinomial ,
Multivariate normal , Negative binomial,
Noncentral, Normal, Pareto, Poisson,
Polya , t, Hotelling's T2, Triangular,
Uniform, Weibull, Wishart. See a/so
Exponential family; Monotone likelihood
ratio ; Total positivity ;Variation diminishing

Dominated convergence theorem, 39
Dominated family of distributions, 53, 574,

575
Domination: of one procedure over another,

17.See also Admissibility ; Inadmissibility
Double exponential distribution, 355,509,

567; locally most powerful test in, 531;
UMP conditional test in, 550

Duncan multiple comparison procedure,
383, 385

Dunnett's multiple comparison method, 443

EDF, see Empirical distribution function
Efficiency, relative asymptotic, 321
Efficiency robustness, 208, 322. See a/so

Robustness
Empirical distribution function(EDF), 323,

335
Envelope power function, 341, 525. See a/so

Most stringent test
Equivalence : of family of distributions or

measures , 54, 575; of statistics, 43; of two
measures, 61

Equivalence classes, 569
Equivalence relation , 569

Equivariance, 12,544. See also Invariance
Equivariant confidence bands , 335,406,417,

472
Equivariant confidence sets, 327, 330; and

pivotal quantities, 333, 357. See also
Uniformly most accurate confidence sets

Error of first and second kind, 69, 70
Error rate per experiment, 388
Essentially complete class, 18, 64, 82, 113.

SeealsoCompleteness of a class of decision
procedures

Estimation, seeConfidence bands ;Confidence
bounds ; Confidence intervals; Confidence
sets ; Equivariance; Max imum likelihood;
Median: Point estimation; Unbiasedness

Euclidean sample space, 49
Expectation (of a random variable), 38;

conditional, 44, 47, 50
Expected normal order statistics, 318
Experimental design, see Design of

experiments
Exponential distribution, 23, 360;

completeness in, 256; confidence bounds
and intervals in, 92, 261, 354; order
statistics from, 65; other tests for, 355;
relation to Pareto distribution, 123; relation
to Poisson process , 23, 65, 82, 154; r­
sample problem for, 354, 364; sufficient
statistics in, 28; testing against gamma
distribution, 272; testing against normal or
uniform distribution, 355; tests in, 93, 112,
255; two-sample problem for , 338.Seea/so
Chi -squared distribution ; Gamma
distribution ; Life testing

Exponential family, 56, 59, 66; admissibility
of tests in, 307; completeness of, 142;
equivalent forms for, 150; median unbiased
estimators in, 214; moments of sufficient
statistics, 66; monotone likelihood ratio of,
80, 119; natural parameter space of,
57, 66; testing in multiparameter, 145, 171,
181, 188; testing in one-parameter, 80, 120,
135, 172; total positivity of, 119. See also
One-parameter exponential family

Exponential waiting times, 23,65,82,92. See
a/so Exponential distribution

Factorization criterion for sufficient statistics,
19,30,31,55,66,67

F-distribution, 199,446,449; in confidence
intervals for ratio of variances, 219, 421; in
Hotelling's T2-test, 459; noncentral, 428;
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relation to beta distribution, 200; relation to
distribution of multiple correlation
coefficient, 497; for simultaneous confidence
sets, 475. See also F-test for linear
hypothesis ; F -test for ratio of variances

F iducial probability , 127, 131, 133,229;
distribution, 129, 229, 230

Field , 60
Finite decision problem, 64
Fisher 's exact test , 155, 158, 180, 187. See

also Two by two tables
Fisher's least significant difference, 382, 386
Fixed effects model , 418. See also Linear

model ; Model I and II
Free Group, 26
Friedman's rank test , 392
F -test for linear hypothesis , 369; admissibility

of, 370; as Bayes test, 430; has best average
power , 429; in Fisher's least significant
difference method , 382; in Gabriel 's
simultaneous test procedure , 382,416; in
mixed models, 426; permutation version of,
450; power of, 369;robustness of, 378, 379,
401. See also F -distribution

F -test for ratio of variances , 122, 199;
admissibility of, 313; in mixed models, 426;
in model II analysis of variance , 420, 424;
nonrobustness of, 207, 378; power of, 200.
See also F -distribution; Normal two­
sample problem , ratio of variances

Fubini's theorem, 40
Fully informative statistics, 113
Fundamental lemma, see Neyman-Pearson

fundamental lemma

Gabriel's simultaneous test procedure, 382,
416

Gamma distribution [(g, b), 123,271,272,
356. See also Beta distribution ; Chi­
squared distribution ; Exponential
distribution

Goodness offit, 336, 355, 480, 482, 494. See
also separate families

Group, 569; amenable, 522; finite, 518; free,
26; generated by subgroups , 288; linear,
286,299, 522; orthogonal, 286, 522, 525;
permutation, 286, 298, 356;of rigidmotions,
525; scale, 285, 337; transitive , 285, 543,
550; transformation, 282, 570; translation ,
285,521 ; triangular, 305. See also
Equ ivariance ; Invar iance

Group family, 543, 550

Guaranteed power : achieved through
sequential procedure , 151, 153,260; with
minimal sample size, 505

Haar measure, 299
Homogeneity, tests of: against ordered

alternatives , 380; for exponential
distributions , 364; for K two-by-two tables,
165; for multinomial distributions , 495,496;
for multivariate normal means , 463;
nonparametric, 380, 392; for normal means,
374,378,379, 381,389,394; for normal
variances, 376; for subsets of means, 381.
See also Multiple comparisons ; Normal
many-sample problem

Hotelling's T2_distribution, 459, 500;
derivation of, 489; noncentral, 460, 500;
x2-limit of, 490

Hotelling's T2_test, 459, 460, 500;
admissibility of, 460, 498, 523; application
to one- and two-sample problems, 459,461 ,
462,471 ; application to two-factor mixed
model , 466; as Bayes solution , 498; best
average power of, 500; minimaxity of, 523;
in multivariate regression, 462, 490; in
repeated measurements, 466, 469;
robustness of , 460, 462

HPD (Highest probability density) credible
region, 227, 262

Huber condition(for robustness), 404, 436,
448

Hunt-Stein theorem, 519
Hypergeometric distribution , 80; monotone

likelihood ratio of, 80; relation to
distribution of runs, 177; in testing equality
of two binomials, 155; in testing for
independence in a two by two table, 158,
161; UMP one-sided test for testing mean
of, 80. See also Fisher's exact test ; Two by
two tables

Hypothesis testing, 3, 68; conditional , 539;
history of, 126, 131;large-sample approach ,
ix, 477; loss functions for, 72, 82,172,292;
without stochastic basis , 162

Improper prior distribution , 226
Inadmissibility, 17; of confidence sets for

vector means, 525; of likelihood ratio test ,
341; of UMP invariant test , 305. See also
Admissibility

Independence: conditional, 162; of normal
correlation coefficient from sample means
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Independence (Continued)
and variances, 192; relation to absence of
correlation, 250; of sample mean from
function of differences in normal samples,
191; of statistic from a complete sufficient
statistic, 191;of sum and ratio of independent
X2 variables, 192; of two random variables,
40

Independence, test for : in bivariate normal
distribution, 248; in multivariate normal
distribution, 462, 496; in nonparametric
models, 251, 314, 350; in r X c contingency
tables, 487; vs. tests for absence of
correlation, 250; in two by two tables,
156, 161

Indicator function of a set, 39
Indifference zone, 505
Inference, statistical, 1,4,71. See a/so

Decision theory
Integrable function , 38
Integration, 37
Interaction, 393, 396,444; in random effects

and mixed models, 440,441; test for absence
of, 392, 394, 434

Interval estimation, see Confidence
intervals

Into, see Transformation
Intraclass correlation coefficient, 438
Invariance: of decision procedure, II, 12, 31,

32; of likelihood ratio, 341;of measure, 299,
518,519; of power functions, 299, 300;
relation to equivariance, 12; relation to
minimax principle, 26, 516, 519; relation
to sufficiency , 290, 301; relation to
unbiasedness, 24, 302; oftest, 284, 357;
warning against inappropriate use of, 377.
See a/so Almost invariance; Equivariance

Invariant measure , 299, 518, 519; over
orthogonal group, 518; over translation
group, 521

Inverse Gaussian distribution, 124, 272
Inverse sampling: for binomial trials, 81; for

Poisson variables, 82. See a/so Negative
binomial distribution Nb; Poisson process

Kendall's t-statistic, 351
Kolmogorov test for goodness of fit, 336, 356,

480, 494. See a/so Goodness of fit
Kruskal-Wallis test , 380

Large-sample tests, ix, 204, 380, 477, 480,
503; for composite hypotheses, 483

Latin square design, 396, 434
Lawley-Hotelling trace test, 463; robustness

of, 465; simultaneous confidence intervals
based on, 471

Least favorable distribution, 18, 104, 107,
506,510,512,516,519

Least squares estimates, 370, 374
Lebesgue convergence theorems, 39
Lebesgue integral, 38
Lebesgue measure, 35
Level of significance, see Significance level
Life testing, 65, 114. See a/so Exponential

distribution; Poisson process
Likelihood, 16. See a/so Maximum

likelihood
Likelihood principle, 565
Likelihood ratio : censored, 513; invariance

of, 341; large-sample theory of, 486,
503; preference order based on, 73, 79;
procedure, 16; sufficiency of, 63

Likelihood ratio test, 16, 126; example of
inadmissible, 341; large-sample theory
of, 486, 503

Lindley's Paradox, 125
Linear hypothesis, multivariate , 453, 465,

498; Bayesian treatment of, 465; canonical
form of, 454, 500; concerning row vectors of
a matrix of means, 467, 470; with covariates,
470: invariant test for when r = 1,459:
with known covariance matrix, 477;
reduction through invariance of, 456, 488;
robustness oftests for, 491; suggested by the
data, 476; tests for when r > 1,463. Seea/so
Hotelling's T2-test; Multivariate analysis
of variance (MANOVA); Multivariate
normal distribution; Multivariate one­
sample problem; Multivariate two-sample

problem; Regression, multivariate ;
Repeated measurements

Linear hypothesis, univariate, 365, 449;
admissibility of test for, 370; canonical
form for , 366; inhomogeneous form of, 372;
with known variance, 431; more efficient
tests for , 380; parametric form of, 373;
power of test for, 369; properties of test
for, 369, 429, 522, 529, 538; reduction of,
through invariance, 367; robustness of test
for, 378, 379, 401; suggested by the data,
411. See a/so Analysis of variance;
Homogeneity, tests of; Mixed model ;
Model I and II; One-way class ification;
Regression; Two-way classification
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Linear model, 365, 444 ; Bayesian inference
for, 427; confidence intervals in, 391, 430 ;
simultaneous confidence intervals in, 406 ,
411 , 417; testing set of linear functions in,
483. See also Simultaneous confidence
intervals and sets

Locally optimal tests, 186, 507, 527, 528 ,
529,535,538

Location families, 84, 543 ; comparing two,
289 ; conditional inference in, 543, 550 ,
564,566; condition for monotone likelihood
ratio , 509 ; dichotomization of, 164;
example lacking monotone likelihood ratio,
86; existence of semi-relevant but not of
relevant subsets for, 562, 567; are
stochastically increasing, 84

Location-scale families, II, 32; comparing
two, 338, 355. See also Normality, testing
for

Logistic distribution, 164, 165,318,320,510,
550,567

Logistic response model , 165
Loglinear model, 165, 178
Loss function, 1,28; in confidence estimation,

6, 24, 90, 94, 95; in hypothesis testing,
72 , 82, 172, 292; monotone, 95;
specification of, 5

L-unbiased, 13. See also Unbiasedness

McNemar's test, 169, 180
Main effects, 389 , 396, 433; confidence sets

for, 391 ; tests for, 390, 394, 395. See also
Two-way classification

Mantel-Haenszel test, 165
Markov chain, 176
Markov property, 176
Matched pairs: by attributes, 169, 179,291,

510, 526 ; comparison with complete
randomization , 180,264; confidence
intervals for, 246, 264; generalization of,
241 ; normal theory and permutation
tests for, 239, 264; rank tests for,
314,323

Maximal invariant, 285; ancillarity of, 543;
distribution of, 289; method for
determining , 287; obtained in steps , 287 ,
288

Maximin test, 50S, 512 , 515; existence of,
527 ; local, 507; relation to invariance, 516,
519,533. See also Least favorable
distribution; Minimax principle ; Most
stringent test

Maximum likelihood, 16, 17,30,31 ,485,
495. See also Likelihood ratio test

Maximum modulus confidence intervals , 411
Measurable : function, 36, 42; set, 35; space ,

35; transformation, 36
Measure theory, xiii, 34, 66
Median, 23; confidence bounds for, 120, 133;

test for, 187,530
Median unbiasedness, 23, 29; examples of,

216,219; relation to confidence bounds ,
95,214

Metric space, 571
Minimal complete class ofdecision procedures,

17. See also Completeness of family of
distributions; Essentially complete class

Minimal sufficient statistic, 22, 28, 66
Minimax principle , 14, 18, 32, 33, 535; in

confidence estimation, 524; in hypothesis
testing, 505; relation to invariance, 26, 516 ,
519 ; relation to unbiasedness, 26, 507. See
also Maximin test; Restricted Bayes
solution

Mixed model, 418, 427; for nested
classification, 425 ; for two-way layout,
427 ,439,440,441. See also Model I and II

Mixtures of experiments , 539 , 542, 559, 564
MLR, see Monotone likelihood ratio
Model I and II, 418 , 446, 452. See also Fixed

effects model; Mixed model; Random
effects model

Model selection, 10
Monotone class of sets, 60
Monotone convergence theorem, 39
Monotone likelihood ratio, 78 , 130;

approximate, 516; conditional tests based
on samples from a distribution with, 549 ,
550,551,562; conditions for, 114; of
distribution of correlation coefficient , 340;
of exponential family, 80, 120; of
hypergeometric distribution, 80;
implications of, 85, 103, 115; oflocation
parameter families, 104, 115, 509; mixtures
of families with, 530, 549, 551; of
noncentral r, 295; of noncentral X2 and F,
428 ; relation to total positivity, 119; tests
and confidence procedures in the presence
of, 78, 82, 91

Most stringent test, 358, 525 , 538 ; existence
of, 533

Moving average process, 211
Multinomial distribution, 56; as conditional

distribution, 65; Dirichlet prior for, 262; for
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Multinomial distribution (Continued)
entries of 2 X 2 table, 157, 169; limit
distribution of, 479; in testing consumer
preferences, 166; for 2 X 2 X K table , 162

Multinomial model: maximum likelihood
estimation in, 495; for r X c table, 487;
testing a composite hypothesis in, 483;
testing a simple hypothesis in , 478, 481 ; for
three-factor contingency table , 162,163;for
2 X 2 table, 157, 159, 161, 169. See a/so
Chi-squared test ; Contingency tables

Multiple comparisons, 4, 380, 396 , 446, 451;
complexity of, 387; significance levels for,
382.Seea/soDuncan and Dunnett multiple
comparison methods; Newman -Keuls
multiple comparison procedure ;
Simultaneous confidence intervals; Tukey
levels; Tukey's T-method

Multiple correlation coefficient, 497 ;
distribution of, 446, 497, 500 ; optimum
test for, 497 , 503 , 538

Multiple decision procedures, 4, 27. See also
Multiple comparisons ; Three-decision
problems

Multivariate analysis of variance
(MANOVA), 462. See also Linear
hypothesis, multivariate

Multivariate linear hypothesis , see Linear
hypothesis , multivariate

Multivariate normal distribution, 440, 441 ,
453; as limit of multinomial distributions,
479. See a/so Bivariate normal distribution

Multivariate (normal) one-sample problem :
simultaneous confidence sets in, 494 ;
testing the covariance matrix, 462; testing
independence of two sets of variates in, 496;
testing the mean vector , 459, 466, 523. See
also Hotelling 's T2_test; Simultaneous
confidence ellipsoids; Simultaneous
confidence sets

Multivariate (normal) two-sample problem,
461,532; Behrens-Fisher problem, 462 ;
with covariates, 470 , 552; robustness of
tests for, 490; simultaneous confidence
sets in, 494

Multivariate regression, 462, 490, 496
Multivariate t-distribution, 353

Natural parameterspace of an exponential
family, 57, 66

Negative binomial distribution Nb(p,m), 22,
81, 181

Neighborhood model, 512, 515, 516
Nested classification, 422 , 438
Newman-Keuls multiple comparison

procedure, 382, 386
Newton's identities, 47
Neyman-Pearson fundamental lemma, 74,

131; approximate version of, 512; censored
version of, 513; generalized, 77, 96,118,
128

Neyman structure , 141, 144
Noncentral: beta distribution, 369,428,447,

500; F-distribution, 426, 428, 429, 446;
t-distribution, 196,253,276,295, 303;X2­

distribution, 427, 428, 429, 434 , 447, 500
Noninformative prior , 226
Nonparametric : alternative approach to, 380;

independence problem, 252, 317; many­
sample problem, 380; one-sample problem,
143,263; test, 107; test in two-way layout,
392. See also Permutation test; Rank tests;
Sign test

Nonparametric two-sample problem, 232,
317; confidence intervals in, 246, 263 , 347,
362; omnibus alternatives , 322; universally
unbiased test in, 348. See a/so Normal
scores test ; Wilcoxon two-sample test

Normal distribution N(~,0'2), 3, 56;
tests of, 355; testing against Cauchy,
double exponential, exponential, or uniform
distribution , 355. SeealsoBivariate normal
distribution ; Multivariate normal
distribution

Normality , testing for, 355. See a/so Normal
distribution

Normal many-sample problem: confidence
sets for vector means, 331, 332, 406, 409,
525,535; tests for means in, 374, 377, 378,
532, 548; tests for variances in, 376, 378.
See also Homogeneity, tests of

Normal one-sample problem, the coefficient
of variation: confidence intervals for, 352,
356; test for, 294, 303

Normal one-sample problem, the mean:
admissibility of test for , 309, 310;
confidence intervals for, 215, 329, 554 ,
557; credible region for, 226, 228;
likelihood ratio test for, 108; median
unbiased estimate of, 216; nonexistence of
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test with controlled power, 253; nonexistence
ofUMP test for, 111; optimum test for, 111,
195,254,255,294,303,339, 372, 549 ;test
for , based on random sample size, 112;
two-stage confidence intervals for , of
fixed length, 259; two-stage test for, with
controlled power, 260 . See also Matched
pairs ; t-test

Normal one-sample problem , the variance:
admissibility of test for, 312 ; confidence
intervals for, 217 , 352; credible region for,
229 ; likelihood ratio test for, 108; non­
robustness of test for, 206; optimum test for,
10~ 139, 193,290,511

Normal response model, 165
Normal scores test, 318, 322 , 323, 324 , 357,

360 ;comparison with t-test, 321 ;optimality
of, 320

Normal subgroup, 337
Normal two-sample problem, difference of

means: comparison with matched pairs,
264 ; confidence intervals for, 218, 353;
credible region for, 262; test for (variances
equal), 122,201,204,208,255,296,373.
See also Behrens-Fisher problem ;
Homogeneity, tests of; t-distribution; t-test;
Two-sample problem

Normal two-sample problem , ratio of
variances : confidence intervals for , 218 ,
333, 351; credible region for, 262;
nonrobustness of test for , 207; test for , 122,
198, 290. See also F-test for ratio of
variances ; Ratio of variances

Null set, 48 , 61, 140

Odds ratio, 154, 163, 164,547; most
accurate unbiased confidence intervals for,
261. See also Binomial probabilities;
Contingency table; Two by two tables

One-parameter exponential family, 80, 101;
most stringent test in, 527 . See also
Exponential family

One-sided hypotheses, 78, 151, 167;
multivariate, 460 . See also Confidence
bounds

One-way classification, 374 ; Bayesian
inference for, 427 ; model II for, 418;
multivariate, 463; nonparametric, 380.
See also Homogeneity, tests of; Normal
many-sample problem

Onto, see Transformation
Optimality, ix, xii, 8, 9
Orbit of transformation group, 285
Ordered alternatives, 380
Order statistics, 46; completeness of, 143,

173, 183, 187; distribution of, 345 ;
equivalent to sums of powers, 46;
expected values of, 318 ; as maximal
invariants, 286; in permutation tests, 231 ;
as sufficient statistics, 63, 231

Orthogonal group, 286, 366, 518

Paired comparisons, see Matched pairs
Pairwise sufficiency, 64
Parameters, unrelated, see Variation

independent parameters
Parameter space, 1
Pareto distribution, 123,272
Partial ancillarity, 546, 547, 561
Partial sufficiency, 122,565
Performance robustness, 208 , 321. See also

Robustness
Permutation test, 208, 232 , 265 , 273, 276 ,

278 ,279,450; approximated by standard
t-test, 236 , 253; complete class , 243 ;
confidence intervals based on , 246, 263 ,
266, 267; most powerful for nonparametric
hypotheses, 232, 252; as randomization
test, 238 ; robustness of, 321 ; most
stringent, 533; for testing independence,
252; for variances, 378. See also
Nonparametric; Randomization model

Pillai -Bartlett trace test , 463 ; robustness of,
465

Pivotal quantity, 333, 357
Point estimation, 4, 30; equivariant, 12;

unbiased, 13, 14,23. See also Median
unbiasedness

Poisson distribution P(t') , 2, 56, 65, 171; as
distribution of sum of Poisson variables,
65; relation to exponential distribution,
23, 82, 88, 114; square root transformation
for , 432 , 445; sufficient statistics for, 20.
See also Exponential distribution ; Poisson
parameters; Poisson process

Poisson model : for 2 X 2 table, 159, 161;
for 2 X 2 X K table, 163, 181

Poisson parameters : comparing k, 364 ;
comparing two, 151 , 152, 186,221,546;
confidence intervals for the ratio of two,
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Poisson parameters (Continued)
221; one-sided test for, 81, 114;
one-sided test for sum of, 120

Poisson process, 3, 65, 88; comparison of
experiments for, 88; confidence bounds
for scale parameter, 92; distribution of
waiting times in, 23; test for scale
parameter in, 81, 114; and 2 X 2 tables ,
159. See also Exponential distribution

Polya frequency function, 509, 538. See
also Total positivity

Positive dependence, see Dependence,
positive

Positive part of a function, 38
Posterior distribution, 225; percentiles of,

229. See also Bayesian inference
Posterior probability, 125
Power function, 69; of invariant test, 300; of

one-sided test, 79, 117; of two-sided test,
102

Power series distribution , 181
Power of a test, 69, 70, 446; conditional,

150, 547; robustness of, 207; unbiased
estimation of, 151,547

Preference ordering of decision procedures, 9,
14, 15

Prior distribution, 14, 225; improper, 226,
311; noninformative,226. See also Bayesian
inference; Least favorable distribution;
Posterior distribution

Probability density (with respect to Il), 40;
convergence theorem for, 573

Probability distribution of a random variable,
36. See also Cumulative distribution
function (cdf)

Probability integral transformation, 320
Probability measure, 35
Probability ratio, see Likelihood ratio
Probability theory, 34, 66
Product measure, 40
Projection: as maximal invariant, 287,

374
Pseudometric space, 571
P-value , 70, 114, 170; combination of, from

independent experiments, 170

Quadrant dependence , 176, 251, 271. See
also Dependence, positive

Quadrinomial distribution , 163
Quality control, 106,293

Radon-Nikodym derivative, 40; properties of,
61

Radon-Nikodym theorem , 40
Random assignment, 160, 161,238,396
Random breaking of ties, 167
Random effects model, 418, 426, 447; for

nested classifications, 422; for one-way
layout, 418; for two-way layout, 438, 440.
See also Ratio of variances'

Randomization, 6, 396; as basis for inference,
238; to lower the maximum risk, 25;
possibility of dispensing with, 113; relation
to permutation test, 240. See also Random
assignment; Randomized procedure

Randomization model, 162, 245; confidence
intervals in, 246

Randomized procedure, 6, 25, 113;confidence
intervals, 219; test, 71, 74, 155

Randomness , hypothesis of, 349, 350
Random sample size, 112, 181,561
Random variable, 36
Rank correlation coefficient, 351
Ranks, 286; distribution under alternative,

344,345,361; as maximal invariants, 286,
315; null distribution of, 317. See also
Signed ranks

Rank-sum test, 178, 184. See also Wilcoxon
test

Rank tests, 316; surveys of, 380 . See also
Independence, test for; Nonparametric;
Nonparametric two-sample problem;
Symmetry; Trend

Ratio of quadratic forms, maximum of, 474
Ratio of variances : confidence intervals for,

219,262,333,351 ; in model II, 419,
421,558; tests for , in two-sample
problems, 122, 198,207,290,339,562.
See also F -test for ratio of variances;
Homogeneity, tests of; Random effects
model

Rectangular distribution, see Uniform
distribution

Reference set, ix. See a/so Conditional
inference

Regression, 222, 446, 450, 542; with both
variables subject to error , 435; comparing
several lines, 399, 435;confidence band for,
417, 444; confidence intervals for
coefficients, 223, 398; confidence sets for
abscissa of line, 224; general linear model
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for, 374, 430; as linear model, 365;
multivariate, 462, 490, 496 ; nonparametric,
350; polynomial, 435; robustness of tests
for , 401, 436; tests for coefficients, 223,
397 , 398,400. See a/so Trend

Regression dependence, 251, 271 , 315. See
a/so Dependence, positive

Relevant and semirelevant subsets, 230 , 554 ,
564 , 568; randomized version of, 563

Repeated measurements, 462, 466
Restricted Bayes solution, 15,30
Restricted x 2-test, 481, 500
Risk function, 2, 28
Robustness, ix, 10,203,208,213,273,444,

536; of analysis of variance tests, 401;
against dependence, 209 ; for F -test of
means , 378, 379; of general linear models
tests, 379, 405 ; lack of, for F -test of
variances, 207, 422 ; lack of, for x2-test of
variance, 206; lack of, for Wilcoxon test,
323 ; of multivariate tests, 465, 491; of
regression tests, 401, 405; of test of
independence or lack of correlation , 250 ; for
tests in two-way layout, 434, 436 ; of t­
test, 205, 209 , 273, 321. See a/so
Adaptive test ; Behrens-Fisher problem ;
Efficiency robustness ; Huber condition;
Performance robustness; Permutation test;
Rank tests

Roy's maximum root test , 463 , 465 ;
robustness of, 465; simultaneous
confidence sets based on , 475

Runs test : power of, 183; for testing
independence in a Markov chain, 176,
177

Sample, 3; haphazard, 237; stratified,
231

Sample correlation coefficient R, 249;
distribution of, 267 , 270, 271, 276;
monotone likelihood ratio of distribution,
340 ; variance stabilizing transformation
for , 432 . See a/so Bivariate normal
distribution ; Multiple correlation
coefficient ; Rank correlation coefficient

Sample distribution function , see Empirical
distribution function (EDF)

Sample inspection: by attributes, f O, l 93,
339 ; choice of inspection :;tringt::l(.y for ,
8~ ; tor Cl"' pa;mg two products, 167, 296 ;

comparison of two methods, 339; by
variables, 106 ,293,339

Sample size: required to achieve specified
power, 70,153,260,504

Sample space, 37
S-ancillary, see Partial ancillary
Scale families: condition for monotone

likelihood ratio , 510
Scheffe 's S-method, 382, 388 ,405,411,

444; alternatives to, 417, 437; multivariate
extensions, 471

Selection procedures, 117, 127
Separable: family of distributions, 574; space,

571
Separate families of hypotheses, 290, 338,

355,360,363
Sequential analysis, ix, 8, 78, 175, 196,215
Sequential experimentation, 8, 66
Shift , confidence intervals for: based on

permutation tests , 246, 263 ; based on rank
tests, 347, 362 . See a/so Behrens-Fisher
problem; Exponential distribution;
Nonparametric two-sample problem ;
Normal two-sample problem , difference of
means

Shift model, 164,329
o-field, 35; with countable generators, 575
e -finite , 35
Signed ranks, 317; distribution under

alternatives, 348; null distribution of, 324
Significance level, 69, 71; for multiple

comparisons, 382, 385 ; nominal , 387 . See
a/so P-value

Significance probability, See P-value
Sign test, 106; in double exponential

distribution, 531; for matched pairs, 170;
for testing consumer preferences, 166;for
testing symmetry with respect to a given
point, 168, 325, 530 ; treatment of ties in,
167, 186. See a/so Binomial probabilities;
Median ; Sample inspection

Similar test , 135, 140, 182, 183, 186;
characterization of, 144; relation to
unbiased test, 135

Simple: class of distributions, 72; hypothesis,
73,483

Simple function , 37
Simple hypothesis vs. simple alternative, 73;

with large samples , 125. See a/so Neyman­
Pearson fundamental lemma
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Simultaneous confidence ellipsoids, 576
Simultaneous confidence intervals, 388, 406,

411,444,452; for the components of a
vector mean, 411; for all contrasts, 388,
415; in multivariate case, 471, 503 .
See also Confidence bands; Dunnett's
multiple comparison method; Scheffe's
S-method; Tukey's T -method

Simultaneous confidence sets: for a family of
linear functions, 408; multivariate, 475, 498 ;
smallest, 409; taut, 409

Simultaneous inference, ix
Simultaneous tests, 70 , 415 . SeealsoMultiple

comparisons
Smimov test, 322, 323
Spherically symmetric distributions, 257, 439
Square root transformation, 432, 445
Stagewise tests, 381, 388
Standard confidence bounds, 96, 229
Stationarity, 176
Statistic, 37; equivalent representations of, 41;

fully informative, 113; subfield induced by,
41

Statistical inference, I; and decision theory,
4,71

Stein's two-stage procedure , 258
Stochastically increasing, 84; relation to

monotone likelihood ratio, 85
Stochastically larger, 84, 116, 314
Stochastic process, 129. See also Poisson

process
Stratified sampling, 231
Strictly unbiased, 137
Strongly unimodal, 509 , 562
Studentization, 209, 213, 380
Studentized range, 381,443
Student's t-test , see t-test
Subfield, 41
Sufficient statistic, 19,30,53,66,67, 124;

asymptotically, 485; Bayes definition of , 21,
22; factorization criterion , 19,30,31,53,
54; likelihood ratio as, 63; minimal, 22, 28;
pairwise, 64; in presence of nuisance
parameters, 122; relation to ancillarity, 545 ;
relation to comparison of experiments, 87;
relation to fully informative statistic, 113;
relation to invariance, 290 , 30 I; statistics
independent of, 191. See also Partial
sufficiency

Symmetric distribution , 63

Symmetry, 10; relation to invariance, 11, 377;
in a square two-way contingency table, 495;
sufficient statistics for distributions with, 63;
testing for , 326 , 360, 361; testing, with
respect to given point , 168,316,323,325,
326, 349

Tautness, 409
t-distribution, 196, 257 , 258, 280; as

approximation to permutation distribution,
236; as distribution of function of sample
correlation coefficient, 250; monotone
likelihood ratio of, 295; multivariate, 353;
noncentral, 196,253,276; normal limit of,
205; as posterior distribution, 228; in two­
stage-sampling, 259

Test, 3, 68; almost invariant, 297; conditional ,
541 ,549,552; invariant, 284; locally
maximin, 507; locally most powerful
(LMP), 202, 527, 528, 538 ; maximin, 505 ;
most stringent, 526; randomized, 71, 155;
similar , 135; strictly unbiased, 137; of type
A, 131, 538; of type AI ' 131;oftypeB, 202,
538; of Type BI , 202; type D,E , 529;
unbiased , 13, 134; uniformly most powerful
(UMP),32

Three-decision problems, 101, 152
Three factor contingency table , 162
Ties, 167 , 186
Time series, 213
Total positivity, 86, 118, 119, 140,509; of

order three, 119, 120,303. See also Polya
frequency function

TPE, ix, x
Transformation: of integrals , 43; into, 36;

onto, 36; probability integral, 320; variance
stabilizing, 376, 432, 433

Transformation group, 570 . See also
Invariance

Transitive : binary relation, 569; transformation
group, 285

Trend: test for absence of, 349, 403
Triangular distribution , 355
t-test: admissibility of, 309, 310, 343; as

Bayes solution, 311, 343; comparison with
Wilcoxon and Normal scores tests, 321,
324; not efficiency robust, 322; as likelihood
ratio test, 27, 108; in linear hypothesis with
one constraint, 370; for matched pairs, 240,
264; permutation version of, 208, 236;
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power of, 196,203,207,253,256; one­
sample, Ill , 195,209,213,257,273,339,
380; for regression coefficient, 223, 397,
398; relevant subsets for, 557; robustness
of, 205, 207, 208, 209, 273; two-sample,
202,207,230,361; two-stage , 258. See
alsoNormal one- and two-sample problem;
Regression; Welch approximate t-test

Tukey levels for multiple comparisons, 383,
387,433

Tukey 's T -method, 382, 388,433,442,443,
451

Two-sample problem, see Behrens-Fisher
problem; Binomial probabilities ;
Exponential distribution; Matched pairs;
Nonparametric two-sample problem;
Normal two-sample problem; Permutation
test ; Poisson parameters; Shift, confidence
intervals for; Two-by-two tables

Two-sided alternatives , 101, 135, 152, 167
Two-stage procedures , 258, 259
Two by two tables: alternative models for,

159, 161; comparison of experiments for,
87, 159; Fisher's exact test for, 155, 180,
187; for matched pairs, 169, 179, 180;
multinomial model for, 157; S-ancillaries
for, 547,568. See also Contingency tables

Two by two by two table, 165
Two-way classification : Bayesian inference

for, 427; mixed model for, 439, 440, 441 ;
with m observations per cell, 393; multiple
comparison procedures for, 396;
multivariate, 492, 493; withone observation
per cell, 388; random effects model for,
438,440; rank tests for, 392; reorganization
of variables in, 433 ; robustness of tests in,
434,436; simultaneous inference in, 416 .
See also Contingency tables ; Interaction ;
Nested classification ; Two-by-two tables

Two-way contingency tables, seeContingency
tables ; Two-by-two tables

Two-way layout, see Two-way classification
Type A , AI' B, BI, D, E test , seeTest of type

A, AI> B, BI , D, E

UMP invariant test , 188,289,292;
admissibility, 305; conditional, 551, 553;
conditions to be UMP almost invariant ,
297; examples of nonuniqueness, 304, 305;
relation with UMP unbiased test, 302. See

also Invariance ; Linear hypothes is,
multivariate; Linear hypothesis , univariate

UMP test, 72, 126; conditional, 542, 549,
550, 552; examples involving two
parameters, 112; for exponential
distributions, 112; for inverse Gauss ian
distributions, 124; in monotone likelihood
ratio families, 78; a nonparametric example,
107; in normal one-sample problem, 108,
Ill ; in one-parameter exponential families,
80; for uniform distributions , Ill, 115; in
Weibull distributions, 124

UMP unbiased test, 134, 135, 186;
admissibility of, 170; example of
nonexistence of, 171; via invariance , 188,
302; for multiparameter exponential
families, 147, 188; for one-parameter
exponential families, 135; for strictly totally
positive families, 140. See also
Unbiasedness

Unbiasedness , 12, 23, 28, 186; for confidence
sets, 13,24,216; and invariance , 24,302;
and minimax, 26; for point estimation, 13,
23,28; and similarity, 135; strict , 137; of
tests, 134; for two-decision procedures, 13.
See also UMP unbiased test; Uniformly
most accurate confidence sets

Undetermined multipliers, 100, 104, 118
Uniform distribution U(a,b), 7, 21, 23;

completeness of, 141, 172; discrete, 123,
180; as distribution of integral transform,
320; distribution of order statistics from,
345; as null distributions of p-value, 170;
one-sample problems in, Ill, 115,354,
563; relation to exponential distribution ,
112; sufficient statistics for, 21, 28, 172;
testing against exponential or triangular
distribution, 355; other tests for, 480,
482

Uniformly most accurate confidence sets, 90,
217; equivariant , 327,524; relation to UMP
tests, 91; unbiased , 217; uniformly
minimize expected Lebesgue measure , 330.
See also Confidence bands ; Confidence
bounds; Confidence intervals ; Confidence
sets; Simultaneous confidence intervals;
Simultaneous confidence sets

Uniformly most powerful, see UMP invariant
test ; UMP test; UMP unbiased test

Unimodal, 562 . See also Strongly unimodel
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Unrelated parameters, see Variation
independent parameters

Variance components, see Components of
variance

Variance stabilizing transformation, 376,432
Variation diminishing, 86. See also Total

positivity
Variation independent parameters, 546, 561

Waiting times (in a Poisson process), 23,114.
See also Exponential distribution; Life
testing; Poisson process

Weak compactness theorem, 576
Weak convergence, 571, 572
Weibull distribution W(b,c), 124, 567

Welch approximate t-test, 209, 304
Welch-Aspin test, 304; relevant subsets for,

558,566
Wilcoxon one-sample test, 324, 326, 348,

349,364
Wilcoxon signed-rank test, seeWilcoxon one­

sample test
Wilcoxon two-sample test, 318, 322, 323,

343,357; comparison with t-test, 321;
confidence intervals based on, 329; history
of, 360, 364; optimality of, 320, 346

Wilks' A, 463; robustness of, 465
Wishart distribution, 490
Working-Hotellingconfidence band, 417,444

Yule's measure of association, 157
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