
Probability and Statistics

for Business Decisions

AN INTRODUCTION TO

MANAGERIAL ECONOMICS UNDER UNCERTAINTY

Robert Schlaifer

PROFESSOR OF BUSINESS ADMINISTRATION

HARVARD UNIVERSITY

McGRAW-HILL BOOK COMPANY

New York Toronto London

1959



PROBABILITY AND STATISTICS FOR BUSINESS DECISIONS

Copyright © 1959 by the McGraw-Hill Book Company, Inc. Notice is hereby given
that all of the material reprinted herein has been previously copyrighted by the Presi-
dent and Fellows of Harvard College and is used with special permission. Printed in
the United States of America. All rights reserved. This book, or parts thereof, may
not be reproduced in any form without permission of the individual, group, or com-
pany by whom copyrighted. Library of Congress Catalog Card Number 58-13017

10 11 12 13 1415 16 - MP -1098

55309



Probability and Statistics for Business Decisions



Preface

This book is a nonmathematical introduction to the logical analysis of
practical business problems in which a decision must be reached under
uncertainty. The analysis which it recommendsis based on the modern
theory of utility and what has come to be known as the ‘“‘personal”’
definition of probability; the author believes, in other words, that when
the consequences of various possible courses of action depend on some
unpredictable event, the practical way of choosing the ‘‘best’’ act is to
assign values to consequences and probabilities to events and then to

select the act with the highest expected value. In the author’s experi-
ence, thoughtful businessmen intuitively apply exactly this kind of
analysis in problems which are simple enough to allow of purely intuitive
analysis; and he believes that they will readily accept its formalization

once the essential logic of this formalization is presented in a way which
can be comprehended by anintelligent layman. Excellent books on the
pure mathematical theory of decision under uncertainty already exist;
the present text is an endeavor to show how formal analysis of practical
decision problems can be madeto pay its way.

From the point of view taken in this book,there ts no real difference

between a ‘‘statistical’’ decision problem in which a part of the available
evidence happens to come from a ‘“‘sample”’ and a problem in whichall
the evidence is of a less formal nature. Both kinds of problems are

analyzed by use of the same basic principles; and one of the resulting

advantages is that it becomes possible to avoid having to assert that

nothing useful can be said about a sample which contains an unknown

amount of bias while at the same time having to admit that in most
practical situations it is totally impossible to draw a sample which does
not contain an unknown amount of bias. In the same way and for the

same reason there is no real difference between a decision problem in
which the long-rin-average demand for some commodity is known with
certainty and one in whichit is not; and not the least of the advantages
which result from recognizing this fact is that it becomes possible to

analyze a problem of inventory control without having to pretend that a
finite amount of experience -can ever give anyone perfect knowledge of

Vv
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long-run-average demand. The authoris quite ready to admit that in
some situations it may be difficult for the businessman to assess the
numerical probabilities and utilities which are required for the kind of
analysis recommended in this book, but he is confident that the business-
man who really tries to make a reasoned analysis of a difficult decision
problem will find it far easier to do this than to make a direct determina-
tion of, say, the correct risk premium to add to the pure cost of capital
or of the correct level at which to conduct a test of significance.

In sum, the author believes that the moderntheories of utility and
personal probability have at last made it possible to develop a really
complete theory to guide the making of managerial decisions—a theory
into which the traditional disciplines of statistics and economics under

certainty and the collection of miscellaneous techniques taught under
the name of operations research will all enter as constituent parts. He
hopes, therefore, that the present book will be of interest and value not
only to students and practitioners of inventory control, quality control,

marketing research, and other specific business functions but also to
students of business and businessmen who are interested in the basic
principles of managerial economics and to students of economics who are
interested in the theory of the firm. Even the teacher of a course in
mathematical decision theory who wishes to include applications as

well as complete-class and existence theory may find the book useful as
a source of examples of the practical decision problems which doarise in

the real world.

Because the purpose of this book is not to teach theory for its own
sake but to show how theory can be applied to practical advantage in

the real world, each new technique of analysis is applied to a realistic
business problem as soon as it is introduced. Many of the most impor-
tant principles are actually restated and reexplained in the contexts of
several different kinds of decision problem,andforthis kindof repetitious-
ness the author makes no apology. Learning depends on repetition;

and if the rate of learning can be increased by printing up a few more

sheets of white paper, the gain is well worth the cost. While some of

the exposition could have been greatly condensed by the use of simple
algebra and calculus, the author feels that even for students who have
some familiarity with these techniques it is better to avoid their use in a
statement of first principles. Justification of the steps in an argument
by economic rather than purely formal reasoning develops an intuitive

understanding of the essential features of a decision problem which is
likely to be lost if attention is focused from the very first on problemsof
technical manipulation. On the other hand students who do have some
command of mathematical technique may find it a useful exercise to

supply proofs where these have been omitted from the text; and many
of the examples and problemsin the text can be easily modified to require
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the use of calculus rather than arithmetic for their solution. An appen-

dix on gamma, beta, and related distributions has been added to the book
to facilitate the assignment of problemsof this sort.

The organization of the book reflects experience gained in teaching

the subject in various waysto five successive classes. The basic concepts
of decision theory—probability, expectation, and utility—are explained

in three introductory chapters, and in the next five chapters (Part One
of the book) these conceptsare applied in a variety of situations where the

required probability distributions can be easily assessed by direct refer-
ence to experience. It is only after the student has thus become reason
ably familiar with the way in which probabilities are used that he is
introduced in Part Two to some more powerful methods for the computa-
tion of probabilities—to the concepts of joint and conditional probability,

the distributions associated with Bernoulli and Poisson processes, and
the Normal distribution. After a foundation in both economic analysis
and elementary probability theory has been laid, the student goes on in

Part Three to face the special problem of the evaluation by means of
Bayes’ theorem of the information derived from a sample and to study
some new distributions needed for this purpose. It'is only after this sub-
ject has been thoroughly covered that the problem of deciding whenit is

economically advantageous to sample and when to stop sampling is taken
up in Part Four. The four chapters which constitute Part Five of the
book then explain the classical approach to the problemsalready analyzed

from the Bayesian point of view in Parts Three and Four and show how

the explicit introduction of losses into the classical analysis leads from
operating characteristics to risk functions and how a reasoned comparison

of risk functions over all values of the parameter under test then leads

in the end to exactly the same results which were previously obtained by
the explicit use of Bayes’ theorem.

This division of the entire subject matter of the course into five
separate major topics which are treated successively rather than simul-

taneously (as was necessary in earlier versions of this book which intro-
duced sampling problems at the outset) has improved the rate at which
the material can be absorbed to the point where the authoris currently
assigning nearly one chapter per 80-minute class session and teaches
about three-fourths of the entire book in a one-semester course. The
author’s students, however, are the small fraction of second-year students
at the Harvard Graduate School of Business Administration who volun-

tarily elect a course in decision theory which is well known to involve a
very heavy work load, and obviously no such rate could be maintained

with a less highly self-selected group of students. The author would
guess that under ordinary conditions the book will prove to contain about
the right amount of material for a full-year course, particularly if it is
supplemented by some unstructured case problems or by mathematical
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lectures and exercises for students with a background of algebra and
calculus.

The course can be shortened by omission of certain chapters which
constitute excursions into interesting areas or problemsof application but
are not needed for the comprehension of later chapters; Chapters 15, 19,
20, 24, 32, and 36 areall of this sort. Even with these chapters omitted
the student will have had a more than adequate foundation for a second
course in statistics, e.g. in sampling theory or experimental design.
A course covering only the basic principles of decision theory as such with
an absolute minimum of attention to technicalities of probability theory
can be given by using only Chapters 1 to 5, 7, 9, 10, 21, 22, 33, and 38.
These 12 chapters explain every important basic principle discussed in
the course, including the principles of optimal sample size and optimal

sequential sampling, without the use of any mathematically derived
probability distribution other than the binomial; they are an adequate
preparation for the treatment of classical statistics in Chapters 39 to
42 if the examples and problemsinvolving the use of the Normal distribu-
tion are omitted from those chapters. The other chapters in Parts One

through Fourof the course are there in part to develop the additional
probability theory needed to handle a wider variety of applications and

in part to develop special methods for the rapid analysis of a few of the

most commonly occurring types of business decision problems—in

particular, certain problems with linear losses. Without these methods
which make it possible to obtain numerical answers to a fairly wide
variety of examples in a reasonable amountof time, there is a real danger
that the student will fail to gain any appreciation of the sensitivity or

insensitivity of decisions and their associated losses to the various

parametersof a decision problem; and without some appreciation of this
sort the practical use of decision theory is very severely handicapped.

Exercises are provided at the end of each chapter. Most of them

are intended to develop and test the student’s comprehension of the
theory expounded in the text, but some lead the student to extend this
theory in some small degree. Completely worked solutions to all
exercises of thelatter sort and to about half those of the former sort will
be found in the ‘‘Student’s Manual”? which accompanies the text. A

slide rule is adequate computing equipment for the exercises with worked

solutions, since in those problems the student needs only to verify that he

understands how the computations were actually carried out, but the

student who works problems on his own will usually find that a desk
calculator will very greatly reduce the time required to arrive at a solu-

tion. These latter problems are well suited to work in a statistical
laboratory.

The author’sdebt to his colleague Howard Raiffa and to his former
colleague Arthur Schleifer, Jr., is far too great to describe adequately.
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Mr.Schleifer assisted the author during the first 3 years of the develop-
ment of the course represented by the present book. He read and made
valuable criticisms of nearly every draft of every successive revision of

every chapter, and he executed or directed the execution of all the com-
putations and charting. Mr. Raiffa read the semifinal version of the
manuscript with the most painstaking care and spent countless hours

in showing an often stubborn author how it could and should be improved
at many points by substituting logic for unsupported intuition. In par-

ticular, the three chapters of the Introduction were wholly recast as a
result of these suggestions.

Mr. Gordon Kaufmann gave great assistance in preparing the Stu-

dent’s and Teacher’s Manuals and corrected very many of the author’s

arithmetical lapses in text. The author was extremely fortunate to have
Miss Alice Hynes (later Mrs. Paul O’Brien) as his secretary throughout

the 414 years during which the manuscript was being developed. Without
her unusual skill it would have been quite impossible to make several
rough drafts of each annual or semiannualrevision of the notes and then
to prepare stencils so that the latest version could be tested in the
classroom.

Finally, the author would like to express his very deep gratitude to

the administration of the Harvard Graduate School of Business Adminis-
tration, both for substantially reducing his normal classroom assignments

and for granting his every request for assistance at once and without
question.

Robert Schlaifer
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CHAPTER 1

The Meaning of Probability

1.1 The Problem of Decision under Uncertainty

Whenall of the facts bearing on a business decision are accurately
known—whenthe decision is made ‘‘undercertainty ’’—careless thinking

is the only reason whythe decision should turn out, after the fact, to have
been wrong. But when the relevant facts are not all known—when the

decision is made ‘‘under uncertainty ’’—1it is impossible to make sure that
every decision will turn out to have beenright in this same sense. Under
uncertainty, the businessman is forced, in effect, to gamble. His pre-

vious actions have put him in a position where he must place bets, hoping

that he will win but knowing that he may lose. Under such circum-

stances, a right decision consists in the choice of the best possible bet,
whether it is won or lost after the fact. The following examples are

typical of situations in which business decisions must be made and
judged in this way.

An Inventory Problem. A retailer is about to place an order for a

numberof units of a perishable commodity whichspoils if it is not sold by

the end of the day on which it is stocked. Each unit costs the retailer

$1; the retail price is $5. The retailer does not know what the demand
for the item will be, but he must nevertheless decide on a definite number
of units to stock.

A Scrap-allowance Problem. A manufacturer has contracted to

deliver at least 100 good pieces of a nonstandard product at a fixed price

for the lot. He feels virtually sure that there will be some defectives

among the first 100 pieces produced; and since setting up for a second

production run to fill out a shortage would cost a substantial amount of
money, he wishes to schedule some additional pieces on the original run
as a scrap allowance. On the other hand, once 100 good pieces have

been produced the direct manufacturing cost of any additional produc-

tion will be a total loss, and therefore he does not wish to make the scrap
allowance excessively large. If the manufacturer knew exactly how

many pieces would have to be producedin orderto get exactly 100 good
pieces, it would be easy to set the ‘‘right”’ size for the production order;
but he must decide on some definite size for the order even though he

does not know the ‘‘right”’ size.
2
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An Investment Problem. A manufacturer is about to tool up for
production of a newly developed product. This product can be manu-

factured by either of two processes, one of which requires a relatively

small capital investment but high labor cost per unit produced while the
other will have much lower labor costs but requires a much greater

investment. The former process will thus be the better one if sales of

the product are low while the latter will be better if sales are high; but
the manufacturer must choose between the two processes without know-

ing what his sales will actually be.
A Marketing Problem. ‘The brand managerfor a certain grocery

product is considering a change of package design in the hope that the

new packagewill attract more attention on the shelf and thereby increase

sales. He has done a certain amountof store testing and has found that

during the test weeks sales of the new package were greater than sales of
the old in somestores but that the contrary was true in other stores. He

still feels uncertain whether adoption of the new package will increase or

decrease his total national sales, but he must nevertheless either decide
on one package or the other or else decide to spend more money on addi-

tional testing; in the latter case he must decide whether he should simply
continue the test for a few more weeks in the samestores he has already

used or spend still more money to draw new stores into his sample.

1.1.1 The Payoff Table

The essential characteristics of all four of these problems, and ofall
problems which weshall study in this course, are the following.

1. A choice must be made among several possible acts.
2. The chosen act will ultimately lead to some definite profit (possi-

bly negative), but for at least some of the acts the amount ofthis
profit is unknown because it will be determined by some event
which cannot be predicted with certainty.

The first step in analyzing any such problem is to lay outall the possible

acts and all their possible consequences in some systematic fashion, and
we shall do this for the inventory problem as an example.

In the inventory problem, an ‘‘act”’ is a decision to stock some par-

ticular number of units; the ‘‘event’’ is the number of units which the
customers will actually demand. If we suppose that the retailer’s space

limits the numberof units stocked to a maximum of 5, then remembering

that each unit stocked costs $1 while each sale brings in $5 of revenue we
can describe the whole problem by a table like Table 1.1, where each
column corresponds to a particular act while each row corresponds to a

particular event. Such a table is known as a payoff table.
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Table 1.1

Payoff Table for the Inventory Example
 

Act (numberof units stocked)
 

 

Event

(number demanded) 0 1 2 3 4 5

0 $0 —$1 —$2 —$3 —$4 —$5
1 0 +4 43 42 41 0

2 0 +4 48 +7 +6 #+4+65

3 0 +4 +8 412 +411 +10
4 0 +4 +8 412 +16 +415

5 or more 0 + 4 +8 +12 +16 +20

 

1.1.2 Comparison of Acts

If we compare any two acts (columns) in Table 1.1, we see that one

of the two will be more profitable if certain events occur while the other

will be more profitable if other events occur; but when we actually choose
among these acts we are implicitly if not explicitly making a single,

unconditional evaluation of each act. Weare saying that in some sense

oneof the acts 1s ‘‘better’’ than any of the others. One conceivable way

of evaluating the six possible acts of Table 1.1 is to look only at the worst

possible result of each act and assign the value $0 to the act ‘“‘stock 0,”
the value —$1 to the act “‘stock 1,” and so forth, leading to the conclu-
sion that ‘‘stock 0” is the best of all possible acts. Another conceivable
way is to look only at the best possible result and assign the value $0 to
the act ‘‘stock 0,’ the value +$4 to the act “‘stock 1,”’ and so forth, lead-
ing to the conclusion that ‘‘stock 5” is the best of all possible acts.

Any sensible businessman will of course immediately reject all such

simple but arbitrary procedures and will say that even thoughtheretailer
cannot predict demand with certainty he ought to know enough about
his business and the product in question to have some convictions about
what the demandis likely to be. If after weighing all the available

information the retailer decides that there is very little chance that cus-

tomers will demandless than 3 or more than 4 units, he will conclude that
the only reasonable act is to stock either 3 or 4 units. Choice between

these two acts will be a little more complex, since the larger stock will be

only $12 — $11 = $1 less profitable than the smaller if there is a demand
for only 3 units while it will be all of $16 — $12 = $4 more profitable if

4 units are demanded. Consequently the retailer will want to stock

4 units even if he believes that the chance of a demandfor 4 is somewhat
less than the chance of a demandfor 3; it is only if he believes that the
chance of a demandfor4 is relatively very slight that he will reduce his
stock to 3 units.
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Now this informal kind of reasoning works very well when the
decision problem is relatively simple, but one quickly becomes confused

when the problem is even slightly more complex. Even in our very

simple example, it will be hard for the retailer to see through to a satis-

fying conclusion if he thinks that there is a substantial chance that
demand may have any of three or four different values, and in larger

problems of the samesort he may well consider a hundred or a thousand

different values as possible. What we would like to do, therefore, is find
some way of systematizing the kind of analysis which a reasonable man

uses in simple problems so that it can be effectively applied in more com-

plex problems.
If we look back at the reasoning used by our hypothetical retailer,

we see that in essence he proceeded in twosteps:he first gave a numerical

value to the consequence of each possible act given each possible event,

but he then attached more weight to the consequences corresponding to
certain events (demand 3 or 4) than he did to the others. This suggests
that it may be possible to systematize the reasoning underlying any
decision under uncertainty by proceeding as follows:

1. Attach a definite numerical value to the consequence of every
possible act given every possible event.

2. Attach a definite numerical weight to every possible event.
3. For each act separately, use these weights to compute a weighted

average of all the values attached to that act.
4. Select the act whose weighted-average valueis highest.

Our hopeis that we can find rules for using the businessman’s own
knowledge andbeliefs in carrying out steps 1 and 2 in such a way that he

will want to choose the act with the highest computed value instead of

relying on mere inspection of a mass of numbers and informal reasoning

of the kind described above. If we are to have confidence in theserules
in complex situations, they must yield values which seem reasonable to us
when applied in very simple situations, and for this reason many of the

examples which we shall use in developing these rules will be artificial

ones which avoid the complexities of practical business decisions in order

to present their really essential features in the simplest possible form.
Because the heart of the problem is the uncertainty concerning the event,

we shall begin by developing the rules for attaching weights to events.

1.2 Events

Before we even start to assign numerical weights to a set of events

some one of which will determine the consequence of any act we choose,
we obviously must have in mind a clear and complete description of the
events which may occur. We usually have considerable latitude in
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defining the possible events in a given problem, but certain rules must be
followed if we are to avoid hopeless confusion.

1.2.1 Collectively Exhaustive Events

If before we started to analyze the inventory problem of Table 1.1

the retailer had told us that he was absolutely convinced that there would
be a demandfor at least 2 units, we could just as well have simplified

Table 1.1 by eliminating the rows describing the consequences of the

events ‘‘demand 0” and ‘‘demand 1.”’ In general, impossible events

may be totally disregarded if it is convenient to do so, and it is to be
emphasized that there is no need to ‘‘prove”’ that an event is impossible

before it is eliminated. Our object is to arrive at results which the

businessman wants to accept, and therefore an event is impossible for our

purposes whenever the businessman wants to treat it as impossible.

It is obvious, on the other hand, that we must keep all the possible

events in mind in analyzing any decision problem, since if we fail to

include some of the possible events in the payoff table the corresponding

consequences will not be duly considered in evaluating the various acts.
The same thing can be stated the other way around: the basic list of

events must be complete in the sense that some oneof the events on the listis

bound to occur. The events on sucha list are called collectively exhaustive.

1.2.2 Mutually Exclusive Events

In the inventory example of Table 1.1, demand for each specific

number of units from 0 to 4 inclusive was treated as a separate event but

demandsfor all numbers of units above 4 were treated as constituting the

same event ‘‘demand for 5 or more.”” Obviously we could have treated a

demandfor exactly 5 units as a separate event and assigned it a separate

line in Table 1.1, and similarly for any larger number of units, but

nothing was to be gained by so doing because for every act under con-

sideration the consequences of the event ‘‘demand for 5” were identical

to the consequences of the event ‘‘demandfor 6” or the event ‘‘demand

for 7”’ and so forth.

Careless grouping of events can easily lead to confusion, however.

It is obvious that potentially separate events must not be groupedif their

consequences differ for any act under consideration. We cannottreat

‘demandfor 3 or 4” or ‘‘demandfor 4 or more”’ as a single eventin con-

structing a payoff table for our inventory example. Whatis often less

obvious is that we must not have events with overlapping definitions on

our list even if it is possible to give a clear description of the consequences

of all acts in terms of such list. |

Suppose, for example, that we are given a choice of one or the other

of two tickets in a lottery to be conducted by drawing one ball from an

urn containing four kinds of balls: dotted red, striped red, dotted green,
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and striped green. Thefirst ticket entitles the holder to a prize of value
V if the ball drawn from the urn is either red or striped; the second
entitles the holder to the sameprize if the ball is dotted green. Table 1.2
gives a perfectly clear description of the conditions under which the prize

 

 

 

Table 1.2

Act (choice of ticket)

Event

1 2

Red V 0

Striped V 0

Dotted green 0 Vv

 

will be awarded, but confusion is bound to arise if we base our analysis
of this decision problem on this table because the events ‘‘red’’ and

‘“striped’’ will both occur if a striped red ball is drawn. To illustrate the

difficulty by an extreme case, suppose that we know that all the red balls
are striped and that all the striped balls are red. Then the events ‘‘red”’
and ‘‘striped’’ are really the same event counted twice, and any weight

which we attach to this event will be counted twice in evaluating the acts
under consideration.

This kind of difficulty can be avoided by basing our analysis on any

of the threelists of events shown in Table 1.3, since the occurrence of any

 

 

Table 1.3

A B C

Striped red Red Red or striped
Dotted red Striped green Dotted green

Striped green Dotted green
Dotted green

 

one event on any of these lists means that no other event on the same lisi
can possibly occur. The events on any suchlist are said to be mutually

exclusive.

1.2.8 Elementary and Compound Events

The importance of mutual exclusiveness is so great that it 1s worth

the trouble to find a way of visualizing it. The events on list A of Table

1.3 are obviously mutually exclusive because they have been defined

without any grouping at all—balls which differ in any respect have been

classified as separate events in this list. These four events will be called
the elementary events of this problem.

Anyset of elementary events can be visualized as a set of points in a
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diagram like Figure 1.1, 1.2, or 1.8, where the points represent the four
elementary events of list A in Table 1.3. Events such as “red” or
‘“‘striped’’ can then be visualized as corresponding toa group of points
representing elementary events: the events ‘‘red’’ and ‘‘green”’ are

   

         

Red Striped~ Dotted Striped Red
fo

fa\
e

DG

Green

Figure 1.1 Figure 1.2 Figure 1.3

depicted in Figure 1.1, the events “‘striped”’ and “‘dotted”’ in Figure 1.2.
Such events will be called compound events, and it is obvious that

Two compound events are mutually exclusive if they contain noele-
mentary events in common.

In Figure 1.3 weillustrate the difficulty with the events used in Table 1.2:

the point corresponding to the elementary event “‘striped red”’ is included
in both the compoundevents ‘‘red’’ and “‘striped.”’

1.3 The Basic Rules Governing the Assignment of Weights

We are now ready to develop rules for using a definite number to

represent the weight which a decision maker attaches to each of the

events in a set of mutually exclusive and collectively exhaustive events.
Since we propose to use these numbers in computing weighted averages,
our rules must be such that these weighted averages will ‘‘ make sense’’—

i.e., they must be such that the decision maker will want to choose the act

with the highest weighted-average value. On the other hand, this is the
only way in which weshall use these weights; and if we find that the

requirement just stated can be met by more than oneset of rules, we are

free to choose the one which is most convenient.
To see whether we do have any such choice,let us review the way in

which any weighted average is computed. In the first two columns of

Table 1.4a we show a set of four values with a weight attached to each

value; the meaning of the values and the weights is irrelevant for our
present purpose. The weighted average is computed in threesteps:

1. Each value is multiplied by its weight to form the products shown
in the third column of Table 1.4a.
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2. Both the weights and the products are added to obtain the sums
shown at the bottoms of their respective columns.

3. The sum of the products is divided by the sum of theweights to
obtain the weighted average.

  

  

Table 1.4a Table 1.4b

Value Weight Product Value Weight Product

3 2 6 3 2 6
2 1 2 2 1 2
7 3 21 7 i) 2.1

5 4 5 A 2.0
10 49 1.0 4.9

4.9
Weighted average = 4%, = 4.9 Weighted average = 0 4.9

  

Observe now that exactly the same weighted average is obtained in

Table 1.4b by using weights each of which is one-tenth as large as the cor-
responding weight in Table 1.4a. It is obvious that this example can be

generalized: dividing every weight in a set by the same nonzero number
has no effect on any weighted average computed by use of these weights.

In other words, weighted averages are affected by the proportions among the

weights attached to the values being averaged but not by the absolute sizes of

the weights.
This means that we are free to specify that the weights assigned to a

set of mutually exclusive and collectively exhaustive events shall add up

tO any amount we choose, and unless we do make such a specification
it will be possible to represent the same beliefs by manydifferent sets of
weights. If we allow this, confusion is bound to arise, and we shall

therefore adopt the following fundamental convention as the first of our

basic rules for assigning weights to events:

Rule 1. The sum of the weights assigned to any set of mutually

exclusive and collectively exhaustive events shall be 1.

The choice of 1 rather than some other numberfor the specified total is

purely a matter of convenience; it eliminates the need to divide by the

sum of the weights in order to convert the sum of products into a weighted

average.
Having adopted this fundamental convention, we are now ready to

develop rules which must be observed in assigning weights if the resulting

weighted averages are to make sense. In so doingit will be well to have

an extremely simple decision problem actually before us, and we may as

well use the same problem which we havealready used to illustrate the

concept of mutually exclusive events. Threelists of collectively exhaus-

tive and mutually exclusive events suitable for analysis of this problem
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wereshown in Table 1.3; payoff tables based on two of these three lists
are shown in Tables 1.5a and 1.5b.

 
 

 
 

 

 

 

Table 1.5a Table 1.5b

Act (choice of ticket) Act (choice of ticket)

Event Event

1 2 1 2

Striped red V 0 Red or striped V 0
Dotted red V 0 Dotted green 0 V
Striped green V 0
Dotted green 0 V

 

Let us first consider the problem of evaluating ticket number 2.

Since this ticket pays off only if the event ‘‘dotted green”’ occurs, three

facts are immediately obvious about the value we will assign to this

ticket.

1. If we are absolutely convinced, for whatever reason, that the ball

will not be dotted green, we will value theticket at 0.

2. If we are absolutely convinced that the ball will be dotted green,
we will value the ticket at V—it is just as good as theprizeitself.

3. If we are uncertain about the event, we will value the ticket at

something between 0 and V.

Now if we assign numerical weights to the events in Table 1.5a or 1.5b

and use these to compute a weighted average of the values in the column

describing ticket number2, this weighted average will be simply V times

the weight weassign to the event ‘‘dotted green’’—recall that by Rule 1

the sum of the weights assigned to all the events in either table must be
1 and therefore that as in Table 1.46 the sum of productsis left unchanged

whenit is divided by the sum of the weights. But if this is so, then our

weighted-average valuation will agree with the three direct valuations
listed just above only if we assign weight 0 to an event which webelieve

impossible, weight 1 to an event which webelieve certain, and some
intermediate number to any doubtful event. We thus arrive at our

second fundamental rule:

Rule 2. The weight assigned to any event shall be a number between

0 and 1 inclusive, 0 representing complete conviction that the event

will not occur and 1 representing complete conviction that it will
occur.

We now turn our attention to the valuation of ticket number 1. If
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we compute a weighted average of the values in the column describing

ticket number | in Table 1.5a, we will have the sum of three terms:

V X weight of ‘‘striped red,”’
V X weight of ‘‘dotted red,”

V X weight of ‘‘striped green,”

and this sum is equal to V times the sum of the three weights. If on the

other hand we compute a weighted average of the values in the cor-
responding column of Table 1.56, we will have simply V times the weight

of the compound event ‘‘red or striped.’”’ We conclude that the weight

assigned to the event ‘‘red or striped’’ must be the sum of the weights

assigned to the three mutually exclusive events of which it is composed,

and we generalize this example to obtain our last basic rule:

Rule 3. If two or more mutually exclusive events are grouped into
a single event, the weight attached to this single event shall be equal

to the sum of the weights attached to the original events.

Observethat this rule does not hold for events which are not mutually

exclusive. Suppose, for example, that for some reason or other we have
assigned the weights shown in Table 1.6 to the four mutually exclusive

Table 1.6

Event Weight

Striped red 4

Dotted red a)
Striped green 2
Dotted green l

1.0

events of Table 1.5a. We can use Rule 3 to show that the weight
assigned to ‘‘red”’ must be .4+ .3 = .7 or to show that the weight
assigned to ‘‘striped’’ must be .4 + .2 = .6, but we cannot add these two
results to obtain .7 + .6 = 1.3 for the weight to be assigned to ‘‘red or

striped’’; if we do, we are double-counting the .4 weight originally

assigned to the event ‘‘striped red.”’

14 The Standard Lottery

Although the three basic rules which we have derived above may

seem so broad that they fail to specify exactly what set of numbers should

be used as the weights in any given problem of decision under uncer-

tainty, we shall now see that this is not so. In any situation there will

exist one and only one set of weights which will both comply with these

rules and express the decision maker’s attitudes toward a set of collec-

tively exhaustive and mutually exclusive events.
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Suppose that weare offered a free chance at a prize of value V under

the following conditions. Balls numbered 1 to 100 have been placed in
an urn and oneof these balls has then been drawnand put in a closed box.

We are presented with 100 tickets numbered from 1 to 100 and are

allowed to choose one of them. If the number we choose matches the
number on the ball which has been drawn from the urn, we will receive

the prize; if not, we receive nothing. Suppose further that even though

the prize is one which we are extremely anxious to win, we do notfeel

that it is worth the slightest effort to look for a ticket with any particular

number on it and simply take the first one which comes to hand.
In such a situation we shall say that in our opinion the 100 possible

events are equally likely. Notice very carefully that we do not and

cannot ‘‘prove”’ that the events are ‘‘in fact’’ equally likely: the fact is

that the ball which has been drawn has some oneparticular number and
no other. But even though anyone who knew which ball has been drawn

would not be indifferent among the 100 tickets, our decisions must be

based on what we know or believe about the facts of the world—they
cannot be based on the unknowntruth about these facts. Thereforeif

we are indifferent in the way described, then for us the 100 events are

equally likely by definition.
Now if our state of mind as just described is to be described by

numerical weights attached to the 100 possible events 1, 2, . . . , 100, it

is clear that these weights must all be equal. If the sum of these 100 equal

numbersis to be 1, as required by Rule 1, it is also clear that the number

attached to each event must be M00. Rule 3 then tells us that events

such as ‘‘ball number 2 or 7’’ must have weight {99 + Koo = %o0;

that events such as ‘‘any ball numbered between 1 and 37 inclusive”

must have weight 37499, and so forth. Thus while Rule 2 specified only

that the weight attached to any event must be a number between 0 and

1 inclusive, we have found a way of selecting a specific number within

this range to describe our attitude toward any conceivable event in this

lottery.

What is more important, a businessman can find the unique set of

weights which describes his attitudes in a more complex situation by using a

lottery of this sort as a standard of comparison. In order to decide what

weight to assign to the event ‘‘demand 0”’ in our inventory example, the

retailer can imagine that he is given a choice between a certain number

of tickets in the standard lottery with a prize of value V as described

above andtheright to receive this same prize in the event of ‘‘demand 0.”

If in his opinion the right to receive this prize in the event of ‘demand Q”’

has exactly the same value as 18 tickets in the standard lottery, then by

definition he considers these two events equally likely and he should

assign weight 18/99 to the event ‘‘demand 0.” (It goes without saying

that if the standard lottery with 100. balls does not offer a fine enough
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division, the retailer can substitute a similar lottery with more balls. If
he feels that the right to receive the prize in case of demand 0 is worth
more than 18 tickets but less than 19 in a lottery with 100 equally likely
events, he may decidethat it is equivalent to 183 tickets in a lottery with
1000 equally likely events.)

Having assigned a weight to the event ‘‘demand 0,’ the retailer can

proceed in the same wayto assign weightsto all the other events in Table
1.1. These weights must of course be such that their total is 1, and

therefore what the retailer is really doing is placing the set of collectively

exhaustive and mutually exclusive events shown in Table 1.1 into one-to-
one correspondence with a set of collectively exhaustive and mutually

exclusive events in the standard lottery. When he 1s through, the event
‘‘demand 0”’ will correspond, say, to the event ‘‘ball numbered between
1 and 18 inclusive,’ the event ‘‘demand 1”’ to balls 19 to 52, and so forth.
It is perhaps worth remarking that we are in no sense assuming that a
businessman will actually be as ready to gamble on balls drawn from an

urn as to make decisions concerning his regular business. We are simply
assuming that a rational person can with practice think abstractly about

his feelings of certainty and uncertainty in any given situation, regardless of

any feelings he may have about any other aspects of the situation.

1.5 Logical Consistency and the Mathematical Theory of

Probability

In addition to checking to see that the weights assigned to the events

of Table 1.1 obey the fundamental convention expressed by Rule 1, the
retailer may do well to check whether he is satisfied with some of the

logical consequences which result when Rule 3 is applied to these weights.

It is easy to assign either too small or too large a weight to an individual

event in a longlist of events, and after assigning weight .18 to ‘‘demand
0” and weight .34 to ‘‘demand 1”’ the retailer may find that the weight
.18 + .84 = .52 which he has thus implicitly assigned to the compound

event ‘‘demandless than 2” is not what he would haveassignedif he had

thought directly about that event. If so, he must reconcile this logical
inconsistency before proceeding furtherwith the analysis of his problem.

In many problems such checksfor logical consistency are of really

crucial importance. To cite a very simple but famous example, the

mathematician D’Alembert assigned weight 14 to the occurrence of one

heads in two tosses of a coin, arguing that the pair of tosses must produce

0, 1, or 2 heads and that in his opinion these three events were equally
likely. To see whether we would share this attitude we may reason as

follows. An elementary event of a pair of tosses of a coin is described by

stating the results of each of the two tosses in the order in which they
occurred. If we use HT to denote the elementary event ‘‘heads on first
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toss, tails on second toss” and similar notation for all the other possi-
bilities, the four possible elementary events of the double toss are HH,
HT,TH,and TT. If we feel that these four events are equally likely and
therefore assign weight 14 to each of them, we can add the weights
assigned to HT and TH andfind that we have implicitly assigned weight

14 rather than 14 to the compound event ‘‘one heads.” To state the
conclusion the other way around, D’Alembert implicitly assigned the

same total weight to the two events HT and TH that he assigned to each

of the single events HH and TT.
Assignments of weights in more complex problemsarestill more in

need of this kind of check. As a practical business example, consider the
scrap-allowance problem which was sketched at the beginning of this
chapter. The actual payoff table for this problem is too complex to dis-

cuss at this point, but it is easy to see that because a new setup will be

required if less than 100 good pieces are produced on thefirst run, it will
be necessary to assign weights to such events as ‘‘more than 80 defectives

in a production run of 180 pieces.” An elementary event of a run of

180 pieces can be described by a sequenceof 180 g’s and d’s, g denoting a
good piece and d a defective; and in somecases the manufacturer may be
able to check any weight he assigns directly to the event ‘‘more than

80 defectives” by assigning weights to these elementary events Just as we

assigned weights to sequences such as HTin order to check D’Alembert’s

probability. To consider only the simplest possible case, suppose that

the manufacturer feels that any one of the 180 pieces is as likely to be

defective as it is to be good and assigns equal weight to every possible

elementary event. The weight which he has implicitly assigned to the

event ‘‘more than 80 defectives’’ can then be computed by simply count-

ing the total numberof possible sequences of 180 g’s and d’s, counting the
number of sequences which contain more than 80 d’s, and dividing the

latter of these two counts by the former.

It is true that this counting would take a very great deal of time,

since it can be shown that the total number of sequences is roughly 1

followed by 54 zeros and a substantial fraction of these sequences contains

more than 80 d’s. Fortunately, however, actual counting is unnecessary.

By the use of simple mathematical short cuts which we shall study later

in the course, we can very quickly determine that 92249909 of the total

number of sequences contain more than 80 a’s and therefore that the

weight which has implicitly been assigned to the event “more than

80 defectives” is .922. Weshall also see later in the course that these

same mathematical short cuts can be used to compute implicit prob-

abilities when the businessman does not think that each piece produced

is as likely to be defective as it is to be good, even though the reasoning

about the weights to be assigned to the elementary events is more com-

plex in that case.
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The whole body of mathematical short cuts used in computationsof

this kind is known as the theory of probability. Like any mathematical

‘‘theory,”’ the theory of probability is simply a set of logical deductions

from certain basic axioms; the axioms of this particular theory are the

following:

1. A probability is a number between 0 and 1 assigned to an event.
2. The sum of the probabilities assigned to a set of mutually exclu-

sive and collectively exhaustive events must be1.
3. The probability of an event which is composed of a group of

mutually exclusive events is the sum of their probabilities.

We are justified in using the theory of probability to calculate ‘‘ weights’* in

the way in which we have just used 1t because we have agreed to assign weights

in accordance with these three axioms; the axioms are simply our three
‘‘basic rules” for assigning weights presentedin slightly different language

and with the order of the first and second rules reversed. Henceforth we

shall use the word probability in exactly the same sense that we have
hitherto used the word ‘‘ weight.”’

1.6 Relative Frequency and the Rational Assessment
of Probabilities

Although wehave just seen that the theory of probability can be used

to show that certain probabilities are mutually inconsistent and although

we have said that such inconsistencies must be reconciled before final

assignments of probabilities are made, we haveas yet said nothing about
the way in which a reasonable man will reconcile the inconsistencies he

discovers. We have seen that it is inconsistent to assign probability
14 to the event ‘‘one heads” and at the same time to assign probability
4 to each of the events HT and TH, but we have given no reason for

preferring either one of these assignments to the other. It is to this prob-

lem that we now turn our attention.
In our original discussion of the meaning of ‘‘ weights”’ or probabili-

ties, we emphasized that any probability is necessarily an expression of a
personal judgment andis therefore necessarily subjective in the sense that

tworeasonable men may assign different probabilities to the same event.

This by no means implies, however, that a reasonable man will assign

probabilities arbitrarily.

Reasonable men base the probabilities which they assign to events in

the real world on their experience with events in the real world, and

when two reasonable men have had roughly the same experience with
a certain kind of event they assign it roughly the same probability.
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1.6.1 Overwhelming Common Experience

As an extreme example of this principle, consider the assessment of

the probability of heads on the toss of a coin which has been very care-

fully inspected and found to be perfectly symmetric and which is to be

tossed in such a way that it will spin an extremely large numberof times

before it falls. Although we may or may not have had direct experience

with this particular coin and this particular tossing procedure, almost

everyonehas observed that other coins tossed in moreorless the same way
seem to turn up heads roughly half of the time. We have further

observed that although the ratio of heads to tosses is often very far from
14 in short sequences of tosses, it is usually much closer to }% in long

sequences. Still further, we have observed that heads occur about as
frequently on tosses which follow heads as on tosses which follow tails,
and more generally that heads occur about half the time whatever the pat-

tern of heads and tails on previous tosses. Finally, all this experience

with coins agrees with our experience with other symmetric objects—all

the above statements apply to the event “‘ace’’ on theroll of a perfectly
symmetric die if 1é is substituted for 14, and so forth.

On the basis of all this experience we proceed to construct a physical

theory of the behavior of a tossed coin; in other words, we proceed to
make predictions about the behavior of a tossed coin. This theory asserts
that the fraction of tosses resulting in heads is almost certain to be

almost exactly 4% if the coin is tossed indefinitely, and it asserts further
that in a very Jong run half the heads will be followed by heads, half the
runs of two heads will be followed by a third head, and so forth. We
expect, furthermore, that any reasonable maneither will adopt this same

theory on the basis of his own experience or will adopt it as soon as he is
informed of the very great amount of experience which other people have

had on the point.
Now such a theory or model of the real world says nothing directly

about the probability of heads. It predicts what would happen in a very

large number of tosses and says nothing whatever about any individual

toss. Such a prediction is exactly analogous to a prediction that the

average diameter of parts produced by a certain machine will be 1.037
inches, and it is obvious that a predicted average diameter and a prob-
ability are not the same thing. On the other hand, a reasonable man will

clearly take account of long-run relative frequency in assigning prob-

abilities. If he believes that a certain coin would fall heads half the time
when tossed repeatedly under a certain set of conditions, and if he has no

way of predicting which particular tosses will be heads, he will assign
probability 14 to the event ‘‘heads’”’ on any one toss—hewill pay neither

more norless for a chance at a prize conditional on heads on a particular

toss than he will pay for a chance at the sameprize conditional on tails.
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In general, we shall assumeit to be a characteristic of rational behavior
that:

If a person assessing the probability of a given event under a given
set of conditions feels absolutely sure that theevent would occur with
relative frequency p in a very great number of trials made under

these same conditions, he will assign probability p to the event.

It is important to make clear the meaning of the words ‘‘under these
same conditions.’’ In one senseit is tautologically true that if conditions

were really the same from trial to trial, the same event would always
occur. Ifa coin were tossed several times in exactly the same way,it

would either always fall heads or alwaysfall tails. What we actually

mean when we say that conditions are ‘‘the same”’ is that there is no
observable difference from one trial to thenext which enables us to predict
the fall of the coin on any particulartrial. |

Weare now able to say something definite about the probability
which it is reasonable to assign to ‘‘one heads” in D’Alembert’s problem.
If we have adopted a model of coin behavior in which heads occurin the
long run on one-half of all tosses and inwhich half the heads are followed
by heads, andsoforth,it is easy to see that in a long run of pairs of tosses

the events HH, HT, TH, and TT will each occur 4 of the time. Any
reasonable man who has adopted this model of the behavior of a given

coin will therefore assign the same probability to each of these events and

therefore must assign probability 144 rather than 14 to the compound
event ‘‘one heads.” In actual practice, we would not even go through

the process of first assigning a probability directly to ‘‘one heads” and

then checking this against the implications of probabilities assigned to
the four elementary events. We know in advance that our assignment

of. probabilities to the elementary events can be based on experience
which is extremely extensive in comparisonwith the numberof times that
we have tossed a coin twice and counted the numberof heads in the pair
of tosses, and therefore we would start by assigning probabilities to the

elementary events and stop when we had computed the probability

which wehadthus implicitly assigned to the event ‘‘one heads.”

-.. In more complex problems such as the scrap-allowance example we
will proceed .in the same general way: we will ask the businessman to

assign probabilities to those events on which his experience bears most

directly and we will then use the theory of probability to compute the
probabilities of the events. with which he has had less extensive experi-

ence. It is for this reason and this reason alone that the theory of prob-
ability is of use in making practical business decisions:

The theory of probability allows the businessmanto assign probabili-
ties to those events on which his experience and judgment bear most
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directly rather than to the events which will actually determine the
profit or cost of his decision but with which he has hadlittle or no
direct experience.

1.6.2 Lamited Experience

It is only rarely that experience with a given kind of event will be
as overwhelmingasit is for “‘heads”’ on the toss of a coin, but even when
experienceis limited it is still a guide to the rational assessment of prob-
abilities. Suppose, for example, that we wish to assess the probability of

ace on theroll of a die which has been deformedin such a waythat it is no
longer symmetric. In this situation general experience with rolled

objects will usually lead a reasonable person to adopt a model of die

behavior whichis like the coin model except that the fraction of aces is

unknown. Our experience is sufficient to lead us to predict that in the
long run the relative frequency of ace will become and remain nearly

equal to some fraction p, that ace will be followed by ace with this same
relative frequency, and so forth; but our experience is not adequate for
a prediction of the exact value of this frequency.

Obviously such a mode! does not tell us exactly what probability to
assign to ace. Wecan say that if we had had enough experience with the

die to feel sure that the long-run relative frequency of ace would be .15,

then we would assign probability .15 to ace on any oneroll, and so forth;

but our problem is not to make statements of this sort. If the conse-
quences of a decision depend on the occurrenceof ace on the nextroll of
the die, we must assess the probability of this event in the light of what-
ever experience we actually have. ‘Two reasonable people may well dis-

agree concerning the probability to be assigned to ace in a situation like

this, since neither of them will have had any great amount of experience
with the behavior of a die deformed in exactly the way this oneis.

Observe, however, that this does not mean that there is no relevant

experience: if the deformation of the die is slight, we will not consider a
person reasonable if he assigns probability .01 or .99 to ace.

1.6.8 Learning from Additional Experience

| The case of the perfectly symmetric coin and the case of the deformed

die differ not only in the amount of agreement to be expected in theinitial

assessment of the probabilities of heads or ace but also in the way in
which further experience affects any one individual’s assessments of these

same probabilities on subsequent trials.

In the case of the perfectly symmetric coin, we mightstill assess the

probability of heads on the next toss at 144 even though we had just
observed a large number of consecutive heads or tails; our model of the

long-run behavior of the coin rests on an extremely great amountof evi-
dence and we may consider this new evidence negligible in comparison.
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In the case of the asymmetric die, on the contrary, we will use any experi-
ence we gather by rolling the die to modify the probability we originally

assigned to ace. Notice, however, that we usually will not simply equate

the probability of ace to the fraction of aces observed in a limited number
of rolls. If we roll the die once and it comes up ace, we will not assign

probability 1 to ace; if we roll it six times and get no ace, we will not
assign probability 0 to ace.

Our assessment of the probability of ace will continue to be substan-
tially influenced by our observation of the shape of the die, and the
relative importance we attach to the observed shape of the die in
comparison with the importance we attach to the observed frequen-
cies is necessarily a matter of subjective judgment.

1.6.4 Application to Business Problems

In exceptional circumstances the probabilities involved in a business

problem can be simply equated to ‘‘known”’ relative frequencies in the

way probability 14 is assigned to heads on the toss of a very symmetric

coin. If 50 per cent of the last 100,000 parts produced by some machine
have been defective, if we have no reasoneitherin theory or in observation

to believe that defectives occur in “streaks,”’ and if a new production run
is to be made under the sameconditions asall these past runs, we will be

strongly tempted to adopt a model of the behavior of the machine which
is exactly like the model of coin behavior discussed above. We will be

willing to predict that 50 per cent of all future parts will be defective,

that 50 per cent of the defectives will be followed by defectives, etc., and
we will not change these predictions whatever the pattern of quality in

the next few hundred pieces produced. We will then be justified in

assigning equal probabilities to all possible elementary events in the way

we did in Section 1.5 above.

In the majority of cases, however, the problem will not be so simple.
If the machine is new or has just been repaired, or if a new operatoris

employedor a slightly off-standard batch of raw material is received, we
will be in the same position that we are when weassess the probability of

ace on a slightly deformed die. The probability assigned to defective on

the first piece will depend on ‘‘judgment”’ in the sense that two reasonable

men may well assign different values. This probability will be revised as

more experience 1s gained, and again judgmentwill determine the relative

weights given to the observed frequencies on the one hand and to other
kinds of evidence on the other.

16.5 Mental Processes and Relative Frequency

The examples which we have discussed above of the way in which

models predicting relative frequencies can be of use in assessing prob-

abilities all involved the relative frequencies of physical phenomena, but



20 The Problem of Decision under Uncertainty 1.7

the same kind of argument can be of use in connection with mental
phenomena. Frequency models of mental processes usually involve

uncertainty about the actual value of the long-run frequency in exactly

the same way that most frequency models of physical processes do; but

in both cases the frequency model is useful even though it is not com-

pletely decisive. The value of a large tract of timber is often assessed
by having it visually inspected by an experienced timber cruiser whose

judgment has previously been calibrated by comparing his estimates of

the amount of timber in a numberof tracts with accurate measurements
made on the same tracts. The probability that his present estimate will

be low by 10 per cent, say, is then assessed largely on the basis of the rela-
tive frequency of errors of this magnitude on previous occasions.

In the same way a sales manager whobasessales forecasts on his

‘‘feel of the market’’ can very usefully be treated as a ‘‘process.”’ If we

have extensive records of the errors he has madein his past forecasts, we
will assess the probability that his current forecast will be low by 10 per

cent almost entirely on the basis of the relative frequency with which this

event occurred in past forecasts. If on the other hand we have verylittle

previous experience with his forecasts, or if the nature of the product or

the market has been radically changed, we will have to make muchlarger

use of other kinds of experience in assessing this probability, just as we

have to depart from exclusive reliance on observed frequencies when we

assess probabilities concerning the performance of a new machineor of
an old machine under new conditions.

1.7 Relative Frequency and the Mathematical Theory
of Probability

If we think back to the three axioms of the mathematical theory of
probability as stated in Section 1.5 above, we will see that relative fre-

quencies—either those predicted for the long run or those actually

observed in a finite number of trials—are numbers which agree with these

axioms. Therelative frequency of any event is a number between 0 and

1 inclusive, the sum of the relative frequencies of all possible eventsis 1,

and the relative frequency of a compound event such as ‘‘either ace or

deuce”’ is the sum of therelative frequencies of the mutually exclusive
events of which it is composed.

This means that the theory of probability can be used to deduce
relative frequencies from other relative frequencies in exactly the same

way that it can be used to deduce probabilities (i.e. subjective weights)
from other probabilities. When wefirst discussed the scrap-allowance

example, in Section 1.5, we assumed that the manufacturer assigned equal

probability to every possible elementary event, i.e. to every possible

sequence of 180 g’s and d’s, and from these probability assignments we
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deduced that the probability of the compound event ‘‘more than 80
defectives’’ was .922. We pointed out in Section 1.6.4, however, that the
assignment of equal probabilities to the elementary events was warranted
only on the basis of a ‘‘model”’ of the production process which implies
that these events would occur with equal relative frequencies in a very

great numberof runs of 180 pieces, and this gives us an alternative way

of expressing the same calculation. Given that the elementary events
occur with equal relative frequencies, the theory of probability can be

used to show that the relative frequency of the compound event ‘‘more
than 80 defectives’? must be .922; we can then assess the probability of

this compound event by equatingit to its own relative frequency.
A relationship of this kind between probabilities and relative fre-

quencies can be imagined even in a problem where the probabilities of the
elementary events have not been assessed by reference to any frequency
model. In other words, we can visualize all the probabilities involved in
any problem as being equal to relative frequencies in an imaginary

sequence of trials whether or not the particular trial with which we are

dealing is of such a nature that it could conceivably be repeated. Since
relations among actual numbers of events are easier to grasp than rela-
tions among abstract numbers called probabilities, we shall often make

use of this device to ‘‘explain”’ the results of calculations involving prob-

abilities; but the student must always remember that such ‘‘explana-

tions’’ do not imply either that probabilities are relative frequencies or
that they are necessarily equal to real relative frequencies.

PROBLEMS

1. Fivedifferent lotteries 7 through v are to be conducted according to rules given

below. Any one of these lotteries will pay the player either a $100 cash prize or
nothing. Answerthe following three questionsfor each of thefive lotteries separately.

a. How much would you personally be willing to pay for the right to play?
b. What probability would you assign to the event “win”’ if you played?
c. Try to imagine what would happen if the lottery were repeated over and over

with the sameplayer, not necessarily yourself, and say what you can about therela-
tive frequency with which the player would win in the long run. To what extent does
your answer depend on the way in which the person conducting the lottery behaves?

On the way in which the player behaves?

Description of the Five Lotteries

2. Fifty red and fifty black balls will be placed in an urn andstirred thoroughly.
The player will then be allowed to draw oneball without looking and will receive the

prize if the ball he drawsis red.
a1. Sameas 7 except that the person conducting the lottery may place in the urn

any mixture of red and black balls that he pleases and the player will not be told what
the mixture actually is.

iii. Same as 7 except that the player maycall either ‘“‘red’’ or ‘“black’’ just before

drawing the ball and will receive the prize if the ball is of the color hecalls.
#. Same as 72 excevt that the player maycall his color.
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v. Sameas wv except that the player must toss a coin and call “red’’ if the coin
falls heads, ‘“‘black’’ if it falls tails.

2. A lottery is conducted by the use of one master urn and a numberof secondary
urns labeled respectively A, B, C, and so forth. Every secondary urn contains the
same number of balls; this numberwill be denoted by

Ng: total number of balls in any one secondary urn.

The numberof balls in the master urn may bedifferent; it will be denoted by

Ny: total numberof balls in the master urn.

The balls in every individual urn, master and secondary,are serially numbered starting
with 1, and every ball bears one otherlabel in addition to its serial number. In the
master urn, everv hall is labeled with a letter corresponding to some one secondary
urn; the number l- labeled with each letter will be denoted by

Am, Bu, . of balls in the master urn labeled A, B,etc.

Every ball in es ‘-; urn is labeled either ‘‘win”’ or “‘lose,’’ and we define

Wa, Wa, . .*-¢ ¢ ber of winning balls in urn A, in urn B, etc.

A single ball will be drawn from the master urn,the letter on this ball will be read, and
a single ball will then be drawn from the secondary urn marked with this sameletter.
The player winsif this latter ball is marked ‘‘win,’’ and we wish to compute the prob-
ability which he should assign to the drawing of such a ball.

a. An elementary event (cf. Section 1.2.3) of this compoundlottery can be described

by a symbol of the form M3-A2, meaning that thefirst ball drawn wasserial number 3
in the master urn and that the second ball drawn wasserial number 2 in the urn A.
Show that the total numberof different possible elementary events is given by the

formula

Total numberof possible elementary events = NuNs.

b. If a ball labeled A is drawn from the master urn, the second ball will be drawn

from secondary urn A andthe playerwill win if this second ball is any one of the Wa
balls in that urn which are marked ‘‘win.’”’ Show that the numberof different winning
elementary events involving urn A is AmWa and that the total number of winning
elementary events of the entire lottery is given by the formula

Number of winning elementary events = AmWa + BuWa+:::.

c. The ratio of the numberof winning elementary events to the numberof possi’):
elementary eventsis thus

AuWa+ BuWeat :: 1 Au Wa , Bu We oe
NuNg Nu Ns Nu Ns

Exactly what assumption has to be made about the basic attitudes of the player
before we may say that this is the probability which he should assign to winning?

d. If we arbitrarily define symbols

A B
pA = Na! PB = We etc.

and symbols

Wa, Wa,
TA = Ns’? T2323 = Ng? etc.
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the formula given in part c can be written

SSSSSSSSGVOGVGSGSGOSSSBWOPOOOOOODe

Probability of winning = para + patra + : : -

 

Exactly what assumptions must we make before we mayinterpret each term in this
formula as the product of the probability of drawing a particular secondary urn times
the probability of winning if that secondary urn is drawn?



CHAPTER 2

Expected Value and Utility

At the beginning of Chapter 1 we said that any problem of decision under

uncertainty can always be described by a payoff table in which thereis

a column for every possible act and a row for every possible event; each
cell in the table describes the consequence of a particular act given a par-

ticular event. We said that we would try to find a way of choosing
among the acts in the face of uncertainty concerning the events by

1. Assigning a definite numerical value to every consequence (every

cell in the table),
2. Assigning a definite numerical weight to every event,
3. Evaluating each act by taking a weighted average of all the differ-

ent values which might result from that act.

In the remainder of Chapter 1 we concentrated our attention on the
second of these three steps; we now go on to consider how we can carry

out the first step in such a way that the result of the third step will in fact
be a ‘‘correct’”’ guide to action.

2.1 Definitions of Conditional and Expected Value

Conditional Value. Each of the values which haveto be assigned in

step 1 of the procedure outlined just aboveis the value which somepar-

ticular act will have on condition that some particular event occurs, and
therefore these values will be called conditional values. We define

Conditional value of an act given a particular event: the value which
the person responsible for a choice amongacts attaches to the conse-

quence which that particular act will have if that particular event

occurs.

Expected Value. After probabilities have been assigned to events in
step 2 of the procedure we propose to use, step 3 consists in obtaining a

single value for each act by taking a weighted averageof all the various
conditional values of that act, each conditional value being weighted by

the probability that the act will in fact have that value. The standard
24.
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name for an average in which all possible values are weighted by their

probabilities is expected value; we define

Expected value of an act: a weighted average of all the conditional

values of the act, each conditional value being weighted by its
probability.

Such a weighted averageis also called the expectation of the conditional

values of the act.

Mistakes are bound to occur unless we adopt some kind of systematic

procedure for the actual computation of expected values according to the

definition just given. We have already said that the analysis of any
decision problem must start by (1) drawing up a payoff table showing the
conditional value of every act given every event and (2) assigning a prob-

ability to every event in the payoff table. After both these steps have

been completed, we shall take the acts of the payoff table one at a time and

compute the expected value of each one on a work sheet like the one

shown in Table 2.1, filling out this work sheet according to the following

rules:

 

 

 

 

Table 2.1

Computation of the Expected Value of an Act

Value

Event Probability
Conditional Expected

A 3 +5 +1.50
B 3 +3 + .90
C _.4 —4 —1.60

.O + .80
 

. List every possible event in column 1.

. Enter the probability of each event in column 2.

. Enter the conditional value of the act given each event in column3.
For each event multiply probability times conditional value and
enter the product in column 4, faking care to preserve the algebraic

sign.
5. Add the products in column 4 with due regard to algebraic sign.

m
O
h

2.2 Expected Monetary Value

The definition of expected value which we have given aboveapplies
no matter what kind of value is assigned to each consequencein a decision

problem. If in an inventory problem like the one discussed in Section

1.1.1 we take the net cash receipts shown in Table 1.1 as representing the
value of each consequence, then a computation like the oneillustrated in
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Table 2.1 will give us the expected net cash receipts of any act. If we

value each consequence according to the numberof units sold, application
of the samerules of computation will give us the expected numberof units

sold; and so forth. We now turn to our real problem, whichis to find out

exactly how each consequence must be valued if the businessman is to

feel that the act with the highest expected valueis really the act he wants

to choose.
Our first inclination, of course, is to think that at least in most

business problems the value of a consequence can properly be repre-

sented by a sum of money, and ourfirst step will be to inquire to what

extent this proposition is true. What weshall see is that while expected

monetary valueis in fact a valid guide to action in the great majority of
practical business problems, there are some very important problems in

which it would be an extremely misleading guide.

2.2.1 The Importance of the Individual’s Attitude toward Risk

Consider two businessmen each of whom believes that if he submits

the proper proposal he has a 50-50 chance of being awarded a contract
which is sure to yield a $35,000 gross profit, and suppose that preparation

of the proposal will cost either of these men $10,000 out of pocket. The
expected monetary value of the act “submit the proposal’’ is shown in

Table 2.2 to be a positive $7500 for either of these two men while the

Table 2.2

Expected Monetary Value of Making the Proposal
 

Monetary value

 

 

Event Probability

Conditional Expected

Get contract 4g +$25 ,000 +$12,500
Do not get contract yA — 10,000 — 5,000

1 +3 7,500

 

correspondingfigure for not making the proposal is obviously $0, and yet
the two men may quite reasonably come to opposite conclusions. If one

of them is extremely hard pressed for cash and could easily be bankrupted
by the loss of $10,000, he may well decideto let this opportunity go; if the

other man has adequate working capital he may with equally good reason

decide to make the proposal.
This example obviously implies that there are situations in which

expected monetary value is not a valid guide to action if by ‘‘valid’’ we
mean @ guide which accords with the businessman’s own judgment and

preferences, but if we look a little more closely we will see that it implies

much more than this. What must be decided is simply whetherit is
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worth risking a loss of $10,000 in order to have an even chance of a
$25,000 profit, and there is no concewable computation or method of

analysis which will be of the least help to anyone in making such a

decision—it must turn entirely on a direct expression of personal

preference.

The student may well ask at this point how we propose to help a

businessman in any situation whatever if we can be of no helpatall in a

situation as simple as the one just described, and the question deserves an

answer before we proceed further. The answer is this: we propose to
show the businessman how he can make a fully reasoned analysis of

a very complex decision problem—one in which there are manypossible
acts each of which has many possible consequences—byineffect reducing

this very complex problem to a numberof separate problems every one of
whichis just as simple as the one we havejust discussed.

Suppose, for example, that our two businessmen are given the

opportunity of submitting proposals for another contract and that in this
case they both assign to the act ‘‘submit the proposal” the whole set of

possible consequences and associated probabilities shown in Table 2.3

 

 

Table 2.3

Description of Act ‘Submit the Proposal’’

Event Consequence Probability

A +$25 ,000 1

B + 20,000 1

C + 15,000 1

D + 10,000 1

E + 5,000 1

F — 10,000 _-5

1.0

 

Comparison of this table with Table 2.2 shows that the act ‘“‘submit”’ is

clearly less desirable in the present example than in the original example,

and consequently the businessman who was hard pressed for cash and
therefore refused to submit the proposal in the original example can

quickly arrive at the same conclusion in the present example; in other

words, he can solve a complex decision problem by referring it to a simple

decision problem in which hecaneasily see exactly what is at stake. The

choice is by no meanssoclear for the other businessman, however, and he

will be substantially aided if we can find some systematic technique of

analysis which in effect reduces his complex problem to a simple problem

in which he can see exactly what is at stake. Weshall now investigate

the conditions under which the computation of expected monetary value

will be a suitable technique.



28 The Problem of Decision under Uncertainty 2.2.2

2.2.2 Conditions under Which Expected Monetary Value Is a
Valid Guide to Action

If we think for a moment about what we know about the way in
which businessmen in fact make very simple decisions underuncertainty,
we will realize that whether or not they formally compute expected
monetary value they act in accordance with expected monetary value
when the amounts at stake are not too large. If a businessman believes

that there is 1 chance in 1000 that his million-dollar plant will burn down
during the next year, he may bewilling to pay $1500 as a premium for an
insurance policy even though the expected monetary valueof his loss if

he does not insure is only $1000; but if the same businessman believes
that he runs a 1-in-1000 chance of suffering $100 worth of damage tohis
machinery because of tramp iron in a particular batch of raw material, he

is very likely to be unwilling to pay a cent more than the $.10 expected

value of this loss for insurance against it. Remembering that a cash out-
lay is to be given a minussign, wesee that in the former case he chooses
an act with a monetary value of —$1500 even thoughthealternative act
has the greater monetary value —$1000 but that in the latter case he
says that he will take the act with expected monetary value —$.10 if the

monetary value of the other act is the least amount lower.
This general kind of behavioris not restricted to situations in which

the monetary values of all possible consequences are negative or at best
zero. A businessman with net assets of $500,000 who must choose
between a deal which is certain to result in a profit of $50 and another
which in his eyes is equally likely to result in a profit of $0 or a profit of
$110 is likely to choose the latter act in accordance with the fact that its

expected monetary value is $55; but if this same businessmanis given the

happy opportunity to choose between a deal which is certain to net him

$5 million and another which has equal chances of yielding $0 and
$11 million, he is very likely to take the $5 million.

To sum up: businessmen tend to treat acts which must have one or

the other of just two possible consequencesas being ‘‘really worth”’ their

expected monetary value as long as the worst of the two consequencesis
not too bad and the best of the consequences is not too good. This

immediately suggests that a businessman who must evaluate an act or

acts with a great number of possible consequences can decide whether or

not he should use expected monetary value as the basis of his evaluation
by looking only at the best and the worst of the consequences and asking
himself whether he would act in accordance with expected monetary
value if these were the only possible consequences. More specifically, it

would seem reasonable for a man faced with a very complex decision prob-

lem to decide whether or not he should take expected monetary value as
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his guide by applying the following very simple

Test for the Validity of Expected Monetary Value as a Guide to Action:

Expected monetary value should be used as the decision criterion in
any real decision problem, however complex, if the person responsi-
ble for the decision would useit as his criterion in choosing between
(1) an act which is certain to result in receipt or payment of a defi-

nite amount of cash and (2) an act which will result in either the best

or the worst of all the possible consequences of the real decision
problem.

Later in the chapter we shall see that the correctness of this rule can be

‘‘proved”’ in the sense that we can show that any person whodoes not

follow the rule will end up by making choices which in the opinion of

most reasonable people are logically inconsistent.
As an illustration of the application of this rule, let us return to the

businessman who must decide whether or not to submit a proposal for a

contract when the possible consequences of this act are as described in
Table 2.3. The best and worst possible consequences of this act are

+$25,000 and —$10,000; and since the consequence of not submitting

the proposal is certain to be $0, the two consequences previously named

are the best and worst of the entire decision problem. Asan initial test,
the businessman can therefore ask himself the following question: ‘‘Sup-

pose that J had to choose between (1) receiving a definite amount of cash

and (2) being awarded a contract such that J assigned probability 14 to
the consequence +$25,000 and probability 14 to the consequence
— $10,000, making the expected monetary value of the contract $7500.

Would J (a) prefer the contract to the cash if the specified amount of

cash was less than $7500 and (b) prefer the cash to the contract if the

specified amount of cash was over $7500?” If the answer to this ques-
tion is yes, expected monetary value will almost certainly be a correct
guide to this businessman’s action in his real problem; but in principle he

must go on to ask himself whether he would answer yes to any question

of this type whatever the probability he assigned to the $25,000 profit.
He should, for example, suppose that he had already signed a contract

with probability .1 assigned to the consequence +$25,000 and probability

.9 assigned to — $10,000, so that the expected monetary value of the con-

tract was — $6500, and then ask himself whetherin fact he would (a) pre-

fer to pay any amount of cash less than $6500 for a release rather than

perform the contract but (b) prefer to perform the contract rather than

pay any sum greater than $6500 fora release.

If the businessman’s answer to any of these questionsis no,a little

common sense is required. Such an answer implies that expected
monetary value will not give an exactly accurate evaluation of any act
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which may result in the $25,000 profit or the $10,000 loss, but this does
not mean that expected monetary value will necessarily lead to the
wrong choice of act. In our example, the expected monetary valueof the
act ‘‘submit the proposal” is +$2500, as shown in Table 2.4, andthis is
very substantially greater than the value $0 of the act ‘‘do not submit the
proposal.”’ If then the businessmanfeels that he would value a contract
which gave him even chances of +$25,000 and — $10,000 at only slightly
less than its expected monetary value of +$7500, he can feel quite sure
that the act ‘submit the proposal’’ in the real problem is better than an

act which is certain to have the value $0 even though he could not be sure

that it would be better than an act which was certain to have the value

$2400.

 

 

 

 

Table 2.4

Monetary value

Event Probability

Conditional Expected

A 1 +$25 ,000 +$2500
B 1 + 20,000 + 2000

C 1 + 15,000 + 1500
D 1 + 10,000 + 1000
E 1 + 5,000 + 6500
F 5 — 10,000 — 5000

1.0 +$2500
 

2.2.8 Delegation of Routine Decision Making

Systematic use of expected monetary value actually simplifies prac-

tical business decisions even more than this example suggests, and for
two reasons.

1. The person whois ultimately responsible for a certain class of

decisions does not have to look at each decision problem individually in
order to decide whether expected monetary value is a proper guide to

action, as we can easily see by considering the decision which had to be
made by the retailer of the exampleoriginally discussed in Section 1.1.1.
This retailer will presumably have larger numbersof decisions of exactly

this same kind to make daily, and he cansettle the question of the validity
of expected monetary value as a guideto all these decisions once and for

all by simply asking himself how large the worst possible loss and the
greatest possible profit would have to be before he would refuse to use
expected monetary value as a guidein a simple two-consequence problem.

If he has $10,000 of working capital, he may well decide that he would
take expected monetary value as a guide in any inventory-control prob-

lem where the worst possible loss did not exceed, say, $100 and where the
greatest possible profit did not exceed, say, $500. If his preferences are
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of this sort, then a simple statementof policy to thiseffect will enable his

subordinates to solve virtually all of his stock-control problems without
having to ask him any further questions about the ‘‘value of money,”’

while at the same time he can feel absolutely sure that his preferences are

respected.

2. In principle, the person ultimately responsible for a class of risky

decisions must himself evaluate the probabilities or weights which he

himself attaches to the various possible events in any problem, but this

evaluation can also be delegated in the great majority of practical

business problems. In most routine problems the executive would follow

some systematic procedure for assessing these probabilities if he did

assess them himself; and wheneverthis is true he can delegate the assess-

ment by simply prescribing the assessment procedure or even the general

type of assessment procedure to be used. Thus probabilities may be

assessed in routine inventory-control problems by examining the record

of demand over the past several periods and using this record in some

systematic way; probabilities in routine quality-control problems may

be assessed by standard statistical procedures which weshall study later
in this course, and so forth.

Once the executive has specified the range of problems within which

he wants to have expected monetary value taken as a guide to action and

the procedures by which probabilities are to be assessed in routinesitua-

tions, he will be free to make a careful personal analysis of those problems

where such an analysis is really worth the effort: problems in which the

possible losses and gainsare so great thatexpected monetary value ceases

to be a proper guide to action, and problems in which business judgment

of a kind not expected of clerks and statisticians is required to assess the
probabilities of the events.

2.3 Expected Utility

In the remainder of this chapter we shall study the problem of

choice in situations where the amounts at stake are so large that the test

described in Section 2.2.2 tells the businessman that he should not use
expected monetary value as a guide to action, and weshall see that even

in these situations the businessman can reach a fully reasoned solution of

the most complex problem by deciding how he would want to act in a

numberof very simple problems. More specifically, we shall see that his

decisions in the simple problems can be used as the basis for assigning a
utility value to each possible consequence in the real problem and that

once this has been done the real problem can be solved by the mere

mechanical computation of the expected utility of every possible act.
_ This means that the only difference between analysis of a problem in

which expected monetary valueis a valid guide to action and analysis of
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a problem in which it is not is that in the latter case we must replace the
monetary payoff table by a table showing conditionalutilities. Once this
has been done, probabilities are assigned to the eventsin the utility table
exactly as they would be if the table showed monetary values rather than

utilities, and the expected utility of each act is computed from the condi-
tional utilities in exactly the same way that expected monetary valueis

computed from conditional monetary values. For this reason we shall
talk exclusively in terms of the more familiar monetary values in all
future chapters, leaving it to the student to remember that in any real
problem he must apply thetest of Section 2.2.2 and substitute utilities for

monetary values if necessary. It follows that the remaining sections of

the present chapter can be read just as well at the end of this course as at
the present time.

2.3.1 Outline of the Method of Analysis

Suppose that the businessman with limited working capital who
refused the contracts described in Tables 2.2 and 2.3 is offered two other

contracts to whose possible consequences he assigns the probabilities

shown in Table 2.5. It is easy to calculate the expected monetary value
of contract M as +$3825 and that of contract N as +$2025, and the

expected monetary value of taking neither contract is obviously $0; but

we assume that the businessmantells us that he would certainly not be
willing to accept any deal in which there was an even chance of making
or losing $9000, and this by the rule of Section 2.2.2 means that expected

monetary value is of no help to him in choosing among the three acts

actually open to him.

 

  

 

Table 2.5

Contract M Contract N

Event Probability Consequence Event Probability Consequence

A .30 +$9000 Q .25 +$7500
B 45 + 7500 R .60 + 2000

C .25 — 9000 S 15 — 7000

1.00 1.00

 

If the two contracts offered to the businessman had been those

described in Table 2.6 rather than those described in Table 2.5, his
decision problem would obviously have been much easier. Each of
these contracts has only two possible consequences and these conse-

quences are the samefor both contracts; the only difference between the

two contracts is in the probabilities attached to the consequences, and it

is obvious that the more desirable contract is the one with the higher
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probability of obtaining the $10,000 profit. All that the businessman
has to do to make a completely reasoned analysis of this problem and

 

  

 

Table 2.6

Contract X Contract Y

Consequence Probability Consequence Probability

+$10,000 .8 +$10,000 a
— 10,000 _.2 — 10,000 _3

0 .O

 

reach a decision is to make up his mind whetheror not heprefers a cer-

tainty of $0 to the combination of a .8 chance of +$10,000 and a .2 chance
of —$10,000 which he will obtain if he accepts contract X.

Weshall now show that the problem of deciding whether to take
contract M, contract N, or neither can be reduced to a numberof prob-
lems every one of which is just as simple as the problem of choosing

between contract X and $0 cash certain. To do this we proceed as
follows.

la. Weselect two reference consequences one of whichis at least as bad
as the worst possible consequencein the real decision problem and one of
which is at least as good as the best, invent a number of hypothetical

reference contracts each of which has a specified probability a of resulting

in the better reference consequence and a corresponding probability

(1 — 2) of resulting in the worse, and ask the businessmanto tell us how
much cash certain is just equivalent in his own opinion to each of these
reference contracts.

1b. We take each possible consequence of the real decision problem

separately and use the businessman’s answers as given in step la to find
the 7 which would make a reference contract equivalent in his opinion to
this consequence.T

2. We use the results of step 1b to find the z which would make a
reference contract equivalent in the businessman’s own opinion to the

whole real contract M and another z which would makea reference con-

tract equivalent to the whole real contract N. Once these two 7’s have

been found, the problem of deciding whether to take contract M, con-

tract N, or neither is just as simple as the problem of deciding whether to

take contract X, contract Y, or neither.

tT In strict logic, we could ask the businessmandirectly to tell us the probability

«x which would make a reference contract just equivalent to each possible consequence
of the real problem, but it is much easier for the average person to decide how much
he would pay for a gamble with specified probabilities than to find the probabilities

which would make the gamble have some predetermined value.
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2.3.2 Evaluation of Reference Contracts in Terms of Cash

Looking at Table 2.5 we see that —$9000 is the worst of all the
possible consequences in the real decision problem and that +$9000is
the best, so that these two consequences could be chosen as reference

consequences; but because it is easier to think in terms of round numbers

and easier to multiply by 10 than by 9 we choose instead — $10,000 and

-+$10,000.
Weare now ready to take the step which allows the businessman to

express his real attitudes toward risk, profit, and loss by considering
problems of the simplest possible form. We ask him a numberof ques-

tions all of which are of exactly the same form as the following typical

question:

Assuming that for some reason or another you have already signed

a regular business contract which in your own opinion has probability
a = 3% of resulting in a $10,000 profit and probability 1 —7 = \
of resulting in a $10,000 loss,
1. Would you prefer to keep this contract if you had the choice or

would you prefer to be released from its terms?

2. If you would prefer to keep it, then for how much cash would you
be willing to sell it?

3. If on the other hand you would prefer to be released, then exactly
how much cash would you be willing to pay for a release?

The second question will be identical to the first except that we ask the

businessman to imagine that in his own opinion the contract which he

has already signed involves only a % probability of a $10,000 profit and

a 44 probability of a $10,000 loss; and the third will again be identical
except that the probability of the profit is 44 and the probability of the
loss is therefore 34. Observe that each of these questions is equivalent
to a number of simple choices between (1) a specified amount of cash

certain and (2) a reference contract with specified probabilities + and
(1 — +) for the two consequences. We assumethat if we did ask for a

sequence of such choices keeping the probabilities in (2) constant but
gradually raising the amount of cash in (1), the businessman would

always prefer (2) when the cash was below somecritical amount and
would always prefer (1) when the cash was greater than this critical

amount. Equivalently, we assume that if we held the cash constant in
(1) and gradually raised the probability of the $10,000 profit in (2), the

businessman would prefer (1) when wr was below somecritical value and

would always prefer (2) when a was abovethis value.

In Table 2.7 we show the answers which might be given to these

three questions by three different reasonable men, together with the

answers which we assumethat any reasonable man would give if he were
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asked to name the cash equivalent of a contract which was certain to

result in a $10,000 loss or certazn to result in a $10,000 profit. A minus

sign before the cash valueindicates that this is what the person in ques-

tion would pay to be released from the contract; a plus sign indicates that
this is the price he would demandbefore he wouldsellit.

Table 2.7

Cash Values of Hypothetical Contracts According to
Three Different Businessmen

 

 

Probability of Cash equivalent for Mr.
$10,000 profit

ce A B C

1 +$10 ,000 +$10 ,000 +$10,000
4 — 3,000 + 9,000 + 5,000
14 — 7,000 + 7,000 0
\4 — 9,000 + 3,000 — §,000
0 — 10,000 — 10,000 — 10,000

 

Mr. A in this table represents the hard-pressed businessman whose
problem of choice between contracts M and N weare trying to solve.

Because a $10,000 loss would put his business in an extremely critical

position, he feels that he would rather pay $3000 out of pocket than run

the risk of the $10,000 loss even though he thinks that there is only one
chance in four that this loss will actually occur against three chances in

four that there will be a $10,000 profit. As the chance of the loss becomes

larger and the chance of the profit smaller, Mr. A naturally becomes will-

ing to pay even more to avoid the risk: he will pay $7000 for a release

when the probability of the loss is 4, and whenit is 34 he will even pay

$9000 certain rather than run the risk of losing the extra $1000 which

might put him in bankruptcy.
Mr. B has attitudes diametrically opposed to those of the very

cautious and conservative Mr. A; he represents the player of long shots,

the man whofeels that even a large loss could not make things much
worse than they are now whereas a large profit would very substantially

improve his whole situation. This attitude is more commonly found

among players of numbers pools and the like than it is among business
executives, but it is perhaps worth pointing out that even the extremely

conservative Mr. A might take this attitude if his misfortunes continued

to the point where he would not be able to meet his next payroll unless

something extremely fortunate happened between now and Friday.
Whatever his motives, Mr. B wants an additional $10,000 so badly that
he would consider a r = 14 chance of making it to be worth as much to

him as $3000 cash certain even though this chance was accompanied by
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a 34 chance of taking a $10,000 loss; by the time r = 34 and (1 — 7) is

only 34, he would not sell his chance at $10,000 for less than $9000.
The answers given by Mr. C will serve as a kind of standard of com-

parison. Mr. C represents a businessman well supplied with working

capital who believes in self-insurance against moderate risks, considers
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Figure 2.1. Cash values of various reference contracts.

$10,000 to be in fact a very moderate risk, and is therefore willing to use

expected monetary value as his guide to action in any problem where the

stakes do not exceed plus or minus $10,000. When the chances of a

$10,000 profit and a $10,000 loss are equal, Mr. C does not care whether
he keeps the contract or gives it away; when the probability x of the more

favorable outcome is 34, he would be willing but not eager to sell the

contract for its expected monetary value of $5000; and he would be will-

ing but not eager to pay $5000 for a release if these chances were reversed.

Wenowtry to relieve our businessmen of answering more questions

than absolutely necessary by proceeding in the way shown in Figure 2.1.
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The curve labeled A is constructed by plotting the five cash values shown
in column A of Table 2.7 above the five corresponding values of the

probability + and then fairing a smooth curve through thefive plotted
points; curves B and are similarly constructed using the cash values in

columns B and C respectively. If we were really acting as consultants

to Mr. A, we would certainly go on to read from his faired curve some
pairs of values which are not shown in Table 2.7 and check these values
with our client. Curve A asserts, for example, that Mr. A attaches a
cash value of only $2000 to a reference contract with + = .9, and we
would do well to ask Mr. A whether this surprisingly low cash value
representshis true attitude toward a contract with so high a probability of
yielding a $10,000 profit.

2.3.3 Evaluation of Cash in Terms of Reference Contracts

Obviously we can use a curve like any of the three in Figure 2.1 in

reverse, 1.e. to determine the + which would make a reference contract

just equivalent in the businessman’s opinion to any specified amountof
cash certain rather than to determine the cash equivalent of a reference
contract with a specified r. In Table 2.8 we show the x which zn the
opinion of Mr. A would makea reference contract just equivalent to each
of the three possible cash consequences of contract MM; the student should

make sure that he understands what is going on by preparing similar

tables for contract N as evaluated from Mr. A’s point of view and for
both contracts as evaluated from Mr. B’s point of view.

Table 2.8
Description of Contract 4
 

wx of equivalent

 

Event Probability Consequence reference contract

A .30 +$9000 .99
B 45 + 7500 -98C 25 — 9000 25

1.00

 

2.3.4 Reduction of a Complex Contract to a Reference Contract

It is now that we bringin the really crucial assumption on which our

method of analysis rests: we assume that since Mr. A has said that he
would be indifferent between receiving any amount of cash shown in the

third column of Table 2.8 and being awarded a reference contract with

the corresponding z in the last column, he would not feel that he had gained

or lost a thing af the terms of the real contract were modified so that in case of

event A he would actually receive a reference contract with r = .99 instead of

receiving $9000 cash, in case of event B he would actually receive a reference
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contract with r = .98 instead of receiving $7,500 cash, and in case of event C
he would be obliged to sign a contract with = .25 instead of paying out

$9000 cash.
The ultimate result of this modified contract which weshall call M’

can only be a $10,000 profit or a $10,000 loss, despite the fact that its
outcome will actually be determined in two stages, the first of which

decides which reference contract is awarded to Mr. A while the second
decides the final consequence of whatever reference contract is awarded.

The desirability of the modified contract therefore depends entirely on

the ‘‘over-all”’ probability that it will result in the $10,000 profit, and
this probability is very easy to compute. Let us represent the real event

A by the drawing of a ball marked A from a master urn in which the
proportion of balls so markedis pa, andlet us represent the reference con-

tract which will be awarded zf event A occurs bythe right to draw a ball
from a secondary urn in which the proportion of balls marked ‘‘win

$10,000” is +4; and similarly for events B and C and the corresponding
reference contracts. Then making use of the formula obtained in answer

to Chapter 1, Problem 2, we havefor the over-all probability of obtaining

the $10,000 profit under the modified contract M’:

wm’ = pata + Pats + Porc;

or substituting the numerical values as read from Table 2.8:

30 X .99

+.45 X .98
+.25 X .25

= .80

It is left to the student to show that the corresponding over-all prob-
ability of obtaining the $10,000 profit under a modified contract N’

equivalent in Mr. A’s opinion to real contract N is ry = .86.
Since contract M’ has only probability .80 of yielding the $10,000

profit while contract N’ has probability .86, and since the businessman

thinks that M’ would be equivalent to the real contract M and N’to N,
he should clearly prefer real contract N to real contract M. Roughly

speaking, a $9000 loss is so serious in the eyes of Mr. A that a 1-in-4
chance of such a loss outweighs the fact that the profit potential of M is

much better than that of N. Mr. A could now reacha final decision by
using his judgment to compare contract N with ‘‘do nothing,”’ but he has
already given us his judgment in curve A: the curve shows that in his

opinion the consequence $0 is equivalent to a reference contract with

2 = .85 and thereforeis slightly inferior to contract N.
Our conclusions can also be expressed in terms of the ‘‘real’’ cash

value of each alternative for Mr. A—not its ‘‘expected’’ cash value.
Curve A shows that a reference contract with + = .86 is equivalent in
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Mr. A’s opinion to about +$200 cash certain; and since .86 is the prob-

ability of earning the $10,000 profit under contract N’, +$200 is the cash

equivalent of contract N despite the fact that its ‘‘expected’’ monetary

value is +$2025. In the same way wefind that contract M is worth

— $1700 to Mr. A despite the fact that its expected monetary valueis

+$3825.

23.5 Utility

At the beginning of this section we said that when expected monetary

value was not a valid guide to action the person responsible for a decision

could always find a valid guide by assigning utility values to the various

possible consequences of his acts and then choosing the act with the
highest expected utility. We shall now see that this is simply another

way of describing the calculation of the x’s of modified contracts such as

M’'and N’.
To analyze any decision problem in termsof utility, we must start by

choosing two numbersto represent the utility values of the two reference

consequences. The number assigned to the better consequence must

be larger than the numberassigned to the worse, but otherwise we are

free to choose as we please. ‘To show whythisis so, we shall work with

two different scales simultaneously:
1. We define scale I by saying that the utility of a $10,000 loss is

O utiles and that the utility of a $10,000 profit is +1 utile;

2. We define scale II by saying that the utility of a $10,000 loss is

— 10,000 utiles and that the utility of a $10,000 profit is +10,000 utiles.

Once we havedefined a utility scale by defining its end points,it is
easy to compute the expected utility of a reference contract with any speci-
fied r. As shownin Table 2.9, the utility of such a contract is 7 utiles on

 

 

 

 

 

Table 2.9

Expected Utility of a Reference Contract

Utility on scale I Utility on scale II
Conse- Proba-

ilit wa
sequence bility Conditional Expected Conditional Expected

+$10 ,000 T +1 +19 +10,000 +10,0007
—$10,000 (1 —7) 0 0(1 — x) —10,000 —10,000(1 — wr)

1 1 —10,000 ++ 20.0007

 

scale I or (— 10,000 + 20,0007) utiles on scale IT.
The next step is to assign a utility value to every possible conse-

quence of the real decision problem by saying that if a man is indifferent

between a specified consequence and a reference contract with some particular

w, then the utility of that consequence is equal to the utility of that reference
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contract. In Table 2.10 we show the utilities which Mr. A should assign
to the possible consequences of contract M, reading the value of 7 for
each consequence from Table 2.8.

Table 2.10

Conditional Utilities to Mr. A

Conditional utility

 

 

Event Consequence

Scale I Scale IT

A +$9000 .99 —10,000 + 20,000(.99)
B + 7500 .98 —10,000 + 20,000(.98)

C — 9000 .20 — 10,000 + 20,000(.25)

 

Finally, in Table 2.11 we compute the expected utility of contract M

to Mr. A by applying the standardrule for taking the expectation of a set

of conditional values (Section 2.1): multiply each conditional value (as

read from Table 2.10) by its probability and add the products.

 

 

 

Table 2.11

Expected Utility of Contract M to Mr. A

Event Probability Expected utility Expected utility
on scale I on scale IT

A .30 .30 X .99 —10,000(.30) + 20,000(.30 X .99)
B 45 .45 X .98 —10,000(.45) + 20,000(.45 XK .98)
C .25 .25 X .25 —10,000(.25) + 20,000(.25 X .25)

1.00 .80 —10,000(1) + 20,000(.80)

 

Observe now that the .80 which appears in the expected utility on

either scale 1s exactly the same sum of products which gave us the probability
ay that the modified contract M’ would result in the $10,000 profit. If we
computed the expected utility of contract N, it would come out in a form

identical to that of the expression for the utility of 17; the only difference

would be that the number .80 would be replaced by zy = .86. Observe
next that the higher this probability number which appears in the expression

for the expected utility, the greater the numerical value of the expected utility.

Since we have already seen that a reasonable man should choose the
real act or contract whose corresponding modified contract has the
highest probability of resulting in the better reference consequence, it

follows immediately that

A reasonable man should always choose the act with the greatest
expected utility.
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2.3.6 The Interpretation of Utility

In a certain sense analysis of a problem in terms of conditional and

expected utilities rather than in terms of modified contracts enables us to

gain a better feeling for the reasons behind a given person’s preferences,
but unless we are very careful this feeling will do our real understanding

more harm than good.
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Figure 2.2. Utilities of various cash consequences.

 

            
 

Let us look first at the advantages to be gained from the use of the

concept of utility. In Figure 2.2 we show theutilities of all possible con-

sequences between —$10,000 and -+$10,000 for Messrs. A, B, and C as
computed by reading from Figure 2.1 the z of the reference contract
which is equivalent to each consequence and then applying the formulas

U=rnr Seale I

U = —10,000 + 20,0007 Scale IT

Looking at curve A we can ‘“‘explain’’ Mr. A’s extremely cautiousattitude

toward all risky contracts by observing that moving any given distance

to the right of 0 on the horizontal axis increases his utility by much less

than moving a corresponding distance to the left decreases it—a profit of
any specified amount increaseshis utility by less than a loss of the same
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amount decreases it. For Mr. B, on the contrary, the situation is just

the reverse: a profit of any given amount increases his utility by more
than a loss of the same amount decreasesit; while for Mr. C a dollarlost is
worth neither more norless than a dollar gained.

Now it is true that most people will actually think in terms much
like these when they are deciding how to evaluate risky acts. A person is
likely to say that he would prefer $1 million certain to a 50-50 chanceof

$2 million or nothing because he would be almost as well off with $1

million as with $2 million and ‘‘therefore’’ the chance at the extra million

is not worth the risk of losing thefirst one. Similarly a person who buys
life insurance despite the fact that the premium is always larger than the
expected monetary value of the benefits by the amount of the insurance
company’s costs and profits will explain his action by saying that the

dollars he now uses to pay the premium are worth muchless to his family

than the dollars which would be paid as benefits in case of his death.

We must be very careful, however, not to lose sight of the fact that
all utilities are and must be evaluated by looking at particular types of
risky acts or reference contracts and that a person may well have one

attitude toward risk in one situation and a quite different attitude in a

different situation. The businessman who decided to submit the pro-

posal under the conditions described in Table 2.2 is in effect betting
$10,000 against $25,000 in a situation wherehe thinks that he has an even
chance of winning his bet; but the same businessman might flatly refuse

to make the same bet on the toss of a coin even though he was absolutely
convinced that the coin was fair and therefore that he had an even chance

of winning the bet.

Curveslike those shown in Figure 2.2 do not purport to represent the
‘value of money”’ as such; they reflect an indecomposable mixture

of attitude toward risk, profit, and loss in a particular kind of

situation.

Finally, we warn the student emphatically against two common
interpretations of the meaning of utility which are totally false.

' ‘First, the utikties of two separate consequences cannot be added to
obtain the utility of both consequences together—the utility of an apple
plus an orange is usually nof equal to the utility of an apple plus the

utility of an orange. All that is required to understand this assertion is

to look at curve A or B in Figure 2.2, observe that the utility of a $10,000

profit is not equal to twice the utility of a $5000 profit, and remember the

reason why.

Second, we cannot use curveslike those in Figure 2.2 as the basis for

an assertion that any given consequenceis worth less or more to one man

than to another if by this we mean-that one of the two men“‘really

needs”? the money more than the other or that the money will do more
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‘Sreal good’’ to one man than to another; nor can we say for example that
because a loss of $10,000 would reduce Mr. C’s utility by only .5 utile on

scale I while a profit of $10,000 would increase Mr. B’s utility by .85 utile
on this same scale, therefore there would be a net social gain if Mr. C were
taxed $10,000 and the proceeds handed over to Mr. B. All that we can
say on the basis of curveslike those of Figure 2.2 is that one man will want
to behave differently from another when faced with choices under uncer-

tainty. Ethical and social issues cannot be handled by the methods we

shall use in this course.

2.3.7 Proof of the Rule for Use of Expected Monetary Value

One interesting by-product of our study of utility is the fact that it

permits us very easily to prove the correctness of the rule which we gave

in Section 2.2.2 for testing whether expected monetary value would be a
correct guide to action in a given complex decision problem. What we

shall show is that a person who choosesthe act with the highest expected
monetary value when this rule tells him to do so will necessarily choose

the act with the highest expected utility; the student will follow the argu-
ment moreeasily if he first observes that the utility which Mr. C assigns

to any consequenceon scale II is numerically equal to the monetary value

of the consequence and therefore that the expected monetary value of

any act involving these consequences will be numerically equal to its

expected utility on scale II.
Letting $W denote the monetary value of the worst possible conse-

quence of any complex decision problem and $B that of the best, the rule

given in Section 2.2.2 said in effect that expected monetary value would
be a valid guide to action if and only if the person responsible for the
decision would use this guide in simple problems involving a choice

between (1) a specified amount of cash certain and (2) a reference con-

tract which would result with probability z+ in $B and with probability
(1— 7)in$W. Such person is saying that for him the cash equivalent

of the reference contract is given by the formula

$wil —7) + $B r.

Since the choice of the end points of a utility scale is always arbitrary,

this person can always choose a scale in which the number W without the
dollar sign represents the utility of the consequence whose monetary value

is $W and in which the numberB represents the utility of the consequence

whose monetary value is $8. On this scale the utility of the reference

contract and therefore of its cash equivalent is by definition

W(1 — wr) + Br,

and we conclude that a person who values all reference contracts at thetr
expected monetary value can always find a utility scale such that the
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utility of every consequence between the reference consequences is

numerically equal to the monetary value of the consequence and there-
fore such that the expected utihty of any act involving consequences within

this range is numerically equal to the expected monetary value of the act. By

choosing the act with the highest expected monetary value, such a person
automatically chooses the act with the highest expected utility.

2.4 Profits in the Long and the Short Run

2.4.1 The Desirability of Looking Ahead

There is one very serious deficiency in our discussion of the problem

of decision under uncertainty which must at least be pointed out before
we close this chapter. We have discussed every decision problem which

we encountered as if it existed 7m vacuo and could be rationally analyzed
without giving any thought whatever to any other problem which the
businessman was facing concurrently or which he would have to face

later on. That analysis of this sort can easily lead to completely unsound
results will now beillustrated by a simple example.

Suppose that Mr. C of Section 2.3 has total assets of exactly $25,000

cash and that it is completely impossible for him to raise any additional

capital during the next month. Suppose further (1) that Mr.C is offered

the opportunity of participating immediately in a deal which in his

opinion is equally likely to result in a profit of $8000 or a loss of $7000,
and (2) that at the same time heis definitely informed that one month

hence he will be given the opportunity of investing $20,000 in another

deal which in his opinion is equally likely to result in a net profit of $9000

or a net loss of $2000 regardless of the outcome of dealI.
Since Mr. C acts in accordance with expected monetary value, he

will accept deal I if he looks at this deal by itself. It is obvious, however,

that Mr. C should not look at deal I by itself, since taking this deal

involves a risk that he will end up with only $25,000 — $7,000 = $18,000
cash and thus be unable to participate in the very attractive deal II.
The two deals must be considered as parts of a single decision problem

and we must look at the ultzmate rather than the zmmediate consequences

of the two possible immediate acts ‘‘accept deal I’’ and ‘‘refuse deal I.”

Thefirst step in analyzing this two-stage decision problem is to ask

what Mr. C will do at the time the second deal becomes available—the

reason for settling this question first, before looking at deal I, is that when

Mr. C gets to the point where he will actually have to make up his mind

about deal II he will have only a single deal left to analyze. The expected
monetary value of this deal will be 4%$9000 — 14$2000 = +$3500, and

since Mr. C is guided by expected monetary value it follows that he will

participate in deal II if his assets at the time the deal becomesavailable are
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sufficient to permit him to do so. With this definite result available, we
can now go on to make a really correct analysis of the possible conse-

quences of the two possible acts which Mr. C may take in regard to the

first deal.

Refuse Deal I. If Mr. C refuses deal I, the ¢mmediate consequence

of this act is certain to be $0; but it is also certain that Mr. C will have

sufficient assets to participate in deal IJ when the time comes, and we

have already seen that this means that he will participate. The act

‘‘refuse I”? thus has two possible ultimate consequences, the +$9000 and

—$2000 which mayresult from deal II.
Accept Deal I. If Mr. C accepts deal I, there are obviously two

possible immediate consequences, +$8000 and —$7000; but to find the
ultimate consequences of this act we must again look ahead. (1) If Mr. C

loses $7000 on deal I, he will not have sufficient assets to participate in

deal II and therefore he will be left with his $7000 loss unaltered. In this

case the ultimate consequence of the immediate act is the same asits

immediate consequence. (2) If Mr. C makes $8000 on deal I, he will be

able to participate in deal II and we already know that this means

that he will in fact participate. If then deal IJ results in a loss of $2000,

the ultimate consequence of having participated in deal I will have been

+$8000 — $2000 = +$6000; if deal II results in a profit of $9000, the

ultimate consequence of having participated in deal I will have been

+$8000 + $9000 = +$17,000. The act ‘‘accept I’ thus has alto-

gether three possible ultimate consequences: —$7000, +$6000, and

+$17,000.
Having listed the possible ultemate consequences of the two acts

between which Mr. C must choose immediately (“refuse I’”’ and ‘‘accept

I’’), we are ready to compute the expected ultimate monetary value of each

of these two acts.

Refuse I. Since the ultimate consequences of this act depend only

on the event of deal II, their probabilities are simply the probabilities

already assigned by Mr. C to the two possible events of deal II. In

other words, the expected ultimate monetary value of the act ‘‘refuse I”’

is the same as the expected immediate monetary valueof ‘‘accept II,’’ or

14(+$9000) + 144(—$2000) = +$3500.

Accept I. To find the expected ultimate monetary value of the
immediate act ‘‘accept I,’’ we must compute the probabilities which

Mr. C should assign to these three possible ultimate consequences. That

the probability of —$7000 is 44 follows directly from Mr. C’s assignment
of this probability to the immediate loss of $7000 on deal I. The other

two consequences correspond to ‘‘winning” on deal I and then either

‘losing’”’ or “winning” on deal II, and their probabilities can be com-

puted as 14 each in the same way thatin Sections 1.5 and 1.6.1 we showed
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that the events ‘“‘heads followed by heads” and ‘‘heads followed by

tails’ on two successive tosses of a coin each had probability 44. Using
these probabilities we can then compute the expected ultimate monetary

value of the act ‘‘accept I” to be +$2250 as shown in Table 2.12.

Although the expected immediate monetary value of “‘refuse I”’ is
$0 against 14$8000 — 14$7000 = $500 for ‘“‘accept I,’’ the expected
ultimate monetary value of “‘refuse I’? is $3500 against $2250 for
‘accept I,’’ and Mr. C should clearly refuse deal I.

Table 2.12

Expected Ultimate Monetary Value of ‘‘Accept I”’

Ultimate monetary value
 

 

 

Event Probability

Conditional Expected

— $7000 on I 4 —$ 7,000 — $3500

+$8000 on I, —$2000 on II 14 + 6,000 + 1500

+$8000 on I, +9000 on II V4 + 17,000 + 4250

1 +$2250
 

Our understanding of this two-stage decision problem can be aided

by stating it graphically in the form of Figure 2.3. Any path traced

DealI $0
 

 

 

- _ 1
-$7,000 Impossible *-$7,000("~a)
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Cee? RefuseI —$0 e $8000 —

+ $8,000
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Retusel AcceptI =$2,000

(72) *+ $6,000 (14)

$0 Refuse IT $0 * $0

+$9000
(1/2 + $9,000(/2)

Accept

~$2,000 —$2 000(1/(7) $2, 000('/2)

Choice Immediate Choice Immediate Ultimate
consequence consequence consequence

Figure 2.3
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from the extreme left of this chart to the extreme right represents a
possible sequence of choices and events or consequences. Twopaths are
barred off at the point ‘‘refuse II’’ because we have shown that Mr. C

would not want to refuse deal II if he had the choice. The probabilities

shown in parentheses next to the branches representing events or 1mmedi-

ate consequences are those assigned directly by Mr. C; the probabilities

shown next to the ultimate consequences are computed from those

assigned directly by Mr. C.

24.2 Utility and the Limitations of Human Capacity

It thus appears that to make a really complete analysis of even the

smallest and simplest decision problem, the businessman would have to
start by laying out on a chart like Figure 2.3 every possible choice and
every possible immediate consequence of every possible act in every

decision problem he has or ever will have to face, and he would have to
assign a probability to every immediate consequence on this chart. The

next step would be to assign a utzlzty to every possible ultimate conse-

quence, and here the businessman would run into a problem which we

did not encounter in our simple example. In that example wetacitly

assumed that Mr. C would have no need of moneyfor his personal use or

for that of his stockholders before the time at which deal II would be

completed, and therefore the ultimate consequences could be described

very simply in termsof the total assets which Mr. C would haveasof the

time of completion of deal JI. In real business problems, the ultimate

consequences are the stream of dividends and distributions of capital
which the company pays to its owners over its whole life; and since a

dividend of $10 ten years henceis not in general equivalent to ten annual
dividends of $1 each, the utility assigned to each ultimate consequence

would have to depend on its date as well as its amount.

Quite obviously no one proposes or ever will propose an analysis of

this sort, but it is only by seeing what would be involved in such an
analysis that we can really understand either the objectives which we

should have before us in making any analysis or the real meaning of the

utilities which are assigned as part of these analyses.

1. While there is usually something to be gained by extending the

scope of an analysis, such an extension always adds appreciably to the

cost of the analysis and at some point a balance must be struck. The

judgment required to strike a reasonable balance can be acquired only by

some actual experience with the benefits to be gained from multistage

analysis and some actual knowledgeof the costs likely to be involved, and
it is probably true that the average businessman both underestimates the
gains and overestimates the costs. Although we must learn to walk

before we run and therefore must devote most of our time in this intro-

ductory course to the analysis of single-stage problems, we shall pay some
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attention to multistage problems and at least suggest the remarkable
results obtainable with modern computing equipment.

2. The assignment of utilities to ‘‘immediate” rather than ‘‘ulti-
mate’’ consequences is actually an expression of the businessman’s best
guess at what would be shown bythe missing part of the analysis. When
the businessman says that he is willing to use expected monetary value
as a guide to action in a particular problem,he is usually saying that the
amounts at stake are so small that in his judgment no possible outcomeof
the decision can noticeably affect his ability to make profits in the future
and therefore he will choose the act with the greatest immediate expected
profit. When on the contrary he assignsutilities like those of Mr. A, he
is really saying that in his judgment his long-run expected profit is

increased by playing it safe until he has built up greater financial

strength and therefore he will choose an act whose immediate expected
profit is less than that of some other,riskier act.

PROBLEMS

A. Problems on Expected Monetary Value

1. Assuming that the retailer of the example discussed in Section 1.1.1 has decided
to use expected monetary value as his criterion of choice in any problem where the
greatest possible loss does not exceed $50 and the greatest possible profit does not
exceed $100, and assuming that he assigns to the events of Table 1.1 the probabilities
shown in Table 2.13, how many units should he stock and what is his expected gross

profit?

Table 2.13

Event

(number demanded) Probability

0 wo
1 340
2 $40
3 240
4 340

5 or more 30

1

2. a. A roulette wheel of the kind used at Monte Carlo has 37 numbered posi-
tions on which one may bet. Those who bet on the winning numberget back their

bets and 35 times as much in addition. Whatis the value to the house of a 1000-frane
bet on number17?

b. Of the 37 positions, 18 are red, 18 black, and 1 green. A player can bet on red

or black but not green. Those who bet on a winningcolor get back their bets and an
equal amount in addition. What is the value to the house of a 1000-franc bet on red?

c. ‘“‘Thereis little possibility of the exercise of skill in roulette, though a certain
judgmentis advisable in betting; it would, for example, be unwise to place a bet on red
and also on the number 17, whichis black, for if one bet wins the other must lose.”’
(Encyclopedia Britannica, edition of 1953, s.v. “‘Roulette.’’) Discuss.

3. A company has $100,000 available to invest in a new plant. If business



Expected Value and Utility 49

conditions continueas they are, the investmentwill return 10 per cent, but if there is a
mild recession, it will return only 2 per cent. Alternatively the money can be invested
in government bondsfor a sure return of 3 percent. What probability must manage-

ment assign to a recession to make the two investments have the same expected

monetary value?

B. Problems on Utility

4. Verify the assertion in Section 2.3.4 that .86 is the probability of obtaining
the $10,000 profit under the modified contract N’ which is equivalent in Mr. A’s
opinion to the real contract N.

5. Show that in the contracts M@’’ and N"”which in Mr. B’s opinion are equiva-
lent to M and N the probabilities of obtaining the $10,000 profit are respectively .48
and .27. Explain in nontechnical language why the probability is greater under 14"
than under N” when the probability under Mr. A’s M’ was smaller than under N’.

6. a. What are the true cash equivalents of contracts M and N for Mr. B?
b. What are their expected utilities for Mr. B on scales I and II?
7. By subtracting an appropriate constant amount from every one of Mr. A’s

scale-II utilities it is possible to define a third scale such that the utility of $0 is 0
utiles.

a. Make a rough graph showingtheutility of every consequence from —$10,000

o +$10,000 on this new scale.

b. Compute the expected utility of contracts M and N for Mr. A on this new

scale.
c. Show that the relative ratings of the acts ‘‘take M,’” “take N,’’ “‘take neither’’

are exactly the same on this new scale as they were on scale II.

8. Mr. A is presented with a deal which in his opinion has probability 28 of
resulting in a $10,000 profit but probability 14 of resulting in a $10,000 loss.

a. Show that Mr.A should refuse the deal.
b. Suppose that five people with utility curves exactly like Mr. A’s all assign the

same probabilities to the possible consequencesof this deal. Show that if they agree
to share the profit or loss equally, the deal becomes attractive for all of them.



CHAPTER 3

Random Variables and Probability Distributions

3.1 Random Variables

In Chapter 1 we saw that thefirst step in the analysis of a problem
of decision under uncertainty is always to draw up list of mutually
exclusive and collectively exhaustive events. In this chapter we shall
introduce the important concept of a random variable which assigns a

‘‘value’’ to an event and is often more convenient to work with than the
event itself, and we shall then see how the probabilities assigned to the

possible values of a random variable may be laid out systematically in a
probability distribution.

Suppose that a manufacturer is about to manufacture a cylindrical
shaft, that he intendsto use go and no-go gauges to check both the diam-

eter and the length of the finished piece, and that we wish to use every bit

of information supplied by the gauging to describe the outcomeof this

‘‘trial.”’ If we let g, u, and o respectively denote that the diameter is
good, undersize, or oversize, and if we let G, U, and O convey the same
information for the length, we can say that the possible events of this trial

are the nine whicharelisted in the first column of Table 3.1. In the

Table 3.1

Event Probability

gG .55
gU .07

gO .03
uG .10
uU .08

uO .02

oG .05
oU .04

00 _-06
1.00

second column of the table probabilities have been assigned to each of

these events for use in our further discussion; these probabilities are com-

pletely arbitrary except that they add to 1 as all good probabilities must—
how they were assessed is irrelevant for our present purpose.

Suppose now that it will cost the manufacturer $1 to rework either
50
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an oversize diameter or an oversize length and that it will cost $4 to
replace a piece which is undersize and must therefore be scrapped. Since
we are looking only at costs incurred after the original piece has been pro-

duced and inspected, we can say that the cost due to a good piece will

be $0.

These statements suffice to assign a value to every elementary event
in Table 3.1. The value $0 is assigned to the event gG, the value $1 to

the events oG and gO, the value $2 to the event oO, and the value $4 toall
other events. The probability of each of these four values is obtained in
exactly the same way that we obtained theprobabilities of compound

events in Chapter 1, by adding the probabilities of the correspondingele-
mentary events; the results are shown in Table 3.2.

 

 

Table 3.2

Value Elementary events Probability

$0 gG .55
1 oG, gO .08

2 00 .06
4 All others ol

1.00

 

Monetary values are not the only interesting values which may be

attached to events. In our example, the manufacturer maybeinterested
not only in costs but in the amount of raw material which will be used in

manufacturing replacements for pieces which cannot be reworked and
must be scrapped. Suppose that it takes .3 pound of bar stock to manu-

facture one piece: if we recall that a piece which is undersize in either

dimension must be scrapped, we see that a ‘‘ value” of .3 poundis attached

to the events gU, uG, uU, uO, and oU of the list in Table 3.1 while the
value 0 poundis attached to all the other elementary events. Adding

the probabilities of these two groups of elementary events we obtain the

probabilities for the two possible values of the quantity “‘amount of raw

material’? shown in Table 3.3.

Table 3.3

Value Probability

0 pound .69
.3 pound ol

1.00

Quantities such as cost and amount of material in these two examples
are known as random variables; in general, we define

Random variable: any quantity which has a definite value corre-

sponding to every possible event.
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A list of the possible values of a random variable can be regardedas being
simply a list of elementary and/or compoundeventsdefined in a special
way; but it is important to realize that while a particular value of a

random variable can always be regarded as an event,it is not true that all

events can be regarded as values of random variables. First, the values
of a random variable have a meaningful order whereas events like thoseof
Table 3.1 do not. ‘‘More than $1”’ makes sense but ‘‘more than gU”’

does not. Second and much more important, the concepts of average

value and expected value have meaning when applied to a random variable

but not when applied to events in general. We have already applied

these concepts to monetary random variables in Chapter 2, and in

Chapter 5 weshall see that they apply to all random variables without

exception.

Observe on the other hand that the existence of a meaningful order

and a meaningful average or expected value are the only properties which
we require of the “‘ values” of a random variable. If the manufacturer of

our example is interested in the quality of the work donein his shop as

measured by the number of individual defects produced, we may con-

sider ‘number of defects’? a random variable describing the outcome of
each trial (each piece produced) even though we have attached no eco-
nomic worth to a defect and even though the economic worth of one

defect may be quite different from that of another. The probability dis-

tribution of this variable is shown in Table 3.4.

 

 

Table 3.4

Value of the Elementary Probability
random variable events

0 9G 5B
1 gU, gO, uG, oG 25
2 All others .20

1.00

 

Observe also that in many cases the value of a random variable may
be identical to the natural description of an event. If the manufacturer

had measured his pieces instead of using gauges, an ‘‘event’’ would
have been described by a pair of numbers—e.g., diameter 1.23 inches,
length 2.07 inches. These two numbers can equally well be regarded as

‘‘values’’ of two random variables ‘‘diameter’”’ and ‘“‘length,’’ and we
shall ordinarily so regard them. In just the same way we can regard the

various possible events in the inventory problem described in Table 1.1

as values of the random variable ‘‘demand.”’
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3.2 Probability Distributions and Frequency Distributions

A table like Tables 3.2 through 3.4 which assigns a probability to
every possible value of a random variable is called a probability distribu-

tion of that random variable. Since by the definition of a random
variable every possible elementary event corresponds to some value of the

variable, the sum of the probabilities in any probability distribution must

be 1.

8.2.1 Assessment of Probability Distributions

Although a random variableis defined in terms of values attached to

the elementary events of a trial, it is not to be assumed that the prob-

ability distribution of a random variable must necessarily be assessed by

first assigning probabilities to elementary events and then adding the
probabilities of a number of elementary events to obtain the probability

of each value of the variable as we did in the examples of the previous

section. It has already been pointed out that in some cases a random

variable will attach a different value to each elementary event (e.g., the

random variable ‘‘demand”’ in the inventory example), so that there is
only a verbal difference between assigning probabilities to elementary

events and assigning probabilities directly to the possible values of the

random variable. Later in the course we shall see that even when each

value of a random variable does correspond to a large number of ele-

mentary events, it is often better to proceed by using our experience to
make a direct assessment of the distribution of two or more random

variables and then to use these distributions to compute the probabilities

of the elementary events if they are needed in the problem at hand.

Wheneverprobabilities are assigned directly to the values of some
random variable, we shall refer to this variable as a basic random variable

in order to distinguish it from other random variables which may be
involved in the same problem. Suppose, for example, that a can of coffee
is to be filled by an automatic machine and that a loss will be incurredif

either more or less than 1 pound of coffee is put into the can. What we

really want in such a problem is a probability distribution for the random

variable ‘‘loss,’’ but the most effective way of using our experience may
well be to start by assessing the distribution of the random variable

‘“‘weight.’’? If we do proceed in this way, ‘‘weight’’ is the basic random

variable of the problem.

8.2.2 Frequency Disiributions

The probabilities which a reasonable man assigns to the values of a
basic random variable will often (though by no means always) be largely

if not wholly determined by consideration of the relative frequencies with
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which these values have occurred in past trials. To continue with the
example of the coffee, suppose that the net weight of the coffee in each of

the last 50 cansfilled by the machine has beendetermined to the nearest

4499 pound with the results shown in the first two columns of Table 3.5.

By dividing the number of occurrences of each value by the total number of

trials we obtain the relative frequencies of each value as shownin thelast
column of the table.

 

 

Table 3.5

Value of the Numberof Relative
random variable occurrences frequency

.98 2 .04

.99 6 .12
1.00 7 .14
1.01 10 . 20
1.02 9 .18
1.03 8 .16
1.04 5 10
1.05 3 .06

50 1.00
 

The first and last columnsof Table 3.5 together constitute a frequency

distribution of the random variable “‘weight,’’ and in general any com-
plete list of the relative frequenciesof all the values of any random vari-

able will be called a frequency distribution. Since it is only in relative
frequencies that we are interested, the word ‘‘relative’’ will often be
omitted in future discussions: ‘‘frequency”’ will always mean relative

frequency. Observe that the total of the frequencies in a frequencydis-

tribution must always be 1, just as the total of the probabilities in a

probability distribution must alwaysbe1.

Now a frequencydistribution like the one shownin Table 3.5 is most
definitely not in itself a probability distribution for the random variable
“weight” on the next trial. If, however, we have no other information

about the can-filling process which we consider to be of any real importance,
we may decide to assign probabilities which are numerically equal to the

relative frequencies shown in Table 3.5. In other words, we may decide

on the basis of the evidence summarized in Table 3.5 that we would be

indifferent between the right to receive a certain prize if the next can
weighs .98 pound and the right to receive the same prize if a particular

ball is drawn in a ‘‘standard lottery” with 25 balls in the urn. In

Chapter 6 weshall return to this subject and look at someof the questions

we should ask before actually proceeding in this way, particularly when

the available frequency distribution is based on only a few trials.
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3.3 Graphic Representation of Distributions

Our thinking about a probability or frequency distribution can often

be considerably clarified if we represent the distribution graphically, and

in Chapter 6 we shall also see that graphical representation is often of

considerable help when wetry to assess a probability distribution ration-

ally. Frequency distributions and probability distributions can both be

represented by exactly the same devices; we shall use the frequency dis-

tribution of Table 3.5 as an example.

One form of graphic representation is shown in Figure 3.1. The

24
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horizontal axis shows the various values of the random variable; the

height of the vertical line at any particular value represents the frequency

with which that value occurs.
Another form of representation is shown in Figure 3.2, where the
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frequency of each value of the variable is shown by the height of a point

and the points are then joined by straight lines. Since values of this

variable other than .97, .98, .99, etc., are meaningless—the measurements

were made to the nearest 4499 pound—thelines have no meaning except

at those points; in between, they serve simply as guides to the eye.
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Histograms. Frequencies or probabilities can be represented by

areas as well as by heights, and the histogram of Figure 3.3 is such a
representation for the data of Table 3.5: the frequency of each value of

the random variable is represented by the area of the bar centered on that

value. A great many problems which weshall encounter later in the
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course will be far easier to understand if we visualize probability distribu-

tions in terms of histograms than if we visualize them in any other way,

and we therefore advise the student to pay close attention to the rules

which weshall now give for the construction and interpretation of graphs

of this sort even though these rules may seem needlessly complex at the

moment.

Observefirst that the edges of the bar for any value of the variable
in Figure 3.3 are halfway between the location of that value and the

adjacent values of the variable. Thus the edges of the bar for the value

1.02 are located at 1.015 and 1.025. This means that the width of this

bar can be taken as 1.025 — 1.015 = .01, and in generalthe width of any

bar in any histogram can be taken as equal to the difference between two suc-

cessive possible values of the variable.

Now since it is the area of a bar which represents the frequency or

probability of the corresponding value of the variable, and since the area

of a bar is equal to its width times its height, we must interpret the height

of a bar as showing frequency or probability per unit width. In Figure 3.3

the height of the bar for the value 1.02 of the variable can be read as 18 on

the vertical axis; the width of this bar is .01 as we have already seen; and

therefore

Area = frequency = 18 X .01 = .18

in agreement with Table 3.5. It ts exactly this trick of interpretation

which will make the use of histograms so useful a little later on, and we urge
the student to fix it firmly in his mind,
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8.3.1 Grouped Distributions

When a random variable has a very large numberof possible values,

it becomes bothersome to tabulate or graph all the small individual fre-
quencies occurring in a historical frequency distribution, and often we

find ourselves forced to deal with historical data in which someof this

detail has been suppressed. We maybe presented, for example, with a

historical record of daily sales in which the possible values of the variable
have been grouped into ‘‘brackets’”’ and the frequencies of all values

within each bracket have been added together as in Table 3.6. We

shall also see later on that even when the full detail of a frequency or

Table 3.6

Relative

Sales frequency

55-59 .05

60-64 .09

65-69 .18

70-74 27

75-79 21

80-84 .14

85-89 _.06

1.00

probability distribution is given to us, the labor involved in manycalcula-

tions can be materially reduced with little or no loss of accuracy by group-

ing the distribution in this way before performingthe calculations.

By far the best graphical representation for a groupeddistribution is

a histogram, since the groupinginto brackets can be directly represented

by the widths of the bars. A histogram for the data of Table 3.6 is shown

in Figure 3.4. The bar representing the frequency of sales from 55 to

59 units inclusive is represented by a bar with its left edge at 54.5 and its

right edge at 59.5—the bar covers exactly the same interval on the horizontal

axis which would have been covered by the individual bars for the values in

question. The width of this bar is thus 59.5 — 54.5 = 5 units, and since

its area is .05 by Table 3.6 it has been drawn with a height of .05/5 = .01.

Similarly the frequency of values from 60 to 64 units inclusive can be read

from the graph as

Area = frequency = height X width = .018 X 5 = .09.

3.4 Cumulative Distributions

Weare often interested, not in the frequency or probability of an

individual value of a random variable, but in the frequency or probability

of all values less than some specified value or of all values greater than some
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specified value. In the example of the cans of coffee which were sup-

posed to contain exactly 1 pound, we may want to know the probability

that the next can will contain less than 1 pound or the probability that it
will contain more than 1 pound. For other purposes we may want to

know the probability that a variable will be equal to or less than some

specified value or that it will be equal to or greater than the specified value.
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Figure 3.4

Cumulative frequencies or probabilities of this sort are computed

from individual frequencies or probabilities in a way which is perfectly

obvious. In the example of Table 3.5, the frequency of values equal to

or less than .98 is simply the frequency of .98 itself, or .04. The fre-

quency of values equal to or less than .99 is the frequency of .98 plus the

frequency of .99 or .04 + .12 = .16. Proceeding systematically in this

way we can compute the complete cumulative distribution of this random

variable with the results shown in Table 3.7, where the individual fre-

quencies are repeated from Table 3.5 for the student’s convenience.

8.4.1 ‘‘Tail Areas”’

Graphically, the frequency or probability of a specified value or less is

represented by the total area of all bars of a histogram starting from the

extreme left and continuing up to and including the bar representing the

specified value. This area will frequently be called the area of theleft

tail of the distribution; the corresponding righi-tazl area represents the

frequency of values greater than the specified value. We are not com-

pelled, however, to include the area of the bar representing the specified

value itself in the left tail of the distribution. We can equally well
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Table 3.7

Value of the Relative Cumulative frequency
random variable frequency of that value or less

.98 .04 .04

.99 .12 .16
1.00 14 .30
1.01 . 20 .50
1.02 18 .68
1.03 .16 .84
1.04 .10 .94
1.05 .06 1.00

1.00

 

define the right tail as including this bar, in which case the area of the
left tail represents the frequency or probability of values less than the

specified value. The proper definition of a tail area—the properspeci-

fication of a cumulative probability or frequency—depends on the way in

which the probability or frequency is to be used in a particular problem,

and care must be taken both in deciding on the proper specification and

in computing the probability or frequency so that it actually corresponds

to the specification.

3.4.2 Direct Graphic Representation of Cumulative Distributions

It is often convenient to have a graph from which cumulative prob-

abilities or frequencies can be read directly rather than as the sum of the
areas of a numberof bars of a histogram. Figure 3.5 is such a graph for

the data of Table 3.7: for every value of the random variable, Figure 3.5
showsthe relative frequency of that value or less and thus conveys exactly

the same information which is conveyed by the last column of Table 3.7.

Three points need special attention in constructing or reading a graph of

this sort.

First, the graph of any cumulative distribution has meaning for

every value of the variable and not just for those values which the variable

did or could actually take on. Even though the value 1.003 itself neither

occurred nor could occur when the weighing was done only to the nearest

1499 pound, it is perfectly sensible to say that the frequency with which

the random variable had values of 1.003 pounds or less was .30. Simi-

larly we can read from Figure 3.5 the meaningful information that values

of .97 or less occurred with frequency O and that values of 1.06 or less

occurred with frequency 1.

Second, a special convention is needed to draw and read a graph like

Figure 3.5 at those values of the variable which actually did occur or to
which .a nonzero probability is assigned, since at each such value the



60 The Problem of Decision under Uncertainty 3.9

graph necessarily makes an abrupt vertical jump of an amount equal to

the individual probability or frequency of the value in question. Thus

the cumulative frequencyof all values up to and including 1.00999 - - - is

.30, no matter how many 9’s we write down; but as soon as wereach 1.01

itself, the cumulative frequency jumps to .50. For this reason a heavy

dot is used in Figure 3.5 to indicate which of the two horizontal lines

should be read at each point of this sort.
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Finally, observe that a graph showing the frequency of all values

less than a given value would look exactly like Figure 3.5 except that the

heavy dot would be on the lowerof the twolines at each jump rather than

on the higher of the two lines. The frequency ofall values less than an
impossible value like 1.003 is exactly the same as the frequencyof all

values equal to or less than such a value; but whereas the frequencyof all

values less than 1.01 is .30, the frequency of 1.01 or less is .50, the differ-

ence being the frequency of this valueitself.

3.5 Notation

Finally, let us introduce some shorthand notation which will be very

convenient in writing about probabilities and random variables. Any

probability will be denoted by a capital P followed by parentheses showing

the event whose probability is in question. Thus P(red) will denote the

probability that a ball is red, P(defective) will denote the probability

that a manufactured part is defective, and so forth.
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A random variable will be denoted bya letter with a ‘‘tilde”’ aboveit;

thus we may use Z to denote the random variable ‘‘tomorrow’s demand”’

or 7 to denote the random variable ‘‘numberof defectives in the next lot
received.” We have already seen in Section 3.1 that any value of a
random variable is an event, and therefore we may write

P(z = 4) or P(4): the probability that the random variable Zz has
the value 4.

The symbol < means “‘less than,’”’ > means ‘‘greater than,’’ < means
‘‘less than or equal to,” and > means ‘“‘greater than or equal to.”’

P(zZ < 4): the probability that the random variable Z has a valueless
than 4.

The following relations between the tails of a distribution will give an

example of the use of this notation.

P@ <4) =1-— P(z>4).
Pi<4) =1-—P(>4).
Pig<4) + P2=4)+P@>4)=

In many cases weshall need a symbol which denotes any value of a

random variable, and for this purpose weshall use the sameletter we use

to denote the random variable itself but without the tilde. Thus the

horizontal axis of a cumulative probability distribution may be labeled
z while the vertical axis is labeled P(Z < z). We can write

Pa <2) =1—PE@>2)

because this relation between the tails of the distribution holds for any

specified value z and not just for the value 4 used in our previous
illustration.

When the probability distribution of a random variable is repre-
sented by a histogram, the heights of the bars represent probability

per unit width, and to denote this quantity we shall use the symbol P’
(P prime):

P’(z): probability per unit width (height of the histogram) at the
point z on the horizontal axis.

For any possible value z of the random variable 2,

P(z) = P’(z) X (width of bar corresponding to the value 2).

For impossible values this equation is of course meaningless.

PROBLEMS

1. The numberof units sold by the XYZ Company on 20 successive days was 4,
3, 1, 3, 2, 0, 4, 5, 3, 1, 2, 3, 6, 2, 4, 5, 3, 1, 4, and 3 units.
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a. Makea (relative) frequency distribution of this data in the form of a table, a
graph like Figure 3.2, and a histogram.

b. Make a table showing both the left-tail and the right-tail cumulative fre-
quencies of the data, defining theleft tail as ‘‘specified value or less’’ and the righttail
as ‘‘specified value or more.”’

c. Make a graphlike Figure 3.5 of the left-tail cumulative frequencies, defining

the left tail as in part b of this question.
2. An automobile dealer sold 21 cars on Monday, 9 on Tuesday, 13 on Wednes-

day, 7 on Thursday, and 9 on Friday.

a. Graph the cumulative daily sales as they occurred chronologically.

b. Graph theleft-tail cumulative distribution of the same data considered as a
frequency distribution, defining the tail as in Problem 1b.

3. A company which has been basing its production scheduling on demand fore-
casts made by the sales department decides to investigate the accuracy of these fore-
casts. The record for the past 10 months turns out as follows:

 

 

Forecast Actual Di

demand demand iscrepancy

22 23 +1

20 18 —2

17 19 etc.

20 15

19 19

19 22

23 28

°25 21

23 18

20 19

 

Graph the frequency distribution and left-tail cumulative distribution (defined as
in Problem 1b) of the discrepancies between actual demand and forecast demand. In
so doing define the discrepancy as actual minus forecast, and do not neglect or reverse
the algebraic signs.

4. Figure 3.6 is a histogram showing the numberof cars sold daily by an auto-
mobile salesman. |

a. What fraction of the time did he sell between 7 and 9 (inclusive) cars?

b. What fraction of the time did he sell more than 9 cars?

_c. What fraction of the time did he sell more than 2 cars? .
5. Figure 3.7 is a cumulative frequency distribution of per cents defective in

samples of 100 drawn from lots of a product manufactured on an automatic screw
machine.

a. What fraction of samples was 5 per cent or less defective?
b. What fraction was more than. 12 per cent defective?

c. What fraction was 7 per cent defective?

d. Whatfraction had per cents defective between 3.5 and 10.8 per cent inclusive?
6. Figure 3.8 is a frequency distribution of daily sales volume for a certain

product.
a. On what fraction of all days were sales below 15 units?

. b. On whatfraction of days were sales between 15 and 24 units inclusive?
c. On whatfraction of days were sales at least as high as 20 units?



 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
            
 

 

 

 

 

 

 

 

 

 

  

 

  

  
  

 

 

 

 

 

 

 

 

 

                 

16

14

£
2 12
z
+
>

® .10

ro {ot

Cc
@

g .08 - -

3
2 .O6
a

04

02

—— a i i riitiritits CL

-2 O 4 6 8 10 12
Unit sales

Figure 3.6

1.0 Quasa

—=—_—

9 -—|

—

8

ww
wn

2 uu

.

©

n, -6

so jt

o
5.9

a

=
2 .4

3 Quel
wy

ox
.3

2

1

0

O 2 4 10 12 146
Per cent defective z

Figure 3.7

63



64 The Problem of Decision under Uncertainty

7. Graph in histogram form the probability distributions corresponding to the
following statements.

a. “‘Our experience with this supplier has been such that I believe that only a
quarter of the relays we buy from him next year will contain no defective contacts,
half will contain one, and another quarter will contain two.”
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b. “I believe that there is 1 chance in 5 that sales next month will be between

) and 3 units inclusive, 2 chances in 5 that they will be between 4 and 7 units, and
2 chances in 5 that they will be between 8 and 11 units.” (Be careful in labeling the
vertical scale of this graph.)

8. Under what conditions would you use the frequency distributions given in

Problems 1 through 6 as probability distributions on which you would be willing to
vase a decision?
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Based Directly on Experience



CHAPTER 4

The Simplest Problems of Inventory Control;

Incremental Analysis

4.1 Construction of Payoff Tables

In Chapter 1 we defined a payoff table as a table showing the conse-

quence of every possible act given every possible event. The fact that the

decision is being made under uncertainty has no bearing whatever on the
construction of the payoff table, since the entries in the row describing any

particular event are exactly the same as they would be if that event were

certain to occur, and consequently we shall pause only briefly to remind

the student of the basic principle which must be observed in making any

economic comparison of two or more possible acts.
This basic principle states simply that before choosing among two

or more acts we must take into accountall present and future flows of cash

which are affected by the decision and that these cash flows are the only

elements of profit or cost which we should take into account. If a certain

act involves the consumption of materials already in inventory, then

according to circumstances these materials should be considered as the

equivalent either of the cash for which they could otherwise have been

sold or of the cash which will ultimately be spent in order to replace them,

but their value as thus determined should not be inflated by allocationsof

fixed costs or expenses whose total amount will actually remain the same

whether these materials are used or not.
The one rule to follow in drawing up a payoff table is therefore the

following:

For each act-event combination,list every item of cash or the equiva-

lent which will flow out of the business and every item of cash or the
equivalent which will flow into the business; the net of all these

amounts is the amount to enter in the table.

If the payoff table is being drawn upin termsof profit, the outflows are

subtracted from the inflows; if the table is being drawn up to showcosts,

the reverse procedure is followed. In either case, some of the entries in

the table may be negative; and if they are, the minus signs must not be
66
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neglected: they must be entered in the table and observed in all sub-
sequent computations.

An Example. As an example, Iet us take a slightly more compiex

version of the kind of inventory problem which wediscussed in Chapter1.

Once a weeka retailer stocks a perishable commodity which deteriorates

on the shelf so that stock which remains unsold at the end of the week
must be salvaged at a fraction of its full value. The commodity is bought

by the retailer for $2.50 per unit and is offered for sale at a price of $3.70

per unit during the week in which it is stocked; leftover stock has a

salvage value of $.50 per unit. The retailer’s rent, insurance, etc.,

average $.12 per dollar of total sales of all commodities; clerks’ wages,
delivery expenses, etc., average $.41 per dollar of total sales. The

retailer assigns the probability distribution shown in Table 4.1 to the

basic random variable ‘‘next week’s demand’”’ and consults us to deter-

mine how many units he should stock.

Table 4.1

Demand Probability

z P()

.05

.10

.25

.30

. 20

.10

o
m
p
w
n
N
n
r
e

+ 0

1.00

Our first step in analyzing this problem is to draw up the payoff

table, and in so doing we should recognize immediately that the fact that

overhead andselling expense have averaged $.12 + $.41 = $.53 per dollar

of sales in no way implies that these expenses are variable with sales. On

the other hand we do have to inquire whether there are any costs or

expenses which are directly attributable to sales of this commodity, and

we shall suppose that our inquiries lead to the information that special

materials costing $.20 are used to package each unit sold at full price.

Weare now ready to construct the payoff table. If Q is the number

stocked and z is the numberof fresh units demanded, the net cash inflow

or ‘‘gross profit’’ will be:

For z < Q (demand no greater than stock on hand)

Sale of fresh units: + $3.70 z

Wrapping fresh units: — .202
Salvage of leftovers: + .50(Q —2)

Purchase cost of stock: — 2.50Q

Net inflow: $3.00 z — $2.00 Q
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For z > Q (demand exceeds stock)

Sale of fresh units: +$3.70 Q

Wrappingfresh units: — .20Q
Salvage of leftovers: 0

Purchase cost of stock: —$2.50Q

Net inflow: +$1.00 Q

The entries in Table 4.2 are obtained by applying the appropriate one of
these two formulas to every Q, z combination in the table. For example:

Q = 4,2 = 2: ($3 XK 2) — ($2 X 4) = —$2,
Q=2,2=4:$1 * 2 = +$2.

Values of Q above 5 are excluded from the table because by Table 4.1 the
retailer is certain that no more than 5 units can be sold fresh and he

loses $2.50 — $.50 = $2.00 on every unit salvaged.

 

 

 

Table 4.2
Payoff Table

Demand Stock @
2

0 1 2 3 4 5

0 $0 —$2 —$4 — $6 — $8 — $10
1 0 + 1 — 1 — 3 — § — 7
2 0 + 1 + 2 0 — 2 — 4
3 0 + 1 + 2 + 3 + 1 — 1
4 0 + 1 + 2 +3 + 4 + 2

5 0 + 1 + 2 + 3 + 4 + 5
6+ 0 + 1 + 2 + 3 + 4 + 5

 

The expected profit of any act (any value of Q) can now be computed

by taking a weighted average of the corresponding column in Table 4.2,

Table 4.3

Expected Profit with Stock of 3
 

 

Demand Conditional Expected
P{z)z profit value

0 .05 —$6 —§$ .30
1 .10 — 3 — .30
2 .25 0 + 0
3 30 + 3 + .90
4 .20 + 3 + .60
5 .10 + 3 + .30
6+ 0 + 3 0

 

1.00 +$1.20
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the probabilities of Table 4.1 being used as the weights. The expected
profit for a stock of 3 is computed in Table 4.3 by way of review;it is left
to the student to verify the expected profits for the other stocks shown in

Table 4.4.

Table 4.4

Expected Profits of All Acts
Act Expected

Q profit

0 $0
1 + .85

2 + 1.40
3 + 1.20
4 + .10

5 — 1.60

4.2 Incremental Analysis

Provided that expected monetary value is a valid guide to action

in a given decision problem, the best act can always be found by the
method used just above, i.e. by computing and comparing the expected
profits or costs of all possible acts, but when the numberof possible acts

is large this method becomes extremely tedious. In many practical

inventory problems the random variable ‘‘demand”’ will have hundreds

or even thousandsof possible values and consequently it will be necessary

to choose among hundreds or thousands of acts (stock levels) none of

which is obviously unreasonable. We would therefore like very much to

find some way of selecting the best act without having to compute the
expected profit of every act, and in some kinds of problems this can be

done very easily by the use of incremental analysis.

A decision on a stock level in an inventory problem of the kind we

have been discussing can be analyzed incrementally by thinking of the

decision as being the result, not of a direct choice among the acts Q = 0,
1, 2, and so forth, but as the result of a whole sequence of decisions each of

which increases the stock level by one unit. In principle, we first decide

whethera first unit should be stocked; if the answeris yes, we then decide
whether a second unit should be stocked; and we continue in this way
until we come to a pointwhere we decide to increase the stock no further.

In general, any decision which consists of selecting a quanttty can be
analyzed in this way, whether the quantity is a numberstocked, a scrap
allowance, or anythingelse:

Instead of looking at the problem as one of making a single decision

on a particular number of units, we can look at it as one of making a
whole sequence of decisions, each one involving one more unit.

The great advantage of the incremental method over the ‘‘direct”’
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method which we have used previouslylies in the fact that we can usually
identify the last unit which should be added without actually making any

computations whatever concerning the earlier units in the sequence, but
before showing how this can be done weshall explain the basic logic of

the incremental method by analyzing a complete sequence of incremental

decisions. We take the inventory problem discussed in the previous

section of this chapter as an example, and we start with the question

whether or not to stock a first unit.

The First Unit. For this restricted problem of the first unit, there

are just two possible acts: ‘‘stock”’ and ‘‘do not stock’’; and there are just

two events of interest: ‘‘no demandfor a first unit’? and ‘‘demand for a

first unit.”’ If the first unit is not stocked, the retailer’s profit will obvi-

ously be 0 regardless of the event. If the first unit 7s stocked, the profit

depends on the event: if the unit is demanded,theretailer’s profit will be

$3.70 — $.20 — $2.50 = $1.00; if it is not demanded, he will have a

negative profit of —$2.50 + $.50 = —$2.00. The payoff table for the

decision concerning thefirst unit is shown as Table 4.5.

Table 4.5

Payoff Table for the First Unit

 

 

Act

Event

Do not stock Stock

No demandfor a first unit $0 —$2

Demandfor a first unit 0 + 1

 

By merely looking at Table 4.5 we see that the expected profit of not

stocking a first unit is 0; but to find the expected profit of stocking,

probabilities must be assigned to the events ‘‘no demandfora first unit”

and ‘‘demand for a first unit.’? Now there will be no demandfora first

unit if and only if the total quantity demandedis less than one unit, i.e. if

= 0, and the probability which the retailer has assigned to this eventis

05 by Table 4.1. Similarly the probability that there will be a demand

for a first unit is the same thing as the probability that the total quantity

demanded will be one or more units, and

P@>1)=1- P@ <1) =1— .05 = 95.

Given these two probabilities, the expected profit of stocking thefirst unit

is +$.85, as shown in Table 4.6; and since this is greater than the 0 profit

of not stocking, we conclude that the first unit should be stocked.
The Second Unit. We now proceed to consider stocking a second

unit. The possible acts are again ‘‘stock”’ and ‘“‘do not stock’’; the

relevant events are ‘‘no demand for a second unit”’ and ‘‘demandfor a



4.2 Inventory Control; Incremental Analysis 71

Table 4.6

Expected Profit of Stocking First Unit
 

 

 

profit value

2 <1; no demandfor a first unit 05 —$2 —$.10 °

2 > 1; demandfora first unit 95 44 + .95

1.00 +$.85
 

second unit.’”’ In making the entries in the payoff table we must remem-

ber that a final decision has already been made concerning the first unit, 80

that we are interested only in the consequences of a decision to stock or

not to stock a second unit and not in the consequences of a decision to

stock two units. If the retailer chooses not to stock the second unit, the
incremental profit of this decision will be 0 regardless of the event, i.e.

whether or not there is a demand for a second unit; all the cash flows
which occur will be due to the previous decision to stock the first unit. If the

retailer does decide to stock the second unit, his profit will be increased by
$3.70 — $.20 — $2.50 = $1.00 if the second unit is demanded and can

be sold at full price; it will be decreased by $2.50 — $.50 = $2.00 if the

second unit is not demanded and has to be salvaged. Accordingly the

payoff table for the second unit has the entries shown in Table 4.7.

 

 

 

Table 4.7

Payoff Table for the Second Unit

Act

Event

Do not stock Stock

No demandfor second unit 0 ~$2

Demandfor second unit 0 + ]

 

As in the case of the first unit, the expected profit of not stocking is

obviously 0 but probabilities must be assigned to the events of Table 4.7

before we can compute the expected profit of stocking. These prob-

abilities can again be obtained from Table 4.1 by a very simple argument.

If the total quantity demanded is less than two units, there will be no
demandfor a second unit; if the total quantity demandedis two or more

units, there will be a demand for a second unit. From Table 4.1 we can
compute

PG <2) = P@=0) + P@ =1) = .05 + .10 = .15,
P(g >2) =1— PE <2) =1-—.15 = 85,

and we can thenfind that the expected profit of stocking the second item
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Table 4.8

Expected Profit of Stocking Second Unit

Event Probability Conditional Expected
profit value

Z < 2; no demandfor a second unit 15 —$2 —$.30
2 > 2; demandfor a second unit .85 +$1 +-$.85

1.00 +$.55
 

is +$.55 as shown in Table 4.8. Sincethis is greater than the 0 profit of

not stocking, we conclude that the second unit should be stocked; the

total stock should be at least 2 units.
The jth Unit. The general pattern of the analysis should now be

clear. Every successive incremental decision has exactly the same payoff

table with 0’s in the column describing the act ‘‘do not stock’”’ and with a

—$2 and a +$1 in the column describing the act ‘‘stock.’”’ The only

difference from one of these decisions to the next is in the probabilities

assigned to the events ‘‘demand for a jth unit’”’ and ‘‘no demandfor a

ath unit,” where j is the ‘‘serial number’’ of the unit in question. The

argument by which we obtain these probabilities from the distribution of

the basic random variable is always the same, however:

If the fofal quantity demandedis less than j, there is no demand for

the jth unit; if the total quantity demandedis j or more, there is a

demandfor the jth unit.

Consequently the expected incremental profit of not stocking the jth unit

is always 0, while the expected profit of stocking the jth unit is always

$1 P(Z > 7) — $2 P@ <j).

In Table 4.9 this formula is used to compute the expected incremental

profit of stocking every successive unit from the first through the fifth;

the student will recall that the retailer is sure that no more than 5 units

can possibly be sold at full price. The “serial number”of each successive

 

 

Table 4.9

Complete Incremental! Analysis

Serial . . . . Incremental Cumulated

) P@ <)) P@ 23) profit profit

1 .05 .95 —$ .10+ $.95 = +$ .85 +3 .85

Z .15 .85 — .380+ .85=4 .55 + 1.40

3 .40 .60 — .80+ .60 = -— .20 -+ 1.20

4 .70 .30 — 1.40+ .30 = — 1.10 + .10

5 .90 .10 — 1.80+ .10 = — 1.70 — 1.60
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item stocked is shownin the first column; the cumulative probabilities in
the second and third columns are computed from Table 4.1. The
incremental profits due to each successive decision to stock one more unit
are computedin the next to the last column; thefirst two of these entries
have already been discussed in detail. Notice that the incremental
profit of the third andall following units is negative—the better act is not
to stock any of these units.

In the last column of Table 4.9 the incremental profits are cumulated
to give the total expected profit which results from a decision to stock
j units. If a single unit is stocked, the retailer’s total expected profit is

simply the profit due to the first unit. If 2 units are stocked, his total
expected profit is the sum of the expected profit from the first unit and the
expected profit from the second unit or $.85 + $.55 = $1.40. Since the

incremental expected profit which results from stocking a third unit is a
negative $.20, the total expected profit with a stock of 3 is $.20 less than
with a stock of 2 or $1.40 — $.20 = $1.20. Each subsequent addition to

the stock reduces the total expected profit by still more until with a stock
of 5 the total expected profit itself becomes negative. Notice that the

total profits as calculated by the incremental method in Table 4.9 agree

exactly with the results obtained by the direct method as shown in Table 4.4.

4.2.1 Practical Selection of the Best Decision

Behavior of Incremental Profit with Increasing 7. If we look at the

incremental profits in the next to the last column of Table 4.9, we see

that each successive entry is less favorable than the one before it; and

this suggests that if all we were looking for had been the best numberto

stock, we could have stopped computing and settled on a stock of 2 as

soon as we found that the incremental profit of a third unit was negative.

It is easy to prove that this guess is correct. As we already know, the
incremental profit of stocking the jth item is

$1 P(g > j) — $2 Pl <j).

Since P(Z > 7) is the right tail of the distribution of 2, the first term in

this expression must either remain the same or become smaller as 7

increases, i.e. as we move farther out into the tail. On the other hand

P(z < 7) is the left tail of the distribution, and therefore the second or
negative term in the expression for expected profit must either remain

the same or becomelarger as j increases. The whole expression there-
fore either remains the same or decreases with each increase in j, and

therefore we can be surethat:

]. If the incremental profit is positive for any particular value of J,
it is positive for all lower values.

g, If the incremental profit is negative for any particular value ofj,
jt is negative for all higher values. .
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Since these conclusions do not depend in any way on theparticular costs
or the particular probability distribution used in our example, we may
conclude that:

All that we need to do to find the best stock level in any problem of
this sort is to find the highest valuc of j for which the incremental
expected profit of stocking is positive.

Location of the Last Profitable Unit. Let us now see how wecan find

the highest value of 7 which gives a positive incremental profit without
actually computing any expected proits. In order to express our results

in a way which will be useful in any problem of the present type we define

two new symbols:

k,: the positive incremental profit which results from stocking the
jth unit if it is sold.

kn: the negative incremental profit which results from stocking the
jth unit if it is not sold.

In our example, *, = $1 and k, = $2. The incremental expected profit

of stocking the jth item in any problem of this sort can then be written

ky PZ > 9) — kn PZ <9)

and it will pay to stock the jth item if this quantity is positive,i.e.if

kn P(E <j) < kp P(E > J).

Wewishto find the highest value of 7 for which this condition is met, and
it will be easier to do this if we have only one cumulative probability to

deal with instead of two. Therefore we replace P(Z > j) by 1 — P( < 7)
and write the condition in the form

knP(Z <7) < k,{1 — P@ < J)I.

By the use of a little elementary algebra this can be rewritten as

<><

 

Kp

 

Pa< I< Condition for stocking the jth unit

  

The best act in any problem of this sort can now be found bythe following

steps:

~ J. Determinethe values of k, and k, by analyzing the incremental
cash flows which result from stocking and either selling or failing to sell

one more unit.

2. Compute the ‘‘critical ratio” kp/(kp + kn).

3. From the values already assigned to P(z), compute P(Z < 7) for

j = 1, 2, 3, etc., until the last value of 7 has been found for which P(Z < 9)
is less than thecritical ratio.
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In our example, the critical ratio is

kp HL
kp thn $1 + $2

Looking at the list of values of P(Z2 < 7) in Table 4.9 we see at once that
2 1s the highest value of 7 for which this probability is less than .33; the

best stock level is therefore Q = 2.

4.2.2 Applicability of the Short-cut Incremental Method

Although incremental analysis can be used to compute the total

expected profit of any act which consists in the choice of a quantity (e.g.,

to stock or to allow for scrap), the short-cut method which we havejust

applied to find the last unit whichit is profitable to include in this quan-
tity can be used only in special circumstances. In any situation it is true

by definition that total profit with a stock of 3 units is the sum of the
incremental profits due to the first, second, and third units, but this fact

alone does not ensure the validity of the short-cut method. The validity
of the shori-cut method depends on the assumption that if the incremental

profit of any given unit in the sequence is positive, the incremental profits of

all earlier units are also positive. It is this assumption which is true only

under special circumstances, and in problems where the assumption is

false it may well be that it will pay to stock 4 units even though the

incremental profit of the third unit is negative.

As an example of a type of problem in which this can happen,

suppose that the retailer of our example is offered a quantity discount

on the units he purchases: if he buys 3 units or less, he pays $2.50 per

unit as we assumedoriginally, but if he buys 4 units or more he pays
only $2.10 per unit. To find the incremental expected profit of stock-

ing the fourth unit we must now reason as follows. Because buying

a fourth unit reduces the price the retailer pays for the first three units,

stocking the fourth unit does not actually cost the retailer $2.10; it costs
(4 X $2.10) — (8 & $2.50) = $.90. Therefore if the fourth unit is sold,
the incremental profit will be $3.70 — $.20 — $.90 = $2.60; if it is not
sold the profit will be $.50 — $.90 = —$.40. The expected incremental
profit of stocking a fourth unit is therefore

$2.60 P(Z > 4) — $.40 P(Z < 4) = ($2.60 & .30) — ($.40 x .70)

= +$.50

and is thus greater than the expected incrementalprofit of the third unit,
which is still —$.20 as before. The really important point to notice is

the following: the total incremental profit of the fourth and third units
together is now $.50 — $.20 = +$.30, and therefore stocking 4 units is
$.30 better than stocking 2 even though stocking 3 units ts $.20 worse than
stocking 2. In general,

Oo.
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The short-cut incremental method for locating the last unit to add
to the decision quantity is applicable only when the conditional
profits k, and k, are the samefor every unit which might be added.

PROBLEMS

1. A manufacturer must decide whether to manufacture and market a new sea~
sonal novelty which has just been developedto sell at $1.50 per unit. If he decides
to manufacture it, he will have to purchase special machinery which will be scrapped

after the season is over. If a machine costing $1000 is bought, the variable cost of
manufacturing will be $1 per unit; if a machine costing $5000 is bought, the variable
manufacturing cost will be $.50 per unit. In either case it will be possible to manufac-
ture in small batches as sales actually occur and there will be no danger of having
unsold merchandiseleft over at the end of the season. The manufacturer’s probabil-
ity distribution for sales volume is shownin the table below.

Sales volume Probability

1 ,000 16

5,000 yy
10,000 4

1

a. Draw up a payoff table, remembering that there are three possible acts.

b. Compute the expected profits of the three possible acts.

2. Draw up a complete payoff table for the modified example discussed in Sec-

tion 4.2.2, where stock costs the retailer $2.50 per unit in quantities of 3 or less but
costs only $2.10 per unit in quantities of 4 or more. Use the direct method of Table

4.3 to compute total expected profit with stocks of 2, 3, and 4 units and thus verify
that total profit is $.20 less with a stock of 3 than with a stock of 2 but is $.30 greater
with a stock of 4 than with a stock of 2.

3. A newsstand operator buys the Daily Racing Form for 30 cents per copy and
sells it for 50 cents. Any copies remaining unsold after the races are valueless. The

operator believes that it 1s very important to avoid running short, since he is afraid
that he will lose customers permanently if they find him an unreliable source of supply,
and in order to minimize this risk he has adopted the policy of ordering 30 copies a
day. The distribution of daily requests for the journal over the last 100 days has
been as follows:

Number Relative Number Relative
requested frequency requested frequency

Less than 20 0 27 .12
20 01 28 .10
21 .04 29 .08
22 .07 30 .05
23 .10 31 .02
24 12 32 .O1

25 .14 Over 32 0
26 14
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a. By the use of incremental analysis compute the expected profit of every stock
level from 20 to 32 inclusive.

b. Check your work in part a by using the direct method of analysis to compute
expected profit with a stock of 30 copies.

c. If running short would actually have noeffect on any customer’s tendency to
return, how muchis the operator losing by his decision to stock 30 copies?

d. If the cost of the journal to the operator were reduced from 30 to 25 cents, by
how much could he increase his expected profit over the best he can do with a 30-cent
cost?

4. The Beacon Catering Corporation operated a cafeteria in a medium-sized
industrial firm, serving about 50 of the firm’s employees at lunchtime. The ordinary
check amounted to about 50 cents, and the gross margin was about 40 per cent. After
several years’ operation, the management decided to offer its customers a special $1
hot lunch. Gross margin on this item would also be about 40 per cent.

A question arose as to how much food to prepare for the special $1 lunch. Any
remaining at the end of the day would have to be thrown out; if the cafeteria ran short,
on the other hand, the extra gross margin would be lost. Any food remaining at the
end of the day from the other items on the menu could be saved until the next day.
The manager decided to experiment by preparing enough special lunches on each of
the first 20 days to run a negligible risk of running short on any day. Sales of the
special lunch on these 20 days were asfollows:

Unit sales Unit sales
Day = demand Day = demand

1 20 11 20

2 19 12 17

3 20 13 20

4 16 14 17

5 24 15 17

6 21 16 23

7 20 17 18

8 22 18 15

9 19 19 21

10 22 20 19

Assuming that all buyers of hot lunches would buy a cold lunchif the hot lunches

were not available, how many hot lunches should be preparedin the future and what
is the expected profit of this decision?

5. A wholesaler has a fleet of 10 trucks with which he makes deliveries from two
warehouses. ‘Trucks are dispatched at 10 a.m., a trip takes an entire day, and the
truck returns to the warehouse about 5 p.m. If the orders on hand at either ware-
house at 10 a.M. are too manyto be handled by the trucks available at the warehouse,
extra trucks are hired for the day; the excess cost amounts to about $50 more than the
out-of-pocket cost of operating one of the wholesaler’s own trucks for a day. The

table on page 78 showsthe total numberof trucks required at each warehouse on each
of the past 300 days.

a. If 3 of the 10 trucks are assigned to Warehouse A and 7 to B, what is the
expected excess cost at each warehouse?

b. What is the probability that a 4th truck will be required at A? That the 7th
truck will be required at B?
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Numberof days
 

 

Number

of trucks
Warehouse A Warehouse B

0 15 0

1 45 3

2 66 12

3 69 27

4 51 39

5 30 48

6 15 48

7 6 42

8 3 30

9 0 24

10 0 15

11 0 9

12 0 3

138+ 0 0

300 300

 

c. What is the net effect on total excess cost if the wholesaler assigns 4 trucks to A
and 6 to B instead of 3 to A and 7 to B?

d. What is the optimum assignmentfor this problem?

e. Derive a general rule for optimum assignment in problemsof this sort by first

considering what the wholesaler should do if he owns only one truck, then what he

should do if he acquires a second truck, and so forth.
f. Generalize your rule to situations where there are more than 2 warehouses.



CHAPTER 5

Measures of Location:

Fractiles and Expectations;

Linear Profits and Costs

In manysituations we do not really needall the detailed information con-
tained in a probability distribution or frequency distribution. In order

to compute the total numberof defectives in 100 lots of parts, we do not
need to know the frequency with which each possible numberof defectives

occurred. All we need to knowis a single number: the average or mean

number of defectives per lot. Similarly we have seen inthe previous

chapter that in one kind of inventory problem we do not need the entire

probability distribution for tomorrow’s demandin order to decide on the

best number of units to stock. All we need to know is a single number:

the greatest number Q for which P(Z < Q)is less than a certain ‘‘critical

ratio.”
Numbers such as these are known as measures of location of a fre-

quency or probability distribution. If we think of the distribution as

represented by a histogram, we can think of such a numberas specifying

the location of the histogram on the horizontal axis without specifying

anything about the shape of the histogram. Weshall study two quite
different kinds of measures of location in this chapter. The first kind

consists of fractiles, of which the median is the best known example; the

second consists of expectations, of which the ordinary arithmetic meanis

the best-known example.

Our interest in measures of location is due only in small part to the

fact that the amount of arithmetic required to solve a problem is often

reduced by their use. Their real importance lies in the fact that when

correctly used a measureof location focuses our attention on the particular

aspect of the probability distribution which is really critical for the problem

at hand and keeps us from being distracted by those aspects of thedis-

tribution which are irrelevant for that particular problem. On the other

hand, the use of measures of location is attended by considerable danger:

To cite a single example, one of the most common errors made by both

students and businessmenis to assumethat the best quantity to stock can

be determined by looking only at average demandin situations where in
79
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fact the best decision cannot be found in this way. In studying this
chapter the student must therefore pay as close attention to what cannot be
done with a given measure of location as he pays to what can be done with it.

5.1 Fractiles

§1.1 The Median

Before defining fractiles in general, let us consider the best known of

the fractiles, the median. Given a set of values (which may or may not
be values of a random variable)

Anyvalue whichis both (a) equal to or greater than half the values in
the set and (b) equal to or less than half the values in theset is a
median of theset.

In order to apply this definition to a given set of values we must:
1. List the values in order of increasing size;

2. Split the arrayed set in half.

To find the median of the values 5, 3, 2, 4, we first array them in the

order 2, 3, 4,5. We then observe that since there are four values in the
whole set, there must be two in each half. The largest value in the lower
half is therefore 3, the smallest value in the upperhalf is 4, and any value

from 3 to 4 inclusive is a median of the set. Notice that a value such

as 3.2 is a median of this set even though the value 3.2 is not itself a
member of theset.

Table 5.1
Serial Number of

number of lot defectives

1 2
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In many cases a set can be dividedin half only by assigning some of

the members with a certain value to the lower half and other members

with this same value to the upper half. Thus in order to divide the set
2, 3, 3, 4 in half, we must assign one of the 3’s to the lower half and one
to the upper half. The only median of this set is 3. In other cases—

whenever the number of membersin the set is odd—oneof the individual

members must be “‘split’”’ in order to divide the set into halves. The
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only median of the values 2, 3, 4 is 3: wemay think of the member with

value 3 as going half in the lower half of the set, half in the upperhalf.
Suppose now that 10 successive lots of purchased parts have been

100 per cent inspected, that the numberof defectives found in each lot is
as shown in Table 5.1, and that we wish to find the median or mediansof

these 10 values of the random variable ‘‘numberof defectives.”’ Wefirst
array the values in orderof size: 0, 1, 2, 2, 3, 3, 3, 4, 4,5. Since there are
10 values in the set, 5 must go in the lower half and 5in the upper. The
fifth value from the bottom is 3 and sois the sixth, so that the medianis 3.

56.1.2 Fractiles in General

As we have said, the median is simply a special case of a fractile.
The median of a set of values is known as the .5 fractile (read: point 5

fractile) and will be denoted by F.; because it is equal to or greater than

half the values in the set. We now generalize this idea to define the
‘point f’’ fractile, where .f is any fraction between 0 and 1. Given any

set of values,

Any value whichis both (a) equal to or greater than a fraction /f of

the values in the set and (6) equal to or less than a fraction (1 — .f)
of the values in the set is a .f fractile of the set.

To find the .25 fractile or F'.25 of the values 5, 3, 2, 4, we first array

them in the order 2, 3, 4, 5 and then split this set of four values into two
parts, a lower part containing .25 X 4 = 1 value and an upperpart con-

taining the remaining three values. The largest value in the lower part
of the set is 2, the smallest value in the upperpartis 3, and therefore any
value from 2 to 3 inclusive is a .25 fractile of this set. Similarly any

value from 4 to 5 inclusive is a .75 fractile of the set.
In many cases a set can be divided into a lower part containing .f of

the membersand an upper part containing the remainder only by assign-
ing someof the memberswith a certain value to the lower part and other
members with this same value to the upper part. The only .2 fractile of

the values 2, 2, 3, 4, 5 is 2: one of the 2’s in theset is assigned to the
lower .2 of the set and the other to the upper .8. In other cases one of

the individual members must be ‘‘split’”’ in order to divide the set in the
specified manner. The only .3 fractile of the values 1, 2, 3, 41s 2: we need

1.2 members to make up the lower .3 of this set of four values, and we

may think of the value 2 as going partly in this lower .3 of the set and

partly in the upper.7.

5.1.8 Computation of Fractiles from Relative Frequencies
or Probabilities

Now that we have seen how to computefractiles from a complete

list of the values taken on by a random variable we are ready to learn how
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to compute them when the values taken on by the variable have been put
into the form of a frequency distribution. As an example we show in

Table 5.2 a frequency distribution of the values of the random variable
“number of defectives’? which are listed in Table 5.1 in their historical

order, and in Figure 5.1 we show a graph of the cumulative frequenciesof

Table 5.2.

 

 

Table 5.2

Value z of the roauve cumulative

random variable q y quency o
of 2 z or less

0 1 1

1 1 2

2 2 4
3 3 ”

4 2 9

5 _! 1.0
.O

 

_ Suppose now that we wish to find the .5 fractile of the distribution of
Table 5.2. Recalling the rules for reading graphs of cumulative distribu-

tions as given in Section 3.4.2, we can see from Figure 5.1 that .4 of the
frequency belongs to values of the variable less than 3 while .7 of the fre-
quency belongs to values of 3 or less. In order to divide the whole set of

values into a lower .5 and an upper .5, we must split the 3’s and assign

some of them to the lower group and some to the upper. Accordingly

the .5 fractile or median of this distribution is 3.
The horizontal dotted line in Figure 5.1 shows how anyfractile can be

located immediately by use of a graph of a cumulative distribution. If

weare looking for the .5 fractile, the line is drawn at height .5 on the

vertical axis; the .5 fractile is then the value on the horizontal axis directly

below the point where the dashedline cuts the graph of the distribution.

In general,

To find the -f fractile of any frequency distribution, plot the cumula-
tive distribution, read across from the value .f on the vertical axis to

the curve, and read down from this point on the curve to the hori-

zontal axis.

Thus we can immediately read from Figure 5.1 that F.; = 2, that F., = 4,

and so forth. |
We havealready seen that in some cases a fractile has a range of

values rather a single, unique value.: In terms of a graph of the cumula-

tive distribution, these are the fractiles whose broken lines coincide with a
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‘flat’? in the graph rather than cutting a ‘‘riser.”” If we look for the .4
fractile of the distribution of Figure 5.1, the fact that a line drawn at
height .4 would coincide with the top of the jump above the value 2 on

the horizontal axis showsthatall the 2’s in the set must go in the lower.4;

the fact that the same dashed line would coincide with the bottom of the
jump above the value 3 shows that all the 3’s must go in the upper .6;

accordingly any value in the interval 2 to 3 inclusiveis a .4 fractile of this

distribution. Similarly any value from 1 to 2 is a .2 fractile, any value
from 3 to 4 is a .7 fractile, and so forth.
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No new problems arise when we wish to compute the fractiles of a

probability distribution:

Thefractiles of a probability distribution are computed by using the

probabilities in exactly the same way that relative frequencies are

used in computing the fractiles of a frequency distribution.

5.1.4 An Example of the Use of Fractiles

In Chapter 4 we saw thatin a certain class of inventory problems the

best stock level was the highest number Q for which

ky

kp + Kn

 

PZ < Q) <

and we discussed in detail an example in which the “eritioal ratio”

kp/(kp + kp) had the value .33. The probability distribution assigned to
‘‘demand”in that exampleis reproduced in Table 5.3 and the cumulative
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Table 5.3

Demand Probability Cumulative
Zz P(z2) P@ < 2)

0 .05 .05

1 .10 .15

2 25 40
3 .30 .70
4 .20 .90
5 .10 1.00

1.00

 

probabilities are graphed in Figure 5.2. If now we draw in a dashedline
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Demand 2

Figure 5.2

to locate the .33 fractile of this distribution, we can make the following

observations:

1. F«33 => 2.

2. P(z < 2) < .33 but P(z < 3) > .33.

In other words:

The optimum stock level in problems of this sort is simply the

kp/(Rp + kn) fractile of the distribution of the random variable

“‘demand.”’

Henceforth weshall refer to this fractile as the ‘‘critical fractile’”’ in prob-

lems of this kind.t

+ It is left to the student to show that when thecritical fractile has a range of

values rather than a single value, total expected profit is the same whichever one of
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5.2 Expectations

§.2.1 The Arithmetic Mean

The arithmetic mean of a set of values is simply their everyday

‘‘average,’’ defined as follows:

Arithmetic mean: the sum of a set of values divided by the number

of values in theset.

The mean of the values in Table 5.1 is

Wo(2+44+04+24+44+34+3+4+143+4+5) = 2K = 2.7.

5.2.2 Computation of the Arithmetic Meanfrom Relative Frequencies
or Probabilities

When we computed fractiles from original data, all we did was

arrange the individual values in orderof size and then count off from the

left; when we computed them from relative frequencies, all we did was

arrange the values in this same way and then cumulate their relative fre-

quencies. There was no need for arithmetical operations. The mean,

on the contrary, rests on an averaging operation; and if we replace the

original data by a frequency distribution we must use the frequencies as

weights in this averaging.

 

 

 

Table 5.4 Table 5.5

Value of the
random variable Value of the Number of

. Product
0 random variable occurrences

1

2 0 1 0

2 1 1 1

3 2 2 4

3 3 3 9

3 4 2 8

‘ 5 4 5
4 10 27

5
27

Let us reexamine the computation of the mean of the distribution of

Table 5.1 as we carried it out above. If we rearrange the data in order

of increasing value of the variable we have Table 5.4; the meanis still the

total divided by the numberof items, or 2%9 = 2.7. Now instead of

writing down twoidentical rows for the value 2, three rowsfor 3, and two
rows for 4, we can get the same total, 27, by writing each value of the
 

these values is selected for the stock level. If the critical fractile had been .40 instead

of .33 in our example, then total expected profit would have been the same with a
stock of 3 units as with a stock of 2 units.
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variable once and multiplying it by the number of times that the value
occurs. This is done in Table 5.5. To get the mean we divide the sum of
the products by the sum of the weights; this divisor, of course, is simply the
total number of occurrencesas before.

Again we will get exactly the sameresult if, instead of adding the
products and then dividing their sum by 10, we divide each of the indi-
vidual products by 10 before adding; and instead of doing that, we can
divide each of the numbers of occurrences by 10 before computing the
products. The last two columns of Table 5.5 would then be as shown in

Table 5.6. Since the sum of the weights is now 1, the mean is simply the
total in the last column.

 

 

Table 5.6

Value of the Numberof occurrences Product

random variable divided by 10

0 al 0

1 1 1

2 2 4

3 3 9

4 2 8

5 1 3
1.0 2.7

 

The weights of this last table are actually relative frequencies, and in

general:

The mean of a frequency distribution is a weighted average of the

values of the variable, each value being weighted by its relative fre-

quency. Since relative frequencies always add to 1, the sum of the

weights is 1 and there is no need to divide by it to get the average.

No new problemsarise when we wish to compute the mean of a probability
distribution:

The mean of a probability distribution is computed by using the
probabilities in exactly the same way that relative frequencies are
used in computing the mean of a frequency distribution.

6.2.38 The Expected Value of a Random Variable

Recall now that to compute the expected value of the various profits

which might result from a given act, we multiplied each possible profit

by the probability that it would be made and addedthese products. But
“profit”? in such a computation is just a special case of a random variable,

1.€. a variable which has a definite ‘‘conditional”’ value for every possible

event; and when we compute the mean of the probability distribution of
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any random.variable we are computing the expected value of that vari-
able. In general, we define for any random variable:

Expected value or expectation: the quantity obtained by multiplying
each possible value of a random variable by the probability of that
value and adding the products.

Weshall uniformly denote the expected value of a random variable

by the symbol E (for expectation) followed by the ‘‘name”’ of the variable
in parentheses. Thus if the random variable is called 2, the expected
value of 2 or mean of the distribution of 2 will be denoted by E(2).

5.2.4 Partial Expectations

In many practical decision problems we shall be interested, not in

the number which results from multiplying all the values of a random

variable by their probabilities and adding these products, but in a number

which results from multiplying some of the values by their probabilities

and adding these products. Such a number will be called a partial

expectation.

As an example of the computation of partial expectations, consider

Table 5.7 below, where the first two columns again give the probability

distribution of the random variable ‘‘demand”’ for the inventory problem
discussed in Chapter 4. The expectation of this variable is computed in

the third column of the table in exactly the same way that the mean
number defective was computed in Table 5.6 except that two subtotals
have been brought out: one showing the sum of products for values of Z

less than or equal to 2 and one for values of Z greater than 2. The grand

total 2.80 is the ‘‘complete”’ or ordinary expectation of Z; the first sub-

total .60 is the partial expectation of 2 over the interval 0 to 2 inclusive, and

the second subtotal 2.20 is the partial expectation of 2 over the interval
from 3 to “‘infinity.”” Partial expectations will be denoted by the expecta-

 

 

Table 5.7

z P(z) z P(z)

0 .05 0

1 .10 .10

2 .25 -50

.60

3 .30 .90

4 .20 .80

5 .10 .50

6 to infinity 0 0

2.20

2.80
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tion symbol E with a subscript and a superscript to indicate the ends of

the interval over which the partial expectation is computed. The

expectations computed in Table 5.7 above will be written

E2(z) = .60, E?(z) = 2.20,

and in general the subscript on the symbol E shows the lowest value of the

random variable which is included in the partial expectation while the super-

script shows the highest included value.

5.3 Straight-line Conditional Profits; Applications

of Expectations

The great majority of the decision problems which weshall study in

this course will involve conditional profits or costs which are linear func-

tions of some basic random variable, and in all such problems the burden

of analysis can be lessened andclarity increased by the use of expectations

of the basic random variable.

§.38.1 Completely Linear Conditional Profit

Let us start by considering a simple artificial problem which will

illustrate the meaning and importance of linear or straight-line condi-

tional profits. Suppose that a lottery is to be conducted by rolling an

irregular die with faces serially numbered from 0 to 5 rather than 1 to 6,

that we are given a ticket which entitles us to receive $2 times the number

which comes up plus an additional $5 regardless of the result of the roll,

and that after inspection of the die we assign the probability distribution

shown in Table 5.8 to the basic random variable ‘‘number which comes

up.” If we use z to denote the value actually taken on by this basic

random variable, the conditional profit of holding the ticket can be

written

Conditional profit = $5 + $2 z.

In Table 5.8 our usual method of computation is used to show that

the expected profit of holding this ticket is $10.40, but we shall now see

 

 

 

Table 5.8

z P(z) Conditional profit Expected profit

0 1 $5 +0 X $2 =$ 5 $ .50

1 1 $5+1xX$2= 7 .70

2 2 $5+2x$2= 9 1.80

3 3 $5 +3 X $2 = 11 3.30

4 2 $5+4kX $2 = 138 2.60

5 _l $5 +5xX $2 = 15 1.50

1.0 $10.40
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that this expected profit can be calculated from the expected value of the basic
random vartable Z without the use of any other information concerning the

distribution of 2. Instead of computing the net conditional profit for each

value of the basic random variable and then multiplying this net by the
probability of that value as we did in Table 5.8, we could have made each

entry as the sum of two parts, as we shall show by taking the entries for

2=3asanexample. The $11 conditional profit for Z = 3 is made up of

the two parts,

$5 + (3 X $2),

and instead of entering .3 X $11 = $3.30 in the last column of Table 5.8
we could have multiplied .3 into each of the two parts separately and

entered

(.3)$5 + .3(3 X $2).

Furthermore it is obviously legitimate to regroup the term .3(3 X $2)

and write it as (.3 * 3)$2, so that for Z = 3 the complete entry in the last

column could have been written as

(.3)$5 + (.3 X 3)$2.

Table 5.9 is identical to Table 5.8 except that all the entries in the

last column have been made in this new form; to obtain the total of

 

 

 

Table 5.9

2 P(z) Conditional profit Expected profit

0 1 $5 +0 X $2 (.1)85 + (.1 K 0)$2
1 1 5+1 X $2 (.1)$5 + (.1 & 1)$2
2 2 § +2 X $2 (.2)$5 + (.2 X& 2)$2

3 3 5+3 X $2 (.3)$5 + (.3 X 3)$2
4 2 5+ 4X $2 (.2)$5 + (.2 * 4)$2

5 1 5+ 5 X $2 (.1)$5 + (.1 XK 5)$2

1.0 (1.0)85 + (2.7)$2
 

this column, which will give us the expected profit, we now make two

observations.
1. The first term in each line consists of P(z) multiplied by the con-

stant factor $5. Instead of multiplying out each of these terms and then

adding, we can add the values of P(z) and then multiply by the constant
$5. But since the total probability of all possible values of any random

variable is 1, the result of this calculation is simply 1 times the constant $5.
2. The second term in each line consists of the product z P(z) (in

parentheses) multiplied by the constant factor $2. Instead of multiply-
ing out each of these terms and then adding, we can multiply out only

the portion z P(z) within the parentheses, add these products to get the
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total 2.7, and then multiply this total by the constant $2. This 2.7, how-
ever, is simply the expected value of the basic random variable Z, since it
is computed by multiplying every possible value of Z by its probability
and adding the products, and therefore in this example

Expected profit = $5 + $2 E(Z).

The important thing to notice is that this formula for the expected

profit is identical to the formula given previously for the conditional profit

except that zis replaced by E(2). This result can be generalized as follows:

Wheneverthe conditional profits for all possible values of the basic

random variable are given by a formula of the type

Conditional profit = AK + kz,

where K and & are constants, the expected profit is given by the

formula

Expected profit = K + k E(2).

The student must pay particular attention to the words ‘‘all possible

values”’ in this rule: zt 7s only because we summedthe products z P(z) for all

possible values of Zin Table 5.9 that the quantity E(Z) appeared in our result.

Graphic Representation of Linear Conditional Profits. Conditional

profits given by formulas of the type K + kz are called straight-line or

linear because when the conditional profit is plotted againstthe value of

the basic random variable the graph is a straight line. The principle is

illustrated in Figure 5.3 for the example just discussed.
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Application to an Inventory Problem. Let us now reconsider the

computation of expected profit with a stock Q = 5 in the inventory prob-

lem discussed at length in Chapter 4. In Section 4.1 we saw that when

the demand z was no greater than the stock Q, the conditional profit was

given by the formula

Conditional profit = —$2 Q + $32 = —$10 + $32.
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Since values of 2 greater than 5 are impossible by Table 4.1, this formula

applies to all possible values of 2 when Q = 5; the conditional profit for

this case has the graph shown in Figure5.4.
The fact that this graph of conditional profit is a straight line over

the whole range of possible values of Z entitles us to apply the formula

Expected profit = K + k E(2).

It was shown in Table 5.7 that E(Z) = 2.8 for the probability distribution

assigned by the retailer; noticing that in our present problem K has a

negative value, |

kK = —$10,

we obtain

Expected profit = —$10 + $3 E(@) = —$10 + $8.40 = —$1.60

in agreement with Tables 4.4 and 4.9.

5.3.2 Broken-line Conditional Profit

Suppose now that we wish to use expectations of Z to compute

expected profit in this same inventory problem but with a stock of 2
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Figure 5.5

rather than with a stock of 5. In this case, as shown in Section 4.1, we
have two different formulas for the conditional profit, one of which

applies when z <-2, the other when z > 2:

—$4 + $3 z if2 < 2,
Conditional profit = +99 if z > 2.

This conditional profit is graphed in Figure 5.5, where it appears as a

broken straight line.

The expected profit for this case is computed in Table 5.10 by a

method similar to the one used in Table 5.9 except that two subtotals are
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brought out, one for the values of 2 to which thefirst formula for condi-

tional profit applies and one for the values to which the second formula

applies. If now we analyze thefirst subtotal in the last column of Table

 

 

 

 

 

 

Table 5.10

2 P(z) Conditional profit Expected profit

0 05 —$4+0 X $3 = — $4 .05(—$4) + (.05 X 0) $3 = —$.20
1 10 —$4+1%X $3 =—-— 1. .10(—$4) + (.10 X 1) $3 = — .10

2 +25 —$44+2X$3 = + 2 .25(—-$4) + (.25 X 2) $3 = + .50

Subtotal .40 .40(—$4) + .60 X $3 = +§$.20

3 .30 $2 .380 X $2 = + .60
4 .20 $2 .20 X $2 = + .40
5 .10 $2 .10 X $2 =-+ .20

Subtotal  .60 60 X $2 = +$1.20

Total 1.00 +$1.40
 

5.10 in the same way that we analyzed the total in Table 5.9, we see that

the term .40(—$4) is P(Z < 2) multiplied by the constant factor —$4;

comparing Table 5.7 we also see that the term .60 X $3 is the partial
expectation E2(2) multiplied by the constant factor $3. Analyzing the
second subtotal in the same way wesee that it is P(Z > 2) multiplied by

the constant factor $2. Putting these observations together we obtain a

‘“‘formula”’ for expected profit with stock Q = 2:

Expected profit = [—$4 P(Z < 2) + $3 E{(2)] + $2 P( > 2).

Generalizing this example we conclude that in any problem where

K + kz ufz<Q,
K’ ufz> Q,

Expected profit = [K P(#@ < Q) +k E?@®] + K’ P@> Q).

Conditional profit =

In order to acquire more feeling for the meaning of this rather complex

formula, we can imaginethat the retailer actually stocks Q items on each

of a numberof occasions and that the relative frequencies with which the

values of Z actually occur on these occasions are numerically equal to the
probabilities of Table 5.10. In this imaginary situation the term in

brackets gives the ratio

Total profit on all days when z < Q

Total number of days
 

while the other term gives the ratio

Total profit on all days when z > Q
Total number of days
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5.4 The Choice and Use of a Measure of Location

The student is not expected to memorize formulas like those which

we havejust derived for expected profit or methods like the one derived in

Section 5.1.4 for finding the best stock level by the use of fractiles. What

the student zs expected to rememberis this:

Whenprobability distributions are to be used as the basis for a busi-

ness decision, the question whether the full distribution can be

replaced by a measure of location, and if so which one,is not to be

answered by some kind of vague discussion concerning the ‘“repre-
sentativeness”’ of various possible measures. A measure of location
may be usedin place of a full probability distribution if and only if

it can be proved that in the particular problem at hand the expected
costs can be correctly calculated or the best decision can be correctly
identified by use of the particular measure under consideration.

One of the commonest errors in dealing with problems involving

uncertainty is to assume incorrectly that the full distribution can be
replaced by some ‘‘measure of central tendency’”’ such as the mean or

median. When thefull distribution can be replaced by some measure of

location, the correct measure is usually not a ‘‘measure of central tend-

ency.” In inventory problems of the kind we have been studying, the
best decision can be found by use of the median only whenthecritical

ratio kp/(kp + ka) has the value .5; the cost of a decision can be evaluated
by use of the mean only when thedecision is to carry so much stock that
there is absolutely no chance that it will fail to meet the demand.

Even more important, it is not to be assumed that every problem can

be solved by the use of some measure of location and that the only problem

is choosing the correct measure. Most problems requtre the full distribu-

tion; it 1s only exceptionally that we can replace it by a measure of location or

by any other single number.

PROBLEMS

1. Considering the distribution given in Chapter 4, Problem 3, as a probability
distribution rather than a frequency distribution:

a. Graph P( < z) against z.

b. Show that F., = 22, Fs = 23, F., = 26, and that F7, is any value from 27 to

28 inclusive.
c. Using 2 to denote the random variable ‘‘number requested,’’ show that

E(2) = 25.70, B3?(z) = 4.88, Ez,(2) = 20.82.
d. Computethecritical ratio from the cost data in the original problem, use your

answer to (a) to find the optimum stock by the method of Section 5.1.4, and check

against your answer to the original problem.
e. Use the formula derived in Section 5.3.2 to compute expected profit with

optimum stock and check against your answer to the original problem.
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2. Considering the distribution given in Chapter 4, Problem 4, as a probability

distribution and using Z to denote the random variable ‘‘demand”’:

a. Graph P@ < z) against z.
b. Compute the critical ratio from the data of the original problem, use your

answer to (a) to find the optimum stock by the methodof Section 5.1.4, and check

against your answer to the original problem.
c. Use the formula derived in Section 5.3.2 to compute the expected profit with

optimum stock and check against your answer to the original problem.

3. A store sells for $4 an item costing $3. Selling expenses amount to 10 per

cent of sales. If the item is out of stock, customers demandingit will simply go next

door, whereit is displayed in the window. At the end of one day, the managernotices
that there are only 5 units left in stock. Under the following assumptions what is

the expected loss due to the manager’s failure to reorderearlier?
a. It always takes exactly 1 day to place an order with the supplier and to get

delivery. Demandfor the item over the past 1000 days has been asfollows:

Number Number of Number Number of
demanded occurrences demanded occurrences

5 3 12 148

6 21 13 59

7 45 14 34

8 75 15 22

9 130 16 12

10 186 17 2

11 263

b. Sales of the item have been regularly 10 units every day, but the time to

place an order andget delivery is irregular: it usually takes 3 business days, but 25 per

cent of the time it takes 4 days and 10 per cent of the time it takes5.

c. Daily sales are distributed as in part a and delivery time is distributed as in

part 6. [Hrnt: Take “lead time”’ as the basic random variable and use your answer

to (a) to get the conditional losses.]



CHAPTER 6

Assessment of Probabilities

by Smoothing Historical Frequencies

Our object in the last two chapters has been to learn how to use prob-
abilities once they have been assessed rather than to learn how to assess

them, and accordingly we have simply equated probabilities to historical

relative frequencies in various exercises without stopping to worry about

the arguments given in Section 1.6 to show that when all the available

information is considered such a procedurewill often appearto be clearly
unreasonable, particularly when the historical frequencies rest on only a

small number of trials. In this chapter we shall study one group of
methods by which observed relative frequencies may be modified or

adjusted in order to make more reasonable assessments of probabilities.

6.1 The Historical Record Considered as a Sample

Consider the historical frequency distribution of daily demand shown
in Table 6.1 and graphed in Figure 6.1a. Thereis a ‘‘dip”’ in the relative

 

 

Table 6.1

Demand Numberof Relative

2 occurrences frequency

2 1 .063
3 3 .187
4 2 .125
5 4 . 250
6 3 . 187
7 2 .125
8 0 . 000
9 1 . 063
10+ 0 .000

16 1.000
 

frequencies between demand for 3 units and demand for 5 units and

another between 7 and 9 units. Before adopting a prabability distribu-

tion for tomorrow’s demand which is a mere copy of this frequency dis-
95
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tribution, we should ask ourselves whether such a distribution is reason-

able in the light of whatever general knowledge we have of the factors

affecting demand; and in the light of the discussion in Section 1.6 this

means that we must ask ourselves whether we would expect demand on a

large number of days ‘‘like’’ tomorrow to have a frequency distribution

like that of Figure 6.1a.

Under most circumstances almost any sensible person would answer

immediately that it is not reasonable to expect demandsfor 7 and 9 units

to occur with relative frequencies .125 and .063 while demandsfor 8 units

never occur at all. Unless some definite, assignable cause can be found

which prevents demandsfor 8 units, it is reasonable to believe that a long
run of days like tomorrow would produce demandsfor 8 units with a rela-

tive frequency somewhere between the frequencies of 7 and 9 units.

Similarly for the dip in relative frequency between 3 and 5 units:

unless a specific cause can be found to explain the dip, a reasonable per-

son would be willing to bet that in a hypothetical long run therelative fre-

quency of demandsfor 4 units would be between the frequencies for 3 and
5 units and would assign probabilities to tomorrow’s demandaccordingly.

Finally, the fact that no demandfor less than 2 or more than 9 units

has occurred in the 16 daysin therecord is not in itself a proof that such

demands are impossible; and a reasonable person might well want to

assign them some small probability.

This intuitive feeling that it is not logical to assign probabilities in

this problem by simply equating them to the historical frequencies can

be rationalized as follows. Certain factors affecting demand on any given
day can be identified and their effects can be isolated and measured.

Thus we may know that Saturday demand tends to be greater than

Friday demand by a certain amount. But after we haveidentified all
the factors we can identify and thus explained a part of the variation in
historical demand, we are usually left with a certain amount of unex-

plained variation. It is because we are unable to explain all the variation
in past demand that we are uncertain about tomorrow’s demand.

It is usually reasonable to think of this unexplained variation as

being the joint effect of a large number of factors each of which indi-

vidually has only a small effect, since any individual factor which has a

large effect can and should be identified. Furthermore we may usually

think of these small, residual factors as acting independently of each

other—if several small factors tend to act together, the group as a whole
will produce large effects and therefore can and should be identified.

Consequently zt 7s reasonable under most circumstances to think of demand

on any one day as being equal to some ‘‘basic’’ amount determined by the

identified factors plus or minus a ‘‘deviation”’ which is really the sum of a

large number of small, endependent deviations due to the unidentified factors.

Let us now simplify the problem for a moment by imagining that
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although some deviations will be positive while others will be negative,all

the deviations are of equal absolute size. If this were true, the variation
in demand would be somethinglike the variation in the numberof heads
turning up when 100 coins are tossed repeatedly. Even though some or

all of these coins may be badly bent, so that the probability of heads for
any one coin may befar from 4, intuition tells us immediately that in

the long run:

1. There will be some one most common number of heads;
2. The relative frequencies of other numbersof headswill be smaller

the farther the numbers are from this most common number.

If, therefore, a very short series of tosses showed, say, that 54 heads had
occurred twice, 56 heads once, and 55 heads not at all, we would never-

theless insist that in the long run 55 heads would occur with a relative fre-
quency somewhere between the frequency of 54 heads and the frequency

of 56. In other words, irregularities in the long-run frequency distribu-
tion of number of heads would seem inconsistent with our intuitive ideas
concerning the nature of the chance mechanism or random process gener-

ating this number. We would say that the irregularities in the record are
due to the fact that these tosses are only a ‘‘sample”’ of the behavior of

the random process and that the absence of 55 heads from the record
reflected ‘‘sampling error’ rather than the true long-run behaviorof the

process.
Wedonot, of course, really think that the total deviation of demand

from its most common value is the sum of deviations which are exactly of

equalsize, but this part of the analogy is not essential. A closer analogy

would be a sequenceof rolls of 1000 deformeddice,all different, and here
again intuition tells us (and it can be proved) that in any really long

sequence of rolls of the 1000 dice:

1. There will be some one most common total number of spots

showing,
2. The relative frequencies of other numbers will be smaller the

farther the numbers are from this most common number.

This analogy is close enough to our notions of the mechanism generating

demandto justify the proposition that the long-run frequency distribution

and therefore the probability distribution of demand should fall away

smoothly on either side of a single most probable value.

6.2 Smoothing a Frequency Distribution

In a great manysituations the only available evidence on the behavior

of the random process generating values of some random variable is (1) a

frequency distribution of values actually generated by the process in the
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past and (2) the knowledge that we have eliminated from this distribu-

tion the effect of every assignable cause which weare able to identify. In

such cases the only reasonable way of estimating the long-run behavior of

the process and thus assessing a probability distribution for the next

value which will be generated by the process is to smooth this historical

frequency distribution.
This has been done for the data of Table 6.1 in Figure 6.1c (not b).

A smooth curve has been drawnin such a waythat the total amount added

to the frequencies of certain demands equals the total amount subtracted from

the frequencies of all other demands. Like the type of graph shown in

Figure 3.2, the curve has no meaning except at the points corresponding

to integral values of the sales volume.

Fitting the Curve. It is difficult in a single operation to fit a smooth

curve to an irregular graph like Figure 6.1a and makeit comeout in such

a way that it both has the right shape and leads to probabilities which

add up exactly tol. In practice it is easier to break thefitting procedure

down into twosteps.

1. Fit by eye a smooth curve which has the right general shape.
2. Adjust the curve so that the probabilities will add to 1 by reading

the curve at each possible value of the variable, adding the read-
ings, and then increasing or decreasing every point on the curve

by the same proportional amount.

The curve shown in Figure 6.lc was actually derived from the curve in

Figure 6.16. This latter curve was fitted by eye and the ordinateslisted

in column 2 of Table 6.2 were read from it. Each figure in column 2 was

then divided by the total of the column (1.16) to obtain a set of probabili-

ties whichwould add to 1. Once these probabilities were listed in column

 

 

Table 6.2

Demand of Figure6. 1b Probability

0 0 0
1 .O1 .009
2 .07 .060
3 .16 .138

4 .21 181

5 22 .190

6 .21 .181

7 .15 .129

8 .08 . 069
9 .04 .034
10 .O1 .009
11+ 0 0

1.16 1.000
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3 of the table, the smoothing was really complete; the only reason for

plotting the probabilities in Figure 6.1c and drawing a smooth curve
through the plotted points was to obtain a visual check on the reasonable-

ness of the final results.

6.2.1 Assignable Causes

Now that the student has learned how to smooth outall the irregu-

larities in a frequency distribution, let him beware of doing this indis-
criminately. Assignable causes for irregularities often exist: if we make

the effort, we are often able to find reasons for dips in a historical fre-

quency distribution. In the case of daily demand, this means that we
can often explain why the frequencies bunch in two or more ranges by

looking for factors which were present on the days (or months or other

periods) showing high demand and which were absent on the days show-

ing low demandorvice versa.
It has already been pointed out that if the data in the record apply

to all days in the week, we may find that demand was usually higher on

Saturday than on other days. Unless our general knowledge of con-

sumer behavior leads us to a strong belief that there is no real reason for

this phenomenon, we should not reject it as an accident of chance, which

is what we are doing implicitly if we assess a probability distribution by

smoothing a frequency distribution containing data on both Saturdays

and other days. Rather, we should use only Saturday data to arrive at

a probability distribution for next Saturday’s demand, and so forth. If

demand in summer washigher than demandin winterandit is reasonable

to believe that there is a real cause for this phenomenon, summer and

winter data should not be lumpedin arriving at a probability distribution.

The help which even a professional statistician can derive from prob-

ability theory in deciding whetherirregularities in a historical frequency

distribution are to be attributed to an assignable cause or to chanceis

usually very slight. Basically, the problem is one to be decided by the use of

judgment, and judgment must be based more on a general understanding of

the real phenomena under study than on statistical theory.

6.3 Smoothing Grouped Distributions

Wesaw in Section 3.3.1 that in some situations the available data

will be insufficient to compute the relative frequency with which each

individual value of some random variable has occurred in the past and

that we may then be forced to work with a grouped frequency distribu-

tion. Furthermoreit is often better to work with a grouped distribution

even whenthe available data do give us the historical.relative frequencies

of the individual values of the random variable. We have just seen that

‘‘sampling error’?means that individual relative frequencies are poor
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guides to probabilities unless these relative frequencies are based on fairly

large absolute numbers of occurrences. If the values of the variable are

grouped into brackets, the number of occurrences in each bracket may be

large enough to make the observed relative frequency of each bracket a
very good indication of its true long-run frequency; and we can then use a

smoothing technique to obtain good estimates of long-run individual

frequencies.

Suppose then that we have either been given the groupeddistribution

of sales volumes shownin thefirst two columns of Table 6.3 or have con-

 

 

Table 6.3

Demand Relative Frequency per
Z frequency unit width

0-4 .051 .0102
5-9 . 256 .0512
10-14 .325 .0650
15-19 .222 .0444
20-24 .094 .0188
25-29 .043 .0086
30-34 .009 .0018

1.000
 

structed it by deliberately grouping the frequencies in a more detailed

record. This distribution is graphed in Figure 6.2, where a histogram is

.08 

O7 al

05 N
04
Q

02 I

‘ol iD et
O 5 10 15 20 © 25 30 35

Demand 2

Figure 6.2

 

 

 
 

 

 

   
 

  
 

 
 

                                       
 

 
used rather than a graph like Figure 6.1 because the frequencies do not

pertain to a single value of the variable. As we saw in Section 3.3,it is

the areas of the bars of the histogram which represent the relative fre-

quencies; the heights of the bars represent frequency per unit width.

Since the width of each bar in Figure 6.2 is 5 units, the height of each bar
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as shown in column 3 of Table 6.3 and on the vertical axis of Figure 6.2 is
one-fifth of the frequency.

Fitting and Reading the Curve. After the histogram of the grouped
frequency distribution has been drawn, a probability distribution can be

assessed byfitting a smooth curvein such a waythat for each bracket the

area under the curve is approximately equal to the area of the correspond-

ing bar. This curve approximates the outline of a histogram giving the

probability of each individual value z of the demand.
The detailed probability histogram itself could then be constructedin

the way indicated by the shaded barfor the individual z = 20, butit is
easy to find the probability of any individual value without actually
drawing its bar. The width of the bar for any individual value is 1, its
height can be obtained by reading the height of the curve at the mid-point

of the interval which would be occupied by the bar, and its area can then

be computed by multiplying height times width. Thus from the curve
in Figure 6.2 we can quickly find

P(e = 20) = 1X P’(20) = 1 X .02
Pi = 21) =1x P21) =1 xX .02

6 = .026,
2 = .022,

and so forth.
The total area under a curvefitted in this way will, of course, usually

differ slightly from 1. We could adjust for this by reading the height of

the curve at each possible value of the variable and then adding and
adjusting these readings in the mannerof Table 6.2, but usually the prac-

tical gain will not be worth theeffort.

6.4 Smoothing of Extremely Sparse Data

Consider next the historical frequency distribution of demand shown

in Table 6.4 and graphed in Figure 6.3. As can be seen in the figure, the

 

 

Table 6.4

Demand Numberof Relative

z occurrences frequency

9 1 1
11 1 wl
15 1 1
16 1 wl

17 1 1
20 1 wl
22 1 wl
24 1 1
29 1 1
35 1 1

10 1.0
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demands “‘bunch”’in the range 15 to 24 and suggest that the probability
distribution should be of the same general shape as the curves in Figures.
6.1¢ and 6.2; but because all the individual bars in the figure are of the

same height it is impossible to fit a smooth curve by the method used to
produce Figure 6.1c, and because the total number of occurrences is so

small grouping would help very little. When the historical data are as

sparse as those of Table 6.4,it is much moreeffective to make a smoothed

assessment of the cumulative probability distribution than it is to use

either of the methods previously described.

ee 10 15 20 qT 5

Oemond 2

Figure 6.3

r
m

O
o

 

  

Re
lo
ti
ve

fr
eq
ue
nc
y.

o

 ©   7 YT TT FF Feb oY FY 8

3035 tits«C0 45 50O
o

When we smoothed the frequency distribution of Figure 6.la, what

we did in effect was:

1. Take the historical relative frequency of each recorded demand as

a preliminary estimate of the long-run relative frequency of that

demand;

2. Adjust these preliminary estimates so that the whole distribution

would be smooth and of reasonable shape.

In our present problem weshall use an analogous procedure:

1. Make a preliminary estimate of the long-run cumulative relative

frequency corresponding to each recorded demand;
2. Adjust these preliminary estimates so that the whole distribution

will be smooth and of reasonable shape.

6.4.1 Estimates of Fractiles

The first point to observe when we set out to estimate a long-run

cumulative frequency is this: when the record contains only a very few

observations, it is contrary to common sense to use the historical cumulative

frequency of any value of a random variable as an estimate of the long-run

cumulative frequency of that value. The truth of this assertion can easily

be seen by considering the values 35 and 9 of the random variable

‘“‘demand”in our example.
As can be seen from Table 6.4, the historical cumulative frequency

of 35 or lessis 1. We know, however, that it is extremely unlikely that a

‘“sample”’ of only 10 demands includes the highest possible demand; and
therefore 1 is not a sensible estimate of the long-run cumulative frequency

of 35 or less. Similarly, the historical cumulative frequency of less than

9 is 0; but it is not at all likely that 9 is the lowest possible demand and
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therefore 0 is not a sensible estimate of the long-run cumulative frequency
of less than 9.

In order to find a way of making more reasonable preliminary
estimates of long-run cumulative frequencies, let us think of what would
happen if the random process generating tomorrow’s demand were to

operate on each of a very large numberof days “‘like’’ tomorrow, and to

make the discussion concrete let us think of 11,000 days. Further, let us
think of these 11,000 days as having been arrayed in order of quantity

demanded and then given a rank number. The day with the smallest
demandwill have rank 1; the day with the largest demand will have rank

11,000; days with identical demandsare rankedarbitrarily among them-
selves. Then it can be proved that if a sample of 10 days is drawn from
these 11,000 days, the expected rank numberof the lowest-ranking day in
the sampleis 1000, the rank numberof the 1/1, not the 40, fractile of the
11,000 demands. The expected rank of the second-lowest day in the

sample is 2000, the rank of the 24, fractile of the 11,000 demands; and so
forth. The expected rank of the highest-ranking day in the sample is

10,000, not 11,000, and this is the rank of the 1%, fractile of the 11,000

demands.
Consequently the smallest demand in a sample of 10 demandsis a

reasonable estimate of the 14, fractile of the distribution of demands

from which the sample is drawn; the largest demand in the sampleis a
reasonable estimate of the 19%, fractile of the distribution; and so forth.
Moregenerally,

If a sample of n observations is drawn from some distribution and
arrayed in order of size, the kth observation is a reasonable estimate

of the k/(n + 1) fractile of the distribution.

If there are 25 observations in the sample, the third smallest is a reason-

able estimate of the 3%, = .115 fractile of the distribution from which the

sample is drawn, and so forth.

6.4.2 Fitting and Reading the Cumulative Probability Distribution

Let us now proceed to assess a probability distribution for tomorrow’s

demand by using the 10 demandsin the record of Table 6.4 as estimates

of the fractiles of the long-run frequency distribution of demand. In

Figure 6.4 we plot the smallest of the 10 demands at a cumulative prob-

ability of 41 rather than 49, the second smallest at a cumulative prob-
ability of 241, and so forth, and we then adjust these preliminary esti-
mates and assess the complete cumulative probability distribution by

fitting a smooth curve to the 10 plotted points.
When we come to read a cumulative probability from the fitted

curve, a new problem turns up. We saw in Section 3.4.2 that when a

cumulative probability distribution is graphed exactly, the graph takes



6.4.2 Assessmentof Probabilities by Smoothing 105

the form of a “‘step function”’ and P(Z < z) is read at the bottom of each

jump in the curve while P(Z < 2) is read at the top. Since the fitted
curve in Figure 6.4 has no jumps, this rule cannot be applied; and in

order to decide how to read the curve we must again think of the his-

torical data as a sample of 10 demands drawn from an extremely large

numberof ‘‘ possible’? demands.
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Supposefirst that we actually knew the true long-rundistribution of

demand, that this distribution had been accurately graphed as a step

function, and that we had used the method of Figure 5.1 or 5.2 to locate
the true 41, %1, ... , 1%fractiles of this distribution. The dashed

lines locating some of these fractiles would cut the graph at or near the

top of a jump, others would cut at or near the bottom, andstill others

would cut near the middle. If then a smooth curve were put through the

intersections between the dashed lines and the graph, its height at any z

would in general give us neither P(Z < z) nor P(Z < z) but something in
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between. P(2 < z) would be given bytheheight of the curve somewhat
to the left of z, and P(2 < z) would be given by the height of the curve
somewhat to the right of z. |

It is such a curve whichis estimated by the curve of Figure 6.4, and
therefore the height of that graph at any z gives neither P(Z < z) nor

P(Z < z) but something in between. The best we can do in this situation

is to adopt the following very rough and readyrule:

P(Z < z) will be read above the point z — % on thehorizontal axis.
P(Z < z) will be read above the point z + 14 on the horizontal axis.

‘The vertical scale of Figure 6.4 is labeled P(Z < z + %) to remind us

that what we read above the point 10.5 on the horizontal axis is P(Z < 11),
and so forth; it could equally well have been labeled P(Z < z — %) to

remind us that this same reading can be interpreted as P(#Z < 10). The

rough-and-ready character of this rule need worry us very little, since the

difference between P(Z < z) and P(Z < z) will be very small when the

numberof possible values of the variableis at all large; and it is only when

this number zs large that we will want to smooth the cumulative form of

the historical frequency distribution by the use of fractile estimates.

6.4.8 Individual Probabiliiies

Suppose now that we wish to obtain probabilities for individual
values of Z from the cumulative distribution of 2 given by Figure 6.4. In
principle these values of P(z) can be obtained from the curve by using the
relation P(Z = z) = P(# <z2+ 1) — P(@ < 2), but the accuracy will be
so poor that the results are worthless. Because the difference P(z)
between any two adjacent cumulative probabilities in Figure 6.4 is so

small, very small relative errors in reading the two cumulative probabili-

ties will produce an error which is enormousrelative to their difference.

The only way the accuracy can be improvedis to increase thesize of

the difference we are trying to read, and we can dothis by proceeding in
two steps rather than one:

1. We first obtain a grouped probability distribution by reading
Figure 6.4.

2. Wethen obtain individual probabilities by smoothing this grouped
distribution.

To obtain a grouped distribution from Figure 6.4, we must first decide on

the width of the brackets weare going to use,i.e. on the numberof values
of 2 to includein each; and in doing this we must keep in mind that:

1. Very narrow brackets reduce the relative accuracy with which we
can read the total probability of each bracket from Figure 6.4.

2. Very wide brackets increase the errors which we will make in
smoothing the grouped distribution,
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Without trying to prove that this choice is correct, let us obtain a
grouped distribution from Figure 6.4 using brackets 5 units wide. The

first bracket will include 2 = 0 to 4 inclusive, the second will include

2 = 5to9,andsoforth. The probability that zis between 0 and 4 units
inclusive can be obtained simply by reading P(2 < 5) from the chart;
recalling that this cumulative probability is read above the point 4.5 on

the horizontal axis, we see that its value is 0. The probability that Z is

between 5 and 9 inclusive is computed as .108 by subtracting P(Z < 5) = 0
from P(Z < 10) = .108, the latter value being read above 9.5 on the hori-
zontal axis. The probability that 2 is between 10 and 14inclusive is com-

puted as .212 by subtracting P(Z < 10) = .108 from P(Z < 15) = .320,

and so forth. In general:

The probability of any bracket is obtained by subtracting the cumu-

lative probability at the left edge of the bracket from the cumulative
probability at the left edge of the next higher bracket, the left edge

of any bracket being located 14 unit to theleft of the lowest value in
the bracket.

In Table 6.5 this procedure is applied to obtain a complete grouped dis-

tribution from the cumulative distribution of Figure 6.4. The remainder

 

 

Table 6.5

Cumulative Total ys

Demand probability at left probability propa

2 edge of bracket of bracket per unit widt

0-4 0 0 0
5-9 0 .108 .0216
10-14 .108 .212 0424

15-19 .320 . 234 .0468
20—24 . 554 .170 .0340

25-29 124 .104 .0208
30-34 . 828 O74 .0148
35-39 .902 .054 .0108
40-44 .956 .034 .0068

45-49 .990 .010 .0020
50-54 1.000 0 0

1.000

 

of the procedure for determining individual probabilities is identical to

the procedure used in dealing with Table 6.38. We first compute the
probabilities per unit width shown in the last column of Table 6.5 by

dividing the total probability of each bracket by its width, which is
5 units. We then graph the histogram of the grouped distribution and

fit a smooth curve in such a way as to leave the area in each bracket
essentially unchanged. The work is done for our example in Figure 6.5.
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6.4.4 The Relation between the Shape of Noncumulative and
Cumulative Distributions

Because it is easier to visualize the shape of the frequency distribu-

tion which would tend to be generated by a given random process thanit

is to visualize the shape of. the corresponding cumulative distribution, we

shall point out some simple relations between the two. These relations
should be kept clearly in mind when assessing a probability distribution
by smoothing fractile estimates.

The basic relation is simply this: when a cumulative distribution is

accurately represented by a stepped graph, each jump in the cumulative

distribution is equal to the area and therefore proportional to the height
of the corresponding bar in the frequency distribution. This means that

when both distributions are smoothed, the slope of the cumulative dis-

tribution at any value of the variable is proportional to the height of the

frequency distribution at that value.

Consequently a one-humped frequency distribution corresponds to an

S-shaped cumulative distribution like the curve in Figure 6.4. Comparing
Figure 6.4 with Figure 6.5, which was derived from it, we see that as the

value of the variable increases, the height of the frequency distribution at

first increases and therefore the slope of the cumulative distribution
increases. Beyond the point corresponding to the peak of the frequency

distribution, the height of that distribution decreases and with it the
slope of the cumulative distribution.

A two-humped frequencydistribution would correspond to a cumula-

tive distribution in which theslope at first increased, then decreased, then

increased again, and then decreased again. If the dip in the frequency

distribution went down to 0, the cumulative distribution would become
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absolutely flat at the corresponding value of the variable. It is such

irregularities which we will ordinarily want to smooth out in assessing a
probability distribution; but as we have already said, this must be done

only after we have asked ourselves whether the observed flattening may
represent a genuine assignable cause.

Normal-probability Paper. Even when we are aware of these rela-

tions between the shapes of noncumulative distributions and cumulative

distributions it is usually very difficult to say whether a graph of cumula-

tive probabilities like Figure 6.4 is reasonable—i.e., expresses our con-

sidered judgment about the workings of the underlying mechanism or

process. For the reasons explained in Section 6.1 we will usually be of
the opinion that our noncumulative probability distribution should be

smooth and single-humped; and whenthisis true it will usually be easier

to sketch the corresponding cumulative distribution on graph paper with
a special grid known as ‘‘ Normal-probability paper.”’

The statistical theory underlying this special grid will not be dis-

cussed until later in the course; for the moment weshall justify its use

solely by example. Thelines labeled I, II, and III in Figure 6.6a repre-
sent three hypothetical cumulative distributions; the corresponding non-

cumulative distributions are shown as Figure 6.60. The points to notice

are the following:
1. A perfectly straight line on Normal-probability paper corresponds

to a symmetrical, one-humpedprobability distribution, the tails of which

never quite fall to zero. It is impossible to plot the cumulative prob-

abilities O or 1 on this paper, although we can plot .0001 and .9999.

2. Most reasonable one-humped probability distributions will cor-

respond to nearly straight lines on this paper except at the twotails; if the
‘‘ends”’ of the distribution are to be represented, this must be done by

turning the ends of the graph parallel to the vertical axis. The point at
which the ends turn vertical will necessarily be largely arbitrary, but

fortunately this is rarely of any practical importance whatever. The

small probabilities in the extreme tails will have little effect on expected costs
and even less or none at all on the actual decision.

6.5 Computation of Expectations from Grouped Distributions

Suppose now that we are faced with an inventory problem of the kind

studied in Chapter 4 and that Figure 6.4 represents our assessment of the

probability distribution of demand. After computing thecritical ratio

kp/(kp + kn) we can determine the value of the critical fractile directly

from Figure 6.4 and thus determine the best numberto stock, but wewill
have much more trouble when we try to compute the expected profit of

stocking this or any other numberof units. If we use the basic method of

computation which we used in Chapter 4, we must know P(z) for every



Or
t

2999

999

w
Ww

a
.

T
e
)

e

g
i

P
(
F
<
z
+
4
)

mM
U
a
h
a
A
D
N
N
©

w

.O5

02
01

O01

0001

 

  

P'
(z
)

 

 

 

 

 

 

 
 

  
 

 

P
z
)

 

 

 

  

 

W/
 

  

 7

P
z
)

            
 

20 30 40 50 60 70 80 90 100 110 120
2

(a)

Figure 6.6

 

 

 

 

   
 

 

 

 

 

 

   
 

 

 

 

 

  
               
 

.O3

02

ma

01 =
DS

a PS
0

03

o~
I

02 \

.Of H. \

O NLL

.03

It
02 / ~

\

Ol N

0 t

0 20 40 60 80 100 120 140
Zz

(d)

 



6.5 Assessment of Probabilities by Smoothing 111

possible z, and this means not only that we must go through the entire
process of deriving the smooth curve of Figure 6.5 from the original

assessment in Figure 6.4 but also that we must then read P(z) from this
curve for every z and multiply each probability into the corresponding

conditional profit. Even if we short-cut the computations by using a

partial expectation in the way described in Section 5.3.2, we shall still

have to produce the smooth curve of Figure 6.5 and read P(z) from it for

every 2 up to and including the numberof units stocked. Although the

actual computations could be mechanized, this kind of chart reading

would clearly becometotally impractical in a problem in which demand

had a really large numberof possible values.

Fortunately this kind of detailed chart reading is not really neces-

sary, since expectations can be computed directly from an unsmoothed

grouped distribution like that of Table 6.5 with an accuracy which is
more than adequate forall practical purposes. Weshall first explain the

logical basis of this approximate method of computation by meansof an

artificially simple example and weshall then go on to apply it to the dis-
tribution of Table 6.5 and Figure 6.4.

Suppose that the probabilities assigned to the six lowest possible

values of a random variable # are those shown in Table 6.6a. The

partial expectation E5(é) can then be computed to be .42 as shown in the

last column of the table. In Table 6.6b the same value is obtained for

5(5) by grouping three values per bracket and multiplying the value of the

variable at the mid-point of the bracket by the total probability of the bracket.

Notice carefully that the partial expectation .42 computed in Table 6.60

applies to the whole interval 1 = 0 to 5 inclusive,i.e. to the whole interval

from the left edge of the first bracket to the right edge of the last bracket included

in the computation.

  

  

Table 6.6a Table 6.66

v P(v) v P(v) v Mid-point Grouped Product
probability

0 .02 0
1 .02 .02 0-2 1 .06 .06

2 .02 .04

3 .03 .09
4 .03 .12 3-5 4 .09 .36

5 .03 15

.42 .42

  

Grouped computation gave the exact value of the partial expectation

in this example because all values of the variable within any one bracket

had exactly the same probability. Grouped computation will give
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reasonably good results even when the individual probabilities within
each bracket are not exactly equal provided that they do not vary too

widely, and we shall now apply the method to the distribution of Table

6.5. The basic computations are carried out in Table 6.7, where columns
1 and 3 are simply copied from Table 6.5 and column 4 is computedin the

same way as column 4 of Table 6.66. The last column of Table 6.7 gives

the cumulative or progressive sum of column 4 and thus shows a whole
series of partial expectations of 2, each one covering the interval from 0

 

 

 

Table 6.7

2 Mid-point orabelsity Product Cumulative

0-4 2 0 0 0

5-9 7 .108 . 756 . 756

10-14 12 212 2.544 3.300

15-19 17 . 234 3.978 7.278

20-24 22 .170 3.740 11.018

25-29 27 .104 2.808 13.826

30-34 32 .074 2.368 16.194

35-39 37 .054 1.998 18.192

40-44 42 .034 1.428 19.620

45-49 47 .010 .470 20 .090

50-54 52 0 0 20.090

1.000 20.090

 

to the right edge of the last bracket included in its computation. Thus

we read, for example,

E3(z) = .756; E24(z) = 11.018.

The ‘‘complete”’ or ordinary expectation of 2—the mean of the distribu-

tion of Z—is

E°(z) = E4°(z) = 20.090.

Partial expectations over intervals whose right edges do not coincide with

the right edges of the brackets in Table 6.7 can be obtained by.plotting

the partial expectations given in the table and fitting a smooth curve

through the plotted points. This is done in Figure 6.7, where we can

read, for example,

E22(z) = 15.3; E%(z) = 17.0.

In problems whereonly a single partial expectation is required—e.g.,

because we have determined the optimum stock by use of the cumulative

distribution and wish to know expected profit with this stock only—the
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chart reading and computation represented by Tables 6.5 and 6.7 can be
still further reduced. Suppose, for example, that the only partial

expectation we require from Figure 6.4 is Ej°(2). Sinceit is easier to read

Figure 6.4 if we choose bracket edges terminating in 0 and 5 thanitis if

we use any other numbers, wewill start by using the first five brackets of

Table 6.5 exactly as they are in that table; the cumulative probabilities

25
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Figure 6.7

and grouped probabilities in the first five lines of Table 6.8 are identical

to those of Table 6.5. The last entry in Table 6.8 is then an “‘off-size”’
bracket chosen to end with the value z = 26 in which weare interested.
The probability of this bracket is obtained in exactly the same wayas the

probabilities of the other brackets, by subtracting P(Z < 27) — P@ < 25),

but we must be careful to notice that because the only values in this

bracket are 25 and 26 its mid-point is 25.5.

 

 

Table 6.8

Demand Cumulative Total . .
; probability probability Mid-point Product

at left edge of bracket

0-4 0 0 2 0

5-9 0 .108 7 . 756

10-14 .108 .212 12 2.544

15-19 .320 234 17 3.978

20-24 .554 -170 22 3.740

25-26 . 724 .048 25.5 1.224

27- 772
 

12.242
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PROBLEMS

1. Thefractile estimates shown as X’s in Figure 6.4 have been replotted on Nor-
mal-probability paper as Figure6.8.

a. Fit a smooth curve to these points, turning the left end vertical 4 unit to the
left of what you believe to be the lowest possible demand and turning the right end
vertical 14 unit to the right of what you believe to be the highest possible demand.
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b. Assuming that the item in question costs $.60, sells for $2, and is a total loss
if it is not sold by the end of the day on whichit is stocked, decide how many units to

stock.

c. From (a) obtain a grouped probability distribution like the one in Table 6.5,
using brackets 5 units wide.

d. From this grouped distribution compute partial expectations as in Table 6.7

and make a graphlike Figure 6.7.

e. Use (a) and (d) to compute expected profit under your answerto (b).

f. Use incremental analysis to determine how much expected profit would be lost
by stocking 1 or 2 units more or less than your answerto (6).

g. Assume now that some misguided person, unawareof the ‘“‘correct’’ probability

distribution which you haveassessed in (a), acts on the assumption that Figure 6.4 is

the correct distribution. Use Figure 6.4 to learn how manyunits he will decide to
stock, and use your answer to (f) to determine how much(in youropinion) his mistake
is costing him.

2. A certain product is stocked daily and spoils if it is not sold by the end of the

day. The retailer pays $1.37 per unit for the product; he prices it at $6.50 on the
day it is stocked; leftover stock is worthless. Theretailer believes that he knows at
least approximately the effect which a variety of factors such as season, weather,
advertising, etc., exert on demandfor this product; and because no one combination

of ‘‘values’’ of these factors is ever repeated exactly, he believes that it is impossible

to build up a historical frequency distribution of demand on a numberof ‘‘identical’’

days. Instead, therefore, of looking at such a distribution before deciding how many
units to order, he has based each order on a forecast of the next day’s demand. The
table below showsthe record for the past 19 days of his forecast of demand and the

demand which actually occurred; his forecast of tomorrow’s demandis 100 units.

 

 

Day Forecast Demand Day Forecast Demand

1 75 92 11 110 101

2 100 107 12 95 100
3 120 98 13 100 107

4 85 78 14 125 118

5 110 104 15 70 61

6 130 140 16 100 105
7 90 90 17 105 91
8 80 85 18 80 86
9 75 93 19 120 108
10 120 127

 

a. Compute the discrepancies between actual demand and forecast demand,
defining the discrepancy as actual minus forecast, and array them in order from the

most negative to the most positive.

b. Assess a probability distribution for tomorrow’s discrepancy by treating the
recorded discrepancies as fractile estimates. Use Normal-probability paper and
choose the horizontal scale such that the extremeleft of the axis represents — 50, the
extreme right +50. In plotting the estimates, observe that a discrepancy of —9 is
the estimate of two successive fractiles and that therefore you must plot two X’s
above —9.

c. Making use of the fact that

Demand = forecast + discrepancy,
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convert your answer to (b) into a probability distribution for tomorrow’s demand by
simply relabeling the horizontal axis.

d. Determine the best numberof units to stock and compute expected profit with
this stock.

3. In the situation of Problem 2:
a. Compute the ratio of actual demand to forecast demand on the 19 daysin the

historical record, dividing actual by forecast.
b. Assess a probability distribution for tomorrow’s ratio by treating the recorded

ratios as fractile estimates. Use Normal-probability paper and choose the horizontal

scale such that the extremeleft of the axis represents .50, the extreme right 1.50.

c. Making use of the fact that

Demand = forecast X ratio,

convert your answer to (b) into a probability distribution for tomorrow’s demand by
simply relabeling the horizontal axis.

d. Determine the best numberof units to stock and compute expected profit with
this stock.

4. Discuss the merits of the alternative procedures used in Problems 2 and 3.
Considering the retailer as a forecasting mechanism or process, what implicit assump-

tions were made about the behavior of this process in Problem 2? in Problem 3?
How in practice would you try to determine which assumptions were closer to the

truth?
5. A retailer with costs and prices identical to those of Problem 2 also bases his

orders on forecasts of demand but has kept no record of the accuracy of previous fore-

casts. After reviewing the reports he has received on the state of the market for his

product he decides that he would be willing to bet at the following odds on tomorrow’s

demand:

1 to 99 (1 chance in 100) that 7 < 100.

1 to 9 that Z < 115.

1 to 1 that Z < 130.

1 to 9 that Z > 145.

1 to 99 that Z > 160.

How many units should he stock?



CHAPTER 7

Opportunity Loss and the Cost of Uncertainty

Even though we choose the best possible decision in the light of the
information available before the fact, this decision will often turn out

‘wrong’ after the fact. To use the example discussed in Chapter 4: the

best decision we can makebeforethe fact is to stock 2 units, but after the

fact we may wish we had stocked some other numberof units. This, of
course, is no criticism of the rationality of the original decision: such

things are bound to happen when a decision has to be made onthe basis
of less than perfect information. It does mean, however, that there is a

particular interest attached to the losses which may be incurred because of

the imperfection of our information, and suchlosses are the subject of the

present chapter.

7.1 Definition of Opportunity Loss

Losses of the kind we are now studying will be called opportunity
losses because they represent the difference between the profit we actually

realize and the greater profit we had the opportunity of realizing; or if we

measure the consequences of our chosen act in termsof cost, they repre-

sent the difference between the cost we actually incur and the lesser cost

we had the opportunity of incurring. Formally, we define

Opportunity loss of a decision: the difference between the cost or
profit actually realized under that decision and the cost or profit
which would have been realized if the decision had been the best one
possible for the event which actually occurred.

Observe that an ‘‘opportunity loss’? may be suffered even when the deci-
sion results in a profit rather than a loss in the ordinary sense of the word.

Henceforth the word ‘‘loss’”’ will be used only in the sense of ‘‘ opportunity

loss’ as we have just defined this term, whether or not we repeat the word

‘‘opportunity’’ on every occasion. If a decision results in costs which exceed

revenues, we shall call the difference a ‘‘negative profit”; we shall no longer

call zt a ‘‘loss.”’

7.1.1 Expected Opportunity Loss

The opportunity loss which is actually suffered as the result of some

decision may be a subject of curiosity and regret, but the businessman
117
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will gain little practical advantage from its calculation. Whatis really

useful to the businessmanis to look at the risk of loss before he makeshis
final decision, i.e. to compute the expected loss of the act which heis

contemplating, since if this expected loss is great he may be able to
reduce it either by postponing the final choice of an act until more

information has been acquired or by finding some way of hedging the
risk. ‘The real subject of the present chapter is therefore the computa-

tion of expected opportunity loss, and this computation can be performed

in two different ways:

1. Wecan look at the various losses which mayresult from a given
act according to the event which actually occurs and compute
the expected value of these potential losses.

2. We can comparetheprofit or cost which can be expected to result
from choosing an act on the basis of the information currently

available with the profit or cost which could be expected to result
from choosing an act on the basis of perfect information.

Weshall study both of these methods of computation and shall see that
they must necessarily and always lead to exactly the same figure for the
expected opportunityloss.

7.2 Computation of Expected Loss from Conditional Losses

7.2.1 The Loss Table

If we wish to compute the expected losses of all the possible acts in
any decision problem bythefirst of the two methods described above, our

first step is very similar to the first step we take when we wish to compute

the expected profits or costs of all possible acts: we lay out a table which
shows the conditional loss which will be incurred as the result of each act
given every possible event. Such a table will be called a loss table.
Since the conditional opportunity loss of any act given a particular event
is simply the difference between the resulting profit or cost and the profit

or cost which would have resulted from the best possible act for that

event, the most systematic way of computing a loss table for any problem

is to start with the payoff table which showsall the profits or costs for
that problem.

Although the very definition of opportunity loss makesit virtually

obvious how theloss table is to be derived from the payoff table, it is well
to follow a systematic procedure in carrying out the calculations and we

shall explain this procedure by applying it to the inventory problem dis-
cussed at length in Chapter 4. Table 7.1 is the payoff table for that
problem andis identical to Table 4.2 except that the ‘‘impossible”’ event
2 = 6+ has been omitted. Table 7.2 is the corresponding loss table

derived from Table 7.1 in the following two steps:



7.2.1 Opportunity Loss and the Cost of Uncertainty 119

1. The greatest possible profit for each event is identified by starring

the greatest profit in each row of Table 7.1.
2. Table 7.2 is then constructed row by row, each entry in Table 7.2

being obtained by subtracting the corresponding entry in Table
7.1 from the starred entry in the same row of Table 7.1.

 

 

 

 

 

 

 

Table 7.1

Payoff Table

Q
@

0 1 2 3 4 5

0 $0* —$2 —$4 — $6 — $8 — $10

1 0 + 1* — ji — 3 — § —- 7

2 0 + J + 2* 0 — 2 — 4

3 0 + 1 + 2 + 3* + 1 —- 1
4. 0 + 1 + 2 + 3 + 4* + 2

5 0 + 1 + 2 + 3 + 4 + 65*

Table 7.2

Loss Table

Q
Zz

0 1 2 3 4 5

0 $0 $2 D4 $6 $8 $10

1 1 0 2 4 6 8

2 2 J 0 2 4 6

3 3 2 1 0 2 4

4 4 3 2 1 0 2

5 5 4 3 2 1 0
 

Thus the $1 opportunity loss attached to the event ‘‘demand for 4”

underthe act ‘‘stock 3”’ represents the fact that the corresponding profit
is only $3 whereas with a stock of 4 (the best decision for a demandof4)

the profit would be $4—this is the starred entry in the row for z = 4 in
Table 7.1. The $6 opportunity loss attached to ‘‘demand 2” under

‘“stock 5” represents the fact that the corresponding profit is a negative
$4 whereas with a stock of 2 (the best decision) the profit would be a

positive $2.
The student should pay very careful attention to the following points

concerning algebraic signs:

1. Care must be paid to algebraic signs in subtracting the profit for
a given act-event combination from the greatest possible profit

for that event, since one or both of these quantities may be

hegative.
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2. Opportunity loss itself can never be negative. The loss of the
best possible act for any eventis 0, and all other acts necessarily
involve positive losses.

Payoff Tables Showing Costs. With two obvious exceptions, the pro-

cedure for deriving a loss table from a payoff table which shows costs
rather than profits is identical to the procedure described above:

1. The lowest cost in each row is starred.

2. The starred entry is subtractedfrom all the entries in the same row.

7.2.2 Expected Loss

The expected opportunity loss of any act is computed from the condi-

tional losses in exactly the same way that its expected profit or cost is
computed from conditional profits or costs. Thus in our example the
expected opportunity loss of a decision to stock 3 units is computed as
$1.60 in Table 7.3, where the conditional losses are taken from the proper

column in Table 7.2 and the probabilities are taken from Table 4.1.

 

 

Table 7.3
Expected Loss with Stock of 3

, P(z) Conditional Expected
loss loss

0 .05 $6 $ .30
1 .10 4 .40

2 25 2 50
3 .30 0 0
4 20 1 .20
5 .10 2 .20

1.00 $1.60

 

In order to get a more intuitive feeling for the meaning of this result,
let us imagine that theretailer has actually stocked 3 units in each of the

past 100 weeks and that the various values of demand have actually
occurred with relative frequencies equal to the probabilities of Table 7.3—

there was no demandin 5 of the 100 weeks, demandfor 1 unit in each of

10 weeks, and soforth. Then we cansay that in this imaginarysituation

the retailer’s average weekly profit was $1.60 less than it would have been if he

had known each week’s demand in advance and stocked accordingly.

7.3 Expected Profit or Cost of Action under Certainty

Wenowturn to the second method of computing expected loss which

we mentioned in Section 7.1.1: comparison of the expected profit or cost
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of an act chosen in the light of the information actually available with

the expected profit or cost of an act chosen in the light of perfect
information. To give an intuitive idea of the meaning of such a compari-
son before we enterinto its details, let us reexamine the way in which we
visualized expected loss in terms of losses actually realized over a period
of 100 weeks. We imagined a situation in which relative frequencies

were actually equal to the assigned probabilities and said that the

retailer’s average profit with a stock of 3 was $1.60 less than it would have

been if he had known each week’s demand in advance and had stocked

accordingly. In terms of such a visualization, what we are now about to

do amounts to obtaining this $1.60 figure by actually computing the

average profit which the retailer could have made if he had known each

week’s demand in advance and then subtracting from this the average

profit which resulted from stocking 3 units every week.

7.3.1 Computation of Expected Profit under Certainty

The method by which we can calculate the expected profit of acting

with perfect information or ‘‘under certainty”’ can easily be madeclear

by studying Table 7.4, where this profit is computed for the inventory

example we have been considering. Since we are now assuming that the

retailer will be told the exact demand before he places his order, his

conditional profit for each event is the greatest possible profit for that

 

 

Table 7.4
Expected Profit under Certainty

Conditional Expected
2 P@) profit profit

0 .05 $0 $0
1 .10 1 .10

2 .25 2 . 50

3 .30 3 .90
4 . 20 4 .80

5 .10 5 .50

1.00 $2.80

 

event, i.e. the starred entry in the row describing that event in the payoff

table, Table 7.1. The expected value of this random variable “profit

under certainty” is then computed as $2.80 in absolutely standard

fashion. In terms of the frequency visualization, this is the average
profit which the retailer would have made over the 100-week period if he
had stocked exactly the right amount each week. Notice very carefully,

however, that when we deal with ourreal problem,i.e. with probabilities
and expectations rather than with historical frequencies and averages, the

retatler’s expected profit under certainty depends on the probability distribu-
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tion which the retailer assigns to the random variable ‘‘demand.”’ Although
$2.80 is the retailer’s ‘“‘expected profit under certainty,” it is not the
profit which the retailer would be certain to make if he had perfect
information. This latter figure is known by God alone andis irrelevant
to the problem of decision under uncertainty. Observe, however, that
the point just made corresponds exactly to the fact that the retailer’s
expected loss due to imperfect information is not a loss which heis certain
to suffer because of his imperfect information.

Relation of Expected Profit under Certainty to Expected Demand. If

we look at the conditional profits under certainty in Table 7.4 we see
immediately that they are given by the formula

Conditional profit under certainty = $1 z,

and in any problem where the same profit kp is made on every unit sold we
will have a formula of this same type:

Conditional profit under certainty = k,z.

The conditional profit given by a formula of this type is a linear function

of demand—if we graph k,z against z the graphis a straight line—and
therefore by Section 5.3.1

Expected profit under certainty = kp E(2).

In terms of frequencies rather than probabilities, the retailer’s stock
under certainty would match demand on every day, and therefore his

average profit would be simply average demand timesprofit per unit.

7.38.2 Use of Expected Profit under Certainty to
Compute Expected Loss

In Table 4.3 we computed the retailer’s expected profit with a stock

of 3 as $1.20. Subtracting this figure from the $2.80 profit he could
‘fexpect’’ with perfect information, we obtain $1.60 as his expected loss
due to imperfect information. The result is identical to the result we
obtained in Table 7.3 by using conditional losses.

To make the relation between these two methods of computing
expected loss still clearer, we combine in Table 7.5 the computation of

expected profit with a stock of 3 units and expected profit undercertainty.
The conditional profits with a stock of 3 are taken from the corresponding

column in Table 7.1; the conditional profits under certainty are, we
repeat, the starred entries in Table 7.1. The expectations of these two
random variables are computed in the usual manner in the last two

columns of Table 7.5, and the expected loss with a stock of 3 is the differ-
ence between the totals of these last two columns.
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Table 7.5

Conditional profit Expected profit

Zz . P(2) .With stock Greatest With stock Greatest
of 3 possible of 3 possible

0 — $6 +$0 05 —$ .30 +$0
1 — 3 + 1 .10 — .30 + .10
2 0 +2 25 0 + .50
3 + 3 + 3 .30 + .90 + .90
4 + 3 + 4 20 + .60 + .80
5 + 3 + 5 .10 + .30 + .50

1.00 +$1.20 +$2.80
 

Observe now that our previous method of finding the expected loss
(Table 7.3) consisted in:

1. Taking the differences between individual pairs of entries in
columns 2 and3,i.e. the conditional losses;

2. Taking the expectation of these conditional losses, i.e. multiply-
ing each byits probability and adding.

The new method consists in

1. Taking the expectations of columns 2 and 3;
2. Taking the differences between these expectations.

It is obvious that in any problem whatever we will obtain the same results by

either of these two methods.

7.4 Interpretations of Expected Loss

7.4.1 Comparison of Acts in Terms of Expected Loss

The fact that the expected loss of any act is the difference between

its expected profit and the expected profit of action under certainty means

that once we have computed the expected profits of all possible acts in
any decision problem it is easy to compute the expected losses of all the

acts or vice versa. The expected profits for all acts in our inventory

example were computed in Chapter 4 and are reproduced in the second
column of Table 7.6; the expected losses shown in the last column of the
table are computed by simply subtracting the profit of each act from the

$2.80 profit of action under certainty.

Notice that this relation among profit, loss, and profit under cer-

tainty Immediately implies that in any decision problem whatever:

The difference between the expected profits of any two acts is equal
in magnitude but opposite in sign to the difference between their
expected losses.
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Table 7.6

Expected Profits and Losses of All Acts

Q Expected Expected

profit loss

0 $0 $2.80

1 + .85 1.95

2 + 1.40 1.40

3 + 1.20 1.60

4 + .10 2.70

5 — 1.60 4.40

 

Thus in our example profit with a stock of 3 is higher than profit with a
stock of 4 by $1.20 — $.10 = $1.10; loss with a stock of 3 is lower than
loss with a stock of 4 by $2.70 — $1.60 = $1.10. The student can easily
convince himself that when payoff tables are expressed in terms of cost
rather than profit

The difference between the expected costs of any two acts is equal
in magnitude and identical in sign to the difference between their
expected losses.

7.4.2 The Cost of Uncertainty and the Cost of Irrationality

By Table 7.6, the best possible decision which the retailer can make

under uncertainty has an expected opportunity loss of $1.40. This $1.40

can be considered to be the inherent cost of uncertainty itself, since it is the

difference between thebest that the decision maker can expect to do with

the information he has available and what he could expect to do with

perfect information. We can also look at this $1.40 loss as being the

greatest price which tt would be reasonable for the decision maker to pay for a
perfect forecast, and this way of regarding the cost will be very instructive

when we come to consider the expenditure of money on samplingin order

to improve our “forecasts” of certain kinds of events. It is thus appar-

ent that the expected opportunity loss of the best possible decision will
be a quantity of considerable interest in the analysis of any problem of
decision under uncertainty, and we shall therefore give it a name. We
define

Cost of uncertainty: the expected opportunity loss of the best possible
decision under a given probability distribution.

The cost of uncertainty in our example is the loss associated with a
stock of 2 units. If instead of stocking 2 units the retailer stocks any
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other number, his expected loss will be greater than the $1.40 cost of

uncertainty. Such an additional expected loss is completely unneces-
sary, and we define

Cost of irrationality: the amount by which the expected opportunity
loss of the chosen decision exceeds the cost of uncertainty under a
given probability distribution.

7.5 Expected Loss When the Conditional Losses
Are ‘**Proportional’’

We saw in Section 5.3.2 that when conditional profit with a given

stock Q has a broken-line graph of the form shown in Figure 5.5, we can
compute expected profit from a formula which involves only cumulative

probabilities and a partial expectation of the basic random variable

demand; and we saw in Section 7.3.1 above that when conditional profit
under certainty is linear, expected profit under certainty can be com-

puted from a formula involving only the ordinary expectation of demand.
This means that we could obtain a formula for expected loss in problems
of the type we have been studying by simply subtracting the formula for
profit with a stock of Q from the formula for profit under certainty, but
we can get results which are applicable to a much widerclass of problems

by proceeding as follows. Weshall first show that the conditional losses
in problems of the type we have been studying are proportional to the

difference between the act Q and the random variable Z; and we shall then

derive formulas for expected loss in any problem wherethe losses are pro-

portional to a difference of this kind, whether or not it is an inventory

problem of the kind we have been studying as an example.

7.6.1 Direct Computation of Proportional Conditional Losses

While the conditional losses in any problem can always be computed

by first constructing a payoff table and then deriving the loss table from

it as we did in Section 7.2.1 above, the conditional losses in many prob-

lems can be easily computed by a moredirect line of reasoning which we
shall now explain by using our inventory problem as an example. It is

obviousin this problem that if the stock Q chosen by theretailer proves
to be exactly equal to the quantity actually demanded, the resulting loss
is 0; we shall now consider separately the losses which a stock Q entails if

it turns out to be over or under the quantity actually demanded.

Loss Due to Overage. If the retailer’s stock is over the quantity

actually demanded, he will have to salvage the excess units and each

unit salvaged will entail a loss amounting to the $2.00 difference between

the $2.50 cost of the unit and its $.50 salvage value. Consequently
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Conditional loss of overage = $2(Q — z).

Loss Due to Underage. The retailer makes a profit ot

$3.70 — $.20 — $2.50 = $1.00

on every unit stocked and sold. If, therefore, his stock is under the
quantity actually demanded, he has an opportunity loss amounting to $1

for every unit of unsatisfied demand. Consequently

Conditional loss of underage = $1(z2 — Q).

The implications of these two formulasare illustrated graphically in
Figure 7.1, which shows the conditional losses for stocks of Q = 2 and

Q = 3. Notice that in both cases the graph forms an asymmetric V

whose point shows that loss 1s O when z = Q; forall other z, the height of
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either arm of the V is proportional to the difference (Q — z) or (2 — Q) as
the case may be. Notice carefully that because we have defined an
overage as an excess of stock over demand, it 1s the left-hand branch of each

V which gives the conditional loss of overage while the right-hand branch
gives the cost of underage. If Q = 3 and z = 1, theretailer will have

2 units left over and will suffer a loss of 2 X $2 = $4;if Q = 2andz = 5,

he will be under or short by 3 units and will suffer a loss of 3 X $1 = $3.

7.5.2 Computation of Expected Loss

Wenowproceed in Table 7.7 to compute expected loss with a stock

of Q = 3. The computation is really identical to the one shown in
Table 7.3; the only differences are differences of form which will now be
explained.



7.5.2 Opportunity Loss and the Cost of Uncertainty 127

1. Instead of giving the net conditional loss for each z, the loss is

written out according to the appropriate one of the two formulas derived

above. Thus where Table 7.3 shows a conditional loss of $4 for z = 1,

Table 7.7 shows that this 2-unit overage has a loss of (8 — 1)$2.
2. Instead of multiplying P(z) into the net conditionalloss for eachz,

Table 7.7 multiplies P(z) into each part of the conditional loss separately.

Thus where Table 7.3 has the entry .10 X $4 = $.40 as thelast entry in

the row for z = 1, Table 7.7 has the equivalent (.10 K 3 — .10 X 1)$2.

 

 

Table 7.7
Expected Loss with Stock of 3

2 P(z) Conditional loss Expected loss

0 .05 (3 — 0)$2 (.05 X 3 — .05 X 0)$2
1 .10 (3 — 1)$2 (.10 X 3 — .10 X 1)$2
2 .25 (3 — 2)$2 (.25 * 3 — .25 X 2)$2
3 .30 (3 — 3)$2 (.80 * 3 — .30 X 3)$2
 

70 Expected loss due to overage: (.70 X 3 — 1.50)$2

 

4 .20 (4 — 3)$1 (.20 X 4 — .20 X 3)$1
5 10 (5 — 3)$1 (.10X* 5 — .10 X 3)$1

.30 Expected loss due to underage: (1.30 — .30 X 3)$1

 

3. Instead of adding all the entries in the last column to obtain a
single figure for expected loss, Table 7.7 brings out two subtotals, one for

the values of z which correspond to an overage(i.e. to the case Q > z) and
one for those which correspond to an underage (the case Q < z). Since

there is no loss in the case z = Q = 3 exactly, the line for z = 3 could

have been included in the second half of the table rather than thefirst or

could even have been omitted entirely without changing the numerical

value of either of the subtotals; it was put in thefirst half of the table
merely because this makes the resulting formulas a little easier to use

when the partial expectations are computed graphically.

If now we examinethe first subtotal in Table 7.7, we see that the .70

inside the parentheses is the sum of P(z) for all 2 < 3 and 1s therefore

P(Z < 3) while the 1.50 in these same parenthesesis the sum of z P(z) for

all z < 3 and is therefore Ei(z). Thus

Expected loss due to overage = $2(3 P(Z < 3) — Ej(2)].

Examining the second subtotal, we see that the 1.30 inside the parentheses
is the sum of z P(z) for all z > 3 and is therefore E7(2) while the .30 in
these same parentheses is the sum of P(z) for all z > 3 andis therefore

P(@> 3). Thus

Expected loss due to underage = $1[E? (2) — 3 P(2 > 3)].
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To generalize this example, let us now define for any problem with

proportional conditionallosses:

k.: loss per unit of overage,i.e. the loss per unit by which the stock Q
exceeds demand;

k,: loss per unit of underage, i.e. the loss per unit by which the stock
Q is insufficient to satisfy demand.t

In our example, we had k, = $2, k, = $1, and Q = 3. Substituting the

general symbols for their numerical values in the formulas given just
above we obtain

 

Expected loss due to overage

Expected loss due to underage
ll klQ PZ < Q) — E82]

k.[Eo,,(2) — QP@> Q)]

 

7.6 Incremental Opportunity Loss

In Chapter 4 wesaw that the expected profit of a decision to stock Q
units can be regarded as the sum of the incremental expected profits of
decisions to stock a Ist, 2d, ... , Qth unit and not to stock any addi-
tional units; and this way of looking at the decision problem has proved
useful in two respects: it makes it mucheasierto identify the best number
of units tostock, and it makes it much easier to compute the effect on
expected profit of changes in the total numberof units stocked. Weshall

now see that incremental analysis can be applied just as well when we are

working in terms of loss as when we are working in termsof profit.

”%6.1 Conditional Incremental Loss

The conditional losses of any incremental decision can always be

found by starting from the payoff table for the decision in question. In

Section 4.2 we saw that the payoff table for a decision concerning the jth

unit in our inventory example had the form shown in Table 7.8, and in
Table 7.9 we proceed to derive the corresponding loss table in exactly the

same way that we derived Table 7.2 from Table 7.1. Westar the highest
profit in each row of the payoff table, and we then subtract each entry in

the payoff table from the starred entry in the samerow.
In many problems conditional incremental losses can also be derived

} It is easy to see that in the particular kind of inventory problem weare using as
an example the quantity &, defined here must have the samevalue as the quantity k,
of Section 4.2.1 and that k, must have the same value as k,. The definitions are
entirely different, however, and weshall see in later chapters that the conceptsof loss
per unit of overage and underage areapplicable in many problems in which the quan-.
tities k, and k, as defined in Section 4.2.1 would have no meaning.
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Table 7.8 Table 7.9

Payoff Table for the jth Unit Loss Table for the jth Unit

Act Act

Event Event

Do not stock Stock Do not stock Stock

B<j $0* — $2 zZ<j $0 $2
B>j 0 + 1% z>j 1 0
 
 

by direct reasoning, without drawing up a payoff table. We observefirst

of all that the loss table for any incremental decision must have 0’s in the

two positions where they are shown in Table 7.9 and 7.10, since not stock-
ing the jth unit is obviously the best possible decision when less than j

units are demanded and stocking the jth unit is obviously the best
decision when j or more units are demanded. In problems where the
conditional total losses are proportional in the sense of Section 7.5.1 above

we can then derive the other two entries in Table 7.9 or 7.10 by the
following reasoning.

 

 

 

Table 7.10

Loss Table for the jth Unit

Act

Event

Do not stock Stock

B<j 0 ko

Z>j ku 0

 

1. If the jth unit 7s demanded,i.e. if 2 > j, then not stocking this

unit either creates a l-unit underage or increases the underage due to
previous incremental decisions by 1 unit; in either case an incremental
loss of amount k, is incurred. In the particular example we are studying,

this incremental loss is simply the profit which could have been made by
stocking andselling the jth unit.

2. If the 7th unit is not demanded,i.e. if 2 < j, then stocking this unit
either creates a 1-unit overage or increases the overage due to previous
incremental decisions by 1 unit; in either case an incremental loss of

amount k, is incurred. In the particular example we are studying, this
incremental loss is simply the difference between the cost of the unsold

unit and its salvage value.

7.6.2 Expected Incremental Loss

In Table 7.11 the expected losses of the two possible decisions whose

conditional losses are shown in Table 7.10 are computed by our standard
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Table 7.11

Computation of Incremental Expected Loss

Loss of not stocking Loss of stocking

Event Probability
Conditional Expected Conditional Expected

B<J P <9) 0 0 ko k, P@ <j)

Z2>j PZ > J) ky ky P(@ > 3) 0 0

1 ky P@ > 9) k, P@ <7)

 

procedure. This computation shows that the incremental expected

losses in any problem of this kind are given by the formulas

 

Expected loss of not stocking the jth unit = k, P(z >7)

Expected loss of stocking the jth unit = k, P(Z < J)

 

Let us now apply these two formulas to the first unit in the example

we have been studying. In that example k, = $2, k, = $1, P(@ => 1) =

.95, and P(Z < 1) = .05, so that

Expected loss of not stocking thefirst unit = $1 XK .95 = $.95,

Expected loss of stocking the first unit = $2 XK .05 = $.10.

Thusit is $.85 better to stock this first unit than not to stockit. The $.10

loss attached to the better act is the unavoidable cost of uncertainty

attached to the decision concerning the first unit. The $.85 difference

between this unavoidable loss and the loss of the worse act is the tncre-

mental profit of making the correct decision, i.e. of stocking the first unit—

recall that the expected profit of not stocking is obviously 0 and that the

difference between the expected profits of any two decisions is equal in

magnitude to the difference between their expected losses.

 

 

Table 7.12
Complete Incremental Analysis

Serial - 7: Loss of ~ w: Loss of
9 PQ <J) stocking P@ 2 3) not stocking

1 .05 $ .10 .95 $.95
2 .15 .30 .85 .85

3 .40 .80 .60 .60
4 10 1.40 .30 .30
5 .90 1.80 .10 .10
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In Table 7.12 these two formulas are used to compute the expected

incremental losses of both possible decisions for every successive unit in

our example from thefirst through thefifth; the student will recall that

no more than 5 units can possibly be sold at full price. The total expected

loss of stocking any particular number of units Q can be found from this
table by adding (1) the incremental losses of stocking all units up to and

including Q plus (2) the incremental losses of not stocking all units with

serial numbers higher than Q. Thus expected loss with a stock of 3 is
$.10 + $.30 + $.80 + $.30 + $.10 = $1.60, in agreement with Table7.3.

Notice that while a decision not to stock a particular unit always has

0 expected profit, 1t does not in general have 0 expected loss. It is only
when weare certain that a particular unit will or will not be sold that we

can make a decision concerning that unit without expectedloss.

7.6.38 Practical Selection of the Best Decision

Behavior of Incremental Loss with Increasing j. Looking at Table

7.12 we see that the expected incremental loss of stocking becomes higher
for each successive unit stocked while the expected loss of not stocking
becomes lower for each successive unit stocked. Furthermore the
expected incremental losses must behave in this way in any problem in
which the conditional losses k, and k, are the same for every successive
unit stocked, since whenthisis true the only factors in the expected losses
which change from one unit to the next are the tail probabilities P(Z < j)
and P(Z > 7), and the formerof these can never decrease with an increase
in j while the latter can never increase with an increase inj. It follows

that in any problem of this sort the expected loss of stocking will be less
than the expected loss of not stocking for every successive unit up to a
certain value of 7 while the reverse will be true for every unit above this
value of 7, and therefore:

In any problem where the conditional incremental losses are the same
for every successive unit, all that we need to doto find the best stock
level is to find the highest serial number j for which the expected
incremental loss of stocking is less than the expected incremental
loss of not stocking.

Location of the Last Profitable Unit. The greatest 7 for which the loss

of stockingis less than the loss of not stocking can easily be found without
actually computing any expected losses. Using the formulas for the
expected losses of stocking and not stocking derived in Section 7.6.2

above, we see that the jth unit should be stockedif

ke P(E <j) < ky P(E > J).

Replacing P(Z > j) by 1 — P(2 < 7) and doinga little elementary algebra
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we put this condition in the more convenient form

 

P&<j7)<= Condition for stocking the jth unit

 

We remind the student that this formula holds only when the per-unit
losses k, and k, are the same for every unit which might be added to the

decision quantity Q. Whenthis is not true, it may well be that the incre-
mental loss of stocking both a third and fourth unit is less than the loss of
not stocking these 2 units even though the loss of stocking the third unit
alone is greater than the loss of not stocking this unit. An example of
such a situation was discussed at the end of Chapter 4.

PROBLEMS

1. Table 7.6 shows an expectedloss of $1.95 for the act Q = 1 in the example dis-

cussed in the text. Verify this loss by taking the expectation of the conditional losses

for Q = 1 (the method of Table 7.3).
2. In the situation of Chapter 4, Problem 1:
a. Draw up a losstable.

b. Compute the expected losses of the three possible acts by taking the expecta-

tions of the conditional losses.
c. Compute expected profit under certainty.
d. Verify your answers to (b) by using your answersto (c) above and to (b) of the

original problem.
3. In the situation of Chapter 4, Problem 3, and Chapter 5, Problem 1:
a. Compute expected profit under certainty using the mean of the distribution of

demand.
b. Using your answers to (a) above and to (a) of the original problem, compute

the cost of uncertainty on the assumption that failure to meet a demand hasnoeffect
on future demand.

c. What are the per-unit losses of underage and overage k, and k, if the operator

believes that failure to satisfy any one customer’s request for a journal will lead to
future lost profits amounting to $1 in addition to the lost profit on the immediate sale?
This is an example of good-will cost, which we define as follows:

Good-will cost: the loss over and above immediate loss of profit which is incurred
for each unit of unsatisfied demand.

d. How manyunits should the operator stock under the condition of (c) and what
is the cost of uncertainty?

e. What is the smallest good-will cost which would justify a stock of 30 copies?
4. In the situation of Chapter 4, Problem 4, and Chapter 5, Problem 2, compute

the cost of uncertainty:
a. By use of expected profit undercertainty.
b. By use of the formula derived in Section 7.5.2.

5. In the situation of Chapter 6, Problem 2, compute the cost of uncertainty
using the formula derived in Section 7.5.2.



CHAPTER 8

Lump-sum Losses; Scrap Allowances

In the last chapter we saw that in inventory problems of the kind we have

been studying hitherto the conditional losses of overage and underageare
proporitonal to the difference between the decision quantity Q and the

value of the basic random variable. Another type of conditional loss
frequently encountered in practical business problems is one which is
incurred if there is any underage but whose amountis independent of the
size of the underage. In the present chapter weshall use a certain class of

scrap-allowance problems as an exampleof situations in which a “lump-

sum’’ loss of this kind is present, but we shall see in the exercises at the
end of the chapter that it can occur equally well in problems of inventory

control.

8.1 The Economics of Scrap Allowances in Production to Order

Whena production run is scheduledto fill a requirement for a speci-
fied numberof pieces rather than to produce for stock, uncertainty con-

cerning the numberof defectives which will be produced in a run of any
given size usually creates a risk of loss. On the one hand the numberof

good pieces resulting from the run mayfall short of the requirement—an

underage may occur. If this happens, it may be necessary to set up the
process again in ordertofill out the requirements,or at the very least the

underage will result in a reduction of the profit realized on the sale of the

good pieces. On the other hand, the extra material scheduled into pro-

duction in order to reduce the risk of a shortage may prove excessive—an
overage may occur. If this happens, the product of the excess material

may have to be treated as scrap whetheror notit is actually defective,
and even at best the value of the good pieces produced from the excess

material is never enough to cover the cost of the material and the labor

put into it—if it were, the excess pieces would have been scheduled for
profit rather than as a scrap allowance.

8.1.1 Conditional Loss Due to Overage

In somesituations the loss per unit of excess production will vary with
the numberof excess units produced—a few can be disposed of at a good

133
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price but a larger quantity cannot, and so forth. In manysituations,

however, the loss per excess piece will be the same regardless of the
number of excess pieces, and this is the only case which weshall study in

this chapter. In this case the total loss due to overage will be proportional

to the size of the overage andis thus identical in form to the loss due to

overage in the inventory problemsstudied in earlier chapters; accordingly

we shall use the same symbol for the per-unit loss which we used there:

k.: loss incurred by scheduling one unneededpiece into production.

Considerable care must be taken in determining the value of kp.

The simplest situation is the one in which the excesspieces will have to be
sold as scrap whether they come out goodor defective, so that k, is simply

variable manufacturing cost less scrap value. This is the onlysituation

which will be studied in this chapter, but it is far from being the only one

occurring in practice. In many situations, excess good pieces can be
inventoried for later sale; in this case k, is the expected cost of carrying a

piece in inventory until it is needed.f In other situations, excess good
pieces can be sold at a reducedprice; in this case k, is the variable manu-

facturing cost less the expected value of the product.t

8.1.2 Conditional Loss Due to Underage

As regards the loss due to underage, the scrap-allowance problem

will again be very similar to the inventory problem of Chapter 7 if the

purchaser accepts the short lot at a reduction in price proportional to the

size of the shortage. If, however, the manufacturer is obliged to supply
exactly or at least the specified number of good pieces, there is a very

material difference between the two problems. An underage of any size
will make it necessary to schedule a second runto fill out the requirement,
and it is obvious that the resulting loss will not be proportional to the size

of the underage. It will on the contrary be almost completely independ-
ent of the size of shortage, and we therefore define

K,,: total amount of the loss resulting from an underage,

using a capital rather than a small letter to remind the student that this is
a total rather than a per-unit loss.

If idle time is available on all the machines used in the production

process, K, includes the variable labor cost of setting up the machines,

doing the paper work involved in scheduling a secondlot, and expediting
this second lot through the shop. If someorall of the required machines

{ The probability that the scheduled piece will be good times the cost of carrying
it if it 7s good.

t (Probability good) * (value good) + (probability defective) X (value defec-
tive).
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are being used to capacity, we must also include the loss of profits which

could have been made on other work during the time the machines are
down for the resetup and the “disruption cost’’ of the general confusion

which results from having short lots going through a heavily loaded shop.

This last kind of loss, which rarely appears in the accounts, is often a very

substantial part of the total real loss entailed by an underrun.

Second-order Losses Due to Underage. In addition to these losses

which will certainly be incurred if a rerun has to be made, a need for a
rerun meansthat there is a risk of incurringstill further losses because the

rerun may itself result in an overage or an underage. Under certain

conditions, however, the expected value of these ‘‘second-order”’ lossesis
negligible in comparison with the ‘‘direct”’ loss described in the previous

paragraph,and it is only this simpler problem which weshall study in this
chapter. Rather than try to define these conditions in advance, weshall

first study how to solve scrap-allowance problems on the assumption that
the second-order losses are strictly zero. This is equivalent to assuming

that if a rerun is in fact required, the number of pieces scheduled will be just
enough to yield the required number of good pieces. After we have under-

stood the logic of this simpler problem, we shall be able to examine the
conditions under which second-order losses may be treated as practically

zero in reaching a practical decision.

8.1.8 Kvents and Acts

The random variable whose value will determine the manufacturer’s
loss in scrap-allowance problems of the kind we are consideringin this

chapter can best be understood if we visualize the production process as

turning out pieces serially rather than simultaneously—whetherthe pieces
are in fact so produced is irrelevant. The potential output of the process

is then an unending sequence of good and defective pieces in some
unknown but ‘‘predestined’’ order such as ggdgggddg ..., and we
visualize every piece in this potentially infinite sequence as bearing a

serial number which showsits position in the sequence. If then we define

G: the required numberof good pieces,

n: the serial number of the Gth goodpiece,

we may consider n as being the unknown value of a random variable fi.}

The events in the payoff or loss table will be the set of all possible valuesof

this random variable.
The acts in a scrap-allowance problem can be described more con-

veniently by the total number of pieces produced than by thesize of the

scrap allowance as such, and wetherefore define

7 In termsof the discussion in Section 3.1, every conceivable infinite sequenceof
g’8 and a’s is an elementary event. The random variable fi assigns to each elementary
event a value n equal to the serial number of the Gth good piece in the sequence.
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Q: the total numberof pieces produced on theinitial run; the size of

the production order.

Using this notation we can now makeour previousdiscussion of the condi-

tional losses more explicit.
1. If the value n of the random variable 7% is equal to Q, this means

that the last piece produced on theinitial run turned out to be the Gth
good piece. Theinitial run was just long enough to produce the required

number of good pieces and neither an underage nor an overage has

occurred. The act Q was optimal after the fact, and the manufacturer’s

loss is 0. |
2. If n is less than Q, the Gth good piece occurred before the end of

the initial run and all succeeding pieces were excess. An overage has

occurred of size (Q — n), and the manufacturer’s loss 1s k,.(Q — n).
3. If n is greater than Q, the Gth goodpiecewill occur after the end of

the initial ruan—theinitial run has resulted in an underage of size (n — Q).
Notice that (n — Q) is not the known difference between numberof good
pieces required and the numberactually produced on theinitial run; it is

the still unknown difference between the total numberof piecesproduced

on the initial run and the total numberof pieces which must be produced
in order to get the required G good pieces. The variable cost k(n — Q)

which will be incurred in manufacturing these pieces does not represent a

loss, since this cost would have been incurred even if the pieces had been.

manufactured on the initial run. The actual loss—t.e., the costs which

could have been avoided by manufacturingall n pieces on the initial run—

will be the sum of (a) the costs of scheduling and setting up for the

rerun or reruns which are made before G good pieces emerge and (b) the

variable manufacturing cost of all pieces produced after the Gth good

piece on the last rerun.
If after making the initial run the manufacturer knew the value n,

he would of course schedule exacily (n — Q) pieces on thefirst rerun and

his loss would be simply the setup cost K. of this one rerun. When we

make our simplifying assumption that exactly the required number of

pieces will be scheduled on thefirst rerun and that the loss of underage
will be exactly Ky, we are in effect assuming that the manufacturer will know

the exact value of n as soon as the initial run has been completed. Weshall

see later on that under certain conditions the manufacturer’s knowledge of

nm after the initial run will in fact be accurate enough to be treated as

exact for all practical purposes.

8.1.4 Payoff and Loss Tables

As a first and much oversimplified example intended solely to bring

out the implications of the discussion above, suppose that a manufacturer

has contracted to deliver exactly G = 10 good piecesat a fixed price, that
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it costs K, = $1000 to schedule and set up for one production run, and
that each piece produced has a variable manufacturing cost of k, = $3.
Assume further that the manufacturer is sure that he will not have to
produce more than 16 piecesin all in order to obtain the required 10 good

pieces.

 

 

Table 8.1

Payoff Table

t
Event Act Q

™ 10 11 12 13 14 15 16
 

10 $1030* $1033 $1036 $1039 $1042 $1045 $1048
11 2033 1033 * 1036 1039 1042 1045 1048
12 2036 2036 1036* 1039 1042 1045 1048
13 2039 2039 2039 1039* 1042 1045 1048
14 2042 2042 2042 2042 1042* 1045 1048
15 2045 2045 2045 2045 2045 1045* 1048
16 2048 2048 2048 2048 2048 2048 1048*
 

On the assumption that n will be known exactly after the initial run

has been completed, the payoff table for this example will be as shown in

Table 8.1. Taking the case where the thirteenth piece produced will be

the tenth good piece (7% = 13) as an example, we see that if the manu-
facturer schedules exactly 13 pieces on the initial run (Q = 13) his total

cost will be the sum of the $1000 setup cost of the initial run plus the $39

variable cost of the 13 pieces produced. If he schedules more than 13

pieces (Q > 13), he adds $3 to his costs for every additional piece. If he

schedules less than 13 pieces (Q < 13), he incurs an additional $1000

setup cost but by our simplifying assumption will produce exactly the

required 13 pieces on the two runs together and therefore will incur only

the minimum variable cost of $39.

 

 

 

Table 8.2

Loss Table

: Act
Event ct Q

” 10 1 12 13 14 15 16

10 $ O $6 3 $ 666 $ 9 $ 12 $ 15 $18

11 1000 0 3 6 9 12 15

12 1000 1000 0 3 6 9 12

13 1000 1000 1000 0 3 6 9

14 1000 1000 1000 1000 0 3 6

415 1000 1000 1000 1000 1000 0 3

016 1000 1000 1000 1000 1000 1000
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The loss table for this same example is shown as Table 8.2. Again

taking 7 = 13 as an example, wesee that loss is 0 if Q = 13, that loss is

$3(Q — 13) if Q > 13, and that loss is $1000 if Q < 13.

8.1.5 Computation of Expected Loss

Assume now that the manufacturer of this example assigns to 7% the

probability distribution shown in the first two columns of Table 8.3 and

thathe wishes to know the expected loss of a decision to schedule Q = 13
pieces. Jn the remainder of Table 8.3 this loss is shown to be $15.85; the

computation is carried out by our “‘standard’”’ method except that sub-

totals are brought out separately for the expected loss of overage ($5.85)

and underage ($10). The separation of the total expected loss into two

 

 

 

Table 8.3

h P(n) Conditional Expected
loss loss

10 .300 (13 — 10)$3 $2.70
11 .400 (13 — 11)$3 2.40
12 . 250 (13 — 12)$3 75
13 .040 (13 — 13)$3 0

.990 Expected loss of overage: $ 5.85
14 .007 $1000 7.00
15 .002 $1000 2.00
16 .O01 $1000 1.00

.010 Expected loss of underage: 10.00

1.000 Total expected loss: $15.85

 

parts serves exactly the same purpose whichit served in Section 7.5.2—it

makesit easy to derive formulas from which total expected loss can easily

be computed in problems where the possible values of 7% are very numer-

ous and computation by the standard method would be prohibitive.
It has already been emphasized that the conditional loss due to

overage in our present problem is of the same proportional type which we

studied in Section 7.5.2, and the student can readily see that thefirst half

of Table 8.1 is identical in form to the first half of Table 7.7. Accord-
ingly the formula for expected loss of overage which wasderived in Section

7.5.2 can be applied to our present problem by simply changing the name

of the basic random variable from Z to 7:

 

Expected loss due to overage = k[QP(# < Q) — ER(#)]

 

We cannot use the formula for expected loss of underage which was
derived in Section 7.5.2 because the conditional loss of underage in our

present problem is not of the proportional type, but it is easy enough to
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derive the proper formula by mere inspection of Table 8.1. The $10
expected loss there shown is obviously equal to the $1000 conditional loss

of underage multiplied by the probability that there will be an underage,
i.e. by P(# > 18) = .10, and in general |

 

Expected loss due to underage = K, P(t > Q)

 

8.1.6 Conditional Incremental Loss

As in any problem where an act consists in the selection of a quan-

tity, we may look at the choice of any given Q in our present problem as

being the result of a sequence of incremental decisions to schedule a Ist,
2d,..., Qth unit, and not to schedule any additional units. The

general ideas involved in the application of this kind of analysis to prob-
lems of the type we are now studyingare the sameasin earlier chapters,
but there are two very important differences of detail to which the student

should pay close attention.
Thefirst of these differences is apparent as soon as we look at theloss

table for a decision concerning the 7th unit in problems of the present

type. Such a table is shown as Table8.4; it is derived by the following

reasoning.

 

 

 

Table 8.4

Loss Table for the jth Unit

Act

Event

Do not schedule Schedule

a<j 0 Ko
aA=j Ku 0
a>] 0 0

 

Loss of Scheduling. If J7 or more pieces must be produced in order to

get G goodpieces,i.e. if 7 > 7, then scheduling the jth unit is obviously a

good decision after the fact andits loss is 0; this accountsfor the two 0’s in

the column describing the act ‘‘schedule.”’ If less than j pieces need be
produced in order to obtain G good pieces, % <j, then scheduling the

ath piece is simply a waste of the variable manufacturing cost &, and leads

to a loss of this amount. The conditional losses of scheduling the jth
piece in our present problem thus correspond exactly to the conditional

losses of stocking the jth unit in Chapter7.

Loss of Not Scheduling. If less than 7 pieces need be produced in

order to get G good pieces, # <j, then not scheduling the jth pieceis

obviously the better decision and entails 0 loss. If exactly 7 pieces must
be produced, % = j, then not scheduling the jth piece means that an
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underage will occur and a rerun will be required. Since this rerun would

have been unnecessaryif the jth piece had been scheduled, the loss of not
scheduling is clearly Ky. If, however, more than 7 pieces must be pro-
duced in order to obtain G goodpieces, # > j, then schedulingthe jth piece

as such would not prevent an underage and therefore not scheduling the jth

does not create any loss. In this case the effect of not scheduling the jth
piece is simply to subtract k, from the cost of the initial run and add k, to
the cost of the rerun; it has no net effect on cost whatever.

The conditional losses of not scheduling the jth piece in our present
problem are thus quite different from the conditional losses of not stock-
ing the jth unit in inventory problemsof the kind studied in Chapter7.

In the problem of Chapter 7, a profit is made on the jth unit if that unit
can be sold, whether the total demandis satisfied or not; k, is the loss per
unit short. In our present problem, the jth unit prevents a shortage and
the loss K, only if the ‘‘demand”’ 1s for exactly j units, neither more nor

less. The student must not think, however, that this difference is a
difference between scrap-allowance problemsas such and inventory prob-

lems assuch. It is a difference between problems with a lump-sum loss of
underage and problems with a proportional loss.of underage. Many

inventory problems involve lump-sum losses, and many scrap-allowance
problems involve proportional losses.

8.1.7 Expected Incremental Loss; Selection of the Best Decision

By inspection of the conditional losses shown in Table 8.4, the
student can easily see that

Expected loss of not scheduling the jth unit = K, P(# = J),
Expected loss of scheduling the jth unit = k, P(vi < j).

Looked at by itself, a decision to schedule the jth unit will be profitableif

and onlyif the loss of not schedulingis greater than the loss of scheduling,
i.e. if and only if

KuP@=j7) > ko P(hi < 7).

This condition is more convenient to use in the form

 

Pi = 7) ko sy yp pe ; ,
Pa <j) > K, Condition for profitability of jth unit by itself 

 

In our example k,/K, = $3/$1000 = .003. In Table 8.5 we show

the probabilities P(# = 7) copied from Table 8.3, the cumulative prob-
abilities P(# < j) derived from these, and the ratios P(#i = 7)/P(” <3).
The ratio P(=)/P(<)is greater than k./K,y = .003 for all units.fromthe
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tenth through the fourteenth and less than .003 for all remaining units,
so that the best decision 1s obviously to schedule 14 units into production.
It is left to the student as an exercise to find the corresponding total

expected loss, which is the cost of uncertainty in this situation.

 

 

Table 8.5

j PH = 7) PH <)) P(=)/P(<)

10 .300 0 20

11 .400 .300 1.333

12 . 250 . 700 .357

13 .040 .950 042

14 .007 .990 .007

15 . 002 .997 .002

16 .001 .999 .001

17 0 1.000 0

1.000

 

When weused incremental analysis to find the best act Q in inven-

tory problems with proportional losses, we proved (Sections 4.2.1 and

7.6.3) that the incremental profit of adding the jth unit could not increase
with 7. This meant that up to a certain j all incremental units were
profitable while beyond this 7 all incremental units were unprofitable, so

that the best decision could be found by simply finding the highest 7 for
which incremental profit was positive. In terms of practical computa-

tions, all that we had to do was to cumulate left-tail probabilities until
we came to a7 for which P(Z < 7) was greater than the critical ratio

kp/ (kp + kn) or ky/(ku + ko) and then drop back 1 unit to find the best
value of Q; there was no need to cumulate any further because we knew in

advance that P(Z < 7) would remain abovethecritical ratio as7 increased.
The student must observe very carefully that no corresponding

propositions have been proved or can be proved for problems of the kind
we are now studying. It happens to be true for the probability distribu-
tion of Table 8.5 that the ratio P(=)/P(<) and therefore the incremental

profit of scheduling a 7th unit decrease steadily as 7 increases, and this will

usually be true when the probability distribution is reasonably smooth and

single-humped. It is perfectly possible, however, to have a probability
distribution such that P(=)/P(<) first decreases until it is below the

critical ratio k,./K., then rises above this ratio, then falls below again,
and so forth; an example of such a distribution is shown in Table 8.6. We
shall not give rules for finding the best decision in such cases, but the
student should observe that with k, = $3 and K, = $1000 it would pay

to schedule a fourteenth and a fifteenth unit under the distribution of
Table 8.6 even though it would not pay to schedule a fourteenth unit

alone. Q = 15 is better than Q = 13 even though Q = 14 is worse.
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Table 8.6

n P(n) P(t <n) P(=)/P(<)

10 . 300 0 oo

11 .400 . 300 1.333

12 . 250 . 700 .357
13 .040 .950 .042

14 .002 .990 .002

15 .007 .992 .007

16 .001 .999 .001

17 0 1.000 0

1.000
 

8.2 Assessmentof the Distribution of i When All Runs Are Long

In Section 8.1 we simply assumed a probability distribution for the
random variable 7 so that we could make clear the nature and useof this
random variable without becoming confused by the problems involved in

actually assessing its distribution in a practical situation. Weshall now
see how this distribution can be rationally assessed in one particular kind

of situation, taking the following problem as an example.

 

 

Table 8.7

Run Total number Number Number Fraction Ratio

number of pieces good defective defective total-to-good

1 8100 6496 1604 .198 1.247

2 7500 5597 1903 .254 1.340

3 6300 5097 1203 .191 1.236

4 7800 5595 2205 . 283 1.394

5 6700 5107 1593 . 238 1.312

6 8200 6805 1395 .170 1.205

7 7100 5028 2072 . 292 1.412

 

A manufacturer wishes to produce 5000 good parts of a new design.
Production will involve a rather long sequence of operations—forging,

milling, turning, drilling, etc.—in each of which a certain amount of

shrinkage will occur, and the manufacturer wishes to assess a probability

distribution for the number of pieces he must schedule into the first of

these operations in order to have G = 5000 good pieces emerge from the
last. The only available evidence which he considers relevant is the

record shown in Table 8.7 of seven previous production runs on which

similar parts were manufactured. Although the parts produced on each
of these runs differed slightly in design from the parts produced on every

other run and from the parts about to be manufactured, they all involved
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the same sequence of operations as the present parts and presented the
same general kinds of production difficulties.

8.2.1 The Random Variable p = #/G

Noneof the production runs recorded in Table 8.7 resulted in exactly
G = 5000 good pieces, the number which the manufacturer wishes to
produce on his new run, and therefore the record gives no direct evidence

on the numberof pieces n which will have to be produced in order to get
exactly G = 5000 good pieces on the new run. It 1s obvious, however,
that indirect evidence on this question is provided by the last column of

the table, which showstheratio of the total numberof pieces produced to

the number of good pieces emerging on each of these seven runs. If we
knew what value the ratio %/G would have on the new run, we could get
the value of 7 for that run by simply multiplying the value of the ratio by

G = 5000; and if we assume that the last piece produced on each of the

past runs was good, then the ratio of total to good on each of these runs

gives the ratio n/G for that run.

It is true that the last good piece on each of these runs may not have

been the last piece produced and therefore that the ratio of total to good
may beslightly larger than the true value of n/G, but when the runs are

as large as those recorded in Table 8.7 the difference cannot be of any

practical significance whatever. Taking the first of the recorded runs as

an example, the assumption that the last piece was good implies that
n = 8100 pieces had to be produced to get G = 6496 good pieces and that
the value of n/G was therefore 8100/6496 = 1.247. Ifinfact thelast nine

pieces were all defective and the 6496th good piece was actually the

8091st piece produced rather than the 8100th, the value 8091/6496 of the

ratio n/G is reduced only to 1.246.

Accordingly we are quite justified in using the ratios in the last
column of Table 8.7 as zf they were the ratios n/G for the seven past pro-

duction runs; and since these ratios are the only quantitative evidence

available for assessment of the distribution of the random.variable 7% in

the new run, we must use them in this assessment in one way or another.

The fact that the evidenceis in ratio form will make it more convenient to

proceed byfirst defining a new random variable rho as
tt?

_ fi
p= G

and assessing a probability distribution for p on the new run. Oncethis

distribution has been assessed it will be easy to derive from it the distribu-

tion of % in which weare directly interested.

8.2.2 Relevance of the Recorded Values of p

Before we start to assess a probability distribution for p = 7%/G on
the basis of the recorded values taken on by that variable in past runs, we
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must ask whetherall these valuesare directly relevant to the present run.
Tf, for example, the very high value 1.412 recorded for the last of the

seven past runs can be explained by the fact that exceptionally tight
tolerances were required on that particular part and if the tolerances on

the part about to be made are materially looser, we should paylittle or no

attention to this recorded value in assessing the distribution of # on the
newrun. Thesameprinciple would apply if the material of which any of

the old parts were madediffered from the material to be used for the new
part in such a way that it could be predicted that p would have a higher or

lower value on the new run than it did on the old run. In general:

If there is any observable difference between the conditions sur-
rounding an old run and those surrounding the new run whichleads

to a predictable difference in the values of 6 = 7i/G on the tworuns,

we must either discard the evidence of the old run in question or else
adjust the recorded p to conform to the conditions under which the

new run will be made.

In what follows we shall assume that the manufacturer has consulted

his production engineers and shop foremen and has beentold that thereis

no way of predicting the difference between the p which will be experienced
in the new run andthep which has been experienced in anyof the oldruns.

8.2.38 The Implications of Length of Run; Process p vs. Observed p

Having determined that all the seven p’s recorded on past runs are
relevant to the probability distribution of 6 on the new run, we are
tempted to proceed immediately to assess the distribution of p by treating

the seven recorded p’s as fractile estimates in exactly the same way that

we assessed a probability distribution for the random variable ‘‘demand”’

in Section 6.4 by treating recorded demandsasfractile estimates. There
is one marked difference between the two problems, however, and we

must consider the implications of this difference before we proceed
further. In Section 6.4 we were assessing a distribution for the number

of units 2 which would be demanded in one day on the basis of recorded

values of 2% each of which gave the number of units which had been

demanded in one day. In our present problem weare assessing a dis-

tribution for the random variable f in a run intended to produceG = 5000
good pieces on the basis of values of this ratio recorded in runs which gave

quite different numbers of good pieces, and even though4 is the ratzo of

number required to number good wefeel intuitively that the required

number of good pieces.may have some bearing on the probability dis-

tribution which it is reasonable to assign to p.

If all the observable factors affecting a production process—part

design, setup, material, condition of tools, etc.—are held constant, andif

the process has no tendency to produce defectives in long streaks, then
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the occurrence of defectives can be likened to the occurrence of aces when

a die (fair or deformed) 1s rolled repeatedly under constant conditions.

Since a different part was manufactured on each of the seven runs
recorded in Table 8.7 andstill a different part is to be manufactured on
the new run, we may think of the manufacturer’s problem in terms of the
following analogy. We are presented with a very large number of

deformed dice and from these weselect eight which look exactly alike.
Wethen takeseven of these eight dice and with each one perform a single
experiment whichconsists of rolling the die until a predetermined number

G of non-aces (good pieces) has been obtained, counting the number n of
rolls required, and recording the ratio p = n/G. On the basis of this

record we wish to assess a probability distribution for the ratio p which
will be required to obtain G = 5000 non-aces with theeighth die.

Now very broad experience leads us to believe, as we saw already in

Section 1.6, that when any one die is rolled repeatedly under constant
conditions the die-rolling process is characterized by a single, definite

fraction of aces which it will produce in the long run; but experience also

leads us to believe that the fraction of aces actually observed in any finite

number of rolls will usually differ by some amount from this long-run

fraction. We can equally well think of the die-rolling process as charac-
terized by a long-run.ratio p of total rolls n to non-aces G, and experience
then tells us that if we roll the die until some finite number of non-aces

has beenobtained theobservedratio p will usually differ by some amount

from the long-run ratio which characterizes the process as such. It

follows that we may regard the total variation among the seven p’s

recorded in Table 8.7 as being composed of two separate parts:

1. Variation due to differences among the long-run p’s of the seven
processes;

2. Variation due to differences between the p actually observed on

each run and the long-run p of the corresponding process.

It also follows that when weassess a probability distribution for the p
which will be experienced in production of the new part, we may think of
this distribution as a quantitative expression of a total uncertainty which
is composed of two separate parts:

1. Uncertainty concerning the long-run p which will characterize
the process of producing the new part;

2. Uncertainty concerningthe difference between this long-run p

and the p which will actually be experienced in obtaining the
specified finite number ofgood pieces.

It is important to distinguish between these two kinds of variation or

two kinds of uncertainty because the second kind depends on G whereas the
jirst kind does not. If we are goingto roll a die or producepartsuntil only
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a very small numberof non-acesor good parts have been obtained, the p of
this finite experiment mayeasily differ quite widely from the long-run p

of the process as such; but if the specified value of G is very large, we feel

quite sure that the p whichis actually observed will be quite close to the
long-run p of the process. More generally, we feel that the higher the
value of G, the less uncertainty we should have about the difference

between the p which will actually be experienced and the long-run p of the
process.

It follows immediately that in the general case we cannot obtain a

valid probability distribution for the p of a future run by simply smooth-
ing a record like Table 8.7 in which the G’s areall different, since such a
record provides no valid evidence for assessment of the second kind of
uncertainty in a run with any specified G. Nor can wein the general

case obtain a valid distribution of the long-run process p itself from such a

record withoutfirst in some way eliminating from it the variation due to

differences between the p’s in the record and the corresponding process
p’s. In the particular problem before us, however, Table 8.7 shows
(1) a very great amount of variation amongthe observed p’s at the same time

that (2) all the G’s are so high that wefeel intuitively that each observed
p must almost certainly be very close to the corresponding process p. We are

tempted to conclude that by far the largest part of the variation in the

observed p’s must be due to difference among the process p’s themselves,

and in the next part of the course we shall prove that this intuition is

correct: differences between the observed p’s of Table 8.7 and the correspond-
ing process p’s cannot account for more than a negligible fraction of the total
variation among the observed p’s.

This means that in this particular problem smoothing the recorded

p’s will give us a reasonable probability distribution for the p which will

characterize the process of producing the new part. It also meansthat it
will be legitimate to treat this distribution of the process f as a distribu-

tion of the p which will actually be experienced in producing a finite
number of good parts provided that this number is so large that uncer-

tainty about the difference between the process p and thep of the finite
experimentis negligible. This condition is met by the G = 5000 which

we are assuming in our example, but we could not use the distribution
which weare aboutto assess as a distribution of the p to be experienced in

a run intended to make a few dozen or even a few hundred goodparts.

8.2.4 The Disirtbution of the Process 5

Wenow proceed to assess the distribution of the long-run p = 7i/G
which will characterize the process of manufacturing the new part, follow-

ing exactly the same procedure that we used in Section 6.4. Wefirst
array the values of p shown in Table 8.7 in order of size: 1.205, 1.236,
1.247, 1.312, 1.340, 1.394, 1.412. We then treat the first of these seven
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values as a preliminary estimate of the 1/(7 + 1) = .125 fractile, the
second as a preliminary estimate of the .250 fractile, etc., plot each of

these preliminary estimates as an X in Figure 8.1, and fit a smooth curve
which represents our assessment of the probability distribution of #.
Because this random variable describes the long-run ratio of % to G, it can
have any value whatever and is not restricted to certain ‘‘discrete’’

values in the way that the random variable ‘demand’”’ is restricted to the

integral values 0, 1, 2, etc. There is, so to speak, no ‘‘space’’ between

one possible value of 6 and the next, and consequently there is no differ-
ence between P(p < p) and P(p < p).

The assessment represented by the curve of Figure 8.1 rests not only

on the seven preliminary estimates but also on the judgment that the
probability distribution should be smooth and the judgment that whereas

there is a small probability that the p of the new part is considerably

worse than the worst of the seven in the record, there is no probability at
all that it is very much better than the best of the seven intherecord. In

a real situation such judgments would be based on engineering knowledge.

82.5 The Cumulative Distribution of ri

Wecan now obtain a probability distribution for the % of the manu-
facturer’s current problem,i.e. for the number of pieces which must be
produced to yield exactly G = 5000 good pieces, by using the distribution
of the long-run = 7/G assessed in Figure 8.1 as if it were a distribution
of the ratio 7:/G to be experienced on this particular run. We remind the
student that this is legitimate only because G is so large that uncertainty
about the difference between the p of this run and the long-run p of the

processis negligible in comparison with uncertainty about the long-run p
itself.

To convert from p to 7, all that we need to dois to relabel both axes of

Figure 8.1 and to change the scale on the horizontal axis: multiplying
each p = n/G@ on the horizontal axis by G = 5000 we obtain the cor-

responding n. Because 7% can take on only integral values, we label the

vertical axis P(i < n+ 4) to show that in principle we should read

P(% <n) one-half unit to the left of n; in practice the successive n’s are

so close together that we cannot distinguish between n and n + 14 and

we may therefore take the height of the curve at any n as giving either

P(w <n) or P(% < n).

8.2.6 The Noncumulative Distribution of i

In principle the probability that 7 has any particular value n can be

obtained from Figure 8.1 by using the relation

Pa =n) = Pi <n+1) —-— PH <n).

If, however, we try to obtain a probability like P(# = 6000) in this way,

we find that we cannot actually read the difference between P(i < 6001)
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and P(7# < 6000) on the chart. We must therefore proceed as we did in

Section 6.4.3, first obtaining a grouped distribution of 7% from Figure 8.1
and then smoothing this grouped distribution.

Thefirst step is to define the brackets we are going to use. Weselect

brackets 100 units wide as being wide enoughto allow us to determine the

total probability of the bracket with good accuracy and yet narrow
enough to avoid excessively large changes in probability per unit width

from one side of the bracket to the other. To facilitate reading Figure

8.1 we choose round numbers for the edges of the brackets wherever
possible—the only exception is the first bracket, whose left edge is deter-

mined by the point at which the curve reaches the horizontal axis.
Wethen proceed in Table 8.8 just as we did in Table 6.5. The prob-

ability of each bracket is the difference between the cumulative prob-
ability at its left edge and the cumulative probability at the left edge of
the next bracket. Thus the .088 in column 3 is .214 — .126, and so forth.
In the last column of the table we compute the average probability per

unit width within the bracket by dividing the total probability as shown
in column 3 by the width of the bracket as shown in column 1.

 

 

Table 8.8

Cumulative Total ye

Bracket probability probability Probability
at left edge of bracket per unit width

5880-5899 0 .025 .00125
5900-5999 .025 .101 .00101
6000-6099 . 126 .088 00088
6100-6199 .214 .083 .00083
6200-6299 . 297 .076 .00076
6300-6399 .373 .070 .00070
6400-6499 .443 .068 .00068

etc.

 

Values of P(n) for all n could now be obtained as in Section 6.4.3 by
first plotting a histogram of the grouped distribution of Table 8.8, the
height of the bar for each bracket being the probability per unit widtb

shown in the last column of the table, and then smoothing this grouped
distribution. ‘The smooth curve would give P’(n) for all n; and since the
width of the bar for any individual n is 1, P(n) would be numerically
equal to P’(n).

8.2.7 The Ratio Pi = n)/P(h < n)

Weshall not actually go through the smoothing process required to

obtain individual P(m) because what we really need for our present
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application is values of the ratio P(n)/P(# < n) and these can be obtained

by a more direct smoothing procedure which we shall now describe.
If we did smooth a grouped histogram representing Table 8.8, the

height of the smooth curve at the mid-point of each bracket would

be almost exactly equal to the height of the corresponding bar of the

unsmoothed histogram,i.e. to the probability per unit width shownin the
last column of Table 8.8; and since P(n) is numerically equal to P’(n),

this means that we can read P(n) for the mid-point of each bracket
directly from Table 8.8. Values of P(n) obtained in this way are shown

in Table 8.9.1

 

 

Table 8.9

Bracket n P’(n) = P(n) Pia <n) P(=)/P(<)

5880-5899 5890 .00125 .01 .125
5900-5999 5950 .00101 .087 .0116

6000-6099 6050 .00088 .170 .00518

6100-6199 6150 .00083 . 257 .00323

6200-6299 6250 .00076 .335 .00227

6300-6399 6350 .00070 .410 .00171

6400-6499 6450 .00068 .480 .00142

etc.

 

The value of the ratio P(n)/P(% < n) can now be obtained forall n

by first computing this ratio for the mid-point of each bracket and then

fitting a smooth curve to the computed values. The required values of

P(% <n) are read from Figure 8.1 and shown in the next to the last

column of Table 8.9; notice that these cumulative probabilities apply to

the mid-point of each bracket and not to the left edge. Each P(n) is then

divided by the corresponding P(# < n); the resulting ratios P(=)/P(<)
are shown in the last column of the table. Figure 8.2 is obtained by

continuing Table 8.9 to cover the whole range of values of 7, plotting

P(=)/P(<) for each mid-point as an X, and fitting a smooth curve to

these X’s.

8.2.8 Partial Expectations of i

Partial expectations of 7 are obtained from Table 8.8 by the method

described in Section 6.5. The computations are shown in Table 8.10,
wherethe first and third columnsare simply copied from Table 8.8. The
“products” are computed by multiplying each mid-point by the cor-
responding grouped probability, and the last column of the table shows

+ The n shownfor each bracket in Table 8.9 is actually 14 unit above the exact
mid-point of the bracket, but it is obvious that a 44-unit change in m makes no material
change in P’(n) when each bracket is 100 units wide and the changes in P’ from one

bracket to the next are as small as those in Tabie 8.9.
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Table 8.10

. . Grouped Cumulative
Bracket Miad-point probability Product sum

5880-5899 5890 .025 147 147

5900-5999 5950 .101 601 748

6000-6099 6050 .088 532 1280

6100-6199 6150 .083 510 1790

6200-6299 6250 .076 475 2265

6300-6399 6350 .070 444 2709

6400-6499 6450 .068 439 3148

etc.

 

the cumulative sums of the products. Each cumulative sum is the
partial expectation of 7% over the range from 0 to the value of fi at the

right edge of the last bracket included in the computation; thus

F529) = 147, E94) = 2709.

Figure 8.3 was obtained by continuing Table 8.10 to cover the whole
range of values of 7i, plotting each computed partial expectation against
the corresponding n, and fitting a smooth curve to the plotted points.
This smooth curve enables us to read partial expectations at points other

than the edges of the brackets used in the computation. Notice that the
highest value on the curve gives us the ‘“‘total”’ or ordinary expectation of

vw or the mean of the distribution of 7:

Bn) = ER(*) = E(f#) = 6550.

8.2.9 Solution of an Example

Assume now that the manufacturer whose probability distribution

for fi is given by Figure 8.1 has the same conditional losses

ko = $3,
K. = $1000,

as the manufacturer of ourfirst example. We continue to assume that

second-orderlosses are strictly 0.
The best size of production order is given directly by Figure 8.2. We

compute

 

locate .003 on the vertical scale of Figure 8.2, and read across to the curve

and down to 6165 on the horizontal axis. Since P(=)/P(<) 1s greater

than .003 for all units before the 6165th and less than .003 for all units

after the 6165th, the optimum ordersize is Q = 6165.
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The expected loss of a decision to schedule 6165 pieces into production

is obtained by using the formulas given in Section 8.1.5. We first read

P(i < 6165) = .270

from Figure 8.1, compute

P(% > 6165) = 1 — .270 = .730,

and read

Ep’(#) = 1615

from Figure 8.3. We then compute

Expected loss of overage = $3[(6165 X .270) — 1615] = $150,

Expected loss of underage = $1000 X .730 = $730,
Expected total loss = $150 + $730 = $880.

8.3 Second-order Losses

Granted that the probability distribution is correctly assessed, the

validity of the methods described above for selecting the best decision

and computing expectedloss still depends on the accuracy of the assump-

tion that only the losses which will certainly be entailed by a rerun need
be considered in estimating the loss K. which will result from a shortage

on the initial run. We have pointed out in Section 8.1.2 that an under-

run in fact entails a risk of additional loss because the rerun mayitself

result in an overage or underage; and in principle the expected value of

this uncertain loss should be added in to the certain loss when wecalculate

the value of Ky.
Computation of the exact amountof this expected value is extremely

difficult, however. Looked at after the initial run has been completed,
the second-order losses will depend on the number of good pieces which
remain to be produced. If the shortage of good piecesf{ is very small, the

manufacturer will be able to buy virtually complete insurance against a
second underage at a very low cost—he can allow several times as many

pieces for scrap as he needs goodpieces andstill the expected loss due to
overage will be negligible. If the shortage of good pieces is large, how-

ever, such a generous scrap allowance on the rerun would entail a serious
expected loss due to overage, and the manufacturer would do better to
reduce the allowance and the expected loss of overage even at the expense

of an increase in the expected loss of underage. Both these expected

losses are part of the true K, of the initial run, and therefore in order to
compute the exact value of K, for the initial run:

+ Notice that this is not the ‘‘size of underage’’ (n — Q) as that quantity was

defined in Section 8.1.3.
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1. We must compute a different conditional expected loss for each
possible numberof good pieces short, multiply by the probability

that the shortage will actually be of this size and add the products;

but
2. When we try to compute the conditional loss for any specified

number of good pieces short we get into an “infinite regress.”’
The calculation involves the loss which will be incurred if the

rerun itself results in an underage, and this loss includes “‘third-
order’’ losses due to the possibility that the second rerun may
again result in a underage or an overage.

For this reasonit is virtually impossible to find the exact optimum Q

or the exact value of the expected loss in most scrap-allowance problems,

but this by no means implies that we cannot find solutions which are so

close to exact that they entail no material cost of irrationality. In the
general case this must be doneby a process of successive approximations
which is beyond the scope of this course, but in one particular kind of

situation which occurs rather frequently in practice it can be shown with-

out detailed calculations that the expected second-order losses are so

small relative to the direct cost of scheduling and setting up for a first
rerun that they can safely be neglected for all practical purposes. The
problem studied in the previous section of this chapter is an example of a

situation of this kind.

In this example we saw that before the initial run was made, by far

the largest part of the manufacturer’s uncertainty concerning the p which

would be experienced on this run was due to uncertainty about the long-

run p which characterized the process of manufacturing the new part; his

uncertainty about the difference between the process p and the p he would

experience in getting 5000 goodpieces was negligibleincomparison. After

an initial run of several thousand pieces has been made,thesituation will

be totally different. The results of this run will give the manufacturer

almost exact information concerning the long-run p of the process, and

therefore if a rerun does have to be made the manufacturer’s uncertainty
concerning the p to be experienced in getting the good pieces still needed will be

extremely small in comparison with his original uncertainty. It follows

that even if the G of the rerunis large, he will be able to schedule enough
pieces to give him virtually complete insurance against the need for a

second rerun and thus a virtually 0 expected loss of underage andstill
have an expected loss of overage which is negligible in comparison with

the direct cost of scheduling and setting up for thefirst rerun.

Notice very carefully, however, that this line of reasoning applies

only when all the following conditions are met:

1. The major part of the original uncertainty must be uncertainty

about the long-run p of the process.
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2, The initial run must be so long that its results will remove a very
large part of the uncertainty about the process p.

3. It must be known in advancethat if a rerun is required it will be
made under conditions such that the process p is certain to be the

same for the rerun asit wasfor the initial run.

Thelast of these three conditions requires particular attention. A rerun

will certainly involve new setupsof all the machines used in the produc-

tion process and it may involve a new batch of raw material, new oper-

ators, and so forth. Engineering judgment will be required to decide
whether the manufacturer can be sure that none of these changeswill have

any substantial effect on the process p or whether they must be considered

a new source of uncertainty. If the changes do create a substantial
amount of new uncertainty, we are not in general entitled to treat second-

order losses as negligible in planning for the initial run.

PROBLEMS

1. Under the probability distribution of Table 8.3 with k. = $3, K. = $1000,
and assuming that a rerun will come out exactly right:

a. Compute the cost of uncertainty both by the method of Table 8.3 and by the
use of the formulas derived in Section 8.1.5.

b. What is the cost of irrationality if a decision is made to issue an order for
13 pieces?

2. Under the probability distribution of Table 8.6 with k, = $3 and K, = $1000,
and assuming that a rerun will come out exactly right, compute expected loss for
Q = 13, 14, and 15 and show that it pays to schedule a fourteenth and a fifteenth
unit even though it does not pay to schedule a fourteenth alone.

3. Under the conditions of Problem 1 except that k, = $1.50:
a. Whatis the best size for the production order?
b. What is the cost of uncertainty?
4. Under the probability distribution of Figure 8.1 with k, = $38,G = 5000, and

assuming that the true value of K,, is $1000:

a. Compute the total loss under production orders for Q = 5900, 6000, 6165,
6200, and 6400.

b. Make a graph of loss against the size Q of the production order, fitting a
smooth curve to the points determined in part a. (The computed points will contain
errors because of inaccuracies in reading the various charts and therefore the curve
should not be put exactly through every point.)

c. Using this graph, estimate the extra loss which will be incurred if the produc-

tion order is 100 units above or below optimum.

d. Suppose that the production managerof the firm faced with this scrap-allow-
ance problem decides that he is tired of the nuisance of shortages on his production

runs and instructs his scheduling clerk to schedule enough material to leave only a
1-in-10 chance that a shortage will occur on any run. How manypieceswill the clerk
schedule for the present run and whatis the cost of irrationality of this decision?

5. Under the conditions of Problem 4 except that K, = $1500:
a. What is the best size for the production order?
b. What is the cost of uncertainty?
c. Whatis the costof irrationality if the production orderis based on K, = $1000

whenin fact K, = $1500?
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d. Discuss the bearing of your answer to (c) on the importance of second-order

losses.
6. A production manager has no direct experience whatever with the process he

is about to use in producing a specified number of good parts, but on the basis of

experience with more or less similar processes he decides that he would bet at thefol-
lowing odds on the fraction defective which will actually be experienced in the run
about to be made:

1 to 99 (1 chance in 100) that f < .65,

1 to 99 that f > .85,
1 to 9 that f < .70,
1 to 9 that f > .80,
1 to 1 (even money) that f > .75 or f < .75.

How should he determine how manypieces to schedule if he wishes to bet his com-
pany’s money consistently with these odds? Make no calculations but list every step
in the procedure.

7. All sales made by the retailer of Chapter 6, Problem 2, are made by telephone

and the retailer delivers the merchandise to the customer at the end of each day. The

retailer decides that in order to maintain customer loyalty he will accept and deliver

all orders for the product in question even though theorders exceed the quantity which
he stocked at the beginning of the day—if this happens he will have the required addi-

tional quantity delivered to him by the wholesaler just before he makes his own deliv-

eries at the end of the day. The wholesaler charges $25 for this special-delivery
service.

a. Under the probability distribution for demand which you assessed in answer

to Chapter 6, Problem 3 (not 2), how many units should the retailer stock at the

beginning of the day?

b. Whatis the cost of uncertainty?
c. Discuss the similarities and differences between the logic by which the prob-

ability distribution for demand wasassessed in this case and the logic by which it was

assessed in the second example of the present chapter.
8. In July, 1955, the United States Air Force placed a fixed-price procurement.

contract with the Warner Aircraft Engine Company for 1000 stainless-steel valve

assemblies, drawing number AC7036. This was a new, improved design; the assem-

blies were to be used for field modification of all model Z-16-C engines currently in
service and to provide life-of-type spares. The Z-16-C engine was used exclusively
by the Air Force and wasalready out of production. The new valve assembly would
fit no other model.

Table 8.11

Lot number Shrinkage, % Lot number Shrinkage, %

1 13 11 14
2 21 12 16
3 20 13 28

4 27 14 25
5 22 15 21
6 21 16 18
7 19 17 21
8 33 18 23
9 26 19 15
10 21 20 26

Production of the valve assemblies called for 26 operations, a large number of

which were performed on automatic screw machines. At each stage in the produc-
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tionprocess, a certain amountof shrinkage occurred owingto breakage,faulty machin-
ing, and other causes. The Warner Company had produced large lots of more or
less similar valve assemblies for many other engine models. Shrinkage losses (frac-
tion defective) for 20 such lots are shown in Table 8.11; the smallest of these lots con-

tained over 5000 pieces. Although these assemblies varied with regard to dimensions
as well as sequence of operations, they were morelike drawing AC7036 than any other

assemblies on which the Warner Company had shrinkage records.
Total variable labor and material cost per finished assembly was $2. The

total fixed setup cost of the various machines was $1000.

a. How many valve assemblies should Warner schedule into production?
b. What is the expected cost of uncertainty?
c. Discuss the justification of the method by which you assess the probability

distribution of the basic random variable.
d. Discuss the justification for neglecting second-order losses in the circumstances

of this case.
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CHAPTER 9

Conditional and Joint Probability

9.1 Introduction to Part Two of the Course

The probabilities which we have assigned to the eventsin a payoff or
loss table have hitherto all been directly assessed on the basis of experi-

ence with the cost-determining events themselves. In problems of
inventory control, we have assessed the probability distribution of the

random variable ‘‘demand”’ by looking at a historical frequency distribu-

tion either of demanditself or of the discrepancy between actual demand

and forecast demand. In determining a scrap allowance, we have

assessed the probability distribution of the ratio total-to-good by looking
at the ratios experienced on previous production runs. The only way in
which we have used the mathematical theory of probability was to com-

pute the probability of events such as Z < 2 by addingthe probabilities of

the events Z = 0, 1, and2.
In some cases, however, we have refused to assess probabilities by

simply equating them to relative frequencies experienced in the past.

Our general knowledge of the nature of the factors affecting demand or

the factors affecting the ratio total-to-good led us to the conclusion that

the probabilities assigned to certain values of the basic random variable
should be between those assigned to other values and that the wholedis-

tribution should be smooth.
Wenow begin our study of situations in which our general knowledge

of (or beliefs concerning) the factors affecting a cost-determining random
variable can be shownto lead to conclusions much more specific than the

mere proposition that the probability distribution should be smooth.

Weglanced briefly at a very special situation of this sort already in Sec-

tions 1.5 and 1.7, where we suggested that under certain conditions a
manufacturer might reasonably deduce the probability that there would

be more than 80 defectives among 180 pieces from probabilities assigned

to the elementary events of a run of 180 pieces. In most situations

direct assignment of probabilities to elementary events will also be

extremely difficult, but we shall now see that the probability distribution
of the random variable ‘‘number defective” in a production run can also

be deduced from probabilities assigned to events such as ‘“‘first piece
160
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defective,” ‘second piece defective,” and so forth. A manufacturer who
has hadlittle or no experience with production runs of exactly 180 pieces

or even with runs of approximately this size will have little confidence in

probabilities assessed by the method of Chapter 8, and yet he may have

more than enough experience with his process to give him great confidence
in the probabilities he assigns to events such as “‘first piece defective”’

and therefore in any probabilities which can be shownto be logical con-
sequences of these assignments.

In the present chapter we shall study the basic concepts which

underlie the indirect assessment of probabilities; and in order to make

these concepts as clear as possible our examples will be simple andarti-

ficial ones involving urns and dice. In the remainder of Part Twoof the
course we shall apply these concepts to the study of certain kinds of

random processes which occur with great frequency in practical business

applications. Throughout this part of the course the student should

keep in mind the fact pointed out in Section 1.7: the theory of prob-

ability can be used either to deduce the probabilities of certain events
from probabilities assigned to other events or to deduce the relative fre-
quencies of certain events from the known or assumedrelative frequencies

of other events. Every general proposition we make will be stated both
in terms of probabilities and in terms of frequencies; it is up to the student

to remember that the two concepts are entirely different and that great

caution must be exercised before a probability 1s equated to a relative

frequency however the relative frequency has been determined.

9.2 Joint and Conditional Probability

When probabilities are assigned directly to the events in a payoff

table, we are dealing with a single set of mutually exclusive events and
with a single set of probabilities assigned to these events; our meaning is
perfectly clear when we speak of “the” probability of an event. When
probabilities are assessed indirectly, the situation becomes more complex.
If two pieces are to be produced on some machine and wewish to assign

a probability to the event “two defectives,’ we may do so byfirst
assigning probabilities to the events “first: piece defective” and ‘‘second
piece defective.’’ If we do so, it is obvious that we are no longer dealing

with a single set of mutually exclusive events: all three of the events just

named may occur on a single two-piece run. A moment’s reflection will
also show that we may have to deal with more than one probability for

the same event: the probability which a reasonable man assigns to the

event ‘“‘second piece defective’? may well depend on the quality of the

first piece. In order to avoid confusion in discussing such situations we

must introduce the concepts of ‘joint’ and ‘‘conditional’’ probability

and with them the concepts of joint and conditional relative frequency.
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9.2.1 Joint Probability
The probability that two or more eventswill all occur will be called

the joint probability of these events. Thus we may talk about the joint

probability of ‘‘first piece defective”? and ‘‘second piece defective,’ or

about the joint probability of “rain tomorrow” and ‘‘demandfor 17 pairs
of rubbers.”’

It is important to observe that joint probability is in no sense a new

“kind” of probability; it is simply a new way of looking at certain prob-

abilities. The joint probability of ‘“‘first piece defective’’ and ‘‘second

piece defective” is exactly the same thing as the ordinary probability of

‘two defectives”; the new name simply reflects the new way in which we

look at this probability when we try to assess 1t indirectly rather than

directly.
In terms of frequencies rather than probabilities, the joint relative

frequency of several eventsis the ratio of the numberof trials on whichall

the events in question occur to the total numberof trials.

9.2.2 Conditional Probability

The probability which is assigned to an event A when it is known

that another event B has occurred, or which would be assigned to A if it

were known that B had occurred,will be called the conditional probability
of A given B. Thus we maytalk about the conditional probability of the
event ‘‘second piece defective” given the event “first piece defective”’ or

about the conditional probability of the event ‘‘demand for 17 pairs of
rubbers”’ given that the event ‘‘rain tomorrow”’ occurs.

To see how conditional probability is related to ordinary or uncondi-

tional probability, suppose that someone is thinking of betting on one
roll of a deformed die with faces 1, 2, and 3 colored red and faces 4, 5, and

6 colored green. The roll can result in any one of the six elementary
events described by the numbers 1 through 6 and in either of the com-

pound events ‘“‘red”’ or ‘‘green’’; we shall suppose that before the die is

rolled this person assigns the probabilities shown in Table 9.1 to the six

elementary events and computes the corresponding probabilities of the

two compound events also shown in that table. These are the “ordi-
nary,” “‘simple,” or unconditional probabilities of this problem.

Suppose now that after the die has been rolled this same person is

told that the event “‘red”’ has occurred but is not told which particular

one of the three elementary events 1, 2, or 3 has occurred; and suppose

that this person now wishes to assign new probabilities taking accountof

this limited additional information. Clearly any reasonable man placed

in this situation will assign probability 0 to the three elementary events

4, 5, and 6, since these events are impossible given the new information,

and will assign a total probability of 1 to the three elementary events 1,
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the same probability to events 1 and 2 in Table 9.2. Similarly the
original assignments in Table 9.1 showed indifference between the light

to receive a certain prize if event 3 occurred and the right to receive the
same prize if either event 1 or 2 occurred: the .20 probability assigned to
event 3 in Table 9.1 equals the total probability of events land2. Again

the new information had no relevance for the relative values of these two
chances, and again the probabilities of Table 9.2 agree with this fact: the
probability .50 assigned to event 3 equals the total probability assigned

to events 1 and 2.
Although our discussion has involved the actualeffect of information

which has already been received, it is obvious that exactly the same argu-

mentshold for the potential effect of information which might be received.
The reasonable man we have been discussing would say that if he learned

that the event ‘‘red’”’ had occurred, he would then assign to event 1 a

probability computed according to the formula

Unconditional probability of elementary event1 — .10 _
Unconditional probability of compound event “red” 40 — .29

and so forth. Generalizing from this example we mayassert that:

If e is an elementary event which is contained in a compound event A,
the only conditional probability which it is reasonable to assign to e

given A is the unconditional probability of e divided by the uncondi-

tional probability of A.

In our example, e was the event 1 and A wasthe event “‘red.”’
The conditional relative frequency of an elementary eventis related to

its unconditional relative frequency in exactly the same way that condi-

tional probability is related to unconditional probability. Suppose, for

example, that the die we have been discussing had in fact been rolled

200 times with the results shown in Table 9.3. By the conditional rela-

 

 

Table 9.3

Elementary Compound Relative
Occurrences

event event frequency

1 20 .10
2 20 .10
3 40 . 20

Red 80 .40

4 30 15
5 40 .20

6 50 25

120 ~ 60
Green 200 1.00
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tive frequency of event 1 given the event ‘‘red’’ we mean theratio

Number of occurrences of elementary event 1

Number of occurrences of compound event “‘red’’

Using the actual numbers of occurrences given in the third column of
Table 9.38 we can compute this ratio directly as 229 = .25, but we can

obtain exactly the same result by using the relative frequencies in the

third column: .10/.40 = .25. The latter calculation is formally identical

to the calculation used in computing conditional probability.

9.3. The Conditional Probability of Compound Events

The example discussed just above shows how a reasonable person

will compute the conditional probability of an elementary event given

that a particular compound event has occurred. Weshall now use a
simple urn example to show how the sameprinciple can be used to calcu-

late the conditional probability of a compound event given that some

other compound event has occurred.

Oneball is to be drawn from an urn containing 10 serially numbered
balls each of which is colored either red or green and in additionis either

dotted or striped; the detailed description of the balls is presented in
Table 9.4. The elementary events of this trial are the 10 numbers 1
through 10, but we shall be primarily interested in the compound events
‘red,’ “green,” ‘dotted,’ and ‘‘striped.’’ Drawing a dotted red
ball will be considered as the joint occurrence of the events ‘‘red’”’ and

“dotted’’ or as the occurrence of the joint event ‘red and dotted’’; and
similarly for the other combinations shown in Table 9.4. Weshall

Table 9.4

Serial
number Description

1-3 Red and dotted

4 Red andstriped

5-6 Green and dotted
7-10 Green and striped

assume that before any knowledge concerning the outcomeof this trial is

available we have assigned equal probability to all 10 elementary events.

The probabilities of the four joint events of Table 9.4 and the prob-

abilities of ‘‘red’’ and ‘‘green’”’ can then be computed as in Table 9.5,
and by similar logic we can show that the probability of the event
“dotted” is .3 + .2 = .5; these are the unconditional probabilities of this
problem.

Suppose now that the ball is actually drawn from the urn, that we

are told that the ball is red, and that we wish to revise the .5 probability

which we originally assigned to dotted in such a way as to take proper
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Table 9.5

Elementary y: Joint ey: Compound 1:
event Probability event Probability event Probability

1 1

2 1 Red and dotted .3)
3 1 , Red 4
4 1} Red andstriped 1,

° i} Green and dotted 2)

7 1 > Green 6

. ; Green and striped 4,

10 1

S —
t

S
o 1.0

account of this information. We observe immediately that since we

know that ‘‘red’”’ has occurred, the probability of ‘“‘dotted”’ is now the
same thing as the probability of ‘‘dotted and red’’—‘“‘ dotted and green”’

is impossible given the new information. The reasoning of Section 9.2.2

then tells us that we must multiply the probability of every elementary
event contained in the event ‘‘red”’ by 1/P(red), and this means that the

total probability of all the three elementary events contained in ‘‘red and
dotted’’ will be multiplied by 1/P(red). We conclude that the condi-
tional probability of ‘dotted’ given ‘‘red”’ is

Unconditional probability of ‘dotted and red’’
Unconditional probability of ‘‘red”’
 

a= = .0.

Geometrically, this reasoning can be visualized as follows. The

original or unconditional probabilities of the various compound andjoint
events of the problem are represented by areas in Figure 9.1. As soon as
we know that ‘‘red’”’ has occurred, the area of the ‘‘green”’ bar in this
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figure must be reduced to 0 and the area of the “‘red”’ bar increased to 1;
the altered diagram is shown as Figure 9.2. We must, however, leave the
proportions within the ‘‘red”’ bar unchanged when we changeits total
area in this way, since our new information gives us nojustification for

changing these proportions. Then since the area within the “red” bar
corresponding to ‘‘dotted”’ was .3/.4 = .75 of the original area of the
‘red’? bar, it becomes .75 of the entire diagram when the ‘‘red”’ baris
enlarged to become the entire diagram as in Figure 9.2.

Before we generalize this example, let us introduce some new nota-

tion which will simplify the statement of our results. In addition to the

symbol

P(A): the ordinary, simple, or unconditional probability of the

event A

we shall henceforth use

P(A|B): the conditional probability of the event A given the event B;

the probability assigned to A when it is known that B has occurred,

or which would be assigned to A if it were known that B had occurred.

P(A,B): the joint probability of the events A and B; the probability
that both A and B will occur.

In the mathematical theory of probability, conditional probability is

defined by the formula

 

P(A,B)
P(A|B) = P(B) Mathematical definition of conditional probability 

 

In talking about probabilities assigned to real events in the real world, we
defined P(A|B) quite differently, as the probability which a person would
in fact assign to A if he knew that B had occurred. Our urn example
shows, however, that a reasonable man will always assign conditional

probabilities in accordance with the mathematical definition, and there-
fore we may use the mathematical definition of conditional probability as a.

“formula”’ for assigning conditional probabilities in a real problem. Thus

when wecalculated the conditional probability of ‘‘dotted”’ given ‘‘red”’

weset

_ Pidotted, red) 3 _
P(dotted|red) = P(red) =4= .75.

Similarly, we would have for the conditional probability of ‘‘striped’”’

given ‘‘red”’

P(striped|red) =a= < = 25.
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Geometrically, this is the ratio of the area representing “striped and
red’ in Figure 9.1 to the area representing “red.’’ If we had wanted the
conditional probability of ‘red”’ given ‘dotted,’ i.e. if we had wanted to
know what probability should be assigned to ‘‘red”’ after being told that
the ball was dotted, we would first have used Table 9.5 or Figure 9.1 to
calculate the unconditional probability of ‘“‘dotted’”’ as .38+ .2 = .5.
We would then have had

P(red, dotted) _ .3
P(dotted) = .5

this is the ratio of the area representing ‘‘dotted and red”’ in Figure 9.1 to
the area representing ‘‘dotted.”’

The distinction between unconditional and conditional relative fre-

quencies 1s shown by the following definitions:

P(red|dotted) = = .60;

The ordinary or unconditional relative frequency of the event A is
the ratio of the number of occurrences of A to the total number of
trials.

The conditional relative frequency of A given B is the ratio of the
number of occurrences of both A and B to the numberof occurrences
of B.

If balls are drawn repeatedly from an urn,the ordinaryrelative frequency
of ‘‘dotted”’ is the ratio of the numberof times a dotted ball is drawn to
the total number of draws. The conditional relative frequency of

“dotted” given ‘‘red”’ is the ratio of the numberof times the ball is both
dotted and red to the numberof times theball is red.

 

 

Table 9.6

Event Number of Relative

occurrences frequency

Red and dotted 60 3

Red andstriped 20 al

Red 80 4
Green and dotted 40 2

Green andstriped 80 4

Green 120 _.6

200 1.0

 

To see how conditional relative frequencies of compound events are

actually computed, suppose that 200 draws from an urn haveactually
been made with the results shown in Table 9.6. We can then compute
the conditional relative frequency of “dotted” given ‘‘red”’ directly from

the numbers of occurrences as 6%) = .75, but we can equally well use
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the ratio of the corresponding relative frequencies: .3/.4 = .75.
Formally, the latter computation is identical to the computation of
conditional probability; again we see that the mathematical ‘“‘theory of
probability’? can be used either to compute probabilities from other
probabilities or to compute frequencies from other frequencies.

9.4 The Multiplication Rule

Although we shall have very frequent occasion to compute condi-

tional probabilities from joint probabilities when we come to Part Three

of the course, our interest in Part Two will be in using the definition of

conditional probability in reverse—we shall want to start with condi-

tional probabilities which have been directly assigned to certain events

and from these to calculate the unconditional probabilities of certain

joint events. The so-called multiplication rule for performing such

calculations is obtained by applying elementary algebra to the mathe-

matical definition of conditional probability given in the previous section:

 

P(A,B) = P(B) P(A|B) Multiplication rule

 

To see how this rule works, suppose that instead of starting with

probabilities assigned to joint events in our urn example we had started by

assigning the following unconditional and conditional probabilities:

P(red) = .4;

P(green) = .6;

P(dotted|red) = 34;
P(dotted|green) = 4.

We could then have applied the multiplication rule to compute such joint
probabilities as

P(red and dotted) = P(red) P(dotted|red) = .4 & 34 = .3.

The operation of the rule is depicted geometrically in Figure 9.3, which is
identical to Figure 9.1 except for the labeling. The bars for ‘‘red”’ and

6
 

Striped HfL

Dotted    
 

 

Red

Figure 9.3
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“sreen”’ constitute respectively .4 and .6 of the total area of the figure.
The area representing “‘dotted and red”’ is 34 of the area representing red;
the area representing ‘‘dotted and green” is 44 of the area representing
green. The calculation of P(red and dotted) which wascarried out just
above amounts simply to saying that the lower left-hand area in Figure

9.3 constitutes 34 X .4 = .3 of the total area of the diagram.
In terms of frequencies: if a red ball is drawn on .4 of all draws, andif

34 of the red balls are dotted, then the ball will be both red and dotted on
34 X .4 = .3 of all draws. We have thus computed a joint relative fre-
quency from an unconditional and a conditional relative frequency.

9.5 Statistical Independence

Suppose now that the mix of balls in an urn were such that we

assigned the probabilities depicted in Figure 9.4: the unconditional prob-

abilities assigned to “‘red’”’ and “green”’ arestill .4 and .6 respectively,

but the conditional probability of ‘‘dotted”’ given ‘“red”’ is now 14 and
identical to the conditional probability of ‘‘dotted”’ given “‘green.” It

is obvious that if the dotted area in each bar is 144 of the area of that bar,
then the total dotted area is 14 of the area of the entire figure. In other

words, the conditional probability of ‘‘dotted’”’ given ‘‘red’”’ is exactly the

same as the unconditional probability of ‘‘dotted.”’

 

WI,

Striped 2/3,

Dotted (Bete! atete

Red Green

Figure 9.4

 

   

In such a situation weshall say that the events ‘“‘dotted”’ and “‘red”’

are statistically independent. More generally, we say that events A and

B arestatistically independentif

 

P(A|B) = P(A) Condition of statistical independence

 

By considering ratios of areas in Figure 9.4 the student can easily con-

vince himself that if A is independentof B, then necessarily B is independ-
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ent of A. Thearea representing ‘‘red”’ constitutes .4 of the entiredia-
gram and at the same time “red, dotted”’ constitutes .4 of the total
‘“‘dotted”’ area; P(red) = P(red|dotted).

WhenA is independent of B, the multiplication rule reduces to

 

P(A,B) = P(B) P(A) Multiplication rule for independent events

 

The student is warned that one of the most common errors in the use of the

theory of probability is the application of this form of the multiplication rule

to events which are not independent.

PROBLEMS

In addition to studying Chapter 9, the student should review the discussion of the

third basic rule of probability in Section 1.3 before attempting to solve these problems.
1. An urn contains four kinds of balls in the mix shownin the table below; you

yourself have stirred the contents of the urn thoroughly and will make certain draw-
ings from the urn in such a way that you cannotsee the color of the ball before it is
drawn.

Description Numberof balls

Red and dotted
Red and striped
Green and dotted
Green and striped

=Oi
l
i
-
m
&

G
W

b
o

a. If you draw one ball from the urn and without lookingat it show it to someone
whotells you that it is red, what probability would you then assign to the event ‘‘red
and dotted’? To the event “dotted’’? To the event ‘‘red or dotted’’?

b. If after drawing a ball from the urn andseeing that it is red you are to draw a
second ball without replacing the first one, what probability would you assign to the

event ‘‘second ball green’’?
c. Same as (6) except that you have not seen that the first ball is red.

d. Same as (b) except that after the first ball is drawn and inspected you replace
it in the urn andstir the contents before making the second draw.

e. Give a frequency justification for your answers to parts a through d.

f. If you are to draw two balls from the urn replacing the first ball and stirring
the urn before the second is drawn, what probability would you assign to the event

‘fred followed by green”? To the event ‘‘green followed by red’’? To the event
‘fone red and one green ball’’?

g. Same as (f) except that the first ball is not to be replaced before the second
ball is drawn.

2. One thousand people are asked whether they listen to classical music on the
radio. Each person is also asked whetherhe has reached his thirtieth birthday and
whether he did or did not graduate from high school. The results of the survey are
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tabulated below. Compute the followingrelative frequencies of the event ‘‘listens to
classical music’’:
 

 

Age High school Listens Number

Under 30 Yes Yes 110

No 190

No Yes 10

No 90

30 or over Yes Yes 55

No 195

No Yes 125

No 225
1000
 

a. Unconditional.

b. Conditional given ‘‘under 30,” given ‘‘30 or over,” given ‘‘graduated,’’ given

‘not graduated.”

c. Conditional given ‘‘under 30 and graduated,” given ‘‘30 or over and gradu-

ated.”’

d. Would knowledge of age be useful in predicting whether a person listens to
classical music?

3. The tolerances for balls used in ball bearings are so tight that the balls cannot

be ground exactly to specified size. Instead, they are ground to approximatesize,
sorted into size groups, and then 100 per cent inspected for correct sizing. Even this
process does not always result in adequately accurate classification owing to ‘‘inspec-
tion fatigue,’’ a well-known phenomenon in 100 per cent inspection.

A manufacturer of ball bearings has determined by extensive investigations that

the first inspection of a lot of 10,000 balls removes about 200 incorrectly sorted balls

but that about 50 incorrectly sorted balls remain in the lot. He is thinking of using
200 or 300 per cent inspection (a commonpractice in this industry) instead of 100 per
cent. What improvement in quality do you believe he will obtain if he does this?

4, a. A very carefully made die is to be rolled twice. What expected value

would you assign to the right to receive $1 if one or both throws result in an ace?

(Hint: Compare Problem If.)
b. A very carefully made coin is to be tossed three times. What expected

value would you assign to the right to receive $1 if heads occurs on at least one of the
three tosses? (Hint: Write out all the elementary events and compute the probabil-
ity of the only one which is not contained in the compound event in which you are
interested.)

c. Two very carefully made coins are tossed together three times. What is the
probability that both coins will fall heads on at least one throw?

5. The XYZ Company manufactures a small cylindrical part used in a precision

assembly. The part will be rejected if it does not meet specifications as regards out-
of-roundness, taper, and average diameter. The fraction of all parts not meeting

these specifications has been:

Out-of-roundness: .03,
Taper: .04,

Average diameter: .05.

a. What probability would you assign to the rejection of any particular part if
you knew that the three kinds of defects are independent? (Hint: Compare Prob-
lem 4b.)
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b. When XYZ has manufactured a lot of these parts, a sample is drawn from
the lot and the lot is screened (100 per cent inspected) at a cost of $10 if there is a
single defective in the sample. What is the expected cost of screening perlot if the
sample consists of a single piece? Of three pieces?

c. How would you in practice determine whether the three kinds of defects are
independent?

6. A retailer stocks a product which deteriorates rapidly on the shelf. The
product costs the retailer $2; he prices it at $5 on the day it is stocked but reduces
the price to $1 on the following day. Product which has not been sold by the end of
the second day is scrapped at a total loss. The retailer assigns the probability distri-

butions shownin the table below to demandforthe fresh product and demandfor the

day-old product, and he asserts that because the fresh and day-old products are put
to different uses the demandfor one is unrelated to the demandfor the other. How
many units should he stock? (Hint: The events in the payoff table for this problem

are of the type ‘‘demandfor 2 units of fresh and demandfor 1 unit of day-old.’’)

 

  

 

Fresh product Day-old product

Demand Probability Demand Probability

0 0 0 1
1 3 1 2
2 4 2 3
3 3 3 3
4+ O- 4 1

5+ 0
1.0 1.0

 



CHAPTER 10

The Bernoulli Process: The Binomial Distribution

The output of a great many random processes encountered in practical

business problems can be described in terms of a numberof distinct trials

each of which has one or the other of just two possible results. Thus an
automatic screw machine turns out a number of separate parts which

may be classified simply as either good or defective, or the process of

drawing a sample of United States housewivesyields a numberof separate

respondents each of whom maybeclassified simply as a user or a nonuser

of instant coffee. In order to have a standard terminology to use in dis-
cussing all processes of this kind, we shall call one of the two possible
results of each trial a success and the other a failure. These namesare of

course completely arbitrary—wecan use either namefora defective orfor

a housewife who usesinstant coffee provided that we are consistent in any
one problem.

The simplest processes of this kind are those in which the same prob-
ability is assigned to a success on every future trial and will continueto be

assigned regardless of the outcomes of any future trials. Such trials are

known as Bernoulli trials with fixed probability. As wesaw in Section 1.6.1,

such an assignment of probabilities will be ratzonal only if we have adopted

a ‘‘model”’ of the process such that we are convinced that both the follow-

ing statements are true:

1. There is absolutely no pattern to the occurrences of successes and
failures; successes tend to occur with exactly the samefrequency
in the first as in the last part of a long run; successes tend to be
followed by failures exactly as frequently as failures are followed
by failures, and so forth.

2. The long-run fraction of successes is known with certainty, so that

experience with early trials in a sequence will not lead us to change
our minds about the value of this fraction.

A process which meets the first condition will be called a Bernoulli process
and the long-run fraction of successes which characterizes a Bernoulli
process will be called the parameter of the process; a process meeting both
conditions is therefore a Bernoulli process with known parameter.

It is trials and processes of this sort which weshall study in this and
the two following chapters. The analysis which must be made before

174
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we may rationally treat any real, physical process (e.g. an automatic

screw machine or a particular method of drawing a sample) as a Bernoulli

process with known parameter is somewhat more complex than it might

seem atfirst sight; but rather than discuss this reasoning in the abstract,

we shall start by simply assuming that we are dealing with situations
where adoption of this model of the real process is rational. In the
present chapter we shall derive the binomial probability distribution for

the number of successes in a specified number of Bernoulli trials, and in

the next chapter we shall derive the Pascal distribution for the numberof

Bernoulli trials required to obtain a specified number of successes. After

we have thus become familiar with the implications of the Bernoulli
model, we shall return in Chapter 12 to the question of its suitability in
particular real-world situations. We shall then be able to contrast the
conditions under which a probability distribution for number of suc-
cesses or numberof trials should be assessed by the methodof this chapter,
when it should be assessed by the method of Section 8.2, and whenstill

other methods are required.

10.1 A Numerical Example

To make the initial discussion concrete, assume that we wish to

assess the probability that exactly two aces will occur in five rolls of a

die when the probability of ace on any roll is and will be assessed at 1
regardless of the outcomes of any of these five rolls. Equivalently, we wish

to compute the long-run relative frequency with which two aces will

occurin five rolls of a die when aces and non-aces occur 2n no predictable

pattern and it is known that aces will occur on 14 of the individualrolls in
the long run.

Wefirst compute the probability of rolling exactly two aces (A) and
three non-aces (N) in the specified order AANNN. Since the probability
of an ace on anyroll is the sameregardless of the results of previousrolls,

the events are independent by definition; and by the multiplication rule

for independent events we have

P= 6% 56 56 56 = 1224776.

If we divide an infinite sequenceof rolls into groups of 5 consecutiverolls,

125¢276 of these groups will show the pattern AANNN.

We next observe that the probability or relative frequency is the

same for any other specified order. For example, the probability of

NANNA 1s

P = 56 6 6% MG = 1776-

Since the occurrence of two aces and three non-aces in any specified

order and their occurrence in anv other specified order are mutually
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exclusive events, we can get the probability of two aces and three non-aces
regardless of order by adding the probabilities of all the possible orders.
The possible orders are

AANNN NAANN NNAAN NNNAA
ANANN NANAN NNANA
ANNAN NANNA
ANNNA

or 10 in all. The probability of two aces in five trials is thus

P = 10 X 1234776 = 125%776.

If we divide an infinite sequence of rolls into groups of five consecutive
rolls, 1259776 of the groups will contain exactly two aces.

10.2 The Binomial Distribution

Let us now generalize this example by considering the probability of

r successes in 7 trials where the probability of a success is p on anytrial.

The symbol qg will denote the probability of a failure:¢ = 1— p. We

repeat that we assume that p will remain the same for every one of these n

trials regardless of the outcomes of any of them.

1. The probability of 7 successes and (n — r) failures in a specified

order 1s

(pXpxXpxX:--XpxXlqXaXKaq
::: XQO= pq.

(r factors) (n — r factors)

2. If we use the symbol C* to denote the number of possible orders in

which r successes can occur in 7 trials, then it can be shown that

n n!

Cr = ri(n — r)!

where by definition

mtL=1X2X3X4X°°*+ Xn

and is read ‘‘n factorial.’”’” To cover the casesr = O andr = n, we define

O! = 1.

3. Since the orders are mutually exclusive, the probability of exactly

r successes in 7 trials, regardless of order, is

 

Ps(r) = Crprqr Binomial probability

 

Example. In the problem of the probability of two acesin five rolls

of a die, n = 5, r = 2, and p = 1. Substituting these values in the
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binomial probability formula we have

Ps(2) = €2(26)?(%)°

= aia (6)(5)
10(36)7(36)°

= 10 X 1254776
as before.

10.2.1 The Random Variable * and the Binomial Distribution

Although for purposes of analysis we have broken downthe output
of a random process into a number7 of distinct trials, our real interest is

ll
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not in these individualtrials as such butin the “‘experiment”’ which con-

sists of all n individual trials taken as a whole. Using S to denotea suc-

cess and F a failure, we can describe an elementary event of such an experi-

ment by a sequence of n symbols of the form SSFSFS . .. , but we are

assuming in this chapter that we are interested only in the number r of
S’s in this sequence and not in the order in which the S’s and F’s occur.
Every conceivable outcome of the experiment will havea definite value r,

and therefore we may consider any r as a value of a random variable 7.

The symbol 7 will be used in the remainder of this course to denote
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the random variable “‘numberof successes” in any experiment where the
concept of number of successes has meaning. When the experiment

involves a Bernoulli process with known parameter and the probability of

each r can therefore be computed by the binomial formula given above,

weshall say that 7 is a binomial random variable. By using the binomial
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formula to compute the probability of every possible number of successes

(from 0 to n), we arrive at the complete binomial probability distribution.

The distribution for n = 5, p = .5 is shown in Figure 10.1 and can be

taken as representing the probabilities of various numbers of heads when

a ‘‘fair’’ coin is tossed five times. The distribution for n = 5, p = 46 1s
shown in Figure 10.2 and can be taken as representing the probabilities of

various numbers of aces when a “‘fair’’ die is rolled five times.
Parameters. Theformula P,(r) = C?p'q"—’ thus defines, not just one

distribution of 7, but a wholefamily of distributions, one for every possible

combination of values of mand p. Weshall call n and p the parameters of
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the binomial distribution. It is only after definite numerical values have

been assigned to the parameters that the binomial formula defines a
specific distribution of the random variable 7. To show the dependence
of the probabilities on the parameters n and p weshall often write

P,(rln,p), which should be read ‘“‘the probability of r given n and p.”

10.3 Cumulative Probabilities; Tables of the

Binomial Distribution

In many applications we need the probability, not of exactly r

successes, but of r or less successes or of more than r successes or of some-
thing of the sort. Graphically, such probabilities are represented by

the area of a tail of the distribution. The probability of three or more

successes when nm = 15, p = .33, or P3(¥ > 3ln = 15, p = .83), is repre-

sented by the shaded area in Figure 10.3.
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Cumulative probabilities can be computed exactly only by computing

all the included individual probabilities and adding, and the task becomes

very laborious when n is large and the r in ‘“‘r or more,” etc., is not close

to either 0 or n. For this reason tables have been published giving the

tail areas directly for certain values of n and p andall the possible values
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of r; and these tables can also be used to obtain individual probabilities

P,(# =r). A short set of tables of cumulative binomial probabilities is
given as Table I.f

10.8.1 The Use of Probability Tables in General

Before using any table or chart of cumulative probabilities, the

student must examine it to be clear on two points.

1. Which tatl 1s shown? Tables may show the area of either the

left or the right tail, but they never show both. Recall that the total

area of any probability distribution is 1, so that the area of one tail is
1 minus the area of the other tail. The white area in Figure 10.3 is
1 minus the shaded area.

2. How far does the tatl extend? Tables may show the probability of

r or more successes, P(¥ > r), or they may show the probability of more

than r successes, P(¥ > 7); and similarly if it is the left tail which is
shown.

The various tables and charts which weshall use in this course are
not all the same in these respects, although of course any one table
or chart is internally consistent.

Table I of the binomial distribution shows P,(¥ > r), in other words the

area of the right tail of the distribution including the probability of r itself.

The value .9167 given opposite r = 3 in the table for n = 15, p = .33 is
P(r > 3\n = 15, p = .33) and correspondsto the shaded area in Figure
10.3. Other cumulative probabilities and individual probabilities can be

very simply obtained as is shownin the following examples for n = 15,
p = .33, the distribution graphed in Figure 10.3.

To find P,(7 > 3): this is the same as P,(7 > 4); read .7829 opposite
r= 4,

To find Px < 3): this is 1 — P,(¥ > 3); read .9167 opposite r = 3,
and compute 1 — .9167 = .0833.

To find P,(7 < 3): this is 1 — Pi(r > 4); read .7829 opposite r = 4

and compute 1 — .7829 = .2171.

To find P,(*¥ = 3): this is P,(F > 3) — P(F > 4); read these two
probabilities and compute .9167 — .7829 = .1338.

To use the tables when p > .50, rephrase the problem in terms of

q=1-—p. For example, to find the probability that a machine will
produce 12 or more defectives in a lot of 15 when the probability is .67

that any individual piece will be defective: look up instead the probability
that there will be three or less good pieces when the probability is .33

+ For very complete tables, see ‘‘Tables of the Cumulative Binomial Probability
Distribution,’ Annals of the Computation Laboratory of Harvard University, vol.

XXXV, Harvard University Press, Cambridge, Mass., 1955.
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that any individual piece will be good. This probability is .2171 as shown

above.

PROBLEMS

1. A coin is to be tossed seven times. What probability should be assigned to
the following numbers of heads by a person whois firmly convinced that the coin is
“fair 77?

a. Exactly 3. b. 3 or more.

c. More than 3. d. 3 or less.

e. Less than 3. f. Between 3 and 5 inclusive.
2. An automatic machineis to be used to produce 100 pieces. What probability

should be assigned to the following numbers of defectives by a person whois firmly

convinced that the machine can be represented as a Bernoulli process producing 10 per

cent defectives on the average?
a. Exactly 10. b. 10 orless.
c. Less than 10. d. 10 or more.
e. More than 10. f. Between 10 and 15 inclusive.

3. Using the same vertical and horizontal scales in both cases, sketch a smooth
curve approximating the histogram of the probability distribution for numberdefec-
tive 7 in lots produced by a Bernoulli process with p = .4
a. Whenthelot size n = 10. b. When thelot size n = 100.

The heights of all the bars in the histogram for n = 10 should be computed and
plotted before the curveis fitted, but in fitting the curve for nm = 100 it will suffice to
compute and plot the heights for every other value of 7 from 30 to 50.

4. a. Same as Problem 3 but use fraction defective r/n as the horizontal scale
rather than number defective r. Remember that the vertical scale of a histogram
shows probability per unit width and that it is the area of the bar which corresponds

to probability itself. Thus P:(7 = 3\p = .4, n = 10) = .2150 gives the area of the

bar for r/n = &%{ 9 = .3. Since the adjacent values of 7/n are .2 and .4, the edgesof

the bar for .3 are at .25 and .35 and the bar has width .1. Thensince the area of the

bar is .215 andits width is .1, its height P’ is .215/.1 = 2.15. Similarly the height of

the bar for r/n = .3 when n = 100 is .0100/.01 = 1.0.

b. Can you approximate the binomial distribution for n = 200, p = .3, by using

the distribution for n = 100, p = .3, and multiplying all values of r by 2?
5. Graph the binomial cumulative distribution P,(¥ <r) for p = .4,n = 10.
6. a. The ABC Company takes 10 successive parts as they are produced by a

particular machine and inspects them. If the machineis in fact in such a state that
it can be treated as a Bernoulli process producing 5 per cent defectives on the average,
whatis the probability that the pieces drawn for this sample will be good or defective

in the order gggdggdggg?
b. The XYZ Companydraws 10 parts from a lot of 40 purchased parts. If the

lot is in fact 5 per cent defective, does your answerto (a) give the probability that the
pieces drawn from the sample will be good or defective in the order gggdggdggg?
(Hint: Whatis the probability that the secondpiece will be goodif one good piece has
already been removed from the lot?)

%. A certain machine is readjusted by the ABC Companyif an inspector finds
three or more defectives in a sample of 10 taken from the output of the machine.
What is the probability that the machine will be readjusted when it is producing
2 per cent defectives on the average? Whenit is producing 5 per cent defectives?
10 per cent? 20 percent? 30 percent? 40 percent? 50 percent? 60 percent?

Graph the conditional probability of acceptance (1.e. the probability that the

machine will not be readjusted) against the process per cent defective, showing per cent
defective on the horizontal axis and probability of acceptance on the vertical axis.
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This is an example of a “‘single-sample decision rule” and its ‘‘operating charac-
teristic.”

8. The XYZ Company purchases a certain part in lots of 40. A sample of 10 is
drawn from eachlot and the lot is rejected if the inspector finds three or more defec-
tives in the sample. Does the operating characteristic of Problem 7 give the prob-
ability that a lot will be accepted

a. If the lof contains a certain per cent defective?
b. If the process producing the lot producesa certain per cent defective?
9. A process producing transistors can be treated as a Bernoulli process with an

average yield of 30 per cent: on the average, 30 per cent of the pieces are good. What
are the probabilities of the following numbersof defectives in a lot of 100 pieces?
a. Exactly 70. b. Less than 70.
c. 70 orless. d. More than 70.
e. 70 or more.



CHAPTER 11

The Bernoulli Process: The Pascal Distribution

In Chapter 10 we derived the binomial distribution for the nwmber of

successes in a specified number of Bernoullt trials. In this chapter weshall

derive the Pascal distribution for the number of Bernoulli trials required to

secure a specified number of successes. Weshall then see that the expecta-
tions of the binomial and the Pascal distributions can be easily obtained
from tables in the same way that binomial and Pascal probabilities can
be obtained from tables.

11.1 The Pascal Distribution

Suppose that we wish to know the probability that exactly five rolls

of a “fair” die will be required to secure two aces—i.e., the probability
that the second ace will occur on thefifth roll. We proceed exactly as we

did in deriving the binomial] distribution: wefirst get the probability of

one specified order in which this event can occur and we then add the
probabilities of all possible orders.

One possible order in which the event “second ace on fifth roll” can
occur is ANNNA, andits probability is

P= %% % % MK = 134776.

The probability is the same for any other specified order. For NNANA,
for example, it is

P= 5 56 6% MG = 1254776.

So far the argument is exactly lke the one used in deriving the
binomial distribution, but there is a difference when we cometo counting

the number of possible orders. Since by the definition of the problem
there must be an A in thefifth place, the possible orders are only 4 in
number, not 10:

ANNNA,
NANNA,
NNANA,
NNNAA,

183
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The probability of each of these orders is the same and the orders are

mutually exclusive, so that the required probability is

P=4X 1254776.

In general, the probability that it will take exactly n trials to secure

r successes in a specified order 1s

pq".

Since the rth success must occur on the nth trial, the numberof possible

orders depends on the arrangementof thefirst r — 1 successes within the
first n — 1 trials: it is C"-/. Thus the probability that exactly n trials
will be required to secure r successes regardless of the positions of the

first 7 — 1 successes is

 

Ppa(n) = C™pq" Pascal probability

 

Byinserting specific numerical values for r, p, and gq = 1 — pim this
formula and then computing the probability of every possible number of

trials n, we arrive at the complete probability distribution of the Pascal

random variable 7.
Parameters. Just hike the binomial formula, the general Pascal

formula C'7}p’q"’ defines not one distribution of % but a whole family of
distributions, one for every possible combination of values of r and p.
The quantities r and p are thus the parameters of the Pascal distribution
of the random variable 7, just as nm and p were the parameters of the
binomial distribution of the random variable 7.

The distributions for r = 3 with p = .2, .8, and .9 are shown in
Figure 11.1. Notice that whereas the binomial variable 7 must have a
value between 0 and v inclusive, the Pascal variable can have any value

from r to infinity. Obviously we cannot get r successes in less than 7
trials, but the probability that it will take, say, 1000 trials to secure three

successes is not 0 for any value of p other than 0 or 1.

11.2 Tables of the Pascal Distribution

In many applications we need the probability, not that the required

number of trials 7 will have exactly some particular value n, but that the

required number will be less than n, greater than n, or something of the

sort. Graphically, such probabilities are represented by the area of a tail
of the distribution—the probability that five or more trials will be
required to secure three successes when p = .2, .8, or .9 is represented by

the shaded areas in Figure 11.1. Again as in the case of the binomialdis-



11.2 The Pascal Distribution 185

tribution, the labor of computing and summing the areas of the indi-

vidual bars in a tail can be avoided by use of published tables.
Tables of the Pascal distribution for a few selected values of r and p

are shown as Table 11.1. These tables show Pp.(f%i > n), that is the area
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of the right tail including the barfor n itself. Thus Pr.(f# > 5/3, .8), the
shaded area in Figure 11.1), is given as .181 opposite n = 5 in the table
for p = .8 and the columnfor r = 3.

Other cumulative probabilities such as Ppa(#i < n) and individual
probabilities Ppa(#% = n) can be obtained by procedures just like those

described in Section 10.3.1.
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Table 11.1

Pascal Distribution

Ppa(t > nr, p)

p= .2

r=1 r=2 r=3 rz 4 r=5

n P n Pp n Pp n Pp n Pp n P n P n Pp

1 1.000 41 .008 41 .028 41 .076
2 .800 2 1.000 42 .007 42 .024 42 .066
3. .640 3 .960 3 1.000 43 .006 43 .021 43 .058
4 ,5§12 4 .896 4 .992 44 .005 4 1.000 44 .018 44 .051
5 .410 5 .819 5 .973 45 .004 5 .998 45 .015 45 .044

6 .328 6 .737 6 .942 46 .003 6 .993 46 .013 6 1.000 46 .038
7 .262 7 .655 7 .901 47 .003 7 .983 47 .0O11 7 .998 47 .033
8 .210 8 .577 8 .852 48 .002 8 .967 48 .009 8 .995 48 .029
9 .168 9 .503 9 .797 49 .002 9 .944 49 .008 9 .990 49 .025
10 .134 10 .486 10 .738 50 .002 10 .914 50 .007 10 .980 50 .021

11 .107 11 .876 «£11 +=«=.678 51 .001 11 #«=.879 51 .006 11 +=#.967 51 .018
12 .086 12 .322 12 .617 52 .001 12 .839 52 .005 12 .950 52 .016
13 .069 13 .275 13 «.558 53 .001 18 .795 53 .004 13 .927 53 .014
14 .055 14 .234 14 #42~«.502 54 .001 14 .747 54 .003 14 .901 54 .012
15 .044 15 .198 15 .448 55 .001 15 .698 55 .003 15 .870 55 .010

16 .0385 16 .167 16 =«.398 56 .001 16 .648 56 .002 16 .8386 56 .009
17 .028 17 .141 17 1.3852 57 .000 17 .598 57 .002 17 .798 57 .007
18 .023 18 .118 18 .310 18 .549 58 .002 18 .758 58 .006
19 .018 19 .099 19 .271 19 .501 59 .001 19 .716 59 .005
20 .014 20 .0838 20 .237 20 .455 60 .001 20 .673 60 .005

21 .012 21 .069 21 .206 21 .411 61 .001 21 .630 61 .004
22 .009 22 .058 22 .179 22 .370 62 .001 22 .586 62 .003
23 .007 23 .048 23 =«.154 23 .332 63 .001 23 .543 63 .003
24 .006 24 .040 24 .133 24 .297 64 .001 24 .501 64 .002
25 .005 25 .033 25 .115 25 .264 65 .000 25 .460 65 .002

26 .004 26 .027 26 .098 26 .234 26 .421 66 .002
27 .003 27 .023 27 .084 27 .207 27 ~=.383 67 .001
28 .002 28 .019 28 .072 28 .182 28 .348 68 .001
29 .002 29 .015 29.061 29 .160 29 .315 69 .001
30 .002 30 .013 30 .052 30. =©.140 30} .284 70 .001

31 .001 31 #.011 31 «.044 31 .123 31 .255 71 .001
32 .001 32 .009 32 .037 32 (107 32 .229 72 .001
33 .001 33 .007 33 .032 33 .093 33 .204 73 .001
34 .001 34 .006 34 .027 34 .081 34 .182 74 .000
35 .001 35 .005 35 .023 35 .070 35 .162

36 .000 36 .004 36 .019 36 .061 36 .1438
37 .003 37 .016 37 =.052 37 .127
38 .003 38 .013 38 .045 38 .112
39 .002 39 .011 39 .039 39 .099
40 .002 40 .009 40 .033 40 .087
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Table 11.1 (Continued)

p = .8

r=1 r =2 r=3 r= 4 r = 10 rz=lil r=15 r= 16

n P n P n Pp n Pp n P n P n Pp n P

1 1.000 11 1.000 16 1.000
2 .200 2 1.000 12 .914 17 .972

3 .040 3 #.360 3 1.000 13.725 18 .882
4 .008 4 .104 4 .488 4 1.000 14 .498 19 .729
5 .002 5 .027 #5 «.181 5 «.590 10 1.000 15 .302 15 1.000 20 .545

6 .000 6 .007 6 .058 6. .263 11 +=«2«.893 16 .164 16 .965 21 .370
7 .002 7 .O17 7 .099 12 .678 17 .082 17 .859 22 .231
8 .000 8 .005 8 .0383 13 .442 18 .038 18 .690 238 .133

9 .001 9 .010 14 .253 19 .016 19 .499 24 .072
10 .000 10 .003 15 .180 20 .007 20 .327 25 .036

li .001 16 .061 21 .003 21 .196 26 .017
12 .000 17 .027 22 .001 22 .109 27 .008

18 .011 23 .000 23 .056 28 .003
19 .004 24 .027 29 .O01
20 .002 25 .013 30 .001

21 .OO1 26 .006 31 .000
22 .000 27 ~=.002

28 .001
29 .000

p= .9

r=1 = 2 r=3 = 4 r = 10 r= 11 r = 15 r= 16

n Pp n Pp n Pp n Pp n Pp n Pp n P n P

1 1.000 11 1.000 16 1.000
2 .100 2 1.000 12 .686 17 .815
3 .010 3 .190 3 1.000 13.341 18 .518
4 .001 4 .028 4 .271 4 1.000 14. .134 19 .266
5 .000 5 .004 5 .052 5 .344 10 1.000 15 .044 15 1.000 20 .115

6 .000 6 .009 6 .081 11 .651 16 .013 16 .794 21 .043
7 .001 7 .016 12 .303 17 .003 17 .485 22 4.014
8 .000 8 .003 138 .111 18 .001 18 .2388 23 .004

9 .000 14 .034 19 .000 19 .098 24 .001
15 .009 20 .0385 25 .000

16 .002 21 .Ol1
17 ~.001 22 .003
18 .000 23 ~«2«. O01

24 .000
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11.2.1 Pascal Probabilities from Binomial Tables

In actual practice, tables of the Pascal distribution as such are not

published because the probabilities can be obtained from tables of the

binomial distribution. Although Table 11.1 gives all Pascal probabilities
required to solve the required problems assigned in this course, we shall give

the relation between the two distributions in case a student wishes
to try his hand at other problems. Therelation rests on the following
arguments:

1. If there are r or more successesin thefirst n trials, then it took n

or less trials to obtain the first r successes.

2. If, on the contrary, there are less than r successes in thefirst n
trials, then it will take more than n trials to obtain r successes. t

Therefore

Pral(t < n|r, Dp) = PF = rin, DP),

Peli > nr, p) — Gs < rin, Dp).

For example: the Pascal probability Pp.(% < 5|3, .2) that five or less
trials will be required to obtain three successes when p = .2 can be found

by looking up the binomial probability P,(# > 3/5, .2) that there will be
three or more successes in five trials when p = .2. This is given as .0579

by Table I. We check by observing that

Pp,(fi <5) = 1— Pp,(a > 8).

The probability on the right is given as .942 by the Pascal table in this

chapter; and 1 — .942 = .058, which is the same to three decimal places

as the probability given by the binomial table.

11.3 Expectations

11.8.1 Expectations of a Binomial Random Variable

In Table 11.2 the method of Section 5.2.4 is used to compute all

partial expectations of the binomial random variable 7 for the case n = 5,
p = .3, the required probabilities P,(r) being taken from Table I. The

‘“‘complete”’ or ordinary expectation of 7—the mean of the distribution of
7—1is 1.500; two of the partial expectations are

Ei(7) = .360; s(F) = .978.

t Such relations are not quite so obvious as they seem. It is not true, for example,
that 7 <n implies 7 >r. We can get three successesin less thanfive trials andstill
have only three successes in all five trials.
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Table 11.2

Cumulative
r P3(7r) r P(r) sum

0 .168 0 0

1 .360 . 360 . 360

2 .309 .618 .978

3 .132 .396 1.374

4 .029 .116 1.490

5 .002 .010 1.500

1.000 1.500
-

The labor of computation can be lightened in problems involving

expectations by making use of the fact that if # has a binomial distribu-
tion, then

 

(7) = np PF <r — 1|n — 1, p) Binomial partial expectation

 

For example: if n = 5 and p = .3, then

RF) = 5 X .38Po(F¥ <2 —-—1\n = 5 —1,p = .8).

In the binomial tables for n = 4, p = .8, we find

Pi(F < 1) = 1 — .348 = .652.

Wethen havefor the partial expectation 5 X .3 X .652 = .978, the same
result we obtained by direct computation in Table 11.2.

The complete or ordinary expectation of 7, obtained by summing

r P(r) for all possible r, can be written

K(7) = Ej(7).

Substituting n for r in the formula for the partial expectation we obtain

K(?) = np Po(F <n — 1Aln — 1, p).

The probability in this formula is obviously 1 since the number of suc-
cesses in n — 1 trials cannot be greater than n — 1, and therefore this

_ result reduces to

 

K(f) = np Expected number of successes, binomial distribution
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11.8.2 Expectations of a Pascal Random Variable

If the random variable % has a Pascal distribution, its partial expecta-

tion is given by the formula

 

Er(7#) = Peli < n + Ilr + 1, p) Pascal partial expectation

S
i
s

 

Instead of E>(7#) we could equally well have written E?(7%), since Pp,(n!

and therefore n Pp.(n) is 0 for all n less than r—we cannotget r successe:

in less thanr trials.
The “complete” or ordinary expectation of #—-the mean of the

Pascal distribution of #——is obtained whenall possible values of 7%, from
n=rton = ©, are included in the expectation. In this case the prob

ability in the formula for the partial expectation becomes Pp,(fi < ©)

this probability is obviously 1 and therefore

 

E(w) = - Expected number of trials, Pascal distribution

 

PROBLEMS

1. A personis firmly convinced that a process producing transistors can be repre-
sented as a Bernoulli process with an average yield of 20 per cent: on the average,
20 per cent of the pieces are good. What probability should he assign to the proposi-
tion that the following numbers of pieces will have to be manufactured in order to

secure five good pieces?
a. Exactly 23. b. Less than 23.

c. 23 or less. d. More than 23.

e. 23 or more.
2. A Bernoulli process is known to produce 10 per cent defectives. What prob-

ability should be assigned to the proposition that the following numbersof pieceswill
have to be produced in order to secure 15 good pieces?
a. Exactly 20. b. Less than 20.
c. 20 or less. d. More than 20.

e. 20 or more.
3. Using the samevertical and horizontal scales in both cases, sketch a smooth curve

approximating the histogram of the probability distribution for number of pieces 7%

which must be produced to fill an order when the pieces are produced by a Bernoulli

process with a yield of .8 and the orderis for

a. 4 good pieces. b. 16 good pieces.
4, a. Same as Problem 3 but instead of the total required 7 use the ratio n/r of

total required to numbergood as the horizontal scale. Remember that the vertical

scale should show P’ and not P, and review Chapter 10, Problem 4, before plotting

any points.
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b. Can you approximate the Pascal distribution for r = 500, p = .8, by using
the distribution for r = 5, p = .8 and multiplying all the values of by 100?

5. According to Chapter 10, Problem 7, the ABC Companyreadjusts a certain
machine if the inspector finds three or more defectives in a sample of 10. It costs $2
to inspect one piece; and since the outcomeis certain as soon as the third defectiveis
found, the company decides to reduce the cost of inspection by stopping inspection
as soon as the third defective is found. The process will be accepted (i.e., will not be
readjusted) only if less than three defectives have been found when all 10 pieces in
the sample have been inspected.

a. If the process is in fact producing 20 per cent defectives on the average, what
is the expected cost of sampling under this plan? Compute (1) by weighting each
possible cost by its probability and also (2) by using the formula for the proper
partial expectation.

b. Optional: requires use of binomial tables. Using the formula for the proper
partial expectation, find the expected sample size given that the process averageis 2,
5, 10, 20, 30, 40, 50, and 60 per cent. Plot these expected sizes against the process

average.

This is the ASN (average sample number) curve of a partially curtailed single-
sample plan. The plan would be fully curtailed if inspection were stopped as
soon as either three defectives or eight good pieces were found.

6. In June, 1955, the Warner Aircraft Engine Company received an order for

10 spare ring gears from New England Airlines. The ring gear was the largest and
most expensive of the gears in the system which drives the propeller. The Warner
Companycarried in stock part No. 21573, the gear blanks from which thering gears
would be made. This gear blank was a standard size, used in many airplanes. The
number of teeth, however, was nonstandard. When New England Airlines had
boughtthe airplanes in which these gears were used its management had decided that
flying requirements peculiar to this airline necessitated a gear ratio slightly higher than
standard, and Warner had designed a special gear train accordingly. No otherair-
lines used this ratio, and New England wason the point of replacing its aircraft by a
new type with a different engine. Upon inquiry, the production manager of the
Warner Company learned that the lot of 10 ring gears would almost certainly last
until New England’s current aircraft had been entirely replaced.

The gear blank cost Warner about $50 each to make. Thefirst step in the
machining process was hobbing. Setup for this operation was very expensive, cost-
ing about $500, but the direct cost of hobbing an extra gear was negligible so long as

the machine’s capacity of 25 gears at one time was not exceeded. After hobbing,
each gear was individually subjected to a series of drilling, grinding, and finishing
operations, the total cost of which was $90 per gear. The machined gears were then
heat-treated at a cost of about $10 per gear, after which they were subjected to a hard-
ness test the cost of which was negligible.

Heat-treatment was exceedingly difficult to control. The test for hardness had
rigid specifications, and the Warner Company had had considerable difficulty in meet-
ing standards on this type of gear in the past. The table on page 192 shows the num-
ber of gears put into production and the numberpassing the hardness test for 10 recent
lots of gears made from part No. 21573.

In answering the following questions, assume that the heat-treating process can
legitimately be treated as a Bernoulli process with known parameter and assumethat
if a rerun is required the amount of material scheduled for the rerun will be exactly
right.
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Number Number Numberpassing
heat-treated hardness test

1 20 18

2 16 12

3 16 11

4 18 16

5 10 7

6 15 14

7 20 16

8 12 7

9 19 15

10 14 12

 

a. If extra material is scheduled as a scrap allowance, how much processing should

be done on this material?
b. Give a common-sense reason why the parameter of the process should be esti-

mated by theratio total-good to total-treated rather than by averaging the recorded

fractions good. |
c. What is the optimum allowance?
d. What is the cost of uncertainty?
e. What is the cost of irrationality if the production orderis 1 unit greater than

optimum? 1 unit less?
f. Compute the range of values of K. for which your answer to (c) is optimal

and discussthecriticality of the assessment of the value of K, in this case.
g. If 14 pieces are heat-treated, what is the expected numberof good pieces short?

(As in computing any expectation, list all possible values of the variable ‘‘number
short,’’ multiply each by its probability, and add the products. Notice carefully
that number short means numberof good pieces required minus numberactually pro-
duced on theinitial run; it does not mean serial number of Gth good piece minusserial
numberof last piece scheduled on theinitial run.)

h. What is the conditional expected size of shortage, given that a shortage occurs?

(Hint: (g) asks you to average the total shortage in a long series of runs overall runs;
(h) asks you to average the total shortage over only those runs in which a shortage

occurred.|

7. (Optional) It was pointed out in Section 8.3 that second-orderlosses in scrap-
allowance problems maylegitimately be neglected only under special circumstances

but that it is usually extremely difficult to make an exact allowance for these losses.

Exact computation is possible, however, when both (a) the required numberof good
pieces is small and (b) the process producing the pieces is a Bernoulli process with

known parameter p. The nature of the procedurein this case can be suggested by the

following hints:
a. If Q*(G) is the best number of pieces to schedule when G good pieces are

required on an initial order, it will also be the best number to schedule on any rerun

intended to fill out a shortage of G good pieces.
b. If we already know the best numberof pieces to schedule when one good piece

is required and if we propose to schedule Q pieces when two are required, then

C(2|Q) = D(Q) + C*(1) PQ) + C@I@) PI)
_ DQ) +.C*(1) PUIQ)

I — P(2/Q)
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where C(2|Q) = total expected cost of filling a requirement for two pieces if Q pieces
are scheduled on theinitial run and also on any rerun intended to
produce two good pieces

D(Q) total cost (including setup) of manufacturing Q pieces

C*(1) = minimum total expected cost of filling a requirement for one good
piece, obtained by scheduling Q*(1) pieces when one good pieceis
required

P(S|Q) = probability of a shortage of size S if Q pieces are scheduled on a run
intended to produce two good pieces

Compute the optimum production order Q*(8) to fill a requirement for G = 3

good pieces when variable manufacturing cost is $10 per piece, setup cost is $1000, and
the long-run fraction good of the processis .8.



CHAPTER 12

Conditional Models and Marginal Probability

In the two preceding chapters we have computed probabilities on the

assumption that it was reasonable to assign the same probability to a
success on each of a sequenceof futuretrials and to continue to assign this
same probability to the remaining trials regardless of the outcomesof the
earlier trials in the sequence. We now turn to examine the conditions

under which it zs reasonable to do this.

12.1 The Definition of a Bernoulli Process

Consider first the process which consists in rolling a die. It has
already been remarked repeatedly that broad experience with physical

processes of this general nature—not just previous experience with any

one particular die—leads us to certain conclusions concerning what would

happenif this die and an extremely large numberof apparently identical

dice wereall rolled in the same way an extremely large numberof times.

Using p to denote the fraction of aces occurring onall rolls of all dice
together, we can state the conclusions as follows:

1. Looking at the recordof all dice together, we would find that the
fraction of aces on all the first rolls was equal to p, the fraction

on all the 100th rolls was equal to p, and similarly for all the one-
millionth rolls and so forth. The processis stable.

2. Looking at the record of any one die, we would find that the frac-
tion of aces on rolls following an ace was equal to p, the fraction
of aces on rolls following a run of two aces was equal to p, and
similarly for the fraction on rolls following the pattern deuce-
trey or any other pattern whatsoever. The individual trials are
independent.

Because this die-rolling process is believed to meet the two conditions
of stability and independence,it is by definition a Bernoulli process with
parameter p. We remind the student again of the point emphasized in

Section 1.6.1: the quantity p describes this process—morestrictly,
describes our model of the real process—in the same sense that another

process may be described by the mean diameterof the pieces it produces
194
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or by the rms voltage it generates. Weshall see later that it is only
under certain conditions that the probability of a success on a particular
future trial can be set equal to this parameter p.

Consider next a process which consists of the impact extrusion of
aluminum cups from aluminum pellets. Before we may legitimately
adopt a Bernoulli modelof this process, we must satisfy ourselves that the
occurrences of defective cups will meet the same two conditions of
stability and independence which we have stated above for the occur-
rences of aces in die rolling. Very often they will not be met in practice.

1. It is quite possible that the process is such that the conditions
determining the long-run fraction defective p will not remain the same
over time. Two cases must be distinguished.

a. If, for example, the extrusion dies are subject to appreciable wear,

the tendency to produce defectives will increase steadily with time. The
process is not stable and therefore cannot be represented as a Bernoulli
process.

b. If, for example, the pellets are themselves produced by a batch

process, some batches of pellets may tend to yield more defective cups

than others. In this case a Bernoulli model may apply to the processing

of any one batch, but no single Bernoulli model (nosingle value of 7)
will apply to the entire output of the extrusion process. The processis
only conditionally stable.

2. It is quite possible that the process is such that defectives tend to
be followed by defectives more or less frequently than good pieces are

followed by defectives. If, for example, batchesof pellets differ in quality

and a run is made using pellets from several batches which have not been

thoroughly mixed, defectives will tend to occur in streaks. Thetrials
are not independent and the Bernoulli model does not apply.

Notice that the only real distinction between lack of stability and lack of

independence lies in the kind of information which indicates a change in
the process parameter p.

1. If we know that p changes with time, the passage of timeis ‘‘ owt-

side’? information whichindicates that p has changed and wesay that the
process is not stable. The samethingis true if p changes from batch te
batch of raw material and we can identify the batch being used; and in

this case we believe vice versa that as long as we are using the same batch

of material the process zs (conditionally) stable and can be treated as a
Bernoulli process.

2. If, on the contrary, the only indication of a change in 7 is the out-
put of the process ttself, we say that the trials are not independent. If we
cannot identify a pellet as coming from a particular batch of material, the
only evidence that we have cometo a group of pellets from a poor batch
will be the actual occurrence of defectives.

This discussion should suffice to makeit clear that before adopting a
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Bernoulli model of any real process we must look not only at the “direct’’

evidence,i.e. the actual record of previous successes and failures, but also

at the ‘“‘indirect’’ evidence, i.e. at what we know about the physical

mechanism as such. Wedo not believe that successiverolls of a die are
independent because we haverolled that particular die a great numberof

times and counted fractions of aces—webelieve it because webelieve that
in all such processes the mechanism is such that the occurrenceof an ace

on one roll neither affects the result of the next roll nor indicates that the

mechanism is in a state which tends to produce a different fraction of

aces. If, however, we do observe a surprisingly long streak of aces or a

surprising number of streaks in rolling someparticular die, we ordinarily

reconsider our opinion and look for some mechanism peculiar to that die

which might account for this behavior.

It is thus very important to exercise due caution before basing

decisions on a Bernoulli modelof a real process, but it is equally important

not to be disturbed by the fact that it is rarely if ever that a real process

can be exactly represented by a Bernoulli model. In almostall practical

decision problems it would be extremely difficult if not flatly impossible

to analyze a model which took account of everything we know or believe

about the real world; and an approximately correct analysis of a problem

is far better than no rational analysis at all. We have already seen and

we shall continue to see numerous examples of the fact that reasonably

small errors in the statement of a problem rarely lead to a decision which

is materially less profitable than the true best decision.

In some cases, furthermore, a separate, explicit allowance can be

made for differences between the actual behavior of a process and the

behavior of a Bernoulli model. To give just one very common example:

it very often happensthat an above-average fraction of defectives is pro-

duced while a process is being brought into adjustmentafter a setup or a

tool change. If we can make a separate estimate of the defectives which

will be produced in this way, we may well be able to assume a Bernoulli

model for the remainderof the run.

12.2 The Parameter of the Process

Suppose, then, that we havesatisfied ourselves that somereal process

can be reasonably well represented by a Bernoulli model: we havestill
said nothing about the actual numerical value of the process parameter p,

the long-run fraction of successes. As we pointed out in Section 1.6, two

cases must be sharply distinguished.

12.2.1 Known Parameter

If we have had very great direct experience with some process, we

may feel that for the practical purpose at hand we know the value of the
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parameter p which characterizes the process. If we have rolled a die
tens of thousands of times and have observed that ace came up with rela-
tive frequency .15, we will feel practically certain that ace will continue to
comeup with relative frequency .15 on the average. If we have observed
that 15 per cent of the last 50,000 pieces turned out by some machine have

been defective and if we have no reason to believe that the condition of
the machine has changed during this time, we mayfeel practically certain

that if no observable changes are madein the condition of the machine in

the future it will continue to turn out 15 per cent defectives on the

average.
In such cases we are justified, as we saw in Section 1.6.1, in assigning

the probability .15 to success on any trial in a future sequence and in

continuing to assign this same probability regardless of the outcomes of

the earlier trials in the sequence. This statement has three separate
implications:

1. As of now weassign the same (simple) probability .15 to success

on the last trial of any sequencethat weassign on thefirst, etc. (stability).
2. As of now, we assign the same (conditional) probability .15 to

success on any trial following a success that we assign on any trial follow-

ing a failure, etc. (independence).

3. Wewill continue to assign this same probability .15 to success on

the later trials in a sequence regardless of the outcomesof theearlier trials

in the sequence (known parameter).
Thefirst two implications follow from our conviction that the process

behaves as a Bernoulli process. The third follows from thefact that our

past experience with the fraction of successes generated by the process 1s over-

whelmingly great in comparison with what we can learn by observing a
(relatively) few more trials. If, for example, we wish to compute prob-

abilities concerning the odtcomesof 10 rolls of the die or a production run

of 10 pieces, we may well feel that we would not materially lower our

assessment p = .15 even if the first nine trials all resulted in failure or

raise it if the first nine trials all resulted in success.

When and only when all three of these conditions are met, we are

justified in using the binomial formula to compute the probability

of r successes in n trials or in using the Pascal formula to compute

the probability that n trials will be required to produce r successes.

12.2.2 Unknown Parameter

We have just said that we cannot legitimately treat the process

parameter as known and continue to assign the same probability to

success unless our past experience is overwhelming relative to the new

experience we will gain in the new sequence of trials we are about to con-

duct. If this is not true, then the outcomes of the earlier trials in this
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new sequence should lead us to modify our estimate of the process param-

eter p and therefore the probability which we subsequently assign to
successes. But if this is true, then the basic assumption underlying the

binomial and Pascal distributions is violated, and therefore the probability

distribution of * is not binomial and the distribution of i is not Pascal. In

this case these distributions give only the long-run relative frequency
with which certain events will occur if the process parameter p in fact
has some particular numerical value, and therefore they give only condi-

tional probabilities for these events.
This is probably the most commonstate of affairs whenwe are trying

to apply the theory of probability to practical business problems: our

general knowledge of the way a process works convinces us that it is (at
least approximately) a Bernoulli process with some parameter p, but we
do not know the value of p. Lot-to-lot variation in the machinability of

raw material, for example, may prevent us from getting enough experi-
ence to know p for the material to be used in the next production run even

though weare convinced that as long as this batch lasts the processwill

meet the Bernoulli conditions of stability and independence.

In pure logic, of course, we either know p or we do not: if the occur-

rence of an unbroken string of 1 million successes should change our

assessment of the probability of a success on the nexttrial, then the
occurrence of a single success should change our assessment for the

following trial by some amount. Weare really makinguse of an approxi-

mation whenever we treat a parameter as known in any practical prob-
lem— weare saying that the sequenceof trials for which we are computing
probabilities is so short that our assessment of p could not be changed

materially, i.e. by enough to affect the decision or the expected costs, and

that therefore it is not worth the trouble of taking this change into

account at all. Our next problem is to find cut how to compute prob-

abilities when the sequence of trials in which weareinterested 1s so long
relative to our past experience that the outcomes of the earlier trials of

the sequence could lead to a material change in our estimate of p.

12.3 Allowance for the Two Kinds of Uncertainty;

Marginal Probabilities

In any situation where we have adopted a Bernoulli model of a
process but do not know the value of the parameterof the process, we can

say that we have two kinds of uncertainty concerning the random variable
r or 7: the “‘Bernoulli uncertainty’’ which we would have if we knew p,

and additional uncertainty due to the fact that we do not know the value
of p. A rational probability distribution for 7 or % must take full account

of both these kinds of uncertainty, and we shall now see how such a prob-

ability distribution can be assessed.
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12.3.1 The Random Variable p and Its Probability Distribution

Considerfirst an extremely simple example which will bring out the
essential points. We are presented with an urn containing three badly

deformed dice and are informed that extensive experimentation with
these dice has shown that two of them turn up ace with long-run relative
frequency p = .24 while the other one has p = .09. We draw oneof the

dice from the urn, inspect it carefully, and become convinced that
although deformed it will nevertheless meet the Bernoulli conditions of

independence and stability: p may not be 46 as it would bein the case of a
fair die, but we believe that the fraction of aces following aces will never-

theless be the sameas the fraction following non-ace, etc., and that the
tendency to produce ace will not change as we makerepeatedrolls of the

die.
In the situation just. described, the actual drawing of one die from

the three in the urnis a trial with three possible elementary events, two

of which give a long-run fraction defective p = .24 and one of which
gives p = .09. The two numbers .24 and .09 are thus valwes assigned to

the possible events of a trial and may therefore be considered as values of

a random variable p.

When the parameter of a Bernoulli process is unknown, this parame-

ter becomes the basic random variable in any problem in which the

output of the process is involved.

Before we can assign probabilities to the possible events of a roll or
rolls of our die, we mustfirst assign probabilities to the possible values of

the basic random variable # which characterizes the die-rolling process
itself. This part of the problem corresponds exactly to the assessment of

the distribution of the random variable f in Section 8.2—the student will

recall that any stable process generating successes and failures in a

sequence of distinct trials can be characterized either by the long-run

ratio p of successes to trials or by the long-run ratio p of trials to successes.

In our present problem the most obvious thing is to argue that since

there were three dice in the urn and we know that two of them have
p = .24 while one has p = .09, there is probability 24 that we havea die
with p = .24 and probability 44 that we have the die with p = .09. In
other words, we may assign equal probabilities to the three elementary

events and from these deduce the probabilities of the events j = .09 and
p = .24 as wedid in Section 3.1. We have emphasized repeatedly, how-

ever, that all available information must be used in assessing any prob-

ability; and in this situation the information on the numberof dice of

each type in the urn is not the only information available, since informa-

tion can be obtained by inspecting the die which has been drawn. It may
well be that the shape of the die is such that it seems highly improbab’
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that ace would turn up as frequently as it does whena fair dieis rolled,
and on the basis of this observation we might be willing to bet at odds of
four to one, say, that we have in hand the die with long-run fraction .09.

To emphasize the fact that probability assessments should often
rest more on judgment than on mere mechanical calculations, we shall
assume in what follows that these are in fact the odds which we consider
fair: probability .8 1s in fact assigned to the event 6 = .09, and therefore
probability .2 is assigned to the event = .24. In algebraic notation:

P(p = .09) = .8,
P(p .24) = .2.

12.3.2 The Marginal Distribution of

Probability of Success on Any One Trial. Considerfirst the problem
of determining the probability that any roll of this die will yield an ace—
we shall call this a success. If we knew that the process parameter
p = .09 for this die, we would assign probability .09 to a success on oneroll,
and therefore .09 can be called the conditional probability of a success
given p = .09. Similarly .24 is the conditional probability of a success
given p = .24.

The unconditional probability of a success on a single roll is then
computed in the way shown in Table 12.1. The probability .072 in the
last column is the probability which weassign to the joint event that both
(1) the process parameter or basic random variable # has the value .09
and (2) this process yields a success. Similarly the probability .048 in
the last columnis the probability that both (1) 6 = .24 and (2) theroll
yields a success. Since these two joint events are mutually exclusive,
the probability that one or the other will occur is .072 + .048 = .120;
and since these two joint events representall the possible waysof getting a
success, .120 is the probability we must assign to a success.

 

 

Table 12.1

Conditional Joint
Value p of the P(p) probability probability

basic random variable
P;(success|p) P(success,p)

.09 8 .09 .072
24 _.2 24 .048

1.0 .120

 

Notice carefully that this probability .120 applies to any oneroll; it is
the probability which we assign to success on thefirst roll; it is also the
probability which on the basis of the evidence now available we assign to
success on the 100th roll. Notice further that this same number .120 can
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also be interpreted as the expected value of the basic random variable 6
itself :

The unconditional probability of a success on a single Bernoulli trial

is equal to the expected value of the process parameter jp.

Probability of r Successes in n Trials. Consider next the problem of

determining the probability that two successive rolls will both yield suc-

cesses, P(¥ = 2|n = 2). If we knew that we had the die with p = .09,
we would now assign probability .09 to success on thefirst roll, and after
the first roll had been made we would assign probability .09 to success on

the second roll regardless of the outcome of the first roll. The probability
that both rolls would yield a success would therefore be .09? = .0081.

In the actual problem, however, this is only a conditional prob-

ability given p = .09, and we denote it by Pi(7 = 2|n = 2,6 = .09). A
similar argument gives .247 = .0576 as the conditional probability

P,(¥ = 2|\n = 2, 6 = .24). We then compute the unconditional prob-
ability P(? = 2|n = 2) as .018 by exactly the same kind of reasoning used
in Table 12.1; the work is shown in Table 12.2.

 

 

 

Table 12.2

p P(p) Pi(F = 2\p) P(F = 2, p)

09 8 0081 .00648
24 2 .0576 01152

1.0 .01800

 

In Table 12.3 the unconditional probability of every possible number

of successes in two rolls is computed by the method of Table 12.2,

 

 

 

 

 

Table 12.3

r p _ P(p) Pi(F = r\p) P(r,p) P(r)

0 09 8 8281 66248
24 2 5776 11552

1.0 77800
. .09 8 1638 13104

24 2 3648 07296
1.0 . 20400

2 .09 8 0081 00648
24 2 0576 01152

~~ 1.0 01800
 

1.00000
-
 

the conditional probabilities P,(? = r|p) being taken from the binomial

tables for n = 2. Observeparticularly that



202 Random Processes and Derived Probabilities 12.3.2

The unconditional probability of any value of Ff is simply a weighted

average of the conditional probabilities of that value of * given each
possible value of 6, the probabilities of the values of 6 being used as
the weights.

Marginal Probability. In Table 12.4 the joint probabilities and
totals of Table 12.3 are laid out in a different form. The following

points should be particularly observed:

1. The body of the table gives the joint probability of every possible
p, r combination, i.e. of every possible joint event.

2. The margins of the table give the unconditional probability of

every possible p (right margin) and every possible r (bottom
Margin).

For this reason the unconditional probabilities assigned to the values of
p and 7 in Table 12.4 are often called marginal probabilities. A marginal

 

 

 

 

Table 12.4

r

p Total

0 1 2

.09: .66248 .138104 .00648 . 80000

24: .11552 .07296 .01152 . 20000

Total . 77800 . 20400 .01800 1.00000

 

probability is simply an unconditional probability computed in a par-

ticular way, namely by adding a numberof joint probabilities.
Marginal Cumulative Probabilities. Consider next the problem of

assessing the probability that there will be 11 or more aces in thefirst

50 rolls. By the method of Table 12.3 we could compute the marginal
probabilities of all numbers from 11 to 50 and add. It is much simpler,

however, to consider the occurrence of 11 or more aces as a single event

and then to compute the probability of this event by the method of Table

12.2. From the binomial tables we find directly that the conditional

probability of 11 or more successes given p = .09 is .0043 and that the

same probability given p = .24 is .6822. The marginal probability of 11

or more successes is then computed as approximately .140 in Table 12.5.

 

 

 

Table 12.5

Pp P(p) Ps(F > 11|p) PF > 11, p)

.09 8 .0043 .00344

24 2 6822 13644

1.0 . 13988
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Contrast with Binomial Probabilities. In Table 12.1 we showed that
the marginal probability of a success on any one trial was equal to the
expected value of #; numerically it was .12. Let us now compare the |

correct probabilities obtained for our problem in Tables 12.3 and 12.5
with the binomial probabilities which we would have obtained if we had

assigned probability .12 to ace on every future roll regardless of the out-
comes of the earlier rolls in a sequence.

The results of Table 12.3 are contrasted with binomial] probabilities
for 2 = 2, p = .12 in Table 12.6. The student should notice in particu-

 

 

  

Table 12.6

, Correct Binomial

probability probability

0 .7780 1744

1 . 2040 .2112

2 .0180 .0144

1.0000 1.0000

 

lar that the correct probabilities are higher than the binomial for the extreme
values r = 0 and 2 and lower for the middle value r = 1. A much more

striking result of the same kind holds for the probability of 11 or more

successes in 50 trials: whereas Table 12.5 shows that in our problem this
probability 1s approximately .140, the binomial probability with p = .12
is only .032.

As a still more striking example of the essential point involved in
these comparisons, suppose that a two-headed coin is placed in one
envelope and a two-tailed coin in another, that we are to choose one of
the two envelopes and then toss the coin it contains, and that we assign

probability 144 to the event ‘“‘choose the coin with two heads.”’ Under
these circumstances the probability we assign to the event “‘heads”’ or

one toss of the chosen coin will be 44, just as 1t would be if we were to tos
an ordinary coin which we believed to be “‘fair.””’ If, however, we are to
toss the chosen coin 100 times, the probability distribution which we

assign to the random variable ‘‘number of heads”’ will be totally different
from the binomial distribution: we will assign probability 14 to each of

the extreme values ‘100 heads”’ and ‘‘0 heads”’ and 0 probability to all

other values.

12.3.8 Unconditional Expected Value

Suppose now that we are to roll our deformed die 101 times and
that after the rolls have been observed we are to be paid as follows.

If ace has occurred once, we shall receive $1; if ace has occurred twice,

we shall receive $2; and so forth up to and including a payment of $13
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for 13 aces; but if the numberof aces is either 0 or above 13, we shall

receive nothing. We wish to compute the expected value of this set of

conditional payments.

One way of proceeding would be to use the method of Table 12.3 to

compute the (marginal) probability of each possible numberof aces from

1 to 13; we could then multiply the payment corresponding to each

number by the probability of that number and add the products. It is

much simpler, however, to proceed as we did when we computed marginal

cumulative probabilities: we can compute the conditional expected value

of the set of payments given each of the two possible values of p and then

compute the unconditional expected value from these conditional values.

Computation of the Conditional Expected Values. If we knew the

value of p for the die we have drawn, we could compute the expected

value of the set of payments by using binomial tables to find the numer-
ical values of the probabilities in the body of Table 12.7 and substituting

these values in the table. Not knowing p, we could compute the condi-

tional expected value for p = .09 by substituting the conditional binomial

probabilities given p = .09 and similarly for p = .24.

 

 

Table 12.7

. Ps = rip) Conditional Expectation

payment given p

0 Ps(F = Olp) $1 x0 $1 X 0 X PilF = Olp)
1 Ps(? = 1p) $11 $1 X 1X Ps(F = 1p)
2 P(F = 2|p) $1 x2 $1 X 2X Pil? = 2I|p)

13 Ps(# = 13|p) $1 xX 13 $1 X 13 X P(F = 13}p)
 

total

 

These conditional expected values can be obtained much moreeasily,

however, by observing that the total of the last columnis simply $1 times

the sum of a set of terms each of which has the form r P(r). By defini-

tion, this sum is the partial expectation of * over the interval r = 0 to
r = 13, so that in our problem the conditional expected value is given

by the formula

CEV = $1 E7*(F).

Since 7 is conditionally a binomial variable, we can evaluate the partial
expectation by the formula in Section 11.3.1:

CEV = $1 X np Pi(# <r — 1\n — 1,p)
= $1 X 101p P.(# < 12|n = 100,p).
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Substituting the two possible values of # and using the binomial tables to

evaluate the probability in the formula we get the two conditional
expected values for our problem:

Given p .09, CEV = $101 X .09 X .8862 = $8.06;
Given p = .24, CEV = $101 X .24 & .0021 = $ .05.

Computation of Unconditional Expected Value. We now look at our

problem as follows. If the basic random variable # = .09, our whole set

of conditional rights can be thought of as a single lottery ticket worth

$8.06; if 6 = .24, we have a different ticket worth $.05. We thus know
the conditional value of our ticket given each possible value of the basic
random variable, and we can therefore proceed as in Table 12.8 to com-

pute the (unconditional) expected value of these conditional (expected)

values just as if they were ordinary conditional values.

 

 

Table 12.8

Conditional Expected
P P(p) value value

.09 8 $8 .06 $6.45

24 2 .05 01

1.0 $6.46

 

When Is the Process Parameter Known? We can now state much
more clearly than we did before the condition under which the parameter

of a Bernoulli process may legitimately be treated as ‘‘known with cer-

tainty.”” In virtually any real situation we have some uncertainty about

the value of p, and therefore we shouldin principle assign a probability
distribution to # and compute the unconditional expected cost of each
possible decision by the method just described or its equivalent. In

other words, we should take a weighted average of the conditional profits
(or costs or losses) attached to the various possible values of 6, using the
probabilities of the various values as the weights. If, however, the values

of # which receive appreciable weights—i.e. the values which are con-

sidered at all likely—are all within a very narrow range, the weighted

average profit will be nearly the sameas the conditional profit attached to

some value of # near the middle of the range.

Whenwetreat # as known, weare simply using a short cut to get an

approximate answer to our problem; the short cut is legitimate if it
is accurate enough to lead to a decision which is not materially worse
than the decision we would choose as the result of more accurate
computations.
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12.4 Application to Production Problems

Weare now in a position to understand the basic principles under-
lying the conditions which determine whetherthe distribution of 7 or #
in a given practical problem must be assessed by the method of Section

8.2, by use of the simple binomial or Pascal distribution, by the method of

marginal probabilities described just above, or by some quite different
method. We shall summarize this chapter by stating these conditions
even though it sometimes requires statistical theory which we have not
studied to decide whether the conditions are or are not met in a given
practical situation.

1. All of the methods we have studied thus far for assessing the
probability distribution of ¥ or % apply only to Bernoulli processes. Before

applying any of these methods to a practical problem we must therefore
first make sure that it 1s reasonable to answerthe following two questions

in the affirmative.
a. Are the trials independent? As we havestated before, the answer

to this question usually dependsat least as much on expert knowledge of

the physical nature of the process as on statistical examination of the
pattern of previous successes and failures generated by the process.

Quite obviously questions involving the physical nature of the process

should be put to a person whois an expert in processesof the sort involved;
they are not questionsfor the statistician. The statistician, on the other

hand,is the proper person to examinethe record of previous successes and

failures, since it is only he who can tell whetheror not the streaks of

successes or failures in the record are excessive or are only such as might

be expected from genuinely independent trials. The method by which
this is done is beyond the scopeof this course.

b. Is the process stable? Again the answer depends partly on

knowledge of the general nature of the process and onlyin part on statis-

tical analysis. The production engineer or the master mechanic is the

person whowill know, for example, whether tool wearis likely to have a
material effect on the fraction defective during a run of the size being con-

templated. Statistical analysis will be of help only if the fraction defec-
tive has been recorded separately for the first and last parts of one or
more long runs made in the past; in this case these separate fractions

defective will show whether there has been substantial variation in p
within runs.

2. If both these questions are answered in the affirmative, then we are

dealing in the general case with a Bernoulli process with unknown parameter
and we must apply the method of this chapter to allow for both kinds of

uncertainty—the uncertainty concerning # itself and the uncertainty
which we would have concerning f or # 1f we knew j. We muststart by

using our previous experience with the process or similar processes to
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assess a probability distribution for # on the proposed run—the method
by which we do this will be discussed in a moment—and we must then

compute the marginal distribution of 7 or 7. There are two special

cases, however, in which we maydisregard one or the other of these two
kinds of uncertainty as being negligible in comparison with the other.

a. The answers to Chapter 10, Problem 4, and Chapter 11, Problem

4, suggest that as the run size increases the variability of the fraction

defective or the ratio of total to good decreases; in Chapter 16 weshall

learn how we can actually measure this variability and we shall then see

that it decreases with the square root of the run size n or the required
number of good pieces r. If then the proposed run or required number

of good piecesis large and at the same timethere is considerable uncer-
tainty about the long-run fraction p or ratio p = 1/(1 — p), Bernoulli

uncertainty may be negligible in comparison with the uncertainty about
the process parameter. This was the situation in Section 8.2.

b. If there is very considerable recorded experience with the process

to be used, it may be that there is very little uncertainty concerning the

value which p will have during the proposed new run. This will be the
case if the fraction defective has been recorded in a fair numberof past
runs, if there is little variability among these recorded fractions, and if
there is no reason to suspect that the conditions surrounding the new run

will differ materially from those which surrounded the past runs. If then
this recorded variability is small relative to the Bernoulli variability in
runs of the size of the proposed new run,it will usually be legitimate to

treat the process parameter as known. Inthis case the distributions of

* and % can be obtained directly from the binomial and Pascal distribu-

tions as was done in Chapters 10 and 11.

12.4.1 Practical Assessment of the Distribution of p

To assess the probability distribution of the long-run fraction defec-

tive or process parameter, we must makeuse of our past experience with
the process in question or with similar processes. Whenthereislittle or

no directly applicable experience, this assessment must be almost wholly

subjective, just as the assessment of the probability of ace was wholly

subjective in the example discussed in Section 12.3.1 above. When on

the contrary we have almost exact knowledge of the values held by j ina
fair number of past runs made under conditions which are identical (so

far as we know)to the conditions under which the new run will be made,
we can assess the distribution by more objective methods, usually by

plotting the observed valuesof # as fractile estimates and fitting a smooth

curve to these points. In principle this was what wedid in Section 8.2,

although for convenience we there smoothed a plot of p = 1/(1 — #)

rather than of @ itself.

Observe, however, that we can never besure that the fraction defec-
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tive observedin any runis a true reading on the value of during that run
or that an observedratio of total to good is a true reading on the value of
p: no run is ever of infinite length. The procedure used in Section 8.2
was legitimate because the recorded runs wereso long that the Bernoulli
variation in these runs was negligible compared with the variation in p. It
is beyond thescope of this course to discuss the problem of assessing the

distribution of # or p when the past record consists of fractions defective
in short runs or in small samples from long runs.

PROBLEMS

1. The following probability distribution is assigned to the process average defec-
tive of a machine which can be treated as a Bernoulli process.

p P(p)

12 25
15 et)
.20 35

1.00

a. What is the probability that any one piece will be defective?

6. Compute the probability distribution for number of defectives 7 in a run of
three pieces.

c. Compute cumulative probabilities P(F > 20\n = 100) and PF < 5|n = 50).
d. Compare the answers to (b) and (c) with the answers which would have been

obtained if the process had had a known process average equal to the probability of a
defective found in answerto (a).

2. Compute the probability distribution for the number of pieces which must be
producedin orderto obtain four good pieces when the production process can be treated
as a Bernoulli process and the distribution of the process average fraction defective is

given by the following table.

p P(p)

10 7
20 _.3

1.0

3. If a baseball player has batted .300 during the season, can you use any method
studied thus far to assess the probability that he will get no hits in three times at bat
in the next game? Discuss fully.

4. A person responsiblefor setting a scrap allowance says that while the historical
scrap rate is 10 per cent, this figure is based on very little experience and that he does
not feel at all certain that it will hold in the future. He has norecordsat all to show
variation in scrap rate from run to run. How should he proceed?

5. If in the situation of Chapter 8, Problem 8, production of 1200 assemblies
yielded only 950 good units, what method would you use to computethe distribution
of ? or % on a rerun intendedto fill out the shortage of 50 good units? Discuss fully
but do not make actual computations.



CHAPTER 13

The Poisson Process: The Poisson Distribution

In the previous three chapters we have studied Bernoulli processes which

consist of a series of separate trials with a constant probability of success

on each trial. In this chapter we shall study a kind of process which

cannot usefully be thought of as consisting of a series of separate trials

although the probability of a successis still ‘‘constant”’ in somewhat the
same sense as in the Bernoulli process. This new kind of process will be

called a Potsson process. |
As an example of a problem involving a Poisson process, consider a

machine which is continuously insulating electric wire and which from

time to time produces a pinhole defect in the insulation. The machine

has produced 1500 defects in the last 1000 feet of wire inspected, or 1.5
defects per foot on the average, and we wish to assess the probabilities
that there will be 0, 1, 2, etc., defects in the next 2 feet of wire which the

machine will produce.

After carefully investigating the process and failing to discover any

“assignable cause’? for the defects—i.e. any cause which’ produces

defects in predictable places—most people would be willing to bet that a

defect wasas likely to occur at any one ‘‘point”’ as at any other: the prob-

ability of a defect is constant from point to point. 'The numberof “‘ points”’
on even the shortest piece of wire cannot be counted, however; and

although it is probably true that strictly speaking the numberof places
where a defect may occuris finite, even these ‘‘places’’ cannot be identi-

fied or counted practically. Consequently we can neither assess the

probability of a defect at an individual point by looking at the past ratio
of defects to points nor apply the binomial formula to compute the

required probabilities of 0, 1, 2, etc., defects in 2 feet.

13.) The Poisson Distribution

After brooding about infinity for a while, the person responsible for
the assessment might decide that one possible way of solving the problem
is to use an approximation. The 2 feet of wire can be thought of as.

divided into a numberof fairly short segments—say 10—and each of

these can be treated as a Bernoulli trial. Since each segment will be
209
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2/9 foot long, the average numberof defects per segment is 1.5 X .2 = .3;

and we would therefore set the probability of a defect on any ‘“‘trial’’ at
.3. The distribution of the number7 of defects in 10 trials or segments

could then be computed by simply using the binomial distribution for

n= 10, p = .3.
The difficulty with this idea is that there might be two defects in a

single segment of the wire, and this violates the assumptions from which

the binomial distribution is derived. A piece produced by a punch press
is either good or defective but it is never two defectives. Suppose, how-

ever, that the 2 feet of wire is divided into 100 segments rather than
10 and that the probability of a defect in any segmentis set at .03 instead

of .8. We might feel fairly confident that the probability of two defects
in a segment only #09 foot long is so small that it can be neglected for

practical decisions, thus making the assumptions underlying the binomial

formula apply. But if reducing the size of the unit which we are going to
consider a trial improves the validity of our assumptions, it naturally
occurs to us to think of reducing thesize still further; and we shall now

look systematically at what happensif we do.
Observefirst that in both cases described above we divided the 2 feet

of wire into a number nv of smaller units and then assessed the probability

of a defect in a single small unit in such a way that pn always had the

same value, 3. The expected numberof successes in a binomial distribu-
tion is pn, so that what we are doing is going from one binomial distri-

bution to another, increasing the value of n (numberof trials) but decreasing

p in such a way that the expected number of successes remains constant.
In Figure 13.1a we show four different binomial distributions all of which

have pn = 3, and in Figure 13.1b we show the same distributions in

cumulative form. The value of n for each distribution 1s shown in the
figure and the values of p correspond as shown in Table 13.1.

Table 13.1

n P

10 .30

20 .15

50 .06

150 .02

When weexamine these two figures we see that the shapeof the dis-

tribution at first changes substantially with a fairly small change in 7 but
then changes very little for a very large change in n. In both figures it
seems that as 7 increases the distribution approaches a limiting form.

it looks as if the curve will come closer and closer to this form as we
increase n further and further, and it can be proved mathematically that

this is true. There 1s some value of n above which the difference between the

binomial distribution and this limiting distribution is smaller, at all points,
than any previously specified amount however small, This limiting form of
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Figure 13.1. Binomial distributions with Poisson limit. np = 3.
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the binomial distribution is known as the Poisson distribution and is
shown in the figures with the label n = ~.

Let us now generalize what we have done. We observefirst that

whereas a Bernoulli process is characterized by the probability of a
success on any trial, a Poisson process is characterized by the expected
number of successes per unit of space. This numberis the parameter of the
Poisson process; it is often called the intensity of the process. It will be
denoted by the letter kappa: we define

x: expected number of successes per unit of space.

In our examplethe intensity of the process was x = 1.5 defects per unit of

length; other Poisson processes may generate x = 14 defects per unit of

area, x = 37 telephonecalls per unit of time, etc.

In dealing with a Bernoulli process we wished to find probabilities
for various numbers of successes in a specified numberof trials which we

denoted by n. In dealing with a Poisson process we wish to find prob-
abilities for various numbers of successes in a specified amount of space
which weshall denote by

¢: amount of space within which the successes are to be counted.

In our example the specified space was t = 2 feet; in other problemsit

might be ¢ = 4 square feet or t = 27 minutes.
In analyzing our example wefirst computed the expected number of

successes in the specified space; this was

1.5 defects per foot K 2 feet = 3 defects.

Jn general we shall denote such expectations by the symbol

= xt: the expected number of successes in the specified space.

The student must keep clearly in mind the distinction between x, the

expected number of successes per unit of space, and m, the expected
number of successes in the space specified in the problem at hand.

Wethen considered a series of binomial distributions in all of which
the expected numberof successes pn had the same value 3 as the m of our
problem; and we observed that as p became smaller and n becamecor-

respondingly larger these distributions approached a limiting form which

depended only on the product of the values of « and ¢ in our example and
not on the values of «x and ¢ separately. We could have used the same

set of binomial distributions and we would have found the samelimit in

a problem in which, for example, x = .001 and ¢ = 3000. In general,

The probability that a Poisson process generating x successes per
unit of space will generate r successes in space ¢ depends only on the
product m = xt;
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it is given by the formula

 

=FT Poisson probability

 

where e is a constant equal to 2.718 - --. MThestudent will not have to

use this formula directly since we shall look up Poisson probabilities on a
chart rather than actually compute them; but he should observe that «

and ¢ occur in the formula only in the combination xt = m.

13.2 Chart of the Poisson Distribution

The cumulative Poisson probability of r or more successes, i.e. the

area of the right tail of the distribution including the bar for r itself, is
shown in Chart I for values of m from .1 to 30 and for values of 7 from
1 to 52.¢, The chart is used in exactly the same way as Table I of the

binomial distribution. For example: to find the probability of three or
more successes when the expected numberof successes 1s m = 2, locate 2

on the horizontal axis, read up to the curve for r = 3, and read across

to find P = .82.
Individual Poisson probabilities can be read from the same chart by

using the relation

PF =r) = PF >r) —-PF Ort).

13.3. Expectations of a Poisson Variable

The mean of any Poisson distribution or ordinary expectation of the
Poisson random variable 7 is obviously equal to the mean of the binomial

distributions of which it is the limit:

  

E(7) = xt =m Mean of the Poisson distribution

 

Similarly the partial expectation over the range 0 to r inclusive is the

limit of the binomial partial expectation as n increases while np remains

equal to m:

 

o(7) = m Pp(F < rim) Poisson partial expectation

 

+ For very extensive tables of the Poisson distribution, see E. C. Molina, “ Pois-
son’s Exponential Binomial Limit,’’ D. Van Nostrand Company,Inc., Princeton, N.J.,
1942.
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13.4 Applicability of the Poisson Model

Since the Poisson model is simply a limiting case of the Bernoulli
model, the questions we must ask before using the Poisson distribution

to compute probabilities in any real problem are virtually identical to the
questions we must ask before using the binomial distribution. These
questions were thoroughly discussed in Chapter 12, which the student
should review carefully before proceeding further. In particular he

should recall that the questions are of two separate kinds: they concern:

1. The applicability of the model as such.
2. The extent of our knowledge concerning the parameter of the

model.

18.4.1 The Definition of the Poisson Process

The conditions defining the Bernoulli process as such were stability

and independence, and it is the same two conditions which define a
Poisson process. In order to apply them in the new context we need only

recall that in deriving the Poissondistribution in thefirst part of this

chapter we assumed that if we divided ‘‘space”’ into small enough seg-

ments, we could treat the occurrence of two successes in any one segment
as practically impossible. This carries the implication that when suc-

cesses are generated by a Poisson process,

Successes never occur simultaneously; there is always some measur-

able interval between any pair.

Provided that this condition is met by a real process, we can think of
space or time as being divided into segments or ‘‘instants’’ so short that
none of them contains more than one success; and what wearereally

asserting when we adopt a Poisson model is that these very short seg-
ments or instants can be treated as Bernoulli trials. The conditions of
stability and independence can then be stated in words identical to those

used for a Bernoulli process except that “‘instant”’ is substituted for
“trial.”

Application to a Process Producing Defects. As a first example of

the application of the Poisson model to a real process, let us reconsider
the machine insulating electric wire which we used as an example at the
beginning of this chapter.

1. We must ask ourselves whether we have reason to believe that
the process 1s stable. If raw material is supplied in batches, the average
number of defects per foot may vary from batch to batch. It may be

that a Poisson model applies only conditionally, i.e. to the output of any

one batch of material, and not to the entire output of the machine.
2. We must ask ourselves whether the defects are independent. If
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defects are due in part to inadequately mixed lumps within a batch of

raw material, there will be short-run fluctuations in the process param-
eter; and if this is true there will be more feet of wire with very high
numbers of defects and more with very low numbers than there would be
if the material were homogeneous(cf. Table 12.6). In this case we cannot

use the Poisson model at all, since we cannot know whenthe processwill

be operating under one set of conditions and when it will be under

another.

Application to Breakage of Machine Paris. As a second example,

consider a ‘“‘process’”? which generates accidental breakages of some

machine part.

1. The process can be considered stable only if it is reasonable to

believe that both the quantity and the severity of the usage of the part

are constant. If there are 100 machine-hours of use in some weeks and

20 in others, the average number of breakages per week will obviously

vary, although the number of breakages per machine-hour may be con-

stant. If the use to which the machineis put varies, the Poisson model

may apply conditionally under any one kind of usage but not overall.

If wear andtear is a factor contributing to breakage, breakages will occur

much less frequently in the first hour after a breakage and replacement

than they will in the tenth hour and so forth. The same phenomenon

can result from a quite different reason, inability to replace a broken part
immediately. In this case the machine on whichthepart is used will be
idle for a certain amount of time after a breakage occurs, and no new
breakages can occur during this down time.

2. The breakages can be considered independent only if we are con-

vinced that once we haveallowed for changes in the breakage rate due to
known changes in conditions of use, there will be no unpredictable changes
which affect the mean breakage rate. Variation within a single batch of
raw material could result in short-run fluctuations in the mean breakage

rate just as it could result in short-run fluctuations in the rate at which

defects occur; and if this variation were unpredictable we could not

apply a Poisson model even conditionally.
Multiple Sources of Usage. Forall these reasonsit will be only very

rarely that a single machine canbe legitimately represented as a Poisson
source of parts usage. Usage is much morelikely to be Poisson dis-
tributed if the part is used on a large number of machines. It is virtually
self-evident and it can be proved that:

If there is a Poisson usage from each of several independent sources,
the total usage is Poisson with intensity equal to the sum of the
individual intensities.

Even though the intensity of the usage generated by each individual
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source may vary widely over time, the intensity of total usage may never-

theless be nearly constant. If enough users are involved, the variations
in individual usage rates tend to average out whether they are due to
instability or to lack of independenceor both.

The implications of this proposition are much broader than they

appearat first sight: a Poisson model mayrepresent total usage of a part

very accurately even when each individual source of usage is totally
unlike a Poisson process. As an example, consider the usage of ordinary
light bulbs in a large office building with many thousands of bulbs in

service.

If we look at usage in any individual socket, it is obvious that there is

virtually 0 probability of a failure in the second followingthe installation
of a new bulb and extremely smal! probability in any second during the
first several hundred hours of the bulb’s life. After several hundred
hours have passed, however, the probability of a failure in the next second

begins to rise gradually and ultimately becomesfairly high—if a bulb has

already lasted several thousand hours,it is unlikely that it will last much
longer. It follows that any individual source of usage violates both the

fundamental conditions defining a Poisson process; if we use x; to denote

the probability that a bulb ¢ hours old will fail in the next second, the
process is continuously unstable because x; is continuously rising as long as
any one bulbisstill alive, and events are not independent becausefailure

of one bulb means replacement by a new bulb and therefore a drop in x.
If we look nowat total usage in all the several thousand sockets in the

office building of our example, the probability « that some bulb will fail

in the next secondis simply the sum of the «,’s of al] the individual bulbs. t

Whenthe building is new, « will be increasing becauseall the «’s will be

increasing, and a Poisson model will not apply to total usage any more

than it does to usage in an individual socket. If, however, bulbs are
replaced only when they fatl—if there is no systematic renewal of bulbs to

prevent failures—then the ages ¢ of the bulbs will become more and more
thoroughly mixed as time goes on. At any given point of time, some
bulbs will have just been installed, some will be a few hundred hoursold,

and so forth. We would naturally guess, and it can be proved,{ that

a stage will be reached where the mixture of ages remains approximately

stable and therefore the total x remains approximately stable. More accu-

rately expressed, a stage is reached where there is an extremely small

probability that « will change by more than an extremely small amount
during any specified period of time.

+t This assumes that the probability of two or morefailures in 1 second is 0; the

assumptionis legitimate because we are using ‘‘second”’ simply as a convenient word
for an arbitrarily short interval of time.

{ On the assumption that bulbs donot fail in some extremely peculiar pattern
which creates repeating ‘‘cycles’’ in the mixture of ages.
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When this stage is reached, total usage can be quite accurately

represented by a Poisson model even though individual sources of
usageare still completely non-Poisson.

The student is reminded, however, that this conclusion very definitely
rests on the fact that there 7s no systematic renewal policy which installs

substantial numbers of new bulbs at the sametime.
Demands on Inventory. In problems of inventory control one par-

ticular reason for nonapplicability of a Poisson model deserves special

attention. The model specifies that successes never occur simultane-

ously, and therefore the model cannot apply strictly unless each unit of
product 1s demanded in a separate order.

Suppose, for example, that a Poisson model doesin fact describe the
occurrences of the actual breakages of some machine part. If we look at
the inventory of spares carried by any one user of the part, each breakage
will presumably result in an immediate demand on inventory for 1 unit

and this demand will therefore be Poisson distributed. If, however, we
look at the inventory carried by the manufacturer of the part, the Poisson
model is muchless likely to apply. Rather than order one part at a time,
most users will ordinarily wait until they have accumulated a requirement
for a quantity of parts and then place an order for this quantity all at one

time. Such a demand-generating process is emphatically not a Poisson
process.

13.4.2 The Intensity of the Process

Even though we havesatisfied ourselves that some real process can

be reasonably represented as a Poisson process, the (unconditional) prob-
ability distribution for the numberof successes will not be Poisson unless
we know the value of the process parameter or intensity x. No further
discussion of this point is needed, however; the issues are identical to
those which we discussed fully in Chapter 12. The same conditions must
be met before we may treat the parameter as known, and the same pro-

cedure must be used to compute marginal probabilities when the param-
eter is not known.

13.5 Approximation of Binomial Probabilities by
Poisson Probabilities

Even the most extensive tables of the binomial distribution cover

only a limited range of values for the numberoftrials n, and direct com-

putation of a cumulative binomial probability requires a prohibitive
amount of labor when the value of 7 is so large that it is not in the tables.
In such cases we usually resort to same method which will give us an

approximate value for the required probability, and under certain condi-
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tions the Poisson distribution can be used to obtain approximations which
are more than sufficiently accurate to ensure choice of the best decision.

Since the binomial distribution approaches the Poisson distribution

as a limit when 7 increases while p decreases in such a way asto leave the
expected number of successes pn unchanged, we can obtain an approximate

value for the binomial probability of r or more successes by looking up the
Poisson probability of r or more successes when the expected numberof
successes m has the value pn. In algebraic notation,

Pi(F = rin, p) = Pp.(* > rlm = np).

For example, the binomial probability of seven or more successes when
p = .05 and n = 1001s approximated by the Poisson probability of seven
or more successes when m = 5. From Chart I wefind that this prob-
ability is .24; the true binomial probability as given by Table I is .234.

From the fact that the Poisson distribution is the limit of the bino-
mial as n increases while p decreases, it follows immediately that for given
values of np and r the approximation will be better the larger the value of

n and the smaller the value of p. It is usually said that the approxima-
tion will be good “when 7 is large and p is small,’”’ but as is shown by

Figure 13.1, accuracy for given n and p varies greatly withr. In Chapter
17 we shall return to this question and systematically examine the

accuracy of the approximation for a variety of values of n, p, and r.
When p is very large—i.e. near 1—the probability of a failure

g = 1 — p will be small, and the Poisson approximation can be used by
restating the problem in terms of failures rather than successes. For
example, the binomial probability of 95 or more successes when p = .9
and n = 100 is the same thing as the probability of 5 or less failures
when q = .1 and n = 100, i.e. when the expected number of failures

is 10. It can therefore be approximated by the Poisson probability

Pp.(# < 5|m = 10), which is given as .067 by Chart I; the true binomial
probability is .058.

PROBLEMS

1. What is the probability that a Poisson process producing two defects per min-
ute on the average will produce the following numbersof defects in 1 minute?

a. Exactly 2. b. 2 or less.
c. Less than 2. d. 2 or more.
e. More than 2.

2. Whatis the probability that the process of Problem 1 will produce the follow-
ing numbersof defects in 2 minutes?
a. Exactly 3. b. 3 or less.
c. Less than 3. d. 3 or more.
e. More than 3.

3. A shop runs 20 automatic screw machines of identical model and age on a
variety of jobs all of which put about the same load on the machines. AlIl machines
are run 40 hours a week. If on the average there are 10 machine breakdownsin a
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40-hour week and if breakdowns are repaired in a negligible amount of time, what
probability would you assign to the occurrence of two or more breakdowns in the
same 8-hour shift? Why is the repair time relevant to the problem?

4, During “normal peak hours” the East Central Insurance Company’s PBX
telephone switchboard receives 180 requests per hour for an outside trunk line.
Analysis of the times at which calls were placed over a period of several months shows
no discernible pattern within the normal peak hours. What probability would you
assign to the occurrence of more than six requests for an outside line during a single
minute of a normal peak hour?

5. Using the same vertical and horizontal scales in both cases, graph the probability
distribution for number of defects produced by a Poisson process averaging .5 defect
per foot:

a. In a run of 2 feet.
b. In a run of 8 feet.

6. Same as Problem 5, but use defects per foot as the horizontal scale rather than
number of defects. (This means defects per foot in the 2- or the 8-foot run, not in
an “‘infinitely long’’ run.)

7. Graph the Poisson cumulative distribution Pp,(7 <r) for m = 4, making the
graphs in stepped form rather than in the form of Figure 13.1b.

8. Assuming that the number of orders received has a Poisson distribution and
that the mean number of units demandedis 4 per week, graph the distribution of num-
ber of units demanded in 1 week

a. If each orderis for 1 unit.
b. If each orderis for 2 units.

9. Von Bortkiewicz published the following data on the numbers of men killed
by a horse kick in each of 10 Prussian armycorps in each of the 20 years 1875 to 1894,
i.e. the number of deaths in each of 200 corps-year combinations.

Absolute number

Deaths of corps-years

0 109
1 65
2 22

3 3

4 1
200

The total numberof deathsis 122, or an average of .61 per corps-year.
If the deaths had been Poisson distributed, how many corps-years would there

have been with 0, 1, 2, etc., deaths?

10. R. D. Clarke published the following data on the numberof buzz-bombhits
in 576 areas in the south of London, each area covering 4 square kilometer.

Absolute number

Hits of areas

229

211

93

35

7

and over 1

576

a
m
W
d

H
e
©
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Since 440 of the 576 areas were hit only once or not at all, do you think the bombs were
being aimed at the areas which were hit more often?

11. Demandfor a certain product is Poisson distributed and has averaged 3 units
per day. A new package design is introduced; the person responsible for inventory
control believes that there is a 70 per cent chance that mean demandwill be doubled
and a 30 per cent chance that it will be tripled. What is the probability that tomor-

row’s demand will be:
a. Less than 6 units? b. Less than 5 units?
c. Less than 4 units? d. Exactly 5 units?

12. The product discussed in Problem 11 sells for $5, costs $4, and spoils if it is
not sold on the day on whichit is stocked.

a. How many units should be stocked under the conditions described in Problem
11?

b. How many should be stocked if it were known that demand would average
6.9 units per day in the long run?

13. A company makes one production run per month of a part used in mainte-

nance of a certain type of heavy-duty equipment. Managementbelieves that about
$.10 in storage costs, etc., is lost on each part which is not used during the month in
which it is produced. If, on the other hand, the production run is inadequate to meet
needs during the month, the additional parts must be made by hand at a cost which
exceeds regular production costs by $10 per part. Usage of the part has averaged
25 parts per month. How manyunits should be producedat the beginning of a month
if none is on hand and

a. All usage is accidental and unpredictable?
b. 80 per cent of all usage is regular preventive maintenance and 20 per cent is

accidental and unpredictable?



CHAPTER 14

The Poisson Process: The GammaDistribution

In Chapter 10 we derived the binomial probability distribution for the
number r of successes in a given numbern of trials when the probability of

a success was constant from trial to trial; in Chapter 13 we extended this

result to obtain the Poisson distribution for the numberr of successes in a

given spacet of time or distance when that space could not: be separated

into distinct trials but the probability of a success could be considered as

constant from “point’”’ to point.” In Chapter 11 we obtained thedis-

tribution for the number n of Bernoulli trials required to obtain a given

number r of successes, and weshall now extendthis result also to thé case

where there are no distinct trials but the probability of a success is con-

stant from point to point. We have introduced the symbol ¢ to denote

the fixed ‘‘space”’ of time or distance in which the number of successes

was a random variable; we now treat t as a random variable and compute

its probability distribution for a fixed numberof successesr.
Weshall use the same concrete example which weused in Chapter13.

A machine insulating electric wire produces an average of x = 1.5 defects

per foot, and we seek the probability distribution for the distance ? from
“here” to the rth defect. We shall start by obtaining the distribution
for the distance 7 from here to the first defect, i.e. for the special case

r= 1.

14.1 Distance to the First Success: the Exponential Distribution

‘Let us first regard the wire as divided into fifths of feet, treat each

fifth as-constituting a Bernoulli “‘trial,’’ and take the probability: of a
success in any one part as «/5 = 1.5/5 = .8. As we saw in Section 11.1,
the probability that exactly n trials will be required to obtain one success

is the probability of a run of n —1 failures followed by a success:

P(n) = q”"'p.

In Table 14.1 we show the probabilities of various numbersof trials com-
puted by this formula; these probabilities are, of course, the Pascal dis-

tribution for r = 1, p = .3. The last column of the table shows the
distance corresponding to each numberoftrials: it is assimed that the

221



222 Random Processes and Derived Probabilities 14.1.1

success occurs at the end of the space corresponding to the “‘trial’’ in
which it occurs.

 

 

Table 14.1

Number of Distance,

trials Probability feet,
n t

1 .3 = .300 2
2 (.7)(.3) = .210 4
3 (.7)2(.3) = .147 6
4 (.7)3(.3) = .103 8
5 (.7)4(.3) = .072 1.0

etc.

 

Next we divide the wire into tenthsof a foot, setting p = «/10 = .15,
with the results shown in Table 14.2. The same procedure will give the
distribution when the wireis divided into parts of any length; in Figure
14.1 the two distributions computed above and the distribution for

division into twenty-fifths of a foot are graphed as histograms.

 

 

Table 14.2

Numberof Distance,
trials Probability feet,

n t

1 .15 = .150 1
2 (.85)(.15) = .127 2
3 (.85)2(.15) = .108 3
4 (.85)3(.15) = .092 4
5 (.85)4(.15) = .078 5

etc.

 

14.1.1 The Exponential Distribution

Before considering the smooth curve superimposed on each histo-
gram, let us look closely at the histograms themselves. The first bar on

the left in all three graphs has the sameheight, 1.5, but the three prob-
abilities are not the same. Thevertical scale shows, not probability, but
probability per unit width, and the widthsof the three bars are not equal.
In the first graph, the width corresponds to 44 foot, so that the first bar

represents a probability of .3. In the second graph the width is 40, so

that the first bar represents a probability of .15. In the bottom graph

the first bar represents probability .06.
This explains why the height of the histogram at any specified value

t does not approach 0 as we subdivide further and further, even though



14.1.1 The Gamma Distribution 223

the actual probability that ? will have any specified value does approach
0. What actually seems to happen as the subdivision becomesfiner is
that the height of the histogram at any ¢ comescloser and closer to the

height of the smooth curveat that t, and it can be proved that this is true.
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Figure 14.1

Thelimiting form depicted by this smooth curve is known as the expo-
nential distribution defined by the formula

1
P’(é) = — et(2) ue

where

1
B= 7
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The quantity » (mu) is the one parameter of the exponential distribu: ‘:'
the underlying Poisson process is characterized equally well by the v.:':
of either x or wp = 1/k.

t

14.1.2. Intervals between Successes

.. [t.is ‘a basic assumption of the Poisson model, asit is of the Bernoul)
model,that successes are independent. This implies that the distribution
of the distance Z to the first success is the same no matter where we begin
measuring the distance, and therefore

The distribution of the length of the interval between two adjacent
Poisson successesis identical to the distribution of the distance from
““here”’ to the first success; it is exponential with parameter nu = 1/k,
where «x is the intensity of the Poisson process.

Since «x is the mean numberof successes per unit of space, u = 1/« is the

mean space between successes and therefore

 

EQ) = p Expected length of interval, exponential distribution

 

Because the distribution of the length of interval between adjacent suc-
cesses is identical to the distribution of the distance from “here” to the

first success, uw is' also the expected distance from ‘“‘here’”’ to the first
success.

14.1.8 Probabilities under a Continuous Distribution

At the end of the limiting process which leads to the exponential dis-

tribution we arrive at a ‘“‘histogram”’ with infinitely many bars each of
which has zero width; the random variable f is formally regarded as
capable of taking on any value whatever in the interval 0 to © rather

than being restricted to certain definite values within this interval in the

way that all the random variables we have studied hitherto have been

restricted to the values 0, 1, 2, ete. For this reason the exponential dis-
tribution is said to be continuous whereas the distributions we have
studied previously are said to be discrete.

Because the bars of the limiting histogram have zero width, they
have zero area; the probability that a variable with a continuousdistribu-

tion will have exacily any specified value is formally regarded as zero even
though this event is not regarded as impossible. This is why the formula
for the exponential distribution gives only probability per unit width at

the point ¢, 1.e. the height.of the curve at the point ¢, and cannot give the

actual probability of the value ¢ in the way the binomial or Poisson
formula gives the probability of the value r or the Pascal] formula gives

the probability of the value n,
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490his notion that every possible value of a random variable such as
‘W8%nce between two defects has zero probability is of cowfae aqpute

-.i10n introduced only for mathematical convenience. [nthe ress
orld, the very concept of the value of a quantity such ad “@istauhe”’ is
:eaningless until we have specified the procedure by whicl the value wil!

je measured; and the values which can be obtained b\“tedaERPube
measuring instrumentare discrete. If the instrument by wht¥eh we meas»
ure the distance between two defects is capable of giving theTetding

.46 foot, then we should assign a definite, nonzero probability to this
value of the random variable ‘‘distance.”’ If on the other hand the
instrumentis not capable of giving this reading (e.g. because it measures

only to the nearest tenth of a foot) then we must regard this value as
strictly impossible.

Given a particular measuring procedure, the “exact” distribution
which it would be reasonable to assign to a measured random vari-

able would be represented by a histogram with one bar for every

value which is capable of being measured, and to make sense of a

continuous distribution such as the exponential we must regard it
simply as a convenient way of getting the approximate height of
each of these bars without having to go to the trouble of specifying
each one individually.

In cases such as the one we have taken as an example, the ‘‘exact’’
distribution is really Pascal and the exponential distribution is used
simply as a convenient way of approximating a Pascal distribution with
extremely small p just as we saw in Section 13.5 that the Poisson dis-
tribution is often a convenient approximation to the binomial distribution
with extremely small p.

‘This implies that to calculate the probability that a random variable

such as distance between two defects will have a specific value such as.
.46 foot we must calculate the approximate area of the corresponding bar
of the true histogram, and to do this we must multiply the width of this

bar as determined by the characteristics of the measuring instrument by
the approximateheight of the bar as given by the exponential distribution.
If we define the symbol “delta %”’ by

6t: the space between two adjacent possible values of the random
variable /, as determined by the characteristics of the measuring
instrument,

then

Pd = t) = 6 P’(2).

Suppose, for example, that we measure the distance with an instrument
whichis capable of reading to a fiftieth of a foot, so that 6t = .02 is the
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width of any bar in the histogram. From Figure 14.1 we read that the
height of the curve at t = .46 is .75, and we then compute the probability
that the measured distance will be .46 foot as

P(E = .46) = .02 X .75 = .015.

To find the probability that the distance between two defects will be
greater or less than some specified value, i.e. to find the area of a tail of
the true histogram, we could in principle compute the area of every

included bar in the way just described and then add the products.

Fortunately, however, we do not haveto go to this trouble, any more than

we have to compute the areas of a large numberof bars in orderto get

tail probabilities for a binomial, Pascal, or Poisson random variable. We
shall see later in the chapter that we can use published tables to get the

area of a tail of the continuous exponential distribution, and we can take
this area as a direct approximation to the area of the tail of the histogram.

14.2 Applicability of the Poisson Model and the
Exponential Distribution

In some real-world situations we have strong a priori or ‘theo-

retical’’ reason to believe that a process generating successes will behave

according to the Poisson model. Some examples of such situations were
given in Section 13.4—if we believe that a certain part breaks purely by

accident and not as the result of gradual wear, and if the part is subjected

to usage of constant severity, we will conclude that breakages will occur

in accordance with the Poisson model. Similarly it seems reasonable

a priori to assume that the fact that one telephone subscriber puts in a
call at one instant will have no appreciable effect on the factors which

will determine whether another subscriber puts in a call at the next

instant, and therefore it is reasonable a priori to treat telephonecalls as
generated by a Poisson process. Although the intensity of this process
will vary with the day of the week and the timeof day,it will be nearly

constant over reasonably short periodsof time.

Usually, however, our a priori or theoretical reasons for believing

that a given process must behave as a Poisson process will be far from

conclusive. Thus we can argue that the factors tending to cause an

accident in a mine may be constant over time and therefore that accidents
may be Poisson distributed, but before we can be at all sure in any par-

ticular case we must compare the available historical evidence on that

particular case with the implications of the Poisson model. There are

two possible ways of making such a comparison:

1. We can cut the entire recorded space or time into a large number

of blocks or segmentsof equal size, count the number of successes r in each

block, and compare the resulting frequency distribution of the random
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variable 7 with a Poisson distribution having the same mean number m of
successes per block.

2. We can measure the interval t between each success and the next,
make a grouped frequency distribution of the lengths of the intervals,

and compare this distribution of the random variable ~ with an expo-
nential distribution having the same meaninterval » between successes. T

The first of these two methods was used in Chapter 13, Problems 9

and 10, because the original data in those problems consisted of the
numbers of successes in predetermined blocks of time or space, but when-

ever the actual lengths of intervals have been recorded the second method
is usually more convenient. It is applied in Figure 14.2 to show that in
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Figure 14.2. Time between accidents in one district of a mine. (Data

from Biometrika, 1952, p. 169.)

one particular mine the intervals between accidents in fact had a nearly
exponential distribution, and it follows that the Poisson model will give
a good approximation to the actual occurrence of future accidents in this

mine as long as the conditions underlying the historical record remain

essentially unchanged.

In many situations we observe that intervals are exponentially dis-
tributed even though there is almost no a priori reason at all to think

+ To calculate the ordinate of the fitted exponential curve, wefirst compute the
quantity v = ¢/p», then find the value of e~’, and finally divide this value by uz to get
P’(¢) according to the exponential formula. The value of e—* can be found in several
ways. Tables of e~° exist, and the curve labeled r = 1 in Chart ITI can be interpreted
as @ graph of e~? (vertical axis) against »v (horizontal axis). The value of e~ can also
be found by looking up the antilogarithm of —v in a table of logarithms to the base e
or by looking up the antilogarithm of — .4343v in a table of logarithms to the base 10.
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that they are generated by a Poisson process. A very well-known

example is the duration of local telephone calls not made from pay sta-
tions. Toargue a priori that these durations must have an exponential
distribution, we would have to assert that the “process”? which ulti-
mately leads people to end a telephone conversation is of such a nature
that the tendency to hang up does not increase at all as the conversation
proceeds—rememberthat in the Poisson model the probability of a suc-
cess in any instant is completely independent of what has happenedinall
previous instants. Such an assumption is of course absurd, and yet it
has been observed that the durations of such telephone calls do in fact
have an almost exactly exponential distribution. Similarly it is often
found that the time required to serve customers at a ticket window or
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Figure 14.3. Service time at a tool crib. (Data from Operations Re-

search, 1955, p. 414.)

mechanics at a tool crib has an exponential distribution even though we
cannot give any strong theoretical arguments to prove that this must be
so. An example of a nearly exponential distribution of service times ata

particular tool crib is shown in Figure 14.3.

14.3. Distance to the rth Success or Sum of r Intervals; the

GammaDistribution

The probability distribution for the time or distance ¢ from now to

the rth Poisson success, or for the interval between one Poisson success

and therth following success, can be arrived at by exactly the same kind
of limiting process which resulted in the exponential distribution. To
find the distribution for the space before the third success, for example,

we could simply recalculate Tables 14.1 and 14.2 using Pascal prob-

abilities for r = 3 instead of Pascal probabilities for r = 1; the histograms
would again approach a smooth curve as the space was divided into
smaller and smaller parts.
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Whatever the value of r—the required number of successes—the

limiting distribution is given by the formula for the gamma distribution:

, _ 1 e~ &/4) (t/7}

PO =o -G- DI

where yz is the mean length of one interval as before. This distribution

has two parameters, » and r. Whenr = 1, it reduces to the formula for

the exponential distribution as given in Section 14.1.1: the exponential
distribution is simply the special case r = 1 of the gammadistribution.

Sums of Poisson Intervals. The total interval from one success to
the rth following success can obviously be regarded as the sum of the

lengths of r intervals between adjacent successes. Since Poisson events
and intervals are independentof past history, the distribution of the sum

of any r intervals, not necessarily adjacent, has the same distribution as
the distance from one success to the rth following success.

14.3.1 The Standardized Gamma Distribution

If we were to try to produce tables or charts of the gamma distribu-
tion defined by the formula given just above, we would have to have one
table or curve for every possible combination of its two parameters » and

r, Just as binomial tables must contain one table for every combination of

the two parameters n and p. If, however, we agree that in any problem
involving a gammadistribution we will measure all lengths in units such

that the mean length of one interval is one unit, the parameter yp will have

the value 1 in all problems and wewill need only one table or curve for
each value of r. |

Suppose, for example, that we want to know the distribution of the
total length z of r intervals when the mean length of oneinterval is » = 2
inches. Substituting 2 for yu in the formula for the gammadistribution as
given above, we obtain

ry _ Levt/(t/2)"1
PO = 2=D

If now instead of using an inch as our unit of measurement we use a

double-inch, calling 6 inches 3 double-inches, etc., the mean length of an

interval becomes 1 unit or double-inch. Using v instead of t to denote a
length measured in these special units, the formula for the gammadis-
tribution with 1 substituted for 4 becomes

, _ Lew/1)7} _ entyr1

PO =i -G-pr 7 G-D:!
If the mean length of one interval had been 3 inches, we would have

obtained exactly this samefinal result by measuring in triple-inches; if
the mean length of one interval had: been 7.3 inches we would have
obtained exactly the same result by taking 7.3 inches as our unit of
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measurement; andsoforth. We therefore define the standardized random

variable

_ ¢€
v=

p

and in Chart III we show curvesgiving the standardized gamma distribu-
tion

e7’yr—1

Pi) = 1!

for values of the parameter r from 1 through 5. The distribution for

r = 1 can also be called the standardized exponential distribution.
Suppose now that we wish to compute the probability that the total

length ¢ of r = 3 intervals will have the value ¢ = 10 when the mean
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Figure 14.4

length of one interval is » = 2 inches, and suppose that our measuring

instrument gives readings to the fifth of an inch so that each bar in the
histogram describing the ‘‘true’”’ probability distribution of ¢ has width

.2inch. If we use the scales labeled ¢t and P’(t) in Figure 14.4, this figure
gives the natural or nonstandardized gammadistribution for r = 3, » = 2

and we can compute the desired probability by exactly the same pro-
cedure we followed in computing P(é = .46) in Section 14.1.3. Using

the left-hand vertical scale, we read the height of the curve at ¢ = 10 as
P’(¢) = .042 and we then compute

P(é = 10) = 6¢ P’(10) = .2 X .042 = .0084.

If we use the scales labeled v and P’(v) in Figure 14.4, the figure gives

the standardized gammadistribution for r = 3. Each value of 7 on the
horizontal axis is divided by » = 2 to obtain the corresponding value of 3
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but at the same time every value of P’() on the vertical axis 1s mulitplied
by » = 2 to obtain the corresponding P’(v); consequently the area =
width X height of any bar under the curve remains unchanged. Taking
the shaded bar representing t = 10 as an example,its width of .2 inch has

become .1 double-inch but its height has become .084 on the P’(v) scale,

so that its area remains

Pi = 10) = P(® = 5) = bu P’(v) = .1 X .084 = .0084

as before. In general,

When westandardize any random variable { by dividing by y», we
divide the width of every bar in the underlying histogram by yp; the
probability of any particular value ¢ is therefore given by the formula

 

Gamma probability

F
l
ePE=2 = 7 P’() y

 

If we wish to know the probability that the sum offive Poissonintervals
will have total length 15 minutes when the meanlength of oneintervalis
4 minutes and time is measured to the hundredth of a minute, we compute

t 15
y= T= |e 73.8,

use the curve for r = 5 in Chart III to find P}(3.75) = .194, and compute

P(i = 15) = * 194 = .000485.

14.3.2 The Cumulative Gamma Distribution

Weoften wish to know the probability that an interval or sum of

intervals will be less than some amount or greater than some amount.
Such tail probabilities can be obtained from Chart I, where the curvefor

each value of r shows the cumulative probability P,(#@ < v[r). In terms

of Chart III, this is the area under the curve for the specified parameterr
to the left of the specified value v of the variable. Chart I used as achart
of the gamma distribution is thus our first example of a chart or table

showing left-tail cumulative probabilities.f

+ For very extensive tables of the gammadistribution, see K. Pearson, ‘“‘Tables
of the Incomplete r'-Function,’’ Biometrika Office, London, 1951. To find P,( < vr)
from these tables, compute u = v/./r and p =r — 1 and then look up [(u,p).
Gammaprobabilities can also be found from tables of the Poisson distribution by
using the relation

P,(@ <v|r) = Pp.(? >r\lm =»),

for the derivation of which compare Section 11.2.1.
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Example. We wish the probability that the total length of three

intervals will be less than ¢ = 10 feet when the meanlength of one interval

is 2 feet, 1.e.

P(E < 10|r = 3, uw = 2).

The logic of the procedure we shall use to evaluate this probability can
best be understood by looking back at the graph of the distribution for

r = 3, » = 2 shown in Figure 14.4. The required probability of all

values¢ less than 10 is the total area of all the bars in the underlyinghisto-
gram to the left of the shaded bar, which represents the value t = 10 itself,
and this area can clearly be approximated by the area under the smooth

curve to the left of the left edge of the bar for ¢= 10. In principle,
therefore, we should proceed by (1) determining the valueof # at theleft
edge of the shaded bar, (2) converting this value of ¢ to the corresponding

valueof = #/y, and (8) using Chart IJ to find the area to theleft of this
value of 3.

To follow this procedure we would, of course, have to knowthefine-

ness with which measurements will be made,sinceit is this which deter-
mines the width of the bar for? = 10 and thus the location of the left edge

of this bar—if measurements are made to the hundredth of a foot, the
left edge of the bar for ¢ = 10 feet is at 10 — .01/2 = 9.995 feet, and so
forth. The figure makesit clear, however, that in most practical prob-

lems there is no needto go tothetrouble of calculating the width of a bar
when we seek a cumulative probability. If instead of evaluating the area

to the left of the left edge of the bar for ¢ = 10 we evaluate the area to the
left of the center of this bar, our error will amount to half the area of the

bar. This error area will obviously be negligible in comparison with the
remainderof the tail unless either the specified ¢ is extremely close to 0 or

the measurements are so coarse that the width of each baris really sub-
stantial. In the former case we can evaluate the area of each of the
individual bars in thetail; in the latter case the gamma approximation to

the underlying histogram will be no good no matter how weuseit.

Wetherefore proceed as follows. Wefirst express the specified value
t = 10 in terms of v by computing

Wethen use Chart I to evaluate

P,(6 < 5|r = 3)

by locating the specified value v = 5 on the horizontal axis of the chart,
reading up to the curve for r = 3, and over to find P = .88 on the vertical
axis.
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14.4 Expectations of a Gamma Variable

Wesaw in Section 14.1.1 above that the mean of the exponentialdis-

tribution is equal to its parameter wp = 1/x, and from this we can easily

deduce the mean of the gammadistribution. If we look at the gamma

distribution as the distribution of the sum of the lengths of r intervals each

one of which has expected length uy,it is clear that

 

E(é) = rp Expected length of r Poisson intervals

 

Although the physical meaning of the expected length of an interval

or of r intervals is perfectly clear intuitively, it will be well to stop to look
at the mathematical meaning of the expected value of a random variable

with a continuousdistribution. In Section 5.2.3 we defined the expected

value of a random variable as the number which results from multiplying

every possible value of the variable by its probability and adding the
products, and this would seem to lead to some difficulties when we are

dealing with a variable such that every individual value is formally

regarded as having probability 0 (cf. Section 14.1.1).

Even though the probability of any particular value of a continuous
random variable is 0, we know howto calculate the probability that it will

lie between two different values, and therefore we can get an approximate
value for any expectation by first deriving a grouped distribution from

the continuous distribution and then proceeding as wedid in Section 6.5.
As an example, let us compute E(() when 7 has a gamma distribution
with parameters p = 2,r = 3; this is the distribution graphed correspond-
ing to the ¢ and P’(t) scales of Figure 14.4. We arbitrarily select brackets
46 unit wide on the ¢ scale and then proceed as shown in Table 14.3.

 

 

Table 14.3

. . P’ at Grouped
Bracket Mid-point mid-point probability Product

0-.5 .25 .003 .0015 .000

.5-1.0 15 .024 .0120 .009

1.0-1.5 1.25 .052 .0260 .032

1.5-2.0 1.75 .080 .0400 .070

2.0-2.5 2.25 .103 .0515 .116

2.5-3.0 2.75 .119 .0595 . 164

3.0-3.5 3.25 .130 .0650 211

3.5-4.0 3.75 .135 .0675 . 253

.855
 

P’(¢) is read for the mid-point ofeach bracket from Figure 14.4 andis then

multiplied by the .5 width of the bracket to give the approximatearea or
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probability of the bracket. This grouped probability is then multiplied
by the mid-point to obtain the product in the last column and these
products are added to find Ej(@) = .855 approximately.

A still better approximation could be found by usingstill narrower

brackets but fortunately this labor is unnecessary. It can be shown by
calculus that as the brackets are made narrower and narrowertheresult
of computing any gamma expectation by the method of Table 14.3 will

comecloser and closer to the valuegiven by the formula

ot) = ru P(E < tir + 1, w).

This formula can easily be evaluated if we express the probability in terms

of the standardized variable 3 = f/p:

 

Edt) = rp Py ¢ < :
 
r+ 1) Gammapartial expectation

 

For our example, t = 4,7 = 3, uw = 2. We compute

use Chart I to find

P,( < 2Zlr = 34+ 1) = 148,

and compute

EV) = 3 X 2 & .143 = .858.

14.5 Approximation of Pascal Probabilities

Wesaw in Section 13.5 that when p is small the Poisson distribution

can be used to obtain very good approximations to binomial probabilities.

Under the same condition the gammadistribution can be used to approxi-
mate Pascal probabilities.

Suppose that we wishto find the probability that 100 or less Bernoulli

trials will be required to secure four successes when p = .05. If we
imagine that each Bernoulli trial takes 1 unit of time—say 1 minute—

this is the probability that 100 or less minutes will be required to secure
four successes when the mean number of successes per minute is .05.

The mean interval between successes is then 1/.05 = 20 minutes andif

the successes were generated by a Poisson rather than a Bernoulli process,
the probability would be

P,(0 < 10%5|r = 4) = .74
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by Chart I. The exact value of the Pascal probability

Ppa(fi < 100\r = 4, p = .05)

is found by looking up P,(7 = 4\n = 100, p = .05) in Table I, whereit
is given as .742.

PROBLEMS

1. In a Poisson process averaging two defects per foot, distance being measured
to a hundredth of a foot, what is the probability that the distance from one defect to
the next will be

a. Less than 3 inches?
b. More than 9 inches?
c. Exactly .6 foot?
2. Same as Problem 1 butfor the distance from one defect to the fourth following

defect.
3. In a Poisson process averaging three deaths by horse kick per year, what is

the probability that a year will go by without a death by horse kick?
4. If parts fail by a Poisson process at a rate of one every 8 weeks, if there are

two spare parts in inventory, and if a new supply will arrive in 12 weeks, what is the
probability that production will be stopped for lack of spare parts for a week or more?

5. If 8 of the 12 weeks lead time of Problem 4 have gone by and only one part
has broken, what is the probability that the process will be stopped for a week or more

a. If the part broke 1 day after the date of Problem 4?
b. If the part broke 1 day before the end of the 8 weeks?
6. If on the average a Bernoulli process produces one defective in 500 pieces,

what is the probability that the fifth defective will occur
a. Before 3000 pieces have been produced?
b. As the 3000th piece produced?
c. After 3000 pieces have been produced?
7. If oo of 1 per cent of all postings made in a bank are erroneous:
a. What is the expected number of postings which will be made before the fifth

error occurs?
b. What is the probability that the fifth error will occur after more than 70,000

postings have been made?
8. Sales of a certain product have been Poisson distributed with an averagedaily

volume of 5 units but because of a recent price change the average daily volumeis no
longer known. If it is guessed that there is one chancein four that the price change

will reduce average sales by 20 per cent, two chances in four that the reduction will
be 40 per cent, and one chancein four that it will be 60 per cent, what is the probability
that a stock of 10 items will last less than two full days?



CHAPTER 15

Min-Max Inventory Control

15.1 Definition of the Problem

15.1.1 The Cost of Carrying Inventory

In the inventory problems studied in earlier chapters, the reason for
avoiding too large an inventory was a risk of spoilage which resulted from

the fact that all units not sold before a specified date would have to be

scrapped or sold at a price below cost. If the cost of spoilage is regarded

as a cost of carrying inventory, then in this situation the cost of carrying a
unit 1s some fixed amount (or zero) if it is carried less than some specified

length of time and a larger fixed amountif it is carried longer than this.

Wenow take up the different kind of problem which ariseswhen the
cost of carrying a unit in stock is proportional to the timeit is carried,
which meansthat for the whole inventory the cost per unit of timeis pro-

portional to the size of the inventory. The most commoncosts which are
exactly or approximately of this nature are the cost of capital tied up in
inventory, the cost of warehouse space and maintenance, and insurance.

Even the cost of spoilage is often much closer to being proportional to
time stored than to being of the all-or-none character assumed in earlier
chapters. Particularly when obsolescence is involved, it is often a good

approximation to assume either (1) that the actual value of a piece
declines steadily over time, so that there is a loss certain which is roughly

proportional to the time the item is on theshelf, or (2) that the risk of
incurring a loss of fixed amount (cost less scrap value) increases with

time, so that there is an expected loss which is roughly proportional to the

time the item is on the shelf. In such situations obsolescence can also be
represented by a charge per unit of time which is added to the charge per

unit of time for capital, storage, etc.

15.1.2 The Cost of Shortage

In previous chapters we have considered only situations where the
cost of shortage was a certain amount per unit short. In this chapter

we shall study inventory control not only in situations where the cost of

shortage is of this nature but also in situations where the cost of shortage

is proportional to the time during which the shortage persists.
236
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15.1.3 Inventory Control under Certainty

Two separate decisions may be involved in placing an order for
replenishment of stock, whether this order is placed by a purchaser with
a vendoror by a production-control department with the shop:

1. The date on which to place the order,
2. The quantity to order.

If demand could be predicted with certainty and if the lead time
between placing an order and receipt of the goods ordered could be pre-
dicted with certainty, orders would be placed so that each new lot would
arrive at the exact instant that it was needed. Only two kindsof costs
would then haveto be considered in determining the date of ordering and
the quantity ordered. The annual cost of carrying inventory would
increase in proportion to the order quantity, since the average inventory

obviously increases with the size of the purchase lot. On the other hand,
the annual costs of ordering or setup, receiving, paymentof invoices, etc.,
are proportional to the number of orders and would therefore decrease in
inverse proportion to the order quantity. It is a very simple matter to
find the economic lot size or order quantity which minimizes the total of

these two kindsof cost; and oncethelot sizeis fixed, the interval between
orders is simply the lot size divided by the rate at which sales occur.

The analysis would be essentially unchanged if for administrative
reasons it were desirable to place orders at intervals other than the “most

economic’’ intervals. If, for example, the economic lot size implied an
interval of 1.37 months between orders but it was more convenient to
place all orders for a given item on the same dayof each month,thecost of
monthly orders and of bimonthly orders would be computed and the
schedule with the lower cost would be chosen. Under certainty, inven-
tory control is reduced to ordering a fixed quantity on predetermined
dates.

15.1.4 Assumption of Known Lead Time

Two kinds of uncertainty may enter into an inventory problem and
render inapplicable the simple system of control described above.

1. There may be uncertainty concerning the quantity which will be
demanded during any given timeperiod.

2. There may be uncertainty concerning the lead time which will

elapse between the date on which an orderis placed and the date

on which the new lot of product will actually arrive.

The problem of inventory control when both demand and lead time are
uncertain is beyond the scope of this course, but in manysituations there
is substantial uncertainty concerning only one or the other. Since our

- purpose.in this course is to give examples of the application of probability
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theory rather than to exhaust the problem of inventory control, we shall

study only one of the twocases.

Weshail study the problem of control in the face of uncertainty
concerning demand; we shall assume that lead time is known with
certainty.

15.1.5 The Poisson Model of Demand

In the kind of inventory problem studied in previous chapters,

analysis was much simplified by the fact that every decision was com-

pletely independent of previous decisions. The date at which each order
wasplaced wasout of the purchaser’s control, and the stock on hand when

each new order arrived waszero regardless of the quantity received in the

previous order. This meant that the only decision required was the

quantity and that the expected cost of any decision depended solely on
the probability distribution for demand during a single time period.

Once storage is possible, however, this is no longer true. The time
required to dispose of any number of units depends, not on the prob-

ability distribution of demand duringa single, fixed period of time, but

on the distributions for demand in a whole series of periods. Conse-
quently analysis of the costs is extremely complex if the probability dis-

tribution for demand is changing with time. In this chapter we shall
consider the problem of inventory control underonly the simplest possible
form of uncertain demand: we assumethat:

1. The probability distribution for number of units demanded in a
period of any given length is the same for all future time periods.
It is the same for next week as for the week starting a year from
now, the same for next month as for the following month,etc.

2. The distributions for any two time periods are independent. A
high demand in any one hour or any one month will not lead the
person responsible for inventory control to lower his forecast of
demandfor the next hour or month.

3. The average demandis known with certainty. The person respon-
sible for inventory control would be willing to bet at very long
odds that the average demandin a long series of future periods

would be very close to some specified number.

The first two statements amount to asserting that demand will be

treated as generated by a Poisson process with parameter constant over

time, and the third says that there is no serious uncertainty about the
value of this parameter.

15.2 The Two Basic Systems of Inventory Control

When demandis uncertain, it is clearly undesirable to fix both the
ordering dates and the order quantity in advance. If sales are higher
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than expected and inventory is depleted more rapidly than expected, we
will want either to order sooner or to order more than we originally
planned. On the other hand, it is almost always administratively

undesirable to leave both these decisions open and in need of continuous

reanalysis. Some kind of trigger is needed which will automatically call
attention to the need to do something about a given item, and the two
basic systems of inventory control are distinguished by the choice of the

trigger.

1. In a min-maz system of inventory control, the order quantity is
fixed once and for all but the date at which each order is to be
placed is determined by the stock on hand.

2. Ina system with fired ordering dates, the dates at which the orders

are to be placed are fixed once and for all but the quantity to

order on each occasion is determined by the stock on hand.

We shall study only the min-max system, since analysis of the fixed-

date system leads to very heavy arithmetic when lead timeis not zero.
Even without a complete analysis of both systems, however, we can

determine the conditions under which each should be used, and weshall

do so before proceeding with the detailed study of the min-max system.
Suppose that the “purchaser” is free to place an order whenever he

chooses, that it costs no more to place an order at one time than at
another, and that lead time will be the same whenevertheorderis placed.
Under our basic assumption that high or low demand in one time period

does not tend to be followed by either high or low demandin the next, the

only new evidence which we need consider in deciding when and how

much to order is the number of units currently in stock. If stock fell to

6 units on July 7 last and if stock fell to 6 units today, then whatever

action was rational on July 7 last is rational today.

This line of reasoning clearly implies that under the stated conditions

we should:

1. Determine the economic order quantity once andforall.

2. Place an order for this quantity whenever the stock on hand falls
to a predetermined level known as the reorder point.t

In other words, the min-max system is preferable to the system with fixed

ordering dates whenever (1) lead time is the same regardless of order date,
(2) placing of orders at irregular dates entails no substanizal extra cost, and
(3) recent history is of no use in predicting demand.

The fixed-date system may be preferable when any one of these

three conditions is violated. In many situations the purchaseris forced

to order on fixed dates because he is not free to place orders when he

{+ We remind the student that the Poisson model of demand implies that stock
will fall by 1 unit at a time: cf. Section 13.4.1.
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chooses, or—what amounts to the same thing—because there are speci-

fied ‘closing dates’’ and it is the time between these closing dates and

delivery which is constant rather than the time between placing the
order and delivery. This was true in all the problems studied in earlier
chapters: bread had to be stocked daily, and so forth. Shops often oper-
ate on a “‘cycled”’ basis such that an order for any part of a certain class
will be delivered so many days after the end of the month in which the
production order is placed, regardless of the day on which the orderis
placed.

Another common reason for ordering on fixed dates is a desire to
revise predictions of future demand on the basis of a careful study of

past demand. The fixed dates then simplify the problem of scheduling
the time of the personnel capable of making such a review, or it may be

felt that the review should be made morefrequently than it would beif it
occurred only when a reorder point was reached. This is reasonable
enough whenit is true that something can be learned about future demand

from the recent history of demand, i.e. when the probability distribution
is not of the sort assumed in this chapter. Jt may be remarked, however,

that mere random fluctuations in demand can easily be mistaken for

‘trends”’ and that the assumption that nothing useful can be learned
from recent history is probably justified more often than it is made.

15.3. Physical Behavior of the Min-Max System

A min-max control system for any item is completely defined by the

values of two parameters:

Q: the order quantity, to be the sameonall orders.
R: the reorder point, an order to be placed as soon as the stock falls

to R units.

Under our assumptions concerning lead time and the distribution of

demand, the situation in which the system operates is fully defined by
two additional parameters:

L: the known lead time between placing an order and receipt of
delivery.

p: the mean interval between successive demands, the reciprocal of
mean demandper unit of time, also assumed known.

If lead time were zero—if goods were delivered instantaneously when

an order was placed—thenin spite of uncertainty concerning demand the
economics of inventory control under a min-max system would be

identical to the economics of control when demand can beforecast with

certainty. Carrying costs would be minimized by setting the reorder

point FR at zero, so that each new lot would arrive an instant after the last
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piece in the old lot was sold. The best value for Q—the economiclot

size—would be calculated in exactly the same way that it is calculated
undercertainty, by balancing the costs which increase with order quan-
tity against the costs which increase with order frequency.

If, on the contrary, lead timeis not zero, then whatever the reorder

point it will not be true in general that the new lot will arrive at the
instant that the last piece in the old lot is sold. Rather than make a

direct attack upon the rather complicated effect which this has on costs,

we shall start by analyzing the ‘‘ physical behavior”’ of a min-max system
with known nonzero lead time. The analysis becomes very complex if

the order quantity Q is smaller than the reorder point F (as it may well
be when usageis low andlead timeis long), since in this case there will be

several orders outstanding at any one time, each of them placed at a
different time and due in at a different time. Therefore we now

introduce one further restriction:

Weconsider only the case where the order quantity Q is greater than
the reorder point R.

15.8.1 The Fifo “‘ Assumption’’; Shelf Stock, Reserve Stock,
and Overlap

Our analysis of the behavior of the min-max system can be greatly
simplified by treating it as if the inventory is physically handled on a
strict Fifo (first in first out) basis. We shall therefore “assume”’ that

uf the new lot arrives while there 1s still stock on hand, the new lot will be left

intact in its container until the last piece of this old stock is sold. We shall
use the term shelf stock for the old stock which is open for sale on the shelf
and the term reserve stock for the new stock held in an unopened container
(if any). Weshall refer to any time during which there is both old and
new stock on hand as a period of overlap.

It should be obvious that this “assumption” is nothing but a con-

venient way of visualizing the problem. Al! costs will in fact be the same,
and the results of our analysis will apply without modification, whether
the inventory 1s in fact handled in this. way or not.

15.8.2 The Min-Mazx Cycle

Over a long period of time there will be many orders placed and

many lots received and opened. In order to analyze this long-run

behavior we shall cut it up into a series of cycles, determine what.may
happen in any one cycle, and then determine what happens onthe average

over all cycles or what can be “‘expected”’’ to happen in one cycle. A

cycle can be defined in various ways: as running from the placing of one

order to the placing of the next, from receipt of one lot to receipt of the

next, or from the opening of one lot to the opening of the next. If our
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analysis is correct we must get the same results whichever of these
definitions we use, and the last of them will be the most convenient.

Let us therefore look at what may happen in a min-max cycle between

the opening of one lot and the opening of the next. Since there is prob-
ability 0 that the new lot will arrive at the exact instant that the last piece
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in the old lot is sold, we may assume that the behavior of inventory

during this cycle will correspond to one or the otherof the two sketches
in Figure 15.1. Hither

a. The last piece from the old lot will have been sold before the new
lot arrives, so that there 1s a period of stockout, or

b. Some unsold pieces from the old lot will be left over when the new
lot arrives, so that there 1s a period of overlap.

The figures make it clear that in etther of the two cases we may sub-

divide the cycle into two major parts:
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1. Time from openingthefirst lot to placing the order for the next.
2. Time from placing the order to opening of the ordered lot.

The figures also make it clear that in either of the two cases the second of

the two major parts can be further subdividedin ezther of two ways:

a. Time to sell the last R pieces in the old lot plus period of stockout

if any.

b. Lead time plus period of overlapif any.

Our objective is to determine the average or expected value of the following

tumes:

1. Average shelf tume, i.e. the time that the ‘‘ average piece”’ is carried

on the shelf after the container has been opened; this determines the cost
of carrying shelf stock.

2. Overlap time, which determines the cost of carrying reserve stock
intact in its container.

3. Time out of stock, which determines the cost of stockouts.

Wenow proceed to compute these times in the order listed.
1. Average Shelf Time. It is clear from Figure 15.la that a new lot

may be opened immediately after a period of stockout, and the expected
time during which a piece from the new lot will remain on the shelf
depends on what happensto orders received during this period of stock-
out. It is obvious that if such orders are canceled or lost, the new stock

will last longer than if the orders are back-ordered andfilled from the new

lot as soon as it is received. In this chapter we shall study only the
former case:

Weassumethat unfilled orders are lost and have no effect on future

demand.

Notice that unsatisfied demands are “lost’’ in effect not only when

1. An unsatisfied “‘customer’’ buys elsewhere or fills his need by
substitution or ‘‘local manufacture,”’

but also when

2. A stoppage occurs as soon as the last piece is withdrawn from
inventory, With the result that no unsatisfied demands can occur.

{ This applies particularly to spare parts. Notice that in this case a part actually

in use on a machine must be counted as part of the inventory, so that usage stops as

soon as the last part ‘“‘in inventory”’’ breaks. If inventoryis defined as including only

the spare parts, one breakage may occur after the inventory hasfallen to 0, and if it
does the demand wiil be back-ordered and filled as soon as a new supply arrives, thus
invalidating our analysis.
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The expected shelf time for the itemsin a lot is now exceedingly easy

to compute. By our ‘Fifo assumption,’ no piece from a new lot is put
on the shelf until the last piece in the old lot is sold, and thenall Q pieces
are put on the shelf simultaneously. Since the expected time between

successive demandsfor single units is un, the expected shelf time for the
first piece to be sold is u, the expected shelf time for the secondis 2u,etc.,
and the expected shelf time for the last piece to be sold is Qu. The

average expected shelf time for the Q pieces in the lot is thus

BL +24+ +--+ Ou

and it can easily be shown that this gives

 

Q+19H

 

Average shelf time =

 

2. Expected Period of Overlap. If one piece of old stock remains

unsold when the new lot is received, the expected timebefore it is sold is

uw regardless of how long it has already been on theshelf, since Poisson

events are independentof past history. If two units remain unsold when

the new lot arrives, the conditional expected time before both are sold is
2u, and so forth. Under our “Fifo assumption,”’ these times are the

conditional expected values of the period of overlap during which both

old and new stock is on hand. The total expected overlap will therefore be
equal to pw times the expected number of pteces left over when the new lot

arrwes.
This means that ourfirst task is to compute the expected numberof

pieces which will be left over when the new lot arrives. Weshall derive

the method of computation by first considering a specific numerical

example in which

R = 3, the reorder point;

L = 8 weeks, the lead time;

pw = 4 weeks, the mean interval between demands.

The expected number of demands during the lead time L is then

The probability distribution for the numberof units demanded during the
lead time can now be obtained from Chart I; it is shown in thefirst two
columns of Table 15.1. The conditional numberof pieces left over when

the new lot arrives is the number FR on hand at the beginningof the lead
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time less the numbersold during the lead time; the numbersoldis either
the number demanded or the number RF on hand, whicheverisless.

The expected numberleft over is computed for this example in the
last column of Table 15.1. Inspection of the individual entries in this

 

 

 

Table 15.1

Demand ~ Number
. Ppo(F = rlm = 2) left over Expected value

0 .135 (3 — 0) 1385 * 3 — .1385 X 0

1 201 (3 ~— 1) 271 X38 — .271 XK 1

2 271 (3 — 2) .271 X%3 — .271 K 2

3=RF .180 (3 — 3) .180 X¥ 3 — .180 KX 3

4+ .143 (3 ~— 3) 0

1.000 .857 X 3 — 1.353

 

column shows that the first term of the total is 3 Pp.(7# < 3) while the

second term 1.353 is the sum of r P(r) for all r from 0 to 3 inclusive andis

therefore Ei(#). Generalizing this example we obtain the formula

Expected numberleft over = R Pp.(7 < R) — Ep(#).

Substituting the formula given in Section 13.3 for the partial expectation

of a Poisson variable we obtain

Expected numberleft over = R Ppl? < R) — mPp(F < R).

Because Chart I gives right- rather than left-tail probabilities it will be

simpler to write this in the form

Ril — Pp.(¥ > R)) — mil — Prpol(F > R))
= (R _ m) + (m Pp(F > R) -_ R Pp(F > R)I;

and because the term in the brackets on the right will occur so frequently

in what follows we shall give it the name g(R) (read: gof R):

 

g(R) = mPp(f¥ = R) — KR Pp(F > R) Definition of g(f)

 

We can thus write

Expected numberleft over = (R — m) + g(R),

and because the expected time to sell each piece left over is » we have

 

Expected overlap = »[(R — m) + g(R)]
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The quantity (R — m) is usually knownasthe safety stock, sinceit is

the amount by which the quantity on hand when the order is placed

exceeds the expected demandbefore delivery of the new lot. The expected
overlap thus consists of the expected timetosell off the safety stock plus
an additional amount which will be explained in a moment.

3. Time Out of Stock. We have already seen that the actual time
from placing an order to opening of the new lot may be broken down in

either of two ways:

a. Timeto sell the last R pieces in the old lot plus period of stockout

if any.

b. Lead time plus period of overlap if any.
This implies that if we average over all possible cycles, the resulting

expected time between ordering and opening may be broken down in
either of these same two ways:

a. Expected time to sell R pieces plus expected time out of stock.

b. Lead time plus expected overlap.

Since the expected time between ordering and opening must be the same
no matter how we subdivideit in our thinking, we may equateatob. In

a, the time to sell R pieces is Ryu by the definition of u. In b, thelead time
is equal to wm by the definition m = L/y; and therefore

pum + expected overlap = uA + expected TOS.

Thus

Expected overlap = u(R — m) + expected TOS;

and comparing this equation with the formula given above for the
expected overlap, we see that we have identified the previously unex-
plained term in that formula:

 

Expected TOS = yg(R)

 

Looking back at the definition of g(), we see that as the reorder

point RF is raised, the probabilities in g(2) approach 0: the expected time
out of stock approaches 0 and the expected overlap approaches n(R — m).

With a high enough reorder point, shortages will never occur and the

expected delay between receipt and opening of the new lot is simply the
expected time required to sell the safety stock of R — mpieces. Wealso
see that when # = 0, g(R) reduces to m Pp.(r > 0) = m, the expected

time out of stock reduces to pm = L, and the expected overlap reduces to

0. If there is no stock on hand whentheorderis placed, the time out of

stock is obviously the lead time LZ and the new order will be opened
immediately on receipt.
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15.4 Total Expected Cost under a Min-Max System

We now proceed to use our knowledge of the physical behaviorof a
min-max system to analyze the economics of such a system. In so
doing, it would be very awkward to work exclusively with either costs in
the strict sense—i.e., actual cash flows—or with opportunity losses as
defined in Chapter 7. We shall therefore work out the sum of thecosts of

ordering and of carrying inventory and the losses due to stockouts, but to
simplify our language weshall refer to all of these indiscriminately as

“costs”? and weshall call their sum the total ‘‘cost’”’ of the system.
As notation we shall continue to use the parameters Q, R, L, and yw in

the sense of the previous section and in addition we define the cost

parameters

K: cost of placing one order, receiving, payment, etc.

k/: cost of carrying one piece in inventory per unit of time.
ki: “cost” (loss) of out-of-stock condition per unit of time.

Whenthe cost of shortage is proportional to the number of units short, the
expected cost per unit of timeis the cost per unit divided by the expected
time between demands. If we use k,, for the loss per unit short as in

earlier chapters, then

if = Ku,
“ Lt

15.4.1 The Individual Expected Costs

Thereal utility of our ‘‘ Fifo assumption’’ (Section 15.3.1) is that it
permits us to split the carrying costs incurred on any lot into two parts:

1. Cost of carrying thelot intact from the timethelot is received to

the timeit is opened.
2. Cost of carrying individual pieces from the timethe lot is opened

until each piece is sold.
Since the cost per unit of time of carrying onepieceis k,, the cost per

unit of time of carrying an entire lot of Q pieces is k,Q. The expected
cost in thefirst of the two categories above is thus k,Q times the expected
overlap or time from receipt to openingof thelot:

 

Cost of overlap = kQul(R — m) + 9(R)]

 

If the reorder point R were high enough to make g(R) zero, the
expected cost of overlap would be simply k’Qu times the “safety stock”

(R — m), and the term k,Qu(R — m) is often called the cost of carrying
safety stocks. Notice, however, that although the safety stock may be

negative and therefore the so-called. cost of carrying safety stock may be
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negative, the cost of overlap is never less than 0. The cost of overlap is
strictly 0 only when the reorder point RF is 0 and the ‘“‘safety stock”’ is
(0 — m) = —m. Theso-called cost of carrying safety stock will be a good
approximation to the cost of overlap only when the reorder point ts so high

that the expected time out of stock is negligible.
After the lot has been opened and placed on the shelf, the ex-

pected time during which the “average piece”’ will remain on theshelf is

44(Q + 1)u. The expected cost of carrying this ‘average piece’”’ is

therefore 144k,(Q + 1)u, and the expected total for all Q pieces in the lot
is Q times this. Since this cost depends only on the lot size Q and not on

the reorder point, it is usually knownasthe cost of “‘lot-size inventory’”’:

 

Cost of lot-size inventory = %kiQ(Q + 1)u

 

The expected cost of stockouts is the cost k,, per unit of time out of

stock multiplied by the expected value of this time:

 

Cost of stockouts = kiug(R)

 

15.4.2 Total Expected Cost per Cycle

Adding all these costs plus the cost of ordering K, we havefor the
expected total cost per cycle

KQul(R — m) + 9(R)] +}4KQ(Q+ Vu inventory
+ kiug(R) shortage
+K ordering

Regrouping the terms we obtain an expression more convenient for

computation:

 

Expected TCPC

= K + k,Qul}4(Q + 1) + (R — m)] + (+ k6Q)ug(R)

 

Thefirst term is the cost of ordering. The second is the cost of ‘‘lot-size’”’

inventory plus the so-called “‘ cost of safety stocks.’’ The last term shows

the effect of out of stock, which creates both the cost of shortage and the

difference between the true cost of overlap and the so-called cost of safety

stocks.

15.4.8 Total Expected Cost per Unit of Time

In order to compute expected cost per unit of time we must divide
the expected cost per cycle by the expected length of a cycle. As we can
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see in Figure 15.1, any cycle from the opening of one lot to the opening of

the next can be broken down into at most twoparts:

1. The time required to sell the Q pieces in thefirst lot;

2. The time out of stock if any.

The expected value of the former of these two timesis obviously Qu, the

expected value of the latter has been shown to be wg(#), and therefore

Expected length of cycle = Qu + ng(h).

We can now obtain the expected cost per unit of time by dividing

the formula for expected cost per cycle by this formula for expected

length of cycle. To simplify computation we divide both the numerator

and the denominator of the resulting fraction by yu; the expected total cost

per unit of time is then

 

Expected TCPUT

_ K/p + bO4(Q + 1) + (R - m)) ++ .Q)9(R)
Q + g(R)

 

15.5 Selection of the Best R for Given Q

Wenow take up the problem of finding the values of Q and R which

will minimize expected cost per unit of time. We shall first see how to
find the best R for given Q, and weshall then take up the more complex
problem of finding the best value for Q.

15.6.1 Incremental Effect of the jth Unit on the Min-Mazx Cycle

Suppose that we have decided that the reorder point FR shall be at

least some numberwhich weshall call (7 — 1) and that we wish to determine

the effect of increasing the reorder point by 1 unit, i.e. to the valuej. We

shall refer to this as ‘“‘adding the jth unit to the reorder point.’”?’ The
physical behavior of a min-max system will be affected by addition of the jth

unit in three ways.

1. The expected overlap or time betweenreceipt and opening of a new

lot will be increased by yu Pp.(¥ < 7), since Pp.(# < 7) is the probability

that the jth unit will be left over when the new lot arrives and yp is the

expected delay resulting from each piece left over.

2. Looking at the formula for expected overlap with R = j,

u(j — m) + ug),

we see that addition of the jth unit obviously increases the term y(7 — m)
by the amount u. Since the total overlap actually increases by only
up Pp.(* <7), as we have just shown, addition of the jth unit means that
the second term, which is the expected time out of stock, is decreased by

uw — pw Pp(F <j) = wp Pel? 2 J).
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3. The expected time between ordersis Qu plus the expected time out

of stock and is therefore decreased by up Pp.(? = 7).

15.6.2 Economic Effect of the jth Unit

The cost of overlap is k,Q times the expected overlap and is therefore

increased by kiQu Pp.(F7 <j). The cost of shortage is k,, times the expected
time out of stock andis therefore decreased by kin Pp.(F > 7). Since the

other costs (the cost of ordering and the cost of lot-size inventory) are

unaffected by a change in the reorder point, adding the jth unit will

reduce expected cost per cycle if |

koQu PrlF <j) < ki Pel? > J).

By using the relation P(¥ < 7) = 1 — P(¥ > J), this condition can be put

in either of two more convenient forms

 

kiQ ki

PeG2D> Rae ESD<PEO

 

The R which minimizes cost per cycle will be equal to the highest 7 which

satisfies these conditions; the second form of the condition should be com-

pared with the condition given in Section 7.6.3 for another kind of inven-

tory problem.
Remember, however, that what the businessman wants to minimize

is not his cost per cycle but his long-run total cost or—what amounts to

the same thing—his cost per unit of time. When ordersare placed at pre-
determined dates, the two objectives are equivalent, but under a min-max

system they are not. We have just seen that addition of the jth unit

decreases the expected length of cycle by » Pp,(¥ > 7), this reduction in

length of cycle tends to increase the cost per unit of time, and this effect

may outweigh the effect of the reduction which the jth unit makes in cost

per cycle.

In principle, therefore, we must check the true optimality of the R
which minimizes cost per cycle by evaluating cost per unit of time with

this value of R and also with the next lower value. If cost per unit of

time is higher with reorder point R = 7 — 1 than with reorder point
R = j, then R = 7is in fact the best reorder point. If the cost with

7 — 1 is lower than the cost with 7, we must try 7 — 2 and so forth until

we have bracketed the best reorder point. In actual practice, however,
the benefit derived from this refinement will usually be extremely small.
It is likely to be important only when the costs are such that the best

control system calls for an expected time out of stock which 1s substantial

compared with the expected time to use up onelot of material.
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Example. Failures of a certain machine part occur once every 4

weeks on the average and are Poisson distributed. The part is purchased
in lots of 12 at a delivered cost of $18.20 per unit. It costs $25 to prepare

and place an order, make out receiving papers, etc., on delivery, and
process the invoice through accounts payable. The cost of carrying

parts of this type in inventory1s figured as 30 per cent per annum of their

value at delivered cost. If a part fails when no spare is on hand, a
replacement part is manufactured in the toolroom at a cost of $50. The
inventory is controlled by a min-max system, and we wish to determine

the reorder point. The lead time from the instant the stock clerk reports
that the reorder point has been reached to the instant the new lotis
available for use is 8 weeks. From these data we compute the parame-
ters of the problem:

 

Q = 12;
L = 8 weeks;
p = 4 weeks;

K = $25;

k= si $18.20 = $.105 per week;

k. = $50 — $18.20 = $31.80 per unit short;

k= = ere = $7.95 per week out of stock;

L 8
m= 1 = 4 = 2

Cost per cycle will be reduced by adding the jth unit if

Ps,(# > jlm = 2) > He $.105 X 12
WO +~ $1.56 + $7.95 1°"
 

From Chart I we find that Pp,(7 > 4) = .143 while Pp,(7 > 5) = .053,
so that a reorder point of & = 4 will minimize cost per cycle.

We next evaluate cost per unit of time, which means that we take

account of the effect of the reorder point on the expected length of

cycle. We have already seen that with R = 4, Pp,.(# > R) = .148 and
Pp.(7 > R) = .053. Then

g(R) = mPp(f > R) — RPp(F > R)

= (2 X .143) — (4 X .053) = .074,

K #8 $6.25,
pb 4

k.Q = $.105 X 12 = $1.26,
WY4(Q+1)+(R-—™m) =65+4-2=8.5,

ki + k6Q = $7.95 + $1.26 = $9.21.
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Substituting these values in the formula in Section 15.4.3 we have

_ $6.25 + ($1.26 X 8.5) + ($9.21 X .074)
Expected TCPUT = 12 4 074

= $17.65 $1.46 per week: R =A.
~ 12.074

We next compute the expected cost per week with a reorder point

1 unit lower, R = 3. Wealready have Pp.(7 > 3) = Pp.(7% > 4) = .148,

and Chart I gives Pp,.(¥ > 3) = .3823. Thus

g(R) = (2 X .823) — (3 & .143) = .217,

W4(Q+1)+ (R-—™m) =654+3-2 = 7.5,
_ $6.25 + ($1.26 X 7.5) + ($9.21 X .217)

Expected TCPUT = (24 317

— 317.70 _ $1.45 per week: R = 38.
~ 12.217
 

The numerator (cost per cycle divided by u) has been increased by

$17.70 — $17.64 = $.06, but the increase of 12.217 — 12.074 = .143 in

the denominator (length of cycle divided by u) has reduced cost per week
by $1.46 — $1.45 = $.01.

It is left to the student as an exercise to show that if the reorder point

is decreased to 2, both the numerator and the cost per week are increased,

the former to $19.43 and the latter to $1.55. The best reorder point for
Q = 121s R = 3; the best “‘safety stock’? (R — m) is one piece.

15.6 Selection of the Best Q

Having seen how to find the best reorder point for any given order

quantity, we now turn to thefinal problem of determining the best order

quantity. Basically we must proceed bytrial and error, finding the best
R and minimum costfor each of a series of values of Q until we hit upon
the best one. Weshall see, however, that our choice of values of Q to try

can be guided in such a way that an exact answer or a more than adequate
approximation can be found very quickly.

What wewish to do is find the values of Q and R which minimize the

expression in Section 15.4.3 above for expected total cost per unit of time.
Wehavealready seen that when Q is given, it is very easy to find the

value of R which minimizes the numerator of this expression; and minimiz-
ing the numerator would minimize the whole expression were it not for

the effect of the term g(R) inthe denominator. The tedious part of find-

ing the best & for given Q was the checking and adjusting for the effect
of this term. Weshall see presently that if this term were absent from

the denominator it would also be very easy to find the best value of Q for

given #; and weshall therefore proceed in two stages:
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1. Find the Q and R which would be best if the term g(R) in the
denominator were absent;

2. Correct these approximate optima to allow for the effect of this
term.

15.6.1 The Approximate Solution

Dropping g(#) from the denominator of the expression in Section

15.4.3, we have for the approximate cost per unit of time

K/u + QU4(Q + 1) + (A — m)) + (ky + kQ)9(R)
Q

_ K/u rei + SEQ +3) + WI(R — m) + g(R)].
Except for the effect of the omitted term, the costs per unit of time of

ordering and of shortage vary inversely with Q, the cost of lot-size inven-
tory varies directly with Q, and the cost of overlap inventory is independ-
ent of Q. By use of the differential calculus it can be shown that the

above expression will be minimizedif

 

 

K/p ki2 S/E Bu
Q Yok, ak, g(t)

 

Weshall start by guessing a value for R and using this formula to
find the best Q for this R. We then put this Q in the condition for adding

the jth unit to R:

 

_ BQ =QPpo(# > j) > MQ+hK Q+kK/K

 

and find the best FR for this Q. We then repeat the process starting from

this new # and continue until no further improvement can be made in

this way.
Example. In our previous example we arbitrarily set Q = 12. We

shall now reexamine this problem and find the best value of Q. The

basic data were:

L = 8 weeks,
uw = 4 weeks,

K/u _ Hs

x $6.25,
ake

.
a = 75.7

k’ = $.105 per unit per week, 7

ki, = $7.95 per week, kh ~ 151,

m=—= 2.

R
i
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Asour initial guess at a good value for R we take the expected demand
during the lead time, which is m = 2 units.

First Approximation. With R = 2:

g(R) = mPp(F > R) — RP»,(# > R)
(2 * 594) — (2 X 328) = .542,

Q? = 119 + (151 X .542) = 201,
Q = 1/201 = 14,

_@ _@ _ M4 _ jg.
Q+tk/ke Q+75.7 89.7 °°”

Pp(r > 3\m = 2) = 323 > .156,
Pp(r > 4|/m = 2) = 143 < .156.

The first-approximation solution is Q = 14, R = 3.
Second Approximation. With R = 3:

g(R) = (2 X .828) — (8 X .148) = .217,
Q? = 119+ (151 X .217) = 152,
Q = V/152 = 12,

Q 12 _137,Q475.7 87.7 —
Pp,(r > 4) = .143 > .137,
Pp(r > 5) = .053 < .137.

The second-approximation solution is Q = 12, R = 4.
Third Approximation. With R = 4:

g(R) = (2 X .148) — (4 X .053) = .074,
Q? = 119 + (151 X .074) = 130,
Q = v/130 = 11,

Q il 497,Q+75.7 86.7 —
Pp(r > 4) = .143 > .127,
Pp.(r > 5) = .053 < .127.

The third-approximation solution is Q = 11, R = 4; and since we know

that R = 4 will lead back to Q = 11, we have now doneall that we can
do by this approximate method.

15.6.2 The Exact Solution

After having found approximations to the best values of Q and R
by the method just described, we can find the exact solution by taking a
very few values of Q in the neighborhood of the approximate solution and
for each onefinding the true optimum F# and minimum expected cost by
the method used in Section 15.5.2 above. In practice, however, this

refinement is rarely required. Unless the approximate solution leads to
a value of g(#) which is substantial compared with Q, that is to an
expected time out of stock which is substantial compared with the time
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required to use up one lot, restoration of this term to the denominator
will have verylittle effect. We shall go on to find the exact solution of

the example above simply to illustrate this point.
Example Continued. With Q = 12, we have already seen in Section

15.5.2 that the true best value of # is 3 and that with R = 3 the cost is

$1.45 per week. With Q = 11, R = (the last of the approximate
solutions):

W(Q+1)+ (R—-—m) =6+4—-2=8,
k3Q = $.105 X 11 = $1.155,

k’Q + ki = $1.155 + $7.95 = $9.105,
_ $6.25 + ($1.155 X 8) + ($9.105 X .074)

Expected TCPUT = ii + 074

_ $16.16
= T1074 > $1.46 per week.

 

 

To be sure that we have the lowest cost for Q = 11, we must try & = 3.

Wy(Q+1)+ (R -—m) = 7,

_ $6.25 + ($1.155 X 7) + ($9.105 X .217)
Expected TCPUT = i) y .2t7

_ $16.31
~ 11.217

 

 

= $1.45 per week.

Since this cost is lower than the cost with R = 4, we must try K = 2, but

this time we obtain $1.57 as the cost per week. The best & for Q = 111s
thus R = 3, and the cost of Q = 11, R = 3 is identical to the cost of

Q=12,R =3. This equality shows that we are at the bottom of the cost

curve: no better plan can be found than R = 3 and Q = 11 or 12.
Total expected cost per week is shown in Table 15.2 for a variety of

combinations of Q and RF in the vicinity of the best combinations. This

table is a good illustration of the fact that

In most practical problems of decision under uncertainty, reason-

ably small departures from the optimal decisions have an extremely

small effect on total expected cost.

 

 

 

Table 15.2
Total Expected Cost per Week, Dollars

Q
R

10 i} 12 13 14

2 1.60 1.57 1.55 1.54 1.54
3 1.47 1.45 1.45 1.45 1.46
4 1.47 1.46 1.46 1.47 1.48
5 1.53 1.52 1.53 1.54 1.56
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15.7 Opportunity Loss and the Cost of Uncertainty

It would be extremely difficult to lay out a table of conditional
opportunity losses for a problem of the kind weare studying in this

chapter, and thereforeit is not practical to compute expected opportunity

loss by taking the expectation of conditional losses. On the other hand,

it is very easy to find the expected cost of action under certainty and thus

to find the expected loss of any decision by the method of Section 7.3.

15.7.1 Expected Cost under Certainty

Under certainty, there would never be any cost or loss due to stock-
outs or overlap; eachnew lot wouldarrive at the instant the first demand

occurred after the exhaustion of the old lot, and the only costs ever
incurred would be the cost of ordering and the cost of lot-size inventory.
The cost of ordering is exactly the same undercertainty as under uncer-

tainty, but there is a slight difference in the cost of lot-size inventory.
Because the new lot arrives at the instant there is a demandforthe first
piece in it, the expected time on the shelf is 0 for thefirst piece, 1u for the

second, 2u for the third,. . . , (Q — 1)u for the Qth, so that the average
shelf time is

 ZOtL+2+ +--+ (@- De = SS*o

From this we derive (cf. Section 15.4.1)

Cost of lot-size inventory = 4k,Q(Q — 1)n.

There being no stockouts undercertainty, the expected length of a cycle

is simply Qu, and we thus obtain (cf. Sections 15.4.2 and 15.4.3)

 Expected TCPUT undercertainty = K/u + BAG = 1),

By use of the calculus it can be shown that this cost is minimized by

setting

_ K/u.
bak,

Applying these results to the example discussed in Section 15.6, we

obtain for the optimal lot size under certainty

Q?

or — 86.25 _
lg X $.105

Q = V119 = 11.

119,
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We can then compute

1
TCPUT under certainty = $6.25 + (4 X oa x 11 X 10)

= $1.09 per week.

15.7.2 Expected Loss and the Cost of Uncertainty

It is now a trivial problem to find the expected opportunity loss of

any Q, R combination by subtracting cost under certainty from cost

under that combination. Continuing with the same example, we see in
Table 15.2 that expected cost with Q = 10, R = 2 1s $1.60 per week;

expected loss under this policy is therefore $1.60 — $1.09 = $.51 per

week,
The cost of uncertainty is as usual the expectedloss of the best possible

decision under uncertainty. In Table 15.2 we saw that in our example
the lowest possible cost under uncertainty is $1.45 per week, and there-

fore the cost of uncertainty is $1.45 — $1.09 = $.36 per week.

15.8 Applicability of the Results of This Chapter

The expression for total cost per unit of time in Section 15.4.3 above
rests on a series of assumptions made during the course of the derivation.

We nowcollect them together as a summary.

1. Lead time can be treated as known with certainty.
2. Demandis generated by a Poisson process.

3. The intensity of the process (average demand per unit of time)
can be treated as known with certainty.

4, Either (a) demands which cannot be satisfied immediately are
lost and have no effect on future demand, or (6) no demands can

occur when there is no stock on hand.
5. The order quantity Q is greater than the reorder point R.

The meaning of most of these assumptions is quite obvious, but as
regards the second and third the student should review the discussion in

Section 13.4. Many “‘formulas’’ which have been publicized as panaceas
for almost any problem of inventory control under uncertainty rest on the

same basic assumption of a Poisson demand with knownintensity which
was made in this chapter. Such panaceas tend to be adopted in one

situation because they are reported to have ‘“‘worked”’ in another, but
this is scarcely a rational basis for a decision. A reasonable policy for
inventory control can be determined only by consideration of what is known

about the characteristics of demand and by analysis of a model which repre-

sentsthese characteristics with reasonable accuracy.

One qualification must be attached to this final statement, however,
and the qualification is an important one. If we abandon the Poisson
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model, we must—if we wish to be rational—adopt and analyze a more

complex model. If the changes in actual inventory policy which result
from improved knowledge are small, this reanalysis may well fail to reduce
expected cost enough to pay foritself. We have already seen that when
the Poisson model applies, the extra cost due to reasonably small depar-

tures from the best Q and & adds almost nothing to total expected cost,

Wehaveseen the same thingin our studyof theeffect of small departures

from optimum scrap allowances, and weshall see the same thing repeat-

edly in other kinds of problemslater in the course. If then in any inven-

tory problem the exact model—the one which corresponds exactly to the
beliefs of the responsible person—differs only slightly from a Poisson
model, we suspect: first, that the exact solution for Q and R will differ

only slightly from the values derived from the Poisson model; and second,

that the extra expected cost due to using the Poisson Q and # instead of

the best values will be negligible. In such a situation the course of

action which minimizesthe total of all costs, including the cost of analysis,
may well be to follow the policies dictated by the simple Poisson model.

PROBLEMS

1. Compute the expected numberof pieces left over at receipt of a new lot when
the reorder point is 2 units, the lead time is 2 weeks, and demand averages .3 unit

per week:

a. By the method of Table 15.1.

b. By use of the formula R — m + g(R).
2. How large is the ‘‘safety stock”’ in the situation of Problem 1?

3. Compute the expected time of overlap for the situation of Problem 1.
4. For this same situation with Q = 20, compute:
a. Expected time out of stock.
b. Expected length of cycle.

Since thereis no overlap if the old stock zs all sold before the new lot arrives and there

is no stockout if the old stock is not sold, how can their expected values both be
positive?

5. If in the situation of Problems 1 to 4 it costs $2 per week to carry an item in
inventory while $6 is lost every time it is impossible to satify a demand, compute the
expected cost per cycle of:
a. ‘Safety stock.” b. Overlap inventory.
c. Lot-size inventory. d. Unsatisfied demand.

Which of these four items must be omitted in adding to get total expected cost per

cycle?

6. Assuming that it costs $10 to place and process each order, compute the
total expected cost per cycle and the total expected cost per week in the situation of
Problem 5.

7. Verify the statement at the end of Section 15.5.2 that with Q@ = 12and R = 2
the expected cost per week is $1.55 for the example in the text.

8. In August, 1956, the Gridley Machine Works was short of capital owing to a

rapid expansion of business during the year. The company’s treasurer asked all

departments to keep inventories to a minimum; he announced that every dollar’s
worth of inventory kept for a year cost the company 30 cents in storage charges
and opportunities lost through lack of availability of capital.
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At the same time, management was concerned aboutrising costs in the purchas-
ing and accounting departments. A careful investigation including a time study had
shown that the directly traceable cost (clerical labor, mail, and supplies) of placing,
receiving, inspecting, and paying for an order amounted to about $15 per order.
The total cost, including both departmental and general burden, came to about $25
per order.

Gridley’s heavy machinery was subjected to unusual stresses, and breakage of
parts often resulted. The company’s experience on its Hynes heavy-duty engine
lathe was fairly typical. Gridley owned one such machine, which wasin almost con-
stant use; part XB411 had broken 72 times in the past 5 years. The failures seemed

to be caused by accidental stresses rather than by gradual wear; at least, the shop
foreman stated that he was completely unable to predict when a failure would occur.

A very large part of the products manufactured by Gridley required some machin-
ing on the Hyneslathe, and if the part on the machine broke when no spare was on
hand, a replacement was manufactured immediately in the toolroom. Although the
part cost only $20 when bought from Hynes, production in the toolroom cost about
$100 owing to the lack of specialized tools and fixtures. There was a 2-month lead
time on all parts supplied by Hynes.

Find the optimum min-max inventory policy for Gridley and compute the cost

of uncertainty. (Hinr: Inventory in this problem should be defined to exclude the
part actually in use on the lathe. Why?)



CHAPTER 16

Measures of Dispersion: The Variance

and the Standard Deviation

In Chapter 5 we saw that for some purposes we did not need to know the

full detail of a frequency or probability distribution because we could

reach the best decision or compute the expected cost of any decision by

knowing only the proper measure of the location of the distribution on the
horizontal axis. For some other purposes the distribution can be
replaced by a measure of its “‘spread,” “scatter,” or dispersion, or by

such a measure together with a measureof location.
By far the most important measures of the dispersion of probability

distributions are the variance andits square root, the standard deviation;

and these are the only measures which weshall study in this course. We
shall, however, begin our study of the variance and standard deviation as

summary measures in the same way that we began our study of measures
of location: we shallfirst define and compute them from a completelist of

actually observed values, and weshall then show how to compute them

from relative frequencies or probabilities.

16.1 Definition of the Variance and Standard Deviation

It naturally occurs to us that the dispersion of a set of values might

logically be measured by

1. Selecting some central value such as the mean,
2. Computing the absolute magnitude of the difference between this

central value and each individual valuein theset,

3. Averaging these “absolute deviations.”

Actually, however, it turns out that very few practical problems can be
solved by use of the particular measure of dispersion defined by these

operations.

16.1.1 The Variance

A much more useful measure is obtained if instead of averaging the
deviations themselves we average the squares of the deviations, and accord-

ingly we define the
260
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Variance of a set of values: the arithmetic average of the squares of

the differences between the individual values and the mean value.

As an example, let us use the data of Table 5.1. The mean of the values
in this table is 2.7, and therefore the variance is o[(2 — 2.7)? +

(4 — 2.7)? + (O — 2.7)? + (2 — 2.7)? 4+ (4 — 2.7)? + (8 — 2.7)? +
(3 — 2.7)? + (1 — 2.7)? + (3 — 2.7)? + (5 — 2.7)7] = Ko(.49 + 1.69 +
7.29 + .49 + 1.69 + .09 + .09 + 2.89 + .09 + 5.29) = 20.10/10 =
2.01.

16.1.2. The Standard Deviation

The variance measures the dispersion of a set of values in rather

peculiar units. The variance of the set of values of number defective

computed just above comes out as 2.01 defectives-squared; the variance

of a set of heights of men would come out in inches-squared or something
of the sort. It is often more convenient to have a measure of dispersion

which is in the same units as the variable itselfi—in numberof defectives

or in inches or feet. Therefore we very commonly use as our measure of

dispersion the

Standard deviation: the square root of the variance.

The standard deviation of the values of number defective in our exampleis

/2.01 = 1.42.

16.2 Computation of the Variance from Relative Frequencies

or Probabilities

The variance of a set of values can be computed by using their rela-

tive frequencies as weights in exactly the same way that the mean is com-

puted by the use of relative frequencies as weights. The student should

review the procedure for computation of the mean as described in Section
5.2.2 before proceeding further in the present chapter.

Let us reexamine the computation of the variance of the values in

Table 5.1 as we carried it out above. If we rearrange the data in orderof

increasing value of the variable we have Table 16.1. The variance is the

average square, or 20.10/10 = 2.01.

Instead of writing down two identical rows for the value 2, three

rows for 3, and two rowsfor 4, we can get the sameresult by writing the

square of each value of the deviation once and weighting it by the number

of times that the value occurs. This is done in Table 16.2, and again we

get the variance by dividing the sum of squares by the sum of the weights,

i.e. by the total number of occurrences. Furthermore we will still get

exactly the sameresult if, instead of dividing the total of the last column

by 10, we divide each of the individual products by 10; and instead of

doing that, we can divide each of the numbers of occurrences by 10
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Table 16.1

Value of the ae Deviation
. Deviation

random variable squared

0 —2.7 7.29

1 —1.7 2.89

2 — 7 .49

2 — .7 .49

3 + 3 .09

3 + 3 .09

3 + .3 .09

4 +1.3 1.69

4 +1.3 1.69

5 +2.3 5.29

20.10

Table 16.2

Value of the was Deviation Numberof
. Deviation Product

random variable squared occurrences

0 —2.7 7.29 1 7.29

1 —1.7 2.89 1 2.89

2 — .7 .49 2 .98

3 + 3 .09 3 27

4 +1.3 1.69 2 3.38

5 +2.3 5.29 1 5.29

10 20.10

Table 16.3

Deviation Numberof occurrences Product

squared divided by 10

7.29 wl . 729

2.89 1 . 289

.A9 2 .098

.09 Oo .027

1.69 2 .338

5.29 1 . 529

1.0 2.010
 

before computing the products. The last three columns of Table 16.2
would then be as shown in Table 16.3; and since the sum of the weightsis

now 1, the variance is simply the total in the last column.

Wenow observe that the entries in the second column of Table 16.3

are simply the relative frequencies of the corresponding values of the
random variable, and generalizing we conclude that
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The variance is computed from a frequency distribution by comput-

ing the squared deviations from the meanof the distribution, weight-
ing them bytheir relative frequencies, and adding these products.
Since relative frequencies always add to 1, the sum of the weights is

1 and there is no need to divide by it to get the weighted average.

No new problems arise when we wish to compute the variance of a

probability distribution:

The variance of a probability distribution is computed by using the
probabilities in exactly the same way that relative frequencies are

used in computing the variance of a frequency distribution.

When the random variable is continuous, the variance can be approxi-

mated by constructing a grouped distribution and treatingall the prob-
ability in a bracket as belonging to the value of the variable at the mid-
point of the bracket. The true variance is defined as the limit of this
approximate value as the brackets become narrower and narrower.f

Notation. It is standard practice to use the symbol o (sigma) to
denote the standard deviation of a random variable; when necessary, we
shall add the nameof the variable in parentheses. Thus:

o(2) standard deviation of the random variable 2,

o?(2) = variance of the random variable 2.

16.3 Mean and Variance of a Sum of Random Variables

In the great majority of the problems which weshall encounterin the

remainder of this course we shall need to know the expectation and

variance of a random variable which is the swm of a numberof other
random variables—e.g., the mean and variance of the total length of

three intervals when the length of each individual interval is itself a
random variable. There is never any difficulty in finding the expectation

of such a sum when the expectations of the individual variables included
in the sum are known, since it can easily be proved that

The expectation of a sum of random variables is the sum of their
individual expectations.

In symbols:

 

B@+9+2+-°:)=E@)+EQ@)+E@+---
Any random variables

 

+ Cf. Section 14.4 on the mean of a continuous distribution.



264 Random Processes and Deriwed Probabilities 16.4

This proposition applies to all random variables without restriction, and it

appeals immediately to our intuition. The expected total length of three
intervals is simply the sum of the expected lengths of the three individual
intervals.

Weshall now state a somewhatsimilar proposition about the variance

of a sum of random variables, but before even stating it we call attention

to the fact that this proposition does not apply to all sums of random

variables. It does apply, however, when the random variables in the

sum are independent,{t and weshall have very frequent occasion to make

use of it in this connection. The proposition is the following:

The variance of a sum of independent random variables is the sum
of their individual variances.7

In symbols:

 

OE +GFtEt + +) = 0(%) + 0G) +072) + ---
Independent{t random variables

 

This is the reason for the great importance of the variance as a meas-
ure of dispersion: no other measureof dispersion hasthis “‘ additive”

property.

In particular, the standard deviation is not additive:

The standard deviation of a sum of random variables is obtained by
taking the square root of the variance of the sum.

16.4 Means and Variances of Four Common Distributions

In Chapters 10 to 14 we have studied two simple but extremely

important random processes:

1. The Bernoulli process, which generates a series of distinct trials

with a constant probability of a success on each trial.
2. The Poisson process, which generates a “‘space’”’ in which the

probability of a success is constant from “point” to “point.”

For each of the two processes we have studied two different probability

distributions:

+ The proposition actually applies even when the random variables in the sum

are not independent provided only that they are uncorrelated, but the subject of cor-
relation is beyond the scope of this course and weshall havelittle occasion to deal with
sums of random variables which are dependent but uncorrelated.



16.4.1 Measures of Dispersion 265

1. The distribution of the number of successes in a specified number
of trials or amount of space. |

2. The distribution of the numberof trials or amount of space required
to secure a specified number of successes.

Wehavethus been led to study four common probability distributions:

For the Bernoulli process: the binomial distribution of 7 given n and
‘the Pascal distribution of # given r;

For the Poissonprocess: the Poisson distribution of 7 given ¢ and the
gamma distribution of ¢ given r.

The variance of each of these distributions will be neededlater in the
course, and we shall now proceed to give the required formulas, proving

them where we can without the use of mathematics.

16.4.1 Binomial Distribution

Let us first consider the binomial distribution of the numberof suc-

cesses on one trial. If we arbitrarily assign the value 1 to a success and

the value 0 to a failure, we can say that the event of a single trial deter-
mines the value of a random variable . The expectation of this random

variable is computed in Table 16.4 in the same way in which we compute
the expectation of any random variable, and wefind that E(2) = p.

 

 

Table 16.4

Value of the Probability Expectation
random variable

x P(z) x P(z)

0 q 0

1 P P
1 p
 

The method of Table 16.3 above can now be used to compute the
variance of this random variable #. The work is shown in Table 16.5,

where thevarianceis the total of the last column. Since p + g = 1, this

total reduces to pq.

 

 

Table 16.5

Value x of the Deviation Deviation Probability Product
random variable x — E(z) squared P(x)

0 O-—p=-p p? q p’q = p(pq)
1 1—p=q q- p q’p = q(p9)

1 (p + q)pg
 

The reason for assigning ‘‘values’’ to successes and failures is simply

that it permits us to regard the number of successes 7 in any number n
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of Bernoulli trials as the swum of the values of n random variables #1, £2,

. . ey &a describing the individual trials—if there are three successes in
10 trials, 3 trials have value 1, 7 trials have value 0, and the sum of these
10 values is 3. Consequently the addition theorem for expectationstells
us that

E@) = E(@1) + E(@2) + - + + + EC).

We have seen that E(%) = p, and therefore we have now proved the

result which was simply asserted in Section 11.3.1: if m Bernoulli trials all
have the same probability p of success, then

E(¥) = np.

Since Bernoulli trials are independent by definition, we can also apply the

addition theorem for variances to get the variance of the binomial dis-

tribution for the number of successes 7 in any numberoftrials n with
constant probability p. Since the random variable Z describing any one
trial has variance pg, we have immediately

 

o*(7) = npg Binomial distribution

 

16.4.2 Poisson Distribution

In Chapter 13 we derived the Poisson distribution with parameter
m = xt, where «x 1s the mean numberof successes per unit of ‘‘space”’ and ¢
is the amount of space. To do this we considered a binomial] distribution

with np = m and then observed what happens to this distribution if n
Increases while p decreases in such a way as to keep np = m constant.

Nowas p decreases toward 0, g = 1 — p obviously increases approaching

1; and since np remains constant the variance npq of the binomial dis-

tribution approaches np = xt = m. Thus

 

o(7) = xt =m Powsson distribution

 

Notice that the variance of a Poisson distribution is equal to its mean.

16.4.8 Pascal Distribution

It can be shown byalgebra that the variance of the numberof trials

ft required to secure one Bernoulli success is g/p*?. The numberof trials
required to secure 7 successes is the sum of r such numbers, and since

these r numbers are independent random variables with variances q/p?,

 

o*(fi) = Pascal distribution

 

SOPrTeserTSeseeesucessesuese-=
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16.4.4 Gamma Distribution

It can be shown that the variance of the space Zz required to secure one
Poisson success is n?, where » = 1/x is the mean space required.t The
space required to secure r successesis the sum of 7 such spaces; andsince

they are independent random variables with variance y?,

 

o2(t) = ry? Gammadistribution

 

This distribution of the space @ is, of course, the nonstandardized gamma

distribution which was discussed at the beginning of Section 14.3 and not

the standardized distribution discussed in Section 14.3.1.

16.5 Changes of Location and Scale

Very frequently we are interested in the distribution of a random

variable each of whose valuesis obtained by taking a value of some other
variable and:

1. Adding (or subtracting) a fixed number, or

2. Multiplying (or dividing) by a fixed number,

or both. Changesof the first sort are known as changesin the location of

the original distribution; changes of the latter sort are known as changes
in the scale of the original distribution.

16.5.1 Changes of Location

Suppose that a random variable Z has the distribution shown by the
left-hand curve in Figure 16.la, and that we define a new random variable

y by

y=2+ b,

where b is a fixed constant. As a concrete example, imagine a set of steel
rods of various lengths z and a set of couplings all of the same length

b = 4inches. If one couplingis attached to each rod, the total length of

rod plus coupling is the value of the new random variable @.

It is obvious that the distribution of 7, which is shown by theright-
hand curve in Figure 16.1a, must be identical in all respects to the dis-
tribution of 2 except that it is shifted along the horizontal axis by the
amount b = 4 inches. Since every individual value is increased by the

same amount b, the average or mean of the values is increased by b.

{ This can be shown either by the use of calculus or by a limiting process like
the one used in Section 14.1.1 to derive the mean of the exponential distribution from
the mean of the Pascal.
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16.5.1

Consequently the differences or deviations between the individual values and

their mean are not changed at all; and since the variance is the average of

the squares of these deviations, the variance is not changed at all. To
summarize:

Addinga fixed amount to or subtracting a fixed amount from every
value of a random variable
1. Changes the mean of the distribution by this same amount;
2. Has no effect on the variance or standard deviation.

The Distribution of Residuals.

variable.

Perhaps the most common problems
in which we makeuse of the two conclusions just stated are problems in
which we are interested in the distribution of the difference between the
individual values of some random variable and the expected value of the

Such differences will be called residuals and will be denoted by
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the symbol epsilon: we define

é= 2— Ka),

where Z denotes any random variable in which we areinterested. Applied

to the distribution of €, our two conclusions become

E(é) = E(2) — E@) = 0;
o*(€) = o2(2); a(é) = a(2).

As an example, consider the random variable ‘‘number defective” in

a run of n pieces produced by a Bernoulli process with parameter p. The

expected number of defectives is

ii(7) = np,

and the residuals are defined by

é=T — np;

they are the differences between the actual number defective and the
expected number defective. What we have just shown is that the

expected residual or mean of the distribution of residuals is 0 while the
variance o?(é) and standard deviation o(é) of the distribution of residuals

are identical to the variance o?(7) and standard deviation o(7) of the
original variable ‘‘number defective.”

16.5.2 Changes of Scale

Consider once again the random variable Z which has the frequency
distribution sketched in Figure 16.1a and suppose that we define a new

variable # by

0 = SZ,

where s is a fixed positive constant. Asa concrete example think of a set
of containers of various capacities and let the variable 2 denote the

capacities aS measured in guarts while 3 denotes the capacities as measured
in pints. Then s = 2:acontainer which holds 1.75 quarts holds2 * 1.75
= 3.50 pints.

It is obvious that the distribution of 5 as sketched in Figure 16.1)
will be the sameas the distribution of 2 except that it is uniformly stretched
out: each value of 0 is s times as far from v = 0 as the corresponding value
of Zis from zg = 0. Since every single value in the distribution is multi-

plied by s, the average or mean of the values is multiplied by this same
factors.

It follows that the difference between any value and the mean is also

multiplied by this same factor s and that the squares of these differences

are multiplied by s?. Since the variance is the average of these squared

differences, every one of which is multiplied by s?, the variance is also
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multiplied by s?. Then since the standard deviation is the square root
of the variance, it follows that the standard deviation is multiplied by s.
To summarize:

Multiplying (or dividing) every value in a distribution by the same
positive factor s

1. Multiplies (or divides) the mean and siandard deviation by s;
2. Multiplies (or divides) the variance by s?.

Distribution of Standardized Variables. The two conclusions just

stated show the following relations between various summary measures

of the distributions of the standardized gamma variable 6 = i/» studied

in Section 14.3.1 and the corresponding measures of the distributions of

the ‘‘natural’’ gamma variable7.

1
E(d) = 2 Es

») lem.
o(5) = a (f);

ny = 1g?
o (0) ~~ yu? (£).

If we makeuse of the results derived in Section 14.4 for E(2) and in this
chapter (Section 16.4.4) for o?(2), we can go on:

E00) = 1 E@ =f=r:
yu yu
1

o7(5) = ae =7;

o(5) = Vr.

16.5.8 Both Changes Together

In Chapter 17 we shall begin our use of an extremely important
standardized random variable @ defined by

z — K(2)
a(2)

where Z denotes any random variable in which weare interested. To find

the relations between the mean, variance, and standard deviation of @
and the corresponding measures of the natural random variable 2, let us
think of each value of @ as being calculated in two steps:

1. Compute the residual « = z — E(2);
2. Compute u = e/a(2).

The first of these steps is simply a change of location, and we already

know that

E(é) = 0,

o(2)= (2),  0°(@) = (2).

qi =
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The second step is a change of scale, the quantity 1/c(Z) playing therole
of the factor s in our original discussion of such changes, and therefore

  

iu. 0E(@) = <q BO = = = 0.

1 a) _
1) = THO FH _
o*(i) = Gh 0°(é) = ao = 1.

16.6 Summary; Conspectus of Formulas

16.6.1 Definitions

The variance is the mean of the squares of the deviations of a set of
values from their mean value.

The standard deviation is the square root of the variance.

16.6.2 Addztiity

The expected value of the sum of any random variables whateveris
the sum of the individual expected values.

The variance of a sum of independent random variables is the sum of
the individual variances.{

No other measure of dispersion is additive; the standard deviation of a
sum of random variables is obtained by taking the square root of the

variance of the sum.

16.6.8 Change of Location

If the same amount b is added to every value of a random variable:

The mean of the distribution or expected value of the variable is
increased by b.

The variance and standard deviation are unchanged.

16.6.4 Change of Scale

If every value of a random variable is multiplied by the samepositive
factor s:

The mean and standard deviation of the distribution are multiplied
by s.

The variance of the distribution is multiplied by s?.

7 See footnote in Section 163
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16.6.6 Means and Variances of Common Distributions

Bernoulli Process with Parameter p

q=1l-—p
Binomial distribution: number of successes in 7 trials K(?#) = np

o7(7) = npg
Pascal distribution: numberof trials to secure r successes E(f%i) = r/p

a2(f) = rq/p?

Poisson Process with Intensity «

w= 1/k

Poisson distribution: number of successes in space ¢ E(?) = xt

o2(F) = xt

Gammadistribution: space required to secure r successes E(Z) = rp

02) = rp?

PROBLEMS

1. Show that the mean, variance, and standard deviation of the fractions defective
in Table 8.7 are respectively .232, .00191, and .0437.

2. Compute the mean, variance, and standard deviation of the ratios total-to-good
in Table 8.7.

3. One box contains 10 tickets numbered 1, 2,. . . , 10. A second box contains
three tickets numbered 3, three tickets numbered 5, and three tickets numbered7.
You draw one ticket from each box and are paid $2 times the sum of the numbers on
your tickets. Compute the mean, variance, and standard deviation of each of the

following random variables:

a. Numberon first ticket. b. Numberon secondticket.
c. Sum of the two numbers. d. Dollar amountreceived.

4. The random variable 2; has standard deviation o({(2;) = 3. The random vari-

able Z2 has standard deviation o(Z2) = 4. The two variables are independent.

a. What is the standard deviation of the random variable S = 2, +-22? (Be
careful: are standard deviations additive?)

b. Whatis the standard deviation of the random variable D = 2, — 2.? [Hunv:
The difference 2, — 22 can be considered as the sum of the random variables 2; and
(—Z.). What is the effect of the negative scale factor (—1)?]

5. One automatic screw machineis used to produce shafts and another to produce
bushings one of which is assembled over each shaft. The mean diameter of the
shafts is 1.000 inch; the mean inside diameter of the bushingsis 1.002 inches; and the
standard deviation of either set of diameters is .001 inch.

a. Compute the mean clearance (bushing diameter minus shaft diameter) and

the standard deviation of the distribution of clearances on the assumption that
assembly is random—i.e., bushings are not selected to fit the shafts on which they are

placed.
b. What can you say about the clearances if assembly 7s selective?
6. The probability distributions of three random variables Z, 7, and 2 are

given in the following table. Compute the mean, variance and standard deviation
of each.
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x P(z) y P(y) 2 P(z)

0 .29 0 ,29 3 ,29
1 49 5 .49 4 49
2 16 10 16 5 16
3 05 15 05 6 05
4 _.01 20 _.01 7 01

1.00 1.00 1.00
 

7. Derive formulas for the mean, variance, and standard deviation of the follow-

ing random variables:
a. # = 7/n, where r is the number of successes in » Bernoulli trials with known

parameter p. This random variable # (read: x bar) is the fraction defective in a pro-
duction lot.

b. The ratio #/p, where # is defined as in (a); this is the ratio of lot fraction defec-

tive to process fraction defective.

c. The ratio %/r, where ft is the number of Bernoulli trials with known parameter
p which are required to secure r successes.

8. a. Compute the mean, variance, and standard deviation of the binomial!dis-
tribution of number of defectives 7 for p = .232 and n = 100, 1000, and 5000.

b. For these same values of n compute the mean, variance, and standard devia-

tion of the fraction defective.
9. a. Compute the mean, variance, and standard deviation of the Pascal number

of trials i for p = .232 and r = 100, 1000, and 5000.
b. For these same values of r compute the mean, variance, and standard deviation

of the ratio fi/r.

10. If # is the unknownfraction defective of a Bernoulli process, if 7/n is the
unknown fraction defective in a lot or run produced by this process, and if we define
the residual ¢ = 7/n — , we can write

T= pté.

The random variables # and é are not independent, as can easily be seen by remember-
ing that for any given p the conditional varianceof é is o7(€) = pq/n, but it can never-
theless be proved that f and é are uncorrelated. Consequently (Section 16.3, footnote)

ot (2) = op) + 0@:

the variance of the lot fraction defective is the variance of the process fraction defec-
tive plus the Bernoulli variance of the difference between the lot fraction and the
process fraction. The variance o7(€) appearingin this last formula is of course not the
conditional variance for given p but the expected or marginal variance obtained by
computing the conditional variance for every possible p and then taking a weighted
average of these conditional variances with the probabilities P(p) used as the weights.

It can be shown that this expected or weighted-average Bernoulli variance is given
by the formula

o%(@) = = {E(p)[1 — E()] — o°(B)}.
Making use of your answer to Problem 1 above, discuss the legitimacy of neglecting
Bernoulli variance in Section 8.2.



CHAPTER 17

The Normal Approximation to Distributions

of Sums of Random Variables

Now that we are acquainted with the idea of a continuous distribution
and with the definition of the standard deviation of any distribution, we

are ready to take up the so-called Normal distribution. This is by far
the most important of all probability distributions. Although our

beliefs about the real world are never quite so exactly described by the

Normal distribution as they sometimes are by such distributions as the
binomial or the Poisson, the Normaldistribution is an excellent approzi-
mation to a wide variety of real distributions of great practical impor-

tance; and at the same timeit is exceptionally manageable mathemat-
ically. In this chapter weshall see that under a wide range of conditions

the Normal distribution can be used as an approximation to every dis-
tribution which we have studied so far, and as the course proceeds we

shall find that it can be used as an approximation to still other distribu-

tions.

17.1 Behavior of the Binomial Distribution as n Increases

Figure 17.1 shows histograms of the binomial distributions for

p = .l and .5 and for n = 10, 20, and 50. It is obvious from the figure
that as n increases the outline of the histogram for either value of p
becomes smoother and smoother, but the figure is hard to interpret
because both the location and the dispersion of the distributions change
as n increases; the values of the mean E(7) and the standard deviation

o(¥) of the six distributions are shown in Table 17.1 and indicated graph-
ically in the figure.

Figure 17.2 is drawn to show exactly the same distributions lined up
with their means above each other and with the r scales chosen in such a

way that the standard deviationsof all the distributions are represented
by the same width on the paper. The same smooth curve is superimposed
on each of these histograms, and it appears that for either value of p the
histogram approaches this curve as n increases. It can be proved that this

is true: for any value of p there is some value of n above whichthe differ-
274
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Table 17.1

p=.l p=.5

n E(?) = pn o(F) = ~/npq n E(¥) = pn o(7) = ~/npq

10 1 95 10 5 1.58
20 2 1.34 20 10 2.24
50 5 2.12 50 25 3.54
 

ence between the histogram and the curveis smaller, at all points, than
any specified amount however small.

17.2 The Normal Distribution

The distributions depicted by the smooth curves in Figure 17.1 (not

Figure 17.2) are Normal distributions defined by the formula

, 1 1[r — E(¥) |
PO =e ve{alsme}

The mean and standard deviation of each of these continuous distribu-

tions are E(7) and o(); i.e. they are equal to the mean and standard

deviation of the binomial distribution to which the Normaldistribution is

fitted. These two quantities are the parameters of the Normaldistribu-

tion, just as 7 and yw are the parameters of the nonstandardized gamma

distribution (cf. Section 14.3); the formula given above thus defines a
whole family of distributions—one for every possible combination of

values of E(#) and o(7).

17.2.1 The Standardized Random Variable &

The fact that the binomial distribution approaches the Normal

distribution as a limiting form means that binomial probabilities can be
approximated by use of the Normal distribution when n is large enough.

The area of any individual bar in Figure 17.1 can be approximated by

multiplying its width, which is 1, by the height of the Normal curve at

the center of the bar; the area of all the bars to the left or right of any

specified point on the r axis of any one of these histogramsis approximated
by the area under the Normal curveto theleft or right of the same point.

The general form of the Normal distribution as defined by the formula

given aboveis of course of no practical use for this purpose, since it is no
easier to compute an ordinateortail area of the Normaldistribution than

to compute an ordinateor tail area of a binomial histogram, and tabula-
tion of the Normal distribution would be just as difficult as tabulation of
the binomial if we had to have a table or chart for every possible Normal

curve, i.e. for every possible combination of values for E(7) and o(7).

We can get around this difficulty very easily, however, by using the
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same device which we used in connection with the gammadistribution:

we change the units in which the variable is measured and in this way
obtain a standardized distribution which contains fewer parameters. In
the case of the gammadistribution we got rid of the parameter u by using
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the standardized variable } = i/u; the distribution of this variable has
only the one parameter r. In our present problem we can do even better:

by using the standardized variable

7 — EF)

oF)
we will end up with a distribution which has no parametersatall.

{i=
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In addition to values of the ‘‘natural”’ variable 7, the horizontal axes

in Figure 17.2 show the corresponding values of @ computed from this

definition. The vertical axes of this figure show values of P’(z) only, not

of P’(r). Figure 17.2 is thus really a set of histogramsof distributions of a

whereas Figure 17.1 is a set of histograms of distributions of 7. To
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understand the differences between the values of P’(r) shown in Figure
17.1 and the corresponding values of P’(u) shown in Figure 17.2, consider

the distribution for n = 10, p = .5—the upperright-hand histogram in

each figure—and look at the bar for r = 5 (wu = 0).

1. In the r histogram (Figure 17.1), the height of the bar forr = 5is

shown as .245; its edges are at r = 4.5 and r = 5.5 so thatits width is 1;

and its area is therefore .245 K 1 = .245. |
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2. If we had graphed a histogram of the residuals r — E(¥), this

histogram would have looked exactly like the histogram of Figure 17.1
except that all the values on the horizontal scale would have been dimin-
ished by E(¥) = 5. The widths of the bars wouldstill have been 1 and
the heights would therefore have been exactly as shown in Figure 17.1.

3. When the horizontal scale of the histogram for n = 10, p = .5
was labeled with values of @ in Figure 17.2, each of these residuals was

divided by o(7) = 1.58 and therefore the width of each bar was divided

by o(7) = 1.58: the width of any bar in this u histogram is 1/0(¥7) = 1/1.58.

The heights of all the bars in this histogram have therefore been multiplied
by this same number a(7) = 1.58 in order to keep the areas unchanged: the

height of the bar for uw = 0 is shown in the figure as 1.58 X .245 = .387,
so that its area 1s .387/1.58 = .245 and identical to the area of the bar for
ry = 5 in the corresponding r histogram of Figure 17.1.

17.2.2 The Standardized or Unit Normal Distribution

If we substitute u for [r — E(#)]/c(#) in the formula previously given
for the Normal distribution and at the same time multiply the formula

by o(7) in order to keep the area of every bar unchanged, the formula

reduces to

 Py(u) = on e777 Standardized or unit Normal distribution

 

This is known as the standardized Normal distribution; observe that

The formula for the standardized Normal distribution contains

no parameters; it is a unique distribution and not a family of dis-
tributions.

Wehavealready considered the standardized random variable @ in

Section 16.5.3, where we showed that

E(a) = 0, o(@) = 1,

regardless of the values of E(#) and o(7). Because the standardized

Normal distribution has standard deviation 1, it is also called the unit
Normal distribution.

17.2.8 Tables of the Standardized Normal Distribution

A table of P,(u), that is of the ordinates or heights of the unit

Normal curve, is given as Table II. A table of Py(a@ > wu), that is of the

area of the right tail of the unit Normal curve, is given as Table III.

Because the Normal distribution 1s symmetric about its mean, these tables
have entries only for positive values of @; ordinates and probabilities
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for negative u are easily obtained from these as we shall see by some

examples.

17.2.4 The Normal Approximation for
Individual Binomial Probabilities

Suppose that we seek the probability of exactly 30 defectives in a

run of nm = 50 pieces from a Bernoulli process with p = .5,

Pi(¥ = 30\p = .5, n = 50).

This is the area of the bar for r = 30 in the r histogram for p = .5,n = 50

in Figure 17.1 and this area is equal to the area of ‘the corresponding bar

for

_ 30 — EG)

no)
in the corresponding u Aistogram in Figure 17.2. The width of this latter

bar is easily calculated; its height is easily approximated by finding the

height of the unit Normal curve at the center of the bar; and the product

of width times approximate height will give us an approximation to the

area we seek. Asa preliminary step we compute

E(#) = pn = .5 X 50 = 25,

o(¥7) = Span V5 X 5 X 50 = 3.54,I

Width of the Bar in the u Histogram. The width of the bar for
r = 30 in ther histogram (Figure 17.1) is 1; its edges are at 29.5 and 30.5.

We have already seen that when we transform the r histogram into

the u histogram (Figure 17.2), we divide every value of the variable by
o(7) and therefore we divide the widthsof all the bars by o(7). The width

of any bar in the u histogram for n = 50, p = .5 is 1/o(¥) = 1/3.54.
aHeight of the Unit Normal Curve at the Center of the Bar. The center

of the bar in which weare interested is located at u = 1.41, and to find the
height of the unit Normal curveall we need to do is look up P(1.41) in

Table II. Wefind .1476 in the row for 1.4 and the columnfor .01.

Approximate Area of the Bar. We then have for the approximate
area of either bar (r = 30 in Figure 17.1 or wu = 1.41 in Figure 17.2)

PL = 30) = P(@ = 1.41) = — X .1476 = .0416.

Generalization. In general, for any specified value r of any binomial
random variable 7,

Pa(r) + 2 Pf |" = 5|
a(7) — oF)
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Substituting in this expression the formulas for binomial E(7) and o(f),

we have

~ 1 r— np
Pi(F = rin, = Py —— ).oF rin, p) — (Jan )

17.2.5 The Normal Approximation for
Cumulative Binomial Probabilities

  

Suppose next that we seek the probability that the number of suc-

cesses 7 will exceed the specified number r = 30 when p = .5 and n = 50,

Pi(F >30|p=.5, n = 50).

This is the area of that part of the appropriate r histogram (Figure 17.1)

whichlies to the right of the right edge of the bar for r = 30. This area is

equal to the area of that part of the u histogram (Figure 17.2) which hes to
the right of the right edge of the bar for the corresponding value w; it is

approximately equal to the area in thetail of the unit Normal curveto the

right of this edge.
Thecritical location for our present problem is thus not the center

of the u bar corresponding to r = 30, which we have seen to be u = 1.41,

but the right edge of this bar. The right edge of the bar for r = 30 is at

30.5; using the values

E(#) = 25, o(#) = 3.54

which we have already computed, wefind that the corresponding edge in

the u histogram is

Wecan then use Table III to find

Py(@ > 1.55) = .06057,

which is an approximate value for the probability we seek.

Generalization. In general, for any specified value r of any binomial

variable 7,

Pi(¥ > r) = Py |2 > a aS nO|.

The procedurefor finding other cumulative binomial probabilities is very

similar, except that we do not always add 4% to the specified value r:

whether we add or subtract the 14 which takes us from thecenter of a bar
to the edge depends on (1) which tail we want and (2) whether the bar
for the specified value r is included in the tail or excluded from it. In

case of doubt, sketch a few bars of the histogram.
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17.2.6 Examination of Errors of Approximation

Wehavealready pointed out that when weare seeking approximate

values for binomial probabilities:

1. Both the Poisson and the Normal approximations improve as n
increases.

2. The Poisson approximation improvesasp is closer to 0 or 1.

From Figures 17.1 and 17.2 it is apparent that

3. The Normal approximation improvesasp is closer to .5.

In Figures 17.3 through 17.6 weillustrate these points by showing the
probability distributions and the cumulative distributions P(¥ < r) for
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a variety of values of pand7n. In these charts notice one additional fact:

4, The relative error due to either approximation becomes greater
the farther we go into the tail of the distribution.

17.3. Sums of Independent Random Variables

Wepointed out in Section 16.4.1 that the number 7 of successes in n

Bernoulli trials can be looked at as the sum of the values of n independent
random variables with identical probability distributions. The result of

each trial is a random variable with value 1 if the event of the trial is
success, 0 if the event is failure; the ‘‘distribution”’ for any one of the n

variables is defined by the same probability p of a success and can be
graphed as a histogram with a bar of height p at r = 1 and a bar of height
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qg=1—patr=0. Thus the behavior of * which was graphed in
Figures 17.1 through 17.6 can be described as follows:

If * is the sum of n independent two-valued random variables all

having the same probability distribution, then as n increases the

distribution of F is more and moreclosely approximated by a Normal

distribution with mean E(?) equal to the expected value of the sum

and with variance o?(F) equal to the variance of the sum.

It is a very remarkable and important fact that this proposition

holds for almost any sum of independent random variablesall having the

same probability distribution, regardless of the nature of this common dts-

tribution. It is true in general that:
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If Zz is the sum of n independent random variables all having the
same probability distribution, then as n increases the distribution

of Z is more and moreclosely approximated by a Normal distribution

with mean equal to the expected value of Z and variance equal to
the variance of Z; and this is true regardless of the nature of the dis-

tribution of the individual variables. ¢

It is this fact which accounts for both the name and the enormous impor-

tance of the Normal distribution, since very many of the random variables

encountered in practice are in fact sums of independent, identically
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tions. p = .5.

{+ The only independent random variables with identical distributions to which
this statement does not apply are those which haveinfinite means or standard devi-
ations, and such variables almost never occur in practical business problems. On
the other hand, the statement does apply under certain conditions even to sumsof
independent variables which do not have identical individual distributions.
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distributed random variables. Provided that the number of such variables
included in the sum 2 1s large enough, probabilities can be approximated by
first substituting the standardized random variable

z2— E(%)

o(2)
for the natural variable Z and then using tables of the unit Normal

distribution.
This proposition 1s so important that we must stop to examine more

closely both its precise meaning and the evidence for its truth; and we
shall begin this inquiry by stating the so-called Central limit theorem.

This famous theorem is a rigorous proof that, for random variables 2 and
a defined as we have defined them above,

q=

For any given u, there is some value of n above which theerror in

the Normal approximation to P(& > uw) is smaller than any pre-
viously specified amount however small.

This proof unfortunately does not get us very far, however.

1. It does not tell us how to find the n for any given u andgivenerror.
2. It does not.even tell us that if we happen to know the error for

one value of n we can be surethat it will be smaller for any larger n.

It is in fact not at all difficult to find cases where as n increases the

approximation to P(@ > u) for some particular u gets worse beforeit gets

better.
Thus our original statement that the approximation becomescloser

and closer as 7 increases must be interpreted as referring to the over-all

quality of the approximation; and the real evidence for such a qualitative

statement is not the Central limit theorem but a great deal of numerical
investigation of the kind exemplified in Figures 17.3 through 17.6. We
shall examine similar charts for other kinds of variables presently; the
real utility of the Central limit theorem lies in the subjective assuranceit

gives us that still other variables would behave in a similar manner. The

practical result of all this evidenceis this:

Except whenit is extremely important to obtain an extremely exact
value for a probability, statisticians act as if the Normal approxima-
tion improved continuously with n; and the businessman may follow

their example.

Suppose, for example, that we want a practical evaluation of P(g > 2) in

a problem where n = 25; and suppose that we happen to know that when

n = 20 the error in the Normal approximation1s less than .03 for all wu in

the general vicinity of u = 2. If an error of .03 is tolerable in our prob-
lem, we may use the Normal approximation without further ado.

7 Or are, what amounts to the same thing, means of a number of independent,
identically distributed random variables, since the distribution of a mean is the same

as the distribution of a sum except for a change ofscale.
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Wenowproceed to examine the use and the behaviorof the Normal
approximation to the three remaining distributions of sums of independ-

ent, identically distributed random variables which we have studied so
far: the Poisson, the Pascal, and the gamma.

17.8.1. The Poisson Distribution

Consider a Poisson process generating successes at a mean rate x per

unit of space, think of each unit of space as divided into a very large

number of very small segments, and let 7’ denote the random variable

‘number of defects’’ in one such segment. Then the number r of suc-
cesses in any larger space can be thought of as the sum of the values of

r’ for each of the small segments contained in this space. To be con-

crete, return to the example of a machineinsulating electric wire and
think of the wire as divided into segments of length .001 foot. Then the
numberr of defects in 2 feet, say, of wire can be considered as the sum of

the numbers in 2000 segments of length .001 foot.
By the nature of the Poisson process these random variables 7’ are

independent and identically distributed; and as the space in which we

count the successes increases, the number of segments increases and
therefore the number of summed variables increases. It follows that for

any given x, the Poisson distribution of 7 approaches Normality as ¢
increases. We know, however, that the Poisson distribution depends

only on the product xé = m and not on « or ¢ separately, and it follows
that the closeness of the Normal approximation depends only on ™m.

Consequently the Normal distribution can be used to get an approxima-
tion to a Poisson probability when the value of m is large enough. The

method of calculating the approximation is identical to the method used

in approximating binomial probabilities.
Individual Poisson Probabilities. Suppose that we seek the Poisson

probability of exactly r = 22 successes when the expected number of

successes is m = 30. Wefirst compute

E() = m = 30,
o(#) = /m = 5.48.

The width of the bar for r = 22 in the r histogram is 1, and therefore the
width of the corresponding bar in the wu histogram is 1/o(7) = 1/5.48.

The center of the bar in the u histogram is at

_r— EF) — 22 — 30 _

The heighi of the unit Normal curve for negative wu is not given in Table

II, but by the symmetry of the curve

n(—1.46) = Py(+1.46).



17.3.1

P
l
i
<
u
)

MD
w
W
A
U
N
A
M
N
D

©

The Normal Approximation: Sums of Random Variables

 

 

  

 

 

 

 

 

 
   
  

40 ie

4
HL 16

30 WT

125 |

3 20 ,
& | \

15 =

=
10 16a Normal

05

0      

 

9999

9995
.999
.998

995

. —
_

05

02

Ot
005

002
00!
0005

0001

Normal,

()

 
m=

/
4

~g9
16
25

 

 

287

Figure 17.7. Poisson distributions with the Normal approximation.
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The ordinate on the right is given by the table as .1374, and the area or

probability we seek is thus

Pp(F = 22) = 6 Pi(u) = a X .1374 = .0251.

Cumulative Poisson:Probabilities. Suppose next that we seek the

Poisson probability of 22 or less successes when m = 30. Thisis a lefi-

tail probability which includes the bar for r = 22. The right edge of the
bar in the wu histogram corresponding to the bar for r = 22 in the r histo-

gram is at

y — 22+) — 30 _
5.48

and the probability we seek is therefore approximatel:

Py(a@ < ~—1.37).

 —1.37

Table III gives only right-tail probabilities, but the symmetry of the

Normal curve implies that

Py(@ < —1.37) = Py(a@ > +1.37)

and the latter probability is shown by the table to be .08534.
Examination of Errors of Approximation. In Figure 17.7 we show

the Poisson probability and cumulative distributions and the Normal
approximations for a series of values of m.f

17.8.2 The Pascal Distribution

Wehavealready seen that the number # of Bernoulli trials required
to secure 7 successes can be regarded as the sum of r independent random
variables, each one being the numberof trials required to secure one suc-
cess. Hence the Pascal distribution of % approaches Normality as r

mcreases.

Example. The probability that it will takeless than 150 trials to

secure 48 Bernoulli successes when p = .25 is computed as follows.

 

E(a) =~ = = = 192:

oom, . 79 48% .75 _
o?(%) Dp? “952 576;

{ Notice that we cannoi judge the Normal approximation to the Poisson distribu-

tion from Figures 17.3 to 17.6. When we approximate a binomial probability by a
Poisson probability, we use the Poisson distribution with the same mean as the given

binomial distribution, but this Poisson distribution does not have the same standard
deviation as the binomial it approximates. When we use the Normaldistribution as
an approximation, we giveit both the same mean and the same standard deviation as

the distribution it approximates.
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Since we want thearea to theleft of the left edge of the bar for n = 150,
we subtract 144 in computing

y a $150 — 24) — 192 _= 54 =

From Table III we find

 —1.77.

Py(@ < —1.77) = Py(@ > +1.77) = .088.

The exact value (from binomial tables) is .029.

17.8.8 The Gamma Distribution

The space # required to secure r Poisson successesis likewise the sum

of r spaces required to secure one success, and therefore the gammadis-

tribution of f also approaches Normality as r increases.

Individual Gamma Probabilities. Suppose that we seek the prob-
ability that it will take exactly 3 minutes for 70 Poisson-distributed suc-
cesses to occur when the meanrate of occurrence is x = 25 per minute.

Wefirst compute

E(@) = ru = — = og = 2.8,

2) = nt=5= 2 = 112,

o(f) = V.112 = 335.

Wenowrecall from Section 14.3.1 that the gammadistribution which we
are approximating by the Normalis itself only an approximation to an
underlying discrete distribution described by a histogram with one bar

for every value ¢ which it is possible to read with the measuring instru-

ment being used. It is really this histogram which weare approximating
when we use the Normal approximation, and we again denote the width

of one of the bars in the ¢ histogram by the symbol 6t. The center
of the bar in the u histogram corresponding to the bar for ¢ = 3 in the

t histogram is at

3.0 — 2.8 _
u —~335

60,

and the heighi of this bar is given approximately by Table II as

P(.60) = .3332.

The width of the bar in the u histogram is é¢/o(Z) = 6¢/.335, and its area is

therefore

P(a = .60) = O Pr(u) = a5 3332 = .995 St.
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If the measurements are made to a hundredth of a minute, the prob-
ability that the measurement will be exactly 3.00 is .01 K .995 = .00995,

and so forth.
Cumulative Gamma Probabilities. Suppose next that we seek the

probability that it will take more than 3 minutes for 70 successes to occur

when the mean rate of occurrence is 70 per minute. This is given
approximately by the area of the tail of the unit Normal distribution to

the right of

= BH Mit) — 2.8
335

If measurements are madeto the hundredth of a minute, 14g6¢ = .005 and

u has the value .599; the required probability is then approximately

P(E > 3) = Py(a > 599) = .2746

 

by interpolation in Table III. If we had neglected the .005 width of
half of a bar, wu would have had the value .597 and interpolation in the

table would have given us a probability of .2758. Clearly this kind of

difference is not significant in view of the inaccuracies inherent in the use

of an approximation to the exact distribution of #—the two results are

identical to three decimal places—and in general we mayneglect half bar

widths in computing cumulative probabilities when the bars of the under-

lying histogram are very narrow.
Errors of Approximation. Figure 17.8 shows the gammaprobability

and cumulative distributions and their Normal approximations for a

variety of values of the parameter r. It should be observed that the

approximation is not very good until r is really quite large.

17.4 Summary

If Z is the sum of n independent random variables all having the
same probability distribution, then as n increases the over-all dis-
tribution of Z is more and more closely approximated by a Normal
distribution with mean E(Z) and variance o*(Z).

Letting 6z denote the width of a bar in the histogram of the exact distribu-

tion of Z, the Normal approximations to the exact probabilities are com-

puted by the following formulas:

 

 

=2) = Py _2-E®
PQ = 2) = oy Pylu) U=a

P( > z) = Pr(@> u) y = et iz) — EC)

a(2)
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If Zis a random variable which can take on only the integral values0, 1,

2, etc., dg = 1 and the factor 14462 = 14 should not be neglected if we

want accurate cumulative probabilities. If Z is a variable which has a
nearly continuousdistribution, the factor 46z may usually be neglected
in computing cumulative probabilities.

PROBLEMS

A. Exercises on Computation with the Normal Distribution

1. Find the following ordinates and areas of the unit Normal distribution. In
some cases it will be necessary to use the symmetry of the distribution: sketch the

distribution, locate the ordinate or area you seek, and then locate an equal ordinate
or area which can be found in thetables.
a. P’(0). b. P(& > 0). c. P’(+2).
d. P’(—3). e. P’(—3.26). f. P@ > +).
g. P(& > +1.87). h. P(t < —2). i. P(i > —2).
j. P(a@ < +2). k. P(ii < —8). l. Pi < +3).

2. Use the Normal approximation to evaluate the following binomial probabili-
ties for n = 2500, p = .2.
a. P(F = 530). b. PF > 530).
c. P(F > 530). d. P(# < 530).

3. Use the Normal approximation to evaluate the following Pascal probabilities
for r = 7290, p = .9.

a. P(w = 8160).
b. P(w > 8160).
c. P(t < 8040).
4. Use the Normal approximation to evaluate the following Poisson probabilities

for x = 3,¢ = 12.
a. P(# = 30).

b. P(F < 30).
c. P(F > 30).

5. Use the Normal approximation to evaluate the following gammaprobabilities

forr = 100, zn = 8.

a. P(E = 1040).
b. P(~ > 1040).
ce. P(? < 560).
6. Use the Normal approximation to evaluate the following partial expectations:
a. Binomial7 over the interval 0 to 20 inclusive when n = 150, p = .2.
b. Pascal 7 over the interval 100 to 150 inclusive when r = 100, p = .9.
c. Poisson 7 over the interval 0 to 20 inclusive when «x = .2, ¢ = 150.

B. Choice of Approximations

7. Use Figures 17.3 to 17.6 to decide how you would evaluate each of the following
binomial probabilities with the tables and charts available to you. Write down the
formula for the approximating probability but do not actually make any arithmetical

computations.

a. P# = 2|n = 25, p = .02). b. PF = 6|n = 25, p = .40).
c. PF = 24|n = 25, p = .98). ad. P(F < 2|n = 100, p = .05).
e. P(F > Bln = 100, p = .15). f. PF > 20|n = 100, p = .30).
g. PF < 6|n = 1000, p = .01). h. P# < 150|n = 1000, p = .2).

8. Decide how you would evaluate each of the following Pascal probabilities with
the tables and charts available to you. Write down the formula for the approximating
probability but do not actually make any arithmetical computations.
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a. P( = 600|r = 5, p = .01).
b. P(# > 6000|r = 50, p = .O1).
ce. P(i > 50|r = 30, p = .5).

C. Applied Problems

9. A process producing small capacitors has averaged 5 per cent defective over
the past several weeks. If you are convinced that the process behaves as a Bernoulli
process and that the process average is stable, what probability would you assign to

the following events?
a. There are more than 120 defectives in a run of 2000.
b. More than 2100 pieces have to be produced in order to obtain 2000 good

capacitors.
c. The 2100th capacitor processed is the 2000th good capacitor.
10. A process producing transistors has averaged 60 per cent defective over the

past several weeks. On the assumption stated in Problem 9, what probability would
you assign to the following events?

a, There are more than 1250 defectives in a run of 2000.
b. More than 5200 transistors have to be producedin order to obtain 2000 good

transistors.
c. The 5200th transistor processed is the 2000th good transistor.
11. A telephone exchange receives 2500 calls per hour on the average. What

probability would you assign to the event “‘less than 135 calls in the next 3 minutes’’?

What assumptions did you make in computing your answer?
12. In Section 15.4.3 we derived a formula for total cost per unit of time under a

min-max system of inventory control with Poisson-distributed demand and saw that
the probability distribution enters this formula only through the function

g(R) = mPp.(? > Rlm) — R Pe.(? > R\m)

defined in Section 15.3.2. When m is large we will wish to evaluate g(R) byuse of

the Normal approximation.
a. Show that the above definition of g(#) is exactly equivalent to

g(R) = mPp,(? = R\lm) — (R — m) Pp.(F > Rim).

b. Show that as m increases less and less inaccuracy results if we suppress the

4 in

_@+¥) - EF)
o(7)

when using the Normal approximation to Pp,(7 > &|m).

c. Show that if the 14 is thus suppressed the Normal approximation becomes

g(R) = off) [Py(u) — u Pr(& > u)).

If we define

G(iu) = Py(u) —uPyn(% > u)

 U

the Normal approximation to g(#) can thus be written

g(R) = off) Gu).

The function G(u) is tabulated in Table IV.

13. The XYZ Company places an order for a new supply of part AZ-11 when

there are 50 units on hand. Lead time is 90 days; usage of the part is Poisson dis-

tributed with mean usage known to be }4 unit per day. What is the expected time

out of stock?



CHAPTER 18

The Normal Approximation

to Empirical Distributions

So far we have considered the Normal distribution only as an approxima-

tion to distributions of sums of known numbers of independent random
variables whose exact distributions are identical and known. Often the
Normal distribution can also be used to approximate the distribution of a
random variable which can be regarded as the sum of an unknown number

of more or less independent random variables whose exact distributions

are completely unknown.

As an example, consider the random variable ‘‘diameter”’ describing
shafts produced by some automatic machine. If we measure the actual

diameters of a large number of shafts produced underindistinguishable

conditions and if we then plot the frequency distribution of these diam-

eters, we often find that this histogram can be very closely fitted by a

Normal curve with the same mean and variance. If we observe this

empirical fact in some particular case, we can ‘‘explain”’ it by thinking

of the variation in the diameters as being the net effect of a very large
number of independent causes each of which individually has a very
small effect. This explanation rests in part on a provable extension of

the Central limit theorem, but it is very important to realize that the
Central limit theorem is of absolutely no practical use in this case. The

distribution of diameters produced on one machine may be almost
exactly Normal while the distribution of diameters produced on another
machine may be much farther from Normality. We have already

argued in Section 6.1 that it is useful to think of variation in demand as

the net effect of a large numberof independent factors each of which has a

very small effect, and yet we all know that distributions of demand are
often very far from Normal.

Thus the Central limit theorem most definitely does not ‘‘prove’’ that any

distribution of this sort will be Normal or even roughly Normal. It only

serves to ‘‘explain’’ Normality when Normality is observed, andforthis

reason we shall not examine the conditions under which this extended

version of the theorem theoretically applies. As a purely empirical
matter, however, it is often justified to use a Normal distribution as an

approximation to the true distribution of variables like those we have
been discussing. The required justification is simply this:

294
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If a Normal curve “‘fitted”’ to the available historical data seems on
inspection to express the decision maker’s judgment concerning the
probabilities about as well as any other curve he could fit, then he
can rationally compute costs and makedecisions on the basis of this
Normaldistribution.

Oneparticular point should be noticed, however. Becausethetails of the
Normal distribution never fall to zero, this distribution will virtually
never reflect any reasonable man’s judgmentregarding the probabilities of

very large or very small values of the variable. In most problems these

tail probabilities are completely unimportant; but in problems where very

small tail probabilities are important, serious errors can be made by using

the Normal approximation.

18.1 The ‘Fitting’? of a Normal Distribution

18.1.1 Normal-probability Paper

When a historical frequency distribution of the output of some
process is available, it is never legitimate to assess the probability dis-

tribution for future output as Normal unless the historical distribution

is reasonably Normal. We should never proceed by simply computing

the mean and variance of the historical distribution and then using
Normal tables; the data must first be graphed and the graph must be

carefully examined to see if it is reasonably close to Normal shape.

The easiest way to do this is to convert the historical data into
fractile estimates in the way described in Section 6.4 and then plot these

estimates on Normal-probability paper. The grid of this paper is laid

out in such a way that a cumulative Normal distribution plots as a straight

line. If then a straight line can be drawn to pass reasonablyclose toall

the plotted fractile estimates, the Normal distribution defined by this

straight line may rationally be used as the probability distribution for

the problem.
As usual, there is no way of stating objectively how close is ‘‘reason-

ably” close. The answer depends on the degree of accuracy required in

the answer; and even if this were specified, the only way of finding what

error will actually result from use of the Normal approximation in any
particular case would be to compute the answer using both the approxi-

mate distribution and whatever distribution the decision maker thinks

is the best fitting and therefore the ‘‘true”’ distribution for that partic-

ular case.

18.1.2 The Reason for Fitting a Normal Distribution

If the probability distribution in some practical problem must be

assessed by smoothing historical data, as we have assumed above,andif
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all that we need to solve the problem is a cumulative probability or the
value of a fractile, there is absolutely no advantage in deciding whether
or not the distribution can be treated as Normal. We can read prob-
abilities and fractiles just as easily if we fit a curve to fractile estimates
plotted on Normal paperasif we fit a straight line. If, however, we need
the results of computations which involve the probabilities of many indi-
vidual valuesof the variable, there 7s a great advantagein fitting a line or

curve which has some known mathematical formula. The advantageis
simply this: from the known formula for the distribution, it may be
possible by mathematical analysis to derive a formula for the required
results; and if this can be done, laborious chart reading of the sort
described in Chapter 6 will be unnecessary.

Although the businessman certainly does not need to be able to per-

form his own statistical computations, he does need some understanding
of the basic nature of the devices used by the statistician for this purpose

—at least enough understanding to be able to distinguish clearly among

error, approximation, and magic, and enough to see whythestatistician
must sometimes ask him whether in his opinion a certain curve is an

adequate description of his beliefs. The Normal distribution is by no

means the only distribution of known mathematical form which can be

fitted to a historical frequency distribution, and in a great many circum-

stances it is not the best distribution to use. It is, however, the simplest
distribution which can be used in this way, and it is the only one which
can easily be fitted by graphical methods. Weshall therefore devote a

few pages to examining the way in which the assessment of an empirical

probability distribution as approximately Normal can enormously
simplify the task of obtaining solutions to practical problems.

18.1.8 Determination of the Mean and Standard Deviation of the
Fitted Normal Distribution

If a formula for a summary measure suchas a partial expectation is

derived from the formula for the Normaldistribution, it is obvious that
it will involve one or both of the parameters of the distribution. We
therefore begin by showing how the values of these parameters can be

obtained once the distribution has been graphed in cumulative form.
The methodis best explained by an example, and as an example weshall

take the cumulative Normal distribution represented by the line labeled I
in Figure 6.6a.

By the symmetry of the Normal distribution, half the area under

any Normal curvelies to the right of the mean and half to theleft: the
mean is equal to the median. The mean of the distribution we are con-

sidering is therefore the value z such that

P@ <z) = .5.
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Locating .5 on the vertical axis of Figure 6.6a and reading across to the

line labeled I and downto the horizontal axis we find z = 75. Thus

E(Z) = 75.

To find the standard deviation we now read one other point on the

line as far from the mean as possible. At the extreme right end of the

line labeled I we find that the abscissa is z2 = 120 while the ordinate gives
P(Z < 120) = .95. Expressing the value z = 120 in standardized form

and recalling that the mean of this distribution is 75, our reading of the

graph tells us that

120 — 75
Py ja <| = 95.

This is equivalent to

45Pe[a> 5] = 0,
and our next task is to find the value of o(2) which makesthis statement

true. We look for the probability .05 in the body of Table III and find

that the corresponding u is approximately 1.64. The value of o(Z) must

therefore be such that

45ae = 184,

and we compute

45
a(2) = 1.64 = 27.4.

18.2 Uses of the Fitted Normal Distribution

Wenowgive some examplesto illustrate the way in whichthefitting
of 2a distribution of known mathematical form simplifies calculations
based on the distribution. Because such procedures are only intended to

give reasonable approximations and do not pretend to mathematical
exactitude, we shall simplify our computations of cumulative probabilities
by neglecting the 44 which takes us from the center to the edge of a bar.

18.2.1 Sums of Independent Normal Variables

A very important and extremely convenient property of Normal

random variables is the following:

The sum of any number of independent Normal random variables
has a Normal distribution.

This is not a ‘‘limiting’’ property true only for large numbersof variables

and it is not restricted to variables having the same distribution, i.e. the
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same mean and standard deviation. It applies to any numberof inde-
pendent variables each of which has any Normal distribution.t

Application. Suppose that the design for a certain assembly calls
for placing five different gears side by side and inserting them between

two bearings. The design thickness of each of the five kinds of gears is

1.300 inches; and although even substantial departures from design thick-

ness in any individual gear will have no harmful effects, the total thickness

of the five gears in each assembly must be closely controlled. Using T to
denote the total thickness of the five gears in an assembly, there will be

interference with the bearings if T > 6.52 inches and therewill be exces-

sive play if 7’ < 6.48 inches. The required control can be obtained by
using selective assembly, i.e. by measuring all individual gears and seeing
to it that an oversize gear in any assemblyis offset by one which is under-

size, but this procedure is very expensive and the production manager

would like to know whatfraction of all assemblies would be defectiveif
ordinary nonselective assembly were used.

Each of the five gears will be manufactured on a different machine.

Performance-capability studies of the five machines to be used in the

operation have shown that each one can be set up with such accuracy
that the average thickness of all the gears it produces will be practically
identical to the design thickness; but because of the inherent play in the

machines the thicknesses of the individual gears produced by any oneof

them will vary around the design or mean thickness. Frequency dis-

tributions of the output of each machine have been made andthe stand-
ard deviations of these distributions have been computed with the results
shown in Table 18.1.

Table 18.1

Machine Standard deviation, inches

A .004
B .003
C .004
D .007
E .002

Since each machine will produce the design thickness on the average

and since the expected value of a sum of random variables is the sum of
the individual expected values, we can conclude immediately that

E(7f) = 5 X 1.300 inches = 6.500 inches.

If assembly is nonselective, the fact that one gear in an assembly is over-
size makes it neither more norless likely that another gear in the same
assembly will be oversize or undersize; and since the variance of a sum of

t A sum of Normal random variables may be Normal even when the variables
are not independent, but the conditions under which this is true are beyond the scope
of this course.
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independent random variables is the sum of the individual variances, we
can compute

o*(T) i jtoht ++: +o%
.000016 + .000009 + .000016 + .000049 + .000004
-000094;

o(T) = +~/.000094 = .0097 = .010.

Thus we know the mean and standard deviation of the distribution of

total thicknesses; but unless we know the ‘‘shape”’ of this distribution we

still cannot compute any probabilities.

Suppose, however, that frequency distributions of the outputs of the

five machines show that the thicknesses produced by any one machine
have a roughly Normal distribution: then we know immediately that the
sum of five such thicknesses will be Normally distributed. Neglecting
the difference between the center and the edge of any barin the 7 histo-

gram for the reason given at the beginning of Section 18.2, we compute

P(T > 6.52) = Py (a > 6.520jo) = Py(a > 2.00) = .023.
P(T < 6.48) = Py(a@ < —2.00) = .023.

 

Nonselective assembly will result in about 5 per cent defectives. If the

cost of correcting a defective is less than 20 times the extra cost of selec-

tive assembly, nonselective assembly should be used.

18.2.2 Fractales

Although fractiles of a Normal distribution which has been fitted
graphically can be read directly from the graph, as we have alreadysaid,
we shall encounter problems later in the course where werequire fractiles
of a Normaldistribution whose mean and standard deviation have been

determined by other procedures. Wetherefore digress from our immedi-
ate purpose to show how fractiles of a Normal distribution with given

mean and standard deviation can be found from tables.

To find the f fractile of a Normal distribution with mean E(2Z) and

standard deviation a(2), all that we have to do is use Table III to find the

value u which is the .f fractile of the unit Normal distribution and

then compute the value z which corresponds to this u. Both steps are
extremely simple; the only trick to rememberis that Table III is a right-

tail table and therefore gives probabilities complementary to those
involved in the definition of fractiles.

Suppose for example that the random variable Z has a Normal dis-
tribution with mean 95 and standard deviation 20 and that we wish to
find F.¢ of this distribution. By definition, F.¢ is the value z such that

PZ < z) = 6;
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because of the continuity of the Normal distribution P(Z < z) = P(Z < 2)

and there will be some z for which the probability is exactly .6. This z is

found byfirst finding the

_ 2z— EQ)

arc)
such that

Py(@ < u) = 6; i.e. such that Py(@ > u) = A.

The closest probability to .4 in Table III is .4013, corresponding to

u = .25,

and this is close enough for the kind of approximation we are now using.
Multiplying both sides of the equation relating u to z by o(Z) and adding

E(Z) to both sides we obtain

z= E(Z) + ue(2).

Substituting the values of E(2) and o(2) assumed for our example and the

value wu = .25 whichis the .6 fractile of the unit Normal distribution, we

have

Fg = 95 + (.25 X 20) = 100.

Application. Suppose that a certain item costs $2, sells for $5, and

spoils if it is not sold on the day it is stocked, so that the loss per unit of

overage isk, = $2 and theloss per unit of underage isk, = $5 — $2 = $3.

Suppose further that the probability distribution for demand has been
assessed as roughly Normal with mean 95 units and standard deviation

20 units. By Section 7.6.3 we know that the best act is to stock all units

up to and including the k./(k. + k.) fractile, and we therefore compute

ke $B
ku tk $3 + $2

Wehave already determinedthat F'.. of a Normaldistribution with mean

95 and standard deviation 20 is 100; this is therefore the best number of

units to stock.

6. 

18.2.8 Partial Expectations

The partial expectation of any Normally distributed variable Z over

the interval 2 = — © to Z = z can be shownbycalculusto be

 

B*..(2) = E(Z) Py(a@ < u) — a(2) Px(u) Normal partial expectation
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where as usual

_2— EH)

u=@
Application to Computation of Expected Loss. Suppose now that we

wish to compute expected loss under a decision to stock Q units in the

example discussed just above. By the formulasin Section 7.5.2,

Expected loss due to overage = k,[Q P(Z < Q) — E?(2)],

Expected loss due to underage = k,[Eo,,(2) — Q PZ > Q)I.

If now we define

_Q-— E®
o(2)

and again neglect the 14 which takes us from the center to the edge of a

bar, we can substitute in these formulas

Q = E(Z) + ugo(2),
PZ < Q) = Py(a < ug),
P(Z > Q) = Py(@ > ug).

If the Normaldistribution of 2 has a negligible tail to the left of 0, as it

must if it is a reasonable distribution of demand, we can evaluate E?(2)

by use of the formula for E®,,(2):

Eg(@) + E(@) Py(a < ue) — o(2) Py(ue),
Bo.1@) = E@) — EL@ ;

= E(2) Py(@ > ue) + o(2) Py(ug).

Making these substitutions in the formulas for the twoparts of the total

expected loss and adding the results we obtain

Expected loss = (ku + ko)o(2) Py(ue)

+ [ko Py(&@ < ue) — ku Pw(& > ug)]uge(Z).

The cost of uncertainty is the expected loss of the best decision. If we

use Q* to denote the best quantity to stock and

_ &*— EG)
a (2)

to denote the corresponding best value of the standardized variable @,

then (as we have just seen in Section 18.2.2) Q* and u* satisfy the

conditions

ua

u*

Ku
ku + Ke

If ku/(ku + ko) is substituted for Py(a@ < ug) in the formula for ex-

pected loss given just above, and if 1 minusthis value is substituted for

 Pz < Q*) = Py(@ < u*) =
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Py(a& > ug), the two termsinside the brackets cancel each other exactly.
Thusin all problems of this type

 

Cost of uncertainty = (ky + k.)o(Z) Py(u*).

 

In the example we have been discussing,

o(z) = 20, ko = $2,

Pi, (u*) = Py(.25) = .38867 ky = $3.

Substituting these values in the formula we obtain

Cost of uncertainty = $5 X 20 X .3867 = $39.

PROBLEMS

1. If the bushing and shaft diameters of Chapter 16, Problem 5, are Normally
distributed and if random assemblyis used, in whatfraction ofall tries will it be possi-
ble to assemble the bushing over the shaft?

2. A probability distribution for a random variable 2 is assessed by plotting frac-
tile estimates on Normal-probability paper and fitting a straight line to these points.

The line shows P(Z < 30) = .01 and P(Z < 65) = .90.

a. Graph the line and find the mean and standard deviation of the distribution.
b. Compute the partial expectation of Z over the interval z = 0 to z = 60 and

over the interval z = 40 toz = o.
3. Suppose that the random variable Z whose distribution was graphed in Prob-

lem 2 represents daily demandfor a product which is stocked daily and spoils if it is
not sold by the end of the day on whichit is stocked. If each unit of the product

costs $2 and sells for $6, compute:
a. The best numberof units to stock.
b. Expected loss under your answer to (a) and also with stocks of 50, 75, 150, and

200 per cent of your answerto (a).

c. Expected profit under certainty (cf. Section 7.3.1).

d. Expected profit under the same conditions as in (b).
4. In July, 1957, the production manager of the Art-Craft Company was about

to schedule his production of 1958 desk calendars. Production had to be completed
by the end of August in orderto free the plant facilities for manufacture of Christmas
novelties. The calendars cost $.30 to make and were sold to wholesalers at a price of
$1; any calendars remaining unsold at the end of 1957 would have to be scrapped at a
total loss. The sales manager advised the production manager that he believed that
about 170,000 calendars could be sold this year; the table on page 303 showsa record
of the sales manager’s forecasts and of actual demandin earlier years.

a. How many calendars should be produced?
b. Whatis the expected profit and the cost of uncertainty?
c. Whatis the cost of irrationality of a decision to schedule 170,000 calendars?

5. A manufacturer about to schedule a production run for stock will suffer a loss
of $50 for each unit of demand whichhefails to satisfy or a loss of $2 for each unit by
which his stock exceeds demand. He employsa statistician to forecast demand by
regression analysis, i.e. by finding the relation between demand and a numberof other
variables such as gross national product, freight-car loadings, data on employmentin
the steel industry, etc. Thestatistician forecasts a demand for 2700 units; he also
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Year Forecast Demand

1946 110,000 106 , 000

1947 105 , 000 123 ,000

1948 125,000 121,000

1949 135 ,000 137 ,000

1950 130,000 109 ,000

1951 125,000 124, 000
1952 160 , 000 147 ,000

1953 160 , 000 187 ,000

1954 170,000 165,000

1955 160 ,000 165 ,000

1956 165 , 000 160 , 000

1957 150 , 000 158 ,000

 

says that if this forecasting process had been used over the past 10 years the errors in
individual forecasts would have been roughly Normally distributed with mean 0 and

standard deviation 570 units.
How many units should be produced and whatis the cost of uncertainiy?
6. In a scrap-allowance problem of the type studied in Section 8.2, the distribu-

tion of the process 5 = 1/f is assessed as Normal with mean 1.307 and standard devia-
tion .0745. The loss factors are k, = $3 and K, = $1000. Assuming that a rerun
will come out exactly right if one is required:

a. Find the optimum production order Q for each of the following sizes of pur-

chase order: G = 1000, 2000, 5000, and 10,000. [Hinr: A good deal of trial-and-
error computation can be avoided by expressing the ratio P(i = Q)/P(”i <Q) asa

multiple of the ratio P,(ug)/Pw(@ < wg) and then using Chart IV.]
b. Compute the optimal scrap allowance (Q — G) for each G and expressit as a

percentage of G.

c. Compute the cost of uncertainty for each G and express it as a percentage of the
total variable cost (excluding setup) of manufacturing G pieces good or bad.

d. In language comprehensible to a person who knowsnostatistics, discuss the
effect of order size G as revealed by your answersto (6b) and (c) and make recommenda-

tions for manufacturing and pricing policy.

REVIEW PROBLEMS

The following problems constitute a review of the principal economic types of

problems which we have studied in the entire course to date.
1. Part XZ714 is produced by the American Rubber Products Company in a

large run once every 6 months, setup costs being too high to permit more frequent

runs and shelf life being too short to permit less frequent runs. If any parts areleft
over from an old run when a new runis scheduled, these parts are thoroughly recondi-

tioned at a variable cost of $4 each; storage costs and the cost of capital tied up in
inventory for 6 monthsorless are negligible in comparison with this cost of deteriora-
tion. To avoid loss of good will, American Rubber supplies a part of superior quality
at no extra charge to the customerif an orderis received for part XZ714 and thereis
no stock on hand. The variable manufacturing cost of this superior part is $23
whereas the variable manufacturing cost of part XZ714 is only $14.

The sales manager of American Rubber does not believe that sales records more

than 3 years old should be used in forecasting future demand because the numberof
machénes on which part XZ714 is used was steadily increasing until about 3 years ago.
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Since then, however, he believes that the number of such machinesin service has

scarcely changed and he knowsof no other reason why usage of the part should have
changed during the past 3 years or should change during the next 6 months. The

numberof parts ordered from American Rubberduring the last six semiannual periods

has been 2231, 2753, 1970, 2256, 2778, and 1436.

a. How manyunits should be produced in the next run,including any old units
which are reconditioned at that time?

b, What is the expected cost of uncertainty?
2. An order is received by the Acme Automatic Machine Company for 10,000

screw-machine parts. The design of the part is almost identical to that of a standard
part made and stocked by Acme,and in the opinion of Acme’s production managerthe
differences should create no new production problems whatever. The differences do
mean, however, that the part cannot be interchanged in use with standard parts.
The customerspecifies that the full quantity of 10,000 must be delivered but that he
will not pay for any overrun andthat it is very unlikely that he will reorder. Acme’s
production manager estimates that setup for the job will cost $175 and that variable
material, labor, and power will run almost exactly $.35 per part. Of this $.35 the
largest part is for material; scrap parts will have a salvage value of about $.20.

Before sending the production order to the shop Acme’s chief scheduler looks up
the record of production runs of the standard part which is almost identical to this
special part. The record is as follows:

 

 

Lot Number Number

number produced defective

1 6,850 445

2 10,370 591

3 9,880 701

4 11,260 586

5 8,325 574

6 9,175 422
7 8,640 458
 

a. How many units should the scheduler order into production?
b. What is a fair premium for Acmeto add to the price of the standard part in

quoting on this special order?
3. The Acme Automatic Machine Companysells a wide variety of standardsteel

studs and bolts from stock but will caseharden these studs only to customer order.
The casehardening operation is scheduled only once a week, a large variety of parts
being treated in a single batch. There is a certain amountof shrinkage in the process;
the table below showsthe record for one part numberin each of the last four batches
hardened.
 

 

Part Number Number

number hardened defective

XZ-712 8 , 270 935

AZ-961 11,280 1308

ZB-27 7,675 844

XZ-713 8,325 924
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_ Three days before a regular run of the hardening process is to be made,a tele-
phoneorderis received for 200 casehardened units of part number XZ-718; the cus-
tomer states that the material is needed rush and that unless delivery of the full
quantity is made within 5 days the order will have to be completely canceled. Part
XZ-718 unhardened is carried in inventory at a valuation of $.83 each; the price
quoted to the customer for the casehardened parts is $3.17 each net. It costs about

$725 for each run of the hardening process; the average numberof parts hardened per

run is about 12,000.
a. The conditional loss due to overage in this problem is identical to that dis-

cussed in Section 8.1 but the loss due to underage is not. Why?

b. Derive expressions for the expected cost and expected revenue of a decision to

schedule Q pieces into production, and thus derive the expected profit of this decision.

c. Derive expressions for the expected cost and revenue of a decision to schedule

the Qth piece into production.
d. Derive expressions for expected cost, revenue, and profit under certainty.

e. How many units should be hardened?
f. What is the expected cost of uncertainty.

4. The Green Garage Corporation contracts for the maintenance of 2000 taxi-

cabs at a fixed price per cab per year and carries a large inventory of spare parts to

support this operation. A typical itemin the inventory is a certain model of fuel

pump whichis used at a rate of about 50 per month on the average. When bought

in contract quantity from the Hi-Q company, a manufacturer of off-brand replace-

ment parts, the pumps cost $8.97 each plus a flat $275 setup charge which does not

depend onthe size of the order. The quality of these off-brand pumpsis fully equal

to that of the original-equipment pumpssold for $14.70 each through the distributor

organization of the manufacturer of the cabs; but because Hi-Q does not carry pumps

in stock and there is a 3-month lead time on contract orders, Green is forced to buy

some of these original-equipment pumps whenever its own inventory runs out.

Green has to rent storage space at a rate which amounts to about $.60 per year per

pumpstored andis so short of capital that it has been forced to borrow considerable

sums at 7 per cent interest.
a. Neglecting the effect of the reorder point on the expected length of cycle, find

the optimal order quantity and reorder point for this fuel pump.

b. Compare thecost of this policy with the cost of carrying almost no inventory

and purchasing original-equipment pumps on a hand-to-mouth basis.



CHAPTER 19

Waiting Lines

Our study of the Poisson process in Chapter 13 enabled us to derive a
probability distribution for the number of successes generated by such a

process in a unit of length, time, or ‘‘space”’ in general. Provided that

the conditions defining a Poisson process are met and provided that the
parameter of the process is known, we can use the Poisson distribution to
compute the probability that a machine will produce a certain numberof

defectives in an hour, or that a certain numberof tankers will arrive at a

dock during one day, or that so many people will ask for an outside line

In a minute.

Now defects produced by a machine are permanent, and how many
will occur is all we usually need to know. But tankers leave after they
arrive, and telephonecalls end as well as begin; and weare usually inter-

ested, not so much in how manyarrive during a particular period of time,
as in how manyare in existence at any one time. Thefact of importance

is how manytankersare lined up waiting to get to the dock, or how many

people are waiting for an outside line, or such related facts as the prob-
ability of having to wait, the time lost in waiting, and so forth.

19.1 Waiting Lines in General

If the time to load or unload a tanker or to handle a telephone call

is known, if the tanker arrivals or requests for telephone service can be

strictly scheduled in advance, and if the capacity of the system is ade-

quate, there will be no waiting line and no probability theory is required.
In many situations, however, arrivals can be predicted only in terms of
probabilities, and when this is true we often need to assess the probability

distribution for number waiting or some summary measure of this dis-
tribution such as the mean number waiting. We are now dealing with a
probability distribution generated by two separate processes, one govern-

ing arrivals and one governing departures. The distribution is soxne-

times called the distribution of ‘‘number living’’ when one process pro-
duces ‘‘births”’ and the other produces ‘‘deaths.”’

19.1.1 The Steady State of a Waiting Line

The behavior of an incipient waiting line is extremely complex
because the probabilities themselves keep changing with time. When a
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new dock is opened for business, for example, there is obviously prob-

ability 0 that the first ship will have to wait at all. The probability

that the second ship will have to wait is greater, the probability that

the third ship will wait is greater still, and so forth. In terms of the
number waiting, the probability that there will be no one waitingis obvi-

ously lower for the second day of business than for the first, lower still
for the third day, and so forth. Complete analysis of a waiting line
therefore involves an infinite number of probability distributions, each
one of which applies to only a single momentof time.

Fortunately we do not need this kind of complete analysis in most
business problems. If a dock working full time is unable to dischargeall

the tankers which arrive, the waiting line will obviously go ongrowing

indefinitely and the decision implications are clear enough without a
detailed computation of just how it will grow. If, on the other hand, the
dock zs capable of handlingall the tankers whicharrive, it can be proved
that the probability distribution for number waiting will ultimately

become stable: it reaches what is known technically as a steady state.
Notice that this does not mean that the number waiting will remain con-

stant: it will not. It is only the probability distribution of the number

waiting which remains constant.
In rather loose language, the meaning of a steady state can be

expressed as follows. After the line has reachedits steady state, then in

every month (or hour or year) we ‘“‘expect”’ to have just about dp minutes

in which there are 0 individuals waiting, d; minutes in which there is

1 individual, etc. Before the line reaches the steady state, the number

dy is different in every month, and similarly for di, d2, etc.

In this course we shall deal only with waiting lines in a steady state, and

this qualification should be attached to all statements in the rest of this

chapter.

19.1.2 Conditions Determining the Length of Line

It is intuitively clear that the probability distribution for the number

waiting must depend on four factors:

1. The probability distribution of the time betweenarrivals.
2. The probability distribution of the amount of time required for

service after a memberof the line gets his turn. This is known as

the holding time.
The numberof stations providing service.

. The “‘line discipline,” i.e., the assumptions we make about the

behavior of membersof the line once they are inline. (Do they

always wait their turn, or do they go elsewhere if the line is too
long? If there is more than onestation, is there a single line so

that thefirst to arrive is served first, or are separate lines formed

in front of each station? Andso forth.)

>
0
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‘Except under very special sets of assumptions concerning these four

factors, waiting lines are impossible to analyze mathematically and must
be handled by the ‘‘ Monte Carlo’’ method which weshall discuss in the
next chapter. Weshall nevertheless devote the present chapter to certain

special cases which can be analyzed mathematically, in part because these
cases occur quite frequently in practice, but more especially because the

results of this analysis will give us a useful general feeling for the behavior

of all waiting lines.
The simplest cases to analyze mathematically, and the only ones

which will be discussed in this chapter, involve the following assumptions:

1. The arrivals are Poisson distributed: the probability of an arrival

is the sameatall instants of time regardless of what has happened

in all previous instants;
2. There is a single line with the rule first come, first served, and

no customer leaves the line until he has been served.

Given these two assumptions the behavior of the waiting line will be

determined by the shape of the distribution of the holding times, which

weshall discuss in due course, and by the numerical valuesof the following

parameters:

A: mean time interval between arrivals,

H: mean holding time,
n: numberof serving stations or clerks.

The meaning of many of the formulas which describe the behavior of a

waitingline will be clearerif the formulas are expressed in terms of certain

auxiliary parameters which are simply combinations of the three basic

parameters just defined. Since the mean time betweenarrivals is A, the

mean numberof arrivals per unit of time is 1/A, and therefore

m = H/A: the relative traffic intensity

is the expected numberof arrivals during the mean time required to serve

one customer. If there were exactly m stations, the system would have

just enough capacity to handle the demandsonits service, and therefore

p = m/n: the degree of capacity utilization

will measure the extent to which the theoretical capacity of the system is

actually utilized.

19.2 Exponential Holding Times

Thefirst special case which weshall study is that in which the hold-
ing times have an exponential distribution, since it is only when this con-
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dition is met in addition to the twolisted in the previous section that it
is possible to give a simple and yet complete analysis of the behavior of a
waiting line with any number of serving stations. We have seen in

Section 14.2 that in many practical situations holding times in fact have a
distribution which is very close to exponential, and the results which we

are about to give for this case have been extensively applied in thetele-
phone industry and elsewhere. We must always remember, however,

that when weface a new application we will virtually never have enough

understanding of the physical process generating the holding times to be
sure a priori that their distribution is exponential; the only way of making
sure is actually to measure a large numberof holding times and to look

at their frequency distribution in the way described in Section 14.2.

19.2.1 The Probability of Delay

The first step in computing any measure of the behaviorof a waiting

line under the conditions we are now assuming is to compute the prob-

ability that an arriving customer will find all n serving stations busy
and will therefore have to wait in line before he is served. Weshall
denote this probability by

P(D): the probability of delay,

and it turns out very conveniently that the mathematical formula for

P(D) can be expressed in terms of Poisson probabilities with parameter m:

<_<?

 

P(D) = Pro? = n|m) | Exponential holding

Pro(7 = n|\m) + qd ~~ p) Pp.(? < n|\m) times

 

There is no intuitive ‘‘ explanation” for the appearanceof these particular

probabilities in this formula, and in fact the ‘‘random variable”’ * has no
real meaning. It simply happensthat it is possible to reduce the mathe-

matical expression for P(D) to a form which is equivalent to a combina-

tion of formulas for Poisson probabilities, and we do reduceit in this way
because this makes it possible to calculate P(D) by use of tables of the
Poisson distribution.

Example. Suppose that a certain service facility has n = 5 service

stations, that the mean time between arrivals is A = 4 minutes, and
that the mean time required to serve one customer is H = 18 minutes.
Then the relative intensity of the traffic is m = H/A = 18% = 4.5 and
the degree of capacity utilization is p = m/n = 4.5/5 = .9. We use

Chart I to find

Pp< 5\m = 4.5) = 1 — Pp(F# > 5) = .532,
Prof = Sim = 4.5) = Pp> 5) — Ppl? > 6) = .171,
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and we then compute

171

PD) = Tara — 050 = °763;
76.3 per cent of all customers will have to wait in line before they are
served.

19.2.2 The Probability Distribution of Waiting Time

The probability distribution for the time that any individual cus-
tomer will have to wait before being served can now be expressed in
terms of P(D) and the standardized exponential distribution, i.e. the

standardized gammadistribution with parameter r = 1. If we define
the random variable

 

f: time that a customer waits before service begins,

then right-tail cumulative probabilities for f are given by the formula

 

_ ast, _ _ Exponential holding
Pi > t) = P(D) P, [ > A (n m)|r = | himes

 

For example, suppose that we wish to know the probability that a

customer will have to wait more than an hour beforereceiving a clerk’s
attention in our example with n = 5, H = 18 minutes, m = 4.5, and

P(D) = .763. We compute

t _ 60 _Fi (n — m) = ig (5.0 — 4.5) = 1.67,

use the curve for r = 1 in Chart I to find

P,(@ > 1.67) = 1 — P,(o < 1.67) = .188,

and then compute

Pt > 60) = .763 X .188 = .148.

The student should observe that the formula for the distribution of
? implies (1) that the conditional distribution of f given that the customer

is not served immediately is exponential but (2) that the marginal dis-

tribution of 7 is not exponential—thereis a finite probability 1 — P(D)

that the value of z will be exactly 0. This means that when we wish to
compute “‘the”’ probability that f will be less than a specified amount we
cannot proceed by simply reversing the inequality signs in the formula;

we must first compute the probability that 7 will be greater than the
specified value and then subtract from 1.
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19.2.8 The Probability Distribution of Number Waiting

The probability that there will be any specified number of customers

waiting their turn for service at any given instant (not counting customers

actually being served) can also be expressed in terms of P(D). If we
define the random variable

#: number of customers waiting; the length of the waiting line

then the probability distribution of @ is given by the formula

 

PPO

P(® > w) = p”’t! P(D) Exponential holding times

  

In our example with p = .9 and P(D) = .763, the probability that there

will be more than three customers waiting for service is

P(w > 3) = .94 & .763 = .656 X .763 = .500.

The probability that there will be no one waiting is

P(w = 0) = 1 — P(w > 0) = 1 — p P(D) = 1 — (.9 X .763)
= 313.

19.2.4 Mean Number Waiting; Time Lost by Customers

The mean number waiting or mean length of line—the expected
value of the random variable #—can be shown to be

    

 E(w) = i p 3 P(D) Exponential holding times

 

Continuing with our example in which p = .9and P(D) = .763, the mean
number of customers waiting to be served is

9
BW) = 7=9 xX .763 = 6.87. 

Since the total amount of time spent in waiting by all customers

together is equal to the mean numberof customers waiting at any one

time multiplied by the length of timethelineexists, the total timelost by all
customers in one unit of elapsed time is equal to the mean numberof indi-
viduals in the line. Thus the formula for E(w) also gives the number of
man-weekslost per calendar week by mechanics waiting at a tool crib or

the numberof tanker-years lost per calendar year because tankers cannot
come up to the dock immediately upon arrival. In our example 6.87

customer-hours are lost every hour.
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Customer Loss Ratio. While it is the actual time lost by customers

whichis usually relevant to a decision which will affect a waiting line, we
can gain a better understanding of the behavior of waiting lines by com-
paring this lost time with the time the customers spend usefully in being

served. Wetherefore define the ‘“‘dimensionless”’ customer loss ratio

R= time spent by customers in waiting for service

time spent by customers in being served
 

The time which ‘‘customers”’ spend being served is obviously equal to
the time which ‘‘clerks”’ spend in rendering service, and the amount of
time during which the clerks render service during unit elapsed timeis

simply the numberof stations n multiplied by p, the fraction of time dur-

ing which the ‘‘average clerk’’ is busy. We have already seen that the
amount of time which customers spend waiting during unit elapsed time

is E(w), and therefore we can rewrite our definition of the customerloss

ratio inthe form

 

R= =) = 2) Definition of customer loss ratio

 

This definition holds for any waiting line whatever, but the numerical

evaluation of E(w) in any particular case will of course depend on the
conditions affecting the operation of that particular line. Continuing
with our example of a line with exponential holding times and n = 5
p = .9, E(w) = 6.87, we have

3

R= 457 1.53.
6.87
4

Customers on the average spend 1.53 hours waiting for every hour they

spend being served.

19.2.5 General Observations on the Behavior of Waiting Lines

The Need for Planned Idle Time. Figures 19.1a and b show what

happensto the probability that a customer will have to wait and to the
amount of time that he must ‘‘expect’’ to wait as the demands on a

service facility approach the theoretical capacity of the facility. The

more important of the two graphs is of course the second one, and the
most striking fact about that graph is this:

As demands for service approach the system’s theoretical capacity
to render service, the ratio of customer lost time to useful time
increases without bound.
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If managementtries to keep a single-station facility busy 90 per centof

the time, customers will spend 9 hours in waiting for every hour they

spend being served. The implicationsare clear:

Whenever demands for service occur irregularly and the time
required to render service is irregular, management should deliber-

ately allow for a substantial amount of idle time in any service
facility.

The Gains from Expanded Facilities. When long waiting lines are

observed ahead of someservicefacility, it is natural to think that it will
require a substantial percentage increase in the numberof service stations
to make a substantial percentage decrease in the length of line. One of
the most useful general results of the systematic study of waiting lines
is to show that this intuitive belief is usually quite false. Figure 19.1)
shows that the really sharp increase in the length of line does not occur

until the load on the system is quite close to the theoretical capacity of

the system, i.e. until the idle time or slack in the system becomes very

small. A small percentage increase in the capacity of a heavily loaded
system will make a very large percentage increase in the slack and will

therefore usually produce a very substantial reduction in the length of
the waiting line and the customerlost time.

Suppose, for example, that a four-station line is loaded to 90 per cent
of capacity. Figure 19.2b shows that customerswill lose 2 hours in wait-
ing for every hour that they spend being served. If one more station is

added to the facility, the utilization of the resulting five-station system
will be (.9 & 4)/5 or just over .7, and Figure 19.2b shows that customers
at a five-station system with p = .7 lose only a small fraction of an hour

in waiting for each hour spent being served.
The Effect of Pooling Facilities. Another very interesting general

result obtained by systematic analysis of waiting lines bears on the gains

which can be made by pooling or centralizing a numberof service facil-

ities. The common sense of this point is obvious: if 10 clerks are scat-

tered in 10 separate tool cribs, some will be idle while others are faced with

long waiting lines, whereas if all 10 are put in a central crib, those who

were idle will be able to assist those who were overloaded and the cus-
tomers will receive faster service. The contribution of theoretical

analysis is in the light that it throws on the rather surprising magnitude

of the gains to be madein this way.
Suppose first that we have five separate single-station service facil-

ities all loaded to 90 per cent of capacity; we have already seen that the

curve for n = 1 in Figure 19.1b shows that the customers at each of these

facilities will spend 9 hours in waiting for every hour they spend being

served. Suppose next that the five facilities are pooled into a single

5-station facility; this facility will also be loaded to 90 per cent of capacity,
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but the curve for n 5 in Figure 19.1b shows that customers will now
have to wait only 1.5 hours for every hour of service. The same kind of

comparison can be madefor larger values of n by lookingat Figure 19.20:

when a 20-station facility is loaded to 90 per cent of capacity, the cus-
tomerloss ratio is less than .5.

Figures 19.la and 19.2a show that pooling also has an interesting

though less important effect on the probability that a customer will have
to wait at all. Ina single-station line the probability of delay is equal to
the fraction of time p during which the station is busy, but in a multiple-
station line the probability of delay is less than p. Although each indi-
vidual station is free only during a fraction 1 — p of the time, some station

will be free during a larger fraction of the time.

19.3 The Effect of Nonexponential Holding Timeson a Single-

station Line

In a practical situation the distribution of holding times is never

exactly exponential, and in many situations the distribution departs
quite substantially from the exponential form. We would therefore like

to have some way of getting a feeling for the effect of nonexponential
holding times on the behavior of a waiting line, and although mathe-

matical analysis of waiting lines with nonexponential holding times is
extremely difficult in the general case of n serving stations, it is possible

to give simple formulas for the behavior of a stngle-station line with any
distribution of holding tumes whatever provided that the arrivals are Poisson

distributed. Since there are a great manypractical situations where the

assumption of Poisson arrivals agrees very closely with the facts even
though the corresponding assumption for the holding times does not, we

shall now look briefly at this second special case.

19.3.1 Summary Measures for a Single-station Line

Even in the case of a single-station line it is usually impossible to

obtain formulas giving the complete probability distribution of number

waiting when the holding times are nonexponential, but what we ordi-
narily need in a practical decision problem is either the probability that

a customerwill have to wait or the mean numberwaiting (the time lost by

customers), and fortunately these two quantities are what we are able to

obtain for any single-station line.
The Probability of Delay. In a single-station line, the probability

that a customer will have to wait before being served depends only on the

mean H of the distribution of holding times and not on any other prop-
erty of that distribution. The customer will have to wait if the single
station is busy when he arrives, and since the station is busy a fraction

H/A = p of the time,
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P(D) = p Single-station line; any holding tumes

 

Weremind the student that this is not true of multiple-station lines; the
reason was discussed at the end of Section 19.2.5 above.

Mean Number Waiting; Time Lost by Customers. Although the

probability of delay depends only on the mean holding time,it is obvious
that the number waiting will also depend on the variability of the holding

times—long lines tend to form behind a customer who takes a long time
being served. Wetherefore let h denote the random variable “holding

time”’ and define

o*(h/H): the variance of the ratio of actual holding time to mean

holding time.

The mean number waiting in line can then be shown to be

 

 

2 2

E(®) = i ‘ 5 it whH) Single-station line; any holding times

 

and for the reason explained in Section 19.2.4 above this formula can also

be interpreted as giving the total time lost by customers per unit of

elapsed time.

19.3.2 Comparison of Exponential and Uniform Holding Times

Looking at the formula just given for E(®) in a single-station line,

weseefirst of all that, for a given degree of capacity utilization p, the time

lost by customerswill be least when c7(h/H) = 0, i.e. when holding times

are absolutely uniform. This confirms our intuitive feeling that cus-

tomers who require very long service times tend to build up long waiting

lines behind them.
At virtually the opposite extreme we have the exponential distribu-

tion of holding times. We sawin Section 16.5.2 that if a random variable
t is the sum of r random variables all having exponential distributions
with mean yu, then o?(i/n) = r. In our present problem weare dealing

with a “sum” which consists of a single random variable, r = 1, and

therefore o?(h/H) = 1 if A has an exponential distribution. Looking
back at the formula for E(®), we see that in this case the time lost by

customers is exactly double what it is when the holding times are uniform

and o2(h/H) = 0.

Mostdistributions of holding times encountered in practice will have

more variability than the uniform but less than the exponential, and the

time lost by customers will be between the values obtained by substi-
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tuting 0 and 1 for o2(A/H) in the formula for E(w). Unfortunately no
such simple quantitative statement is possible for multiple-station lines;
all that we can say is that the time lost by customers will usually be
‘“somewhat” below the value given by the formula in Section 19.2.4

above.

PROBLEMS

1. Calculate the relative traffic intensity m and the degree of capacity utilization

o for a three-station waiting line with the following characteristics:
a. Meanarrival rate: 9 per minute; mean holding time: .2 minute.

b. System can serve 75 per hour; 20 arrive per hour.
2. A single-station waiting line has a theoretical capacity of 20 per hour; the

mean arrival rate is 18 per hour and is Poisson distributed. What is the probability

that a customer will have to wait in line and what is the expected length of line
a. If the holding time is exponentially distributed?
6. If the holding timeis constant?

ec. If o2(h/H) = .5?
3. For each of the three sets of conditions stated in Problem 2, compute:
a. Total time lost by customers per 8-hourshift.

b. The expected time lost by an individual customer.
ce. The expected time lost by an individual customer who in fact has to wait in

line (part b asks you to average lost time overall customers, part c to average over
only those customers who haveto wait).

d. Customerloss ratio.
e. Total time lost by clerks per 8-hourshift.
f. Ratio of time lost by clerks to time spent by clerks in rendering service.

4. In a 10-station waiting line serving 40 Poisson-distributed arrivals per hour
with exponentially distributed serving times having a mean of 12 minutes, compute
the same quantities computed in Problem 3 and also

g. The probability that a customer will have to wait more than 15 minutes

before service begins.

h. The probability that there will be three or more customers waiting in line.
5. What is the effect of adding another service station to the 10 described in

Problem 4?
6. Holding times for service at a tool crib are exponentially distributed and the

mean holding time is 1.6 minutes. The crib is open for business 8 hours a day, and
the crib serves almost exactly 250 mechanics every day. Arrivals are equally frequent
at all hours of the day.

If a clerk’s time is worth $2 an hour and a mechanic’s time is worth $8 (including
the overhead allocated to machinery whichis idle while he is at the crib), how many

clerks should management assign to the crib? Do you need any other management
information before answering?

7. It has been argued that decisions should not be based on waiting-line theory
because it assumes that arrivals and holding times follow a mathematical “law’’
whereasin real life these things occur ‘“‘at random.’’ Discuss.

8. Mr. Albert Brooks, the director of public relations for New England Airlines,
had heard many complaints from people who had called the company’s Boston office
for reservations or information and had had to wait, often for considerable periods of
time, before they were connected with a reservation clerk. Those persons were
particularly exasperated who wanted only some very simple information and yet had

to wait several minutes to get a few seconds of a clerk’s time. Mr. Brooks believed
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that delays of this sort directly undermined what he regarded astheairlines’ principal
competitive advantage, saving time for their customers.

The Boston office of New England Airlines had a large number of trunk lines
available to handle incoming calls requesting information and/or reservations. All
incoming calls were answered by an operator who gave no information herself but sim-

ply routed the calls to extensions manned by reservation clerks. If all reservation

clerks were busy the operator asked the caller to wait. As soon asa clerk becamefree,
she was given the call which had been waiting the longest time.

Reservation clerks were paid $3 an hour and the companyhesitated to incur the
expense of additional clerks, but Mr. Brooks argued that there was a real good-will
cost involved in the current delays suffered by customers. Although he was unwill-
ing to give a specific figure for the good-will cost of 1 minute of waiting, he believed
that the company’s officers would use sound business judgment to decide on the proper
number of clerks if they were shown figures on the relation between the number of
clerks and the amount of time the average customer would have to wait.

Mr. Brooks decided therefore to obtain as much information as he could on the
problem. He requested the four telephone operators who covered the ‘‘normal peak
hours’’ of 10 a.m. to 4 p.m. Monday through Friday to record for each incomingcall
whether the caller was routed directly to a clerk or was asked to wait and whether
those who were asked to wait did in fact wait or hung up before being served. The

operators did not have enough free time to measure and record the actual time waited
on each call.

The operators kept records for 1 week, or five 6-hour ‘“‘normal peak”’ periods.
During this time there were 21,800 incoming calls, of which 19,500 were delayed.
Virtually none of the callers refused to wait until they werefinally connected.

On seeing Mr. Brooks’s figures, some of the company’s officers argued that the
situation was hopeless. Ten clerks had been on duty during the entire test period.
This was the standard numberof clerks for ‘‘normal peak hours,”’ and if only about
10 per cent of all calls could be handled immediately by 10 clerks, these officers alleged
that it would require an enormousforce to handle 90 per cent, say, of the calls with-
out delay. The record showed that calls were evenly distributed over the normal
peak hours, so that the question was not one of increasing the force during a few
critical hours.

Mr. Brooks was not convinced that such a large increase in the staff would be

required, however, and suggested an experiment with 11 or 12 clerks to see what would
happen. This turned out to be impossible because there were no extra trained clerks
available for the experiment. When the company needed extra clerks for some rea-
gson—under unusual weather conditions, for example—people were often taken off
other jobs and used as reservation clerks. The job required considerable training
and experience, however, and people used in emergencies obviously worked much
more slowly than fully trained clerks, so that any experiment in which such substi-

tute clerks were used would be inconclusive.

Discuss the implications of Mr. Brooks’s data.



CHAPTER 20

The Monte Carlo Method

Wehave nowstudied several types of problems in which mathematical
analysis can be used to deduce the probability distribution of the cost-

determining random variable from given probabilities for a related
‘basic’? variable or variables. In many types of problems, however,

such deductions cannot be carried out analytically, and it is therefore a

fact of very great practical importance that they can almost always be

carried out by experimentation. Only mathematical analysis will yield
a formula which gives the exact answer to all problems of a given type,

but experimentation can always be used to get an approximate numerical
answer to a particular problem containing specific numerical data; and

we can usually make the approximation as accurate as we need. Solu-

tion of problems by experimentation of this sort is known as the Monte
Carlo method.

20.1 The Monte Carlo Principle

Suppose that we require the probability distribution for the number

of defectives which a machine will produce in a lot of 100 pieces given
that the probability that an individual piece will be defective is 4%. As

we already know,this problem can be solved mathematically, but it can
also be solved by the Monte Carlo method and affords the simplest

possible illustration of the essential principle of the method.

The principle of the Monte Carlo method is to find some cheap way

of makingartificial trials the possible events of which have the same long-
run frequencies as the events in which wearereally interested. We then
make a large numberof trials and assess the required probabilities on the

basis of the relative frequencies with which the various artificial events
occur. The problem just stated as an example could be solved byrepre-
senting the numberof defectives in a lot of 100 pieces by the numberof
heads which occur when 100 fair coins are tossed. Considering one toss

of 100 coinsas a single ‘‘experiment,’’ we would perform this experiment a

large numberof times, each time recording the number of heads. At the

end of the series of experiments we would computetherelative frequency

with which each number of heads had occurred, and we would take these
320
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relative frequencies as the basis for our assessment of the required proba-
bilities. If the number of experiments had been extremely great and

the resulting frequency distribution was very smooth, we might simply

equate the probabilities to the observed frequencies. If the frequency
distribution looked ragged, we would smooth it before assessing the
probabilities.

The operation would bestill simpler if we required, not the complete
distribution for numberof defectives, but merely the probability of some

event such as ‘‘more than 56 defectives.”’ In this case we would simply
record whether each successive experiment did or did not result in more

than 56 heads; and after the series of experiments was over we would

simply equate the desired probability to the observed relative frequency.

20.2 Practical Monte Carlo Operations

Let us now look very briefly at the two principal devices which are

used to carry out Monte Carlo operations in practice: the use of ‘‘random

numbers” and the combination of mathematical analysis with the Monte
Carlo method. Weshall continue to use examples which could be com-

pletely solved by analysis whenever such examples are the best ones to
make a point.

20.2.1 Use of Random Numbers

A table of random digits is simplya list of digits from 0 to 9 in the

order in which they were generated by a process which is believed to
generate the digits independently and with equal relative frequencies in
the long run—it is believed, for example, that the digit 3 tends to occur

1/q of the time, that 149 of the 3’s tend to be followed by a 3, and so
forth. <A short table of random digits is presented as Table V.f

If we ‘‘draw”’ a digit from such a table in such a way that there is no

possibility of preferring certain digits consciously or unconsciously, we

will assign probability .1 to each of the 10 possible values 0 to 9. If we
draw two digits and regard them as a two-digit number, we will assign
probability .01 to each of the 100 possible values 00 to 99, and so forth.
If then we wish to makea trial with probability .5 of success, all we need

to do is draw a digit from the table and count it as a success if it is
between 0 and 4 inclusive,a failure if it is between 5 and 9 inclusive. If

we wish to makea trial with probability .037 of success, we draw a three-

digit number and count it as a successif it is between 000 and 036inclu-

sive, a failure if it is between 037 and 999 inclusive. If the required
probability were .1286, we would have to draw a four-digit number, and

so forth.

} For a very extensive table, see The RAND Corporation, “A Million Random
Digits,’’ Free Press, Glencoe, IIl., 1955.
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Suppose now that we wish to deduce the probability distribution for
number defective in a lot of 100 when the probability that an individual
piece will be defective is .037 rather than 14 as in ourprevious example.
We can make an experiment corresponding to one lot by simply reading
off 100 three-digit numbers and counting each number below 037 as a
defective. This experiment corresponds to one toss of 100 coins in our
previous example, and a large number of such experiments will generate
a frequency distribution for number defective.

20.2.2 Use of Mathematical Analysis

In the extremely simple examples discussed above, each Monte Carlo
trial represented a real trial (manufacture of one piece) which had only

two possible events the probabilities of which were ‘‘basic,’’ i.e. assessed

directly from experience. In many problems it is more convenient or

even necessary to let the Monte Carlo trials represent more complex

trials, the probabilities for the various possible events being obtained from
the basic probabilities by mathematical analysis.

Suppose, for example, that we wish to deduce the probability that a
machine will produce more than three defects in each of 5 successive feet

of wire and that we wish to represent the machine as a Poisson process

generating three defects per foot. In order to reduce this problem to one

involving trials with probabilities set directly by experience, we would
have to think of the wire as divided into extremely small pieces each of
which could be considered a Bernoulli trial, and each of these would have
to be represented by one Monte Carlo trial. This means that there

would have to be a very large numberof trials in any one experiment
representing 5 successive feet of wire, and a reasonably large numberof
experiments would mean an extremely large numberof trials. The oper-
ation would be excessively time-consuming and costly.

Wecanget aroundthis difficulty if we use the Poisson distribution to
obtain the probabilities of zero, one, two, etc., defects in any 1 foot.
From Chart I we find that when m = 3 the probability of zero defects is
.050, the probability of one is .149, of two is .224, ete. We could then
make each Monte Carlo trial yield the numberof defects in 1 foot of wire
by drawing three-digit random numbers and interpreting any number

from 000 to 049 inclusive as the event ‘‘zero defects,’”’? any number from

050 to 198 inclusive as the event ‘‘one defect,’ etc., but in the problem we
have taken as an example the procedure can be even simpler. Since we

are interested only in whether a foot does or does not contain more than

three defects, we find from Chart I that Pp,(7 > 3\m = 3) = .353 and
we take all numbers from 000 to 352 inclusive as representing the event

‘‘more than three defects.’”’ Each experiment consists in drawing five
three-digit numbers, and the whole experiment countsas one ‘‘success”’if
all five numbers are below 353. The fraction of all experiments resulting
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in a success is the basis for assessing the probability that there will be
more than three defects in each of 5 successive feet of wire.

Use of Cumulative Intermediate Distributions. Let us use the term

‘‘intermediateprobabilities’ to denote probabilities like the Poisson prob-

abilities in the example just discussed, i.e. probabilities which are derived
from the basic probabilities by mathematical analysis and then used

as the starting point for a Monte Carlo operation. If the intermediate

distribution assigns nonzero probability to a large number of values of

the variable, it would be a nuisance to have to write out in advance
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Figure 20.1. Cumulative Poisson distribution, m = 3.

which values correspond to which random numbers, and this step can be

avoided by using the cumulative form of the intermediate distribution.

Continuing with the example just discussed, we show in Figure 20.1
the cumulative Poisson distribution Pp,(7 < rjm = 3). Suppose now

that we draw three-digit random numbers and that the first number

drawn is 107. We interpret this as the decimal fraction .107, locate this
number on the vertical axis of Figure 20.1, read across to the “‘curve”’
and down to the horizontal scale, and find r= 1. Wethen take this

trial as resulting in the event ‘‘one defective.”
The procedure works because the probability that a random number

will lead to any given value of the variable is proportional to the height
of the ‘‘jump”’ in the graph at that value of the variable, and the height
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of this jumpis in turn proportional to the probability of that value of the

variable. Putting the distribution in cumulative form simply accom-
plishes exactly what we accomplished before by assigning all possible
random numbers to values of the variable in proportion to their prob-

abilities. Notice that 7t makes no difference whether we use a left-tail or

right-tail distribution: the heights of the jumps at each value of the vari-

able are the same in either case.
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Figure 20.2. Standardized cumulative exponential distribution.

Use of Continuous Distributions. Suppose next that we wish to draw
a series of ¢ntervals between defects in a piece of wire when the defects are
Poisson distributed. In this case the ‘‘intermediate”’ distribution is the
continuous exponential distribution, but even though the graph of such a
distribution contains no jumpsit can be used in the same wayas Figure
20.1.

Assumefirst that the mean interval » = 1. Then the standardized

variable 3 = i/u always has the same numerical value as the natural vari-

able #, and the graph of the cumulative distribution P,(6 < v|r = 1)

shown as Figure 20.2 can be read directly as a graph of the natural dis-

tribution Pi < tir = 1,4 = 1). Intervals can be drawnfrom this graph
exactly as numbers of successes were drawn from Figure 20.1. If the
first random numberis 760, we locate .760 on the vertical axis and read
across to the curve and down to#é = 1.4 on the horizontal axis: the length
of the intervalis 1.4.
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The reason the method works in the continuous case can best be
understood by looking at the probability of drawing an interval less than

any specified length rather than at the probability of drawing an interval

of exactly some specified length. Since there is probability .760 thata

three-digit random number will be smaller than 760, the method just

described will lead us with probability .760 to assign a value less than

1.4 to the interval: there is probability .760 of ‘‘drawing”’ an interval

shorter than 1.4. But by Figure 20.2 this is the probability that an

interval will actually be shorter than 1.4; and the same correspondence

holds for any other length of interval.

When the meaninterval yu is not equal to 1, one additional step is

necessary. We draw valuesof the standardized variable é from the chart

by the procedure described above, and we then convert each value so

drawn into the corresponding value of 7. If, for example, » = 2 and we

draw the random number760 and thusthe value v = 1.4, we say that we

have drawn the value ¢ = pv = 2 X 1.4 = 2.8.

20.3 High-speed Computers

In a great manypractical business problems, the best—1.e., the most

economical—wayof applying the Monte Carlo method to get the required

answers with the needed accuracy will be to use a pencil and a simple

table of random numbers in the way described above. Occasionally

there will be a real need for great accuracy in the results and this will

require so large a numberof experiments that they cannot practically be

made by hand. Somewhat more frequently the relation between the

basic probabilities and the probabilities or summary measures to be

deduced will be so complex that a good deal of calculation must follow

each Monte Carlo trial. In such situations hand computation may

become unduly slow and cost more than it costs to write and test a

‘program’? which will instruct a high-speed digital computer to do

exactly the same things which would otherwise be done by hand.
If a computer is used, the basic trials are made by “‘drawing’

random numbers which can either be fed into the machine on cards or
tape or be generated by the machine itself. ‘‘ Intermediate” probability

distributions may be stored in the machine and consulted when required,
or the machine may compute intermediate probabilities from their

formulas. The machine computes and records the results of the successive

experiments and ultimately summarizes them in exactly the same way in

which the work would be done by hand.

20.4 The Proper Number of Monte Carlo Experiments

The basis for assessing any probability by the Monte Carlo method

is the relativefrequency. with which some event occursin a finite number
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of ‘‘experiments,’’ and it is obvious that this frequency will rarely be

exactly equal to the true value of the probability—i.e., to the value

which is in fact logically consistent with the basic probabilities from

which the analysis started. The same proposition holds, of course, for

any summary measure such as the mean of a probability distribution

which is computed by the Monte Carlo method. When we design a
Monte Carlo procedure we set up a process which (we believe) would
yield the exact value of the quantity we seek if we made an infinite
number of experiments. The experiments we actually make constitute a

sample of the potentially infinite output of the process, and the results are

subject to ‘‘samplingerror.”’

The problem of deciding on the proper number of Monte Carlo
experiments is thus just one very special case of the problem of deciding

on the proper size fora sample. Whenever webase a decision on the evi-
dence of a sample, there is a risk that samplingerror will lead us to make

a wrong decision. This risk can be reduced indefinitely by increasing

the size of the sample, but this costs money and after some point it costs
more than it is worth. The remainder of the course will be devoted to
the economics of sampling; and by the end of the course we shall know

how to determine the economicsize for a Monte Carlo run.

PROBLEMS

1. Part XB411 of the Hynes heavy-duty engine lathe was not subject to wear
but broke from time to time when subjected to unusually heavy stresses. The lathe

was used by two companies, Gridley Machine Works and Burke Appliance. Both
companies carried spares for part XB411 in inventory and controlled the inventory by
the min-max system. Gridley’s order quantity was 4 units; Burke’s was 5; both com-
panies had a reorder point so high that the risk of shortage of the part was negligible.

Assuming that Gridley’s actual usage of the part was Poisson distributed with
x = 1.2 per month and that Burke’s usage was Poisson distributed with x = 2 per
month, use the Monte Carlo method to obtain a dated sequence of orders received
from Gridley over a 5-year period and a similar sequence of orders from Burke, use

these two sequences to compute the total numberof units ordered from Hynesin each

month of the 5-year period, and compute the frequency distribution of monthly
demand. (Hint: The interval between Gridley’s orders has a gammadistribution
with r = 4.)

2. The Great Eastern Steel Corporation operated a dock at a port on the East

coast of the United States at which it unloaded iron ore coming by ship from Vene-
zuela. The dock hadfacilities for unloading two ships at one time. The ships were
all of about the samesize and type, and it took just about one 24-hour day to unload
one. Labor wasreadily available, and the company was neither forced to pay for a
crew’s time when there was no ship to unload nor unable to go on a three-shift 7-day
basis when the numberofarrivals required.

This arrangement had worked out very well for several years. The ships radioed

their arrival enough in advance so that a crew was always ready. Not infrequently
an arriving ship found both of the dock positions occupied and had to wait before
being unloaded, but it was very rarely that the delay amounted to more than a few
hours. In September, 1955, however, management became concerned about the fact
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that the approaching completion of its new steel mill would increase ore requirements

and therefore ship arrivals. About 500 shiploads of ore would be required per year
instead of the previous 250, and management wasafraid the ships, for which the com-
pany paid a charter rate of $1400 a day, would sometimes have to wait a very con-
siderable amount of time before being unloaded.

A study had been madeofthe possibility of makingthe arrivals more regular, but
it appeared that the variety of conditions encountered during the voyage madethis
impossible. (Ships could, of course, be instructed to proceed at slow speed when
normal speed would have led to arrivals producing congestion in the harbor.) A
study of past records showed that ships arrived completely unpredictably: equally
often at all hours and on all days throughout the year with no apparent pattern.

A study was then madeof the possibility of extending the dock or of building a
new dock near by. The study showedthat, using the most economical location avail-
able, the company would be obliged to spend about $1.4 million to build a one-berth
dock andinstall all necessary equipment such as cranes, rail spurs, etc. Maintenance

of the new facilities would cost about $30,000 a year; operating expenses could be

neglected because they depended on the numberof ships arriving and not on the num-
ber of berths available—no premium was paid to dock crews for working nights or
holidays. Thelife of the proposed new facilities was estimated at 30 years, and the
company’s policy was to make no investments which did not earn 30 per cent on the

investment before taxes. The construction of the dock andinstallation of the facili-
ties could not be completed by the time the new mill was in operation unless it was
begun almost immediately.

Should the new dock be built?
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CHAPTER 21

Revision of Probabilities

in the Light of New Information

21.1 Introduction to Part Three of the Course

Up to now wehaverelied almost entirely on judgment to tell us how
to use our experience with the real world in assessing the probability dis-

tribution for a basic random variable. Probability theory has been used
only to deduce thedistribution of the variable which affects costs directly

from a given distribution for some basic variable. Thus in Part One of

the course the distribution of unit demand wasassessed by simply taking
the frequency distribution of past demandorof past forecast errors and

making such modifications as judgment dictated. In Part Two we used
theory to deduce the distribution of number defective from a given dis-
tribution of the process average of a Bernoulli process, but the distribu-
tion of the process average itself was assessed without the aid of formal

theory.

Wenowturn to situations where part of the available information
concerning the basic random variableis of such a nature that the theory

of probability can be used as an aid to assessing the probability distribu-

tion of the basic random variable itself. In this chapter we shall study
the basic principles of this new use of the theory of probability, particu-
larly as it applies to the use of the information in a sample. In the

remainder of Part Three of the course we shall apply these principles to a

variety of decision problems, extending our knowledge of probability
theory when wefind this necessary.

21.2 Bayes’ Theorem

Before tackling any practical problems in which the theory of prob-
ability can be used in assessing the distribution of a basic random vari-

able, let us consider an artificial example which will bring out the basic

logic of the procedures we are about to use. An urn contains 10 balls

in the following mix:

1. 4% of all the balls are striped; of these striped balls, 249 are red

and 8{9 are green.
330
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2. 14 of all the balls are dotted; of these dotted balls, &{o are red
and 4{9 are green.

This mix is shown graphically in Figure 21.1; notice that while the

numbers above the bars give the unconditional relative frequencies of

striped and dotted balls the numbers within the bars are the conditional
relative frequencies of red and green given either striped or dotted. One

ball is now drawn from this urn in such a way that we are convinced that

every ball had an equal chance of being drawn, and we wishto assess the

probability that this ball is striped.
If the only information we haveis that given above, then clearly we

must assign probability .5 to the event ‘‘striped,’’ since we have already
assigned equal probability to every 5
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sessing the probability of ‘‘striped”’
we are given the additional infor-
mation that the ball in question is

red. In this case our problem becomes one of assessing the probability

that a red ball is striped, and we therefore reason as follows.

Weoriginally assigned equal probability to every ball in the urn.
The subsequent information that the ball drawn from the urn was red

obviously leads us to change this assessment and assign 0 probability to
all green balls and therefore to raise the total probability assigned to all
red balls to 1, but it gives us no reason whateverto assign a higher prob-

ability to any one red ball than to any other and we therefore now assign
equal probability to all red balls. We can then argue that of all the balls

in the urn, .2 X .56 = .1 were red striped while .6 X .5 = .3 were red
dotted, and therefore that the probability that this red ball is striped
is .1/(.1 + .8) = .25.

The reasoning can be expressed in terms of relative frequencies as

follows. Suppose that we draw oneball from the urn, record its descrip-

tion, replace the ball in the urn, stir the contents, and then repeat this
procedure a great numberof times. Of all the balls drawn, about half

will be striped; but zf we look only at those occasions on which the ball <sred,

only a quarter of these balls will be striped.
The same reasoning is represented graphically in Figures 21.2 and

21.3. We start by reproducing in Figure 21.2 only that part of Figure

21.1 which corresponds to the event ‘‘red,’’ since the information that the

ball is red means that the rest of Figure 21.1 is now totally irrelevant.

Striped Dotted

Figure 21.1. Original probabilities.



332 Use of Information Obtained by Sampling 21.2

Wethen produce Figure 21.3 by enlarging Figure 21.2 in such a way that
its total area becomes 1; to do this we first calculate the original area of
each part of Figure 21.2 (the joint probabilities) from the data in Figure
21.1 and then divide the area of each part of Figure 21.2 by the total .4 of

these original areas in orderto raise the revised area to 1.
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Figures 21.2 (left) and 21.3 (right). Revision ofprobabilities.

The calculations can also be laid out in the form of a table like Table
21.1. The events in which weare really interested, striped and dotted,

are listed in the first column, andtheir original probabilities in the second.
Notice that these original probabilities are “‘basic’’—they rest on our

judgment concerning the process by which the ball was drawn from the
urn and in no way depend on the theory of probability. The third
column showsthe probability of ‘‘red”’ given the event ‘‘striped”’ and the

corresponding probability given the event ‘‘dotted’’; again these are
‘“‘basic’”’ probabilities which rest on Judgment and not on the theory of

probability.

 

 
 

 

Table 21.1

Basic probabilities Computed probabilities

Event

of interest Probability Probability of red Joint probability Probability of
of event given the event of event and red event given red

Striped ms) 2 1 1/4 = .25
Dotted _.5 6 “3 3/4 = .75

1.0 4 1.00

 

The theory of probability is then used to compute revised probabili-

ties for the events ‘‘striped”’ and ‘‘dotted”’ from these two sets of basic
probabilities; the work is shown in the last two columns of the table.

Wefirst use the multiplication rule (Section 9.4) to compute the joint

probabilities of ‘‘red and striped”’ and ‘‘red and dotted’’ shown in the

next to the last column as assessed before it was known that the marble
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was red. We then use the addition rule to compute the marginal prob-

ability (Section 12.3.2) of ‘‘red’’ as assessed before it was known that the

marble was in fact red; this is the .4 total of the joint probabilities.

Finally we apply the definition of conditional probability (Section 9.3) to
compute the revised probabilities in the last column of the table.

Thelogic of this table can be expressed more compactly by the use of

algebraic notation. Using S, D, and R to denote the events ‘‘striped,”’

‘‘dotted,”’ and ‘‘red,’”’ we have by the multiplication rule (Section 9.4)

P(R,S) = P(S) P(R|S),
P(R,D) = P(D) P(RID).

The addition rule gives us the marginal probability (Section 12.3.2)

P(R) = P(S) PCRS) + P(D) P(R{D)

and the definition of conditional probability then gives (Section 9.3)

P(S,R) _ P(S) P(R|S)P(SIR) = “pcR) = P(S) PCRIS) + P(D) P(RID)
 

 

This formula is known as Bayes’ theorem, but it is important to

realize that it is really nothing but the mathematical definition of condi-

tional probability as given in Section 9.3 with P(#) written out tc show
how it is actually calculated. Although the theory of probability can be

used as an aid in assessing the distribution of a basic random variable, it
cannot be too strongly emphasized that theory by ztself can never deter-
mine the probability of any event. As we have emphasized from the

outset (Section 1.6.1),

The theory of probability does not replace judgment and experience.
Its utility lies rather in the fact that it allows us to make more

effective use of our judgment and experience by assigning probabili-

ties to those events on which our experience and judgment bear most

directly rather than to events which will actually determine costs

but with which we have hadrelatively little direct experience.

21.3 Bayes’ Theorem Applied to ‘‘Samples”’

Our first example of the use of Bayes’ theorem to revise probabilities

in the light of additional information was chosen to make the underlying

logic as obvious as possible rather than to illustrate a common sort of

practical use of the theorem. In practical business applications of prob-

ability theory the additional information which we wish to consider usu-
ally comes from a ‘‘sample,’”’ and we now proceed to examine three
applications of Bayes’ theorem in which the information is of this nature.
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21.3.1 Samples of Size 1

Suppose that we are presented with an urn containing two kinds of

deformed dice. Half the dice are shaped in such a waythatace will turn

up .2 of the time; half the dice are shaped so that ace will turn up .6 of the

time. Using p to denote the fraction of aces which a die would yield in

the long run, we can say that p = .2 is the process parameter of thefirst
kind of dice while p = .6 is the parameter of the second kind.

One die is drawn from the urn in such a way that weoriginally assess
at .5 the probability that a die with p = .2 has been drawn. A sample

of the die’s behavior is then taken by rolling it once; it comes up ace, and
we now wish to revise the probability originally assigned to the proposi-

tion that the die is one with p = .2.

The analysis of the problem is carried out in Table 21.2, which is

really identical to Table 21.1. In termsof an infinite series of trials: if
we repeated over and over the process of drawing a die and samplingits

behavior by a single roll, we would roll an ace on .4 of all occasions; on

 

 

Table 21.2

Value of the Original ve Joint Revised
basic random variable probability P sampluf probability probability

.2 a) 2 1 .25

6 5 6 3 75

1.0 4 1.00

 

.1/.4 = .25 of these occasions it would turn out that we had drawn a die
with p = .2.

Application to a Production Process. Suppose now that a manu-

facturer believes that when a certain machineis correctly set up it has a

process average fraction defective p = .2 but that when a poor job is

done the process average is p = .6; and suppose further that on the basis

of his records of past performance the manufacturer assigns probability .5

to the proposition that the setup which has just been madeis ‘‘correct.”’

Before deciding whether or not to proceed with a production run, the
manufacturer obtains additional information on the quality of this par-
ticular setup by producing and inspecting a sample consisting of one

piece of product. This piece proves defective.

The manufacturer should now assess at .25 the probability that this
particular setup is ‘‘correct.’’ The reasoning is identical to that used in

the two previous examples. In terms of an infinite series of trials, the

setup is correct on .5 of all occasions, but it is correct on only .25 of those

occasions on which the sample piece is defective.
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21.8.2 Samples of Size 2

Suppose next that the manufacturer produces a sample of two pieces

instead of just one (the die is rolled twice), and suppose that both the

sample pieces are defective (both rolls result in ace). The revised prob-
ability which the manufacturer should assign to the event ‘‘ correct setup”’

(p = .2) in the light of this evidence is computed in Table 21.3.

Table 21.3
 

Conditional
probability

of the sample

Joint Revised

probability probability
Value of the Original

basic random variable probability

 

2 Oo .04 .02 1
.6 5 .36 .18 9

1.0 20 1.0
 

Thefirst two columnsare identical to those of Table 21.2. The third

column shows the conditional probability of getting two defectives (two
aces) in arow: if p = .2, this probability is .2? = .04;if p = .6, the prob-
ability is .67 = .36. The fourth column gives the joint probability, as
evaluated before the sample is drawn, of both having a setup with the
specified value of p (drawing a die with the specified parameter) and then

producing two defectives (rolling two aces); the total of this column is

the marginal or unconditional probability of two defectives as assessed
before the sample was taken. ‘The last column is computed from the

fourth in the same way as before; the revised probability that the setup
is correct (p = .2) is .1.

If the entire process of setting up the machine and producing two

pieces were repeated over and over, then (on the average) both pieces

would be defective on 20 out of every 100 occasions. On only 1 of every

10 occasions with two defectives in the sample would the setup beof quality
p = .2; on 9 it would be of quality p = .6.

21.3.8 Larger Samples

In the previous examples we have computed the conditional prob-

ability of the sample directly from first principles; let us now see how
tables of a standard distribution can be used for this purpose. We

assume as in Section 21.3.2 that the process average fraction defective p

of a certain machine dependson the quality of the setup, but this time we
comecloser to realism by assuming that p can have any oneof ten differ-
ent values instead of always having one or the other of just two values.
The possible values of p are shownin thefirst column of Table 21.4; the
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probabilities assigned to these values on the basis of the manufacturer’s

previous experience are shown in the second column.

 

 

 

Table 21.4

Value of the Original Conditional Joint Revised
basic variable probability probability probability probability

p P(p) PF = 4[n = 50, p) PR =4,p) Ppl = 4)

.01 .30 .0015 .00045 .008

.02 .23 .0146 .00336 .058

.03 .15 .0460 .00690 .120

.04 .10 .0901 .00901 . 156

.05 07 . 1360 .00952 .165

.06 .05 .1733 .00866 . 150

07 .04 . 1963 .00785 . 136

.08 .03 . 2037 .00611 . 106

.09 .02 .1974 .00395 .069

.10 _.01 . 1809 .00181 .032

1.00 .05762 1.000

 

Suppose now that on one particular occasion the manufacturer runs

off a sample of 50 pieces immediately after a setup is made andfinds that

there are four defectives among them. The conditional probabilities of

getting such a sample, given any specified value of p, can be found using

the binomial table for n = 50; and it is these binomial probabilities

P,(¥ = 4|n = 50, p) which are shown in the third column of the table.
The entry for p = .04, for example, is found by looking up

P.(# > 4) — P,(# > 5) = .1891 — .0490 = .0901.

The remainderof the calculation is carried out exactly as before: the first

joint probability is .30 X .0015 = .00045; the first revised probability is

.00045/.05762 = .008.

21.8.4 Column Totals

Notice carefully the following facts about the column totals in any

table like the four we have just studied.

1. The total of the original probabilities and the total of the revised

probabilities must always equal 1; they represent the total probability of

all possible values of the basic random variable and the variable is sure to

have some value.
2. The total of the joint probabilities will in general be less than 1.

This is the marginal probability of getting one particular sample ‘‘event”’
(four defectives, or a red ball), and this ‘“‘event’’ was not sure to happen.

3. The total of the conditional probabilities is meaningless; it may be

either more than 1 (Table 21.4) or less than 1 (Tables 21.1 to 21.3).
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21.4 Definitions

21.4.1 Sample

Weare now in a position to see exactly how information obtained
from a ‘‘sample”’ differs from the kind of evidence on which probability

distributions have been based up to now. Im all the examples of this
chapter, the conditional probability which we assignedto the observed sample
depended on the value of the basic random variable—the probability that

there would be four defectives among 50 pieces depended on the value of
the basic random variable #, the process average fraction defective. It
was because of this fact that we could use the theory of probability to revise
the probability distribution of the basic random variable in the light of
the observed sample. More generally, the probability distribution

assigned to the value of each observation in the sample depended on the
value of the basic random variable—the conditional probability of the
sample as a whole could be computed (or looked up in tables) because the
conditional distribution for each observation was given.

21.4.2 Prior and Posterior Probability

Henceforth we shall use the term prior probabilities for the prob-

abilities assigned to the values of the basic random variable before some

particular sample is taken and the term posterior probabilities for the
probabilities as revised in the light of the additional information obtained
from that sample.

Notice (1) that this is the only distinction between prior and posterior

probabilities and (2) that the distinction is always relative to some par-

ticular sample. If the manufacturer of Section 21.3.3 has not taken and

is not considering taking any sample, the .30 probability assigned to
p = Ol in column 2 of Table 21.4 is not a prior probability—it is just a

probability. If, on the other hand, two successive samples are taken
from the sameprocess, the probabilities posterior to the first sample are

the probabilities prior to the second sample. As regards a possible
second sample, the value .008 in the last column of Table 21.4 is theprior
probability that p = .O1.

In problems where wedeal with both a prior and a posterior distribu-
tion we shall sometimes use notation of the following sort to keep them
distinct:

Po(p): the prior probability that fp = p; the probability of p on 0
sample evidence.

P,(p): the posterior probability (after one sample has been taken)
that p = p.

E,(f): the mean of the prior distribution of jp.
E,(p): the mean of the posterior distribution of p.
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21.4.8 Inkelihood

Weshall use the term likelihood for the conditional probability of
drawing the sample which was actually drawn, given some particular
value of the basic random variable. By Table 21.4, the likelihood of

four defectives in a sample of 50 given p = .01 is .0015. Again we

emphasize that the new term is introduced purely for convenience: a
likelihood 1s a probability in the same sense as any other probability.

21.5 The Application of Bayes’ Theorem

91.5.1 Discrete Prior Distributions

Wheneverthe prior distribution of the basic random variable is dis-

crete, Bayes’ theorem can be applied to compute posterior probabilities
by following exactly the procedure illustrated in Tables 21.1 through

21.4. The general principle is the same whetherthe basic variable is the

parameter p of a Bernoulli process, the parameter «x of a Poisson process,
the fraction of white balls in an urn, or any other unknown quantity
whatever.

The nature of the basic random variable affects only the way in
which we compute the likelihood of the observed sample. If the basic

variable is the parameter p of a Bernoulli process, the likelihood of the

observed numberof successes is binomial and is found by use of binomial

tables or by use of the Poisson or Normal approximations to the binomial

distribution. If the basic variable is the parameterx of a Poisson process,

the likelihood of the observed numberof successes is Poisson and is found
by use of Poisson tables or by use of the Normal approximation to the

Poisson distribution. Later on we shall study methods of finding the
likelihood of an observed sample for still other kinds of basic variables.

91.5.2 Continuous Prior Distributions

When a random variable represents a quantity which will actually be

observed or measured, then (as we saw in Section 14.1.3) the ‘‘exact”’

distribution of this variable must necessarily be discrete. If a measuring

instrument is read to the tenth of an inch, we must say that while the

values ¢ = 9.0 andi = 9.1 are possible the valued = 9.05is flatly impossi-
ble. When, on the contrary, a random variable represents an unobserv-
able quantity such as the parameter of a Bernoulli or Poisson process,
we will usually if not always believe that this variable may have any

value whatsoever within a certain interval (0 to 1 in the case of 7,0 to ©
in the case of %). In other words, the ‘‘exact’’ distribution of a basic
random variable—the distribution which accords exactly with our best
judgment—will sometimes be really continuous, and when this is true

Bayes’ theorem cannot be strictly applied by the method of Tables
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21.1 through 21.4 because the probability (either prior or posterior)

that the variable has any particular value precisely is 0 (cf. Section
14.1.3). In this case there are two possible ways of obtaining the pos-
terior distribution.

1. The possible values of the variable can be groupedinto “‘brackets”’
and the total prior probability of each bracket can be assigned to some

single value within the bracket, e.g. the mid-point. This procedure

reduces the continuousdistribution to a discrete one, and we then proceed
exactly as if it were a genuine discrete distribution (cf. Section 6.5).

2. We can resort to the integral calculus. In effect, this means

nothing more mysterious than finding the lzmit approached by theresult
of the ‘‘bracket method’’ as the brackets are made narrower and nar-
rower; but in order to do this without making an infinite number of

computations we must work with the probabilities in algebraic rather
than numerical form.

It is very much worth emphasizing that we very rarely need to use
the calculus in order to get an accurate answer to areal problem. Ina
very few very special types of problems thecontinuity of the prior dis-

tribution mayplay a really essential role, but in the vast majority of prac-

tical business problemsa discrete prior distribution with sufficiently many
brackets will give as accurate an answer as can be desired. If continuous

distributions and the calculus are used in problemsof this sort, they are
used for one or both of two reasons which have nothing to do with

accuracy.
1. When a solution can be obtained by the calculus, the burden of

numerical computation is generally much smaller than when a discrete
distribution with many brackets is used; the calculus may be simply an

inexpensive way of getting an answer to the particular problem in hand.
2. The fact that the calculus solution gives the answer to a whole

class of problems in a single formula makes it easy to see the effect of
varying certain costs, probabilities, etc., and thus makes it possible to
obtain a general understanding of a class of problems without computing

solutions to large quantities of specific numerical examples.
For either or both of these reasons we may well use a continuous

prior distribution as an approximation even when the ‘‘true”’ prior dis-

tribution is discrete, just as we have already used the gamma and Normal
approximations to compute the probability distributions of counted or
measured random variables whose ‘‘true”’ distributions are necessarily

discrete.

PROBLEMS

1. Peter is presented with two externally identical urns, one of which contains
10 white balls while the other contains 10 black balls, and he chooses one of the two
urns by tossing a fair coin. He will be paid $1 if the chosen urnis the one containing

all white balls. What is the expected value of this payment:
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a. If Peter must set the price on the basis of only the information given above?
b. If Peter has already drawn one ball from the chosen urn and seen that it is

white before he sets the price?
2. Same as Problem 1 except that one urn contains eight white and two black

balls, the other contains eight black and two white, and the paymentwill be madeif
the chosen urn is the one with eight white and two black.

3. The prior distribution shown in the following table is assigned to the process
average fraction defective of a machine which can be regarded as a Bernoulli process.

p P(p)

01 6
.03 3
05 1

1.0

A sample of 20 pieces is taken from the machine and one defective is found.
a. What wasthe probability, as evaluated before the sample was drawn,of getting

the sample which was actually observed?

b. Compute the posterior distribution of #.
c. Evaluate Eo(p) and E:(B).
4. Same as Problem 3 except that a sample of 80 is taken and 4 defectives are

found. Compare the posterior distribution of p with that obtained in Problem 3 and
comment.

5. The prior distribution shown in thefollowing table is assigned to the process

average fraction defective of a machine which can be regarded as a Bernoulli process.

p P(p)

15 6
20 3
25 1

1.0

A sample of 144 pieces is taken from the process and 20 defectives arefound. Find the

posterior distribution of #.
6. Theprior distribution shown in the following table is assigned to the average

K P(x)

.20 5

.25 3

.30 2

1.0

numberof defects per foot generated by a machine which can be regarded as a Poisson
process. A sample consisting of 10 feet of product is taken and 3 defects are found.
Find the posterior distribution of &.

7. The prior distribution shown in the following table is assigned to the process
average fraction defective of a machine which can be regarded as a Bernoulli process.

p P(p)

05 6
.10 2

15 2
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a. Find the posterior distribution of after a sample of 10 has been taken and no
defective found.

b. Using the result of (a) as the prior distribution, find the distribution of p after
a second sample of 10 has been taken and 1 defective found.

c. Find the distribution of j if a single sample of 20 is taken and 1 defective

found.



CHAPTER 22

Two-action Problems with Linear Costs

As a first example of the use of information from a sample in reaching a

decision, we shall consider a problem of choosing between two possible
acts when the cost of either act depends on the unknown value of the

parameter p of a Bernoulli process.

22.1 Statement of the Problem

A manufacturer has used a particular automatic machine for produc-
tion of a particular part over a considerable period of time. At the

beginning of each production run, the machineis taken down for replace-
ment of worn tools, etc., and then is readjusted by the operator. Experi-
ence has convinced the manufacturer that during any one production run
the machine behaves as a Bernoulli process, and he knows that when
properly adjusted the machinewill have a process average fraction defec-
tive p = .01—1itis not within the machine’s capability to do better than

this, but there is no mechanical reason why it should do worse. It some-
times turns out, however, that the adjustments made by the operator in

charge of the machine are not correct and that the machine produces a
fraction defective considerably higher than .01.

The entire output of this machine goes directly to the assembly

department and theentire outputis actually used in the final product, but
a defective requires special hand fitting which costs $.40 per piece.

Since a single production run amounts to 500 pieces, this means that a
really bad setup leads to a fairly heavy ‘‘cost of accepting defective

product.’’ These losses can be reduced almost to nothing by having each

adjustment checked and corrected by an expert mechanic,sinceif thisis

done the process average is always brought down to its minimum value,
p= .01. The time of the expert mechanic costs $6, however, and if the
machine operator has made a setup which would produce a fraction
defective .01, this extra cost would be a complete loss. Even if the oper-

ator’s setup is slightly worse than .01, the saving in cost of defectives

would still not amount to enough to cover the cost of having the adjust-
ment checked and corrected. It is only when the operator’s setup is
really bad that the $6 expenditure pays foritself, but the manufacturer

342
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must decide whether or not to spend the $6 on the basis of less than per-

fect information about the quality of the setup.

92.1.1 The Conditional Costs

As usual, the first step in analyzing any problem of decision under

uncertainty is to calculate the conditional cost which will be incurred

under every possible decision for every possible value of the basic random

variable. In this problem there are only two possible decisions:

1. Proceed without checking or readjusting the machine; we shall

call this a decision to accept the process;
2. Have the setup checked and readjusted; we shall call this a

decision to reject the process.

If the process is accepted, the conditional expected number of defec-

tives in the run is 500p, where p is the value of the process fraction defec-
tive. The expected cost of these defectives is $.40 X 500p = $200 p.
If the process is rejected, the value p will be .01 and the expected number

of defectives is .01 * 500 = 5 pieces. The expected cost of these defec-

tives is $2 and the checking and readjustment cost another $6, so that the

total is $8. This particular ‘‘conditional’’ cost is not really conditional—
it is the same forall p. The conditional expected cost of each possible
decision for each possible event p can be shown systematically in a ‘‘ payoff

table’’; this is done in Table 22.1, where the asterisks indicate the decision

which is conditionally best for each event.

Table 22.1
Payoff Table

Act
Value p of the

basic random variable
 

Accept Reject

 

Ol $ 2* $8
.05 10 8*
15 30 8*
.29 50 &*

 

As usual, the definition of ‘‘cost”’ is arbitrary to a certain extent: we

could, for example, have included the labor and material cost of the 500
pieces in the costs of both decisions for all values of #. It is obvious, how-
ever, that inclusion of such costs could not affect a rational decision
because such costs are not affected by the decision. The only costs which

need be included are those which, for at least one value of ~, are not the
same for every possible decision. These are the relevant costs, and the
analysis of any decision problem will be much clearerif all irrelevant costs

are excluded.
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22.2. The Better Action without Sampling

22.2.1 The Probability Distribution

Suppose that the manufacturer examines his records of those
past production runs for which the setup was not checked by a master

mechanic andfinds the frequency distribution of fraction defective shown

in Table 22.2. Since the runsare fairly large (500 pieces), the fraction

Table 22.2

Historical Distribution of Fraction Defective

Fraction Relative

defective frequency

.O1 0

.05 l

.15 1

.25 _l

1.0

defective in any run can be taken as roughly equal to the value of the

process average p during that run; and if the manufacturer has no
information other than this—no reason to think that the operator’s skill

has changed, etc.—he may reasonably take Table 22.2 as giving the prob-

abiltty distribution for the process average # in any new run for which the

setup is not checked. f

22.2.2 Unconditional Expected Cost

Using the probability distribution of Table 22.2 we can compute the

unconditional expected costs of the two possible decisions from their con-

ditional expected costs as shown in Table 22.1. The work is carried out

in Table 22.3.

 

  

 

 

Table 22.3

Unconditional Expected Costs

Cost of acceptance Cost of rejection

p P(p)
Conditional Expected Conditional Expected

OL 7 $ 2 $1.40 $8 $5.60
.05 1 10 1.00 8 .80
.15 1 30 3.00 8 .80
.25 1 50 5.00 8 .80

1.0 $10.40 $8 .00

 

{+ In order to simplify the computations, we assume that the process average
fraction defective always has oneof just four possible values. The only change which

a more realistic distribution would make in the analysis would be an increase in the
amount of arithmetic required to find the solution—there would be no changein the
nature of the arithmetic.
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29.2.8 The Decision

Under the probability distribution assigned to p by the manufac-

turer on the basis of his past experience, the unconditional expected cost of
rejection is $2.40 less than the unconditional expected cost of acceptance;

he should therefore have the process readjusted by an expert mechanic.
In terms of an infinite sequenceof trials: costs will average $2.40 less per

run if every setup is checked by an expert mechanic than if no setup is so
checked.

22.3 The Better Action after Sampling

Suppose now that, instead of basing his decision to accept or reject
entirely on past experience, the manufacturer takes a sample consisting
of the first 10 pieces producedafter a particular setup is made by the oper-

ator, Inspects this sample, and finds no defective. To keep the arithmetic
simple we shall assume that even though 10 pieces have already been pro-

duced, a full 500 additional pieces will be produced after the manufacturer
decides whether to accept or reject the setup. |

22.8.1 The Probability Distribution

The probabilities of Table 22.2 must now be revised to take account

of the sample information; the revision is carried out in Table 22.4 by the

use of Bayes’ theorem in the manner described in Chapter 21, the condi-

tional probabilities P,(# = O|n = 10, p) being obtained from the binomial
tables.

 

 

Table 22.4

Computation of the Posterior Distribution

Prior Likelihood Joint Posterior

P P(p) Pi = Olp) PF = 0, p) P(p|F = 0)

01 7 .904 .6328 .881

.05 1 .599 .0599 .083

.15 1 .197 .0197 .028

25 1 .056 .0056 .008

1.0 .7180 1.000

 

22.3.2 Unconditional Expected Cost

The better decision under this revised probability distribution is now

found in exactly the same way that we found the better decision under

the original distribution. The computations are carried out in Table
22.5, which should be compared with Table 22.3.
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Table 22.5

Posterior Unconditional Expected Costs

Posterior Cost of acceptance Cost of rejection

P P(p) Conditi _
onditional Expected Conditional Expected

01 .881 $ 2 $1 .762 $8 $7 .048

.05 .083 10 . 830 8 .664

15 .028 30 . 840 8 , 224

25 .008 50 .400 8 .064

1.000 $3 . 832 $8 .000

 

29.3.8 The Decision

Under the probability distribution for ~ assessed by the manufac-

turer on the basis of both his past experience and the information that a

sample of 10 contained no defectives, the expected cost of acceptanceis

$4.168 less than the expected cost of rejection; he should therefore accept

the operator’s setup asis. In terms of an infinite sequenceof trials: costs

on those occasions where a sample of 10 is taken and nodefective is found will

average $4.168 less per run if on those occasions the operator’s setup is

accepted asis.

22.4 Linear Conditional Costs; Use of the Mean of the

Distribution # of

The method of analysis used above is of very general applicability.

It can be used to find the unconditional expected cost of any act in any

situation where the conditional cost of the act depends only on the value

of the basic variable and on that particular act.t Its utility does not depend

on the numberof possible acts or on the way in which the conditional

costs vary with the value of the basic random variable.

Certain kinds of problems, on the other hand, have special features

which makeit possible to use special methodsof analysis; and such special

methods mayhaveeither or both of two advantages over the ‘‘standard”’

method used in the first part of this chapter. First, the special method

may reduce the amount of computation required. Second, and far more

important for the purposes of this course, the special method may bring

out much moreclearly exactly what aspects of the data are critical for

the choice of the best decision. Weshall now see that the example which

t Weshall see in Chapter 24 that it is sometimes impossible to evaluate the con-

ditional cost of an act such as ‘‘accept”’ or ‘‘reject’’ by looking at that act alone: the

cost of the present act sometimes depends in part on how choices among otheracts

will be madein the future.
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we have Just discussed has certain peculiarities which make possible such

a special method of analysis.

22.4.1 Constant Conditional Cost

The conditional cost of rejection in our example is a constant $8

regardless of the value of the basic random variable #. The correspond-
ing unconditional cost must therefore have this same value $8 under any
probability distribution, and the only reason for going through the form

of computing the unconditionalcost in Tables 22.3 and 22.5 was to set up

a model which can be applied in problems whereit is not true that the

conditional cost of rejection is the same for every p.

22.4.2 Proportional Conditional Cost

The conditional cost of acceptance, on the other hand,is strictly pro-

portional to the value of # in our example—wesawin Section 22.1.1 above
that it amounts to $200 p. This being so, the unconditional expected

cost of acceptance is simply $200 times the expected value of j: we can

sum all the terms p P(p) and then multiply by $200 instead of multiply-

ing each of these terms by $200 and then summing.
The expected value of % is computed in Table 22.6 for both the prob-

 

  

 

 

Table 22.6

Expected Value of p

Prior distribution Posterior distribution

Pp

Po(p) p Po(p) Pi(p) p Pi(p)

.O1 0 .007 881 00881

.05 1 .005 .083 .00415

.15 1 .015 .028 .00420

25 al .025 .008 .00200

1.0 .052 1.000 .01916

 

ability distributions of our example; the table shows that

E,(p) = .01916.

The unconditional expected cost of acceptance under the prior distribu-

tion can then be found by multiplying .052 x $200 = $10.40, the
same result which we obtained by the ‘‘standard’’ method in Table
22.3. Under the posterior distribution this same cost amounts to

.01916 & $200 = $3.832, the figure we obtained by the ‘‘standard”’
method in Table 22.5.
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22.4.8 The Break-even Value of p and the Criterion for
Acceptance or Rejection

The real interest of this new method of analysis lies in the fact that
it brings out very clearly exactly what it is about the probability distribu-
tion of @ that actually affects expected cost and the comparative desir-

ability of decisions to accept or reject.
The conditional cost of acceptance in our example is $200 7, and this

will be equal to the $8 conditional cost of rejection if # has the break-even

value

_ $8 _
Ps = gong — “U4.

If we knew the value p of 6, we would:

Accept if p < .04,

Reject if p > .04,

Be indifferent if p = .04.

The results of the discussion in Section 22.4.2 above can now be

expressed as follows. Jf the conditional cost of rejection 1s independent of

the value of p and the conditional cost of acceptance 1s proportional to the

value of p, then exactly this same break-even criterion can be applied to the

expected value of p when the true value of 1s unknown. We should:

Accept if E(p) < pz,

Reject if E(g) > pa,

Be indifferent if E(p) = pp.

Notice that this set of conditions holds in exactly the same form whether
we are talking about action without sampling or about action after

sampling. The only difference is that in the former case we apply the

conditions to Eo(f) whereasin the latter we apply them to Ei().

29.4.4 Linear Conditional Costs in General

In Figure 22.1 we show the behavior of the condztional costs of our

example graphically. The cost of rejection is the same $8 for every p and

therefore plots as a horizontal straight line of ordinate $8. The cost of

acceptance is $200 p and therefore plots as a rising straight line with

ordinate $0 at p = 0, ordinate $20 at p = .1, ordinate $40 at p = .2, and
so forth. Notice that because such lines represent conditional costs they

have meaning even for values p which are impossible according to some

particular probability distribution. As in Section 5.3.1, we shall say that:

The conditional cost of a decision is linear if the graph of the cost

plotted against the basic variable is a straight line over the entire
range of values of the variable which have nonzero probability.
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Although the conditional costs of our example represent only special

cases of linear costs (constant cost and proportional cost), it was shown in

Section 5.3.1 that in general:

If the conditional cost of an act is linear, its unconditional cost

depends only on the expected value of the basic random variable and
is the same as if the variable were known with certainty to have

this value.

Notice that zt 7s only in special cases that conditional costs are linear.
The student must not use the meaninstead of the full distribution of the
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Figure 22.1. Conditional costs.

basic variable in any applied problem unless he has shownthat the costs

are linear in that particular problem.

22.5 Expected Opportunity Loss and the Cost of Uncertainty

Whenever sampling is possible the cost of uncertainty becomes of

very great interest because it measures the potential cost reduction obtain-

able by sampling. If under a given probability distribution (prior or

posterior) the cost of uncertainty is very small, (further) samplingis
likely to cost more than it is worth; if the cost of uncertainty is large,

(further) sampling may well be worth its cost. We shall lay heavy

emphasis on computation of the cost of uncertainty in this part of the
course; in Part Four we can then go on to balance the cost of sampling

against the expected reduction in the cost of uncertainty which results
from the sampling. Until we come to this kind of calculation in Part
Four, however, no principles will be involved which were not fully dis-

cussed in Chapter 7. The remainderof this chapteris simply a review of

that chapter.

We have studied two different ways of computing the expected

opportunity loss of anyact:
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1. By computing conditional opportunity losses and then taking their
expectation;

2. By computing the expected profit or cost of action under certainty
and then taking the difference between this amount and the

expected profit or cost of the act in question.

Weshall now see how both methods can be applied to two-action prob-

lems.

22.5.1 Computation Using Conditional Losses

The student will recall from Section 7.2.1 that the conditional oppor-

tunity loss of any act, given a particular value of the basic random vari-

able, is the difference between the actual profit or cost of that act and the
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Figure 22.2. Conditional losses.

profit or cost of the act which would be the best possible for that value o-

the variable. The loss table shown as Table 22.7 is obtained from the pay-

off table shown as Table 22.1 by taking each entry in each row and sub-

tracting from it the starred entry in the same row.
The unconditional expected losses of the two possible decisions are now

computed in Table 22.8 for the prior distribution of $ and in Table 22.9
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for the posterior distribution. The calculation is exactly like that in

Tables 22.3 and 22.5 except that conditional losses are taken from

Table 22.7 rather than costs from Table 22.1.

 

 

 

 

 

  

 

 

 

  

 

  

Table 22.7
Loss Table

Act

p
Accept Reject

.O1 $ 0 $6

.05 2 0
15 22 0

25 42 0

Table 22.8
Prior Expected Losses

Pri Loss of acceptance Loss of rejection
rior

P Po(p) wa 7
Conditional Expected Conditional Expected

.O1 7 $ 0 $0 $6 $4.20

.05 1 2 .20 0 0

.15 1 22 2.20 0 0

.25 _l 42 4.20 0 0

1.0 $6 . 60 $4.20

Table 22.9
Posterior Expected Losses

Posterior Loss of acceptance Loss of rejection -

P Pi(p) oe . wis
Conditional Expected Conditional Expected

.O1 .881 $ 0 $0 $6 $5 .286

.05 .083 2 . 166 0 0
15 .028 22 .616 0 0
.25 .008 42 .336 0 0

1.000 $1.118 $5. 286

 

Notice particularly in Table 22.8 that the loss due to accepting under

the prior distribution is $2.40 higher than the loss due to rejecting and

that this difference 1s equal to the difference between the corresponding costs
in Table 22.3; the student should make the same comparison for the
posterior distribution.

The cost of uncertainty is the irreducible loss due to action under
uncertainty; it is the expected loss of the best decision for the given prob-
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ability distribution. In our example the cost of uncertainty is $4.20

underthe prior distribution, $1.118 under the posterior.

Use of the Mean of the Distribution. We have seen that when the
conditional costs of a given decision are linear functions of the basic vari-
able, the unconditional expected cost of the decision can be computed
from the meanof the distribution. We warn the student that wncondi-
tional expected loss can almost never be computed in this way because the
conditional losses are almost never linear in the sense defined in Section

22.4.4. The conditional losses for our example are graphed in Figure
22.2; the lines are not straight over the whole range of values of ~ which
have nonzero probability. Unconditional losses can be computed by the

use of partial expectations, but we shall postpone this subject until we

come to the point where this method of computation presents real
advantages.

22.5.2 Computation Using the Expected Cost of
Action under Certainty

Wenow proceed to calculate the expected losses in our example by

the secondof the two methodslisted above, i.e. by comparing the expected

cost of each decision with the expected cost of action undercertainty.
The Expected Cost of Action under Certainty. Without giving the

justification for our procedure, which can be foundin Section 7.3.1, we pro-

ceed in Table 22.10 to compute the expected cost of action under cer-
tainty for both the prior and the posterior distributions of our example.
The conditional costs in column 2 are the starred entries in Table 22.1

(why?); the expected costs under the two probability distributions are
then computed in the usual way.

 

  

 

 

Table 22.10

Expected Cost under Certainty

Conditional | Prior distribution _ Posterior distribution

cost Po(p) Expectation Pi(p) Expectation

.O1 $2 7 $1.40 .881 $1.762

.05 8 1 .80 .083 . 664
15 8 1 .80 .028 224

.25 8 _.l .80 .008 .064

1.0 $3 .80 1.000 $2.714

 

Weremind the student once again that, as is well shown by the
results of Table 22.10, the ‘‘expected cost under certainty’’ is not a cost
certain: it dependson the probability distribution. In termsofan infinite
sequence of runs, it is the average cost which would be incurred per run

af p varied according to the probability distributionin question but the value

of p were known before each run was made.
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Expected Opportunity Loss. The difference between the expected
cost of any decision and the expected cost of action under certainty is the
expected opportunity loss of that decision. The expected loss due to
accepting underthe prior distribution is $10.40 (Table 22.3) minus $3.80
(Table 22.10), or $6.60; this same figure was obtained by our other method
in Table 22.8. The student should verify the three other expected losses
shown in Tables 22.8 and 22.9 by recomputing them in this same way.

PROBLEMS

1. A manufacturer faces a situation of exactly the samesort as the one described
in the text but with different data. The run will consist of 1000 pieces. If the

machineis set up by an expert mechanic the process averagewill be .05; the probabil-

ity distribution for the process average if the machineis set up by the operatoris given
by the following table. Each defective reaching assembly costs $.30; the cost of

p P(p)

.05 6
10 3
15 _l

1.0

setup by an expert mechanicis $10.
a. Draw up the payoff table and graph the conditional costs of both acts as func-

tions of p.

b. From this graph find the break-even value ps, i.e. the value of ~ at which it
makes no difference whether the manufacturer accepts or rejects.

c. Compute E(p) and use it to determine which is the better act.
d. What is the unconditional expected cost of rejection?

e. Use E(#) to compute the unconditional expected cost of acceptance.
f. Compute the cost of action under certainty.

g- Compute the unconditional expected losses of both acts from your answers to

(d), (e), and (f).
h. Draw up the loss table and graph the conditional losses.

7. Verify your answers to (g) by use of your answerto (h).
j. What is the probability that if a sample of 20 pieces is drawn it will contain

exactly four defectives?
k. Recompute parts c through 7 in thelight of the additional information that

four defectives have been found in a sample of 20 pieces.
2. A commercial photographic concern is about to purchase 100,000 flash bulbs

for use during the coming year. A new type of bulb has just been placed on the mar-

ket and is reported to be morereliable than the present type. The loss in film and
labor due to a defective flash bulb averages $2.50. Thereliability of the old typeis

knownto be 99.0 per cent; managementassigns the probabilities in the following table

Reliability Probability

.995 6

.990 4

.980 %

i
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to the reliability of the new type. What action should be taken and whatis the cost
of uncertainty:

a. On this information alone?
b. If a sample of 500 bulbs of the new type is tested and three defectives are

found?

3. A manufacturer is about to set up a machine for a run of 1000 pieces. Each
defective which occursin the run will have to be reworked at a cost of $.15 each. If
a defective reaches the assembly department,it will not be detected until the assembly
in which it is included fails on final test. Removal and replacement of the defective

then costs an additional $.45 over and above the cost of rework. Screening the manu-
factured lot to prevent defectives from reaching assembly costs $25. On the basis of
past experience the manufacturer assigns the following probability distribution to the

process average fraction defective which will be produced if the machineis set up by
the regular operator in the usual way. If the machineis very carefully set up by an
expert mechanic at an extra cost of $50, the manufacturer can be sure that there will
be no defectives, p = 0.

p P(p)

0 2
1 7
2 1

1.0

a. Draw up the cost and loss tables for the three possible decisions: have setup
made by expert mechanic, have setup made by operator and screen, have setup made
by operator and do not screen.

b. Determinethe best action and compute the cost of uncertainty on the informa-
tion given above.

c. Same as (b) but on the additional information that four defectives have been

found in a sample of 50 taken from the process as set up by the operator.

(Although this is a three-action problem, it can be analyzed by methods virtually
identical to those used for two-action problemsof the sort described in the text of this
chapter.)



CHAPTER 23

Samplesfrom Finite Populations:

The Hypergeometric Distribution

The samples with which we dealt in previous chapters were drawn from

a random process in order to obtain evidence on a parameter of that
process. We now turn to the study of samples which are drawn from a

finite population in order to obtain information on the proportion of that

population which possesses some specified characteristic. Thus informa-

tion on the fraction of all United States citizens using a certain product
might be obtained from a sample of the population of all United States
citizens; or a mail-order company deciding how manyto stockof a certain

item might use an advance mailing to get information on the proportion

of customers on the mailing list for its regular catalogue who will order
the item.

In the case of samples from a random process, the sample items were

taken in the order in which they were produced by the process. The prob-

ability distribution for the value of each observation was therefore given
directly by the characteristics of the process in terms of the parameterof

the process. When, on the contrary, a sample is drawn from an already
existing population, it is the process by which the sample is drawn that

determines the probability distribution for the value of each observation.

In this chapter we shall study the process known as simple sampling

without replacement.

23.1 The Hypergeometric Distribution

As a first example of simple sampling without replacement, consider

the following problem. An urn contains 10 balls, 7 white and 3 black.
A sample of 5 balls is drawn from the urn, the individual items in the

sample being drawn one at a time and kept out of the urn once they are
drawn. Weshall refer to the drawing of a black ball as a ‘‘success,’’ and
we wish to determine the probability distribution for the number of

successes in the sample.

28.1.1 Unconditional and Conditional Probabilities of a Success on
a Given Draw

If the balls are thoroughly mixed before drawing, if there is nothing
to distinguish oneballfrom another exceptthe color, andif the drawsare

355.
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made without looking, a reasonable man will usually conclude that every

ball in the urn is equally likely to be drawn and will accordingly assign
probability .3 to black on the first draw. This same probability applies,
furthermore, to the event ‘‘black”’ on any specified draw if nothingis said
about the results of previous draws. If a man is about to draw three
balls in a row from the urn,he will assign the same .3 probability to black
on the third draw that he assigns to black on thefirst draw, and we may
say that .3 is the unconditional probability of a success on any draw.

Suppose, however, that we wish to compute the probability that
both the first two balls will be black. By the rule for computing joint
probabilities given in Section 9.4, this probability is the product of the

unconditional probability of black on the first draw and the conditional
probability of black on the second draw given that the first draw was
black; and a reasonable man will not assign the same value .3 to this
conditional probability of black on the second draw which he would

assign to the unconditional probability of black on the second draw. The
fact that one black ball has been drawn from the urn gives him no reason
to changehis basic belief that every ball in the urn has an equal chanceof
being selected on the next draw, but the fact that this black ball has not

been replaced means that the proportion of white and black balls in the
urn has been altered. The urn now contains two black and seven white
balls, and the probability of drawing a black ball in this situation is 24.

If two balls were drawn without replacement from each of an infinite
number of urns, the ratio of draws where both balls were black to draws
where the first ball was black would be 24. Other conditional probabilities
can be assessed by exactly this same kind of reasoning.

23.1.2 Probability of Exactly Two Successes in a Sample of Five

Following the same general procedure that we used in Chapter 10 to

derive the binomial distribution from the probability of a success on any
trial, let us now work out the probability that the five draws from our urn

will yield exactly two black and three white balls in somespecified order,
say BBWWW.

We have already seen that the probability of black on the first draw
is 349 and that, given this result of the first draw, the probability of black

on the second draw is 24. There now remain one black and seven white

balls in the urn, and the probability of white on the third draw is 7%.
Continuing in this way weget 67 for the probability of white on the fourth
draw and %for the probability of white on the fifth draw. We can now

apply the multiplication rule for joint probabilities and obtain for the

probability of the joint event BBWWW

S40 26% 94 56 = Na.

Next we observe that the probability of two black and three whiteis
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just the same in any specified order. For the order WBWBW,for

example, we have

Yo % & 34 % = Ma.

As we have already seen in deriving the binomial distribution (Section
10.1), there are 10 possible orders in which two successes can be drawn in
a sample of five. Since the orders are mutually exclusive, their prob-

abilities can be added to obtain the probability of two successes regardless

of order:

P(2) = 10 K Wg = 1%.

23.1.8 Probability of r Successes in a Sample of n

Wenow generalize this example to get the probability of exactly 7
successes in a sample of n from a finite population described by

N: size of population,
R: number of successes in population.

1. The probability of r successes and (n — r) failures in a specified

order is

 

RR-1R-2 | R-(r-})
NN-1N—2 N — (r—1)

r factors

 

«(Po RWBw...Wo)
N—rN—(r+1)N — (r4 2) N — (n — 1)

n —r factors

2. The numberof mutually exclusive orders is C7, just as in binomial

sampling, and therefore we havefor the probability of exactly r successes

regardless of order

~q@|£...2-@-)P,(r) = Cc E ye

N-R (N-R)—-(r—1r-J)
«|yaa N—(n—1) I

This formula defines what is known as the hypergeometric probability dis-

tribution. For computational purposes it is usually written in one or the

other of two more convenient forms

  

P,(7) nlR\(N — R)\(N — n)!
. ri(n — r)I(R — r)CN — R) — (n— r)]IN! Hypergeometric

CRON=R probability
= —CN
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28.1.4 Parameters of the Hypergeometric Distribution

The parameters of the hypergeometric distribution in the form given
above are n, VN, and #&. For many purposes, however, it is more con-

venient to look at the fraction R/N of successes in the population rather

than at the number of successes R. We shall use the same symbolfor

this fraction that we use for the fraction of successes generated by a
Bernoulli process: we define

P-WN

Wecan think of the parameters of the distribution as being n, p, and N—
if we know these three numbers we know n, FR, and N, and weare free to

express our knowledge in any way welike.

23.1.5 Mean and Variance

The numberof successes r can be thought of as the sum of the values
of n random variables having the value 0 (failure) or 1 (success). As
evaluated before any of the sample items are drawn, the expected value
of any one of the n variables is p, and therefore

 

E(*) = np Expected number of successes, hypergeometric distribution

 

The mean of a hypergeometric distribution is thus the same as the mean
of a binomial distribution with the same values of n and p; the population

size N has no effect.
The variances of the two distributions are not the same, however.

The variance of the hypergeometric distribution can be shown to be

 

om N-n Variance of number of successes, hypergeometric
o°(7) = npg N— 1 distribution

  

It should be observed that this is the binomial variance npg multiplied by

a factor which is always less than 1 (except when nm = 1) and which
becomes smaller and smaller as the sample size n approaches the popula-

tion size N. The corresponding expression for the standard deviation is

o(7) = Vap|

and the factor ~/(N — n)/(N — 1) is knownasthefinite-population cor-
rection. The reason for the presence of such a ‘‘correction factor”? and

the way in which its value depends on the values of n and N will be
examined.in moredetail later in the chapter.
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23.2 The Normal Approximation

It is completely impractical to publish tables of the hypergeometric

distribution. The binomial distribution has only two parameters, n and
p, and yet it requires a fairly large book to publish tables for sample sizes

up to 150. The hypergeometric distribution has three parameters, n, p,

and N; and tabulation would require a whole book for each value of the

population size N. Computation of the probability of any particular
numberof successes r from the basic formulais not too difficult when one
has a table of logarithms of factorials, or better, of logarithms of com-

binatorials; but computation of cumulative probabilities is usually pro-
hibitive unless either r or (n — 7) is very small. When both r and

(n — r) are at all large, hypergeometric probabilities are usually computed

by some method of approximation, and the Normal approximationis the

only convenient one which actually allows for the finiteness of the

population.

The procedurefor using the Normal approximation is exactly the same

as when it is used to approximate a binomial or Poisson probability. To
find the probability of an individual value r—the area of a single bar in

the r histogram—we express r in standard measure as

ya’ E(7)

6(F)

The height of the corresponding barin the u histogram is P’(u) and this is
approximately equal to the height Py(u) of the unit Normal curveat this

same point u. The area of the bar is found by multiplying this approxi-

mate height by the width of the bar, which is 1/o(7). To find a tail area

we locate the edge of thetail

rt 4g — E®)
oF)

using + or —44 according to circumstances, and then find the area

Py(a@ < u) or Py(a@ > u) under the Normal curve beyondthis edge.

 % =

23.2.1 Errors of Approximation

The Central limit theorem stated in Section 17.3 does not apply to
the hypergeometric distribution because the variables are not independ-
ent. For a given population size N, it is not true that the Normal approxi-

mation becomes better and better as the sample size n increases. It is

true, however, that the approximation improves as nm increases if the
sampling ratio n/N is held constant; and it is also true that the approxi-

mation is very good for quite small values of n and quite large values of

n/N provided that p is not too far from .5. In Figure 23.1 we show the

hypergeometric distributions and the Normal approximation for samples
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Figure 23.1. Hypergeometric distributions with Normal approximation,

n= 10, P = 5.
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of only 10 and two very high sampling ratios: n/N = .5(N = 20) and
n/N = .625 (N = 16); the parameter p has the value .5 in both cases.

23.3 Application to a Decision Problem

A manufacturerreceives a lot of 100 pieces to be used in an assembly.
If a defective piece is used in an assembly, the assembly will fail on final

test and it will cost $2 to remove the defective and replace it with a good
part. To avoid this cost the manufacturer can inspect all the parts

before assembly, but this ‘‘screening”’ operation costs $.30 per part.

Past experience leads the manufacturer to assign the probability distribu-

tion shown in Table 23.1 to the fraction defective in the lot. A sample of
30 pieces is taken from this particular lot and five defectives are found.

Table 23.1
Prior Distribution of p

P P(p)
.10 5
15 3

2000 2
1.0

To find the posterior distribution wefirst use the Normal approxima-

tion to compute the likelihood of the observed value r = 5 for each

possible value of $. The second column of Table 23.2 shows the expected

 

 

Table 23.2

Computation of the Likelihoods

p E(\p) r — E(@\p) o(?|p) u Phy (u) P(r|p)

.10 3.0 +2.0 1.382 +1.45 . 1394 .101

15 4.5 + .5 1.644 + .30 9814 232

. 20 6.0 —1.0 1.842 — .54 3488 189

 

number of defectives E(7) = np = 30p for each p and the next column

shows the difference r — E(7) = 5 — E(#) between the actual and the

expected number. The table then showsthe value of ¢(7) with thefinite-

population correction,

 

 

oF) = Vnpg Wea 7 = V30p9| = 4.605 Vpq,

and using these: values of o(7) the observed 7 = 5 can be expressed in
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standard measure as

_r— EF)
eo" SAH

P’y(u) can then be found in Table II andthe likelihood of the observed r
can be approximated by multiplying the width times this approximate
height of the corresponding bar in the u histogram:

PG) = a5 Pau).

These likelihoods are then used to computethe posterior distribution of f

in Table 23.3 in the usual manner.

 

 

Table 23.3

Computation of the Posterior Distribution

Prior Likelihood Joint Posterior

P P(p) P(r|p) P(r,p) P(plr)

.10 Oo 101 .0505 32

15 3 232 .0696 44

.20 2 .189 .0378 24

1.0 .1579 1.00

 

The conditional costs of the two possible acts reject (screen) and
accept (do not screen) are now computedas follows. The 30 pieces in the

sample have already been inspected, so that if the lot is rejected it will be

necessary to screen only the 100 — 30 = 70 remaining pieces. Since
screening costs $.30 per piece, rejection will cost $.30 X 70 = $21 regard-

less of the value of the random variable #.

Computation of the conditional cost of acceptance (not screening)is a
little trickier. The numberof defectives originally in thelotis Np = 100p
by the definition of p (Section 23.1.4). Five of these defectives have
already been found in the sample, however, and will not be sent to

assembly even if the lot is not screened; it is only the (100p — 5) defec-
tives remaining in the uninspected portion of the lot which will give rise

to a cost of accepting defective product. Since each of these defectives
will give rise to an excess cost of $2, the conditional cost of acceptanceis

$2(100p — 5) = $200 p — $10.

These conditional costs are shownfor the possible values of the basic

random variable # in Table 23.4, together with the conditional losses com-
puted from them in the usual manner. It is left to the student as an
exercise to verify the expected losses shown in Table 23.5.
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Table 23.4

Payoff and Loss Tables

Conditional cost Conditional loss

Pp

Accept Reject Accept Reject

.10 $10* $21 $0 $11

.15 20* 21 0 1

.20 30 21* 9 0

Table 23.5

Expected Loss

Accept $2.16
Reject 3.96

23.4 The Effect of the Finite Population

23.4.1 Relation between the Hypergeometric and
Binomial Distributions

The procedure by which we derived the hypergeometric distribution

in the first part of this chapter was identical to that by which we derived

the binomial distribution in Chapter 10. We used the multiplication rule

to get the probability of exactly 7 successes in some specified order, we

observed that the probability of this number of successes was the samein

any other specified order, and we multiplied it by the numberof possible

orders C? to get the probability of r successes regardless of order. For

given values of n, p, and r the factor C7? is the same forboth distributions,

so that the difference between them lies entirely in the other factor.
This difference, furthermore, is entirely due to the fact that in deriving

the binomial probability we took the conditional probability of a success

as constant and equal to p on every draw, whereas in deriving the hyper-
geometric probability this conditional probability was equal to p on the

first draw but varied on later draws because the proportion of successes

remaining in the population was altered by the proportion of successes in

the part of the sample already drawn. Let us now examine moreclosely

the magnitude of these changes in the conditional probability of a success
and their effect on the hypergeometric distribution.

Suppose first that we draw a sample of 10 from a population of 16

containing eight successes, p = .5. The probability of a success on the
first draw is .5, just as it would be if we were drawing from a Bernoulli

process with p = .5. If, however, the first sample item is a success, the
probability of a success on the second draw is only %5 = .467; if the first

two items are successes, the probability of a success on the third draw is

only 8&4 = .429; and if the first eight items are all successes the prob-
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ability of a success on the ninth draw is 0. Exactly the same argument
would apply if we considered a sample with an unduly large numberof
failures rather than successes, and wesee that

If a sample drawn without replacement from a finite population
starts to go “out of line”’ in either direction, the proportion of suc-
cesses in the remaining population changes in such a wayas to tend
to bring the sample back intoline.

Suppose, however, that a sample of 10 is drawn from a population of

1000 rather than a population of 16, the fraction of successes in the

population still being .5. Even if the first nine sample itemsareall suc-

cesses, the probability of a success on the tenth draw is still #9149; = .495,
or only a little different from the value .5 which it had on thefirst draw or

the value 5999, = .505 which it would have on the tenth draw if the

first nine items hadall been failures.
The effect of the finiteness of the population in this second example

is thus far smaller than in ourfirst example, and little thought will show

that the magnitude of the effect of the finite population depends essen-

tially on the ratio of sample size to population size. If the first 90 draws
from a population of 10,000 with p = .5 are all successes, the probability

of a success on the next draw is #91%bo19 = .495, the sameas after nine

successes have been taken from a population of 1000. Generalizing from

this discussion we see that

As the ratio of sample to population decreases, the extent to which
the probability of a success changes from draw to draw become
smaller and smaller, approaching 0 as the ratio approaches0.

Now we know that if the probabilities did not change at all from
draw to draw, the reasoning whichled to the hypergeometric distribution

would have led to the binomial distribution. We thus reach the very

important conclusion:

Asthesize of the sample decreases relative to the size of the popula-
tion, the hypergeometric distribution approaches the binomial dis-

tribution with the same n andp.

This is shown graphically in Figure 23.2 for samples from populations
with p = .5. The figure applies to a single sample size n = 10 but

a variety of population sizes. The hypergeometric distributions are
shown for populations ranging from 16 (sampling ratio n/N = .625) to
100 (n/N = .1); the corresponding binomial distribution is labeled
n/N =0. The figure makes it clear that the effect of the finiteness of

the population is already quite small for n/N as large as .2 and very small

indeed for n/N = .1.



23.4.1 Finite Populations 365

40

. jh
x JIN
; Ja

n/N= N/N=
625. 625

/ \

 

 

 

 

   
 

  on

O
~
N
Q <9

Q
™
N
o
!

 

 b on

W
N

           
 

9995

.998

995

s
r
)

N
U
R
U
A
N

®D
©

.02
Ot
.005

002
.001
0005

0001
0
 

2 3 4 3 6 7 8 9 10
cr

(6)

Figure 23.2. Hypergeometric distributions with binomial limit, n = 10,

Pp = Dd
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23.4.2 Behavior of the Finite-population Correction

Figure 23.2 applies only to the special case n = 10, p = .5; the

finite-population correction gives us a convenient method of examining

the effect of the sampling ratio n/N in general. If a sample takes in the

entire population, r will necessarily be equal to the numberof successes in

the population. This means that the standard deviation of 7 is zero, and

this is the value of the correction factor ~/(N — n)/(N — 1) when
n=WN.

The effect of the finite population becomes less as either (1) n

decreases with N fixed or (2) N increases with n fixed. If we lookfirst at

a reduction of n with N fixed, the extreme case is a sample of 1. The

finiteness of the population has noeffect, and the value of the correction

factor is »/(N — 1)/(N — 1) = 1. To see the effect of increasing N
with n fixed, let us drop the 1 from the denominator of the ‘correction

factor—when is large, N — 1 does not differ appreciably from N. We

can then write the factor in the form ~/(N — n)/N = V/1 — n/N, and
we see at once that unless n/N is reasonably large the factor will be very

close to 1. The values of the factor for the cases graphed in Figure 23.2
are shown in Table 23.6. For the extremely high sampling ratio .625 the

 

 

 

 

 

Table 23.6
Finite-population Correction

n/N N V(N — n)/(N — 1)

.625 16 .63
oO 20 13
2 50 .90
1 100 .95

0 0 1.00

 

hypergeometric distribution has only 63 per cent as much dispersion as
the binomial; but for a ratio of .2 it has 90 per cent as much and for a
ratio of .1 it has 95 per cent as much. To sum up:

It is only when a sample drawn without replacement takesin a really
substantial fraction of the total population that any attention need

be paid to the finiteness of the population.

Percentage Samples. One of the most common‘‘vulgarerrors’’ con-

cerning samplingis the belief that the reliability of a sample depends upon

its percentage relationship to the population. Many businessmen operate

sampling inspection plans whichcail for inspection of a certain percentage

of each lot—usually 10 per cent. Sampling surveys to determine the
current value of properties of a utility such as poles, transformers, etc.,
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are often based on a percentage—again usually 10 per cent because public

service commissions seem to have accepted this as the proper size. Our

discussion of the behaviorof the finite-population correction shows, how-
ever, that this policy is completely misguided: unless the sample takes in a

really substantial fraction of the population, its reliability depends on its

absolute rather than wuts relative size.

23.4.8 Binomial and Poisson Approximations to
Hypergeometric Probabilzties

The fact that the hypergeometric distribution approaches the

binomial as n/N decreases means that when n/JN is small enough binomial
probabilities can be used as approximations to hypergeometric prob-

abilities. The binomial probabilities can be taken from tables of the

binomial distribution if they are available for the n and p of the problem
in hand, or the Poisson approximation to the binomial can be used if the
values of n and p are appropriate.

23.5 The Importance of the Sampling Process

As we stated at the beginning of this chapter, the results of this
chapter apply when and only when the sampling processis:

1. Simple.
2. From a finite population without replacement.

Weshall now reexamine these two conditions in the reverse order.

23.5.1 Sampling without Replacement

It is essential to realize that it is not the finiteness of the population

as such which leads to a hypergeometric rather than a binomialdistribu-

tion of the numberof successes: it is the fact that the sampling is without
replacement from a finite population. If sampling is simple with replace-
ment, the distribution of 7 is binomial however small the population may be.

_ The Concept of an Infinite Population. Because of the fact that the

binomial distribution is the limit of the hypergeometric as N increases

and ‘‘approaches infinity’’ with fixed, samples from a Bernoulli process
are sometimes said to be drawn from the ‘‘infinite population”’ consisting

of all the trials which the process ‘‘could’”’ generate.

23.5.2 Simple Sampling

Sampling from a numberof objects already in existence is simple only
if the sample items are selected in such a way that the probability which
it is reasonable to assign to a success on any draw is equal to the propor-

tion of successes amongall items not yet drawn at that time. Such an

assignment will be reasonable only if we are firmly convinced that the
selection of the items in the sample has not been influenced, ezther con-
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sctously or unconsciously, by any information which may bear on their

values. If we know or suspect that such information has been used, sam-
pling is not simple and the results of this chapter do not apply. Although

the methods which must be used when samplingis not simple will not be
discussed until Chapter 31, we shall point out here some typical condi-

tions which may make our present methods inapplicable.

In the urn model, sampling is not simple if some of the balls are
rougher than others, the person drawing the balls tends to choose either

rough or smooth balls by preference, and we either know or suspect that
roughness may be associated with color. In a consumer survey carried

out to get information on the usage of a certain product, sampling is not

simple if interviewers call only once at each household and we suspect
that use of the product in question is associated with a tendency to stay
at home. In inspection of incoming lots, sampling is not simple if the
sample is drawn from the top of the container and we suspect that the

parts on top are of different average quality from those on the bottom.
Notice that such problems are not restricted to samples drawn in

order to obtain information concerning a finite population. They can

equally well occur in connection with a sample drawn to obtain informa-

tion concerning a random processif the sample is obtained by drawing a

certain number of items from a larger number which have already been

produced by the process. If the inspector tends to select defectives in

preference to good pieces, it will not be rational to set the probability that
any sample item will be defective equal to the process parameter p.

PROBLEMS

1. Whatis the probability of drawing two good pieces and one defective in the
order gdg by simple sampling without replacement:

a. From a lot of eight pieces 25 per cent of which are defective?
b. From a Bernoulli process generating 25 per cent defectives?

2. What is the probability of drawing two good pieces and one defective regardless

of order under the conditions of Problem 1?

3. What is the probability of drawing two defectives and one good piece regardless

of order under the conditions of Problem 1?

4. What is the probability of drawing exactly one defective and the probability

of drawing one or less defectives in a sample of 10 taken by simple sampling without

replacement:
a. From a Bernoulli process producing 10 per cent defectives?
b. From a lot of 20 containing 10 per cent defectives?
c. From a lot of 2000 containing 10 per cent defectives?

5. From Figure 23.2 find the probability of drawing three or less users of instant

coffee in a sample of 10 taken by simple sampling without replacement from a popula-

tion containing 50 per cent users if the entire population consists of

a. 20 individuals. b. 50 individuals.

c. 100 individuals. .d. 10,000 individuals.

6. Find the following hypergeometric probabilities by the best approximation

you know anddiscuss the accuracy of your approximation in each case.
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a. 5or less defectives in a sample of 100 from a lot of 10,000 containing 3 per cent
defectives.

b. Exactly 5 defectives in a sample of 100 from a lot of 200 containing 3 per cent
defectives.

c. 5 or less defectives in a sample of 100 from a lot of 1,000 containing 1 per cent
defectives.

d. Exactly 20 defectives in a sample of 50 from a lot of 200 containing 40 per cent
defectives.

e. 3 or less defectives in a sample of 200 from a lot of 50,000 containing 500
defectives.

f. Exactly 50 defectives in a sample of 150 from a lot of 1000 containing 400
defectives.

7. In 1952, W. R. Simmons and Associates conducted a numberof interviews on
the subject of television viewing for the National Broadcasting Company. Theinter-
views were conducted in the Quad-City area of Davenport, Rock Island, Moline, and

East Moline.
a. 72,000 families lived in the area and 5000 were interviewed. What is the

finite-population correction?
b. What would the finite-population correction have been if 10,000 families had

been interviewed?
c. What would it have been if 5,000 had been interviewed and the population

had been 1,000,000 families?
8. For the example in Section 23.3:
a. What is the expected cost of rejection? (No computation is necessary.)
b. Compute the expected cost of acceptance under the posterior distribution by

using the mean of this distribution. (Hint: Review Section 5.3.1 before trying to
apply Section 22.4.4.)

c. Compute the posterior expected cost of action under certainty and use it to

verify the expected losses in Table 23.5.
d. Whatis the posterior cost of uncertainty?
9. Part 86Y7 is purchased in lots of 1000 for use in an assembly. If a defective

part is included in an assembly,it will have to be removed andreplacedat a cost of $5.
Screening the lot for defectives costs $.30 per piece. A sample of 50 pieces is taken
from the lot and two defectives are found. The frequency distribution of fraction
defective in a large numberof previous lots is shown in the table below.

Fraction Relative

defective frequency

.05 0

.10 2

15 l

1.0

a. What was the probability of this sample result as evaluated before the sample
was actually drawn and inspected?

b. What action should be taken and why?
c. What is the cost of uncertainty?

10. The Smith Novelty Company engaged in the business of selling unusual

novelty and gift items by direct mail. It used a single mailinglist for all offers; the

list had been built up and weeded out over many years, and currently consisted of

about 30,000 ‘‘good prospects,’’ almost all of whom had purchased on two or more

occasions.
A large part of Smith’s business was in items imported from Europe, where a
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buyer was permanently stationed. The ordinary procedure was for the buyer to
find some item which he believed suitable for the company’s business and contract
for a lot which was shipped to Smith in the United States in a single shipment. When
the merchandise was received, the company would prepare and send out a special
mailing. The company was convinced that it was necessary to give a strong ‘‘special
bargain” flavor to these mailings and therefore invariably restricted sales to ‘‘one
to @ customer.”

The chief hazards in Smith’s business were two: the risk of being left with a large
quantity of unsold merchandise when response to a mailing was poor, and therisk of
being short when response to a mailing was unusually good. When merchandise was
left over, it was usually wholesaled off to retail bargain outlets at a considerable loss.
On the other hand, Mr. James Smith, the owner of the company,felt that a very
serious good-will cost was incurred by unfilled customer orders in a business such as
his, and when demand exceeded the contract quantity he usually tried to secure addi-
tional merchandise off the shelf even if the cost to him of such merchandise was higher
than the price paid by the customer.

Smith had been thinking for some time about ways of reducing these losses and

had finally concluded that at least in some cases it would be possible and might be
profitable to sample his mailing list before ordering any specific quantity from the
foreign supplier; the quantity ordered would then be set to correspond with the esti-
mate made from the sample. Doing this would not be altogether simple, however:

customers on the samplelist would not be willing to wait 3 or 4 months before receiv-
ing their merchandise, and the company could not tolerate disgruntled customers
because of the importance of repeat business. It would be necessary, therefore, to
make two importations: one of a quantity sufficient to satisfy the demand from the
sample mailing, and then another to anticipate the demand from the main mailing.
Since the initial importation would have to be purchased from the manufacturer’s
regular stocks at a higher price than that which would be obtained when buying asin-
gle contract quantity, and since per-unit shipping costs would be higher on the small
quantity, there would be a very real cost involved in the sampling operation.

In June, 1955, the buyer sent over a sample of a blue enameled Dutch skillet
which Mr. Smith thought would be an excellent buy. Housewares of this same

general category had beenoffered before, and sales had ranged from 1050 to 2550 units.

Smith thought that if this skillet were offered at $3, the sales would be somewhere in
this general range but he could not tell just where—onefigure seemed about aslikely
to him as another.

The skillet could be bought from the manufacturer’s stock in small quantities
at his retail price of $2.75; delivery to the company’s premises in the United States by
parcel post would cost an additional $.75 per skillet. In a contract quantity and a
single shipment by ocean freight the cost would be about $1.50 including delivery.
Postage and handling on the mail orders would average about $.50 per sale. Smith
believed that skillets remaining unsold after the mailing could be salvaged for about
$1.10 each, net of expenses.

a. Simplifying the computations by assuming that Smith assigns equal probabil-
ity to demands for 1200, 1500, 1800, 2100, and 2400 skillets and 0 probability to all
other demands, compute the cost of uncertainty if Smith acts without sampling.

b. Same as (a) but after Smith has sent an advance mailing to 200 people and
received orders from 10 of them.

c. How could you obtain answers in better accord with Smith’s real beliefs?
Discuss but do not make any actual computations.



CHAPTER 24

Interdependent Decision Problems;

Finite vs. Infinite Populations

Before going on to learn how to analyze new types of problems in which

the decision should rest in part on the information obtained from a

sample, let us stop to examine a little more closely the conditions under

which we may and maynot apply the methodsof analysis already studied

in Chapters 22 and 23. In the present chapter we shall look at two

different kinds of problemswhicharise in the application of these methods.

First, we shall see that in some commonsituationsit is impossible to make

a rational choice amongactions now without at the same time adopting a

definite plan for making choices which will have to be madein the future.

Second, weshall see that under certain circumstances we should regard a

sample as having been drawn from an infinite population even though at

first glance it seems obvious that it has been drawn from a finite popula-

tion. Our examples will be taken from thefield of quality control because

this field offers the clearest and simplest illustrations of the principles

involved, but the principles themselves are by no meansrestricted to

applications in this field.

24.1 Independentvs. Interdependent Decisions

Asa first example of what we shall call the problem of interdependent

decisions we shall take the problem of acceptance sampling when rejected

lots are scrapped rather than being screened as they were in the example

discussed in Section 23.3.

94.1.1 Acceptance Sampling When Rejected Lots Are Scrapped

A small electrical component used in an assembly is manufactured in

lots of about 2500 pieces by a sequence of batch operations. The total

fixed cost incurred for each batch producedis $30; variable cost amounts

to $.03 per piece. Every effort is made to control the quality of the raw

materials and of the work done in each operation, but for reasons which

are imperfectly understood some of the finished parts will not work

properly in an assembly unless special compensating adjustments are

371



372 Use of Information Obtained by Sampling 24.1.1

made. Such parts will be called ‘‘defectives”; the cost of the adjust-
ments made necessary by one defective averages $3.75.

Beyond the measuresalready taken to control the quality of the raw
materials and the operations in the production process, there is no way of

correcting the process when it is generating a high fraction defective. A

test has been devised which will identify defectives without actually plac-
ing them in an assembly andtesting the assembly, but this test subjects
each part to very high voltages and even good parts which pass the test
are thereby rendered unusable: inspection is destructive. The only way
of avoiding the costs due to the defectives produced in any batch is there-
fore to scrap the entire batch.

A quantity of 2500 parts has just been requisitioned by the assembly
department. In order to permit sampling the output of the production
run, 2520 parts have actually been produced and 20 have beentested; the
test has revealed one defective. On the basis of his previous experience
with production of this part the manufacturer is convinced that the pro-
duction process behaves like a Bernoulli process, and before the sampleof
20 parts was inspected he had assigned the probabilities shown in the
second column of Table 24.1 to the values which the process average

defective # might have during the run just made. After learning that
the sample from this run contained one defective, he has revised his prob-

 

 

Table 24.1

Probability Distributions of Process p

p Po(p) Pi(p)

Ol .60 .42

.03 .20 .28

.05 .10 .16

.07 .07 .10

.09 .03 .04

1.00 1.00
 

ability distribution for # as shown in the third column of Table 24.1.
The meansof the two distributionsare:

Prior: Eo(p) = .0246,

Posterior: Ei(p) = .0312.

The Cost of Acceptance. In this situation the cost of acceptanceis

exactly like the cost of acceptance in the example analyzed in Chapter 22.
The decision to accept or reject affects 2500 pieces, so that the conditional

expected numberof defectives is 2500p. Since defectives cost $3.75 each,
the conditional expected cost of acceptanceis $3.75 K 2500p = $9375 p;

and since the conditional cost is thus a linear function of p we have
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immediately

Unconditional cost of acceptance = $9375 E,(f) = $9375 X .0312

= $293.

The Cost of Rejection. A complication arises, however, when we try

to compute the expected cost of rejection. If the manufacturer accepts,
he buys the 2500 parts he needs in assembly for an expected cost of $293;
but if he rejects he in effect obligates himself to obtain the required 2500

pieces by future operations, and on the information given above we cannot

compute the expected cost of this obligation. It quite obviously involvesat

least the cost of manufacturing 2500 morepieces, but for all we know now
this second run mayalso be rejected and a third one made, andso forth:

the manufacturing cost which will ult¢mately result from a present decision

to reject depends on future decisions. ‘The obligation incurred by a pres-
ent decision to reject also involves some expected cost of accepting the
defectives produced on the future run whichis finally accepted, and again

the amount of the cost depends on the manufacturer’s future decisions.

If the manufacturer has already decided that he will under no circum-

stances make more than two runs in order to fill the requirement of the
assembly department, then everything is simple. Since the next runis
definitely to be accepted if it is made, there is no sense in sampling its

product. The run will therefore consist of just the 2500 pieces required in

assembly and its manufacturing cost will be $30 + (2500 X $.03) = $105.
The information on run-to-run variation in # provided by the fact that

one defective was foundin a sample of 20 from the presentrunis negligible

in comparison with the past experience on which theprior distribution of
Table 24.1 is based; this prior distribution therefore applies unchangedto

the replacement run and the expected cost of the defectives in the

replacement run is $9375 Eo(p) = $9375 X .0246 = $231. Thus on the
assumption that the next run will definitely be accepted we havefor the
total consequencesof rejecting the present lot

Unconditional cost of rejection = $105 + $231 = $336,

and acceptance of the present run is preferable to rejection by the differ-

ence $336 — $293 = $43.

The Need for a Decision Plan. Solution of this new kind of problem

is thus no more difficult than solution of the kinds of problems discussed

in Chapters 22 and 23 zf the manufacturer has already decided that no
more than two runswill be made, but unfortunately this is not a rational
decision in most situations. If the present run is rejected and scrapped,

the manufacturer will then be in exactly the same position that he was in

before the present run was made. If it was rational to sample the present

run, it will be rational to sample the replacement run; and if there are
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any sample results for which it is rational to scrap the product of the

present run, it must be equally rational to scrap the product of the
replacement run for the same sampleresults.

Suppose, for example, that the manufacturer decides to make
replacement runs until he comes to one with no defective in the sample.

Such a plan will of course increase the expected manufacturing cost
entailed by rejecting the present run above the $105 computed above,
but this increase may be more than offset by a reduction in the $231 cost
of defective product.{ This means that it is at least conceivable that the
total expected cost of rejecting the present lot and making replacement
runs until one is found with no defective in the sample may actually be

less than the $293 cost of accepting the presentlot.

Clearly, then, the manufacturer in our present problem cannot
rationally separate the problem of reaching a decision concerning the present

run from the problem of reaching dectstons on possible replacement runs.
This separation was possible in the problems of Chapters 22 and 23 only

because

In those problems the number of usable pieces produced by the run

or obtained from the lot did not depend on the decision which was
made, and therefore the costs entailed by a present decision did not

depend in any way on future decisions.

In our present problem, the way in which future decisions will be made
does affect the costs which will ultimately be entailed by a present decision

to reject; and in order to analyze this problem rationally, we must look at

it as one of finding a set of rules for making a whole sequence of decisions in

such a way that their total expected cost 1s minimized.

Such a problem cannot be analyzed by methods of the kind we are
studying at present. In this part of the course we are learning how to
evaluate the expected cost of a decision after a sample has been taken.

Problems involving plans for making a sequenceof decisions force us to

evaluate the expected cost of taking a sample and then making a decision;

this will be the subject of Part Four of the course.

24.1.2 Quality Control When Only the Defectives Are Scrapped

The essential point of the example just studied was the fact that the

decision affected the ‘‘yield’’ which would be obtained from the present

run as well as the costs which would be directly incurred. The yield of a

decision to accept was 2500 pieces; the yield of a decision to reject was 0.

t Notice that if the run whichis finally accepted is one with # = .01, the cost of

defective product will be only $9375 X .01 = $93.75; and since there is prior prob-

ability .60 that # will in fact have the value .01 on any one replacement run, thereis
at least a good chance that a plan which accepts only runs with no defective in the
sample will in fact lead to final acceptance of a run with # = .01.
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It was this difference in yield which created the interdependence among

present and future decisions, and this same essential feature may be
present even whenrejection does not involve scrapping good as well as

bad pieces.

As an example, consider the following problem. A manufactureris

about to make a production run of a certain part. According to the

quality of the setup of the machine on whichthepart is produced, the run

will include more or less defectives which can neither be used in assembly

nor reworked and therefore have to be scrapped. The variable cost of each

piece manufactured is $.47 and the scrap value of a piece is $.18, so that

there is an out-of-pocket loss of $.29 per defective. The manufactureris
convinced that the machine operates as a Bernoulli process and he assigns

the probability distribution shown in Table 24.2 to the process average
fraction defective # if the machine is set up by the operator in the usual
way. If the setup is corrected by an expert mechanic at an additional

cost of $35, — is sure to have its minimum value .10. The machine has

Table 24.2

Prior Probability Distribution

p P(p)

.10 1

.20 2

.30 4

.40 _.3

1.0

just been set up by the regular operator and a sample of 10 pieces pro-
duced; the sample contains three defectives. The production run will
consist of 500 additional pieces.

Notice that this problem is of exactly the same kind as the problem

discussed in Chapter 22 with this one difference: in that problem defec-

tives were used at extra cost, whereas in this problem defectives cannot be

usedand are scrapped. We shall now examine the consequencesof this

difference.
The ‘‘ Direct’’ Costs of Acceptance and Rejection. In thelight of the

prior distribution and the information in the sample, the expected value
of # for the operator’s setup is .306 as the student should verify. The
expected cost directly entailed by acceptanceis therefore

306 X 500 X $.29 = $44.37.

If the setup is corrected by the expert mechanic, the expected cost of
defectives is .10 X 500 X $.29 = $14.50, and adding in the $35 cost of

the mechanic’s time we have $49.50 for the expected cost directly entailed
by rejection. If this problem were of exactly the same nature as the one

discussed in Chapter 22, we would conclude that acceptance is better

than rejection by the difference $49.50 — $44.37 = $5.13.
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The Difference in Yield. Observe, however, that the two possible
decisions differ not only in the costs directly entailed but also in yield. If

the manufacturer accepts, the expected yield of the run is

500 — 500 E(p) = 500(1 — .3806) = 347 goodpieces.

If he rejects, the expected yield is 500(1 — .10) = 450 good pieces. Thus
while acceptance can be ‘‘expected”’ to save $5.13 in immediate out-of-
pocket expense, it must also be expected to produce 450 — 347 = 103 less

good pieces than a decision to reject.

Now the manufacturer’s assembly requirements oblige him ulti-

mately to produce, not a certain numberof pieces, but a certain number

of usable pieces. It follows that if he accepts in this situation, he in effect
incurs an obligation to produce the ‘‘missing’”’ 103 pieces on some future
run, just as he obligated himself to produce and accept 2500 pieces on

some future runif he rejected in the first example discussed in this chap-

ter. It is true that we have included the direct cost of the missing 103
good pieces in the expected cost of acceptance; but we have not allowed
for the cost of the defectives which will be produced in the course of
obtaining 103 good pieces or for the additional setup and sampling costs

which must be charged to the manufacture of these 103 good pieces on a

subsequent run or runs.
The exact solution of this problem or of any problem where the deciston

affects yield as well as cost requires exactly the same methods of analysts as a

problem in which rejection involves scrapping an entire lot. As stated

before, the development of these methods must be postponed to Part

Four of the course.

24.1.8 Approximate Solutions

When we cometo Part Four of the course we shall see that the extra
computations required to take account of differences in yield as well as

cost are fairly laborious, and in some problemstheir effect on the final
answers is of no practical interest. Suppose, for example, that we are

faced with a problem like the one just studied except that # can have
values only between .01 and .05. The cost of acceptance is proportional
to p and therefore will be 5 times as large if # = .05 as it will if = .01.
The number of good pieces, on the contrary, is proportional to (1 — p) and

will be only (1 — .01)/(1 — .05) = 1.04 times aslarge if 6 = .01 asit will

be if @ = .05. Even if # could be as high as .10, the largest possible
number good is only (1 — .01)/(1 — .10) = 1.1 times as large as the

smallest, whereas the highest cost of acceptance is 10 times the lowest.
In such cases we can simply neglect the effect of 6 on number good

unless we want extreme accuracy for some special reason. ‘The effect can be

neglected even when the ratio of the largest (1 — p) to the smallest is

fairly large if at the same time very small probability is assigned to the
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extreme values. Obviously there can be no rule which will tell us for
certain whether or not we can neglect differences in yield in a particular
problem, but a little common sensewill usually suffice.

24.2 Finite vs. Infinite Populations

Wenowturn to the secondtopic of this chapter, the question whether
a sample is to be regarded as having been drawn from aninfinite or a
finite population. Weshall start by reviewing the examples which we
have already analyzed in Chapters 22 and 23 andin thefirst part of this
chapter.

1. In the examples of Sections 22.1 and 24.1.2, the manufacturer
wished to decide whetheror not to correct the process average of a Bernoulli
process. Wetreated the sample as being drawn from the process: we used
a prior distribution for the process average and we treated * as having a
binomial sampling distribution.

2. In the example of Section 23.3, the manufacturer wished to decide
whetheror not to accept a ceriain lot received from a vendor. Wetreated

the sample as being drawn from the finite population consisting of this par-
ticular lot: we used a prior distribution for the lot fraction defective and we
treated 7 as having a hypergeometric sampling distribution.

3. In the example of Section 24.1.1, the manufacturer wished to
decide whether or not to accept a certain lot which had just been manu-
factured; he had no control over the process average. Nevertheless we
treated the sample as being drawn from the process: we used a prior dis-
tribution for the process average and we treated 7 as having a binomial
distribution.

Thefirst thing to strike the student will no doubt be the apparent
inconsistency between the way in which we analyzed the example of
Section 23.3 and the way in which we analyzed the example of Section

24.1.1; it looks as if the latter of these two examples involves a finite lot
just like the former and should have been analyzed in exactly the same
way. What weshall nowsee is that, although there was no error in the
logic of our analysis of Section 24.1.1, we did have an option: we could
have analyzed this example in the same way that we analyzed the

example of Section 23.3. We shall also see, moreover, that we had
similar options in the other cases as well. We could have treated the
examples of Sections 22.1 and 24.1.2 as problems involving finite lots,
and under certain conditions we could have treated the example of Sec-

tion 23.3 as a problem involving a processor infinite population.

24.2.1 Equivalence of the Two Methods for a Bernoulli Process

Let us start by reconsidering the examples of Sections 22.1 and

24.1.2, in both of which the manufacturer knew that he was dealing with
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a Bernoulli process, had some control over the process average, and
treated the sample as being drawn from the process. In both these
examples, the sample could equally well have been considered as being

drawn from thefinite lot which was to be produced if the manufacturer

accepted. The first 10 pieces in this lot are as good a sample of the lot
as any other 10 pieces which might have been taken from it, and the fact
that the manufacturer could sample the lot before actually incurring the

cost of producing it was a piece of economic good fortune which had no

bearing on the probabilities involved. But if the sample is regarded as

coming from a finite lot, then it follows necessarily that the number of
defectives 7 must be assigned a hypergeometric probability distribution;

and this would make it seem asif this view of the problem would lead to

expected costs different from those obtained by treating the sample as

coming from a process or infinite population and assigning a binomial
distribution to 7.

Thedifficulty is resolved as soon as we considerthe prior distribution
as well as the sampling distribution. To make the discussion as concrete

as possible, we shall talk in terms of an infinite sequence of runs during

which therelative frequency of each possible value of the process average
is equal to its probability as given by the prior distribution in the original

statement of the problem. Each ‘‘run”’ produces one “‘lot,’’ but the

frequency distribution of the fractions defective in the various lots will not

be the same asthe frequency distribution of the process averages during the

corresponding runs. The point is obvious if we recall that the lot fraction
defective would vary from lot to lot because of Bernoulli variation even if

the process average remained absolutely fixed during the infinite sequence
of runs. If then the process average varies from run to run, as we are

actually assuming, the total variation of the lot fraction defective will be
the sum of the Bernoulli variation and the variation in the process
average. {

Thus if we are to treat the sample in either of these two problems as

taken from a particular finite lot rather than from the process in a par-

ticular condition, we must use a prior distribution for lot fraction defec-
tive rather than the prior distribution for process fraction defective; and

in assessing this distribution we must include Bernoulli uncertainty as

well as uncertainty concerning the process average. If we do this cor-
rectly, the extra prior uncertainty concerning the lot fraction defective com-

pared with the process fraction will be just compensated by the extra “‘tight-

ness’’ of the hypergeometric sampling distribution as compared with the

binomial; the expected costs will be the same whichever method we use.

Example. To illustrate the point, suppose that a manufacturer has

produced a sample of n = 2 pieces in order to decide whether to accept or
reject a Bernoulli process before making a “‘run” of 1 more piece, and

+ Cf. Chapter 16, Problem 10.



24.2.1 Finite vs. Infinite Populations 379

suppose that he has found r = 1 defective in the sample. The sample
can be considered as taken either from the process or from a lot of

total size N = 3. We assumethat the prior distribution for the process

fraction defective shown in Table 24.3 is given, and by applying the
methods of Section 12.3.2 we compute the corresponding prior distribu-

tion for lot number defective R. (It is simply for convenience that we
work with lot number defective rather than with lot fraction defective.)

 

  

 

 

Table 24.3

Prior Distribution

Process average Lot numberdefective

P Po(p) R Po(f)

1 5 0 .6205

2 5 1 .3135

1.0 2 .0615

3 .0045

1.0000

 

By applying Bayes’ theorem in standard fashion we can combinethe

prior distributions and the sample result to obtain the corresponding

posterior distributions in Table 24.4. The likelihood of the sample is

 

  

 

Table 24.4
Posterior Distribution

Process average Lot numberdefective

p P,(p) R Pi (2)

1 .36 0 0
2 .64 1 .836

1.00 2 . 164

3 0

1.000
 

computed binomially in the case of #, hypergeometrically in the case of

R. The meansof these two posterior distributions are

Ei(p) = .164,
E,(R) = 1.164.

The posterior expected cost of accepting defectives will be propor-

tional to the expected numberof defectives in the one-piece remainderof

the run or lot. If we look at the problem as one involving the process, we
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say that the decision affects a remaining run of one piece and that the

expected numberof defectives in this run is 1 K E(#) = 1 X .164 = .164.
If we look at the problem as one involving thelot, we say that the expected
numberof defectives in the wholelot of three pieces is E(R) = 1.164; but
since one defective from the whole lot is already in the sample, the

expected number of defectives in the remainder of the lot—the part
which is to be accepted or rejected—is .164.

24.2.2 Assessment of the Prior Distributions

In actual practice we can never havea historical frequency distribu-

tion of true process averages on which to base a probability distribution

for process average, and wewill only rarely have a historical distribution
of lot fractions defective on which to base a probability distribution for

this random variable. Usually the record will show only the fraction
defective in a sample from each lot or run. If these samples are small,

the recorded variability in sample fraction defective will include a large

amount of Bernoulli variation which must be eliminated when weassess

the prior distribution for ezther the lot fraction defective or the process
average; and the techniques by which this excess variation can be elimi-
nated in either case are beyond the scope of this course. Our reason for

raising the issue of finite vs. infinite populations is therefore not the use

which we shall makeof the distinction in actually solving problems—we

have seen that the difference between the binomial and hypergeometric

distributions is negligible in most practical cases anyway. The reason is

rather to lay the foundation for two very important general principles
which weshall now discuss.

24.2.8 Control of the Output of a Bernoulli Process

Suppose that some productive process has been supplying a sequence

of lots of parts of distressingly bad quality—averaging 40 per cent defec-
tive, say—but suppose also that there has been considerable lot-to-lot

variation around this 40 per cent average. It is very tempting to think

that some improvementin the situation can be made by using sampling
inspection and rejecting the worst of the lots, but very frequently this is
not so. If the lots are small, the whole variation may be Bernoulli varia-
tion and the process itself—whether it belongs to us or to a vendor—may
have a constant process average of 40 per cent. If this is true, then

sampling is a total waste of effort. For looking at the problem as we did
just above, each lot can be thought of as two separate runs by the process,

the first one producing the sample which weinspect, the second one pro-
ducing the remainderof the lot which is to be either accepted or rejected.
If the process average is in fact a constant 40 per cent, variation in the

number of defectives in the inspected sample is totally independent of

variation in the number of defectives in the remainder of thelot.
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In other words: the samplesin a situation like this tell us absolutely

nothing about the quality of the remainder of the pieces in the lots from
which they are taken, and the average quality of the accepted remainders

will be neither better nor worse than the average quality of the rejected

remainders. If lots are produced by a Bernoulli process, sampling
inspection is economically useful only if the process average fluctuates

from'run to run (or if we are uncertain about the process average on a

particular run); and this is true whether we have direct control over the

process average or the control is entirely in the hands of our supplier.

The first of our two general principles is therefore the following:

Whenever productis produced by a Bernoulli process, the economi-

cally rational way of approaching any problem of quality control is
to regard it as a problem involving the process average; there is
nothing which can be done about Bernoulli variation in lot quality

and no money should be spent trying to do anything.

94.2.4 Quality Control When the Source Is Not a Bernoulli Process

The second of our two principles is the following:

Whenweare not justified in assuming that product is the output of

a Bernoulli process, we must treat all problems of acceptance and

rejection as problems involvingfinite lots, and we must be sure that
the sampling from these lots is simple.

The former part of this proposition is obvious—if the process 1s not a

Bernoulli process, the number 7 of defectives among n successive pieces
produced by the process will not have a binomial distribution. The
emphasis is really to be put on the second part of the proposition, which

is the one that is often overlooked.
Before basing decisions on the assumption that the numberof defec-

tives in a sample from any finite lot will have a hypergeometric distribu-
tion, we must be sure that we are justified in asserting that the prob-
ability that any individual sample item will be defective is equal to the
proportion of defectives remaining in the lot at the time this item is

drawn. If the lot comes from a process which produces defectives in

streaks and if the sample is drawn from the top of the lot container, the
number 7 will most definitely not have a hypergeometric distribution.

PROBLEMS

1. Verify the computation of the posterior distribution in Table 24.1 and its

mean Hi(p) = .0313.
2. Verify that E,(f) = .306 is the mean of the posterior distribution corre-

sponding to the prior distribution of Table 24.2 and a sample of 10 containing three

defectives.

3. Verify the computation of Tables 24.3 and 24.4.
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4. The Robinson Abrasive Company manufactured a wide variety of grinding
wheels for industrial use. These wheels were subject to extreme stresses; and since
breakage could result in severe damage to machinery and injury to machine operators,

the company was anxious to maintain high-quality output and subjected the wheels

to rigorous testing procedures.
The first step in the manufacture of a grinding wheel was to mix bonding material,

abrasive, and water until a smooth uniform mixture was obtained and then pour the
mixture into molds which were allowed to dry for a period of several days. The dried
wheels were then placed on a shaving machine and turned to the desired dimension,
bushings were inserted, and the finished product was tested for hardness, toughness,
and strength. The strength test consisted in placing the wheel in a protective steel
shell and rotating it at a speed 50 per cent greater than the maximum speed which
would be used under ordinary operating conditions.

Failure of finished wheels in the strength test could be due to a variety of causes.
If the wheels were improperly loaded in the kiln, warping or cracking or internal

stresses could result; and on the average, about 5 per centof all wheels failed on final
test for reasons of this sort. The bonding material itself was of variable quality,
and sometimes a substantial number of wheels in a single batch would fail because the
cohesive strength of the material was inadequate. Although he could not be com-

pletely sure of the reason for some of the individual failures, the quality-control

supervisor believed that about 70 per cent of all batches had no failures due to the
raw material while 20 per cent of the batches had 5 per cent failures for this reason
and 10 per cent of the batches had 20 per cent.

In September, 1955, the research department announced that it had developed
and had available for immediate use in manufacturing a new bonding material which
was much stronger than the old. Wheels made of this material were no better or

worse than wheels made of the old material which succeeded in passing inspection,
but the failures due to the raw material were completely eliminated and the company
intended to purchase no more material of the old kind. At this time the company had

on hand enoughof the old bonding material to make 1000 grinding wheels 36 inches

in diameter; and since there was no test which would give a reliable measurement of

the strength of this material other than actually using it to produce finished wheels,
the superintendent raised the question whether it ought to be scrapped in order to
avoid the risk of wasting money in processing wheels which might fail on final test.

The cost of processing plus the cost of the materials other than the bonding

material amounted to $15 per wheel, but enough new bonding material to produce
one thousand 36-inch wheels would cost $1000 and the quality-control supervisor
suggested that the batch of old material should be tested by actually using some of
it in finished wheels before a decision was reached to accept or reject the remainder.
He proposed that the test wheels be prepared and processed undercarefully controlled
conditions, so that the probability of failure due to improper loading would be negligi-

ble. They would be given the regular strength test, and a decision to accept or reject
the batch would be based on the outcomeofthis test.

If a sample of 10 wheels is tested and one defective is found, what action should
be taken? Whatis the cost of uncertainty?

5. The Burke Appliance Company manufactured a variety of screw-machine

parts which were used in final assembly of its product. Part 684 was a grooved
cylindrical shaft which was designed to fit an assembly with close tolerances. The
part was used at the rate of about 200,000 a year; it was produced for inventory in
lots of 5000, equivalent to a day’s run of one machine.

Considerable difficulty was experienced in holding dimensional tolerances on this
part, and defectives were causing serious losses. Time studies showed that the inter-
ference with a smooth assembly operation caused by eachdefective reaching the
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assembly department cost roughly $.25 in addition to the loss due to having to scrap
the part. The variable cost of manufacturing one part was $.20; the salvage value of

a defective part was $.05.
After examining the company’s production records, Mr. Paul O’Brien, the pro-

duction manager, estimated that when the machine was adjusted in the normal man-
ner there were 6 per cent defectives 50 per cent of the time, 8 per cent defectives

25 per cent of the time, and 12 per cent defectives 25 per cent of the time. Some
experimentation had shown that by extremely careful gauging at the start of each run
the machine could be set to produce 5 per cent defectives with certainty. The extra
cost of this extremely careful setup process was $50 for labor and machine downtime.

Mr. O’Brien considered both the possibility of having every lot 100 per cent inspected
before stocking it in inventory and the possibility of using sample inspection to decide
what todo. His studies showed that an inspector paid $3 an hour could inspect 100
pieces per hour. If sampling inspection was used, the delay in the production run
would cost an additional $10 in machine and operator idle time.

a. Explain why an exact analysis of this case cannot be made by any method
studied thus far and discuss the legitimacy of analysis by approximate methods.

b. Draw up the payoff table for the four possible decisions: reject and screen,
reject without screening, accept and screen, accept without screening, and show that

two of these four choices can be discarded without further calculation.
c. If a sample of 100 parts is taken and 10 defectives are found, what action

should be taken? What is the cost of uncertainty?



CHAPTER 25

Samples from Many-valued Populations;

Sufficient Statistics

In Chapters 21 through 24 we have dealt with problems involving the use

of the information in a sample from a “population” (finite or infinite)
every member of which could be thought of as having the value 0 or 1

(failure or success, good or defective). We shall now proceed to apply

exactly the same kind of reasoning to the analysis of problems where
members of the sampled population can have any of a wide range of

values.

25.1 Discrete-valued Populations: The Pascal Population

Suppose that a sample is to be taken in order to obtain additional

information on the process average of some machine which can be treated

as a Bernoulli process. Until now we have assumed that such a sample

would be taken by collecting a certain numberof pieces produced by the
process and counting the number of defectives among them, but this

sampling procedure is not the only one possible. Instead of taking a
predetermined number of pieces and letting the numberof defectives come

out as it May, we can count and inspect the output of the process piece
by piece until we have found a predetermined number of defectives and let

the total number of pieces come out as it may. If r is the specified
numberof ‘‘successes’’ and n is the numberof ‘“‘trials’’ actually required

to obtain them, thelikelihoods P(% = n|r, p) are given by the Pascal dis-
tribution for each possible value of the parameter p.

Suppose, for example, that the output of a machineis counted and

inspected until r = 10 defectives have been found and that the tenth

defective turns out to be the n = fourteenth piece produced ; and suppose

that the distribution of the process average # as assessed before this

sample was taken was that shown in column 2 of Table 25.1. The likeli-

hoods Pp.(i = 14|r = 10, p) are obtained from Table 11.1; the joint prob-
abilities and the posterior probabilities are then computed exactly as in
the problemsstudied in earlier chapters.

Now if the event success orfailure is regarded as occurring at the end
384
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Table 25.1

Computation of Posterior Distribution

Prior Likelihood Joint Posterior

P P(p) Ppa(n|p) P(n,p) P(p|n)

8 8 .123 .0984 .952

9 2 .025 .0050 .048

1.0 1034 1.000
 

of the trial which produces it, then the numberof trials after the occur-

rence of one success to and including the one on which the next success

occurs can be considered as the length of the interval between these two

successes. Looked at in this way, the process generates an infinite popu-

lation of intervals which may have any value from 1 to © rather than an

infinite population of trials which must have oneor the other of the two

values 0 and 1; and the sample is a sample of sizer = 10 from this popula-
tion of intervals rather than a sample of size n = 14 from a population of

trials. The distribution which describes the individual members of the
population is the Pascal distribution with parameterr = 1. The number

of trials from the start of sampling up to and including the trial on which

the first success occurs is the value of the first member of the population
drawn into the sample. The numberof trials from the beginning through
the occurrence of the rth success is the total valwe of the r ttems in the

sample, and the sampling distribution of this total value is the Pascal dis-
tribution with parameter r; in our example, r = 10. Thereally essential
point to observe is the following.

Although this sample was drawn from a population of values ranging
from 1 to o rather than from a population consisting only of the

values 0 and Jj, the information in this sample was used in Table 25.1

in identically the same way that information in samples from two-

valued populations was used in earlier chapters.{

25.2 °**Continuous’’-valued Populations: The
Exponential Population

Suppose next that the arrival of mechanics at a certain tool crib is
Poisson distributed and that a sample is to be taken in order to gather

+ Samples of Pascal intervals are sometimes called ‘‘inverse’’ or “sequential’’
samples but they are really no more inverse and no more sequential than binomial

samples. It is true that if the cost of sampling depends on the numberof pieces in
the sample, then the cost of a sample of r Pascal intervals cannot be known in advance;
but situations also arise in which the cost of sampling depends on the numberof suc-

cesses or failures in the sample (e.g., when inspection destroys good pieces as well as
bad), and in this case the cost of a binomial sample of n pieces cannot be known in
advance.
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more information on the parameter » (or « = 1/n) of the Poisson process
which generates these arrivals; and suppose as in the previous example
that instead of observing the process for a fixed amount of time and
counting the number of arrivals, we measure the time which elapses
until a specified number r of mechanics have arrived. The time between
any two successive arrivals is a member of the infinite population of

intervals which ‘‘could”’ be generated by the process, and we take a

sample of size r from this population.
The time from the start of sampling to thefirst arrival is the value of

the first member of this population drawn into the sample, and so forth.
Thetotal value of all items in the sample is the total time ¢ which elapses

until the rth arrival. The only difference between this problem and

the previous onelies in the fact that intervals between Poisson successes
are usually talked about as if they could have any length whatever: the
possible values of the members of the population are usually said to be
continuous. We havealready seen, however, that the real distribution of

any measured quantity is necessarily discrete and that for such quan-

tities a continuous distribution is simply a convenient mathematical

approximation (Sections 14.1.8, 17.3.3). There is absolutely no real dif-
ference between a discrete population and a so-called continuous popula-

tion, and consequently there is no difference between the ways in which we

use the information in samples from these two kinds of populations.

Suppose, for example, that the prior distribution assignedto 7 is that

shown in the two columns of Table 25.2; and suppose that we take a
sample of size r = 5 (we time until the fifth arrival) and find that the

total value of the five sample items ist = 10.02 minutes. Thelikelihood

Table 25.2

Prior Distribution

ye P(u)

1.5 1

1.6 2

1.7 3

1.8 2

1.9 1

2.0 l

0

of this value ¢ given any of the possible values of & is found by the pro-
cedure described in Section 14.3.1. If wetake» = 1.5 as an example, the

bar for t = 10.02 in the ¢ histogram corresponds to the bar for

t 10.02

in the v histogram. The width of the barin the ¢ histogram can be called
ét; the width of the bar in the v histogram is then dt/u. The height of the
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bar in the v histogram is approximately equal to the height of the stand-

ardized gammadistribution with parameter r = 5 at the point v = 6.68;

using the curve labeled r = 5 in Chart III wefind that this height is .104.
The area of the bar in either histogram is therefore

P(E = 10.02) = re 104 = .0694 3¢

approximately.
The likelihoods for all possible » are computed in this way in Table

25.3 and these likelihoods are then used in Table 25.4 to compute the

posterior distribution of ~ by applying Bayes’ theorem in the usual way.

 

 

 

 

 

Table 25.3
Computation of Likelihoods

y= t/ Height Width Area

* * P;(v) bt/u P(t|n)

1.5 6.68 .104 6t/1.5 .0694 dt
1.6 6.26 .122 6t/1.6 .0762 dt
1.7 5.89 .139 6t/1.7 .0817 &t
1.8 5.57 .153 6t/1.8 .0851 6&t
1.9 5.27 .165 6t/1.9 .0868 &t
2.0 5.01 .175 5t/2.0 .0875 dt

Table 25.4

Computation of Posterior Distribution

Prior Likelihood Joint Posterior

. P(u) P(x) P(t) P(t)

1.5 1 .0694 dt .00694 sf .085
1.6 2 .0762 dt .01524 dt .188
1.7 3 .0817 st .02451 &t . 302
1.8 2 .0851 dt .01702 ¢ .210
1.9 1 .0868 &¢ .00868 dt .107
2.0 1 .0875 ot .00875 st .108

1.0 .08114 dt 1.000

 

Notice that the unspecified width 6¢ of a bar in the ¢ histogram cancels

out in computing the posterior probabilities. Posterior probabilities

depend only on the ratios among the joint probabilities and are unaffected
by any factor which multipliesall these probabilities by the same amount.

Notice also, however, that the factor « by which wedivide dt to get the
width of the bar in the v histogram does not cancel out and must not be

omitted in the calculations.
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25.3 Use of the Normal Approximation

In earlier chapters we have used the Normal approximation to com-
pute likelihoods of an observed sample total r when the sample was drawn

from a two-valued population and 7 had a binomial or hypergeometric

distribution. The Normal approximation can be used in exactly the
same way to computethelikelihood of a sample total when the sampleis

drawn from a many-valued population. The procedure has already been

explained in Section 17.3.3, but we shall illustrate the point with an
example by way of review.

Suppose that in the tool-crib example of the previous section we time
the ‘‘process”’ until we have counted r = 100 arrivals instead of just 5,
and suppose that the elapsed time turns out to be 200.4 minutes instead

of 10.02. We have taken a sample of size r = 100 from the infinite

population of intervals which ‘‘could”’ be generated by the process; the
total value of these r items is t = 200.4.

Since Chart ITI does not have a curve for r = 100 we cannot use the

gamma approximation to the distribution of ~ Figure 17.8 shows, how-

ever, that for r = 50 the gamma distribution is reasonably close to

Normal; for r = 100 it will be closer still, and we are therefore justified
in using the Normal approximation to computethelikelihood of ¢ = 200.4

for each value of @ Taking » = 2.0 as an example, wefirst put the
variable in standard measure as

y= LT EO _ tm _ 200.4 — 200.0
 = .020.

The likelihood is then the area of a bar in the u histogram of width
dt/o(t) = 6t/20 and height approximately Py(u) = Py(.02) = .3989; this

area is .3989 X 6¢/20 = .01994 dt. The likelihoods forall possible » are

computed in this way in Table 25.5 and the posterior distribution of 7 is
then computed in the usual way in Table 25.6.

 

 

 

Table 25.5
Computation of Likelihoods

1“ u = t — Tp Height Width Area

ur/r Py(u) bt/(u +/r) P(t|n)

1.5 3.360 .0014 .0667 sé .00009 dé
1.6 2.525 .0165 .0625 dt .00103 dt
1.7 1.788 .0807 .0588 dt .00475 é¢t
1.8 1.133 .2100 .0556 dt .01168 dt
1.9 547 .3455 .0526 dt .01807 &¢
2.0 .020 . 3989 .0500 3¢ .01994 32
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Table 25.6
Computation of Posterior Distribution

Prior Likelihood Joint Posterior

e P(x) P(t|n) P(t,u) P(ule)

1.5 1 .00009 st .000009 dt .00

1.6 2 .00103 dt .000206 st .03

1.7 3 .00475 at .001425 dt .18

1.8 2 .01168 dt .002336 at 380

1.9 1 .01807 5¢ .001807 dt .23

2.0 1 .01994dt .001994 dt _.26

1.0 .007777 at 1.00

 

25.4 The Conceptof a Statistic

We have said repeatedly that the posterior distributions which we
have computed were rational in the light of the ‘information in the

sample,’ but we must now take little closer look at the justification for

this assertion. The total information in a sample consists of the values of

the individual observations in the order in which they were drawn, but our

actual computations of posterior distributions were not based on these

individual values. When the sample consisted of a predetermined

number of trials drawn from a Bernoulli process or a predetermined

amount of ‘‘space”’ taken from a Poisson process, the posterior distribu-

tion was based simply on the numberr of successes in the sample without

regard to order. When the sample consisted of a predetermined number

of measured intervals, the posterior distribution was based on the total

length n or ¢ of these intervals without regard to even the lengths (values)

of the individual intervals, let alone the order in which they occurred.
To illustrate the point, suppose that we draw a sampleof five pieces

from a Bernoulli process and that the pieces turn out in the order ggdgd.

Strictly speaking, the likelihood of this particular sample for any specified

value of p is gqgpgp = pq’; and it is this quantity which we should have
multiplied by the prior probability of p to get the joint probability of that
p and the particular sample we actually observed. What we haveactu-

ally used for the likelihood in such cases was, however, the probability of
two successes in a sampleof five, and this probability is C$p?q3 rather than
pq’. But because the same factor CS was present in the joint probability

for every possible p, it canceled out when we divided each of these joint prob-

abilities by their total to get the posterior probability of each p.
As a second illustration, suppose that we had set out to draw a

sample of two intervals from this same Bernoulli process and that the

pieces had turned out in this same order ggdgd. The length of the first
interval or value of thefirst. sample item is then 3; the value of the second.
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is 2. The likelihood of the value 3 is q?p, the likelihood of the value 2 is

qp, and thelikelihood of 3 followed by 2 is therefore (g?p)(qp) = pq’.
In agreement with commonsense, the likelihood of the observed sample
is the same whetherit is regarded as a sample of five pieces or of two
intervals. What we actually used for the likelihood of a sample of

Bernoulli intervals in the first part of this chapter was the probability
that r intervals would have the observed total value 7; in our present
example this would be, not p2q?, but Cip?q? (Section 11.1). But because
the same factor C7"; is present in the joint probability for every possible
p, it will cancel out when we divide by the total to get the posterior
probabilities.

25.4.1 Definition of a Statistic

Thus what we have really done is use some single quantity such as
r, n, oréas a summary of the information in a sample, and in the future we

shall continue to use such summary numbers rather than work with the

individual values of all the items in the sample. Weshall use the word
‘statistic’? to denote any such summary—wedefine:

Statistic: any number computed from the values of the observations
in a sample.

The word ‘‘computed”’ as used here is to be understood in the broadest
sense. It includes adding the values of the separate observations in the
sample to obtain their total, but this may mean nothing more than count-
ing of the ‘‘successes’”’ in a sample from a two-valued population or direct
measurement of the total length of a sample of intervals or the total

weight of a sample of weights without actually measuring and adding the
values of the individual members of the sample. The word ‘computed”’
also includes mere reporting of the value of the observation which has a
particular position in the sample (e.g. the fifth item to be drawn) or which
has a particular rank in the sample (e.g. the fifth largest item); and it
includes counting the number of sample items whichare larger or smaller
than some specified value.

A statistic is not necessarily computed exclusively from the values of
the sample items. The numberr of successes or the length ¢ of a sample
of intervals is computed in this way, but we also consider v = t/y and
u = (r — np)/~W npg to bestatistics even though their values depend on

parameters—p In one case, 7 and p in the other—aswell as on the values
of the sample items.

25.4.2 Sufficient Statistics

The two examples just discussed have shown that a posterior dis-

tribution based on the statistic r or n in a sample from a Bernoulli process
will always be identical to the posterior distribution computed from the
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values of the individual observations in such a sample. The same argu-
ments would have shown that the same thing is true when a posterior dis-
tribution is based on thestatistic r or n in a sample from finite popula-
tion—the same factor C’? or C77} will be involved that is involved when
the population is infinite. By the use of a little more algebra we could
have shown that the same statement can be made about a posterior dis-

tribution based on the statistic ¢ In a sample from a continuous-valued

population of intervals.

A statistic which leads to the same posterior distribution that would
be obtained by use of the individual sample values in the order in which

they occurred is known as a sufficient statistic because the value of such a
statistic is sufficient to convey all the relevant information in the sample.

Notice carefully that the sufficiency of a statistic depends on our model

of the real world. The statistic r in a binomial sample, for instance, is
sufficient because we have assumed that the value of ~ does not change from
trial to trial. If we had not made this assumption, the order in which the

sample items occurred might very well be relevant to our conclusions
about the process. Specifically, if we suspected that the value of # might

be increasing (owing, say, to wear In the machine), then this suspicion
would tend to be confirmed by the fact that the first two pieces were both

good whereas two out of the last three were defective. Thus the asser-

tion that a certain statistic is sufficient amounts really to nothing more

than an assertion that a particular short-cut method of computation will give
the same result as a particular longer method of computation. We will get

the same result by treating the statistic 7 as a binomial variable with

parameter p that we would get by working with the individual sample
values and assuming that each of these values was a binomial variable with

the same p as every other one.

25.5 Use of the Sample Mean

The only statistic which we have used up to now to summarize a,
sample has been the total value of all the items in the sample or ‘‘sample

total.’”’ In samples from two-valued populations we assigned the value 0
to a failure and 1 to a success, and the sample total was simply the number

of successes r. In samples from many-valued populations, on the other
hand, the sample total n or ¢ had to be established by countingor timing,

and in later chapters other kinds of measurement will be involved.
It is obvious that any sample can be described exactly as well by

stating the mean valueof all the items in the sample as by stating their

total value; in order to make use of either piece of information we must

know the numberof items in the sample, and knowing this we can com-

pute the mean from the total or vice versa. The real reason for using

the sample total up to now has been thefact that the tables or charts of
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the distributions applying to most of our problems happen to be made up
in terms of totals rather than means. Binomial and Poisson tables give
probabilities for various values of 7, Pascal tables give probabilities for

valuesof 7%, and gammatables give probabilities for values of (1/u) times7.

To avoid confusion we have also worked with the sample total r, n, or t
when using the Normal approximation to these distributions, and the

means and variances in Section 16.6 all apply to distributions of totals.

The implications of an observed sample are often much more immedi-

ately apparent, however, if we look at the sample mean rather than at
the sample total. We are usually interested in the mean of the sampled

population, and the value of the sample mean indicates immediately and
without calculation which values of the population mean are relatively
more and less probable in the light of the sample evidence. Sinceit is

just as easy to base the actual calculations on the sample mean as on the
sample total when the Norma] approximation is used, we shall henceforth

always use the sample mean in this case. At the same time weshall make

some changes in our notation in order to reduce the number of formulas
we shall require. When working with the Normal approximation, we shall
henceforth always define:

x: the value of an individual member of the population or of an indi-
vidual sample item,

p = E(®): the mean of a two-valued population,

p = E(é): the mean of a many-valued population,

o?(%): the variance of the individual members of any population,

n: numberof items in a sample; r will not be used in this sense,

r: total value of a sample from a two-valued population,
i: total value of a sample from a many-valued population; n will not

be used in this sense,

£ = r/n or t/n: the sample mean; the mean of the x’s drawn in the

sample.

The likelihood of an observed value Z of the sample mean—1.e., the
conditional probability P(£ = Z|u)— is computed by the Normal approxi-
mation in exactly the same waythat the likelihood of an observed sample

total is computed—byfirst expressing the statistic in standard measure:

_#é— E®)

off)

and then multiplying the width of this bar in the u histogram by the

height of the unit Normal curve at its center:

P(g) = w *(u).

Expressions for the mean E(£) and variance o?(#) in samples from popula-
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tions of the types we have studied so far can be derived easily enough
from expressions already given for the means and variances of the cor-

responding sample totals. Instead of doing this, however, weshall begin

from first principles, partly to review these principles and partly to avoid

confusion over notation.

25.6.1 The Mean of the Distribution of the Sample Mean: E(2)

Provided that the sampling is simple (Section 23.5.2), the value of any
one item in a sample from any infinite or finite population is a random

variable with expectation equal to the true mean E(#) = p or yp of the

population. Since the expected value of a sum of random variables is

the sum of their individual expectations, the expected value of the sample

total is np or nu. The sample mean is 1/n times the sample total, and

therefore its expected value is 1/n times the expected value of the total.

Thus oo

 

E(&) = E(@2) = pory Any population, simple sampling

 

25.5.2 The Variance of the Distribution of the Sample Mean: o7(z)

We have defined o2(#) as the variance of the individual members of

the population, but provided again that the sampling 1s simple we can

equally well regard o?(£) as the varianceof a single observation drawn from

the population. In termsof relative frequencies, the distribution which

we would get by making an extremely large number of drawings from a

population (with replacementif the populationis finite) and recording the

value of each individual observation is identical to the distribution of

the population itself. .
If now we draw a sample of size n from an infinite population (or

from a finite population with replacement), the values of the n observa-

tions are independent. The addition theoremfor variances (Section 16.3)

therefore applies and the varianceof the sample fotal (7 or 7) is simply n

times the variance of asingle observation, or no?(#). The distribution of

the sample mean # = 7/n or i/n is identical to the distribution of the total

except that every value of the random variable is divided by n, and there-

fore (Section 16.5.2) the variance of the distribution of the mean is 1/n’

times the variance of the distribution of thetotal:

PPPS

o7(%) =  93(f) Infinite population, sumple sampling

 

~~

If the sample of size x is drawn without replacement from a finite



394 Use of Information Obtained by Sampling 25.5.3

population, the sample items cannot be independent for the reason
explained in Section 23.1.1. It can be shown that the effect of the
finiteness of the population on the variance of the mean of a sample drawn

without replacement is the same whether the population is two-valued or

many-valued; provided once again that the samplingis simple, the variance

of the sample meanis always

 

 o%(8) = +0%()5i Finite population, simple sampling

 

The importance of simple samplingis so great and so often neglected

that we revert once more to its meaning. Sampling is simple af and only

uf the probability that any sample item will have any specified value is equal to
the relatwe frequency of that value in the entire population at the time the
sample item 1s drawn. The studentis strongly advised to review the dis-

cussion of simple sampling in Section 23.5.2.

25.5.3 The Population Variance o?(Z)

The variance o7(£) of the individual members of a population or of

the value of a sample of size n = 1 does not depend on whether the

populationis finite or infinite: it depends only on the shapeof the frequency

distribution which describes the population.
Wehavealready seen that the variance of the individual membersof

a two-valued finite population is pq just like the variance of the individual

values generated by a Bernoulli process. In both cases the distribution

can be described by a histogram with two bars and in both cases Table
16.5 applies. Similarly a many-valued finite population may have a dis-

tribution which is at least very nearly like the distribution of the output
of a many-valued process. In particular, certain types of finite popula-

tions often have distributions which are very nearly exponential and
resemble a distribution of Poisson intervals; this is often true of distribu-

tions of items in inventory by dollar value of the stock of each item or by

monthly dollar sales of each item. If such a population 7s approximately
exponential with mean yp, its variance o?(£) is approximately equal to pz?
just as the varianceof the lengths of individual Poisson intervals was p?if

the mean length of an interval was un.
Regardless, then, of the reason why the population has the form in

question, the variances of the two most important forms of population

which we have studied up to now are as given in the table below.

Population
Type of population variance

Two-valued, mean p Pq
Exponential, mean 4 pt
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PROBLEMS

1. A Poisson process generating pinhole defects in the insulation of electric wire

is observed until four defects have occurred; the amount of wire inspected up to this

point is 60 feet. If the prior distribution of @ (the mean distance between defects) is

that shown in the following table, what is the mean of the posterior distribution of 7?

(Use the sample total as the statistic and do not use the Normal approximationtoits

distribution.)

Kt P(u)

15 2

20 3

25 .5

1.0

2. In Section 25.3 of the text we discussed the distribution of the total ¢ of a sam-

ple of 100 intervals from a Poisson process generating intervals with mean length

yu = 2 minutes, and we saw that the Normal approximation to the probability that

this total will have the value ¢ = 200.4 minutesis

to, i,7) Py(u) = 55 Pw(.02).

If the total value of a sample of 100 items is 200.4 minutes, the mean Z of the sample

values is 2.004 minutes.
a. Show that the Normal approximation to the probability that # will have this

value is

ae
a(#)

b. Show that if we know that time is measured to one one-hundredth of a minute,

so that the width 5¢ of a bar in the # histogram is .01 minute, the width of a bar in the

# histogram is .0001 minute and the numerical values of the two Normal approxima-

tions are the same.

3. Rework Tables 25.5 and 25.6 using the sample mean as the statistic instead

of the sample total. (Hinr: This exercise requires absolutely no computations. All

that is required is some changes in column headings, the substitution of the symbol

s£ for dt, and division of all the entries in certain columns by a constant which will

cancel out in the end.)

4. Same as Problem 3 for Chapter 21, Problem 5.

5. Same as Problem 1 aboveexcept that the wireis inspected until the eighty-first

defect is found and the mean distance between defects in this sample is 15 feet. Use

the sample mean as the statistic. Compare your answer to this problem with your

answer to Problem 1 and comment.
6. A company wishes to determine the value of its inventory of spare parts by

sampling. The sample will be taken by drawing n part numbers from a list which

showsall the 5000 part numbers whichare carried in stock. The numberof units in

stock of each of these » part numberswill be counted and the value of the stock of

each part numberwill then be determined by multiplying the count by the current

unit price. It is known that the value of the stock of most part numbersis quite low

and that most of the total value of the inventory is tied up in relatively few items. <A

complete count of the inventory made a year before showed the ‘‘J-shaped’’ dis-

tribution graphed as a grouped histogram in Figure 25.1; the smooth curve in the

figure is an exponential distribution with the same meanas the actual distribution.

62 _,
Py(u) = 5 Pwv(.02).
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c. Find approximate algebraic expressions for the mean and variance of the ratio
of the mean value of the n part numbers in the sample to the mean value of the
5000 part numbers in the entire inventory. |

b. Using the Normal approximation, decide how large a sample must be drawnif
the company wishes to be 99 per cent sure that the sample mean will not differ from
the population mean by more than 10 per cent of the true value of the population

mean.
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CHAPTER 26

Samplesfrom ‘‘Normal’? Populations

with Known Variance

All the populations, finite or infinite, which we have studied so far have

had one very special characteristic: the distribution describing every one

was completely defined as soon as we knew the value of a single parameter.
The heights of the two bars in a histogram describing a two-valued
population are defined as soon as we know the value of the fraction p of

successes; the curve describing an exponential population is defined as
soon as we know the mean uz of the population. It is obvious, however,
that most populations of many-valued or measured quantities are not
completely defined by the value of a single parameter. We cannot draw

a histogram describing the frequency distribution of diameters of shafts
turned out by some machine if all we know about this distribution 1sits
mean.

As a first example of a population requiring more than one

parameter for its definition we shall consider a process that 1s known to
generate an infinite population which is approximately Normal in shapef

and which therefore is fully defined for most practical purposes by the
values of just two quantities, the mean » = E(#) and the standard devia-
tion o(%) of its individual members. In this chapter we shall see how to

reach a decision when the parameter o(%) of a Normal population is
known but costs depend on the unknown value of the mean pn = E(4).
In the next chapter we shall see how to proceed when the mean is known
but costs depend on the unknown value of o(£). The additional prob-

lems which arise when both parameters are unknown will be taken up in

Chapter 28.

26.1 Statement of the Problem

A certain chemical is produced from a liquid raw material. The
final product must contain at least 3 pounds of constituent X per gallon.

t For the reasons reviewed in Section 25.2, a real population can never be exactly
Normal and therefore more than two parameters would be required for its exact
description; this point will be morefully discussed in Chapter 29.

397
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With regular processing, the amount of constituent X in the final product
is 50 per cent of the amount of X in 1 gallon of the raw material. By

special processing at an extra cost of $400, the yield can be raised to

75 per cent. The X content of the final product is always very precisely
measured, and whenit is below 3 poundsper gallon the deficit is made up

with pure X, which costs $10 per pound. A batch of raw material suffi-

cient to produce 100 gallonsof final product is about to be processed, and
the manufacturer wishes to decide whether to use regular or special
processing. In what follows we shall refer to this as a choice between

acceptance and rejection of regular processing.

To simplify the discussion, we shall measure the X content of a given

lot of raw material in termsof its yield under regular processing, which we

shall call the normal yield of the material and which weshall denote by

the symbol xi:

£: yield of the raw material under regular processing.

Thus if there is 5.0 pounds of X in a gallon of raw material, we shall say

that its normal yield is § = 2.5 poundsper gallon. Recordsof the yields
under regular processing of a large numberof batches of raw material give

the relative frequencies shown in Table 26.1. We assume that the manu-

facturer has no reason to believe that there has been any changein the
factors affecting the quality of the raw material and that he therefore

Table 26.1

Historical Distribution of Norma! Yields

Relative

£ frequency

2.0 .15

2.5 25

3.0 . 60

1.00

adopts this frequency distribution as his probability distribution for the

random variable & in the batch about to be processed.

26.1.1 Conditional and Expected Costs and Losses

Special processing at a cost of $400 will produce the required 3 pounds
per gallon of X in the final product from raw material having any normal
yield shown as possible in the probability distribution of Table 26.1.

Since no pure X will have to be added, the total cost of rejection will be

simply this $400.
If the normalyield is 2.0 pounds per gallon and regular processing is

accepted, 3.0 — 2.0 = 1.0 pound of pure X will have to be added per
gallon, or 100 pounds for the entire batch. At $10 per pound, this gives

a conditional cost of acceptance amounting to $1000. More generally:
for any £ shownin Table 26.1, the amount of pure X which will have to be
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added is 100(3 — ¢) gallons and therefore

Conditional cost of acceptance = $10 X 100(8 — &)

= $3000 — $1000 é.

For — > 3 the conditional cost of acceptanceis 0.
These costs and the corresponding losses are listed in Table 26.2 and

graphed in Figure 26.1. Although the cost of acceptance is not linear
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Figure 26.1. (a) Conditional costs; (6) conditional losses.

overall values of the basic random variable ~ because of the break in the

cost of acceptance at the normal yield —& = 3.0, both costs are linear over

Table 26.2

Conditional Costs and Losses
 

  

 

Conditional cost Conditional loss

E
Accept Reject Accept Reject

2.0 $1000 $400* $600 0

2.5 500 400* 100 0

3.0 0O* 400 0 $400

 

the whole range of values of & to which nonzero probability is assigned.

The expected costs can therefore be found by use of the meanof the dis-

tribution as well as by use of the full distribution; we have

Expected cost of rejection = $400,

Expected cost of acceptance = $3000 — $1000 E(é).

The student should verify as an exercise that on the basis of prior informa-

tion alone the marginal expected losses are $115 for acceptance and $240

for rejection.
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26.2 The Sample and the Population

In order to get more information on the quality of the particular

batch of raw material about to be processed, nine measurements have

been made of its X content. Although the liquid raw materialis itself
perfectly homogeneous, so that the true value of & is exactly the same in
every one of the nine measured samples, the measurements themselves

are not all the same. Expressed as estimates of the normal yield of the
batch, the measurementsare 1.84, 1.75, 1.39, 1.65, 3.53, 1.03, 2.73, 2.86,

1.96; their mean is

Z = 2.08.

As the reported numbers suggest, measurements on the raw material

are difficult to make and inaccurate: the fact that an instrument can be

read to two decimal places does not mean that the measurement1s correct

to two decimal places. Notice that here as in many practical problems
the variability is in the measuring process itself and not in the object of

measurement; the measurements actually made on the present batch con-

stitute a sample from the infinite population of ‘all possible’? measure-

ments of a single fixed quantity. 'The sample can also be considered as

taken from the output of a random process in the same sense that a few

pieces turned out by a machine may be a sample from the output of a

random process.

In order to determine the characteristics of his measuring process,

the manufacturer had previously conducted an extensive investigation.

During this investigation numerous measurements were made on each of

a large numberof batches of raw material and each of these measurements

was later compared with a precise determination of the actual yield under

regular processing of the batch on which the measurement had been made.

Examination of the residuals or errors of measurement had brought out

four importantfacts:

1. The meanof all the residuals was virtually 0.
2. The standard deviation of all the residuals was .9.

3. The shape of the distribution of the residuals was Normal for
all practical purposes.

4a. There was no observable tendency for a high residual to be fol-
lowed by a high residual, etc.: the errors of measurement were

independent of each other.
4b. There was no observable relation between the magnitudeor sign

of the errors made on any one batch and the true yield of that

batch; the errors of measurement were independentof é.

In discussing the Bernoulli and Poisson processes in earlier chapters
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we have emphasized repeatedly that two kinds of questions must be

answered before we may use distributions such as the binomial or the
Poisson to compute probabilities:

1. Is the process as such of the type in question?
2. Is its parameter known?

In our present problem we must ask the corresponding questions:

1. Is the process of a known type, and if so what?
2. Are the parameters of this process known?

The results of the manufacturer’s investigatign as reported above permit

us to answer these questions as follows. As applied to any one batch of

raw material, the measuring process:

1. Is of known type, generating independent, Normally distributed

values 2;
2. Has a mean p = E(Z) equalto the true normal yield & of the batch

being measured;
3. Has standard deviation o(#) = .9.

All our subsequent conclusions will depend for their validity on the

truth of these three assertions; we have adopted a certain model of the

real measuring process and our conclusions depend on the validity of the

model.

26.3 The Likelihood of the Sample Given 4

The (joint) likelihood of the sample described above 1s by definition

the product of the likelihoods of the nine individual measurements, just
as the likelihood of a binomial sample is p’q”~” (Section 25.4). Since we
have adopted a model in which individual measurements have approxi-

mately Normal distributions and since the variance of this distribution is

known to be o?() = .9?, we know how to computethelikelihood of each
measurement given any value of the process or population mean z = E(4).

96.3.1 Likelihood of an Individual Measurement

The true probability distribution of an individual measurement £ for

any given p is a histogram with bars of width 6z = .01, the fineness to
which individual measurements can be made. Since the shape of this

histogram is roughly Normal, we can approximate the area of a bar by
the use of the unit Norma] distribution. To do so wefind the location of

the bar in ‘the wu histogram corresponding to the given bar in the z histo-
gramby computing

C- ew _ op

“= 3@9
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The width of this bar in the u histogram is 6x/a(#) = 6x/.9; its height is
approximately Py(u) as read from Table II; andits area or likelihoodis

therefore approximately

Plalu) =ey Pr) =w=2
 

Thelikelihood of the sample as a whole for any given yu can be evaluated

by computing P(z|y) for each of the nine x’s in the sample and multiplying

these nine probabilities together.

26.3.2 Use of the Sample Mean

It can easily be shown, however, that if the individual measurements

are treated as Normal and independent and their variance is treated as
known, then the sample mean Z is a sufficient statistic for the sample.

The ratio

Likelihood of Z

Joint likelihood of the individual x’s
 

does not depend on the population mean », and therefore wewill get exactly

the sameposterior distribution if we base it on the likelihood of Z as if we

base it on the joint likelihood of the nine individual z’s. We can save

ourselves a good deal of labor andstill lose absolutely nothing if we use

the sample mean as a summary of all the relevant information in the

sample.
It deserves some emphasis that the truth of the statement that the mean

is sufficient in this problem does not depend at all on whether the measure-

ments are in fact Normally distributed: it depends only on the fact that if

we computed the individual likelihoods we would do so by use of the

Normal approximation. As we pointed out in Section 25.4.2,

To say that a statistic is sufficient is merely to say that a particular
short-cut method of computation will give the sameresult as a par-

ticular longer method of computation; it is a statement about arith-

metic and not a statement about the real world.

The Distribution of £. It is virtually obvious that the mean of a

sample from an approximately Normal population will have an almost

exactly Normaldistribution. As we saw in Section 17.3, the distribution

of virtually any sum of independent identically distributed random

variables becomes more and more Normal as n increases. The sample

total in our present case is a sum of independent random variables all
having the sameroughly Normal distribution, so that the distribution of

the total is already virtually Normal for n = 1; and the distribution of

the sample meanis identical to the distribution of the sample total except

for a change of scale.
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Thelikelihood of the observed sample mean = = 2.08 for any given

value of the process mean uy is therefore

P(a| p) = 2%. PAu) u= M

(8) o(Z)

where 62 is the fineness to which the sample mean can be measured{ and

 

o(f) =D 9 3,

26.4 The Posterior Distribution of £

Likelihoods in terms of » are of no use to us_as such, since the basic

random variable of our problem is the true normal yield £ of the batch

and not the mean of the measuring process applied to the batch; but

because it has been shown by careful investigation that the process mean p 18
equal to the true normal yield — we can compute the likelihood of the
sample for any given value of £, and this 7s what we need inorder to

apply Bayes’ theorem and thus get the posterior distribution of & It
cannot be too strongly emphasized that our insistence on the difference

between the meaning of » and the meaning of & is not due to a desire for

logical elegance: serious mistakes are very often made through failure to

inquire whether in fact a measuring process is unbiased.

We now proceed to compute the likelihood of = 2.08 for each

possible value of ~ The work is carried out in Table 26.3, which the
student should compare with Table 25.5. In the present problem the
factor o(£) = .3 by which we divide 6z to get the width of the correspond-

ing bar in the u distribution does not vary with the value of the basic

random variable, but it did vary in the problem of Table 25.5 and it must
never be simply assumed that this bar-width factor is the same forall

values of the basic random variable.

 

 

 

Table 26.3
Computation of the Likelihoods

z= uc E—p Height Width Area

. o(8) Py(u) 5E/o(E) P(&le)

2.0 + .27 3847 6Z/.3 3847 b2/.3
2.5 —1.40 . 1497 5Z/.3 .1497 6%/.3
3.0 —3.07 .0036 sz/.3 .0036 6z/.3

 

The posterior distribution of — can now be computed in exactly the

same way that we have proceededin earlier chapters; the work is shown

t In our example 6% = .01/9, but as usual this factor cancels out and therefore

need not be expressed numerically.
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in Table 26.4. It is left to the student as an exercise to show that the

posterior expected losses are $394 for acceptance and $9 for rejection.

 

 

 

Table 26.4

Computation of the Posterior Distribution

: Prior Likelihood Joint Posterior

P(é) P(&é) P(Z,&) P(é|z)

2.0 .15 3847 6%/.3 .0577 5Z/.3 .593

2.5 .25 .1497 5%/.3 .0374 6%/.3 . 384

3.0 .60 .0036 6%/.3 .0022 52/.3 .023

1.00 .0973 62/.3 1.000

PROBLEMS

1. Verify the statement in Section 26.1.1 that the prior expected losses are $115
for acceptance and $240 for rejection:

a. By working with the conditional losses and the full prior distribution of 2.
b. By comparing the expected cost of action under certainty with the expected costs

of the two decisions as computed by use of the mean of theprior distribution of £.
2. What was the probability, as evaluated before the sample described in the text

was actually taken, that a sample of nine would yield = 2.08?

3. Verify the statement at the end of the chapter that the posterior expected
losses are $394 for acceptance and $9 for rejection.

4. Compute the likelihood given & = 2.5 of the individual measurement + = 1.84:
a. Underall the conditions described in the text.
b. Under these same conditions except that the manufacturer’s investigation

had shown that the measuring process gaveresults .3 unit low on the average.
5. Compute the posterior probability distribution and the posterior expected

cost of uncertainty for the example of this chapter as they would have been if only

the following four measurements of the X content had been made: 3.00, 1.53, 1.30,

2.49.

6. The median of a sample of nine from a Normal population has an approxi-
mately Normal distribution with a mean equal to the population mean » and with
standard deviation equal to 1.22¢(Z)/+/n.

a. Compute the likelihood given ¢ = 2.0 of the median of the sample described
in the text.

b. What advantages and disadvantages can you see in using the median to com-
pute the posterior distribution of £ in the situation described in the text?

c. The statement that the distribution of the median in this case is approximately
Normal does not follow from the Central limit theorem or any of the discussion in
Chapter 17. Why?

7. In the light of the distinction drawn in this chapter between p» and £, what
important unstated assumption was madein Section 22.3.1?



CHAPTER 2%

Samples from ‘‘Normal’’ Populations

with Known Mean

In all problems involving samples which we have studied hitherto, the

actual cost which would be incurred as a result of any decision depended
on the unknown true value of the mean of the population (or, as in the

last chapter, on the unknown value of a variable related to the mean of
the population). While this is by far the most common kind of problem
faced in business practice, it is by no means the only kind. Costs may

depend on any of a wide variety of measures of the population, andin this

chapter we shall consider a situation where costs depend onits dispersion

or “‘scatter.”’

27.1 Statement of the Problem

The design thickness of a certain part is .360 inch with tolerance
+ .010; if a part is thicker than .370 inch or thinner than .350 inch it will

not fit in the assembly in which it is to be used. The part is ordinarily
manufactured on a high-speed automatic machine, and when the raw bar

stock is of proper quality this machine produces thicknesses which are

approximately Normally distributed with mean .360 inch and standard

deviation .003 inch, so that virtually none of the product is defective.
Occasionally, however, a bar is of poor quality and the high-speed
machine produceseither too large a mean thicknessor too great a scatter

among individual thicknesses; n either case the result is a substantial
numberof pieces which are out of tolerance. Each bar yields 1000 pieces

and each defective gives rise to losses amountingto $.50, so that a fraction

defective .1 implies a loss of $50 on the product of one bar, and so forth.

Since the bar stock is too expensive to scrap, the only remedy for this

situation is to machine the bar on a heavier but slower machine which can
produce with mean .360 inch and standard deviation .003 inch out of any

material. Use of this machineentails an extra cost of $4.50 for labor and

power.

Since there is no way of testing the machinability of a piece of bar

stock other than actually processing it on the high-speed machine, the

company has adopted a policy of inspecting thefirst pieces turned out
405
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from each bar on this machine. Deviation of the mean thickness from
standard is easily detected by a very simple device. The first 20 parts
produced from each bar are stacked in a tray which has gauge marks
showing the minimum and maximum total thickness which is tolerable.
If the thickness of the 20 parts falls outside these limits, the baris trans-
ferred to the heavy-duty machine. Detection of excessive scatter among

the individual thicknesses is more difficult, since it requires careful

micrometer measurements on the thickness of individual pieces. The

company’s policy is to make these individual measurements on the last
4 pieces from the test run of 20, and the present chapter will analyze the
problem of using these samples of 4 to decide whether or not the bar

should be transferred to the heavy-duty machine because of excessive
scatter.

Before this sampling policy was adopted the variability of the raw

material had been determined by a study in which a very large sample

was taken from the product of each of a very large numberof bars proc-

essed on the high-speed machine. The standard deviation o(#) of the

individual thicknesses in each sample was computed, and the resulting

frequency distribution is shown in Table 27.1. There is no reason to
assume that there has been any change in either the average quality or

the variability of the bar stock, and this frequencydistribution is adopted
as a probability distribution for the process standard deviation in the
next few runs to be made; this process standard deviation o(#) is the

basic random variable of our problem andfor brevity will be denoted by é.

Table 27.1

Standard Relative
deviation frequency

.003 .90

.004 .05

.005 .03

.006 .O1

.007 .O1

1.00

27.1.1 The Costs

As usual we must first compute, for each possible value of the basic
random variable, the conditional costs of the two possible decisions:

accept (do not transfer for scatter) and reject (transfer). The computa-
tion of these conditional costs 1s a little more complex in the present prob-
lem than in the problems studied hitherto because the cost of defectivesis

not in simple proportion to the value of the basic variable ¢, but the com-

putation is not at all difficult.

Fraction Defective as a Function of o. In order to compute the cost

corresponding to any value o of ¢ we must first compute the fraction
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defective corresponding to that c, and we do this by making use of the

following facts: (1) the population is roughly Normal, (2) its mean is

known as a result of gauging to have the value .360 inch, and (38) pieces
are defective if they are smaller than .350 inch or larger than .370 inch.
It follows that the fraction defective for any o is given by the area beyond
these tolerance points in the two tails of the Normaldistribution describ-

ing the population. We thus haveforthe fraction defective given ¢ = o

Py (a < 300 — Se) 4 Py (a > 310 — ae),
a o

and since these two tail areas are equal,

Fraction defective = 2 Py (a > *\
o

The values of .01/o are shown in column 2 of Table 27.2 and the cor-

responding fractions defective in column3.

 

  

 

Table 27.2

Conditional Costs and Losses

; o/s Fraction Cost Loss

° defective
Accept Reject Accept Reject

.003 3.33 .001 $ .49* $4.99 $ 0 $4.50

.004 2.50 .012 5.88 4.99* .89 0

.005 2.00 .046 22.54 4.99* 17.55 0

.006 1.67 .095 46.55 4.99* 41.56 0

.007 1.43 .153 74.97 4.99* 69.98 0

 

Conditional and Unconditional Costs and Losses. The cost of accept-
ance is the cost of the defectives which will be produced from that part of
one bar which remains after the first 20 pieces have been produced and
inspected. The expected number of defectives produced will be 980
times the fraction defective, and their expected cost will be $.50 times

that number or $490 times the fraction defective; this cost is shown in
column4 of Table 27.2. If the baris transferred, o will be .003, the frac-

tion defective will be .001, and the expected cost of defectives will be $.49.
Thecost of rejection is this amount plus the $4.50extra cost of the heavy-

duty machine, or $4.99 in all. Finally, the conditional losses are com-
puted in the usual way from the conditional costs and shown in thelast
twocolumns. The conditional costs and losses are graphed in Figure 27.1;
notice that the conditional cost of acceptance is not linear and therefore it 1s

impossible to compute the unconditional cost of acceptance from the mean of

the distribution of «.
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Figure 27.1. (a) Conditional costs; (6) conditional losses.

The unconditional expected losses of the two possible decisions are

computed on the basis of the prior information in Table 27.3. Observe
that the calculation is identical to that used in earlier chapters even

though we have taken ¢ rather than fraction defective as the ‘‘basic”’

random variable and therefore the costs are nonlinear.

Table 27.3
Unconditional Expected Loss without Sampling
 

Loss of acceptance Loss of rejection
  

 

  

o P(c)

Conditional Expected Conditional Expected

.003 .90 $ 0 $0 $4.50 $4 .050

.004 .05 .89 .044 0 0

.005 .03 17.55 .526 0 0

.006 Ol 41.56 .416 0 0

.007 .01 69.98 .700 0 0

1.00 $1. 686 $4 .050
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27.2 The Sample and Its Likelihood

Suppose now that a new baris put on the high-speed machine and
the four diameters measured to a ‘“‘tenth” are .3546, .3673, .3646, and
.3537 inch. In deciding whether or not to transfer the bar to the other

machine because of excessive scatter, we shall use this evidence in a way
whichis basically identical to the way in which we have used sample evi-

dence in earlier chapters. Wefirst find the likelihood of the sample for
each possible value of the basic random variable (¢ in our present prob-

lem), we then apply Bayes’ theorem to revise the probability distribution

originally assigned to this variable, and finally we compute the posterior
expected losses. In doing all this we shall assumethat all measurements
are absolutely without error. Our problem is thus quite different from the
problem of Chapter 26, where the thing measured wasfixed andall the
variability was in the measurements.

As always, the likelihood of the sample is the product of the likeli-

hoods of the individual members of the sample, and since we are assuming

that the population is Normal these individual likelihoods are given by

the formula

6x 4, xX — p
P(x) = =(6) Py (u) u = a

where éz is the fineness with which we can measure an individual element
—in this case, a diameter. In Section 26.3.1 we saw that we could use

this formula to find the likelihood of any x given any uw when o(#) was

known. In our present problem we can use this same formula to find

the likelihood of any z given any o = a(Z) because yu is knownas a result
of gauging. Thus for example: the likelihood of the measurement

x = .3673 given ¢ = .004 is

 

.004 .004

27.2.1 Use of the Statistic 8’

In the previous chapter we saw that the labor of computing and

multiplying together nine separate likelihoods for each uv could be short-
cut because we could get the same posterior distribution by basing it on

the likelihood of the sample mean: the sample meanis sufficient when o is
known. A similar short cut is available in our present problem: it can be
proved that the statistic

s' =. [= 2(@ — p)?

is sufficient when yu is known.t Notice that this statistic is not quite the

{+ The notation 2(* — yu)? can be interpreted as an instruction to perform the
following operations:

1. Subtract w from each z in the sample to obtain the corresponding deviation

‘ct — u);
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same thing as the standard deviation of the values in the sample, which
would be ~2(x% — #)?/n rather than ~/2(x2 — p)?/n.

The quantity 2(2 — uw)? in the present problem is computed in

Table 27.4, where all measurements are expressed in thousandths of an

znch in order to avoid writing large numbers of zeros. The observed

 

 

 

Table 27.4
Computation of Z(z — ,»)?

1000z 1000(z — p#) 10007(z — y)?

354.6 —5.4 29.16
367 .3 +7.3 53.29
364.6 +4.6 21.16
353.7 —6.3 39.69

143 .30
 

value of s’? is thus 143.30/4 = 35.82 when measurements are expressed
in thousandths, and therefore

s’ 135.82 = 5.98 thousandths of an inch
.00598 inch.

The Sampling Distribution of 8’. In order to find the likelihood of

this observed value of &’ we must know the sampling distribution of this
statistic, just as we must know the distribution of £ to compute the

likelihood of an observed value % It can be shown that when the popula-

tion from which the sample 1s drawn is Normal, the statistic 8’ has a dis-
tribution given by the formula

r= 1 n|
2

Mf of ’ / 1 ‘\?P(e’) = <P; [5 (5)

where P; is the ordinate of the standardized gammadistribution with
parameter r = Lon. Values of P’(s’) could thus be obtained from the
curve for r = 4% = 2 in Chart III of the gammadistribution, but the
nuisance of computing ns’/c? and 1n(s’/c)? can be avoided by using

Chart V, from which thedistribution of the ratio §’/o in samples from a
Normal population can be read directly. This distribution is known as

the x/+/f distribution (chi over the square rootof f).
Looking at Chart V, the student will see that there is actually a whole

family of x/+/f distributions of 8’/o, one for each value of a parameterf,
just as thereis a different gammadistribution for each value of the param-
eter r. This parameter f will be discussed in Chapter 28; for the moment
all that we need to know is that in problems involving the statistic $’

 

 

2. Square each of these deviations;
3. Add (2) the squares.
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defined above its value is equal to the sample size n.t In computing
likelihoods by use of the x/+/f distribution the student must remember:

1. P’(s’/c) must be read from the curvefor the correct valueoff.
2. If 5s’ is the width of a barin the s’ distribution, the width of the

corresponding bar in the distribution of s’/o is 6s’/c, so that

38 py (8!
P(s') = o Pil’ f)

For example: the likelihood of s’ = .00598 given o = .005 is found by
first computing s’/o = .00598/.005 = 1.20, reading P’,/./;(1.20) = .77 on

the curve for f = 4 in Chart V, and multiplying this height by the width

6s’/.005 to get the area 154 és’.

 

27.3. The Posterior Distribution of ¢

The likelihood of the observed s’ = .00598 is computed in Table 27.5
for each possible o and the posterior distribution is then computed in the

usual way in Table 27.6. It is left to the student as an exercise to show
that the unconditional expected losses are $15.37 for acceptance and
$1.52 for rejection.

 

 

 

 

 

 

Table 27.5
Computation of the Likelihoods

] Height Width Area
7 Sie P’y//7 (8’/e) 58!/o P(s’|c)

.003 1.99 .02 5s’ /.003 6.7 6s’

.004 1.50 .30 5s’/.004 75.0 58’

.005 1.20 77 5s’/ .005 154.0 68’

.006 1.00 1.08 5s'/ .006 180.0 és’

.007 85 1.15 5s’/ .007 164.3 de’

Table 27.6

Computation of the Posterior Distribution

5 Prior Likelihood Joint Posterior

P() P(8’|o) P(s',c) P(o|s’)

.003 .90 6.7 ds’ 6.03 ds’ .338

.004 .05 75.0 ds’ 3.75 6s’ .210

.005 .03 154.0 ds’ 4.62 ds’ 209

.006 .O1 180 .0 és’ 1.80 ds’ .101

.007 .01 164.3 6s’ 1.64 58’ .092

1.00 17 .84 és’ 1.000
 

} The distribution of §'/o is known as the x/+/f distribution because the ratio
s’/o can be written

and x? (chi square) is the standard nameforthe statistic S[(z — y) /a}?.
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PROBLEMS

1. Compute the unconditional costs of acceptance, rejection, and action under
certainty for the example in the text, and from them compute the cost of uncertainty:

a. Underthe priordistribution of ¢.
b. Under the posterior distribution.

2. What was the probability, as evaluated before the sample in the text was
actually drawn, that a sample of four would yield s’ = .00598?

3. Compute the expected value of ¢ under the prior distribution and the condi-
tional cost of acceptance given ¢ = E(¢). Explain in common-sense language why
this cost is not equal to the cost of acceptance computed in Problem la and why the
latter figure is the correct expected cost.

4. A sample from another bar yields measurements .3640, .3590, .3620, .3590
inch.

a. Should the process be rejected for excessive scatter?

b. Whatis the expected cost of uncertainty?
5. In earlier chapters we have solved problemsof the sort discussed in this chapter

by simply counting the numberof defectives in the sample and basing the posterior
distribution on the binomiallikelihood of the observed valueof 7.

a. Use this method to compute the posterior distribution of the fraction defective
in the light of the sample described in the text, calculating the binomial likelihoods by
use of the binomial formula rather than using binomial tables.

b. How can this posterior distribution differ from that implied by Table 27.6 if
both r and s’ are sufficient statistics, as it is stated they are?

6. In actual quality-control practice, decisions of the sort described in the text
are usually based on the sample range (difference between thelargest and the smallest
value in the sample). What advantages and disadvantages can yousee in this method

as compared with (a) the binomial method and (b) the method used in the text?



CHAPTER 28

Nuisance Parameters: *‘Normal’’ Populations

with Both Parameters Unknown

The method of analysis used in Chapters 26 and 27 was identical to the

method used in Chapters 21 through 25 even though two parameters were

required to describe the population in Chapters 26 and 27 while only one
was required in earlier chapters. What all of these problems had in

common was the fact that the value of the cost-determining random

variable was the only unknown parameter in the distribution of the

sample observations. We now take up the new problems which arise
when the value of the cost-determining random variable is not the only
unknown parameter. As an example we shalluse the simplest possible

case, that of an approximately Normal population nm which both parame-

ters are unknown.

28.1 Statement of the Problem

In order to focus the discussion on what is really new in this new

kind of problem, we shall use the same example of choosing between two

kinds of chemical processing that we used in Chapter 26. Thesole
difference is that we now assume that the manufacturer has not previously
made a careful investigation of the precision of the measuring process.
Instead, we assume that when asked aboutits precision he says that he
has no exact knowledge but that, if he were forced to place bets on the

value of ¢,{ his experience with similar processes would lead him to bet in

accordance with the odds in Table 28.1. On the other hand, we assume

Table 28.1

o P(c)

6 .25

9 .50

1.2 .25

1.00

that despite. the lack of direct evidence on the point the manufacturer

t We continue the practice introduced in Section 27.1 of using the symbol o by
itself to denote o(%) when this quantity is a random variable.

413
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believes that repeated measurements would have a nearly Normal dis-

tribution and is absolutely sure that they are unbiased—i.e., that the
mean p» of the infinite population of possible measurements on a single

batch is equal to the true normalyield & of that batch.
To avoid the need to refer back to Chapter 26, we repeat in Table

28.2 the other basic data of the problem: the prior distribution of the
normal yield — = f# and the conditional costs and losses of the decisions
to accept and reject.

 

  

 

Table 28.2

Conditional cost Conditional loss

f= p Po(é)
Accept Reject Accept Reject

2.0 15 $1000 $400* $600 0

2.5 .25 500 400* 100 0

3.0 .60 0* 400 0 $400

1.00

 

Thereis one and only one underlying reason why we cannot solve this

problem in exactly the same way that we solved the problem when o was
‘known: the formula for the likelihood of any individual observation

6x, {4 —P(e) = Py (2>*)
oC

 

will give three different results for any given », depending on whichof the

three possible values o we use in the formula. Since the likelihoodof the

sample as a whole is the product of the likelihoods of the individual
observations, this means that there will be three different joint likelihoods
of the sample for each p» rather than a single joint likelihood as there was
in Chapter 26; and if this is true when we work with the individual
observations, the same thing must necessarily be true when we summarize

them byany sufficient statistic or statistics.

Fortunately a very simple device will get us out of this difficulty and
permit us to find the required posterior distribution almost as easily when
both » and o are unknown as when only one of them is unknown. This

device consists in first finding the joiné posterior distribution of ~# and ¢

together and then obtaining from this joint distribution the marginal pos-
terior distribution of # = — alone. The joint posterior distribution of

pi and ¢ is found by exactly the same procedure we have used previously

to find the posterior distribution of a single random variable:

1. We assign a prior probability to every possible yu, « combination.
2. We compute the likelihood of the sample for each yp, « combina-

tion.
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3. From the prior probabilities and the likelihoods we compute the
posterior probability of each nu, o combination by applying Bayes’
theorem in absolutely standard fashion.

‘The marginal posterior distribution of 7 = & alone is then computed from

this joint posterior distribution of @ and ¢ together in exactly the same
way that the marginal distribution of 7 was computed in Table 12.4 from a
joint distribution of # and 7.

28.2 Solution of the Problem When n = 1

Although weshall ultimately work as in earlier chapters with sum-

mary statistics rather than with the individual observations in a sample,
weshall first explain the basic logic of our new procedure by showing how

to compute the marginal posterior distributions when the sample consists

of a single observation, n = 1. After this has been done weshall see that
exactly the same basic method can be applied in working with summaries

of a larger sample.

28.2.1 The Joint Prior Distribution of fz and &

Since there is no reason to think that a high value of # will tend to be

accompanied by either a high or low value of ¢, etc., these two variables
are independent by definition. The joint probability that @ will have some
specified value » and that o will have some specified value o is then the
product of the two simple probabilities. For example: the probability

that ~ = 2.5 is .25 by Table 28.2; the probability that ¢ = .9 is .50 by
Table 28.1; therefore the joint probability that 7 = 2.5 and ¢ = .9 is
.25 X .50 = .125. The complete joint prior distribution of @ and @ is
worked out in this way in Table 28.3.

 

 

Table 28.3
Computation of Joint Prior Probabilities

B=eE P(u) o P(e) P(u,c)

2.0 15 6 .25 .0375
9 .50 .0750

1.2 .25 .0375

1.00
2.5 .25 6 .25 .0625

9 .00 . 1250

1.2 _.25 .0625

1.00

» 0 .60 6 .25 . 1500
9 .50 .3000

1.2 25 . 1500
 

1.00 1.00 1.0000
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28.2.2 The Itkelthood of the Sample

Assume now that a single sample observation is taken and that its
value is z = 1.84. In Table 28.4 the likelihood

P(e = 1.84) = py Gan= *)o

is computed for every yp, o combination. These computations present

nothing whatever that is new.

 

 

Table 28.4

Computation of Likelihoods

_ 184-4 Height Width Area

“ ° “= o Py(u) bx/o P(1.84]u,0)

2.0 6 20 .385 bz/.6 .642 bx

9 .18 .392 dx/.9 .436 dx

1.2 .13 .396 bx/1.2 .330 bz

2.5 6 —1.10 .218 57/.6 .363 62

9 73 .306 éx/.9 .340 bz

1.2 .55 .343 2/1.2 .286 dx

3.0 6 —1.93 .062 dx/.6 .103 dz

9 —1.29 .174 6x/.9 .193 bz

1.2 .97 .249 62/1.2 .208 dz

 

28.2.8 The Joint Posterior Distribution of fi and &

In Table 28.5 we now apply Bayes’ theorem in the usual way. The

prior probability of each nu, « combination is taken from Table 28.3; the
likelihood of the sample given this yp, 7 combination is taken from Table
28.4; the joint probability of the n, ¢ combination and the sample is com-

puted by multiplying the prior probability by the likelihood; and the

Table 28.5

Computation of Joint Posterior Probabilities
 

 

_ Prior Likelihood Joint Posterior
we ° P(u,0) P(1.84|u,0) P(u,0,1.84) P(1,011.84)

2.0 6 .0375 .642 dz .0241 bx .094

9 .0750 .436 bz .0327 dz .127

1.2 .0375 .330 62 .0124 dz .048

2.5 6 .0625 .363 bz .0227 dbz .088

9 . 1250 .340 dz 0425 bx . 166

1.2 .0625 .286 dx .0179 sz .070

3.0 .6 . 1500 .103 dx .0154 bx .060

9 . 3000 193 dba .0579 5x .226

1.2 ,1500 ,208 br ,0312 62 121
1.0000 . 2568 daz 1.000
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posterior probabilities are computed by dividing the joint probabilities
by their sum.

28.2.4 The Posterior Distribution of p

From the joint posterior probabilities of all 4, « combinations in the

last column of Table 28.5 we can compute the marginal posterior distribu-

tions of both @ and ¢ by the standard method for computing marginal
from joint probabilities; the work is shown in Table 28.6. ‘The’ pos-

terior probability that 7 = — = 2.0 is .269, since this is the total prob-

ability that one or another of the following three joint events will occur:

a = 2.0, ¢ = .6;
p= 2.0, ¢ = .9;

p = 2.0, a = 1.2;

and these are the only events which involve 7 = 2.0.

Table 28.6

Computation of Marginal Probabilities
 

Cc

 

 

 

wp=eé Total

6 9 1.2

2.0 .094 .127 .048 . 269

2.5 .088 .166 .070 324

3.0 .060 .226 .121 .407

Total . 242 .§19 .239 1.000

 

98.2.5 Nuisance Parameters

Parameters like o in this example are known as nuisance parameters.
We want the distribution of the sample values to depend on the parameter

uw because it is this relation which enables us to learn something about
= yw from the sample. We do not wantthe distribution of the sample

values to depend on any other unknown parameters because this in effect

confuses the evidence concerning the value of = pw. But

If nuisance parameters are present and we want to make full use
of all of our information, we have no choice other than to assign

them probability distributions and take them into account in our

computations.

28.3 Summarization of a Sample When Both yz and ¢
Are Unknown

Suppose now that instead of a sampleconsisting of a single observa-
tion x = 1.84 we have the same sample of nine observations that we had
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in Chapter 26, the observations having the values 1.84, 1.75, 1.39, 1.65,
3.53, 1.03, 2.73, 2.86, and 1.96.

As always, one way of proceeding is to work directly with the indi-

vidual observations. For un = 2.0, o = .6, the likelihood (conditional
probability) of the observation x = 1.84 is .642 6x, as shown in thefirst
line of Table 28.4. By makingsimilar computations for each of the other

eight observations and multiplying the results together, we would have

the joint likelihood (conditional probability) of the whole sample for

p = 2.0,0 = .6. This likelihood would replace .642 6z at the top of the
likelihood column in Table 28.5, and each of the other entries in that
column would be similarly replaced by the joint likelihoods of the whole
sample given a particular pair of values for » and o. The remainder of

the calculations would then proceed exactly as before.

28.8.1 Use of the Statistics & and s

Fortunately the first and most laboriousstep in this operation—com-

putation of the joint probability of the whole sample for each pair of

values of & and é—can again be short-cut by working with summaries of

the sample rather than with the individual observations. It is almost

obvious, however, that the sample cannot be summarized by any single

statistic, since as we already knowit requires the statistic — to summarize

the sample when o is known andit requires the statistic s’ to summarize
the sample when » is known. What we can do is summarize the sample

by two statistics, the sample mean Z andthestatistic

$ = i2G — 2)?

where

f=n— 1.

Notice carefully that this statistic s differs in two respects from the

statistic s’ used in Chapter 27:

1. The sample mean £ is used in place of the population mean uz,

which is unknownin our present problem.
2. The divisor or number of degrees offreedom f is not the sample size

nbutn — 1.

The reason for the name “degrees of freedom”’ is obvious if we think of a

sample of size n = 1. In that case = x and Z(x — £)? = (a — 2)? is

not ‘‘free”’ to have any value other than 0. Thestatistic s then has the

meaningless value +/1(0?, which expresses the fact that all the informa-

tion about » and o contained in a sample of size n = 1 is conveyedby &,

i.e. by the value z of the single observation in the sample.
It can be shown that when the population is Normal the twostatistics
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@ and s are (1) independent and (2) jointly sufficient. Thefirst of these
properties means that the likelihood of does not depend on the valueof s

and vice versa. The second meansthat the ratio

(Likelihood of #) X (likelihood of s)

Joint likelihood of the individual z’s
 

does not depend oneither » or a, and therefore that we will get exactly the

same posterior distributions for # and ¢ by working with the jointlikeli-
hoods of # and s as we would by working with the joint likelihoods of the

nine individual z’s. We again remind the student that the condition

“when the population s Normal”really means “when the probability of

the individual observations would be calculated as if they were
Normal’’—we are simply asserting that a particular short method of

calculation will give the same results as a particular long methodof

calculation.

28.3.2 The Sampling Distribution of §

It can be shown that when the population from which the sample 1s

drawn is Normal, the distribution of the statistic § is given by the formula

us = plis(sy|,o1rin ~ Seb) 4
where P’, is the ordinate of the standardized gammadistribution with
parameter r = 16f. This formula is identical to the formula given in

Section 27.2.1 for the distribution of 8’ except that 7 is replaced by f. As

in the caseof 8’, it is more convenient to use Chart V of the x/+/f distribu-

tion of §/c than to use Chart III of the gammadistribution;} the likeli-

hood of s is then

f)_iy, (8
P(s) = o Peiva(’

28.3.8 The Likelihood of the Sample

Wealready know that for this particular sample

z= 2.08.

 

 

Recalling that n = 9 and therefore f = 8 we now compute

s? = 1g[(1.84 — 2.08)? + (1.75 — 2.08)? + - - +] = .6347,

s = v/.6347 = .80

t-It is simply the resulting ability to make convenient use of tables or charts like
Chart V which explains why in problemslike the present one the statistic s is defined
with divisor n — 1 rather than with divisor n. If the definition had the divisor n,
Chart V could be used only by multiplying the statistic by 4/n/(n — 1) before con-

sulting the chart.
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As an example of the use of the two statistics and s we take the case
w= 2.0,c¢ = 6. For this value of &

x = ee 2,

08) =
s 80 _

The conditional probability of # is then

P(Z = 2.08) = aw Pr (2285200) _ bs 3683 = 1.84 3z

and the conditional probability of s is

8 p
P(s = .80) = — Prph33\f = 8) = *..52 = .87 ds.

What we want, of course,is the joint probability of and s given » = 2.0,
o = .6, since this will represent the joint likelihood of the nine individual
observations. Because the probability of Z is independent of the prob-

ability of s, we simply multiply the two probabilities:

P(Z, s|u = 2.0,0 = .6) = 1.84 52 X .87 ds = 1.60 52 Ss.

Similar calculations are summarized in Table 28.7 for all possible yn,
a combinations. The student should make sure that he understands the

procedure by actually verifying one of the entries in the table. In so

doing he should notice that not only the likelihood of s but also thelikeli-
hood of # varies with o; and he should further notice that o(£) = o/+/n
affects both the location (and thus the height) and the width of the bar for

u = (% — p)/o(Z).

 

 

Table 28.7

Computation of Joint Likelihoods

Likelihood Likelihood Joint
B 7 u of Zz s/o of s likelihood

2.0 6 + .40 1.84 5z 1.33 .87 bs 1.60 5 és

9 + .27 1.28 6% . 89 1.77 ds 2.26 5% ds

1.2 + .20 .98 52 .67 .71 88 .70 6% bs

2.5 6 —2.10 22 52 1.33 .87 és .19 52 bs

.9 —1.40 .50 5% .89 1.77 ds .88 5f bs

1.2 —1.05 .58 52 .67 .71 68 .41 5% és

3.0 .6  —4.60 .00 52 1.33 .87 és .00 52 ds

9 —3.07 .0O1 52 .89 1.77 és .02 52 bs

1.2 -—2.30 .O7 52 .67 71 68 .05 52 bs
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98.3.4 The Posterior Distribution

The joint likelihoods in the last column of Table 28.7 convey exactly
the same information about the sample of nine that the likelihoods in the
last column of Table 28.4 conveyed about the sample of one. In Table
28.8 we proceed to compute the joint posterior distribution of § = @ and

¢ by exactly the same procedure that we used in Table 28.5. The
marginal posterior distribution of & is given by the subtotals in thelast

column: P(— = 2.0) = .614, and so forth.

Table 28.8

Computation of the Posterior Distribution

 

 

_ Prior Likelihood Joint Posterior
=H ° P(é,c) P(Z,s|E,o) P(Z,8,£,c) P(E, az, 8)

2.0 6 .0375 1.60 5z és .0600 5z ds .144

9 .0750 2.26 5 58 . 1695 5% 6s 407

1.2 .0375 10 52 &s .0262 5% 5s 063

.614

2.5 6 .0625 .19 5% 5s .0119 5% 5s .029

9 . 1250 .88 6Z és .1100 5% és . 264

1.2 .0625 .41 dz bs .0256 5Z 5s -061

.304

3.0 6 . 1500 .00 5% ds 0000 5% 58 .000

9 . 3000 .02 dz bs .0060 5% dbs .014

1.2 . 1500 .05 6% 58 .0075 5€ és 018

1.0000 .4167 52 58 . 032

1.000

 

It is left as an exercise to show that the expected loss of acceptance is
$404 while the expected loss of rejection is $13. Rejection is the better

choice just as 1t was in Chapter 26, but the uncertainty about ¢ has

increased its expected loss from $8 to $13.

PROBLEMS

1. Compute the prior expected loss of acceptance for the example of the text.
Does uncertainty about ¢ have any effect on this computation? Why?

2. Given that @ and ¢ are independent and havethe distributions shown in the

following table, compute their joint distribution.

 

 

K P(u) o P(oc)

2.2 .20 a .25
2.4 .30 8 .35
2.6 .50 9 40

1.00 1.00
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3. Compute the likelihood of the single observation z = 2.80
a. For pw» = 2.2,0 = .8.

b. For » = 2.4,¢0 = .7.

4. Given the distributions of Problem 2, compute the joint probability that

Qa. f = 2.2,¢ = 8, and & = 2.80.

b. f = 2.4,¢ = .7, and & = 2.80.

5. Verify all values in the sixth line (u = 2.5, 0 = 1.2) of the following tables:
a. Table 28.5.

b. Table 28.7.
c. Table 28.8.

6. What was the probability, as evaluated before the sample in the text was
actually drawn, that a sample of nine would yield 2 = 2.08 and s = .80?

7. Find the posterior distribution of ¢ on the evidence of the prior distributions
and the sample of nine described in the text.

8. Verify the posterior expected losses given at the end of the text.
9. Compute the posterior distribution of — and the posterior expected costs of

acceptance andrejection for the examplein the text as they would beif the measuring
process were known to give measurements which are .37 unit high on the average and
if the following four measurements of the X content had been made: 3.37, 1.90, 1.67,
2.86. Most of the computations which would be required by this problem can be
avoided by starting from the results shown in the following table.

 

 

o P(slo)

6 .85 68

1.2 .79 ds

é o P(Zlé,c) P(Z,8,£,c)

2.0 .6 1.28 5 .0408 52 bs

9 87 6% .0724 5% ds

1.2

2.5 6 .50 5% .0266 5% bs

9 .08 6%

1.2 502 5 .0257 5% bs

3.0 .6 .01 5% .0012 5% dbs

9

1.2 21 5% .0249 $2 bs

 



CHAPTER 29

Populations of Incompletely Specified Form;

‘“‘Large-sample Theory”’

In our study of measured (many-valued) populations, we have up to now

always assumed that the population with which we are dealing had a
known mathematical form—FPascal, exponential, or Normal. It was
becauseof this fact that these populations were fully defined by only one
or two parameters: given definite values for these parameters, the entire
distribution of the population could have been graphed by substituting
these values in the mathematical formula for the type of population in

question.

In the case of the Pascal population it is possible in some applications

to maintain that this mathematical form is a virtually exact description
of the real physical population. A real physical process may actually be

known to operate almost exactly as a Bernoulli process, and the Pascal
distribution of intervals is a mathematically exact deduction from the

basic assumptions of a Bernoulli process. While we did not pretend that
the exponential and Normal distributions were exact descriptions of the
real populations which they represented, they too may in somesituations
be knownto give very close approximations to the heights of the bars in

the histogram of the real population. The best example is an exponential

population of Poisson intervals, since the nature of the mechanism gener-
ating the intervals may be knownto operate almost exactly as a Poisson

process.
In other cases, however, the evidence for the accuracy of such

approximations is much weaker, as in the case of the chemical assaying
process discussed in Chapter 26 or the production process discussed in

Chapter 27. In these applications there was no really strong a priori or

‘theoretical’? reason to believe that the population was Normal: the
proposition rested primarily on the fact that a Normal curve had given a

reasonably good fit to a few score observations. In the situation dis-
cussed in Chapter 28 the evidence was weaker still. If a measuring
process has beensolittle studied that its standard deviation 1s not known,

the only reason to think that it will generate an approximately Norma]
population of measurements is the general knowledge that some measur-

423
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ing processes of more or less the same type do in fact generate such

populations.

The student may well inquire why weresort to approximations in
such cases instead of using some more exact method of analysis, and the
first purpose of this chapteris to answer that question. After it has been

answered we shall go on to draw the implications for the analysis of
decisions in situations where we have even less evidence on the form of

the population than we had in Chapter 28. Such situations are unfortu-
nately more commonthan not.

29.1 The Exact Description of a Measured Population

The only exact representation of a measured population is a histo-

gram with as many bars as there are possible values of the variable. A

complete description of such a histogram would require a statement of

the area of every one of the bars but one—the area of one bar can be

calculated as 1 minus the area of all the others, just as gq = 1 — p—so
that if there are P possible values of the variable it requires P — 1

numbers to describe the histogram. The description does not have to be

put in this particular form, of course. Instead of specifying the areas of
P — 1 bars, we could specify the mean of the population and theareas of

any P — 2 bars, or the mean and variance and the areas of any P — 3
bars, and so forth. But no matter what set of parameters we choose, it
requires P — 1 parameters to describe the population completely.

Suppose now that the costs of various acts depend on the mean p of

some population and that we wish for this reason to compute the posterior

distribution of f in the light of the evidence supplied by a sample of size

n drawn from the population. Todo this we must computethelikelihood

of the sample for each possible value of #, and it will therefore be simplest

to think of the population as described by the value of 7 and P — 2 other

parameters. It is fairly obvious that the likelihood of any one observa-
tion in the sample will depend on the value of at least one parameter

other than yu; and unless there are ‘‘tied”’ observations it follows that the

joint likelihood of the n observations in the sample will depend on at least
n different parameters in addition to the value of the cost-determining
random variable 7.

Unless we know the values of these n other parameters, each one of them

1s a nuisance parameter exactly aso was a nuisance parameter in Chapter 28.

In that chapter we had to computethe likelihood of the sample for every

possible combination of values of @ and & and then multiply by theprior

probability of that combination. If there were n nuisance parameters we
would have to do this for every possible combination of values of @ and

all the n nuisance parameters and then multiply by the prior probability

of each combination. It is not so muchthedifficulty of carrying out the
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actual computations which bothers us, since this might be solved by the

use of either more advanced mathematical techniques or high-speed

computers. The real difficulty is that assessment of the prior probability

of each combination of values of the nuisance parameters requires the use

of experience and judgment, and the mindrecoils at the prospect of sup-

plying these probabilities.

29.2 Complete vs. Incomplete Models

29.2.1 Completely Specified Approximate Models

Thus we cannot try to be “exact”? when we deal with a measured

population where the numberof possible values of the variable is at all

considerable, and we must find some other method of analysis. One

possible procedure is the one we have used hitherto. We reduce the

problem to manageable proportions by using a model which describes

the population completely (although not exactly) in termsof only a limited

number of parameters. The exponential and Normal populations which

we havealready studied are just twoof a wide variety of such models; and

although it is beyond the scope of this course to discuss other models in

detail, the student should realize that the general principles involved in

their use are identical to those involved in the use of the models we have

already studied. The joint likelihood of any sample can alwaysbe calcu-

lated from the likelihoods of the individual observations, since a modelof

a population is in effect nothing but a statement of the likelihood of any

observation given specified values of the parameters. If, however, the

sample is to be summarized by sufficient statistics, two problems are

involved for each new model: we mustfirst find out what are the sufficient

statistics and then find tables of or means of computing the sampling dis-

tribution of each statistic we need to use.

29.2.2 Incompletely Specified Models; Use of the
Central Limit Theorem

Althoughit is not at all hard to find a fairly simple model which will

express everything we know or believe about a population, the computa-

tion of the exact likelihood of the sample for each possible value of the

decision parameter may be quite laborious even when the modelis fairly
simple. Sufficient statistics do not exist for all models, and even when
sufficient statistics exist their distributions may not be tabulated. Inall

such cases we would be forced to work directly with the likelihoods of the

individual observations if we wished to extract all the information which

the sample contains.

When weare dealing with very small samples we are usually forced
to use as exact a model as wecan, regardless of the computational and
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other difficulties which this may entail. Our information is so scanty

that we cannot afford to waste any of it, whether this information is
‘prior’? information or is contained in the sample. When we have

reasonably large samples, on the contrary, we are usually able to do nearly

as well by relying on the Central limit theorem and not specifying the

exact shape of the population at all; and the labor involved will in general
be far less. Since most business problems turn on the mean of some

population, we shall show in the remainder of this chapter how “‘large-
sample theory’’ can be applied to decisions concerning the mean when
the shape of the population is only very roughly specified.

29.3 Decisions Concerning the Population Mean; Population
Variance Known

Wealready know that if several independent random variables all

have the same distribution and this distribution has a finite variance,

then whatever the shape of this distribution maybe,the distribution of the

sum of the variables approaches Normality as the numberof variables in

the sum increases (Section 17.3). Since the distribution of a mean is the
sameas the distribution of a sum except for a changeof scale, this implies

immediately that the mean of a sample from a process generating inde-

pendent observations will have a distribution which approaches Normal-
ity as the size of the sample increases provided only that the variance of

the values generated by the processis finite—the proposition is independ-
ent of the ‘‘shape”’ of the infinite population of observations generated
by the process. As for samples drawn without replacement from a finite

population, the Central limit theorem does not apply strictly, since the
values of the successive sample items are not independent; but we have

seen in discussing the hypergeometric distribution (Section 23.2.1) that

samples from a finite two-valued population nevertheless in fact approach

Normality as n increases provided that n/N is not too large, and the same
thing is true of finite many-valued populations.

Thus provided that the sample is large enough to justify treating the

sample mean as Normally distributed and provided that we know the
value of the population standard deviation o, we can compute the pos-
terior distribution of the mean of a population of any shape by exactly

the same procedure that we used in Chapter 26 to deal with a population

of Normalshape. We must, of course, rememberto use the finite-popula-
tion correction in computing o(£) if the sample is drawn without replace-

ment from a finite population (cf. Section 25.5.2).

29.3.1 Normality of £

Wehavealready repeatedly examined the Normal approximation to
the distributions of the means(or totals) of samples from a wide variety
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of populations, and we know that the rapidity with which the exact dis-
tribution of # approaches Normality dependson the nature of the popula-
tion. This means, of course, that we do have to have a model of the
population in mind when deciding whether a given sampleis large enough
to justify the use of the Normal approximation, but for this purpose we

do not have to have decided on a complete and detailed mathematical
specification of the model. Wecan settle the question by looking at the

distribution of £ in samples from mathematically specified populations
which correspond roughly to the model we have in mind.

Rectangular Populations. One type of nonnormal population which

often occurs in business problemsis approximately recfiangular: all values
of the variable within a certain limited interval are nearly equally likely,

and all values aboveor below thelimits of that interval are nearly or com-
pletely impossible. Such populations generally arise as a result of some
kind of preselection. Ball bearings which have a roughly Normal dis-
tribution when manufactured maybe sorted into a numberof size groups

after manufacture, and if the range of diameters included in any onesize
group ls narrow compared to the natural spread of the process by which

the bearings are manufactured, each group will contain just about as
many bearings whichare just large enough to be included in the group as
it contains bearings just small enough to be included. ‘“‘Stratified”’
sampling is another common source of rectangular populations. Even

though the dollar values of all items in an inventory may have a nearly

exponential distribution, we may sample the inventory by taking one

sample of all the very-low-value items, another sample of the next higher
group of items, and so forth. Whenthis is done, the distribution of any
one of the sampled subpopulations will be very nearly rectangular.

The curves labeled # in Figure 29.1 show the true probability and
cumulative distributions of # in samples of size 10 from a rectangular dis-
tribution while the curves labeled N show the Normal approximation to
these distributions. It is obvious that even for samples as small as 10 the
error in the Normal approximation to the distribution of £in samples from a
rectangular population is totally negligible.

Skew Populations. The other most common type of nonnormal
population encountered in business problemsis asymmetric, or “skew.”
The exponential distribution is an extreme example of a skew population
which we have already encountered both in connection with intervals
generated by a Poisson process and as an approximation to many in-

ventory populations actually encountered in practice. In other cases
inventory and other empirical populations are quite reasonably well
described by some curve of the gamma family shown in Chart III; as we

already know, the exponential population is simply the special case r = 1}

of this family.

The curveslabeled E in Figure 29.1 show the true distribution of # in
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Figure 29.1. Distributions of sample means with Normal approximation,

n= 10.
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samples of size 10 from an exponential population; the curves labeled G

show the same information for a gamma population of the shape shown
by the curve labeled r = 2 in Chart III. Comparing these curves with

their Normal approximation, we see that the effect of skewness on the

Normality of the sample mean is much more serious than the effect of rectan-

gularity—for many purposes it might be rather unsafe to use the Normal

approximation for samples this small from populations this skew.

29.4 Population Variance Unknown: ‘‘Large-sample Theory”’

Although werarely if ever really know the variance of the population

and therefore of # exactly, we very often know enough about the variance

to treat it as if it were known exactly when costs will depend only on the

value of uy.

Exact knowledge of o is unnecessary when the cost-determining

random variable is ~ because uncertainty about o has only a small

or ‘“‘second-order”’ effect on the posterior distribution of 7.

As a simple numerical example of the effect of uncertainty about ¢ on

the posterior distribution of f, let us reexamine the problem of Chapter

28, where the uncertainty about ¢ was very great. In that chapter the

problem was solved “‘exactly’’ by using all the available information on

¢—both that expressed by the prior distribution of ¢ and that obtained

from the sample through use of the statistic s. The result was the pos-

terior distribution of ~ shown in the column headed “‘all available evi-

dence”’ in Table 29.1. The next column, headed ¢ = Eo(¢), shows the

Table 29.1
 

Posterior probability of » on basis of

 

 

2 Prior

probability mavanaore é = E,(s) = 9 ¢é=s = 8

2.0 15 61 .59 66
2.5 25 36 .39 .33
3.0 .65 .03 02 01

1.00 1.00 1.00 1.00
 

} The student whois curious about the effect of the skewness of these two popula-

tions on larger samples or the effect of a lesser degree of skewness can investigate it

by meansof Figure 17.8. Since the gamma population with parameter r = 2 can be

regarded as the distribution of the sample total or mean in samples of size 2 from an

exponential population, the mean of a sample of size n from this gamma population

is distributed like the mean of a sample of size 2n from an exponential population.

In general, the mean of a sample of size n from a gamma population with parameter

r is distributed like the mean of a sample of size rn from an exponential population.
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distribution of @ which we would have obtained if we had treated the
mean of the prior distribution of ¢ as if it were the known value of4.
Finally we show, in the column headed ¢ = s, the distribution we would
have obtained if we had treated the observed value of thestatistic § as if
it were the known value of ¢. Examination of Table 29.1 shows that
while the three posterior distributions show substantial percentagediffer-
ences in the probabilities assigned to » = 3.0, the absolute differences are

all quite small and would have litile effect on expected costs in a situation
like that of Chapter 28.

29.4.1 The Statistic f and Its Sampling Distribution

The impression given by this example can be confirmed in a more

systematic way by a different kind of argument. Whenthetrue value of

¢ is unknown andan estimate basedsolely on a sampleis to be usedin its

place, the most common procedure1s to take as the estimate the statistic
s defined in Section 28.3.1. When the shape of the population is unspeci-
fied it is impossible to say whatis the best estimate of c, but at least in

most situations the estimate s is probably about as good as any that can
be devised.

Suppose then that in some problem wedotreat o as if it were known
to have the value s even though the true value is actually unknown. We

will compute thelikelihood of the observed < by use of the Normal approx-

imation, but when we standardize Z in the usual manner wewill not get
the true value of the statistic

i— up X— yp,

~ o(8) og/4/n’

what wewill get is an “‘estimate”’ of u which is usually called

 

 

Uu

_ > #
s/Vn

What we now wantto do js to find some rough way of saying what error

this use of an estimate of u rather than u itself may producein thelikeli-

hoods weassign to Z, and we can do this by comparing the sampling dis-

tribution of the statistic @ with the sampling distribution of its estimatef.

Student’s Distribution. The distribution of ? will, of course, depend
on the shape of the population from which the sample is drawn; and the

distribution is unfortunately unknown for most populations. We can,
however, get an idea of the order of magnitude of the errors which will arise
by treatingthe observed value of 7 as if it were the true value of @ by

comparing the two distributions for the one well-known case, that of
samples from Normal populations.

- When a sample is drawn from a Normal population, the statistic f has
what is known as Student’s distribution. Since the s which occurs in

t  
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the denominatorof ¢ has a x/~+/f sampling distribution which depends on
the number f of degrees of freedom (Section 28.3.2), it is clear that the dis-
tribution of t must depend on the number of degrees of freedom on which s is

based. In Figure 29.2 we show the unit Normaldistribution of the statis-

tic & (curves labeled f = o) and the Studentdistributions of its estimate
t for 10, 25, 50, and 100 degrees of freedom. It is clear that fairly sub-
stantial errors may be made bytreating an estimate s based on only 10

degrees of freedom as if it were the known value of c; but it is also clear
that the errors will almost certainly be negligible uf s is based on 50 degrees of

freedom and will be negligible for much smaller values of f in most practical

problems.
Use of the Distribution of t. It may seem that we would do better to

use the distribution of f for the actual computation of likelihoods when o
is unknown than to use it merely as a way of estimating the errors which

we are likely to make computing likelihoods by use of the Normal

approximation. In fact, however, such a procedure either is not worth

the extra trouble or else is not good enough.
Since the distribution of f depends on both the shape of the popula-

tion and the numberof degrees of freedom on whichs is based, we would
have to have a whole library of tables instead of a single table if we wished

to proceed in this way.t But if the degrees of freedom are so few that the
uncertainty of the estimate 6 = s ts serious, we should use our prior informa-

tion about o as well as the sample information, and to do this we must pro-

ceed as we did in Chapter 28: mere replacement of the sampling distribu-

tion of @ by the sampling distribution of 7 is not good enough. We are
justified in throwing away our prior information on o only when the uncer-

tainty in s is negligible for the purpose in hand; andif this is so, then it is

not worth the trouble to have and consult a whole book of special tables
instead of a single table of the Normal distribution. We may proceed to

solve our problem by the use of “large-sample theory,’’ which means

nothing more than using estimates of nuisance parameters as if they were

the known true values of those parameters.

29.4.2 Estimates of o Based on Several Samples

In many practical situations there will be much more evidence

available concerning o than there is concerning ». In the chemical-

assaying example in its original form (Chapter 26), the manufacturer’s

entire investigation of the measuring process gave evidence on oa for the

current set of measurements even though it gave no information at all on

the value of uy.

+ Although the mathematical form of the distribution of 7 is not known for most
populations, the distribution could be obtained for any population by the Monte Carlo

method.
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Computation of s’ When the True Values of % Are Known. In the

example of Chapter 26, the true value of # = & for each batch used in the
investigation of the measuring process was exactly determined by measur-

ing the X content of the final product. This meant that the o? of the
process could easily be estimated by averaging the squares of the residuals

or differences between each individual measurement and the true u of the
population from which that measurement was drawn (i.e. the true & of the
batch on which the measurement was made).

Another wayof looking at this procedureis to considerit as a weighted
average statistic s’ as defined in Section 27.2.1. From the nm; measure-

ments made on the first batch used in the investigation, the manufacturer

could compute

1
s? = a2 — 441)’,

and similarly for all the other batches. He could then have got the same

result he got before by taking a weighted average of these statistics using

the number of measurements on which each was based as the weight:

2! = wy (mst + N85" +: -)

where N is the total number of measurements made on all batches.
Computation of s When the True Values of i Are Unknown. When i

varies from sample to sample and its true value for each sample is
unknown, we cannot compute the statistic s’ for any sample. We can

compute the statistic s (Section 28.3.2) for each sample, however, and we

can take a weighted average of these statistics s in much the same way

that we averaged the s’. For the first sample we compute

1
s? = f, Ula —_ £1)?,

where fi = 71 — 1 is the numberof degrees of freedom; and similarly for

the other samples. We then take a weighted average of these statistics

using the number of degrees of freedom as the weights:

t= Fhe thet +)
where F is the total number of degrees of freedom in all the samples.

The weighted average § computed in this way has the x/~+/f distribution

with F degrees of freedom, and the distribution of t based on this & has this

same number of degrees of freedom. It is very important to observe that

The distribution of { depends on the number of degrees of freedom

on which its denominator § (or 8’) is based; it does not depend on

the sample size on which £ is based.
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This is the reason why there was virtually no error in treating ¢ as known

in Chapter 26 even though the Z in which we were interested came from 2

sample of only nine observations.

PROBLEMS

1. Three assays are made on each of three batches of raw material, resulting in
the measurements shown below. Assuming that there is no other information worth

consideration, estimate the standard deviation of the measuring process from these

data:
Batch 1: 3.225, 0.974, 1.304.
Batch 2:.3.282, 2.125, 2.815.
Batch 3: 6.072, 5.609, 1.477.
2. Weshall see later in the course that very good approximatesolutions to certain

problemsinvolving two-valued populations can be obtained by treating these popula-
tions as ifthey had a definite known variance even thoughthe variance actually depends
on the population mean p. Suppose then that the parameter p of a Bernoulli process
has the prior distribution shownin the following table and that the fraction defective
in a sample of 80 turns out to be Z = .20. Computethelikelihoods of # and the pos-

p P(p)

10 2
15 3
.20 3
25 _.2

1.

terior distribution of j by means of the Normal approximation to the distribution of #
a. Using the correct population standard deviation « = »/pq in computing

o(£) = o/+/n for each value of #.
b. Treating the population standard deviation o as being known to have the

value which it actually does have when p = Eo(H).



CHAPTER 30

Normal Prior Distributions

30.1 Continuous Prior Distributions

The prior probability distributions which we have used in all

examples hitherto have been admittedly very unrealistic. We have said
that 6 must have oneof the four values .01, .05, .15, or .25, or that @ must

have one of the three values 2.0, 2.5, or 3.0, even though commonsense

told us that in any real situation the businessman would consider all
values in a certain interval as possible and would describe his prior dis-
tribution by some kind of smooth curve. The justification for this pro-

cedure was simply that the smooth curve representing the businessman’s

real prior distribution could always be represented by a discrete distribu-
tion in which the possible values were very close together and that the
methods of analysis which would be used under such a distribution were

identical to those used under our extremely simplified distributions.

In many real problemsit is actually much more convenient to apply

mathematical analysis to a continuous prior distribution in its original

form than it is to break it down into a many-valued discrete distribution
and use arithmetic. Analysis can be used, however, only if the continu-

ous distribution is expressed by an algebraic formula of a type which 1s

mathematically manageable; it is not possible to apply analytical methods

to any curve the businessman happens to draw. The businessman, on

the other hand, is very unlikely to insist on the exact shape of the prior

distribution, and if some convenient formula gives a reasonable-looking
curve heis likely to be as willing to act on the implications of this dis-
tribution as on those of any other curve he might draw. Accordingly we
shall proceed in this chapter:

1. To show by example how continuous prior distributions can be

used to facilitate the solution of particular applied problems;
2. To show that in manysituations the exact shape of the prior dis-

tribution is not at all critical: i.e., to show that substantial changes in the
shapeof the prior distribution havevery little effect on the posterior dis-

tribution which actually determines expected costs;

3. To show how the use of continuous prior distributions can con-

tribute to our general understanding of an entire class of problems.
435
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30.2 Choice of a Normal Prior Distribution

The one continuousdistribution whose use as a prior distribution we
shall study in any detail is the Normal. There are two reasonsfor this

choice. First: it takes absolutely no mathematical skill to find the
Normal distribution which best expresses the judgment of the person
responsible for a decision. Second and much more important: when the

basic random variable is the mean of some population, the use of a Normal

prior distribution leads under certain conditions to an extremely simple

posterior distribution, and weshall see that this posterior distribution is

often very nearly exact even when the Normal prior distribution is quite
far from being an exact representation of the decision maker’s beliefs.

30.2.1 Tail Probabilities

Since the tails of a Normal curve neverfall completely to zero, it is
true that a Normal prior distribution may flatly contradict the decision

maker’s belief that certain values of the variable are impossible; andif

the assignment of some small probability to impossible values of the

variable will really have a material effect on expected costs in the par-
ticular problem at hand, then the use of a Normal prior distribution may
give very wrong results. Ordinarily, however, the small tail probabilities
have virtually no effect on expected costs; and in many problems the
assignment of some small probability to values of the variable which seem

“virtually’’ impossible may actually be very desirable. If the student
thinks back to the problems in which we have used discrete prior dis-
tributions, he will immediately recall that any value of the variable which
is assigned zero prior probability will necessarily have zero posterior

probability regardless of the results of sampling. When the prior dis-

tribution is continuous, the corresponding statementis the following:

If the total prior probability assigned to all values of a random

variable within any particular interval is zero, the posterior prob-

ability that the variable lies within this interval will be zero regara-

less of the results of sampling.

In many situations this result may flatly contradict judgment and

commonsense.
Suppose, for example, that the costs of certain acts will be deter-

mined by the true X content of a finished batch of some chemical product,
and suppose that on the basis of his experience with previous batches the

manufacturer is tempted to assign a prior distribution to the X content
which runs only from 0 to 6 poundsper gallon. If he does this, heis in

effect asserting that even if a million very accurate measurements showed

an X content of —1 pound per gallon, he would absolutely refuse to
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believe that the true X content was below 0, and that if the measurements

showed an X content of 7, he would absolutely refuse to believe that the

true value was above 6. The former of these two results may well make
sense, since negative X contents may be meaningless and therefore

impossible in a strictly logical sense, and the samething will be true of the
upper limit of 6 pounds per gallon if it is chemically impossible for this
limit to be exceeded. If, however, the upper limit is based merely on

experience with previous batches, then the fact that a large number of

very precise measurements indicate an X content of 7 poundspergallon
should almost certainly lead the manufacturer to revise his previous

opinions and conclude that this batch in fact has an X content very close

to 7 poundsper gallon; and if he would thusrevise his opinionsafter the
sample has been taken,his prior distribution should have assigned enough
probability to values above 6 to makethis revision automatic.

80.2.2 Fitteng a Normal Prior Distribution to a
Historical Frequency Distribution

In some situations the evidence on which a prior distribution is to

be assessed will consist primarily of a frequency distribution of values

actually taken on by the basic random variable in the past. In such

situations one way of choosing the proper Normal priordistribution—1.e.,

of determining the mean and standard deviation of this distribution—is

to use the graphical method described in Section 18.1.1. The trouble of

plotting the fractile estimates is warranted, however, only if there is real

doubt that it is legitimate to use a Normal distribution at all; when this

can be taken for granted, there is a much simpler way of proceeding which

we shall explain by means of an example.

Suppose that we have receivedfive lots of parts produced by some

automatic machine, that the mean diameter of all the shafts in each of

the lots has been determined with the results 4 = 5.681, 5.736, 5.202,

5.362, 5.774 inches, and that we wish to assess a probability distribution

for the random variable f# describing the mean diameter of the parts in

the next lot to be received. Each lot constitutes a population of indi-

vidual pieces, but we can consider the lots themselves as being individual

members of a superpopulation; i.e., we can consider the » of each lot as
being drawn from a superpopulation of y’s. The parameters of this

superpopulation can then be estimated in the same way that we would

estimate the parameters of the population of individual diameters z in

any one lot. We simply average the observed y’s to estimate

E(a) = 16(5.681 + 5.736 + 5.202 + 5.362 + 5.774) = 5.551

and we estimate o(f) in the same way that we estimated o(£) in Section

29.4:
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o(f) = Vea [(5.681 ~— 5.551)? + (5.736 — 5.551)? + - + 7]

= .255.

It is true that these ‘‘estimates”’ are rather unreliable when they are based

on only five observations, but we shall see later in the chapter that in

many situations it is simply not worth the trouble to worry excessively

about the exact values of the parameters of a prior distribution.
Wewarn the student to distinguish clearly in his mind between the

superpopulation of v’s each of which describes one lot as a whole and the
ordinary population of x’s describing the diameters of individual pieces in
any one lot. In terms of processes rather than populations, the setup

mechanicis a superprocess with parameters E.(f) and o(f) which generates

a series of u’s each of which characterizes a whole production run; each
run is an ordinary process with parameters yu and o which generates a series
of x’s each of which characterizes a single piece.

80.2.8 Fitting a Normal Prior Distribution to
Purely Subjective Judgments

In manysituations a prior distribution must be assessed without the

aid of any historical frequencies at all. Suppose, for example, that a

companyhas developed a new product but hesitates to put it into produc-
tion because sales volume maynotbesufficient to cover the cost of tooling

up for production, let alone allow any net profit. If management is
sensible it will do somefield research by taking a sample of potential con-

sumers andthefinal decision will turn primarily on the evidence obtained

from this sample; but the prior distribution of the random variable
“sales volume’”’ will have to rest purely on marketing judgment.

Suppose then that the executive who must decide whether or not to
produce this product says that his best guess is that the averagesales per

potential customer will be 8 units but thinks that there is only a 50-50

chance that this guess is within plus or minus 2 units of the true value.
If he is willing to fill in the details of his probability distribution by using

a Normal curve with its peak at 8 units and half of its area between 6 and

10 units, we can determine the parameters of this distribution as follows.
The peak of a Normal distribution is at its mean, and therefore

H(@) = 8.

Since the 6-to-10 interval which contains half the total probability is
centered on E(@), the tail of the distribution below 6 and thetail above 10

must each have probability 4% as shown in Figure 30.1. This implies
that o(f) must have a value such that

_ 10-8] _.- 27_PGi 10) = Py|a> 8] —-pyla> Z| 25.
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From Table III we find that Py(@ > .67) = .25 and we calculate

2
—~ = .67og) 8"
@) = J = 30oe 67

Again we warn the studentto distinguish clearly between the probability
distribution of the random variable 7 and the frequency distribution of

the individual membersof the population of which nis the mean. In our

present example the population consists of a large numberof x’s each of
which describes the exact number of units that a particular customer

        

Py) /~

P=.50

P=.25 670 jt) P=.25

—“
J T 1 T T T

0 2 4 6 8 10 12 14 16
Mean sales per customer pe

Figure 30.1. Judgmental assessment of a Normal prior distribution.

would purchase; these x’s have a definite though unknown frequency dis-
tribution with mean yu and standard deviation o(#). Because total sales and

therefore total profit depend on the unknown meanof this population,7 is

the profit-determining random variable of the problem andit is the execu-

tive’s beliefs about the true value of & which are described by a Normal

probability distribution with parameters E(Z) and o(f). This latter dis-

tribution can be interpreted in terms of a suwperprocess if we recognize that
the real basic random variable of the problem—the random variable to

which probabilities are assigned directly—is not ~ but a forecast dis-

crepancy of the kind we studied in Chapter 6, Problems 2 and 3, and

in Chapter 18, Problem 4. The executive has asserted in effect that
his own mind operates as a random process which in situations like the
present one will generate forecasts which are correct on the average but

which are in error by 2 units or more on 50 per cent of all individual

OCCASIONS.
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30.3. The Posterior Distribution When the Prior and Sampling
Distributions Are Normal and the Sampling Variance Is Known

Wenowturn to the problem of determiningthe posterior distribution

of the random variable # when the prior distribution of & is Normal and

the nature of the population and the sample size n are such that the dis-

tribution of the sample mean # can be treated as Normal. In principle

the computation is carried out by exactly the same method we have used

when the prior distribution of @ was discrete. It is true that there is 0
probability that a continuously distributed random variable will have
exactly any specified value whatever, but we get out of this difficulty by
grouping thepossible valuesof @ into brackets andassigningall the prob-

ability in a bracket to the u at its mid-point.

As an example, consider the Normal prior distribution with mean

and standard deviation

Eo(@) = 8, oof) = 3

which wasassessed in Section 30.2.3 above. The total probability which
any Normal distribution assignsto all values of @ in a bracket of width
du and mid-point yp is

P(u) = Hy Pi(u), us

n=

EO),

Substituting the numerical values of Eo(f#) and oo(f) into these formulas
and assuming that we choose brackets of width.5u = .1 the formulas
become

1 _
Po(u) = 3 Ph(u) = 033 Py(u) _#—8.

The probabilities of some typical brackets are as shown in Table 30.1. If

 

 

 

Table 30.1

Mid-point z-8 Height Width Area
Bracket = ’ ~mes “ 43 Py(u) 5u:/o0(it) Po(u)

5.95-6.05 6.00 — .67 .319 .033 .0105

6.05-6.15 6.10 — .63 O20 .033 .0108

6.15-6.25 6.20 — .60 .333 .033 .0110
aee}

 

now a sample were taken and we wishedto revise the distribution of & to

take account of the new evidence, we could treat @ as having the discrete
prior distribution given by the second andlast columns of Table 30.1 and

proceed exactly as we did in Chapter 26 or 28. If the population standard



30.3.1 Normal Prior Distributions 441

deviation o(£) were known, we could use the method of Chapter 26; if it

were not known, we would haveto treat it as a random variable, assign it

a probability distribution, and then proceed as in Chapter 28.
The real advantage of assigning a Normalprior distributionto lies,

however,in the fact that it often makes this heavy computation unneces-
sary. If #is Normally distributed and the value of o(#) is known, then

by the use of the calculus we can always derive a mathematical formula
for the posterior distribution of @ which gives exactly the sameresults

that the arithmetical method would yield if we worked with very narrow
brackets. Even if the value of o(£) is not known, we can obtain a formula

for the posterior distribution of @ provided that certain other conditions

are met, but we shall study only the simpler case where o(#)is known. As

we saw in Section 29.4, situations where o(%) can be treated as known even

though » cannot are by no meansrare in actual business practice. Pre-
vious experience often gives us considerable knowledge of o(#) without
telling us anything about yu; and evenif o(#) is not known exactly, we are

usually justified in treating a reasonably reliable estimate of o(#) as if

it were the true value when it is » which will actually determine cost or

profit.

30.3.1 The Posterior Distribution of i When a(&) Is Known

The following result obtained by use of the calculus will be used

continually in the remainderof this course. In any problem where

1. The prior distribution of 7 is Normal with parameters Eo(f#) and

v0 (fi),

2. The sampling distribution of % is Normal with parameters » and

o(2),

3. The value of o(#) is known,

the posterior distribution of fi is Normal with parameters

 

_ Eo(a)[1/o8(a)] + a{1/o*(A)
Ba) = 1/o8R) + 170*(8)
   

 

Notice that:

1. The posterior mean is a weighted average of the prior mean and

the sample mean, the weights being the reciprocals of the variances
of the two distributions.

2. The reciprocal of the posterior varianceis the sum of the recipro-

cals of the variances of the prior and the sampling distributions.
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Example. In the marketing problem discussed in Section 30.2.3,
suppose that the marketing research department makes a thorough

investigation of the types of firm which might use the product in ques-

tion, draws up a complete list of potential customers containing 20,000

names, and from this list draws a sampleof size

n = 100.

A small quantity of the new product is manufactured by hand andoffered

for sale to the potential customers in the sample; the amount x which each

of them purchases is recorded and the values of the 100 z’s are summar-

ized by computing the statistics

% = 5, s = 7.

It would be completely illegitimate to assume that the population of

20,000 individual z’s has a Normal]distribution without careful investiga-

tion, but the discussion in Section 29.3.1 shows that the mean of 100

observations on almost any population will have a very nearly Normal

distribution and therefore we may treat # as Normally distributed in our

present problem—in a real application we could check this assumption

by actually looking at the frequency distribution of the 100 z’s in the

sample to make sure that we were not faced with some extremely peculiar

population. To calculate the standard deviation of # we must know the

standard deviation o(£) of the 20,000 individual z’s in the population.

Strictly speaking, the value of o(£) is not known; but the estimate s = 7

rests on f = n — 1 = 99 degrees of freedom, and as we saw in Section

29.4.1 this meansthat it is legitimate to proceed as if o(2) were knownto
have the value 7. Since the sampling ratio n/N = 100/20,000 = .005 is

extremely small, the finite-population correction is completely negligible

and we may compute

a(t) = [2 = 1K),

Recalling that the parameters of the executive’s prior distribution were

Ko(@) = 8, oof) = 3,

we can proceed to determine the parameters of the Normal posterior

distribution:

8(1/3?) + 5(1/.77) _ (8 X 111) + (5 X 2.041) _
  Ei@) = “ep pe = 11 + 2.041 219,

1sr = 111

+

2.041 = 2.152;aay

~1

+
na 1___1__ 69
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80.8.2 The Concept of Quantity of Information

The really striking thing about this numerical example is the fact

that the evidence supplied by the sample has virtually overwhelmed the

executive’s original beliefs about sales of the new product. Although he
originally ‘‘expected’”’ that sales would average Eo(f#) = 8 units per
potential customer, he now expects to sell only Ei(#) = 5.15 units per
potential customer or scarcely more than the average of the actual sales
to the 100 potential customers in the sample. This result is due, of
course, to the fact that in computing Ei(@) the weight 1/c?(#) = 2.041

given to Z was very large compared to the weight 1/o%(7) given to Eo(Z);
and it is natural to think of the disparity between the two weights as a

reflection of the fact that the guesstimate Eo(f) rested on very little solid
information about the market for the new product whereas the actual

sales to 100 customers constitute a good deal of information.

Wecan acquire a better feeling for the way in which the prior dis-

tribution and the sample evidence combine to determine the posterior

distribution by thinking of both Eo(z) and % as “estimates” of the true

uw and thinking of the weights used in the computation of E;(Z) as actual

measures of the ‘“‘quantity of information’”’ underlying these estimates.

Therefore provided that 41s Normally distributed with known variance we

define

I; = ab)’ the quantity of information summarized by @; 

and provided that fi 1s Normally distributed we define

 

 

In = aay the quantity of information summarized by Eo(f);
0

I, = Aq" the quantity of information summarized by E,(Z).

Substituting the first two of these new symbols in the formula for E,(Z)
we have

E,(f) = Io Eo(@) + Le%

Io + Is
 

and we can say that

The mean of the posterior distribution of @ is a weighted average of

the prior mean and the sample mean, the weight of each estimate

being the quantity of information it summarizes.

Next let us look at the dispersion of the posterior distribution of our

example. It may seem puzzling at first sight that the posterior standard.

deviation o:(7%) = .69 came outless than either the prior standard devia-
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tion oo(f) = 3 or the sampling standard deviation o(Z) = .7, but in terms

of quantities of information this result is the most obvious common

sense. The original formula for 1/c7(Z) can be written

I; = I + Is,

and we can say that

The total information contained in E,(f) is the sum of the informa-

tion contained in Eo(f) and the information contained in @.

Thus J, is necessarily greater than either J) or Jz, and therefore

1
oi(@) = TZ,

is necessarily less than either of(f) or o?(£).
The real reason why reciprocals of variances are called ‘quantities

of information”’ in problems of the kind weare now studyingis that in the

simplest situations

1

o°(£) — o?(4)
and it is natural to think of the quantity of information in a sample as
being proportional to the numberof observations in the sample. It is by
no meanstrue, however, thatthe quantity of information in an Z whichis

Normally distributed with known varianceis always proportional to the

sample sizen. We already know that in samples drawn without replace-
ment from a finite population

1 nN-t1
(hi) o(f)N—n

which means that each successive observation contributes more informa-

tion than the previous one;f and in the next chapter we shall study a kind
of situation in which each successive observation contributes less informa-~

tion than the previous one. In any case, we remind the student most

emphatically that

 Iz =

It is only when the distribution of an estimate Z is Normal with known
variance that the quantity of information in z is usefully measured
by 1/02(2).

80.3.8 Disregard of Negligible Prior Information

Suppose now that the executive of our example had decided that his
prior information was totally negligible in comparison with the informa-

¢ Let o?7(Z) = 1,N = 3. Then there is 1 unit of information in a single observa-
tion, 4 units in two observations, and infinite information (perfect knowledge) in
three observations.
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tion obtained from 100 actual observations on the population whose mean
was in question and had therefore set

-
"  o8(f)

The formulas for the parameters of the posterior distribution would then
have reduced to

I = 0.

 

Ei(f) =2

oi(f) =o(8) °°

 

but the numerical values of these parameters would have scarcely been
changed. Instead of the value 5.15 for E:(@) we would have had 5.00,
and instead of the value .69 for o1(%) we would have had .70.

In general, it is clear from the way in which the prior and sample
informations enter the formulas for the parameters of the posterior dis-

tribution that even substantial percentage changes in Eo(Z) will havelittle

effect on the posterior distribution if J») is very small compared to J; and

that substantial percentage changes in Jwill have little effect if the
largest reasonable value for I is small compared to J;. In such cases the
person responsible for a decision will usually be justified in sparing him-

self the mental agony required for a careful assessment of Eo(f@) and oo(7)
and basing his posterior distribution entirely on the sample according to
the reduced formulas given just above. We shall sometimesrefer to such
a procedure as adopting a Normal prior distribution with infinite stand-

ard deviation. t
“Total Ignorance.” Let us be careful, however, to treat this process

of disregarding evidence which is negligible in comparison with other

evidence as what it is and not as something nobler than this. Innumer-

able attempts have been madeto treat the use of a prior distribution with
oo(f) = © as an “objective” expression of ‘total ignorance.” { The

argument runs that if we know nothingat all about the value of 7, then
all values must be equally likely; and a Normalprior distribution with

oo(#) = © in a certain sense assigns equal probability to all values of @.
The argument is absurd, however, as can easily be seen. If ‘‘total

ignorance”’ about @ implies that all values of @ are “‘equally likely,’’ then

total ignorance about f? must imply that all values of @? are equally likely.

} Strictly speaking a Normal distribution with infinite standard deviation does
not exist because the area under such a curve would be infinite. The values of E;(f)
and o;(@) given by these reduced formulas really describe the limit approached by the
posterior distribution as oo(f#) becomeslarger andlarger.

t The assertion that we should use such a prior distribution when weare totally

ignorant is known as Bayes’ postulate. This ‘‘postulate’’ is to be sharply dis-
tinguished from Bayes’ theorem.
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Total ignorance about @ certainly implies total ignorance about fi? and

vice versa; but unfortunately it is simply impossible to assign equal prob-

ability to all values of & and at the sametimeto assign equal probability

to all values of @?. Suppose, for example, that we say that it is just as
likely that 7 is between 0 and 1 asit is that # is between 1 and 2. This

necessarily implies that fi? is as likely to be between 0 and 1 asit is to be

between 1 and 4 and values of #? between 0 and | are therefore three times

as likely on the average as values between 1 and 4.
Thuseven if a person responsible for a decision feels himself to be in a

state of total ignorance about the value of Z, there is no ‘‘ objective”? way

of assigning prior probabilities. He must make up his own mind—he
must place his own bets—and whenthere is no sample evidenceavailable,
it is these bets which will be crucial for the decision. Prior information or
prior betiing odds can be neglected only when substantial sample evidence is

avatlable.

80.8.4 Nonnormal Prior Distributions

Now that we have seen that the exact numerical values of the param-

eters of the prior distribution are of little importance when /; is large,
let us look briefly at the effect of the exact shape of the prior distribution

on the posterior distribution when J; 1s large. In Figure 30.2a we show
two contrasting prior distributions which we take as examples:

1. A Normal prior distribution with mean E,(f) = 1 and standard
deviation oo(f) = 1.

2. An exponential prior distribution with the same mean andstand-
ard deviation as the Normal.

The exponential distribution is about as violently nonnormal as any

smooth distribution can be: it is J-shaped rather than symmetric, and it
actually assigns 0 probability to all negative values of the random vari-

able Zz.

In the remaining four graphs of Figure 30.2 we comparethe posterior

distributions corresponding to these twoprior distributions after samples

of four different sizes have been taken. Inall four cases we assumethat
the observed value of the sample mean z = 1 and that o?(4) = 1/n; it is
only the sample size n that differs from case to case. In Figure 30.26 we
see that if the sample consists of just one observation, there is a very sub-

stantial difference between the two posterior distributions; and in Figure

30.2c we see that the difference would still be quite large ifn = 4. By
the time n = 9, however, the difference is becoming much smaller (Figure

30.2d), and it is very small for n = 25 (Figure 30.2e). With a sample of

50 or more the difference would be completely negligible for almostall

practical purposes.
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Figure 30.2. Posterior distributions corresponding to Normal and expo-

nential prior distributions.
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Although Figure 30.2 is only a study of a special case, the general

nature of the conclusions derived from it can easily be seen to hold for any
prior distribution which is reasonably smooth in the vicinity of the
observed sample mean £ Without trying to express the argument

rigorously, we can suggest its nature as follows. The posterior prob-
ability that @ lies within any small interval or ‘‘ bracket”’ is roughly pro-
portional to both the prior probability of that bracket and the likelihoodof
# given the yw at the mid-point of the bracket. We know that the likeli-

hood will be extremely small if the mid-point is more than 4¢(Z), say,

away from As the samplesize increases, o(£#) decreases and therefore

the likelihood factor restricts the bulk of the posterior probability to a
narrower and narrower group of brackets on either side of . Ultimately

the total width of this group of brackets becomes so small that the prior

probability of every bracket in the group 1s virtually the same regardless

of the shape of the prior distribution as a whole. We conclude that

If the variance of the decision maker’s true prior distribution is large
compared with the sampling varianceof #, he can simplify his calcu-
lations with no material loss of accuracy by substituting the mean

and variance of his true prior distribution into the formulas which
apply to a Normal prior distribution.

30.4 The Cost of Uncertainty in Two-action Problems with
Linear Costs

In Section 18.2.3 we gave the formula for the partial expectation of a

Normal random variable:

EL@) = E@) Py(a<u)—o@) Pru), w= 2,
and by its use obtained an extremely simple and convenient formula for

the cost of uncertainty or expected value of perfect information in many-

action problems with proportional losses when the basic random variable
has a Normal distribution. We shall now derive an equally simple
formula for the expected value of perfect information in two-action prob-
lems with linear costs, first deriving formulas which apply under any
probability distribution and then specializing these to the case of a Nor-
mal distribution.

In Figure 30.3 we show the conditional costs and the probability dis-

tribution of the basic random variable f for a problem of choice between
act 1 and act 2. The linear conditional costs are

Conditional cost of act 1 = Ky + ku,

Conditional cost of act 2 = Ky + kom.

The two cost lines cross at the break-even value u, where either action is as
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good as the other. The probability distribution is of arbitrary shape,
but it has been drawn so that its mean E(Z) is below py.

80.4.1 Expected Cost under Uncertainty

Wealready know that when the conditional cost of an actis linear,
its expected cost is found by merely substituting E(z) for » in the formula
for the conditional cost. The proof of this assertion was given in Section
5.3.1, but we shall now restate it as backgroundfor our discussion of the
value of perfect information.

The height of either cost line in Figure 30.3 above any particular pz
on the horizontal axis corresponds to the entry in a payoff table for the

  

Conditional cost
Of Act1=K,+ kyps

Cost of Act?
Iffey!

Value ofpertect
s intormation If

r_ fp =i

Conditional cost of E-Fb
Act2 = Kot ko fl i

|

< P

Ky
(2)

' q

So EY Hp pe #t

Figure 30.3. Two-action problem with linear costs.

act in question given the particular event 7 = ». When the probability
distribution is continuous we cannot obtain the expected cost of an act
by multiplying its conditional cost for every possible event or value of 7 by
the probability of that event and adding the products, but we can

approximate the expected cost to any desired degree of accuracy by con-

verting the continuousdistribution into a grouped distribution in the way
discussed in Section 30.3. Once this has been done, the expected cost is
obtained by multiplying the conditional cost at the mid-point of each

bracket by the probability of the bracket and adding the products.

For act 1 the sum obtained in this way can be written

Expected cost of act 1 = 2,(Ki + kz) P(u),

where the symbol Z, is an instruction to take every mid-point n, compute

the product (Ki + kiz) P(x), and then add the products. Written out
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in full this summation would look exactly like Table 5.8; and by applying

exactly the same reasoning which was used to derive Table 5.9 from
Table 5.8 we can break the sum into two separate sums and factor out

constant terms to obtain

Expected cost of act 1 = Ki, P(u) + kil, P(p).

Since the sum of products » P(z) for all possible » is by definition the

expectation of # and the sum of P(x) for all possible u is necessarily 1,f we

may rewrite this result in the form

Expected cost of act 1 = Ky + ki E(j).

Graphically, this means that the expected cost of either act is given

bythe ordinate of the conditional-cost line at the point 1» = E(jf) on the

horizontal axis. Since the cost line for act 1 in Figure 30.3 is lower than

the line for act 2 at » = E(f), act 1 is the better act under uncertainty.

80.4.2 Conditional Value of Perfect Information

Assuming that the decision maker whose problem is represented by

Figure 30.3 would be rational and choose act 1 if he acted under uncer-

tainty, we now inquire what he would gain if he were given perfect
information on yu before acting. Since the act chosen under uncertainty

will also be the better act after the event if 7 is less than ps, advance
information that @ is in fact less than yu, 1s worthless—it would have no

effect on the decision maker’s act. In other words, the conditional value
of perfect information 1s zero given any pu less than wy». Advance informa-

tion on the value of f# would, on the contrary, have real value if i > ys,

since in this case the information would lead the decision maker to choose

act 2 instead of act 1 and save the difference in cost. In other words,
given any mw greater than pw, the conditional value of perfect information is
equal to the difference between the ordinates of the two cost lines at that yp.

To calculate the magnitude of this difference we start from the fact
that the ordinates of the two cost lines are equal at the break-even value

uy». For each unit that we move to the right of uw, the cost of act 1

increases by the amount k; while the cost of act 2 increases by only the
lesser amount ke, so that the difference between the costs at any point u
is (ki — ke) times the distance from », to that point. Recalling that

additional] informationis valuelessif uv is less than u,, we havefor the condi-
tional value of perfect information

0 af < bo,

Conditional VPI = E(t) < ps.

(ki — ke)(u — ps) if uw > ps,

+ Strictly speaking, these statements are true of the limits approached by the
two sums as the brackets become narrower and narrower.
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The Loss Constant k; This formula as it stands would be rather

tricky to apply in practice, since it applies only if we use the nameact 1

for the act whose cost line has the greater slope. If we reversed the

names of the acts in Figure 30.3 and with them the meanings of k; and
ke, act 2 would be the better act under uncertainty and the conditional

value of perfect information would be (ke — ki)(u — ws) Instead of

(ki — ke)(u — ws). To get out of this difficulty we define the loss constant

ke = [ky — ko|

as the absolute value} of the difference between the two slopes and rewrite
our previous result in the form

0 uf Me< Be,

Conditional VPI = E(f) < po.

ki(u — po) if u > pe,

Observe that this formula for the conditional value of perfect informa-

tion applies just as well when the problem ts stated in terms of profit as when

it is stated in terms of cost. For suppose that the two straight lines in
Figure 30.3 represent the conditional profits of the two acts rather than

their conditional costs. With E(f) less than mw, a reasonable man will

now choose act 2 under uncertainty because it has the higher expected
profit but the value of perfect information will be exactly the same asin

our original problem where he chose act 1 because it had the lower
expected cost. Information that Z is in fact less than yw, will still be value-
less becauseit will not affect the choice of the act and information that
i is in fact greater than p, will again alter the act and will increase profit

by the same amount that it previously reduced cost, i.e. by the amount

lei — Ke|(u — ws).
It is left to the student to show that if the probability distribution of

Figure 30.3 is replaced by one whose mean E(7) is to the right of (greater

than) 4, then whether the figure represents cost or profit

ki(us — pw) uf uw < be,
Conditional VPI = E(@) > po.

0 af u > bb,

30.4.8 Expected Value of Perfect Information

Undera discrete distribution the expected value of perfect information

or cost of uncertainty is computed by multiplying the conditional value

1 The ‘‘absolute-value signs’’ | | in the definition of k; are an instruction to take
any quantity between them as positive regardless of its algebraic sign. Thus |—3| =
+3; |2 — 6| = +4. Observe carefully, however, that algebraic signs are not to be
neglected in performing computations inside the absolute-value signs. If ki = +2
and ke = —5, then k, = |(+2) — (—5)| = |+2 4+ 5| = |+7| = +7.
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for each possible u by the probability of that » and adding the products;

under a continuous distribution we proceed in the same way except that

we must again first cut the » axis into brackets andassign all the prob-

ability in each bracket to the uz at the mid-point.

When E(f) is less than ws, as it Is in Figure 30.3, the conditional
values and therefore the products are O for all uw to the left of u; the

summing operation has actually to be carried out only for the uw to the
right of uw». The product for the typical y’ shown in Figure 30.3 is
ki(u’ ~— wo) P(u’), and summingoverall » we obtain as the expected value

of perfect information

Expected VPI = > Ke(u — us) P(x), E(z) < we.
B= pd

Breaking this expression up in the same way that we broke up the expres-

sion for the expected cost of act 1 in Section 30.4.1, we have

} °°

Expected VPI = ke | » u P(u) — ps > P(u) |, E(z) < ue.
=Hb B= Md

The first of the sums inside the brackets is the partial expectation of z

over the interval uw, to ©, the second is the total probability of all yu

greater than y,, and therefore we may write

 

Expected VPI = k{Ef(a) — wm PG@>m)l EQ) <m

 

It is left to the student to show by similar reasoning that when E(#)

is greater than us,

 

Expected VPI = kus P(a < ms) — E*,(@] E(@) > ms

 

30.4.4 Value of Perfect Information When the Distribution
Is Normal

The formulas which we have just obtained apply under any prob-

ability distribution whatever, and the probabilities and partial expecta-
tions involved could always be obtained by the graphical and arithmetical
methods described in Chapter 6. If, however, the probability distribu-

tion is Normal, the computational Jabor can be greatly reduced by use of
the formula for a Normal partial expectation and tables of the unit
Normaldistribution.
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Takingfirst the case when E(Z)is less than yw», we put the break-even
value yu, in standard measure by defining

_, Me E(@) |

o (ii)

The probability in the formula given above for the expected value of

perfect information when E\(f) < uw, can then be written

Us

P(i > ws) = Pr(d > uw).

Using the formula for E*(#) under a Normaldistribution and remember-

ing that P(@ < wu) = 1 — P(@ > u) we can evaluate

En(@) = E(@) — BE”(@) = E@) — E(@) Py(& < w) + o(f) Py(u)

= E(@) Py(a@ > w) + o(f) Py(w).

Substituting these two results in the formula for the value of perfect

information when E(z) < us and regrouping terms we obtain

Expected VPI = k,o(z) | PCa) —alPy(ai > w)

= k.o(@G(w), E(f) < Bo,

where G(u) is the function tabulated in Table IV.
Taking next the case when E(f) is greater than mw, we could again

obtain the value of perfect information by algebraic operations, but it

will be much moreinstructive to make use of the symmetry of the Norma]

curve. Figures 30.4a and b show two problems with the same conditional

costs as Figure 30.3 but different probability distributions. Both dis-
tributions in Figure 30.4 are Normal and both have the same standard

deviation o(ji); the only difference is that the mean E(@) in Figure 30.4b is
exactly as far above pu, as the mean in Figure 30.4a is below pp.

The expected value of perfect information in Figure 30.4a will be a
sum of products of type k:{(u — ws) P(u) for all » to the right of uw, and
the expected value in Figure 30.4b will be a sum of products of type
ke(u» — ») P(x) for all » to the left of ws». We consider any typical value
u' in Figure 30.4a and choose a wv”in Figure 30.4) such that the distance
pw’ — ws is equal to the distance uw, — p”’; this means that the distance

uw’ — E(f) is also equal to the distance E(fZ) — uw’. Itis obvious that the
conditional values are equal,

ki(ul — we) = ki(un — 2’);

and the symmetry of the Normal curve means that the probabilities are
also equal:

P(u’) = P(u’’).
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Consequently the products are equal,

ke(u! — ws) Pw’) = ke(us — pw’) P(n”’);

and since every » above pw, in Figure 30.4a can be exactly matchedin this

way by a w below ws in Figure 30.4b, the expected values of perfect

information are exactly equal in the twocases.

   
Conditional VPI

Mfpap’
   

    
 

Conditional VPI
if =p”

 

7 as

Figure 30.4

Weconclude that in any two-action problem with linear costs the

expected value of perfect information under a Normal distribution

depends on the absolute magnitude of the difference between E(z) and yp,

but not en its direction or algebraic sign. We therefore define
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D= lu, — E(q)|=(i) Definition of D

 

and obtain the expected value of perfect information for any E(z) by

simply writing D instead of uw, in the formula previously derived for the

case where E(fi) < wp:

 

Expected VPI or cost of uncertainty = k,o(f)G(D)

Two-action problem, linear costs, Normal distribution

 

Example. In the marketing problem we have been using as an

example, suppose that it would cost $500,000 to tool up for quantity pro-
duction of the new product and that competitive conditions are such that
it would have to be priced to yield a margin of $3.87 above total variable

cost. Since yu is defined as average sales per potential customer and there

are 20,000 potential customers, total unit sales will be 20,000u, total
contribution to overhead will be $3.87 XK 20,000u = $77,400 u, and sub-
tracting out the cost of tooling up we have

Conditional profit of production = — $500,000 + $77,400 up.

The alternative act is, of course, to do nothing, and obviously

Conditional profit of “do nothing’ = $0 + $0 xn.

The loss constant is

k, = |ki — ke| = |$77,400 — $0| = $77,400

and the break-even valueis given by

—$500,000 + $77,400 »» = $0,
__ $500,000

Mm ~ $77,400

Under the prior distribution of Section 30.2.3 with Eo(Z) = 8 and
oo(fi) = 3, the expected profit of a decision to go into productionis

— $500,000 + $77,400 Eo(z) = — $500,000 + ($77,400 X 8)
= +$119,200

and this is the better act because the expected profit of ‘‘do nothing’”’is

obviously $0. Even the better act under uncertainty involvesrisk, how-

ever, and to evaluate the extent of this risk we compute

D, == Bo(A)| — 16.46 — 8.00] _ |—.51| = .51,
oo(7) 3

= 6.46.

 



456 Use of Information Obtained by Sampling

use Table IV to find G(.51) = .1947, and finally compute

Prior cost of uncertainty = k,oo(@)G(Do) = $77,400 X 3 X .1947

= $45,200.

While production is the better act and promises a substantial profit of
$119,200, the risk is $45,200 and veryserious. |

Under the posterior distribution of Section 30.3.1 with Ei(f#) = 5.15

and o1(f) = .69, the expected profit of a decision to produce is negative,
since

— $500,000 + ($77,400 X 5.15) = —$101,400,

and it 1s better not to produce. To find the risk involved in a decision to
drop the entire matter at this point we compute

16.46 — 5.15] _
69 ~

01105,
$77,400 X .69 X .01105 = $590.

D,
G(D3)

Posterior cost of uncertainty

1.90,

I

Unless further sampling is extremely cheap,it is clearly best to consider
the matter closed and write off the development of the new product as a
total loss.

PROBLEM

1. Mar-Pruf Finishes, Inc., was a relatively small firm operating in a segment of
the industrial-finishes market which was dominated by the American Paint and
Lacquer Company. Mar-Pruf’s research chemists had recently developed a product
to compete with American’s type A-1 lacquer and the company wastrying to decide
whetheror not to put this product on the market. Some preliminary market research
had shown that while somefirms considered the new Mar-Pruf product to be superior
to American’s A-1, the difference was not great enough to permit Mar-Pruf to charge

& price appreciably higher than American’s price of $8.75 per gallon. On the other
hand, any attempt to seize American’s market by charging a lower price was almost

certain to produce a price war which American was sure to win because of its superior
financial resources. It was clear that if the product was to be marketed at all it would
have to be marketed at a price of $8.75 per gallon.

Mar-Pruf figured that if it installed the necessary equipment for economical
manufacture of the new product it could realize a net contribution (selling price less
variable cost of production, selling, and delivery) amounting to about $.40 per gallon;

and after considering the amount of time during which a customer could be expected

to continue buying the product, Mar-Pruf’s management had decided that the dis-

counted present value of the whole stream of future contributions to be expected from
a customer who wasinitially sold on the new product would be about $2 for each
gallon-per-yearof initial sales. In other words: Mar-Pruf ‘‘expected”’ to realize con-
tributions with a present value of $20 from a customer whostarted buying at a rate of
10 gallons per year, $50 from a customer who started buying at a rate of 25 gallons
per year, and soforth.

Mar-Pruf’s hesitation about entering the market with this new product arose
from the fact that the total cost of installing and debugging the necessary equipment
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for volume manufacture plus the cost of the required introductory sales effort would
amount to about $600,000, so that unless a sales volume of $600,000/$2 = 300,000

gallons per year could be attained, the introduction of the product would result in a
net loss. Mar-Pruf’s market research had shown that there were about 10,000 firms
who could be considered potential customers for the product, so that the break-even

point could also be considered as achieving annual sales averaging 30 gallons per firm.
Because of the considerable risk involved in the decision, Mar-Pruf’s marketing-
research department had drawn a sample of 100 of these 10,000 firms in such a way
that each firm had an equal chance of being drawn and had then dispatched salesmen
to give free samples of the product to these firms and to ask whether they would buyif
it were actually placed on the market and if so how much per year. Theresults of this
survey are shown in simplified form in the table below.

Annual Number

purchase rate of firms

0 60

60 10

90 20

120 10

a. Use the data obtained from thepilot sample to estimate the standard deviation
of the population of annual purchase rates. (Each firm’s individual annual purchase

rate is one memherof this population.)
b. Using @ to denote the mean annual purchasesper firm, assess a Normal dis-

tribution for ~ which is reasonable in the light of the evidenceof the pilot sample, pre-
vious evidence being disregarded as negligible.

c. Decide whether Mar-Pruf should or should not go into production if action is

to be based on the pilot sample alone, and compute the risk involved in making this
decision on this evidence.

d. Recompute part c assuming that, before taking the consumer survey, Mar-
Pruf management had done its best to assess the market potential and had decided
that the most likely average sales rate was 50 gallons per customer per year but that

there was only a 50-50 chance that this estimate was within plus or minus 20 units of

the true figure.



CHAPTER 31

Biased Measurement and Biased Selection

Our entire discussion of the use of the information summarized by a
sample mean has up to now always been based on the assumption that

If the process by which the sample was obtained were repeated over
and over, the average of the means of all the samples thus obtained

would be exactly equal to the true value of the random variable
which will determine cost or profit.

Weshall now examinethis crucial assumption more critically and shall
find that it is often unwarranted. It would be even closer to the truth
to say that the assumptionis never strictly correct although sometimes it
is close enough to the facts to warrant its use as a basis for practical

business decisions.

31.1 Measurement Bias: Systematic Error vs. Sampling Error

As a first concrete example of the way in which this assumption may
be violated, let us take the problem of measuring the X content of a

batch of raw material which we discussed in Chapter 26. The basic
random variable in that problem was

£: the true X content of a particular batch of raw material,

and our whole procedure for computing the posterior distribution of é

and thus the posterior expected costs of the two acts under consideration

depended on the assumption that if an infinite number of measurements x
were made on this batch, the mean u of these measurements would be exactly

equal to the true X content & of the batch.

81.1.1 Systematic Error

This assumption was justified in Chapter 26 because it agreed with

the results of a long and careful investigation of the errors previously
generated by the measuring process in question, but it is clear that in

many if not most situations an assumption of this sort will not be justi-
458
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fied. We will, on the contrary, feel quite sure that the mean yp of an
infinite number of measurements would not be exactly equal to the true

value of the quantity being measured, and wetherefore define the

Systematic error or “bias” of a measuring process: the difference
between the true value ~ of the quantity measured and the mean pz

of the measurements which would be obtained if the process were
applied to this quantity an infinite numberof times.

If we use the letter beta to denote the systematic erroror bias of a process,

this definition can be written more concisely in the form

B=p-— &;

or we can think of the mean of the measuring process as the sum of the
true value ~ plus the systematic error ~:

 

wp=éit+B Definition of bias or systematic error

 

81.1.2 Sampling Error

The bias or systematic error of a measuring process must be sharply

distinguished from what we shall now call the pure

Sampling error of an individual measurement: the difference between
an individual measurement x and the mean yz of an infinite number

of measurements made by the same process under the same conditions.

Observe very carefully that this definition does not even mention the
true value of the quantity being measured. If we use e to denote the

sampling error of an individual measurement, the definition can be

written

€=2— p;

or we can think of any individual] measurement as the sum of the process
mean yp plus the individual error e:

 

x=prte Definition of sampling error

 

The sampling error¢ is the only kind of error we have consideredhitherto.

81.1.8 The Composition of a Measurement

Wesaw in Section 31.1.1 that the process mean p can itself be
regarded as the sum of the true value é plus the bias @. Substituting
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£ + 8 for p» in the last formula above we obtain a formula which shows the

three component paris of any individual measurement:

 

x=§+B+e Composition of any measurement

 

In words rather than symbols, any measurement can be regarded as the
sum of (1) the true value of the measured quantity, (2) the systematic
error or bias which would be present in the meanof an infinite number of
measurements, and (8) the sampling error peculiar to the individual
measurement.

81.1.4 The Composition of a Sample Mean

Suppose now that we use a measuring process with bias 8 to make n

separate measurements of the same true quantity and compute the
mean £ of these measurements. The computation is represented sym-
bolically in Table 31.1, and two facts are immediately apparent. (1)

Because ~ and the systematic error @ are constant throughout theseries

of measurements, they appear unchanged in the average. (2) The

Table 31.1

Serial Value x of the

number measurement

1 E+ B+ «a

2 E+ 8+ e

nr E + B + ex

Total né + np + Ze

Average f+ 8+ ¢

samplingerrors e, on the contrary, vary from each measurementto the next

and what appears in the average is their mean é. Symbolically, then,

 

#£=—-&+B+e Composition of any sample mean

 

In words rather than symbols,

Any sample mean can be regarded as the sum of (1) the érue value
of the quantity measured, (2) the fixed systematic error or bias of

the measuring process, and (3) the mean of the sampling errors of the
individual observations in the sample.

81.1.5 Populations of True Values vs. Populations
of Measurements

In our chemical examplethe cost of an act depended on thetrue value

& of a single batch of material; the only “population” involved in the
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problem was the infinite population of measurements of & which the
measuring process ‘‘could”’ generate. In other situations the cost or

profit of an act depends on the mean of a whole population of true values,
and we must now distinguish clearly between this population and the
population of measurements which ‘‘could”’ be generated by a sampling

process.
As an example, let us reconsider the marketing problem which we

analyzed in the last chapter. Profit in this problem depended on the
average numberof units of a product which would be purchased by each

of 20,000 potential customers after the product was put in quantity
production and sold in the normal way; information on this average

was obtained by drawing 100 of these potential customers and seeing
how many hand-made units each one of them actually bought when

approached in the course of the sampling procedure. In order to make

the nature of measurement bias in such a problem concrete, let us think

of every one of the 20,000 potential customers as represented by a card

en which two numbers are written:

1. The number of units which that customer would actually buy if

the product were put in regular production and offered for sale in the

regular way. Each of these numbersis a true value and weshall denote

their mean by

£: mean of the population of individual frue values.

2. The numberof units of the hand-made product which that same

customer would be recorded as buying if he were drawn in the sample and

specially approached in the course of the marketing-research project.

These numbers constitute a population of potential sample measurements

xz and weshall denote their mean by

uw: mean of the population of individual potential measurements.

Ouroriginal analysis of this problem rested on the assumption that

the mean yu of the population of 20,000 potential sample measurements was

exactly equal to the mean & of the population of 20,000 potential purchases

under normal conditions, and it is obvious that this assumption may well

be in disagreement with the facts. To give just two of many possible
reasons, the quality of the hand-made product offered to the sample

customers may be noticeably different from the quality which can be

maintained in the mass-produced product, and each customer may be

much more effectively sold when there are only 100 customerstosell than

when there are 20,000. Either cause can producea substantial difference

between (1) the mean sales u which would result if all 20,000 customers

were treated exactly like the 100 sample customers and (2) the mean

sales & which will actually be realized if the company goes into produc-

tion. Weshall call the difference 8 = » — £& the measurement bias of this
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sampling procedure. In most surveys carried out to estimate the market
for a new product there is a source of measurement bias whichis far more

serious than either of the two we have just suggested. The sampling
procedure usually consists in simply asking the sample members how

many units they think they would buy if the product were offered for

sale, and it is obvious that the difference 3 between (1) the mean of the
answers which the whole population would give if asked this question and
(2) the mean é of the quantities which would in fact be purchased may be

very serious indeed.
Even though the cost-determining quantity £ in problemslike these

is the mean of a population rather than a single, fixed quantity as in our

chemical example, the formula

a= E+B+e

for the composition of any sample measurementor observationstill applies

andhas exactly the same meaning as before. Thebias 8 is the difference
between the mean of all possible observations and the true value £ which

will determinecost or profit, and the samplingerror« is still the difference

between » and the value of an individual sample observation.~ It

follows that our previousresult for a sample mean

e=§+B6+e

also applies in problems where £ is the mean of a population of true values

rather than the true value of a single “thing.”’

31.2 The Use of Information from a Biased Sample

The basic procedure by which we have hitherto made use of the

information in a sample mean consists of three steps:

1. Compute thelikelihood of £ given every possible value of the basic
random variable £;

2. Multiply the prior probability of each é by the likelihood of z
given that é;

3. Divide each of these joint probabilities by their total.

The logic underlying these steps as set forth in Chapter 21 applies just as
well when we know or suspect that Z contains both bias 6 and sampling

error é as it does when we know or assumethat it contains only sampling
error. The only effect of known or suspected bias is on the details of the
procedure by which we compute thelikelihoods in step 1.

t Notice that the difference between (1) the true value of an individual memberof

the population and (2) the mean é of these true values is completely irrelevant to our
problem and nowhere enters our discussion. The only thing about the true values
which is relevant is their meanE.
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In somesituations the amount of the bias or systematic error 8 will

be known, and in this case the distribution of # for any given é will be
given by the formula

where the only random variable on the right side is the mean sampling

erroré. In other situations the amountof the bias will be unknown so that

we must also treat 8 as a random variable and write

£=§t+64+8

Starting with the simpler of the two cases, that of known bias, our first

step is to study the sampling distribution of the random variable €.

31.2.1 Assessment of the Distribution of €

Mean and Variance of the Indwidual Errors €. We have defined an

individual sampling error « = x — u as the difference between an indi-

vidual measurement x and the mean u of either (1) the infinite numberof

measurements which ‘‘could”’ be made by a measuring process under

constant conditions (Section 31.1.1) or (2) an entire finite population of

potential measurements made by a sampling process operating under
constant conditions (Section 31.1.5). Figure 31.la shows the frequency

distribution of such a population (infinite or finite) of potential x’s, and

Figure 31.16 shows the frequency distribution of the corresponding popu-
lation of potential e’s. Part a of the figure can also be interpreted as the

probability distribution of the random variable # representing the value
of one individual measurement “drawn”’ from the population of potential

measurements; part b can also be interpreted as the probability distribu-
tion of the random variable é€ representing the value of one individual

sampling error ‘‘drawn”’ from the population of potential errors. The
mean » = E(£) of the population of x’s shown in part a of the figure is the
sum of some fixed value é of the quantity being measured and some fixed

value 8 of the bias of the measuring or sampling process, but for our pres-

ent purposes we are not interested in these values as such; all that we
care about is that

The measurements are made under conditions such that the sum

u = —§ + Bis fixed; in other words, the measurements are drawn from

a single, fixed population of potential x’s with mean un.

The two important things to observe about the relation between the

distribution of € and the distribution of é are these:

1. Because each e is defined as the difference between an individual

z and the meanu of the fixed population of z’s, the mean of the e’s
is 0 by definition and in absolutely all circumstances.
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2. In all other respects the distribution of < is identical to the dis-
tribution of 2fora fixed u. In particular, the variance of é is equal

to the variance of £ given a specified yu.

Since the distributions of with which we dealt in previous chapters were

all distributions for some given p, we see that the problem of assessing the
varianceof é is really just an old problem expressed in a new notation. If

Pp’

    K—8
é w

i

Measurement ¢

(a)

p’

 
 

O
Sampling error €;

(4)

Figure 31.1

we make a number of measurements on a single, fixed true value & under

conditions such that the bias 8 of the measuring process remains constant,

then we may say that the process mean » = & + 8 wasfixed during the

series of measurements and we may use these measurements as data for

assessment of the variance of ¢. If the number of measurements is so

great that we may take their mean Z as essentially equal to the true u of

the process, we may compute

 

o*(@) = > 2(a — n)?,
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If we do not have a large enough number of measurements made under

constant conditions (fized ») to justify us in treating their mean. < as

certainly equal to », then we may estimate the variance of é in the same

way that we have always estimated the variance of # for fixed p:

 

I
oe) =? = 7S x(x — £)?.

 

This estimate of o?(€) has f = n — 1 degrees of freedom, and when {

is large the estimate may be treated as if it were the known true
value of o?(é).

For the meaning of ‘‘large,’’ the student should review Section 29.4.

While it is true that most of the present discussion of the assessment of

the variance of é is simply a restatement in different notation of the dis-

cussion in Section 29.4, there is one new point to which the student must

pay the most careful attention. We may not simply assume that the
mean p = & + £6 of a measuring process had the same value during the

making of any given set of measurements simply because all the measure-

ments were made on the same true value § We must also check to make

sure that all the measurements in the set were made under constant

conditions.

If the conditions under which the measuring process operated were

not constant, then the bias 8 may have varied even thoughthe true
value ~ remained constant; andif this is true, then the “estimate”’ s?

will tend to overstate the true sampling variance o?(é) because the z’s
from which s? is computed will contain variation due to variation in
bias as well as variation due to pure samplingerror.

Distributton of the Mean Sampling Error €. We saw in Table 31.1
that the pure sampling error of a sample mean,

e=-I—4y,

can be regarded as the mean of a numberof individual samplingerrors;
and we have just seen that these individual sampling errors can be
regarded as having been drawn from a population of potential e’s with
mean E(é) = 0 and variance o7(é). It follows at once that the mean and
variance of the sampling distribution of € can be determined by exactly
the same reasoning that we used in Section 25.5 to determine the mean and

variance of the mean 2 of a numberof x’s drawn from a population of z’s.
Just as we did for the z’s in Section 25.5,

We assume in what follows that the samplingof the e’s is simple—
i.e., that the e’s drawn from aninfinite population are independent or
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that every « remaining in a finite population has an equal chance of
occurring as each successive measurement is made.

Our conclusions will in general be invalid if this assumption is violated,
although weshall see in Section 31.4.1 that one particular kind of viola-
tion can be dealt with by introducing the concept of “selection bias” in
addition to the ‘‘measurement bias’’ defined in Section 31.1 above.

Expectation of €. Since the mean E(é) of any individual sampling

error drawn by simple samplingis 0 by definition and since the expected

value of a sum of random variables is the sum of their individual expected
values, the expected value of the éotal of the individual e’s in any sample
is 0 and therefore the expected value of the mean of these e’s is 0:

 

Ke) = 0 Any population of ¢’s, simple sampling

 

Variance of €. If the e’s in a sample are drawn by simple sampling

from an infinite population of potential e’s (such as the population of e’s

which “could” be generated by a chemical measuring process), then the
e’s in the sample are independent and the addition theorem for variances
(Section 16.3) applies. The variance of the sum of the individual é’s in

a sample is the sum of their individual variances or no?(é), the distribution

of the mean € of these individual errors is the sameas thedistribution of

their sum except that the scale is changed by the factor1/n, and therefore
(Section 16.5.2) the variance of € is (1/n)? times the variance of the sum:

 

o2(€) = * 93(@) Infinite population of e's, simple sampling

 

If a sample of e’s is drawn without replacement from a finite population

of potential «’s (such as the one discussed in Section 31.1.5), the e’s in the

sample cannot be independentfor the reason discussed in Section 23.1.1;

but if the samplingis simple this interdependence is completely accounted
for by the so-called ‘finite-population correction’”’ (Section 25.5) and

 

a(€) = * 93(8 * — ; Finite population of e's, simple sampling

  

Shape of the Distribution of «. In most practical situations the exact
shape of the distribution of an individual sampling error é will be known

very imperfectly for the same reason that the shapeof the distribution of
an individual measurement £# 1s ordinarily known very imperfectly: it

takes a very great amountof historical frequency data to establish these
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shapes exactly. On the other hand the Central limit theorem applies to
the distribution of a mean sampling error € just as it applies to any other

mean of a number of random variables, and it follows that

The distribution of 2 in “large” samples will often be almost exactly

Normal even though the distributions of the individual é’s are quite
far from Normal.

For the meaning of ‘“‘large,’’ the student should review Section 29.3.1.

31.2.2 The Distribution of £ When B Is Known and € Is Normal

Suppose now that we have calibrated a measuring process by making
a number of measurements under constant conditions on each of several

different true values £ and suppose that the number of measurements

made on each é individually was large enough to allow us to treat their

mean & as equal to the true long-run mean yz of the measuring process as

applied to that & Suppose further that this investigation has shown that

1. The difference » — £ was the samefor every £, so that we are

entitled to say that the bias 8 = » — é of the process as applied to

any future & is known.
2. The varianceof the individual sampling errors € = £ — uw was the

same regardless of the € to which the process was applied, so that
we can say that the sampling variance o?(€) of the process as applied
to any future £ is known.

3. The number of measurements to be made on a new, unknown£ is

large enough to permit thedistribution of the mean sampling error

é to be treated as Normal.

Because the bias 8 is known, the distribution of the mean £ of the

measurements to be made on the new is given by the model

f£=-§&+6+e

and the distribution of # is therefore the same as the distribution of €
except for a change of location. Applying the rules of Section 16.5.1 and
remembering that E(€é) = 0 by definition, we have for the mean and

variance of £:

BZ)=§&+6+ HE) = &+8,
o*(£) = o(€);

and because the distribution of € is Normal,

The distribution of # is Normal.

Computation of Likelihoods. The fact that 8 is known means. that
the values of E(£) and o(£) as given by these formulas are known once £
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has been specified, and therefore the likelihood of any observed £ given

any specified can be computed from the usual formula

POI) = Jay Pau), =A

81.2.8 Unknown Bias: Assessment of the Distribution of B

Wenow cometo our onereally new problem, that of obtaining the

distribution of # when thebias of the measuring or sampling processis not
known and must therefore be treated as a random variable; and thefirst
step in the analysis is of course to assign a probability distribution to this

new random variable 8. The problemsinvolvedin this assessmentare no

different in principle from the problemsinvolvedin assessing the distribu-
tion of any other random variable. In somesituations there will be a
record of the actual values of 8 on previous occasions and wewill be able

to fit a probability distribution to the historical frequency distribution.

In other situations we will have no historical data of this kind and our

distribution will have to be based on purely subjective judgment.

 

 

Table 31.2

Batch Average of T
. rue

serial measurements Error
. X content

number on the raw material

1 2.73 2.97 — .24

2 2.53 2.32 + .21

3 2.99 3.03 — .04

4 2.90 3.06 — .16

ete.

 

As an example of a distribution based on actual historical values of

8, suppose that the investigation of the chemical-assaying process dis-

cussed in Chapter 26 had not shown that the process was unbiased as we

there assumed but instead had shown that impurities in the raw material

biased the measurements of the X content; and suppose that batch-to-

batch variation in these impurities makes it impossible to predict the
exact amount of bias which will be present when the X content of the

new batch is measured. More specifically, suppose that the investiga-

tion had been conducted by making a very large number of measurements
of the X content of each of a numberof different batches of raw material,
that the true X content of each batch had then been measured in the

final product, and that the results were of the nature indicated in Table

31.2. Assuming (1) that all the measurements made on any one batch

were made under constant conditions and therefore contain the same

amount of bias, and (2) that the number of measurements on each batch



31.2.4 Biased Measurement and Biased Selection 469

waslarge enoughtoallow us to treat their mean as practically equal to the

true mean yz of the process as applied to the batch, we maytreat the errors

in the last column of the table as pure systematic errors 8 and assess a

probability distribution for the 6 of the next set of measurements by
converting these 6’s into fractile estimates and proceeding as in Section
6.4. If the fractile estimates fall reasonably close to a straight line on
Normal-probability paper (cf. Section 18.1.1), the probability distribu-

tion may be assessed as Normal and its parameters may be determined

either by the graphic method of Section 18.1.3 or by the numerical method
of Section 30.2.2.

As an example of a distribution of 8 assessed without the aid of his-
torical frequencies, suppose that the marketing executive of the example
discussed in Chapter 30 is in fact worried about possible bias due to
factors of the sort discussed in Section 31.1.5 above. Frequency data on

the actualeffect of these factors is obviously unobtainable, and therefore
the executive must assess his distribution of 8 in the same way that he

assessed his distribution of & in Section 30.2.3. Suppose then that he

decides (1) that the most probable effect of the peculiar conditions sur-
rounding the sample survey is to produce sales which average 2 units

more per customer than sales would average under normal conditions but

(2) that there is one chance in four that sales under sample conditions tend
to average 2 or more units less per customer than sales under normal
conditions. In algebraic notation, the executive asserts (1) that the most

probable value of # is +2 but (2) that P(@ < —2) = 14. If he is willing
to fill in the details by use of a Normal eurve, we can say that his distribu-

tion of B is Normal with mean equal to the most probable value

E(é) = +2

and with standard deviation o(f) such that

—2 — E(8)
o(8)

By the reasoning of Section 30.2.3 this latter condition means that

—2-—E(6) _ -4 _

PB < -2) = Pr[a< |-%

rw, — — — — .67,

o(8) o(B)
ne —4

o(B) = 67 = 6.0.

31.2.4 The Distribution of 2 When B Is Unknown and é Is Normal

In the general case an unknown£ is a nuisance parameterin the sense

of Section 28.2.5 and must be handled exactly as any other nuisance

parameter is handled. To find the likelihood of an observed # for some

particular value of & we must successively take each possible valueof 8,
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use the method of Section 31.2.2 to compute the desired likelihood given
that value of 8, and then take a weighted average of all these “condi-

tional”’ likelihoods using the probabilities of the corresponding valuesof 8

as the weights. In one special but very important case, however, the

distribution of £ can be found very much moreeasily. This case, which
is the only one weshali study in this course, is defined by the following

assumptions:

1. The distribution of 8 is Normal and independentof £.
2. The distribution of é is Normal and independent of both & and 8.

The first of the two assumptions of independence means that the measur-

ing process does not tend to have a greater systematic error when the true
value being measured is large than when it is small, ete. The second
independence assumption means that the erraticness of the measuring

process does not tend to be greater when the mean measurement p =
£-+ 8 is large than whenit is small, etc. We remind the student that in

any real application the justification for these assumptions must be very

carefully checked before the assumptions are made. Thefirst one in
particular is noé true of many real measuring processes.

Provided that the stated assumptions are made, we may reason as

follows. Our model of the sample mean asserts that

£=§+68 +2

Since the expectation of a sum of constants and random variables is equal
to the sum of the individual expectations and since E(é) = 0,

 

E(#) = & + E(@).

 

Since # and é are assumed independent andsince the variance of a sum of

independent random variables is the sum of the individual variances,

 

o?(#) = o2(8) + o(8).

 

Finally, smmce the sum of any number of constants and Normal random

variables is Normal,

The distribution of # is Normal.

Computation of Likelithoods. Suppose now that in some particular

problem a Normaldistribution has been assigned to 8, that the sample size
is large enough to permit us to treat the distribution of € as Normal, and

that 8 and é are independent of each other and of &. If in addition we
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have enough information on the individual sampling errors to treat the

variance o7(é) as known, we can use the two formulas just above to com-

pute the numerical values of o?(#) and of E(£) for any given £, and there-

fore the likelihood of any observed Z given any particular & can be
computed from the usual formulas

z ~ E(2)PGI) = a Pew), w=o(#)

31.2.5 The Posterior Distribution of — When the Prior Distribution
Is Normal and £ Is Normal with Known Variance

In Chapter 30 we dealt with a very special class of problems in which

costs could be said to depend directly on the mean « of some population
of potential sample measurements x because bias was assumed zero and

therefore the real cost-determining quantity ~ was necessarily equal to the

population mean uw. For this reason we were able to take 7 rather than

as the basic random variable of these problems, and in Section 30.3 we

then saw that computation of the posterior distribution of 7 could often be

very greatly simplified by making use of the fact that if

1. The prior distribution of the basic random variable 7 is Normal,
2. The sampling distribution of the statistic £ is Normal,

3. The variance of the statistic # is known,

then the posterior distribution of #7 is Normal with parameters given by

the formulas

Io Eo(Z) + [5%
 

  

Ki(@) = Totle L, = lo + Jz,

where

1 1 1
I; = =z? I = I = =\°

o?(#) ° 3H) *  o3(f)

Nowthis relation between the prior and posterior distributions of

a basic random variable clearly does not depend on the namegiven to the

variable, nor does it depend in any essential way on whetheror not the
physical counterpart of the variable happens to be the mean of some

population or whether the statistic used to summarize the sample is the
mean of the sample. The fact that » was the mean of the population of
potential measurements and that the sample was summarized by its mean

# was really of importance because it ¢mplzed the satisfaction of a fourth

essential condition:

4. The expected value of the statistic used to summarize the sample
is equal to the true value of the basic random variable.
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Wecan assert in complete generality that:

No matter what physical quantity is represented by a basic random
variable and no matter what statistic is used to summarize a sample,

the same relation between the prior and posterior distributions will

hold that held for ~ provided that these four essential conditions
are satisfied.

Suppose then that a Normalprior distribution is assigned to £ in a
problem of the kind we are now considering, that the samplingdistribution

of £ can be treated as Normal, and that o?(8) and o2(€) and thus o?(£) can
be treated as known. The first three of the four essential conditions are
then met; but unless E(@) is zero the expected value of # will be, not £, but
£ + E(8), and it would appear that thelast of the four essential conditions
is not met.

If, however, we think of our statistic as being, not the sample mean %

itself, but the ‘‘corrected’’ sample mean

£— E(8) = & + [6 — E(8)] +

we see at once that

K(f — E(6)] = & + E(B) — Eff) = &,

o*[£ — E(6)] = o°(2) = 0°(B) + o7@).

In words, the expected valueof the ‘‘corrected’”’ sample mean 7s equal to

the true value é of the basic random variable while the variance of this

new statistic is the same as the variance of the ordinary sample mean and

therefore is knownif the variance of is known. It follows immediately

that if

1. The prior distribution of — is Normal,

2. The distribution of # is Normal,

3. The variance o2(£) = o2(8) + o2(é) is known,

then

The posterior distribution of £ is Normal

and the parametersof this posterior distribution are given by

  

y(f) = Le Eo(é) + Jt — EG)
I+; Lr=lt+d;

 

where
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Example. Let us reconsider the marketing example of Chapter 30
with the modification introduced in Section 31.2.3 of this chapter. As
in Chapter 30, we assume that the prior distribution of the trwe mean
sales per potential customer £ is Normal with parameters Eo(£) = 8 and
oo(£) = 3, that the sample consists of 100 observations and is summarized
by £ = 5ands = 7, and that we maytreat the estimate o(€) = s = 7 as
a known true value. We modify the original problem only by assuming

that the executive believes that the sampling process may be biased and
assigns to the bias & a Normal distribution with parameters E(§) = +2
and o(f) = 6. We compute

oX(2) = 92/8) + o2(2) = 62 + .72 = 36.49,
1 1 1 1

 

 

JI; = .111 + .027 = .138, = = = 2.70,
ails) V.138

= 111 8 027 K (5 — 2y(p) = GA XBLATO 2 § 702

31.2.6 Ineffectuality of Large Samples When Bias Is Suspected

Although the corrected sample mean indicates sales of 3 units per
potential customer, the executive’s uncertainty about the bias is so great

that he attaches very little importance to this estimate. In his opinion,

the corrected sample mean contains only .027 unit of information whereas

his own subjective sales estimate Eo(é) = 8 contained .111 unit; his

revised estimate E,(£) = 7.02 is therefore much closer to his original

estimate than it 1s to the indication of the sample. These results are in
striking contrast to the results obtained in Section 30.3.1, and theyillus-
trate an extremely important general principle:

Increasing the size of a sample reduces only the uncertainty due to
pure samplingerror; it does absolutely nothing to reduce uncertainty

due to suspected bias.

Evenif all 20,000 potential customers had been sampled,so that o7(é) = 0,

the executive would still set o?(#) = o7(8) = 36; and this is virtually as
large as the value 36.49 which we obtained for a sample of 100.

31.2.7 Posterior Dependence between — and B

Even though the prior distributions of — and 8 are completely inde-
pendent, the posterior distributions of & and # will in general be inter-
dependent. Although formal analysis of this point would involve multi-

variate probability theory beyond the scope of this course,it is easy to
convince oneself that such dependence mustexist by thinking of the state
of affairs which will prevail after a very large sample has been taken.
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Suppose, for example, that such a sample has yielded ¢ = 10. Because
the sample is large, the pure samplingerror is almost certainly very small

and therefore we are convinced that the mean yu of the sampling process
must be very close to 10. But since » = & + 6 by definition, this implies

that if & = 7 (say), then 8 must be very close to 3, and soforth. As our

knowledge of » increases through sampling, — and B become more and more

interdependent even though they were completely independent before any

sample was taken.

This fact has one very important implication. We have seen on

several occasions (e.g. Chapter 21, Problem 7) that if two samples are

taken, we can obtain the final posterior distribution by first computing

the distribution posterior to the first sample and then using this distribu-
tion as the prior distribution for the second sample. This procedureis

always legitimate if correctly applied; but if there 1s uncertainty about

bias we cannot use the formulas at the bottom of page 472 for the second step

in the calculation because the validity of those formulas dependscritically

on the assumption that & and @ are independent. The distribution

posterior to two samples can be obtained, however, by first “ pooling”’

the two samples into a single sample with a single n and & and then
applying the formulas on page 472 once and onceonly.

31.3 Measurement Bias in Samples from
Two-valued Populations

It is more or less common knowledge that a process which generates

measurements in the ordinary sense of the word may bebiased in the

sense discussed above, but many businessmen seem to believe that no

such difficulty is likely to arise when ‘‘measurement”’ consists simply in

reporting whether a sample item js a “‘success” or a “‘failure’’—good or
defective, user or nonuser of a certain product. Everyone realizes of

course, that the ‘‘value’”’ of such an item maybe incorrectly reported,

but it is commonly thought that these errors will average out in a large
sample.

In actual fact, however, the direct contrary is true. Measurement

bias ts even more likely to be present in samples from two-valued populations

than in samples from many-valued populations, and the reason is not hard

to see. Let us use the following notation:

p: true fraction of successes in the population.
q: true fraction of failures in the population.

w,: relative frequency with which the observer reports a failure as a

success.
wy: relative frequency with which the observer reports a success as

a failure.
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The long-run frequency P, with which sample items will be reported as

successes is the sum of the true successes reported as successes plus the

true failures reported as successes:

P, = p(l — ws) + Qn. = p + (Qu. — pry).

This long-run fraction P, of reported successes corresponds to the long-run

average uw of a set of measurements, the fraction p of frue successes

corresponds to the true value & of the quantity being measured, and

the difference between these two fractions is the bias of the sampling
procedure:

B=p—&=P,— p= qn. — pry.

The important thing to notice is that bias can be zero only if either

wT, = we = O,

ie. if there are no errors of observation at all, or if

Ts p
—_ = —)

Wf qd

i.e. if the two 7’s happen to be in just such a ratio that they cancel each

other’s effects.

In much consumer research great pains are taken to design the

sampling procedure in such a way as to make zy equal to z,, but it is

important to realize that even if this is successfully accomplished bias

is not eliminated. If we use 7 to denote the assumed equal value of z;
and 7,, we mayrewrite the expression for the expected fraction of reported

successes as

P, = pil —7) + qr = p(l—-mw) + (1 — pr
p + 2r(.5 — p).

It is immediately apparent that

Whatever the true value of p, the expected value of the fraction of

reported successes will always be between the true fraction of suc-

cesses and .5. The difference between p and q will always tend to
be understated.

31.4 Selection Bias

It was emphasized in Section 23.5.2 and reemphasized in Section

31.2.1 that our entire treatment of samples drawn from a population of

objects already in existence (rather than being taken in the order that they
are generated by a random process such as a machine tool or a measuring
instrument) depends on the assumption that the sampling is simple, Le.

on the assumption that every memberof the population has an equal chance
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of being the next ztem drawn into the sample. We havejust seen that even

when this condition is met, errors of measurement or reporting may

create measurement bias and that when such bias is suspected the dis-
tribution of the sample mean is quite different from the distribution
which applies when wearesure that no bias is present. We shall now
see that failure to meet the condition of simple sampling mayalso be a
source of bias and affect the distribution of the sample mean in this same
way. This new kind of bias will be called selection bias.

As a typical situation where selection bias may be present, suppose

that in order to reduce travel expense and save time the marketing-
research department of our previous example hadrestricted its sample of

100 potential customers to firms located east of the Mississippi River,
giving every such customer an equal chance of entering the sample but

excludingall other potential customers. Commonsensetells us immedi-

ately that this sampling procedure would belikely to result in a “‘ biased
sample”’ even though absolutely no errors were made in the measurement
of potential sales to each of the sample members, and weshall now formal-

ize this common-sense result and see how to deal with it.

81.4.1 Definition of Selection Bias

Let us again imagineeach of the 20,000 potential customers as repre-
sented by a card on which two numbers are written, the first giving the
true value of the quantity of the regular product which the customer

would purchase when sold in the regular way and the second giving the
potential sample measurement which would result if the firm were drawn

into the sample and offered the hand-made product in the course of the

sample survey. We again define

£: mean of the 20,000 true values,
uw: mean of the 20,000 potential sample measurements,

but we now also imagine that the cards representing customers located in

the East have been segregated into a separate group and that the numbers

on these cards have been averaged to compute

fz: mean of the truevaluesof the Eastern customers,

ez: mean of the potential sample measurements for the Eastern

customers.

Since the sample is drawn in such a way that the Eastern customers
all have an equal chance of entering the sample while the other customers

have none, the expected value of an individual sample measurementis

uz. As before we define the pure sampling error of an individual measure-

ment as the difference between the actual value of that measurement and

its expected value

€= 2% — MR,
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and we define the total bias as the difference between the expected value
of an individual measurement and the true mean of the entire population

B= pe — &.

This bias is due in part to the fact that the true meanof the selected East-

ern subpopulation is not the same as the true mean of the entire popula-

tion and in part to the fact that systematic error is present in measuring

sales to even the selected subpopulation. Defining the selection bias

B, = &e — &

and the measurement bias

Bm = PE — tn

we see that the total bias as defined above can be cleanly separated into

two parts

B = Bs + Bm.

81.4.2 Interpretation of a Biased Sample

No new theory whatever is required to make use of the information
in a sample which is suspected of containing one or both of these two

components of bias. The random variable # will still be the sum of the

constant true mean of the entire population plus two random variables,

the total bias and the mean sampling error:

#2=§&+6+é

The mean samplingerror € will be handled exactly as before: its meanis 0

by definition and its variance can be estimated from the internal evidence

of the sample by first estimating the variance of an individual sampling

error as

1
2(<2 = 2 =—- —___ — #7\2

and then computing

N-*n

N—1

where WN is thesize of the selected subpopulation. The probability dis-

tribution of the total bias may be directly assessed as before, or we may

feel that we can make moreeffective use of our experience and judgment

by assessing separate distributions of its two components and then com-

bining these distributions to get the distribution of the total bias. If

the distributions assigned to the two components are Normal with param-

eters E(@,), o(8.), E(Bm), and o(8,), and if these two distributions

 

o¥(@) = = 0%)
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are independent, the distribution of the total bias will be Normal with
parameters

E(8) = E(é;) + E(Bm);

7(8) = 07(8,) + o7(Bm).

The assumption of independencewill usually be reasonable, since in most
situations information that the selection bias had some particular value
would have no effect on our opinions about the measurement bias and
vice versa.

81.4.8 Bias and Sample Size

In Section 31.2.6 we used a hypothetical example to illustrate the
implications of the fact that the variance of the mean of a sample in
which bias is suspected is

N-—-*n

N—1

so that only the second term decreases as the sample size increases and
the total can never be less than the fixed value of the first term. To

emphasize the importance of this point by a real example werecall the

most famous samplingfiasco in history, the presidential poll conducted by
the Literary Digest in 1936. Over 2 million registered voters filled in and
returned the straw ballots sent out by the Digest, so that there wasless

than one chance in 1 billion of a sampling error as large as 249 of one
percentage point,f and yet the poll was actually off by nearly 18 per-

centage points: it predicted that 54.5 per cent of the popular vote would

go to Landon, who in fact received only 36.7 per cent.{

Since sampling error cannot account for any appreciable part of the
18-point discrepancy,it is virtually all actual bias. A part of this total
bias may be measurementbias dueto the fact that not all people voted as

they said they would vote; the implications of this possibility were dis-

cussed in Section 31.3. The larger part of the total bias, however, was
almost certainly selection bias. The straw ballots were mailed to people
whose names were selected from lists of owners of telephones and auto-

 (8) = 0%(8) + = 0)

+ Neglecting the finite-population correction, the standard deviation of the mean

sampling error is o(é) = +/pq/n and this quantity is largest when p = .5. Thenumber

of ballots returned was 2,376,523, and with a sample of this size the largest possible
value of o(€) 18 +/.5 & .5/2,376,523 = .000322, or .0322 percentage point, so that an
error of .2 percentage point is .2/.0322 = 6.17 times the standard deviation. Thetotal
area in the two tails of the Normal distribution below u = —6.17 and above
u = +6.17 is .0000000007.

t Over 10 million ballots were sent out. Of the 2,376,523 ballots which were
filled in and returned, 1,293,669 were for Landon, 972,897 for Roosevelt, and the
remainder for other candidates. The actual vote was 16,679,583 for Landon and
27,476,673 for Roosevelt out of a total of 45,647,117.
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mobiles, and the subpopulation which was effectively sampled was even

more restricted than this: it consisted only of those owners of telephones
and automobiles who were willing to fill out and return a straw ballot. The

true mean of this subpopulation proved to be entirely different from the

true mean of the population of all United States citizens who voted in

1936.
It is true that there was no evidenceat the time this poll was planned

which would have suggested that the bias would be as great as the 18

percentage points actually realized, but experience with previous polls
had shown biases which would have led anysensible person to assign to B

a, distribution with o(@) equal to at least 1 percentage point. A sample of

only 23,760 returned ballots, one one-hundredth the size actually used,
would have given o(é) a value of only 14 percentage point, so that the

standard deviation of # would have been

o(f) = Vo(8) + 6X2) = V1 4+ 11 = 1.05

percentage points. Using a sample 100 times this large reduced c(€)

from 14 point to virtually zero, but it could not affect o(6) and thus on
the most favorable assumption could reduce o(Z) only from 1.05 points to
1 point. To collect and tabulate over 2 million additional ballots when

this was the greatest gain that could be hoped for was obviously ridiculous
before the fact and not just in the light of hindsight.

31.4.4 Avoidance of Selection Bias: ‘‘Probability Sampling”

As we have already said, sampling is stmple only if the physical
process by which the sample is drawn is such that every memberof the
entire population has an equal chance of entering the sample, i.e. such

that if the process were applied over and over to the same population

every memberof that population would in fact be drawn with equalfre-
quency in the long run. When sampling is simple, the expected true
value of a sample item is necessarily equal to the mean of all the true

values in the population and selection bias is necessarily zero. When

sampling is not simple, it is only by pure accident that the expected true
value of a sample item—the average true value of the items which would be

drawn if the sampling were repeated over and over—vwill be equal to the

mean of the true values in the entire population. Accordingly we are
justified in treating selection bias as if it were known to be zero—i.e., in
setting o(8,) = O—only if all the available evidence indicates that sam-

pling processes of the kind used in the problem at hand are in fact simple;f

+ It is not actually necessary to give every member of the population an equal
chance of being drawn: if every member has some chanceof being drawn and if these
chances are known, we can assure zero selection bias by using a properly weighted

average of the sample items instead of a simple unweighted mean. The actual

techniques involved are beyond the scope of this course.
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and thereis a good deal of evidence to show that processes whichat first
glance seem simple are in fact surprisingly far from simple.

It might seem, for example, that a simple sample of telephone sub-

scribers in the city of Boston could be drawn by opening the Boston tele-
phonedirectory ‘‘at random,” putting a pencil on the page “at random,”’

taking the name nearest the point of the pencil, and continuing in this

way. A sampleof parts in a tote tray is ordinarily selected by a similar

procedure, the inspector being instructed simply to take the required

numberof parts “‘at random” with no formal mechanism for making the

choice. Experience has shown, however, that in many cases such
informal procedures do not give every memberof the population an equal

chance of entering the sample. The inspector may tend to avoid or to
prefer pieces near the corner of the tote tray; the person opening thetele-

phone book maytend to avoid or to prefer opening it very nearthe front
cover. As we said before, such behavior doesnot necessarily create bias—

the pieces near the corners of the tote tray may be of exactly the same

average quality as the other pieces in the tray—but it keeps us from being

sure that there is no bias and therefore forces us to assign a nonzero value

to o(B,).

The standard method of attempting to give every member of a

population a really equal chance of entering the sample is the following.

1. Make a completelist of the entire population.

2. Assign a serial number to every memberof the population.
3. Use a table of random numbers or a similar mechanism to draw

a sample of the serial numbers.

Samples drawn by procedures of this sort are commonly knownas “‘ prob-

ability samples.”’

Even a procedure such as the one just described will often fail to

achieve its object completely, however. Especially in surveys of human
populations, there are three principal ways in which selection bias may

still creep in:

1. Thelist of the population may be incomplete or inaccurate.
2. The interviewer may fail to find some of the members drawn into

the sample (the problem of the “not-at-homes’’).
3. Some persons may refuse to be interviewed (the problem of

“*nonresponse’’).

A well-run sampling procedure can do much to eliminate bias due to
causes such as these; but no matter how hard wetry, we can never be abso-

lutely sure that no selection bias is present.

81.4.5 ‘Judgment Sampling”

In manypractical situations, our judgment maytell us that there is

no need to go to the expense of giving every memberof the population an



31.4.5 Biased Measurement and Biased Selection 48)

equal chance of entering the sample. If we are dealing with a reputable
supplier, we may feel quite sure that he will fill a container with parts in
the order in which they are produced and that an acceptance sample can
be taken from the top of the container without incurring selection bias.
If we wish to determine whatfraction of housewives can tell the difference
between brand A and brand B of instant coffee, we may believe that the

taste budsof residents of Allston are no different from those of inhabitants
of the United States as a whole, and we maytherefore decide to take our

sample from residents of Allston only. We may decide to make a survey

by mail on the assumption that that part of the population which is on

our mailing list and which responds to the mailing will be roughly the
same as the population as a whole.

Notice, however, that the word ‘‘judgment” in judgment sampling

must not be neglected. If we were trying to determine whatfraction of

all United States housewives preferred brand A to brand B of instant

coffee, we should consider the fact that the regular coffees which have the
largest sales in certain parts of the country are noticeably different in

blend and roast from those which dominate the market in other parts of
the country. It would be very dubious, therefore, whether the fraction of
Allston housewives preferring brand A is equal to the fraction preferring

A in the country as a whole. The Literary Digest poll referred to above
is an example of a very poor judgment, namely that the part of the

United States voting population which consisted of automobile andtele-
phone ownerswilling to answera poll by mail contained the samefraction

of Landon supporters as the entire population of United States voters.

Validation. 'To some extent the judgment on which we haverelied

in taking a judgment sample can be checked from the sample itself by a
process knownas validation. It is very common practice to secure from
members of the sample information on income, home-ownership,age,sex,
education, and other social and economic characteristics and to compare

the distribution of these characteristics in the sample with the knowndis-

tributions of these characteristics in the population as a whole. If these
factors have about the same distribution in the sample as they do in the

population as a whole, and if these factors are thought to be the principal

causes of variation among people as regards the particular characteristic

being measured by the sample, wewill feel more confident that the results

of the sample are unbiased.
Whenever possible, the sample should’ of course be validated for

characteristics more specifically related to the characteristic being meas-

ured. If, for example, we have used a judgment sample to measure the
fraction of people able to distinguish between two brands of instant

coffee, we could question each person in the sample concerning his coffee-

drinking habits, previous usage of regular vs. instant coffee, etc., and

check ‘the distribution of these characteristics in the sample against
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available data on their distribution in the United States as a whole or in
the region in which the two brands are marketed. If then we found that
the sample contained, say, an unduly high fraction of regular users of
instant coffee, we might seriously question our initial assumption that a

sample drawn in this way would berepresentative of the population as a

whole in ability to distinguish between two brandsof instant coffee.

31.4.6 The Economics of the Choice of a Sampling Method

The judgment on which a judgment sample is based—viz., that the

mean of a selected part of the population is equal or nearly equal to the

mean of the whole—may always turn out after the fact to have been
wrong: the sample may actually have serious bias. For this reason many

people have argued that the only ‘‘correct”’ or ‘‘scientific’’ procedureis to

use so-called ‘‘ probability sampling” for all purposes. The question is

by no meansthis simple, however. A probability sample will in general

cost more than a judgment sample, and we must ask whether the reduc-

tion in the risk of selection bias as measured by o?(8,) is worth this extra

expense. Or we can look at the problem another way: for any given

expenditure on sampling, we can in general take a larger sample if we

select an easily accessible part of the population than if we take a prob-

ability sample from the whole population. Because the sample size is
larger, there will be less risk of pure sampling error with the judgment
sample than with the probability sample, and this factmay more thanoffset
the greater risk of bas which is incurred by taking a judgment sample.

Suppose, for example, that we wish to determine the fraction of

people who can distinguish brand A of instant coffee from brand B and
that we are fairly sure from previous experience that this fraction will not

be less than 20 per cent or greater than 80 per cent. Suppose further
that we have a budget of $1000 for the sampling operation, that it would
cost $5 per head to take a judgment sample, and that it would cost $20
per head to take a probability sample. The sample sizes accordingly

would be 200 for the judgment sample and 50 for the probability sample,

so that the finite-population correction can be neglected in both cases.

If then in fact p = .20 or .80, the variance o7(€) = pq/n of the pure
sampling error would be .2 X .8/200 = .0008 for the judgment sample
and .2 X .8/50 = .0032 for the probability sample. Since the pure
sampling variance of the probability sample is thus .0032 — .0008 = .0024

greater than that of the judgment sample, the probability sample will be

worse than the judgment sample unless o?(8,) for the judgment sampleis

at least .0024 greater than it is for the probability sample. fT

{ The use of p = .20 or .80 gives the smallest value to o7(€) for any n and there-

fore is most favorable to the probability sample. If p = .50, o2(€) is equal to
5 X .5/200 = .00125 for the judgment sample and .5 X .5/50 = .00500 for the
probability sample; the difference is .00375 in favor of the judgment sample.
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Suppose now that previous experience with surveys of this type leads

us to assign some definite value to E(@,) under the judgment plan and
convinces us that there is a 50-50 chance that the true value of £, will

actually be within 3 percentage points of this most probable value. The

reasoning of Section 31.2.3 then leads us to set

03(B.) = “os = .048,
o2(B,) = .0452 = .0020;

and even if (contrary to the implications of the remark at the end of

Section 31.4.4) we set ?(8,) = 0 for the probability sample, the judgment
sample is the morereliable of the two.

In. other situations it will be possible to trade risk of selection bias

against risk of measurement bias rather than against risk of pure sampling
error: by using a judgment sample and accepting the resulting increase in
o(8,;) we may be able to make a more than compensating decrease in
a(8m). This will be typically true in surveys where highly skilled inter-

viewers can be used if the respondents are chosen. within narrow geo-
graphical limits while much less skilled interviewers must be used if a
nationwide probability sample is to be interviewed.

Complex Sample Designs. The entire discussion in this chapteris
intended only to bring out certain basic principles involved in the inter-

pretation and design of samples; it is in no sense even an introduction to

the complex technical problems involved in the efficient design of large-
scale sample surveys. These technical problems are far beyond the
scope of this course, but one general point must nevertheless be men-

tioned. It is only when relatively small amounts are at stake in the

ultimate decision and relatively little is to be spent on acquiring sample
evidence as a basis for the decision that any of the simple designs which

we have discussed will be appropriate. When large sums are at stake

and large amounts are to be spent on acquiring evidence, the best sam-

pling plan will almost always involve partzal trade-offs of selection bias

against pure samplingerror, selection bias against measurement bias, and

so forth. Thus it may be better to take a medium-sized simple sample in
each of a small numberofcities or ‘‘clusters’”’ than it would be either to
take a very large simple sample in a single city or a very small simple
sample from the entire population of the United States. Similarly it

may be better to rely primarily on unskilled interviewers who have been

‘‘calibrated’’ by comparison with a few skilled interviewers than to rely
on either skilled or unskilled interviewers alone.

PROBLEMS

1. Ina situation like that of Chapter 26, a very large number of measurements have
been made on each of 20 batches of raw material, each batch being measured under
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constant conditions, and the true X content £ of each batch has then been determined
in the final product. The results have been tabulated in the form of Table 31.2 and
the 20 6’s in the last column have been summarized by

Yous = 4.17; /WYod(B — 17)? .32.

The differences between each individual measurement and the mean ofall the measure-
ments made on the same batch have been computed for every batch and summarized by

 

 

1

Ve +ngt::: F tiny me — wi)? + Ee — we)? +e + + + Ze — pa0)?] = 9.

A new batchis received, 7 = 9 measurementsare made, andtheir average is computed
aS

% = 2.08.

a. Compute the likelihood of the observed sample mean given — = 3.0 and com-

pare with the corresponding figure in Table 26.3.
b. Compare the amount of information contained in the sample mean under the

assumptions of the present problem with the amount of information contained in this
same statistic under the original assumptions of Chapter 26.

2. Assumethat the prior distribution assigned to — by the manufacturer of Chap-
ter 26 is not the discrete distribution of Table 26.1 but a Normal distribution with

parameters

E,(2) = 2.725, ao(Z) = .370.

(These are the actual values of the mean and variance of the original discrete distribu-
tion.) Compute the posterior distribution of £

a. Underall the conditions described in Problem 1 above.
b. Under these same conditions except that all 20 recorded #’s are 0.

3. 70 per cent of the population prefer Smith’s cornflakes and 30 per cent prefer
Jones’s but 20 per cent of either group will state a preference for whateveris in a box

labeled X regardless of their true preferences and 20 per cent will similarly state a
preference for Y. Half of the respondents in a sampleare given Smith’s cornflakes in
a box labeled Xand Jones’s in a box labeled Y; the codes are reversed for the otherhalf
of the respondents. What is the expected fraction of the sample reporting a prefer-
ence for Smith’s cornflakes?

4. Two extremely large samples of housewives have been taken to determine the

fraction preferring Smith’s cornflakes to Jones’s. In one sample Smith’s were coded X
and Jones’s Y; in the other sample the codes were reversed. The stated preferences
were:
 

 

Contents Label Fraction of subsample preferring

Smith’s xX .16
Jones’s Y 24

1.00

Smith’s Y .56
Jones’s x 44

1.00

 

Letting # denote the fraction of all housewives who actually prefer Smith’s product
and treating sampling error as negligible because of the very large sample size,
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a. Discuss in common-sense terms the implications of the sample evidence con-

cerning the true value of 9p.
b. Outline a procedure for assigning a formal posterior distribution to # but do

not make any actual computations.
5. A company located in Chicago wishes to measure readership of a new adver-

tisement which it has just published in a magazine with national circulation, and
management has authorized the marketing-research director to spend $2500 on the
investigation. The director has made similar investigations on five previous occa-
sions, on each of which a simple probability sample of the magazine’s entire mailing
list was used, but his experience on these five occasions has led him to think that he
might do better this time by sampling only those readers wholive in Chicago and are
thus readily accessible. The results of the surveys of the readership of five earlier

advertisements are shownin the table below. If it would cost $25 per head to take a
nationwide sample in the new investigation or $5 per head to sample only Chicago

 

Readership, per cent
 

 

Advertisement

National Chicago

1 12 14

2 17 20

3 15 14

4 21 18

5 18 20

 

readers, what should the company do?

6. Recompute the answer to Chapter 30, Problem 1d, bringing in the additional
assumption that Mar-Pruf’s management believes that the average potential cus-
tomeris almost certain to say that he will buy more than he will actually buy. Man-

agement guesses that the most likely average amount of overstating is 20 gallons per
year but would not bet more than even moneythat this best guess is actually within
10 gallons per year of the true figure.



CHAPTER 32

Comparison of Two Unknown Quantities;

the Importance of Sample Design

In all the problems which we have studied so far, the costs which would
result from any act depended on a single unknown quantity such as a

fraction defective, a chemical content, or the consumption of a certain

product. We shall now consider problems where the costs of the possible
acts depend on the difference between two unknown quantities.

This is perhaps the most commontypeof statistical problem encountered

in business practice outside the field of quality control. It includes such
problems as deciding whether or not a new package design will increase

sales by enough to payfor the additional cost, since we are usually uncer-

tain about what sales will be if we retain the old package as well as about

what they will be if we change to the new. It includes problems of

deciding whether a certain report will create an improvementor a dete-
rioration in the attitude of employees, since we are usually uncertain

about their present attitude as well as about the attitude which will exist
if the report is circulated, and so forth.

32.1 A Problem and Its Analysis if No Sample Is Taken

A manufacturer of instant coffee is considering a more modern-

looking design for the jar and label with which he packages his product.

The proposed new jars and labels can be bought for the sameprice as the

old and the only extra cost involved in the change would be about
$20,000 for minor modifications in the jar-filling machines. The manu-

facturer believes that if the new package proves successful it will be suc-

cessfully imitated by the rest of the industry after about 2 years; and
since his margin net of freight averages $.11 per ounce, this means that

the new package mustincreasehis sales by $20,000/$.11 = 182,000 ounces

within the 2-year period in order to break even. His sales have been
running about 70 million ounces per year, so that an increase of this mag-

nitude is readily conceivable; his real worry is whether a change to the
new design might actually reducehis sales.

486
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32.1.1 The Random Variables €, and &,

The profit-determining random variables of this problem are (1)
total sales during the next 2 years if the old package is retained and

(2) total sales during the next 2 years if the new packageis adopted, but

instead of working directly with these variables we shall express them in
terms of mean sales per store per month, i.e. total sales divided by the
numberof stores in the United States and by the numberof monthsin the

2-year period. The manufacturer has a nearly complete list of all

grocery stores in the United States, and weshall treat this list as if it were

in fact complete and perfectly accurate. There are 400,000 stores on the

list, so that if total sales over the 2 years should be 140 million ounces,say,
mean sales per store per month would be

140,000,000
400,000 = 14.6 ounces,

and so forth.
The problem thus involves the basic random variables

£,: mean sales per store per month if the old package is retained;

£.: mean sales per store per month if the new package is adopted.

The true value of either £ is the number which would be obtained by offer-

ing the package in question to all United States stores for all 24 months and

dividing the resulting total sales by 400,000 XK 24 = 9,600,000; only one
of the true values can ever actually be known.

Conditional Profit in Terms of & and &. If the manufacturer

retains the old package his total sales during the 2-year period will be

9,600,000€, and his total profit will be $.11 times this quantity. To get
the conditional total'profit with the new package we treat € in the same

way and then subtract the $20,000 cost of modifying the machinery.
We thus have the conditional profits:

With the old package, $1,056,000 &,,

With the new package, $1,056,000 & — $20,000.

32.1.2 Analysis in Terms of Relative Profit and Difference in Sales

Let us state the manufacturer’s problem as one of choice between

acceptance and rejection of the new package. It is obvious that the desir-

ability of either act depends only on whetherprofit with the new package

is greater or less than profit with the old package; it does not depend on the
absolute amountof profit which will be made with ezther package. Wecan
therefore simplify our problem by looking, not at the absolute profits of
the two acts, but at their profits relative to the profit which will be made if
the old package ts retained. Subtracting conditional profit with the old
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package from conditional profit with the new we obtain the conditional

relative profit of acceptance:

Conditional RP of acceptance = $1,056,000 (2 — £1) — $20,000.

Since rejecting the new package is the same thing asretaining theold,

Conditional RP of rejection = $0.

The Random Variable 6. These results make it clear that the

economics of the problem depend only on the difference between £ and &
and not on the absolute valueof either of these two random variables by

itself. We can therefore further simplify our problem by defining a new
random variable

 

6= & — &, Definition of 6

 

and expressing the conditional relative profits in the form

Conditional RP of acceptance = $1,056,000 6 — $20,000,

Conditional RP of rejection = $0 6 + $0.

These conditional relative profits are graphed against 6 in Figure 32.1,
and we see immediately that

The economics of choice in our present problem are identical to the

economics of choice in a two-action problem with linear costs which

depend on a single random variable. It is only the name 6 of the
basic random variable which is different. +

Expected Relative Profit. Since the conditional relative profit of

either act is a linear function of 6, the expected relative profit of either act

is obtained by merely substituting E(6) for 6 in the formula for the condi-

tional relative profit; the proof is identical to that given in Section 30.4.1

for problems where the basic random variable wascalled 2.

Cost of Uncertainty. The relative profits of acceptance and rejection
are equal when 6 has the break-even value 6, determined by

$1,056,000 & — $20,000 = $0,
. = $20,000
° ~ $1,056,000

Following exactly the sameline of reasoning we used in Section 30.4.2 and

= .019.

{ We could have defined relative profits or costs in problems involving a single
unknown just as well as in our present problem. The reason for not so doing was that
in those problems the use of relative profit or cost would have been an unnecessary
complication, whereas in problems involving the difference between two unknowns
it is a very real simplification
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arbitrarily calling acceptance act 1 we can define the loss constant

ke = (ki — ko| = ($1,056,000 — $0{ = $1,056,000

and obtain formulas for the conditional value of perfect information which

are identical to those of Section 30.4.2 except that the symbolp is replaced

by 5. This meansthat the formulas for the expected value of perfect
information or cost of uncertainty derived in Sections 30.4.3 and 30.4.4 can

Profit relative to retention of
old package, million dollars
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also be applied to our present problem if » is replaced by 6. In particular:

if the distribution of 6 is Normal, then

Cost of uncertainty = k,o(6)G(D),

where

\5, ~ E(S)|.
o(6)

82.1.8 The Decision without Sampling

Since the economicsof this new type of problem can be expressed in

terms of a single basic random variable 6, a decision without sampling is

reached in exactly the same way that it is reacned in a problem expressed

in termsof a single £: the businessman mustassign a probability distribu-

tion to the basic random variable and use it to evaluate the relevant
expectations. One of the real advantages in working with 6 rather than

with £, and &is that it will almost certainly be easier for the businessman

to express his judgments about the effect of the new packagein the form of

a probability distribution of 6 than it would be to express them in the
form of two interrelated distributions of &; and &:.

D=
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The Probability Distributton. When asked for his marketingjudg-

ment concerning the possible effects of the new design, the manufacturer

answers that his best guess is that it will increase sales by a modest

amount, say 1 per cent of last year’s volume or about 700,000 ouncesper

year. He goes on, however, to add that he has seen many cases where
apparently unimportant changes in package design have led to rather

remarkable gains and losses and that he thinks that there is really only an

even chance that his best guess is within a million ounces of the true
figure.

To work with these opinions we must express the manufacturer’s

figures in the same units in which we measure the quantity 6, that is, in
ounces per store per month. Dividing 700,000 ounces by the 400,000
stores on the list and by the 12 monthsin a year wefind that the manu-
facturer’s best guess is 6 = .146 ounce per store per month. Treating

the 1 million ounces in the same way,wefind that he believes that thereis
only an even chance that his best guess will be in error by less than .208
ounce per store per month. The way in which the manufacturer has

stated his uncertainty about his best guess indicates that he would adopt

a symmetric probability distribution if pressed; and if he agrees that a
Normaldistribution has about the right shape we can use the reasoning
of Section 30.2.3 to show that

The Better Decision and Its Expected Relative Profit. The expected

relative profit of a decision to reject the new packageis obviously $0, since

by relative profit we mean the difference between theprofit of a given act
and profit with the old package. The expected relative profit of a

decision to accept the new packageis

$1,056,000 Eo(5) — $20,000 = ($1,056,000 x .146) — $20,000
= $134,000.

While this result tells the manufacturer absolutely nothing about the
absolute profit he can ‘‘expect’’ to earn if he accepts,it tells him that if he
accepts he can “‘expect”’ to earn $134,000 more than if he rejects. Accept-

ance is thus the better act under the probability distribution which the

manufacturer’s experience has led him to assign to the differential effect
6 of the new package.

The Cost of Uncertainty. The manufacturer wasnotat all sureabout

the value of 6, however, and therefore he should also look at the cost
attached to his uncertainty. To find this we compute

_ [8s — Eo(8)| _ |.019 — .146| _
Do o4(0) 310
 |~ 41| = +.41,.
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use Table IV to find

G(.41) = .2270,

and finally compute the expected loss of the better decision as

kioo(5)G(Do) = $1,056,000 X .310 & .2270 = $74,300.

This is the cost of uncertainty if the manufacturer acts on the information

now avatlable, and it represents a very sizable risk.

32.2. An Experiment with Independent Samples

Because of the risk involved in acting purely on the basis of judg-

ment, the manufacturer decides to make a comparative store test and

authorizes his marketing-research department to buy a certain amountof

testing. It is beyond the scope of this course to find the best way—or

even a tolerably good way—of conducting and analyzing this experiment;

we shall nevertheless proceed to discuss two grossly inefficient ways since

by so doing we can illustrate two very important general principles.

1. In all but the very simplest situations, the amount of information

which can be obtainedfor a dollar of sampling expense varies to an almost

incredible extent with the design of the survey or experiment whichelicits

the information.
2. Whatever the design may be, however, the information obtained

from the sample will be used in a way whichis basically identical to the

way in which we have used sample information in earlier chapters.

82.2.1 The Experimental Design

Suppose first that two separate samples of 100 stores each are drawn
from the manufacturer’s list of all United States grocery stores in such a

way that every nameonthelist has an equal chance of being drawn. If

any store in either sample does not stock the manufacturer’s product at
present, this store is left without stock. Among the stores which do

stock the product at present, those in the first sample continue to receive

the old package while those in the second sample are supplied with the
new package. At the beginning of the experiment each store’s opening
inventory of the product is recorded; the experiment is run for 1 month

during whichall deliveries of the product to each store are recorded; and
at the end of the experiment closing inventory is counted and sales are

computed for each store by subtracting closing inventory from the sum of
opening inventory plus deliveries. In processing the data obtained from

the experiment, the few stores which did not stock either product are not

excluded: they are counted in their respective samples as having had

0 sales.
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32.2.2 The Statistic d

Suppose now that when the data from the two samples have been
analyzed they appear as follows:

Sample from first population Sample from second population
(old package) (new package)

100 store-monthsn, = 100 store-months ne

#, = 14.27 ounces Xe

$8, = 7.23 ounces So

13.56 ounces

7.49 ounces

Since it turned out so convenient to replace the two random variables £,

and & by a single random variable 6 = & — &, it naturally occurs to us

that we will profit by handling the two sample statistics Z,; and £. in a

similar way, and we therefore define a new statistic

a = £o _ Ey

whose observed value in this particular experiment was

It can be shown that we will obtain the same posterior distribution for 5 by
use of d that we would obtain by the separate use of the two statistics Z; and Zz.

In common.sense, it is the difference between the two sample means

which supplies information on the difference between the two population
means.

The Sampling Distribution of d. In order to use this statistic d we

must know its sampling distribution given any possible value of the
parameter 6, and to find this distribution we proceed exactly as we pro-
ceeded in Chapter 31 to find the distribution of the mean £ of a single sam-

ple. Thefirst step is to write out the formula for the composition of the d

observed in any one particular experiment. Using 8; and 82 to denote the
total biases (cf. Section 31.4.2) of the sampling procedures by which Z; and
Z2 were respectively obtained and using é, and é to denote the pure

sampling errors contained in the observed #; and %2, we have by Sec-
tion 31.1.4

d=X—-%—-&+ Bete — §— Bi-&

= (f — &1) + (82 — B1) t+ &e — &.

Wehavealready agreed to denote the difference (2 — £1) by the symbol

5; let us now similarly define

Ba = Bo — Bi.

8a is the systematic errorin the statistic d, i.e. the mean amount by which
d would differ from 6 if the whole sampling procedure were applied over

and over and d were computed on each separate occasion. We can now

write for the composition of any observed d:
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d=6+ Bat &— &.

Having found the composition of any particular d, we are ready to
study the distribution, given any specified 5, of the random variable

d=6+6at& — &.

Since the expected value of any sum of constants and random variables
is the sum of the (expected) values, and since E(é,) = E(é.) = 0 by
definition (Section 31.2.1),

 

E(d) = 6+ E(8a)

 

The two samples are taken in such a way that é and é2 are necessarily

independent of each other, and there is also every reason to assume that

they are independent of 8;—if we knew (say) that the first sample had
happened to have a high pure sampling error, this information would not

affect the probability distribution we assign to the systematic error of the

whole sampling procedure, and so forth. Then since the variance of 4

sum of independent random variables is the sum of the variances,

 

o?(d) = 09(Ba) + o2(&1) + 0(Es)

 

The formulas for E(d) and o(d) apply regardless of the shapes of the
distribution of Bz, €1, and é2, but the shape of the distribution of d does

depend on the shapes of the distributions of these three random variables.
In our particular example, each of the two pure sampling errors €; and €2 is

the sum of n = 100 individual sampling errors and therefore can be
treated as approximately Normal regardless of the shape of the distribu-

tion of the individual errors. If we assume that the businessman’s
uncertainty about 8, can also be described by a Normaldistribution (cf.
Section 31.2.3), then since the distribution of the sum of any number of
independent Normal random variables is Normal

The distribution of d is Normal.

Ajl that remainsis to assign the proper numerical values to the quan-
tities E(Bz2), o(Bz), (1), and o(€2) in our example. As far as thelatter
two quantities are concerned, we know (Section 31.2.1) that the variance

of the sampling error of an individual observation in either sample can be

estimated by the statistic s as computed for that sample; and we also know

that because each s rests on f = n — 1 = 99 degrees of freedon we can

treat these estimates as if they were certainties. We thus have

a(é1) = 81> 7.233 a(é2) = §, = 7.49.
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We can then computethe standard deviations of the samplingerrors of the
sample means in the usual way; neglecting the finite-population correction
because the samplingratio is only 100/400,000 we obtain (cf. Sec-
tion 31.2.1)

” a(€1) 7.23
= >G  T5FTF OOD: COS 728,

ve) == 00
* a(€2) 7.49= Te) _ 139 _ 749

we2) a igo

As for the bias 62, we are justified in our present example in treating
it as virtually knownto be virtually 0. This is not because the two sam-
ples are individually unbiased. On the contrary, each of the samples may
contain very serious selection bias because of the fact that an experiment
run in one particular month is taken as representing all the 24 months in
which the marketer is interested. There may be important secular and
seasonal variations in consumption of the marketer’s product, and if there
are it would be very dangerous to assumethat total sales in the 24-month

period would be proportional to sales in the experimental month. The
marketeris interested, however, not in the absolute level of sales but in the
differential effect of the new package; and it seems reasonable to assume
that these secular and seasonal factors will affect the two samples to very
nearly the same degree. ‘This being so, the bias in the difference between

<2, and Z, can reasonably be expected to be negligibly small.

Our conclusions can be summarized as follows. The sampling distri-

bution of the statistic d in our example is Normal with parameters

E(d) = 6,
o2(d) = o%(€1) + o2(€.) = .7232 + .7492 = 1.084.

82.2.3 The Posterror Distribution and Expectations

Since the prior distribution of 6 is Normal and the sampling distribu-
tion of d can be treated as Normal with known variance, the posterior dis-
tribution of 6 is Normal with parameters given by the formulasin Section
31.2.5 with 6 substituted for — and d substituted for z. Since we have
already seen that

Eo(6) = +.146, oo(6) = .310,

d = —.71, o*(d) = 1.084,

we can now compute

1 1 1
(5) ~ 3102 * L084 ~ 1944+ -9 = 11.3,

B,(5) =< (148X 104)+(= 710 x .9)

= .298.

 = +.078,

1

71(8) = /113
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The variance of the sampled populations and therefore of the statistic d

is so great that the manufacturer’s experiment should have virtually no effect
on the distribution he assigns to the basic random variable §. Although

the statistic d had the value —.71, the manufacturer should assess
Ei(6) = +.078. His uncertainty about 6 was originally measured by
ao(5) = .308; his experiment has reduced this only to o1(6) = .298.

The Better Decision and Its Expected Relative Profit. The expected

relative profit of acceptance under the posterior distribution is

$1,056,000 Ei(5) — $20,000 = ($1,056,000 x .078) — $20,000
= $62,400.

Since this is positive, acceptance is the better decision.
The Cost of Uncertainty. To find the posterior cost of uncertainty

we compute the value of D for the posterior distribution:

_ |& — Ei(6){ _ |.019 — .078| _
— (8) — 998 —_ |— .20| = + .20,

use Table IV to find

D;

G(.20) = .3069,

and compute

k.o1(6)G(D,) = $1,056,000 * .298 K .3069 = $96,600.

The prior cost of uncertainty was only $74,300: the posterior cost of

uncertainty is actually $22,300 higher than the prior cost. What the sample

has doneis simply to tell the manufacturer that he is in a very risky posi-

tion; the variance of d was so great that the sample has not been effective

enough to tell him how to act with little risk.

32.3 Populations of Differences

Commonsense has probably already told the student that the manu-

facturer could have used his 200 store-months of testing to much better

advantage if he had tried both the old and the new packagein every store

used in the experiment. Under the design described above, it is quite

possible that the new package will by pure chance be put predominantly

in stores whichsell little of the manufacturer’s brand while the old is put

in stores which sell much more;it is also quite possible that the reverse

event will occur.t The large sampling variance computed for d is due

in very large part to the uncertainty which results from this possibility,

7 It is irrelevant for our present purpose to know whether the store-to-store
variation in demand for the brand is due to differences in size of store, in the cus-
tomers’ liking for coffee as such, or in their preference for the manufacturer’s brand

over other brands.



496 Use of Information Obtained by Sampling 32.3.1

and weshall now consider an alternative design for the experiment which

eliminates this source of uncertainty.

82.8.1 The Experimental Design

Let us now suppose that the experiment is run for 2 months instead

of 1 but that only 100 stores are used instead of 200. During the first
month of the experiment the stores are supplied with the old package,

during the second month with the new. Audits are made at the end of

both months, so that sales in the two packages are separately recorded
for every store in the sample; stores not stocking the product are recorded

as having 0 sales with both packages. In this way chance selection of
the stores in which the two packages are tested can no longer favor either

package over the other.

Thefirst and most important thing for the student to observeis that
we cannot proceed by computing mean sales per store-month for each

package, taking d as the difference between these two observed sales

rates, and applying the formulas for the distribution of d given in Section

32.2.2 above. The formula for the expectation E(d) would still apply,
but the formula

o*(d) = o%(Ba) + o7(€1) + o(Ee)

for the sampling variance of d does not apply. Suppose, for example,

that the ‘‘average store’’ in the sample happensto sell more of the manu-

facturer’s brand than the average store in the United States. Then both

€, and €é2 will tend to be above their zero expectations. If the average
store in the sample happensto sell less than the national average, both

€, and é2 will tend to be negative. In other words, a high value of € will
tend to be accompanied by a high value of €2 or a low value by a low value,
and therefore the variance of their difference is not equal to the sum of their

individual variances. {

82.3.2 Populations and Samples of Differences

In the present problem there is a very simple way of getting out of

the difficulties occasioned by the interdependence of €, and é2. Instead
of considering the sample as being drawn from two different populations,
each consisting of 400,000 sales rates with means &, and £2, we may con-

sider it as drawn from a single population consisting of 400,000 differences
between sales rates. If some particular store would sell 20 ounces per

month in the old package and the same store would sell 19 in the new, the

‘value’ of this memberof the population is 19 — 20 = —1. The mean

of this population is the mean of the store-by-store differences which

would result from adoption of the new package, and weshall denoteit by

j In technical language, the addition theorem for variances does not apply

because €, and €: are correlated: cf. the footnote in Section 16.3.
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£: mean of the differences in monthly sales by individual stores which

will result from acceptance of the new package.

The sample then consists of 100 differences drawn from this population of

differences: for each individual store in the sample we subtract sales in the

old package from sales in the new andcall the difference the valueof this

sample item.
If we take this point of view, then once the store-by-store differences

have been computed we can throw away the actual sales figures and

never look at them again. Accordingly we shall suppose for the present
that the results of the experiment are fully described by the following

summary:

nm = 100 paired store-months;

£= —.21;

s = 1.53.

Werepeat that each observation x is the difference between the two sales

rates in a single store. The statistic Z is computed by averaging the 100

store-by-store z’s which constitute the sample, and the statistic s is com-

puted from these same differences.

32.3.8 The Posterior Distribution of &

Since in this problem the mean difference é is economically identical

to the difference 6 between the two means of our previous analysis, we

assume that the manufacturer assigns to ~ the sameprior distribution he

assigned to 6, that is, a Normal distribution with parameters

Wecan then compute the parameters of the posterior distribution of — by

the usual formulas. Assuming that there is no bias, applying large-sample

theory, and neglecting the finite-population correction, we estimate

and compute

1 1 1AB = Bion + agg = 10-4 + 42.7 = 58.1,

Bg) = (t:146 Xx 104)+ (=21 X 42.7)

= .137.

.140,

1

V 53.1

The Better Decision and Its Expected Relative Profit. Remembering

that the mean difference £ is economically identical to the difference 6

oi(f) = 
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between the two meansales rates, we can simply substitute é for 6 in the

expression given in Section 32.1.2 for the conditional relative profit of

acceptance:

Conditional RP of acceptance = $1,056,000 & — $20,000.

Since this is a linear function of &, the expected relative profit of accept-

ance 1s

$1,056,000 E.(£) — $20,000 = $1,056,000 * (—.140) — $20,000
= —$168,000.

The manufacturer can ‘‘expect”’ to be $168,000 better off if he retains the

old package.

The Cost of Uncertainty. To find the expected loss of the better

decision, in this case rejection, we compute

p, = (ge Ei(é)| _ [+.019 — (—.140)| _ .159
tT 61 (8) 7 137 137
 = 1.16,

look up

G(1.16) = .06086,

and compute

kioi(€)G(D1) = $1,056,000 * .137 X .06086 = $8,800.

This is very substantially less than the $74,300 prior cost of uncertainty

computed in Section 32.1.3.

32.4 The Importance of Sample Design

32.4.1 Comparison of the Two Designs Already Discussed

. In the first example analyzed above, the statistic d had the value

7I;in the second example the correspondingstatistic had the value

—.21. The former was over three times as far below the break-even

value 6, = & = .019 as the latter and yet:

1. The second experiment should logically lead the manufacturer to

reverse his prior decision to accept whereas the former should not.

2. The second experiment reduced the cost of uncertainty from

$74,300 to $8,800 whereas the former actually raised it to $96,600.
These differences are due to the fact that the variance of the statistic

d in the first design was muchgreater than the varianceof thestatistic £

in the second: the respective values were 1.084 and .0234. These figures
rest, of course, on values which were simply assumed for the population

variances (more accurately, for their estimates s?); but while we cannot

hope to prove anything by a pair of examples we can show that the

assumed values are reasonable,
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The values assumedfor o(é1) and o(€é2) in thefirst design were respec-

tively 7.23 and 7.49 ounces per store per month, and these values are
almost certainly too low given the assumed mean monthly sales of
70,000,000/(12 * 400,000) = 14.58 ounces per store per month. It is

a known fact that the frequency distribution of the total dollar vol-

umes of all United States grocery stores is J-shaped—there are a great

many extremely small stores, a fair number of medium-sized stores, and a

very few extremely large stores. A frequency distribution of store-by-

store sales of the manufacturer’s brand would have a similar shape, and
we can get a rough idea of the standard deviation of this distribution by

using what we already know about the J-shaped exponential distribution.

The standard deviation of any exponential distribution is equal to its

mean, and we would therefore really expect the standard deviation of

sales of the manufacturer’s brand to be about 14 ounces per store per
month. The standard deviations of the sample measurements x and

therefore of the samplingerrors e should be very nearly equal to the stand-
ard deviations of the truesales rates, i.e. closer to 14 than to 7 ounces per
store per month. We have certainly not overstated the ineffectiveness of our
first experimental design.

As for the second design, we have almost certainly understatedits

effectiveness relative to the first. A very large part of the store-to-store

variation in the differences measured in the second design is simply an

indirect effect of store-to-store variation in demandfor the manufacturer’s
brand as such. Suppose, for example, that the true effect of the new

package is to lowersales by 10 per cent in all stores. Then a store which

on the average would sell 20 ounces per month in the old package would
sell 2 ouncesless in the new; a store which would sell 80 ouncesin the old

package wouldsell 8 ouncesless in the new; and the standard deviation of

the whole population of differences sampled in the second design would be

10 per cent of the standard deviation of either of the two populations of

sales rates sampled in the first design. In setting up our assumptions
about the results of the second experiment we have provided more than

generously for this kind of variation. Although we assumed that the

mean difference due to the new package wasof the order of 1 per cent of
sales, we assumed that the standard deviation of the differences was over

20 per cent of the standard deviation of the sales rates: we assumed

ao(é) = 1.538 in the second design after assuming o(é1) = 7.238 and
a(é2) = 7.49 in the first design.

It is true, of course, that the differences sampled in the second design
vary from store to store for other reasons in addition to the one just dis-

cussed. ‘‘Chance’’ factors such as weather will have an effect on the
difference as measured in each store, and this effect will vary from store
to store. There may also be some variation from store to store in the

true effect of the new package—customers may prefer it in some places
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and dislike it in others. It is virtually certain, however, that the varia~
tion dueto all these causes put together is small compared to the variation

due to variation in sales of the manufacturer’s brand of coffee as such.
The fact that some stores have total coffee sales 1000 timesas large as
others tends to make their ‘‘differences”’ 1000 times as great as others,
and none of the other sources of variation is at all likely to haveeffects
even approaching this magnitude. Since we have assumed a population

variance that allows for this first source of variation many times over, we

may safely conclude that we have very substantially understated the superi-
ority of the second design over the first.

82.4.2 The Concept of Statistical Efficiency

What we havejust shownis that the indecisivenessof thefirst design
discussed above compared to the second was not due to chanceorto arbi-

trary assumptions but to the fact that the second design was inherently
more efficient than thefirst. Regardless of the true value of the effect of

the new package, thestatistic £ of the second design was bound to have
less variance than thestatistic d of the first design; and this meant that
the information I; = 1/o07(£) obtained from the second design was bound

tobe greater than the information Jz = 1/0?(d) obtained from thefirst.
Now it is obvious that if we use a sufficiently large numberof store-

monthsof testing under thefirst design we could obtain as much informa-

tion from that design as we did in fact obtain from 200 store-months of

testing under the second design. This suggests a way of actually quanti-
fying the efficiencyof the first design relative to the second. If it would
take 800 store-months of testing underthefirst design to get the same
information which we got with 200 underthe second, we can say that the
first design is one-fourth as efficient as the second. We would prefer,
however, to be able to compare the two designsin general, without speci-

fying a particular numberof store-months undereither design as a base,
and to make this possible we define

nz: total number of store-months used in an experiment.

This quantity had the value 200 in both the designs we have analyzed,
even though the numberof stores was only 100 under the second design.

In the first design, each of the two independent samples was ofsize

n=n,/2. Substituting this value for n; and nz in the formula given in
Section 32.2.2 for the variance of d and assumingas before that o(8z) = 0
we can compute

7.23? , 7.49% _ 217
n,/2 N,/2 7 r% ,

 ad) = 0+
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In the second design each sample item was a difference obtained by two
store-months of testing and therefore the size of the sample of differences
was n,/2. Substituting this value for n in the formula given in Section

31.2.4 for the variance of £ and assuming as before that o(8) = 0 we
obtain

 

1.53? 4.6
o?(£) -o+!n,/2 = “th”

_ 1 Nr _

Thus we see that each store-month of testing under the first de-

sign produces only .00461/.214 = .022 as much information as each

store-month of testing under the second design; we can say that the

statistical efficiency of the first design relative to the second is 2.2 per cent.

Or we can put the result the other way to and say that it will require

.214/.00461 = 46 t2mes as many store-months of testing to obtain any

specified amount of information by use of the first design as it would by

use of the second.

82.4.8 Still Better Designs

Although our object is only to’ point outthevery great importance
of good experimental design and not’to show-how to makea gooddesign,

it is important to emphasize that the second design discussed in this

chapter is by no meansthe best design for a problem of the kind with

which the manufacturerof coffee wasfaced. In actual fact, this design is

far from being even reasonably good;‘and in order to warn the student not

to assumethathe is capableof designing an experiment simply because he

has learned how to use the results, we shall now point out four glaring
weaknesses in the second design. The first three of these weaknesses

bear on the way in which the data were collected, the fourth on the way
in which it was analyzed.

1. The fact that the old package was used in the first month in all

stores while the new package was used in the second means that any
seasonal change in coffee consumption between the two monthsis con-

founded with theeffect of the package. It would obviously have been

better to split the sample into two halves, assign the old package to one
half and the new packageto the otherhalf in the first month, and reverse

the assignments in the second month. Any seasonaleffect would have
been almost completely eliminated by such a balanced design.

2. About 20 per cent of the grocery stores in the United States do
about 80 per cent of the total grocery business, and it is obvious that if

we have good information on theeffect of the new packagein these stores
we will be almost certain to come to the right decision. Even substantial

percentage errors concerningthe effect of the new package in the remain-
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ing 80 per cent of the stores can do little harm. Since the cost of a store-
month of testing in a small store will be almost if not quite as much as the
cost of a monthin a large store, commonsensetells us that most of the

stores in a properly designed sample would be chosen among the 20 per

cent which do most of the total business. The sample should have been
stratified.

3. It is obvious that two stores in a single city can be tested and

audited much more cheaply than two stores in two different cities. If
100 stores are drawn with equal probability from list of all United States

stores, it is certain that auditors will have to be sent to nearly 100 differ-
ent cities. By only slightly reducing the numberof cities, it would be

possible to include two or three stores per city for the same total expense

and thus make another substantial reduction in the variance of £. The
sample should have been clustered.

4. We havealready suggested that the natural assumptionin a situa-

tion like this one is that the true effect of the package is to increase or

decrease sales in each store by roughly the same percentage and not by

roughly the same absolute amount. It is therefore clear that if we had
looked at the population of the second design as a population of ratios

rather than as a population of differences, the mean of the sample ratios

would have hadfar less variance than the mean of the sample differences.
If the data of the second design had been analyzed in terms of ratios
rather than differences, the gain in efficiency would very probably have

been at least as great as the gain made by going from thefirst design to

the second.

PROBLEMS

1. Verify that the break-even value 5, = .019 agrees with the statement that
adoption of the new packagewill be justified only if total sales in a 2-year period are

thereby increased by at least 182,000 ounces.

2. At the end of the chapter four possible improvements in the second design

were briefly described. Only one of these, analysis of the data in terms of ratios
rather than differences, makes any real difference in the way the sample results would
be summarized and used in reaching a decision and computing expected loss. Sup-
pose then that the marketing-research department had employed a consulting statis-

tician to design the experiment and process the data and that he had submitted the

following report.

‘The experiment consisted of drawing a stratified, clustered sample of 100 stores
and testing each package in each store for one month. The results can be summa-

rized by a statistic Z whose sampling distribution is approximately Normal with mean

E@) = é,

where é is the mean of the population of store-by-store differences in monthly sales
with the two packages. The observed value of this statistic was

2= —.2)
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and the data yield an estimate

o?(Z) = .0155

of the variance of the distribution of 2Z.’’

a. Compute the expected relative profit of accepting the new package.
b. Select the better decision and compute the expected loss of this decision.
c. How many store-months of testing under the second design of the text are

needed to yield information equal to that provided by one store-month underthis

new design?
d. What is the statistical efficiency of the second design relative to this new

design ?

3. The reason why analysis of the percentage changes caused by the new package
is a little more difficult than analysis of the differences is simply that the manufac-

turer’s net gain cannot be calculated from the percentage changealone: it also depends

on the base to which this percentage is applied, i.e. on sales if the old package is
retained, and this base is also unknown. In general, however, uncertainty concern-
ing the base will be of relatively little importance in comparison with uncertainty

concerning the ratio, and a good approximate solution can be obtained by treating
the base as known. Suppose therefore that the data of the second experiment had
been considered as a sample of 100 ratios

_ monthly sales in new package
~” monthly sales in old package
 

from a population consisting of 400,000 such ratios. The ratio r would then be com-
puted for each store in the sampleto arrive at a meanratio 7; suppose that the observed

value of 7 was

7 = .985.

Suppose further that the variation of the individual ratios for the 100 stores in the
sample had been measured by

s= VWk6o92(r — r)? = .1538.

Finally, define

p = mean of the population of 400,000 ratios.

a. Assuming that sales with the old package would be 70 million ouncesperyear,
express the conditional relative profit of acceptance and the cost of uncertainty in
termsofp.

b. Assign a Normalprior distribution to 6 which is consistent with the manufac-

turer’s opinions as given in Section 32.1.3. 2
c. Find the posterior distribution of 3. at

d. Compute the posterior expected relative profit of acceptance and cost of

uncertainty.
e. Recompute (d) as it would be if it were assumed that sales in the old package

would be 80 million ounces rather than 70 million.
4. In January, 1957, a number of American railroads were offering a special

passenger tariff known as the ‘“‘Family-Fare Plan.’’ There were some variations in
the details from road to road, but basically the tariff provided that if a husband

bought a round trip at the regular rate, his wife could buy a roundtrip at half price
and his children could buy their roundtrips at still lower prices. A single ticket was
issued to cover the transportation of the entire family.
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There was great controversy among passengerofficers of the various roads con-

cerning the effect of the Family-Fare Plan on revenue and profit, and the Grand
Western Railroad was seriously considering its abandonment. A good deal of

revenue was at stake: sales of Family-Plan tickets amounted to about $4 million per

year on the Grand Western, and if the same passengers had been carried at full fare
this figure would have been nearly doubled. While the general passenger agent of
the Grand Western believed that 90 per cent of the passenger-miles sold under the
special tariff would not have beensold at all under the normal tariff, the senior execu-
tives of the Grand Western knew that the general passenger agent of anotherrailroad
serving exactly the same majorcities believed that about 90 per cent of the passenger-
miles sold under the special tariff could have been sold at regular fares.

The president of the Grand Western, H. B. Jones, was particularly puzzled by
the fact that both his own GPA and the GPA of the other road based their contra-
dictory statements on the results of surveys carried out by having ticket agents ask
purchasers of Family-Fare tickets whether or not they would have made the sametrip

if the special rates had not been in effect. Jones was inclined to believe that the sam-

ples taken by the two men were too small to be reliable, and since there was no one
among the road’s personnel who was an expert in such matters he called in a repre-

sentative of a marketing-research agency specializing in consumer surveys andlaid
the problem before him. The agency representative answered that both the samples

were so large that sampling error as suchcould not possibly account for more than 1

or 2 of the 80 percentage points of difference and went on to assert that the real diffi-
culty was that reliable answers to a question like the one asked of the ticket buyers
could not possibly be obtained through hurried interviews conducted by ticket clerks
under unfavorable conditions. Even if the Grand Western sample were extended
to a 100 per cent count, there would in his opinion be no more real knowledge than
there was before any data were collected. He recommended that the railroad employ
his agency to draw a small equal-probability sample of purchasers of Family-Fare
tickets and have the persons in the sample interviewed in their homes by really
skilled interviewers.

Whenasked about the cost of such a survey, the agency representative quoted a
price of $1000 for general expenses plus $100 per family in the sample, explaining the
high cost per head as due in part to the fees of the skilled interviewers and in part to
the time and expense which would be incurred in securing interviews with people
selected with equal probabilities among all persons who had traveled on Family-Fare

tickets during the preceding year. It seemed to Jones that this obviously implied

that a sample large enough to givereliable results would be prohibitive in cost, but
the agency representative argued that this was not necessarily true and that in any

case a good deal of very useful information could be obtained by taking a very small
pilot sample and analyzing its results. Since the total amount of Grand Western

revenue at stake was really substantial, Jones finally decided to contract with the mar-
keting-research agency to interview a sample of 50 families at a cost of $6000.

Before taking the sample the agency examined the available data on the values of
the individual Family-Fare tickets sold during the previous year and found that the

large majority of the tickets were for short trips and actually accounted for only a

small part of the total dollar sales; 80 per cent of the dollars came from individual

sales of $150 and over. The railroad and the agency quickly agreed that the sample
should be drawn exclusively from families who had paid over $150 for their tickets,
since it seemed verylikely that the behavior of these families alone would determine
whether the plan was or was not profitable overall.

The pilot sample was promptly drawn and interviewed with the results shown

(in simplified form) in the table below. The figure shown in the column headed
“effect of cancellation” was calculated by subtracting the amount which the family
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actually spent on its Family-Fare ticket from the amount it would have spenttraveling
on the Grand Western if Family Fares had not been available.

Effect of Number of

cancellation families

— $200 10
— 100 12

0 7

+ 100 16
+ 200 5

50

When these results were in Jones wasstill very unsure about what to do next.

It was easy to calculate that the effect of cancellation of the plan on families in the
sample would have been a reduction in revenue amounting to $600 in total or $12 per
family on the average. Jones also knew that about 20,000 Family-Fare tickets had

been sold for amounts of $150 and overin the past year, so that if the $12 sample

figure held for the entire population, about $240,000 would be lost in one year by
abandoning the plan. The road’s passenger-train schedules and consists were such

that the reduction in passenger-miles traveled would have noeffect on train costs, so
that this loss of revenue was an out-and-out loss of that much net income.

Jones believed that conditions were changing so rapidly that the entire question
would have to be reexamined next year and therefore that there was no sensein pro-
jecting profit or loss farther than a year in advance, but he was seriously disturbed

about basing his decision on a sample of only 50 families.

a. On the evidence of the pilot sample alone, what is the best course of action
and what risk is involved?

6. Express your own judgmentconcerning reactions to a Family-Fareplan in the
form of a prior distribution of the basic random variable and recompute your answers
to (a).

c. Recompute your answers to (a) making the additional assumption that Jones
believes that most people do not really know what they will do until they do it and
therefore would be willing to bet even money that the average dollareffect of cancella-
tion as estimated by interviews would be at least $25 above or below the true effect

of actual cancellation even if 100 per cent of the customers were included in the
sample.





PART FOUR

The Value of Additional Information



CHAPTER 338

Evaluation of a Decision to Sample

and Then Act; Preposterior Analysis

33.1 Introduction to Part Four of the Course

The only acts which we have hitherto considered as “‘ possible” in

any situation have been acts which disposed of the problem at hand once

and for all. We have decided to accept or to reject, to stock 3 units or

to stock 4, but we have not yet considered the possibility of deciding to
collect more evidence before reaching any final decision on acceptance or

stock level. Even when we were studying the use of information

obtained from samples, we asked only whatfinal or terminal act should be

chosen in the light of the sample evidence already at hand; we did not ask
whether the taking of the sample had been sensible in the first place or

whether perhaps another sample should be taken before any final or
terminal decision was reached.

It is obvious, of course, that in many situations the best possible

immediate decision will be a decision to collect more evidence—specific-
ally, to take a sample (or another sample)—before deciding on a terminal

act; and it is the analysis of such decisions which will occupy us in this
part of the course. We already know how to choose between terminal
acts; we shall learn how to decide when to make the choice. This latter
problem is much the more interesting and importantof the two, since the

correct answeris muchless often apparent to unaided commonsense.
Terminal Acts and Terminal Decisions. Since we are now obliged

to talk about decisions which lead ultimately to other decisions, we shall
avoid a great deal of confusion if we agree on some new terminology and

adhere to it carefully. Henceforth an act which puts a final end to a
problem will always be called a terminal act. Thus acceptanceor stocking

3 units is a terminal act; taking a sample of size 10 is not a terminalact.

A choice among terminalacts will be called a terminal decision; a decision

to sample now andactlater is not a terminal decision.

Total Expected Cost of a Decision to Sample. A decision to sample

rather than to take immediate terminal action clearly involves an irrev-

ocable commitment to make another decision after the samp!e has been

taken and interpreted, and therefore the total expected cost entailed by
508
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the original decision is the sum of the expected values of two separate
kinds of cost:

1. The cost of taking and interpreting the sample;

2. The costs which will be entailed by the decision which must be
made after the sample evidence is in.

Clearly a reasonable man will want to sample if and only if this total
expected cost is less than the expected cost of immediate terminal action.

We already know how to evaluate the expected cost of immediate
terminal action, which is simply the expected cost of the best terminal act
under the prior probability distribution. Computation of the total
expected cost of decisions to sample and postpone terminal action will be
the subject of Part Four of the course.

83.1.1 Single-sample vs. Sequential Decision Procedures

Although a decision to sample involves a commitment to make some
second decision after the sample evidence is in, it is obvious that this
second decision need not always be a terminal decision. The information

obtained from the sample may well be such that the rational course of

action is to sample again before reaching a terminal decision; and this
procedure may be repeated many times before a point is reached where
still another sample would not be worth its cost and therefore a terminal

decision is finally reached. If the businessmanis willing to proceed in

this way, he is following what is knownas a sequential decision procedure.
Under somecircumstances, however, a sequential decision procedure

is clearly undesirable or impossible. The nature of the problem may be
such that there is no time to take more than one sample before reaching a
terminal decision; or the fixed cost involved in taking any sample atall
may be so large (as in the case of a nationwide consumersurvey) that it
is clearly absurd even to consider taking repeated small samples rather

than a single large sample. If the businessman considers himself defi-
nitely committed to reaching a terminal decision after a single sample has
been taken, he is following a single-sample decision procedure.

It is obvious that calculation of total expected cost will be much
simpler for a single-sample decision procedure than for a sequential pro-

cedure. The total expected cost of a decision to take a single sample

and then act is simply the sum of the cost of sampling and the expected

cost of terminal action after the sample has been taken. Thetotal

expected cost of a decision to embark on a sequential procedureis the cost
of the first sample plus ezther the expected cost of terminal action immedi-
ately after the sample has been taken or the total expected cost of another
decision to proceed sequentially, whichever is less. For this reason we

shall restrict our discussion in the next few chapters to single-sample

procedures. After we have thoroughly understood the way in which the



510 The Value of Additional Information 33.1.2

total cost of such a procedure is computed and used, we shall then go on
to see how series of such computations can be used to evaluate the total
expected cost of a sequential procedure.

33.1.2 The Assumption of Optimal Terminal Action

Wehave already pointed out that a reasonable man will decide to
sample only if the total expected cost of that decision is less than the

expected cost of the terminal act which is best in the light of the evidence

available without sampling. It is equally clear that the cost of terminal

action which is entailed by a decision to sample and then choose a terminal

act should be evaluated on the assumption that the chosen act will be the
one which is best in the light of all the information available after the

sample evidence is in. Strictly speaking, we should have defined the
total expected cost of a decision to sample and then act as the sum of the

cost of sampling plus the cost of optimal terminal action, but we shall

avoid repetition by simply stating once andforall that

Whenever we speak of the cost of terminal action, we assume that
the terminal act will be the one which is optimal in the light of the
information available at the time the act is actually chosen.

33.2 Expected Terminal Cost of a Single-sample Procedure

Even though the cost of a single sample of known size is often an

expected cost rather than a cost certain, its evaluation is simple in most

practical business problems and weshall not spend time in this course on

the rather rare situations where the evaluation is difficult. The only real

 

  

 

Table 33.1

Conditional cost Conditional loss

p Po(p)
Accept Reject Accept Reject

.O1 7 $ 2 $8 $ 0 $6

.05 1 10 8 2 0

.15 1 30 8 22 0

.25 1 50 8 42 0

1.0

 

problem before us is therefore the evaluation of the expected cost of

terminal action or expected terminal cost entailed by a decision to sample

and then choose a terminal act: this cost must be evaluated before the
sample is taken although we cannot even know what terminalact will be

chosen until after the sample is taken. The method by whichthis evalua-
tion is carried out can best be explained by analyzing a simple example.
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In Chapter 22 we assumed that a manufacturer had already taken a

sample of size n = 10 to aid him in deciding between acceptance and
rejection of a Bernoulli process, and we computed the posterior expected

costs of these two terminalacts in the light of the known sample outcome

r = 0. In the present chapter we shall continue to work with the arbi-

trarily chosen sample size n = 10, but we now place ourselves in the posi-
tion of the manufacturer before the sample is taken and seek to evaluate

the prior expected cost of taking whichever act turns out to be optimal in the

light of the as yet unknown sample outcome. The data of the problem as

given in Chapter 22 are summarized for the student’s convenience in
Table 33.1.

33.2.1 Conditional Terminal Cost

In Table 22.5 we showed that after the sample of 10 had been taken

and the outcome 7 = 0 had been observed, the (posterior expected) costs

of acceptance and rejection were respectively $3.83 and $8.00. Since we

assume that the optimal terminalact will always be chosen, we can say

that the posterior terminal cost given the information 7 = 0 was $3.83.

From our present point of view, before the sample is taken, we can say

that $3.83 will be the terminalcost if the outcome 7 = 0 is observed.
From this point of view, the figure $3.83 is just another example of a
conditional cost—conditional in this case on the sample outcome.

 

 

 

Table 33.2

; Cost of optimal terminal action
; Po(r) Optimal.

terminal act
Conditional Expected

0 .718 Accept $3 .83 $2.74

1 .149 Reject 8.00 1.19

2 .066 Reject 8.00 .53

3 .039 Reject 8.00 31
4 .019 Reject 8.00 15

5 .007 Reject 8.00 .06.

6 .002 Reject 8.00 .02

1.000 $5 .00

 

Now if we can compute the conditional cost of optimal terminal

action or conditional terminal cost given the outcome 7 = 0, we can obvi-
ously compute this conditional cost for any other value of 7. All that we
have to do is use the method of Table 22.4 to compute the posterior dis-
tribution of # for the new value of 7, use this distribution to compute the

posterior costs of acceptance and rejection by the method of Table 22.5,

and. select the lesser of. these two. costs as the conditional terminal cost
given the value of 7 in question. The results of such computations for
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every possible value of # are shown in Table 33.2. Column 1 showsall

the possible values of 7 in the sample of n = 10 which weare using as an

example, the act with the lesser posterior cost given each value of 7 is

shown-inthethird column,and thecost of this optimal act is shown in the

fourth.

33:2.2 PriorExpected Terminal Cost

~Themethod by which expected terminal cost can be evaluated before
the sampleis taken is now virtually self-evident: we simply multiply the

conditionalcost given each possible value of 7 by the probability of that value

of 7 as assessed before the sample is taken and add the products.

Computation of the probability of any given value of 7 before the

sample is taken presents no new problem whatever. Since the parameter

p is unknown, Po(r) must be computed as a marginal probability by the

methodof Section 12.3; but such a computation is a necessary step in the

computation of the posterior distribution of # for the given value of 7.

Thus the probability that 7 = 0 was computed as .718 in Table 22.4, and

the probabilities shown in the second column of Table 33.2 for all other

values of 7 were obtained in the same way. The product of each condi-

tional cost times the corresponding probability is shown in the last column

of Table 33.2, and the $5 total of this columnis the prior expected cost of

taking whatever action is optimalin thelight of all the evidence available

after a sample of size 10 has been taken and inspected. Morebriefly, $5 is

the expected terminal cost of a single-sample procedure with n = 10.

In terms of frequencies rather than probabilities: if the process is set

up by the operator a very great number of times and the frequencydis-

tribution of setup quality corresponds to the probability distribution of

Table 33.1, if from each setup a sample of 10 pieces is taken, and if the

setup is then accepted or rejected according to the third column of Table

33.2, the sum of the costs incurred through accepting defective product

plus the payments to the expert setup mechanic will average $5 per run.

33.3. Expected Terminal Loss of a Single-sample Procedure

We have seen throughout this course that it is almost always

instructive to separate the expected cost of immediate terminal action

into two parts:

1. The expected cost of terminal action under certainty, i.e. the cost

we would “‘expect”’ to incur if we were to be given perfect informa-

tion before actually choosing the terminal act;

2. The expected opportunity loss which arises because the terminal

act must actually be chosen in the absence of perfect information

and therefore may prove ‘‘wrong”’ after the cost-determining

event has actually occurred.
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The same separation can be made and is even more instructive when we
are considering decisions to sample and then act, since by making the
sample large enough we can (provided that no unknownbias is suspected)

make the expected opportunity loss due to wrong termipet™retion as

small as we please, whereas we can never reduce that Wax,cfexfacked

terminal cost which would be present even if we had peffect information.

Wehaveseen repeatedly that the expectedloss of q specifi}teysgfea}
act can be computedin either of two ways:

1. By taking the expectation of the conditional loss@xoM®hé actFH
2. By taking the difference between the expected cost ontretict and

the expected cost of terminal action under certainty.

These same two alternatives are available for computing the prior

expected value of the opportunity loss which will be incurred by taking

whatever terminal act turns out to be optimal in the light of an as yet
unknown sample outcome.

83.3.1 Computation Using Conditional Terminal Losses

In computing the expected terminal cost of a single-sample procedure
with n = 10, we took as the conditional terminal cost for each value of 7
the posterior expected cost of the terminal act which was optimal for

that value of #; we then multiplied each of these conditional costs by the

probability of the corresponding value of 7 and added the products.

 

 

 

Table 33.3

; Loss of optimal terminal action
, Py(r) Optimal

° terminal act
Conditional Expected

0 .718 Accept $1.12 $ .80
1 . 149 Reject 2.57 .38

2 .066 Reject .27 .02

3 .039 Reject .O1 0

4 .019 Reject 0 0

5 .007 Reject 0 0

6 .002 Reject 0 0

1.000 $1.20

 

Expected terminal loss can be computed in exactly the same way, using

the posterior expected loss of the terminal act which is optimal for each
value of # as the conditional terminal loss for that value of 7.

We saw in Table 22.9 that after no defective had been found in a
sample of 10 the (posterior expected) losses of acceptance and rejection

were respectively $1.12 and $5.29 and therefore that the terminal loss of

the optimal act given the information 7 = 0 was $1.12. From our
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present point of view this is the conditional terminal loss given 7 = 0.

Repetition of the calculations which producedthis figure $1.12 in Chapter
22 gives the conditional losses for all other values of 7 shownin the fourth

column of Table 33.3; the first three columnsof this table are identical to

the corresponding columnsof Table 33.2.
In the last-column of Table 33.3 the expectation of these conditional

losses is evaluated in the usual way, resulting in the figure $1.20 for the

priorexpected loss of optimal terminal action after taking a sample of 10.
Morebriefly, this is the expected terminal loss of a single-sample procedure

with n = 10.

33.8.2 Computation Using Expected Cost under Certainty

Wesaw in Table 22.10 that, in the light of the information available

before any sample is taken, expected terminal cost under certainty is

$3.80. In Section 33.2.2 we saw that, in the light of this same informa-

tion, expected terminal cost with n = 101s $5. It follows immediately that

expected terminal loss with n = 10 is $5.00 — $3.80 = $1.20, and this

agrees of course with the result obtained just above by use of the condi-

tional losses.

In terms of repeated trials: if the process is set up by the operator a

great number of times and the frequency distribution of setup quality

correspondsto the probability distribution of Table 33.1, if on each ocea-

sion a sample of size 10 is taken, and if the terminal decision on each

occasion is optimal in thelight of the total information available, costs

will average $1.20 more per run than they would averageif on each occa-

sion we had perfect knowledge of the quality of the setup and acted

accordingly.

33.4 Total Expected Cost or Loss of a Single-sample Procedure

We cannot of course judge the merits of a decision to sample and then

act by looking only at the prior expected cost or loss of the terminal

action which will ultimately be taken; we must also lookat the cost of

taking the sample. Let us suppose that the only sampling cost in our

example is the cost of the inspector’s time, and let us suppose that the

time required to draw any sample of reasonable size, maintain records,

ete., will cost $.25, while the time required to inspect the pieces in the

sample will cost $.02 per piece. For the sample of size m = 10 which we

have been using as an example we then have

Cost of sampling = $.25 + $.02 n = $.25 + ($.02 X 10) = $.45.

It isnow a trivial problem to compute thetotal expected cost or loss of

a decision to sample n = 10 and then to take optimal terminal action. In

Section 33.2 we saw that in our example the prior expected cost of optimal
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terminal action after taking a sample of 10 was $5 and in Section 33.3

we saw that the corresponding loss was $1.20. We have just seen that

the cost of sampling is $.45, and it follows that

Total expected cost = $5.00 + $.45 = $5.45,
Total expected loss = $1.20 + $.45 = $1.65.

Notice that the $.45 expenditure incurred by taking the sample of

10 pieces can be regarded asa loss just as well as it can be regarded as a

cost, since our standard of reference for computing opportunity loss is
always the cost of action with free perfect information. If we were deal-

ing with a problem involving a finite population and thus could actually

obtain perfect information by taking a 100 per cent sample, the total

expected loss of a decision to take a 100 per cent sample and then act

optimally would be simply the cost of the sample.

83.4.1 Comparison with Immediate Terminal Action

We saw in Chapter 22 that if a terminal decision is to be made

immediately, on the basis of the information available without sampling,
then the better act is to reject at an expected cost of $8 (Table 22.3) or

loss of $4.20 (Table 22.8). A decision to take a sample of 10 and then
take optimal terminal action is thus better than immediate terminal

action by either of the differences

$8.00 — $5.45 = $2.55,
$4.20 — $1.65 = $2.55.

Observe, however, that this result obviously does not imply that
taking a sample of size 10 is the best possible decision: some other sample

size may lead to still lower cost orloss.

33.5 The Value vs. the Cost of Sampling

The comparison just made between the cost or loss of immediate

terminal action and the total cost or loss of a decision to take a sample of

size 10 and then act can also be expressed as a comparison between the

$.45 cost of taking the sample and the amount by which the sample is
‘fexpected”’ to reduce the cost or loss of terminal action. We have

already seen that the cost and loss of zmmediate terminal action are
respectively $8 and $4.20 and that the correspondingfigures for terminal

action after sampling are $5 and $1.20—notice that these latter figures do

not include the cost of sampling. We thus have

$8.00 — $5.00 = $3.00,
$4.20 — $1.20 = $3.00



516 The Value of Additional Information 33.6

as the expected reduction which a sample of size n = 10 will produce in
terminal cost or loss.T.

This expected reduction in terminal cost or loss can be considered the

expected value of the information to be obtained from the sample. The net

gain which we “expect” to make by sampling n = 10 before choosing a
terminal act is this amountless the $.45 cost of obtaining the information

or

$3.00 — $.45 = $2.55.

33.6 Summary and Generalization

Although the analysis of a decision to sample and then take optimal
terminal action has been explained in termsof a specific example,

The methodof analysis described above can be used to compute total

expected profit, cost, or loss in any single-sample decision problem
whatever.

To makethis point clear we shall now summarize the method in com-
pletely general terms, without reference to the specific details of any par-
ticular decision problem.

The steps by which the total expected cost of any single-sample

decision procedure can be computed are the following:

1. List every possible outcome of the sample and compute the mar-
ginal probability of each by the method of Section 12.3.

2. For each possible sample outcome, compute the posterior expected
costs of all possible acts by one of the methods described in Part

Three of the course and select the least of these as the conditional
terminal cost for that sample outcome.

3. Multiply the conditional terminal cost for each sample outcome
by the probability of that sample outcome and add the products
to obtain the prior expecied terminalcost.

4. Add the cost of sampling to obtain the total expected cost of the
decision to sample and then take optimal terminal action.

To compute total expected profit, the same outline applies with two obvi-

ous minor changes: the conditional terminal profit for a given sample out-

come is the greatest of the posterior expected profits for that outcome

rather than the least, and total expected profit is obtained by subtracting

the cost of sampling from expected terminal profit. Total expected loss

can be foundeither (1) by following exactly the same outline as given for

cost, the word ‘‘loss”’ being everywhere substituted for ‘‘cost,’’ or (2) by

adding the cost of sampling to the difference between the expected

{| Rememberthat this is an expected reduction; as we havealready seen (e.g. in
Section 32.2.3), the sample information may actually increase expected cost or loss.
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terminal cost or profit of the decision procedure and the expected cost or
profit under certainty.

Interdependent Decisions. We haveseenin Section 24.1 that in some

situations the conditional costs of certain acts cannot be computed with-

out knowledge of how future decisions will be made. This is true, for

example, when a decision to reject means scrapping a lot of product and

the costs which will be incurred in replacing the scrapped product cannot

be computed without knowing how future lots will be accepted or

rejected. In the language weare now using,a decision to reject in such a

situation is not a terminal deciston—it does not dispose of the problem

once and for all. The method of analysis which we havestudied in this

chapteris therefore not applicable to such problems; a suitable method will

be developed in Chapter 36.

83.6.1 Optimal Sample Size

Since we know how to compute total expected profit, cost, or loss for

any sample size n in any single-sample decision problem, we know in

principle how to find the best sample size in any such problem: we simply

compute cost, profit, or loss for a large numberof values of n andselect

the one with the greatest profit or the least cost or loss. It may seem

that this is impossible even in principle because the number of possible
n’s is infinite, but this is not so. We have emphasized repeatedly that

the expected value of perfect information is measured by the expected loss

of the best immediate terminal act. Since the expected value of the

information tobe obtained by sampling can never be greater than the

expected value of perfect information, it will never pay to take a sample

so large that the cost of sampling is greater than the loss of the best

immediate terminal act; and we therefore have only a finite number of

n’s to consider.f
When sampling is expensive relative to the loss of immediate terminal

action, the largest admissible 7 will be fairly small and it will be quite
feasible to evaluate total profit, cost, or loss for every admissible n by

actually using a trial-and-error procedure of this sort. In most problems,
however, this procedure would be extremely laborious and in subsequent

chapters we shall therefore seek short cuts which take advantage of
special features of the particular problem at hand. These short cuts will

be of three kinds:
+ In our example the expected loss of immediate terminal action is $4.20 and the

cost of sampling is $.25 + $.02n. Since

$.25 + ($.02 X 197.5) = $4.20

we see at once that the optimal sample size is below 197.5. Computation of a few
trial sample sizes will restrict the range of admissible n’s still further. Thus we have
seen that with n = 10 expected terminal loss in our exampleis only $1.20, and since
a sample of n = 70 would cost (70 — 10) X $.02 = $1.20 more than a sample of 10,
we already know that the optimal sample size is below 70.
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1. We maybeable to find shorter methods for computing total cost

or loss for given n.
2. We maybe able to prove that under certain conditions an n which

is better than n — 1 and better than n + is the best ofall n’s.
3. We maybeable to find mathematical formulas which will give us

either the best value of n or a good approximation to it very quickly.

83.6.2 The Cost of Uncertainty

We have repeatedly emphasized that the cost of uncertainty is the

irreducible expected loss of the best possible decision under uncertainty.
As long as we were dealing with situations where (further) sampling was
impossible and the only acts under consideration were terminal acts, the

cost of uncertainty was simply the expected loss of the best terminal act.
As soon as (further) sampling is possible, this is no longer true: the cost of

uncertainty is the total expected loss of the best possible decision procedure.

If sequential decision procedures are not admissible in a given situation,

the cost of uncertainty will be the total expected loss of the best possible
single-sample procedure,i.e. of a single-sample procedure using a sample

of optimal size (immediate terminal action being considered a single-

sample procedure with n = 0). If sequential procedures are admissible,

the best such procedure must be evaluated and compared with the best
single-sample procedure before we can knowthe true cost of uncertainty.

PROBLEMS

1. Verify all entries in the line for r = 1 in Table 33.2 and in the sameline in
Table 33.3 and prove that rejection is in fact the better act for r = 1.

2. In the situation of the example in the text but with a sample of size n = 3
rather than 10, assuming that the cost of sampling is $.25 + $.02 n:

a. Given the marginal probabilities P(F = 2) = .021 and P(? = 3) = .002, com-

plete the computation of the marginal distribution of 7.
b. Given that the conditional terminal cost for r = either 2 or 3 is $8, compute

the expected cost of terminal action after sampling n = 3.

c. Using the result of (b) and the fact that the prior expected cost of action under

certainty is $3.80, compute the expected loss of terminal action after sampling n = 3.

d. Given that the conditional terminal losses given r = 2 and 3 are respectively

$.06 and $.00, check your answer to c by taking the expectation of all possible

conditional terminal losses.

e. Find the expected value of the information in a sample of n = 3, the expected

net gain of taking a sample of this size, and expected total cost and loss with a sample

of this size.

3. Given that the best sample size for the example of the text is m = 27 and that

the expected terminal cost of a decision to take a sample of this size and then take

optimal terminal action is $4.22, compute:

a. The expected value of the information in the sample.

b. The expected net gain from sampling.

c. The cost of uncertainty.
d. The expected terminalloss.



CHAPTER 34

Two-action Problems with Linear Costs:

Expected Loss and the Prior Distribution

of the Posterior Mean

In Part Three of the course we repeatedly made use of the fact that when
the conditional cost of a particular terminal act is a linear function of the

value of the basic random variable, the expected cost of that act under

any probability distribution is the same as if the basic random variable
were known with certainty to have a value equal to the mean of its dis-
tribution. At that time we used this relation to simplify the computa-
tion of posterior expected costs after a sample had been taken anda par-

ticular outcome had been observed; but it can be used equally well

before the sample is taken to calculate what the posterior expected
costs will be 1f any given sample outcomeis observed, i.e. to simplify

computation of conditional terminal cost for each possible sample out-

come. In the present chapter we shall first illustrate the method using

the same example which weused in Chapter33, and we shall then proceed
to show how the method leads to an extremely simple and convenient
formula for the expected value of sample information when the prior
and sampling distributions are Normal.

34.1 Computation of Conditional Terminal Cost by Use of E:(p)

In Figure 22.1 we saw that the conditional costs of the two possible

terminal acts in the example discussed in the last chapter are both linear
functions of the value of the basic random variable #—they graph as
straight lines when plotted against p. Specifically, the formulas for the

two lines were

Conditional cost of acceptance = $200 7,
Conditional cost of rejection = $8.

Because of this linearity we could write immediately

Posterior expected cost of acceptance = $200 E,(8).
Posterior expected cost of rejection = $8.

519
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84.1.1 Conditional Terminal Cost

Wealso saw in Table 22.6 that after the outcome * = 0 had been
observed in a sample of n = 10 the value of E,(#) was .01916 and there-
fore the posterior cost of acceptance was $200 < .01916 = $3.83. Since
the conditional terminal cost for any value of 7 is by definition the pos-
terior cost of the optimal act given that valueof 7 and since $3.83 < $8.00,
this tells us immediately that $3.83 is the conditional terminal cost given
7 = 0.

The value of E,(#) given the next higher value # = 1 is computed in
Table 34.1, where thefirst five columns correspond to Table 22.4 and the

last column corresponds to Table 22.6. In this case we observe that
$200 X .08134 = $16.27 is greater than $8; we conclude that the optimal

terminal act given 7 = 1 is rejection and that the conditional terminal
cost is $8.

 

 

  

Table 34.1

p Po(p) P;(r|p) P(r,p) Pi(p|r) p Pi(p)

01 7 0914 06398 429 00429
05 DI 3151 03151 212 01060
15 1 3474 03474 233 03495
25 1 .1877 .01877 .126 .03150

1.0 14900 1.000 08134 = E.(B)
 

84.1.2 Prior Expected Terminal Cost

In Table 34.2 welist all possible values of 7 and opposite each oneits

probability, the corresponding value of E,(j), and the conditional

terminal cost as determined by the method just described. Notice that
the marginal probabilities of the various values of # are brought out auto-
matically in the computation of E,(g)—the probability that # = 1

appears as the total .149 of the fourth column in Table 34.1. The prior

expected terminal cost is then computed in the last column of Table 34.2
in the usual manner, by multiplying each of the conditional costs by the

corresponding probability and adding the products; the results agree of
course with Table 33.2.

84.1.8 Behavior of E;(p) as r Increases

One very minor advantage of the present method of analysis over the

general method usedin the previous chapterlies in the fact that it permits

us to shorten the computation of expected terminal cost by observing what
happens to Ei() as r increases.

Rejection will be the optimal act and $8 will be the conditional
terminal cost whenever $200 E,() is greater than $8, i.e. whenever E,(p)
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is above the break-even value (cf. Section 22.4.3)

_ $8 _
Po $200

Looking again at Table 34.2 we can see that each successive value of
Ei(p) is larger than the previous value; and if we stop to think for a

moment we see that it is obvious that each increase in the number of

O04.

Table 34.2
 

Terminal cost

r Po(r) Fii(P)  

Conditional Expected

 

0 718 .01916 $3.83 $2.74
1 . 149 .08134 8.00 1.19
2 .066 .17614 8.00 .53
3 .039 . 21099 8.00 ol
4 .019 22752 8.00 15
5 .007 .23714 8.00 .06
6 .002 . 24282 8.00 .02
7 .000 . 24608 8.00 .00
8 .000 . 24787 8.00 .0Q
9 .000 . 24896 8.00 .00
10 .000 . 25000 8.00 .00

1.000 $5.00

 

defectives in the sample must increase the expected value which it is
rational to assign to the process fraction defective. Thus we did not

really need to computeall the values of P(r) and E:(%) shown in Table

34.2. Assoon as we found that Ei(f) was greater than .04 for 7 = I, we

could have concluded that the conditional terminal cost was $8 for

 

 

 

Table 34.3

Terminal cost

Sample outcome Probability
Conditional Expected

r = 0, Ei(p) < .04 .718 $3 .83 $2.74
r>0, Ei(p) > .04 . 282 8.00 2.26

1.000 $5.00
 

this value of # and all higher values; and since we already knew that
P(* = 0) = .718, we could have computed P(f > 1) = 1 — .718 = .282.

Prior expected terminal cost could then have been computed as in Table
34,3.
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34.2 E,(p) Considered as a Statistic; the Prior Distribution of the
Posterior Mean

Whenwefirst introduced the notion of a statistic in Section 25.4, we

emphasized that while a statistic is by definition a random variable whose
value depends on the sample outcome, it is not necessarily computed ezclu-

sively from the values of the sample observations. Thus we havecalled

u = [r — E(*f)]/o(¥) a statistic even though its value depends on the
parameters E(7) and c(7) as well as on the sample outcome 7; and in

exactly the same way we can consider E,(j) a statistic: it is a random

variable whose value depends on the sample outcome. The sample is

summarized just as well by the statistic E,(p) as tt ts by the statistic r; since r

is sufficient, so 1s Ey(p).

In order to compute prior expectedterminal cost we have hitherto

considered each possible sample outcome as summarized by thestatistic

r, computed the conditional terminal cost for each value of 7, multiplied
each conditional cost by the probability of the corresponding valueof7,

and added the products. We can describe this operation equally well if

we everywhere substitute E,(p) for r: we can regard the conditional costs

in Table 34.2 as conditional on Ei(j) rather than on 7, and we can regard

the probabilities in that table as the prior probabilities of the various

possible E;(#) rather than as the prior probabilities of the various possible

r. Looked at in this way, the second and third columns of Table 34.2

give us the prior distribution of the mean of the posterior distribution of
the basic random variable, or more briefly, the prior distribution of the

posterior mean.

Notation. When the posterior mean is regarded as a random vari-

able, our standard system of notation calls for the symbol £1(p); the

probability that the posterior mean is greater than .04 would be written

P[£i(p) > .04]. This notation is so clumsy that we shall abridge it by

defining

FE: the mean of the posterior distribution of any random variable
when this mean is itself regarded as a random variable whose value

depends on an as yet unknown sample outcome.

34.2.1 Use of the Distribution of E, to Compute Expected
Terminal Cost

Although the interpretation of Table 34.2 as showing the distribution

of #, rather than the distribution of # makes no change in the actual
arithmetic by which expected terminal cost with n = 10 is computed,it

can give us greater insight into the meaning of this computation by show-

ing how closely it resembles the computation of expected terminal cost

under certainty. To bring this out we shall first give a graphic repre-
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sentation of the computation of expected terminal cost under certainty

and then show that exactly the same representation can be used for the

computation of expected terminal cost under a single-sample procedure.
Terminal Cost under Certainty. If we refer back once more to the

graphs of the two conditional costs in Figure 22.1, we see immediately

that when weare told the true value of we will select the act whose

cost line is lower at that value of §. Figure 34.1 reproduces Figure 22.1

except that the parts of the cost lines which represent costs that would
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Figure 34.1. Terminal cost under certainty.
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Figure 34.2. Terminal cost under a single-sample procedure.

not be incurred under certainty have been dashed. Conditional cost under

certainty is represented by the broken line formed by the solid paris of the

accept and reject lines in Figure 34.1.
To compute prior expected terminal cost under certainty we simply

read the solid conditional cost line in Figure 34.1 at each possible value of

p, multiply each conditional cost by the prior probability of that value of

p, and add the products. A graph of the prior distribution of ~ has been

superimposed upon the graph of conditional cost in Figure 34.1, and the

computation of expected cost can be thought of as proceeding by multi-
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plying the height of each bar by the height of the solid cost line at the
mid-point of the bar and adding the products. Probabilities are repre-
sented by heights rather than areas in this figure in order to maketheir
numerical values easier to read.

Terminal Cost under a Single-sample Procedure. Since the posterior

expected costs of the two possible acts given any sample outcome £; are

the same as if # were known with certainty to have the value £1, we may

relabel the vertical axis of Figure 22.1 as ‘‘ posterior expected cost”’ if at

the same time werelabel the horizontal axis as £;; and since we will choose
the optimal act after sampling just as we would undercertainty, the lower

of the two lines at any H#, shows the conditional terminal cost. Accord-

ingly the graph of conditional terminal cost under a single-sample pro-
cedure shown by the solid cost line in Figure 34.2 is identical to the
graph of conditional terminal cost under certainty shown in Figure 34.1.

To compute prior expected terminal cost with n = 10, we super-

impose on thecost lines in Figure 34.2 a graph of the prior distribution of

E, for n = 10 which was given numerically in Table 34.2. The calcula-

tions of Table 34.2 then correspond to multiplying the height of each bar

in Figure 34.2 by the height of the solid cost line at the middle of the bar

and adding the products.

34.2.2 Use of the Distribution of E, to Compute the Expected Value
of Sample Information

The prior distribution of the posterior mean F£, can also be used to

make a direct computation of the expected value of the information to be

obtained from a sample, and in general this will prove to be the mosteffi-

cient and clearest way of analyzing two-action problems with linear costs.

Since there is a very close analogy between this computation and the

computation of the expected value of perfect information, we shall give a
graphic representation of this latter computation before giving a similar

representation of the computation of the value of sample information.

Expected Value of Perfect Information. It was shown in Table 22.6

that Eo() = .052 in our example; andsince the break-even value p, = .04
(ef. Section 22.4.3), we know at once that rejection is the better act under

the prior distribution of #: the cost line for rejection is lower than the cost
line for acceptance at p = .052 in Figure 34.1. If then we are given

perfect information that # has any value above the break-even value py,

this information will be valueless: rejection will still be the better act and

the information will have no effect. If, however, we receive perfect

information that ~ has a value below p,, we will reverse our choice of act
and save the difference in cost; this difference is the conditional value of

perfect information.

Theonly possible value of % below p, is p = .01, as can be seen from

Figure 34.1, and the difference between the heights ofthe two cost lines
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at this point is the

Conditional VPI = $8 — ($200 X .01) = $6.

The prior probability that j has this value is

Po(p = 01) = .7,

and therefore the expected value of perfect information is

Expected VPI = $6 X .7 = $4.20

in agreement with Table 22.8.
Expected Value of Sample Information. We now proceed to compute

the expected valueof the information in a sample of size 10 in exactly this

same way except that we use Figure 34.2 and theprior distribution of F,

rather than Figure 34.1 and theprior distribution of ~. If #; has a value

greater than p,, we will choose the same act after sampling that we would
have chosen without sampling and the sample information will have been

valueless. If, however, H; has a value less than p,, we will reverse our

choice and ‘‘expect”’ to save the difference between the heights of the two
cost lines at that value of £,. The only possible value of £; below p, is
Ey; = .01916 and the difference between the heights of the two cost lines
at this point is the

Conditional VSI = $8 — ($200 * .01916) = $4.17.

The prior probability that £, will have this value is

P.(#£, = .01916) = .718,

and therefore the expected value of the information to be obtained from
a sample of size 10 is

Expected VSI = $4.17 X .718 = $3.00

in agreement with Section 33.5. We remind the student that the
expected net gain from taking the sampleis this amount less the cost of
sampling.

34.3. The Distribution of £,; When the Prior and Sampling
Distributions Are Normal and the Sampling Variance Is Known

Whenthe prior distribution of the basic random variableis given in

numerical form, the distribution of the posterior mean £, must always

be obtained by numerical methods as in the example we have just dis-
cussed. When on the contrary the prior distribution is specified by an

algebraic formula, we can often find a formula for the distribution of #,

and thus greatly simplify the calculation of the expected value of the

information in a sample. In this course weshall give formulas of this
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sort only for the case where the prior and sampling distributions are both
Normal and the variance of the sampling distribution is known.

More specifically, we shall deal only with situations of the kind
described in Sections 31.1 and 31.2. We assume throughout therest of
this chapter that any sample mean % can be regarded as the sum of the
true value — of the quantity being measured, the bias @ of the measuring
or sampling process, and the mean pure sampling error é,

E=ETB+TE;

and we assume that when these quantities are considered as random

variables the following conditions are met:

1. The prior distribution of £ is Normal.
2. The distribution of 8 is Normal and independent of & except

possibly for the effect of a pilot sample.

3. The distribution of € is Normal and independent of both £ and 8.
4, The variance o?(é) of an individual pure sampling error is known.

5. The variance o7(é) of the mean pure sampling error can be written
(1/n)o?(é): either the population of potential e’s is infinite or the
finite-population correction is negligible.

On these assumptions it can be shown that

Thedistribution of £, is Normal

as we might expect; and even without these assumptions it can be shown

that in almost any problem the mean of the distribution of EF, is equal to

the mean of the prior distribution of & itself:

 

E(£,) = E,(é) No restrictions

 

Before the sample is taken we think that the posterior mean £1 may be

either greater or less than the prior mean Eo, but because we have no

way of telling which kind of change will occur the expected value of 2,is
equal to Eo.

The variance of Ey, unlike the mean, does dependcritically on our
assumptions, and weshall have to consider two quite different cases:

(1) B independent of — and (2) B dependent on ~ throughtheeffect of a
pilot sample. The situation where bias is known can be considered a

special case of ezther of these two more general cases.

84.3.1 Variance of E, When No Pilot Sample Has Been Taken

When the bias of the measuring or sampling process has a distribu-

tion which is independent of the distribution of the basic random variable,
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the variance of the #, to be obtained from a sample of size n can be
found byfirst calculating the quantities

 

o2(B,) = 03(£) 208)
oo(é) 75(8) | 8 and & independent; no pilot

ot?

oan Lae + 08)

 

and then applying the formula

 

02, (#1)

o2,(E1) + (1/n)o*¥?
 o°(E1) = o3(E1)

 

To get some intuitive feeling for the commonsense of these formulas,
we first observe that when the bias 6 is known, i.e. when o(f) = 0, the
formulas reduce to

re(B) = (ott= WAG,
o%(B,) = o8(E _ o2(é B known

oy) (®) o9(&) + (1/n)o*(é)

If we take no sample at all, n = 0, then o(#,) = 0: the “posterior”
mean is certain to be equal to the prior mean because the posterior

distribution of & is the prior distribution when no new evidence has
been obtained. If on the contrary the sample is so large that there is
no sampling error, 2 = ©, then the variance of £, is equal to the variance
of & itself: if we visualize the sampling operation as being carried out
repeatedly, the sample will give us perfect information on the value
of — on each individual occasion and therefore #, will have a frequency
distribution identical to that of & itself.

Next returning to our original set of formulas, applying when

there zs uncertainty about bias, we first remark that in this case just
as in the previous one o(#1) = 0 if n = 0: the “posterior”? mean is

certain to be equal to the prior mean if no sample is taken. The exist-

ence of uncertainty about bias does change the results for nonzero
sample sizes, however. Because of his uncertainty about 8, a business-

man would not have complete confidence in the results of even an

infinitely large sample; therefore his prior expectation of & would have

an effect on his posterior expectation even in the face of the evidence
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obtained from such a sample; and therefore the distribution of the EF,
which might be obtained from such a sample is “pulled in” toward
E,(£). It is still true that the mean of the distribution of F, is Eo(8),
but the variance of the distribution is reduced from o2(£) to a fraction

of this amount, the fraction becoming smaller as the ratio of o(f) to
ao(£) becomes larger. Finally, observe that because the ‘adjusted
sampling variance” o** is only a fraction of o%(é), any given ratio
o?(f;)/o2,(E£1) can be obtained with a smaller sample size n when there
is uncertainty about bias than when there is no such uncertainty. Essen-
tially this is another reflection of a fact already pointed out in Section
31.2.6: uncertainty about bias means that sampling suffers from the law
of diminishing returns sooner and moreseverely than it would otherwise
and in this respect has an effect similar to the effect of a reduction in pure

sampling variance.

84.3.2 Variance of BE, after a Pilot Sample Has Been Taken

In a great many practical problems a terminal decision is not made

immediately upon learning the results of the very first sample to be
taken. In particular, it is a very common and very soundpractice to

begin the investigation of the facts bearing on an important decision

by taking a small pilot sample, the exact size of which is determined

by convenience rather than by exact economic analysis. If such a
pilot sample is taken, its outcome may be so decisive that no further

sampling is necessary; but it may also be that calculation of the expected
loss of terminal action at this point shows that substantial risk is involved,
and the businessman will then want to make a careful economic analysis

in order to decide whether a second sample should be taken and if so

how large it should be.

If there is no uncertainty about bias, no special problems are

involved in such analysis. The distribution of & posterior to the pilot
sample becomes the prior distribution in regard to the proposed new

sample, and if we let Eo(£) and oo(£) denote the parameters of this
“revised prior” distribution, the mean of the distribution of the #, which
will result from any new sample is equal to Eo(£) and its variance is

given immediately by the formulasin Section 34.3.1.

If on the contrary there zs uncertainty about bias, then we do have

a special problem: the formulas in Section 34.3.1 do not apply because
the random variables & and B are no longer independentafter the pilot sample

has been taken (cf. Section 31.2.7). The mean of the distribution of F,is
still equal to the mean of the revised prior distribution of £; but to obtain
the variance of £, we must go all the way back to the original prior

distributions of £ and 8 which applied before the pilot made £ and 8
interdependent. Defining



34.3.2 The Prior Distribution of the Posterior Mean 529

o2,(E), o39(8): the variances of the original distributions of £ and , as
assessed before the pilot sample was taken,

we first compute the variance of £, for an infinite sample and the
‘“‘adjusted sampling variance”’ as they were before the pilot sample was
taken,

 

of? = glE o5o(£)

* oat) aGo(E) + o§o(8).

#2 — 92(Z goo() |

" “a + o90(8)
 

 

Then defining

ito: the size of the pilot sample,

we have for the variance of the £, to be obtained from an infinite new

sample

 

o2,(#) = gf? (1/no)oe*i. Posterior to ptlot
Oe + (1/no)o%?

 

and from this we can compute the variance of the #, to be obtained
from a new sample of finite size n:

 

o(B,) = 02,(#)) ~ vz (L1)
o2(B1) + (1/n)oF?
 

 

Notice that this final formula for o?(£;) is identical to the corresponding
formula in Section 34.3.1 and that the formula for o2(£,) reduces to

the corresponding formula in Section 34.3.1 when no = 0, i.e. when no
pilot sample has been taken.

“Informationless” Original Distributions. A very important special

case of the general problem treated in this section arises when the original
distribution of £& is “informationless,” ie. when oo(£) = ©. The
formulas given above reducein this case to

1

mol) = 77, = OD gual) =
o(H,) = i o?(Z) n Pilot of size ne

d

No Notn
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and we see that

Whenthe evidence of the pilot sample constitutes our only infor-
mation about & uncertainty about bias is irrelevant to the distribu-

tion of fi.

The essential effect of bias is to reduce the weight given to the sample

evidence relative to the prior evidence; 2f there 1s no prior evidence, then

we must rely completely on the sample evidence however shaky we may hold
this evidence to be. ”

34.38.38 Example

In Section 32.3 we studied a marketing problem in which a sample

of 100 observations drawn from a population of 400,000 differences had

shown that

o2(@) = 1.53? = 2.34;

the Normal prior distribution of the mean difference — had had mean
+.146 and standard deviation .310; and on the assumption that the

sampling process was unbiased the sample evidence had led to a Normal

posterior distribution with mean —.140 and standard deviation .137.
The expected loss of terminal action under this posterior distribution
was $8800; and we now suppose that because thisis a fairly substantial

risk the marketer in question is thinking of taking 50 more observa-

tions before reaching a terminal decision and therefore wishes to deter-
mine the distribution of the #, which might result from this proposed
sample.

The distribution of £, is Normal because the problem satisfies

the conditions listed at the beginning of Section 34.3, and its mean

is equal to the mean of the revised prior distribution (posterior to the

pilot):

E(#,) = —.140.

Its variance can be found in either of two ways.
1. Because a pilot sample has been taken, we can use the formulas

of Section 34.3.2. We have

 

o2,(é) = .310? = .0961, o2,(B) = 0, no = 100,
ol? = 0961 oer = 0961,

of? = 2.34 (castro) = 2.34,

o2,(B,) = .0961 one~55j = 0188,

0188
0188 + 169 X 2.34
 o°(E,) = .0188 = 00539.
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2. Because there is no uncertainty about bias, we can apply the

formulas of Section 34.3.1 directly to the variance

o2(£) = .137? = .0188

of the revised prior distribution.

.0188
2 — ooo2,(B,) .0188 Diss 0 .0188,

.0188 2
*2 —_ ———_———— —

o7(f1) = .0188 0188 = .00539 

0188 + }£9 K 2.34

as before.

34.4 Evaluation of a Single-sample Procedure When the

Distribution of £, Is Normal

In Figure 34.3 we show the same two-action problem with com-

pletely general linear costs and Normal prior distribution of —& which

we depicted in Figure 30.4a. The narrower Normal distribution shown

in this figure and not in Figure 30.4a represents the prior distribution

of the posterior mean £, for somearbitrarily chosen sample size.

/
4
SK +hJ MAKE

     Ko +ho€

Prior distribution ofEy Volue ofpertect information it & =X
{ Yolue of somple information if E, =X      

  

Prior distribution oté-

      
|
| |
| |

|
| |
| | oe

LS Elf) & Xx gor,

Figure 34.3. Value of perfect or sample information.

 

84.4.1 Expected Loss of Immediate Terminal Action

We start by reviewing the way in which we compute the expected

loss of ¢mmediate terminal action without sampling. This is the same

thing as the expected value of perfect information to be received before
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any sample is taken, and we already know that if we define the terminal

loss constant

ke = [ey —_ ko|

this value is given by the formulas

Expected VPI = kwo(£)G(Do), Do = Be

Whenwederived this result in Section 30.4 we had not yet introduced

methodsfor dealing with bias and we therefore treated the cost-determin-

ing random variableasif it were necessarily equal to the long-run average

p of the sample observations. The student should now review the deriva-

tion and observe that every argument holds without change when £ is

substituted for Z.

34.4.2 Expected Value ofSample Information; Net Gain ofSampling

Wenext take up the problem of computing the expected value of the

information to be obtained from the sample which gives the distribution

of #, shown in Figure 34.3. In Section 34.2.2 above we examineda par-

ticular numerical example and saw that

The expected value of sample information is computed from the dis-

tribution of the posterior mean in exactly the same way that the

expected value of perfect information is computed from the distribu-

tion of the basic random variable itself.

If the student will now again read Section 30.4, this time everywhere

substituting £, for x, he will see that what was true in this particular

example is true in complete generality for any distribution of Ey. It

follows that when £; is Normal with mean E(#£,;) = E)(£)

 

Expected VSI = ko(£1)G(Dz) Dz = ea

 

The net gain to be expected from taking the sample is the expected

value of the information in the sample less the cost of obtaining that

information—i.e., the cost of taking the sample.

34.4.8 Hzpected Loss of a Single-sample Procedure

Sample information is valuable because it reduces the expected loss
of terminal action. The expected éerminal loss of a single-sample pro-

cedureis therefore equal to the expected loss of tmmediate terminal action

less the expected value of the sample information:

Expected terminal loss = kiloo(@)G(Do) — o(£1)G(Dz)).
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The total expected loss of the procedureis its terminal loss plus the
cost of sampling. Alternatively, it is the expected loss of immediate
terminal action less the net gain of sampling.

34.4.4 Expected Profit or Cost of a Single-sample Procedure

The expected profit or cost of a single-sample procedure is usually
much less interesting than the expected loss, but it is easy to find when it
isrequired. 'Todoso, wesimply subtract the net gain of sampling from the
expected cost of the optimal immediate act or add the net gain to the
expected profit of the optimal immediateact.

84.4.5 Example

Weare now ready to compute the value of an additional sample in

the marketing problem of Section 32.3. In ouroriginal discussion of the

problem we saw that

ke = $1,056,000, t, = +.019:

and in Section 34.3.3 of the present chapter we saw that the distribution
of the EF, to be obtained from an additional 50 observations would be
Normal with parameters

E(#£,) = —.140; o(By) = v/.00539 = .0734.

We now compute

_ |.019 — (—.140)| _ .159
~ 0733 ~ (0733

use Table IV to find

G(2.17) = .00532,

Deg = 2.17,

and compute

Expected VSI = $1,056,000 X .0733 * .00532 = $412.

A sample of 50 observations will pay for itself only if the cost of taking the

50 observationsis less than $412.

The expected terminal loss of a decision to sample n = 50 is the

terminal loss of action without sampling less the reduction in loss which
the sample information is expected to produce, or $8800 — $412 = $8388.

Expected total loss is this amount plus the cost of sampling.

The reason why the value of the information in a sample of 50 is so

small compared with the value of perfect information is easily seen from

Figure 34.4, which is an enlargement of a part of Figure 32.1 on which

the prior distributions of £ and #, of our present example are super-
imposed. Because Eo(£) is below &, the better act without samplingis to

reject and additional information will be valuable only if it tells us that
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E or £, is greater than & and thusreverses the original choice of terminal

act. Because the tail of the prior distribution of & which lies above &; is

fairly large, there is a good chance that perfect information would in fact

reverse the choice of act and therefore the expected value of perfect
information is substantial. In contrast, the distribution of £,; given by a

sample of only 50 observationsis so narrow that it has an almost negligible

tail above &; consequently there is an almost negligible chance that a
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sample of this size will yield really valuable information and the expected
value of the information is very small.

PROBLEMS

l. In the situation of Chapter 33, Problem 2, E,(f\jr = 2) = .21310 and

E.(f|\r = 3) = .23120.
a. Whatis the prior distribution of the random variable £,?
b. What terminal act is optimal for each possible value of E,?

c. By use of each possible value of #, compute the conditional terminal cost for

that outcome.
d. By use of your answers to (a) and (c) computethe prior expected terminalcost.
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2. Discuss in general terms the effect of (a) expected bias and (b) uncertainty

concerning bias on the expected value of the information to be gained from a sample

of any givensize.

3. In the situation of Chapter 30, Problem 1, compute the expected valueof the

information to be gained from another 100 observations

a. If managementis willing to assume that the sampling procedure is unbiased
and starts from the posterior distribution which you computed in answer to Chapter
30, Problem 1d.

b. If management holds the views about bias described in Chapter 31, Problem 6,
and starts from the posterior distribution which you computed in answer to that
problem.

4. In the situation of Chapter 32, Problem 4, compute the expected value of the
information to be gained from another 100 interviews

a. On the assumptions of part a of the original problem.
b. On the assumptions of part c of the original problem.



CHAPTER 35

Two-action Problems with Linear Costs:

Optimal Sample Size

We saw in Chapter 33 that in any decision problem whatever the total

expected loss of a single-sample decision procedure with a sample of any
given size can always be evaluated by numerical methods and the optimal

sample size can always be found by evaluating a sufficiently large number

of different sample sizes. It was pointed out at that time, however, that

in certain kinds of problems these laborious numerical methods are not

needed, and in Chapter 34 we derived a simple formula for total expected
loss in two-action problems with linear costs, Normal prior and sampling

distributions, and known sampling variance. Weshall now see that in

this same class of problems there is no need to evaluate total loss with a

large numberof samplesizes in orderto find the optimal samplesize; the

desired result can be quickly found by a single, direct calculation.

35.1 Basic Assumptions

The reasoning of the present chapter will be based on the assump-

tions about the distributions of £, 8, and € which were summarized in

Section 34.5.2. Since the great majority of practical problems involve

either an infinite population or a finite population which is extremely

large relative to any reasonable sample size, we shall assumethat € has

variance

1%(@) = = o%(2);
1.e., we assume that the finite-population correction is negligible if it is

present at all.

85.1.1 Cost of Sampling

As regards the cost of sampling, we shall assume that it is a linear

function of the sample size, i.e. that it is given by a formula of the type

Cost of sampling = A, + k,n.

The term K, represents the fixed costs of setup, administration, analysis,

reporting, etc., which will be incurred if any sample is taken at all but
536
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whose amounts do not depend on the sample size. The term k,n gives

the variable cost of sampling on the assumption that the incremental cost

k, of each additional sample item is the same.

35.2 Behavior of the Net Gain of Sampling as n Increases

86.2.1 Value of the Information in an Infinite Sample

We can obtain a base point for consideration of optimal samplesize
by computing the expected value of the information in an infinitely
large sample. This will of course depend on the variance of the Fi

which might be obtained from such a sample, and as we saw in Sec-

tion 34.3, the way in which this variance is to be computed depends

critically on the independence or interdependence of the distributions
of Eand B. If these distributions are independent, o2,(#,) is to be com-
puted by use of the formulas in Section 34.3.1; if they were originally

independent but have become interdependent because a pilot sample
has been taken, we must proceed as in Section 34.3.2 by first computing

g., a8 it was before the pilot sample was taken and then using this result

to compute the value of o2(£:) after the pilot sample. But in either
case we define

 

|& — Eo(é)|

Oo (E1)

Norestrictions

 

and then inserting these limiting values c..(#1) and D,, in place of o(#;)
and Dg in the formula for the expected value of sample information
given in Section 34.4.2 we obtain the

Maximum EVSI = k.w(#1)G(D.).

This value is an upper bound on the amount which it is reasonable to

spend for sampling, since the valueof anyfinite sample will necessarily be
less than the value of an infinite sample and no reasonable man will pay

more for a sample than the information it contains 1s worth.
Minimum Terminal Loss. It is worth remarking that if o(8) = 0,

then o.(£:) = o0(£), D. = Do, and the expected value of an infinite
sample is equal to the expected value of perfect information: when there

is no uncertainty about bias, an infinitely large sample will in fact give us

perfect information on the value of & Since the expected value of

perfect information is the same thing as the expected loss of immediate

terminal action, and since the expected terminal loss of a single-sample

procedureis this amount reduced by the value of the sample information,

we see that expecied terminal loss approaches 0 as the sample size approaches
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co provided that there is no uncertainty about bias. If, however, uncer-

tainty aboutbias exists, i.e. if ¢(8) > 0, the value of the information in a

sample can never equal the value of perfect information because o(#1)
can never equal oo(£); and therefore terminal loss can never be reduced
below some minimum which depends on the magnitude of o(f).

85.2.2 Net Gain of Sampling

The net gain to be expected from any sampleis the expected value of

the information it will contain less the cost of obtaining this information:

Expected net gain = ko(#,)G(Dz) — K, — k,n.

The optimal samplesize n* will be the value of n whichyields the greatest

possible expected net gain.
Before we can find a procedure for determining the exact value of n*

in any given problem we must examine the general way in which expected

net gain varies with n. This can be investigated by the aid of the

calculus,+ and we shall now examine the conclusions reached by such an

investigation and show why they are plausible even though we cannot

examine the justification for these conclusions in full detail.

35.2.8 The Essential Parameters of the Decision Problem

It is obvious that the way in which net gain varies with sample size

in any problem will depend in some way or another on the values of all

the eight parameters which define the problem: the break-even value &,

the loss constants k;, k,, and K,, the mean of the prior distribution Eo(£),

and the standard deviations oo(£), «(8), and o(é). If we had to consider
the effect of each of these eight parameters separately, our task would be

hopelessly complex; but fortunately it can be shown that the general
nature of the behavior of net gain depends only on the value of the fixed

sampling cost K, and the values of two combinations of the other seven
parameters: the one which wecalled D,, in Section 35.2.1 and

ra(Bs) [Real
an

  

 

o

 

where o~(£1) and o* are to be computed from the formulas in Section

34.3.1 if the distributions of £ and @ are independent, or from the formulas

in Section 34.3.2 if these distributions were originally independent but
have become interdependent because a pilot sample has already been

taken.

+ Specifically, by examining the first and second derivatives of net gain with

respect to n.
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Weare now ready to examine the behavior of net gain with n as

determined by D,, Z, and K,. We shall proceed by first describing the
behavior for the case K, = 0; we shall then see that it is extremely easy to
modify this description to allow for the effect of a nonzero K,.

35.2.4 Behavior of Net Gain When K, = 0 and D, = 0

D,, has the value 0 when the mean E)(£) of the prior distribution is

equal to the break-even value & Half the prior probability is on one

side of &, half on the other; if either of the two terminal acts is chosen

without sampling, there is an even chance that this act will be the wrong

one. In such a situation even a very small sample will substantially

increase the probability of choosing

the right act, and accordingly the Ks=0 7

expected value of the sample infor- D9 = 0 dYo

mation at first increases very rapidly OY

as n increases from0O. This initial

rate at which value increases with n
is always greater than the rate at

which the variable sampling cost
k,n increases, and therefore net

gain = value minus cost always

starts by increasing with n, as shown

in Figure 35.1. The value of the in-

formation has a definite maximum,

however, and therefore increases
more and moreslowly as n becomes Figure 35.1

greater, whereas the cost continues
indefinitely to increase in strict proportion ton. Theresult is that there

is some value of n beyond which cost increases faster than value, and at

this point the net gain stops rising and starts to fall. The highest point

on the net~gain curve marks the optimum value of n.

85.2.5 Behavior of Net Gain When K, = 0 and D. > 0

When D,, > 0 the prior distribution definitely favors one of the two
terminal acts and it is very improbable that a really small sample will
affect the decision. Eo(£) is some distance to one side or the other of

g,, and if the standard deviation of £; is very small, as it is when 7 is very
small, there is virtually zero probability that sampling will actually

reverse the choice of terminal act by yielding an £, on the opposite side of

§, from E,(é). Accordingly the expected value of sample information

starts by increasing very slowly with n. As n becomeslarge enough for

the sample to have a real chance of affecting the decision, the value
increases more rapidly; but as the value approaches the value of an

infinite sample its rate of increase again becomes small and approaches0.
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Since the variable cost of sampling increases steadily with n from the
very beginning,it is not obvious that there will be any value of n for which

Ks= 0

Do>O, Zlarge

  
Figure 35.2

the expected value of the sample
is greater than its cost. Whether

or not there is such a value can be

shown to depend on the relative mag-
nitudes of D, and Z. Jf Z is larger

than a certain critical value which de-

pends on D,,, the net gain will behave

as shown in Figure 35.2, first becom-
ing negative, then rising to some

maximum positive value at the opti-
mal value of n, and then falling off

to become more and more negative.
If Z is smaller than this critical value,
net gain will behave in one of the
ways depicted in Figures 35.3a and

b: there may or may not be a peak in the net-gain curve; but even if

there is, the top of the peak will represent a negative net gain and the

Ks =O |
Do> O, Z small

 

 (a)
 

AK, =0 /

Du> 0, Zvery small 7

ASye

aae

 

  
(4)

Figure 35.3

best sample size will be no sample at all. The critical value of Z is
graphed as a function of D,, in Figure 35.4.

{ The figure has a scale showing Py(% > D,) as well as D,itself; this extra scale
has no meaningin our present problem butwill be of interest in Part Five of the course.
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85.2.6 The Effect of Nonzero K,

It is now easy to see the effect of a fixed element of samplingcost.
Every point on the line showing sampling cost in any of the graphs we

have just examined will be raised by the amount K,, the value of the

sample information will be totally unaffected, and therefore every point
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on the curve showing net gain will be lowered by the amount K,. In the

situations depicted in Figures 35.3a and b no sampleis worth its cost even

when K, = 0; the same conclusion holds a fortiori when K, > 0. Inthe

situations depicted in Figures 35.1 and 35.2, moving the net-gain curve
downward may or may not carry the peak below 0 on the vertical scale,
but in either case the change will not affect the value of n at which the

peak occurs. If the peak remains over 0 after being lowered by the
amount K,, this lowering has no effect whatever on optimal sample size;

it merely diminishes the net gain to be expected from taking a sample of

this size. If, however, the peak goes below 0, it will be better to take no

sample at all.

35.3. Optimal Sample Size

Having determined the general way in which expected net gain

behaves with sample size n, we are ready to take up the problem of finding
the exact value of the optimal sample size n*. Weshall follow the same

procedure in discussing this problem which wefollowed in the previous

section: we shall first consider the case where there is no fixed element in

sampling cost, K, = 0, and we shall then see how our conclusions can very

easily be modified to allow for the presence of such cost.

86.8.1 Optimal Sample Size When K, = 0

The first step in determining optimal sample size when K, = 0 is to

determine whether or not there is any sample size which will yield a posi-

tive net gain. If D. = 0, so that Figure 35.1 applies, we know immedi-

ately that such a sample size exists; if D. > 0, the question can be
quickly settled by the use of Figure 35.4, which will tell us whether we are

in the situation of Figure 35.2 or one of the situations depicted in Figure

35.3.
If this preliminary check reveals that sample sizes better than 0

actually exist, ie. that we are in the situation of Figure 35.1 or 35.2 and

not in the situation of Figure 35.3, our next problem is to find the value

n* which corresponds to the peak of the net-gain curve; and since the

curve is necessarily flat at its peak, we can do this by finding analgebraic

expression for the slope of the net-gain curve and then looking for the

value or values of » which make this slope 0. If D. = 0, there will
always be one and only one such n, corresponding to the single peak in

Figure 35.1. If D. > 0 and Figure 35.4 tells us that we are in the situa-

tion of Figure 35.2, there will be two n’s which give zero slope, the smaller
one corresponding to the bottom of the dip in the net-gain curve and the
larger one to the top of the peak. Since the formula for the slope of the

net-gain curve is not a simple one and it requires a good deal of compu-

tation to find the n which makestheslope 0 for given Z and D,,, we do not
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give the formula itself but instead present Chart II, from which the value

of n* can be determined much more easily. This chart shows, not the
optimal sample size n* itself, but the optimal value of the ratio

h = ——__.
(VWkio*/Ke)?

The results shown in Figure 35.4 have been taken into account in con-
structing Chart II, so that it is not actually necessary to consult Figure

35.4 when D,, > 0 in order to determine whether an optimal nonzero sam-

ple size exists: if the Z of the problem at handis to theleft of the end of

the line for the D,, of that problem, there is no sample size which will even
pay for its variable cost.7

Approximation for Large Z. If we examine the shapes of the curves in

Chart II we get the impression that every one of the curves tends to

becomea straight line as Z increases, and it can be proved that this is

true. As Z increases, the optimal h for any D,, is given more and more

accurately by the approximate formula

. 1 yy,
h= a7 N(Dwo)

which plots as a straight line on the kind of grid used for Chart II. This

formula can be used to find optimal sample size for values of Z greater

than 80, the largest value shown on the chart.{

85.3.2 Optimal Sample Size When K, > 0

If there is a fixed element of sampling cost K, as well as a variable

element k.n, we will a fortiori act without sampling whenever Figure 35.4

or Chart II tells us to do so. If, however, the figure or the chart tells us

that we should sample, this proves only that the savings expected from

a sample of size n* will cover the variable sampling cost k,n*. We also
know, however, that if there 7s any nonzero sample size which will yield a

positive net gain, the best such samplesizeis still n* as given by Chart

II: it was pointed out in Section 35.2.6 above that the effect of adding A,
to the cost of sampling is simply to lower every point on the net-gain
curve by the same amount and that the peak in the curvestill occurs at

the same value of n as it does when K, = 0. Consequently we have only

+ It is this fact which accounts for the abrupt cutoffs in the curves of Chart II.

If the curves were extended smoothly to the left, they would give the locations of

negative peaks like the one in Figure 35.3a.
t As can be seen from the way in which each curve approachesits asymptote, the

approximate formula always overstates the optimal sample size. The accuracy of the

approximation for given D,, improves as Z increases; for given Z it becomes worse as

D,, increases. At Z = 80 the approximation is excellent for D, as large ag 3, in
which case the error is only about 10 per cent,
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to determine whether the sample size n* given by Chart II can be

expected to produce savings greater than K, + k,n*, and this question is
quickly settled by evaluating the savings from the formula

Expected VSI = kic(£3)G(Dz).

85.8.8 Example

Suppose that we must choose between act 1 and act 2 in thefollowing

situation. The conditional costs of the two acts are

Cost of act 1 = $1,000,000,
Cost of act 2 = $2,000,000 — $250,000 £.

The prior distribution assigned to £ is Normal with parameters

Eo(é) = 8, oo(f) = 5.

‘The cost of sampling will be

K. + ken = $1000 + $9 n.

The standard deviation of the pure samplingerrorof a single observation
is known to be

a(é) =

the bias of the sampling procedure is uncertain and is assigned a Normal

distribution with parameters

E(8) = 3, o(8) = 2.

Wefirst determine the break-even value and terminal loss constant:

$1,000,000 = $2,000,000 — $250,000 &;
z, < $1,000,000 _ 4.
sb “$250,000”
= |0 — (—$250,000)| = $250,000.

We then compute

* ~ o5(£) 5?
7 = et = 10 = 1 ; = 8.cg o(€) 7B) + 0(B) (= + ) 0 X .862 8.62,

w(Ly = 00 8) _ gs 865 = 4.64
me(En) 08) a 4 ay ,

_ |&— E,(&| _ |4 -— 8
eo ~_ ~~ a . J

 

 

  

Co(E1) 4.64
=9Jit = 4.64 °/$250,000 X 8.62

8.62 $9
= 538 & 62.1 = 33.4.
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Above Z = 33.4 on Chart II we read h = .065 for D,, = .8 and h = .059

for D,, = 1.0. Interpolating for D,, = .86 we get

h = .063

and compute

3 kio* 2

n* =h J i = .063 X 62.17 = 243.

This result proves (1) that if any sample should be taken atall, then
243 is the optimum sample size, and (2) that the savings due to sampling
will more than cover the variable sampling cost ksn* = $9 * 243 = $2187.
We do not vet know, however, that the savings will cover the total
sampling cost K, + k.n* = $1000 + $2187 = $3187. To answer this

question we must find the actual expected value of the information to be
gained from n* = 243 observations and this depends on o(#,) and Dz,
not on c.(#;) and D,. We therefore compute

fi — i o2,(£1)
o By = Te 1

ey ey) Vx + (1/n*)o%?
4.64?

= 4.64 Var F iag 8.6m ~ +61,
G(Dz) = G(.87) = .1061,

Expected VSI = kio(#:)G(Dz)

= $250,000 < 4.61 &* .1061 = $122,000.

 

 

 

 

 

 

The sample does pay for itself and handsomely; rounding the sampling

cost to the nearest $1000 we have

Expected net gain = $122,000 — $3,000 = $119,000.

Our problem is now completely solved, but out of curiosity we may

look at the total expected loss of the optimal single-sample procedure.

To find the expected loss of immediate terminal action without sampling
we compute

go(&) 5 a

G(Dp) = G(.80) = 1202,

Expected VPI = kioo(£)G(Do) = $250,000 X 5 X .1202 = $150,000.

Subtracting from this the expected net gain of sampling we have

Expected total loss = $150,000 — $119,000 = $31,000.

The reason why the expected loss remains as heavy as it does despite the
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use of an optimal decision procedure is simply that nothing can be done
to reduce uncertainty about sampling bias. Even if sampling cost

nothing and an infinite sample were taken, the value of the sample
information would be only

Maximum EVSI = kicw(L/1)G(D.) = $250,000 < 4.64 & G(.86)
= $125,000

and the expected loss would still be $150,000 — $125,000 = $25,000.

35.4 Effect of Nonoptimal Sample Size

Some interesting general results concerning the unnecessary loss

which results from taking a sample of nonoptimal size can be given for

the special case where there is no uncertainty about bias and nofixed
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element K, in sampling cost and where the optimum samplesize is not

zero. In this case it can be shown thatthe ratio

Total expected loss with sample of arbitrary size n
Total expected loss with sample of optimal size n*
 

zs less than

lin n*
3 (% + ~)

for all D,, and Z.

This limiting value is graphed in Figure 35.5, and it is immediately

apparent that a moderate error in sample size is of no practical tmportance

whatever—a sample which is 10 per cent above or below optimum cannot
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increase total expected loss by as much as &%{p% of 1 per cent; a sample

which is 20 per cent above or below optimum cannot increase total
expected loss by more than 2.5 per cent. What is more, even these very

low maximum effects are actually approached only when Z is very large;

for values of Z which occur in commonpractice the effect of nonoptimal

sample size is very substantially less than the limit given by Figure 35.5.

Observe on the other hand that substantial departures from optimal
sample size may havereally serious effects: a sample whichis half or twice
what it ought to be may increase total expected loss by as much as

25 per cent, and total expected loss may be more than doubled if the

sample is a fourth or four times the optimalsize.

35.5 Optimum Sample Size When the Assumptions of This
Chapter Are Violated

The only two-action problems for which it is possible to devise a

really simple method of determining optimal sample size are those in

which all the assumptions underlying the results of this chapter are met

and which can therefore be solved by the methodsderived in this chapter.

Violation of any of these assumptions usually means that the only abso-

lutely sure way of finding the exact optimal sample size is actually to
evaluate total expected loss for each of a large numberof different sizes.

Our assumption that the terminal and sampling costs are linear is very

close to exact in the great majority of the two-action problems which

arise in practical business situations, and when bias is suspected a Normal

distribution will usually describe the businessman’s beliefs at least as well

as any other, but it is often necessary to decide on a sample size in situa-

tions where our assumptions about the distributions of — and € are

seriously violated in one or more of the following respects:

1. The prior distribution of — is not Normal;

2. The sampling distribution of € is not Normal;
3. The variance of é€ is not known.

Even if we do have to resort to numerical evaluation of a number of

different sample sizes in such situations, it would help a great deal to have
some indication of the general range of n’s within which the optimum

probably lies; and it naturally occurs to us that we maybeable to obtain
such an indication by applying the methods of this chapter even though
we cannot hope that they will yield the exact optimum. Weshall now

test this idea by trying it out on the problem which wediscussed in

Chapter 33; we shall see that the conditions of that problem violate the
assumptions of the present chapter in all three of the ways listed above

and that every one of the violations is severe.
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The basic random variable of the problem weare about to analyzeis

the long-run fraction of defectives which will be generated by a Bernoulli
process. We saw in Section 31.3 that this long-run fraction p of true

defectives corresponds to & while the long-run fraction P, of reported
defectives corresponds to yn; the two quantities are not necessarily equal,

and the difference P, — 7 is the bias 6 of the sampling process. Weshall
here assume, however, as we did in ourearlier discussions of this same

example, that the inspector will not select good pieces in preference to

defectives or vice versa and that he will report all good pieces as good

piecesand all defectives as defectives. This assumption not only deter-

mines the distribution of 8, leading us to set

E(B) = 0, o(B) = 0;

it also affects the distribution of the pure sampling error é of a single

sample observation. An individual observation £ in a problem of this
sort will have the value 1 if the piece is reported defective or the value 0 if

the piece is reported good; and the pure samplingerror of such an observa-

tion is the difference € = £ — P, between the individual observation and

the long-run average of all observations. The variance of this error is

therefore o2(¢) = P,(1 — P,); but because we have assumedthat P, = 7,
we can replace this formula by

o*(é) = p(l — p) = pg.

Weare now ready to examine the three ways in which this problem

violates the assumptions on which theresults of the present chapter were

based.
1. The prior distribution of the basic random variable is not a sym-

metric, continuous Normal distribution but an extremely skew, discrete

distribution which asserts that the only possible values of the variable are

01, .05, .15, and .25 and which assigns 79 of the total prior probability

to the smallest of these four values.
2. The samplingdistribution is binomial and the Normal approxima-

tion to the binomial is very poor for the value P, = p = .01 which has

749 of the total prior probability.

3. The variance of the sampling error of a single observation é€ is
not only unknown but unknowable: it is equal to P,(1 — P,) = pq and

therefore its value may be as low as .0l X .99 = .0099 or as high as

25 X .75 = 1875.
In order to obtain an approximately optimal sample size for this

problem weshall proceed as follows. We shall compute the mean and

variance of the actual discrete prior distribution of 6 and then act as if

these were the mean and variance of a Normal prior distribution. We

shall pay no attention at all to the non-Normality of the sampling dis-

tribution of é, and weshall treat the variance of an individual erroré as if
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it were known to have the value which it would in fact have if # had the

value E,(f). There is no proof that this procedure is the best one

possible, and it might be argued in particular that we should compute

o?(@) for each possible value of # and then take a weighted average with

the prior probabilities as the weights. The one indisputable advantage

of our procedureis its simplicity.
The mean of the prior distribution of # for this problem was shown

in Table 22.6 to be

Ko(p) = .052.

In Table 35.1 the variance of this distribution 1s computed as

o2(p) = .006115.

 

 

 

Table 35.1

p Po(p) p — Eo(P) [p — Eo(p)]? [p — Eo(p))? Po(p)

Ol 7 — .042 001764 001235
.05 wl — .002 .000004 .000000

15 l + .098 .009604 .000960

25 al + .198 .039204 003920
1.0 .006115

 

If @ actually had the value Eo(f) = .052, the variance of an individual

pure sampling error would be

(2) = .052 X .948 = .0493

and we treat the problem as if € would have this variance regardless of the

true value of .

It was shown in ouroriginal discussion of this problem that

po = .04, k, = $200,
K, + ken = $.25 + $.02 n,

and we now haveall the data required to apply Chart II. Because

(8) = 0,

of =o(2) = V.0493 = .222,
Ca(L1) = oo(f) = V.006115 = .0782.

We then compute

_ |p» — Eo(H)| _ |.04 — .052|

I

 

 

  

Dy = ee =ae HS,

_ oa(Ei) */ko* _ 0782 °/§200 X .222 _ _
Za =e i = 55 S09 352 X 18.05 = 4.59.
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Above Z = 4.59 in Chart II we read h = .170 for D,. = .l and h = .172

for D, = .2. Interpolating for D. = .15 we obtain

h=.171

and we compute

n* = 171 X 13.05? = 29.

The Accuracy of the Approximation. The exact optimal sample size

for this problem can be determined by using the numerical methods of

Chapter 33 or thefirst part of Chapter 34 to compute the exact net gain
from sampling for a large number of different n’s; the curve labeled
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“exact”? in Figure 35.6 summarizes the results of such computations.

The exact optimum is m = 27, which yields a true net gain of $2.99; the
approximation n = 29 obtained by use of the Normal approximation has

a true net gain of $2.98, or only $.01 or 144 of 1 per cent less than the

maximum attainable by exact calculations.

Wehave already emphasized that the conditionsof this example con-

stitute really extreme violations of the assumptions on which theresults

of this chapter were based. We took o7(é) as known to have the value

.0493 when it could have any value from .0099 to .1875 and when there
was actually probability .7 that it would have the very low value .0099.
The difference between the true prior distribution and a Normal distribu-

tion with the same mean and variance is shown graphically in Figure
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35.7; notice that this Normal distribution actually assigns substantial

probability to negative values of ~. It seems likely, therefore, that

moderate violations of the assumptions underlying the results of the

present chapter are very unlikely to have any serious effect on the

optimality of the sample size obtained by the use of these results; and

extensive investigations of other quite different numerical examples have

uniformly corroborated this conclusion.

It must be emphasized, however, that the Normal approximation

to the actual value of the net gain is not very good. The curvelabeled

‘“Normal approximation”’ in Figure 35.6 shows this approximation as a

Por Pp’

7   

    {fo (p) =.052

Op (Pp) = .0782

  T 1 '

—15 «10 -05 O 05 40 £5 20 25 .30

Figure 35.7

function of n, and we observe that the approximate value is substantially
different from the true value even though the peak of the curve of approxi-

mate value occurs at very nearly the same n as the peakof the curveof true

value. This result is also typical, and if we think back to the implica-

tions of the difference between Figures 35.2 and 35.3a we reach the

following conclusions concerning the use of the Normal approximation to

determine optimal samplesize:

When the Normal approximation leads to a nonzero sample size, we

can usually feel quite sure that for all practical purposes this is the
best nonzero sample size; but the Normal approximation (1) may

tell us to sample when we should not sampleat all or (2) may tell us
not to sample when we should take a sample of substantial size.
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The first of these dangersis easy to guard against; all that we have

to do is compute the exact expected net gain with a sample of the size

yielded by the Normal approximation. If the gain is positive, it will

rarely be worth the trouble to try to improve on the samplesize; if the

gain is negative, it will almost always be true that there is no sample size

which will yield a positive net gain. The second danger is a source of

more trouble: when the Normal approximation tells us not to sample, we

must compute the exact expected net gain for enough different sample

sizes to learn the general shape of the true net-gain curve and thuseither

convince ourselves that there is in fact no 7 for which the gain is positive

or else by trial and error actually find the n which yields the greatest posi-

tive net gain.

PROBLEMS

1. In the situation of Chapter 30, Problem 1, assuming that sampling costs $25
per customer and that management is convinced that the sampling procedure is un-
biased and starts from the posterior distribution which you computed in answer to

part d of that problem, compute:

a. The optimal size for a second sample to be taken before a decision is finally
reached .

b. Expected total loss under a single-sample decision procedure using a sample of
optimal size.

2. Same as Problem 1 but assume that management holds the views about bias
described in Chapter 31, Problem 6, and starts from the posterior distribution which
you computed in answer to that problem.

3. Sameas abovefor the situation and sampling cost of Chapter 32, Problem 4a.

4. Same as abovefor the situation of Chapter 32, Problem 4c. |
5. In the situation of Chapter 24, Problem 5, find an approximation to the opti-

mal sample size for a single-sample decision procedure by treating the prior distribu-
tion of @ as if it were Normal and the variance of a samplingerrorasif it were known.



CHAPTER 36

Interdependent Two-action Problems

under a Stationary Distribution}

In the last three chapters we have developed methodsfor finding optimal

single-sample procedures for choice between two acts both of which are

definitely terminal, i.e. where the choice of either act disposes of the

problem at hand once andfor all. We now turn to situations where at
least one of the acts which may be chosen after sampling does not put an

end to the problem at hand but leaves it to be solved by a future decision

or sequence of decisions, with the result that the conditional or expected

cost of the act in question depends on the way in which these future decisions

will be made. In the general case the solution of such interdependent

decision problems requires extremely heavy computation, but we shall

see in this chapter that in certain rather common circumstances the

optimal decision procedure can be found with surprising ease.

36.1 Statement of an Example

We saw in Chapter 24 that two-action problems become interde-
pendent wheneverthe choice between the acts will or mayaffect not only

the costs which will be immediately incurred but also the quantity of
product or service which will be obtained. We now return to thefirst of

the two examples which wediscussed at that time (Section 24.1.1).
A part is manufactured by a Bernoulli process in lots which contain

2500 pieces for actual use in assembly plus however manypieces are

required for sampling inspection. Production is by a sequence of batch
processes costing a total of $30 per batch for labor, power, etc., plus $.03

per piece for materials. Each defective sent to the assembly department
occasions an excess cost of $3.75; and although defectives can be reliably

identified by inspection, this inspection is destructive and therefore a lot

cannot be screened: it must be accepted or scrapped. Inspection costs

$.062 per piece inspected, and adding the cost of manufacturing the
sample pieces we have

Cost of sampling = $.092 n.

t The results of this chapter are not required in any following chapter.

553
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The manufacturer is about to produce one lot of parts, and on the basis of
his past experience heassigns the distribution shown in Table 36.1 to the
p of the process during this run.

 

 

Table 36.1

Prior Distribution and Expectation of p

p Po(p) p Po(p)

.O1 .60 .0060

.03 20 .0060

.05 10 .0050

.07 .07 .0049
09 .03 .0027

1.00 0246 = Eo(#)
 

Computation of the cost of accepting the lot which is about to be

produced presents no difficulties. The conditional expected number

of defectives in the part of the lot which will be sent to the assembly
department is 2500p, the conditional cost due to these defectives is
$3.75 X 2500p = $9375 p, and sincethis is a linear function of p we see

immediately that the unconditional

Expected cost of acceptance = $9375 E(p).

If the decision is made without sampling, E(#) will be the mean of the

prior distribution of #; if the decision is made after sampling, E() will
be the mean of the posterior distribution.

It is the cost of rejecting the lot which gives trouble. The assembly

requirement which led to scheduling this present lot must be filled. If

the present lot is rejected and scrapped, another must be manufactured;

if this second lot 1s rejected, still another must be manufactured; and so

on until a lot is finally accepted and the requirementis filled.

36.2 The Assumption of Stationarity and the Criterion of
Average Cost per Accepted Lot

Even without formal analysisit is clear that the best way of deciding
whetherto accept or reject any future batch of product will depend on the

prior distribution which the manufacturer assigns to p just before the
batch in question ts produced, exactly as the best way of reaching a decision
concerning the present lot depends on thedistribution assigned to f just
before the present run is made. If on any particular occasion the manu-
facturer feels certain that # will have somedefinite value, there will obvi-

ously be no sense in sampling that run; either its output should be

accepted without question or the run should not be madeat all. If the

manufacturer is convinced that @ will have either a very high or a very
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low value, he will need only a very small sample to tell him whether to
accept or reject; and so forth. It follows immediately that if the prior

distribution which the manufacturer assigns to ~ changes over time, the
optimal decision procedure to apply to each successive lot will change over

tume.
Even if the manufacturer could now predict the distribution which

it will be reasonable to assign to # just before each future run is made,it

would obviously be extremely difficult to determine the optimal decision

procedure for every future run and then compute the expected cost of

rejecting the present run. If, as is far more likely, the manufacturer

cannot now predict what distribution it will be reasonable to assign to p

just before each future run is made (andthis is the truly general case),

the problem is even more complex. It is literally ¢mpossible to determine

now what procedure will be optimal for each future run, and computation

of the cost of rejecting the present run will involve assigning a probability

to every possible combination of future probability distributions.

36.2.1 The Assumption of Stationarity

Conceptually we can solve even this horribly complex problem by

the method of ‘‘backward induction’”’ which we shall study in Chapter

38, but the computational burden would usually be prohibitive even with

the aid of high-speed computers. Weshall therefore restrict our study

to situations whereit is legitimate to assume that

The prior distribution which it will be reasonable to assign to p just
before making any future run will be exactly the same as the distribu-

tion which it is reasonable to assign to the p of the present run.

Although this assumption is formally very strong and can never be justi-

fied in a literal sense, it 1s practically justified in manyreal businesssitua-

tions. All that is really required is that the prior distribution should be

very unlikely to change very much during the next few future runs, and this

will be true when the following conditions are met.

1. The businessman has no reason to think that there will be any

appreciable change in the near future in the way in which the

value of the basic random variable actually varies from one

occasion to the next.

When the basic random variable is the parameter of a Bernoulli process

and its value depends on the quality of the setup, this first condition will

be satisfied if the businessman has no reason to think that the person

making the setup will becomenoticeably moreorless skillful during the

next several setups. When the basic random variable is the X content

of a batch of raw material, the condition will be satisfied if the business-

man has no reason to think that the factors responsible for batch-to-batch
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variation in X content will change materially during the production of
the next several batches of material.

2. The businessman’s present beliefs about the way in which the

value of the basic random variable varies from one occasion to
the next rest on so much already acquired experience that it is

virtually impossible for the additional experience acquired on the
next few occasions to modify them appreciably.

If condition 1 is satisfied and if in addition the businessman knows
exactly how many defectives were produced on eachof the last 50 produc-

tion runs, the distribution he now assigns to # before making a run is

unlikely to be much affected by the fraction defective which he observes
in the next few runs. If condition 1 is satisfied and if in addition the
true X content of the last 50 batches of raw material has been accurately

determined, the distribution which the businessman now assigns to the
E of an untested new batch is unlikely to be much affected by the quality

of the next few batches.

86.2.2 Average Cost per Accepted Lot

The assumption of stationarity is of crucial importance in problems

of the kind we are now studying because it implies that the decision pro-

cedure which is optimal for choice between acceptance and rejection of the

present lot is also optimal for any future lot and vice versa. The costs
which will be immediately incurred as a result of acceptance or rejection

are identical for all lots even without the assumption of stationarity; with
this assumption added, all the circumstances surrounding the decision

are identical for all lots and therefore the same decision procedure must

be optimal for every lot. This means that we are no longer obliged to

find a different best way of making each of a large number of future

decisions before we compute the expected cost of rejecting the present lot

and thus complete the data we need to find the best way of making the

present decision. Instead:

Given the assumption of stationarity, we can make a direct evalua-
tion of any proposed decision procedure by computing the average

cost per accepted lot which will result from applying this procedure to
all lots, present and future; and we can then look systematically for
the procedure which minimizes this averagecost.

This way of looking at our present problem has a certain superficial

resemblance to the way in which we sometimes talked about the evalua-
tion of decision procedures for independent two-action problems, where

we actually computed the expected cost of applying a given procedure to

an individual decision but visualized the meaning of this expected cost

by assuming in effect that the distribution of the basic random variable
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wasstationary and that the expected cost represented the average cost
per lot of applying the procedure in question to a large number oflots.

It is therefore very important to realize that there are twoabsolutely
essential differences between our present problem and problems in which the
successive decisions are independent.

1. When successive decisions are independent, the assumption of
stationarity and the interpretation of an expected cost as an average cost
per lot is merely a way of visualizing the meaning of an expectation; in
our present problem, we are really working with true long-run averages
and the validity of our results depends on the validity of the assumption

of stationarity.

2. When both terminal acts will yield the same amount of usable
product or service, we can visualize the problem as one of minimizing
average cost per decision (e.g., per lot purchasedor per lot manufactured),

but when the choice between the two acts affects yield as well as cost,

we must minimize average cost per unit of yteld (in our example, per
accepted lot).

36.3 Computation of Average Cost per Accepted Lot

A single-sample decision procedure or sampling plan is fully defined

by (1) the sample size n and (2) a rule stating which sample outcomes

should lead to acceptance and which to rejection. If the sameprior dis-
tribution is assigned to # before each lot is sampled and if the size of the

sample is the same on every occasion, it is obvious without proof that we

will want to reject all lots in which the number of defectives r is greater
than some specified limit c and to accept all lots in which r is equal to or

less than c. In actual practice the inspector would be given a rule of

exactly this form, i.e. he would be told the size of sample to take and the

value of the acceptance number c.

Weknow,however, that the information in any sample can be sum-

marized by the mean of the posterior distribution of # just as well as it

can be summarized by the numberof defectives r, and it will be easier to

compute the costs which will be incurred under any given sampling plan

if we do think of the sample as summarized by E,(j) rather than byr.

Weshall therefore think of our problem in terms of finding the best

sample size n and critical value p. to use in a rule of the form

Take a sampleof size n, compute Ei(6), and reject the lot if E:(p) is

greater than somecritical value p., accept if E(B) is equal to or less

than De.

Asthe first step toward finding the best values of n and p, weshall

now see how to compute average total cost per accepted lot under a plan

with any given values of n and p,, taking n = 20 and p, = .035 as an
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example. The method weshall use for this purpose is basically the same

method of preposterior analysis in terms of #, which we used in Sections

34.1 and 34.2: looking at the problem before any particular lot is sampled,
welist all the values of #, which may result from the sample, compute
the posterior expected cost corresponding to each E, and then take the
proper weighted average of these costs.

86.8.1 The Prior Distribution of the Postertor Mean

To compute the prior distribution of the posterior mean F, for the

sample size n = 20 which weare using as an example we proceed exactly

as in Section 34.1.1: for each possible sample outcome r, we compute the

prior probability of that outcome, the posterior distribution of # given

that outcome, and the mean of that posterior distribution. The calcula-

tions for the outcome r = 0 are shown in Table 36.2 by way of review.

 

 

 

 

 

 

Table 36.2

Computation of the Posterior Distribution Given n = 20, r = 0

Prior Likelihood Joint Posterior Expectation

P Po(p) PpF =Olp) PF=0,p) Pa(pir = 0) p Pi(p)

.O1 .60 .8197 .4907 .750 .00750

.03 .20 .§348 .1070 .163 .00489

.05 .10 .3585 .0358 .055 .00275

.O7 .O7 , 2342 .0164 .025 .00175

.09 .03 1516 .0045 .007 .00063

1.00 .6544 1.000 .01752

Table 36.3

Prior Distribution of FE, for n = 20

r Fy P(E;)

0 .0175 .654

1 .0313 . 240

2 .0489 .074

3 .0612 .023

Over 3 Over .0612 .009

1.000

 

The total of the products p Pi(p) in the last column shows that if the

sample outcome is r = 0, then EH, will have the value .01752 ; and the

total of the joint probabilities shows that the prior probability that 2,

will have this value is .6544. Repeating these calculations for the out-

comes r = 1, 2, etc., we obtain the prior distribution of the posterior mean
which is shown with all numbers rounded to three significant figures in
Table 36.3.
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36.8.2 Average Cost per Lot Manufactured

The next step toward our ultimate objective of finding average cost
per accepted lot under the plan (n = 20, p. = .035) is to compute average
cost per lot manufactured underthis plan, and to do this we mustfirst look
at the conditional costs which mayarise as a result of manufacturing any
one lot and applying to it the plan in question.

1. Direct manufacturing cost. The cost of manufacturing the 2500
pieces intended for use in assembly amounts to

$30 + ($.03 X 2500) = $105 certain,

regardless of the sampling plan applied to the lot after it has been manu-
factured. The cost of the additional pieces provided for destructive
inspection is included in

2. Sampling cost. This depends on the size of the sample which will
be taken from the lot but not on the critical value p,; for the sample size
n = 20 we are now considering it is $.092 K 20 = $2 to the nearest

dollar.

3. The cost to which the defectives in the lot will give rise in the assembly
department if the lot ts accepted. The prior expected value of this cost

depends on both n and p,.; we shall now see how to computeit byfirst
computing the conditional cost for every possible sample outcome and
then taking the expectation of these conditional costs.

Weobservefirst of all that, because p, = .035 in the sampling plan

which weare evaluating, the lot will be rejected if the sample yields an E;
above .035 and therefore the defectives in the lot cannot give rise to any

cost in the assembly department; the conditional cost of defectives given
FE, > .035 is zero. If on the contrary £, < .035, the lot will be accepted
and the defectives it contains will give rise to a cost. By Table 36.3

there are two possible values of £; which lead to acceptance: EF, = .0175
and £; = .0313. We have already seen that when a lot zs accepted,
the expected cost due to defectives is $9875 E(#). Consequently if
EB, = .0175 after a particular run has been made and a sample has been
inspected, the conditional expected cost of accepting the defectives gener-

ated on that run is $9375 X .0175; if #, = .0313, the conditional cost is

$9375 X .0313.
Having determined the posterior or conditional cost of defectives

for every possible £, under the plan (n = 20, p. = .035), we are now

ready to compute the prior or unconditional expected cost of defectives
under that procedure. This is done in Table 36.4 in the usual way, by
multiplying each conditional cost by the probability of the #, which
gives rise to that cost and adding the products. We remind the student
once more that if the $178 cost of defectives computed in Table36.4 is
interpreted as an average rather than an expectation, it is the average
cost per lot manufactured and not the average cost per lot accepted.
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Table 36.4

Cost of Defectives per Lot Manufactured
Sample n = 20; accept if #, < .035

Cost of defectives

 

 

 

E P(Fi)
Conditional Expected

.0175 .654 $9375 X .0175 $9375 (.0175 X .654)

.0313 . 240 $9375 X .0313 $9375 (.0313 XK .240)

.0489 + .106 0 0

1.000 $9375 X .0190 = $178

 

Adding the expected cost of defectives which we have just computed

to the $105 manufacturing cost and $2 sampling cost which will be

incurred as a result of producing any onelot, we obtain the {otal

Average cost per lot manufactured = $105 + $2 + $178 = $285.

86.38.38 Average Cost per Accepted Lot

If on the average only half of all lots are accepted under a given

decision procedure, then on the average two lots will have to be manu-

factured to get one accepted lot and the cost per lot accepted will be twice

the cost per lot manufactured. If two-thirds of all lots are accepted,

three-halves of a lot will have to be manufactured to get one accepted
lot; and in general,

 

cost per lot manufactured
Cost per accepted lot = probability of acceptance
 

 

In our example, we see immediately from Table 36.3 that thereis

probability .654 ++ .240 = .894 that #, will have a value less than or

equal to .035, and under a plan which accepts only if #, < .035 this

means that a fraction .894 of all lots manufactured will be accepted. It
follows that under this plan

Average cost per accepted lot = $285 _ $319.
894

86.3.4 A General Formula for Average Cost per Accepted Lot

The calculations by which we havejust evaluated the total cost per

accepted lot under the sampling plan (n = 20, p. = .035) can be neatly

summarized by a formula if we look back to see what really happened in

the last column of Table 36.4. Each product within parentheses in that

columnis of the form FE, P(F;), and the column contains such a product
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for every possible F,; in the interval from — © to the “critical value”’

p. = .035 specified by the sampling plan. The sum .0190 of these

productsis therefore the partial expectation E:°35(#,), and since the prob-
ability .894 that a lot will be accepted is simply P(#1 < .035), we can
write

$105 + $2 + $9375 E235(E1)

P(E, < .035)

More generally, for any sample size n and any “‘critical value” p, dis-
tinguishing between values of £, which will lead to acceptance and values

which will lead to rejection, we have

Average cost per accepted lot = 

 

$105 + $.092 n + $9375 E%:(F)
Average cost per accepted lot =

P(E, < Dc)

 

36.3.5 The Definition of Total Cost

Wenowexplicitly call attention to the fact that the actual definition
of ‘‘cost’’ which we have used in this problem is different from the

definition used in problems with independent decisions. When all

possible acts have the sameyield, we need pay no attention to the cost of

manufacturing because the manufacturing cost per unit of yield is not

affected by the terminal act or by the sampling plan used to select a

terminal act. In the example discussed in Chapters 22 and 33, every lot

manufactured yielded 500pieces for use in assembly whether or not the

process was ‘‘rejected”’ (readjusted) before the lot was produced: read-

justment affected only the cost due to defectives. In problems of the

present kind, on the contrary,

 

The sampling plan affects manufacturing cost per unit of yield and

therefore manufacturing cost must be included in computing average

cost per unit of yield.

36.4 Selection of the Optimal Sampling Plan

Now that we know how to compute the average cost per accepted

lot which will result from applying any given sampling plan to all lots,

we could proceed to determine the optimal sampling plan by simply com-

puting average cost per accepted lot for a sufficiently large number of

n, p- combinations. The computations would be very laborious, however,

and weshall now see that it will usually be better to attack the problem

indirectly rather than head-on.

The indirect approach consists in solving a numberofartificial prob-

lems in each of which we assume that the manufacturer will be required
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to make his decisions concerningall future lots in a way whichis arbi-
trarily specified but that he is free to make his decision concerning the
present lot in any way hepleases and wishes to use an optimal plan for this

purpose. The solution of an artificial problem of this kind helps us
toward the solution of our real problem because, as can be proved:

1. If and only if the plan specified for all future lots is in fact the
optimal plan for use with all lots, this same plan will turn out to be
the optimal plan for a decision concerning the present lot.

2. If the plan specified for all future lots is not the optimal plan for

all lots, then the plan whichis optimal for the present lot will be a
better plan for use with all lots.

This suggests that we can find the optimal plan for our real problem by

successive approximations, using the present-lot optimal plan which

emerges from oneartificial problem as the arbitrarily specified future-lot
plan for the next artificial problem until we reach a stage where both

plans are the same; andit can be proved that wewill in fact always arrive

at the true optimal plan by following a procedure of this sort.

Although this indirect procedure requires usto solve severalartificial

problems instead of just one real problem, it nevertheless reduces com-
putations very substantially because an approximate solution to each of

the artificial problems can be found very easily. Our assumed knowledge

of the way in whichall future decisions will be made enables us to assign a

definite cost to rejection of the present lot; and this means that these

artificial problems are perfectly ordinary two-action problems for which

approximately optimal sample sizes can be determined by the method
developed in Chapter 35. Weshall now proceed to use the indirect pro-

cedure to find the optimal sampling plan for the example we have been

discussing throughout this chapter.

86.4.1 The First Artificial Problem

Weare free to start our series of successive approximations in any

way that we please. We could assume that the manufacturer will be
required to apply the sampling plan (n = 100, p. = .5) to all futurelots,

or that he will be required to accept (or even to reject) all future lots

without sampling. For no particular reason we choose to start by

assuming that all future lots will be accepted without sampling, and our

first artificial problem is to find the procedure which will be optimal for

reaching a decision concerning the present lot given this assumption about

all future lots.

The Conditional Costs. Computation of the conditional cost of

acceptance gave us no difficulty even in the real problem: acceptance will

yield the pieces required for assembly at the perfectly definite

Conditional cost ot acceptance = $9375 p.
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Thedifficulty in the real problem waswith rejection, since we did not know
exactly how the required pieces would be obtained if the present lot were
rejected and therefore we did not know what rejection could be expected
to cost. In the present artificial problem, however, the expected value
of this cost is Just as definite as the expected cost of acceptance. Since
every lot manufactured will be accepted, the manufacturing cost will be
$105 per accepted lot and the cost of defectives per accepted lot will be

$9375 Eo(6) = $9375 XK .0246 = $231, making a total of $336 per
accepted lot. If the present lot is rejected this is what the manufacturer

can ‘‘expect’’ to spend in replacing it; and therefore the

“Conditional” cost of rejection = $336.

The word ‘‘conditional”’ is put in quotation marks because the cost of

rejection does not actually depend on the p of the present run.

Our artificial problem is thus a perfectly ordinary two-action prob-
lem with linear costs, and the nature of these costs can be summarized in
the usual way by computing the loss constant

ke = |k1 — kel = [$9375 — $0| = $9375

and the break-even value of which makes the costs of the two terminal

acts equal:

$9375 py = $336; Po = aasae = .0358.

Notice that the $105 which will be spent in manufacturing the present

lot was omitted from both the conditional costs because it will be spent

whether this lot is accepted or rejected (cf. Section 36.3.5). We could

equally well have included this cost in both the conditional costs; if we

had done so, we would have obtained exactly the same values for k:
and pp.

Solution of the Problem by the Normal Approximation. We now

proceed to find an approximate solution to ourfirst artificial problem by

the method of Normal approximation described in Section 35.5. In

effect, we replace the true discrete prior distribution of Table 36.1 by a
Normal prior distribution with the same mean and variance, assume that

the distribution of the mean pure sampling error € is Normal rather than
binomial, and treat the variance of an individual error é as if it were
known to have the value which it would actually have if 6 had the value

Ko(~). We already know (Table 36.1) that the mean of the prior dis-
tribution is

Ko(p) = .0246,

and in Table 36.5 we compute the variance of this distribution as

o2(p) = 000470.
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Table 36.5
Variance of the Prior Distribution of p

P Po(p) p — Eo(p) [p — Eo(p)]? [p — Eo(B)]? Po(p)

.O1 .60 — .0146 .000213 .000128

.03 .20 + .0054 .000029 .000006

.05 .10 + .0254 .000645 .000064

.07 .07 + .0454 .002061 .000144

.09 .03. + .0654 .004277 .000128

1.00 .000470

 

The sampling error will be treated as if its variance were known to be

o3(€é) = Eo(p)[1 — Eo(p)] = .0246 X .9754 = .0240.

Wecontinue to assume as we did in computing Tables 36.2 and 36.3

that there is no uncertainty about sampling bias, o(8) = 0, so that

of = o(@) = V.0240 = .155,
Ox(E:) = o(p) = vV/.000470 = .0217.

We now compute

|p» — Eo(p)| _ |.0358 — .0246| _
  

 

De = OeE1) 0217 52,
_ Gw(fy) FAfkio® — .0217 [ee xX 155 _ZaJ Go ABB oa 140 X 25.1 = 3.51.

Above Z = 3.51 in Chart II we read h = .167 for D,, = .4 andh = .150

for D. = .6. Interpolating for D,. = .52, we obtain

h = .157

and compute

3 ihot\?
n* = n(/ i = 157 X 25.1? = 99. 

Except for possible error due to the use of the Normal approxima-

tion, we have shown that 7f all future lots were to be accepted without
sampling, then the best single-sample decision procedure to use in dispos-

ing of the present lot would be to test a sample of 99 pieces, use the

results of this test to compute E,(g) for the run on which the lot was

manufactured, and then reject the lot if Ei(p) is above the break-even

value p, = .0358, accept if Ei(g) < pz.

36.4.2 The Second Artificial Problem

Average Cost under the First Approximation. Wealso know that the

plan which has just been shown to be optimal for the present lot under
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the assumptionsof thefirst artificial problem is a better plan for applica-

tion to all future lots than the plan which was part of those assumptions.

Wetherefore defineoursecond artificial problem by assuming that all

future lots will be disposed of according to the plan ‘“‘sample n = 99,

reject if Ei(p) > .0358”’; and the first step toward the solution of this
problem is to compute the resulting average cost per accepted lot.

Observe that we take the break-even value p, computed for thefirst arti-

ficial problem as thecritical value p, of the secondartificial problem.

To get the exact value of this average cost we would have to compute

the exact distribution of £, for n = 99 in the same way that we computed
this distribution for n = 20 in Section 36.3.1; but since our whole pro-
cedure depends on the validity of the Normal approximation to the dis-

tribution of #, we shall use that approximation for our present calcula-

tion as well as for determining the optimal sample size in each artificial

problem.

What we need are the values of P(#; < p,) and E”..(#;) to use in

the formula for average cost given in Section 36.3.4. Remembering

from Section 34.3.2 that

E(£,) = E,(A),

we can put the critical value p, in standard measure by defining

 

De — En(D)

6(£4)
Ue = Definition of u-

 

Observe carefully that although the p, of the present problem has the

same value as thep, of the previous problem, the u, of the present prob-

lem differs from the D,, of the previous problem in tworespects: there are

no absolute-value signs around the numerator, and the denominatoris
not ¢..(#1), which is independent of the sample size, but o(£), which

depends on the sample size. From the definition of u, and the continuity
of the Normal distribution

 

P(E; < p.) = Py(@ < u,)

 

and by using the formula given in Section 18.2.3 for the partial expecta-

tion of a Normal variable and again substituting Eo(p) for E(#;) we

obtain

 

E™.(E1) = Eo(p) Pw(@ < u.) — o(#1) Py(ue)
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To apply these formulas to the sampling plan (n = 99, p. = .0358)

we compute
 

 

HB) = ob oo(£)(A)

=

ao(é) Vaz + 0°(8) + (1/n)o*)
 

 

 

.000470
= 0217 \00870 + 0+ lég X .0240 — 0176,

.0358 — .0246
Ue _— 0176 — + .64,

P(E, < .0358) Py(a < +.64) = 1 — .2611 = .7389,
v(+.64) = .3251,
Er,(£1) = (.0246 X .7389) — (.0176 & .3251) = .0125.

Wethen substitute these values in the formula given in Section 36.3.4 to
obtain

Average cost per accepted lot

_ $105 + ($.092 X 99) + ($9375 X .0125)
7 7389

Second Approximation to Optimal Sample Size. We now proceed
exactly as we did in solving ourfirst artificial problem. The new break-

even value for a decision concerning the present lot is

_ $313
Po ~ $9375

The values of o*, ¢.(E£1), and Wko*/k, are exactly the same as in the
first approximation, and therefore

Z = .140 X 25.1 = 3.51

= $313.

= .0334.

also has the same value as in the first approximation; but because the

value of p has changed we must recompute

_ Eo(p)| _ |.0834 — .0246| _

O(E1) 0217

Above Z = 3.51 in Chart II we read .167 for D, = .4 and .150 for

D, = .6. Interpolating for D,. = .41 we obtain

h = .166

41, 

oo

and compute

n* = .166 X 25.1? = 105.

If the sampling plan (n = 99, p. = .0358) were to be applied to all

future lots, then the best sampling plan to apply to the present lot would be
(n = 105, p. = .0334).
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86.4.8 The Third Artificial Problem

Average Cost under the Second Approximation. We next compute

the average total cost per accepted lot which will result from applying
this revised plan (n = 105, p. = .0334) to all future lots.
 

 

 

- 000470
o(i) = .0217 J000470 + Won x 240 ~ 0178:

0334 — .0246 |
ve = 0178 = 1.49;

P(A, < .0334) Py(a@ < +.49) = 1 — .3121 = .6879;
Pi.(+.49) = .3538;
EP.(£1) = (.0246  .6879) — (.0178 & .3538) = .0106;

Average cost per accepted lot

_ $105 + ($.092 X 105) + ($9375 X .0106)
.6879

Third Approximation to Optimal Sample Size. The new break-even
value 1s

 = $311.

$311

 

Po = $0375 7 .0332,

leading to

D. = 0882—oes — 40.

The value of Z is again unchanged at 3.51, and from Chart II we read

h = .167

leading to

n* = 167 XK 25.1? = 105.

86.4.4 The Exact Solution of the Real Problem

Because the third artificial problem has yielded the same sample
size n* = 105 which we obtained from the second artificial problem, we

know that this is the true optimal samplesize for the Normalized version

of the real problem; and because the p, = .0332 of the third problem is so

close to the p, = .0334 of the second problem wecan also feel sure that

for all practical purposes p, = .0332 is the optimal critical value for the

Normalized version of the real problem. All that remains is to see

whetherthe use of the Normal approximation hasresulted in any material
error.

To do this we first compute the ezact distribution of £; for n = 105
by the method of Section 36.3.1 and find that p. = .0332 corresponds to ©

an acceptance number c = 3. Wethen use the exact distribution of #,
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to compute average cost per accepted lot with values of p, corresponding
to acceptance numbers 2, 3, and 4, find that the cost is higher for c = 2
and 4 than it is for c = 3, and thus prove that c = 8 is in fact optimal

given n = 105 and that the plan (n = 105, c = 3) leads to an exact

average cost of $295.56 per expected lot. We then repeat this procedure

for n = 104 and 106,find that c = 3 is optimal for these sample sizes as
well as for n = 105, and show that when used with c = 3 they result in

average costs per accepted lot which are respectively $.01 and $.02 higher

than the $295.56 which is obtained with n = 105.
Thus in this particular example the Normal approximation led us to

the exact optimal size; but what is much more important is the evidence
just given to show that the curve of total cost against sample size ts so flat in

the neighborhood of the true optimal sample size that moderate errors in

sample size will occasion no appreciable excess cost.

Wemustalso observe, however, that the Normal approximation does

not give a very good approximation to the actual cost which will result

from the use of any given sampling plan. Under the optimal plan
(n = 105, p. = .0332) the Normal approximation leads to virtually the

same $311 per accepted lot that we computed in Section 36.4.3 for the

plan (n = 105, p. = .0334), and this cost differs materially from the

$295.56 obtained by use of the exact distribution of Hy. The general

conclusion to be reached from this and many similar examples is of

exactly the same nature as the corresponding conclusion in Section 35.5:

When the Normal approximation leads to a nonzero sample size, we

can usually feel sure that for all practical purposes this is the best
nonzero sample size; the only real danger with the Normal approxi-
mation is (1) that it may tell us to sample when weshould not sample

at all and (2) that it may tell us not to sample when we should take

a sample of substantial size.

As we saw in Section 35.5, it is easy to guard against the first danger

because we have only to compute a single exact expected cost; in our

example we have already seen that the $295.56 exact cost of (n = 105,
~- = .0332) is less than the $336 cost of accepting all lots. It is only

when the Normal approximation tells us not to sample that we are forced

to make fairly heavy computations in order to sketch out the general

nature of the curve showing exact average cost as a function of n.

36.5 Opportunity Loss

To evaluate opportunity loss in problems of the kind we are now

studying we must express it in exactly the same way that we express cost,

as an average per unit of yield. It is extremely difficult to compute a

conditional loss of this sort, since to specify the “‘condition’’ we must
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specify the value which 6 will have on each of an infinitely long sequence

of runs; butit is easy to compute the expected loss per unit of yield by first
computing expected cost per unit of yield under certainty.

36.5.1 Average Cost per Accepted Lot under Certainty

In our particular example, it is obvious without proof that if we were
to be given free perfect information on the true value of 6 just after the
present and all future runs were made, we would accept anylot if the p of

the run on which it was made was equalto or less than somecritical value

P., reject if it was greater than p,; the rule is identical to the rule under
uncertainty except that #, is replaced by %. Again, exactly the same
logic which led to the formula at the end of Section 36.3.4 for average cost
under a sampling plan leads to the formula for the

 

$105 + $9375 E7:,(p)
Average cost per accepted lot = =

5 P P P(p < pe)
 

 

of using an arbitrarily chosen p. undercertainty.

The optimal value for ». under certainty can be found by successive

approximations in a way which resembles the way in which we found the

optimal p, under uncertainty but is simpler because we do not have to

determine an optimal n at the same time.
First Approximation. We start as in Section 36.4.1 by assuming

that all future lots will be accepted without sampling, leading to a cost of

$336 per future lot and a break-even value p, = $3836/$9375 =. .0358 for

the present lot. Because there is no sample size to compute, this com-

pletes the first-approximation decision plan.

Second Approximation. We start by computing the average cost

per accepted lot which will result from applying the plan (p, = .0358) to

all future lots. Taking our data from Table 36.1 we compute

P(p < .0358) = .60 + .20 = .80,
#93585) = (.01 & .60) + (.03 X .20) = .0120.

Substituting these values in the formula for cost under certainty we

obtain

Average cost per accepted lot

_ $105 + ($9375 X_.0120) _ $218
80 = “39 7 8272.

Assuming now that this will be the average cost of future lots, we obtain

as the new break-even value for the present lot

_ $272
Ps ™ $9375

 

= .0290.
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Third Approximation. We find the cost of using the plan (p, =
.0290) on all future lots by computing

P(p < .0290) = .60,
E:°29°(5) = .01 & .60 = .0060,

Average cost per accepted lot

_ $105 + ($9375 & .0060) _ $161
 

60 60 ~ >268.

This result leads to a new break-even value for the present lot

$268 |
Do = $9375 = .0286.

Wenow observe that if we were to compute another approximation
starting with p. = .0286 we would get exactly the same values for
P(@® < p.) and E?’..(f) that we got with p. = .0290 and would thus beled
back to p = .0286. We conclude that under certainty the optimal value

of p- would be, .0286 and the average cost per accepted lot would be $268.

86.5.2 Expected Opportunity Loss per Accepted Lot

Wehavealready seen that the average cost per accepted lot which

results from the use of the optimal plan (n = 105, p, = .0332) under

uncertainty is $296 to the nearest dollar. Subtracting the corresponding

cost under certainty we have for this optimal plan

Expected loss per accepted lot = $296 — $268 = $28.

Unless some other type of decision procedure such as sequential sampling

can be made to give lower cost than the optimal single-sample procedure,

this is the cost of uncertainty per accepted lot.

PROBLEMS

1. The Allied Electromechanical Corporation manufactures electronic computers
and leases them on terms which provide that all maintenance shall be performed by
Allied at no cost to the lessee. Each computer uses a number of type AT-17-GG
vacuum tubes; these tubes are purchased by Allied at a price of $2 each in lots contain-
ing 1000 tubes for actual use (either as original equipment or for replacement) plus

however many tubes are required for sampling inspection.
Failure of any one of these tubes causes malfunctioning of the computer in which

the failure occurs, and on the average it takes 2 hours before an Allied engineer can
arrive on the scene, locate the source of trouble, and replace the tube. The out-of-

pocket cost of such trouble-shooting amounts to about $20, but what is much more
serious is the customer’s dissatisfaction because the computer is useless while the
trouble is being repaired; Allied’s managementfeels that $200 is a conservative esti-
mate of the good-will cost of each failure. Records kept by Allied over the last year
show that there is a good deal of lot-to-lot variability in the mean life of the tubes in
one lot; the distribution is roughly Normal with mean 4500 hours and standard devia-

tion 1500 hours. This standard deviation is so large that Allied believes that it may
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be desirable to scrap the worst lots and sacrifice the purchase price rather than install
the tubes in computers.

Allied has developed a very reliable method of measuring the service life of a
tube without actually putting it in service in a computer; but because the tubes must
remain on test until they fail the test is quite expensive, costing about $10 per tube

tested. The test is really an accelerated test and is not necessarily run until every
tube in the samplehasfailed, but it yields an ‘‘estimate”’ or statistic which has the
same probability distribution as the mean of a sample of tubes used under regular
Service conditions. This distribution is roughly Normal with a mean equal to the
true meanlife of the tubes in the lot from which the sampleis taken and with variance
(1/n)o2(€); Allied’s experiments have shown that o(€) = 4500 hours approximately.

a. Show that a reasonable single-sample decision procedure for Allied’s problem

will consist of a rule telling the inspector to take a sampleof a certain size, compute the
statistic which plays the role of #, and then scrap the lot if # is less than somecritical
value Z,.

b. Using & to denote the true meanlife of the tubes in a lot, show that this rule is

equivalent to a rule calling for the scrapping of the lot if E1(é) is less than somecritical

value &.

c. Show that the prior distribution of #, is Normal with parameters

E(#,) = 4500,
= 1500? Ve225o(H#i)

=

1500\+ (1/n)45002 ~= 1500 925 +2025/n’

 

 

and thatif

_ & — 4500
ve o(Fy)

then

©(B,) = 4500 Py(& > ue) + (#1) Py(uc).

d. Show that under any given sampling plan (n,é) the average cost per lot pur-

chased will be the sum of

Cost of purchase = $2 (1000 + 7),

Cost of inspection = $10 n,
Cost of replacement = $220 X 1000 P(B, > &.).

{

e. Show that the average number of tube-hours of service obtained from one pur-

chased lot will be

Hours of service = 1000 KF(Ey).

f. Using these results, show that the average cost per tube-hour of service will be

$12 n + $2000 + $220,000 P(f, > Eo)

1000 EP.>(Bs)
H = 

g. Show that if tube-hours of service obtained from all future lots cost $H each
on the average, then the decision concerning the present lot is an ordinary two-action

problem with linear costs:

Acceptance: $220,000
Rejection: $1000 Hé

Sampling: $12 n

What has happened to the purchase cost and why?
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h. Show that for the present-lot problem defined in (g)

_ $220
oH’
k, = $1000 H,

k, = $12.

1. The calculations leading to the determination of the true optimal plan for the
real problem are summarized in Table 36.6. Starting from the result. H = $.04025
of the first approximation, verify all the entries in the line describing the second

approximation.

 

 

Table 36.6

Approximation Plan Cost per tube-hour
number

0 Accept all lots $.04933
1 n = 98, & = 4460 04025
2 n = 78, t = 5466 03673
3 n = 61, & = 5990 .03564
4 n = 55, & = 6173 03551
5 n = 55, & = 6195 .03551

 

2. In the problem discussed in Section 24.1.2, assume that the distribution of j
given in Table 24.2 can be treated as stationary, that the cost of inspecting one piece
is $.03, and that each production run will consist of 500 pieces in addition to any
pieces manufactured for inspection before the run is begun.

a. Show that in this problem the $.45 direct cost of manufacturing a good piece
is irrelevant, so that in defining the costs to be minimized this cost may always be
excluded.

b. Show that under any given sampling plan (n,p-,), the average cost per production
run (exclusive of the direct cost of good pieces) will be the sum of

Cost of sampling = $.03 n + $.297n Eo(),
Cost of acceptance = $.29 X 500 E?*,(#), _
Cost of rejection = [$35.00 + ($.29 X 500 X .1)] P(E: > p.).

c. Show that the average number of good pieces obtained from one production run
will be

n[{l — Eo(p)] + 500[P(#1 < p.) — E?*,(#1)] + 500 X .9 P(E, > p.).

d. Using these results and substituting the numerical value of Eo(#) show that

the average cost per good piece will be (exclusive of the actual manufacturing cost of
the good piece)

_ $.1141 n + $145 E*,(#,) + $49.5 PB, > p.)
G .71n + 500[1 — .1 P(E: > p.) — E*,(#:)]

e. Show that if an arbitrarily specified plan which yields an average cost of $G4
per good piece is to be applied to all future runs, then the decision concerning the

present run is an ordinary two-action problem with linear costs:

Acceptance: $(.29 + G@) 500

Rejection: $35 + $(.29 + G) 500 X .1

Sampling: $.03 n + $.29 n Eo(p) — $n (1 — Eo(p)IG
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Discuss the reason for the difference between the cost of sampling in this present-run
problem and the cost of sampling per production run.

f. Again substituting the numerical value of Eo(p) show that for the present-run

decision

_ $49.50 + $50.00G _ .099 + .14
Po “$500 (29 +G) ss .29 + @’
k, = $500 (.29 + @),
ke = $(.1141 — .71@).

 

g. Show that if all runs are rejected (readjusted) without sampling, the average

cost per good piece will be $.1100 (exclusive of the direct manufacturing cost of the

good pieces).
h. Starting from the assumption that all future lots will be rejected without

sampling, use the Normal approximation to show that a first approximation to the
optimal plan is (n = 32, p. = .275) and that underthis plan cost as computed by the
Normal approximation will average $.1028 per good piece.

7. Show that the second approximation to the optimalplan is (n = 30, p. = .278)
and that under this plan cost as computed by the Normal approximation will average

$.1028 per good piece.
Exact calculations show that when n = 30, the critical value p. corresponds to

an acceptance number c = 7. The exact costs per good piece under plans in the

neighborhood of (n = 30, c = 7) are shown in Table 36.7, where it appears that

(n = 30, c = 7) is in fact the exact optimal plan. |

Table 36.7
Exact Cost per Good Piece
 

 

 

n

c

29 30 31

6 .10175 .10191 . 10212
7  .10165 . 10159 .10161
8 .10250 . 10216 .10191
 



CHAPTER 37

Many-action Problems with Proportional Losses;

General-purpose Estimation

In Chapters 34 and 35 we studied the computation of expected loss and
the determination of optimal sample size in the very importantclass of
business problems in which a choice must be made between just two

possible terminal acts and the conditional cost of either act is a linear func-

tion of the basic random variable. In the present chapter we shall study

another very important class of problems, in which:

1. The terminal act can be described by a number which may have
any value within a certain interval, e.g. quantity stocked, size of
scrap allowance, amount of a certain reagent used in a chemical

process.
2. The conditional loss is proportional to the difference between

the value of the basic random variable and the number which

describes the terminalact.

37.1 Basic Assumptions

As an example of a many-action problem with proportional losses,

suppose as we did so often in Parts One and Twoof this course that an

item is stocked periodically and spoils if it is not sold before the end of the

period in which it is stocked. If stock exceeds demand, there will be a
loss proportional to the size of the overage; if demand exceeds stock, there

will be a loss proportional to the size of the underage. Suppose further

that there is a known population of potential customersof size

N: total number of potential customers in the population

and that it is possible to sample this population and determine more or

less accurately how many units will be demanded by each person drawn

into the sample.
In our earlier discussions of problems of this type we have taken

total demand as the basic random variable, but this variable is very
awkward when sampling enters the picture and therefore we shall now

take as our basic random variable

£: the mean demand per potential customer.
574
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Evenif a 100 per cent sample is taken, the mean yz of the quantities which

the customers say they will buy may not be equal to the mean é of the

quantities which they will actually buy when the merchandise is really

offered for sale. The difference 6 = un — £ is the bias of the sampling

process, while the difference between an individual observation xz and the

mean pu of the (potential) 100 per cent sample is the pure sampling errore

of the observation.

As we did in Chapters 34 and 35, we shall assume throughout the

present chapter that

~

1. The individual pure sampling errors é are independent except

possibly for the effect of a finite population, and their variance

o2(é) is known.

2. The mean é can be treated as Normally distributed.

. The prior distribution of £ is Normal and independentofé.

4. The cost of sampling is a linear function of the sample size,

K,+ k,n.

w
w

In deriving a formula for total expected loss we shall allow both for

possible uncertainty about bias and for possible finiteness of the popula-

tion just as we did in Chapter 34; our formula will provide for uncertainty

about bias on the assumption that the distribution of 6 is Normal, and it

will hold whetheror not it is necessary to make a finite-population correc-

tion in computing o7(€).
In discussing optimal sample size, on the other hand, our treatment

will differ somewhat from our treatment of the two-action problem in

Chapter 35. Our real purpose in studying optimal sample size is not to

train statisticians who will actually compute sample sizes but to give the

student of business some understanding of the general way in which

optimal sample size depends on the various circumstances or ‘‘param-

eters’’ of a practical decision problem. In problems of the kind we are

now studying it is possible to obtain clear and simple results concerning

optimal sample size only if we assumeezther (1) that the finite-population

correction is negligible or (2) that there is no uncertainty about bias. In

Chapter 35 we madethefirst of these two assumptions and thus obtained

results which gave some understanding of the way in which uncertainty

about bias affects optimal sample size. In the present chapter we shall

make the second assumption in order to show the very peculiar way in

which finiteness of the population may affect optimal samplesize.

37.2. The Optimal Terminal Act and Its Expected Loss

Whetheror not a sample is taken, the terminal decision in our prob-

lem will be made under a Normal probability distribution: as we said in

the previous section, we are assuming that the prior distribution is
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Normal and that the sampling distribution is Normal with known
variance, and this means that the posterior distribution will be Normalif
a sample is taken. We have already discussed the methods by which the

optimal terminal act (stock level) can be selected and its expected loss

evaluated when the conditional losses are of the type we are now discuss-
ing and the probability distribution is Normal (Chapter 18); we shall

review the results here merely in order to reexpress them in terms of the

mean demand £ rather than the total demand 2 which we used as the
basic random variable in this earlier discussion. Because the formulas

which we shall review apply under any Normal distribution, we shall

write E(£) and o(£) without subscripts to indicate whether they refer to a

‘‘prior’’ or “ posterior’? assessment of the distribution.

87.2.1 Description of the Terminal Act and the Conditional Losses

In our previous analyses of problems of this general type we have
always described the terminal act by the value of Q, the total quantity
stocked. This was the natural and convenient way to proceed when we

were using the total demand 2 as the basic random variable of the prob-

lem, but now that we are using the mean demand per customer é as the
basic random variable it will be more convenient to describe the terminal

act by

q = Q/N: quantity stocked per customer.

For the same reason weshall no longer describe the conditional losses

by the constants k, and k, which measure the loss for each unit by which
total stock is over or under total demand. Instead, we shall describe

them by new constants which measure the loss for each unit by which
stock per customer is over or under demand per customer, defining

Ko: loss for each unit by which the act q is over the value&,

ku: loss for each unit by which the act q is under the value &.

Since z = NéEand Q = Ng,the difference between Q and z will be N times

the difference between g and & and therefore a unit difference between ¢

and £ will cause N times the loss caused by aunit difference between Q

and z. This means that in inventory problems of this sort we are using

as an example,

ko = Nk,, kK, = Nky.

Suppose, for example, that k, = $3 and that there are N = 1000

potential customers so that x. as given by this formula has the value

$3000. If we stock Q = 40 units, this amounts to gq = .040 unit per
customer; andif there is actually a demand for a total of 30 units, this

amounts to & = .030 unit per customer. The overage per customer is

thus .010 unit, and if we multiply this by x. = $3000 weget the same $30
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loss that we would have got by multiplying the total overage of 10 units

by k, = $3.

37.2.2 The Optimal Terminal Act and Its Expected Loss

Formulas for the optimal terminal act and for its expected loss can

be taken directly from the discussion in Sections 18.2.2 and 18.2.3.
Although the example which was used to illustrate that discussion

involved an act called Q and a basic random variable called 2, the argu-
mentitself in no way dependedonthis particularillustration; it depended
only on the facts (1) that the conditional losses were proportional to the

difference between the act and the value of the basic random variable
and (2) that the basic random variable had been assigned a Normal
probability distribution. Even if our present problem did not involve

inventories at all, we would be entitled to use those formulas provided
that these two essential conditions were met; all that we have to do is to

substitute for the symbols there used the corresponding symbols of the
new problem. In our present problem the substitution is g* for Q*,

E for 2, ko for ko, and xy for ky.
Proceeding in this way wefirst find from Section 18.2.2 that if we use

q* to denote the best quantity to stock per customer and

q* — E(é)
o(£)

to denote the corresponding value of the unit random variable @, then q*

and u* must be values such that

u* =

 

 P(E < q*) = Py(@ < u*) = + - Definition of q* and u*

 

Wefind the best amount to stock per customer by first using Table III

to find the value w* which satisfies this condition and then computing

 

q* = K(é) + u*o(E)

 

The expected loss of the optimal terminal act q* under the given prob-

ability distribution is then found in Section 18.2.3:

 

Expected loss of optimal terminal act = (ku + #o) Py(u*)o(£)

 

Before proceeding further the student should work through Problem

1 at the end of this chapter to makesure that he understands the meaning

and use of these formulas.
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37.3. Total Expected Loss of a Single-sample Decision Procedure

37.3.1 Prior Expected Loss of Optimal Terminal Action
after Sampling

As we havealready said, the formulas given above can be used either

(1) to select the optimal immediate terminal act and to compute its

expected loss under the prior distribution or (2) to select the terminal act

whichis optimal after a sample has actually been taken and to compute its

expected loss under the posterior distribution which has resulted from
that sample. In the former case we substitute the values of Eo(£) and
oo(€) for E(&) and o(£) in the formulas; in the latter case we substitute

the values of Ei(£) and o;(&).

When we set out to evaluate a single-sample decision procedure,
however, we needstill a different expected terminal loss: we need the

prior expected value of the loss due to optimal terminal action in thelight

of an as yet unknown sample outcome. In the two-action problems which

we studied in Chapters 33 through 36, both the act and its posterior

expected loss depended on the sample outcome; and this meant that in

order to obtain the prior expected value of the loss which would be
incurred through optimal action after sampling we had to compute the

posterior expected loss for every possible sample outcome, multiply each of

these conditional terminal losses by the prior probability of the outcome
in question, and add the products.

In our present problem the task is fortunately very much simpler.

Although the optimal act after sampling depends on both E,(f) and
a1(£), the posterior expected loss depends only on o1(&) and the value of

o1(&) is known before the sample is taken. As we saw in Section 34.5.2, it is

computed by simply substituting the known variance of the sample mean

 

o%(8) = o%(B) + +o) —™
in the formula

TLr=Iotds

to obtain

11 j
oi(é) oo(E) sg28) + (1/n)o2(2(N — n)/(N — 1)

87.3.2 Total Expected Loss

Wenow turn to the problem of evaluating the total expected loss of

a decision to sample and then act, i.e. the sum of the prior expected value

of the posterior terminal loss plus the cost (loss) of sampling. As we

have already said, we shall assume that the cost of sampling will be com-
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posed of two parts, a fixed element which will be incurred if any sampleis

taken at all and a variable part which is proportional to the size of the

sample:

Cost of sampling = K, + k,n.

Adding this to the expected terminal loss derived in the previous section

we have

 

Total expected loss = K, + kan + (ku + ko) Py(u*)oi(&)

 

To find total expected loss for any given sample size n wefirst compute

o1(£) for this value of n by means of the formula at the end of Section

37.3.1 and we then substitute the values of n and o;(&) in the formula for

the total expected loss.

37.4 Behavior of Total Loss As n Increases

The optimal sample size in any particular problem can always be
found by evaluating total expected loss for a sufficiently large numberof

different n’s and selecting the n* which minimizes the loss. Since the
formula for the loss allows for both uncertainty about bias and finiteness

of the population, the n* obtained in this way would be a true optimum.

Weshall now proceed, however, to make a systematic investigation of
the way in which the data of the problem affect the optimal sample size,

and in order to do this

Weshall assume in the remainder of this chapter that there is no
uncertainty about bias: o(8) = 0.t

As we did in Section 35.2, we shall begin our investigation by examin-

ing the general economiceffect of increasing n, although in the present

case it will be more convenient to look at terminal loss and total loss

rather than at the value of sample information and the net gain from

- sampling. Again as in Section 35.2, we shall proceed by first assum-
ing that there is no fixed element in sampling cost, A, = 0, and then

showing that it is easy to modify our conclusions to allow for the effect
of a nonzero K,.

87.4.1 The Essential Parameters and the Sampling Ratio

Once more asin Section 35.2, our task would be hopelessly complexif
we tried to look at the effect of each individual parameter on the behavior

of loss with increasing n and we therefore work instead with the really

+ Known bias is never a problem: cf. Section 31.2.2.
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essential combinations of parameters. As in the two-action problem,

these turn out to be only two in numberin addition to K;,:

 

 

Asx je + ko) Pau")
3

ne) ake Essential parameters when o(8) = 0

B= Noi)

 

It will also be more convenient to work in terms of

 

y the sampling ratio

 

rather than in terms of n itself.

87.4.2 Behavior of Total Loss When K, = 0

In Figure 37.1 all possible pairs of values for A and B are divided
into four groups designated by the numerals I through IV, and in Figure

A

   
Figure 37.1

37.2 the sum of terminal loss plus variable sampling cost k,n is graphed as
a function of n/N for each group.t From the sketches we see that in

region I the best decision is to act without sampling while in regionsII

and III the best decision is to take a complete count or 100 per cent sample;

atts only in region IV that it pays to sample in the ordinary sense of the word.

+ What is actually graphed is the ratio

Terminal loss plus variable sampling cost
Cost of a 100% sample

and the dashed horizontal line represents a ratio of 1.
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87.4.8 Behavior of Total Loss When K, > 0

The effect of a fixed element of sampling cost on Figure 37.2 is

obvious: except for the point at n/N = 0, every point on everycurveis

raised by the same amount K,.t

The implications are also obvious. In Region I, where samplingis

disadvantageous even when K, = OQ, sampling is certain to be still more
disadvantageous when K, > 0. In Regions IJ and III, where a 100 per
cent sample should be taken when K, = 0, a 100 per cent sample will

still be better than any smaller nonzero sample when K, > 0 but this

additional sampling cost may make it better not to sample at all. In
Region IV, where a sample of less than 100 per cent should be taken

‘L
os
s

      
  

0 1 0 4
lY/N "/4

Figure 37.2

when K, = 0, the bottom of the dip in the loss curve will still occur at the

same value of n when K, > 0 and this value of n will still be the best

nonzero sample size, but it may be better not to sample at all than to

incur the cost K,.

37.5 Optimal Sample Size

As in Section 35.3 we shall first show how to determine the optimal

sample size n* when thereis no fixed element in sampling cost and then
show how to check andif necessary modify this sample size to allow for a
nonzero K,.

87.5.1 Optimal Sample Size When K, = 0

Wefirst decide whether we should take no sample at all (n/N = 0),

take a complete count (n/N = 1), or use some value of n/N between 0

and 1. For this purpose we refer to Chart VI, which is the same as

Figure 37.1 except that it is drawn to scale and shows in addition the
optimal value of n/N for certain A, B pairs in region IV.

tIn Section 35.2.6 we saw that the effect of K, on curves of net gain was to
lower every point except the point at n = 0 by the same amount.
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If Chart VI shows that a sample should be taken rather than a com-
plete count or no sampleatall, then the value of n/N which minimizes the
sum of action cost plus variable sampling cost is the smaller} of the two
values which satisfy the equation

n A n— =~“ Blj — =).
N Wi -—n/N ( N

A first approximation to the optimum value of n/N can be obtained by
interpolation between the n/N lines on the chart. For values of n/N
above .3, say, the value obtained in this way will have a reasonably small
relative error and can be taken as the solution of the problem. For
lower values of n/N a better approximate solution is given by

 

n* A—-B
N 1-—B-—A/3
  

 

The value given by this formula is always too low, but it is more than
accurate enough for most practical purposes. When A < .3 and B = 0,
the error is less than 2 per cent of the true optimum; when A < .3 and
B < .1 the error is less than 3 per cent.{

87.5.2 Optimal Sample Size When K, > 0

Whenthere is a fixed element in sampling cost in a problem of the

kind we are now studying, we handle it in exactly the same way that we
handle it in a two-action problem (Section 35.3.2). Since the effect of

K,is toraise every point on a total-loss curve except the point atn/N = 0

by the same amount, we know:

1. If it does not pay to sample when K, = 0, it will not pay when
Kk, > 0;

2. If it does pay to sample when K, = 0, then the optimal sample
size for K, = 0 is the best nonzero samplesize for K, > 0 but this
size must be checked to see if it is still better than n/N = 0.

87.5.8 Example

An item costs $1, sells for $3, and spoils if it is not sold on the day on

which it is stocked. The retailer has 1000 potential customers; he

+ The two values of n/N whichsatisfy this equation correspond to the two points
wherethe total-loss curve for region IV is flat; the larger value gives maximum total
loss.

{If more accurate values are required, they may be obtained by successive
approximations. Substitute the value given by the approximate formula in theright
side of the exact formula and thus compute a newtrial value. Substitute this value
in the right side to get a new trial value, and so forth. The problem is solved when
twosuccessive ‘trial values”’ are equal to the desired number of decimal places.
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“expects” that they will demand 5 units each on the average but he
assigns a ‘‘standard error” of 2 units to this forecast. The population
can be sampled at a cost of $1.50 per individual in the sample plus a
fixed cost of $100 for administration, analysis, etc. The retailer is con-
vinced that the sampling process is unbiased and knowsthat the standard
deviation of the population of individual demandsjis 4 units. We thus
have

 

N = 1000, ko = Nk, = N$1 = $1000,

Ko(é) = 5, k, = Nk, = N($3 — $1) = $2000,

oo(t) = 2, k, = $1.50,

o(é) = 4, K, = $100.

Wefirst compute the ‘‘critical fractile’”’

Ku $2000 — 67

ky +x $2000 + $1000 ~~

From Table III wefind that

Py(a@ > .44) = .33, 1.e. Py(a@ < 44) = .67,

so that

u* = 44;

and from Table II we then find that

Py(u*) = .362.

We then compute

 

1 4 & $3000 * .362\2
3 — =

A 10002 ( 2X $1.50 ) 002097,

A = ~/.002097 = .1280,
42

B= 7000 ~ -0040.
We consult Chart VI, observe that a sample shouldbe taken and that the
optimum sampling ratio will be between .10 and .15, and then obtain a
better value for n/N by using the approximation formula

n* |  .1280 — .0040

W ~ T—.0040 — 0407 ~ “120-
  

From this we compute the actual sample size

n* = 130N = .130 X 1000 = 130.

¢t Since we are assuming no measurement or selection bias, the population ot

individual true demandsis identical to the population of potential sample observa-
tions 2.
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So far we know only that n* = 180 is the best sample size other than
0 and that the saving in terminal loss to be expected from such a sample
will more than pay for the variable sampling cost k.n*. We must check
to see whether it will also cover the fixed cost K, = $100, and to do this
we must actually evaluate total expected loss with n = 130 and with
n=0. To find total loss with n = 0 we simply substitute oo(£) = 2 in
the formula for expected terminal loss:

Expected terminal loss = ($2000 + $1000) x .362 * 2 = $2172.

To find the expected loss of terminal action after taking a sample of
= 130 wefirst compute

 

_ _ i 870\ _o?(£) 07(8) + =* or) 3N= =0+ (a0 x 42 X 500) = .1072,

1 1 1
ab)+oH = 53 + i073 = 9.98,

1
a($) = /9.58

We then have

= .323.

 

Expected terminal loss = $3000 X .362 X .323 = $351,

Cost of sampling = $100 + ($1.50 & 130) = $295,

Total expected loss = $351 + $295 = $646.-

This total is well below the loss of immediate terminal action and the

sample should be taken. An expenditure of $295 on sampling can be

expected to reduce terminal loss by $2172 — $351 = $1821 for a net gain
of $1526.

37.6 The Effect of Uncertainty Concerning o(é)

In deriving the procedure for determining optimal sample size which

has just been described, we assumed that the standard deviation of the

pure sampling error é of any individual sample observation is known with

certainty before the sample is taken. We shall now see, however, that
under certain conditions we can treat the expected value of o(é) as if it
were the true value andstill be sure that the resulting sample size will be

either exactly or virtually optimal provided only that the size of this

sample is such that o(é) will be known with (virtual) certainty after the
sample has been taken.

The conditions under whichit is legitimate to disregard uncertainty

about o(é€) can easily be discovered by looking at the procedure by which
we could always take full and exact account of this uncertainty in deter-

mining optimal sample size. Uncertainty about o(é) affects the determin-

ation of the optimal n because for any given n the value of o1(£) depends
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on o(é) and therefore the

Total expected loss = K, + kin + (ku + 0) Py(u*)ox(£)

depends on o(é). This difficulty can always be resolved, however, by the
standard device of assigning a probability distribution to o(é). For any
given n, theunconditional total loss can then be found by evaluating the

conditional total loss for every possible value of o(é) and taking a weighted
average of these conditional losses using the probabilities of the cor-

responding values of o(é) as the weights; and the true optimal n can be
found by computingtotal loss in this way for a sufficiently large number

of n’s, graphing loss as a function of n, and looking for the n which cor-

responds to the lowest point on the loss curve.

Suppose now that we try to short-cut the computation of the total

loss for given n bysimply inserting the expected or average value of

o(é) in the formula for total loss instead of inserting every possible value

of o(€) and then averaging the resulting losses. Jf this short-cut method

of computing total loss would give exact or nearly exact results for values

of n in the neighborhood of the true optimal n, then a graph of total loss
as computed by the short-cut method would have its lowest point at or

near the true optimal n. Selecting a sample size by treating the expected

value of o(é) as if it were the true value and then using Chart VI or the

formula in Section 37.5.1 is nothing but a convenient wayof finding the n

which correspondsto the lowest point on a graph of total loss as computed

by the short-cut method; andit follows that a sample size determined by

this procedure will be exactly or virtually optimal if the short-cut com-
putation of total loss gives exactly or virtually correct results in the
neighborhood of the true optimal n.

Weshall therefore now examine the conditions under which the
short-cut method of computing total loss for given n gives exact or nearly

exact results, and to do so we start by replacing o1(£) in the formula for

total loss by its definition. When o(@) = 0, as we assume throughout
our discussion of optimal sample size in this chapter, the definition of
o1(£) given in Section 37.3.1 above can be written in the form

a. =
108) = 8 [ez (5)/a%(6)

where

(2) = o(8)>

The formula for the total expected loss can then be written

 

 

 

 

 Total expected loss = C + Do(@) JTato75Tak(6’
0

where C and Dare constants which do not depend on o(é).
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87.6.1 Zero Prior Information on &

Whenprior information on é is negligible and the person responsible
for the decision sets oo(£) = © (ef. Section 30.3.3), the square-root factor

in the formula for the total loss has the value 1 regardless of the value of
a(é) and the formula reduces to

Total expected loss = C + Do(@).

This is a linear function of o(€) and therefore its exact expected value can

be obtained by simply inserting the expected value of o(é) in the formula.

It follows immediately that

If prior information on £ is negligible, then regardless of the extent |
of our uncertainty about the true value of «(€) we can obtain the ezacl
optimal sample size by treating the expected value of o(é) as if it
were the true value.

87.6.2 Nonzero Prior Information on &

When the prior information is not negligible, i.e. when oo(&) is not
infinite, the value of the square-root factor in the formula for the total

expected loss depends ona(é). This means that the formula as a whole is

not a linear function of o(é) and therefore that the loss obtained by insert-

ing the expected valueof o(é) in the formula will not be exactly equal to

the weighted average of the losses obtained by inserting every possible

value of o(é).

Suppose, however, that the values of oo(£) and of the true optimal

n* are such that the ratio

o7(€) _ o7(é) N —n*

o3(—) a§(E) n*(N — 1)

is very small for all values of o(é) which seem at all likely. Then for any

n in the neighborhood of the true n* the square-root factor will have a

value very close to 1 for all likely values of o(é); and this means that if

we did compute the conditionalloss for all possible values of o(é) it would
be only the factor o(€) outside the square-root sign which would make

these values differ appreciably one from the other. In other words, the

total loss for any 7 in the neighborhood of the true n* is virtually a linear

function of o(€), and therefore we would get an almost exact value for the

total loss by simply inserting the expected value of o(é) in the formula.
It follows that a graph of total loss computed by this short-cut method

would haveits lowest point at an 7 very close to the true n*, andit is this

nearly optimal n which we will obtain if we apply the method of Section

37.5.1 treating the expected value of o(é) as if it were the true value.
In a real problem weof course do not know in advance whether the

true n* is large enough to make this procedure valid, but its validity ‘is
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easy to checkafter an approximately optimal n has. been tentatively

determined by its use. To make this check wefirst choose two extreme

values of «(€), one so small that we arevirtually sure that it is below the
true value and one so large that we are virtually sure that it is above the
true value, and then evaluate the square-root factor for these two
extreme values. If the ratco of the smaller to the larger value of the square

root 1s much closer to 1 than the ratio of the smaller to the larger value of

a(é) itself, we may feel sure that our sample size ts very close to the true

optimal size.

Example. In the example previously analyzed, suppose that the

merchant had not said that he knew the value of o(é) to be 4 but had said
that this was the value he ‘“‘expected”’ «(€) to have; all that he felt really

sure of was that o(é) was between 0 and 8. The optimal samplesize for

a(é) known to have the value 4 has already been calculated as n = 130;
we now proceed to check the validity of this figure in the face of the

actual uncertainty concerning o(é). We first compute o2(é) for n = 130

and for o(é) = 0 anda(é) = 8:

a(é) = 0: o2(€) = 0; |

8? 870 3,2,
E = . 2(z = So ClOa(eé) 8: o%(€) 130 999 428.

Remembering that o2(£) = 4, we then compute thesquare-root factor for

these two valuesof o(é):

\ _ on. a ee
a(é) = 0: vi + 0/4 > 1.00;.

“\ _ o. 1 _ _
ao(é) = 8: Viza498/4 = V .903 = .95.

The square-root factor varies only in the ratio .95 to 1.00 while o(é)

itself varies in the ratio 0 to 8. We mayfeel absolutely sure that the

excess loss which the merchant can expect to suffer by using n = 130

instead of a truly optimal sample is totally negligible compared with the

cost of the computations which would be required to determine this

truly optimal sample.

37.7 General-purpose Estimation

In a great manysituations abusinessman wantsadditional informa-

tion on the value of someunknown quantity, not because he is on the
point of choosing among a numberof definite, well-defined terminal acts
whose costs depend on this quantity, but simply to guide his thinking in

some general problem area. Togive a single example, a soap manu-

facturer whois thinking about developing and marketing a new detergent

designed especially for use in automatic dishwashers may want to get
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some idea of the number of homes equipped with automatic dishwashers
long before his thinking reaches the stage where he is ready even to
specify his possible terminal acts, let alone to say exactly how the profit-
ability of each act depends on the numberin question.

Until the businessman has completely specified his terminal acts and
their conditional costs, he will think primarily if not exclusively in terms
of an estimate of the quantity in which heis interested rather than in

terms of a probability distribution of this quantity. He will make rough

calculations in which he treats the estimated number of homes equipped
with dishwashers as if this estimate were a true value even though he
knowsthat the estimate is almost certainly in error by some amount and

that before making any final decision he may haveto take formal account

of his uncertainty about the true number. In such situations there is

obviously no ‘‘objective’’ way of computing the amount by which a

sample of any given size can be expected to reduce terminal loss and

therefore there is no ‘‘objective”’ way of assigning a value to the informa-

tion which will be obtained from the sample. The cost of samplingis

still perfectly real, however, and a reasonable man will still want to
approach the problem of sample size bythinking about value received for

money spent.

In such situations the businessmanwill usually feel that the larger the

error in the estimate, the greater the harm this error can be ‘‘expected”’

to do; and often (although by no means always) he will be even more
specific and say that he ‘‘expects”’ the harm to be roughly proportional

to the size of the error, at least up to a certain point. He may, for
example, feel that he would be willing te spend $1000 to learn the true

number of homes equipped with dishwashers if he knew that his present
best estimate of that number wasin error by +50,000 but that he would

not be willing to spend more than $500 to learn the true numberif he

were sure that his present estimate wasin error by only + 25,000.
In those situations where the businessman does feel that the loss

which will result from an erroneous estimate can be ‘‘expected’’ to be
roughly proportional to the size of the error, the amount which it is

reasonable for him to spend on sampling can be determined by the
methods developed in this chapter. The businessman has an immediate

decision problem of choosing one estimate amongall possible estimates of
an unknown quantity. Each possible estimate is a possible terminalact;

and since the businessman has said that the conditional loss of this act
will be proportional to the difference between the act and the true valueof

the basic random variable, he has a many-action problem with proportional

losses. Provided that the problem also satisfies the assumptions of this

chapter concerning the distributions of the basic random variable and the

statistic which summarizes the sample, the optimal sample size can be

found by the method described in Section 37.5.° ©
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Although the two loss constants x, and x, are not necessarily equal in

a problem of general-purpose estimation, they will in fact be equal in the
great majority of practical cases—the businessman will feel that over-

estimating the true value by a certain amount is neither more norless

serious than underestimating it by the same amount. Whenthisis true,

the optimal terminal act or ‘‘best estimate” will be the median of the
posterior distribution of the quantity being estimated. If this posterior
distribution is Normal, its median will be equal to its mean; andif prior
information 1s negligible in comparison with the information in the sam-

ple, then the best estimate will be simply the observed value # of the
sample mean.

PROBLEMS

1. A product costs $3.015, sells for $10, and spoils if it is not sold on the day on
which it is stocked. There are 2000 individuals who are potential customers for the

product; a Normal distribution with parameters E(~) = 10, o(€) = 2 is assigned to
the average number of units which will be demanded per person in the population,
i.e. to the mean of the 2000 individual demands. Show that:

a. The best terminal act is g* = 11.04 units per customer.
b. The best actuat numberof units to stock is 22,080.

c. The expected loss of this act is $13,940.
2. In the situation of Chapter 23, Problem 10, suppose that Mr. Smith believes

that the most probable value for the proportion of potential customers who will
actually order a skillet is .06 but thinks that there is only an even chance that this

“best guess’? is within +.02 of the true proportion. Mr. Smith is convinced that a
person would respond to a sample mailing if and only if he would respond to a regular
Mailing.

a. Assuming that Mr. Smith would accept a Normalprior distribution of $, com-

pute the values of the parameters of this distribution (ef. Section 30.2.3).

b. Compute o(é) for p = .01 to .11 inclusive by steps of .01 (11 valuesin all),

and by taking a weighted average of these conditional values show that the expected
value of o(€) is approximately .231.

c. Find an approximately optimal sample size for Mr. Smith’s problem.
d. Check the validity of your treatmentof o(é) in part c by the method described

in Section 37.6.2.

e. Evaluate the net gain to be expected from taking a sample of the size you

recommend.

f. What is Smith’s expected profit without sampling? If he takes a sample of
optimal size?

g. Suppose that a sample of n = 600 is taken and that r = 36 of these customers

buy. How manyskillets should Smith buy on contract? (Hint: First compute the
best stock as if the 36 orders received from the sample mailing were to befilled with
skillets bought on contract; then correct this answer to take account of the actual
facts of the situation.)

h. Compare your answer to (c) with the answer you would have obtained if you
had roughly estimated the expected value of o(é) by the method of Section 35.5 rather

than by carrying out part b of this problem.



CHAPTER 38

Sequential Decision Procedures

Our discussion of decisions to sample and postpone terminal action has

been based thus far on the assumption that, for one reason or another,
at most one sample will be taken. Given this assumption, the terminal

act. which would be optimal for each possible sample outcome could be

selected by the methods of Part Three of the course and the prior expected
value of the loss which would result from the decision made after sampling
could then be evaluated by simply multiplying the terminal loss cor-
responding to each possible outcome by the probability of that outcome

and adding the products. We now take up the more difficult problem

which arises when the alternatives among which a choice must be made
after a sample has been taken include not only all the possible terminal

acts but also the decision to sample and postpone terminal action again.

When wetry to evaluate the cost or loss of this last decision given any

particular outcome of the original sample we seem to become involved
in an infinite regress, since the new decision to sample can be looked on

as the beginning of a new sequential procedure and weare already unable

to compute the loss of the original procedure on which we embarked
before the original sample was taken. We shall see, however, that the

regress is not really infinite; it has an end, and once we have found the

end the entire problem can be solved by methods with which weare

already familiar.
Statement of an Example. The principles by which we can find an

optimal sequential decision procedure and compute its total expected

cost, profit, or loss will be explained by analysis of the following simple

example. A Bernoulli process has been set up for a production run in

such a way that the process-average fraction defective is not known with

certainty; but if the process is readjusted at extra cost, the process

average can be brought down to a known, low figure. Each defective

produced by the process entails a certain cost, and the problem is to

decide whetherto accept the process andrisk a large cost due to defective
product or to reject the process and incur the cost of readjustment. It

is possible to take a sample before makingthe final decision on acceptance

or rejection, but sampling is quite expensive, costing $6 per item inspected.

Since it is possible at no extra cost per item to manufacture the sample
590
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pieces one at a time, it seems very likely that it will be more economical to
follow an item-by-item sequential procedure, deciding after each piece has
been inspected whether to reject the process (readjust), accept the
process (proceed with the production run), or make and inspect another
sample piece.

Quite obviously the computations which we shall have ta makein
order to evaluate a sequential decision procedure will be more complex
than the calculations which would be required to evaluate a single-sample
procedure. In order to keep from becoming lost in a maze of figures, we
shall assume that the sampling procedure is knownto be unbiased and we
shall use highly unrealistic values for the cost of rejection and for the

 

  

 

Table 38.1

Prior Distribution; Payoff and Loss Tables

Conditional cost Conditional loss

p Po(p)
Accept Reject Accept Reject

.05 2 $ 100 $1000 $ 0 $900

. 50 4 1000 1000 0 0

.95 1 1900 1000 900 0

1.0

 

probability distribution assigned to # before the sampling starts; but
except for complexity our results will be typical of those which would be

obtained with morerealistic data. The prior distribution of # and the

conditional costs and losses are shown in Table 38.1.

38.1 Decision Procedures as Games against Chance

The sequence of decisions and events which ultimately leads to a
terminal decision under a sequential decision procedure can usefully be

visualized as a series of moves in a game between twoplayers:a ‘‘ Person”’

and ‘‘Chance.” The Person has the first move in the game. In our
present example he has a choice among three possible moves: Accept,

Reject, and Sample (make and inspect one sample piece). If he chooses

Accept or Reject, the gameis over, but if he chooses Sample, the game

goes on and Chance has the next move. Chance has two possible
moves, good and defective—i.e., Chance may ‘‘decide” to make the

sample piece either good or defective. After Chance has moved (after
the sample piece has been inspected), the next moveis again up to the

Person, who again chooses among Accept, Reject, and Sample. As

before, Accept or Reject ends the game while Sample gives another move
to Chance, who then chooses between good and defective.
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The alternation of personal moves and chance moves continues in this

way until the game ends. It is only the Person who can end the game;if
he so desires (and has enough money to pay for the sampling) he can
make the game go on forever. A complete history of any one ‘‘play”’

of such a gameconsists of a list of all the moves actually made by both

players in the order in which they were made. If we use A, R, and S to

denote the three possible personal moves (accept, reject, and sample)
and g and d to denote the two possible chance moves (good and defective),

the history of a particular play of the game might be SgSdfR: the Person

samples twice, observing gd in that order, and then ends the game by
rejecting.

38.1.1 The Game Tree

If a game of this sort is arbitrarily limited to a finite number of

moves—if the Person is obliged either to accept or reject after not more
than a certain number of sample observations have been made—wecan

A\ IS/RF A\ |IS/R A\ |IS/R A\ IS/R A\ IS/R A\ IS/R AN IS/R OAN ISSA
Person

g d g d g d g d Chonce

@

A R A R A\ |S/R A\ |S/P Person

© @

g © C g a Chance

A\ |s/r A\ |$/f Person

@

g d Chance

©

A\ |s/R
Person

Figure 38.1

represent all the possible plays of the game by a diagram like the one in

Figure 38.1. Such a diagram is known as a gametree. The gamestarts

from the bottom of the tree, where the Person may go up the A or &
branch (accept or reject), thus ending the game, or up the S branch

(sample). If he goes up the S branch, he arrives at the position in the

tree marked by the circled 1. Chance then chooses between the g
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branch and the d branch (makes the sample piece good or defective); if

the g branch is chosen (if the sample piece is good), the Person arrives at

the position marked 2 on the tree. The Person then movesagain, andif
he again chooses to sample he arrives at position 3. If Chance’s next
moveis d, the Person arrives at 4; if the Person then decidesto reject, he

goes up the # branch and ends the game at 5: no further branches

emanate from this position. The whole history of this particular play of

the game has been SgSdR.

38.1.2 Limitation of the Game Tree by Expected Terminal Loss

Our primary interest is in games or decision procedures in which

there is no arbitrary limit on the number of moves, i.e. on the numberof
times that the Person can sample and thus go up an S branch on the game

tree. In such cases the complete gametree extendsinfinitely far upward,

but even in this case we can usually show by some very simple reasoning

that there are only finitely many branches which represent ratzonal moves
by the Person. Every possible play of the game ultimately reaches a
point whereit is easy to see that taking an additional sample observation

is irrational.

 

 

 

 

Table 38.2

Posterior Distribution of p Given Sample Outcomegg

Prior Likelihood Joint Posterior

P Pop) P(gg\p) = @? P(99,p) Pi(plgg)

.05 2 .9025 . 18050 .5074

.50 7 . 2500 .17500 .4919

.95 lt .0025 .00025 .0007

1.0 .30575 1.0000

 

Suppose, for example, that after the moves SgS have been made,
putting the Person at position 3 in Figure 38.1, Chance movesg instead of

d and puts the Person at position X rather than position 4. In ordinary
language, the Person has now taken a total of two observations and has

observed the sample outcome gg. Given this information, we know per-

fectly well how to compute the (posterior) expected losses of the two

possible terminal acts even though we do not yet know how to compute

the total expected loss of another decision to sample. Wefirst compute

in Table 38.2 the posterior distribution which it is rational to assign to p

in the light of this sample outcome, taking the prior distribution from

Table 38.1 and computing the likelihood of the sample as gq = q?.{ We

then compute the expected losses of acceptance and rejection in Table

{+ We could equally well have used binomial tables to find likelihoods for the

statistic r =: 2 in a sample of n = 2; cf. Section 25.4.
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38.3, taking the probabilities from Table 38.2 and the conditional losses
from Table 38.1.

The results of Table 38.3 show us at once that if the Person decides
to end the game whenheis in position X, he should end it by accepting
rather than rejecting—the loss of acceptance given the sample gg is only
$.60 whereas the loss of rejection is $456.70. These losses imply more
than this, however. No matter how many observations the Person

takes, he can never reduce his expected terminal loss below 0; and since
he can terminate now for a loss of only $.60 while a single additional
observation will cost him $6, he should obviously accept now and end the
game.

In Figure 38.2 we show a gametree for our example which includes
all personal moves that are not obviously irrational in the sense in which

an S move at X in Figure 38.1 would be obviously irrational. To con-

struct such a tree westart from the bottom, with the Person’s first move,

 

  

 

 

 

Table 38.3
Expected Terminal Losses Given Sample Outcomegg

Loss of acceptance Loss of rejection

P Pi(p)

Conditional Expected Conditional Expected

.05 . 5074 $ 0 $0 $900 $456. 70

.50 .4919 0 0 0 0

.95 .0007 900 . 60 0 0

1.0000 $ .60 $456.70

 

and compute the expected losses (underthe prior distribution) of the two

possible terminal acts either of which will end the game at that point.

These losses, $90 for acceptance and $180 for rejection, are entered at the

tops of the corresponding branchesof the tree. At this point it is already

obvious that zf the game is to be ended at this point, it should be ended

by acceptance; and therefore we baroff the lowest R branch by a double

horizontal line.

It is not clear, however, that immediate acceptance is better than

sampling, since the loss of acceptance is $90 while the cost of an observa-

tion is only $6, and we must therefore construct a second level of the tree.
From the top of the original S branch we draw two branches to represent
the two possible chance moves and we mark the ends of these branches

g and d. Emanating from each of these two positions we then draw
three branches corresponding to the three possible personal moves and

we proceed to compute the expected losses of the two terminal moves A
and F at each of the two positions. At position g we first compute the
posterior distribution of # given the sample outcome g just as in Table
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38.2 except that the likelihood of this outcomeis g rather than g?, and we
then use this posterior distribution as in Table 38.3 to find that the
posterior losses are $8.30 for acceptance and $313.70 for rejection. For

position d, with likelihoods p rather than g, the same procedure gives a
loss of $187.90 for acceptance and $19.80 for rejection.

At both position g and position d we can now baroff the terminal act

with the greater loss, but in neither case can we go on to say that the

better of the two terminalacts is definitely better than taking another

observation at a cost of $6 and consequently we go on to construct

another level of the tree. We now have two pairs of chance moves to

$2.20 $83.90 $4390 $460 $2.20 $83.90 $4390 $4.60

Als # Als (rR A\S /P Als /#

Us Wa An Ve

$.60 $456.70 $2260\_/$45.20 $22.60 $45.20 $305.60 $1.70

A iP Ais /R 4\s [PP S /RP

i, gd ag VV

$8.30 $313.70 $187.90 \_/$19.80

41s /R Als (RP

g d

$90.00 $180.00
A\S /P

Figure 38.2

draw,onepair leading to positions gg and gd, the otherpair to positions dg

and dd—the label on each position showsthe results of all observations

up to that point in the order in which they occurred. At each of these

four positions we now draw the three branches for the three personal
moves and compute the expected losses for the moves A and R. Reading

across Figure 38.2 from left to right the losses calculated at this stage are

$.60, $456.70, $22.60, $45.20, $22.60, $45.20, $305.60, and $1.70.T

T It is no coincidence that the figures $22.60 and $45.20 appear twice. The
posterior distribution and therefore the posterior losses are necessarily identical for
the sample outcomes gd and dg, since in sampling from a Bernoulli process either out-
come canbe represented by the total numberof observations n = 2 and thesufficient
statistic r = 1.
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This time we can actually say that termination is optimal at two of
the four positions and bar off the S branch as well as the branch cor-

responding to the more costly of the two terminal acts. We have

already discussed position gg, and similar reasoning holdsfor position dd.

At positions gd and dg, on the contrary,all that we can do is baroff the
less good of the terminal acts; we must go on to construct still another

level of the tree starting from the S branches at these two positions.
The ensuing loss calculations lead to the figures shown at the very

top of the tree in Figure 38.2, and now wefind that in every single case
one or the other of the two terminal acts has a loss less than the cost of a
single additional observation.t The construction of the tree is complete.

38.2. Backward Induction

So far we have used no methodsof analysis that we have not used in

the earlier chapters of this part of the course—the gametree is simply a

systematic way of laying out the results of our computations. These
methods leave us with a number of unsolved problems, however: we do

not yet know whether sampling or terminal action is better at positions
g, ad, gd, and dg in Figure 38.2. To solve these problems we now introduce

the one really new idea in this chapter, the method of backward induction,

and even this idea is basically very simple:

By starting at the top of the gametree and working back, we can use
the knownlosses at higher levels to determine both the best moves

and the associated losses at lower levels.

In order to illustrate the method without becominglostin all the notation

of Figure 38.2, that part of the tree which branches out from position gd

is reproduced in Figure 38.3.

88.2.1 Evaluation of the Position gd

Wefirst proceed to determine the best move for the Person to take

if he gets into position gd and the total expected loss associated with this

best move.
1. Because we already knowthatif the Person gets into position gdg

he should accept at a loss of $2.20, we can say that $2.20 is the loss of this

position—moreexplicitly it 1s the posterior expected loss of optimal action

given the sample outcome gdg. Similarly $4.60 is the loss of the position

gdd. ‘This wayof looking at the problem is represented by writing $2.20
directly beside the position gdg and $4.60 beside the position gdd in

Figure 38.3.

} Notice that the losses for positions gdg and dgg are identical, as are those for

positions gdd and dgd.
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2. If the Person is already in position gd, at the bottom of Figure

38.3, and decides to sample, these twolosses of $2.20 and $4.60 correspond
to the conditional terminal losses which we discussed in Chapter 33: 7f the

result of the sample which he is about to take is g, his (expected) loss
will be $2.20, while if the result of the sample is d, his loss will be $4.60.

We cantherefore get the expected loss of proceeding optimally after sampling

$2.20 $4.60

       J-£, (Pp) =.517

$22.60

Figure 38.3

in exactly the same way that we did in Chapter 33: we multiply the condi-

tional loss for each sample outcome by the probability of that outcome

and add the products. Notice, however, that since the personis already

in position gd, we do not want the probability of the outcome gdg as it

would be calculated at the outset of the decision procedure: what we want

is the probability of a single defective or good piece as evaluated after gd

: has already been observed.

 

 

 

 

Table 38.4

Posterior Distribution and E.(p) Given Sample Outcome gd

Prior Likelihood Joint Posterior Expectation

Po(p) P(gd|p) = pq P(gd,p) Pi(pigd) p Pi(p)

05 .2 0475 00950 0502 003
.50 7 . 2900 . 17500 . 9247 .462

.95 wl .0475 .00475 .0251 .024

1.0 . 18925 1.0000. 489 = Ei(p)

 

We already know from Section 12.3.2 that when # is unknown the

(marginal) probability of a success (defective) on a single trial is equal to

the expected value of # and therefore we obtainthe probabilities we

require by simply computing the mean of the posterior distribution of #

given the previous sample outcome gd. This is done in Table 38.4, which
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shows that for a person in position gd the probability that the next sample
piece will be defective is .489; theprobability that the piece will be goodis
therefore 1 — .489 = .511. The expected loss due to action after

sampling is then evaluated as $3.30 in Table 38.5 and this loss is entered
at the top of the S branch in Figure 38.3 to show that it is the expected
value of the loss which will be incurred after sampling.

 

 

 

Table 38.5

g 1 Terminal loss

ampre Probability
outcome

Conditional Expected

g .511 $2.20 $1.10

d .489 $4.60 $2.20

1.000 $3 .30

 

3. We can now determine the best move for a person who has
reached position gd. Rejection has already been barred off as clearly

inferior to acceptance; all that remains to be doneis to comparetheloss

of acceptance with thetotal expected loss of a decision to sample at gd and

then proceed optimally. The cost of proceeding optimally after sampling

has just been evaluated at $3.30; the cost of taking the observation is
$6; the total expected loss of a decision to sample and then proceed
optimally is therefore $9.30. Since the loss of acceptance in position gd
is $22.60, samplingis the best of all possible decisions in this position.

Thus we have determined that zf the Person gets into position gd, his

optimal moveis to sample; and we have also determined that the total

expected loss of making this optimal move and continuing to move optimally

thereafter is $9.30. We are now entitled to bar off the A branch at gd as

well as the & branch and to write the loss $9.30 beside the position gd just
as we wrote the losses $2.20 and $4.60 beside the positions gdg and gdd

when we started out on our backward induction. These entries will be

actually made in Figure 38.4.

88.2.2 The Complete Sequential Procedure and
Its Total Expected Loss

Quite obviously the method of backward induction justillustrated

for a single step can be used to select the best move and compute its
expected loss for any position in any sequential decision problem what-

ever. Westart at the highest level of the tree and use the losses applying

there to select the best act (terminal or other) for each position in the

next lower level and thus to assign a loss to each such position. We then

take these results to work down to the next lower level, and so forth.
The work is carried out for our example in Figure 38.4, which starts by
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being identical to Figure 38.2 except that all the branches which were
barred off in Figure 38.2 have been completely omitted in Figure 38.4 in

order to avoid confusion.
The first step in the procedure is to compute the means of the

posterior distributions for every position at which a choicestill has to be
made. As we have already seen, the mean for each position gives the

probability that a sample item drawn at that position will be a defective

and 1 minus the mean gives the probability that the piece will be good.

All these probabilities have been entered in Figure 38.4 beside the chance

$2.20 $4.60 $2.20 $4.60

A 9 A R

$2.20\ 909 $4.60 god $ 2.20\ dgg $4.60/dgd

51 489 5M A89

$.60 $22.60 $3.30 $22.60, $3.30 $1.70
A ‘\A4 Is A|s fp

$.60\ 99 $9.30) 90 $9.30\ 09 $1.70/dd

653 (347 416 “584

$ 8.30 $3.60 $4.90 $19.80
Ad I s| L?

$8.30¥2 2”$10.90

545 455

$90.00 $9.50

A ls

$15.50

Figure 38.4

moves to which they refer—the .511 and .489 beside the movesleading to

gdg and gdd respectively were calculated in Table 38.4.
After the probabilities are entered we are ready to work back-

ward down the tree. We have already explained the calculations
leading to the value $3.30 entered at the ¢op of the S branch for position

gd and to theselection of S as the best move at this position. Corre-
spondingly the A branch at gd has been barred in Figure 38.4 and the

value $3.30 + $6.00 = $9.30 has been assigned to the position gd itself.

Identical calculations lead to the samefigures and to the same best move
at position dg.

Analysis of the second highest level of the tree is thus complete

and we nowtake up the next lower level, starting with the position g
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at the left. In this position the expected loss of proceeding optimally
after sampling is (.653 X $.60) + (.347 X $9.30) = $3.60, so that
the total expected loss of sampling and then proceeding optimally is

$3.60 + $6.00 = $9.60. The cost of acceptanceat g is only $8.30, how-
ever, and wetherefore decide that .a person reaching position g should not
sample but should end the game by accepting. Accordingly we bar off the

S branch and write down $8.30 as the expected loss of position g. On the

other side of the tree at the samelevel, position d, we find that the
expected loss of proceeding optimally after samplingis

(.416 XK $9.30) + (.584 X $1.70) = $4.90,

so that the total expected loss of sampling and then proceeding optimally
is $4.90 + $6.00 = $10.90. Sincethisis Jess than the $19.80 loss of the

best terminal act at d (rejection), we bar off the R branch and enter

$10.90 as the loss of the position itself.
Finally we come to thelowest level of the tree, where wefind that

the total expected loss of sampling and then proceeding optimally is

$15.50 and far better than immediate acceptance at a loss of $90. It

follows that in our example $15.50 is the total expected loss of a decision

to follow an optimal sequential decision procedure as evaluated before any of

the steps in the procedure have been taken.

38.2.8 Expected Sampling Cost and Expected Terminal Loss

The figure $15.50 just obtained for the total expected loss of the

optimal sequential procedure can easily be broken down into its two

components, expected terminal loss and expected sampling cost. The

expected sampling cost is computed as $9.80 in Table 38.6; the logic

Table 38.6

 

 

Expected Sampling Cost

Sample Probability Cost Expectation
item number

1 1.000 $6 $6.00
2 1.000 X .455 = .455 $6 $2.70

3 1.000 X .455 K .416 = .189 $6 $1.10

$9.80

 

of the calculation will be self-explanatory if the student traces the prob-

abilities in the table back to Figure38.4. From this result we can obtain

Expected terminal loss = $15.50 — $9.80 = $5.70,
| ._ $9.80 _

Expected sample size = $6.00 ~ 1.6.
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38.3 Incomplete Game Trees

The essence of the procedure described abovefor finding an optimal

sequential procedure was to proceed in two steps: (1) construct the game

tree level by level until every branch reached a fork where theloss of
optimal terminal action was less than the cost of another observation,

(2) come back down the tree using backward induction to decide what to
do at the lower levels. In manysituationsit will not be possible to carry

out this procedure completely—the tree which would result from step 1
is simply too large to be constructed and analyzed, even with the aid of
high-speed computers.

Even though the complete game tree cannot be constructed and
analyzed, it will usually be possible to come very close to the optimal

sequential procedure by taking advantage of the fact that the probability

of reaching any particular branch on a very highlevel is extremely small.

If most of the lower branches have been terminated by the argument

used in step 1 and there are only a relatively few forks left ‘‘open” on
the highest level which has actually been reached, we may come very

close to an optimal solution by simply making a good guess at the loss
associated with each top-level ‘‘open”’ position} and then applying back-

ward induction to work back down the tree. The validity of the results
can be checked by proceeding a few levels higher and performing the same
computations over again; if we get the same choicesforall the lower posi-
tions that we got before, our solution is almost certainly optimal or very
close to optimal.

In some circumstances even this approximate procedure may be

impossible to apply because of the volume of computations required, and

unfortunately the problem of finding ‘optimal or near-optimal sequential

procedures in such circumstances is an almost totally untouched subject

for research. The only case which has been solved is the case of prior

distributions which assign nonzero probabilities to Just two values of

the basic random variable, and this case occurs so rarely in practice that

we shall notstudy it in this course.

38.4 Comparison of Sequential with Single-sample Procedures

The advantage of a sequential over a single-sample decision pro-

cedure can be seen in a qualitative way by simply examining Figure 38.4.
If we use a single-sample procedure with n = 1, everything is fine pro-

vided that the sample outcomeis g; but if the outcomeis d, we will lose

t We can always use the methods described in Chapters 33 to 35 to evaluate the
total expected loss of using an optimalsingle-sample procedureat one of these ‘‘open”’
positions, andweshall see in a momentthat the loss of an optimal sequential procedure
cannot be greater than this.
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$8.90 by rejecting at a loss of $19.80 instead of takinganother observation
and then proceeding optimally at a loss of $10.90. If we take a fixed
sample of size n = 2, the second item will be totally wasted if the first
item is good; it is only if thefirst item is defective that this second observa-

tion serves any useful purpose. Similarly the third item in a sample of
size n = 3 will be totally useless if the first two itemsare either both good
or both defective. These observations imply that the total expected loss

of the optimal sequential procedure is less than the total expected loss of any

possible single-sample procedure in the situation of our example, and the
same thing will be true in many decision problems.

It is important to emphasize, however, that there are manysitua-
tions in which a sequential procedureis not superior to a single-sample
procedure.

1. The whole advantage of proceeding sequentially comes from the
freedom to continue sampling in “‘ positions’’ where termination involves

large risks and to stop sampling when a position is reached where termina-

tion involves little risk. Consequently a sequential procedure has no

advantageat all in problemslike the one studied in Chapter 37, where the

posterior expected loss of optimal terminal action is exactly the samefor

all possible sample outcomes even though the choice of the optimal act
depends on the sample outcome. tf |

2. If itis cheaper to take and analyze a sample of several items at one

time than to take the same number of observations one at a time, a
single-sample procedure may be more economical than a sequential pro-

cedure even though the latter does have higher ‘‘statistical efficiency ’’”—
Le., has a lower expected terminal loss for given expected sample size.
Wehave often assumed that the cost of a sample can be written K, + k,n.

This implies that the cost of each sequential observation is K, + k,, and

ifAK, is not negligible compared to k, a true item-by-item sequential pro-

cedure will almost certainly be undesirable. In such situations the best

solution is often to proceed by taking the sample observations in groups

and deciding after each group has been analyzed whetherto take terminal

action or to continue sampling, but the study of such procedures is beyond

the scope of this course.

PROBLEMS

1. Using only data which can be read from Figure 38.4 and calculating no proba-

bilities, compute the total expected loss of a single-sample decision procedure with
n= 1.

2. If a person at position d in Figure 38.4 is allowed to take at most one more

t+ Sequential procedures would be useful in problems like those discussed in
Section 37.6, since in this case the posterior expected value of o1(£) and therefore
the posterior terminal loss depend on the sample evidence concerning the true value
of o(é).
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observation, what is the expected value of the information to be gained from this

observation?

3. Same as Problem 2 for a person in position g.
4. By using your answers to Problems 2 and 3, compute the expected valueof the

information to be gained from a second observation as assessed before the first obser-
vation is taken, and by combining this answer with your answer to Problem 1 com-
pute the total expected loss of a single-sample decision procedure with n = 2.

5. In the example discussed in this chapter, the prior distribution of #, for a
sample of n = 3 as evaluated before any sample observations have been taken is
given in the table below. Assuming that the conditional cost of acceptance is $2000 p,
compute the total expected cost and loss of a single-sample decision procedure with
n = 3.

E, P(F,)

. 202 . 209

.459 .291

.520 207

. 722 173

1.000
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Objectivist Statistics: Tests of Significance

and Confidence Intervals



CHAPTER 39

The Classical Theory of Testing Hypotheses

39.1 Introduction to Part Five of the Course

The essence of the approach which we have taken to the problem of

decision underuncertainty is the view that in the last analysis any person

responsible for a decision must decide how much weight he wishes to

attach to the consequences which his acts will have given each event

which may occur. Wehavesaid that in assigning such weights a reason-

able man should pay very careful attention to the available information

bearing on therelative frequencies with which each event would occurin

a large numberof trials ‘‘like” the one about to be made, but we have
insisted that a weight must be assigned no matter how slight the informa-

tion on frequency may be and regardless of the fact that some other
reasonable man might assign different weights to the same events. We
have called these weights ‘‘ probabilities’”’ both because this is exactly the
sense in which the word probability is used in everyday English and
because we could show that logically consistent weights obey the rules
which define the branch of mathematics known as the theory of
probability.

It is only within the last few years that it has becomefairly generally
realized that subjective weights of this sort can be treated by a systematic
theory, and even today there is substantial disagreement whether they
should be so treated. Except in the very rare cases where the ‘‘prior”’
probabilities of cost-determining events or values of a basic random varia-
ble correspond to long-run frequencies which can be regarded as known

with certainty, many statisticiansstill flatly refuse to use Bayes’ theorem

to compute posterior probabilities or posterior expected costs and losses.
For some timeit was believed that prior probabilities were unneces-

sary and that a meaningful probability distribution which rested on the

sample evidence alone could be assigned to a basic random variable after

a sample had been taken, but this view was ultimately rejected by the

great majority of statisticians as being simply without any logical founda-

tions whatever. A new school of thought then grew up which (1) identi-
fied probability with long-run frequency and (2) held that no long-run

frequencies should be computed unless they were known with certainty.

Since in the great majority of practical problems involving samples the
606
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only long-run frequency distributions which are known with certainty
are the conditional distributions of sample statistics given specified values

of the parameters of the population from which the sample is drawn,this
school developed procedures for reaching decisions under uncertainty by

looking only at these conditional distributions. Thus in a problem
involving the unknownprocess average p of a Bernoulli process, no prob-

abilities would be assigned to the various possible values of p itself either

before or after the sample was taken; the decision would be reached by

considering only the probability or long-run frequency distribution of the
statistic * given specified values of the parameterp.

At least in the United States, the theory of these procedures for

reaching decisions by looking only at known, conditional frequencies is

now ‘‘classical”’ in the literal sense of the word: it is expounded in virtu-

ally every course on statistics and is adhered to by the great majority

of practicing statisticians. The next three chapters will therefore be

devoted to an examination of this classical theory in a simple but com-

pletely typical application: to problems in which a choice must ulti-

mately be made between just two terminalacts.

39.2 Tests of Hypotheses and Statistical Decision Rules

In the first quarter of the twentieth century statisticians viewed their

task as one of establishing the truth or falsity of statements or ‘“‘hypoth-

eses”? rather than as one of showing how to choose among acts. The

really great achievement of the theory which is now classical was to

recognize that the establishment of ultimate truth is not an achievable

goal for mere human endeavorandthat the real problem of statisticsis to

aid in choice among acts under uncertainty, but the languageof ‘‘hypoth-

eses’’ remains as a historical residue.

If a person is being examined to determine whether or not he should

be treated for tuberculosis, the problem is said in classical language to be

one of choosing one or the other of the two hypotheses “has TB” and

‘does not have TB.”’ If the test is intended to show not only whether

‘Whe person should be treated at all but if so whether he should be treated
By goathod A or by method B, the problem is said to be one of choosing

tmong three hypotheses:‘‘does not have TB,” “‘has TB of the type best

% ‘by method A,” and ‘‘has TB of the type best treated by method

YY The student should observe that there is definitely a one-to-one

correspondence between hypotheses and acts even though the acts may

not be fully described or named explicitly.

89.2.1 Null and Alternate Hypotheses

One special but very common type of problem is that in which #

ehoiee must be made between just two hypotheses, and in such problefits
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the procedure by which the choice is made is commonlycalled a “‘test”’
of one of the hypotheses against the other. The hypothesis which is

‘“tested’’ is usually called the ‘‘null’’ hypothesis while the otheris called
the ‘‘alternate’’ hypothesis, and the choice is said to be between accept-

ance and rejection of the null hypothesis rather than between acceptance

of one hypothesis and acceptance of the other. ejection of the null

hypothesis whenit is actually true is said to be an error of the first kind or

of type I; acceptance of the null hypothesis whenit is actually false is said

to be an error of the second kind orof typeII.
This asymmetric usage is due to the belief widely held amongstatis-

ticians that in almost all two-action problems which require statistical

analysis one of the two hypotheses will be of such a nature that the con-

sequence of rejecting it when true is much moreserious than the conse-

quenceof accepting it when false—in other words, the truth of one of the

two hypotheses is to be given a very strong benefit of any doubt which

may exist, and attention is to be focused on this fact by calling this
favored hypothesis the ‘‘tested’’ or the ‘null’? hypothesis.t As an

example, consider the problem of deciding whetheror not a certain batch

of some drug contains impurities which make it poisonous. The two

hypothesesare ‘‘the drug is poisonous”’ and ‘‘the drug is not poisonous,”’

and the formeris called the null hypothesis becauserejecting this hypoth-

esis whenit is true will lead to deaths whereas acceptance of this hypoth-

esis when it is false leads merely to needless scrapping of the batch and

the loss of a certain amount of money. In situations where erroneous

rejection of one hypothesis is neither morenorless serious than erroneous

rejection of the other, either one may be called the null hypothesis.

Machine-setup Example. In Chapters 22 and 33 we studied the
problem faced by a manufacturer who must decide whether to proceed

with a production run using the setup made by the regular operator of

‘the machineor to have the setup checked andif need be readjusted by an

expert setup mechanic at extra cost. The manufacturer. believes that

‘the machineas set up by the operator will behave as a Bernoulli process

with some unknownfraction defective p, and it was shown in Section

22.4.3 that if p had a value greater than p, = .04 it wouldpay to readjust

the setup while if p had a value less than .04 it would pay to leave. the

setup alone. In Section 22.5.1 we saw that the loss due to failure .to

readjust when needed maybe as high as $42 whereas the lossdue.to

needless readjustment will be only $6, and accordingly the null hypothesis

is ‘‘p > .04 and therefore the setup needs readjustment”’; rejection,of

this hypothesis when trueis an error of the first kind. {

+ The actual name ‘‘null”’ given to the favored hypothesis cannot be explained

in termsofthis rule; it is another historical residue and is explained in Section 41.4.2.
tSince the two acts are equally costly when p = .04 exactly, it is obviously

jmmaterial whether we write the two hypotheses as p > .04vs.p < .04 or as.po04

vs. p < 04,
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Packaging Example. In Chapter 32 we studied the problem faced
by a marketer who must decide whether or not to adopt a new package
for his product. Letting denote the true increase in mean sales per |

store per month which the new package would in fact produce, we saw
that the new package would just pay for the cost of the necessary modi-

fications in the packaging machinery if & had the value & = +.019; if

the new package was chosen whenin fact & was less than &, the manu-

facturer would suffer a loss of $1,056,000(& — £&), while if the opposite
choice was made when & was in fact greater than & the loss would be

$1,056,000(é — &). Itis impossible to say which of these losses might be
greater and thusreally to single out the error of the first kind, so that we
are free in principle to select either § < or é > & as the null hypothesis.

In suchsituationsstatisticians seem usually to pick as the null hypothesis

the hypothesis which favors the status quo, and we shall follow their

example by treating ‘‘é < &andtherefore the old package should be
retained” as the null hypothesis; rejection of this hypothesis when in fact

~ < & will therefore be an error of the first kind.

89.2.2 Statistical Hypotheses

Wehavealready said that the only probability distributions which

may be considered under the classical approach to the problem of decision

under uncertainty are distributions which correspond to (conditionally)
known long-run frequency distributions of sample observationsor of sta-

tistics summarizing these observations, and this requirement affects the

very way in which a decision problem mustbe stated even before it deter-

mines the way in which it must be solved.
Thus in the packaging example the hypotheses which accurately

express the economics of the decision problem are é > &(in which case

adoption of the new package will be profitable) and é < &, (in which case

adoption of the new package will not be profitable). Suppose, however

(as we did in Section 32.3), that the marketer takes a sample of the
store-by-store sales increases created by the new package and wishes to
use the mean Z of these increases as the basis for his choice between the

hypotheses in question: Unless he is absolutely sure that his sampling
procedure is unbiased(or knows by exactly how muchit is biased), he

cannot say that he knowsthe long-run frequency distribution of # given
any particular —& The mean of this long-run frequency distribution is
pw = &+ 8B, where B is the bias of the sampling procedure, andif 6 is not

known with certainty then the long-run frequency distribution of # is not
known with certainty even when £ is given.

In Parts Three and Four of the course we dealt with this problem by
assigning a subjective distribution to 6 and saying that the probability
distribution of # was Normal with parameters E(#) = & + E(§) and
o2(#) = o2(8) + o(€), but this probability distribution does not corre-
spond to any known long-run frequency distribution and is therefore
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inadmissible under the classical theory. The decision maker must state

his problem in terms such that conditional long-run frequencies are known,

and in our present example this means that he must restate his decision

problem in terms of uw rather than &. If his best guess is that the sampling
procedure is unbiased, he will presumably take as his two hypotheses

pw < +.019 and » > +.019; if his best guess is that the sampling pro-
cedure is biased by some amount 6* he will presumably take as his two
hypotheses » < +.019 + 6* and uw > +.019 + 8%; but in neither case

can he under the classical theory make any formal allowance for uncer-

tainty about the amount of bias which maybepresent.
In classical language, a hypothesis concerning a parameterof a long-

run frequency distribution (u in the packaging example) is known as a

statistical hypothesis and is sharply distinguished from a primary hypothe-

sis concerning the quantity in which the decision maker is really inter-

ested (¢ in the packaging example). What we have said in the previous

paragraphs amountsto this:

The classical theory deals only with the testing of statistical hypothe-

ses. If the businessman wishes to make allowance for the fact that

a ‘‘primary’’ hypothesis in which heis really interested maybe false

even though the corresponding “‘statistical’’ hypothesis is true, he

must make this allowance by the use of unaided judgment—the

problem is not a statistical problem.

In the discussion of classical procedures which follows, we shall assume

that the marketer does believe that the statistical hypotheses which corre-

spond most closely to his primary hypotheses are:

Null: the long-run frequency distribution of £ is Normal with mean

uw <S +.019;
Alternate: the long-run frequency distribution of 4 is Normal with

mean p > +.019.

Exactly the same kind of problem arises in the machine-setup exam-

ple. The statistical hypotheses in this case must concern the long-run

frequency P, with whichpieces will be reported as defective by the inspec-

tor (cf. Section 31.3) and not the long-run frequency p with which the

process as set up by the operator would generate pieces which would

actually prove defective in assembly. Againwe shall simplify our subse-

quent discussion by assuming that the manufacturer is convinced that

P, = p and therefore is willing to take as his two statistical hypotheses:

Null: the long-run frequency distribution of the numberF of pieces

reported defective in the sample is binomial with p > .04;
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Alternate: the long-run frequency distribution of # is binomial with

p< .04.

39.2.8 Statistical Decision Rules

Having seen how a two-action problem is defined in classical theory,

we are ready to look at the procedure by which the choiceis to be made

between rejection and acceptanceof the null hypothesis. In outline, the

advice of the classical schoolis this:

Whetherthe decision is of a repetitive kind, as in the setup example,
or of a more orless unique kind, as in the packaging example, the

businessman should view his problem as one of choosing a decision
rule which could be applied to an infinite number of decision prob-
lemslike the one he currently faces and which specifies (1) the size

of the sample which is to be taken and (2) exactly which act (accept
or reject) should be taken given any and every possible sample out-
comeor value of the test statistic. To decide which of two possible
rules of this kind is better or which of many possible rules is best he
should look at the frequency with which each rule under consider-

ation would lead to wrong decisions given any and every possible

value of the parameter being tested.

Suppose for example that the manufacturer with the setup problem
wishes to evaluate the following decision rule:

Take a sample of 75 pieces from each new setup andreject the null

hypothesis that p > .04 if and only if the numberof defectives in
the sample does not exceed three.

In order to examine the conditional frequencies with which errors of both

kinds will occur underthis rule given any andall possible values of p we
first observe that:

1. If in fact p > .04, the null hypothesis is rue and rejection of this

hypothesis will be an error (of the first kind). Since the hypothesis will

be rejected if r < 3, the conditional probability given any 7p greater than

or equal to .04 that the rule will lead to this error is P,(¥ < 3|n = 75, 7).
2. If in fact p < .04, the null hypothesis is false and acceptance of

this hypothesis will be an error (of the second kind). Since the hypoth-

esis will be accepted if r > 3, the conditional probability given any p less
than .04 that the rule will lead to this error is P;,(# > 3|n = 75, p).

Since there are infinitely many possible values of p—remember that

the businessmanis not really sure that the setup will have exactly one of

the four values .01, .05, .15, and .25 which we have considered in earlier

discussions of this problem—the only wayof really looking at the condi-
~
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tional probabilities of a wrong decision given all possible values of p is to
graph them. The curve (or pair of curves) shown in Figure 39.1 is such

a graph for the rule we have taken as an example. The left branch of the
curve showsthat there is 0 probability under this rule of concluding that
p > .04 when in fact p = 0 (we cannot get more than three defectives in

the sample if the process generates noneat all) but that as p increasesthis

probability increases until it has the: value .35 when p is just under .04.

The right branch of the curve showsthat there is 0 probability of conclud-

ing that p < .04 whenin fact p = 1 (we must get more than three defec-
tives in the sample if the process generates 100 per cent defectives) but
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that as p decreases this probability increases until it has the value .65
when p = .04 exactly.

The remainder of this chapter will be devoted to a discussion of the

ways in whichstatisticians of the classical school select a particular rule
among all possible rules by looking at curves of this kind. The discussion

will be divided into two parts:
1. Choice of a rule when the sample size is predetermined and the

only problem is to decide which act should follow each possible sample

outcome.

2. Choice of a rule when the person responsible for the decisionis free

_to take a sample of any size he pleases as well as to specify which terminal

_act should follow each possible sample outcome.
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39.3 Choice of a Decision Rule When Sample Size

Is Predetermined

39.3.1 Choice of a Rule before the Sample Is Taken

Suppose that for some reason the manufacturer faced with the setup
problem hasdefinitely decided to take a sample of sizen = 75 but that he

has not yet decided which values of the test statistic 7 should lead to
acceptance of the null hypothesis that p > .04 and which to rejection.
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It is clear that the only decision rules which hewill consider will be of the
general form |

Sample n = 75 and reject the null hypothesis that p > .04 if and
only if * does not exceed some predetermined number ec,

since it would obviously be foolish to act on the assumption that p is high
whenr is low and vice versa.

The only problem is thus to choose a definite value for the ‘‘critical
number’ c; and as we havesaid, this is to be done by drawing a curvelike

the one in Figure 39.1 for each of a variety of values of c and deciding
which of these curves gives the most desirable ‘‘ mix”’ of conditional prob-

abilities of error. Figure 39.2 shows the conditional probabilities of both
kinds of errors for values of c from 0 to 4, and inspection of these curves

‘immediately shows that
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As thecritical value c increases, the probability of an error of the first
kind increases for all p which makethe null hypothesis true and thus

make an error of the first kind possible; but at the same time the
probability of an error of the second kind decreases for all p which
make the null hypothesis false and thus makean error of the second
kind possible.

The manufacturer’s problem is thus simply to decide how far it pays to

increase the risks of one kind of error in order to reduce the risks of the other

kind of error.

Limitation of Maximum Probability of an Error of the First Kind. In

the pure theory of classical statistics, the manufacturer’s problem as
stated just aboveis ‘‘not a statistical problem”’ at all; it is a problem to

be solved by direct application of unaided business judgment. If, how-

ever, we look at the examplesgiven bystatisticians to show how a reason-
able man might actually make this choice, most of them suggest that he

should reason as follows. Since the consequence of an error of thefirst

kind (failure to readjust the setup when readjustment is needed) may be a
loss of as much as $42 while the consequenceof the opposite error cannot

be more than $6, a rule should be chosen under which the conditional
probability of an error of the first kind is less than 1% for all values of p
which make the null hypothesis true (p > .04) even though this means

that the risk of an error of the second kind will necessarily be greater than
14 for some values of p.

The maximum tolerable conditional probability of an error of the first

kind is generally denoted by @ (alpha), and while classical theory says
absolutely nothing on the subject of the proper numerical value of a@ in

any kind of problem, the examples given in classical discussions seem to

suggest that it should almost never be greater than .1. Manystatistical

tables which are needed to test hypotheses of a more complex kind than

those treated in this course are in fact drawn up in such a waythat the

largest value of a for which the test can be conducted is .1 or even .05.

Looking back at Figure 39.2, we see that if the risk of an error of thefirst
kind is to be limited to .1 in the present problem, only one decision rule is

possible. With the sample size fixed at 75, the critical value c must be

set at 0 because if we reject the null hypothesis when there is even a

single defective in the sample the conditional probability of an error of

the first kind will be .19 for some values of » which makethe null hypoth-
esis true. If, however, the manufacturer should decide to tolerate an a

as high as .2, then he would choose therule (75,1) because this rule gives

less risk of errors of the second kind than the rule (75,0); if he decides to

let a go as high as .5 (and this is often recommendedin the literature on

quality control even thoughit is almost never recommendedin thelitera-

ture on ‘“‘testing hypotheses’’), he would choose (75,2) and reducehis risk
of errors of the second kindstill further.
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By examining the implications of Figure 39.2 a little more closely we

can see that if a person simply wants to find the rule which (1) gives the
lowest possible conditional probabilities of errors of the second kind

(2) subject to the overriding requirement that no conditional probability
of an error of the first kind shall exceed some numbera, then there is no
need to draw curves like those in Figure 39.2 at all. The curves show

that under any given rule (any given value of c) the conditional prob-

ability of an error of the first kind is greatest when p has the borderline

value .04 which marks the boundary between truth andfalsity of the null

hypothesis, and we did not actually have to draw the curvesin order to

know this because we know that the conditional probability of low values

of 1,

Pi(*¥ < cln = 75, p),

will decrease as p increases. We also know without drawing the curves

that all conditional probabilities of errors of the first kind increase as c

increases while all probabilities of errors of the second kind

P,(7 > eln = 75, p)

decrease as c increases. It follows that the manufacturer can find the c
which meets his objectives by simply finding the largest c for which

Pi(7 < cln = 75, p = .04)

does not exceed a.

89.3.2 Tests of Significance

If the person responsible for a decision has decided to act in accord-
ance with the rule which reduces the conditional probabilities of errors of

the second kind as far as they can be reduced without letting any condi-

tional probability of an error of the first kind exceed some chosen number

a, he does not really need to find the c of his chosen rule at all. Suppose
for example that he has set a = .2, taken a sample of 75 pieces, and

observed three defectives. If he simply computes the probability given

the ‘‘borderline” value p = .04 of getting a result at least as unfavorable
to the null hypothesis as the one he actually observed,

Pi(7 < 3|n = 75, p = .04) = .65,

the fact that .65 is greater than the permissible a tells him immediately

that the decision rule which would satisfy his requirements must have ac

smaller than the observed r = 3, and he therefore knows immediately that

the null hypothesis is to be accepted. If he had found only one defective
and computed

P,(# < 1ln = 75, p = .04) = .19,
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the fact that .19 is less than the permissible @ would have told him

immediately that the c of the desired rule was equal to.or greater than
the observed r = 1 and he could immediately haverejected the null

hypothesis.
The argument can be followed graphically by looking at the condi-

tional distribution of * given p = .04 which is shown as Figure 39.3.
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Figure 39.3. Conditional distribution of 7 given p = .04 (n = 75).

The shadedtail of this distribution represents the maximum conditional

probability of an error of the first kind underthe rule (75,1),

Pi(F < 1\n = 75, p = .04) = .19,

and it is obvious that if c were increased from 1 to 2 this area would

exceed the permissible a = .2. It is also obvious from thefigure that

1. If the r actually observed in a sample does not exceed c = 1, then

P,(F < rin = 75, p = .04) cannot exceed a;
2. If the r actually observed in the sample does exceed c, then

P,(F < rin = 75, p = .04) will exceed a.

The conditional probability given the borderline value of the parameter

that pure chance will yield a sample statistic at least as unfavorable to the

null hypothesis as the one actually observed is called the statistical signifi-
cance of the observed statistic. Computing this probability and com-

paring it with a required maximum is called testing the significance of

the statistic at level a.
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39.3.8 Choice of a Rule after a Sample Has Already Been Taken

The practice of formally selecting a decision rule before any sample
is taken is standard in thefield of quality control but much less common

outside that field. In marketing research, for example, a statistician is
much morelikely to be asked what conclusions may legitimately be drawn
from a sample which has already been taken than heis to be asked what
conclusions should be drawn if a proposed sample yields such and such a

result. We have seen that under a Bayes approach such problems can
be solved by the methods of Part Three of this course with many fewer

computations than are required to find a complete decision rule by the

methods of Part Four, but under the classical approach there is abso-
lutely no difference between the two kinds of problems.

If a terminal act must definitely be chosen after just one sample has
been taken, then even though the actual decision rule is not selected
until after the sample is taken, the selection should be madejustas it
would have been made before the sample was taken: by choosing a

rule which gives a Satisfactory balance between the conditional
probabilities of errors of the first and second kind.

Suppose for example that the marketer faced with a packaging prob-
lem has already taken a sample of size n = 100 and that this sample has
yielded statistics

z= +.157,

— 1 — -)\2 — .
$= Voi Z(x £) = 1.25;

and suppose that the marketer wishes to make an immediate choice
betweenthe old and the new package without taking any further sample
observations. Because his terminal decision is to be based on a sample

of size n = 100, the marketeris interested only in decision rules based on

samples of size n = 100; and since the null hypothesis in this problem

asserts that u.is not above a specified value », = .019, it will clearly be

logical.to reject it provided that the sample mean % is above some duly

chosen ‘“‘critical value”? which we shall call ,.. In other words, the only
decision rules which need be considered are those of the general form

 

Sample n = 100 and reject the null hypothesis that » < .019 if and
only if ¢ > %,.

Under such a rule the conditional probability of an error of the
first kind for any » which makes the null hypothesis true (u < .019) is
P(% > 2%,|u); the probability of an error of the second kind for any » which

makes the null hypothesis false (u > .019) is P(# < #,|u). Because the
estimate s is based on 99degrees of freedom, we may treat the standard
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deviation of the individual members of the population of all possible

sample observations as if it were known to have the value

¢ = s = 1.25,

and the standard deviation of the long-run frequency distribution of #

about the mean p of this population of potential sample observations is

therefore

o(f) = “_ =_ 1.25 _ 125.
Vn ~+/100

Given this standard deviation we can compute the required conditional

probabilities by using the Normal approximation in the usual way. For

any yw wefirst compute

ec Bh _ Le — pB

o(#) 125

and then use Table III to find

P(Z > Z.|u) = Py(a > u,)

 Uc =

or

P(f < alu) = Pra < u,).

In Figure 39.4 graphs of these conditional probabilities are shown for

several values of £, and we can observe, for example, that under the rule

with #, = .225 the conditional probability of an error of the first kind

rises from almost nothing for nu < —.1 to .05 at » = w while the condi-

tional probability of an error of the second kindfalls from .95 at u = up,

to almost nothing for np > +.6.

Selection of a Decision Rule by Specification of a. Once again the

theory of classical statistics stops short as soon as a set of curves like this

has been drawn. ‘Traditional practice, on the other hand, would usually

set a limit a on the conditional probability of an error of the first kind and

select a rule to suit. Three of the rules depicted in the figure have actu-

ally been chosen to correspond to the values customarily assigned to a;

by inspecting the lowest three left-hand branches the student can see that

each Z, yields an a@ as follows:

Z, = 3809: a = .O1;

L 225: a .Q5;

Z, = .180:a = .1.

& a |

The fourth rule represents a choice of ~ which as we havealreadysaid is

rarely suggested in the literature on testing hypotheses but which the

+ Cf. Section 39.2.2 above; the classical theory does not discuss the distribution of

£ about the “true value”’ ¢.
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student may want to consider. With <, = .019, a has the value .5 and

the greatest conditional probability of an error of the first kind is exactly
equal to the greatest conditional probability of an error of the second
kind.

Having duly decided which of these rules he prefers, the marketer

can decide what to do on the basis of the = +.157 observed in the
sample which has actually been taken. If +.157 is greater than the

£, of the chosen rule, he should reject the null hypothesis and adopt the
new package; if +-.157 is less than Z,, he should retain his present package.

Decision by Test of Significance. If the marketeris willing to put a

limit @ on the maximum conditional probability of an error of the first
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kind and then act in accordance with the rule which minimizes the condi-

tional probabilities of errors of the second kind subject to this overriding

requirement, he can (as in ourearlier example) decide what to do on the

basis of his observed sample without bothering to construct any curves

like those in Figure 39.4.

In Figure 39.5 we show the conditional distribution of # given the

borderline value u» = .019, and since the null hypothesis that y is less than

or equal to .019 will be rejected for high values of £, the maximum condi-

tional probability of an error of the first kind will be equal to the area of
the tail of this distribution to the right of <.. To find a rule which has

any required a, the marketer chooses Z, so that this tail area is equal to a;

if for example he sets a = .05, he must choose %. = +.225 as shown in
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the figure. Looking at the figure we see that.

1. If the Z actually observed in a sample exceeds <,, then clearly
P(é > Z|u = .019) will be less than a.

2. If the Z actually observed in a sampleis less than %,, then clearly
P > Zlu = .019) will be greater than a.

It follows that instead of computing the #, which yields the required
a and comparing the observed Z with this critical value, the marketer
needs only to compute the statistical significance of the observed &,

P(4 > Z|u = .019),

compare this directly with a, and then reject the null hypothesis if the
significance is numerically smaller than a, accept if it is greater than a.

  
    

PF>+.225| 1 =.019)=.05

   
      qT qT J t 1 t } qT qT t

4 -3 -2 @-J of j } a 3 4 =F
E(¥) =.0/9 x=+.157 ¥p=+.225

Figure 39.5. Conditional distribution of ¢ given » = +.019 (¢ = 1.25,

n = 100).

The statistical significance of the € = +.157 actually observed by the

marketeris

P(£ > +4.157|u = 4.019) = Py (a > i) = 14:

if he has actually chosen a = .05, this means that he should accept the
null hypothesis.

Observe that once again (and always) the statistical significance of
an observed statistic is the conditional probability, given the borderline
value of the parameter being tested, that pure chance would yield a
statistic at least as unfavorable to the null hypothests asthe one actually
observed.
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39.4 Determination of Sample Size

In the previous section we studied the problem of choosing a, statis-

tical decision rule whenthesize of the sample was predetermined, either
because a terminal decision had to be made immediately on the basis of

whatever sample evidence wasalready at hand or for some other reason.

Wenow turn to the problem of choosing a decision rule when the person

responsible for the decision is free to specify the sample size as well as the

values of the test statistic which will lead to rejection or acceptance of

the null hypothesis or the ‘‘level of significance”’ a at which thetest is to
be conducted. In discussing this problem weshall assume that

1. No sample has as yet been taken;

2. It is possible to take one sample but only one before making a
definite choice between the two terminal acts or hypotheses.

In classical theory this larger problem is to be solved by exactly the

same methods which are used when the sample size is predetermined.
The general form of the decision rule applicable to any given pair of null

and alternate hypotheses will be identical to the form which would be

proper if the sample size were predetermined, and as before the choice is

to be made by taking a numberof possible rules and lookingat the condi-
tional probabilities of both kinds of errors under these rules. The only
difference will be that the person responsible for the decision must now

consider and compare rules with a numberof different values of 7 instead

of being able to restrict his attention to rules with a single value of n.

It is clear, however, that although no new principles are involved,

the practical difficulties are vastly greater because the fact that n is not
predetermined means that the number of possible rules among which a

choice must be madeis infinitely greater than before. The classical

theory gives no advice at all on how to cope with this problem practically,

but the traditional practice seems to be to cut the problem down to
practical size by first deciding on a (the maximumrisk of an error of the

first kind which is to be tolerated) and then looking at rules with various
n’s all of which satisfy this requirement.

To illustrate the procedure we show in Figure 39.6 the conditional

probabilities of error in our packaging example underrules all of which
have the traditional value a = .05 but each of which has a different

sample size as indicated in the figure. As we would expect, we find that
as the sample size increases the conditional probabilities of errors of both
kinds decreasefor all values of » except the borderline value w. Sampling

costs money, however—store testing of the kind used in this example
would cost at least $30 per sample observation—and the businessman

must keep this in mind before he decides how far to go in reducing the
risks of loss due to a wrong decision. The classical-theory leaves this
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problem to the businessman’s unaided judgment just as it leaves to his

unaided judgment the problem of deciding how far to increasetherisks of

errors of one kind in order to reduce the risks of errors of the other kind.

PROBLEMS

1. Compute and graph curves showing the conditional probabilities of wrong

decisions for the following decision rules.
a. In the setup example: sample n = 50, reject if the numberof defectives in the

sample does not exceed c = 2.
b. In the packaging example: sample n = 25, reject if # > +.200.

2. In the literature on hypothesis testing, decision rules are usually described

by performance characteristics or power curves which show the conditional probability

of rejecting the null hypothesis for every value of the parameter being tested rather than

by curves which show the probability of making whatever decision is wrong for every

value of the parameter. Sketch performance characteristics for the two rules of

Problem 1 and explain exactly how they must be read in order to obtain from them

the probabilities of the two kinds of errors.

3. Suppose that in the packaging example we had chosen » > .019 as the null

hypothesis and made uw < .019 the alternate.

a. Draw the performance characteristic of the rule: sample n = 25, reject if

£< +.200.

b. Is or is not this rule the samein effect as the rule of Problem 1b?

c. If asample of 25 is actually taken and yields? = +.040, whatis the statistical

significance of this statistic (1) under the null hypothesis » < .019? (2) Under the

null hypothesis u > .019?

d. If a decision must be reached without further sampling, which package do you

think the marketer should choose?
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4. Suppose that a sample of 10 pieces has already been taken in the setup problem
and that a terminal decision must be reached without further sampling.

a. Can any decision rule be found which satisfies the requirement a = .05?
a = .25? a = .50? What is the lowest a requirement which can be met by any
available rule?

b. Draw a curve showing the conditional probabilities of the two kindsof errors
under the rule which does meet the lowest a requirement.

c. Suppose that no defective has been found in the sample of 10 on which the
decision is to be based. Whatis the statistical significance of this result?

d. In the circumstances of part c, do you think the manufacturer should accept
or reject the null hypothesis that p > .04?

5. In the literature on quality control, a sampling plan is a decision rule of the

form:

Take a sample of size n from the process (or lot); accept the process (or lot) if

and only if the number r of defectives in the sample does not exceed c.

Such rules are usually described by operating characteristics which show for every

value of p the conditional probability of accepting the process (or lot). State the rule

of Problem 4b in this language, draw its operating characteristic, and explain exactly

how it must be read in order to obtain the same information which can be obtained

from your original curve.



CHAPTER 40

Evaluation of Statistical Decision Rules

in Terms of Expected Loss

40.1 Description of Decision Rules in Terms of Conditional

Expected Terminal Loss

One of the reasons why wefeel so helpless when asked to choose a
decision rule by looking at curveslike those shown in Figures 39.2, 39.4,

and 39.6 is that these curves do not give anythinglike an adequate repre-
sentation of even the conditional risks to which the businessman is
exposed given a particular value of p or ». If the penalty for making an
error of the first kind were some fixed amount and the penalty for an error
of the second kind were another fixed amount, then curves showing the

conditional probabilities of errors of the two kinds would be directly

relevant to a comparison of decision rules. In problems of the kind we

are studying, however, the loss which will result from an error of either

kind depends on the value of the unknown parameter p or yp in such a

way that an error of either kind is more serious the farther the true value of p
or u is from the break-even value pp or wy». The curves of Figures 39.2, 39.4,

and 39.6 show that the conditional probability of an error of either kind

will be greatest if p or » has a value very near the break-even value; but

if the parameter zs near the break-even value, then choice of the wrong

act will cost the businessman virtually nothing. They showrelatively
small conditional probabilities of error for values of p and y» well away
from the break-even value, but if the parameter 7s quite far from the

break-even value a wrong decision will entail a very severeloss.

This means that the true measure of the risk to which a given
decision rule will expose the manufacturer if p or » has any given valueis
not the conditional probability that the rule will lead to a wrong decision
if p or » has that value but the expected value of the loss to which the rule
may lead if p or » has that value. By computing and graphing these

conditional terminal losses we can get a much more useful picture of the

way in which a rule will operate given all possible values of the parameter

than we can get by looking at conditional probabilities of error.
624
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40.1.1 Machine-setup Example

To see how the conditional expected terminal loss of a particular

decision rule is computed for any given value of p, let us take the rule

(n = 75, c = 1) as an example and computethis loss for the two values

p = .0l and p = .05. The student should remember that in so doing we
are again assuming that the parameter p of the sampling distribution of
F is identical to the cost-determining process average of the machine—1.e.,

we are assuming that the sampling is unbiased.

p = .01. It was shownin our original discussion of this problem

(Table 22.7) that if the manufacturer accepts the null hypothesis that

p > .04 and readjusts the setup when p = .01, he will suffer a terminal

loss of $200(.04 — .01) = $6; if he rejects the null hypothesis and refuses

to readjust the setup, he has made the right decision and suffered no

terminal loss. Looking at Figure 39.2 we can see that there is probability

173 that the rule (75,1) will lead to the wrong decision if p = .01;

the probability that it will lead to the right decision is accordingly
1 — .173 = .827. We can then compute the expected value of the

terminal loss to be $1.04 as shown in Table 40.1; this is the conditional

terminal loss of the rule (75,1) given p = .01. |

Table 40.1

Conditional Expected Terminal Loss of Rule (75,1) Given p = .01

Terminal loss
Sample Resulting

 

 

 

teo decision Probability
outcome Conditional Expected

r<1 Reject 8270 $0 $0.
r>1 Accept 173: 6 1.04

: 1.000 © $1.04

Table 40.2

Conditional Expected Terminal Loss of Rule(75,1) Given p = .05

|
Terminal loss

 

 

Semple _Realing probability
oune Conditional Expected

r<l Reject . 106 $2 $ .21
r>i Accept . 894 0 0

1.000 $ .21

 

p = .05. In this case the manufacturer will suffer no terminal loss

if he accepts the null hypothesis that p > .04 and readjusts the setup but

will suffer a loss of $200(.05— ,04) = $2 if he accepts. The probability
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that the rule (75,1) will lead to the wrong decision can be read as .106

from Figure 39.2 and the probability that it will lead to the right decision

is correspondingly .894. The conditional expected terminal loss of the

rule given p = .05 is then shown in Table 40.2 to be $.21.
A complete description of any decision rule in terms of conditional

expected terminal loss can be obtained by carrying out computations of

this sort for a numberof values of p and then plotting them andfairing in
a curve. Curves of this sort are shown in Figure 40.1 for the rules with

n = 75 and values of c from 0 through 4 which were originally described
in Figure 39.2.
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40.1.2 Packaging Example

It was shown in our original discussion of this problem that if the

manufacturer chooses the new package when in fact its true effect is to

increase sales by an amount £ whichis less than & = +.019 he will suffer

a terminal loss of

$20,000 — $1,056,000 & = $1,056,000(.019 — 4);
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if he chooses the old package when in fact § > +.019 he will suffer a
terminalloss of

$1,056,000  — $20,000 = $1,056,000(é — .019).

If we again assume that the mean u of all possible sample observations is

exactly equal to the true effect & of the new package, we can use these

formulas to compute conditional expected terminal loss under any given

rule for any given value of ». Let us take the rule (n = 100, %, = +.180)
and the values 1» = —.050 and » = +.100 as examples.

uw = —.050. Thefirst loss formula tells us that if the manufacturer

chooses the new package (rejects the null hypothesis) when » = —.050,
he will suffer a terminal loss of

$1,056,000[.019 — (—.050)] = $72,900;

if he makes the opposite decision, he suffers noloss. From Figure 39.4 we

can read that the probability that the rule (100,+.180) will lead to the
wrongdecision 7f 1 = —.050 is .033, and we can then compute the condi-
tional expected terminal loss to be $2410 as shown in Table 40.3.

Table 40.3

Conditional Expected Terminal Loss of Rule (100,+.180) Given n = —.050
 

Sample Resulting Terminal loss
 

 

 

outcome decision Probability
Conditional Expected

Z<+.180 Accept .967 $ 0 $ O
=> + .180 Reject .033 72,900 2410

1.000 $2410

Table 40.4

Conditional Expected Terminal Loss of Rule (100, -+.180) Given » = +.100

Terminal loss

 

 

 

racer ‘decision ‘Probability
Conditional Expected

Zz < .180 Accept . 739 $85 , 500 $63 , 200
> .180 Reject . 261 0 0

1.000 $63 , 200

 

uw = +.100. The second loss formula tells us that if » = +.100

acceptance of the null hypothesis followed by retention of the old pack-
age will cause a terminal loss of
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$1,056,000(-+.100 — .019) = $85,500,

and the probability that the rule (100,+.180) will lead tothis decision

can be read as .739 from Figure 39.4. The conditional expected terminal
loss under this rule given » = +.100 is therefore $63,200 as shown in
Table 40.4. |

In Figure 40.2 conditional expected terminal losses given all possible

values of » are shown for all the decision rules originally described in
Figure 39.4.
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Figure 40.2

40.1.8 Immediate Implications of the Curves of
Conditional Terminal Loss

Mereinspection of the curves of conditional terminal loss shown in

Figures 40.1 and 40.2 immediately brings out the serious extent to which
we can be misled by looking only at the worst conceivable consequenceof

either act or the greatest conditional probability of an error of either kind.

If p or w is extremely far away from the break-even value, almost any
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reasonable decision rule will give so small a probability of making a wrong

decision that the expected value of the resulting loss 1s negligible. If on
the other hand p or u is extremely close to the break-even value, the loss
entailed by a wrong decision will be so small that the probability of mak-

ing a wrong decision is of no interest whatever. It is the intermediate

values of p and uw which give rise to really serious risks.

Figures 40.1 and 40.2 also show clearly why we should not single out

one of the two hypotheses as the null hypothesis and then choose a
decision rule by requiring that the conditional probability of erroneously
rejecting this hypothesis should not exceed some numbera of the orderof

.01 or .05 even though this means that the conditional probability of

erroneously accepting this hypothesis will be well over 4 for some values

of p orp. In the setup example, choosing even the unusually high value
.1 for a led to the selection of the rule (75,0); looking at Figure 40.1 we
see that this makes the conditional expected loss very high if the null
hypothesis is false (p < .04) and disproportionately low when the null

hypothesis is true. Similarly the rules in Figure 40.2 with Zz, = .309,
.225, and .180 reduce the conditional expected losses for » < .019 (null

hypothesis true) to extremely low values at the cost of running extremely

high risks when the null hypothesis is false. We can conclude that, in

these two examples,

Mere consideration of the possible consequences of errors gives no
justification whatever for asymmetric treatment of the two hypothe-
ses. Unless some other considerations are brought to bear, the sensi-

ble thing to do is simply to act in common-sense agreement with the
sample evidence: if > uw, act as if u > ww; if the sample fraction

defective r/n is greater than p;, act as ifp > p,; and soforth. Tests
of significance at traditional levels such as .05 are much worse than

useless in selecting a terminal act—they lead to absurd and danger-

ous results.

Whatis more, these two examples are typical of the vast majority of two-

action problems encountered in business because in almost all practical

two-action problems the loss which will result from an error of either kind

increases with the ‘‘magnitude’”’ of the error—i.e. with the difference between

the actual value of the cost or profit-determining parameter and the

break-even value of that parameter. It is true that our two examples

are of a special (though very common) kindin that the loss due a wrong

decision will be strictly proportional to the magnitude |p — p,| or |u — pol

of the error; but even in problems where this is noé true the curve of con-

ditional expected loss under a decision rule will have the same general

two-humped shapeas those in Figures 40.1 and 40.2 if the loss which will

actually result from an error increases in any reasonable way with the
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magnitude of the error. The classical theory of testing hypotheses is really
adapted only to problems where there is just one possible consequence of an
error of the first kind and just one possible consequence of an error of the
second kind; and such problems are hard to invent and much harder to
find m real businesslife.

40.2 Unconditional Expected Terminal Loss; Optimal Decision

Rules When Sample Size Is Predetermined

Wehavesaid that unless some considerations other than the possible
consequences of wrong decisions are brought into the picture, the best

terminal act should usually be chosen by simply acting on the sample
“estimate” (% or r/n) of the cost-determining parameter (u or p). To
see how such other considerations may enter, let us first of all observe
that selection of a particular decision rule is an act under uncertainty in
exactly the same sense that stocking 28 units or making a scrap allowance

of 77 pieces is an act under uncertainty. The cost, profit, or loss of any

such act depends on some unpredictable ‘‘event,’? and the event which

will determine the (expected) cost, profit, or loss resulting from selection
of a particular decision rule is the process average p which the operator
actually achieves by his setup or the increase in sales & which would

actually be effected by the new package. In other words, a graph like
Figure 40.1 or 40.2 is really a form of loss table and the implicationsof this

loss table are identical to those of all the other loss tables we have studied
in this course. Each curve on the graph describes one possible act and
corresponds to one columnof the loss table, and in deciding which curve
of conditional expected loss represents the best decision rule the business-

man will want to consider how much weight he wants to give to each point
on each curve.

40.2.1 Machine-setup Example

In terms of the setup example: if the manufacturer thinks that the
operator is very likely to produce setups with p in the general vicinity of

.01 to .02, he will think that the rule (75,0) is about the worst of all the
rules shown in Figure 40.1 because it has very high conditional losses for

these values of » and he may decide to use the rule (75,4) because it has

very low conditional losses for these values of p. If on the contrary he
thinks that the operator is very likely to produce setups with p in the

general vicinity of .06 to .08, he will think that (75,4) is the worst of all

the rules and that (75,0) may be the best. What is more, he will reason
in this way whether or not he thinkshe “‘really knows”’ the exact long-run

frequencies with which the operator would produce setups with each

possible p—evenif his frequency data were extremely scanty, no sensible

businessman would choose the same curveif the setup had been made by
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a skilled operator with 10 years’ experience that he would choose if
the setup had been made by a recently promoted sweeper with a bad
hangover.

Let us therefore evaluate the five decision rules depicted in Figure
40.1 using the weights which we havepreviously used in discussing this
example. The evaluation of the rules (75,0) and (75,4) is shown in

Table 40.5, the weights or “prior probabilities’? being taken from

 

 

 

 

 

Table 40.5
Computation of Unconditional Expected Terminal Loss

Event Probability Loss of act (75,0) Loas of act (75,4)

P Po(p) was wg:
Conditional Expected Conditional Expected

.O1 7 $3 .17 $2.22 $ .01 $ .01

.05 1 .04 0 1.35 .14

.15 1 0 0 17 .02

.25 wl 0 0 0 0

1.0 $2.22 $ .17

Table 40.6
Unconditional Expected Terminal Losses

Act Loss

75, 0 $2.22
75, 1 TA
75, 2 22
75, 3 .13
75, 4 17

Table 22.2 and the conditional expected terminal losses being read from

Figure 40.1. The unconditional expected terminal losses found by

evaluating all five rules in this way are summarized in Table 40.6, where

we see that the best rule is (75,3). Because the manufacturer attaches so

much weight to the way in which the rule will perform if p = .01 and so little

to what will happen if p has high values, the best rule 1s one which has quite

low conditional losses for p below the break-even value even though this entarls

fairly high conditional losses for p above the break-even value.

Observe that the loss of the rule (75,0) is very substantially higher

than that of any of the other rules, and remember that setting up the

null hypothesis p > .04 and testing it at either of the conventional levels

-05 or .1 amounts to adopting the rule (75,0). The straight nonstatis-

tical, common-sense procedure of comparing the sample fraction defective

with the break-even value .04 would give much better results. Since

245 < .04, 345 = .04 exactly, and 445, > .04, this procedure would
amount to choosing either the rule (75,2) or the rule (75,3), and the

latter rule is in fact optimal.
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Finally, let us observe that the rule which the manufacturer has
chosen in this way will always lead to exactly the same terminal act that
the manufacturer would have chosen if he had analyzed the problem by
the method used in ouroriginal discussion of this example in Chapter 22.

Remembering that we are assuming for the moment that the sample size

n = 75 is predetermined and that the manufacturer’s only problem is to
decide what terminal act to choose for each possible sample outcome,let
us take the outcome r = 1 as an example and apply the method of
Chapter 22 to choose the proper terminal act. In the first five columns

of Table 40.7 the posterior distribution of # is computed following the

model of Table 22.4, and in the remainder of Table 40.7 the posterior

losses of the two acts are computed following the model of Table 22.9.

 

 

 

Table 40.7

Lossif null hy- Loss if null hy-
pothesis is pothesisis

p Pop) Ps =1\p) PH =1,p) Pil) accepted rejected

Condi- Condi-
tional Expected tional Expected

01 7 .3565 . 2496 .967 $6 $5 .80 $ 0 $0
.05 1 .0843 .0084 .033 0 0 2 .07
15 1 .0001 .0000 .000 0 0 22 .00

25 1 .0000 .0000 .000 0 0 42 .00

1.0 . 2580 1.000 $5 .80 $ .07

 

Because the expected loss of rejecting the null hypothesis is less than the
expected loss of accepting it, the null hypothesis should be rejected—and
when r = 1 this is exactly what should be done under the optimal
‘““decision rule” (75,3).

Because the optimal rule (75,3) tells the manufacturer what to do for

all possible sample outcomes rather than just one particular sample out-
come,selection of this rule is actually equivalent to the method used in

Section 33.3.1 to analyze a decision to take a sample of specified size and

then act optimally whatever value of 7 is observed in the sample. One
method has technical advantages in one situation, the other in another,

but what is really important is to realize that

No matter whether we formally compute posterior probabilities and

posterior losses or set up decision rules and look at their possible
consequences, a reasonable choice among possible acts under uncer-

tainty can be madeonly if we first decide how much weight we wish
to attach to each of the possible values of the cost-determining
parameter or basic random variable.
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40.2.2 Packaging Example

While the statistical form of the setup problem which wehavejust

discussed is perfectly typical of the great majority of two-action problems
to which tests of significance are commonly applied, the circumstances

surrounding the problem are atypical in that the manufacturer had some

fairly solid prior information on the value of the parameter p. The

packaging example, however, is completely typical in every respect—the

prior information is of the vaguest sort and two reasonable men who had
examined the two packages might disagree totally on the odds at which

they were willing to bet that the new package would increase sales by any

given amount, i.e. on the weights they assigned to the various possible

values of » = &.

If, however, we remember that when weuse these weights to compute
the unconditional expected loss of a decision rule we are simply computing

the weighted-average height of the corresponding curve in Figure 40.2,

we can see immediately that virtually all the weight would have to be

attached to values of » below the break-even value .019 to justify use of a

decision rule based on any of the values conventionally chosen for a—1i.e.

to justify testing the significance of the observed Z at any of the conven-

tional levels. We may well ask why any reasonable businessman who

felt. virtually certain that the new package was no good would ever have
spent money testing it in the first place.

If on the other hand the businessman feels that all values of » in a

fairly wide region around .019 are moreorless equally likely, then regard-

less of exactly how he distributes his weights it is perfectly clear from

Figure 40.2 that the curve for a = .5 is going to have a much lower

weighted-average height than any of the other curves in thefigure. If

in addition we observe that as a departs from .5 the height of the higher
hump increases much more rapidly than the height of the lower hump
decreases, we can see that under any halfway reasonable distribution of

weights the best decision rule is going to correspond to an a@ which is

nearly if not exactly equal to .5. Remembering that a rule with a = .5

says simply that if £ > .019 we should act as if » > .019 and that if

£ < .019 we should act as if » < .019, we see that tests of significance are

completely unnecessary in this problem if they are made at level .5 and
definitely harmful if they are made at any level which is substantially
different from .65.

The point can be made even clearer if we actually compute the

average heights of the curves in Figure 40.2. This can easily be done
numerically for any distribution of weights by taking the weights for 10

or 20 evenly spaced values of yu, multiplying the height of the loss curve
at each p by the weight of that », adding the products, and dividing by

the sum of the weights; but when the distribution of the weights can be
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described by a Normal curve the weighted average can be obtainedstill
more easily by formula. Letting Eo(Z) and oo(f#) denote the mean and

standard deviation of the Normal distribution of weights, we first com-
pute the quantities

 

 

z\ o§(f)o(41) = oo(f) agea)+ a8)’

Dy = — Eo(A)| De = [Me — Ho(@)|
SoH o(£3)

_1 —
To = Sam)’ | 1s one) »
_ Lo Eo(@) + Let, _ FE, — Eo(f).

E, = Ti+ i, ) A= 5)

The average height of any loss curve—i.e., the unconditional expected

termina] loss of any decision rule (n, £.)—is then given by

koo(@)G(Do) — ko(#;)(Px(4) — De Py(a@ > A)] tf Eno() < we,
Kuoo(@)G(Do) — ko(E1)[Py(A) — Dz Px(@ < A) tf Ko) > ue,

where k,; is the terminal loss constant (Section 30.4.2) which in our

example has the value $1,056,000. Notice that on the assumption that

pw = & the first term in both formulas is the expected loss of optimal
terminal action without sampling (cf. Section 34.4.1). The second term,

then, is the reduction in terminal loss which a decision rule with arbitrary
n and €, can be ‘‘expected”’ to produce; it is the expected value of the

sample information as used under the given decision rule.

As an example, let us compute the weighted-average or uncondi-

tional expected terminal loss of the rule (100,+.309)—the expected

terminal loss of testing at the .01 level—on the assumption that the
marketer assigns to the possible values of » = & the Normal distribution

of weights with mean and standard deviation

Eo(@) = 4+.146, oo(ft) = .310,

which we assumed in our original discussion of this example (Section

32.1.3). Wefirst compute

 

 

  

.o10?o(£,) = .310 Biot + 1.25*/100 ~ 287,

{019 — 146] _ 1.019 — .146}
Do = “aig FAL, Dae =gg =+
1 — 100 |



40.2.2 Decision Rules and Expected Loss 635

_ 10.4 X .146 + 64.0 K .309 _
E, = 10.4 + 64.0 = +.286,

+286 — .146
287

 

A = -+.49,

Because E,(f@) = +.146 is greater than yw, = +.019 we then use the

second formula for the unconditional expected terminal loss and compute

G(.41) = .2270,
P’.(+.49) = .3538, Py(a < +.49) = .6879,
k,.310 X .2270 — ky.287(.3538 — .44 X .6879)

= $1,056,000 X .0704 — $1,056,000 x .0147
= $74,300 — $15,500 = $58,800.

The student will observe that the average or unconditional expected

terminal loss of this rule is very substantially greater than the greatest

conditional terminal loss of the rule with a = .5, which is shown by Figure

40.2 to be about $23,000. The average or unconditional expected termi-

nal loss of that rule is only $8700, or less than a sixth of the loss under

the rule with a = .01.
The Optimal £,.. The best value for , under any given Normaldis-

tribution of weights—the value of Z, which gives the lowest possible

average or unconditional loss—can be shown by the calculus to be

gx — Let Lom = fo Ko(@)
c I;
 

Whenthis algebraic expression is substituted in the formula for E£,, we
find that EH, becomes equal to ws; and since H, is simply the mean of the
posterior distribution of @ given 2 = Z, we see that adopting a “‘statistical

decision rule”’ with optimal Z, is exactly equivalent to deciding to choose
the new package if Ei(f#) > ws, the old if Ei(z) < mw». On the assumption

that » = &, this result is identical to the result of our original discussion

of this example, where we found that the new package should be chosen if

E,(&) > &, the old package if Ei(£) < &,.
If we go on to substitute uw, for EH. in the formula for A, the absolute

value of A becomes equal to Dz and both loss formulas reduce to

woo(@)G(Do) — keo(E)G(Da).

If u is assumed equal to &, this result is identical to the formula derived

in Part Four of the course for the expected terminal loss of a decision to

take a sample of size n and then choose whatever terminal act is optimal

under the distribution of & as revised to take account of the information

obtained from the sample (cf. Section 34.4.3). In our example the best
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value of z, is

« . 744 X 019 — 10.4 X .146
ve = 64.0
 = — 002;

_and the corresponding unconditional expected loss is found by computing

G(Dz) = G(4+.44) = .2169,
kz.310 X .2270 — ky.287 X .2169

= $1,056,000 X .0704 — $1,056,000 x .0623
= $74,300 — $65,800 = $8,500.

Out of curiosity we can find the a of the optimal rule (100, —.002) by

computing

P(£ > —.002|n = .019) = Pw (2 > OE) = 57.

Because the manufacturer believes that the “‘prior’’ evidence actually favors

the alternate hypothesis » > .019, he should ‘“‘test”’ the “‘null’’ hypothesis

at a level even higher than .5. Actually, however, the gain obtained by

testing at the strictly optimal .57 level rather than at the common-sense
.5 level is only $8700 — $8500 = $200 andis inconsequential in compari-
son with the gain of $57,600 — $8,700 = $48,900 obtained by testing at
the .5 level rather than at the conventional .01 level. The samesort of

thing will be true, furthermore, whenever the conditional costs of the

various possible terminal acts are linear (so that the posterior expected

cost of any act depends only on the posterior mean and not on the whole

posterior distribution) and the prior information Jis slight in comparison

with the sample information J; (so that the posterior meanis nearly if not

exactly equal to the sample mean 2).

Whenever (1) the conditional costs of the possible terminal acts are

linear functions of the basic random variable and (2) virtually all the

available information on the value of this random variable is sum-

marized by the mean of a sample, commonsenseis really all that is
needed to choose the best terminal act.

The conditional costs of the terminal act are nearly if not exactly

linear in the great majority of the two-action problems encountered in
practical business life, and in all such problems the theory of probability

should be reserved for the two situations in whichit is really needed:

1. When the sample evidence may be contrary to somereally sub-

stantial prior evidence and the two must be carefully weighed against
each other before choosing a terminal act;

2. Whenit is necessary to determine the propersize for a sample or

to decide whether a sample or another sample should be taken before any
terminal act is chosen.
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40.3 Expected Total Loss and Optimal Sample Size

40.8.1 Conditional Expected Total Loss

Although curves which show conditional expected terminal loss make
it easy to see the implications of a numberof decision rules all of which

involve the same sample size, they are not really adequate for comparison

of rules with different sample sizes because they give no explicit recogni-

tion to the greater cost of a larger sample. What the businessmanreally

wants to consider in such problemsis the expected value of the sum of
the terminal loss and the sampling cost to which each decision rule exposes

him for any given value of the parameter under test. This sum will be

referred to as the conditional expected total loss of a given rule since (as we

saw in Section 33.4) money spent on sampling can be regarded as a loss

just as accurately as it can be regarded asa cost.
To explain the construction and use of curves of conditional expected

total loss we return to our packaging example, but because we have

already seen that “testing” at a traditional level such as .05is illogical

in such a problem weshall not work with the rules originally depicted in

Figure 39.6. Instead, we shall consider a number of ‘“common-sense”’
rules all of which have =, = py (i.e. which test at the .5 level). Curves of

conditional probabilities of error for rules of this sort with a number of

different sample sizes n are shown in Figure 40.3.
Wealready know how to compute the conditional expected terminal

loss for any given » underanysuchrule, so that to obtain the conditional

expectedfofal loss all that we have to do is add on the cost of sampling for

that ». In somesituations the sampling cost or loss will actually depend

on the value of p», but in our present example it is independent of » and

depends only on n; we assumethat it is given by the formula

Sampling cost = $30 n.

This means that a loss characteristic showing conditional expected total
loss under any rule can be obtained by computing the conditional expected

terminal loss for each p in exactly the same way that we did in Section
40.1.2 and then simply adding on the $30 7 cost of sampling. Curves
computed in this way are shownin Figure 40.4 for all the rules originally

depicted in Figure 40.3.

40.8.2 Unconditional Expected Total Loss

There is only one obvious conclusion which can be drawn by mere
inspection of the curves in Figure 40.4: the curve which describes the rule

(500,+.019) is higher for all values of » = £ than the curve for the rule

(347,+.019), and therefore the rule (500,+.019) can be immediately
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eliminated as a contender. With this sole exception, however, compari-
son of any two curves in the figure shows that

The larger sample is necessarily worse than the smaller one for very
low and very high values of » = & (where even the smaller sampleis
almost sure to lead to a correct decision) and for values of » near the

break-even value (where it does not make much difference which
terminal act is chosen); the larger sample is better than the smaller

for values of » which are far enough from ys to make a wrong decision
result in a fairly serious loss and which are nevertheless close enough

to », to makeit likely that a small sample will lead to the wrong
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Once we have madethis observation,it 1s clear that the only rational
way of choosing among the curves of total loss in Figure 40.4 is to con-

sider the average height of each of the curves, just as this was the only
rational way of choosing among the curves of terminal loss in Figures

40.1 and 40.2. This time, however, the businessman must really use
careful judgment in choosing the weights which he wants to use in com-

puting these averages. When sample size was predetermined and choice
of a decision rule meant simply choice of <,, we could argue as we did in

Section 40.2.2 that any fairly broad distribution of weights would lead to
just about the same result because terminal loss was virtually 0 outside
the interval » = —.3 tou = +.6for all rules (cf. Figure 40.2) and there-
fore any distribution which assigned roughly equal weights within this
interval would lead to ranking the curves in the same order. In our

present problem, on the contrary, the width of the prior distribution of 7 is
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#. really crucial factor in choosing the sample size. If most of the weight

is placed on values of » in the middle range of those shown in Figure 40.4,
the sample size will be large because a large sample is needed to give ade-
quate protection against terminal loss. If most of the weight is placed

on values of » below and above those shown in Figure 40.4, the business-

man is saying in effect that while he has no goodidea at all of the exact

value of u,he is virtually sure that it is so far from pu, that a very small
sample is almost certain to lead to the right terminal decision and there-
fore that the cost of a large sample will almost certainly be wasted.

‘As for the procedures by which the average heights of curves like
those in Figure 40.4 can actually be computed, only one point need be
added to the discussion in Section 40.2.2. When sampling cost depends
only: on 7 and not on y, the average height of a curve of conditional
expected total loss will be simply the average height of the corresponding
curve of conditional expected terminal loss plus the fixed cost of sampling.

When this is true and when in addition the conditional terminal costs are
linear, the sampling distribution of # is Normal with known variance,

and the prior distribution of # is Normal, the unconditional total loss of

any rule can be found by adding the cost of sampling to the uncondi-

tional terminal loss as given by the formulas in Section 40.2.2 and the
unconditional total loss of a rule in which £, 1s optimal for the given n can

be found from the simpler formula

koo()G(Do) — kio(E1s)G(Dz) + Ka + ken.

On the assumption that n = & this latter result is identical to the result

obtained in Section 34.4.3; and it follows that the sample size which pro-
duces the decision rule with the lowest unconditional total loss can be

found by the method described in Chapter 35.

40.4 Minimax Decision Rules; Maximum Admissible

Sample Size

Because sample size 7s sensitive to both the mean and the standard

deviation of the distribution assigned to the basic random variable before

the sample is taken, the person responsible for assigning this distribution
may well feel unhappy about his responsibility. In somesituations the

mental agony which really careful assessment of a prior distribution

requires can be avoided by showing that the results of using one or the

other of two ‘“‘rule-of-thumb”’ sample sizes will be completely satisfac-

tory even if not strictly optimal.

40.4.1 Minimax Decision Rules

The minimax decision rule for a problem with any given set of costs

is defined as the decision rule under which the worst conditional expected



40.4.1 Decision Rules and Expected Loss 641

total loss is less than under any other rule.t It can be proved that in

problems where

1. The conditional terminalcosts are linear functionsof y,

2. The cost of samplingis a linear function of n,
3. The sampling distribution of # is Norma] with variance o?/n,
4. The value of o? is known,

the minimax rule is to set =. = ws» and take a sampleof size

3 k 2

Nminimax = .1933 v( ‘e °

In our packaging example

 

 

 

3 2

Nminimax = -1933 \(81,056,000 x en) = .1933 &K 1246 = 241.

Referring back to Figure 40.4 and looking only at the peaks of each curve

the student can see that the height of the peaks decreases as n increases

from 50 to 241 but then increases as n increases further. That %, must

be set equal to us in a Minimaxrule is obvious, since moving #, away from

the break-even value with sample size held fixed lowers one peak of the

curve but raises the other (cf. Figure 40.2) and therefore increases the

worst conditional terminal loss without reducing the sampling cost.
The minimaxdecision rule will actually be optimal if the businessman

assigns probability 14 to each of the two values
 3
ko?

ke
 w= pp + 1.710

and 0 probability to all other values of u,{ and underthis prior distribu-

+ More accurately, this is the definition of the minimax-loss or minimax-regret

decision rule. A minimax-cost rule can also be defined as the rule under which the

worst conditional cost is minimized, but such rules often result in nonsensical con-

clusions and are of no practicalinterest. In our machine-setup example, the minimax-
cost principle says that because the cost of readjustment is sure to be $8 while the cost
of defectives can be as high as $50 if the machineis not readjusted, it should be read-

justed evenif the manufacturer has taken a sample of a million pieces without finding a

single defective.
t+ In our example, the two points are
 

3 1.25?
K = “w, + 1.710 4/330 x $1,056,000 = ws + 1.710 X .0354

= +.019 + .061 = +.080,

wp = +.019 — .061 = —.042,

and these are the locations of the two peaks of the curve for n = 241 in Figure 40.4.
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tion the weighted average height of the loss curve or unconditional total
loss will be equal to the height of the curve at its peak. This height can
be found from the formula

Minimaxtotal loss = .580 +/(k.c)*k,

without actually drawing the entire loss curve; in our example

 

580 ~/($1,056,000 X 1.25)? X $30
580 X $37,400 = $21,700.

Minimax total loss

Actually, of course, we are not interested in the prior distribution

under which the minimaxruleis strictly optimal or in the unconditional
loss under this distribution. What weare really interested in is the fact

that the average height of a curve cannot be greater than the highest
single point on the curve, which meansthat the unconditional loss of the
minimax rule cannot exceed the value given by the last formula under

any conceivable prior distribution. This means that in problems where

(1) the minimaxrule is easy to find and (2) the minimaz loss is very small,
it may not be worth the effort required to improve on the minimaxrule.

40.4.2. Maximum Admissible Sample Size

The maximum admissible samplesize is the largest sample size which

is optimal for any conceivable prior distribution given the costs or losses
of the particular problem at hand. In two-action problems with the four

characteristics listed in Section 40.4.1 it can be proved that a prior dis-

tribution which assigns probability 44 to each of the two values

3 *lkso?
By + Vie Va|

3 Ikea?

ke

= l

 

 wy + 2.681

leads to a larger optimal sample size than any otherprior distribution and

that this sample size is

a= Vaca \(2)= 2702 (2)
In our packaging example,

Nmax = .2182 XK 1246 = 347

and the two values of » which must receive equal probability if this
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sample size is to be really optimal are

B= pw + 2.681 K .0354

= +.019 + .095 = +.114,

w= +.019 — 095 = —.076.

Looking at Figure 40.4 the student can see that these two points are near

the centers of the two very narrow intervals within which a sample size
of 347 does lead to lower conditional total loss than even the minimax
sample size 241.

Weare of course not really interested in the prior distribution for

which this maximum admissible sample size is actually optimal. What
is Interesting is simply thefact that if we take a sample of this size we can

feel absolutely sure that our sample is large enough; and in somesituations

it may turn out that the cost of such a sample is so low that it is not
worth the trouble of deciding just how much smaller the sample really

ought to be. This is scarcely true in our example, however, since a

sample of size 347 will cost $30 XK 347 = $10,400 andit is certainly worth
considerable effort to see whether this expenditure could be substantially
reduced.

PROBLEMS

1. Draw curves of conditional expected terminal loss for the decision rules of
Chapter 39, Problems la andb.

2. Use the method of Table 40.5 to compute the unconditional expected terminal

loss of the rules (10,0) and (10,1) for the setup problem and compare your results
with Table 33.3 of Section 33.3.1.

3. Draw a curve of conditional probability of error and a curve of conditional
expected terminal loss for the decision rule (100,—.002) applied to the packaging
example.

4. Verify the assertion in Section 40.2.2 that the unconditional terminal loss of

testing at the .5 level in the packaging exampleis $8700.



CHAPTER 41

Tests of Significance as Sequential Decision Procedures

In the last two chapters we have described and evaluated the use of tests

of significance in situations where a choice between two terminal acts must

be made after just one sample has been taken. Weshall now examine

the way in which these tests are used whenit is not necessary to reach a
terminal decision immediately and therefore the first question to answer

after a sample has been taken is not which terminal act is better but

whether another sample should be taken before definitely deciding on
either of the terminal acts.

41.1 The Classical Theory

The classical approach to the problem of deciding whether or not to
postpone terminalaction after a sample has already been takenis identical

in spirit to the classical approach to the problem of actually choosing a

terminal act after a sample has already been taken. In both cases the

choice is to be madebyselecting a decision rule before even looking at the
sample evidence which is actually at hand and then using this evidence
according to the chosen rule.

The only classical decision rules which we have studied thusfar, and

the only ones which are related to tests of significance, are strictly szngle-
sample decision procedures in the sense of Section 33.1.1: they specify

the size of the sample and the terminal act to be taken for each possible

outcome; they do not allow explicitly for postponement of terminal

action. If our present problem is to be handled within the framework of

this theory, the only way that it can be handledis by placing ourselves in

the position in which we werebefore the present sample wasactually taken

and deciding what rule should have been chosen to give adequate control

of errors of both kinds for all values of the parameter being tested.
After this has been decided, we can proceed as follows.

1. If the sample actually taken is smaller than the sample called for

by the chosen decision rule, terminal action should be postponed
until the sample has been built up to the required size by taking
additional observations.

644
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2. If the sample actually takenis af least equal in size to the sample
called for by the chosen rule, a terminal act should be chosen

immediately in the way described in Section 39.3.3.

Itis only in case 2 that a test of significance ts justified in the classical theory,

which treats testing the significance of an observed & at level a as simply

an alternative computational device for comparing this with the Z, of a

decision rule which limits the maximum conditional probability of an

error of the first kind to the specified a. It cannot be too strongly

emphasized that

In the classical theory, a test ofsignificance is not a procedure for

deciding whetheror not to postpone terminal action; it is a procedure

for choosing between terminal acts.

Nowit is clearly a great nuisance to have to go through the procedure

of determining what sample size is adequate for a terminal decision before

being allowed to test the significance of a sample whichis already at hand.

It would be much nicer if we could compute the significance of the

observed sample first, reject the null hypothesis if this significance is

better (numerically smaller) than the required a, and be obliged to worry

about errors of the second kind (accepting a false null hypothesis) only if

the significance of the sample does not permit us to reject the null hypoth-

esis immediately. Such a procedure is strictly illegitimate in classical

theory, however, because it completely fatls to fulfill the objective of ensuring

that no conditional probability of an error of the first kind exceeds the speci-

fied a.

The reason can easily be seen by returning to the packaging example

discussed in the last two chapters and supposing that uw in fact has the

break-even value +.019 so that the null hypothesis is in fact true. If a
first sample is taken and tested at any specified a, there will be probability

a that this first test will result in erroneousrejection of the null hypothesis;

and if failure to reject on thefirst test is followed by another sample and

anothertest rather than by immediate acceptance of the null hypothesis,

then obviously there will be an additional risk that this second test will

result in erroneous rejection of the null hypothesis and thetotal risk of an

error of the first kind will be greater than a.

41.2 The Traditional Practice

Tests of significance were used long before the currently classical

theory of such tests was developed, and the original purpose of these tests

was entirely different from their purpose according to the classical theory.

This original purpose was to decide whether or not the sample evidence
already at hand was or was not adequate to reject some null hypothesis,



646 Objectivist Statistics 41.2

and the alternative to rejection of the null hypothesis was not acceptance
of the null hypothesis—it was ‘‘suspension of judgment.” Since ‘‘sus-
pension of judgment” meansidentically the same thing as deciding to
collect more information before reaching any terminal decision, this
amounts to saying that tests of significance were originally conceived of as
sequential rather than single-sample decision procedures; and

Although tests of significance are today almost always justified in
terms of the classical theory of single-sample decision rules, they are
actually used far more often as sequential decision rules.

An experimenter who has obtained data which support some interesting
hypothesis may withhold publication because the data are not “statistic-
ally significant,”’ but he will rarely conclude from this fact that he must
now and forever discard this hypothesis from his mind as the classical

theory would require him to do. On the contrary, he will continue to
regard his hypothesis as probable though “not proved,” and if he can

obtain the required funds he will almost certainly go on to conduct

another experiment to obtain additional evidence in its support.
How this additional evidence is to be used seems to be a matter of

dispute amongstatisticians. Common sense would seem to say that any

decision should be reached by looking at all the evidence which is avail-
able when the decision is made; and this would seem to imply veryclearly

that if a test of significance is to be made after a second sample has been

taken, this test should be applied, not tothe second sample byitself, but to

the pooled sample formed by combining all the observations made to

date. This was in fact the generally accepted practice before theclassical

theory of tests of significance became prevalent, but some statisticians
who adhere to theclassical theory hold that the second sample should be

tested separately. Actually of course neither procedureis legitimate in

termsof the classical theory because, as we saw at the end of the previous

section, the conditional probabilities of wrong decisions and particularly

the maximum conditional probability of an error of the first kind are
unknown and uncontrolled under both procedures.

If it were impossible to compute the true conditional probabilities

of wrong decisions under a sequential decision procedure, the use of tests
of significance as sequential procedures might be defended as a device for
securing at least order-of-magnitude control of these conditional proba-

bilities. In fact, however, it is perfectly possible to compute the exact

conditional probabilities of wrong decisions under any sequential decision
rule and thus to describe the performance of sequential rules by curves

of exactly the same kind that we used in Figures 39.1, 39.2, 39.4, 39.6,
and 40.3 to describe the performance of single-sample rules. Suppose,

for example, that the marketer of the example discussed in the last two
chapters proposes to proceed as follows:
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Take a sample ofsize n; = 100 and definitely accept thenew package
if the mean of this sample %, > +.200 or definitely reject it if

%, < —.200. If, however, —.200 < % < +.200, take a second

sample of size ne = 100 and accept the new package if the mean of

this second sample #2, > +.019, reject it if 7. < +.019.

The conditional probability given any specified » that this rule will lead to

rejection of the new packageis the swm of (1) the probability that the new

package will be rejected on the basis of the first sample, plus (2) the joint

probability that the first sample will lead to taking a second sample and

this second sample will lead to rejection of the new package:

P(# < —2.00|u) + P(—.200 < 4, < +.200|u) X P(4. < +.019|x).

The results of computations of this kind or their equivalent are

actually used in selecting decision rules or ‘“‘sampling plans” for use in

quality control. In other areas, however—and particularly in “scien-

tific’? work where the consequence of a wrong decision will presum-

ably be much more serious than the consequence of erroneous acceptance

or rejection of a single lot of nuts and bolts—tests of significance continue

to be used as the standard procedurefor deciding whether or not judgment

should be suspended and more evidence collected before a terminal

decision is reached despite the fact that this means that the conditional

probabilities of wrong terminal acts are completely unknown.

41.3 The Common Sense of Tests of Significance

It would seem quite justified to conclude that very few practicing

statisticians really believe that decisions should be reached by looking at

the conditional probabilities of wrong terminal decisions under various

decision rules, and anyone whohaseveractually tried to choose a decision

rule by looking at such conditional probabilities may well sympathize

with this attitude. The use whichis actually made of tests of significance

must be explained in some other way, and we suggest that:the explanation

is this:

Most users of tests of significance are intuitively interpreting

statistical significance in a way which accordsperfectly with Bayesian

theory but not at all with the classical theory by which they formally

justify their procedures.

A person responsible for a decision does not care about the conditional
probabilities of making the wrong decision given each andevery possible

value of the basic random variable, but he may be very much interested

in the unconditional probability that the best terminal decision that he can

make in the light of the evidence currently available will turn out to be wrong
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after the event. If this probability is very small, he will want to make an
immediate terminal decision; if it is large, he will want to collect more
information before making any terminal decision; and we shall now see
that under certain conditions this probability or a very good approxi-
mation to it 1s given by the ‘‘statistical significance” of a sample.

41.3.1 Statistical Significance and Posterior Probability When the
Sampling Distribution Is Normal

If before taking any sample the marketer of our packaging example
assigns to the basic random variable 7 a Normal probability distribution
with mean Eo(f) and ‘“‘information” I) = 1/03(#), then after the sample
has been taken and % computedheis logically obliged (Section 30.3) to
replace his original distribution of 7 by a new Normaldistribution with
mean and information

Io Eo( [3%
Ei(@) == aa *

I, = Jo>+ 1s.

 

If, however, he feels that his prior information J» is negligible in com-

parison with the information I; provided by the sample—i.e., if the

variance of his prior distribution is very large compared with the sampling
variance of #—then (Section 30.3.3) he will make no appreciable error by
treating J as if it were flatly 0 and assigning to @ a Normaldistribution
with mean and information

F(Z) = z,

Ii = Is,

le. with mean equal to the observed Z and standard deviation equal to the
standard deviation of £.

In Figure 41.1 we show two distributions which are conceptually

entirely different: the upper oneis the conditional distribution of the sta-

tistic £ given ff = pw»; the lower oneis the posterior distribution of the basic

random variable i given the observed statistic . In the upper distribution

the shaded tail represents P(4 > %|u,), the statistical significance of the

observed £ as defined in Section 39.3.3. In the lower distribution the
shaded tail represents P(i < yw), the posterior probability of error if we act

on the assumption that ~ > uw, in accordance with the available evidence.

Since both distributions have the same standard deviation andsinceall

Normal distributions are symmetric, we see that

When prior information on the basic random variable is negligible
in comparison with the information obtained from a Normally dis-

tributed sample mean, the unconditional posterior probability that
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u is not on the samesideof us as % is numerically equalto thestatistical
significance of the observed sample mean.

Let us work out these probabilities numerically using the data

assumed in our discussion of this example in Chapters 39 and 40:

us = +.019, % = +.157, o(f) = .125.

To find the statistical significance oftheobserved £ we compute

E— iw  +.157 — .019 _

a(f) .125 = 1.10,
P(f > Z| = ws) = Pw(@ > +1.10) =

To find the posterior probability that ~ is below up, we compute

— Biff) — we —F_ +.019 — .157

  

   

 

     
 

oi) o(f) 125 = —110,
P(a < m) = Py(a < —1.10) =

Conditional
distribution ork
given ii =u,

27(f=)

KB
° observed volue X ¥

   
Posterior Orstribution
ofi giventhe
observed x when
lp = 0

Plii<puy| ¥=¥)

 
] .

Figure41.1. Statistical significance and posterior probability.

Observe that these computations have no relevance whatever to.‘the
problem of deciding which terminal act is better given the existing

information—because the sample evidence favors the new package and
prior evidenceis negligible, it is obvious that the new package should be

chosen if a definite choiceis to be made at all. What the computations
do show that is of real interest is that if the new packageis definitely
chosen now, there is probability roughly .14 that this decision will be
proved wrong after the event, andtherefore it may pay to collect: more

information before definitely choosing either package,
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. To see how large an error has been made in these computations by
neglecting the marketer’s prior information, which was represented by a
Normal distribution with mean and standard deviation

  

Ko(z) = +.146, oo(fi) = .310,

we compute

, ee on 1 | _
h=ht+kh= 3102 + [3953 — 10.4 + 64.0 = 74.4,

1
 oR) = aay = .116,
10.4 *.146 + 64.0 X .157
 Ei(@i) = 744 = .155,

P(i < ws) = Py(@ < —1.17) = .12.

Consideration of the prior evidence thus makes the marketera little less

uncertain about the rightness of adopting the new package, but the
difference is small. The marketerstill has some reason to think that it
might be better to collect more evidence before reaching any terminal
decision.

“Symmetric” Tests of Significance. Suppose next that instead of
yielding a sample mean # = +.157 which was .157 — .019 = .138 unit
above the break-even value, the marketer’s sample had yielded a mean

Z = —.119 which was —.119 — .019 = —.138 unit below the break-even

value. If the marketer considers his prior information to be negligible
in comparison with the sample information, then it is completely obvious

(1) that the better immediate choice would be the old package and (2)

that the marketer’s uncertainty about the correctness of this choice

should be exactly the sameas in the original example. In other words,

the probability that the better act under uncertainty will actually be the

wrong act 1s now

Pi > w/z = —.138),

and if prior information is discarded this posterior probability will be

numerically equal to the conditional probability

P(E < —.188|y = ws) = .14.

This conditional probability is the statistical significance of the

observed sample mean against the hypothesis that py is greater than mw
rather than the original null hypothesis that u is less than yw, and it is thus

quite clear that we should noé select one of the two hypotheses as the
“a - - ae a
null” hypothesis and then compute the statistical significance of the
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sample evidence against this arbitrarily selected null hypothesis however

the sample comes out. Jn commonsense,

Statistical significance is a more or less accurate measure of our

uncertainty about the correctness of whichever hypothesis seems more

likely to be true, and statistical significance should be computed so
that it does measure this uncertainty.

In problems of the kind weare now studying,i.e. inproblems where

what we want to know is whether some quantity is above or below a

break-even value, this means that the two hypotheses must be treated
symmetrically—neither one should besingled out as a “‘null’’ hypothesis.
The probability that the terminal act which looks better in the light of

the sample information is actually wrong is always given by

Py(a@ > D3),

where D,is the standardized absolute difference between p, and E1(f):

_ [ue — Ei@@)[.
Di = o3(ji)

The statistical significance of the sample should similarly be defined by

looking at the standardized absolute difference between the observed 7

and Mo,

|Z — pol
a(Z)ul =

and computing the conditional probability

Py(a@ > ul).

41.8.2 Other Sampling Distributions

A general discussion of the relation between posterior probability

and statistical significance in situations where the test statistic 1s not

Normally distributed is beyond the scope of this course, but the fact that
the two will be nearly equal when prior information is slight relative to
sample information can beillustrated rather than proved by lookimg at

the case where the basic random variable is the parameter jof a Bernoulli
process and therefore the test statistic 7 has a binomial] distribution.

In this case 6 must have a value between 0 and 1 inclusive, and a
person whofeels that he knew virtually nothing about the value of p
before the sample was taken may decide to adopt a prior distribution

which asserts that all values between 0 and 1 were equally likely before

the sample was taken. Given this prior distribution, the posterzor prob-
ability to be assigned to the hypothesis that# is below any specified value

pp after observing r successes in a sample of n can be shown to be numer-
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ically equal to the binomial probability

PAF > r + 1\n + 1, pr).

This is not strictly equal to the probability

Pi(F > r|n, po)

which measures the statistical significance of the statistic r against the

hypothesis that # < p,, but if both r and n are reasonably large the

two probabilities will be nearly even though not exactly equal. Taking

Dp = .5, r = 55, n = 100 as an example, we find that the statistical
significance is .18 whereas the posterior probability that # < p, is

.16. If 65 successes had been observed rather than 55, the significance
would have been .0018 while the posterior probability would have been
.0013.

41.8.8 The Proper Level for a Sequential Test of Significance

When a sampleis taken simply in order to obtain backgroundinfor-
mation in some problem area and no specific terminal acts have been
defined, an exact or even a rough calculation of the posterior probability

that the less likely hypothesis is in fact true is often a very adequate basis
for deciding whether or not more sample evidence should be collected.

Suppose, for example, that in order to obtain basic information for use in
redesigning his package our marketer had conducted a consumer survey
in which he showed 100 housewives two packages, one with a red label

and one with a green label, and had simply asked each housewife which
color she preferred; and suppose that 65 per cent of the respondents had

preferred the red label. We have already seen that the statistical sig-
nificance of this sample result is

P,(? > 65|n = 100, p = .5) = .0018,

and we have also seen that unless the marketer had strong convictions
before the sample was taken he can immediately conclude that there are
roughly only one or two chances in a thousand that an infinitely large

sample taken in this same way would show a majority preference for the

green label. This probability is so low that it strongly indicates that
further sampling onthis particular question in this particular way would

be a waste of money, and the whole inquiry is so loosely related to the

ultimate choice of a specific package and the effect of this specific package
on sales that computation of posterior costs or losses would be a waste of

time and effort. -

Even when terminal acts are well defined and conditional costs and
losses are known, a simple computation of statistical significance will

often indicate very clearly that further sampling is unnecessary. Sup-
pose, for example, that the sample mean in our original packaging example
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had indicated that the new package would increase sales by

z= +.500

ounce per store per month. Thestatistical significance of this statistic
is

.500 — .019
125

and aS soon as we see this number we can conclude that no matter what
halfway reasonable prior distribution the marketer assigns to @ the

postertor probability that # 1s less than yw, will be totally negligible.

Given this sample result, the marketer could immediately decide that
further sampling was unnecessary without going to the troubleof assign-

ing a specific prior distribution to # and then computing the exact pos-
terior distribution of # and the posterior expected loss of adopting the
new package.

Observe, however, that it is only when the statistical significance of
the observed sample is an extremely small numberthat this informal kind

of reasoning will suffice if substantial losses may be incurred by choosing
the wrong terminal act. If in such a situation there 1s any real doubt
about the true value of @, we must bring costs explicitly into the pic-

ture in the way described in Part Four of this course; it is not possible
to make reasonable decisions by simply comparing the statistical sig-

nificance of the observed sample with a completely arbitrary traditional

number such as .05 or .O1.

Wehave already seen (Chapter 40) how these traditional numbers
can lead to a really serious “cost of irrationality’? when tests of signifi-

cance are used as a basis for choice between two terminal acts; to see

how far they may be from the correct criterion for a choice between

further sampling and immediate terminal action, let us continue our

analysis of the packaging example on the assumption that the marketer

regards his prior information as negligible in comparison with the sample
information and therefore assigns to @ a Normal posterior distribution
with parameters

E(z) = @ = +.157,
o(fi) = o(#) = .125.

P(E > +.5|u = +.019) = Py (a > ) = 00006,

If the marketerfeels that he must settle his packaging problem reasonably

soon and therefore has decided that he will take a¢ most one more sample,
we can use the method of Chapter 35 to decide whether or not another

sample should be taken. Assuming as before that o(8) = 0 and remem-

bering that the distribution of @ = & posterior to the sample already
taken is the prior distribution as regards a new sample, we have (Section
35.2)
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of = o(é) = 5 = 1.25, 6o(L1) = oo(f) = .125,

_ .125 7/$1,056,000 X 1.25 | _Z = ie $30 = .1 X 35.3 = 3.53,

_ |.019 — .157|
D, —QB — 1.10.

Looking at Figure 35.4, we see that when D,, = 1.10 no sample should be

taken unless Z is greater than 3.73; and therefore in our present example

no additional sample should be taken even though the sample already

taken is “not significant’? at even the .05 level (cf. Section 41.3.1), let
alone the .01 which is supposed to be usedfor really important decisions.

41.4 Null Hypotheses and Errors of the Third Kind

Someone has remarked that the most serious statistical error of all is

neither an error of the second kind nor yet one of the first but the error
of the third kind which occurs when thestatistician delivers a carefully
computed solution of the wrong problem. Weshall now examine two
different errors of the third kind which are very frequently made in

analyzing problems of the sort typified by our packaging example—i.e.,
two-action problems with linear costs.

41.4.1 “Null” Values vs. Break-even Values

In analyzing the packaging example the first step we took was to

compute the break-even value », for which the two acts under consider-
ation were equally profitable. We then definedthe statistical significance

of the sample mean Z as a conditional probability given this break-even

value pp,

_ |@ — pl
Pw(a@ > |u)), jul = of)”

and showed that if prior information was negligible in comparison with

the information in the sample, then because the conditional costs of the

two terminal acts were linear functions of u

1. The better terminal act could be chosen by simply comparing %
with y,—no test of significance was needed for this purpose
(Section 40.2.2);

2. The statistical significance of the sample measured the probability
that the act thus chosen would be proved wrong after the event
(Section 41.3.1).

The essence of this example lies in the fact that profit is a linear

function of the increased yield (sales) which will result from a new treat-

ment (package design). In other situations a sample will be taken or an
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experiment conducted to obtain evidence on the effect of a new fertilizer

on crop yield, on the effect of a new drug on thefraction of patients cured,

or on any of an infinity of formally similar questions; and in very many

problemsof this sort the conditional profits of the two terminal acts will

be at least approximately linear functions of the yield. This is true of the
effect of a new fertilizer, where crop yield has an obviously linearrelation

to monetary profit. It is equally true in the case of the new drug, where
‘“‘yrofit’’ is measured directly by the cure rate and does not have to be

translated into monetary units.
In all such problems the better act can be chosen by a direct com-.

parison of # with », when prior information is negligible; but in many

situations the person who takes the sample or conducts the experiment

will not even know the person or persons whowill ultimately use his data

to choose a package design, fertilizer, or drug; and this means that the
person who obtains the data cannot compute the break-even value or
values for the decision or decisions which may be based on this data. t

In such situations it is traditional for the sampler or experimenter to test

the null hypothesis that the new treatment does not increase the “ yield”’
at all—i.e., to use O in place of a break-even value and define the two

hypotheses as

Null: up<0 (new treatment does not increase yield),
Alternate: n > 0 (new treatment increases yield).

The statistical significance of the observed < is accordingly defined as

 P(£ > Zu = 0) = Px|a> 20),
o(Z)

and it is often argued that statistical significance computed in this way

is a legitimate basis for an immediate choice between terminal acts. The

argument runs that changing over from the old to the new treatmentwill

involve some change-over cost (possibly nonmonetary{) and that testing

the null hypothesis n» < 0 at some level such as .05 or .01 protects the

decision maker against making the change when u is actually greater
than 0 but by an amount too small to pay for the change-over.

Nowit is perfectly true that such a test conducted at any level

below .5 does afford protection against uneconomic change-overs, butit is

equally true that use of an arbitrarily chosen level such as .05 or .01 is

almost certain to result in either too little or too much protection. 'To see why

+ A break-even value will usually exist even in examples where “profit” is not
measured in monetary units. If for example a new drug has dangerousside effects,

a doctor might prefer not to use it even though it did increase the cure rate by some

small amount. A certain definite increase in the cure rate would be needed simply

to offset the risk of side effects, and there would be a ‘“‘net”’ profit only if the increase
in the cure rate exceeded this break-even increase.

{ See previous footnote.
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this is true, we have only to return to our packaging example and see how

we would have to compute thecorrect level for a test of significance of this

kind. Assuming that prior information is negligible, we already know

that a reasonable man will change over to the new packageif Z is greater

than +.019. If @ is equal to +.019, then the statistical significance of Z
against the hypothesis u < 0 is

 P(E > +.019|z = 0) = Py |2 > oh
o(2)

so that if Z is greater than +.019 the statistical significance will be less than

+.019]
o()

In other words, a* as given by this last formula is the economically correct

level for a test of significance used as the basis for a choice between terminal

acts, and we see at once that the correct level for such a test

at = Px a>

1. Cannot be determined unless we first determine the break-even

value ps,

2. Depends not only on uy but also on o(£) = o(é)/-+/n and thus on
the sample size n.

If 4, has to be computed in order to make a rational choice between

acts and if the choice can then be made by simply comparing # with us,

it is clearly doing things the hard way to compute a* and then conduct

a test of significance at level a* in orderto arrive at the sameresult. It
is out of sheer curiosity that we show in Table 41.1 the value of a* in our

 

 

 

Table 41.1

1.25 +.019
# = = * 7n a(Z) Va u o(B) a Py(& > u)

25 . 2500 .076 47

100 . 1250 .152 .44

400 .0625 . 304 .38

1,600 .0312 .608 .27

11,707 .0116 1.645 .05

 

packaging example for each of several arbitrarily chosen sample sizes

and also for the one sample size n = 11,707 which justifies a test at the

traditional .05 level.

41.4.2 “Point? Null Hypotheses and “‘Two-tail’”’ Significance

Theerror of the third kind discussed in the previous section consisted

essentially in thinking that testing significance at some arbitrarily chosen

level can replace calculation of the true economic break-even value.
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Another very commonerror of the third kind consists in confusing the
problem of deciding whether some quantity is greater or less than a
specified value with the problem of deciding whether the quantity 7s or is
not exactly equal to the specified value.

As an example of a problem wherewereally do want to know whether

a parameteris or is not exactly equal to somespecified value, consider the

problem of deciding whether ornot an individual is gifted with extra-

sensory perception. An experiment might be conducted by tossing a

coin repeatedly and on eachtoss allowing a ‘‘sender”’ to see whichfaceis

up and then askinga “‘receiver’’ in the next room to say whichfaceis up.
In this problem one hypothesis will be that the sender has no effect on

the receiver and that the receiver’s guesses are right or wrong purely by
chance; the other hypothesis will be that the receiver’s guesses are
affected by what the sender sees and therefore that the receiver will do

either better than chance or, conceivably, worse than chance if the astral

wires are crossed. Before the currently classical theory of testing hypoth-

eses was developed, the former of these two hypotheses would always

have been called the null hypothesis because it asserts that the person

tested has no extrasensory perception; and although classical theory says

that the hypothesis that the person tested does have extrasensory percep-
tion should be considered as the null hypothesis if the consequence of
rejecting this hypothesis when true is more serious than the consequence

of accepting it when false, we shall label the hypotheses in the traditional

manner. Letting p denote the long-run fraction of correct guesses, we

take as our twostatistical hypotheses

Null: p= %,
Alternate: p ¥ %.

We note in passing that it is this kind of problem which explains the

word ‘‘null’’: the null hypothesis asserts that the sender has noeffect on

the receiver.
If the null hypothesis is true, the expected numberof correct guesses

in a sample of n guesses is }4n, andit is clear that we will want to reject

the null hypothesis if the actual number r of correct guesses is very far

from \4n in either direction. Letting d. denote the smallest discrepancy
between the actual and the expected numberof correct guesses which is

to be considered “‘very far,”’ a reasonable decision rule will be of the form

Take a sample of size n and reject the null hypothesis if either

r< (}gn — d.) orr = (an + d,).

The probability of.an error of the first kind under such a rule will be the

sum of two binomial tail probabilities,

PAF < bon —d.|p = 5) + PAF > 44n + d.|p = .5),
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and if the conditional probabilities of errors of the second kind are to be

minimized subject to a limitation a on the conditional probability of an

error of the first kind, d, must be madeas small as it can be made without

causing the sum of the two tail probabilities to exceed a. If for example

the sample is of size nm = 100 and a has beenset at .05, d. would be set

equal to 11 because

P(F < 39|n = 100, p = .5) + P(F > 61|n 100, p = .5) = .0352
< .05

while

PF < 40|n 100, p = .5) + P(# > 60|n = 100, p = .5) = .0568
> .05.

The argumentis illustrated by the graph of the conditional distribution of

7 given n = 100, p = 4%, which is shown as Figure 41.2. The shaded

area corresponding to the values of r which will lead to rejection of the
null hypothesis is .0352; if one more bar were addedto each tail, the area
would be .0568 and would exceed the required a = .05.

As usual, a test of significance can be used instead of actually deter-

mining the critical value d, which yields the required a, but the signifi-

cance of the sample must be computed in the same way that the prob-

ability that d. will be equaled or exceeded by pure chance is computed.

Since the null hypothesis will be rejected if r is very far from 14n in either

direction, the test statistic is really not r but

d = |tgn — 1;

and looking at Figure 41.2 we see that if the sum

Ps(F < lon — dlp = .5) + Pi(F > on 4+ dlp = .5)

is greater than a, then d itself must be less than d, and the null hypothesis

is to be accepted; if this sum is less than or equal to a, then d must be at
least as great as d, and the null hypothesis is to be rejected. This sum is

known as the two-tail significance of the observed sample to distinguish it

from the one-tail significance which is appropriate when we wish to know

whether a quantity is above or below some specified value.
The error of the third kind to which wereferred at the beginning of

this section consists in treating problems like our setup and packaging

examples as if they did involve a “point”’ null hypothesis asserting that
p = .04 exactly or » = +.019 exactly. The error is obvious without

argument: if we asked the businessman faced with either of these prob-
lems how much he would pay to learn for certain whether or not p = .04

or pz = +.019 exactly, he would tell us very clearly that this information

is totally worthless.

1. It is flatly incredible before any sample is taken that p = .04
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exactly or that » = +.019 exactly. The prior probability which a
reasonable man will attach to such a hypothesis is zero.

2. Even if such an amazing accident were not regarded asvirtually

impossible, learning that p or pu is not equal to the specified value without

learning whetherit is above or below this value is of no help in choosing

the better act, while learning that it 7s equal to the specified value means
simply that it makes no difference which act is chosen. The hypotheses
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Figure 41.2. Conditional distribution of 7, given p = .5 (n = 100).

 

in terms of which the problem was stated do not express the true nature

of the problem.

Observe that the problem of extrasensory perception differs from

the setup and packaging problemsin both these respects.

1. A reasonable person might well attach a substantial prior prob-

ability to the proposition that the phenomenon does not exist and there-
fore to the hypothesis that p = 14 exactly.

2. Any difference whatever between 14 and the true value of p

implies that extrasensory perception does exist,t and therefore it would

+ Unless it implies that the experiment has been poorly designed or conducted.
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be extremely interesting and important to learn of the mere existence
of such a difference regardless of its amount or direction.

PROBLEMS

1. In the situation of Chapter 30, Problem la to c, assuming that management
decides that its prior information is negligible in comparison with the information
gained from the pilot sample of 100 observations and assuming that further sampling
will cost $25 per observation:

a. Determine by use of Figure 35.4 the properlevel at which to test the signifi-
cance of the pilot sample if the test is to be used as a sequential decision procedure.
(Hint: Given the value of Z as computed after the pilot sample has been taken, which

values of D,, would make further sampling desirable and which would not?)
b. What is the properlevel at which to test the significance of the pilot sample

if the test is to be used as a single-sample decision procedure?
c. Compute the significance of the mean of the pilot sample actually taken.
2. Same as Problem I abovefor the situation of Chapter 32, Problem 4a, with a

variable sampling cost of $100 per observation but with no fixed samplingcost.



CHAPTER 42

Confidence Intervals

In the last three chapters we have examinedthe classical approach to the

use of sample information in clearly defined two-action problems. In
this final chapter we shall examinethe classical approach to the problem

of reporting sample information on the value of some unknown quantity

when the person reporting the information does not know the use to
which the information will ultimately be put or when he knowsthat the
same information will be put to many different uses by many different
people. Itis obvious that merely reporting one specific numberas a best

estimate of the value of the unknown quantity will not be satisfactory in

such a situation, since any such estimate will almost certainly differ by

some amount from the true value of the quantity being estimated and

the user of the estimate will want some indication ofits reliability. The

classical solution to this problem is to report a band of possible valuesof

the unknown quantity rather than a single value and in addition to quote
a number which purports to measure the “confidence’’ which the user
may place in the proposition that the true value actually lies within the
reported band or ‘‘interval.”’

42.1 The Theory of Confidence Intervals

Formally, the classical school regards the problem of ‘“‘estimating”’
the value of an unknown quantity as one of making a statement about this
quantity in such a way that the “‘objective”’ probability that the statement
will be correct is known. 'To make the discussion concrete, let us assume
that the unknown quantity is the parameter p of a Bernoulli process and
that a researcher has observed 11 successes in a sample of 20 observations
from this process. The statement which the researcher should make
according to classical theory is an assertion that p is greater than some
number p; and/or less than some number pz; and in principle the num-

bers p; and/or pz should be computedin such a waythat if the researcher
were to draw a very large number of samples from this same process

and make similar statements on the basis of the number of successes

observed in each sample, he could be sure that some specified fraction
of all these statements would be right in the long run.

661
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It turns out that this objective can be fully achieved only by intro-

ducing a very peculiar step into the computation of p: and po, a step so
peculiar that most practicing statisticians refuse to take it and instead
compute the numbers p: and pz in such a waythatall they can besureof

is that at least the specified fraction of statements would beright in the

long run. Weshall begin our explanation of the classical procedure by

showing how this limited objective is accomplished when thestatistician
wishes to state merely that p is greater than some definite number71; and

to simplify the argument weshall restate the objective as making sure

that not more than a specified fraction 1 of all statements would be wrong.
What weshall show is that

If the statistician draws a large number of samples from the same

population, if on each occasion he determines the value p; for which
the conditional probability P,(7 > rip = p:) is just equal to the
specified number 71, and if on each occasion he then states that p is
greater than p,, the fraction of all such statements which will be
incorrect will not exceed y1.

To see why this is true, let us imagine that the statistician sets

yi = .05 and then draws a very large numberof samplesall of sizen = 20

from a Bernoulli process, and let us examine the statements he will make

when his sample contains 10, 11, or 12 successes. When he draws 10

successes he will interpolate in the binomial tables to find that

Pi(¥ > 10|n = 20, p = .302) = .05

and he will state that p 7s greater than .302. When he draws11 successes

hewill find that

P,(* > 11|n = 20, p = .347) = .05

and he will state that p is greater than .347. When he draws12, he will

find that

Pi(¥ > 12\n = 20, p = .393) = .05

and he will state that p zs greater than .393. Observe that the lowerlimit
above whichthestatistician asserts that the true value of p actually lies
increases as the number of successes in the sample increases.

Now suppose first that the true value of p in this population is in

fact .393. Whenever the statistician draws 11 or less successes, he will

state that p is greater than .347 or some lower numberandall these state-
ments will be right. Whenever he draws 12 or more successes, he will

state that p is greater than .393 or some higher number and all these
statements will be wrong. He will actually draw 12 or more successes in a



42.1 Confidence Intervals 663

fraction

P(7 > 12\n = 20, p = .393) = .05

of all samples, and therefore exactly .05 of his statements will be wrong.

Suppose next that the true value of p is below .393 but not so low as

.347. In this case the statistician will still make erroneous statements
when and only when he draws 12 or more successes, but he will actually
draw 12 or moresuccesses somewhat less than .05 of the time. If, for

example, the true value of p is .35, he will draw 12 or more successes and

make an erroneous statement on only

P,(# > 12|n = 20, p = .35) = .0196

of all occasions.

Finally, suppose that the true value of p is exactly .347. In this.

case the statistician will make an erroneous statement wheneverhe draws

eleven or more successes and the fraction of wrong statements jumps back

to .05 exactly.
The general way in which the procedure will work should now be

clear. If p is below .347 but not so low as .302, errors will occur whenever
11 or more successes are drawn andthis will happen on less than .05 ofall

draws. If p = .3802 exactly, errors will occur whenever ten or more suc-
cesses are drawn and this will happen on exactly .05 of all draws; and so

forth. We conclude that the method we have described does makeit
possible for the statistician to make statements in such a way that not
more than the specified fraction y: of all statements would be wrong in the

long run, although it does not assure him that exactly this fraction of the
statements would be wrongin the long run. |

Turning next to the second form of statement, the student can easily

modify the argument used above to show that

If the statistician draws a large number of samples from the same
population, if on each occasion he computes the value p» for
which the left-tail conditional probability P,(# < r|jp = pe) is just

equal to some specified number v2, and if on each occasion he then
states that p is less than po, the fraction of all such statements which
will be incorrect will not exceed y2.

If a statistician sets y2 = .05 and then observes 11 successes in a sample

of 20, he will find that

PF? < liln = 20, p = .741) = .05

and he can assert that p ts less than .741 with the assurance that not more

than .05 of all statements computed in this same manner would be wrong

in the long run.

Finally, let us consider what will happenif the statistician computes
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both pi and p2 according to the rules given above and then combines both
assertions into a single assertion that p is greater than p, and less than po.
If the sum of the specified numbers y1 and yz is less than 1—andin prac-

tice the sum is always made much less than 1—then it is easy to see that

», aS calculated for any given sample must be less than pe as calculated
for that same sample and the combined statement that p is greater than
pi andless than p2 can then be expressed as an assertion that p is between

9, and pe. Whenthis is true, the two individual statements cannot both
be wrong on any one occasion—if p: < pe, then p cannot be simultane-

ously below p: and above p:—andtherefore the probability that the com-
bined statement will be wrong is simply the sum of the two probabilities
that each of the two separate parts will be wrong. While these two prob-

abilities are not known exactly, we do know that they do not exceed y:
and ye respectively; and therefore we know that the probability that the
combined statement will be wrong does not exceed y = y1+ yo. The

statistician who sets yi = .05, y2 = .05, observes 11 successes in a sample

of 20 and asserts that p is greater than .347 but less than .741 can be sure
that not more than .05 + .05 = .1 of all statements computed in this same
manner would be wrong in the long run.

Assertions about an unknown parameter made in the way we have
just described are knownin theclassical literature as confidence intervals.
A statement that p > pi or a statement that p < pe is a one-sided confi-

dence interval; a statement that pi < p < pe is a two-sided confidence

interval. Whenever such a confidence-interval statement is made,it is

accompanied by an indication of the limiting conditional probabilities

y1 and/or yz which were used in its computation, but these numbers are

not usually quoted directly. Instead, they are subtracted from 1 and

the statistician will assert that p > p. with confidence 1 — y1 or that

p < po with confidence 1 — y2 or that pi < p < pe with confidence
1 — y1 — yo. Thus observing 11 successes in a sample of 20 Bernoulli

trials would lead to a statement that p is between .347 and .741 with con-

fidence .90.

We have already emphasized that when confidence intervals are

computed in the way described abovethe stated confidence level does not
actually tell us the relative frequency with which a large number of

similar statements would beright in the long run; all that we knowis that

at least the stated fraction of all such statements would be correct. Nota
few statisticians have been so troubled by the problem of deciding what

it means to be “at least’ 90 per cent confident about anythingatall that

they have seriously proposed that after the numbers p: and/or pe have
been computed from the sample data in the way described above they
should be arbitrarily altered in such a way that the statistician can be

sure that he would make exactly the specified fraction of errors in the

long run and therefore that the long-run fraction of correct statements
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would be exactly equal to the stated confidence level. The amounts by
which the two numbers must be altered to achieve this objective can be
determined in a most ingenious way by drawing numbersfrom a table of
random numbers, but since a businessman will probably find it very hard

to understand how a table of random numberscan possibly tell him any-
thing at all about the number of people who prefer red labels to green,

the procedure will not be described in this course.
Thefact that it is necessary to make completely arbitrary alterations

in the values of p: and/or pz as determined from the sample evidence in

order to be objectively sure that the specified fraction of all statements
will be correct in the long run would seem to be a fairly serious objection

to this whole approach, but it is by no means the most serious objection.
What is much more seriousis the fact that it is impossible under this

approach to take account of any information about the unknown quan-

tity which comes from any source other than the particular sample which

has just been taken, even in situations where this information is of

such a nature that it throws very serious doubt on the correctness of a

statement which is alleged to be worthy of, say, ‘‘at least 90 per cent

confidence.”’

In somesituations, in fact, we may know for certain that a duly com-

puted confidence-interval statement is false. Suppose for example that
a manufacturer has in storage 1000 units of some part which deteriorates
on the shelf, and suppose that a complete count made at some previous

time revealed that 500 units were already defective at that time but that

the tags labeling these defectives have since been removed through a
stock boy’s error. To obtain some information on the total number of

parts which are now defective the manufacturer takes a sample of 20

parts and has them inspected; and by the luck of the draw only 5 of the
parts in the sample turn out to be defective. By using the binomial
tables to show that

PF < 5|n = 20, p = .456) = .05

we see that we are entitled in classical theory to assert thatwe are “at
least 95 per cent confident’ that there are less than 456 defectives among

the 1000 pieces on the shelf despite the fact that we knowforcertain that
there are at least 500 defectives among these 1000 pieces.

Somestatisticians will defend confidence intervals against counter-
examples of this sort by saying that no sensible person would make an

interval statement which he actually knew to be false, but this defense

violates the most fundamental principle of all classical theory: namely,
that the rule for using sample evidence must be chosen before the sample
evidence is examined. Ji before taking the sample just discussed the

manufacturer’s statistician had decided that a 95 per cent one-sided

interval was the proper estimate for the manufacturer’s purposes, then
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he must proceed to compute and make such a statement. If he does
not—if he picks and chooses when he will abide by theclassical rules and
when he will not—then the confidence levels which he does quote will

have no basis in “‘objective”’ probability.

Observe carefully that this does not mean that confidence intervals

fail to do what they are supposed to do. The theory explicitly assumes

that a certain fraction of wrong statements would be made in the long
run, and this particular statement simply happens to be one of these

wrong statements. The real trouble lies much deeper. As such, the

long-run frequency with which a certain method of making statements would
produce incorrect statements 1s of no real interest to anyone; this frequency

is interesting only as part of the information which a reasonable man will

wish to consider in deciding what probability he wishes to attach to the

truth of a particular statement. We cannot act sensibly under uncer-

tainty if in order to achieve “‘objectivity’’ we deliberately blind ourselves

to part of the information bearing on the truth of a particular statement
which is before us.

42.2 Confidence Intervals and Posterior Probability

In Section 41.3.2 we saw that if r successes are observed in a sample

of n, the conditional probability

Pi(F = rlp = pr)
is a good rough indication of the posterior probability

P(B < pF = 1)

whicha reasonable person should assign to the proposition that p < p,

after the sample evidence has been reported provided that before the sample
was taken he considered all possible values of p to be about equally likely.
The argument which was used to provethis relation depended in no way
on the fact that p, had been fixed at some particular value by the eco-
nomicsof a particular decision problem; the relation holdsfor any andall

values of # in which a person maybe interested.

It follows immediately that the same relation between conditional

and posterior probability holds under the same proviso if, instead of

taking a predetermined p, and computing P(# > r) given p,, the statis-

tician fixes the value of the conditional probability at some predetermined

numberyi and reports the value p; of # which makes the probability equal
to y1 or which makes 1 minus the probability equal to 1— yu. If,

for example, the statistician observes 65 successes in 100 Bernoulli trials

and then reports that p is greater than .564 with confidence 1 ~— yi = .95,
we know immediately that

Pi(¥ > 65|\p = .564) = y1 = .05;
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and a person whofelt that all values of # were about equally likely before

this information was reported could conclude that careful computation of
the probability which he should now assign to the proposition that @ is
less than .564 would yield a numberfairly close to .05. This means of

course that the posterior probability which he should assign to the

proposition that $ is greater than .564 is very close to the “‘confidence”in
this proposition quoted by the statistician.

The same relation which holds for confidence-interval statements

that p is greater than p: will obviously hold for confidence-interval state-

ments that p is less than pe or that p is between pi and pe. In general,

Any person whoassigned roughly equal probabilities to all possible
values of some quantity before being informed of the evidence on

this quantity which has been obtained from a particular sample may
interpret confidence-interval statements about this quantity as
roughly equivalent to statements of the posterior probabilities which

he should now assign.

Whether such a person will be satisfied with approximate rather than

exact knowledge of the posterior probabilities which logical consistency

requires him to assign will of course depend on the value which accurate
knowledgeof this probability has for him, and this in turn depends on the
way in which the consequences of the various acts which he is con-
templating depend on the unknown quantity.

PROBLEMS

1. A sample of 20 pieces is drawn from a Bernoulli process and 7 defectives are

found. Compute:

a. A 95 per cent one-sided confidence interval setting a lower bound on the

true value of p.
b. A 95 per cent one-sided confidence interval setting an upper bound on the

true value of p.
c. A 90 per cent two-sided confidence interval for p.
2. When a sample mean is Normally rather than binomially distributed, confi-

dence intervals are found by determining the value yu; for which P(# > Z|yi1) = yi and

then stating » > », and/or the value ue for which PZ < Z|u2) = ye and then stating

h< pe.

a. A sample of size 100 is drawn from a population in which o(€) = 1.25; the

mean of the sample is found to be @ = +.157. Compute 99.5 per cent one-sided

confidence intervals setting upper and lower bounds on u and a 99 per cent two-sided

interval for pu.
b. Show that if the bars in the histogram of the true distribution of # are so

narrow that this distribution can be treated as practically continuous, then y: and ye

are the exact frequencies with which erroneous statements would be madein the long

run rather than mere upper bounds on these frequencies.
3. A businessman who must choose between two acts whose costs are linear

functions of the value of the mean xz of a population with unknown standard deviation
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a(é) is told on the basis of a sample of size 100 drawn from this population that
75 <p < 85 is a 90 per cent confidence interval for u. How should he decide what
course of action to follow:

If his break-even value », = 50 and a terminal act must be chosen immediately?

If w» = 50 and thereis time for further sampling?
If w = 77 and a terminal act must be chosen immediately?
If uw = 77 and thereis time for further sampling?
If uw = 74 and a terminal act must be chosen immediately?
If uw» = 74 and there is time for further sampling?

4, A businessman must select a stock level in a situation where he will lose $30
for each unit by which stock per potential customeris over demandor will lose $1000
for each unit by which stock per potential customer is wnder demand. Heis told on
the basis of a sample of 100 drawn from his population of 10,000 potential customers
that 75 <u < 85 is a 90 per cent confidence interval for demand per potential
customer x. How many units should he stock per potential customer? How many

units in all? (Hint: Review Section 37.2.)
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Continuous Prior Distributions for the

Parameters of Bernoulli and Poisson Processes

When the information provided by a sample can be summarized by a

statistic which is Normally distributed with known variance, we have

seen that it is very convenient to approximate the prior distribution of
the basic random variable by a Normaldistribution because the posterior

distribution of the basic random variable and the prior distribution of

FE, will then be Normal and probabilities and expectations under these

distributions will be very easy to compute. In this appendix weshall
show that this same convenience can be gained by an appropriate
choice of prior distribution when the sample is summarized bya statistic

which has either a binomial or a Poisson distribution. We shall present

only results, without proofs, since supplying the proofs will be a good
exercise for students who have a reasonable command of simple algebra

and calculus while reading the proofs would be useless for those who do

not.

A.1 Poisson Sampling Distribution

A.l.1 Gamma Prior and Posterior Distributions

If successes are generated by a Poisson process with unknown

intensity &, then for any given «x the conditional distribution of the number

of successes 7 observed in time or space ¢ is Poisson:

 

ri (1)

If we take as the prior distribution of the basic random variable % a gamma

distribution with parameters p and 1,

. e-*"(xr)P—}
Po(k) = P)(k;3p,7) = "Oo—DY!’ (2)

the posterior distribution of % will be of exactly the same form asthe prior

distribution but the parameter p will be replaced by r+ p and r by
t-+r:

670
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Py(k) = Phajr + p,tétr) = +7)oa (3) 

The parameterp of the gammadistribution defined by (2) determines
the shape of the distribution; the parameter 7 determines its scale; both
parameters must be greater than 0. The mean and variance of the
distribution are

P, _ Pp
E(k) = =; o*(k) = (4)

Partial expectations are given by

s(®) = 2 P,(R < xp + 1,7). (5)
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Figure A.1. Gammadistributions.

The shape of the distribution for various values of the parameter

p is shown in Figure A.1. Notice particularly that:

1. When p <1 the distribution is J-shaped. When p <1, the

ordinate is infinite at x = 0; when p = 1 exactly, the ordinate is
finite at x = 0.

2. When p > 1, the distribution is single-humped with a peak at
Kk = (p — 1)/r, ie. at x/E(®) = (p — 1)/p,
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The cumulative gammadistribution has been tabulated by Pearson ;{
in. his notation

Py(R < k|p,7) = I(u,p),

u= KT p=p 1
—~ —F;=) — ~~ de

Vp
Cumulative probabilities can also be obtained from Molina’s table of the
Poisson distribution{ by using the relation

P,(R < xlp,7) = P(c,a),
C = p, a = xr.

A.1.2 The Marginal Distribution of 7

If the prior distribution of the basic random variable & is gamma with

parameters p and 7 as defined by Equation (2) and the conditional dis-

tribution of the statistic 7 is Poisson with parameters « and ¢ as defined by
Equation (1), the marginal distribution of 7 (cf. Section 34.3.1) is negative
binomial:

 

P(r) = Pra(ripjr) = Crter— 3), (6)

where

t
T= 7a (7)

The mean and variance of this distribution are

~ p - pBG =0% oF) = te +) & (8)
Partial expectations are given by

Ey(?) = ¢£ Pa(F <r — 1|p + 1,7). (9)

Cumulative negative binomial probabilities may be obtained from

tables of cumulative binomial probabilities by using the relation§

Pa(? > rier) = PF > rir + p — 1,7), nw <.d,

Pal? < rior) = PF > plr +p —1,1-—7), wT > .O.

They mayalso be obtained from Pearson’s tables of the incomplete beta
function|| by using the appropriate one of the tworelations

+ K. Pearson, “‘ Tables of the Incomplete r'-Function,’’ Biometrika, London, 1934.
{E. C. Molina, “Poisson’s Exponential Binomial Limit,’’ D. Van Nostrand

Company,Inc., Princeton, N.J., 1942.

§ When the parameterp is integral, the negative binomial distribution gives the
probability that there will be exactly r successes before the pth failure in sampling
from a Bernoulli process in which the probability of a success on anytrialisx.

_ || K. Pearson, “Tables of the Incomplete Beta-Function,”’ Biometrika, London,
1948,
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Pro(F = r\p,7) = I,(7,p), r2 P,

Pal? < r\p,1) = I;_,(p,r), r < p.

A.1.8 The Prior Distribution of Ey

By Equations (3) and (4), the mean of the posterior distribution of
will be

E@) = 52? (10)
and therefore to any specified value E, of the random variable £; there
corresponds a value

re = (t+ 7)— p.

The exact prior probability that #, will fall short of or exceed any
specified value £, can be found by finding the negative binomial prob-

ability that # will fall short of or exceed the corresponding value rz.
Partial expectations of #; may be computed by using the relation

1 ~ ~
EP(E,) = fq Ep*(7) + p PF < rz)]. (11)

Approximations. From Equations (8) and (10) it follows (cf. Sec-
tion 16.5.3) that the distribution of #, has mean and variance

 

E(B,) = © = En(a),
tp ; (12)

2 -_- LL = —__ g?

o*(H,) t+trr t+r 79(R).

These results make it easy to use the Normal approximation to the dis-

tribution of £1; but because the distribution of £; approaches the gamma
prior distribution of & as t becomeslargerelative to 7, a gamma approxi-

mation will be better than the Normal for large ¢. A gammadistribu-
tion with parameters

mal TT, pe =i tt,, (13)

 

 

will have the same mean and varianceas the exact distribution of #1, and

probabilities and partial expectations may be obtained from the formulas
in Section A.1.1 by replacing « by Ei, 7 by r*, and p by p*.

A.2 Binomial Sampling Distribution

A.2.1 Beta Prior and Posterior Distributions

If successes are generated by a Bernoulli process with unknown
process average fraction successful p, then for any given p the conditional

distribution of the numberof successes * observedin 7 trials is binomial:
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P(r|p) = Cip'(1 — p)**. (14)

If we take as the prior distribution of the basic random variable # a beta
distribution with parametersp and »,

(vy — 1)!

p—1)'’—-p-
 o(p) = P.(p50,¥) = ( 1)! pei a p)’?-1, (15)

the posterior distribution of # will be of exactly this same form but with p

replaced by r + p and v replaced by n + »:

Pi(p) = Pe(pjr + p,m + »). (16)

The parameter p of the beta distribution as defined by (14) above

must be greater than 0 and the parameter v must be greater than p. The

mean and variance of the distribution are

 

_ Pp, orm) . Pty — Pp).
E(p) — y? o (p) y2(p + 1) (17)

Partial expectations are given by

E%(p) = = Pap < ple + 1,» + 1). (18)
$6$——_—$~

ap=60, v=120
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Figure A.2. Beta distributions, E(j) = .5.
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Figure A.3. Beta distributions, E(p) = .05.

The shape of the distribution for a numberof pairs of values of p and »

all of which give E(g) = .5 1s shown in Figure A.2; the shape for a number

of pairs with E(j) = .05 is shown in Figure A.3. Notice particularly

that:

1. When p > 1 and » — p > 1, the distribution has a single hump

with a peak at p = (p — 1)/(» — 2). |
2. When p = 1 and » — p = 1, the distribution is “‘rectangular’’—

all values of :p are equally likely.
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3. When p < 1 and »v — p <1, the distribution is U-shaped with

infinite ordinates at p = 0 and p = 1.
4, When p < 1 and » — p > 1, thedistribution is J-shaped with an

infinite ordinate at p = 0; when p > 1 and vp — p < 1, the dis-
tribution is J-shaped with an infinite ordinate at p = 1 (no
illustration).

5. When p = 1 and »v — p > 1, the distribution is J-shaped with a
finite ordinate at p = 0; when vy — p = landop> 1, it is J-shaped

with a finite ordinate at p = 1 (noillustration).

The beta distribution has been tabulated by Pearson;f in his notation

Ps(p < p\p,v) = Ip(o, y— p), p2>v— P;

Pap > plp,») = Tio — pp),  pSv—p.
Cumulative probabilities can also be obtained from binomial tables by
use of the appropriate one of the tworelations

Pa(p < p\p,v) = PF > ply ~~ 1, P); Dp

Ps(p > plip,v) = PF > v — pl» — 1,1 — p), p

A.2.2 The Marginal Distribution of 7

If the prior distribution of the basic random variable @ is beta with

parameters p and as defined by Equation (15) and the conditional dis-

tribution of the statistic 7 is binomial with parameters p and n as defined
by Equation (14), the marginal distribution of 7 (cf. Section 34.3.1) is
negative hypergeometric: t

P(r) = Paa(r3e,n,¥)

CreelCindyDre) (y — 1) — (p — 1)

I
V
I
A 5,

5.

 

7 Crtr-1 (n+yvy—1)-—-(r+p- 1) (19)

The mean and variance of this distribution are

a) ld 2(z\ — p(y ~~ p) .Ei?) =n * o2(7) n(n + ») 0+1) (20)

Partial expectations are given by

(7) =n Pak <r — lp tin—1lvt+)). (21)

A.2.38 The Prior Distribution of BE,

By Equations (16) and (17), the mean of the posterior distribution of

t Pearson, ‘‘Tables of the Incomplete Beta-Function.”’

{ When the parameters p and » are integral, this formula gives the probability
thatthere will be exactly r successes before the pth failure in simple sampling without
replacement from a finite population containing n successes and p — 1 failures.
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~ will be

E,(p) = 742 (22)

 

and therefore to any specified value FE: of the random variable £, there

corresponds a value

re = (n+ vi — p.

The exact cumulative distribution of #; is therefore given by

and partial expectations are given by

1 ren ~
Ee(£y) = at? [Ho*(7) + p PF < rz)]. (23)

Negative-hypergeometric cumulative probabilities can easily be expressed

in terms of ordinary hypergeometric probabilities, but since even the

ordinary hypergeometric distribution is not tabulated, exact values can

actually be found only by term-by-term computation.

Approximations. From Equations (20) and (22) it follows that the

distribution of #, has mean and variance

E(E,) = © = Ex(p),
o%(B;) = — p(v—p) _ (24)n 2

—n+tvvroe+tl n+ 7 7(8).

These results make it easy to use the Normal approximation to the dis-

tribution of £1; but because the distribution of #1 approaches the beta

prior distribution of ~ as n becomeslarge relative to v, a beta approxima-
tion will be better than the Normal for large n. A beta distribution with

parameters v™ and p* given by

 wt1="F%4,

*

eop = B,

will have the same mean andvariance as the exact distribution of £,, and
probabilities and partial expectations may be obtained from the formulas

in Section A.2.1 by replacing p by Ai, v by v*, and p by p*.

A.3 Two-action Problems with Linear Costs

At the end of Section 30.4.3 we arrived at completely general for-

mulas for the expected value of perfect information (or expected loss of

immediate terminal action) in any two-action problem with linear costs:
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k{E,,(2) — uw PG > ps)] af H(z) < me,
kilue Piz < ws) — E*(@)] af E(i) > po.

These formulas hold for any random variable whatever; specifically,

they hold if the p of a Bernoulli process or the « of a Poisson processis

substituted for uy.

In Section 34.4.2 we pointed out that these same formulas give the

expected value of sample information when the random variable F, is
substituted for the basic random variable. Continuing to use pu, to

denote the break-even value we have

k{(E;,(E1) — ws P(Bi > ms)] if Eo(@) < me,

kelue P(E < ws) — EY (£y)) if Ho() > ms.

Expected VPI =

Expected VSI =
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a1 12 13 14 15 16 17 18 19 20

3 Hl Cumulative Binomial Distribution
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Z0
L

Unit Normal Probability Distribution

Table If

 

 

Phy (u)

U .00 Ol .02 .03 .04 .05 .06 .07 .O8 .09

0 3989 .3989 .3989 3988 3986 3984 3982 3980 30977 .3973

l .3970 3965 3961 39956 3951 0945 .3939 3932 3925 0918

2 .3910 ,3902 3894 3885 3876 3867 3857 3847 3836 3825

3 3814 . 3802 3190 3178 3165 3102 3139 .3125 3112 .3697

4 . 3683 3668 .3653 3637 . 3621 3605 3589 3572 9999 .3538

5 3521 .3503 9485 3467 .3448 3429 .3410 .3391 3012 3352

6 .3332 3312 3292 3271 3251 .3230 .3209 3187 .3166 3144

@ .3123 3101 .3079 .3056 .3034 3011 _2989 . 2966 , 2943 . 2920

8 2897 2874 2850 2827 . 2803 2180 2156 2732 ,2409 . 2685

9 . 2661 . 2637 2613 , 2589 2565 2541 2516 2492 2468 2444

1.0 , 2420 . 2396 2371 2347 2323 2299 2275 2251 2220 . 2203

1.1 .2179 2155 2131 .2107 . 2083 2059 . 2036 .2012 1989 . 1965

1.2 . 1942 .1919 .1895 . 1872 .1849 1826 . 1804 1781 1758 .1736

1.3 .1714 1691 . 1669 1647 . 1626 . 1604 . 1582 . 1561 .1539 1518

1.4 . 1497 . 1476 . 1456 1435 1415 , 1394 1374 .1354 .1334 .1315

1.d .1295 .1276 .1257 . 1238 . 1219 . 1200 .1182 .1163 1145 1127

1.6 .1109 . 1092 .1074 1057 .1040 .1023 . 1006 .09893 09728 .09566

1.7 .09405 .09246 .09089 08933 .08780 .08628 .08478 .08329 .08183 .08038

1.8 07895 .07754 .07614 07477 .07341 .07206 .07074 .06943 .06814 .06687

1.9 06562 06438 06316 .06195 .06077 .05959 05844 .05730 .05618 .05508

2.0 05399 .05292 05186 .05082 .04980 .04879 .04780 04682 .04586 .04491

2.1 .04398 .04307 04217 .04128 .04041 .03955 .03871 .03788 .03706 .03626

2.2 .03547 .03470 .03394 .03319 03246 .03174 .03103 .03034 .02965 02898

2.3 .02833 .02768 .02705 .02643 .02582 02522 02463 .02406 02349 02294

24 .02239 .02186 02134 .02083 .02033 01984 .01936 .01888 01842 01797
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.01753

.01358

.01042

.077915

.075953

.074432

.073267
072384
.071723
071232

098727
.036119
.0°4248
.032919
.071987

.031338

.048926

.045894

.043854
042494

.041598

.041014

.056370

.053961

.052439

.01709

.01323

.01014

.077697
075782

.074301

.073167
072309
.071667
.071191

.038426
075902
.034093
.032810
.071910

031286
048567
.045652
.043691
.042387

.041528

.0°9684

.056077

.053775
052322

.01667

.01289
079871
077483
.075616

.074173

.073070

.072236

.071612

.071151

.0°8135

.0°5693

.033944

.032705

.031837

031235
.048222
.045418
.043535
042284

.041461

.0°9248

.055797
053598
052211

.01625

.01256
079606
.0?7274
075454

.074049

.072975

.0?2165

.071560

.071112

037853
.095490
.0°3800
.032604
.071766

.071186

.047890

.0*5194

.043386

.042185

.041396

.0°8830

.055530

.053428

.052105

.01585

.01223

.0°9347

.0?7071

.075296

073928
072884
.022096
.071508
.071075

077581
.035294
.033661
032506
.071698

.071140

.047570

.044979
043242
. 042090

.041334
058430
055274
.0°3267
052003

.01545

.01191

.079094

.076873

.075143

.073810
072794
072029
.071459
.071038

037317
.0°5105
.033526
.032411
.031633

.031094

.047263

.044772

.043104

.041999

.041275
058047
.055030
.0°3112
.0°1907

.01506

.01160

.078846

.076679
074993

.073695

.0?2707

.071964
071411
.071003

.077061

.034921
033396
032320
.071569

.071051

.046967

.044573

.042972

.041912

.041218

.0°7681

.054796

.052965

.051814

.01468

.01130

.078605

.076491

.074847

.073584
072623
.071901
.071364
.0°9689

.0°6814

.034744

.033271
032232
.071508

.031009

.046683

.044382

.042845

.041829

.041164

.0°7331

.054573
052824
.081727

.01431

.01100
078370
.076307
.074705

073475
072541
.071840
.071319
.0°9358

.0°6575

.0°4573

.033149

.032147

.031449

049687
.046410
.044199
042723
.041749

.041112
. 056996
.054360
.052690
051643

.01394

.01071

.078140

.076127
074567

073370
.0?2461
.071780
.071275
. 039037

.036343

.034408
033032
032065
.031393

049299
.046147
044023
.042606
.041672

.041062

.056676

.0°4156

.052561

.0°1563

 

Example: Py(3.57) = Py(—3.57) = .036814 = .0006814
Reproduced by permission from A. Hald, ‘Statistical Tables and Formulas,”’ John Wiley & Sons, Inc., New York, 1952.
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Cumulative Unit Norma! Distribution

Table Lil

 

 

Py(i > u)

uU .00 01 02 .03 .04 05 .06 07 .08 .09

0 .5000 .4960 . 4920 . 4880 .4840 .4801 A761 4721 .4681 .4641

1 .4602 .4562 .4522 4483 4443 .4404 .4364 .4325 .4286 .4247

2 4207 .4168 .4129 .4090 .4052 .4013 3974 . 3936 3897 . 3809

3 3821 .3783 3445 3107 . 3669 . 3632 , 3094 .3957 .3920 .3483

4 .3446 .3409 oote .3336 . 3300 .3264 3228 .3192 .3156 .3121

5 . 3085 .3050 .3015 . 2981 .2946 2912 2877 . 2843 . 2810 2016

6 .2143 2409 . 2676 . 2643 2611 .2578 . 2046 2014 . 2483 2451

T . 2420 , 2389 , 2358 2327 .2297 . 2266 2206 .2206 2177 . 2148

8 2119 . 2090 . 2061 . 2033 . 2005 .1977 . 1949 .1922 . 1894 . 1867

9 . 1841 . 1814 . 1788 . 1762 . 1736 1711 . 1685 . 1660 . 1635 .1611

1.0 . 1587 . 1562 . 1539 .1515 . 1492 . 1469 . 1446 . 1423 .1401 .1379

1.j . 1357 . 1335 .1314 . 1292 .1271 .1251 . 1230 .1210 .1190 .1170

1.2 .1151 /1131 .1112 . 1093 .1075 . 1056 . 1038 .1020 . 1003 .09853

1.3 .09680 .09510 .09342 .09176 .09012 .08851 .08691 .08534 .08379 .08226

1.4 .08076 .07927 .07780 .07636 .07493 .07353 .07215 .07078 .06944 .06811

1.5 .06681 .06552 .06426 .06301 .06178 .06057 .05938 .05821 .05705 .05592

1.6 . 05480 .05370 .05262 .05155 .05050 .04947 .04846 .04746 .04648 .04551

1.7 .04457 .04363 .04272 .04182 .04093 .04006 . 03920 .03836 .03754 .03673

1.8 .03593 .03515 .03438 .03362 .03288 .03216 .03144 .03074 .03005 .02938

1.9 .02872 .02807 .02743 .02680 .02619 .02559 .02500 ,02442 .02385 .02330

2.0 .02275 .02222 .02169 .02118 .02068 ,02018 .01970 .01923 .01876 .01831

2.1 .01786 .01743 .01700 .01659 .01618 .01578 .01539 .01500 .01463 .01426

2.2 .01390 .01355 .01321 .01287 .01255 ,01222 .01191 .01160 .01130 .01101

2.3 .01072 .01044 .01017 .029903 . 079642 .079387 .079137 028894 .028656 . 028424

2.4 .078198 .0°7976 .077760 . 077549 .077344 .077143 . 076947 . 076756 .0°6569 . 076387
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.076210

.074661
073467
.072555
.071866

.071350

.079676

.076871

.034834

.033369

082326
.031591
.071078
047235
.044810

.043167

.042066

.041335

.0°8540

.055413

.053398

.052112

.0°1301

.0°7933
084792

.076037

.074527

.073364
072477
.071807

.071306

.099354
036637
.034665
.093248

032241
.071531
.071036
.046948
.044615

.043036

.041978
041277
058163
055169

.0°3241

.052013

.051239

.0°7547

.0°4554

.075868

.074396
073264
.072401
.071750

.071264
099043
.076410
.074501
.0°3131

032158
.0°1473
.0*9961
.046673
.044427

.042910

.041894

.041222

.0°7801

.054935

.0°3092

.051919

.051179

.0°7178

.0°4327

.075703

.074269

.073167
072327
.071695

071223
.038740
.076190
.074342
.073018

.032078

.031417

.049574

.046407

.044247

042789
.0*1814
.041168
.057455
.054712

052949
.051828
.051123
.0°6827
.0°4111

.075543

.074145

.073072
072256
.071641

.071183
038447
075976
.034189
032909

.032001

.031363

.049201

.046152

.044074

.042673

.041737

.041118

.057124

.054498

.052813

.051742

.051069

.086492

.0°3906

.075386

.0?4025

.0?2980

.072186

.071589

.071144

.038164

.035770

.034041

. 032803

.071926

.031311
048842
.045906
.043908

.042561

.011662

.041069

.056807

.054294

052682
.051660
.051017
.0°6173
.0°3711

075234
.073907
. 072890
.072118
.071538

.071107
037888
.035571
.033897
.032701

.031854

.031261

.048496

.045669

.043747

042454
.041591
.041022
.056503
.0°4098

052558
.051581
. 089680
.0°5869
083525

075085
.073793
022803
. 072052
.071489

.071070
097622
.0°5377
.093758
032602

.031785

.071213

.048162
045442
043594

042351
.041523
.0°9774
.056212
.0°3911

052439
.051506
089211
.0°5580
093348

.074940

.073681

.072718

.071988

.071441

.071035

.0°7364

.035190
093624
.032507

.031718

.071166

.047841
045223
.043446

042252
.041458
.0°9345
055934
.0°3732

052325
.051434
.0°8765
.0°5304
.0°3179

.0?4799

.073573
072635
.071926
.071395

.071001

.0°7114

.035009

. 093495
032415

.071653

.071121

.047532

.045012

.043304

042157
.041395
058934
.0°5668
.0°3561

052216
.0°1366
.0°8339
.0°5042
.0°3019

 

Examples: Py(@ > 3.57) = Pw(@ < —3.57) = .0°1785 = .0001785
Py(@ < 3.57) = Pr(i > —3.57) = 1 — .031785 = .9998215

Reproduced by permission from A. Hald, “Statistical Tables and Formulas,’ John Wiley & Sons, Inc., New York, 1952.
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Table IV

Unit Normal Loss Integral

G(u) = Py(u) — u Pw(& > u)
 

 

U .00 OL .Q2 .O3 .04 05 .06 07 08 .09

.0 .3989 . 3940 . 3890 .3841 .3793 .3744 . 3697 .3649 . 3602 . 3556 |
1 . 3509 .3464 .3418 .3373 .3328 . 3284 .3240 .38197 .3154 3111
2 . 3069 ,3027 . 2986 .2944 . 2904 . 2863 2824 2784 2745 .2706
3 . 2668 . 2630 . 2992 .2055 .2018 .2481 . 2445 . 2409 2074 . 2339
A . 2004 .2270 . 2236 . 2203 .2169 .2137 . 2104 ,2072 . 2040 . 2009

5 .1978 . 1947 .1917 . 1887 .1857 . 1828 . 1799 1771 . 1742 .1714
6 . 1687 . 1659 . 1633 . 1606 . 1580 . 1554 . 1528 . 1503 . 1478 . 1453 |
a . 1429 . 1405 .1381 .1358 . 1334 . 1312 . 1289 . 1267 . 1245 . 1223
8 . 1202 .1181 . 1160 .1140 .1120 . 1100 . 1080 .1061 . 1042 . 1023
9 . 1004 .09860 . 09680 .09503 .09328 .09156 .08986 .08819 .08654 .08491

1.0 .08332 .08174 .08019 .07866 .07716 .07568 .07422 .07279 .07138 .06999:
1.1 .06862 .06727 .06595 .06465 .06336 .06210 . 06086 .05964 .05844 .05726.
1.2 .05610 .05496 .05384 .05274 .05165 .05059 .04954 .04851 .04750 .04650
1.3 .04553 .04457 .04363 .04270 .04179 .04090 .04002 .03916 .03831 .03748
1.4 .03667 .03587 .03508 .03431 .03356 .03281 .03208 .03137 .03067 .02998

1.5 .Q2931 .02865 . 02800 .02736 .02674 02612 .02552 .02494 .02436 .02380
1.6 .02324 .02270 .Q2217 .02165 .02114 .02064 .02015 .01967 .91920 .01874
1.7 .01829 .01785 .01742 .01699 .01658 .01617 .01578 .01539 .01501 .01464
1.8 .01428 .01392 .01357 .01323 .01290 .01257 .01226 .01195 .01164 .01134
1.9 ,01105 .01077 .01049 .01022 .0°9957 079698 .079445 .079198 .078957 078721

2.0 .078491 078266 078046 077832 077623 .0?7418 .077219 .0?7024 076835 .076649
2.1 .076468 076292 .076120 .075952 .0°5788 075628 .075472 .075320 .075172 .075028
2.2 074887 .0?4750 .074616 .074486 .074358 074235 .074114 .073996 073882 .0?3770
2.3 073662 073556 073453 073352 .0°3255 .0?3159 073067 .0°2977 .0?2889 072804
2.4 022720 072640 .072561 072484 .0?2410 .0°2337 072267 .0?2199 072132 022067
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.072004-

.071464

.071060

.037611

.075417

.0°3822
032673
031852
.031273
. 048666

.045848

.043911
042592
.041702
.041108

.057145

. 054566

.052891

.051814

.051127

.0°6942

.0°4236
. 062560
.0°1533
.079096

.071943

.071418

.071026

.0°7359

.095233

.0°3689

.032577

.0°1785

.081225

.048335

.045620

.043755
042486
.041632
.041061

.056835

.0°4364

.052760

.0°1730

.051074

.0°6610

.0°4029
062433
.0°1456
.078629

.071883

.071373

.0°9928

.0°7115

.035055

. 033560

.0°2485

.031720

.071179

.048016

.045400

.043605
042385
.041563
.041016

.0°56538

.054170

.052635

.051650

.051024

.0°6294

.0°3833

.0°2313

.0°1382

.078185

.071826

.071330

.0°9607

.036879
034883

.033436
032396
.031657
.031135
.047709

.045188

.043460
042287
.041498
.0°9723

.056253

.0°3985
052516
.051574
.0°9756

.0°5992

.0°3645
062197
.0°1312
.077763

.071769

.071288
039295
.0°6650
074716

.073316
032311
.031596
.031093
.047413

.044984

.043321

.042193

.041435

.0°9307

.055980

.0°3807

.052402

.051501

.0°9296

.0°5704

.0°3467

.0°2088

.0°1246

.077362

.071715
071247
038992
.036428
.074555

.033199
032227
.031537
.071051
.047127

.044788

.043188

.042103

.041375
058908

.055718

.0°3637
052292
.0°1431
.0°8857

085429
.0°3297
.01984
.0°1182
.076982

.071662

.071207

.038699

.076213

.0°4398

.0°3087
032147
.031480
.071012
.046852

.044599

.043059

.042016

.041317

.0°8525

.055468

.053475

.052188

.051365

. 088437

.0°5167

.0°3135

.0°1884

.081122

.076620

.071610

.071169

.038414

. 036004

.034247

.032978

. 032070

.031426

.049734

.046587

.044417
042935
.041933
.041262
.058158

.055227

.0°3319
052088
.051301
.0°8037

.0°4917

.082981

.0°1790

.0°1065

.0°6276

.071560

.071132
078138
. 035802
.034101

032873
.031995
.031373
.049365
.046331

044242
042816
.041853
.041208
.0°7806

.054997

.0°3170

.051992

.05124)

.0°7655

.0&4679

.0°2834

.081700

.0°1011

.075950

.071511

.071095

.037870
035606
.0°3959

.032771

.071922

.031322
049009
.046085

.044073

.042702

.041776

.041157

.0°7469

.054777

.053027

.051901

.0°1183

.0°7290

.0°4452

.0°2694

.0°1615

.079588

.075640

 

G(-u) =u+ Giu)
Examples: (3.57) = .044417 = .00004417

G(—3.57) = 3.57004417
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Table V

Random Digits

10 09 73 25 33 76 52 OL 35 86 34 67 35 48 76 80 95 90 91 17 39 29 27 49 45

37 54 20 48 05 64 89 47 42 96 24 80 52 40 37 20 63 61 04 02 O00 82 29 16 65

08 42 26 89 53 19 64 50 93 03 23 20 90 25 60 15 95 33 47 64 35 08 03 36 06

99 01 90 25 29 09 37 67 07 15 38 31 13 11 65 88 67 67 43 97 04 48 62 76 59

12 80 79 99 70 80 15 73 61 47 64 03 23 66 cD 98 95 11 68 77 12 17 17 68 33

0666 57 47 17 34 O7 27 68 50 36 69 73 61 70 65 81 33 98 85 11 19 92 91 70

31 06 01 08 05 45 57 18 24 06 35 30 34 26 14 86 79 90 74 39 23 40 30 97 32

85 26 97 76 02 02 05 16 56 92 68 66 57 48 18 73 05 38 52 47 18 62 38 85 79

63 57 33 21 35 O05 32 54 70 48 90 55 35 75 48 28 46 82 87 09 83 49 12 56 24

73 79 64 57 53 O38 52 96 47 78 35 80 83 42 82 60 93 52 03 44 385 27 38 84 35

98 52 01 77 67 14 90 56 86 O07 22 10 94 05 58 60 97 O9 34 33 50 50 07 39 98

11 80 50 54 31 39 80 82 77 32 50 72 56 82 48 29 40 52 42 01 52 77 56 78 51

83 45 29 96 34 06 28 89 80 83 13 7+ 67 00 78 18 47 54 06 10 68 71 17 78 17

88 68 54 02 00 86 50 75 84 O01 36 76 66 79 51 90 36 47 64 93 29 60 91 10 62

99 59 46 73 48 87 51 76 49 69 91 82 60 89 28 93 78 56 13 68 23 47 83 41 13

65 48 11 76 74 17 46 85 09 50 58 04 77 69 74 73 03 95 71 86 40 21 81 65 44

80 12 43 56 35 17 72 70 80 15 45 31 82 23 74 21 11 57 82 53 14 38 55 37 63

74 35 09 98 17 77 40 27 72 14 43 23 60 02 10 45 52 16 42 37 96 28 60 26 55

69 91 62 68 03 66 25 22 91 48 36 93 68 72 03 76 62 11 39 90 94 40 05 64 18

09 89 32 05 05 14 22 56 85 14 46 42 75 67 88 96 29 77 88 22 54 38 21 45 98

91 49 91 45 23 68 47 92 76 86 46 16 28 35 54 94 75 08 99 23 37 O08 92 00 48

80 33 69 45 98 26 94 03 68 58 70 29 73 41 35 53 14 03 33 40 42 05 O08 23 41

44 10 48 19 49 85 15 74 79 54 32 97 92 65 75 57 60 04 08 81 22 22 20 64 13

12 55 07 37 42 11 10 00 20 40 12 86 07 46 97 96 64 48 94 39 28 70 72 58 15

63 60 64 93 29 16 50 53 44 84 40 21 95 25 63 43 65 17 70 82 O07 20 73 17 90

61 19 69 04 46 26 45 74 77 74 £51 92 48 37 29 65 39 45 95 93 42 58 26 05 27

15 47 44 52 66 95 27 07 99 53 59 36 78 38 48 82 39 61 O01 18 33 21 15 94 66

94 55 72 85 73 67 89 75 43 87 54 62 24 44 31 91 19 04 25 92 92 92 74 59 73

42 48 11 62 13 97 34 40 87 21 16 86 84 87 67 03 07 11 20 59 25 70 14 66 70

23 52 37 83 17 73 20 88 98 37 68 93 59 14 16 26 25 22 96 63 O05 52 28 25 62

04 49 35 24 94 75 24 63 38 24 45 86 25 10 25 61 96 27 93 35 65 33 71 24 72

00 54 99 76 54 64 05 18 81 59 96 11 96 38 96 54 69 28 23 91 23 28 72 95 29

35 96 31 53 O07 26 89 80 93 54 33 35 13 54 62 77 97 45 00 24 90 10 33 93 33

59 80 80 83 91 45 42 72 68 42 83 60 94 97 00 13 02 12 48 92 78 56 52 01 06

46 05 88 52 36 O1 39 09 22 86 77 28 14 40 77 93 91 08 36 47 70 61 74 29 41

32 17 90 05 97 87 37 92 52 41 O08 56 70 70 OF 86 74 31 71 57 85 39 41 18 38

69 23 46 14 06 20 11 74 52 04 15 95 66 00 00 18 74 39 24 23 97 11 89 63 38

19 56 54 14 80 O1 75 87 538 79 40 41 92 15 85 66 67 43 68 06 84 96 28 52 O07

45 15 51 49 38 19 47 60 72 46 43 66 79 45 43 59 04 79 00 33 20 82 66 95 41

04 86 43 19 94 36 16 81 08 51 34 88 88 15 53 01 54 03 54 56 05 O01 45 11 76

98 08 62 48 26 45 24 02 84 04 44 99 90 88 96 39 09 47 34 07 35 44 13 18 80

33 18 51 62 32 41 94 15 09 49 89 43 54 85 81 88 69 54 19 94 37 54 87 30 43

80 95 10 04 C6 96 38 27 O07 74 20 15 12 33 87 £25 O1 62 52 98 94 62 46 11 71

79 75 24 91 40 71 96 12 82 96 69 86 10 25 91 74 85 22 05 39 00 38 75 95 79

18 63 33 25 37 98 14 50 65 71 381 O01 O02 46 74 05 45 56 14 27 77 93 89 19 36

74 02 94 39 02 77 55 73 22 70 97 79 01 71 19 62 52 75 80 21 80 81 45 17 48

54 17 84 56 11 £80 99 33 71 438 O05 33 51 29 69 56 12 71 92 55 36 04 09 03 24

11 66 44 98 83 52 O7 98 48 27 59 388 17 15 39 09 97 33 34 40 88 46 12 33 56

48 32 47 79 28 31 24 96 47 10 02 29 53 68 70 32 30 75 75 46 15 02 00 99 94

69 07 49 41 38 87 63 79 19 76 35 58 40 44 O01 10 51 82 16 15 O1 84 87 69 38

Reproduced by permission from The RAND Corporation, ‘‘A Million Random

Digits,’’ Free Press, Glencoe,Ill., 1955.



Tables 709

 

 

 

 

Table VI

Square Roots

Tenths of the
tabular difference

n 0 i 2 3 4 5 6 7 8 9 10

12 3 4 #5

l .316 .302 6. 846 —S—(i« 381374 387 1 3 4 6 7
.387 .400 .412 .424 .436 .447 1 2 4 6 6

2 .447 .458 .469 .480 .490 .500 .610 .520 .529 #.539 .648 12 3 4 5
3 . 548 .557 .566 .574 3.583 .592 .600 .608 .616 .624 . 632 12 3 38 4
4 .632 .640 .648 .656 .663 .671 .678 .686 .693 .700 107 1 it 2 3 4

5 .707 .714 .721 =.728 «735 742 .748 .755 .762 .768 .775 112 8 3
6 .775 .781  .787 .794 .800 .806 .812 .819 .825 .831 .837 112 2 3
aC 837 .843 .849 .854 .860 . 868 .872 .877 .883 .889 . 894 1 1 2 2 3
8 .894 .900 .906 .911 .917 .922 .927 .933 .938 .943 .949 1 1 2 2 3
9 .949 .954 .959 .964 .970 .975 .980 .985 .990 .995 1.000 1 1 2 2 3

1.0 1.000 1.005 1.010 1.015 1.020 1.025 1.080 1.034 1.039 1.044 1.049 0112 2
1.1 1.049 1.054 1.058 1.063 1.068 1.072 1.077 1.082 1.086 1.091 1.095 0112 2
1.2 1.095 1.100 1.105 1.108 1.114 1.118 1.122 1.127 1.131 1.136 1.140 0 2 1 2 2
1.3 1.140 1.146 1.149 1.153 1.158 1.162 1.166 1.170 1.175 1.179 1.183 0 1 1 2 2
1.4 1.183 1.187 1.192 1.196 1.200 1.204 1.208 1.212 1.217 1.221 1.225 01 1 2 2

1.5 1.225 1.229 1.233 1.237 1.241 1.245 1.249 1.253 1.257 1.261 1.265 011 2 2
1.6 1.265 1.269 1.273 1.277 1.281 1.285 1.288 1.292 1.296 1.300 1.304 0 1 1 2 2
1.7 1.304 1.308 1.311 1.315 1.319 1.323 1.327 1.330 1.334 1.338 1.342 0 1 1 2 2
1.8 1.342 1.345 1.349 1.353 1.356 1.360 1.3864 1.367 1.371 1.375 1.378 QO } 1 ] 2
1.9 1.378 1.382 1.386 1.389 1.393 1.396 1.400 1.404 1.407 1.411 1.414 011i 2

2.0 1.414 1.418 1.42] 1.425 1.428 1.432 1.435 1.439 1.442 1.446 1.449 01141 2
2.1 1.449 1.453 1.456 1.459 1.463 1.466 1.470 1.473 1.476 1.480 1.483 01141 2
2.2 1.483 1.487 1.490 1.493 1.497 1.500 1.503 1.507 1.510 1.513 1.517 01 1 1 2
2.3 1.517 1.520 1.523 1.526 1.530 1.533 1.536 1.539 1.543 1.546 1.549 01141 2
2.4 1.549 1.552 1.556 1.559 1.562 1.565 1.568 1.572 2.575 1.578 1.581 0 1 1 42 2

2.5 1.581 1.584 1.587 1.591 1.594 1.597 1.600 1.603 1.606 1.8609 1.612 01141 2
2.6 1.612 1.616 1.619 1.622 1.625 1.628 1.631 1.684 1.637 1.640 1.643 011i 2
2.7 1.643 1.646 1.649 1.652 1.655 1.658 1.661 1.664 1.667 1.670 1.673 011 éi%+41 2
2.8 1.673 1.676 1.679 1.682 1.685 1.688 1.691 1.694 1.697 1.700 1.703 0 1 1 = 1
2.9 1.703 1.706 1.709 1.712 1.715 1.718 1.720 1.723 1.726 1.729 1.732 0 1 1 41 1

3.0 1.732 1.7385 1.738 1.741 1.744 1.746 1.749 1.752 1.755 1.758 1.761 0111 1
3.1 1.761 1.764 1.766 1.769 1.772 1.775 1.778 1.780 1.783 1.786 1.789 0111 1
3.2 1.789 1.792 1.794 1.797 1.800 1.803 1.806 1.808 1.811 1.814 1.817 01141 1
3.3 1.817 1.819 1.822 1.825 1.828 1. 830 1.833 1.836 1.838 1.841 1.844 011421 1
3.4 1.844 1.847 1.849 1.852 1.855 1.857 1.860 1.863 1.865 1.868 1.871 01141 1

3.5 1.871 1.873 1.876 1.879 1.881 1. 884 1.887 1.889 1.892 31.895 1.897 0 11 41 1
3.6 1.897 1.900 1.903 1.905 1.908 1.910 1.913 1.916 1.918 1.921 1.924 0 11 41 1
3.7 1.924 1.926 1.929 1.9381 1.934 1.936 1.939 1.942 1.944 1.947 1.949 01141 1
3.8 1.949 1.952 1.954 1.957 1.960 1.962 1.965 1.967 1.970 1.972 1.975 01141 1
3.9 1.975 1.977 1.980 1.982 1.985 1.987 1.990 1.992 1.995 1.997 2.000 011 éii1 1

4.0 2.000 2.002 2.005 2.007 2.010 2.012 2.015 2.017 2.020 2.022 2.025 00 1 1 1
4.1 2.025 2.027 2.030 2.032 2.035 2.037 2.040 2.042 2.045 2.047 2.049 0011 1
4.2 2.049 2.052 2.054 2.057 2.059 2.062 2.064 2.066 2.069 2.071 2.074 0011 1
4.3 2.074 2.076 2.078 2.081 2.083 2.086 2.088 2.090 2.093 2.095 2.098 001 1 1
4.4 2.098 2.100 2.102 2.105 2.107 2.110 2.112 2.114 2.117 2.119 2.121 001 1% 1

4.5 2.121 2.124 2.126 2.128 2.131 2.133 2.1385 2.138 2.140 2.142 2.145 00141 1
4.6 2.145 2.147 2.149 2.152 2.154 2.156 2.159 2.161 2.163 2.166 2.168 00141 1
4.7 2.168 2.170 2.173 2.175 2.177 2.179 2.182 2.184 2.386 2.189 2.191 0 01 1 ]
4.8 2.191 2.193 2.195 2.198 2.200 2.202 2.205 2.207 2.209 2.211 2.214 0011 1
4.9 2.214 2.216 2.218 2.220 2.223 2.225 2.227 2.229 2.232 2.234 2.236 001 1 1

5. 2.236 2.258 2.280 2.302 2.324 2.345 2.366 2.387 2.408 2.429 2.449 24 6 9 I!
6. 2.449 2.470 2.490 2.510 2.5380 2.550 2.569 2.588 2.608 2.627 2.646 2 4 6 8 10
7. 2.646 2.665 2.683 2.702 2.720 2.739 2.757 2.775 2.793 2.811 2.828 2 4 5 7 9
8. 2.828 2.846 2.864 2.881 2.898 2.915 2.933 2.950 2.986 2.983 3.000 2 3 5 7 9
9. 3.000 3.017 3.033 3.050 3.066 3.082 3.098 3.114 3.1380 3.146 3.162 2 3 5 6 8

 

Reproduced by permission from E. V. Huntington, ‘‘ Four-place Tables,” Houghton Mifflin Company, Boston, 1931.
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Table VII

Cube Roots

Tenths of the
tabular difference

n 0 1 2 3 4 5 6 7 8 9 10

12 3 4 6

.010 2154 .2162 .2169 .2176 .2183 . 2190 2197 .2204 .2210 .2217, .2224 1 1 2 8 3

.O11 . 2224 2231 .2237 .2244 .2251 . 2257 .2264 .2270 .2277 .2283 .2289 1 1 2 383 3

.012 . 2289 .2296 .2302 .2308 .2316 2021 2001 6.2608 «©. 2839) =. 2346 .2g0l 1 1 2 2 3

.013 .2351 .2357 .2363 .2369 .2375 .2381 .2387 .2393 .2399 .2404 .2410 112 2 3

.014 2410 .2416 .2422 .2427 .2433 .2438 #.2444 .2450 .2455 .2461 .2466 1 1 2 2 8

.015 .2466 .2472 .2477 .2483 .2488 .2493 .2499 .2504 .2509 .2515 .2520 1 1 2 2 3

.016 .2520 §=.2525 12530 .2535 .2541 .2546 .2561 .2556 .2561 .2666 .2571 1 1 2 2 «3

.017 . 2571 .2576 .2581 .2586 .2591 . 2596 -2601 .2606 .2611 .2616 .2621 0 1 1 2 2

.018 . 2621 .2626 .2630 .2635 .2640 - 2645 .2650 .2654 .2659 .2664 .2668 0 1 1 2 2

.019 . 2668 .2673 .2678 .2682 .2687 . 2692 .2696 .2701 .2705 .2710 .2714 0 1 1 2 2

.020 .2714 .2719 .2723 .2728 .2732 2737 =.2741 «2746 «=.2750 «=—.2755)Si(i«wa2769 «6-0lhLd1 Cll

.021 2759 «=©.2763 ©.2768 «3.2772 «©.2776~—. 2781 .2785 .2789 .2794 .2798 .2802 01312 2

.022 . 2802 .2806 .2811 .2815 .2819 . 2823 .2827 .2831 .2836 .2840 .2844 0 1 1 2 2

.023 2844 .2848 .2852 .2856 .2860 .2864 4.2868 .2872 .2876 .2880 .2884 0112 2

.024 .2884 .2888 .2892 .2896 .2900 .2904 .2808 .2912 .2916 .2920 .29024 01412 2

.025 . 2924 .2928 .29382 .2936 .2940 . 2943 .2947 .2961 .2955 .2959 .2962 0 1 1 2 2

.026 .2962 .2966 .2970 .2974 .2978 .2981 .2985 .2989 .2993 .2996 .3000 0 112 2

.027 .38000 §=—.8004. «3007 3011 =«.3015 8018 »3=—&.3022,-—s-«. 3026 )«=—.3029 «=«.3083)—S's(«w3087:«O«:O0d«Coad1tCwd1tCd1t

.028 .8037 .3040 .3044 .3047 .3051 .3055 .38058 .3062 .3065 .3069 38072 0 1 1 1 2

.029 .38072 =.3078 §=.3079 .3083 3086) 8=6=.30890)3=—s— . 3093.-—«(s«=#.3097 «=. 3100 «©3104. S's(«i«sw33107sSsis«#Osiad1 ddl ltt

.03 311 314 .817 .321 .324 327 .330 .333 .336 8.339 842 0 1 1 1~« «2

.04 . 342 .3845 .348 .350 .353 . 356 .358 .361 .363 .366 .368 O01 1 1 «41

.05 .368 .371 =©.873)— 378 ~——. 378 380 .383 .885 .387 .389 391 0011 1

.08 .391 .3894 .396 .398 .400 . 402 .404 .406 .408 .410 412 001 1 1

.07 .412 .414 .416 .418 .420 . 422 .424 .425 .427 .429 .431 0011 1

.08 .431 . 433 .434 .436 .438 .440 .441 443 445 . 446 . 448 001 1 1

.09 . 448 . 450 .451 . 453 .455 .458 . 458 . 459 . 461 . 463 . 464 000 1 1

1 . 464 .479 .493 .507 .519 .631 13 4 5 7
.531 -6438 .554 .565 .575 585 1 2 3 4 «5

2 .585 .594 .604 .613 #.621 .630 .638 .646 .654 .662 .669 1 2 3 3 4
3 . 669 .677 .684 .691 .698 .705 711.718 £724. 7831 737 121 2 3 «8
4 737 143 .749 .765 .761 . 766 772) «6777s «783s 788 .794 1 1 2 2 8

5 794 .799 .804 .809 .814 .819 ~ .824 ° .829 .834 .839 848 011 2 2
6 . 843 .848 .853 .857 .862 . 866 .871 .875 .879 .884 888 0112 2
7 . 888 .892 .896 .900 .905 .909 913 .917 .921 .924 928 0112 2
.8 .928 . 932 .936 .940 944 .947 951 .955 .958 .962 . 965 01411 2
9 .965 .969 .973 .976 .980 .983 -986 .990 .993 .997 1.000 014141 2

1.0 1.000 1.003 1.007 1.010 1.013 1.016 1.020 1.023 1.026 1.029 1.032 0 11 éi4t1 2
1.1 1.032 1.085 1.038 1.042 1.045 1.048 1.051 1.054 1.057 1.060 1.063 0 1 11 2
1.2 1.063 1.066 1.069 1.071 1.074 1.077 1.080 1.083 1.086 1.089 1.091 01141 1
1.3 1.091 1.094 1.097 1.100 1.102 1.105 1.108 1.111 1.113 1.116 1.119 0 1 11 1
1.4 1.119 1.121 1.124 1.127 1.129 1.132 1.134 1.137 1.140 1.142 1.145 0 1 1 1 1

1.5 1.145 1.147 1.160 1.152 1.155 1.157 1.160 1.162 1.165 1.167 1.170 00 1 1% 1
1.8 1.170 1.172 1.174 1.177 1.179 1.182 1.184 1.186 1.189 1.191 1.193 001 1 1
1.7 1.193 1.196 1.198 1.200 1.203 1.205 1.207 1.210 1.212 1.214 1.216 00 1 1 1
1.8 1.216 1.219 1.221 1.223 1.225 1.228 1.230 1.232 1.234 1.236 1.239 00 1 1 1
1.9 1.239 1.241 1.243 1.245 1.247 1.249 1.251 1.254 1.256 1.258 1.260 00 1 1 1

2. 1.260 1.281 1.301 1.320 1.339 1.357 2 4 6 8 10
1.357. 1.375 1.392 1.409 1.426 1.442 2 3 5 7 9g

3. 1.442 1.458 1.474 1.489 1.504 1.518 1.533 1.547 1.560 1.574 1.587 1 3 4 6 7
4, 1.587 1.601 1.613 1.626 1.639 1.651 1.663 1.675 1.687 1.698 1.710 1 2 4 6 6

5. 1.710 1.721 1.782 1.744 1.754 1.765 1.776 1.786 1.797 1.807 1.817 1 2 3 4 5
6. 1.817 1.827 1.837 1.847 1.857 1.866 1.876 1.885 1.895 1.904 1.913 1 2 8 4 6
7. 1.9138 1.922 1.931 1.940 1.949 1.957 1.966 1.975 1.983 1.992 2.000 1 2 3 3 4
8, 2.000 2.008 2.017 2.025 2.033 2.041 2.049 2.057 2.065 2.072 2.080 1 2 2 3 4
9. 2.080 2.088 2.095 2.103 2.110 2.118 2.125 2.133 2.140 2.147 2.154 1 1 2 8 4

 

Reproduced by permission from E. V. Huntington,‘‘ Four-place Tables,’’ Houghton Mifflin Company, Boston, 1931.
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Chart III. Gammaprobability distribution.
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Chart IV. Unit Normal distribution: ratio of ordinate to left tail.
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Chart VI. Optimal sample size: many-action problems with proportional losses.
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Index of Symbols

Index includes those symbols which are used in more than one chapter. Boldface
numbers shown in parentheses refer to problems on the pages indicated.

Dr

es
=

Il

-
_

LAC)a

I
i

as subscript, denotes prior value, 337
as subscript, denotes original value, 529
as subscript, denotes posterior value, 337
maximum conditional probability of error of first kind, 614
bias of measuring or sampling process, 459

distribution of, 468-469

after a sample has been taken, 473-474
number of possible orders in which 7 successes can occur in a

sequence of 7 trials, 176

eewhere y» stands for any random variable, 455
olf

|& — Eo(é)|
—————~ 532

o (E& 1)

lt — Eo(2)|
0,(f1)

expectation, 87

mean of posterior distribution considered as random variable before
sample outcome is known, 522

distribution of, 522

when 7 is binomial and @ 1s beta, 676-677
when # is Normal with known variance and ~ is Normal,
525-531

when 7 is Poisson and x is gamma, 673

use of, to compute cost, 522-524

value of sample information, 524-525
partial expectation of 2 over interval a to b inclusive, 88
pure sampling error of single observation, 459

distribution of, 463-465
mean sampling error or pure sampling error of sample mean, 460

distribution of, 465-467

number of degrees of freedom, 418, 432
point-f fractile, 81
required number of good pieces in production run, 135

mPp.(? > R) — RPpolF > R), 245
approximated by Normalloss integral G(u), 293

Py(u) — u Pr(& > u), unit Normalloss integral, 293
quantity of information, 443
negative profit per unit stocked but not sold, 74

719



720 Index of Symbols

Ko
kp
k,
K,
ke

ku
Ky

et
3

n

Dp

P

P(A)
P(A,B)
P(A\B)

P’(z)
P,(F > ri|n,p)

Pod < vIr)
Py> u)

Ppa(ti > n|r,p)
PpoF > r|m)

P,

Q

r

Sv

Tr

&

= loss per unit of overage, 128, 134

= profit per unit stocked and sold, 74

= variable sampling cost, per item in sample, 536-537
= fixed element in sampling cost, independent of sample size, 536
= terminal loss constant in two-action problems with linear costs or

profits, 451

= loss per unit of underage, 128
= lump-sum loss of underage, 134

second-order components of, in scrap-allowance problems, 135,
154-156

intensity of Poisson process, 212
gamma distribution of, 670-672

xt, expected number of Poisson successes in spacet, 212

mean, of many-valued population, 392
of potential measurements, as distinguished from true value of

quantity measured, 401, 458-459

= 1/x, mean interval between Poisson successes, 223-224
as parameter of gammadistribution, 229

number of Bernoulli trials, 176-179
as random variable, 135, 183-184

distribution of, when Bernoulli variation is negligible, 142-149,
207

when 7 is known (see Pascal distribution in Subject Index)

when p is unknown (2), 208
number of items in sample, 392
long-run fraction successful in Bernoulli process, 176-179

beta distribution of, 673-676
mean of two-valued population, 392
probability of A, 60-61, 167
joint probability of A and B, 167

= conditional probability of A given B, 167
= probability per unit width at value z of 2, 61

= binomial probability, 179
= standardized gammaprobability, 231
= standardized Normal probability, 278
= Pascal probability, 184
= Poisson probability, 213
= long-run fraction reported as successes, 475

= numberof units stocked, 67
produced, 136

= numberof Bernoulli successes, 177-178

distribution of, when Bernoulli variation is negligible, 207
when 7 is known (see Binomial distribution in Subject Index)
when 7p is unknown, 198-203, 676

as parameter of Pascal distribution, 184

= number of Poisson successes, 212
distribution of, when x is known(see Poisson distribution in Sub-

ject Index)
when « is unknown (11), 220, 672-673

as parameter of gamma distribution, 229
= total value of sample from two-valued population, 392

= {326 — £)?, 418

ll



Index of Symbols 721

1
s= vs Z(x — £)%, computed from several samples, 433

distribution of, 419, 433

vt Z(x — p)*, 409-410

computed from several samples, 433
distribution of, 410, 411

standard deviation, 263
denotes o(%), 406, 413n.

variance, 263
variance of population or of an individual sample item, 392
adjusted sampling variance, when and 8 are independent, 527
when pilot sample has been taken, 529

variance of E, to be obtained from an infinite sample, when £ and B
are independent, 527

when pilot sample has been taken, 529
original value of o2,(#;), 529

amount of space, in Poisson process, 212

as random variable, 221
distribution of (see Exponential distribution; Gammadistribu-

tion in Subject Index)
total value of sample from many-valued population, 392

ct — pb

s//n

distribution of, 480-433

z — E(@)

a (2)

mean and variance of, 270-271

» 430 

» 270

t
-» 230-231
be

mean and variance of, 270
value of individual member of population or of individual sample

item, 392

r t
— or — sample mean, 392
n on

distribution of, 285n., 393-394

marginal, 526-527
when bias is known, 467-468
when bias is unknown, 469-471
when population is incompletely specified, 426
when population is Normal, 402
when population is rectangular or skew, 427-429

sufficiency of, when population is Normal, 402, 418
— = mean of population of true values, 461

¢ = true value of quantity measured, 459

Z=
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Subject Index

Boldface numbers shown in parentheses refer to problems on the pages indicated

Acceptance lot as finite or infinite popu-
lation, 377-380

Acceptance sampling, 371-374
(See also Interdependent decision prob-

lems; Two-action problems)

Accidents, In mines, 227

as Poisson process, 215

(See also Horse kicks)

Acme Automatic Machine Company
(2, 3), 304

Acts, 3

comparison of, under uncertainty, 4-5,
24

in terms of loss, 128-124, 351

Additivity of means, variances, and
standard deviations, 263~—264

Allied Electromechanical Corporation,
570-572

American Rubber Products Company

(1), 303
Art-Craft Company (4), 302

ASN (average sample number), 191
Assignable causes, of irregularities in his-

torical frequency distributions, 97,
100

of run-to-run variation in process aver-

age, 144, 156
Average, weighted, 8-9, 86

(See also Location, measures of)
Average sample number, 191

Ball bearings, sorting of, 172, 427
Bayes’ postulate, 445n.
Bayes’ theorem, 333, 338

whenprior distribution is continuous,
338-339

whenprior distribution is discrete, 338
Beacon Catering Corporation, 77

Bernoulli process, 174-175, 194-208
conditions defining, 174-175, 194-196

(See also Independence; Stability)
control of output of, by sampling, 380-

381
parameter of, 174

assessment of distribution of, 199-
200, 207-208, 380

beta distributed, 673-676
known versus unknown, 196-198,

205-207
uncertainty about, neglect of, 207

(See also Binomial distribution; Pascal
distribution)

Bernoulli trial, 174

unconditional probability of success on
single, 201

(See also Independence)

Bernoulli uncertainty or variance, 198

neglect of, 207-208; (10), 273

Beta distribution, 673-676

Bias, 458-483
in classical statistics, 610
effect of sample size on, 473-474, 478-

479
measurement, 458-475

distribution of, 468-469
in samples from two-valued popu-

lations, 474-475
variation of, 465

selection, 475-483

avoidance of, 479-480
total, 477-478

of d = £. — #4, 492-494

Binomial distribution, 176-179
approximated, by Normal distribution,

274-285
by Poisson distribution, 217-218,

281-285

723



724 Subject Index

Binomial distribution, mean of, 189
(See also Bernoulli process)

Break-even probability (3), 48-49
Break-even value of basic random varia-

ble, 348, 448-449
Burke Appliance Company, 382-383

Buzz-bombs in south of London, 219

Central limit theorem, 285, 294
applied to sample mean, 425—427

Central tendency, measure of, 93
Certainty, cost or profit under, 120-122,

352

x/ /f distribution, 410-411, 419
Confidence intervals, 661-667
may be knowntoresult in false asser-

tion, 665-666
for » when Z is Normally distributed

(2b), 667
for p of Bernoulli process, with

bounded confidence, 662-664
exact confidence, 664-665

purpose and nature of, 661, 664

relation to posterior probability, 666—

667
use of, in many-action problems (4),

668
in two-action problems (3), 667

Consequences, immediate versus
ultimate, 44-48

reference, 33-34

Contracts, reference, 33ff.
evaluation of, in terms of cash, 34-37
evaluation of cash in terms of, 37
reduction of complex contract to,

37-38
Correlation, 264n.; (10), 273
Cost, good-will, 132

of irrationality, 125
of sampling regarded as loss, 515
of uncertainty, 124, 351-352, 518

importance of, 124, 349
(See also Loss, expected)

variable versus fixed, 67
Cost or profit, undercertainty, 120-122,

352
expected, 68
incremental (see Incremental analysis)

linear (see Linear cost or profit)

long- versus short-run, 44—-48
nonlinear, 407-408
relative, 487-488

Cost or profit, terminal, after sampling,
511-514

total, of decision to sample and then
act, 508-509, 516

(See also Two-action problems)
unaffected by decision, exclusion of, 67,

343
Cost or profit structures (see Many-action

problems; Two-action problems)
Critical ratio, 74, 132

(See also Fractiles, critical)

Daily Racing Form, 76
D’Alembert’s paradox, 13-14, 17
Decision problems, economic types of

(see Many-action problems; Two-
action problems)

Decision procedures, single-sample versus

sequential, 509

(See also Sequential decision pro-
cedures; Single-sample decision

procedures)
Decision rules, in interdependent decision

problems, 557
in two-action problems, choice by

specification of a, 614-615, 618-619
classical theory for choice among,

611-614, 617-618
conditional performance described,

by probabilities of error, 611-

613, 618-619
by terminal loss, 624-628
by total loss, 637-640

equivalent to test of significance,
615-616, 619-620

minimax, 640-642
unconditional performance evalu-

ated in termsof loss, 630-640
(See also Errors of first and second

kind; Tests of hypotheses)

Decisions, interdependent (see Inter-
dependent decision problems)

Degrees of freedom, 418, 432, 433
Delegation of routine decisions, 30-31
Difference between two unknown quanti-

ties, 486-498
investigation of, by sampleof differ-

ences, 495-498

by two independent samples, 491-
495

Differences, populations and samplesof,
496-497



Discrepancy, forecast (see Forecast

discrepancies)

Dispersion, measures of, 260-272

Distribution, cumulative, 57-60
frequency, 53-54

smoothing of, 98-100
graphic representation of, 55-60, 105-

106
relation between shapes of cumu-

lative and ordinary, 108-109

grouped, 57
derived from graphic cumulative,

106-107
joint and marginal, of 7 and p, 198-—

203
of # and &, 415-417, 421

prior, continuous, 338-339, 435

discrete, 338, 435
effect of, compared with effect of

sample, 444-448, 473-474, 478-
479

for parameter, of Bernoulli process,
673-676

of Poisson process, 670-672
whenstatistic is Normally dis-

tributed (see Normaldistribution)

probability, 53
based directly on betting odds (5),

116; (6), 157; 438-439, 469
relation to frequency, 53-54, 95-106,

161

of residuals, 268-269
sampling, obtained by Monte Carlo

method, 432n.
(See also names of specific statistics

in Index of Symbols)

stationary, 554-556
of sums,of independentidentically dis-

tributed random variables (see

Normal distribution)

of independent Normal random vari-
ables, 297-298

(See also names of specific mathemati-

cal distributions)

Efficiency, statistical, 500-501
Equally likely, 12, 445-446
Error (see Bias; Forecast discrepancies;

Sampling error)

Errorsof first and second kind, 608
graphical description of, 613-614
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Estimation, of long-run cumulative fre-
quencies (fractiles), 103-104

of long-run frequencies, 97-98, 100—

101, 103
of parameters of a prior distribution,

437-438
of population mean, 443
of population variance, 429-430, 432-

434, 464-465
under proportional losses, 587-589
(See also Confidence intervals)

Events, 3
collectively exhaustive, 6
compound, 7-8
elementary, 7-8

graphic representation of, 7-8
grouping of, 6-8
mutually exclusive, 6-8

Expectation, 86-88
complete or ordinary, 86-87
computed from grouped or graphic dis

tribution, 109-113
effect on, of changes, of location, 267—

268
of scale, 269-270

partial, 87-88
use of, 91-92

of random variables, binomial, 188~189
continuous, 233-234
exponential, 224
gamma, 233-234

hypergeometric, 358
Normal, 275, 300-301

Pascal, 190
Poisson, 213

of sum of random variables, 263-264
Expected value, of an act (see Value)

of a random variable (see Expectation)
Experience as basis for assigning subjec-

tive probabilities (see Probability,
subjective)

Exponential distribution, 221-224
of grocery sales, 499

of intervals between Poisson successes,

224
of inventories, 394-395
as prior distribution, 446-448
special case of gamma, 229
standardized, 229-230
used to test existence of Poisson proc-

ess, 226-228
(See also Poisson process)

Extrasensory perception, 657-660
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Factorial n, 176
Family-Fare plan, 503-508

Finite population, acceptancelot as, 377-
380

effect of, on distribution, of €, 466
ci #7, 363-367
of #, 393-394, 426

Finite population correction (see

Variance)
Forecast discrepancies, 62

as basis for probability distribution of
demand, 115-116

Normal distribution of, 439
Fractiles, 81-83

critical, in many-action problems with
proportional losses, 83-84

estimation of, 103-104
of graphic distribution, 82
of Normal]distribution, 299-300

Freedom, degrees of, 417, 432, 433
Frequency always denotes relative fre-

quency, 54
(See also Relative frequency)

Frequency distribution (see Distribution)
Frequency interpretation of probability

(see Probability)

Gametree (see Tree)

Games against chance (see Sequential de-

cision procedures)
Gammadistribution, 228-232
approximated by Normal, 289-291
as approximation to Pascal, 234-235
as prior distribution, 670-672

relation to Poisson, 231n.

(See also Poisson process)
Grand Western Railroad, 503-508
Great Eastern Steel Corporation, 326-327
Green Garage Corporation (4), 305

Gridley Machine Works (8), 258
Grocery stores, distribution of, by size,

499

Histogram, 56
smoothing of, 101-102

Horse kicks, in Prussian army, 219
time between, 235

Hypergeometric distribution, 355-359
approximated, by binomial or Poisson,

367
by Normal, 359-361

Hypergeometric distribution, compared
with binomial, 363-365

Hypotheses, null, versus alternate, 607-
609; (3), 622

original meaning of, 657

point or extreme, 656-660
statistical versus primary, 609-610
tests of (see Tests of hypotheses)
use of null versus break-even value in

defining, 654-656

Ignorance, total, 445-446
Incremental analysis, basic principle of,

69
compared with direct analysis, 72-73,

130-131
problems to which applicable, 69
in truck-assignment problem, 77-78

(See also Many-action problems)

Independence,statistical, 170
of Bernoulli trials, 195, 197, 206

distinguished from stability, 195
of Poisson successes, 214-217

Induction, backward (see Sequential de-
cision procedures)

Infinite population, 367
acceptance lot as, 377-380

Information, perfect, value of, 450
prior, disregard of negligible, 444-446

quantity of, 443-444, 472

sample, value of, 515-516
in infinite, 537

(See also Two-action problems)
Insurance, self-, 28, 36
Intensity, of multiple Poisson processes,

215
of Poisson process, 212

Interdependent decision problems, 44—48,
346n., 371-377

approximate solutions of, 376-377
definition of cost in, 561
expected loss in, 568-570
graphic representation of, 46
importance of stationarity in, 554—556

optimal decision rules for, 561-568
Intervals between successes, in Bernoulli

process, 384-385
in Poisson process, 224—229, 385-386

Inventory, cost of carrying, 236
distribution of, by value, 394; (6), 395

Inventory control, basic methods of,
238-240



Inventory control, under certainty, 237
with lump-sumloss of underage, 140;

(7), 157
(See also Many-action problems,
with lump-sum and propor-
tional losses)

min-max under Poisson demand, 236-

258
basic assumptions of analysis, 236—

240, 257-258
expected cost under, 247-249
expected loss under, 256-257
length of cycle under, 249
optimal order quantity under, 252-

255
optimal reorder point under, 249-

252

parameters of, 240
physical behavior of, 240-246

“newsboy’’ model, described, by loss
table, 118-120

by payoff table, 3-4, 67-68
direct analysis of, 68-69, 120-123,

125-128
incremental analysis of, 69-76, 128—

132

optimal stock in, 73—76, 131-132
(See also Many-action problems,
with proportional losses)

when demand is generated by pooled
Poisson usage, 217; (1), 326

when demandis part regular and part

random (18), 220
Irrationality, cost of, 125

Large-sample theory, 432

Lead time, 237-238
Life testing of vacuum tubes, 571-572
Likelihood, definition of, 338

joint, 420
of a particular sample, 389-390
of a statistic summarizing a sample,

389-391
Linear cost or profit, definition of, 88,

91, 348
expectation of, 88-90, 348-349, 449-

450
Interary Digest, 478-479
Location, changesof, effect on distri-

butions, 267-269
measures of, 79-93

dangers in use of, 79-80, 93
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Loss, always denotes opportunity loss,
117

conditional, 117
computed directly, 125-126
under a decision rule, 624-628
derived from payoff table, 118—120
lump-sum, 134-135
of overage, 125-126, 133-134

proportional, 125-126
of underage, 134-135

expected, comparison of acts in terms
of, 123-124, 351

definitions of, two equivalent, 118,
122-123, 349-350

as difference between cost or profit
under certainty and under un-

certainty, 122-123, 352-353, 514
ag expectation of conditional losses,

120, 350-351, 513-514

(See also Decision rules; Inter-
dependent decision problems;
Many-action problems; Sequential
decision procedures; Single-sam-
ple decision procedures; Two-
action problems)

incremental (see Incremental analysis)
of sampling, 515

second-order, in scrap-allowance
problems, 135, 154-156

allowance for, 192-193

terminal, of a sequential decision pro-
cedure, 600

of a single-sample decision pro-
cedure, 513-514

total, of a sequential decision pro-
cedure, 600

of a single-sample decision pro-
cedure, 514-515

Loss constant, 451

Loss structures (see Many-action prob-
lems; Two-action problems)

Loss table, 118-120
Lottery, compound, 22-23, 38

standard, 11-13

Many-action problems, 69
with lump-sum andproportional!losses,

133-138
expected loss in, 188-139
incremental analysis of, 139-142
optimal act in, 139-142

with proportional losses, 125-126
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Many-action problems, with propor-
tional losses, expected loss in,
under general probability dis-
tribution, 125-128

under Normaldistribution, 301-
302, 577-579

behaviorof, as n increases, 579—
581

incremental analysis of, 69-76, 128-
132

optimal act in, under general proba-
bility distribution, 73-76, 128-
132

under Normal probability distri-

bution, 300, 577

optimal samplesize in, 581-582
effect on, of uncertainty concern-

ing o(€), 584-587
(See also Inventory control, ‘‘news-
boy’’ model)

Mar-Pruf Finishes, Inc., 456-457
Mean, 85-86

effect on, of changes, of location, 267—
268

of scale, 269-270

of sample (see Z in Index of Symbols)
(See also Expectation)

Measurement, composition of a, 459-460
error of (see Bias; Sampling error)

Measuring process, biased, 403, 458-459
as source of uncertainty, 400

Median, 80-81
as a statistic (6), 404

Min-max (see Inventory control)

Minimax decision rules, 640-642
Monte Carlo method, basic principle of,

320
proper numberof trials in, 325-326
use in, of computers, 325

of ‘‘intermediate distributions,”’
322-325

of random numbers, 321

use of, to obtain sampling distribu-
tions, 432n.

Multiplication rule, 169
for independent events, 171

Negative-binomial distribution, 672-673
Negative-hypergeometric distribution,

676-677
Net gain of sampling, 516

(See also Two-action problems)

New England Airlines, 318-319
Newsboy model (see Inventory control)

Nonresponse, 480

Normal distribution, 275-279

as approximation, to binomial, 274-282
to distribution of sums or meansof

independent indentically distrib-
uted random variables, 282-292

to empirical distributions, 294-302,
437-438

as expression of purely subjective
betting odds (5), 116; (6), 157;
438-439, 469

as prior or posterior, 436-448, 471-
472

with infinite standard deviation,
445n.

when true prior is nonnormal, 436-
437, 446-448, 549-552

Normal-probability paper, 109-110, 295
‘‘ Not-at-homes,’’ 480

Nuisance parameters, 417, 424425

Observation (see Measurement)

Operating characteristic (7), 181-182;
(6), 623

Opportunity loss (see Loss)
Order quantity, 237, 239
Overlap, 241

expected, 245

Parameter, 178-179
nuisance, 417, 424-425

Pascal distribution, 183-184

approximated, by gamma, 234-235
by Normal, 288-289

relation to binomial, 188

(See also Bernoulli process)

Payoff table, 3—4

exclusion of irrelevant costs from, 66
Percentage samples, 366-367
Performance characteristic (2), 622
Poisson distribution, 209-213

approximated by Normal, 286-288
as approximation to binomial, 217-218
(See also Poisson process)

Poisson process, 209, 214-217
conditions defining, 214-217

(See also Independence; Stability )

existence tested by use, of exponential
distribution, 226-228



Poisson process, existence tested by use,
of Poisson distribution (9, 10), 219

parameter of, 212

gamma distributed, 670-672
known versus unknown, 217

resulting from multiple non-Poisson
processes, 215-217

as source of demand, 217, 238
theoretical versus empirical justifica-

tion of, 226
(See also Exponential distribution;

Gammadistribution; Poisson
distribution)

Population, continuous, 385-386
of differences, 496-497
discrete, 384-385
exponential, 385-388, 394, 423, 499
finite (see Finite population)
gamma, 427

infinite (see Infinite population)
of intervals, 384-386
many-valued, 384-385

exact description of, 424
of measurements versus true values,

460-462

Normal, 397, 400-401, 423
Pascal, 384-385, 423
of ratios, 502; (3), 503
rectangular, 427
of sampling errors, 463-464
skew, 427

two-valued, 384-385
unknown or incompletely specified,

423-434
Power curve (2), 622

Preference, personal, as basis for decision
under uncertainty, 26-27

Probability, break-even (see Break-even
probability)

conditional, of compound events, 165-
169

of elementary events, 161~—164
mathematical definition of, 167

(See also Bayes’ theorem)
frequency definition of, 606

joint, 161-162, 332
multiplication rule for, 169-171

marginal, 202-203

of sample outcome, 333
mathematical theory of, 15

as aid in assignment of subjective
probabilities, 17-18, 333

objective, 606
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Probability, posterior, in relation, to con-
fidence intervals, 666-667

to statistical significance, 648-652
prior and posterior, 337
revision of, in light of new information,

330-339
subjective (or ‘“‘weight’’), 5, 15

assignment of, basic rules for, 8-11
check for consistency of, 13-14
indirect, 17-18, 160-161
use in, of experience with relative

frequency, 15-20, 53-54, 95~

106, 161
of standard lottery, 11-13

unconditional, 163 |
(See also Distribution; Relative

frequency)

Probability paper (see Normal-proba-

bility paper)
Process, random, 98, 161

(See also Bernoulli process; Measur-
ing process; Poisson process;

Sampling process)
Profit (see Cost or profit)
Profit structures (see Loss structures)

Queue (see Waiting lines)

Random numbers, 321
Random process, 98, 161
Random variable, 51-52

basic, 53
notation for, 60-61

value of, distinguished, from an event,
52

from random variable itself, 61
(See also Distribution; namesof

specific random variables in In-

dex of Symbols)
Randomization of confidence intervals,

664-665
Range, use of, as statistic (6), 412
Ratios, populations and samples of, 502;

(3), 503
Relative frequency, calculated by theory

of probability, 20-21
conditional, of compound events, 168—

169
of elementary events, 164-165

guide to assignment of probabilities,
15-20, 54, 95-106, 161

versus other evidence, 18-19
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Relative frequency, joint, 162

of mental phenomena, 19-20
unconditional, 168

(See also Distribution; Probability)

Reorder point, 237-239

Reporting of sample information for un-

specified use, 661

Reserve stock, 241
Residuals, distribution of, 268-269

Risk, attitude of individual toward, 26—

27
dependenceonsituation, 42

sharing of (8), 49

Robinson Abrasive Company, 382
Roulette, 48

Sample, as basis, for original assessment
of complete probability distribu-

tion, 95-106
for revision of previously assigned

probabilities, 330-339
Sample mean, composition of, 460

(See also = in Index of Symbols)

Sample size, classical theory for choice
of, 621-622

maximum admissible, 642-643
minimax, 640-642

nonoptimal, effect of, 546-547
optimal, 517-518

in interdependent decision problems,
561-570

in many-action problems with pro-
portional losses, 581-582

in two-action problems with linear

costs, 542-544, 547-552

Sampling, balanced, 501

clustered, 502

cost of, 515
curtailed, 191
inverse, 385n.
judgment, 480—483
net gain of, 516

(See also Two-action problems)

percentage, 366-367

probability, 479-480, 482-483

sequential, 385n.
(See also Sequential decision pro-

cedures)
simple, 367-368, 381, 394
stratified, 501-502
value of: (see Information, sample)

Sampling error, distinguished from bias,
459

in historical frequency distributions,
95-98

Sampling plan (6), 623
(See also Decision rules)

Scale, changesof, effect on distributions,

269-270
Scrap allowances, economics of, 133-

142, 191-192
(See also Many-action problems, with

lump-sum and proportionallosses)

Scrappingof defectives, effect on decision
problems, 374-376

Sequential decision procedures, 509, 590—
602

compared with single-sample pro-
cedures, 601-602

description by gametree, 592-596
expected sample size and sampling

cost under, 600
expected terminalloss under, 600
expected total loss under, 600
as games against chance, 591-593
solution by backward induction, 596—

600
tests of significance as, 644-648
truncated by single-sample approxi-

mation, 601

Shelf stock, 241
Shelf time, 243

expected, 244
Significance, statistical, 616, 620, 651

relation to posterior probability,
648-652

tests of (see Tests of hypotheses)

two-tail, 656-660
Simmons, W. R., and Associates, 369
Single-sample decision procedures, 509

expected terminal cost or profit under,
510-512

expected terminal loss under, 512-514
expected total cost, profit, or loss

under, 514-515
expected value of sample information

under, 515-516
net gain of sampling under, 515-316

(See also Interdependent decision
problems; Many-action problems,

with proportional losses; Tests of
hypotheses; Two-action problems)

Smith Novelty Company, 369-370; (2),

589



Smoothing, of cumulative distributions,
102-106

of frequency distributions, 98-100

of grouped distributions, 100-102
of histogram, 101-102

Sparse data, use of, to assess probability

distributions, 102-106
Stability, of Bernoulli process, 195, 197,

206
conditional, 195
distinguished from independence,

195
of Poisson process, 214-217

several sources of usage, 216
Standard deviation, 261

(See also Variance) |

Standardization, of gammadistribution,
229-231

of Normal distribution, 275-278
Standardized random variables, distri-

bution of, 270-271
(See also Standardization)

Stationary distributions, 554-556
Statistic, definition of, 390

sufficient, 390-391
nonexistent or untabulated, 425
for sample, from Normal population,

with both parameters un-

known, 418
with known mean, 409-410
with known variance, 402

from two-valued population, 390-
391

Student’s distribution, 430-433

Sums of random variables (see Distribu-

tion)

Superpopulation, 437
Superprocess, 438

t distribution, 430-433
Tables, probability, use of, in general, 180

(See also specific distributions)
Tail of a distribution, 58-59
Telephone calls, duration of, 228
Terminal, 508

(See also Cost or profit; Loss)

Tests of hypotheses, 607
as sequential decision procedures, 644—

648
illegitimate in classical theory,

621, 645
optimallevel for, 652-654
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Tests of hypotheses, as single-sample.

decision procedures, 608, 615-—
616, 619-620

allowance for bias in, 610
cannot replace calculation of break-

even value, 654-656
symmetric, 650-651
unnecessary in many circumstances,

629-630, 635-636
(See also Decision rules; Hypotheses;

Significance)
Tests of significance (see Tests of hypoth-

eses)

Time out of stock, 243
expected, 246

Tool cribs, service time at, 228; (6), 318

Tree, game,for interdependent decisions,
46

for sequential decisions (see Sequen-
tial decision procedures)

Two-action problems with linear costs or
profits, examples of, in chemical
processing, 398-399

in choice of package design, 486—
489

in marketing of new product, 455--
456

in process control for fraction
defective, 348-353

expected cost or profit in, 519-524
under Normal distribution, 533

expected loss in, 450—452

under Normaldistribution, 452-4585,
532-533

and arbitrary decision rule, 634
expected value of sample information

in, 524-525
under Normaldistribution, 532

net gain of sampling in, 525

under Normaldistribution, 532

behavior of, as 7 increases, 539-
541

optimal sample size in, under Normal
distribution, 542-544

under other distributions, 547-552
(See also Decision rules; Tests of

hypotheses)

Uncertainty, cost of (see Cost)
Utility, analysis in terms of, 31-32

conditional, assessment of, 39-40
interpretation of, 41-43
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Utility, conditional, as substitute for
further analysis, 47-48

zero assigned to consequence $0, 49
expected, as guide to action, 40
of money, dependenton situation, 42

Validation, 481-482
Value, of an act, conditional, 24

expected, 24-25, 203-205
monetary, a3 guide to action, 26-30

43-44

real versus expected, 38-39
break-even, of basic random variable,

348, 448-449
of a random variable, 52-61

expected (see Expectation)
Variable (see Random variable)

Variance, 260-263 |
correction for effect of finite popula-

tion on, 358, 393-394, 466
effect of sampling ratio, 366
effect on, of changes, of location, 267—

268
of scale, 269-270

population, effect of unknown, 429-—
432

estimation of, 429-430, 482-434
of random variables, binomial, 265-

266
exponential, 394
gamma, 267

Variance, of random variables, hyper-
geometric, 358

Normal, 275

Pascal, 266
Poisson, 266

two-valued, 394
of sum of random variables, 264-265

Waiting lines, 306-318

conditions determining behaviorof,
307-308

effect on, of distribution of holding
times, 317-318

of expanded or pooled facilities, 313
number waiting in, 311

expected, 311, 316-317
parameters of, 308
probability of waiting in, 309, 316-317

steady state of, 306-307
time waited in, 310

as ratio to service time, 312

Warner Aircraft Engine Company,ring-
gear order, 191

valve-assembly order, 157-158
Weighted average, computation of, 8-9
mean as, 86

Weights, subjective (see Probability)

Yield, effect: of, on decision problems,
374-376


