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Preface

The purpose of this work is to provide an introduction to the mathe-

matical theory of multi-stage decision processes. Since these constitute

a somewhat formidable set of terms we have coined the term ‘“‘dynamic

programming’to describe the subject matter. Actually, as we shall see,

the distinction involves more than nomenclature. Rather, it involves a

certain conceptual framework which furnishes us a new and versatile

mathematical tool for the treatment of many novel and interesting

problems both in this new discipline and in various parts of classical

analvsis. Before expanding upon this theme, let us present a brief

discussion of what is meant by a multi-stage decision process.

Let us suppose that we have a physical system S whose state at any

time ¢ is specified by a vector p, If we are in an optimistic frame of mind

we can visualize the components of # to be quite definite quantities such

as Cartesian coordinates, or position and momentum coordinates, or

perhaps volume and temperature, or if we are considering an economic

system, supply and demand, or stockpiles and production capacities. If

our mood is pessimistic, the components of # may be supposed to be

probability distributions for such quantities as position and momentum,

or perhaps momentsof a distribution.

In the course of time, this system is subject to changes of either
deterministic or stochastic origin which, mathematically speaking, means

that the variables describing the system undergo transformations.

Assume nowthat in distinction to the above we have a processin which

we have a choice of the transformations which may be applied to the

system at any time. A process of this type we call a decision process,

with a decision equivalent to a transformation. If we have to make a

single decision, we call the process a single-stage process; if a sequence

of decisions, than we use the term multi-stage decision process.

The distinction, of course, is not hard and fast. The choice of a point

in three-dimensional space maybe considered to be a single-stage process

wherein we choose (%, y, 2), or a multi-stage process where we choose

first x, then y, and then z.

There are a number of multi-stage processes which are quite familiar

to us. Perhaps the most commonare those occurring in card games, such
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PREFACE

as the bidding system in contract bridge, or the raise-counter-raise

system of poker with its delicate overtones of bluffing. On largerscale,

we continually in our economic life engage in multi-stage decision

processes in connection with investment programsand insurancepolicies.

In the scientific world, control processes and the design of experiments

furnish other examples.

The point we wish to make is that in modern life, in economic, in-

dustrial, scientific and even political spheres, we are continually sur-

rounded by multi-stage decision processes. Some of these we treat on

the basis of experience, some weresolve by rule-of-thumb, and some are

too complex for anything but an educated guess and a prayer.

Unfortunately for the peace of mind of the economist, industrialist,

and engineer, the problems that have arisen in recent years in the eco-

nomic, industrial, and engineering fields are too vast in portent and

extent to be treated in the haphazard fashion that was permissible in a

more leisurely bygoneera. The price of tremendous expansion has become

extreme precision.

These problems, although arising in a multitude of diverse fields, share

a common property—they are exceedingly difficult. Whether they arise

in the study of optimal inventory or stock control, or in an input-output

analysis of a complex of interdependent industries, in the scheduling of

patients through a medical clinic or the servicing of aircraft at an

airfield, the study of logistics or investment policies, in the control of

servo-mechanisms,or in sequential testing, they possess certain common

thorny features which stretch the confines of conventional mathematical

theory.

It follows that new methods must be devised to meet the challenge of

these new problems, and to a mathematician nothing could be more

pleasant. It is a characteristic of this species that its members are

never so happy as when confronted by problems which cannot be

solved—immediately. Although the day is long past when anyone

seriously worried about the well of mathematical invention running dry,

it is still nonetheless a source of great delight to see a vast untamed

jungle of difficult and significant problems, such as those furnished by

the theory of multi-stage decision processes, suddenly appear before us.

Having conjured upthis preserve of problems, let us see what compass

we shall use to chart our path into this new domain. The conventional

approach we may label “enumerative.’’ Each decision may be thought

of as a choice of a certain number of variables which determine the

transformation to be employed; each sequenceof choices, or policy as we

shall say, is a choice of a larger set of variables. By lumpingall these

choices together, we “‘reduce’’ the problem to a classical problem of
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determining the maximum of a given function. This function, which

arises in the course of measuring some quantitative property of the

system, serves the purpose of evaluating policies.

At this point it 1s very easy for the mathematician to lose interest

and let the computing machine take over. To maximize a reasonably

well-behaved function seems a simple enough task; we take partial

derivatives and solve the resulting system of equations for the maxti-

mizing point.

There are, however, some details to consider. In the first place, the

effective analytic solution of a large number of even simple equations

as, for example, linear equations,is a difficult affair. Lowering oursights,

even a computational solution usually has a number of difficulties of

both gross and subtle nature. Consequently, the determination of this

maximum is quite definitely not routine when the numberof variables

is large.

All this may be subsumed underthe heading “‘the curse of dimensional-

ity.’ Since this is a curse which has hung over the head of the physicist

and astronomer for many a year, there is no need to feel discouraged

about the possibility of obtainingsignificant results despite it.

However, this is not the sole difficulty. A further characteristic of

these problems, as weshall see in the ensuing pages, 1s that calculus is

not always sufficient for our purposes, as a consequence of the perverse

fact that quite frequently the solution is a boundary point of the region

of variation. This is a manifestation of the fact that many decision

processes embodycertain all-or-nothing characteristics. Very often then,

we are reduced to determining the maximum of a function by a combi-

nation of analytic and “‘hunt and search’’ techniques.

Whatever the difficulties arising in the deterministic case which we

have tacitly been assuming above, these difficulties are compoundedin

the stochastic case, where the outcome of a decision, or tranformation,

is a random variable. Here any crude lumping or enumerative technique

is surely doomed by the extraordinary manner in which the numberof

combinations of cases increases with the numberof cases.

Assume, however, that we have circumventedall these difficulties and

have attained a certain computational nirvana. Withal, the mathe-

matician has not discharged his responsibilities. The problem is not to

be considered solved in the mathematical sense until the structure of the

optimal policy 1s understood.

Interestingly enough, this concept of the mathematical solution is

identical with the proper conceptof a solution in the physical, economic,

or engineering sense. In order to make this point clear—and it is a most

important point since in many waysit is the raison d’étre for mathe-
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matical physics, mathematical economics, and many similar hybrid

fields—let us make a brief excursion into the philosophy of mathematical

models.

The goal of the scientist is to comprehend the phenomena of the

universe he observes around him. To prove that he understands, he must

be able to predict, and to predict, one requires quantitative measure-

ments. A qualitative prediction such as the occurrence of an eclipse

or an earthquake or a depression sometime in the near future does not

have the samesatisfying features as a similar prediction associated with

a date and time, and perhaps backed up by the offer of a side wager.

To predict quantitatively one must have a mechanism for producing

numbers, and this necessarily entails a mathematical model. It seems

reasonable to suppose that the morerealistic this mathematical model,
the more accurate the prediction.

There is, however, a point of diminishing returns. The actual world is
extremely complicated, and as a matter of fact the more that one studies

it the more oneis filled with wonder that we have even “‘order of magni-

tude’ explanations of the complicated phenomena that occur, much

less fairly consistent “laws of nature.’ If we attempt to include too many

features of reality in our mathematical model, wefind ourselves engulfed

by complicated equations containing unknown parameters and unknown

functions. The determination of these functions leads to even more

complicated equations with even more unknownparameters and functions,

and so on. Truly a tale that knows noend.

If, on the other hand, made timid by these prospects, we construct

our modelin too simple a fashion, we soon find that it does not predict

to suit our tastes.

It follows that the Scientist, like the Pilgrim, must wend a straight

and narrow path between the Pitfalls of Oversimplification and the

Morass of Overcomplication.

Knowing that no mathematical model can yield a complete description

of reality, we must resign ourselves to the task of using a succession of

models of greater and greater complexity in our efforts to understand.

If we observe similar structural features possessed by the solutions of a
sequence of models, then we may feel that we have an approximation
to whatis called a “law of nature.”’

It follows that froma teleological point of view the particular numerical

solution of anyparticular set of equations is of far less importance than

the understanding of the nature of the solution, which is to say the

influence of the physical properties of the system upon the form of the

solution.

Nowlet us see how this idea guides us to a new formulation of these
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decision processes, and indeed of some other processes of analysis which

are not usually conceived of as decision processes. In the conventional

formulation, we consider the entire multi-stage decision process as

essentially one stage, at the expense of vastly increasing the dimension

of the problem. Thus, if we have an N-stage process where M decisions

are to be madeat each stage, the classical approach envisages an MN-

dimensional single-stage process. The fundamental problem that con-

fronts us is: How can weavoid this multiplication of dimension which

stifles analysis and greatly impedes computation ?

In order to answer this, let us turn to the previously enunciated

principle that it is the structure of the policy which is essential. What

does this mean precisely? It means that we wish to know the charac-

teristics of the system which determine the decision to be made at any

particular stage of the process. Put another way, in place of determining

the optimal sequence of decisions from some fixed state of the system,

we wish to determine the optimal decision to be made at any state of

the system. Only 1f we know the latter, do we understand the intrinsic

structure of the solution.

The mathematical advantage of this formulation les first of all in

the fact that it reduces the dimension of the process to its proper level,

namely the dimension of the decision which confronts one at any particular

stage. This makes the problem analytically more tractable ‘and compu-

tationally vastly simpler. Secondly, as we shall see, it furnishes us with

a type of approximation which has a unique mathematical property,

that of monotonicity of convergence, and is well suited to applications,

namely, “approximation in policy space’’.

The conceptual advantage of thinking in terms of policies is very

great. It affords us a means of thinking about and treating problems

which cannot be profitably discussed in any other terms. If we were to

hazard a guess as to which direction of research would achievethe greatest

success in the future of multi-dimensional processes, we would un-

hesitatingly choose this one.

The theme of this volume will be the application of this concept of

a solution to a number of processes of varied type which weshall

discuss below.

The title is also derived in this way. The problems wetreat are pro-

gramming problems, to use a terminology now popular. The adjective

‘“‘dynamic,”’ however, indicates that we are interested in processes in

which time plays a significant role, and in which the order of operations

may be crucial. However, an essential feature of our approach will be

the reinterpretation of many static processes as dynamic processes in
which time can be artificially introduced.
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Let us now turn to a discussion of the contents.

In the first chapter we consider a multi-stage allocation process of

deterministic type which is a prototype of a general class of problems

encountered in various phases of logistics, in multi-stage investment

processes, in the study of optimal purchasing policies, and in the treat-

ment of many other economic processes. From the mathematical point

of view, the problem is related to multi-dimensional maximization

problems, and ultimately, as will be indicated below, to the calculus

of variations.

Weshall first discuss the process in the conventional manner and

observe the dimensional difficulties which arise from the discussion of

even very simple processes. Then we shall introduce the fundamental

technique of the theory, the conversion of the original maximization

problem into the problem of determining the solution of a functional

equation.

The functional equations whicharise in this way are of a novel type,

completely different from any of the functional equations encountered

in classical analysis. The particular one we shall employ for purposes

of discussion in this chapter is

(1) f(*) = Max [g(y) +A (x—y) +f (ay+ (x—y))].
O<sysu

where g and / are known functions and a and b are known constants,

satisfying the condition 0< a,b <1.

After establishing an existence and uniqueness theorem, we shall

derive some simple properties of the optimal policy which can be deduced

from simple functional properties of g and h. In particular, we shall

present the explicit solution of some equations where g and h have

various special forms.

The advantage of obtaining these solutions lies in the fact that they

can be utilized to obtain approximationsto the solutions of more complhi-

cated equations, and, what is more important, approximations to the

associated optimal policies. The subject of approximation leads us to

the concept of approximation in policy space, of importance and utility

in both theoretical and practical discussion, and to the discussion of

the question of the stability of f under changes in g and A.

In the second chapter we consider a multi-stage decision process of

stochastic type in the guise of a gold-mining venture with a delicate

gold-mining machine. Here we encounter the equation

A: py(rx% +f((l1—n) x,y)]
(2) I (%, ¥) == Max FB pelrav +f (x, (1 —?r,) oo
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In addition to pursuing an investigation similar to that given in

Chapter I, we actually obtain a solution to this equation, and some of

its generalizations. The solution has a particularly simple and intuitive

form, and introduces the useful idea of “decision regions.”’

We show, however, that some other generalizations do not have as

simple a structure, and, indeed, pose as yet unresolved problems. An

attempt to obtain approximate solutions to these problems for a parti-

cular region of parameter space will lead us to the continuous versions
treated in Chapter VIII.

Chapter IIT is devoted to a synthesis of these processes which seem so

different at first glance. In this chapter we analyze the commonfeatures

of the two processes treated in the preceding chapters, and then proceed

to formulate general versions of these processes. In this way we obtain

the functional equation

(3) f (p) = Max [g (6, g) + A(b, a) F(T (6, O)),
q

which includes both of the preceding, and a number of equations of

still more general type.

Also in this chapter we explicitly state the “principle of optimality”’

whose mathematical transliteration in the case of any specific process

yields the functional equation governing the process. The concept of

“approximation in policy space’ is also discussed in more detail.

In the following chapter, Chapter IV, a number of existence and

uniqueness theorems are established for several frequently occurring

classes of equations having the above form. Our proofs hinge upon a

simple lemma which enables us to compare twosolutions of the equation

in (3). Although these equations are highly non-linear, in many ways

they constitute a natural generalization of linear equations. For this

reason alone, aside from their applications, they merit study.

In Chapter V, we discuss a functional equation derived from a problem

of much economic interest at the current time, the “optimal inventory”’

problem. Here we show that the various techniques we have discussed

in the preceding chaptersyield the solutions of someinteresting particular

cases. In particular, we show that the method of successive approxima-

tions is an efficient analytic tool for the discovery of properties of the

solution and the policy, rather than merely a humdrum meansof obtaining

existence and uniqueness theorems. There are many different versions

of the optimal inventory problem and werestrict ourselves to a discussion

of the mathematical modelfirst proposed by Arrow, Harris,and Marschak,

and treated also by Dvoretzky, Kiefer, and Wolfowitz.
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A particular equation of the type we shall consider is

(4) f (x) = Min (g (y — x) + at{{2 (s -~ y) dG (s) +f (0) [a (s)

+ [Fo —s ac ish

Wethen turn to a study of what wecall “‘bottleneck processes.’’ These

we define as processes where a numberof interdependent activities are

to be combined for one common purpose,with the level of this principal

activity dependent upon the minimumlevelof activity of the components.

Two chapters are devoted to these problems, the first, Chapter VI,

of theoretical nature, and the second, Chapter VII, given over to the

actual details of the complete solution of one particular process.

The problems that we encounter are particular cases of the general

problem, apparently not treated before in any mathematical detail, of

determining the maximum over z of the inner product (x (7), a), where

x and z are connected by meansof the vector-matrix equation

(5) dx|dt = Ax + Bz,x(0) =c,

and where there is a constraint of the form Cz + Dx <f. Here x, z, c

and f are vectors and A, B, C and D are matrices. The linearity of the

operators and functionals constitutes the principal difficulty.

We might observe parenthetically that it is often thought that line-

arizing a problem facilitates its solution. On occasion, however, partic-

ularly in variational problems, it frequently complicates affairs to an

enormous degree, since this linearization renders classical variational

techniques largely inapplicable. In return, however, the computational

solution of particular cases may often be obtained by routine procedures.

In Chapter VIII, we return to the gold-mining process, and consider

a continuous version. There are many problems, someof a quite recondite

nature, associated with the formulation of continuous stochastic decision

processes. In the processes at hand, we are fortunate in being able to

sidestep these difficulties. In the continuous version, combining the

classical variational approach with the techniques employed in previous

chapters, we are able to solve completely the continuous versions of a

numberof problems that were resolutely intractable in the discrete case.

Wenowturn to the calculus of variations in Chapter IX, and show

that various characteristic problems may be viewed as dynamic

programming processes of continuous and deterministic type.

In geometric terms, the classical formulation is equivalent to con-

sidering an extremal curve as a locus of points, while the dynamic
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programming formulation conceives of the extremal as the envelope
of tangents.

Taking this latter point of view, we are able to obtain a new formu-

lation of some parts of the classical theory. In particular, we show how

to obtain partial differential equations, in terms of suitably introduced

state variables, for the principal eigen-value of the differential equation

(6) u" + 2? (t) u =: 0, u (0) = u (1) = 0.

Furthermore, we provide a new computational approach to variational

problems with constraints.

In Chapter X, we consider dynamic programmingprocesses involving

two decision-makers, essentially opposed to each other in their interests,

This leads to the discussion of multi-stage games, and, in particular, to

the very interesting class of games called “games of survival.’’ With the

aid of some heuristic reasoning, we are able to obtain a new rationale

for non-zero sum games, as a by-product.

The functional equations encountered in this domain have the general

form

(7) f(b, p’) = Max Min [|| te (6, 2,9, 9’) +
G G’

hO,P'7.47) F111 (0,097), Te(b, i. @ 7] 4G (g) dG’(9’)].

They may be treated by means of the same general methods used in

Chapter IV to discuss the equation in (3) above.

In the final chapter, we considera class of continuous decision processes

which lead to non-linear differential equations of the form

AX: v ;
(8) a Max[2i (¢; g) x7 + Bi (g)], x2 (0) = C1, 4 =1,2,..., N,

q j=

together with the corresponding equations derived from the discrete

process.

These equations possess amusing connections with some classical

non-linear equations, as we indicate.

In addition to a numberof exercises inserted for pedagogical purposes,

we have included a cross-section of problems designed to indicate the

scope of the application of the methods of dynamic programming.

There may be some whowill frown upon someof the less than profound

subjects which are occasionally discussed in the exercises, and used to

illustrate various types of processes. We are prepared to defend ourselves

against the charges of lése majesté in a number of ways, but we prefer

the two following. In thefirst place, interesting mathematics is where
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you find it, sometimes in a puzzle concerning the bridges of Koenigsberg,

sometimes in a problem concerning the coloring of maps, or perhaps the

seating of schoolgirls, perhaps in the determining of winning play in

games of chance, perhaps in an unexpected regularity in the distribution

of primes. In the second place, all thought 1s abstract, and mathematical

thought especially so. Consequently, whether we introduce our mathe-

matical entities under the respectable sobriquets of A and B, or by the

more charming Alice and Betty, or whether we speak of stochastic

processes, or the art of gaming, it is the mathematical analysis that

counts. Any mathematical study, such as this, must be judged, ultimately

upon its intrinsic content, and not by the density of high-sounding
pseudo-abstractions with which a text may so easily be salted.

This completes our synopsis of the volume. Since the processes we

consider, the functional equations which arise, and the techniques we

employ are in the main novel and therefore unfamiliar, we have restricted

ourselves to a moderate mathematical level in order to emphasize the

principles involved, untrammeled by purely analytic details. Consistent

with this purpose we have not penetrated too deeply into any one domain

of application of the theory from either the mathematical, economic, or

physical side.

In every chapter we have attempted to avoid any discussion of deeper

results requiring either more advanced training on the part of the reader

or more high-powered analytic argumentation. Occasionally, as in

Chapter VI and Chapter IX, we have not hesitated to waive rigorous

discussion and proceed in a frankly heuristic manner.

In a contemplated second volume on a higher mathematical level, we

propose to rectify some of these omissions, and present a number of

topics of a more advanced character which we have either not mentioned

at all here, mentioned in passing, or sketched in bold outline. It will

be apparent from the text how much remains to be done.

In this connection it is worth indicating a huge, important, and

relatively undeveloped area into which this entire volume represents

merely a small excursion. This is the general study of the computational

solution of multi-dimensional variational problems. Specifically we may

pose the general problem as follows: Given a process with an associated

variational problem, how do weutilize the special features of the process

to construct a computational algorithm for sclving the variational

problem ?

Dynamic programming is designed to treat multi-stage processes

possessing certain invariant aspects. The theory of linear programming

is designed to treat processes possessing certain features of linearity, and

the elegant “simplex method” of G. Dantzig to a large extent solves
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the problem for these processes. For certain classes of scheduling pro-
cesses, there are a variety of iterative and relaxation methods. In particu-

lar, let us note the methods of Hitchcock, Koopmans, and Flood for

the Hitchcock-Koopmans transportation problem, and the “flooding

technique” of A. Boldyreff for railway nets. Furthermore, there is the
recent theory of non-linear programming of H. Kuhn and A. W. Tucker

and E. Beale. The study of computational techniques is, however, in

its infancy.

Let us now discuss briefly some pedagogical aspects of the book. We

have taken as our audienceall those interested in variational problems,

including mathematicians,statisticians, economists, engineers, operations

analysts, systems engineers, and so forth. Since the interests of various

members of this audience overlap to only a slight degree, some partsof

the book will be of greater interest to one group than another.

As a mathematics text the volume is suitable for a course on the

advanced calculus level, either within the mathematics department

proper, or in conjunction with engineering or economics departments,

in connection with courses in applied mathematics or operationsresearch.

For first courses, or first readings, we suggest the following programs:

Mathematician: Chapters I, II, HI, 1V, 1X, X

Economist: Chapters I, II, III, V, [x

Statistician: Chapters I, II, III, 1X, X, XI

Engineer: Chapters I, II, III, 1X

Operations Analyst: Chapters I, II, III, V, 1X, X

Finally, before ending this prologue, it is a pleasure to acknowledge

my indebtedness to a number of sources: First, to the von Neumann

theory of games as developed by J. von Neumann, O. Morgenstern, and

others, a theory which shows how to treat by mathematical analysis

vast classes of problems formerly far out of the reach of the mathe-

matician—andrelegated, therefore, to the limbo of imponderables—and,

simultaneously, to the Wald theory of sequential analysis, as developed

by A. Wald, D. Blackwell, A. Girshick, J. Wolfowitz, and others, a

theory which shows the vast economyofeffort that may be effected by

the proper consideration of multi-stage testing processes; second, to a

numberof colleagues and friends who have discussed various aspects of

the theory with me and contributedto its clarification and growth.

Many of the results in this volume were obtained in collaboration

with fellow mathematicians. The formulation of games of survival was

obtained in conjunction with J. P. LaSalle; the results on the optimal

inventory equation were obtained together with I. Glicksberg and O.
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Gross; the results on the continuous gold-mining process in Chapter VIII

and the results in Chapter VII concerning specific bottleneck processes

were obtained together with S. Lehman; a number of results obtained

with H. Osborn on the connection between characteristics and Euler

equations, and on the convergence of discrete gold-mining processes to

the continuous versions will not appear in this volume. Nor shall we

include a study of the actual computational solution of many of the

processes discussed below,in which we have been engaging in conjunction

with S. Dreyfus.

I should particularly like to thank I. Glicksberg, O. Gross and A.

Boldyreff who read the final manuscript through with great care and

made a number of useful suggestions and corrections, and S. Karlin

and H. N. Shapiro who have done much valuable work in this field and

from whose many stimulating conversations I have greatly benefited.

Finally, I should like to record a special debt of gratitude to O. Helmer

and E. W. Paxson who early appreciated the importance of multi-stage

processes and who, in addition to furnishing a number of fascinating

problemsarising naturally in various important applications, constantly

encouraged me in my researches.

A special note should be madehere of the fact that most of the mathe-

maticians cited above are either colleagues at The RAND Corporation,

or are consultants. Our work has been conducted under a broad research

program for the United States Air Force.

Santa Monica, Caltfornia RICHARD BELLMAN
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CHAPTER I

A Multi-Stage Allocation Process

§ 1. Introduction

In this chapter we wish to introduce the reader to a representative

class of problems lying within the domain of dynamic programming and

to the basic approach weshall employ throughout the subsequent pages.

To begin the discussion we shall consider a multi-stage allocation

process of rather simple structure which possesses manyof the elements

common to a variety of processes that occur in mathematical analysis,

in such fields as ordinary calculus and the calculus of variations, and

in such applied fields as mathematical economics, and in the study of

the control of engineering systems.
We shall first formulate the problem in classical terms in order to

illustrate some of the difficulties of this straightforward approach. To

circumvent these difficulties, we shall then introduce the fundamental

approach used throughout the remainderof the book, an approach hased

upon the idea of imbedding any particular problem within a family of

similar problems. This will permit us to replace the original multi-

dimensional maximization problem by the problem of solving a system

of recurrence relations involving functions of much smaller dimension.

As an approximation to the solution of this system of functional

equations we are lead to a single functional equation, the equation

(1) f(x) = Max [g(y) +h(x—y) + flay + 6 (x —y))].
Osy<a2

This equation will be discussed in some detail as far as existence and

uniqueness of the solution, properties of the solution, and particular

solutions are concerned.

Turning to processes of more complicated type, encompassing a greater

range of applications, we shall first discuss time-dependent processes

and then derive some multi-dimensional analogues of (1), arising from

multi-stage processes requiring a number of decisions at each stage.

These multi-dimensional equations give rise to some difficult, and as

yet unresolved, questions in computational analysis.

In the concluding portion of the chapter we consider somestochastic

3



A MULTI-STAGE ALLOCATION PROCESS

versions of these allocation processes. As we shall see, the same analytic

methods suffice for the treatment of both stochastic and deterministic

processes.

§2. A multi-stage allocation process

Let us now proceed to describe a multi-stage allocation process of

simple but important type.

Assume that we have a quantity x which we divide into two non-

negative parts, y and x —y, obtaining from the first quantity y a

return of g (y) and from the second a return of h (x — y).1 If we wish

to perform this division in such a way as to maximizethetotal return

we are led to the analytic problem of determining the maximum of

the function

(1) R, (x, vy) = gly) +h (x—y)

for all y in the interval [0, x]. Let us assume that g and / are continuous

functions of x for all finite x > 0 so that this maximum will alwaysexist.

Consider now a two-stage process. Suppose that as a price for obtaining

the return zg (y), the original quantity y is reduced to ay, where a is a

constant between 0 and 1, O<.a <1, and similarly x — y 1s reduced

to b(x — y), O<b <1, as the cost of obtaining (x — y). With the

remaining total, ay + b(x —~y), the process is now repeated. We set

(2) ay + b(x—y) = % = ¥,4+ (41 —N),

for 0 < y, < %,, and obtain as a result of this new allocation the return

g (vi) + h(x,—y,) at the second stage. The total return for the two-

stage process is then

(3) Re (%, ¥, V1) = gly) + h(x —y) + 8 (v1) + 4 (41 — 41)

and the maximum return is obtained by maximizing this function of

y and y, over the two-dimensional region determined by the inequalities

(4) a. 0O<y<x

b O<y,< x

Let us turn our attention now to the N-stage process where we repeat

1 The units of the return are, in this case, different from the units of x. Thus,
for example, + may bein dollars, and g (y) may be man-hoursof service from machines
purchased with the y dollars. In other cases, occurring in multi-stage investment
problems, or multi-stage production problems, this will not be so, in that the units
of the return will be the sameas that of the resources, or a mixture of both situations
will occur. We are considering the simplest case here.

4
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the above operation of allocation N times in succession. The total return

from the N-stage process will then be

(5) Ry (%*,¥, Vare++, n-1) = &(¥) + A(x —y) + 8 (Nn)

+ h(%,y— 41) +... + g (yw—-1) + A (xn -1— yw -1),

where the quantities available for subsequent allocation at the end of

the first, second, ..., (NW — l)st stage are given by

(6) % =ay+b(x—y),0<yxx,

Xe = ay, + b(%,—), OS WH,

XN-1 = Ayn—-2+ 0 (xn-~2—Yn-2),

O< yn-2<%Nn-2, O<yn-1< %N-1

The maximum return will be obtained by maximizing the function Ry

over the N-dimensional region in the space of the variables y, y,,...,

yn -1, described by the relations in (6).

§ 3. Discussion

In setting out to solve this problem, the temptation is, quite naturally,

to use calculus. If the absolute maximum occursinside the region, which

is to say if all the y; satisfy the strict inequalities 0 < yi < x, and if

the functions g(x) and A(x) possess derivatives, we obtain for the

determination of the maximizing y; the system of equations,

(1) g’ (vw-1) —M (4n-1 — yn-1) = 0

g’ (yw ~2) — fh’ (4n~2 — Vn -2) + (a — Ob) hh’ (xn -1— yn -1) = 0

g’ (vy) + A’ (x — y) + (a@— Ob) h(4, — yi) +... = 0,7

upon taking partial derivatives. However, in the absence of this know-

ledge, since we are interested not in Jocal maxima, but in the absolute

maximum, we must also test the boundary values y; = 0. and x:, and

all combinations of boundary values and internal maxima. Furthermore,

if the solution of the equationsin (1) is not unique, we must run through

a set of conditions sufficient to ensure our having a maximum and not

D
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a minimum or a mere local maximum.It is evident that for problems

of large dimension, whichis to say for processes involving a large number
of stages, a systematic procedure for carrying out this program 1s urgently
required to keep the problem from getting out of hand.

Suppose that we abdicate as an analyst in the face of this apparently

formidable task and adopt a defeatist attitude. Turning to the succor

of modern computing machines, let us renounce all analytic tools.

Consider, as a specific example, the problem posed by a 10-stage process.

Then, if we wish to go about the determination of the maximum

in a rudimentary fashion by computing the value of the function

Rig = Rio (V, V1, - ++, Vo) at Suitably chosen lattice points, we may pro-

ceed to divide all the intervals of interest, O< y<ix,0<y,<%,...,

O< Vo < %o, into, say, ten parts, and compute the value of Ry) at each

of the 10° points obtained in this manner. 10!° is, however, a number

that commandsrespect. Even the fastest machine available today or in

the near future, will still require an appreciable time to determine the
solution in this manner.

To give someidea of the magnitude of 10'°, note that if the machine
took one second for the calculation of R,, at a lattice point, storage and

comparison with other values, the computation of 101° values would require

2.77 million hours; if one millisecond, then 2.77 thousand hours; if one

micro-second, then 2.77 hours. This last seems fairly reasonable. Observe,

however, that 1f we consider a 20-stage process, we must multiply any

such value by 10?1e., 102° = 10!°- 1019,

Needless to say, there are various ingenious techniques that can be

employed to cut this time down. Nonetheless, the method sketched

above is still an unwieldy and inelegant method of attack.

Furthermore, it should be realized that if we are sufficiently interested

in the solution of the above decision process to engage in computations,

we will, in general, wish to compute the answernot only for one particular

value of x, but for a range of values, not only for one set of values of

a and 6 but for a set of values, and not only for one set of functions

g and h, but for a class of functions. In other words, we will perform a

sensitivity analysts or stability analysis of the solution. Any suchsensi-

tivity analysis attempted by the above methods will run into fairly

large computing times.

One of the aspects of the situation viewed in these terms which is

really disheartening is that this problem is, after all, only the conse-

quence of a very, almost absurdly, simple version of an applied problem.

It is clear that any modification of the problem in the direction of

realism, say subdivision of x into more than two parts, which is to say

an increase in the number of activities we can engage in, or an increase

6
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in-the types of resources, will increase the computing time at an expo-

nential rate.

Furthermore, as we have pointed out in the Preface, we must realize

that the essential purpose in formulating many of these mathematical

models of the universe, economic, physical, biologic, or otherwise, is not

so much to calculate numbers, which are in manycases of dubious value

because of the lack of knowledge of some of the basic constants and

functions involved, but rather to determine the stvucture of the solution.

Concepts are, in many processes, more important than constants.

The two, however, in general go hand-in-hand. If we have a thorough

understanding of the process, we have means, through approximation

techniques of various sorts, of determining the constants we require.

Furthermore, in the processes occurring in applications, of such enormous

complexity that trial and error computation is fruitless, it is only by

having an initial toe-hold on the solution that we can hope to use com-

puting machines effectively.

Going back to the idea of the intrinsic structure of a solution, we may

ask whatit is that we really wish to know if we are studying a process

of this type. Naturally, we would like to obtain the point(y, yi, ..., yn)

at which the maximum occurs, and any solution must furnish this. But

from the point of view of a person carrying out the process, all that is

really required at any particular stage of the process is the value of y

in terms of x, the resources available, and N, the number of stages

ahead; that is to say, the allocation to be made when the quantity
available is x and the numberof stages of the process remainingis N.

Viewed as a multi-stage process, at each stage a one-dimensional choice

is made, a choice of y in the interval [0, x]. It follows 2 that there should

be a formulation of the problem which preserves this dimensionality
and saves us from becoming bogged down in the complexities of multi-

dimensional analysis.

§ 4. Functional equation approach

Taking this as our goal, namely the preservation of one-dimensionality,

let us proceed as follows. We first observe that the maximum total return

over an N-stage process depends only upon WN and the initial quantity x.

Let us then define the function,

(1) fw (x) = the maximum return obtained from an N-stage process

starting with an initial quantity x, for N=1,2,...,

and x > 0.

2 As an application of the useful principle of wishful thinking.



A MULTI-STAGE ALLOCATION PROCESS

We have

(2) Jw (x) = Max Ry(x, y, ..., yn-1), N = 2, 3, ..

{y, vs}

with

(3) fi(%) = Max [g(y) + A(x —y)]j.
O<y<r

Ourfirst objective is to obtain an equation for f, (x) in termsof f, (x).
Considering the two-stage process, we see that the total return will be

the return from the first stage plus the return from the second stage,

at which stage we have an amount ay + b (x — y) left to allocate. It is

clear that whatever the value of y choseninitially, this remaining amount,

ay + b(x—vyy), must be used in the best possible manner for the re-

maining stage, if we wish to obtain a two-stage allocation which

maximizes.

This observation, simple as it is, is the key to all of our subsequent

mathematical analysis. It is worthwhile for the reader to pause here a

moment and make sure that he really agrees with this observation,

which has the deceptive simplicity of a half-truth.

It follows that as a result of an initial allocation of y we will obtain

a total return of f, (ay + b (x —y)) from the second stage of our two

stage process, if y, is chosen optimally. Consequently, for the total

return from the two stage process resulting from the initial allocation

of y, we have the expression

(4) Rz (x, ¥, V1) = B(y) th(x—y) + fi (ay + 0 (x — y)).

Since y is to be chosen to yield the maximum of this expression, we

derive the recurrence relation

(5) fe (x) = Max [g(y) + 4(*—y) + fi (ay + 6 (x — y))],
O<yse

connecting the functions f, (x) and f,(x). Using precisely the same

argumentation for the N-stage process, we obtain the basic functional

equation

(6) fiw (x) = Max [g (y) + 4(%—y) + fw-1 (ay + 6 (x — y))]
O<sys2

for N > 2, with f, (x) defined as in (3) above.

Starting with f, (x), as determined by (3), we use (6) to compute f/f,(x),

which, in turn, repeating the process, yields /; (x), and so on. At each

step of the computation, we obtain, not only fx (x), but also yz (x), the

optimal allocation to be made at the beginning of a k-stage process,

starting with an amount x.

8
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The solution, then, consists of a tabulation of the sequence of functions

{yx (x)} and { fx (*)} forx >0,k = 1,2,....

Given the sequence of functions {y; (x)}, the solution of a specific

problem, involving a given N and a given x has the form

(7) (x),

1(ay + b (x — ¥)),

2 (ay, + 6 (x4 — V1)),

y

y

yS
e
]

S
S
]

S
S
]

N

N-

N-

1

2

YN-1 = 491 (ayn—2 + b(xn-~2—¥ n-2)),

where (¥, V1, -.-, Yn -1) is a set of allocations which maximizesthetotal

N-stage return.

A digital computer may be programmedto print out the sequence of

values Y, V1, -.., Yn -1, in addition to tabulating the sequences { f; (x)}
and {yx (x)}.

§ 5. Discussion

The important fact to observe is that we have attempted to solve a

maximization problem involving a particular value of x and a particular

value of N by first solving the general problem involving an arbitrary

value of x and an arbitrary value of N. In other words, as we promised

in the first section, we have imbedded the original problem within a

family of similar problems. Weshall exploit this basic method of mathe-

matical analysis throughout the book.

Whatare the advantages of this approach? In thefirst place, we have

reduced a single N-dimensional problem to a sequence of N one-

dimensional problems. The computational advantagesof this formulation

are obvious, and weshall proceed in the next sections to show that there

are analytic advantages as well, as might be suspected. As weshall see,

we will be able to obtain explicit solutions for large classes of functions

g and h, which can be used for approximation purposes. This point will

be discussed again below. Furthermore, we will be able to determine

many important structural features of the solution even in those cases

where we cannot solve completely. The utilization of structural properties

of the solution and the reduction in dimension combine to furnish

computing techniques which greatly reduce the time required to solve

the original problem. Weshall return to this point in connection with

some multi-dimensional versions.
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§ 6. A multi-dimensional maximization problem

Before proceeding to a more detailed theory of the processes described

above, let us digress for a moment and briefly present two further

applications of the general method.
For the first application, consider the problem of determining the

maximum of the function

N

(1) F (x1, %2, ...,%Nn) == 2X gi (xi) ,
i=l

over the region defined by

(2) (a) %, +X. t+... + XN =C,

(b) x; > 0.

Each function g; (x) 1s assumed to be continuousfor all x > 0.

Since the maximum of F depends only upon c and N,let us define

the sequence of functions

(3) fn (c) = Max F (x1, %2,..., XN),
{ti}

for c >0 and N=1,2,....

Then, arguing as above, we have the recurrence relation

(4) fn (c) = Max [gn (x) + fv-1(¢ —)],
O<a<e

for N = 2,3,..., with

(5) Si (¢) = & (c).

§7. A “smoothing” problem

As the second application, let us consider the problem of determining
the sequence {xx} which minimizes the function

ht (Xx — Xe -1).

I
Ba (Xe -— 1) +(1) F (%1, %2, ..+, 4N) =

1 kk I
M
s

I
M
o

Here {7x} is a given sequence, %» = c a given constant, and we assume

that the functions gz (x) and A; (x) are continuous for all finite x, and

that gx (x), Ax (x) > co as | x | 0.

The genesis of this problem, explaining its name, will be discussed

in the exercises.

10
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Let us define the sequence {fr (c)}, R = 1, 2,..., N, by the property

that fr (c) is the minimum overall pr, ¥r+1, ..., *n of the function

N N
(2) Fr= 2 ge (XE — 7x) + a Ni (Xk — Xe -1),

k=R k=R

where *rR-1 = C.

We have

(3) fx (c) == Min [gn (x — rw) + hy (x — )],

and

(4) fr (c) = Min [gr (x —rr) + he(x—c) + frsi(%)),

for R=1, 2,...,N—1.

§ 8. Infinite stage approximation

Let us now return to the allocation process. The treatment we present

here serves as a prototype for the discussion of a number of multi-stage

processes, of diverse origin, but similar analytic structure.

If N is large, it is reasonable to consider as an approximation to the

N-stage process, the infinite stage process defined by the requirement

that the process continue indefinitely. Although an unbounded process

is always a physical fiction,? as a mathematical process it has many

attractive features. One immediate advantage of this approximation

lies in the fact that in place of the sequence of equations given by (4.6),

we now havethe single equation

(1) f(x) = Max [g(y) +A(x—y) + flay + 6 (x —y))]
O<y<uz

satisfied by f(x), the total return of the process, with a single allocation

function y = y (x), determined by the equation.

To balance this, we encounter manyof the usualdifficulties associated

with infinite processes. It is, first of all, no longer clear that a maximum

exists rather than a supremum.This is to say, there may be noallocation

policy which actually yields the total return f(x). Furthermore, if we

wish to employ (1) in an unrestricted fashion to determine properties

of the infinite process, we must show that it possesses no extraneous

solutions. In other words, we must establish existence and uniqueness

theorems if this equation is to serve a useful purpose.

3 We shall occasionally use the word “‘physical’’ to describe the ‘‘real’’ world.
It should be interpreted to mean economic, biological, engineering, etc., depending

upon the background and interests of the reader.
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A MULTI-STAGE ALLOCATION PROCESS

§ 9. Existence and uniqueness theorems

The result we obtain in this section is actually a special case of a
more general result we shall derive in a later chapter. Repetition, however,
no matter how dismaying as a social or literary attribute, is no great

mathematical sin, and it is important to present the simpler case first,

enabling the basic ideas to appear unimpeded bytechnicalities of lesser

import.

Let us now demonstrate

THEOREM 1. Let us assume that

(1) a. g(x) and h(x) are continuous functions of x for

x > 0, g (0) = A(0) = 0.

b. If m(x) = Max Max (/g(y) |, |A(y) |), and
O<sy<z

c = Max (a, b), then & m(c® x) < co forallx > 0.
n=0

c Ox<a<l1O<db<l.

Under these assumptions, there is a unique solution to (8.1) which ts con-

tinuous at x = 0, and has the value 0 at this point; moreover, this function

1s continuous.

Before proceeding to the proof, let us digress for a moment and

consider the important special case where g and / are both non-negative.

The sequence {fw (x)} as given by (4.6) is a monotoneincreasing sequence,

with boundedness a consequence of condition (1b), as we shall show

below in a moment. Consequently, for all x > 0, fw (x) converges to a

function f(x) as N -> oo.

Let us show that this function satisfies the equation

(2) f(x) = Sup [g(y) + h(x—y) + flay + 0 (x — y))].
O<y<2

To simplify our notation, let us set

(3) T(fiy)=ely) +h(x—y) + flay + b(x—y)).

The basic recurrence relation is then

(4) fu +1(%) = Max T (fn, 9).
O<y<z

12



A MULTI-STAGE ALLOCATION PROCESS

From (4) we obtain as a consequence of the monotonicity in N

(5) f(x) 2 Max T(fy,y).
O<y<2z

>

For any y in the interval (0, x], this means that the inequality

(6) f (x) = (fy, y)

holds. Letting N —oo, this yields

(7) f(x) =2T(fy)

for all y in [0, x], which, in turn, leads to the result

(8) f(x) = Sup T(f,y).
Osy<2

We cannot write Max since we have no guarantee that the
O<ysz

limit function f (x) is actually continuousas a function of x.

On the other hand, from (4) we also obtain

(9) fu+i(%)< Sup T(f,y),
Osy<cz

for all N, and thus

(10) f(*)< Sup T(f,y).
OsyS2

Comparing (8) and (10), we obtain (2).

One of the defects of this proof based solely upon monotonicity is

that it does not yield the continuity of the limit function, a result which

implies the existence of an optimal policy. This optimal policy is a

function y (x) which yields the maximum in

(11) f(x) = Max T(f,y),
OSysz

when the maximum exists.
The existence of an optimal policy for the infinite process is directly

of no particular importance computationally, or as far as applications

are concerned. It is, however, of great importance in connection with

the determination of the structure of optimal policies for the infinite

process. Thus, indirectly, the question of the existence of continuous

solutions is significant as far as numerical results are concerned, since

the solution of the infinite process can be used as an approximation to

the solution of the finite.

In order to establish the existence and uniqueness of a ‘continuous

13
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solution of (11), we shall employ a technique that is applicable to a large

class of equations of this type, the method of successive approximations.

Weshall, however, encounter monotonicity arguments again in later

chapters.

Turning to the recurrencerelations in (4), let us begin with the obser-

vation that f; (x) is continuousfor all x > 0 by virtue of the assumptions

made concerning g(x) and A(x). It follows, inductively, that each

element of the sequence { fy (x)} is continuous. It is worth pointing

out, however, that the location of the maximizing y need not depend

continuously upon x. In other words, the policy is not necessarily a

continuous function of x. An example of this is given in § 15.

Let yn (x) be a value of y which yields the maximum in (4). It is a

matter of indifference as to which value of y we choose, if there is more

than one value producing the maximum. Then we have

(12) fy +1 (%) = T (fy, yy),
Jn +2 (x) =m T (fw +1, YN +1),

and, as a consequence of the maximum property of the yy, the further

inequalities

(13) fy+1(*) = T (fy, yn) > T (fy, yn +1)
In +2(%) = T (fne3, Yve+1) > T (fn 41, yy).

These, in turn, yield

(14) fn +1 (x) —fnw+2 (x) > T (fn, vv 41) — T (fn +1, yn 4-1)

<T (fn, yu) — T (fw +1, Vn)

The two inequalities combined yield the important estimate

(15) | fv +1 (x) —f +2 (%) |< Max [|T (fw, yw +1) —T (fy+1, yn +1) |,
|T (fx, yw) — T (fy +1, yw) |].

Turning to the definition of TJ (f, y) given in (3), we see that

(16) | T (fx, yw) — T (fw +1, yw)|

= | fv (ayn + 0 (x — yw)) —fu +1 (ayn + 6 (x — yy))|

Let us now define

(17) un (x) = Max fw (z) —fv+i(z)|,N=1,2,...
O<z<z

14
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Since ay + b (x — y) <cx for all y in (0, x], the relation in (16) yields

(18) Un +1(%) < un (cx).

It remains to estimate u, (x). We have, referring to the equations

for f, (x) and f, (x), the relation

(19) | fx (*) —fe (x) |< Max [| fi (@y. + 6 (% —y,) |,

fi (42 + 6 (% — ye) |] < m (cx),

using the definition of m (x) given in (1b).

Hence we see that , (x) < m (cx), and thus, using (18), that uy (x)

<m(c¥ +1 x). By virtue of our assumption concerning m (x) it follows

that 2 uy (x) converges for all x, and what is important, uniformly in
N=1

any finite interval. The limit function f(x) = lm fy (x),in consequence,
N— oo

exists and is continuousfor all x. Furthermore, the uniformity of con-

vergence ensures that f(x) is a solution of (8.1).

It remains to establish the uniqueness of the solution. Let F (x) be

any other solution which exists for all x and is continuous at x = 0,

with F (0) = 0.

In the equation

(20) f(x) = Max T(f,y),
O<y<2

let y = vy (x) bea value of y which yields the maximum,andlet w = w (x)

play the similar role in

(21) F (x) = Max T(F,y).
Osyxsrz

Then, as above, we obtain the two inequalities,

(22) f(*)=T(fy) 2 (fw)
F(x) =T(F,w) =T(F, y),

and, as before, this leads to

 (23) | f(x) —F (x) |< Max[|T(f,y)—T(F,y) |, |T(fe)—T(F, 2)|).
< Max[|f(ay + 6(%—y)) —F (ay + b(x—y)) |,

|f (aw + b(x—w)) —F (aw + b(x —w)) |].

Let us now define

(24) u(x) = Sup |f(z)—F() |.
O<z<2

15
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Since f(x) 1s continuousfor all x > 0 and F (x) is, by assumption, con-
tinuous at x = 0, we see that u(x) is continuous at x = O and has the

value 0 there.

From (23) we obtain

(25) u(x) <u (cx),

whence, by iteration,

(26) u(x) << u(cN x),

for all N > 1. Since u(x) is continuous at x = 0 and uw (0) = 0, upon

letting N — oo we obtain uw (x) < 0, and thus that f(x) = F (x). This
completes the proof of the existence and uniqueness of a solution of the

functional equation associated with the infinite process.

§ 10. Successive approximations

In considering the equation

(1) f(x)= Max T(f,y),
O<sy<cz

we have shownthat a particular sequence of successive approximations

converged to the unique solution which is continuous at x = 0 and

zero there. It is important for both analytic and computational purposes

to know that actually any sequence whose initial function satisfies

certain simple requirements converges.

The methods we have used above may also be employed to prove the

following

THEOREM 2. Let f, (x) satisfy the following conditions:

(1) a. fo (x) 18 continuous for x > 0.

b. fo (0) = 0.

Then, tf the conditions of Theorem I are fulfilled, the sequence defined by

(2) fn+1(%) = Max T(fn,y),N =0,1,...,
Osy<z

converges to the solutionf (x) obtained above, uniformly in any finite interval.

§ 11. Approximation in policy space

We have employed above the classical technique of successive ap-

proximations in order to obtain a solution to the nonlinear functional

equation

(1) f(x) = Max T(f,y).
O<y<2z

16



A MULTI-STAGE ALLOCATION PROCESS

We now wish to exploit a certain duality which is present in these
decision processes to show that we can choosethe initial approximation
in such a way that we can always ensure this approximation being

monotone. This means that we have uniformly better convergence with

each iteration.

Let us begin by introducing some terminology. Weshall call a sequence

of allocations; 1.e., a sequence of admissible choices of y, a policy, and

a policy which yields f(x) an optimal policy.

The duality that exists in the theory of dynamic programmingarises

from the interconnection between the functions f(x) which measure the

maximum return and the policies which yield these maximum returns.

Actually a policy is a function, since a policy is a determination of y as

a function of x. It is worthwhile nonetheless to preserve this terminology

since it possesses certain advantages derived from intuition. If the policy

is not unique, y will not be a single-valued function of x.

It follows from the functional equation that a knowledge of f (x)

yields y (x), and conversely any y (x) determines f(x), iteratively by

means of the functional equation

(2) f(4)=T (fy (x).

Thus, for example, if the optimal policy consisted of the choice y = 0

continually, f(x) would satisfy the functional equation

(3) f(x) = h(x) + f(x),

which would yield the result

(4) f(x) = 2 Alo»x).

As we have mentioned above, the purpose of ourinvestigation is not

so much to determine f(x), which is really a by-product, but more

importantly, to determine the structure of the optimal policy, which

is to say to determine y (x).

This leads to an important anduseful idea. Just as we can approximate

in the space of the functions f(x), so we can approximate in the space

of policies, y (x). Furthermore, in many ways, this is a more natural and

simpler form of approximation. The advantage of this type of approxi-

mation analytically is that it always leads to monotone approximations.

From the standpoint of applications, it 1s by far the more natural

approximation since it is usually the one part of the problem about

which a certain amount is known as a result of experience.

Let yo (x) be an initial guess for an optimal policy and let f, (x) be

17
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the return function derived from this policy function, which is to say

that f. (x) satisfies the functional equation

(5) fo (x) = L (fo, Vo (%)),

an equation which wesolve iteratively. To improve yo (x), we determine

y,(x) as a function of x which maximizes T (fo, y) for O<y< x.

Assume for the momentthat y, (x) is itself continuousin x, (which need

not necessarily be the case), and that the return function /, (x) computed

using this policy is also continuous. This will always be the case, as we

point out again below, under the assumptions we have made. We now

continue in this way, generating a sequence of policies, {yn (x)}, and
a sequence of return function, {fw (x)}.

It is easy to show, utilizing the methods described in the foregoing

sections, that under the assumptions we have made the sequence {fy (x)}

is monotone increasing. A rigorous proof of the existence and con-

vergence of the sequences {yy (x)} and {fw (x)} described above seems

difficult to obtain. Consequently, we compromise for the following.

THEOREM 3. Let fy (x) be the result of an initial approximation in policy
space, that 1s,

(6) fo (*) = T (for vo (x),

where Vo (x) 1s any continuous function of x satisfying the conditions

(7) OS(*%)< *.

Under the assumptions of Theorem 1, the sequence defined by

(8) in+1(*) = Max T(fy,y),N =0,1,2,...,
Osy<ux

converges uniformly to the solution f (x) obtained, and this convergence ts

monotone.

PRroor. Let us demonstrate the monotonicity, which is the essential

feature, first. We have

(9) fi(*) = Max T(fo,¥).
O<sy<z2z

Comparing the definition of /, given in (5) with the definition of f, above,

we see that f, > fo for all values of x. From this it follows inductively

that fyv+1 >fw for all values of x > 0.
It remains to prove the continuity of the function f, (x) for x > 0.

18
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The conditions upon g and / which we have imposed above show that

the formal series for fo (x)

(10) fo (x) = 8 (Yo) HA(*—Yo) + .--,

obtained iteratively, converges uniformly in any finite interval and

represents a continuous function of x for x > 0, if yy (x) is a continuous

function of x.

§ 12. Properties of the solution—I: Convexity

Let us now show that we can derive certain structural properties of

the optimal policy from various simple structural properties of the

functions g and h. Thestructure of the optimal policy y (x) and that of

the return function f(x) turn out to be intimately entwined.

Our first result in this direction is

THEOREM 4. If, in addition to the assumptions in Theorem 1, we wmpose

the conditions that g and h be convex functions of x, then f(x) will be a
convex function, and for each value of x, y will equal 0 or x.

ProoFr. The proof will be inductive. Since

(1) fi (*) = Max (g (y) + h(x — y))
Osy<2z

and g(y) +h(x—vy) is convex as a function of y for O< y< x, it

follows that

(2) fi (*) = Max (g (x), A(x) ),

since the maximum of a convex function must occur at one of the

end-points. As the maximum of two convex functions, /, (%) is convex.

Since g(y) + A(x — y) +f, (av + 6 (x —y)) is a convex function of

y for y in [0, x] it follows by repetition of the above argument that

(3) Fs (x) = Max (g (x) + fi (ax), A(x) + fi (0%)),

is a convex function of x. Wesee then, inductively that fy (x) 1s convex,

and thus that the limit function f(x) 1s convex.

Turning to the equation f(x) = Max T(f,y), the convexity of f
O<y<2z

reduces this to the simpler equation ‘

(4) f (x) = Max (g (x) + f (ax), A (x) + f (6x),

showing that y = 0 or x for each value of x. This equations is, sur-
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prisingly, still a difficult equation to solve in general. We shall consider

a particular case of it below.

§ 13. Properties of the solution—II: Concavity

Let us now demonstrate that an analogous result holds for the case

where g and A are both strictly concave functions of x for x > 0.

THEOREM 5. If, 1n addition, to the assumptions in Theorem 1, we impose

the conditions that g and h be strictly concave functions of x, then f (x)
will be a strictly concave function of x.

In this case, the optimal policy will be unique.

Proor. Let us consider the one-stage case first, and perform some

simple calculations which will show us why the result should be true,

before proceeding to a rigorous proof using a different and more general

technique.

We have

(1) fi(*) = Max [g(y) +4(x—y)].
O<sy<z

Since g and / arestrictly concave functions, the function g (y) + h (« — y)

is a strictly concave function of y. There is, in consequence, a single

maximum, which may, nonetheless, occur at an end point y = 0 or

y = x. Let us suppose for the momentthat it occurs at an interior point,

and that g and / possess second derivatives. Then,

(2) fi (*) = g (y) + A(x —y)

where y is determined as a function of x by meansof therelation

(3) g’ (y) = hi’ (x —y).

Differentiation of (2) yields

(4) fi’ (&) = (6 (vy) — A’ (x — y)) dy|dx +h’ (x —y) =H (x —y),

and thus

(5) fi" (%) = h" (% — y) (I — dy/dx).

Differentiating the relation in (3), we obtain

(6) g" (y) dy/dx = h" (x — y) (1 — dy/dx),

which yields

(7) dy/dx = h" (x — y)/(g" (y) + h" (x —y)).
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This shows that 1 > dy/dx > 0, and thus,returningto (5), thatf,” (x) <0.

If the maximumis not actually inside, we can force it to be by various

modifications of the functions g and # which prevent the maximum from

ever being at y = Oory = x; e.g., by addition of a term « log y (x — y),

where € is a Small positive quantity. We can then proceed induc-

tively and establish the same result for all the members of the
sequence fw (x). This is, however, a rather clumsy method which does

not extend without pain to multi-dimensional problems. We shall

therefore use a more elegant and simple method.

LemMA 1. IfG (x, y) ts a concave function 4 of x and y for x, y > 0, then

f(x) as defined by

(8) f(x) = Max (x,y)
O<ysz

ts a concave function of x for x > 0.

Proor. We have, for O<A< l,

(9) f(Ax+(1—A)z)= — Max G(Ax + (1—A)z,¥).
O<y<Art+(l—A)z

We mayreplace y by the quantity y = Ay, + (1 —A) v2 where y, and

Vj, range independently over the intervals O< y,< 4,0<y,< 2. Then

(10) f(Ax + (L—A)2) = Max G(Ax + (1—A)z,dy. + (L—A)y2).
O<4y<2

O<y¥ <2

Since G (x, y) 1s concave in x and y, we have

(11) G(Ax + (1—A) 2,Ay1 + (1—A) ve) SAG (x, yx) + (L—A) G (2, y2)

Hence

(12) f(Ax+(1—A)2) > Max [AG (x, 91) + (1—A) G (2, ¥2)]
O<y% <2

O<¥, <2

> A Max G(x,y1) +(1—A) Max G (z, y2)
O<y, <2 O<¥3 <2

= Af (x) + (L—A) f (2).

Let us now apply this lemma to prove Theorem 5. It is easily verified

that g (vy) + A(x —y) is a concave function of x and y if g and A are

concave functions. This shows immediately that /f, («) is concave. Simi-

larly, since f, (ay + 6(x—y)) is a concave function of x andy, /, (x)

4 Concavity in both x and y means the G (A #, + (1 —A) %, 491 + (1—A) yq) SA
G (1, V1) + (1—A) G (#5, y_), for 0 SA <1.
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as defined by the basic recurrence relation is a concave function. We

thus proceed inductively and show that each function in the sequence,

{fn (x)}, is a strictly concave function, and hence that the limit function

is concave. That it is strictly concave follows from the strict concavity

of g and A, using Lemma 1 upon the functional equation for f (x).

Once we have established the strict concavity of f(x), the uniqueness

of the maximizing y and thus of the optimal policy follows immediately.

This completes the proof of Theorem 5.

§ 14. Properties of the solution—III: Concavity

Let us now show that the assumption of concavity enables ustotell

quite a bit more about the nature of the solution.

THEOREM 6. Let us assume that

(1) a. g(x) and h(x) are both strictly concave for x > 0, monotone in-

creasing with continuous derivatives and that g (0) = h(0) = 0.

b. g’ (0)/(L — a) > A’ (0)/(1 — b), W’ (0) > g’ (co), b > a,

Then the optimal policy has the following form:

(2) a. y=x forO<x<x, where x ts the root of h’ (0) = g’ (x)
+ (6 — a) g’ (ax) + (b—a) ag’ (a? x) +...

b. y = y (x) for x > x where y(x) 1s a function satisfying the in-
equalities O << y (x) <x, and y (x) ts the solution of

3) ag’ (y)A(x—y) + (@—4)f'(ay + b(x —y))= 0.

Remark. We have given the solution for only one of the possible

combinations of inequalities connecting g’ (0), h’ (0), 6 and a. It will be

easily seen from the procedure below, that corresponding results hold

for the other cases. Furthermore, the number of cases can be halved

by the observation that the interchange of y and x —y results in an

interchange of a and 0.

Proor. Let us employ the method of successive approximations. Set

(4) fi(x) =Max [g(y) + 4 (*—9)].
sysuz

Since, by assumption, g’ (0) >’ (0), for small x, we have g’ (y) —

h' (x —y) > 0, for y in the interval [0, x]. Hence g(y) + h(x —y) is
monotone increasing in 0< y< x and the maximum occurs at y = x.

As % increases, the equation g’ (y) —h’ (x —y) =0 will ultimately
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have a root at y = x, and then as ~x increases further a root inside the

interval [0, x]. The critical value of x is given as the solution of g’ (x) —
h' (0) = 0. This equation has precisely one solution, which wecall %,.

For x > x, let y, = y, (x) be the unique solution of g’ (y) = h’ (x — y).

The uniquenessof solution is a consequenceof the concavity assumptions
concerning g and A, and the existence of a solution is a consequence of

the continuity of g’ and h’.
Thus we have

(5) fi (*) = g (), O<x< Mm,

= g (vi) + A(x —y,), x > %y.

and

(6) fi’ (~) = 8" (x), O<% <x,

= [g’ (vi) — Ff(x — y,)] dyifdx + Wh(% — 91) = h' (x — yy),

for x > %*.

Since y; (x,) = 1, we see that /,’ (x) is continuous at x = x,, and hence,

for all values of x > 0. Furthermore f/f, (x) is a concave function of x;

cf. the analysis of § 11.

Now let us turn to the second approximation

(7) fo(x) = Max [g(y) +A4(x*—y) + fi (ay + 6 (x —y)))].
O<y<ur

The critical function is now D (y) = g’ (y) —hW’ (x —y) + fl’ (av +

b (x —y)) (a —8). Since g’ (0) —A’ (0) + fy’ (0) (a — 8) = g' (0) —h' (0)
+ g' (0) (a—b) >#'(0) [{(1 —a) (1 + a —5)/(1 —d)}1] > 0, we
see that D (y) 1s again positive for all y in [0, x] for small x. Hence the

maximum occurs in (7) at y = x for small x. As x increases, there will

be a first value of x where D (x) = 0. This value, x., is determined by

the equation g’ (x) = A’ (0) + (6 — a) fi’ (ax). Comparing the two

equations

(8) g’ (x) = h(0)
g’ (x) = h’ (0) + (6 —a) fi’ (ax),

we see that 0 <x, < x.

Hence the equation for x, has the simple form

(9) g’ (x) = h (0) + (6 — a) g(ax).

Thus y = x for O<x%< x, in (7) and y = y,(x) for x > %,, where

v2 (x) 1s the unique solution of

(10) ge’ (vy) = A(x — y) + (8 —a) fi’ (ay + b(x — y)).

23



A MULTI-STAGE ALLOCATION PROCESS

Furthermore

(1) fo (@)=e'(*), ON*cx,

= h' (x — ye) + bfi’ (av_ + 5 (x — 2), x Xe,

and f,’ (x) 1s continuous at « = %».

Comparing (10) with the equation g’ (y) = h’ (x — y) defining y,, we

see that y. (x) < y, (x). In order to carry out the induction and obtain

the corresponding results for all members of the sequence {fn}, defined

recurrently by the relation

fo+1= Max [g(y) + h(e—y) + fn lay + (x —y))],
O<y<sz

we require the essential inequality /f,’ (x) >,’ (x). There are three

intervals [0, x2], [%2, x1], [%1, co], to examine, each one requiring a

separate argument. Using (10) and (11) we have

(12) fat(x) = Sa)=ah(9s)

for x > x,. Combining (6) and the equation for y, we have

_ 58" (ys) — ah’ (%& — yn)
b—a
 (13) Si’ (%)

The function [bg’ (y) — ah’ (x — y) ]/( — a) is monotone decreasing

in y forO< y< x. Since y, < y, wesee that f,’ (x) > /f,’ (x). This com-

pletes the proof for the interval [%,, co]. The interval [0, x,] yields

equality. The remaining interval is [%2, x,]. In this interval, we have

(14) fy’ (x) = g' (x)

fl (x) = bg’ (Ye) — ah’ (x — ye)
 

 

b—a

Hence in this interval, since O< y,< x,

, be’ (x) — ah' (0 ,(15) fit(2) = EMO) S ory,
since g’ (x) > h’ (0) is a consequence of g’ (y) > hh’ (x — y) forO< y<x

and 0<x< %,. This completes the proof that /,’ (x) >/f\’ (x).

We now haveall the ingredients of an inductive proof which shows

that

(16) a. X%, > X%, >... Xn >... > O

b. fi’ (*#) < fh’ (x) ow. fh’ (XS...

C. V1 (%) > ye (x) >...
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Since fa (x) converges to f(x), fn’ (x) to f” (x), yn (x) to y (x) and xn to %,
we see that the solution has the indicated form.

§ 15. An “ornery’” example

Having imposed successively the conditions that g and h be both

convex or both concave, let us now show by means of an example

that the solution can be exceedingly complicated if we allow more

general functions possessing points of inflection.

Let us consider the equation

(1) f(x) = Max [e-t/y + e-1/(t-) + f(.8y +.9(x—y))].
O<syx<z2z

The function e~¢/* is used since it is one of the simplest possessing a

point of inflection. Determining f(x) by means of the method of suc-

cessive approximations, we obtain a well-behaved curve

E(x) OT
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Figure 1

Note, however, the strange behavior of y (x)!
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Figure 2
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As soon as we allow changesof sign on the part of g” (x) and h’ (x),

we seem to encounter functional equations which defy precise analysis.

§ 16. A particular example—I

Figures 1 and 2 show the difficulties that can be encountered in the

pursuit of general solutions. Let us then consider some simpler equations

which can be used for approximation purposes.

THEOREM 7. The continuous solution of

(1) f(x) = Max [ext + f (ax), ex? + f (bx)], £0) =0,
subject to

(2) a O<a,b<l1;¢,d,e,g>0,

bO<d<g,

ts given by

cx _
(3) I(*) = p= OS 4 S%,

Ff (%) = ext + f (bx), x > x,

~ — fe/(1— a4) 1/(9—4)

® i= [iam
Since 0 <b <1, f(x) may be found explicitly in the intervals

[w, x/b], ... [x/b", x/b™ +4] ..., forn =0,1,2,...

PRooF. Let us represent by A the operation of choosing cx4 + f (ax),
and by B theoperation of choosing ex# + f (bx). A solution corresponding

to an optimal sequence of choices, S may then be represented sym-

bolically by

(5) S = A% By Aw Be... ,

where a; and are positive integers or zero, and A*% means the choice
A repeated a; times, with B% having a similar meaning.

Let us assume for the momentthat the solution does have the indicated
form and show howto calculate x. At the point x either an A or B
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decision is optimal, while below x only an A decision is optimal. Conse-
quently, symbolically, x is the point where

(6) BA? = A®.,

To compute A®™ we write

(7) f(x) = cx4 + f (ax) = cx4 +c (ax)4+c(atxja+ ...

= cx4/(1 — a4),

Similarly BA® yields

(8) f (x) = ex + ch4xa/(1 — a4),

Equating the two expressions, we find that x has the stated value.

It remains to prove that the solution has the desired form. Let us

begin by showing that A is always used when x is small. To do this it

is sufficient to show that f(x) = cx4/(1 — a4) is a solution for small x,

and then to invoke the uniqueness theorem. § We must assure ourselves

that

cx cx cha x4

(9) 1—aé = —_———- g —_—Maxi exo +. Togs

for small x. This, however, is clear if g >d>0Oand0<0d< 1.

We now proceed inductively. Let z be the smallest value of x for which
a B-choice is optimal. At this point BA® = A®. This means that z = x.
Let us now consider the interval x > x, and begin by asking for the
point where AB and BA are equally effective as a set of first two
choices.

We have, using an obvious notation,

(10) fap (x) = ex? + easxo + f (abx)

fea (x) = ex9 + ch4x4 + f (abx).

Hence the required point # is given by

(11) p = [c (1 — b4)/e (1 — as).

Since g > 4d, we see that p < x.
It follows then from the fact that fag (x) < fsa (x) for x > p that

for x > x, AB plus an optimal continuation is inferior to BA plus an

optimal continuation. From this we see that A cannot be used for x > x

5 Strictly speaking, we haven’t established this uniqueness theorem yet. However,
it is easy to see that the method used to establish Theorem 1 works equally well
in this case.
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unless followed by A, which we knowis also impossible. This completes
the proof.

§ 17. A particular example—II

Another interesting case is that where g and A are quadratic in x.
We leave as an exercise the following result:

THEOREM 8. Let c,d >0 and 0O<b<a<l. Let

(1) f(x) = Max [cy — y? + a (x — y) — (x—y)*+ f (ay +b (x—y))],
Sys72

f (0) = 0.

Then, tn the interval * 0 < x < Min (c/2, d/2), f (x) has the followingform,
which depends on the sign of c/(1 — a) —a/(1 — 6):

Case I: c/(l1— a) = a](1— dD).

(¢c—d)atd ~  a@+(l—a)
1—b6+(b—a)a 1—[(a—b)a+ bd}? ’
  (2) f(x) =

where

(3) a= 1 +3“($=* + y/1 + i(f=5=="

Case II: c/(l —a) < d/(1 —b).

, r= (£5) »-(25)
for 0< x < Min (A, c/2, d/2), where

(1 + 6) [d (1 — a) —c (1 — 8)]
2 (1 — ab)

When i < Min (c/2, d/2) use of (1) as a recursion formula enables one to
obtain f (x) over the entive interval of interest.

Case III: ¢/(1 —a) > d/(1 — 3).

(6) fe) =(72,)2-(-4)
for 0< *< Min (u, c/2, d/2) where

(7) p= (1+ a) [e(1—b) —d (1 —a) | 2(1 —ad).
¢ This is the maximum interval over which the g and A functions are both

increasing.
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§ 18. Approximation and stability

It is, of course, interesting to have the explicit solutions of as many

equations as possible available. However, the true importance of the

explicit solutions of simple equations lies in the use of these solutions

as approximatesolutions to more obdurate equations, and in furnishing
clues to the nature of optimal policies for more complicated processes.

In the above sections we have derived explicit solutions for the case

where g and A have monomial forms cx¢, and for the case where they

are quadratic. Note that approximation to g(x) by means of cx@ is

equivalent to an approximation to log g(e*) by meansof log ¢ + dx,

qa straight line, which is readily accomplished.

Observe that as x changes, we may change our approximating curves

so as to obtain betterfits if we wish closer approximations. Furthermore,

let us point out that in general the approximation is most useful as an

approximation in policy space rather than in function space.

In order to use approximation techniques, we require an estimate

for the difference between the solutions’ of the two equations

(1) f(x) = Max [u(x,y)+ flay+b(x—y))], f(0) =9,
O<y<z

F(x) = Max [v(%,y) +F(ay+b(x—y))], F(0)=9,
O<y<z

in terms of the difference between u (x, y) and v (x, y). This is a stability

theorem in the classical sense.

Let us prove

THEOREM 9. Let f(x) and F (x) be the continuous solutions of the above

equations under the assumptions that u(x, y) and v (x,y) are continuous

in x and y for all x,y >0, withO <a,b <1, and that XY m(c*z) < co
n=0

where m(z) = Max [Max Max {| u(x, y) |, | v(x, y) | }.
O<a2<z O<y<2

If

(2) Max {Max |w(x,y)—v(x,y)|}=D(2),
O<2<z O<y<z2

co

and & D (c®z) < oo, c = Max (a, b), then
n=0

co

(3) If (x) —F (x) [|< 2 D (cnx).
n=

7 The existence and uniqueness of these solutions is assured by the natural
modification of the proof of Theorem 1. When we speak of the solution, we shall
mean the continuoussolution, or, generally, the solution furnished by the existence
theorem.
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ProoF. Define

(4) fi (*) = Max wu (x, ¥)

fn +1 (%) =Max (x, } + fr (ay + 6 (x —y))]

Fi (x) = Max . (x, ¥)

Fy +1 (2) = Max [u (x, ¥) + Fy (ay + 6 (x —y))].

Weknow, using the methods given previously that fy (x) converges to

f(x), and Fy (x) converges to F(x) as N > oo.

Let us estimate the difference between /, and F,. Clearly,

(5) fi (4) —Fi (x) |< Max |u(x,y)—v(%,y) |< D2).
O<y<2z

Proceeding, as in § 7, we have

(6) | fv + 1 (*) —Fr +1 (2) — Max | fy (ay + b (x —y))

—Fry(ay + b(x—y))| + | Max | u (x,y) — v(x, 9)|

It now follows inductively that

N

(7) | fy +1 (4) —Fw 41 (*) |< 2 D (crx).
n=0

Letting N — co, we obtain (3).

§ 19. Time-dependent processes

We havetacitly assumed in the foregoing pages that the processes

under consideration were time-independent in that the total return

depended only upon the initial quantity x and the duration of the

process N, and not upon the time at which the process were initiated.

Let us now see how wecan handle situations in which this is not the case.

Let us assume that as a result of the division of x into y and (x — y)

at the kt” stage, we receive a return gx (x,y) and are left with a quantity

ax (x, y). It is required to determine the allocation policy which maximizes

the total N-stage return.

We shall assume that gx (x, y) is continuous in x and y for * >0

and 0O<_y< x and that ax (x, y) is hkewise continuous in this region
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andsatisfies the inequality 0< az (x, y) < ax,a <1, fork =1,2,...

Define

(1) fx, w (¥) = total N-stage return obtained starting with a quantity x

at stage k and employing an optimalpolicy.

We have

(2) fi, 1 (*) = Max ge (x,y),
Osy<2z

and for N > 2, arguing as in the preceding pages,

(3) fi, n(x) = Max (gu (4,9) + fre+a, w -1 (ax (%, 9)-
O<y<2

Since the double subscriptis distressing both analytically, esthetically,

and aboveall, computationally, let us see whether or not we canrestore

the single subscript relation. Having made up our mind that weare

interested in an N-stage process starting at stage 1, let us define

(4) fx (x) = total return obtained starting with a quantity x at stage k
and ending at stage N, employing an optimal policy,

k=1,2,...,N.

Then

(5) fi (x) = axbw (x, ¥)

fu (x) = Max[gs (x, y) + fest (ae (x, y))],& =1,2,...,.N—1.

This simplification is essential if we are interested in computational

solutions, since the difference betweentheeffort involved in the tabulation

of functions of one variable and functions of two variables is enormous,

while that between the tabulation of functions of two variables and

functions of three variables may be the difference between a feasible

and unfeasible approach.

The case of unbounded processes, i.e., N = oo, yields the set of

functional equations

(6) f(x) = Max [gx (x,y) + fr+1 (ax (x, y))].
O<sy<z

It is not difficult to obtain the analogues of Theorem 1 for these systems.

§ 20. Multi-activity processes

The process we have been using for expository purposesis the simplest

of its category since we allow only one type of resource, and require only
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one allocation at each stage. Let us now discuss the formulation of more

general and more realistic processes.

Let there be M different kinds of resources, in quantities %,, %2,...,

xm respectively. At each stage, a quantity xi of the 2'® resource is
utilized to produce an additional quantity of the jt? resource. Hence

we have the equations, relating the resources at the (k + 1)s* stage to

the resources at the kstage,

M

(1) x4 (R + 1) = x4 (R) —2° x45 (A) + gi (x10 (A), x20 (R), ..., xe (h)),
j=1

for 1 = 1, 2, ..., M, where

(2) (a) x(k) =O,
M

(b) &ie (A) < x4 (R),
jm

and the production functions, g;, are assumed known, together with
the initial quantities, x; (0) = cy.
The x(k) are to be chosen so as to maximize some pre-assigned

function

(3) Ry = (x, (N), x, (N), ...,%m (N)),

of the final resources.

In manycases, as we shall see in Chapter 6, there are other constraints

in addition to those of (2),

If we set

(4) Jn (Cx, Cg, ++, Cm) = er Ry,

we obtain, as before, the recurrence relations

M

(5) Tn (C1, Cg, ...,Cm) = Maxfy—1(€y — Lip + 83 (Virs Var «++, Vmi),-+-)

j=1{y,3} j=

for N > 2, where the yi are restricted by the relations

(6) (a) yy > O
M

(b) os Vic, 1 = 1, 2, ...,M,
j=1

and

(7) Fi (Cr, Co, ..., Cm) = F (cy, Cg, ..., Cm).
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Existence and uniqueness theorems covering the unbounded versions

of these general processes will be given in Chapter IV, in conjunction

with a better notation. We shall encounter a particular example of this

equation further along in connection with the bottleneck processes of

Chapter VI. In the present chapter weshall discuss briefly some of the

difficult computational problems raised in maximizing over a multi-

dimensional domain.

§ 21. Multi-dimensional structure theorems

It is not difficult to extend the results we obtained in the one-

dimensional case concerning convexity and concavity of the solutions

of the functional equation of (8.1) to the multi-dimensional equations

of § 20.

Let G(x) be a scalar function of a vector variable x. It is said to

be convex if

(1) G (Ax + (1 —A) y) SAG (x) + (1 —A) G (y)

for all A in the range O <1 A < 1. Thefunction is concave if the inequality

goes the other way.

The multi-dimensional analogue of Lemma 1, proved in § 13, is valid

and the proof is precisely the same. Using the lemma, we can establish

the result below.

Before stating the result, let us introduce a more convenient notation.

Let x denote the vector whose components are x;, and y) denote the

vector whose components are yj, for 1< 1,7 < M. Then,in terms of

the process described above, we have

(2) (a) x = Ly),

(b) yO >0,

where the notation y > 0 signifies that all components of y are non-

negative. Let D (x, y) denote the domain defined by (2).

THEOREM 10. If 7 (x, y) and a (x, y) are continuous concave functions of

x and y for all x,y >0, and r (x, y), a(x, y) ave monotone increasing in

the components of x, then the functions {fn (x)} defined by the equations

(2) fi (x) = Maxr (x,y),
D(x, y)

fv +1 (%) = Max [r(x, y) + fw (a (2, 9))]
D (x,y)

are all concave functions of x for x > 0.
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This implies a unique optimal policy for each N, wf r (x, y) ts stroctly

concave.

The importance of this result resides in the following. If we have

an N-stage process where #& decisions must be made at each stage, the

functional equation approach reduces the Nk-dimensional maximization

problem to a set of N k-dimensional problems. Although this is an

essential reduction, the k-dimensional maximization problems them-

selves possess thorny features.

If, however, the function of k variables we are maximizingis strictly

concave, we know that it possesses a unique relative maximum which

is the absolute maximum. Given this additional information that the

function under investigation has a unique relative maximum, we should

be able to determine a search procedure for the location of this maximum

which is far more efficient than the search procedure we would employ

for a general function.

§ 22. Locating the unique maximum of a concave function

The determination of optimal search procedures ® for the location of

the maximum of a concave function or, conversely, for the minimum of

a convex function, is an extremely important and difficult problem which

has not been solved to date. The solution has, however, been obtained

in the one-dimensional case for the more general situation where the

function is unimodal, whichis to say possessesa single relative maximum.

Let us pose the problem in the following terms. The function y = f (x)

is a strictly unimodal function defined on the interval [0, Ln]. We wish

to determine the maximum Ly, with the property that we can always

locate the maximum of y = f(x) on a sub-interval of unit length by

calculating at most » values of the function f(x). Since the maximum

may not exist, it is safer to begin by setting

(1) Fn = Sup Ln

We then have the following result

THEOREM II. Fp ts the n*” Fibonacci number; i.e., Fo = F, = 1 and

(2) F,rp=Fn-1+Fha-2e

for n> 2.

Proor. The definition of F, is a matter of convention, on the other

hand the value of F, is determined by the process.

8 It is actually not easy to specify precisely what we mean by an optimal search
procedure. It clearly depends upon the type of equipment we have, the type of
operations we permit, the ‘“‘cost’’ of these operations, and so on. Consequently,
there are a variety of problems of the above type which may be posed. The subject
has not been explored to any extent.
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Let us now proceed inductively. Fix m and calculate the values

Vi =f (%1), Ve =f (%2) where 0 < x, < 4%, < Ln. If y,; > ye, the maxi-

mum occurs on (0, x2) since f(x) is strictly unimodal. If y, > y,, the

maximum is on (%,, Ln). If vy; = ye, choose either of the above intervals,

even though we know the maximum occurs on (x, x2). Thus, at each

stage after the first computation weare left with a subinterval and the

value of f(x) at some interior point x. Since values at the ends of an

interval furnish no information per se, we restrict our attention to the
interior points.

For” = 2,Ln = 2— €,x, = 1—e,x, = 1, forarbitrarily small e > 0.

From the preceding argumentit follows that FP, = 2 =F, + Fy.

Consider the case where n > 2 and assume that Fy, = Fy-1+ Fr-2

for k = 2,...,n—1. Let us begin by showing that

(3) Fa<Fn-1+ Fn-2.

For if we calculate f(x) at x, and x, on (0, Ln) we have

  
 
 

O X | X 2 L n

Figure 3

If y, > ye, we obtain the new picture

yy  
 

0 x Xo
Figure 4
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In this case x, < Fn-—, since we have only (m — 2) additional choices

with x, a first choice, for the case k = » — 1. Moreover, x, < Fn-,

since the maximum could occur on [0, x,], with two choices of x already

used.

Similarly if yz > y,, we have Ln —2x, < FPn-y1

Thus in all cases Ln < Fn 1+ Frn-—,, which yields (3). Now chose

Ln, x1, %, arbitrarily close to their respective upper bounds Fn —~ ; + Frn- a,

F,-, and Fn- , respectively. Then Fn = Fn-,-+ Fa -.. This yields

the proof of Theorem 11. Furthermore, it yields the optimal policy,

since each x; is either discarded or is the optimal first choice for the
remaining subinterval.

The sequence {F,} has as its first few terms

(4) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...,

with F4, > 10,000. Hence the maximum of a strictly unimodal function

can always be located within 10-4 of the original interval length with

at most 20 calculations of the value of the function.

It is easy to obtain an explicit representation for fn, namely

 

   

(7. — 1) (1 71)
5 Fp = vr 7 n

©) (72 —7;) : T Gn) °

where

1+v5
(6) 6 + =~ 1.61

2

1—v5 a
%, = 9 = 7”

From this we see that Fa+,/Fn > 7,2 1.61 as n-> oo. Thus, for

large », a uniform approximate procedure is to choose the two first

values at distances L/r, from either end, where L is the length of the

interval. This is a useful technique for machine computation.

Consider now the related problem where the ‘unimodal function is

defined only for discrete values of x. Let Kn be the maximum number

of points such that the maximum of the function can always be iden-
tified in » computations. The same type of proof as aboveestablishes.

THEOREM 12. Ko, = 1, K, = 1, K, = 2, K, = 4, and

(7) Kn =14+ Fa, n > 3.
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§ 23. Continuity and memory

Let us suppose that we have a function of two variables, f(x, y),

depending continuously on x and y for x >0 and O< y< x. Define

the function

(1) g(x) = Max f(x,y).
Osy<z

It is clear that g(x) will be continuous, but the function y = y (x)

yielding the maximum need not be continuous. We havealready seen

an example of this in connection with the functional equation of § 15.

Suppose, however, that we restrict f(x, y) to be a strictly concave
function of y for all y in [0, x], for x > 0.

f (x,y)

  
O y x

Figure 5

It is clear that as x varies, the maximizing y will now be a continuous

function of x.

Let us see how we canutilize this information to simplify the memory

problem for computing machines. Consider the equations

(2) fu +1(x%) = Max [g(y) + h(x—y) + fy (ay + b(x—y))],
O<y<z

N =1,2,....

If we have no information concerning the location of a maximizing y,
we must have available all values of fy (z) for 0< z< ax in order to

determine fy +1 (x). Suppose, however, we take g(x) and h(x) to be
strictly concave as well as continuous. In this case, fy (x) 1s strictly

concave for each N and the function g(y) +h(x—vy) + fw (ay +

b (x — y)) is strictly concave for 0 < y < x, and what is most important

the function yy (x) which yields the maximum in (2) is unique and

continuous as a function of x.
It follows than that if we are using an x-grid of values 0,4,24,...,

to compute f(x), the complete set of values of fy (z) for O< z< ax 1s
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not required to compute fy +1(x), but only the values of fy (z) in a

relatively small neighborhood of z = yy (x — J).

The same idea extended to multi-dimensional equations can result in

a considerable saving of memory space in computing machines. Recipro-

cally, we will be able to solve problems using existing machines which

might otherwise escape them. In any case, a great saving in running

time will result, once again increasing the feasibility of a solution by

these means.

§ 24. Stochastic allocation processes

In the preceding pages of the chapter, we have considered, in greater

and lesser detail, various multi-stage allocation processes characterized

by the property that the outcomeof any decision was uniquely determined

by the choice of this decision. Processes of this type wecall deterministic.

Not all multi-stage processes, however, possess this property, and, as

a matter of fact, many of the most interesting are quite definitely not

of this type. Let us consider here one important class of non-deterministic

processes in which theeffect of a decision is to determine a distribution

of outcomes in the sense of probability theory. Processes of this type

we shall call stochasttc.

Weshall limit ourselves in this book to processes of these two types.

The discussion of the origin of processes of more complicated nature,

and their treatment, we shall defer to another place.

From the mathematical point of view, stochastic processes furnish

varied classes of fascinating analytic problems, and throw unexpected

light upon many processes of supposedly deterministic nature. Appli-

cations of the theory are furnished by scores of processes drawn from
biologic, economic, engineering, and physical fields.

Returning to our domain of decision processes, a fundamental problem

confronting us is that of defining what we mean by an optimalpolicy

in the face of uncertain outcomes. What is crystal clear, but so often
overlooked in a posteriori comment, is the fact that a lack of complete

control over a process effectively prevents a guarantee of a maximum
return.

On the other hand, despite this Damoclean sword of uncertainty,

there must exist some means of comparing policies, taking into account

the possible fluctuation of outcomes.

What causes a major difficulty in applications is not that it is hard

to find such a measure, but rather thatis is hard to find a unique measure.

In short, it must be emphasized that there is no one method which can

have any pretensions to thetitle of ‘‘best.’’ Whatever method is used

dependsto a large extent upon various analytic and arithmetic aspects
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of the process, and, it must be confessed, upon the philosophical and

psychological attitudes of the decision-makers.

Having thus dwelt upon the dismal side of the matter, to assuage

our consciences, let us now proceed more constructively.

The general idea, and this is fairly unanimously accepted, is to use

some average of the possible outcomes as a measure of the value of a

policy. It is in the choice of this average that the difficulties arise.

Let us point out in passing that there is a definite lack of unanimity

concerning the use of averages in determining policies for stochastic

processes which may be carried through once, or at best, only a few

times. In some cases, “‘distribution-free’’ policies can be obtained. In

general, however, there seems to be no other approach to these questions

than the usual one we present here.

The first average, or criterion, we shall employ is the commonarithme-

tic weighted average, or expected value. Due to the linearity of this

average, it possesses a most important invariant property whichgreatly

simplifies the functional equations which describe the process. This

property enables the future decisions to be based solely upon the present

state of the system, independently of the past history of the process.

The second criterion, whichis far less frequently used,is the probability

of achieving at least a certain level of return. This also possesses the

proper invariant structure as far as multi-stage processes are concerned.

Wewill discuss this criterion in greater detail in a subsequent chapter.

§ 25. Functional equations

Let us now consider a simple stochastic version of the deterministic

process considered in § 2, and show that the same functional equation

technique is applicable.

In place of assuming that the outcomeof a division of x into y and

x—vyisa return of g(y) + h(x — y), leaving a new quantity x, = ay

+ b(x—y), let us assume that with probability #, there is a return

of g,(y) + Ay (x —y) and a remaining quantity a, y + 6, (x —y), and

with probability , = 1— 9, a return of g. (y) + h,(* —y) and a new

quantity a,y + b, (x — y)

Let us define

(1) fw (x) = the expected total return of an N-stage process, obtained

using an optimal policy, starting with an initial quantity x.

Then, as before, we obtain the equations

(2) fi, (*) = Max [pi (g1 (vy) + 4c (%—¥)) + Be (Ba lv) + M(x —y))],
O<ysz

39



A MULTI-STAGE ALLOCATION PROCESS

fu +1 (x) = Max [61 [gi (y) + Ay (x —y) + fn (ary + 8, (% —y))] +
O<y<z

Pele (v) + he (x —v) + fr (ey + b2(x — y))]],

for N > 1.

The equations have the same analytic structure as those obtained

from the deterministic process. By agreeing to use the “expected value”’

as the measureof the value of a policy, we have eliminated the stochastic

aspects of the process, at least as far as the analysis is concerned.

§ 26. Stieltjes integrals

For those who are familiar with the Riemann-Stieltjes integral, there

is a much more compact way of writing the above equations. Let

(1) dG (u, v; x, y) = distribution function of a return of uw and a re-

maining quantity of v, starting with an initial

quantity x and making an allocation of y.

Taking fw (x) to be defined as above, we obtain the equations

(2) fi («) = Max [ uac (u,v; x, ¥),
Osy<r

fv +1 (*) = Max | + fy (v)] dG (u, v; %, y)
O<y<z

It is much simpler to describe the processes, to establish existence

and uniqueness theoremsfor the resultant functional equations, and to

derive analytic properties of the solution, using this short-hand notation.

The basic mathematical ideas are, however, the same.

Equations of this type will be discussed again in Chapter III within

a more general framework.

Exercises and Research Problems for Chapter I

1. Let us define the function

fn (a) = Max [x, x, ... xn]
R

where F is the region determined by the conditions

ax +x,+t... +an=—a,a>Q0.

b. x: > 0.
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Prove that fw (a) satisfies the recurrence relation

fy (a) = Max xfv-i1(a—x),N>2,
O<z<a

with f; (2) = a.

9. Show inductively that fy (a) = a%/N%, and hence establish the

arithmetic-geometric mean inequality,

(Fat ok sel

N
 => XX, ... XN,

for xi > 0, with equality only if x,=x*,—=... = xn.

3. Let us define the function

N

fn (a) = Min 2 xi?,p > 0,
Ri=1

where FR is the region defined by

N

a. & x1 >a,a>Q0.
i=1

b. Xi => QO.

Show that fw (a) satisfies the recurrence relation

f(a) = Min [2 + fv-1(a—x],N>2,
O<2z<a

with f, (a) = a?.

4. Show that fy (2) = a? cy, where cy depends only upon N and 4,

and thus that

cn = Min [xP + (1 — x) Pen -1].
0O<a2<1

Determine cy for the ranges O< f < 1,1 < 4,respectively.

5. Consider the problem of minimizing the function

N
F (%4, %g, ...,%n) = L pi sil(si + xi),

i=1

where the #; and s; are parameters subject to the conditions f; > 0,
pi = 1, s; > 0, and the x; range over the region defined by x; > 0,
i
N
aX = a.

i= ]
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Obtain the corresponding recurrence relations and show that the

solution is of the form

xj=90, Ox<7 <1,

xj >0, t+1<7<N

under a suitable reordering of the x;’s.

6. Consider the problem of maximizing the function
N

F (x1, %2, ...,4n) = 2X (xi),
i=1

N
subject to the constraints x; > 0, 2 x; = c. Show that the maximum

i=1
is m(c), under the assumption that (x) is convex.

7. Consider the case where (x) is a monotonically increasing function
which is strictly concave. Show that the solution of the corresponding

functional equation,

fn (c) = Max [gy (y) +fy-i(e—y)],N >2,
O<syce

fi (c) = @(c),
has the form

yn =0,0<ec< en,

= 2n,C > tn,

where zy 1s the unique solution of

Y(y) = fv-1(¢— 9),
for N > 2, and show how to determine the sequence {cy}.

8, Obtain explicit recurrence relations, and the analytic form of the

sequence for the case where

9 (y) = y — by?, b> 0,
and c is restricted to the range O<c< 1/20.

9. What are the analogues of these result for the case where the function

F has the form© gi (xi), where each function q; (x) satisfies the same

conditions as above?

10. Carry through the corresponding analysis for the problem of mini-
N N

mizing F (x1, %2,...,%*w) = 2 (xi), subject to x; > 0, Y x; = a in the
1i=1 {= 1
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case where @ (x) 1s a non-negative monotonically increasing function

which is strictly convex. Consider, in particular, the case where

gy (x) = x+ bx?,b>0.

11. Consider the problem of maximizing

N
F (x3, Ne, eee, XN; Vi» Vor. ety YN) — a YP (xi, Vi),

1=1

subject to
N N

Ki, Vi OO, LY He = Cy, L Vi = Cz,
i=1 7=1

where @ (x, y) is a Strictly concave function, monotone increasing in x and

Show that the corresponding functional equation

fn (C1, Co) = Max [p (x,y) + fw -1 (C1—*, C2—Yy)],

Oeyen
possesses for each N > 2 solution of the form

 
  

Figure 6

and show how to determine the boundary curves.

Consider, in particular, the case where

p (x,¥) = U,x + ,y + uy x? + Qu, xy + Uy, Y?,

12. Under the assumption that » (x) isa monotonically increasing strictly

concave function, determine the maximum of F (%,, %9,...,%N) =
N
» (xi) over the region determined by
i=1
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N
a» %<01,% >0

i=l

N
b. oy XiP< Co,

i=l

for p > 1 and p < respectively.

13. Obtain the recurrence relations arising from the problem of mini-
N

mizing 2 qi (xi) subject to the restrictions
i=1

a OS M<N,
N

b. 2 wi (xi) >a,
7~=1

under the assumptions that each y; (x) is a non-negative monotone in-
N

x)

creasing function of x, with 2 yi (ri) > a.
t=1

14. Consider the corresponding multi-dimensional problem of mini-
x

mizing 2 qi (xi, yi) subject to the constraints
i=1

a OS H<nN,0KSyW< ss,
N

b. a Yi (vi, vi) Da,
~=1

under appropriate assumptions concerning the sequence {yi}.

15. Determine the maximumof the function x, x, ... xn over the region

defined by

N
a 2 x =1, % > 0,

i=1

b. bx4<. %n41,0>1,k = 1,2,...,N—1.

N

Consider the same problem for the function 2 ~;?, for different ranges
i=1

of p.

16. Consider the recurrencerelations

fi, (x) =) Max [g(y) + h(x — y)],
Sys

Jw +1 (%) = Max [g (y) + A(x —y) + fw (ay + 6 (x —y))],
O<sy<z
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whereg (y) = cyy4, h (y) = cyy4, with cy, c,,d >0. Show that fy (x) =
unx%, where

u, = Max [c,v4 + c, (1 — v)4],
0O<rv<l

un+1 = Max [c,v4 + c,(1 —v)4 + uy (av + 5b (1 — v))4],
O<v<il

Show that

 
| c, v4 + c,(1—v)4

1— (av + b(1—v))4]40

17. Consider the process described in § 2 under the assumptionthatit is

not required to useall the resources available at each stage. Show that the

functional equation obtained in this way has the form

f(x) = Max [g(y.) + h (yo) +f (avi + bye + % —¥i — y2)].
W+¥2 <2

lim wy = Max
N— oo O<v<l

Does this equation have a solution if g (x) and A(x) are both concave

functions of x? Does it have a solution if they are both convex ? Under

what conditions upon g (x) and h (x) does it have a solution witha corre-

sponding optimal policy?

18. Show that if there is a solution with y, + vy, < %, ¥1, V2 > 0, then

g’ (y,)/(1 — a) = hr’ (y,)/(1 — 6) under suitable assumptions concerning

g and h. Whatis the interpretation of this solution ?

19. Consider the process described in § 2 under the assumption that addi-
tional resources are added at each stage, either externally or from the
conversion of all or part of the return g (y) + 4 (x — y) into resources,
and obtain the corresponding recurrencerelations.

20. Consider the process described in § 2. Define gy (z) as the minimum

cost required to obtain a total return of z at the end of N stages. Show that

gi(z2)= Min [(l—a)y, + (1—}) 9,],
g (Hi) + (ys) =z

gv+1(2) = Min [1 —a) 91 + (L— ) ya + gw (@ — 8 (x) — A (y2))]
YY. =

21. There are N different types of items, with the z‘» item having weight

w; and a value v;. It 1s desired to load a ship having a total capacity of w

pounds with a cargo of greatest possible value. Show that this problem

leads to the problem of determining the maximum over the ; of the
N

linear form L = 2 ni v;, subject to the constraints, m; = 0, 1,2,...,N,
i=1
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& mm wi < w, and thus that this problem leads to the recurrence relations
i=1

fi (w) = v, [w/w,], ([a] denotes the greatest integer containedin a)

fnuei(w) = Max [xun +1 + fn (Ww — xwn +1)],
w

<a],

N+1

 

where x can assumeonly zero or integral values.

22. Suppose that we have a herd of cattle and the prerogative, at the

end of the year, of sending one part of the herd to market, and retaining

the other part for breeding purposes. Assume that the dollar value of y

cattle sent to market is @ (y), and that z retained for breeding purposes

yield az, a > 1, at the beginning of the next year.

Show that the problem of determining a breeding policy which maxi-

mizes the total return over an N-year period leads to the recurrence

relation

fi (x) = Max oy)
O<y<ur

fw (x) = Max [@ (y) + fy-1(a (x —y))}.
Osy<z

23. Determinethe structure of the optimal policies in the following cases:

a. p(y) =ky,k >0
b. q (y) is quadratic in y

c. p(y)
d (y)gy (y) is strictly concave

is strictly convex

24. Formulate the equations under the additional restriction that cattle

must be 2 years old before they can be sold. Take into account feeding

cost and mortality rates.

25. Consider the case in which there are probability distributions for the

price and demand.

26. In problem 22, let @ (x) = cx4,c,d > 0. Show that fw (x) = cenx4,

where cy = c and cyi1= Max ([7v#+cya¢(1—r)4, N=1,2,....
O<r<l

Determine the asymptotic behaviorof cy +1/cw and ry +1/rn.

27. Suppose that we have a quantity x of money, and that portionsof

this money can be used for commongoods, invested in bonds,or invested

in stocks, The return from y dollars invested in bondsis ay dollars, a > 1,

over a period of one year; the return from z dollars invested in stocksis
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bz dollars, 6 > 1, over a period of one year. The utility of w dollars spent

is y (w). How should the capital be utilized so as to derive a maximum

utility over an N year period?

28. Consider the same problem under the assumption that the return
from stocksis a stochastic quantity.

29. A sophomorehasthreegirl friends, a blonde, a brunette, and a red-

head. If he takes one of the three to the Saturday night dance, the other

two take umbrage, with the result that the probability that they will

refuse an invitation to next week’s dance increases. Furthermore, as a

result of his invitation, there is a certain probability that the young lady

of his choice will be more willing to accept another invitation and a

certain probability that the young lady will be less willing.

Assuming that feminine memories do not extend back beyond one

week, what dating policy maximizes the expected numberof dances the

sophomore attends—with a date?

30. Obtain a sequence of recurrence relations equivalent to determining
N

the minimum of the linear form L = 2 x%;, subject to the constraints
i=1

x4 > 0, Hi + Xi41 D> ait = 1,2,...,N—1. Thus, or otherwise, show

that Min L = Maxai, granted that one a;is positive.

31. Solve the corresponding problem for the case where the constraints

are Xi + %i41 + X%i4+2 > M%,41=—1,2,...,N—2.

32. Determine the recurrence relations for the problem of minimizing L
N

= 2} ¢; Xi, Ci > 0, subject to the constraints
i=1

xi > 0, bi x; +- di Xi41 > 4,t= l, 2, ...,N—1.

33. Solve the problem formulated above in (32) for the case where the

constraints are

Xi + M41 > 4,1—1,2,...,N —1, xy > an,or

Xi t+ M41 > a,t=—1,2,...,N—1,%, >a, xn > ay, or

C. Xi + x%i41.+- X42 >a1,1=—1,2,...,N—2,%xn-1+ 4n > an-1,

XN > an.

plus the usual constraint x; > 0.

34. Show how to approximate to f(x) in the interval[a, 6] by means of a

47



A MULTI-STAGE ALLOCATION PROCESS

linear function ux + v according to the following measures of deviation

a. [- FG) — x — ue dx
a

b. Max | f(x) —ux—v
a<axz<ob

35. Suppose that it is necessary to traverse a distance x. If we travel at a

speed v there is a probability # (v) ds of being stopped in the interval

(s, s + ds) and incurring a delay of d time units. At what fixed speed

should we travel in order to minimize the expected time required to cover

a distance x? (Greenspan)

36. Under the same conditions as those of Problem 35, at what speed

should we travel in order to minimize the probability of requiring more

than a time T to coverthe distance x ?

37, Assume that there is a penalty of # dollars when stopped and that

actual travelling time costs c dollars per unit time. How do weproceed to

minimize expected cost ?

38. Obtain a recurrence relation equivalent to the problem of minimizing
N

the quadratic form Qy = & (xx — Xx- ,)? over all sets of values for the
af k=1

xx for which / x,2 = 1,%, =.
k=1

39. We are informed that a particle is in either of two states, which we

shall call S and 7, and are given the initial probability x that it is in state

T. If we use an operation A we reduce this probability to ax, where ais a

positive constant less than 1, whereas operation L, which consists of

observing the particle, will tell us definitely which state it is in. It is

desired to transform the particle into state S in a minimum time, with

certainty.

If f (x) is defined to be the expected numberof operations required to
achieve this goal, show that f(x) satisfies the equation

(Ls 14 xf ()
P(x) = Min a. L +f (ax)
f (0) =0.

40. Show that there is a number%, in the interval (0,1) with the property

that

|,0<x<1,

=I1l+4+xf(l),0<*<%,

=1+f(ax),1lo>x>Xo.

f(x e
e
?
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Show that

 

 x= Oo
(l—a) fl) (lL—a)(R+ 1)’

for the minimizing value of .

41. At each stage of a sequence of actions, we are allowed our choice of

one of two actions. Thefirst has associated a probability #, of gaining one

unit, a probability ~, of gaining two units, and a probability #; of gaining

nothing and terminating the process. The second has a similar set of

probabilities #,', p.’, f;’. We wish to determine a sequence of choices
which maximizes the probability of attaining at least ~ units before the

process is terminated.
Let ~ (n) denote the this probability for m = 1, 2,3, .... Showthat p (n)

satisfies the equation

Pi p (n — 1) scorn

bi p(n —1) + pp’ p(n — 2)]”

forn = 2,3, 4, ..., with p (0) = 1, and

p (1) = Max (Ay, py’).

p(n) = Max

42. With reference to § 7, show that if g (x) and / (x) are quadratic in x,

then fy (c) = an + Bue + yne? where ay, Bn, yn are independentofc.

43. Show that there exist recurrence relations of the form

an+1 = R,(an, By, yy),

Bn +1 = R, (an, Bn, VN),

YN +1 = R; (an, By, YN);

where the R; are rational functions.

44, Treat in a similar way the problem of minimizing the function
N

F(X, %2,+ ++, XN) =+Ie (xn —fr) + h (%% — %e - 1)

+ m (%4— 2Xe-1 + Xe - 2)],

where g (x), 2 (x) and m (x) are quadratic.
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45. Suppose that we have a machine whose outputperunit timeis 7 (¢) as

a function of ¢, its age measured in the same units. Its upkeep cost per

unit timeis # (¢) and its trade-in value at any time¢ is s(¢). The purchase

price of a new machine is # >s(0). At each of the times ¢ = 0,1,2,...,

we have the option of keeping the machine, or purchasing a new one.

Consider an unbounded process where the return one stage awayis dis-

counted by a factor a, 0<a<_l. Let f(t) represent the total overall

return obtained using an optimalpolicy.

Show that f(t) satisfies the equation

r(t)—u(t) + af (t+ 1),
f (t) = Max ypcaw + af (1)

46. Using the fact that an optimal policy, starting with a new machine,

is to retain the machine for a certain number of time periods, and then

purchase another one, determinethe solution of the above equation.

47. Is it uniformly true that, if given an over-age machine, the optimal

policy is to turn it in immediately for a new one?

48. How does one formulate the problem to take into account technolo-

gical improvement in machines and operating procedures?

49. A secretary is looking for a single piece of correspondence, ordinarily

a carbon on thin paper. She usually has 6 places she can look

Folder Number k

Three folders of about 30 sheets each 1,2,3

One folder of about 50 sheets 4

One folder of about 100 sheets 5

Elsewhere 6

Theinitial probabilities of the letter being in the various placesare usually

k Pr 1-2; tie
Probability of Probability of Time for one
letter in folder being found on examination

one examination
if in folder

1 11 .99 1

2 1] .99 1

3 11 .95 1

4 . 20 .85 2

5 JOT 10 3

6 .10 .10 100
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Howshall the secretary look through the folders so as to

a. Minimize the expected time required to find a particularletter ?

b. Maximize the probability of finding it in a given time? (F. Mos-

teller)

50. Let the function a (x) satisfy the constraint a (x) < d < 1 forall x.
Show that the solution of the equation

u = Max [b (x) + a(x) uw],

if it exists, 1s unique, and is given by the expression

u = Max b (x)/(1 — a (x)).

Under what conditions does the solution exist ?

If a(x) does not satisfy the above condition, show that the number

of solutions is either 0, 1, 2 or a continuum, and give examplesof each

occurrence.

51. We are given a quantity x > 0 that is to be utilized to perform a

certain task. If an amount y, 0< y < ¥%, is used on anysingle attempt,

the probability of success is a (y). If the task is not accomplished on the

first try, we continue with the remaining quantity x — y. Show that if

f (x) represents the over-all probability of success using an optimalpolicy,

then f (x) satisfies the functional equation

f(x) = Sup [a(y) + (l—al(y))f(x—y)].
O<y<z

52. Derive the corresponding equation for 1 —f(x), the probability of

failure.

53. Consider the two cases where a (y) is convex or concave, and obtain

the explicit solutions for these cases. Observe that in one case thereis no

optimal policy.

54. Consider the process discussed in § 2 under the assumption that the
total return from an N-stage processis

R'v=g(y) +h(x—y) + e(y1) +h (4%: —v1) +...

+ g (yn -1) +h (xn -1— yn -1) + (xy),

where & (x) is a given function.

55. Consider the functional equation

f(x) = Max [g (y) + h(x —y) + flay + b (x — y))],
O<y<zr
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under the assumption that

a. gly) ~ ce, y4,h(y) ~ cy y4, Cy, Cz, d > 0, as y > 00

or

b. gly) ~ cy, hy) ~ coy%, Cy, Cg, dy, dz > O0as yoo.

In both cases, determine the asymptotic behavior of f(x) as x > 0.

56. Determine a recurrence relation for

 

 

  Min | as ga ‘maa, an |.
r,>0 ¥2 + %3  %3 + Xq Xn + Xy  Xy + Xe

with the introduction of suitable additional parameters.

57. Consider the problem of determining the minimum ofthe function

N N
& x (%e,%e+1) + & he (re),

k=1 k=1

where 7n +1 = 7, and the 7, are subject to the constraint

a O< re < dx,

N

b 2 Dx (7x) = C,

k=1

with each x (x) a known monotoneincreasing function of x, wx (0) = 0.

Introduce the auxiliary problem:

Minimize

g (u, 72) + g (72, 7s) + eee + g (rn - 1, ny) + g (rN, v)

N

+ 2 he (re),
k=2

with 72, 73, ..., 7w subject to the constraints

a. O< ry <i by

N

b. XY pe(re) Sc.
k=2

Show that if we designate the above minimum byF (uw, v, c), then the
minimum in the original problem is given by

Min F (7%, 7, ¢ —qy,(7,)).
O<71<)
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58. Introduce the sequence of functions, R = 2, 3,...,N—1,

Fp (u, v, c) = Min [g (u, rr) + g(7R,7R+1) +... + 8 (rN - 1, YN)
Th N

+ g(rv,v) + 2& he(re)),
k=R

with

Fy (u,v, c) = Min [g (uw, rw) + g (rn, v) + hn (rN)].

"N

For each R, admit only c-values satisfying the restriction
N
& x (bx) > c, where the b, are fixed positive constants.
k=R

Show that we havethe recurrence relation

Fp (u, v, c) = Min [g (u, rr) + Ar (rr) + Fr+i(re, v, C—pr(rr))],
"R

where 7p varies over the interval defined by

a. O<rr< dp,
N

b. a Vk (dx) > C—pr(rr).
k=R+1

59. Consider in a similar fashion the problem of minimizing a function

such as

Ry = 8 (11, %2, 13) + & (Ye, %a, Ya) + ++ +8 (%N- 1, 7N, 11)

+ g (rN, ‘1; 10).

60. Suppose that we have a quantity of capital x, and a choice of the

production in varying quantities of N different products. Assumeiniti-

ally that there is an unlimited supply of labor and machinesfor the pro-

duction of any items we choose, in any quantities we wish. —

If we decide to produce a quantity x; of the 2¢” item, we incurthefollow-

ing costs:

a. a; = unit cost of raw materials required for the 2¢” item

b. 06; = unit cost of machine production of 2¢* item

c. ci = unit cost of labor required for 2#” item.

d. C; =a fixed cost, independent of the amount produced
of the 2#” item, if x; > 0.

The cost of producing a quantity x; of the z#” item is then

gi (xe) = (ae + Oe + ci) mi + Ci, “4 > 0

= Q, xi = 0.
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Let ~; be the selling price per unit of the z#* item. The problem is to

choose the x; so as to maximize thetotal profit

N
Py= 2 Pi %,

i=1

subject to the constraints

N

(a) & gi (mi) <x,
i=1

(b) x >0.

Let

Jn (x) = Max Py.

Show that

Fi(*) = pi (x —Cy)/(Qitbite,), %* SC,

= 0, 0 <= x <= Ci,

and

fn (x) = Max [pn xn + fw -1(% — gn (xy))].
z.>0

Uy (ty) <2

Show that xv > 0 can be replaced by

fv - 1 (%) —fn - 1 (¥ —Cy)
xn > .

Pn

61. Assume that the demand for each item is stochastic. Let Gx (z) repre-

sent the cumulant function for the demand z for the k¢” item. Show that

the expected return from the manufacture of x; of the k** item is

bi [*2aGe (2) + pe[x dG (2)
Hie

= px {* zAGx (2) + pe xe (1 —Ge (xx)),

and obtain the recurrence relation corresponding to the problem of

maximizing the total expected return.

62. Consider the problem of maximizing the probability that the return

exceed 7.

63. Consider the above problem in the deterministic and stochastic

versions when there are restrictions upon the quantity of machines

available and the labor supply.
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64. Obtain the recurrence relations corresponding to the case where we

have ‘‘complementarity’’ constraints such as

a. XX, = 0, %7%ge =O, Xo Xp X11 = O,*~

and so on, or

b. %:x*141=0, 1 =1,2,..., N—I1.

65. Suppose that we have a complicated mechanism consisting of N

interacting parts. Let the z¢” part have weight Wi, size S;, and let us

assume that we knowthe probability distribution for the length of time

that any particular part will go without a breakdown,necessitating a new

part. Assumealso that we knowthe time and cost required for replace-
ment, and the cost of a breakdown. Assuming that there are weight and

size limitations on the total quantity of spare parts we are allowed to

stock, how do we stock so as to minimize

the expected time lost due to breakdowns,

the expected cost of breakdowns,

a given function of the two, time andcost,

. the probability that the time lost due to breakdownswill exceed 7,

the probability that the cost due to breakdownswill exceed C?co
A
O
O
P

66. Determine the possible modes of asymptotic behaviorof the sequence

{un} determined by the recurrencerelation

Un+1 = Max [aun + 0, cun + d],

and generally by the recurrencerelation

Un+1 = Max [aiun + di], 7+ =1,2,...,R.

(cf. Problem 50).

67. Determine the minimum of

gi (xi) + Max (xy, %2, ..., XN),
1

F (x1, %, ..., XN) =
i I

M
S
s

subject to the constraints x; > 0.

68. Suppose that we have N different activities in which to invest capital.

Let gi (xi) be the return from the 2*® activity due to an investmentof %;.

Given an initial quantity of capital x, we are required to invest in at

most & activities so as to maximize the total return.

Denote the maximum return by fr, n(x). Show that we have the

recurrence relation
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[| Max [gn(y) + fe -1," -1, (x —y)]
fr, w (x) = Max O<y<z ,

|fe, nw —1 (%)

>

for L=< k= N—1.

69. Two corporations, with interlocking directorate, are forbidden by

anti-monopoly statutes from investing in the same enterprise. The first

corporation has capital x to invest, the second capital y, with known

returns g; (z) from an investment of a quantity of capital z in the 2of

N different enterprises.

Show that if the directors wish to maximize the total return from the

two corporations, they must maximize

AV N

Fr (xi, yt) = 2X gi(xi) + & gi ly),
i=1 i=1

subject to the constraints

N
a. & Xi = xX, Xi > O,

i=1

N
b. a YVi=V,Vi > 0.

i=1

C. xi Vi = Oz.

Let

Fn (%, y) = Max Fr (%:, i)
{is 4}

Show that

Max [gn (yw) + fw -1 (x, y — yn) ]|
ww (X, —M Osyn sy

Ie) el Max [gn (xv) + fn -1(% — xn, Y) )
|O<%@y <2

Consider the case where the different corporations derive different

returns from the sameenterprise.

70. It 1s decided to employ a policy of replacing all light bulbs in an

office building at one time. Assume that the cost of replacing the bulbs

is a, and that g(x) represents the cost due to lack of lighting if a time

interval x elapses between replacements. Over a time interval 7, it is

decided to make replacements at times %1, %1 + %2,...,%1 + xe+...4+

+ x, =T, where x is to be determined.
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The efficiency of the program is to be measured by the average loss

sustained

E (a +g (x) )
T

i
 F (x1, x2, wee, Xn) =

What is the optimal policy?
(I. R. Savage)

71. Let the functions gi (x) be such that the maximum of

N
Fry (x1, x2, ...,*w) = 2 gi (xi)

i=1
N

over the region x; > 0, 2’ x; = c may be obtained by use of a Lagrange
i=1

multiplier A, considering the expression

N N
Gy = 2 gi (xi) —AK SX.

i=1 i=1

On the other hand, let fw (c) = Max Fy. Show that

{7}

A = fw’ (¢)
N

Obtain the corresponding result for the maximum of » g; (%:, yi)
i=1

subject to
N N
ax = C1, L Vi= Co, xi, yi > 0.
t=1 i=l

72. Let

M, (%1, x2, ..., Xn) = the rt” largest of the quantities %1, x2, ..., xn,

Nr (%1, x2, ..., ¥N) = the vt” smallest of the quantities %1, x2, ..., xn,

fory = 1, 2, ..., N. Obtain recurrence relations connecting the members

of the sequences

{My (x1, 2, ..., Xn)}, {N+ (%1, x2, ..., Xn)}, 7=1,2,...,.

N
73. Consider the problem of maximizing 2 27%;

i=1
N

subject to the constraints x; >0, 2 1/(1 + «:) < x.
i=l

(J. V. Whittaker)
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74, A gambler has a capital of x dollars and wishes to bet on the outcomes

of N different events. There is a probability px that he can predict the

kth outcome correctly. The only constraint on the total amount that he

bets is the condition that he be able to pay off his losses.

Show that the problem of maximizing his expected return may be

converted into the problem of maximizing
x

Ly (x) = 2 pe xx subject to the constraints
k=l

(a) xi > 0,

x
(b) oe MK + 4,7 = 1, 2, Ju, NV,

i=1

75, Consider the problem of maximizing

N
Lyn (x) = a Pr Xk

k=1

subject to the constraints

(a) x; > 0

N

(b) S xui<u+ x;
= 1i

Ni < U.

1

Define fy (wu, v) = Max Ln (x). Show that

In (u, v) == Max [pn XN + fw -1 (u —xy, Min (v —— XN, u) ) ]

76. The problem of designing an efficient water distillation plant for

heavy water production involves the minimization of

g(a) | elas)|8(am
,

ay ayag Aa, a2... Am —1

(c)
a I

M
e

 Vu = (ai) + 

where the a; are subject to the constraints

(a) ai =_ 1

(b) @1 dg... Am = X.

Show that this may be reduced to the functional equation

1 xfe +1 (x) = Min |g (a1)+—fe(—)

]

,
a, >1 ay ay

and find the solution in the case where g(y) = y®, b > 0.
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77. Consider the case where

G2 (42) ot &m (am)
ay A, a2... Am —_1

Vn = g1 (a1) +   

(E. Cerri, M. Silvestri and S. Villan, ‘‘The Cascading Problem in a Water
Distillation plant and Heavy Water Production,” Z. Naturforschg., 1la,
694 (1956).)

78. Consider the problem ofallocating resources to N different activities,

leading to the problem of maximizing a function
& gi(xi) subject to the constraints L' x; = c, x; > 0.

Show that the function fy (c) obtained via the usual recurrence relations

does not depend upon the way in which the activities are numbered.
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esting discussion of general ‘‘smoothing”’ problems may be found in I. J.
Schoenberg, “‘On Smoothing Functions and their Generating Functions,”’
Bull. Amer. Math. Soc., vol. 59 (1953), pp. 199-230, where a number of
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§ 22. The proof in the text follows a paper of S. Johnson, ‘‘Optimal
Search is Fibonaccian,’’ 1955 (to appear).
An equivalent result was found earlier by J. Kiefer, unbeknownst to

Johnson, using a much more difficult argument: J. Kiefer, “Sequential
Minimax Search for a Maximum,’’ Proc. Amer. Math. Soc., vol. 4 (1953),

pp. 502-6.
The problem of determining a corresponding result for higher dimensions

seems extraordinarily difficult, and nothing is known in this direction at
the present time.
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given in the book by W.Feller, Probability Theory, John Wiley and Sons,
1948. A number of important physical processes are discussed in the book
by M. S. Bartlett, An introduction to stochastic processes with special reference
to methods and applications, Cambridge, 1955.

Exercise 76. See R. Bellman, Nuclear Engineering, 1957
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CHAPTER II

A Stochastic Multi-Stage Decision Process

§ 1. Introduction

In the preceding chapter we considered in some detail a multi-stage

decision process in both deterministic and stochastic guises. In this

chapter weshall discuss a stochastic multistage decision process of an
entirely different type which possesses a numberof interesting features. In

particular, in obtaining the solution of some simple versions of processes

of this type, we shall encounter the important concept of “‘decision

regions.
Weshall follow essentially the same lines pursued in the previous

chapter, first a statement of the problem, then a brief discussion in clas-

sical terms. Following this, the problem will be formulated in termsof a

functional equation, the required existence and uniqueness theoremswill

be proved, and then the remainderof the chapter devoted to a discussion

of various properties of the solution, such as stability and analytic

structure.

For the simple process used as our model, we are fortunate enough to

obtain a solution which has a very interesting interpretation. Equally

fortunately as far as the mathematical interest of the problem is concern-

ed, this solution does not extend to more general processes of the same

type. This forces us to employ techniques of an entirely different type

which weshall discuss in a later chapter, Chapter 8.

The failure of the elementary solution is not due solely to the inade-

quacy of the analysis. A counter-example has been constructed showing

that the solution of a multi-stage decision process of this class cannot

always have the simple form of the solution given in § 8 below. Another

proof of this fact is furnished by Lemma 8 of Chapter8.

A number of interesting results which we do not wish to discuss in

detail are given as exercises at the end of the chapter.

§ 2. Stochastic gold-mining

Weshall cast the problem in the mold of a gold-mining process.

Suppose that we are fortunate enough to own two gold mines, Ana-

conda and Bonanza, the first of which possesses within its depths an
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amount of gold x, and the second an amountof gold y. In addition, we

have a single, rather delicate, gold-mining machine with the property

that if used to mine gold in Anaconda, there is a probability #, that it

will minea fraction 7, of the gold there and remain in working order, and

a probability (1 — ,) that it will mine no gold and be damaged beyond

repair. Similarly, Bonanzahas associated the correspondingprobabilities

p, and 1 — fz, and fraction 7,.

Webegin the process by using the machine in either the Anacondaor

Bonanza mine. If the machine is undamaged after its initial operation,

we again make a choice of using the machinein either of the two mines,
and continue in this way making a choice before each operation, until the

machine is damaged. Once the machine is damaged, the operation ter-

minates, which meansthat no furthergold is obtained from either mine.

What sequence of choices maximizes the amount of gold mined before

the machine is damaged ?

§ 3. Enumerative treatment

Since we are dealing with a stochastic process, it 1s not possible to talk

about the return from a policy, a point we have already discussed in § 24

of the previous chapter, nor can we choose a policy which guarantees a

maximum return. We must console ourselves with measuring the value

of a policy by means of some averageof the possible returns, and choosing

an optimal policy on this basis. As before, the simplest such average is

the expected value.

Let us then agree that we are interested in the policies (since there may

be many) which maximize the expected amount of gold mined before the

machine is damaged. A policy here will consist of a choice of A’s and B’s,

A for Anaconda and B for Bonanza. However, any such sequence such as

(1) S = AABBBABB...
must be read: A first, then A again if the machine is undamaged, then B

if the machineis still undamaged, and so on.

Let us initially, to avoid the conceptual difficulties inherent in un-
bounded processes, consider only mining operations which terminate

automatically after N steps regardless of whether the machineis unda-

maged or not. In this case it is quite easy, in theory, to list all feasible

policies, and to computeall possible returns.? It is possible to use this

idea to some extent in certain problems. However,in general, this proce-

dure is rather limited in application, unrevealing as to the structure of an

optimal policy, and, as a brute force method, a betrayal of one’s mathe-

matical birthright.

2 To quote numbers again, a 10-stage policy would require the listing of 21° =
1024 possible policies; if three choices at each stage, then 59,049 different policies.
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§ 4. Functional equation approach

In place of the above enumerative approach, weshall once again em-

ploy the functional equation approach. Let us define

(1) fw (x, y) = expected amountof gold mined before the machine
is damaged when A has x, B has y and an optimal

policy which can last at most N stages is employed.

Considering the one-stage process, we see that an A-choice yields an

expected amount #, 7, x, while a B-choiceyields p, 7, y. Hence

(2) fi (x, y) = Max [pi71%, Pore).

Let us now consider the general (N + 1)-stage process. Whatever

choice is made first, the continuation over the remaining N stages must

be optimal if we wish to obtain an optimal (N + 1)-stage policy. Hence

the total expected return from an A-choice is

(3) fa(%, vy) = pi (7%, % + fw (1 —7,) x, y)),

and the total expected return from a B-choice is

(4) f(x, ¥) = bate y + fr (x, (1 — 72) y))-

Since we wish to maximize our total (NV + 1)-stage return, we obtain
the basic recurrencerelation

(5) fu +1 (%, y) = Max[fa (x, y), fa (*, y) J,

= Max [p (1, x + fu ((L—1) *, 9), be Tay +

fr (x, (1 — 72) y))].

§ 5. Infinite stage approximation

The same argumentation shows that the return from the unbounded

process, which wecall f(x, y), assuming that it exists, satisfies the func-

tional equation

(1) f(x,y) = Max [Ai (1. * + f((l—n) *, ¥)), Ba 2 ¥ + f(x, (1 —72)9))]-

Once again, the infinite process is to be considered as an approximation

to a finite process with large N. In return for the advantage of having

only a single function to consider, we face the necessity of establishing

the existence and uniquenessof a solution of the equation in (1). This we
proceed to do in the nextsection.
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§ 6. Existence and uniqueness

Let us now provethe followingresult:

THEOREM 1. Assumethat

(1) a. [Pi |, |e) <1?
b O<"1,7r. <1.

Then there is a unique solution to (5.1) which ts bounded in any rectangle

Ox 4a X,0Sy<lY.
This solutionf (x, y) ts continuous in any finite part ofthe region x, y > 0.

ProoF: Let us, to simplify the notation, set

(2) Ti(f) =pilnx +f((l—n) x, y)I,

T2(f) = pelrey +f (x, (1 — 72) y)].

Then the functional equation in (5.1) has the form

(3) f(x, ¥) = Max [T, (f), T2(f)]-

Define the sequenceof functions

(4) fi (%, ¥) = Max [p11 %, pare ¥),

fn +1 (%, y) = Max [T, (fy), Ts (fy)],

= Max [Ti (fy)]

precisely as in the recurrencerelation of (4.5).

Let 1 =1(N) =12(N, x, y) be an index which yields the maximum in
the expression Max [T:(/fw)], for N = 1, 2,...

i=1,2
Then we have,

(5) Ju +1 (%, ¥) = Tt wy (fr) = Ti wey (fy)
In +2(*, ¥) = Ti ww) (fv 41) > Ti wy) (fv 41),

using the same device we employed in the course of the existence and
uniqueness proof for the solution of the functional equation in (8.1) of

Chapter 1.

2 In the equation arising from the process described above, the p,; are non-
negative. The proof we give covers the more general equation as well.
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Hence

(6) | fr +1 (%, ¥) —fv +2 (%, y) | << Max [| Te (wy (fv) — Ti cy(fn +1)|,

| Ti ww +a) (fw) — Ti ww +1) (fw +1)|]
<Max[ | Ti (fv) — Ti (fw +1) |]

< Max [| A, | fy (1 — 1) x, y) —fv +1((l —1) x, y) |,

| Pa | | fv (x, (1 — re) v) —fiw +1 (x, (1 — 72) y) |].

Let us now define

(7) un (x,y) = Max fn (s, ¢) —fw+1(s, 2) |
S518)

From (6) we obtain

(8) un +1(%, ¥) <q Un (X,Y),

where g = Max(|4, |, | p2|). Since O< q <1, we see that the series

& wun (x, y) converges uniformly in any boundedrectangle O< x+< X,
N=1 _
O<vy< Y. Hence fn (x, y) converges uniformly to a function f(x, y)

whichsatisfies the relation (5.1), and which is continuous in any bounded

rectangle in the (x, y)-plane.

The uniqueness proof follows the samelines as the proof of Theorem 1

of Chapter 1 andis left as an exercise for the reader.

Aswesee from the aboveproof, the choiceof f, (x, y) is arbitrary pro-

vided only that it be bounded in any finite rectangle. It is interesting to
note that the limit function will be continuous evenif the initial function

is not, as a consequence of the uniquenessof the solution.

§ 7. Approximation in policy space and monotone con-
vergence

Asbefore, it is easily seen that we can ensure monotone convergence

by approximation in policy space, in the case where #,, 2. > 0. The two

simplest approximations are those corresponding to A® and B”,? From

the first policy we obtain the expected return

(1) fa (x,y) = fin x/(1—p~,(1—n)),

and from the second, the return

(2) fa (%,¥) = pote y/(l — p2(1 —7%)).
3 It is interesting to observe the following difference between the process and

the functional equation obtained from it. The sequence A© is conditional as far

as the process is concerned, but deterministic as far as the equation is concerned.
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As weShall see below in § 8 and § 9, we actually possess a far more so-

phisticated technique for obtaininga first approximationin the discussion

of more complicated processes, at the expense, of course, of the above

simplicity of expression. The guiding principle is, however, quite simple.

§ 8. The solution

Let us now turn to the solution of the equation in (5.1) for the case

where#, and #, are real numberssatisfying the inequality 0 < ~,, f. <1.

It is intuitively clear that an A-choice is made when x/y > 1 anda

B-choice is made when y/x > 1 4.

It is also easily seen that the choice at each stage depends only on the

ratio x/y, since f (kx, ky) = kf (x, y) for k > 0. Perhaps the quickest

way to provethis is to invoke the uniqueness theorem, althoughit is

intuitively clear from the description of the process.

It follows then that if we examine the positive (x, y)-quadrant, and

divide it into an A-set and a B-set, which is to say those valuesof x and y

at which an A-decision is the optimalfirst choice and those at whichthe

B-decision is optimal, then (x, y) in the A-set implies that (kx, ky) is in

the A-set for all k > 0, and similarly for the B-set.

If these sets are well-behaved,it follows that their boundaries must be

straight lines,

 
 

 

Figure 1

as conceivably in the figure above. The regions where A and B are used

are called decision regions.

Let us now boldly conjecture that there are only two regions, as in

Figure 2,

and see if we can determine the boundaryline, L, if this is the case.

4 The notation a > 1 signifies that a is very large comparedto 1.
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L
y

  
Figure 2

Whatis the essential feature of the boundaryline which will enable us

to determineits equation? It is this: it is the line on which A or B choices

are equally optimal.

If we use A at a point (x, y), with an optimal continuation from the

first stage on, we have

(1) fa(%,¥) =pPinx + pif ((lL—n) %, 9),

while similarly B at (x, y), and an optimal continuation,yield

(2) f(x,y) = Petey + bef (x, (1 —7”) y).

Equating these two expressions we obtain the equation for L. Unfortu-

nately, this equation as it standsis of little use since it involves the un-

known function /.

In order to complete the analysis successfully we must make a further

observation. When at a point on L we employ A, we decrease x while

keeping y constant and hence enter the B region; similarly, if we use B

at a point on L weenterthe A region (see Figure 2 above). It follows that

for a point on L an initial first choice of A is equivalent to an initial first

and second choice of A and then B, while, conversely, an initial first

choice of B is equivalent to an initial first and second choice of B and

then A.

If we use A and then B and continue optimally, we have

(3) fab (x, ¥) = Pim % + Pi fetey + pi bef ((1—1) x, (1 —7re) ¥),

and similarly

(4) faa(%,¥) = Pete¥ + Pi beri % + pi bef ((l—n) x, (1 —r2) y).

Equating fas and fga, the unknown function f disappears® and we

obtain the equation

5 The meaning of this is that having survived both an A choice and a B choice,
it is no longer of any importance in the continuation of the process as to the original
order of these choices.
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(5) £11, x/(1 — pi) = pore y/(1 — po),

for L.

It remains to establish this equation rigorously. Let us begin by proving

that there is a region near the x-axis where A is always the optimalfirst

choice.

If y = 0, we have

1/1 1 1— 1 , 0(6) f(x, 0) = Max pee ati rs) x ]

=— Pix + 61, f (1 — 1) Xx, 0).

Since f(x, y) is continuousin y, it follows that

(7) F(%,¥) > pa(tay +f (x, (L—7) y)),

for 0 < y < kx, where k is some small positive constant, since thestrict

inequality holds for y = 0.

Thus we have a region in which A is usedfirst, shown below in Figure 3.

 
 

Figure 3

Let us now take a point P = P (x, y), in the region between L and y

y = kx, with the property that (x, (1 — 7,) y) is in the shadedregion. In

other words, use of B at P mustresult in an A-choice next, provided that

machine is undamaged. (This proviso is necessary when discussing the
process, but not when discussing the equation, as we have noted above.)

If B is optimal at P, we obtain

(8) f (%, y) = faa (x, y),
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as given by (4). However, we know that below L,fra (x, y) < fap (x, ).

Hence B cannot be optimal at P. Proceeding inductively in this fashion
we extend the shaded region up to L.Since precisely the same argument

shows that the region between L and the y-axis is a B-region, we have
completed the proof of

THEOREM 2. Consider the equation

_ bil x + f((l—7) x, y)],

(9) (9) = Max fe ny +f (a (L—n) 9)
whereO< 1,0. <1,0<4,7,<01.

The solution 1s given by

(10) f(%, 9) = pilx + f((l— 1) x, y)], for

Prt x/(1 — Pi) > P22 ¥/(1 — Po)

= pelray + f(x, (lL—712) y)], for

Pits x/(1l — pi) < pot2y/(1 — po).

For p17, x/(1 — pi) = pete y/(1 — pe) erther choice is optimal.

|. xy 20,

§ 9. Discussion

The solution has a very interesting interpretation. We may consider

p17, x to be the immediate expected gain and (1 — #,) to be the imme-

diate expected loss. The theorem then asserts that the solution consists

of making the decision which at each instant maximizes theratio of

immediate expected gain to immediate expected loss. As we shall see,

this intriguing criterion occurs from time to time throughout the theory

of dynamic programming.

§ 10. Some generalizations

The same methodssuffice to prove the tworesults below.

THEOREM 3. Consider the equation

N

A: 2 pielerx+f(c’'x x, y)],
k=1

(1) f (x, ¥) = Max y
B: = ge [dx y + f (x, a’x y)]

where x, y > O and

N N

(2) (a) pbx > 0, gx > 0, XY pe, 2 ge <1,
k=1 k=1

(b) l>cpdeg>Ocet+ecrH=@retdzk=il.
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The optimal choice of operations 1s the following: If

N N

& Peer & Qa
k=1 k=1

(3) N x > vn»
1— » px 1— » ax

k=1 k=1

choose A; tf the reverse inequality holds, choose B. In case of equality, etther

choice 1s optimal.

THEOREM 4. Consider the functional equation

K

(4) f (x1, Xe, -- +, %w) = Max [ DX pixlCin xi +f(1, Xe, .. 6, Cin Xi, «.~,Xn) |]
i ok=1

where x; > O and

K

(5) (a) pi 0, Y pir <1,i1=1,2,...,n.
k=1

(b) l>cu > 0, cin + cor’ = 1.

The decision functions are

K
Pik Cik

k=1
D; (x) = —— K

1— » pir
k=1

 

Xi

in the sense that the index which yrelds the maximum ofDi (x) fort = 1,2,...,

n is the index to be chosen in (4). In case of equality, it is a matter of indrffer-
ence as to which 1s used.

It is clear that we can combine Theorems3 and 4 into one more com-

prehensive result, which in turn can be generalized by the use of the

Stieltjes integral. Thus a version of (1) arising from a continuous dis-

tribution of outcomesis

[er +F(A—2) xdG,
f(x, vy) = Max

|) toy +4, —w) 9] a (w).
Weleave the derivation of the extensions of Theorems 3 and 4, and the

statements and proof of the corresponding existence and uniqueness

theorem, as exercises for the reader.

10
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$11. The form off (x, y)

Having obtained a very simple characterization of the optimal policy,

let us now turn ourattention to the function f(x, y). In general, no simple

analvtic representation will exist. If, however, we consider the equation

a,x+t+a C
(1) f(x, vy) = Max i 7 eee]

1X + bev + gof (x, de y)

we can show that if c, and d, are connected by relation of the type c,”
= d,", with m and positive integers, a piece-wise linear representation

for f (x, y) may be obtained.

It is sufficient, in orderto illustrate the technique, to consider the sim-

plest case where the relation is cz = dy.

Let (x, y) be a point in the A-region. If A is applied to (x, y), this point is

transformed into (c, x, y), which maybe in either an A- or a B-region.

Let L, be theline that is transformed into L* when (x, y) goes into (c. x, ¥),

let L, be the line transformed into L,, and so on. Similarly,let 47, be the

line transformed into L when(x, y) goes into (x, d, y), and so on. In the

sector LOL,, A is used first, followed by B, as shown below.

 
 

y My L

BA LY

AB Lo

A*B

0 X

igure 4

Hence, for (x, y) in this sector we obtain

(2) f(x,y) = a,x + ay + pof (C2 %, y)

= A,X + a,y + po(di Cex + bey) + Go baf (Cox, C2)

= (a, + po bile) X + (a2 + po be) ¥ + bs Galaf(%,y)

6 The boundary line, whose equation obtained as above,is

[2,(1 — q,) + 4, (p,e, — 1) ]x = [6, (1 — P,) + a, (4,4, —1) ly
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This yields

(a, + pe dy Co) x + (@, + fo be) y

1 — D2 92 Ce

for (x, y) in LOL,. Similarly, we obtain a linear expression for fin LOM,.

Having obtained the representationsin these sectors, it 1s clear that we

obtain linear expressions in L, OL,, and so on.

 (3) f(x, 9) =

§ 12. The problem for a finite number of stages

Let usfirst establish

THEOREM 5. Consider the recurrence relations

(1) fi (x, y) = Max {0111 x, fo 2 Y}

A: pylryx +(Qn) #91)
N+ , =M

,Ju +1 (%, 9) ax 5 beltey + fn (x, (1 — 72) y)]

N =1,2,....

For each N, there are two decision regions.

PRooF. For each N > 2, the points determined by the condition that AB

plus an optimal continuation for the remaining (N-2) moves1s equivalent

to BA plus an optimal continuation for the remaining (N-2) moveslie on

the same line L we have determined above, namely

Pit x _ Pots. V

”) m7 1—p, 1—pf,”

 

  
Figure 4a

For the N-stage process, any policy, and consequently, any optimal

policy has the form

(3) Sn: A% Bo, ... Atn Bon,

where the a; and 0; are positive integers or zero, restricted by the condi-

tion, XY (a; + b:) = N.

12
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Let us now consider a point P = P (x, y) lying above L. If A is used at

P, there are two possibilities: either A is used & times in succession, and

then followed by B,

or Sn = A%. Let us consider the first case. If A is used (k — 1) times in

succession, we reach a point P’ further above L. At P’, AB cannot be the

first two moves in an optimal (N — k + 1)-stage policy, since BA plus
an optimal continuation is superior.

Consequently above L, either B is usedfirst, or the optimal policy is

AN, Let us now showthat if A” is optimal at P, then it is optimal in the

region between OP andthe x-axis.

To demonstrate this we begin with the observation that it is permis-

sible to assume that x + y=1,0< x,y <1, because of the homoge-

neity offw (x, y) asa function of x and y. Considering the N-stage process,

we see that there are 2” possible policies, say P,, P2, ..., Pen. Each of

these policies used at a point (x, y) yields a N-stage return which is a

linear function of x and y, say Li (x, y). For x + y = 1, we may plot

these functions obtaininga set of 2% straight lines,

“A a

Se
aN

O x
 
 

Figure 5

If N were 2, so that the four policies AA, AB,BA,BB yielded four lines

as above, the maximumreturn as a function of x would have the form

f (x,y)

 
 

O X |

Figure 6

13
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It is clear that Ais an optimal policy for y = 0, x = 1. It follows thatif

Ais optimal at (x, y), 0 < y <1, the line corresponding to Awill do-

minate all other lines for x << x <1.

Combining the aboveresults we see that for any N,, the boundary be-

tween the A-region and the B-region will either be AB = BA orAY =M,,

where M,1s a policy of complicated form, or BY = M,1s also a complic-

ated policy.

Wecan nowestablish a sharperresult:

THEOREM 6. The decision regions for fy converge towards those of f as

N —~ co in a monotone fashion. There is always an integer No with the

property that for N > N,the regions for fn are identical with those off.

ProoF: Consider the situation for N = 3. Let L, be the boundary line

for the two-stage process, and assumethat therelative positions of L,

and L are as shownbelow.

y Lo Le (am!)

L: AB=BA

 
 

Figure 7

Let L, (A-) denote the line transformed into L, whenA is used at a point

on L,(A-), which is to say when(x, y) is transformed into (cx, y). Let Q

be a point in the sector between L, and L, (A-1). If A is used at Q as the

first move in a three-stage policy, B is used next, since the transformed

point is in the B-region for a two stage process. However, if Q 1s aboveL,

we know that AB cannot be the first two moves of an optimalpolicy.

Hence B is used at Q. This shows that the B-region for the three-stage

processis at least that containing the region above L, (A-1). This process

may be continuedfor larger and larger N until L; (A-"), for somefinite &,

lies below L. At this point, the boundary line becomes AB = BA, and

remainsso for all larger N.

§ 13. A three-choice problem

Let us now assumethatin addition to the two A and B choicesalready

discussed, we have a third choice which is a compromise between the A

T4



STOCHASTIC MULTI-STAGE DECISION PROCESS

and B choices. The equation we obtain in this case takes the form

A: py [rn « + f((l— 1) x, y)]
(1) f(x,y) = Max] B: polrey + f(x, (1 —1) y)]

|C: ps[rsx + ray + f((1 —72) x, (1 — 1) y)]

where 0< 73,7, << landO< #; <1, and the quantities ,, 3, 71,73

satisfy the previous inequalities.

On the basis of what we know concerningthesolution of the equation

where the C-term is missing, it might be suspected that the solution of

this equation would be determined in the following way: There are three

decision regions, as in the figure below, with A, B and C each optimal

first choices in these regions

  
Figure 8

Unfortunately, a counter-example has been constructed showing that

this is not true generally. It shows, by meansof a fairly complicated but

straightforward calculation, that the solution can, for suitable values of

the parameter, take the form shownin Figure 9 below.

Thesolution of (1) above seemsto be quite a difficult problem, and very

little is known concerning the characterof the solution.

y

 
 

Figure 9
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It is not even known whetheror not the numberof decision regionsis

always finite and whether the numberis uniformly boundediffinite. To

obtain some information about this problem in a part of the parameter

space, we shall consider a continuousversion in Chapter8, where with the

aid of variational techniques the decision regions may be determined.
For the continuous version they do assume the simple form shown in

the first figure above, Figure 8.

§ 14. A stability theorem

Let us now derive a stability theorem for the solution ? of the equation

A: bi[n*+f((l—n) x, 0M
(1) I (%, y) = Max fF palrey + f(x, (lL —72) ¥)]

THEOREM 7. Let g (x, y) be the solution of

A: £,[71,% +g ((1 —1) x, y)]

B: pal[rey + g (x, (1 —72) ¥)]

Then, in any rectangle R:0<x< X,0< ys Y

(3) I (%, ¥) — 8 (x, y) |< Max | h(x, y) |/9,

(2) g (x9) — Max | | + 4(e9).

where q = Min ((1 — 4,), (1 — ,)).

Proor. The proof proceeds by successive approximations, as in the

correspondingsection in Chapter 1. Consequently, we shall merely sketch

the details. Set

(4) fi (*, y) = Max [p,7, x, bo 12]

gi (*, ¥) = Max [p71 %, Petey] + A(x, y).

and, generally,

A: py [11% + fa ((l — 14) *, My
tn +1 (Xx, y) = Max * he [%. V + fn (x, (1 —_—- 12) ¥)]

(5)

gn +1(x, y) = Max és Di [11% + gn ((1 —7,) x, y)
h(x, ¥).

B: pe [%2¥ + gn (x, (1 — 72) mI Ay)

It 1s clear that

(6) fi (% 9) —&i(% y) |< Max | A(x, y) |.

7 By the term “‘solution’’, here and in the following pages, we shall mean the
unique solution in the appropriate function class.
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Applying the techniques used repeatedly above, we see that

(7) Max | fn +1 (%, Y) — gn til(%y) |< Max Ps | fn (%, y) — gn (x, ¥)|

+ Max |/ |

where p; = Max(,, ,). Iteration of this inequality yields

(8) Max | fu (*, ¥) — 8m (*, y) | Max |b | (1 + bs +--+ bs"),

forn = 2, ...,. Letting » — oo we obtain the stated result.

Exercises and Research Problems for Chapter IT

1. With reference to the process described in § 2, consider the case
where the purpose of the process is to maximize the expected value of

gy (R), where R is the total return, and @ (z) is a given function of z.

Define the function

f (x, y, a) = expected value of y(R) obtained employing an optimal

policy with initial quantities x and y in the respective mines
and a quantity a already mined.

Show that f(x, y, a) satisfies the following functional equation

A: pteea Sn) ehel] x,y >0

B: pef (x, 72'¥,@ +729) + pe’ V(@l>
I (x, y, a) = Max

Ft (9, O, a) = y (4).

Here p,' = 1— ,, d,. = 1— fa, 7) = 1—1n, 7.) =1—”7,

2. Establish an existence and uniqueness theorem for this equation.

3. Consider the case where 9 (z) is defined as follows: o (z) = 0,

O0<z<4u,9(z)=1,2 >4u4, whereu<x+/y.

4, Let g (x, y) = Max Exp(e’"), b > 0, where Exp stands for expected
P

value and we maximizeoverall policies P. Show that g (x, y) satisfies the
equation

A: py e"%7 g(r,’ x,y) + a
§ (x, y) = Max Ie be eor.y g (x, ro y) a: be’

TT
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5. Show that the solution of the above equation is determined by the

relation between the functions , (e.% — 1)/f,' and py, (e724 — 1)/,’

6. Show that Theorem 2 is the limiting case of this result as b > 0.

7. The function g (x, 0) satisfies the equation

g (x, 0) = py eh” g(r,’ x, 0) + pr’.

Obtain its asymptotic behavior as x —> oo.

8. Referring to Problem 1 obtain somesufficient conditions upon @ (x)

which will ensure precisely two decision regions.

9. Solve the equation

|As. pilin x +f(n'*, y)]
f (x, y) = Max| B: palray + f(x, 72° y)]

|C: pslrsx tray +f (tx,ty)]

10. Solve the equation

A: x +f (ax, °)]

B: y + f(cy, dx)

assuming thatO<a,b,c,d< 1. (Gross-Shapiro}

f(x, ¥) = Max

11. Consider the process described in § 2 under the assumption that there

is a probability #, of obtaining 7, x and continuing, a probability p, of

obtaining nothing and continuing, and a probability #, of obtaining

nothing and terminating, if A is chosen, with 4, + ~, + ~, = 1, with

similar probabilities q,, gz, 73 if B is chosen. Show that the corresponding

functional equation is

A: Py [7 x + f((1 — 1) x, y)] + bef (%, ”)

Bi a[si y +f (x,(1— sy) ¥)] + Of(x, y)

and that this may be written in the simpler form

ji) = Max|

A: is. rx + f((l—n) % 9)
f(x, vy) = Max

B: _s isiy + f(x, (l—s,) ¥)]
— Ve

12. Consider the process described in § 2 in which it is not possible to

observe the effect of any of the decisions once the process hasstarted.
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Discuss the problem of determining the policies maximizing the expected

return in the followingsituations:

a. when the machine is undamaged, it mines a fixed fraction of the

gold in any particular mine.

b. when the machine is undamaged,there is a distribution of returns.

Suppose that we wish to maximize the probability that the return ex-

ceeds a fixed quantity R,.

13. Consider the process described in § 2 under the assumption that the

machine minesa fixed quantity in each mine, dependent upon the mine,in

place of a fixed fraction, as long as the amount remaining in the mine

exceeds the fixed amount.

14. Show that the equation in (5.1) is equivalent to

A: #,[71+( — 71) f (2/(1 — 14))]

J (2) = Max f pa [raz +f((l— 72) 2)] |
for0O< z < co.

15. Consider the equation

A: rx + f((l—17) x, y) |
I (%, y) = Max | qisy + f(x, (1 — s) y)]

forx,y >0,0<7,5,¢ <1.

Show that a solution is

f(x, 9) =" G05)’

16. Show that the gold-mining process generating this equation possesses

no optimal policy, 1.e. no policy yielding this return, but that there are

arbitrarily many policies yielding a return of more than

x +“Psfor any 6 > 0
1—gq(1l—s) ¥

17. Prove that the solution above is not unique in the class of bounded

functions over any boundedrectangle, but that it is unique over theclass

of functions f(x,y) for which f(0, 0) = 0, f(x,y) is continuous at

x=y = 0.

Bibliography and Comments for Chapter II

§ 1. The concept of “‘decision regions’’ is a very important one in the
study of decision processes. We shall meet it again in Chapter VIII, where it
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guides usto the solution of the variational problems treated there, and again
in Chapter IX, in connection with variational problems with constraints. An
interesting paperin this connection is K. D. Arrow, D. Blackwell, M. Girshick,

‘Bayes and Minimax Solutions of Sequential Decision Problems,’’ Econo-

metrica, vol. 17 (1949), pp. 213-214.

§ 8. The result of § 8 was obtained in conjunction with M. Shiffmanin
the summerof 1950.

§ 12. The type of geometric argument used here was extensively developed
by S. Karlin and H. N. Shapiro to give an alternative proof of Theorem 2
and other results.

§ 13. The first counter-example was obtained by S. Karlin and H. N.
Shapiro after a great deal of fruitless effort had been expended attempting
to establish a result based upon Figure 8. See S. Karlin and H. N. Shapiro,
“Decision Processes and Functional Equations,’’ RM-—933, Sept. 1952, The

RAND Corporation.
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CHAPTERIII

The Structure of Dynamic Programming Processes

§ 1. Introduction

In this chapter we wish to examine and comparetheessential features

of the two processes we have considered in some detail in the first and

second chapters. Disparate as these processes may seem atfirst glance,

one being of deterministic type with a stochastic version and the other
of a stochastic type with no deterministic version, we shall see that from

an abstract point of view they are examples of the same general typeof

process. It is therefore no accident that they are governed by functional

equationsof a similar form.

After a discussion and analysis of these similarities, we shall consider

the formulation of the more general decision processes and from these

derive a numberof functional equations possessing a commonstructure.

Wecould, if we so desired, condense these into one all-embracing func-

tional equation. However, since extreme generality is only gained at the

expenseof fine detail, it seems decidedly better, from both a conceptual

and analytic point of view, to consider separately a numberof important

sub-categories of processes, each of which possesses certain distinctive

mathematical and physical features.

Weshall close the chapter with a further discussion of the concept of

approximation in function space, which we have already encountered in

the previous chapters, and a demonstration of its most important pro-

perty, that of monotone convergence.

§ 2. Discussion of the two preceding processes

Let us begin by observing that the processes discussed in Chapters I

and II have the following features in common:

a. In each case we have a physical system characterized at any stage

by a small set of parameters, the state variables.

b. At each stage of either process we have a choice of a numberof

decisions.

c. The effect of a decision is a transformation of the state variables.

d. The past history of the system is of no importance in determining

future actions.
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e, The purpose of the process is to maximize somefunction of the state

variables.

We have purposely left the description a little vague, since it is the

spirit of the approachto these processesthatis significant rather than the

letter of some rigid formulation. It is extremely importantto realize that

one can neither axiomatize mathematical formulation norlegislate away

ingenuity. In some problems,the state variables and the transformations

are forced upon us; in others there is a choice in these matters and the

analytic solution stands or falls upon this choice; in still others, the state

variables and sometimes the transformations must beartificially con-

structed. Experience alone, combined with often laborioustrial anderror,

will yield suitable formulations of involved processes.

Let us now identify the two processes discussed in the foregoing

chapters with the description given above.

In the unbounded multi-stage allocation process, the state variables

are x, the quantity of resources, and z the return obtainedupto the cur-

rent stage. The decision at any stage consists of an allocation of a quan-

tity y to the first activity where 0 < y < x. This decision hastheeffect of

transforming x into ay + 6 (x — y) and zintoz + g(y) + A(x — yy). The

purpose of the process is to maximizethe final valueofz.

In the stochastic gold-mining process, the state variables are x and y,

the present levels of the two mines, and z the amount of gold mined to

date. The decision at any stage consists of a choice of Anaconda or Bo-

nanza, If Anaconda is chosen, (%, y) goes into ((1 —7,) x, y) and z into

z+ 7r,x, and if Bonanza,(x, y) goes into (x, (1 — 7.) y) and z into z + roy.

The purpose of the process is to maximize the expected value of z obtained

before the machine is defunct.

In the finite versions of both processes, we have the additional para-

meter of time, manifesting itself in the form of the numberofstagesre-

maining in the process. It is, however, very useful to keep this state

variable distinct from theothers,since, as usual, time plays a uniquerole.

Let us now agree to the following terminology: A policy is any rule for

making decisions whichyields an allowable sequence of decisions; and an

optimal policy is a policy which maximizes a preassigned function of the

final state variables. A more precise definition of a policy is not as readily

obtained as might be thought. Although nottoo difficult for deterministic

processes, stochastic processes require more care. For any particular

process, it is not difficult to render the concept exact. The key wordis,

of course, ‘‘allowable’’.

A convenient term for this preassigned function of the final state vari-

ables is criterion function. In many applications, the determination of a

propercriterion function is a matter of some difficulty. From the analytic
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point of view, a solution may be quite easy to obtain for onecriterion

function, and quite difficult for a closely related one. It is well, conse-

quently, to retain a certain degree of flexibility in the choice of such

functions.

§ 3. The principle of optimality

In each process, the functional equation governing the process was

obtained by an application of the following intuitive:

PRINCIPLE OF OPTIMALITY. An optimal policy has the property that what-
ever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first

decision.

The mathematical transliteration of this simple principle will yield all

the functional equations we shall encounter throughout the remainder

of the book. A proof by contradiction is immediate.

§ 4. Mathematical formulation—I. A discrete deterministic
process

Let us now consider a deterministic process, by which we meanthat the

outcomeof a decision is uniquely determined bythe decision, and assume

that the state of the system, apart from the time dependence,is described

at any stage by an M-dimensional vector p = (f,, po, ..., Par), Con-

strained to lie within some region D, Let T = {Ty} where g runs over a

set S which maybefinite, enumerable, composed of continua, or a com-

bination of sets of this type, be a set of transformations with the property

that fe D implies that Ty (f) e D for all geS, whichis to say that any

transformation 7, carries P into itself.

The term ‘‘discrete’’ signifies here that we have a process consisting of

a finite or denumerably infinite numberof stages.

A policy, for the finite process which weshall considerfirst, consists of

a selection of N transformations in order, P = (7,, T2, ..., Tw),1 yielding

successively the sequence of states

1) Pr — T, (p),

Pe —= T, (Pi),

px = Ty (py -1).

These transformations are to be chosen to maximize a given function,

R, of the final state py.

* where we write 7, for T,, T, for T,, and so on.
1 2
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There are a numberof cases in whichit is easy to see that a maximum

will exist, in which case an optimal policy exists. The simplest is that

where there are only a finite number of allowable choices for g at each

stage. Perhaps next in orderof simplicity is where we assume that Disa

finite closed region, with R (f) continuous in # for pe D, Tq (p) jointly
continuous in # and q for all # ¢ D andall g belonging to a finite closed

region S.

These two cases cover the most importantof the finite processes, while

their limiting forms account for the unbounded processes.

Observe that the maximum value of R (fy), as determined by an

optimal policy, will be a function only of the initial vector # and the

number of stages N. Let us then define our basic auxiliary functions

(2) fn (f) = Max R (py)

= the N-stage return obtained starting from an ini-

tial state # and using an optimalpolicy.

This sequence is defined for N = 1, 2, ..., and for pe D.

Simple as this step is, it represents a fundamental principle in analysis,

the principle of continusty. In order to solve our original problem involv-

ing oneinitial vector, #, and a multi-stage process of a definite numberof

stages, N, we consider the entire set of maximization problemsarising

from arbitrary values of # and from an arbitrary numberof stages.

The original process has thus been imbedded within a family of similar

processes. In place of attempting to determine the characteristics of an

optimal policy for an isolated process, we shall attempt to deduce the

commonproperties of the set of optimal policies possessed by the mem-

bers of the family.

This procedure will enable us to resolve the original problem in a num-

ber of cases where direct methodsfail.

To derive a recurrence relation connecting the membersof the sequence

{fw (p)}, let us employ the principle of optimality stated above in 3.

Assume that we choose some transformation 7, as a result of our first

decision, obtaining in this way a newstate vector, T, (p). The maximum

“return’’? from the following (N — 1) stagesis, by definition, fy—, (Tq (p)).

It follows that if we wish to maximize the total N-stage return g must

now be chosen so as to maximize this N — 1 stage return. The result

is the basic recurrence relation

(3) in (p) = Max fav ~1(Tq(p)),

for N > 2, with :
2 i.e. the value of the criterion function.
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(4) fi lt) = Max R (Tq (6))
ge

Observe that fw (p) is unique, but that the gq which maximizesis not

necessarily so. Thus the maximum return is uniquely determined, but

there may be many optimal policies which yield this return.

For the case of an unboundedprocess, the sequence{fw (p)} is replaced

by asingle function f(p), the total return obtained using an optimal

policy starting from state , and the recurrencerelation is replaced by the

functional equation

(5) f(b) = Maxf (Tq (A)).

§ 5. Mathematical formulation—II. A discrete stochastic
process

Let us once again consider a discrete process, but one in which the

transformations which occurare stochastic rather than deterministic.

A decision nowresults in a distribution of transformations, rather than

a single transformation. Theinitial vector # 1s transformed into a stochas-

tic vector z with an associated distribution function dG, (p, z), depend-
ent upon # andthe choice q.

Two distinct types of processes arise, depending upon whether we

assume that z is knownafter the decision has been made and before the

next decision has to be made, or whether we assume that only the dis-

tribution function is known. Weshall only consider processesof the first
type in this volume, since processes of the second type require in general

the concept of functions of functions, which is to say functionals.

It is clear, as we have stated several times before, that it is now on the

whole meaningless to speak of maximizing the return. Rather we must

agree to measure the value of a policy in terms of some average value of

the function of the final state. Let us call this expected valuethe return.

Beginning with the case of a finite process, we define fw (p) as in (4.2).
If z is a state resulting from any initial transformation JT,, the return

from the last N — 1 stages will befw — , (z), upon the employment of an

optimal policy. The expected return as a result of the initial choice of Tg

is therefore

(1 [pf ~ 2) dab, 2)
Consequently, the recurrence relation for the sequence{fw (p)} is

(2) fu (6) =Max |fr~1(2) dGe(p, 2), N >2,
qeé

with
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(3) fi (P) = Max R (2) dGq(p,2).
geS JzeD

Considering the unbounded process, we obtain the functional relation

(4) f(b) =Max|f (2) dGq (p, 2)
ge

§ 6. Mathematical formulation—III. A continuous determin-
istic process

There are a numberof interesting processes that require that decisions

be made at each point of a continuum, such as a time interval. The

simplest examples of processes of this character are furnished by the

calculus of variations. As we shall see in Chapter IX below,this conception

of the calculus of variations leads to a new view of various partsof this

classical theory.

Let us define

(1) f(f; T) = the return obtained over a time interval [0, 7] starting

from the initial state # and employing an optimalpolicy.

Although weconsider the process as one consisting of choices made at

each point ¢ on [0, 7], it is better to begin with the concept of choosing

policies, which is to say functions, over intervals, and then pass to the

limit as these intervals shrink to points. The analogue of (4.3) is

(2) f(pi5S +7) = Max f (po; T)
D [0, 8}

where the maximum is taken overall allowable decisions made over the

interval [0O, S].

As soon as we consider infinite processes, occurring as the result of

either unbounded sequences of operations, or because of choices made

over continua, we are confronted with the difficulty of establishing the

existence of an actual maximum rather than a supremum.In general,

therefore, in the discussion of processes of continuous type, it is better to

use initially the equation

(3) f~PS+T)= Sup f (po; .),

whichis usually easy to establish, and then show, undersuitable assump-

tions that the maximum is actually attained.

Asweshall see in Chapter IX,the limiting form of (2) as S> Oisanon-

linear partial differential equation. This is the important form for actual

analytic utilization. For numerical purposes, S is kept non-zero but small.

3 Weshall show, in Chapter IX, that it is possible to avoid many of the quite
difficult rigorous details involved in this limiting procedure if we are interested
only in the computational solution of variational processes.
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§ 7. Continuous stochastic processes

An interesting and challenging question which awaits further explora-

tion is the formulation and solution of general classes of continuoussto-

chastic decision processes of both one-person and two-person variety.

Although we shall discuss a particular process in Chapter VIII, we shall not

discuss the general formulation of continuous stochastic decision proces-

ses here, since a rigorous treatment requires delicate and involved argu-

mentation based upon sophisticated concepts.

§ 8. Generalizations

It will be apparent to the reader that the functional equations we have

derived above for the case where the state variables and the decision

variables were constrained to finite dimensional Euclidean spaces can be

extended to cover the case where the state variables and decision variables

are clements of more general mathematical spaces, such as Banach

spaces.

Rather than present this extension abstractly we prefer to wait untila

second volume where wewill discuss examples ot these more general pro-

cesses. The theory of integral equations and variational problems involv-

ing functions of several variables, as well as more general stochastic

processes, all afford examples of processes which escapethefinite dimen-

sional formulation to which we haverestricted ourselves in this volume,

and require for their formulation in the foregoing terms the theory of

functionals and operations.

§9. Causality and optimality

Consider a multi-stage process involving no decisions, say one generated

by the systemof differential equations,

(1) Ax;i/dt == gi (%1, Xe, ..., Xn), Xi (0) = ci, 2 =~ 1,2, ..., N,

which may, more compactly, be written in vector form

(2) dx/dt = g(x), x(0) =c.

The state of the system at time #, taking for granted existence and uni-

quenessof the solution, is a function only of c and ¢, thus we may write

(3) v(t) = fc, 4).
The uniqueness of the solution leads to the functional equation

(4) flos+t) =f(flc.s) 4),
for s, > 0, an analytical transliteration of the law of causality. This equa-

tion expresses the fundamental semi-group property of processesof this

type.
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Comparing (4) above with (6.2), we see that we may regard multi-stage

decision processes as furnishing a natural extension of the theory of

semi-groups. Any further discussion here along these lines would carry

us beyond ourself-imposed limits, and we shall consequently content

ourselves with the above observation.

§ 10. Approximation in policy space

In solving a functional equation such as (4.4) or (5.3), we shall in Chapter

IV make use of that general factotum of analysis, the method of successive

approximations. The method very briefly, consists of choosing an initial

function f, (p), and then determining a sequence of functions,{fw (p)}, by

means of the algorithm

(1) fw (Pp) = Max fy ~ , (Tq (p)), N = 1,2, ...

as, for instance, in (4.4) We have already employed this method in dea-

ling with the equations of Chapters [ and II.

In many important cases, this method after a suitable preliminary

preparation of the equation actually leads to a convergent sequence

whoselimit yields the solution of the functional equation.* We shall make

extensive use of it in the following chapter.

In the theory of dynamic programming, however, we have an alternate

method of approximation which is equally important in its ownright, a

method which wecall “approximation in policy space’.

Before discussing this method of approximation, let us observe that

there is a natural duality existing in dynamic programming processesbe-

tween the function f(f) measuring the overall return, and the optimal

policy (or policies) which yields this return. Each can be used to determine

the other, with the additional feature that a knowledge of f(p) yields all

optimal policies, since it determines all maximizing indices g in an equa-

tion such as (4.4), while a knowledge of any particular optimal policy

yieldsf (p).

The maximizing index g can be considered to be a function of #. If the

index is not unique, we have a multi-valued function. Whereas wecall

f(p) an element in function space, let us call g = q (pf) an element of

policy space. Both spaces are, of course, function spaces, but it is worth

distinguishing between them,since their elements are quite different in

meaning.

It follows now that we have two ways of makingan initial approxima-

4 It is interesting to observe that in many theories, as, for example, partial

ditferential equations, the preliminary transformation of the equation is of such
a nature that the principal difficulty of the existence proof resides in the demon-
stration that the limit function actually satisfies the original equation.
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tion. We may approximateto /(f), as we do ordinarily in the method of

successive approximation, or we may, andthis is a feature of the func-

tional equations belonging to dynamic programming processes, approxi-

mate initially in policy space.§

Choosing an initial approximation go = qo (p), we compute the return

from this policy by meansof the functional equation

(2) fo (p) = fo (Tq,(6).

We havealready given an example of this in § 11 of ChapterI.

There are now two ways we can proceed. Taking the function of g,

fo (Iq (f)), we can determine a function g (p) which maximizes. Call this

function g, (p). Using this new policy, we determinef, (p), the new return,

by means of the functional equation

3) fi (p) =f; (Tq, (p)).

This equationis solved iteratively, as in (11.3) and (11.4) of ChapterI.

Continuing in this way, we obtain two sequences{fy (p)} and {qn(f)}.
In place of this procedure, we can define

(4) fi (p) = max fo (Tq (p));

and then continue inductively, employing the usual methodof successive

approximations,

(5) fw +1 (P) = Max fv (Tq (A)).

It is immediate that f, > f. and thus that the sequence {fv} is mono-

tone increasing. Weshall discuss the convergence of this process in the

next chapter.

The first procedure, although a more natural one, seems more difficult

to treat rigorously and we shall not consider it here. In dealing with
various types of continuous processes, such as those furnished by the

calculus of variations, it would seem, however, that this technique is

required for successive approximations. Weshall discuss this topic again

in Chapter IX.

5 Actually this type of approximation is tacitly encountered in other branches
of analysis as, for instance, in the theory of differential equations, where a differ-
ential equation is frequently replaced by a difference equation for approximation
purposes. This replaces the space of general functions by the subspace of step-
functions.
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Exercises and Research Problems for Chapter III

1. Suppose that we are given the information that a ball is in one of NV

boxes, and the a priori probability, fx, that it is in the £t® box. Show that

the procedure -which minimizes the expected time required to find the

ball consists of looking in the most likely box first.

2. Consider the more general process where the time consumedin exam-

ining the kt® box is ¢x, and where there is a probability gx that any

particular examinationof the R'® box will yield no information concerning

its contents. When this happens, we continue the search operation with

the information already available.

Let f(p1, fe, ..-, Pw) be the expected time required to obtain theball

using an optimal policy. Show that this function satisfies the equation

br
T(pu pe, ---, Py) = Min Ns + (1— pn) f(pi*, po*, 10). .bs")]

k

where p;* = ~; /(1 — px) and the 0 occursin the R'® place.

3. Prove that if we wish to obtain the ball, the optimal policy consists of

examining the box for which px (1 — qx)/tx 1s a maximum first. On the

other hand, if we merely wish to locate the box containing the ball in the

minimum expected time, the box for which this quantity is a maximum

is examinedfirst, or not atall.

4, Consider the situation in which we can simultaneously perform oper-

ations which locate the ball within givensets of boxes.

5. We have a number of coins, all of the same weight except for one

whichis of different weight, and a balance. Determine the weighing pro-

cedures which minimize the maximum time required to locate the dis-

tinctive coin in the following cases

a. The coin is known to be heavier

b. It is not known whetherthe coin is heavieror lighter.

6. Determine the weighing procedures which minimize the expected

time required to locate the coin.

7. Consider the more general problem where there are two or more dis-

tinctive coins, under various assumptions concerning the properties of the

distinctive coins. (Cairns)

8. We are given m items, not all identical, which must be processed

through a numberof machines,m,of different type. The order in which the

machinesare to be used is not immaterial, since some processes must be
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carried out before others. Given the times required by the 74 item on the

jt4 machine, aij,71 = 1, 2,...,",7 = 1, 2, ..., m, we wish to determine

the order in which the items should be fed into the machines so as to

minimize the total time required to complete thelot.

Consider the case where there are only two stages with ai, = a; and

di, = b:;, and where the machines must be used in this order. Let

f (@1, 01, 42, 52, ..., nv, bn; t) = time consumed processing the N items

with required times a;, 0; on the first and
second machines when the second ma-

chine is committed for ¢ hours ahead, and

an optimal scheduling procedure is em-

ployed.

Prove that f satisfies the functional equation

f (ay, 01, Ge, bg, ..., An, bn; t) = Min[ai + f (ay, by, de, bg, ..., 0,0, ...,

an, ba:By + max (t — ai, 0)],

where the (0, 0) combination is in place of (a:, 5i).

9, Show that an optimal ordering is determined by the following rule:

Item 7 precedes item 7 if min (a:, b;) < min (a;, b;). If there is equality,

either ordering is optimal, provided that it is consistent with all the defi-

nite preferences. (Johnson)

Whatis the solution if either machine can beusedfirst ?

10. Let x; be the inactive time in the second machine immediately before

the ;*8 item is processed on the second machine. Let a:, bi be the times

required to process the 2item on the first and second machinesrespec-

tively and assume that the items are arranged in numerical order. Then

n u u—l

Sx, = Max [2 a:— 2 5] (Johnson)
7=1 l<u<n t=1 i= 1

11. For the three-stage process the corresponding expression for the total

idle time on the third machine1s

u—] v v—l1

Max [SL a— 20+ L b;— SJ ci] (Johnson)
l<susvesn i=l i=1 1=1 i=1

12. Consider the following problemarising in the production of many-

part items,or alternately in the maintenance of a complex system. There

are N different stages of production involved in turning outthefinal item.

The probability that the item is processed correctly at the it® stage is i.
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Assume that £ machines are available which can be usedto increase the

accuracy of any particular stage of the process in the following way.If

one machineis addedto the 2*® stage, : becomes i,, if two machines,

then #:2, and so on.

How should we distribute the machines to maximize the overall accu-

racy of the process ? Consider the same problem underthe followingalter-

native assumptions.

(a) At most m: machinesare allowed at the 7” stage

(b) A machine at the 7" stage costs d; dollars and we have at most d

dollars to spend.

(c) A machine at the 2'® stage requires /; operators at the z'» point, and
at most # menareavailable.

13. A mistake found at the z'® point requires a time 4 and a cost c; to

rectify. Taking into account laboring costs, machine costs, and the cost of

turning out a defective item, say z, how much moneyshould be spent on

checking equipment and how shouldit be used ?

14, Consider the problem of maximizing the function

& gi (xi) under the constraints
i=1

a. x; >0

n

bo Lx=C
i=1

C. %ip, Xi, ,, = O for a set of integers 1, <1, << 13 <<... <dm,

m<n—l.

Consider, in particular the cases

xi Xi+1 = 0, 1=1,2,...,.n—1©

b. Xi Xi 41 Xi+2 = 0, 7=1,2,...,n—-2

Consider the reverse situation, where we have constraints of the form

a. Xin Xin 5 > dy.

Discuss the special cases

a. X41 > 1,

Db. %¢ %i41 X42 > 1.

15. A managerof a restaurant has two types of laundry service available

for napkins, a quick service which requires q days, and costs c cents per

napkin, and a slow service which requires p > g days and costs d cents,

d <c, per napkin. Assuming that he knows in advance the numberof
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customers he will have on any given day of an N-dayperiod and that

he prides himself on providing every customer with a napkin, how many

napkins should he purchase and how should he launder them so as to

minimize the total cost over the N-day period ? Considerfirst the cases

where P=g+1l,andp=gq4+ 2.

16. Consider the analogous problem under the assumption that & laun-
derings wear out a napkin.

17. Consider the above problem under the assumption that numberof

customers on each day is a stochastic quantity.

18. We have a resource x which maybeutilized in a numberof ways. If

y is a parameter specifying a particular use, let R (x, y) be the immediate

return, and D (x, y) the cost in resources. If f(x) is the total return from

repeated use of an initial resource x, obtained using an optimalallocation

policy, we derive the functional equation

f(x) = Max [R (x, y) + f(* — D (, 9))).
y

Assuming that D (x, y) is small compared to x, for all y, show that we

obtain the formal approximate equation

R (x, y)
f' («*) = Max Dx, y) )

and give the interpretation of this result.

19. Consider the stochastic case. Show that the corresponding functional

equation has the form

f (x) = Max [| dR (y, z, x) + f(e— |wad (y, w, x))],
y 0 0

and the approximate equation has the form

[- zdR (y, 2, x)
0
 f' (*) = Max —z ,

y | waD (¥, w, x)
0

and give the interpretation of the result.

20. Consider the application of approximation in policy space to the

functional equation

f(x) = Max [g(y) + h(x—y) + flay + 6 (x —y))].
Osy<sa

Wechoose an initial y, (x) and compute f, (x). Then determiney, (x) by
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the condition that y, maximize the function g(y) + h(«—y) +

fo (ay + 6 (x — y)), compute f/f, (x) using y, (v), and so on. When are the

elements of the sequences {Vn (x)} and {fn (x)} continuous in x, and when

do they converge ? Consider, in particular, the cases where g and h/ are

both convex, or both concave.

21. Assume that we have two machines, unimaginatively called I and IT,

with the following properties. If machine I is used there is a probability 7

of receiving a gain of one unit; if machine IT is used,there is a probability

s of receiving a gain of one unit. We shall assume that s is known,but that

vy is determined only by ana priori probability distribution. The problem

is to determine a selection policy which maximizes the expected return

obtained over WN trials, or alternatively the discounted return from an

unbounded process, discounting the return one stage hence by a factor

a<l.

Assume that the distribution function for 7 after m successes and

failures on the first machine is given by

ym (1 — yr)" dF(7)

[. ym (1 —yr)" dF(1)
0

 AFmin (7) =

Let fm, n equal the expected return obtained using an optimal policy

for an unbounded process after the first machine has had m successes

and m failures. Show that fm 2» satisfies the recurrence relation

1

I: | VaFm, n (7) [1 =- afm +1, n|

Tim, » = Max 4 [, (1 __ 7) dFm, n (7) [afm, n +1],

  II: s/(l1—a)

22. Prove that there is a unique boundedsolution to this equation, which

may be obtained by successive approximations.

23. Prove that for each m, n > O there isa unique quantity s (m, ) with

the property that the sequence {fmn} is determined by the equations

(a) fmn =s/l—a),l>s>s (m,n),

Fimn = [, vaFmn (7) [1 + afm +1, n|

+a(l — | dFn,n (7)) fnynt1,0<s <s (m,n).
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The sequence s (m, 2) has the following properties

(b) s(m+ 1,n) >s(m,n) >s(m,n+1),

and

(c) fm+izn >fmin >fmin+t-

How can the sequence s (m, ”) be calculated ?

24. Prove the correspondingresults for the process allowing only finite
numberoftrials.

25. Consider the following situation. We have a warehouse with fixed

capacity and an initial stock of a certain product which is subject to
known seasonal price and cost variations. The problem is to determine

the optimal pattern of purchasing (or production), storage andsales.

Let B denote the fixed warehouse capacity, and A theinitial stock in

the warehouse. Consider a seasonal product bought (or produced) and

sold for each of 1 = 1, 2, ..., ” periods. For the 2" period,let

(1) c; = cost per unit

pi = selling price per unit

x; = amount bought (or produced)

yi = amountsold

The constraints are as follows:

(2) (a) Buying Constraints: The stock on hand at the end of the

7th period cannot exceed the warehouse capacity.

(b) Selling Constraints: The amountsold in the z'® period

cannot exceed the amountavailable at the end of the

(¢ — 1)st period.

(c) Non-negativity: Amounts purchased or sold in any

period are non-negative.

The problem is to determine the policy which maximizes the over-all

profit.

Show that it may be convertedinto the problem of determining the x;

and y; which maximize
n

(3) P= 2X (pj yi — 6%),
j=l

subject to the constraints

(4) (a) A+ » (4%: — vi) <B, 7—=1,2,...,n,
j=l

i—1
(b) yi A+ 2 (x; — yy), 1=1,2,...,%,

j=l

(c) xi, ys > O.
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26. For fixed B, define

fn(A) = Max P, n=1,2,....

Show that f, (A) = ~, A, and that

(1) fn (A) = Max [pi ¥1—¢1%1 + fn-1(A + %1— yx)],
My YVi

for n > 2, where the maximum is over the region

(2) (a) OSy<cA

(b) Xy—¥,< B—A, x, > 0.

27. Prove that the function fy (v) is linear in v, namely

fn (v) = Kw (fi, fe, «. +, PN, C1, C2, «+, ON) +

In (fi, pe, sey Pn, C1, C2, «.e, CN) v,

and thus that the optimal policyis independentof v.

(Dreyfus)

28. Consider the following idealized transportation system

k=1 k=2 k= 3 k=N

Ty O-—~0 0 0
JA \

Sz 0f™ 0 0 0 co

At each stage we have two terminals JT, and Sx. From either T, or Sx

we can ship materials to Tx +41 or Sx 41.

The maximum amounts we can ship along these routesare the following

a. Le Tusi = Re, «+1, Iy—>fF = Ry

b. Te Se41 = Rr, e +1 Svn>F = Syn

C. Se—>Set1 = Se, 41

d. Sy>Te+1 = Sk, e41

Starting with initial quantitites x at T, and y at Sx, denote by Fx (x, y)

the quantity arriving at F using an optimal shipping policy. Show that

Fy (x, y) = Min (x, Rv) + Min (y, Sy),

Fy (x, vy) = Max Fx +1 (2; + We, 22 + W,),
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where the maximum1s taken over the region

2, + 2%2< %, W+We<Y,

0< 2,< Re, e41, O<2.< Re, 41,

0< W,< Sk, e414, O< we< Sx, r+

29. Formulate the corresponding problem for the case where the ter-

minals have maximum capacities.

30. Consider the stochastic case where the capacities are random vari-

ables with known distribution functions. Obtain a recurrencerelation for

the maximum expected quantity arriving at F, under various assump-

tions concerning the information pattern.

31. Consider the following transportation problem. We are given a number

of ‘“‘sources’’, S,, S,, ..., Sm, and a numberof “sinks” or “‘terminals’’,

T,, T2, ..., Ln. Each source S; has a quantity x; of resources which must

be transported to various terminals in such a way that the total quantity

arriving at T; fulfills an a priori demand y;. It is assumed that 2' x; =
u

 y;. Given the distances, dij, between the sources and the terminals, and
j
assuming that the cost of shipping a unit quantity of resources between

S; and T; is equal to di;, we wish to determine the routing which mini-

mizes the total cost of supplying the demands.

Show that the problem above is equivalent to minimizing the sum

C= 2 dij Xij

t, 9

subject to the constraints

DL Xig = Xi, LD Xig = Vj, Xig > O. (Hitchcock-Koopmans)
j i

32. Write, for fixed y,, yo, ..., yn;

Min C = fw (%1, Xe, ..., Xm).

tj

Show that

ii (1, Xa, vee, xm) = din X41 + don Xe + eae + dun XM,

M

In (4, Xe, eeey %M) — ete a dix Xi4 + fn -1 (x; — *4, Xo — X%o1)

ay 1=1

1+, XM — %XMj)|

where the minimumIs over the region
M
At =v, OS ta SM.
i=1
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M iV

33. Show that as a consequence of the relation » x; = 2 yj, we may
i=1 j=l

always reduce the dimension of the problem by one, by writing

In (%1, Xo, see, xm) = fy (%1, Xo, sae, Xm -—1).

34. Consider the stochastic case where the d;; represent random variables

with given distributions.

35. Assuming that the cost of transportation from an 7-port to a 7-portis

quadratically nonlinear, dij xij + eij ij, ey > O, show that there is now

a unique minimizing schedule. (Prager)

36. Consider a similar multi-stage process where resourcesat (A:, Bi, Ci)

must be transported to (4i+,, Bi+1,Ci+,) and so on, until reaching
assigned destinations, 7,, T;, T3, as indicated below

A, A, An Ty

B, Ne B, ... By T,

C, \ C, Cy Ts;

37. Consider the problem of determining the minimum of

N
L(x)= 2 cx,

i=1

subject to the constraints

N

aS aij xj<.bi,1 = 1,2,..., M,
j=1

xi > O,

where we assumethat ai; > 0.

Denote Min L (x) byfw (b;, bs, ..., Oa). Show that

In (b,, bs, wey bar) = Min [Cn XN + fy - 1] (b, — AIN XN, b, — den Xn, eee,

ty

bu — aun xN)],

where xy is constrained by the relations

xn > 0, xy < Min (b:/ain).
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38. Suppose that we have an empty five-gallon jug, /,, an empty two-

gallon jug, J,, and unlimited supplies of usquebaugh and water. The

allowable operations are

A, Fill J,

A, Empty /, of any contents

A, Fill J,

A, Empty /, of any contents

A, Pour contents of J, into J,, as much as allowable

A, Pour contents of /, into /,, as much as allowable.

After any finite numberof operations, the state of the system may be

described as follows:

1. There are 7 = 0,1, 2 gallons of liquid in /,, witha

ratio 7: (1 — 7) of usquebaugh to water.

2. There are 7 = 0, 1, 2, 3, 4,5 gallons in J, with a

ratio s: (1 — s) of usquebaugh to water.

Starting in someinitial state (7,7; 7, s), let f(2,7; 7, s) denote the mi-

nimum numberof operations required to attain a given state, say a fifty-

fifty mixture of water and usquebaughin />..

Show that

f(t,7;7,s) =1+ Min Axf.
1<k<6

Is f (2,7; 7, s) finite for all rational 7, with 7 = 0, and all rational s,

with 2 = 0? If not, what final combinations of water and usquebaugh

can be attained in /, in a finite numberof operations?

39. Consider the following problem: At each stage of sequence of actions

we are allowed our choice of one of two actions. Thefirst has associated a

probability #, of gaining one unit, a probability p, of gaining two units,

and a probability p, of terminating the process. The second has a similar

set of probabilities £,’, p2’, £;’. What sequence of choices maximizes the

probability of attaining at least units before the process is terminated ?

Let u (n) be the maximum probability. Then

M aDseee

¥(m) = Max ot (nm—1) +py u(n—2)

u(n) = 1, n<0.

Joven
40. Prove that if

R
u(n) = Max » asu(n—j)| ,n>k,

1<i< kK Lj=1

u(l) >0,l=0,1,2,...,R—1,
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and if

(a) aizy > 0

R
(b) there is one equation, 7? = 2 ax; 7r® —4 whose largest

j=l
positive root is greater than the corresponding roots of

the other equations of this type;

(c) for this index k, ax, 4 0,

under these circumstances, the solution of (1) is given by

R
u(n) = 2» ayyu(n—y)

j=1

for n sufficiently large.

What happensif at least two characteristic equations have the same

maximum root?

41. Consider the equation

u(n) = Max |S ay (n—+ |
1<i<sm Lj=1

R
where aij > 0, 2» ay = 1,2: >0,u(l) >0,l=0,1,2,...,R—1.

j=1
R

Let c = Max gi/ 2 jai; be attained for the single value
i j=1

1 = s. If as, > 0, the solution is given by

R
u(n) = » asyu(n—J)+ gs

j=1

for n > mo where 1, depends upontheinitial conditions and coefficients.

42. Is the result true if as, = 0? Construct a counter-example.

43. Given a finite set {A;} of non-negative square matrices, let Cy be the

matrix B, B, ... By, where each B; is an A;, which possesses the charac-

teristic root of largest absolute value. Let ry be this root. Prove that wu
=lim ry'/% exist. Let My denote the smallest majorant of the products

WV —> 00

Py = B,B,... Bn}1.e., the 47'" element in My is greater than or equal

the 7't element in any Py. Let my be the characteristic root of My of

largest absolute value. Prove that A = lim M,"/n exists as N > oo.
N — 00

44, Prove or disprove that uw = A.
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45. Consider the following problem: Weare given initially x dollars and

a quantity y of a serum, together with the prerogative of purchasing

additional amounts of the serum at specified times ¢#; < 4, < .... At the

kt» purchasing opportunity,¢x, a quantity cxzz of serum may be purchased

for z dollars, where cx is a monotone-increasing function of k. Given the

probability that an epidemic occurs between ¢; and ty +,, and the condi-

tion that if an epidemic occurs we may only use the amount of serum on

hand, the problem is to determine the purchasing policy that maximizes

the over-all probability of successfully combating an epidemic, given the

probability of success with a quantity w of serum available.

The condition cz > cx ~— , is imposed to indicate the cheaper cost of

serum at a later date because of technological improvement. Let

pbx = probability that the epidemic occurs between ¢, and

tx +,, assuming that it has not occurred previously,

g (w) = probability of combating the epidemic successfully with

a quantity w of serum,

fx (x, y) = over-all probability of success using an optimal pur-

chasing policy from ¢t, on, given x dollars and a quantity

y of serum on hand.

Show that fx (x, y) satisfies the functional equation

fi (%,y) = Max [peg (y + cuz) + (1 — px) fers (¥—2, ¥ + Ce 2)]
O<z<2

46. Show thatif m (w) is convex for all values of w which occur, the opti-

mal policy consists of purchasing no serum at ¢,, tg, ..., #e — , and then

using all available money at ¢; where & is chosen so as to maximize

[1—(1— p)*~*) p(y) +L —2)F (y+ Cee),
if py = p. Find the corresponding expression for general px.

47, Let
1 N

Fy(f) = Min | f— Z ax ge | Rdx.
{a,j} 4° k=1

Show that

Fy(f) = Min Fy -1(f—aw »)
an

48. Show that if we let

M (X1, Xq, »-+, XN) = the minimum of N quantities,

X14, Xq, ..., Xn, we have the functional equation
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mM (mM (X1, Xa, «++, XN — 1), XN) = M (Xy, Xe, -- XN),

and similarly for M (x,, %2, ..., xv), the maximum of N quantities.

49. Show that

Max[(1 — x,) e71-+ (1 — xq) e™! +72 +... + (1 — xy) et +22 +--+ + 7y] = ey,
{z;

where ¢; = ¢,enw = EN -1,

50. Set

N

fv (b, &) = Min [Jeet S emao" [av Oe),
a; ~=1

Show that

-k
. —— (ay -d)? kb + anfo (6, 8) Min oF + fe (Gayata),

f(b, k) = Min | [e-k (x - 0)" = (2 - a") dV (x).
a

51. Obtain recurrencerelations for the problem of determining the mini-
mum and maximum of

(a) Qn = (ax,)? + (4%, + ax)? +... (x4, + me +... + xN-14+ aky)?,

subject to x? + 7,2 + ... + xy? = 1,

(b) Qn = xy? + (x, + axe)? +... (xy + ax, + a?x, +... + aN-1 xy)?,

subject to 7? + 7,2 + ... + xy? = 1,

(c) Qn = xy? + (x, + axq)? + (x, + ax, -+(a + 0D) xg)? +...

(x, + ax, + (a + b) x, +... (a + (N — 2) b) xy)?,

subject to x2 + 7,2 +... + xy? = 1.

52. Suppose that a piece of candy is to be shared by two children. Show

that an optimal procedure is to let one child divide the candy, and the

other choose the piece he wants. Show that this leads to the equation

y= Max Min (y, x —y) = 2/2,
Osy<s2z

for the share of the first child.
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53. What is the corresponding procedure for N children? (Steinhaus)

54. Suppose that we have a vehicle which can carry enough gasoline to

go a distance of d miles. In order to traverse a distance of 2d miles over

barren territory, it is necessary to establish intermediate caches of gaso-

line. How should these be located so as to minimize the total expenditure

of gasoline required to traverse this distance, and whatis the total dis-

tance travelled by the vehicle before it reaches its destination ?

(N. J. Fine, ‘“‘The Jeep Problem,’’ Amer. Math. Monthly, Vol. LIV, Jan.

1947)

55. Consider the following morerealistic versions:

Use of more than one vehicle

Transportation of an additional cargo

Use of some fixed caches, established in advance

Delivery to more than one destination

Establishment of a rate of delivery

Minimization of total cost, including cost of gasoline,

cost of purchasing vehicles, cost of establishing caches.

g, Arbitrary distance x > 2d. (Helmer)

H
o
W
o
p

56. Prove that, in general, the problem of determining
NV N N

Max Min dS Fx (xx, 2) , where XY xp <x, XY ye <y, Xr, Ve = O
{x,} {yy} Lk=1 k=] k=l

cannot be reduced to a recurrencerelation of the form

fi (%, y) = Max Min [Fw (an, yx) + fv -1(% — xn, ¥ — Yw)]-
TN; YN

57. Suppose that the requirements of a system at time ” are 7n. Let xn be

the actual level, and let it be required to have %n > 7» for all n.

Furthermore, the restriction on the level at any time is

Xn +4— Xn <A(Xn—4Xn- 1), NSN,

an “expansion-limitation”’.

We wish to chose the x; so as to minimize
N

] (fx}) = E (en — 7).
n=]

Show that the x; are given by

x1 = YP

X_— x, = Min [A q,, 4 q2] = Min [A x, 2]

Ng — X= Min [A? ¢1, A @2, M3] = Min [A (%2 — %1), Ps]

<n — Xn — 1 = Min [A -1q,, A" -2 qs, 12+, Qn} =

Min [A (Xn - 1 en 2), Dn],
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where

15 —Vke-1
Pr = Max jp (Shepherd).

i ZS ji-k
i=k

N
58. Determine the maximum of 2 a; x; subject to the constraints
N i=1
Sx? = 1,0 %,< %,.<...< xy, where the a; are non-negative.
~=1 y

59. Consider the problem of determining the maximum of J/T (x; — a)
~=1
N

subject to the restrictions 0<.*%,;< 0, where } >a,and 2 xi = c.
i=1

Show that to obtain a functional equation we must consider also the
N

problem of determining the minimum of // (xi — a), and obtain the
i=]

functional equations governing the problem.

Show that this problem does not arise if we consider

N
IT | xXi—a | .

i=1

60. Assume that we are a contestant on a quiz program where we have

an opportunity to win a substantial amount of money provided that we

answer a series of questionscorrectly.

Let rx be the amount of money obtainedif the At» question 1s answered

correctly, and let 4, be the a priori probability that we can answer the

kt» question where k = 1, 2, ..., N. Let g(x) be the utility function

measuring the value to us of winning an amount x.

Assumethat we have a choice at the end of each question of attempting

to answer the next question, or of stopping with the amountalready won.

Determine the optimal policies to pursue under the following conditions:

a. Any wrong answer terminates the process with a total return of

zero.

b. A total of two wrong answersis allowed.
k

c. Having answered #, questions correctly, we must win at least 2’ 7x,
no matter what happens subsequently. ka

d. Weare competing with other contestants. The contestant obtaining

the largest total has an opportunity to answera “jackpot question”’
N

worth much more than 2 rz.
=1

104



DYNAMIC PROGRAMMING PROCESSES

e. At each stage of the process, we have a choice of a hard question or

an easy question with the proviso that a miss on an easy question
terminates the process with a return of zero, and a miss on a hard

question terminates the process with a total return of one-half the
amount wonto date.

61. Let the quantities bi, aij; be stochastic variables, subject to known
distributions. Obtain a recurrence relation for the sequence

{fv (t, C1, Co, «.., Cm)}

defined by the equation

N

Tw (t, C1, Ca, «.-, Cm) = Min Exp E m bi n| ,
j i=1

where the x; satisfy constraints of the form

a xi > 0,

N

b. & ayxj<c,t=1,2,...,m,
j=1

and for the sequence

N

EN (Cy, Ce, ++, Cm) = Min Exp E dx .
t=1

i

In both cases, Exp represents the expected value with respect to the

random elements.

62. Consider the Selberg form

n=<=N ki[{n

where x, = 1 and the other x, are as yet undetermined. The notation

Xx means that the sum is to be taken overall integers k which divide
k[n

n, e.g. S Xe =X, + %, + %, + x. With the introduction of suitable
k| 6|

state variables, determine recurrence relations for Min Qw(x).
q;

63. The problem of determining the minimum and maximum charac-
teristic roots of the Jacobi matrix
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a, ob,

by a, dy

J= b, az by ,

bn - 2 an -—-1 bn -1

bvn-—1 an

wherethe dots signify that all the other elements are zero, is equivalent

to determining the minimum and maximum values of the quadratic form,

N N—-1
On (x) = LMaxPFtl® L Oi xi x41,

i=] i=1

N
onthe sphere » x? =

i=1

Consider the two sequences

Jn (c) = Max [Qn (x) + 2cxy},
S

gy (c) = Min [Qw (x) + 2cxw],
S

where S represents the N-dimensional sphere. Show that recurrence

relations may be obtained, connecting fy (c) with fy —1(c), and gv (c)

with gw — 1 (c).

64. Obtain analogousresults for the quadratic form

N N—1 N—2

On (x) = 2 ay xi? + 2 » b; xi: Xi41 + 2 a Ci Xi xi+2.

=1 i=17=1 a

65. Let A = (ai;) be a positive definite symmetric matrix. Show that the

problem of solving the system of linear equations

N

& ij Xj = i,t = 1, 2, ...,N,

p= 1

is equivalent to determining the absolute minimum of the form

N N
On (x) = LD aij xi xj —2 LY 4 xi.

j=l i=1
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66. Define this minimum to be fw (¢;, cz, ..., ¢v), and obtain a recur-

rence relation connecting fw and fy - 1.

Show that fw is a quadratic form in the variables c;,

N
Jn (Cy, Co, «.-, CW) = XY OW); ci cz,

ij=1

and show howtherecurrence relation connecting fy and fy -1 may be

“ye . . 1, (N)
utilized to obtain recurrencerelations for the sequences (8, |

67. A television broadcasting company wishesto lease video links so that

certain of its stations may be formed into a connected network. Video

links exist between all pairs of stations, and the costs, in general different,

of links between the various pairs of stations are known. Show that to

construct a network at minimal cost, we choose amongthe links not yet

included in the network the lowest price link which does not form any

loop with the links already chosen. (Kalaba)

68. Consider the problem of minimizing 2 q; (x;) over all »—tuples of
7=1 n

non-negative integers x = (x1, %2,...,%n) which satisfy »' x; = m,
j=1

where 9, @2, -.-, Yn are convex functions for x; > 0. Let J = {1, 2,...,

n} and for any admissible set, {x,, x2, ..., xn}, let S + (x) denote theset of

indices 7 e J for which x; > 0. Show that a necessary and sufficient con-

dition that an admissible set of x; provide the minimumis

main [yj (xj +1) — yj (%s)] L max [py(xs) — gy (x -1)],
jel je S*(z)

and obtain the corresponding condition when the x; are restricted merely
n

to be non-negative and satisfy 2 x; =m. (Gross)
j=l

69. Consider a rectangular matrix A = (a;;). It is desired to start at the

(1, 1) position and proceed to the (m, n) position movingonestep to the

right or one step down each move, in such a way as to minimize the sum

of the ai; encountered. Show how to determine optimal paths. (Dreyfus)

70. Suppose that we have a toaster capable of toasting twoslices of bread

simultaneously, each on one side. What toasting procedure minimizes the

time required to toast three slices of bread, each on twosides?

(J. E. Littlewood)

Solve the generalized problem requiring the processing of N k-sided items

by means of M machines which can each process R items on s sides

simultaneously.
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71. Consider a 3-terminal communication system,

T9

 

wa

T, T 3/

with message loads at each of the terminals for the other terminals.

Let 74; denote the maximum number of messages that can be sent

from T; to J; in unit time, and consider the twocases, first, where there

is 0 interference between signals going from T; to T; and those going

in the reverse direction from 7; to T;, and, second, where the total

number messages in both directions cannot exceed 7ij.

Let xi, 2,7 = 1, 2, 3,2 + 7, denote the quantity of messages at T;

with ultimate destination T;, and assume that a unit time is consumed

transmitting a message from any T; to any Tj. Denoting by fn (x1) the

maximum quantity of messages that can be delivered in 7 time units,

derive a recurrence relation for the sequence {fn (x4) }.
(Juncosa-Kalaba)

72, A newspaper delivers papers to a number of newsstands. Assuming

that the distribution of sales at each of these stands is known, and

assuming that a certain quantity of unsold papers may be returned,

suitably discounted, how many papers should be published, and how

should they be distributed ?

73. Consider the problem of minimizing a sum

Fy (%1, %2, «.., ¥N) = 81 (%1) + ge (x2) +... + Bw (xy),

where each g; is a convex function, and the variables are subject to the

constraints @<[%*%,;< *%2<...<xvn<b. Define

In (a, 6) = Tapey xe, ...,%n), for N= 1,2,...,
{x,

and — co <a <b < oo. Show that

fy +i1(a,x) = Min [gy +1 (y) + fy (@, x) }.
asy<2
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74. Let g(x) be continuous and convex for x >d. Define

g(r,s)= Min g(x), d<r<s.
r<szr<s

Show that for d<(a<.b<c, we may write

g (a, ¢c) = § (a, b) + g (6, c) — g (0, b).

In addition, show that g(a, x), as a function of x, 1s continuous and

convex for x >a. (Karush)

75. Prove that under the above hypotheses that

_ fn (4, ¢)=fn (a, 6) +fv(0, ¢) —fv(8,6),—00 Kab Se <oo.
(Karush)

76. Let the gi (y) be convex functions for — co < y < oo which are

bounded from below. Then fy (a, b) may be written in the form

Jn (a,6)=un (4) +ow(6), 4 < 6,

where un (x) and vn (x) are, respectively, increasing and decreasing

convex functions for — oo < % < oo. (Karush)

77. Let
M

fi (40, 41, 42, ...,@n) = Min Max |ap— 2 Xecr—xl.
c, OSLSN k= 0

Show that

fn (ao, 41, G2, ..., 4v) = Min Max [] ao — Xo Col, fy —1 (@1 — *1 Co,

 

Co

a2 — x2 Co, wee) ].

78. Derive a similar expression for

M

fn (ao, 41, @2,...,4n) = Min 2 (ar— 2 Xecr — x),
C; L=0 k=0

and obtain thereby recurrence relations for the coefficients in

N (N)
Jn (ao, 41, ...,4n) = 2 Qrs Ar As.

s= 0

79. A sleuth investigating a murder has N witnesses, one of whom is

the murderer, of different degrees of reliability. Let #; be the probability

that the 2‘” witnesstells the truth at any particular time to any particular

question. The detective interviews the witnesses in some order, asks

the first witness a question, and then each succeeding witness a question,
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which maybe a direct question or a question concerning the truth of the

testimony of preceding witnesses. Supposing that he is allowed one

question at a time, and that the time required for the 2‘ witness to

answer a questionis ¢;, in what order should the witnessesbe interrogated,

and what questions should be asked to maximize the probability of

determining the murderer in a fixed time T?

80. Consider the problem of minimizing the function

Fy (%1, %2, «.-, ¥N) = 1 (%1) + Me (%2) + ... + yn (xn)

over all values of the x; subject to

(a) x1 > 0

(b) ma Sn,

x1 ++ X_ 2 fe,

Xi tweet... +4XnN SIN.

Define the sequence
N

fi (2) = Min 2 qi (xi) ,
x i=k

over the region determined by

(a) x > 0

(b) x%% > re — 2,

Ke + Xe +1 > re 41 — 2,

Xe t+ Xe +r + we + %N > YN — 2,

for z>0, k= 1, 2,..., N. Show that

fr (2) = Min px (Xe) + fe +1 (7x) ],

fork = 1, 2,..., N —1, and hence that Min Fy (*1, x2, ..., xw) = fi (0).
x

81. Show that the above problem with the additional restriction that

Xt +1— %i< di +1 may be reduced to the problem of determining the
sequence {fi (z, c)} as defined by

fe (2, ¢) = Min [px (%x) + fa +1 (2 + ¥x, Xx) ].
R

(Management Science, Vol. 3 (1956), p. 111-113).
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82. Consider similarly the restriction x; ~-1< Ax.

83. Determine the structure of the optimal policy in the case where

the gx (x) are linear functions of x, mx (x) = 7 x, and we assume

Vroe1 > Vk

Ver+1 Vr

the 7; steadily increase, then decrease.

the 7; steadily decrease, then increase.

(Antosiewicz-Hoffman)

a
o

oO
&

84. Given a continuous convex function, f(x), and two values, one

positive, f(x1) > 0, and one negative, f(x2) <0, x1 < x2, we wish to

determine the position of the zero of the function in | %1, x2]. The problem

is to minimize the maximumlength ofinterval in which we can guarantee

that the zero lies after ” evaluations of f(x), where the evaluationsare

performed sequentially.

Define Rn (s, v) to be the minimum length of interval on which we

can guarantee locating the zero in /0, 1] of any convex function f, given

that f(0) = 1, f(1) = —+v, that we know that the root is between S

and 1, and that we have 7 evaluations to perform. Show that

 

]
Ro (x,y) ==—--—-—3

I+y

Max x Rn 32S
0)

Q<we< y(t—s)
XV — Uv

Rn (s,y) = Min Max aS Ts
, 1 ¥ ,
Ssrsp7, Max (1 —x) Rn a(-* —_——— 2)

1o<e<1—r(l~y) 1--x Il—v ov} |

(Gross-Johnson)

85. A man is standing on a queue waiting for service, with N people

ahead of him. He knowsthe utility of waiting out the queue, 7, and the

probability # that a person will be served in unit time. On the other

hand, he incurs a cost of c for every unit of time spent waiting. The

problem is to determine his waiting policy if he wishes to maximize

his expected return.
Let fy denote the expected return obtained employing an optimal

waiting policy when there are N people ahead. Show that

fy = Max [—c + p fw -1 + (1 — A) Jn,9],
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N =1,2,..., with fo = 7. Hence show that

 

fy = Max [iv 1 — 5 7 0 |

and thus de'ermine the optimal policy. (Haight)

86. Consiler the same problem under the assumption that he can wait

at most a time 7. (Haight)

87, What policy does he pursue if he knows that a probability # exists,

bu: does not know its precise value ? (Haight)

88. Consider a forestry firm in which westart with a fixed capital and

a certain presence of timber. We assumethat

1. There is a fixed initial amount of cash available, and no revenue

other than proceeds from selling timber, and from interest on cash

on hand. No borrowing is allowed, and all current expenses must

be covered by cash and sales.

2. Trees can be grown only from seed; it is impossible to buy young

trees from outside the “‘economy.”’

3. The annual increment of ‘“‘timber’’ depends on the age of the tree

(growth rates need not be monotonic).
4. The cost of ‘“‘carrying’’ a growing tree for one year depends on the

age of the tree.

5. The selling value of a tree depends only on its timber content,

1.e. its age.

6. The aim of the process is to maximize the money available after

a fixed number of years.

Four activities may be engaged in, lending, planting, carrying, and

felling.

1. Money can be lent for a year at interest rate 7.

2. Money can be used to plant trees.

3. Money and trees can be used to provide older trees.

4. Trees of a given age can be cut down to provide money.

Over a given time period how does one proceed so as to maximize

the total assets, capital plus timber?

(Morton, Dynamic Programming, Proceeding of an International Conference
on Input-Output Analysis, J. Wiley and Sons, 1956).

89. Consider a multi-componentelectronic system whosereliability may

be taken to be the productof the reliabilities of the individual components.
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       —t}+t+::: ++
| 2 N-|

To improvethereliability of a particular stage, we can put a number

of units in parallel. Let px (xx) be the reliability of the k¢” stage when

Xx units are put in parallel at the kt” stage, and let gx (xx) be the cost

of inserting x, units in parallel.

The problem is to maximize the total reliability

N

Py (x) = m px (xe),
k=1

subject to the restrictions

a. xe = 1,2,3,...,

N
b. & ge (Xn) <e.
k=1

If fw (c) = Max Py(x), show that

fv (c) = Max [Pw (x)fw 1 (c —en (x) ) J,
where the maximum is over

a. x = 1,2,...,

b. gn (x) <<. (Nadel)

90, Assume that there are two “‘costs,’’ one in terms of actual money,
and the other in terms of weight.

91. Discuss the connections between the following problems:

N N
a. Maximize [7 px (xx), subject to 2 gx (xe) < 1,

k=1 =1
N

& hy (xx) < C2, and xk = 1, 2, corse

k=1

N N N
b. Maximize IT px (xx) —Ai XY gx (xx) —Ae X hy (xx),

k=1 k=1 k=1

subject to x, = 1,2,... ’ e
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N v
c. Maximize JT px (xx) — Ai 2 ge (xx), subject to

k=1 k=1

N
» hy (xn) < €2, and Xk = 1, 2, cee

k=1

NVN
d. Minimize »' gx (xx) + As XY he (xz), subject to

k= 1 k= 1

y

IT px (xx) Vi, Xk = 1, 2, se ey 8

k=1

92. Obtain the corresponding functional equations, and discuss the

question of most convenient computation.

93. The requirement for a machine of a certain type as a function of

time is known. It is desired to institute a procurement policy to meet

this demand at minimum cost, given the following information.

1. Procurement of new machines cost ~ dollars per machine.

2. Maintenance of a machine costs m dollars per time period.

3. Cost of upkeep and repair per period is a known function of the

number of machines on hand and the number required.

Show that the corresponding functional equation is

fv(x) = Min [Pa + M(a +x) + Lila +x) + fy -1(e +a)].
yA+rren

where 21; can assume only the values 0,1, 2,....

Obtain the solution under the assumption that each function Ly (x)

has the form

Le (x) §¢

 iii -@

4 @

 

rk

and, as a special case, is parabolic, z.e. a quadratic in x.

94, Consider the problem for the case where two distinct types of

machines are being procured, with joint maintenance facilities, but

independent demand.
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Bibliography and Comments for Chapter III

§ 1. The basic ideas of this chapter, together with the ‘“‘principle of
optimality’’, were first stated in the monograph “‘An Introduction to the
Theory of Dynamic Programming,’’ RAND Corporation, 1953, an out-
growth of a shorter paper written in 1952, but not published then. This
paper, in turn, was the result of research done in 1949, 1950 and 1951, and
contained in a number of unpublished papers.

§ 3. As we have recently shown in connection with some joint work
(R. Bellman and R. Kalaba, ‘‘On the Principle of Invariant Imbedding and
Propagation Through Inhomogeneous Media,’ Proc. Nat. Acad. Sct., (1956),

the “‘principle of optimality” is actually a particular application of what we
have called the “‘principle of invariant imbedding.’’ A special form of the
invariance principle was used by Ambarzumian ‘“‘On the Scattering of
Light by a Diffuse Medium,’’ C. R. Doklady, Sci. U.R.S.S. 38 (1943), p. 257
and extensively developed by S. Chandrasekhar Radiative Transfer, Ox-
ford, 1950. An early use of the method is due to G. Stokes (Mathematical
and Physical Papers, Vol. IV, ‘“‘On the intensity of the light reflected from

or transmitted through a pile of plates,’ pp. 145-156).
The functional equation technique used throughoutis intimately related

to the ‘“‘Point of Regeneration’? method used in the study of branching
processes, cf. R. Bellman and T. E. Harris, ‘“‘On Age-Dependent Binary

Branching Processes,’’ Ann. Math., Vol. 55 (1952), pp. 280-295.
Actually, we have made no systematic effort to trace the origin and use

of invariance principles, and the above references represent only a few of
the many that could be cited. One, however, which cannot be ignored is
J. Hadamard, ‘‘Le principe de Huygens,” Bull. Soc. Math. France, 52 (1924),
pp. 610-640, where there is an interesting discussion of causality, functional
equations and Huygens’ principle.
The classic reference to semi-group theory is E. Hille, “‘Functional Ana-

lysis and Semi-groups,’’ Amer. Math. Soc., 1948.

§ 6. A detailed discussion of the formulation of variational problems as
continuous decison processes will be found in Chapter 9.

§ 9. A discussion of causality and optimality, together with the interrelation
with semi-groups may be foundin R. Bellman, ‘‘Dynamic Programming and A
New Formalism in the Theory of Integral Equations,’’ Proc. Nat. Acad. Sc1.,
Vol. 41 (1955), pp. 31-34.

Problem 92. See R. Bellman, ‘‘Dynamic Programming and Lagrange Mul-
tiphers’’, Proc. Nat. Acad. Sci., Vol. 42 (1956), pp. 767-769.
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CHAPTER IV

Existence and Uniqueness Theorems

§ 1. Introduction

In the previous chapter we outlined the skeletal structure of dynamic
programming processes and derived various general classes of functional

equations. In this chapter, we shall abstract the particular methods

utilized in Chapter I and II to treat the equations occurring therein and

derive some existence and uniqueness theorems for the more general

equations of Chapter III. Our principal tool will be the methodof successive

approximations due to Picard.

Althoughall the proofs follow essentially a commontrack, each requires

its own detour at an appropriate point. Consequently, in place of at-

tempting to frame the hypothesesin such general terms that we can state

all our results in a single theorem, at the possible expense of clarity and

loss of understanding of the simple mechanism involved, we have divided

our results into a number of theoremsreferring to particular classes of

equations. The basic method of proof is, however, the same throughout.

Ourfirst step consists of formalizing the device we have used before to

compare the solutions of two equations, cf. § 7 of Chapter I and § 6 of

Chapter II. The resulting inequality is essential to our proofs in this chap-

ter, and will be utilized again in our treatment of multi-stage games in a

later chapter, and in comparison theoremsin the calculus of variations in

Chapter IX.

The first class of equations we treat are those where each operation

results in a shrinking of resources, which is to say, the point transforma-

tions involved are shrinking transformations in the sense of Cacciopoli.

Equationsof this type we rather unimaginatively call equation of type one.

The next class of equations which wediscuss are those where the prob-

ability of survival decreases uniformly with each operation. This is
equivalent to the functional transformation being a shrinking transfor-

mation. These equations we name equations of type two.

Both types have, in particular cases, the form

(1) f(p) = Sup [g (6,9) +h (b, Nf (T (pb, D)]

where the quantities occurring are as defined in the previous chapter.
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As we shall see these equations are rather readily treated by standard

iterative techniques, with the aid of our basic inequality. Equations which

do not belong to either of these classes usually require some fancier

techniques, as we shall see in our treatment of a particular equation in

§ 8. All equations not of types one or two, we blithely lump together as

those of type three.

Following these results on existence and uniqueness, weshall discuss

monotone convergence in a general setting, and state some general sta-

bility theorems established in the same fashion as before.

After indicating somedirections of generalization, which can be carried

quite far, we shall consider a particular equation of type three, as men-

tioned above. Here we have a combination of two types of shrinking

transformations, and the treatment is a bit more involved.

Weshall close the chapter with a discussion of an interesting integral

equation arising in the theory of ‘‘optimal inventory”or “‘stock control,”

a subject which weshall treat in greater detail in the following chapter,

where particular solutions are obtained.

Apart from their interest in connection with multi-stage decision pro-

cesses, the equations we consider possess the analytic merit of constitu-

ting in many ways a natural extension of linear equations. As such, their

study is valuable since they serve as a bridge between the well-regulated

preserve of linear equations and the as yet untamed jungle of nonlinear

equations.

§ 2. A Fundamental inequality

Let us consider the two functional transformations

(1 Sho =EHat |fae (a7),

Sithg) =hba) + |fae (an),

where dG (pf, q,7) > 0, and define two additional transformations as

follows:

(2) a. fo(p) = Sup S,(fi B, 9)

b. F,(p) = Sup S2 (Ff, p, 9).

There is no need to go into a discussion of what we meanbytheStieltjes

integral here since we are using it in a purely formal manner. All our

results will actually be utilized for the case where i f(")dG(g¢gn =
reD
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h (p, 9g) f(T (p, g)), and the reader unfamiliar with the Stieltjes integral

need merely make this transformation to reduce all the equations to

familiar terms, or he may consider dG (p,qg,7) to have the form

H (pf, q, r) dv, with H > 0.

The inequality we wish to proveis

LEMMA l.

(3) | fe (Pb) — Fe (6) | <Sup[|g (6,9) —A (2,9) |
q

T I. hi (7) — F, (7) | dG (p, 9, 7)].

Proor. Let us simplify the notation initially by assuming that both

transformations in (2) have the property that the supremumis actually a

maximum. Let then g = g (p) be a value of g for which the maximumis

assumed in (2a), and g = g (p) be a value of g for which the maximum is
assumed in (2b). Then we have the following set of equalities and ine-

qualities:

(4) a. f2(p) = Si(fi, B, 9) = SilA, B, 9)

b. F's (p) — Se (Fi, 2, q) => S2(Fi, p, 9) )

as in § 7 of Chapter I and § 6 of ChapterIT.

From these follow immediately

(5) fe) Fil) =e (6.9—AwD+ |(A)—FulaGo.g.n),
and

fa) — Fs (6) < (6.9) —h(6.9)} + |(A)Fal) aC (6.0.7).
These, in turn, yield the single inequality

(6) | fe (b) — Fe (A) |

isa—hOM/+[ IAM —Fim) [aG@a),
<_ Max "

|g (2,9) —h(P, vi+] | fi (7) — Fi (7) | 4G (f,9,7),

from which the result in (3) is immediate.!

To obtain the result as stated in terms of the supremum it is only

necessary to note that the supremum maybe obtained arbitrarily closely

by the value of the function for some g = q (p). The argument then pro-

ceeds via a limiting procedure.

1 We are using the simple result that a < ¥ < bimplies|%| < Max(|a|,|0]).
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§ 3. Equations of Type One

Let us now impose the following conditions upon the functions entering

into the equation of (1.1):

(1) a. g (p,q) ts untformly bounded for all qgeS and all pe D

satisfying the restriction || p||<c,, where || p || =

( Epa) ". D is the domain off, ut contains the nullvector

b — 6, and T (p,q) € D for all pe D.

b. g (9,9) = 0 forallqeS.

c. |A(p,9)|< 1 forallpeDandgeS.

d. || 7 (6,9) ||<a||#
all p ¢ D.

 
|, for some a <1, for all ge S and

e. Ifv(c) = Sup Sup) (p,q) |, then &' v (arc) << o~.
| pil <e« q n=O

Equations which satisfy these assumptionsare called equations of Type

One. In manycases, it may be more convenient, and natural, to use the
AS

norm || ~p/| = © | pf: |. It will be clear from the argumentation below
p= 1

that the precise form of the norm is of little importance.

Ourprincipal result concerning these equationsis the following:

THEOREM |. Consider the equation

(2) F(p) = Sup [g (2,9) +AOF (7(6, 9))], PAO
q

f (9) = 9,
assumed to be of Type One.

There 1s exactly one solution of (2) which ts continuous at p = 6 and equal

to zero there, and defined over all of D.

This solution may be obtained as the limit of the sequence {fn (p)} defined

as follou's:

(3) a. fo (p) = Sup g (A, 9)
y

b. fn +1 (pb) = Sup [g(h, 9) + 4(b, 9) fn (F (P, 9), 2 = 90,1, 2,...
q

Alternatively, any initial function fy (p) which is continuous at p == 0 and

equal to zero there, and boundedfor || p || <c, for any c, > 0, pe D, may be

used 11 (3b) to yield a convergent sequence.

If g(p,q), A(p, 9), and T (p,q) are continuous in p in any bounded
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portion of D, uniformly for aiiq« ‘., "++ £(b) ts continuous in any bounded

portion of D.

ProoF. Let us consiac: tie sequeccc defined by (3). Using Lemma1,

provedin § 2, we have for ” > 1,

(4) |fn+1(p) —fn(h) |< Sup |4(~, 9) | | fn (T (Pp, @)) —fr-1(T (A, 9))|

< Sup | fn (T (p, 9)) —fn-1(T (f, 9))|,

and

(5) | fi (Pb) —fo (p) |= Sup | fo (7 (P, 9))| = Sup | 8 (2, 9) |.

Let us now define the new sequence

(6) Un (Cc) = Sup | fa +3 (P) —fr(p)|, |lel|]l<ce, peD. 

Using the function defined in (1 e), we see that vy (c) = v (c). Turning

to (4) we have, for pe D, || p || <ce.

(7) Sup | fn +1(p) —fn (p) | < Sup Sup | fn (L (B, g)) —fn-4 (F(A, 9))|
q Dp

< Sup |fn(p)—fr-1(6) |,
ll pl | <ae

by virtue of our assumption concerning T (, g). Hence vn +1 (c) < vn (ac),

nm =0,1,2,..., or vn (c) < Vo (a* c). It follows that the series 2 [fn +1()
n= 0

—fn(p)] converges uniformly for || ||<<c, and hence that {fn (p)}
converges uniformly to a function f(p) for || p || <c.

This completes the proof of onistov and the proof of the statements

concerning convergence and continuity.

To establish uniqueness, let f(f) and F (pf) be two solutions of (1)

continuous at # = 6, and hencedefined for all # e D. Let

(8) v(c) = sup [/(P) ~F () | NP ise, ped.

Applying Lemma1, we have

(9) | f(b) —F (6) |S Sup |f(7 (6, q)) —F (TL (6, 9))I,

whence

(10) v (c) <v (ac) <<... <v(are).
Since f(f) and F (f) are continuous for p = 0, v (a* c) > 0 as n> ov.

Hence v (c) = 0, and f(p) = F (p).

}20



EXISTENCE AND UNIQUENESS THEOREMS

The utility of Lemma1 lies in the fact that it enables us to bypass any

discussion of the behavior of the maximizing qg as a function of , a subject
of great difficulty about whichlittle is known, in general.

§ 4. Equations of Type Two

Let us now consider the equation of (1.1) where we impose the condi-

tions

(1) a. |g (p,q) | ts untformly bounded for all ge S, and

|p | Sa, peD.

b. |A(p,9) | <a <1 for all geS and uniformly in any

region || p || <c,, peD.

c. || T (p, 9) ||< || 2 || for all p or alternatively D 1s a
bounded region, and no condition 1s imposed upon T apart

from the condition that T (p, q) ¢ D for all pe D.

Equationssatisfying these conditions we shall call equations of Type Two.

Weshall demonstrate.

THEOREM 2. If

(2) Ff (Pp) = Sup [g (2, 9) + h (6,9) F(T (A, 9)))
q

ts an equation of Type Two, there 1s a unique solution which 1s bounded in

any finite part of D.

The solution may be found by means of successive approximations as

before, and the previous statements concerning continuity of the solution

remain valid.

ProoF. Let

(3) fo (pb) = Sup g (p,4)

fn+1(p) = Sup [g (p, 9) + (Pf, 9g) fa (T (2, 9))], 2 = 9,1, 2, ...

Using Lemma1, we have

(4) |fn+1(p) —fn (Pp) |< Sup | (p, a) Ufa (T (fb, g)) —fa -1 (T (P, 9))] |

<aSup | fn (T (f, 9)) —fr-1(T (6, 9)) |,

where a < 1. From this point on the proof clearly parallels the proof of

Theorem 1. The vanishing at = 6 is now a consequenceof the equation

itself.
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§ 5. Monotone convergence

Wehave in the preceding sections demonstrated convergence of the

successive approximation under assumptions which yielded essentially

geometric convergence. Let us now show that, under the assumption

that h (p, g) > 0, whichis true in all the applications to date, we have at

our disposal a method of choosing an initial approximation which will

yield monotone convergence in addition.

In some equations of Type Three, where convergence of geometric type

is either difficult to establish, or else non-existent, this is a valuable

technique.

Let us consider our equation in the form

(1) f (p) = Max [g (6,9) +h (p, 9 f(T (6, Q))I-

Let go = Go (Pf) be an initial approximation to g (f) and let fo (p) be

determined by use of this policy, Le.,

(2) fo (b) = &(b, Go) + A (P, 90) fo (T (P, qo),
and the sequence {fn (p)}, m = 1, 2, ..., then be determined recursively,

(3) fn+1(p) = Sup [g (pb, 9) + 4 (6,9) fo (TF (p,9))], n= 9,1,2,...

[Having introduced the concept of approximation in policy space,it is

now convenient to use the supremum again to bypass questions of no

little difficulty, concerning continuity over g.] Let us assume,as in the

case of equations of Types One and Two,that sufficient conditions have

been imposed to have the sequence {fn (f)} uniformly bounded in any

finite portion of D.

It is immediately seen that f, (p) > fo. (f), and therefore, by virtue of

the non-negativity of (p,q), that fn+i1(f) > fn (Pp) for all x. It follows

that fn (p) converges to a function f (f) as 7 — oo,in anyfinite part of D.

If g is a memberof a finite set S, there is no question of the conver-

gence of {f, (#)} to an actualsolution of (3), where the supremum is now

a maximum. If S contains a continuum,it is perhaps not immediate that

f (p) is the bounded solution of

(4) f(b) = Sup [¢ (6, 9) + 4 (6, 9) fF (A, @))].

To establish this, we observe that by virtue of the monotone convergence,

we have

(5) fn+1(p) < Sup lg (6,9) +h (pb, af(T (e, 9))),

whence
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(6) f(e)< Sup 8(A,9 + hb. gf(T (pb, 9))).

On the other hand, we have

(7) f(b) = Sup g(P,9) + 4(p, 9) fa (T (Bp, 9)))

= £(b. q) +h (p,q) fu (T (Pp, 9))

for all ge S and all x. Letting ” — oo, we obtain the reverse inequality to

(6), and hence equality.

This property of monotone convergenceor, at worst, monotone approx-

imation, is particularly useful in other parts of the theory of dynamic

programming, and in particular, in applications to the calculus of varia-

tions, as weshall see in a later chapter.

§ 6. Stability theorems

In the theory of functional equations a problem of great theoretical

interest, with important physical ramifications, is that of the dependence

of the solution upon the form of the equation. In particular, a great deal

of effort has been devoted to the determination of those equations which

have the property that small changes in the form of the equation effect

correspondingly small changes in the form of the solution. Equations

which do not have this property are in the mainoflittle physical interest.

Let us now consider the two equations,

(1) a. f (p) = Sup lg (6,9) + A(2, 9) f(T (A, 9),
qg

b. F (p) = Sup[G (p,q) + A (6, 9) F(T (d, g))I,
q

and assume, to begin with, that they are both of Type One. Wewish to

obtain an inequality for Sup | /f(p) — F (pf) |, fe D, || || <c, where f
p

and F are the unique solutions vanishing at = 0, and continuousthere,

of their respective equations.

To obtain this inequality, we employ the method of successive approx-

imations in both equations, setting

(2) fi (Pf) = Sup g (A, 9)

fn+1(p) = Sup [g (f, g) + A (Pf, 9) fa (T (P, 9))]
q

F’, (p) = Sup G (A, 9)

Fn+1(p) = Sup [G (p,q) + Ab, 9g) Fn (T (6, 9)))
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We have

(3) | F, (pb) — fi (pb) | < Sup |G (A, g) —¢ (2,9) |,

and

(4) | Fn +1 (b) —fn +1 (9) = Sup [|G (p, 9) — 8 (2, 9)

+ hh (p, 9) || Fn (T (p, 9)) —fn (T (P, @))|].

Let us define

(5) u(c)= Sup Sup|G(p, 9) —g(P,4q) |.
llp||<e @

Then we have

THEOREM 3. With the above notation, for equations of Type One,

(6) Sup FO) SO) |S Fu laro)
PROOF.Set

(7) wn (c) = UP Sup | Fn (b) — fn (8)|-

n—l1

It can be shown inductively that we have wa(c)< 2 u(a*c), n>1,
= 0

using (4), and the hypotheses governing an equation of Type One. Letting

nN —> oo, we obtain (6), since Fn (p) > F (pf), and fn (fp) >f (p).

Similarly,

THEOREM 4. With the above notation, for equations of Type Two,

(8) sup | F (p) —(f) |< uw (c)/(1—a).
Ilpl| se

The proof follows the same lines as above,andis therefore omitted.

Similar estimates can be obtained in the cases where h (p, qg) and

IT (pf, g) are perturbed.

§ 7. Some directions of generalization

A first generalization of (1.1) is the equation

N

(1) f(b) = Sup [g (2, 9) + & hi (P, 9) F(Ti (po, 9))),
q i=

which,in turn,is a particular case of

2 FP) = Sup ig (6.9) + |£0) aG (6, 9,71
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The methods utilized above yield analogues of the preceding theorems
concerning existence, uniqueness and stability for the above equations,
and systems of the form

8) fi) =Suplerat+2|AdGulbanhi=12 WN,
q =

which is equivalent in form to (2) if we employ vector-matrix notation.

An example of (2) is the equation of “optimal inventory,”’

(4) f(x) = Inf [v (x, y) + a[(1 —G (y)) f (0) + |fo—s aG (s)]],
Y2U

which weshall treat in detail in the next chapter.

§ 8. An equation of the third type

The technique of approximation in policy space which yields monotone

convergence, discussed abovein § 5, is very useful in establishing the exist-

ence of solutions of equations of Type Three, a class, let us recall, defined

quite simply as the complementary class of equations of Type One or

Type Two.

Establishing the uniquenessof the solution of equations of Type Three

is, in general, a problem of a greater level of difficulty, as we shall see

below, and in a later chapter on multi-stage games where we discuss

“eames of survival.”’

Let us illustrate these remarks by considering the functional equation,

1) f(6) = Min (1 +E pef (ex), Min (1 + f(Tr A)2 A He
f (%o) = 0,

where / runs overtheset of integers 1, 2, ..., M@. Here weset

(2) p= (bopi -+ +, Pn) iSO, XY p= 1;
~7~=0

Tip = (fo, Pu, .-., Pat), Pit > O, Por 41, LY pu = 1,
i=0

where pi = Pi (f);) = 1, 2,...,M;

Xp = (0,...,1,..., 0), the 1 occurring in the kt® place,

k=0,1,...,n.

The function f (f) is a scalar function of #.
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This equation is a greatly extended version of the equation appearing

in Exercise 39 of ChapterI.

This equation can be considered to arise in the following way. A system

is known to be in one of (N + 1) different states, which we denote by

O,1, 2, ..., N, with an initial probability {px} that it is in the At» state.

By means of a combination of the following operations, each of which

consumes a unit time, we wish to transform the system into the 0-state,

with certainty that it is in that state, in a minimum expected time:

L: We observe the actual state of the system and proceed with that

knowledge;

A: Weperform an operation A; that converts the original prob-

ability distribution {px} into a new distribution {x7}.

Let p = (fo, fi, -.-, pn), and f(p) denote the expected time required

using an optimal policy, when the system is initially in state p. Then/ (p)

satisfies (1) above.

Weshall prove

THEOREM 5. Iffor each transformation T;, and for all p, tt 1s true that

n

(3) S praca, O<e <1,
k=1

then there exists a unigue bounded solution to (1) above. This function 1s

positive for bp # Xo.

ProoF. Weshall employ the method of successive approximations, using

as our first approximation an approximation in policy space. Let us re-

present by L the choice of 1 + 2 xf (xx), and by T, the choice of / =
k=0

1 in (1). We consider the function F, (f) determined by the policy symbol-

ized by LT, LT, ..., and the function F, (#) determined by the policy

T,LT,L... It is clear that

(4) Fy (6) =1+F.,(1p), p#%o,

F(t) 14 2 pa Fy (xx), px x0.
F, (xo) _ Fn, = 0.

Hence, for 1 = 1, 2, ..., ”,

(5) Fy (x1) = 2 +2 pu Fy (xx), 2=1,2,...,n.

n

Since, by assumptions 2 pxi<c, <1, the determinant of the system
k=1
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does not vanish andthe system has a uniquesolution, necessarily positive,

as we see bysolving iteratively. Having determined F, (x1), the deter-

mination of F, (p) and, hence, F, (f) for general #, is immediate.

To begin our successive approximations, define

(6) fo (p) = Min [F,(f), Fe (A),

faa(P) = Min (1 +Epefa (val), Min [1 + fu (PrBI]PH
fn +1 (%0) = 0.

It is readily seen that f. (p) >f,(p) >... fa (p) > Lp F xo.

Hence fn (p) converges monotonically to a function f(f) which clearly

satisfies the functional equation. This establishes the existence of a bound-

ed solution.

The uniqueness proof is considerably more complicated and proceeds

in a series of steps. Let f (p) and g (f) be two boundedsolutionsof (1). The

first step is

Lemma 2. Sup | f(p) —g (A) | = Max | f (%«) — g (Xx) |.

ProoF. The inequality

(7) Max | (%x) — g (Xx) | < Sup | f(p) —g (A) |

is clear. To demonstrate the reverse inequality, we consider four cases:

(8) a. flp)=1+ E pef (xe)
k= 1

g(p) =1+ 2 preg (xx)
k= 1

b. f(b) =1 4 E pef (xs)
k=1

g(p) = 1+ ¢ (1p)

ec. f(p) =1+f(Tr?)

g(p) =1+ 2 peg (xx)
k=1

d. f(p)=1+ f(r)

g(?) =1+¢Ur?)

Considerfirst the case correspondingto (a). We have
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9) FP) —8 (0) = Edelflee) —@ Goa)
whence

(10) LF () —g (6) |< Max | f (ex) —¢ (ve)|.
Therefore for all p for which (8a) holds, the lemmais correct. Equation

n

(8a) will hold whenever # is close to ¥%o, sincel + 2 px f (xx) is less than 2
k=1

in this case, and 1+ f(71 p) > 2. Thus 1+ f(71 p) and 1+ g (Tip)

will exceed the result of the L-move?for p close to %o, for] = 1,2,..., M.

This is an important point since the crux of our proof is the fact that

(8a) will always occur after a finite number of moves, by virtue of the
condition in (3).

Nowconsider case (8b). We have

(11) fp) =1+Epef lee) <1 + f(T?)
g(p) =L+g (Tip) <1 +©peg (x).

Hence

(12) | (6) —g (P) | << Max (Max | f (xx) —g (x) |, Sup [f (Tr) —
—g(TiP) |},

and similarly for (8c).

From (8d) we derive

(13) | f(b) — g (b) |< Max i] f (Tv p) —g (Tif) |, |f (Tv b) —8 (Tv B)|}.

We nowiterate these inequalities. For any fixed £, 71, Ti. ... Tin P

will be in the region governed by(8a) for 1 large enough. Consequently,

we obtain

(14) Sup | f(b) — 8 () | = Max | f (xx) — g (%x)|.

This completes the proof of the lemma.

It remains to show that Max | f (xx) — g (xx) | =0. Let & be an index
k

at which the maximum is assumed.It follows from the functional equation

for f and g that

(15) F(wxr) =1L+f(Ti xx), l =1(R)

§ (xe) =1 +g (Lixx),= (R).
2 1.e., L-choice.
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As above we have

(16) fxn) = 1+ f(Tixe) <1V+f (Tv x)
(xe) = 1+ g (Tv xe) <1 + 8 (Tix).

If both inequalities are proper, we have

(17) | f (xe) — g (xe) | < Max | | f (Ti xx) — g (Ti xx) |, f Tr’ xx) —

— g (Tu xx) | |< Sup | f(p) — g (Pp)|,

  

a contradiction.

Thus, for either / or /’, we have

(18) f (xn) = 1+ f (Ti xx), or

& (xe) = 1+ g (Li xx).

This means that the first choices from the position x; can be the same.

Consider now the situation for second moves. Using the same argument,

we see that the second moves,i.e., the equations for f (T,x,) and g (Ti Xx)

can also be the same, andso on,inductively.

Let fn = fn (Xx) be the distribution achieved after 7 moves, where the

(n + 1)st move puts x, into the region governed by (8a), The argument

above showsthat f and g land in this region on the same move. Thus,

(19) fee) = (8+ I +Epenf ee

g (Hx) = (0 + 1) +Epeng (ee),
and consequently

(20) LF (en) — g (2) |< _E pen | fe) — 8 (an)
< | 1 — Pon | Sup | f (%x) — g (xx) |.

Since 1 > fon > 0, this implies that | f (xz) — g (xx) | = 0. Hence Sup
p

| f(b) — g (p) | = 0, which completes our uniqueness proof.

§ 9. An “optimal inventory” equation

In this section we shall discuss the equation

(1) f(*) = Inf [A (y—x) +a (|e (s — y) p (s) ds + f (0) [e ds

+ [fo —J eas),
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for x > 0, which we have already mentioned above in its more general

form involving a Stieltjes integral. As we shall see in the following chapter

this is an equation which occurs in the study of ‘‘optimal inventory” or

“stock level’’ control. The proof of existence and uniqueness of solution

logically appears here since we shall employ the same techniquesas in

the previous sections.

Consistent with the policy we have followed throughout, we shall not

consider the general equation, involving Stieltjes integrals.

To simplify the subsequent notation, set

Q) Tymf)=ko—x) + al]pls—y) pb) ds +FO |oloyds

-|- [fo —9 909 ds).

The equation in (1) then has the form

(3) f(x) = Int T (y, x, f).
y>u

Let us impose the following conditions:

(4) a. p(s) =0, [, vas —1

b. #(s) is monotoneincreasing, continuous, and | “ p(s) p(s) ds <0

c. k(y) is continuous for y > 0, k (oo) = oo.

d.0<a<l.

Under these conditions, we have the result

THEOREM 6. There is a unique solution to (1) which ts boundedfor x in any

finite interval. This solution f (x) 1s continuous.

Let fo (x) be any non-negative continuous function defined over 0 < x.

Define the sequence {fn (x)} as follows,

(5) fn+1 (x) = Min (y, x, fn), = 0,1, 2,....
yar

Then f(x) = hm fn (x) exist for x > 0 and ts the solution of

(6) f(#) = Min T (9, xf),
¥ ADU

Proor. The proof follows very familiar lines. For each m > 1, let
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Yn = Yn (x) be a value of y for which (y, x, fn) attains its minimum.
Since /, (x) is continuous by assumption, we see inductively that each

element of the sequence is continuous. Since T (00, x, fn) = co, the

minimum is attained.

Wehavethen,

(7) fn+1 =

T

(yn, x, fn) < T (Vn -1, x, fn)

Tn = T (yn - 1, %, fn - i)< T (yn, %, fn - 1)

Combining these inequalities in the usual way, we obtain

(8) | fn+1—fn | < Max { | T (yn, x, fn) —T (yn, %, fn -1) |,

|T (yn- 1, %, fn) —T (yn -1, %, fu 1) |}
or

(9) | fas —fn |< Max {a [™ | fu (Yn — 5) —fu~1(9n 5) | p(s) ds
+ a| fn (0) —fn ~ 1 (0)| — @ (s) 4s,

@. [fn (Yn—-1—S) —fn-1(¥n—S) | p(s) ds +

al fu0)—fn-1) | fps) as}
Hence

(10) Max|fa+a (x) —fa(x)|<a Max | fn(#) —fa-1(9|{ (6) ds

<a Max fn (x) —fn-1(*) |.
0 <2 < ©

Thus the series 2’ (fn +1 (x) —fn (x)) converges uniformly in a finite
n = 0

interval for all x > 0, and f, (x) converges to f(x) for all x > 0. Since

each fn (x) is continuous, f (x) 1s also continuous.

To prove uniqueness, let F (x) be another solution which is uniformly

bounded for x > 0. Using the same technique as above for the two equa-

tions

(11) F (x) = Min T \y, x, F)

f(@) = MinTy, xf),

we readily show that F (x) —f (x) 1s identically zero. The case where Min

is replaced by Inf in (1) is again handled by an approximation process.
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Finally, let us note that if we take

(2) fi)=Min[k(y—a) +a]p(s—y) p(s) ds

fr (x) — Man [L (y, x, fi),

and so on, we obtain monotone increasing convergence, since f, (x) >
f;, (x), and hence. inductively, fn +1 («) > fn (x) for all n.
On the other hand, we may also obtain monotone convergence by ap-

proximating in policy space. We may set y = x for all x > 0 and obtain

as our first approximation

(3) fi) =a [ps—xg)ds+alAwe —s pas

+ a fy, (0) [. gy (s) ds

for x > 0.

This equation is a “renewal equation” whose solution weshall discuss

in an appendix to the following chapter.

Determining f, (x) by meansof the equation

(14) f(x) = Min (h y—x) +a |” b(s—y) p(s) ds + af, (0|etss)ds +

a | fily—s) @ (s) as],

it follows that f, (x) <f, (x). We thus obtain monotone decreasing conver-

gence if we set

(15) fu +1 (x) = Min T (y, x, fa).
y2u

Exercises and Research Problems for Chapter IV

1. Determine the structure of the optimal policies associated with the

functional equation

f(b) = Max [R (p,q) + f(F (2, 9))]

under the assumption that R (p, g) and T (p, q) are convex functions of

p and gq, and that R (p, g) and T (#, g) are monotoneincreasing functions

of # for each @.
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2. Carry through the details of an existence and uniqueness theorem for
the system of equations

N

fl) =Maxigeb.g + 2 [fb dGuianhi=1,2,...,N.
q j=1 reD

3. Show that we obtain an equation belonging to this class if we add to

Problem 45 of chapter I the further condition that at any stage there is a

probability #, that the tradein valuewill be ruled by the function ¢, (x) anda

probability p, = 1 — p,that it will be ruled by the functionf, (x).

4. Consider the multi-dimensional process where the resources at any

stage are measured by the non-negative vector p. At each stage # is
r

divided into 7 non-negative vectors g;, p = & q;. As a result of this allo-
p=1 r

cation, we obtain a return R (g) = R (qg;) and assume a cost of J (cj, 9).
j=l

Here (c, g) denotes the inner product of the two vectors.

Let Fy (z) denote the cost incurred obtaining a total return of z in N

stages, employing an optimal policy. Show that

N
F,(2)= Min & (¢, 45),

Rq@=z j7=1
q2 0

N
Fin +1 (2) = Min [ 2 (¢;, qs) + Fr (2 — R (q))].

q20 j=1

5. Under what conditions does the limiting equation

N

F(z) = Min [ & (c;, 9) + F (z—R (p))], F (0) = 0,
q20 j=1

have a solution ?

6. How can the following problem be formulated mathematically ? We

are lost in a forest whose shape and dimensionsare precisely knownto us.

How do weget out in the shortest time?

7. Consider the case where the “‘forest’’ is the region between twoparallel
lines. (Gross).

8. Generalize the result of Theorem 5 by considering processes in which

we have either a denumerable number of different transformations at

each stage, or a continuum of transformations.

9. Consider the still more general process where there are a denumerable

number, or continuum,of states.
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10. Derive the functional equations corresponding to non-linearcriteria

and establish the corresponding existence and uniqueness theorems.

11. Consider, in particular, the criterion, for stochastic processes, of

maximizing the probability of obtaining at least a return Ro.

12. Consider the equation

etax=b6b, a,b>Od0.

Since for x > 0,

x? = Max [2xu — v?],
u> 0

the equation may be written

Max [2xu + ax — u?] = b,
u> 0

yielding, for the positive root

x = Min—
u> 0 2u+a

 

On the other hand, setting x2 = y, we may write

 

y+ ay! = 6,

2y! — Min E + ul
Hn - 0 Uu

obtaining

y = Max Paul?)
vu>o Ll + a/2u

Thus
a
b— au/2 b+ uu?

1 + a/2u StS a+ Qu

for allO< u< 2 D/a.

13. Generalize these results, considering the equation x” + ax =).

Show that

x” — Max (xu—g(u)), n>,
u> 0

= Min (xu +h(u)), O<n <l,
u > 0

for suitable g (wu) and h (u), obtaining, n > 1,

[pb oD umjne-n)
atu
 x = Min

u> 0
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and, forO << 1

 [ — (1 —n) (ujn)nitn ”y |
= M

* a 1+ auu>0

14. Show that if (x) is strictly convex and differentiable, we have

y (x) = Max [p (u) — (uw — x) g’ (w)].

and if concave, ‘

y (x) = Min ip (u) — (u — x) yp’ (u) ].

Give both analytic and geometric proofs.

15. Consider the multi-dimensional analogue,

op op
y (X1, %2) = Max (tts, a) — (ts — %1) BE — (Ma — 4) Br]

for convex functions, and the corresponding result for concave functions.

16. Discuss the possibility of using these results to obtain explicit solu-

tions for non-linear systems of the form

V1 (x1, X) = %1, Po (x1, Xo) = Xe,

where g, and g, are both concave or both convex.

17. Newton’s method furnishes a sequence of successive approximations

Xn +1 = Xn —f (%n)/f" (xn)

to the solution off (x) = 0. Showthatiff’ (v) > 01n [ a, b] and also f”(x)

> 0 in this interval, we have

x= Min [y—f(y)/f' (y)],
asysb

for a root in this interval.

Obtain corresponding expressions for the multi-dimensionalcase.

18. Consider the two equations

(a) v(p) =Lv,f,9) + 4 (6,9),

(b) «(p) = Max [L (u, p, 7) + a (, q)].

where u (f) is a scalar function of a vector #, belonging to a region R,

and ga vector variable, belonging to a set S which may or maynot depend

upon #.
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Assume that

(1) There is a unique solution of (a) for any fixed q = q (p), denoted by

v (p,q), for p in R.

(2) There is a unique solution of (b) for p in R.

(3) If w(p) >L wv, p,q) + a (p, 9) for a fixed g = q (pf),
then w (p) > v (, 9).

Prove that under these assumptions we have

u (p) = Max (A,9)

19. Under what assumptions concerning the matrix A (f, q) = (ai(P, @)),
can we determine the solutions of the systems

N

ui (p) = Max [a(A, 9) +2 ais (P, q) uj (P)], += 1, 2,...,N,
q 7=1

Or

N

Max[ai (p, q) Ui (p) + Mis (p, q) Uj (D)] =c, += 1,2,...,N,
q =

in the abovefashion ?

20. Let Fi (x) = Gi (x) = x, and

Fn (%1, 2, ..., ¥n) = Max (1, Gn ~1 (%2, ..-, Xn) ),

Gn (X41, x2, way Xn) = Min (x1, F'n _1 (Xe, w 2+, Xn) ).

Prove that

1 1
lim a | Fy (x1, x2, ..., Xn) dx dx. ... din = V3/q,
n> ©€

1 1 —
lim tee | Gn (%1, %2, ..., Xn) dx1 dxe ... dxn =1—a V3/q.

na co

(Gross-Wang, Amer. Math. Monthly, Vol 63 (1956), p. 589).

21. Let the y; be independent random variables assuming the values

1 with probability # and the value 0 with probability 1 — p. Let the »;

be a set of positive quantities. Set

N N
gw (xi xi) = Prob | Fax ye (3 xi > xX),

i=1 i=1

and IN (x) = Inf RN (x; xi)

vy;

136



EXISTENCE AND UNIQUENESS THEOREMS

 

Show that

Xx —_—_

fw (*) =, dt ows -( =) +0-sm »(2)|

and thus obtain a non-trivial uniform lower bound for gw (x; x:). (Harris)

22. Under what conditions does there exist a unique solution of the

equation
N

u(x) = Min2 pj (x) u(x + ay),O< x <C,
+1 j7=1

u(x) =0,x* <0,

u(x) =1,x*x>C,

where, for O< x <C,

(a) p; (x) > 0
N

(b) E py (x) = 1.=]

Consider the case where x assumes only a discrete set of values, {4},
and aij = miyA, where mi is a positive or negative integer.

23. Consider problem 15 in the exercises at the end of Chapter 3. Show

that the problem of determining minimumcostis equivalent to the problem
N

of determining the minimum of Ly (x) = 2 x; subject to the constraints
i=1

a. xi > O,

bo Xe t+ xr¢i ft... turer ak=1,2,...,N,

where %n + «= Xx.

(Management Science, 1957).

24. Consider the more general problem of determining the minimum

of Ly (y) = ¥1 + ye + ... + yw subject to the constraints

(a) yi 20

(b) yi > 7, yn SS,

(c) v1 + ye > bi,

ye + Ys > be,

yn -1+ yn => bn -1.
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Write, for fixed 7, fy (s) = Min L (y), N > 2. Show that

fz (s) = Max (s + 7, di),

fv (s) = Min [2 + fw -1 (by -1—2) J,
z> s*

where s* = Max(s, 0).

Show that

fx (s) = Max (s + ue, ve), R = 1, 2,...,

where uw, and vx are functions of 7.

25. Show that

ux = Max (r + az, Br),

Ve = Max (7 + yx, Ox),

for k > 3, where

Ak+1—=— Vk,

Bu+1 = Ox,

Ve +1 = Max (ax + bx, yx),

Ox +1 = Max (Bx + Ox, Ox).

26. Consider, in like fashion, the problem of minimizing Ly (x) = 2 x;

subject to the constraints

a. x; > O,

b. x1 > x,

© x1 + X22 > Y,

x1 + %2 + x3 > Oi,

x2 + x3 + xa] > be,

p.

xn 2+ %nN 1+ %n > ON ~_2,

XN -1 + %N > S,

XN >> T.

N
27. Consider the problem of minimizing Ly (x) = & ci x; subject to the

i=1
constraints
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a. x; > 0,

b. 611 %1 + bie x2 > by,

bee x2 + be3 x3 > be,

by ~-1,N ~-1%nN ~1 + bn ~1, wxn > by —1,

C. ¥1 > %, XN SY.

Obtain the corresponding functional equation and the analogues of the

above results under suitable assumptions concerning the coefficients bij.

28. Let us suppose that we are given a map containing N distinct

locations numbered in some fashion 7 = 1,2,...,N, and a matrix

I’ = (ti) telling us the time required to travel from 7 to 7, with ti; = 0.

Starting at the first location, we wish to pursue a route which minimizes

the total time required to travel to the N* point, using any of the other

locations, and only these, as intermediary stops.

Let f; denote the time required to go fromz to N,1 = 1, 2,..., N— 1,

fw = 0, using an optimal policy. Show that

fi = Min [43 + ff], = 1,2, ...,N —1.
j

29. Show this equation has a solution { f;} unique up to an additive

constant.

30. Show that any one of these solutions suffices to determine the

optimal policy.

31. Consider the following approximation in policy space,

AM =ty csr thspyise +... + tn 1,4,

for 7 = 1, 2,..., N —1, andlet the sequence {f;(*)} be defined by

filet VD = Min [ti3 + ff],7 = 1,2,...,N—1,

k=1,2,....

Show that the vectors {f;.)} converge to a solution of the above

functional equation, and thus may be used to determine optimalpolicies,*

2N 2N
32. Consider the problem of maximizing » g; (xi) subject to X' x: <c,

i=1 i=1
x; > 0. Show that this is equivalent to maximizing fw (yi) + An (ya)

subject to y1, y2 > 0, v1 + ye = c, where

* R. Bellman, A. Routing Problem, Quarterly of Applied Mathematics, 1957.
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N

fy (v1) = Max 2 gi (xi),
R, i=1

2N

An (v2) = Max 2 gi (xi),
Rg it=N+1

and fi, Re are defined by

N

Ry: x >0, Y x< yn,
i=1

2N

Rei xi > 0, LS Ki < 2.
t=N41

What computational advantages are there in employing this technique

and its natural extension? Discuss the multi-dimensional case.

33. A gambler receives advance information concerning the outcomes

of a sequence of independent sporting events over a noisy communi-

cation channel. We assume that the outcome of each eventis the result

of play between two evenly matched teams,and that # is the probability

of a correct transmission, and g = 1 — f, the probability of incorrect

transmission.

Assuming that the gambler starts with an initial amount x, and bets

on the outcome of each event so as to maximize his expectedcapital at

the end of N stages of play, show that he wagers his entire capital at

each stage, provided that # > 1/2, and nothing if # < 1/2.

34. Let us assume that the gambler plays so as to maximize the expected

value of the logarithm of his capital after N stages. Assuming that

he uses the same betting policy at each stage, determinethis ratio of the

amount bet to the total capital.

(J. Kelly, ‘“A New Interpretation of Information Rate,’’ 1956, Symposium
on Information Theory, Tvansactions I. R. E. 1956, pp. 185-189).

35. Let us assume that the gambler plays so as to maximize the expected

value of the logarithm of his capital after N stages. Let /n (x) denote

the expected value obtained using an optimal policy. Show that

Jw +1(%) = Max [pfw (% + y) + gfy (*—y)], n= 1,2,...,
Osy<z

assuming that there are equal odds, with

fi(x) = Max [p log (x + y) + @ log (x —y) ].
O<y<a

(For this and the following results, see R. Bellman and R. Kalaba, “On

the Role of Dynamic Programming in Statistical Communication Theory”’,
Transactions I. R. E., 1957.
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36. Show inductively that

I (x) =logx+WNk,

where

k== Max [flog (1 +7) + qlog (1 —7) ],
O<r<il

and hence that there is a number 7» such that the optimal policy at each

stage is determined by the relation y = 7x.

37. Consider the time-dependent case where the probability of correct

transmission depends on the stage. Establish the corresponding functional

equation and deduce the structure of the optimal policy.

38. For the case where the purpose of the process is to maximize the

expected value of the return, or the logarithm of the return after NV

stages, the above analysis shows that the optimal policy is independent

of the quantity of resources available at each stage.

Consider the problem of determining the class of criterion functions

possessing this property. Let y (x) be a monotone increasing concave

function defined over 0 < x < oo, normalized by the condition q’ (1) = 1

and consider the one-stage process where we wish to maximize

Ey) = py(x + y) + (L—) v(x —9)
for O< y< x, where 1> > 1/2. Show that if for all x > 0, there is

a maximum of the form y = 7 (pf) x, then we must have

1yk +

k+1
 VY (vy) = +,k >—l,

or, aS an extreme case,

y (vy) = logy + ¢1.

39. Consider the case where successive signals are not independent. Let

the probability of a correct transmission at the k’” stage depend upon

the transmission of the signal at the (k — 1)s¢ stage. Define, for x > 0,

k=1,2,...,N

fr (x) = expected value of the logarithm of the final capital obtained

from the remaining k stages of the original N-stage process,

starting with an initial capital x, the information that the

(k —-1)8* signal was transmitted correctly, and using an optimal

policy.

gx (x) = the corresponding function in the case where the (k — 1)*

signal was transmitted incorrectly.

)

Then

fe (x) = Max [pn —e +1 fe —-1(x + y) + (1 — pw — & +1) Be -1(% — y) J,
O<r<l
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ox (x) = Max |7N _xeeife -1(* + y) ++ (1 — IN _k +1) Lk _1(% — y)],
O<y<a

where

px = probability of correct transmission of the kksignal if the

(k — 1)s¢ signal was transmitted correctly.

gx = probability of correct transmission of the k¢* signal if the

(k — 1)s¢ signal was transmitted incorrectly.

Show that fz (x) = log x + an, gu (x) = log x + by. Determine a, and
b,; and the structure of the optimal policy.

40. Consider the situation in which the channel transmits any of M

different symbols. Upon receiving a symbol the gambler must make

bets on what he believes the transmitted signal actually was. Assume

that the gambler possesses the following information:

pi; = the conditional probability that the j-signal was sent if the

1-signal is received.

gi = the probability of receiving the 7-signal.

vy; = the return from a unit winning bet on signal7.

Assume that the gambler is free to bet an amount z; on the z*” signal,

subject to the restriction that » z; < x. Defining the sequence{fn (x)}
d

as above, show that

M M M

fre(s) = Eqs Max | ¥ pufy 1 (4 +x—~ Ea) | D2

t= 1 22,<24 lLj=1 s=1
Zz, 20

M M M
fi (x) = 2% qi Max | © pu tog ny tx— Za |.

t=1 22,<r¢blj=1 s=]1

z; 2 0

Prove, as before, that fw (x) = log x + Nay, determine a, and the

structure of the optimal policy. Show that the optimal policy is in-

dependent of the qi.

41. Consider the case in which there are a continuum of different signals.

Let dG (u, v) = conditional probability that a signal with label between

v and v + dv is sent if the u-signal is received.

aH (u) = probability that a signal with label between uw and u + du

is received at any stage.

Show that the corresponding functional equations are

f(x) = | | Max [- fw -1 (22 (v) ) dG (u, 0) | a (w)
—oo z(v) J—90
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fi (x) = [ Max [- log (22 (v) ) dG (u, » | dH (u),

assuming for the sake of simplicity that the odds are even, and that

all money must be bet. The maximizationis overall functions satisfying

a. 2(v) > 0, b. [L- Z(v) dv = x.

Obtain the form of fy (x) and the structure of the optimal policy.

42. Consider the case where # itself is a random variable, subject to a

known probability distribution.

43. Consider the case in which the probability distrinution is unknown.

We do, however, have an a priort estimate dG (fp), and agree, after k

successful transmissions and / unsuccessful transmissions, that the new

a priort estimate is to be

pr (1 — p)dG (p)

[oo (1 — p)dG(6)
0

du (p) = 

44, Several industrial plants are located along a river, numbered from

north to south, 1, 2,...,N. A certain quantity of water flows down

this river, to be allocated along the way to these plants. Assume to

begin with that water allocated to a plant cannot be used by any other

plants, and determine theallocation policy which maximizes the return

to the community. (W. Hall)

45. Consider the same problem under the assumption that a certain

quantity of the water allocated to each industry returns to theriver,

sometimes immediately, and sometimes several stages further down.

(W. Hall)

46. Suppose that the waste products of each industry pollute the water,

and the cost of using this water depends on the pollution level. Determine

the optimal allocation policy in this case. (W. Hall)

47. Suppose that the quantity of water available is seasonal, and that

the demand is seasonal. Dams exist at various places along the river

where water can be stored. Determine the optimal allocation policy.

(W. Hall)

48. There are different industrial plants whose construction along a

river is being considered. The z¢” plant has production value v;, discharges

waste products in quantity w,; into the river, and has a tolerance level &:,
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whichif the plant is to be utilized, must exceed the sum of the wastes

from the upstream plants. We wish to choose a subset of the » plants

to build along the river so as to maximize the economic value of the

plants. (L. M. K. Boelter)

Show that this is a maximization problem over 2"”!. choices, which

can be reduced to [m!-e] — 1 choices. (Gross—Johnson)

49. Show that any optimal solution can be reordered by increasing

values of ¢; + wi without loss of optimality, and thus that there are

fewer than 2” cases to consider. (O. Gross-S. Johnson)

50. If vs = 1 for 1 = 1, 2, ...,, show that an optimal solution may

be found using the following procedure:

a. Order and renumber the items according to the magnitude of
ti + Wi.

i
b. Compute sj = 2 wi, and di = ti — Si -1.

j=l

c. If dy <0 is the first violation, delete an item in the set :<k

whose w; is largest.

d. Recompute as in step (b) for the new set, and repeat steps (b)

and (c) until all violations are removed. (O. Gross—S. Johnson)

51. Show that in the general case an optimal solution has no greater
number of items than there are in the optimal solution of the same

problem with all the v; equal. (O. Gross—S. Johnson)

52. Consider the problem of finding an approximate solution of the

equations f(x, y) =a, g(x,y) = b. Let {xz, ye}, R= 0,1,2,..., be a

sequence of guesses, and

dy = (f (xn, yn) — a)* + (g (xn, yw) — 5)?.

Assuming that %o = ¢1, Yo = Ce, and that (vi +1 — xi)? + (vi +1 — va)?

<r*, fori =0,1,2,..., let for N=O0,1,2,...

In (c1, C2) = Min an.

{z;, ¥;}

Show that

fn +1 (C1, C2) = Min [ fw (*1, V1) J,

where RF is the region determined by (x1 — ci)? + (yi — ce)? < 72.
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53. Set x1 = c1 + 7 cos 6, v1 = co + rv sin 8 and assumethat 7 is a small

quantity. Then

fn +1 (¢1, C2) = Min fw (cx + 7 cos 6, co + rv sin 8) J
8

= Min [ fw (ci, ce) + 7 [cos 6 Ofnw/écy + sin 0 Ofn/éce] J.
0

From this determine approximate values for cos @ and sin 8. What is

the connection with the classical gradient method ?

54. Consider the problem of determining the Cebycev norm

N
dy = Min Max | f(x) — 2X ce x*|.

e; O<2<1 x=0

Discuss the convergence of the following scheme. Let {cx} be an initial

approximation, and co’ determined as the minimum of

N
Max | f(x) — co — 2 c% x*|.

O<2z<1 k=1

The let c,’ be determined as the minimum of

NV
Max | f (x) — co’ — crx — 2 c% x*| ,

O<2z<1 k=2

and so on.

55. Suppose that we wish to send a rocket to the moon. Since there are

questions of cost and engineering involved in carrying large quantities

of fuel, and the containers for large quantities of fuel, we attempt to

cut down on the quantity of fuel required and the size of the rocket by

building a multi-stage rocket of the following type:

l~e—Nose Cone—>|

 

Third Second First

Stage Stage Stage
    

|~—__Sub—Rocket | ——_—_—_—_——_»

Sub-Rocket 2    
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After the fuel carried in the last stage, the kt” stage is consumed, this

stage drops off, leaving a (k — 1) stage sub-rocket, and so on.

The problem is to build a k-stage rocket of minimum weight which

will attain a final velocity of v. Let

Wx: = initial gross weight of sub-rocket R.

Wx = initial gross weight of stage R.

pe = initial propellant weight of stage &.

V~ = change in rocket velocity during burning of stage k.

Assume that the change in velocity vx 1s a known function of W, and

pe, so that ve = v(We, px) and thus pr = f(We, ve). Since We =

We —-1+ we, and the weight of the k** stage is a known function,g (px),

of the propellant carried in the stage, we have

We = ¢(P(We -1 + We, Ve) ),

whence, solving for wx, we have

We = W(We 1, Vx).

Let fe (v) denote the minimum weight of sub-rocket & achieving a

terminal velocity of v. Then

fe(v) = Min [w(fe—1(v—vx), ve) + fe —1(v — vx) |,
O0O<% Sv

for k > 2, with

fo(v) = Wo = weight of nose cone

fi(v) = Min (w (Wo, vo) + Wo).
0<y4<v

(R. P. Ten Dyke)

56. Consider the problem of maximizing the linear form
3N

[yn (x) = & x; over all non-negative x; satisfying the constraints
i=1

A1y X%1 + Qi2 X%2 + G13 %3 << C1,

dz X1 + Ao2 X2 + ez X3 < C2,

a31 %1 + ase x2 + a33 %3 + 01 %4< 63,

Day Xq + Uys Xsy + Aggy Xe <X Cy,

Asa Xa + 455 X%5 + Ase Xe < Cs,

Aen Xq + Ges X53 + Age Xe + 02%, < Cy,

A3N —2, 3N —~2 %3N —~2 + G@3Nn —~ 2, 3N —1 X3N —~1 + G3N _2, 3N X8N CBN ~2,

A3N —~1, 3N —~2%3nN ~2 + Q3n —1, 3N —1%3N —~1 + Qn —1, 3N X38N CBN ~1,

a3N,3N —~2%3N —~2 + G3n, 3N —~1%3N ~1 + Q3N, 3N X8N << Can,

and x; > 0, where aij > 0, b; > 0.
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Define the sequence of functions

fw (2) = Max Ly(x),
2

where the x; are subject to the constraints given above with the exception

that the last constraint is now

A3N, 3N —~2 %3N —~2 + @3N, 3N ~1%3N —1 + G3Nn, 3N X8N < Z.

Show that

IN (z) = Max [%3n -~2 + %3n ~1 + %3Nn + fn —1l (can _3— bn _1%3n ~2)],
(an —2, 23N -1, TN]

N > 1,

where %3n —2, ¥3n -1, ¥3n are subject to

A3N —2,3N —~2 X3N ~2 + G3n ~2,3N —1 %3N —1 + G3N —2,3N X8N — CBN ~2,

A3N —1,3N ~2 %3N ~2 + @3n —1,3N —~1X3N —1 —+ G3N ~1,3N%38N <Q CBN ~1,

A3N,3N ~2 %3n ~2 + Q@3Nn,3N —1 X3N —1 + 43N,3N X38N SX Z,

by -1%3N 2 << C3n ~3, Xi > O.

The function /o(z) is taken to be identically zero.

57. Obtain corresponding results for the case where the matrices are of

different order.

58. Consider the case where the 3k equation, k = 1, 2,..., has the

form

A3gk —~2,3k ~2%3k ~2 + Ase —2,3k ~1X3n —~1 + Ase —2, 3K X3k + bo X3k +1

+ CoXx3e+2 + doxsr+3 <i Car.

59. Show that the above functional equation can be reduced to the form

Jn (2) = Max [gn (xan ~2, 2) + fw -1 (Caw ~3 — On ~-1 Xan ~2) J,
UsN—-—2

where x3n —2 Satisfies an inequality

O< %3n -2 < Min [an, 2/a3n, 3n —2] .

60. Consider the problem of resolving a set of linear equations of the

form

di1 X%1 + Gig %2 + G13 %3 = C1,

a21 %1 + ze X%2 + d23 %3 = C2,

a31 X1 + dase %2 + dss %3 + 01%, = Cs,

by X3 + Agg Xq + Aas X5 + Ang Xe = C4,
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Asa X: + Ass Xx + Ase Xe = Cs,

Aga Xq + Ags X5 + Age X%eq + 02%, = Cy

by ~1 Xan ~3 + 4143N,1+3N %14+3N + 414+3N,2—8N X243N

+ @1+3N,3+3N %343N = C1 +43N

a2 +3N,1+3N %143N + @243N,24+3N %2+3N

+ @2+3N,3+3N %3+3N = C243N

a3 +3N,1+3N %1+3N + @343N,2+43N %243N

+ a3 +3N,3+3N X34+3N = C3 43N,

where (aij) is a Symmetric matrix, and, in addition, positive definite.

Linear systems of this type arise in the study of multicomponent

systems where there is weak coupling between stages.

The problem of solving this system is equivalent to that of determining

the minimum of the inhomogeneous quadratic form

(x1, Ay x1) + (x?, Ao x?) + 2... 4 (x4, An x)

— 2 (c}, x1) — 2 (c?, x?) + 1... —2(c%, x¥)

+ 2b, x3 x4 + 2 boxe x7 +... + 20Nn _1 Xan ~1 X8N ~2

where the vectors x* and c* are defined by

x = (Xan 2, X3e —1, X3x), C¥ = (C3x —2, Cae -1, C3),

and Ax = (ai +3%,5+3),1,7 = 1, 2, 3.

Show that the problem can be reduced to that of determining the

sequence { fn (z)} defined by the recurrence relation

fn (2) = Min [ (*%, An XN) — 2 2x3gn — 2 (CN, x) +
(%3N) TaN —1) TaN ~ 2)

+ fn —1 (bn —1 Xan —2) J.

(Illinois Journal of Mathematics, 1957).

61. Show that this may be reduced to the form

Jw (2) = Min [gw (2, ¥) + fw -1 (dn -1) J,
y

where

gn (z,¥) = Min [ (4%, Aw xX) — 2 zxgn — 2 (CN, x9) |.
(23> Us — 1)

62. Show that fn (z) = un + vn z + wn 22, where un, vn, WN are inde-

pendent of z, determine the recurrence relations connecting (wy, vn, Wy)

and (wy —1, Un —1, Wn —1), and thus determinethe solution of the linear

system.
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63. Consider the problem of determining the maximum of

N N—-1

On (x) = 2 (x, Aix) +2 LY bi xsi x1 +33
i=1 i=1

over the sphere Sy, x (x*, xt) = |,
i=1

Consider the associated functions of z defined by

fv (2) = Max [qn (x) + 2 2xsy] ,
SN

and obtain the recurrence relation connecting fy (z) and fw —1 (2).

64. Generalize the foregoing results to the case where the matrices Ax

are not necessarily of the same dimension.

65. Obtain existence and uniqueness theorems under appropriate

assumptions for the following functional equations

a. f(p) = Min Max [g (6,9), f(7 (A, 9) ) J

b. f(p) = Min Max [¢ (A, 9), 4(6,9f(7 (6,9) )]

c. f(p) = Min Max [ g (A, 9), 7 (6,9) + i f (2) dG (2, p,9) J.
q R

66. Consider the problem of assigning m different types of machines to

n different tasks. Let Aij > 0 be the amount of task 7 performed by a

unit input of machine 7, and assume that

a. If Aij > 0, and 2’ <1, then Ai; > 0.

b. If Aij > 0, and 7’ >7, then Ai > 0.

c. [ft <1',7 <7’, Ai; > 0, then

(Aiz/Aiz) < (Avy/Avi).

Let xi; be the quantity of machines of type z to be used for task 7.

The matrix x = (xij), 7 = 1, 2,...,m, 7 =1,2,...,m”, is said to be
n n

feasible if xy >O0, XY Ay xy = 7j,7 = 1,2,...,0, and 2 xi < Mi,
i=1 j=1

1=1,2 mM.d . J

Consider the following policy. Assign x11 up to the minimum of 71

and M,. If x1 = 71, then assign x12 = min (T2, M, — x11), and so on.

When ™M,is used upin this way, on the 7¢” task for some 7, assign %2; In

such a way that either task 7 is finished or all machines of type 2 are

assigned. Complete the assignment of machines in this way.

Show that if this policy does not lead to a feasible allocation, then

there exists no feasible policy. (Arrow—Markowitz—Johnson)
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67. Show that the above policy yields the solution of the problem of
m

maximizing Tn = 2 Ain Xin subject to
i=1

a. » xyj= Mt = 1, 2, 1 M, XG > O,

j=l

b, 2 Ai xi = 1,7 = 1, 2, ...,n— I,

i=1

provided that the Ai satisfy the above conditions. (Johnson)
N

68. Show that the problem of maximizing the sum 2 g; (x, yi) subject
i=1

to the constraints
N

a. x1 > 0, XY x; = x,
i=1
N

bb y<iXy=y,
i=l

can, under appropriate assumptions concerning the functions g:(x, ¥),

be reduced to the problem of maximizing
N N

Sy = x gi (xs, Vi) —A LD iu,
i=1 i=1

subject to the constraints
N

a. x; > 0, Oxi =X,

i=]
b. yi > O.

This last problem leads to the recurrence relations

Jn (x) = Max [ Max [gn (%n, ¥) —Ay] + fn-1(¥ —%n) ],
O<%,<@% y>2O0

involving a one-dimensional sequence, for each fixed A.

How does one use the solution of this second problem to solve the

original? (Proc. Nat. Acad. Sct., 1956).

69. Each year the walnut crop consists of walnuts of different grades,

say Gi, Ge, ...,Gx, in quantities 91, g2, ..., gx. Using various quantities

of each grade, assortments of walnuts are put together for commercial

sale at different prices. Assume that there are fixed demands d; for the

atk assortment, and that each assortment mixes walnuts of different

grades in its own fixed ratios. How many packets of each assortment

should be made in order to maximize total profit ?

70. Consider the case where the demand is stochastic with known

distributions for each type of packet.
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Bibliography and Comments for Chapter IV

§ 1. This chapter follows R. Bellman, ‘‘Functional equations in the Theory
of Dynamic Programming — I, Functions of Points and Point Transforma-
tions,’ Trans. Amer. Math. Soc., vol., Vol. 80 (1955), pp. 51-71. An entirely
different treatment of a more abstract type, making use of Tychonoff’s
Theorem, is contained in an unpublished paper by S. Karlin and H. N.
Shapiro, “‘Decision Processes and Functional Equations.’’ The RAND
Corporation, RM-933, Sept. 1952.

See also, S. Karlin, “The Structure of Dynamic Programming Models,”’
Naval Research Logistics Quarterly, Vol 2 (1955), pp. 285-294.

§ 6. A discussion of the importance of stability theory in the domain of
differential equations may be found in R. Bellman, Stability Theory of

Differential Equations, McGraw-Hill, 1952.

§ 8. The choice of f, (p) in (8.6) is due to a suggestion of H. N. Shapiro.

§ 9. This equation will be discussed in extenso in the following chapter.
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CHAPTER V

The Optimal Inventory Equation

§ 1. Introduction

In this chapter we wish to study a class of analytic problemsarising

from an interesting stochastic allocation process occurring in the studyof

inventory and stock control.

Although the general equation seems to be quite difficult to treat, we

can obtain an explicit solution of a particular case where certain simple,

but not too far from realistic, assumptions are made, and wecan deter-

mine the structure of the optimal policy in some othercases.

These explicit solutions are useful since they lay bare certain meaning-

ful combinationsof essential parameters. Since the inverse problem of the

estimation of parameters from observed data plays a critical role in this

theory, this is a feature which can be of importance.

Furthermore, and this is a remark pertinent to all decision processes,

the analytic form of the solution will occasionally possess a simple eco-

nomic interpretation, which when verbalized, opens the way to the ap-

proximation of optimal policies for more complicated processes.

\part from the results we obtain, the methods we employto investigate

the structure of optimal policies possess an independent interest. The

reader has already encountered them, in part, in § 12 of Chapter I, and

will encounter them again in a later chapter devoted to the calculus of

variations. What stands out quite vividly is the fact that the method of

successive approximations is not only useful in the production of exist-

ence and uniqueness theorems, to which relatively dull task it is usually

relegated, but is, in addition, a powerful analytic tool for the discovery

and proof of properties of the solution of a functional equation, and in

our case, for the determination of the behavior of optimal policies.

Weshall begin with the formulation of a class of related problems oc-

curring in the study of “‘optimal inventory.’’ Following this, we devote a

section to the simple formal observation upon whichall the analysis in

this chapter hinges.

Wethen consider a number of cases in which the optimal policy is

1 This idea has, of course, been used extensively in the physical and engineering
world. ‘
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characterized in an especially simple and intuitive way, namely, by the

maintenance of a constant “‘stock level’’. In particular, this is the case, in

both the multi-dimensional as well as the one-dimensional case,if all the

ordering costs are directly proportional to the amountsordered.

If the initial ordering cost includesa fixed cost which is independentof

the amount ordered, the problem seems to become very much more

difficult. This fixed cost may represent a “‘red tape’ cost, or a “‘set-up”’

cost, in the case of manufacturing processes. Weshall not treat any prob-

lems of this type here, since at the present time practically no solutions

of the corresponding functional equations exist, and very little seems to

be known concerning the character of the optimal policies arising from

processes of this morerealistic type.

To illustrate further the method of successive approximations,we shall

consider two processes, each variants of the relatively simple process

discussed above. In the first, linearity is discarded, in that the cost is

taken to be a convex function of the amount ordered; in the second, si-

multaneity is voided, in that there is assumed to be a time-lagin satis-

fying an order. Although the optimal policies cannot be described in

simple terms, we can determine their general structure.

From the mathematical point of view, we have to deal with a very in-

teresting class of quasi-linear integral equations, nonlinear versions of the

renewal equation which weshall discuss in an appendix. As usual, these

nonlinear equations possess certain quasi-linear properties which we can

occasionally use as handholds and footholds in making our way through

this tortuous terrain.

§ 2. Formulation of the general problem

The problem weshall discuss here, in various masquerades, is one very

particular case of the general problem of decision-making in the face of

an uncertain future. The version we shall consider is concerned with the

problem of stocking a supply of items to meet an uncertain demand,

under the assumptions that there are various costs associated with over-

supply and undersupply.

The situation may be described as follows: At various specified times,

determined in advance or dependent upon the process itself, we have an

opportunity to order supplies of a certain set of items, where the cost of

ordering depends naturally upon the numberordered of each item, and

where there may or may notbe, in addition, somefixed costs, adminis-

trative or otherwise, which are independent of the number ordered. At

various other times, demands are made upon thestocks of these items.

‘The interesting case is that where these demands are not knownin ad-

vance, but where we do knowthejoint distribution of the demands which
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can be made at any particular time. The incentive for ordering lies in a

penalty which is assessed whenever the demand for an item exceeds the

supply. Different penalties may be levied in different fields of activity.

A case which weshall treat in great detail is that where the penalty is

directly proportional to the excess of demandover supply. Its importance

lies in the fact that we can solve the functional equations arising from

the process explicitly under the crucial assumption that the cost of initial

ordering depends only upon the amount ordered, and is either a linear

function, or, more generally, convex.

Speaking loosely, we wish to determine the ordering policy at each

stage which will minimize some average function of the overall cost of the

process. In practical applications, an important aspect of the problem,

which weshall not discusshere,is that of determiningsuitablecriteria for

the various costs, which are both realistic and analytically malleable.

In the following subsections we shall consider various sets of assump-

tions which yield various functional equations, all of which belong to a

common family. Additional processes will be discussed in the exercises.

A. Finite total time period

The first process we shall consider involves the stocking of only one

item. Weshall assume that orders are made at each of a finite number of

equally-spaced times, and immediately fulfilled. After the order has been

made and filled, a demand is made. This demandis satisfied as far as

possible, with excess demand leading to a penalty cost.

Let us assume that we know completely the following functions:

(1) a. m(s)ds = probability that the demand will lie between s and

s + ds.?

b. k (z) = the cost of ordering z items initially to increase the stock

level.

c. p(z) = the cost of ordering z items to meetan excess, z, of demand

over supply, the penalty cost.

Observe that we assume that these functions are independent of time.

Furthermore, we suppose that these orders can befilled immediately.

Let x denote the stock level at the initiation of the process. Assuming

that there are 1 stages, we will order a quantity y, at thefirst stage, y, at

the second stage, and so on.

2 We shall avoid Stieltjes integrals throughout to simplify the discussion. It
will readily be seen that most of our results carry over to the more general situation
when suitable attention is paid to possible nonuniqueness of roots of equations.
This is left as a set of exercises, of nontrivial nature, for the reader.
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A set of functions (y, Yo, .--, Yn), Vk = Ve (x), Specifying for each k

the quantity yx to be ordered at the k'" stage when the stocklevelis x will

be called a policy. Corresponding to each policy, there will be a certain

expected total cost for this n-stage process, composed of initial ordering

and penalty costs.

The problem we set ourselves is that of determining the policy, or

policies, which minimize the expected total cost. A policy which yields

this minimum expected cost is called optimal. All this is in accordance

with our previous notation.

Weobtain an equally interesting but moredifficult class of problemsif

we attempt to minimize the probability that the cost exceeds a fixed

level.

At any stage, the problem is characterized completely by two state

variables, x, the supply of stock, and m, the numberof remaining stages.

Let us then define

(2) fn (x) = expected total cost for an n-stage process starting with an

initial supply x, and using an optimal ordering policy.

Let us now proceed to obtain a functional equation for fr (x). We have

3) Aly =ko—x+|” pls—y) pb) as,
if a quantity y — x > Ois ordered.

Although it may seem oddto order a quantity y — x, instead ofsayy,

it turns out that it is simpler to think of ordering upto a certain Jevel, y.

The optimal stock level turns out to be a more basic quantity than the

amount ordered.

Since y is to be chosen to minimize the expected cost, we see that /, (x)

is given by

(4) fa (x)= Min[2 (y —2) +|(sy) p(s)as].

In general, for m > 2 we have

(5) Jn(x) = Min (2 (y 2) +| p(s—y) @ (8) ds +

fn~1(0)| p(s) ds + ["fu-1—5) p(s)a],

upon enumerating the various cases corresponding to the possibility of

an excess of demand over supply, and correspondingto the possibility of

being able to fulfill the demand.
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B. Unbounded time period—discounted cost

If we wish to consider an unbounded period of time over which this

process operates, we must introduce some device to prevent infinite costs
from entering.

The most natural such device is that of discounting the future costs,

using a fixed discount ratio, a, 0 <a < 1, for each period, This possesses

a certain amount of economic justification and a great deal of mathema-

tical virtue, particularly in its invariant aspect.

If we set

(6) f(x) = expected total discounted cost starting with an initial supply

x and using an optimal policy,

we obtain, by the same enumeration of possibilities, in place of (5) the

functional equation

(7) f(x) = Min (k(y —x) +a [2 (s — y) p(s) ds + af (0) |» (s) ds

+a |"f(y —s) p(s) ds].
The advantage of (7) over (5) is the usual one that it contains f (x), one

function of one variable, in place of a sequence of functions, {fn (x)}.

C. Unbounded time period—partially expendable items

If we assume that some of the items supplied upon demand may be

partially recovered, so that a demandof s itemsresults in a return of bs

items, 0 < 6 < 1, which maybeused again, the analogueof(7)is

(8) f(x) = Min [k(y—x) +a [ p(s —y) p(s) ds +a |Fes\p(s)as

+a |" fly —s + bs) 9(s) ds}.

D. Unbounded time period—one period lag in supply

Let us now assume that when weorder a quantity z it does not become

available until one period later. If the current supply is x and y was on

order from the period before, x + y will be available to meet the next

demand. The functional equation corresponding to (7) is now of more

complicated form

(9) f(x) = Min (et a | (s—x) (9) ds + af @) | p(s) ds
z->0

+a]f(e—s +2) (9) ds).
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The quantity x now represents the total quantity available at any stage

to meet the demand.

E. Unbounded time period—twoperiod lag

If we have a two period lag, we require twostate variables to describe

the state of the process, namely,

(10) x == quantity of stock available to meet next demand,

y == quantity to be delivered one period hence.

Hence we define

(11) f(x, y) = expected total cost with x and y as above, using an

optimal policy.

Then f(x, y) satisfies the equation

(12) f(x, y) = Min(May a | p (s—2) p(s)ds + af, 2) | p(s) ds
z>0

+a]fle—s+y,2) p(s) ds).

Weshall not consider the equations in (8), (9), or (12) here, although

they are amenable to the same techniques of successive approximation

we shall apply to the others. There does not seem to exist any explicit

solution comparable in simplicity to that obtainable for (7).

§ 3. A simple observation

In this section, we wish to present, in as simple a form aspossible, the

fundamental analytic property of functional equations of the form

(1) u(x) = Mino (x, y), ve R (x),

upon whichall the subsequent work in this chapter depends.’

In general, the variation will be over someregion, R (x), in this case, a

set of intervals, dependent upon x. Let us assume that over someinterval

of x-values, a < x < b, the minimumisattained inside the region (x),

andthat v is differentiable. Then at the minimizing value of y we have

(2) O = vy.

This determines a function y (x), which need not be single-valued but

which we do assumedifferentiable.

3 This property has already been used, without explicit remark in § 11 of
Chapter I.
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On any oneparticular branch of this function y (x), we have

(3) u (x) = v(x, 9).

The crucial observation is now that for a< x < b, we have

(4) u’ (x) = vz + vy dy/dx == vz,

since vy = 0, by (2).

Similarly, if

(5) U (X14, X2) = Min [v (x1, %2, Va, Vo), (Vir Vo) ER (1, Xe),
Yis V2

and we assume that the minimumis alwaysattained inside the region,

we have

(6) Ux = Uz,
1 1

Ur = Uz,»
2

at the minimizing points.

Let us now apply these remarks to the functional equation ot (2.7),

under the assumption that & (z) = kz, k > O and $ (z) = 2, linear func-

tions of z. We have

(7) f(x)= Min [ky— ke+a] p(s—y) p(s)ds+ af (0) | p(s) as
y>o

+a] fiy—s)@(s) ds].

If the minimum is attained at a point y > x, we haveat this point

(8) b—ap |”p(s) ds +a |"f(y—3)p(s) ds =0,

an equation independentof x!

Furthermore, for this value of y, we have

(9) f' (x) =—k,
These two results, correctly combined and interpreted, furnish the clues

to the solutions of the problems involving proportional costs. Weshall

discuss them in more detail in later sections, and weshall also utilize their

multi-dimensional analogues.

§ 4. Constant stock level—preliminary discussion

In this and the next few sections we shall consider several processes

characterized by the principle of ‘“‘constant stock level.’’ The commonfea-

ture of these models is the assumption that the costof initial ordering is
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directly proportional to the amount ordered, and that the distribution

of demand remains the same from stage to stage. The addition of an

administrative fixed cost, “‘red-tape’’ cost, changes the nature of the

optimal policy in an essential manner.‘ This cost may also represent “‘set-

up’’ cost in manufacturing processes.

In § 5, we shall obtain the complete solution, for an arbitrary distribu-

tion function @ (s), for the case where the penalty cost is also directly

proportional to the numberordered. In § 6 we extend this result to the

multi-dimensional case, and show that the solution for the case where

there are many items subject to a joint distribution of demand possesses

the very important property of sub-optimality.

Turning from the consideration of these processes involving unbounded

time intervals, we consider the finite process described in § 2 and show

that again the assumption of direct proportionality entails a principle of

constant stock level at each stage. This level, of course, changes with the

stage.

This section serves as an excellent introduction to the use of successive

approximations as an analytic tool in the study of these functional equa-

tions.

Weenter territory where the going is much rougher when we con-

sider the case where the penalty cost includes a “‘red-tape”’ term which is

independent of the amount ordered. The form of the solution now seems

in the general case to depend upon the form of the demand function.

Nevertheless, several important classes of distribution functions fall

within catagories which we can handle precisely.

Finally, we indicate briefly the form of the general solution without,

however, being able to make any constructive use ofit.

§ 5. Proportional cost—one-dimensional case

In this section we present the solution of the case where both cost

functions, direct ordering and penalty ordering, are directly proportional

to the amounts ordered.

THEOREM 1. Consider the equation

(1) f(x) = Min[k(y—x)+a |"p(s —s) p(s) ds + af 0) [p(s) ds

+4 |"Fo —s) p(s) ds].

where we 1mpose the conditions

4 In the sense that it changes the policy from one of known form to one of
unknown form.
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(2) a. kand p> are positive constants,

o y (s) >0, {p(s ds=1, |” s@(s) ds <oo,

c O<ac<l,

d. ap>k.

Let x be the unique root of

3 k=ah ~ (s) ds + ak ” w(s) ds./ /
y oO

Then the optimal policy has the form

(4) a. forO<x<x%,y=x,

b. forx> x, y=xX.

In other words, the optimal stock level ts x.

If ap < k, the solution 1s given by y = x for x > 0, 1.e. never order.

ProoF. In order to understandthegenesis of this solution, let us proceed

heuristically. If we can obtain a plausible solution by some formal means

and then verify directly that it satisfies the equation in (1) above, the

uniqueness theorem established in § 9 of Chapter IV tells us that itis the
solution. Let us point out, however, that the method of successive approx-

imations would haveled us to this solution in a systematic fashion.
Aspointed outin § 3, if the minimum occurs at y > x, the minimizing

values of y must be roots of the equation

(6) kt al—p[@ast ["Fy —s) p(s) ds] =0,
and at this value of y we have

(6) f'() =—k.
Nowlet us pull ourselves up by our bootstraps. If the solution has the

conjectured form, the complicated term, | , fT’ (vy — s)q(s) ds may be

replaced by the simpler term — k |, y (s) ds, so that equation (5) may

be replaced by

® The interpretation of this equation is that the run-out probability must be
set at the level where the marginal cost for holding inventory is just balanced
by the marginal penalty for run-out.
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(7) b—ap |” p(s) ds—ak |" o(s) ds= 0,

precisely the equation of (3).

Since [- gy (s) ds = 1, this equation reducesto

(3) |, p(s) = (ap —b)a (pb — 2),

which possesses exactly one root under the assumption that @ (s) > 0.

Observe that the limiting cases behave properly. If ab —k = 0, y = 0,

ifa=ly=ojsitf=w,y=oo.

Having determined x, we proceed to determine f(x) as follows. For

O< x < x we have

(9) f(x) = kR—x)+ aL [> p(s—R els) ds +400) [= p(s) ds

+ [*F@—9) (9) 45],
and f’ (x) = — &,or,

(10) f(x) =f (0)— ke.
Substituting (10) in (9), and setting x = 0, we obtain the following result

for f (0)§,

kx + pa [- (s — x) w (s) ds — ak (#—s) 9 (s) ds

(11) (0) = ta 

To determine f (x) for x > x? we have the equation

(12) fl) =al[ a(s—ael) ds +f |gl) ds +

|,fe—9e (s) ds]

which wewrite in the form

(13) f(x) = ule) +a |"Fe—s) pls) ds,
6 Note that the % we obtain from (7) is the value of ¥ which minimizes this

expression for f (0).
7 Observe that as far as applications are concerned, this part of the solution

is of very little interest, since for only one initial interval, if at all, will x ever

exceed %.
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where u (x) 1s a known function of x. This, in turn, we write

(14) f(x) =u (sy+a] fle—s)piydsta |"_fe—s) p(s) ds.

In the interval {x — x, x], f(x — s) is known, hence we may write, com-

bining the w (x) term and the second integral

L-

(15) fx) =o)+a" “fe—sel)ds, «=x

If we now set x — x = z and f(x + z) = g (z), we see thatg (z) satisfies
the equation

(16) g() =o +2) +4] ge—s p(s)as, z>0,

a simple renewal equation whose properties are discussed in the appendix.

Actually, it is much simpler to differentiate (12) first and then proceed

as above. Let us observe, parenthetically, that it seems to be a general

characteristic of functional equations in the theory of dynamic program-

ming that the derivatives satisfy simpler equations, and are the more

basic quantities. This is due to the fact that they represent ‘“‘marginal

returns’, or “‘prices’’, which in purely mathematical language means

that they represent Lagrange multipliers. This, in turn, is connected with

the general problem of constructing dual processes, a subject we shall not

pursuehere.

Let us now turn to a proof that the conjectured solution is actually

a solution. Call the function obtained above F (x) and denotethe constant

f (0) determined in (11) by C. Then F (x) is completely determined by

the following equations.

(17) a. F(x) =C—khe, 0x <x

b. =a[ |p(s—x*ols F (0) | 9 (s

+ [°F (x—s) 9 (s)ds], x =X,
« O

An essential point in our verification of the solution is the fact that

F (x) + kx is strictly increasing for x > 0. This weestablish as follows.

From (17b), we see that

(18) FF" (x) = — ap [o dsta|'F (x — s) y (s) ds,
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for x > x. In [x — x, x], we have 0 < x —s < x and hence F’ (x —s) =

—k, as we see from (17a). Thus for x > x.

(19) F’ (x) =—ap |" p(s) ds—ka [; pidstal”"F(x—s)g(s)ds,

Or

(20) F(x) + k= (k—ap | © p(s) ds—ak |" (9) ds

+a [UF(xs) + Rk] (s) ds.
0

The expression

(21) u(x) = k—ap |” p(s) ds—ak |“ p(s) ds

is zero at x = x andpositive thereafter. Setting « — x = z and F’ (x + 2)

+ k = g(z), we see that g (z) satisfies the equation

(22) g (2) = ule t+2) + |" ges) p(s) ds,z 0.

It follows, cf.p.177f, that g(z) >0 for z > 0.

Hence, F’ (x) + k > 0 for x > x, and F (x) + kx is strictly increasing
for x > x.

Let us now return to the problem of demonstrating that F (x) satisfies

the equation in (1). Consider first the case where x > x. Then

(23) F (x) = Min [ toe ]
yz

= Min [k(y —x) + Fly) ],
y>x

using the representation in (17b). Since ky + F (y) > kx + F (x) for

y > x, we see that the minimum occurs at y = x, yielding F (x), as

desired.

Now consider the interval 0< x < x. Write

Min [ ]

(24) Min = Min| *%=*
you Min [ |

Lzr>ye2 _!

As above, the minimum over y > x reduces to the value at y = x.

Hence

(25) Minf...J= Min [...]
y2u E>zYyYSer

Since F (x) = C —kx for O< x <x, it follows that the minimum is

assumed at y = X, as in theoriginal derivation of the value of x.
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In the case af < k, taking x = 0 in (17) yields an F whichis easily
seen to satisfy (23), since, as above, F (y) + ky is non-decreasing.

This completes the proof. It is interesting to note that the solution for

0O< x < x, the most important part of the solution, can be found without

reference to the form of the solution for x > x.
This completes the verification of the fact that F (x) is a solution, and

consequently the solution, within the class of uniformly bounded func-

tions over x > 0.

§ 6. Proportional cost—multi-dimensional case

Let us now consider the multi-dimensional version of the problem.

Here we have N items whosestock levels will be denoted by x, %2, .. °>

xn, and whose demand(s, So, ..., Sn) at any time is subject to a joint

distribution function whose density is @ (51, Ss, ..., Sn).

In formulating the functional equation for the function f(x, %), ..., Xn),

the minimum expected over-all discounted cost, let us, for the sake of

simplicity, consider only the two-dimensionalcase.

The remarkable fact that emerges is that the form of the solution is

precisely the same as if @ (Sj, So, ..-, Sn) had the form q,(S,) @» (Se) ...

Qn (Sn), i.e. uncorrelated demands. It is this which yields the important

sub-optimalization property of the solution which we discuss below. An

enumeration of cases yields the following functional equation forf(x, %2):

(1) fi(%1, %2) = Min [Ra (Vi — %1) + Re (V2— Xe) + at] [- [Pi (Si — V1)

+ Do (Sz — ¥2)] @ (Si, Se) ds, AS»

+f (0, 0) [- ” @ (S1, Sg) ds, dsy
Y, JY;

+ in {" lpi (Sy —_ y:) + f (0, Vo — Se) | — (sy, Sa) dsy dso

+ [ -[f(y — $j, O) +b Po (So — V2) ] ~ (Sy, Se) ds, dS»

Yr Ye

+ | f (V1 — Sus Va — 52) @ (Sz, S2) ds, dso]

Let us simplify our notation a bit by setting  (s,, s,) ds; dsz =
dG(s,, S,) and call the quantity within the brackets K (y,, 2). We then have

ok co efy stathffae bu s))
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“Of °°

YY Ye Of

+ | | = (yy — Sy, Vo — Ss) dG (Sy, Ss) | ’
Oo Oo OYv1

cK, [, [od
oy, 2t+al— py _ (Si, Se)

+ [Pe0, Ve — So) fa dG (Sy, So) )
i=Yy

y, ¥2 0

+ i i oo (15 Ye —Se) dG (Sy, Se)],

Furthermore, as above, if y,; > %,, Ve > %2, we have

of of
(3) ax,YB,

Consequently, if we assume that the solution here has the same form

as in the one-dimensional case, the critical levels x, and x, are given as

roots of the equations

(4) a. mtal—afo( [aeSis So) — Fy {" (fodG(s1,53))) = 0

b. betal—pl ({- dG (5,, 8»)apfra(54, $))] = 0
x, S, = 0

These roots exist and are unique provided we make the same assump-

tions as above, namely, ap, > k,, af, > ko, and dG > 0.

We see that x, depends for its determination only upon the condi-

tional distribution | dG (sy, $2), and similarly to determine x, we require
S,= 0

only AG (Sj, So).
8,=0

This is the important property of suboptimalization mentioned above.

The verification of the solution follows precisely the samelines as that

for the one-dimensional case, and hence will be omitted, since the details

are, of course, much moretedious.

Let us state our conclusion as

THEOREM2. Let us imtose thefollowing conditions upon the equation in(1):

(5) a. ki and p; are positive constants,

b. go > 0, [- i gy ds, ds, = 1, i | Sig ds, dSz <00

c O<ac<l,

api > ki,
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Let x; be the unique root of

(6) ki = api [- fo@(Sy, Se) dSg) ds; — ak; I (|e @ (Sy, S2) ASy) ds
S$, -=0

Then the optimal policy has the form

(7) a. forO< xi < Xi, Vi = X;

b. for xi > Xi, Vix XxX

In other words, the optimal stock level for the 1” item 1s Xj.

If api < ki for any 1, we set xi = O(1 = 1, 2).

It is clear that this form of the solution extends immediately to the

N-dimensionalcase.

§ 7. Finite time period

Let us now consider the corresponding problem for a finite process

where we do not discount future costs. We now wish to minimize the

total expected cost.

Wedefine

(1) fw (~) = expected cost over an N-stage period starting with an

initial quantity x and using an optimal N-stagepolicy.

Then

(2) fi, (x) = Min[k(y —x) + 4 [- (s — y) » (s) ds]
Yoru

fins (x) = Min (k(y — x) + p|- (s — y) p(s) ds + fa (0) [- pisyas
yor

+ [fy —5) p(s) ds. n= 1, Qo.

We wish to prove, under the natural assumption ~ > k,

THEOREM 3. For each n, the optimal policy has the form

(3) a. for x<%n, VY = Xn,

b. for x > xn, VY = x

where the sequence Xn 1s monotone increasing in Nn.

Proor. The proof will be inductive. We have, withf, (x) defined as in

(2), as our critical stock level the solution of

(4) k=pfp i gy (s) ds
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which, if it exists, is unique, and which doesexist if p > R, as is reason-

able. Call this value x,. It is clear then that for 7 = 1, the optimal policy

isy= x, for x <x; y = x for x > x,. When y = x, we have f’, (x) =

~-k, and for x > x,, we have

(5) f(x) =? [- (s — x) »(s) ds,

f'i)=—p | pas =—k,

f(x) =peplx) > 0.

Hence f’; (x) + k > Oforallx > 0.

Consider the case n = 2. We have

(6) falx) = Mini (y—2) + 9 |(s—welsds +A | pls) as

+ |" AW —sp(s)as].

Thecritical value of y is attained by setting the partial derivative with

respect to y equal to zero,or

7 k=p [> ei) ds—["f'O—S) p(s) ds = FAG),
The function F, (vy) has the derivative

(8) F's (y) = — Pe (y) —fr(0) ¢ yy) — i fi" (vy —s)  (s) ds.

Since f,” > 0, f + fi’ (0) > + fi’ (0) = 0, we see that F, (y) is mono-

tone decreasing, and there can be at most one root of (7). However,

F, (0) = p > hk, F, (ow) = 0. Hence thereis precisely one root. Call this

root %>.

The policy is then

(9) Vy = Xo, Om x < Xp,

y= xX, Xe <x.

The geometric picture is illuminating. Write (6) in the form

(10) Fo (x) + kx = Min v (y),
Nora

where v (y) is a known function. From what we have demonstrated above,

v (y) has the following graph
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VNae

Figure 1

 
The function /, (x) ++ kx is obtained by drawing the tangent to v (y)

at y = x, and continuingit to the left until it hits the v-axis. The func-
tion f, (x) + kx is now constant for 0< « < x, and equal to v (x) for

X >> Xo.

\
Of

XN
XN

“‘
“
X

~~“

~~
~
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Figure 2

fo(x)+kx

  
It remains to show that x, > x,. The quantity x, is determined by

equation (4), while x, is determined by (7). Since —f,’ > 0, it follows
that the curve

1) w =H) =P |p)ds— |" A’ y—s eds
always lies above the curve

 

 
 

(12) w= oily) =p [- yp (s) ds,

w=g,(y)

w=k~——
eeee

0 x, y Xp °

Figure 3
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From this it is clear the x, > xy.

In order to continue this proof inductively, we must show that

(13) — fr’ (x) > —fi' (x).

Wehave

(14) —fii (x) =kh,O<mxe<x

—fii (x)= [- p(s) ds,x > x,

and

(15) —fe (xy) =kh,O<xe< x,

=> [- y (s) ds — | fi’ («—s) p(s) ds, x > %.

In the intervals [0, x,] and [x, co], the inequality is clear. In [x,, x6],

the inequality follows from the monotonicity of k— |” @ (s) ds, which

is zero at X = %).

Finally, we wish to demonstrate the convexity of f, (x). This is clearly

true in [0, x2]. In [x,, co], we have, using (15)

(16) A) = bee) +A Oe) + |* Ae —5) (9) ds.

Since f,’ (0) + p > 0, fy” > 0, we have f,” (x) > 0.

Wenow haveall the ingredients of an inductive proof.

§ 8. Finite time—multi-dimensional case

The hardy reader may verify that the solution in the multidimensional

case has precisely the same general character.

§ 9. Non-proportional penalty cost—red tape

As soon as we consider the case where the penalty is not directly

proportional to the excess of demand over supply, we encounterdifficul-

ties, and it appears that the simple and elegant solution obtained for the

case of proportional cost is no longer valid generally.

There are, however, a number of interesting cases in which westill

obtain a solution involving constant stock level. The most interesting of

these occur when wetakethecost of ordering (s — y) to be p (s — y) + 4,

where g is a fixed administrative cost which appears whenever an excess

demand occurs, regardless of the amount of the demand. The initial
orderingcostis still assumed to be proportional.
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Let us then consider the equation

(1) f(x) = Min[k(y—x) +a [- (p (s—y) + gl p(s) ds +f (0) [os ds

+ [Fo —s) p(s) as),
distinguished from the equation we have considered above only by the

additional term aq |~ gy (s) ds. It is surprising how much complication this
y

innocuous-appearing expression would seem to introduce.

Weshall, to begin with, proceed formally on the assumption that there

is a constant stock level solution. The critical level is then determined by

the solution of

@) O=k+al—p |" p(s) ds—goy) + [FO —s) 9) asl,
and we have f’ (x) = — kwheny > x.

It follows then that x will be a root of

(3) O=k+al—p |” p(s) ds—goly)—& |9s) ds
Unfortunately,it is not true that this equation has a uniquerootforall

density functions  (s). This equation may be written in the form

(4) (1 —a) k =a(p—-h) [eo ds + aq (y).
A simple condition underwhichthis equation hasa uniqueroot Is q’(y) <0.

If we do assumethat this equation has a uniqueroot, the proof is almost

exactly as before. There is, however, a more general result where the

optimal policy is that of constant stock level, which we shall now discuss.

If the equation above,(3) or (4), does not possess a uniqueroot, it may

still happen that the largest root of (4) corresponds to an absolute mini-

mum of the function in the brackets in (1), over the interval(0, <x].

Thus the picture may be

 

   
0 x y 0

Figure 4
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Let us prove

THEOREM 4. Under the assumptions upon a,k, p,q and q(s), stated tn

Theorem 1, and the additional assumptionthat the last minimum of

(6) yp) =ky + al [- [Pp (sy) + 9] p(s) ds —k |; (y — s)  (s) ds

ts the absolute minimum in 0 < y < oo, the optimal policy in (1) ts given

by the rule

(7) (a) y= 4x, forO<x<x,

y= X, forx > x,

where x is the value of y where the absolute minimum1s attained.

ProoFr. Let x be the value of y which yields the last minimum, and the
absolute minimum in the interval [0, co], of the function yp (y) above.

Then, precisely, as in the case where g = 0, we have f(x) = f (0) — kx

in 0< x < x, andf (0) is determined by substituting this result in (1), in
the range 0 < x < x. In the interval [x, oo], f (x) is determined bysetting
y = x in (I).

The proof that f(x) actually satisfies the equation now continues in

exactly the same way as in the case where g = 0.

§ 10. Particular cases

Some particular cases where the above conditionsare satisfied are

(1) fa) p(s) ere] Fewdu

(b) p(x) = be

Weleave the verification as exercises for the reader.

§ 11. The form of the general solution

Letf (x) be the solution of (9.1), which is to say

(1) f(x) +kx = Min F iy),
YR

where

2) Fy) =ky+alp |”s—y pas +(f0) +9) |p(s as

+ [FO —9) @() as]
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Let F (y) have the graph

(3)

 

 

Figure 5

Then, the optimal policy has the following form

(4) (a2) y=x,0<Ke*<yX,

(b) y=4%, my lXS XK,
(c) y = %3,%, <x < Xz,

(d) y=x,%x% > Xz,

and

(5) f(x) + kx =

However, the problem of determining how manydifferent regions exist,

given the cost functions and the demand functions, and howto fit this

information together, seems quite difficult, and is unsolved at the present

time.

§ 12. Fixed costs

Let us now consider the case where there is a constant red-tape cost in

initial ordering. This problem is also unsolvedto date.

The equation now has the form

(1) f(x) =Min[A(y—x) +g (y—2) +at |” p(s —y) p(s) ds
y¥zu

+£O," es) as + |" So —s)ebyasi),
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where

(2) g(x) =g,x >0

=O,x = 0.

Here g represents the fixed cost.

It is tempting to envisage a solution of the following form

(3) y=Sfor0O<*<s

=xfors<xXx

where 0 <s < S < oo. A policy of this type is called an ‘“‘sS-policy.”

Policies of this type are used in variousestablishments, and havea fine

intuitive flavor. Unfortunately, it is easy to construct relatively simple

examples which show thatthis policy cannot be optimalin all cases, and

there the matterrests.

§ 13. Preliminaries to a discussion of more complicated
policies

In the previous sections we have considered some processes having

solutions of quite simple and intuitive form. We now wishto consider two

cases in whichthe solutions are of a more complicated nature. Thefirst of

these will be one involving a time-lag in thefulfilling of orders, the second

will treat the case where the initial ordering function is a non-linear

convex function of the amount ordered, with no red-tape cost in either

case.

In both cases weshall employ the methodof successive approximations

to determine the properties of the solution.

§ 14. Unbounded process—one period time lag

The functional equation weshall consideris that derived in § 2, namely

(1) fl) = Min [ke + al]p(s—a) p(s) ds +F@) |ols) ds
z>0

+ |" fe—s +2) 963) 51]
Weshall prove

THEOREM 5. The optimal policy 1s given by the rule

(2) z= 2(x) forO<x*<x

z= 0, forx<x,

where z(x) > Oandz(x) = 0.
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This function z (x) 1s monotone decreasing in x.

ProoF. The proof will proceed by induction, based upon the following

sequence of successive approximations

(8)fale) =al|b(s—a) p(s) ds-+fol0)|p(s)ds|"fole—s) (9) 45],
(a function we have repeatedly encountered before), and for ” = 0, 1,

, © e %y

(4) fn +1(*) = Min T (2, x, fr),
z>0

where T (z, x, fn) is the expression contained within the brackets in(1).

Let us now consider T (z, x, fy) as a function of z, say M,(2).

We have

(5) M,’ (z) =k+ fy’ (2) [- g(s)ds +a [#0 (x —s + 2) p(s) ds,

and the second derivative is

(6) M,” (2) = af,” (z) [- m(s)ds +a [an (x —s + 2) (s) ds.

Since fy” > 0, we see that M,” (z) > 0 for all x > 0. Hence the equa-

tion M,’ (z) = Ohas at most oneroot in z for any x. For large ~,1t 1s clear

that there will be no root, and for small x, say x = 0, there will be a root

provided that a, p and & are properly related, a point we will check sub-

sequently. Meanwhile, let us show that this root, which we call z, (x) is

monotone decreasing in x. so

To show this consider the expression Gy (x, z) == — af,’ (2) | p(s) ds —
x

a |. fo (x —s + 2) (s) ds, as a function of x for fixed z. Its derivative

with respect to x 1s

0G» x
(7) =—a] f."(x—s +2) (s) ds,OX 0

which is negative. Hence, the family of curves w = G,(x, z) looks as
follows

 

  W=G,(0,z)

 

—~S_

oO Z ©

w=Go(x,z)

  
Figure 6
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This graph very clearly shows that z, (x) is monotonedecreasing in x, and

equal to zero for x > x.

In order to obtain similar results for the second approximation, we

must show that f,” (x) > 0. We have

(8) fi (x) = T (2(x), x, fo), O<*e<nm,

= T (0, x, fo), Xy<i Kx.

In [0, x,], we have

(9) fi) =—ap |"psydsta [fi (x—s +24 9165) ds,
and

(10) fi" (x) = ap p(x) + afl (2) @)
+ (a |fo" (w—s + 2) p(s) ds) (1 +dey/dx).

From (9), we see that f,’ (0) = — ap.Sincef,’ (x) is monotone increasing

in x it follows that ap + af,’ (z) > Oforz >0. Hence we will have

fi" (x) > 0 if we show that 1 + dz,/dx > 0.

To do this we return to the equation defining z,, namely M,’ (z) = 0.

Using the expression in (5), we see that

(11) [afy” @). | gp (s)ds +a [ fo’ (x —s + 2) p(s) ds] dz/dx

+a [on (x —s + 2) p(s) ds = 0,

which shows anew that dz,/dx < 0 and that 1 + dz,/dx > 0.

Werequirefinally a relation connecting fy’ (x) and f,’ (x).

We have

(12) fe’ (@) =—ap |" p(s) ds-+a |" f' esp (s) ds.

Hence in [0, x] we see that f,’ (x) < f,’ (x), since fp’ (x) is monotonein-
creasing in x. Since f, (x) = fp (x) for x > x, we have

(13) fo (*) <Sfi'(4)

for all x > 0.

Continuingas in the preceding pages, we see that we obtain a function

Zn (x) for each » having the property that

(14) (a) zn(x) > OforO0< x% < xn

(b) Zn (x) = O for %n < x,
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and zn (x) monotone decreasing in x. Furthermore the sequence %n will

be monotone decreasing and possessa limit x.

It remains to show that x = 0 if a, p and & are suitably related. This

is equivalent to checking as to whether or not f, (x) is the solution.

Returning to (5), we set x = 0 and examine the equation

(15) k + af,’ (z) = 0

If k + af,’ (0) < 0, there will be a solution of this equation. Turning to
(12), we see that fy’ (0) = — ap. Hence werequire

(16) kR<a'hp

the intuitive and expected condition for a process involving a one-stage
delay.

§ 15. Convex cost function—unbounded process

As anotherillustration of the power of the method of successive approx-

imations, let us consider the case where the cost of ordering, g (y — x),

is a strictly convex function of the amount, y — x, ordered. The equation
iS NOW

(1) fle) = Min (gy —x) +al [” p(s—y) @(s) ds +40)|" p(s) ds
yYy2r

+ [So —s) p(s) as].
As usual, we set

(2) fale)=al]“p(s—x)@ (sds +fo(0) |p(s) ds + ["fole—s)pls)as].
and,forn = 1,2,....,

(3) fn +1 (x) = Min T (y, x, fn).
Yar

Let us begin with the consideration off, (x), assuming that g (x) possesses

a continuous derivative for x > 0.

If y > x, y is determined by the equation

“ty—=alp[ pyds— |" fi 9) 9 (9) ds).
Since we have assumedthat g (x) is convex, 1.e. g” (x) > 0, it follows that

this equation can have at most oneroot, since the left side is monotone

increasing and the right-side monotone decreasing.

For x = 0, there is a root provided that

(5) g’ (0) <ap.
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For x large, there is no rootif g’ (0) > 0.

If y > x, we have

(6) Fy (*) = — 8" (y —4),
and

(7) fi" (x) = — 8" (y — x) (dy/dx — 1).

To determine the magnitude of dy/dx — 1, we turn to (4). This yields

(8) g” (y — x) (dy/dx — 1) = [ — ap p(y) — aft’(0) oly) —

(a|" fo" ( —s) p(s) ds) dyad.
From this we readily conclude that dy/dx >0O and dy/dx —1 <0.

Hencef,” (x) > 0.

Furthermore, we see that —f,’ > —f,’. We now haveall the details

of an inductive proof of

THEOREM 6. There is a function y (x) and a number x with the properties

(9) (a) y(x) > x, y (x) ts monotone increasing

(b) y(x) > 4x, forx<x,y(x) =x,x >%

(c) x > Otfap > 2g’ (0)

This function y (x) ts the optimal policy tn (1).

Appendix Chapter V—The Renewal Equation

The equation

(1) u(x) =S (a) + [" u(e—s) p(s)ds,

which occurs in a great many different areas of analysis, is commonly

called the renewal equation.

There are two important methodsavailable for establishing properties

of the solutions, the method of the Laplace transform, and the Liouville-

Neumann method of solution — which is successive approximations.

The Laplace transform technique owes its success to the fact that

|“u (x — s) y (s) ds is a convolution having the formal property that

0 Oo

( [- e~ st w(s) ds).
0

(2) [- e— tx [ i u (x—s) o (s) ds] dx = ( |. e-'& 4 (x) dx)
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Hence(1) yields, proceeding completely formally,

(3) [- e~'t 4 (x) dx = [- e~*x F(x) dx / (1 —- [- e- '= @ (x) dx),
0

from which a great deal can be deduced concerning the asymptotic be-

havior of u(x) as x —> oo, using either Tauberian theorems or complex

variable theory, under appropriate assumptions concerning fand @.

However, the properties of most interest to us here, positivity, con-

vexity, et al, can most readily be deduced by considering the sequence of

approximants

(4) Uy = f(%)

tn 41 = f(%) + [; un (x — 8) p(s) ds,

and showing that each function up (x) has the required property.

This approachis justified by the following result.

THEOREM 9. Let us assume that

(5) a. f(x) 1s bounded in every finite interval [0, xo]

b. [- lo (s) |ds <1.

Then there 1s a unique solution to (1) which is bounded in any interval

[O, Xo].

This solution may be obtained as the limit of the sequence given by (4).

Iff (x) 1s differentiable and y (x) 1s continuous, we have

(6) wa =f") + uO) GO) + | ww —3) p(s) ds.
Iff (x) > 9, w (x) => 0, then u (x) > 0.

There are a numberof other combinations of conditions corresponding

to those given in (5a) and (5b) whichalso yield existence and uniqueness.

The proof of Theorem 9 is readily obtained following the techniques

we have by now applied many timesover.

Exercises and research problems

1. Obtain the analogue of Theorem 3 for the case where thedistribution

function of demand varies from stage to stage.
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2. Consider the case where there are fixed costs in both initial purchasing

and the penalty cost and the distribution of demand has the form @ (x)

=1/kh,0O<x<k, yp (x) =0,% >k.

3. Consider the process with a fixed cost in the case wherethere are only

two levels of.demand, high and low. Can one generalize the result ob-

tained here to the case of an arbitrary finite numberof different demands ?

4. Obtain the analogues of Theorems 1, 2, and 3 in the case where there

is a Storage cost at each stage proportional to the quantity of items stored

over the previousstage.

5. Obtain the functional equations corresponding to the process in which

both the demands and times of demand are random. Consider the cases

where the times of demand have a continuous distribution and a discrete

distribution.

6. Obtain the analogue of Theorem 5 for processes with arbitrary time

lags.

7. Consider the case where thereis fixed cost and determine

a. The “constant stock level’’ policy which minimizes expected cost

b. The “‘sS’’-policy which minimizes expected cost.

8. We are interested in producing a single item over a given numberof

time periods in order to satisfy known future demands. We wish to do

this in such a way as to minimize costs, knowing the costs for production,

storage, and change in production rate as functions of time.

Let us consider the discrete version first. Let

T = the numberof periods,

ry, == demandat time z?,

X¢ == amount produced in timeinterval [¢ — l, ¢],

Xo == given initial production,

Ye == Xt+1— x > 0, the increase in production rate

at time f/f,

ur == excess of supply over demandat time #.

The costs are

c; = cost of producing an item in theperiod [7 — 1, 2],

d; = cost of storing an item in excess of demand for

one period,

e; == cost of increasing production rate by one unit

per unit of time.

Assumethat we wish to minimizethe total cost of the T-period process

under the condition that the supply must always exceed the demand.
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9, Consider the above problem under the condition that production

cannot be expanded in an arbitrary fashion. In particular, discuss the

two cases

a. Xe XMt41 an, 1 <a<o

b. Xe<O X41 < x1 +60,60> 0.

10. Consider the case where the demand1s stochastic, under the following

two alternative assumptions

a. Demand must alwaysbesatisfied

b. Demand can be postponed onestage

11. Obtain the functional equations corresponding to the process de-

scribed in § 2 under the assumption that we desire to minimize the prob-

ability that the cost exceeds a given quantityc.

12. Consider the functional equations discussed in the chapter under the

assumption that the distribution function @ (s) ds is replaced by the more

general Stieltjes distribution dG (s). Obtain the requisite existence and

uniqueness theorems and determine in which ways the theorems esta-

blished above must be modified in order to remain valid.

13. In what ways is the problem of ordering for a military supply depot

different from the problem of ordering items for a department store ?

14. Assume that there is no penalty for not being able to meet the de-

mand, but that there is a return of 6 dollars for each item demanded and

supplied. Suppose that this return can be used to increase the quantity

available at the next stage. Given an initial stock of x, and a supply of

money equal to y, how should one order so as to maximize the total ex-

pected return? Consider both finite and infinite processes under the

assumption of proportional costs.

15. Consider the equation

f(x) = Max [g (9) +A(e—y) + [" Sy —s) R(s) ds
where a

(a) g¢(0) =4(0) =0

(b) g’ (y) > 0, h' (y) > 0, g’ (0) < #’ (0).
(c) &(s) >0

(d) g" (vy) > 0, h" (y) > 0
(e) A(y) — g (y) is monotoneIncreasing in y.
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Show that the solution ts given by

f=H=h(x)0<e<x

= g(x) + [fe —5) (6) ds x >%x

where x 1s determined as the non-zero root of

h(x) = g(x) + I, h(x —s) k(s) ds.

16. Consider a situation where one mustorderitemsto be sold in antici-

pation of an uncertain demand which can be taken as a knownstochastic

variable. Let equal ordering periods be indexed 0, 1, 2, ..., and the demand

be described by a distribution

F; (x) = probability that the demand ts less than or equal

to x in period 2.

Let p be the unit selling price and C (y), assumed differentiable, be the

total ordering cost for y units in any period; J be the inventory at the

beginning of the present period (period 0); and suppose that all units

ordered at the beginning of the period are immediately available—units

may be ordered only once during a period and cannot be disposed of

except through sales at price # on demand.

Given any ordering policy, #;, at each stage there will be a cash return

of

Pi (xi, Yi, Ji) = P min (Li + yi, xi) —C (yi).

Let the purpose of the process be to maximize the expected value of

[ X' at Pi (xi, yi, Ji)],O <a <i.
i=0

Show that the resultant system of recurrencerelations 1s

fe (I) = max [ |” [p min (I + y, x) —C (y)
y>o Jo

+ af +1 (max (0, I + y —x)] dFx (x),
and solve in the case where C (y) = cy. (Harlan D. Mills)

17. Consider the equation

f(x) = Min (ke +a |” p (s— 2) p(s) ds + af (2) |“ (s) ds

+a]fe—s+2p(sas),

181



THE OPTIMAL INVENTORY EQUATION

corresponding to a one period lag in supply.

Assuming that the optimal policy is to choose z so that x + z= L,

for O< x¥<L,and z= for x >L, determine L.

18. Prove or disprove that this is the optimal policy.

19. Examine the conjecture that in the general k period lag case, the

optimal policy is to order nothing if the sum of the quantities on order

and on hand exceed a certain quantity L, and to order a quantity equal

to the difference if L exceeds this sum.

Bibliography and Comments for Chapter V

§ 1. The mathematical model of the inventory problem weconsider here
originated in the pioneer paper of K. D. Arrow, T. E. Harris and J. Marschak,
“Optimal Inventory Policy,” Econometrica, July, 1951. Stimulated by their

investigations, two further papers appeared A. Dvoretsky, J. Kiefer and
J. Wolfowitz, ‘‘The Inventory Problem I, II,”’ Econometrica, vol. 20 (1952),
pp. 187-222.
The first of these papers is devoted to existence and uniqueness of the

solution of the basic functional equation, and to a discussion of some parti-

cular processes. The second paper is more statistical in nature and devoted
to the question of determining the distribution of functions of demand as
the process continues.
The results of this chapter were obtained in conjunction with I. Glicks-

berg and O. Gross, R. Bellman, I. Glicksberg and O. Gross, ‘“‘On the Optimal

Inventory Equation,’’ Management Science, vol. 2 (1955), pp. 83-104.
Since the appearance of these papers, a large number of papers, both

published and privately circulated, have appeared on the topic of inventory
control. We suggest that the interested reader thumb through the pages of
Econometrica, Jour. Soc. Ind. Appl. Math., Jour. Operations Research Society,
Management Science, and Naval Quarterly Jour. of Logistics, where he will
find further results and references.

§ 3. The results discussed here are in accordance with the remark of an
earlier chapter that the derivatives of the return functions, or ‘‘marginal
returns’ possess a simpler structure that the return functions in manycases.

Appendix. Further results concerning renewal equations and functions of
similar type may be found in W. Feller, “‘On the Integral Equation of
Renewal Theory,’’ Ann. Math. Stat., vol. 12 (1941), R. Bellman, (with the
collaboration of J. M. Danskin), “‘A Survey of the Theory of Time-Lag,
Kketarded Control and Hereditary Processes,’’ RANI] Corporation, 1954,

R-271.
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CHAPTER VI

Bottleneck Problems in Multi-Stage
Production Processes

§ 1. Introduction

In this chapter we shall discuss a particular class of significant and

difficult variational problemsarising from the study of multi-stage pro-

duction processes.

Weshall first formulate a discrete version of the process, which under

certain assumptions of proportionality of output to input leads us to the

problem of determining the maximum of a linear form subject to linear

constraints, a basic problem to which the theory of linear programming

has made notable contributions in recent years. Although the state of

analytic research on this fundamental problem isstill in its early stages, a

large class of problemsarising in applications can be successfully resolved

numerically, with the aid of modern computing machines and various

iterative techniques such as the “‘simplex’’ technique.

The study of bottleneck processes, however, which combine a moderate

numberof activities at each stage with a large numberof stages, encoun-

ters the usual difficulty of dimensionality if conventional computational

methods are used. As in the treatment of the processes of the previous

chapters, we can circumventthis obstacle to some degree by using for-

mulation in termsof functional equations. Since, however, we are interest-

ed in explicit analytic solutions,in order to study the character of optimal

policies, we shall formulate continuousversions of processes. It is worth

emphasizing that the continuous process may actually be closer to re-

ality than the discrete version in many cases. An essential weapon in our

mathematical armory is the use of the dual continuousprocess, thus ex-

ploiting the linearity of the process.

To illustrate the method, we shall treat a simple process in detail, in

this chapter, while a more complicated process will be discussed in the

subsequent chapter. In manycases, these analytic methods, applied with

faith and resolution, permit us to obtain explicit analytic solutions of the

maximization problem, together with an explicit description of the opti-

mal policies. Many difficulties, however, remain asfar as the construction

of a general theory is concerned. Examining the following pages, the
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reader will quickly see that the mathematical theory of these problemsis

in its rudimentary stages.

The variational problem 1s that of determining the maximumoverthe

vector function z(t) of the inner product (x (T), a), where x and z are

connected by the vector-matrix differential equation

(1) dx/dt = Ax + Bz,x(0)=c,

and z satisfies the constraint

(2) Cz< Dx,

forO<t< Tf.

The techniques we employ to discuss this problem will be further de-

veloped and applied to classical problems in the calculus of variations
in Chapter 9.

§ 2. A General class of multi-stage production problems

A central problem in the theory and application of mathematical eco-

nomics is that of integrating a complex of industries, of similar or varie-

gated type, so as to produce a given product in a mostefficient manner.

Here the criterion of efficiency may be minimum time, or maximum

profit, or some combination of both.

As an example, which is quite elementary from the economicpoint of

view, but sufficiently advanced from the mathematical viewpoint to

generate problems which we cannotresolve as readily as we woulddesire,

let us consider a simple model of a three-industry production process

where the individual industries are the ‘‘auto”’ industry, the “‘steel’’ in-

dustry, and the “‘tool”’ industry.}

In this highly condensed or “‘lumped’”’ model of economic interplay ?

weshall assumethat the state of each industry is completely specified at

any time by its stockpile of raw material and byits capacity to produce

new quantities using these raw materials. Furthermore, we shall begin by

assuming that it is sufficient to consider that changes in these basic

quantities, stockpile and capacity, occur only at discrete times ¢ = 0,

1,2,..., T.

1 Needless to say, these names are used merely to guide our intuition. It is

not suggested that any deep significance be attached to them.
2 This type of lumping is precisely analogous to what is done in the study of

electric circuits in the low frequency case, where we introduce the concepts of
‘resistance’, “‘inductance’’ and ‘“‘capacitance’’.
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Let us then define the following state variables:

(1) xy

X(t) = capacity of auto factories at time ¢,

tockpile of tools at time ¢,

c

st

vs t) = capacity of steel mills at timef,

S

capacity of tool factories at time ¢,

We makethe following assumptions concerning the interdependenceof

these three industries:

(2) a. An increase in auto, steel or tool capacity requires only steel and

tools;

b. Production of autos requires only auto capacity andsteel;

c. Production of steel requires only steel capacity;

d. Production of tools requires only tool capacity and steel.

The dynamics of the production process may be described as follows:

At the beginning of each unit time period, say ¢ to ¢ + 1, we allocate

various quantities of steel and tools, taken from their respective stock-

piles, for the purposes of producing autos, steel, and tools — whichis to

say increasing the stockpiles of these quantities—andfor the purposesof

increasing the auto, steel, and tool capacities.

Let, for: = 1, 2,

(3) a. 2; (¢) = amount of steel allocated at time ¢ for the purpose of

increasing x; (t),

b. wi (¢) = amount of tools allocated at time ¢ for the purpose of

increasing %; (¢).

Uponreferring to the assumptions in (2) we see that

(4) a. 23 (¢) = 0

In order to obtain relations connecting x, (¢ + 1) with x; (4), 2: (¢) and

wi: (t), we must make some further assumptions concerning therelations

between output and input. The simplest assumption to makeis that we

have a linear production process with output of an item always directly

proportional to the minamum input of required resources.’ Thus, produc-

3 As we have observed in the preface, this may not actually be the simplest
for mathematical purposes. A more realistic assumption predicated upon a law
of diminishing returns, involving nonlinear functions, may actually lead to a
simpler mathematical problem. The reason for this is that nonlinear functions
take more kindly to a variational approach. On the other hand, linear problems
may be more readily treated numerically, in some cases.
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tion is directly proportional to capacity wheneverthere is an abundance

of raw materials, i.e., stockpile, and directly proportional to the minimum

quantity of raw materials whenever there is an abundance of capacity.

It is because of this dependence upon the minimum resource that we

use the name “‘bottleneck problems.”’

As an illustration, the increase in the numberof autos from ¢ to # + 1

will depend upon the capacity of auto factories at ¢, x, (t), and the quan-

tity 2, (¢) of steel, as defined abovein (3a). Since production depends upon

the minimum of capacity and supply of raw material, we obtain the

equation

(5) x,(¢ + 1) = x, (t) + Min (7, %2 (2), ay 2(4),

where y, and a, are taken to be knownpositive constants.

In a similar fashion, combining the assumptions in with those of the

previous paragraph, we obtain the following equations which relate

xi (t + 1) to x; (¢), 2: (4), and w;(t):4

(6) x, (¢-+ 1) = %, (¢) + Min (7,%(2), a1 %(4))

X%_(t + 1) = x, (t) + Min (ag 2, (t), Be We(t))

X(t + 1) = %5 (t) — 21 (t) — 22 (t) — 24 (¢) — 2s (4) — 2c (f) + v2 %4 (4)

%4(t + 1) = x, (t) + Min (ay 2, (2), Ba Wy (2)

X(t + 1) = x5 (f) — We (t) — wa (t) — We(¢) + Min [ys %(2), as 2s(2)]

X_ (t + 1) = %¢ (t) + Min (ag 2¢ (¢), Be We (¢)),

where ai, fi, and y; are constants.

The constraints upon z; and w; are obviously

(7) (a) 21, wi > 0

(b) 2, + 2g + 24 +25 + 2 < %;

(C) We + Wy + We < 4X5

together with the ‘“‘common-sense’”’ constraints

(8) (a) Ay Zyl y1 Xe

(C) @, 2% = PB. We

(b) @42, = By, w,

)

4 All these equations are conservation equations which state that the quantity
of an item at time ¢ + I is the quantity at time ¢, minus the quantity used over

[¢,¢ + 1], plus the quantity produced over[¢,¢ + 1].
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The meaning of these equations is that there is no advantage to any

allocation beyond the capacity of production, and again that the mini-

mum resource determines the production level.

By means of these additional constraints we may eliminate the va-

riables w; completely, obtaining in place of (4.6) the system of equations:

x, (f+ 1) = x, (t) + a, 2, (f), 41 (0) = C1,

Xo (t+ 1) = XQ (t) + ag 2(A), X2 (0) = Ca,

x3 (t + 1) = %3 (tf) — 21 (f) — 22 (ft) — 24 (t) — 25 (4) — 26

(9) + Y2% (t), x3 (0) = cs,

X(t + 1) Xq (t) + Gy 24 (2), %q (0) = Cy,

X%5 (t + 1) X5 (t) — &g 22 (t) — &4 24 (t) — Eo 2(t) + as 25 (t),

Ei = ai/Bi, x3 (0) = Cs,

Xe (E+ 1) = X(t) + Ae 2(t), Xe (0) = Cy.

The constraints, in turn, have the form, for each ¢:

(a) 24>0

b) 21+ 2g + 2g + 25 + 26S Xs(
(10) (c) Vo lg + Ya 2s + Vo 2% X5

(d) 4 <f, Xe

(ec) 25 < fg Xo.

We must now choose the 2%(¢) for ¢ = 0,1, 2, ..., J — 1, subject to

the above constraints, so as to maximize x, (T).

§ 3. Discussion of the preceding model

It is easy to see that x, (T), the total number of autos produced over

the time period [0, JT], may be written as a linear expression 1n the quan-

tities z;(t),¢ = 0,1,2,...,7—1,1=1,2,...,6. The problem of

maximizing x,(7T) subject to the linear constraints of (2.10) is conse-

quently within the domain of linear programming. It may be solved

computationally for explicit values of the coefficients and the time 7, by

iterative processes of various types, provided that T is not too large. In

particular, for dynamic processes of the kind considered here, a number

of important simplifications are possible.

However, in general, in analyses of the type presented here, we are not

so much interested in the numerical solution corresponding to any par-

ticular set of constants as we are in the complete set of numerical values

obtained from a range of parameter values. In other words, in most cases

the whole interest of the investigation lies in a “‘sensitivity analysis,’’ or

equivalently a ‘‘stability analysis,”’ of the solution.

187



BOTTLENECK PROBLEMS

This sensitivity analysis 1s required because of the many assumptions

we have madesuchas linearity of output, the crude description of indus-

tries in terms of lumped capacities and stockpiles we have employed, the

absence of time lag or “‘lead time’”’ in production, and so on. Any conclu-

sions concerning the structure of optimal policies that may be drawn

from the simplified mathematical model can have validity only if these

conclusionsare relatively insensitive to the precise values of various para-

meters which occur.

It is clear from what we have said above that the numerical work

involved in performing any reliable sensitivity analysis using purely

computational techniques, involving as it does a probing of many-dimen-

sional space, will be tedious, time consuming,andinevitably incomplete.

The question arises then as to whetheror notit is possible to determine

the intrinsic structure of an optimal policy, regardless of any numerical

values we may subsequently assign to the parameters. This knowledge1s

not only of importancein itself, in allowing us to make a completesensi-

tivity analysis of the solution, but 1s also extremely helpful in determining

approximate solutions in cases where explicit analysis seems hopeless,

and in furnishing analytic clues to the solution of more complicated pro-

cesses.

As a first step towards obtaining the solution, both analytically and

computationally, we shall reformulate the problem in termsof functional

equations.

§ 4. Functional equations

It is clear that the total output of cars obtained using an optimalallo-

cation policy is a function only of the initial resources, c,, ..., Cs, and

the duration of the process, 7. Furthermore, c, need not be explicitly

mentioned.

Let us then define for J = 1, 2,...

(1) fi(¢s, C3, ..-, Cs; 2) = The total output obtained over a time interval

T starting with initial resources ci,1 =

2,3, ..., 6, and employing an optimal policy

Employingtheprinciple of optimality, we obtain the following functional

equation for f(Cs, cz, ..., Cg; 1):

(2) fe, C3, ..-, Cg; J + 1) = Max [a, 2, + f(ee’, cs’,..., 6 3 T)],
Z

where
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Co = Cy + Ag 22

Cz == Cy — 2, —- 2g — 24 — 23 — 2p + Vol

(3) Cy = Cg + Oy %
/

Cy == Cy — Eq 2g — Eq 24 — Eg 2% + A; 25

Ce = Ce + Ae Ze,

and Z denotes the region in the (2), 22, 24, 25, 2)-Space defined by the

following inequalities

(a) 2>0

(b) 2) + 22 + 2% + 2 + 2% < Cy

(4) (C) Ye22+ Ya%a + Yo %e Sos
(4) a<feee

(e) 2 < fe Ce

The analytic problem of determining /, and, more importantly, the

nature of the optimal policyis still one of great difficulty. The computa-

tional problem is also formidable involving as it does the tabulation of a

function of five variables for each value of T. The homogeneity of the

process enables us to reduce this to a problem involving four variables.

Weshall refer to this fact again in following sections.

The computational problem involved in determining the maximum

over the region Z, a polyhedral region bounded by planes, maybe greatly

simplified by observing that the maximum occursat vertices.

§ 5. A Continuousversion 5

To simplify the analytic problem, we shall transform the discrete

process into a continuous process. In so doing, our purpose is to avail

ourselves of the combination of the powerful methods of calculus, to-

gether with the resources of linear algebra.It is very often true, in dealing

with the physical world, that continuous models are far simpler to discuss

than discrete models.

To obtain a continuous version, we assume that decisions are made at

times 0, At, 2 At, and so on, and that the allocations z; (¢), wi (t) previously

made overthe timeinterval[¢, ¢ + 1] are replaced by allocations 2; (¢) Af,

wi (t)'At over the interval [#,¢-+ At]. The quantities z;(¢) and w;(?)

are now rates of allocation of resources.

Turning to the equations in (2.9) describing the discrete process and

allowing 4? to approach zero, the new equations take the form

5 Chapter VIII is devoted to a similar continuous version of the discrete process
of Chapter IT.
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xy (t) = a, 2, (t), x1 (0) = cy,

X(t) = Ag Ze (t), Xo (0) = Ce,

X3 (t) = — 2, (t) — 25 (t) — 2q (t) — 25 (4) — 26 (4) + yo X(t),

(1) x3 (0) = ¢3,

Xq (t) = Ag 2q (t), X_ (0) = Cy,

ies (0) = — &2 22 (t) — &4 24 (Ct) — 6 26 (t) + Os 25 (8), Xs (0) = 6s,
Xq (t) = Ae 2(t), 6 (0) = Ce.

(* signifies differentiation with respect to ft).

The constraints upon the z; are now

(a) 24> 0

(b) 21 + 2g + 2% + 25 + % << 0O

(2) (C) Yo%_ + Yq 2q + Ve Zs 00

(dq) tafe x2

(e-) 2 <fe Xe

This means that the constraints of (2b) and (2c) disappear. Two con-

ditions which were automatically satisfied before must nowbe added.

These are the conditions that the stockpiles be non-negativeat all times,

(3) (b’) x3 = 0
(c’) x, > 0,

From these constraints we see that whenever x, = 0 we must have

(4) 2, + 23 + 24+ 25 + 2p ye %

and similarly when x, = 0 we must have

(5) Eg Zo + &4 24 + Es 2% As; 25

It follows that z,, 23, 24, and z, are unbounded whenever x, and x; are

positive. This means that delta-function type solutions may occur. This

point will be discussed in more detail in the subsequent chapter where an

example involving this type of solution is discussed. However, a rigorous

discussion of this feature of a solution will be postponed until the second

volume. Weshall proceed essentially in a formal manner in this and the

following chapterat various points where a rigorous discussion would take

us too far afield.®

6 It is important to point out that the continuous process is described by the
above equations. A detailed discussion of this point is given in Chapter VIII,
where wealso discuss the connection between the discrete and continuous processes.
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The problem is now to maximizex, (7) subject to the above constraints.

After some discussion of notation, we shall approach this problem

using the functional equation approach of dynamic programming.

§ 6. Notation

Let us introduce vector-matrix notation which will greatly simplify

the notation and thus be of considerable help in presenting the general

theoretical approach, unclouded by a superabundance of superscripts.

Following the discussion of the basic concepts, we shall consider a par-

ticular example, to illustrate the analytic minutiae, which are nottrivial.

Let x (t), z(t), and c denote respectively the n-dimensional column

vectors

x, (2) z, (t) Cy

Xe (t) Ze (t) Ce

x(t) = ,z(t) = c=

xn(2) Zn ( cn

and A;, B;, for such values of 1 and 7 as occur, denote ” x m matrices.

Weshall be dealing only with vectors x and z whose components are

non-negative. To indicate this fact we use the notation x > 0 to denote

the relations x; > 0,1 = 1, 2, ..., m. The inequality x > y is equivalent

tox —y > 0.

Turning to the equation in (5.1), we see that it may be written

(1) dx/dt = A,x + A,2z,x(0) =c

where A, and A, are matrices determined by the coefficients in (5.1).

Similarly, the constraints in (5.2)—(5.5) take the form

(2) z>0

B,z2<B,x

The problem of maximizing x, (T) is a particular case of the problem of

maximizing a linear combination, z c; xi(T). To express this in simple

form, we introduce the inner productof two vectors x and y, namely

(3) (x, ¥) = Zz mi ye
i=

The general problem is then that of choosing z (¢) so as to maximize

(x (7), a) where a is a given vector, subject to the relations given above in

(1) and (2).
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One of the difficulties that arises in the continuouscase, and not in the

discrete process, is that this maximum maynotexist if we restrict z (¢) to

be a function in the usual sense. Weshall proceed on the assumption that

the constraints in (6.2) are sufficient to ensure the existence of a maxi-

mizing function. This will be the case if (6.2) has the form z < B,x,

whereB,is a positive matrix. A complete treatment will require the use

of Stieltjes integrals.

§ 7. Dynamic programming formulation

Since the forms of the equations in (6.2) are time-independent,
it follows that Max (x (7), a) (where we shall assume throughout

the remainder of this expository chapter that the maximum actually
exists) is a function only of J and the componentsof c, whichis to say, of

the initial stockpiles and capacities, the state variables and the duration

of the process.

Let us then write

(1) Max (x (T), a) = f(c, T) =f (cy, Ce, ..., nj T).

§ 8. The basic functional equation

Weshall now derive a functional equation for f using the Principle of

Optimality 7, which in this case states that the nature of any optimal

allocation policy over the interval [0, T], which is to say, one whichyields

the maximum of(x (7), a), is such that its continuation over any final

sub-interval [S, T] must be an optimal policy for a process of duration

T — S starting from the initial state c (S).

Here c(S) is the vector x (S) obtained from (6.1) using an allocation
policy over [0, S].

The mathematical transliteration of the verbal principle yields the

functional equation

(1) f(¢,5 + 2) =f(¢ (S), 7)

for an optimal policy over[0, S + T].

It follows that the policy over [0, S] is determined by the equation

(2) f(e,S + 1) = Max j'(c (S), T),

where we maximize overall feasible policies over [0, S], that is to say,

overall z (¢) satisfying the constraints.

Equation (2), together with the initial condition f (c, 0) = (c, a), is the
basic functional equation governing the process.

7 Chapter ITI, § 3.
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§ 9. The resultant nonlinear partial differential equation

Let us now usethe basic equationin (8.2) to derive a partial differential

equation for f, on the assumption that fand x possess the requisite differ-

entiability properties. As we shall see below, it 1s quite permissible to

proceed formally at this point since we shall derive a technique for veri-

fying the validity of any proposed solution.

Let us take S to be an infinitesimal. Then we have

(1) (a) f(e,S +7) =f(e, 1) + Sfr + o(S),
(b) c(S) =c+S[A,c + A,z(0)] + 0(S),

(c) f(c(S),T) =f(e + S [Arie + Azz (0)J, T) + 0 (S)
d= fle, T) + Slave + Azz 00), <2) + 0(5),

where ¢ f/d c denotes the vector

of
OC,

of
of OC,

2 SS
) Oc "

af
Ccn

 

As S shrinks to 0, the maximum overtheinterval [0, S] shrinks to a

maximum at S = 0, or a maximum over z (0), under our assumptions of

continuity. With reference to the expansionsin (1) above, we see that the

infinitesimal analogue of (1) is the nonlinear partial differential equation

(3) of/oT = Max (4, c + A, z (0) ‘L))
z (0) Oc

where z (0) is constrained by the equationsin (6.2).

§ 10. Application of the partial differential equation

The importance of the equation in (9.3) resides in the fact that it per-

mits us to determine the solution over [0, T + A T] if the solution has

already been determined over [0, 7] for a// initial states.

It turns out to be true that in many of these problemsthedifficulties

are readily resolved for small 7, since for processes of short duration, the
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obvious, crude, policies are optimal. It follows then that we have, in

theory, a systematic means of continuing the solution up to any desired

value of 7. Although systematic, the details are by no meanstrivial, as

we shall see in the next chapter.

In the next section, we shall go through the analysis involvedin re-

solving a relatively simple problem. Much of the analysis can be discarded,

once we have ascertained the structure of the solution, which in many

cases is plausible on economic grounds.

§ 11. A Particular example

As an application of the general approach presented above, let us now

consider the problem of maximizing x, (TJ), where

(1) dx,/dt = a, 2,, x, (0) = ¢,,

Ax.,|dt = As 29 — 215 Xo (0) = Co,

and z,, 22, the rates of allocation, as functions of ¢ are subject to the

following constraints:

(2) (a) 24,2, >0,

(b) 2, + 2% < Xe,

(Cc) %< 44,

(d) x, >0.

forO<t<T.

In this case, the rates z, and z, are uniformly bounded,andit is easy to

see, using either a direct weak convergence argument, or relying upon

classical theorems in the calculus of variations, that the maximum is

assumed. Hence we maySet in rigorous fashion,

(3) (cy, Co, T) = Max x, (T).
[0, 7]

As in the general case, f satisfies the functional equation

(4) F(ex, C2, S + T) = Max f(x, (S), x2 (S), T),
(0, S]

which, in the limit as S — 0, yields the partial differential equation

of of of |
(5) ap Max A, 2, ac, + (@_ 2, — 2;) dc, ,

which, at the moment, werecall, is purely formal, since we do not know

whetheror not f has the requisite continuity properties.
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The maximum is taken over the region defined by

(6) (a) 0 < 41, 22,

(b) 2, + 2%< Cg,

(c) 22 <= Ci,

with the additional constraint

(7) Ay 2 — 2, = O,

if x, = 0. The variables are now z, = 2, (0), z2 = 2, (0).

Let us now sketch the analytic procedurethat will yield a solution. We

begin with the most complicated case, that where c. < c,. For a process

of short duration, the solution is trivial. We have

(8) Zz, = 0, 25 = Xo,

f = Cg ehT,

This policy is pursued until a “‘bottleneck’”’ develops, whichis to say,

c, exceeds c,. Using the optimal policy described in (8) we see that this

situation will occur as soon as T exceeds 7, = log (c,/C2)/@p.

To obtain the solution for T > 7,, we rewrite (5) in the form

F Ff 2) F
(9) oT max E (2 ac, dc,) * “* ac,

The location of the maximizing point(z, (0), z, (0)) will depend upon the

sign and magnitude of the coefficients of z, and z,. For T < 7, we have

of af af .
—— a Ay = a, eu’,10

(10) “1 OC, Gs OCe

Using our assumption concerning the continuity of df/éc,, 0f/dc,, we

suspect that the solution for T slightly greater than 7, will have the

form

(11) (a) 2,;=0,2,=%x,forO<S< 7,

(b) 2,;=0,2,=%,for7T, <<S<T.

Applyingthis policy, f takes the form

(12) f= ce, + (T —T,) As Ci,

where 7, is as above. In order to determine how longthis policy endures

when T > T,, we consider the process as starting from S = T,. In terms

of cy’ = c, (T,), co’ = c,(T,), f has the form

(13) f=c, + a,c,’ (T —T,)
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The equation which replaces (9) has precisely the same form with ¢c, c,

replaced by c,’, c,’, namely

tax [,(
\ oT AT) a \e

Wehave,using (13),

  a L) aL, .— a
Oc; OCs OC,’

of of
(15) 15GeUB— Fy) — I,

of
“8 Bc,! ~ Ga

The coefficient of z, is negative for T < 7* = 7, + 1/a, a,, 0 at T*, and

positive thereafter.

It follows that the new policy given by (11) remains optimal for T, <

T<T*.

Furthermore, since 7* — T, is independent of c, and c., we see that

we know the form of the optimalpolicy over a tail interval.

It remains to determine whatthe policy is in the middle of the interval
[0, 7] in the general case when T exceeds T*. We suspect from an exami-

nation of the vertices in the figure below that it has the form

(16) 21 — Xo — x1) 29 = xy.

It is instructive to consider the region determined by the constraints

in (6) when c, > ¢,

 

 
 

Z

ZozC\0 f/f 2 \

P

Z| +Zo2Co

0 R Z|
Figure 1

When maximizing over z, the three crucial points are the vertices P,
Q and R, where P = P (0, ¢,), Q = (Co — ¢1, C1), R = (Cy, 0). It is the
principle of continuity which leads us to chooseQ as the maximizing vertex
aS SOON aS Cg Surpasses ¢C).
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Instead of verifying this directly, which may be done, weshall describe

in the next section a more elegant technique which exploits the linearity

of the process. This technique serves not only as a means of verifying

proposed solutions, but also as a theoretical tool for the determination of

the nature of optimal policies.

§ 12. A Dual problem

Let us, to illustrate the principles we shall employ, take our basic

equation to have the form

(1) dx/dt = Az,z(0) =c,

with constraints of the form

(2) (a) 220
(b) Bz<x

(c) x > 0.

Note that the equation in (6.1) may always be written in the form of

(1), if A, > 0, by first writing it in the form

(3) dx/dt = A,yw+ A,2,x(0) =c,

with the constraints

(4) (a) z>0

(b) Be<x

(Cc) wor.

and then combining the vectors w and z into one. However, an equation

of the type appearing in (6.1) may also be treated directly by these

methods.

Since ¥ =c + I Azdt, the constraint of (2b) may be written

(5) Br + | Cadt <c, (C = —A)

The problem of maximizing(x (7), a) 1s equivalent to that of maximizing
T T

| (Az, a) dt = | (z,a’) dt, wherea’ = A’a. Here A’ denotes the transpose
0 oO

of A.

Beginning all over again, we start with the problem of maximizing
T

J= | (z, a’) dt over all z satisfying the constraints
oO
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(6) (a) z>0
(b) Br + |Cadt, <c

“é

Let w (¢) be a non-negative vector of the same dimension as c. Then by

virtue of (6b) we have

(7) [ (w, Bz + I. Czdt,) dt< [ (w, c) dt
oO

Let, as above, B’ denote the transpose of B. Then, as is easily seen,

(Bz, w) = (z, B’ w). Integration by parts yields, for any constant matrix

C,
T t T T

(8) | (w, | Czdt,) dt = | | C'wdt,, 2) dt
0 0 0 t

Combining these two results, we have

T t T T

(9) | (w, Be + | Czdt,) dt = | (Blw + | C'wdt,, 2) dt
O t0 0

Let us now assunie that it is possible to find a vector w = w(t) which

is non-negative and satisfies the inequality

T

(10) Blw + | C'wdt, > a
t

We then have the chain of equalities and inequalities:

T T t

(11) | (w,c) dt > | (w, Bz + | C2dt;) dt

T T T

— | (Ble + | C'wdt, 2) dt > | (a’, 2) dt
O t O

From thisit is clear that

.
(12) Inf | (w., c) dt > Sup |" (2, a") dt

where the infimum and supremum are taken overall wand z satisfying

the inequalities of (10) and (6b). If the mintmum and maximum areas-

sumed, the details are as above. If, however, the minimum and maximum

are not assumed, then delta-functions will occur, which is to say, we must

reformulate the problems in terms of Stieltjes integrals. A number of

interesting and difficult problems arise in this way, which weshall not

discuss here.*
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If the two extremes in (11) are equal, we see that the followingrela-

tions must hold °

(13) wi = Oifc; > (Bz + [ Czdt);
0

T
zj3 = Olfa; <(B’w+ | C’wat);

t

The important fact which we nowwishtoestablish is that, conversely,

any pair of non-negative z and w satisfying (13) and the original con-

straints will furnish solutions to the maximum and minimum problems.
To demonstrate this, let us note that if (13) holds, all the relations in

(11) are equalities. Assume nowthat z is another vectorsatisfying all the

constraints and for which

(14) |" (2, a’) dt < [ (Z, a’) dt
0

Then with the w associated with z we have

T T T
(15) | Ga’) dt< | (3, Bw + | C'wdt,) dt

Oo Oo t

T t T

-. (Bz +4 | Cidt,, w) dt < | (c, w) dt

T

— | (z, a’) dt,

a contradiction.

It follows then that we have a procedure for verifying a conjectured

solution. Given z, we seek to determine w by meansof (13). Having ob-

tained w, we test to see whetheror not w satisfies the given constraints. In

the next section we shall carry through thedetails for the problem of § 11.

This procedure will encounterdifficulties if w is not uniquely determined

by (13). In this case, various alternative solutions must be considered.

8 In particular, we shall not discuss the connection with a min-max result in

the theory of games, a result corresponding to known results for the discrete

problem.
® Apart from sets of measure zero.
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§ 13. Verification of the solution given in § 11

Applying the techniques described above, wefind that the dual of the

problem posed in § 11 is the problem of minimizing |: (Cy W, + Cy We) at

over w,(t) and w, (¢), where y and w are connected by the equations,

(1) dy,/dt = —a,w,+ W2,9,(T) =—1,
dy./dt —- -— As We, Ve (T) — As 10°

and the constraints have the form

(2) (a) Wy, WW, >0

(b) w, + We > Ve

(Cc) We>y

The equations of (12.13) are now:

If

(3) (a) 22<%), then w, = 0

(b) 2,+2,<%, then w, = 0

C) We>YV,, then z, = 0(
(d) w,+ w, > ye, then z, = 0

We have omitted the conditions corresponding to x, > 0 since we

suspect that the proposed optimal allocation policy automatically keeps

X_ => 0. This ts actually the case.

Wewishto verify that the policy which maximizes x (T) is the follow-

ing:

(1) if Xo <= X14) 21 = 0, Zo = Xe
(b) ForO << t< T — La, ay,

(2) if x2 D> %4, 2) = Xp — %y, Zy = Hy

It is easily seen that this is a permissible policy in that z, = x, — x, 1S

actually non-negative when z, and z, have the above values.

Having prescribed z, we can determine w using (3) and then test for

consistency. [here are two cases to consider, depending upon whether x,

ever exceeds x, or not.

Let us assume then that T > 7,, in which case x, can exceed x,if

appropriate policies are used.

10 Observe that the dual process proceeds backwards in time.
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Case I: T — l/a,a, < T, < T. Thesolution is given by

(5) fort << T,:2, = 0,2, = %,

fort > 7,:2,; =0,2, = x;

For ¢ < T, these results yield, in conjunction with (2) and (3)

(6) for T, < T: wv,(t) = 0, w, (4) = yz(E)

for T, >T: w, (t) = 0, w, (t) = yz(t)

For ¢ > 7, we obtain, using (1)

(7) Ya (t) = ay, y, (t) = —1 + a,a,(T —?t) <0

while for t < T,, we have

(8) Ve (t) = a, e%(T,-t) > 0

yy (t) = a, a, (T — Ty) — es 1-9 << 0

Hence, the inequalities w,, w, > 0, Wz > V1, WW: > yz are Satisfied in their

respective intervals.

Case II: T, < T — 1/a, a,. This is the most interesting case. The vectors

z and w are now determinedasfollows:

forT —lfaja,xt<T: 24,=0,H,=0

2g = X%1, Wy = Ve

(9) forT,<t< T—A1fa,a,: 2, = %,— 4%, W, = 41

Sq = %1, Wy = Ve — V1

forO<t<T;,: z,=0,w,=—0

Zo = Xo, We = Veo

For T — 1/a,a,<t < T we have

(10) Vo (t) = ae, y, (f) = —1+ a, a,(T —2)

Hence, in this interval y, (4) << 0 = w,. Note that y, (T — 1/a,a,) = 0.

In the range T, < ¢< T — 1/a, a,, we have the equations

(11) dy,/dt = —agy,+ (4, +1) 1

dy,/dt = — a, V2

Let us show that y, >0 and y, >¥y, in this range. Starting from
t = IT — 1/a, a, where the inequalities are satisfied, let us reverse the

time. The backward equations are

(12) dy,/dt = a,¥,—(1 + a) yy

dy,/dt = az Va

201



BOTTLENECK PROBLEMS

From this we obtain

(13) d/dt (v2 —1) = (1+ 4) v1

Hence,if y, remains non-negative, we will have y, — y, > 0. It is clear

that dy,/di starts out positive and stays positive as long as (y,, V2) remains

above @, V2 — (1 + a@,) vy, = 0. Ifit hits the line we have dy,/dt = 0, which

means that y, has a maximum or a point of inflection. Both are excluded,

since

a” yy dy.
ip yeAT)
 

a
= aVz > 0(14) a

This shows that w, and w, remain non-negative in this interval.

Finally, for ¢ < T, we have

(15) dy,/dt = yy», dy,/dt = — a, V2

As ¢ decreases, y. increases and y, decreases. Hence, y, > y, remains

valid.

This completes the verification.

§ 14. Computational solution

The problem of maximizing xy, where

(1) Ke +L == Ay Xe + Aye Ve + Oy, Ze + Oy, We, Xo = Cy,

Viet == Ag, Xe + Age Va + De, Ze + Deo Wk, Vo = Ce,

over sequences {zx} and {wx} subject to constraints of the form

(2) diy Zu + dig We < dig Xu + dig Vx,t = 1, 2,..., M,

may be reduced, as we know, to the computation of the sequence

{fr (C1, C2)}, R = 1, 2, ..., N, where

(3) fi (C1, C2) = Ga,

fn 41 (C1, Co) = Max Lfn (@11 Cy + Aye Co + 01,2 + Oy w,

As, Cy + Age Co + bg, 2 + Dg. w)],

where RF is the region defined by

(4) di, 2+ dig W< dig Cc, + dig Cy, 1 == 1,2,..., M.

Althoughit is not difficult to show that the maximum valueis attained

at a vertex of the region defined by (4), an exercise we recommendto the

reader, which meansthat the maximization at each stageis trivial com-

putationally, we are still faced with the problem of the tabulation of a
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sequenceof functions of two variables. What seems to make the problem

particularly onerousin this case is the fact that we havea possibly increa-

sing grid in the (c,,c,) plane. In other words, if we wish to compute

Jn (C1, C2) in the region 0 < c, < ¢,,0< cy < ¢,, we may haveto calculate

jw - , ina larger region, fy — , ina still larger region and so on.

It is clear that whenevera situation of this type arises, we have a very

costly and time-consuming computation.

Let us now show that we can simultaneously reduce the computation

of the sequence {fw (ci, C2)} to the computation of two sequencesof func-

tions of one variable, and to the case where wehave a fixed grid.

Ourbasic tool is the following homogeneity property of fw(C1, cs),

(5) In (C1, Ce) — Ci fN (1, C2/C;) ,

= Cy fn (¢,/C2, 1),
for Cy, Ce > 0.

We may thus write (3) in the form

(6) In +1 (cy, €Cy) = Max (2 Cy + Aye lg + 04,2 + Oy w)

 

f ( As, Cy + Age Cg + bo, 2% + Doo *)|
ni{ 1,

Ay, €, + Ayo C, + 04,2 + Oy, w

= Max (2a Cy + Age Co + Oy, 2 + doe w)
R

 

f (tnt diate Oe + Ona 1)

” Ay, Cy + Ago Cy + bg, 2 + Den w’

Wesee then that the calculation of fw +1 (c,, c,) can be effected if we

know the two functions

(7) gv (x) = fn (x, 1), 0
, 0 i
i\

\
\ I,

1

Hence the computation of the sequence{fw (c,, c.)} may be reduced to the

computation of the two sequences {gn (x)}, {hn (x)}.

§ 15. Nonlinear problems

A variety of problems in analysis, and in applications to control prob-

lems arising In engineering and mathematical economics, reduce to the

maximization or minimization of an integral of the form

T

(1) T(2) = | F (%4, Xo, «++, Xn} 21, Za, «+, 2m) al,

over all functions 2; (¢)
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subject to a numberof constraints of the form

(2) (a) dxifdt = Gi (x, z),~7=1,...,R

(b) Ry (x, 2) <0,7 = 1,2, ...0.

In somecases, the nonlinearity leads to a more complete analysis, since

it permits us to determine the extremalby classical variational techniques,

rather than test vertices as we must do in linear problems. In cases where

constraints of the type above enter, we must combine the two approaches.

In either situation, the functional equation technique maybe utilized for

both analytic and numerical purposes.

Problems of this type will be discussed in Chapter9.

Exercises and Research Problems for Chapter VI

1. Consider the problem of maximizing the linear form

L (x) = 2» b; xi, subject to the constraint x; > 0 and
1~=1]

n

Wij Xj <Ci,4 = 1, 2, ..., M, where we assumethat thecoefficients
jel

aij and 6; are positive. Let

Jn (C1, Cg -.-, Cm) = Max L (x).

Show that es

Ti (C1, Ce, «.-, Cm) = bd, Min Ci/aiy,

fn+1 (Cy, Co, -.-,¢m) = Max[Bn 41%

+ fa(Cy — Ayn +1%, ...,CM —aAmMn+1 x)],

where 0 < x < Min[ci/ain +1].
i

2. Show that fn (ci, ce, ... ,¢n) is a concave function of the c; for c; = 0.

3. What conclusion can be drawnfrom this result concerning the number

of the maximizing x; which are non-zero?

4, Consider the above problem for the case where M = 1, 2, or 3, and

determine the dependence of the maximizing x; upon the parameters c;,

and the analytic form of fn.

5. Show that the tabulation of the function fn (c;, cz, ..-., ¢w) can always

be reduced to the tabulation of the function fn (c;, cz, ..., 1). Establish

the corresponding result for the bottleneck process discussed above.
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6. Consider the problem of maximizing u (T) where

du/dt =au+uv,u(0) =c,

overall function v (¢) satisfying the constraintO<v<ufor0O<t<T.

Here all the quantities involved are scalars.

7. Solve the general problem of maximizing (x (T), a) where

dx/dt = Ax + By, x (0) =c,

over all vectors y (¢) satisfying the constraintO< y< xforO<t< T.

Here x, y, c and a are vectors, while A and B are matrices.

8. Show that the problem of maximizing x, (7) under the conditions

(a) dx,/dt = ay 2, — 25, X_ (0) = Co,

Ax,/dt = bs V3 23 — V2 22, X3 (0) = Cs,

where z, and z, are functionsof ¢ subject to the restraints

(b) 1. 2, + 23 < %.,

2. Vo 22 + Ys %3< X3,

3. 25, 23 —> O,

is equivalent to solving the partial differential equation

of ( of 2) of of |
(c) a max fe Oc, 7? az 22 + Os Ys Gc, Cy *3]°

where D (z) is the region determined by (b), under appropriate assump-

tions of continuity.

All parameters appearing are assumed to be non-negative and f =

fF (C2, C3, #).

9. Show that optimal policies depend only upon the ratio 7 = c,/c;, or

X%_/X_, and T the time remaining.

10. Determine the form of the solution for small 7.

11. Solve the problem in the special case where b, = 0.

Bibliography and Comments for Chapter VI

§ 1. A discussion of the theory of linear programming may be found in
Activity Analysis of Production and Allocation, Edited by T. C. Koopmans,
Cowles Commission, U. of Chicago, 1951, where there is an account of the
“simplex’’ technique of G. Dantzig, and a number of applications. An
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account of an iterative technique of a different type, the ‘‘flooding’’ technique
of A. Boldyreff may be found in A. Boldyreff, Determination of the Maximal
Steady Flow of Traffic Through a Railroad Network, RAND Corporation,
P-—687, 1955. Both of these are “‘relaxation techniques’’ of the kind brought
into prominence by R. Y. Southwell.

§ 5. The methods and results of this and the following section were
announced in R. Bellman,“Bottleneck Problems and Dynamic Programming,”’
Proc. Nat. Acad. Sct., vol. 39 (1953), and presented in detail by R. Bellman,
‘Bottleneck Problems, Functional Equations and Dynamic Programming,”’
Econometrica, vol. 23 (1955), pp. 73-87.

§ 9. A rigorous theory of these variational problems will involve at least
Lebesgue-Stieltjes integrals and, most likely, the theory of distributions of
L. Schwarz. It may well be that this will serve as a motivation for the study
of variational problems involving distributions.

§ 12. Asin the discrete case, the dual problem is most logically discussed by
treating the min-max problem containing both the original and the dual
process. A number of results can be established concerning the existence
of a value of the corresponding game and the equivalence, min-max =
max-min, using existing results in the theory of continuous games, in the
case where the policy functions are uniformly bounded as a consequence of
the constraints. The general case however, awaits a theory of games over the
space of the distribution functions of L. Schwarz.

It is remarkable that so much can be obtained using only the easily derived
result of (12.12).

§ 13. R. S. Lehman has found a continuous version of the ‘‘simplex’’
method of Dantzig which can be used to obtain the solutions of variational
problems of this type in a systematic fashion. A preliminary accountof his
results may be foundin R. 5. Lehman, “‘On the Continuous Simplex Method”
RM-1386, RAND Corporation, 1954.
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CHAPTER VII

Bottleneck Problems: Examples

§ 1. Introduction

In the previous chapter, we discussed a multi-stage production process

involving three industries, which wecalled the auto, steel, and tool indus-

tries. Taking this problem as our motivation, we were led to a general

theoretical formulation of a class of continuous multi-stage production

processes in terms of the concepts and techniques of the theory of dy-

namic programming.

The purposeof the present chapter is to show by grinding through the

details of a particular example that this new approach maybe utilized

to provide explicit analytic solutions of problems of this general type.

The analysis is decidedly difficult and it cannot be said that these prob-
lems have in any sense been tamed.

Weshall consider a lumped two-industry process, involving what we

call the auto and steel industries. The high degree of lumping (or more

pedantically ‘““conglomeration’’) is indicated by the fact that at any time

¢ we assumethat the state of the industrial system is completely specified

by the following quantities:

(1) x, (tf) = auto stockpile at time ¢

%»_ (t) = auto capacity at time ¢

x3 (t) = steel stockpile at time ¢

X(t) = steel capacity at time ¢

Taking ¢ to be a continuous variable, at each instant we must deter-

mine rates of allocation of the steel stockpile towards three distinct

objectives:

(2) a. Production of autos

Building of auto factories,

1.e., Increase of auto capacity

c. Building of steel mills,

1.e., increase of steel capacity
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The last two of these three objectives are to be sublimatedto thepri-

mary objective of maximizing the total numberof autos produced over a

time-period 7, which is to say, the quantity x, (7).

The basic assumptions of our model are the following: The measures

of stockpile and capacity are chosen so that one unit of capacity, either

auto or steel, is required for the production of one unit of stockpile in

unit time. We assumethat0, units of steel are required to make one unit

of autos, }, units of steel are required to increase auto capacity by one

unit, and 6, units of steel are required to increase steel capacity by one

unit. However, we shall assume that no steel is required to produce addi-

tional steel.

A very important assumptionis that there is no time-lag betweenallo-

cation and increase in capacity of production. The problems whicharise

when time-lag is considered are an order of magnitude moredifficult and

will not be discussed here.

Let

(3) (a) 2, (¢) = rate of production of autos

(b) 2, (¢) = rate of increase of auto capacity

(c) 23 (t) = rate of production of steel

(d) 2, (¢) = rate of increase of steel capacity

Wederive, following the lines of the argumentation of the previous

chapter, the following system of equations

(4) dx,/dt = 2z, (t), x, (0) =

dx,|dt = z, (t), x2 (0) =
Ax,/dt = 2 (t) — bd, 2, (t) — dg 2, (t) — by 24 (4), x3 (0) =

dx,/dt = 2, (b), x4 (0) =

where the z; and x; are subject to the following constraints

(9) (a) 2(¢) < %(2)

(b) 23 (4) %(4)
(c) 24) >0, +=1, 2, 3,4,

(d) x3 (4) >0V
I
\V
a

The first two constraints are capacity constraints, i.e., limitations of

bottleneck type; the third is a statement that rates of production must be

non-negative, i.e., no scrapping or “‘cannibalization,’’ and the fourth

asserts that the steel stockpile must be non-negative, i.e., no borrowing.

The problem is now to determine the2; (¢), satisfying the restrictions of

208



BOTTLENECK PROBLEMS: EXAMPLES

(5), which maximize x, (7). Because of the lack of any explicit upper

bound on z, and 2,, various difficulties arise which must be surmounted

by the use of delta functions.

§ 2. Preliminaries

In § 1, we formulated in mathematical terms the problem of utilizing

the steel and auto industries so as to maximize auto production. Let us

continue from equations (1.4) and (1.5).

The equations can be combined to provide an equivalent system of

integral inequalities:

t

(1) 2p Xe! a—| 2, (s) ds < Cg,
0

t

O< xs: | (— 25 (s) + 5, 2, (s) + de 2 (s) + bg 24 (S)) ds < Cz,
oO

t

2g Xq! 2s @—| 2 (s)ds<c,y
0

Our problem is a special case of ithe following more general problem.

Let Z be the set of all vector functions z (¢) which satisfy the conditions

(2) (a) z(t) >0

(b) Be(t) + |C2() ds<e

where B and C are matrices and c is a constant vector. We now wish to

find a vector function z (¢) in Z which maximizes

(3) | (z(t), a) df
0

This is the problem wediscussed in the previous chapter. It was shown

there that there is a dual problem which furnishes a sufficient condition

that a z (¢) belonging to Z be a maximizing vector,or in other words, that

a feasible solution be optimal.

Let W be the set of vector functions w (¢) for which

(4) w(t) = 0
T

B’w(t) +C’ i} w(s)ds >a
t

where B’ and C’ are the transposes of B and C. The dual problem is that
T

of finding the minimum of | (w (t), c) dt, for we W.
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As we showedin § 11 of Chapter 4, we have for all z and w in the respec-

tive classes Z and W,the inequality

T T

(5) [| Goad [| wood

If we can find two vector functions z and w for which (2.5) holds with

equality, they must yield the maximum and minimum,respectively, for

the two problems. Two such vector functions for which equality holds

will be said to be paired with each other. Thus, a sufficient condition that

a z belonging to Z be optimalis that it can be paired with some w in W.

For the auto-steel problem formulated above we have

1000 0 —1 0 0 1

(6) B=|0 000 ]C={ & —1 & la=
0010 00 0 -I 0

The dual system of inequalities is therefore

T

(7) 1, = ws (0) +d, | w,(s) ds—1 > 0
t

T T

n= —| wa(s) ds + dy|” w5(s) ds = 0
t t

T

l, = WwW, ®—| ws (s) ds > 0
t

T T
Lb | 1 (s) ds — | w,(s)ds > 0.

We have chosen to call the components of w, wz, w,; and w, in order to

keep the connection with the inequalities z, << %2, 0 < %, 23 << x, clear.

The optimality conditions, i.e., the conditions that (2.5) hold with

equality, are:

(8) If z; (t) > 0, then /; (t) = 0, (+ = 1, 2, 3,4)

If z, (t) < x, (4), then w, (¢) = 0

If 0 < x, (t), then w, (t) = 0

If z, (¢) < x4 (¢), then w, (t) = 0

The following are equivalent to the optimality conditions:

(9) If?;(¢) > 0, then z (¢) = 0, (¢ = 1, 2, 3, 4)

If w, (¢) > 0, then z, (¢) = x,(t)

If w, (t) > 0, then 0 = x, (¢)

If w, (t) > 0, then z, (t) = x, (t)
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§ 3. Delta-functions

Before we proceed to determinethesolution, let us discuss the use that

we will make of delta functions. It can easily happen that the general

problems discussed above have uosolutions if the sets Z and W are com-

posed only of vectors having components which are integrable func-

tions. In fact, as we shall later see, this is the usual case in the auto-steel

problem. This difficulty can be evaded by enlarging the sets Z and W so

that they contain vector “‘functions’’ whose components are sums of

integrable functions and ‘“‘delta functions.’’ In these enlarged classes

the problems havesolutions. By a delta function concentrated at ¢, with

weight w, which we denote by w06(¢ — t.), we mean an improperfunction

such that

Oift < tpt

I cod (Ss — to) p (s) ds = wy (to) 1f t > to

for every function g continuousat ¢,. (For ¢ = ¢, the integral in undefined

except when @ (fo) = 0, in whichcaseit is defined to be 0.)

The use of delta functions can be justified rigorously either by the

alternative use of Stieltjes integrals, or by regarding the delta functions

as obtained by completing the space of integrable functions by a process

similar to that used in obtaining the real numbers from therationals.

The optimality conditions remain the same even when Z and W are

enlarged in the above way. Weobservethat there is no harm in theviola-

tion of the optimality conditions at isolated points or even in sets of

measure zero when only measurable functions are allowed as components

of z and w. But, when one of the vectors, w, for example, has a component

w; which is a delta function at the point ¢,, then for az to be paired with w,

the corresponding optimality conditions must besatisfied at the point ¢.

Weshall find that we never have to use delta functions concentrated

at any point other than 0 to obtain an optimal z. Intuitively, this means

that discontinuous changes are not necessary except at the beginning.

§ 4. The solution

The procedure that we use will be to construct a numberof w-solutions

which we can pair with 2’s belonging to Z and hence obtain solutions of

our problem. Thechief difficulty occurs in constructing w-solutions with

suitable properties. In this we are guided by a combination of guesswork

and observation of properties that an optimal z should have. Guesswork

could be eliminated at the expense of considering a very much larger

numberof cases.

First of all, it is clear that we should always have z, = x,. To produce

too muchsteel is not harmful. This tells us that we should have 2, (?)
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T

— 0 for all ¢; 1.e., w, (2) = | w, (s) ds. The remaining inequalities of

(2.7) then become

(1) 1, = wy (t) + 6, w,(t) —1>0

Shortly before 7 it is clear that we should be producing autossince %,

is the quantity we wish to maximize at time T. Hence, we will have z,

> 0, which implies that /, = 0. This alone will not give us sufficient

information to determine w, and wy.

Wefirst construct a w solution, which weshall call the basic w-solution,

with the property that /, = O near the end. This means that we must have

w, (I) = 0. Then by (4.1) we have

1
(2) w, (t) = — (1 — e-&s (7-9/2)

by

Ws (t) — e—5,(T-t)/b,

Wesee that w., ws, and w, all remain positive as ¢ decreases. We must

check to see whether the inequality /, > 0 is satisfied. With the above

choice of w we have

b T —
(3) — — (1 — e~ >, (T—t)/bs) — (7—) + b

2= 2 (| — 2, (T-0)/0,
1 by b, pali—é )

The quantity on the right side of this equation is positive for 7 — ¢ small

but is negative when 7 — is large. Let ¢, be the value of ¢ for which the

right side becomes zero. Then T — f, is the solution of the equation

b
(4) T—to = @ a *) (1 — e-%&(T-t,)/o.)

1

Thus we see that at ¢, we must abandon one of the equations J, = 0

and /, = 0. Let us try to choose w so that /, = 0 and /, = 0 before to. We

have

(5) Ws (Z) = W, (to) elto—t)/b,

We (¢) = | — b, W4 (to) eltg —t)/b,

To verify that /, > 0 we computeits derivative. We find

dl, dW, b,
(6) dt — b, dt + We. = 1 — (0, + | Ws (to) e(tg—t)/b,
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A condition sufficient to insure that /, > Ois that d/,/dt < 0 for all? < féo.

This will holdif

7) (t.) > meW, (to) > -———-
\ be + by by
which by(4.2) and (4.4) is equivalent to T — ¢, > 0,. This last inequality

can be checked by putting 0b, in place of T — ¢ in (4.3) and verifying that

the quantity thus obtained is positive. We have

@ A |(o.+ F2) a ent 90t) — |b,i\4*' a, *

bs ( b, *
— 2 2-0, b,/b, |20, 0,/b, __ _

b2° é bee |7°
Hence /, > 0 for all ¢ << ¢, with the above choice of w.

Wealso see from (4.5) that w, and w, remain positive. Thus (4.5) will

give a Satisfactory choice of w until w, becomeszero. Let ¢, be the value

of ¢ when this happens. Then, by (4.2) and (4.4) we have

by +balds
(T — to)
 (9) e (tg—t,)/0, =

Before ¢, let us see whether we can choose w, = 0 and have/, = 0. We

see that w, > 0 and w, > 0. We have dl,/dt = b, dw,/dt < 0 so that

1, > 0, and dl,/dt = b, dw,/dt < 0 so that /, > 0. Hence this choice of w

will be valid for all ¢< ¢,.

Our basic solution is summarizedin the following table. This table also

lists the properties that a z paired with this w solution must have. Any 2

with these properties gives a policy which,if feasible (i.e., satisfies the z

constraints), is optimal.
 

       
 

t<t, tL <t < lo bg <t <T

1, > 0 Z,= 0 l, = 0 i, = 0
lL, > 0 Z, = 0 lL, > 0 Z, = 0 l, = 0

(10) l, = 0 l, = 0 ls = 0

l, = 0 lL, = 0 l, > 0 zy = 0
Ww, = 0 W, > O £, = Xs Ww, > O Z, =
Ww, > O xX, = 0 Ww, > 0 x, = 0 Ws, > O X%, = 0
w, > O Zg = %, Wy, > O Zg = %, Wy > O fg ==

Figure 1

Let us see how this table can be used to obtain a partial solution of the

auto-steel problem. For the momentlet us assume c, = 0. For ¢ < ¢, we

must have
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(11) Z, = 0, 2, = 0, 23 = X%q, 24, = %4/04.

For t, < ¢ < t)» we must choose

X,— 0, x,
(12) 2, = Xq, %q = O, 23 = Xq, %q =3

4

This can be doneif and only if x, (¢,) — 0, x» (¢,) => 0. Let us assume that

this inequality is satisfied. Then for t, < ¢ < T we must have

X44 — by Xp
—— , 23 == X4, 24 = O

bs
(13) 21 = Xq, 24 =

which is possible provided %, (t,) — 5, %2 (¢,) = 0. Thus we see that for

certain initial conditions we can obtain the optimal solution.

§ 5. The modified w solution

As already has been noted, we run into trouble if x, (t;) — 0; 2 (¢,)

< 0. To handle this case we consider a modification of the basic w solu-

tion of Fig. 1 above. Let #, be in the interval [¢,, 7]. For each such u,

we define a solution as follows:

For uw) <t < T we let w (¢) be the sameas in the basic solution. For

t << Uo we choose w, (t) = 0. For ¢ <u, but near u» we choose w’,(t)

= 1/b, so that /, = 0. This choice will keep /, > 0 for a while before 7to.

We define #, to be the point where /, becomes 0 with this choice of w.

For t < u, we choose w so that /, = 0. It is easily seen that this choice

makes /, > 0,/, > 0, w; > 0 and w, > 0 for'all ¢ < u,. Hence, in this

way we obtain a w solution for each uw, in the interval[¢,, 7]. We observe

that for uo = ¢t,, 4, = +t, and this solution is identical with our basic

solution of Fig. 1. Note that u, depends continuously on up». Since for uo

— T,u, = T — b,, there is a wsolution for each wu, in the interval

[t1, T — by).
These w solutions together with the properties of the corresponding z

solutions, are summarized in the following table:
 

  

  

| 1

<u, | Uy<t<Ug Ug <t<T t,<t<to up<t<Tto<t<T
ee Sk -— _-

l,>0\z,=0]|1,=0) 1,=0 | =0-
lL >O0|24 = lL>Olz=-0 1>0|2,=0:1,=0;
l, = 0 l, = 0} l, = 0 l= 0 |

(1)| 44 = 0 i, > 0 4=0, 4=0 , i, >0 !24=0
W, = 0 W, = 0! WwW, > O01 4=% We >O 4 = 4%
Ws, > O|x7, = 0 ws, = 0! (We >0 };4,=0 'we>0 x= 0
W, > 0) 2, = %4 Wy > 0 | ag = 44) wi, > 0 Zg = %, Wy > 0 | 2, = %,

Since ws, is a delta function at u,, we must have *#, (u,) = 0.  
 

Figure 2
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Note that if uw, > ¢o, then there is no ¢ satisfying the conditions of the

third column; and if wu) = T thenthereis no ¢ satisfying the conditionsof

the last columneither.

§ 6. The equilibrium solution

A policy which seems plausible in some instances is the following:

Make aninitial adjustment to bring x; down to zero in such a way that

after the adjustment x, = 0, x,. If this is done, after the initial adjust-

ment no increase in capacities is necessary and all available steel can be

used for auto production. Such a policy would require for the w paired

with it that /, (0) = 0 and /, (0) = 0, because in general both z, and z,

will have to be delta functions. We shall construct a w solution withthis

property.

First, we note that our basic w solution has this property when is

such that ¢, = 0. This suggests that we try to choose

(1) w(t) = ae-h (T-/b, + B

where a and f are constants. If w, is chosen so that /, = 0, the inequalities

(4.1) become

(2) ly = d, wa () —(T—9 + by |was) ds 0

1, = dewalt) — | w4(s) ds = 0.
£

If J, (0) = 1, (0) = 0, then

(3) w, (0) = 7—>b b

We set EF = e-%7/% and from (6.1) — (6.3) derive the following two

equationsfor a and p:

(4) ba+(b,+6,7T\)p=T

(6, + 6, 0,) Fa + (6, + 6,b,) 8 =T.

A solution of these equations will give a w for which /, (0) = J, (0) = 0.

Wehave

 

(5) a=TI}1 b,+6,T | =T [b, (6 —T)]

A\l 6,+6,b, A

p=T bs l = I [b, (1 — E) — 6, 6, E]

A (bp + b, by) E1 A
where
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be bo +b,T
(6) A= (by + By by) Edy + by 8, == (b, + 6, b,) (b, — 6, E — b, ET)

Also

(7) A= (by + b, by) E (by %: T/: — b, — b, T)

> (by+ b, b,) E (b,+b, T —b, —b,T) =0

Now let us assume that J — t, > T > by. Then from (6.5) we see that

a< 0. Let us check to be sure that for the w we have defined w,(),

w, (t), and w, (¢) are non-negative for 0<0¢< T. This is equivalent to

verifying that 0< w, (t) << 1/b, and dw,/dt< 0. We have dw,/dt =

a b,/b, 6% (T-)% < 0. Hence it will be sufficient to check that w, (T)
> Oand w, (0) < 1/b,. Since T —t, > T, we conclude from (4.4) and

(6.3) that

T T —to b, + d,/b,
=o= <ttlipby + bb, bp +d, bp +b, 6, 1%

  (8) w, (0)

T
(9) wy(L) =a + B = > bi [04 + 02/01) (1 —E) — 2] 20

Wealso must check that forO <i t¢< 7,/, >Oand/, > 0.

Since

(10) dl,|dt = b, dw,/dt + 1—db,w,(t) = 1—d, 8

and /,(T) = b, w,(T) > 0, we have /, > 0 for all ¢ in (0, T]. Similarly,

we know that /, (T) = 6, w, (7) > 0. Hence, if we show that d¥J,/dt? < 0,

we will have proved that /, > 0 for all ¢ in (0, 7]. We have

halaa( ) dt? —a at b, b, = e

This completes the proof that the w which we havedefinedis a solution.

Its properties, together with those a z paired with it must have, are sum-

marized in the following table:
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|

i= 0 | O<t<Tf

1, = 0
l, = 0 lL, > 0 Z = 0

l, = 0
l,=0 l, > 0 Z,= 0

(12) WwW >O , 4=%,

wz >O0 | x, =0
w, > 0 X, = %,

Note: This solution is valid only
for IT = by.

Figure 3

§ 7. A short-time w solution

The w solution which we construct next will be useful in finding the

solution of our maximum problem whenthetotal timeis short, T < ),.

This solution differs from those already constructed in that it allows x,

to be positive and z, to be a delta function concentratedat 0.

ForO<t< letw,(t) =y, w, (t) = 1— b,y where 0 < y < 1/0,.

Then /, (4) = 0,2, (4) > OforO<t < T. Also

(1) 1.) = by —(T —?t) (1— 2}, y) = [b, + 6, (T —t)) y —(T —2)

 Now, if we choose y = bo beT
2 1

Thus we obtain a solution of the system of inequalities (4.1). It is sum-

marized below together with the properties a z paired with it must have.

then /, (0) = 0 and /, (t) > 0 for? > 0.

 

t= O0O<'<T

4, = 0
lL, = 0 lL, > 0 Z, = 0

l, = 0
l, > 0 Z,= 0
W, > 0 Z, = %,

(2) W, = 0
w, > 0 Zg = Ms   

Since w, is a delta function at
T, *,(T) = 0.
  

Note: This solution is valid for

LT < 6, only.   
Figure 4
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§ 8. Description of solution and proof

We now can give the complete solution to the original problem. There

are quite a few cases that we must considerseparately. The critical values

to and ¢,, which are defined by (4.4) and (4.9), depend on 7, but in sucha

way that for fixed 0,, b, and b,, T —t, and T —?, are constants.

Case I: T 1s large enough so that t, > 0. In this case we choose z, to be a

delta function concentrated at 0 to bring x; down to zero immediately.

This means that if the total time is long enough we should not keep any

steel in storage but should be using it to build moresteel plants. The use

of the delta function 1s permissible because /, = 0 for ¢ near 0. For

O<t<t, we let

(1) Z, = 0, 2 = O, 23 = %4, Zq = %4/4

thus keeping x, at zero level. At ¢, we must distinguish different subcases:

(2) TA: %4 (t,) — 0, x, (t,) > 0

IB: %4 (t,) — dy x2 (4,) << 0

In case IA we can produce autos at capacity without running out of

steel. Hence we let

 X4— b, X-
(3) £1 = Xo; Zz, = VO, £3 = X4, 2g = OT —_——_

by

for ¢; < ¢<. t,; and fort, <ti< T welet

X,—b,%
(4) Zp = May 2g=,Bg = yy =O.

2

This solution for Case IA is optimal because it can be paired with our

basic w solution of Fig. 1.

In Case IB we do not have enoughsteel to produce autos at capacity.

Hence we continue to produce no autos for ¢ > 4, 1.e.,

X4

b,

We do this until x,— 0}, x, becomes zero or ¢t = T — 0,4, whichever

happensfirst. If x, — 0, x, becomeszero at ¢’ then we choose z,; = %, 2.

= 0, 23 = %4, 2, = 0 thereafter. This solution is seen to be optimal by

pairing it with the w solution of Fig. 2 for which u, = ¢t’. As we haveal-

ready remarked there is such a solution no matter what ?¢’ is, so long as

t, <t' < T — 6,. If, on the other hand, x, (T — b,) — 6, x. (T — 0,4) <0,

then for 7 — 6, <t< T we choose

(5) Z,= 0,2, = 0,23, = %, 244 =

x4
(6) ay = pte = 0, 2g = Hy My = 9,

1
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This solution can be seen to be optimal by pairingit with the w solution

of Fig. 2, for which up = T, u, = T — by.

Case II: T ts such that t, < 0< to. As before we choose z, to be a delta

function concentrated at 0 to bring x; down to zero immediately. There-

after the solution is as before. There are two subcases:

(7) ITA: x, (0) — b, x, (0) >0

IIB: x, (0) — 6, x, (0) <0

In Case IIA welet z, = %, 1.e., produce autos at capacity. We use the

remaining steel to increase steel capacity before ¢, and to increase auto

capacity after ¢,. That is, forO <t < to we let

 
X,—b,%x

(8) Zy = Xe, 2g = O, 23 = HXq, 2 = * =
by

and for t > to we let

Xq— 04%

(9) 41 = Xo, 22 = Hha = Xa a = OO.

4

This solution is optimal because it can be paired with our basic solution

of Fig. 1.

Case ITB 1s similar to IB. The sameprescription holds, and the solution

is paired with one from Fig.2.

Case III: T ts such that tp << O0< T — b,. There are three subcases:

C3
IIIA: Cy— ), Co > b>

 

be

Cs

4

—cC b,c
ITIC: “<< ¢,—biteg <-—.

b, bs

In Case IIIA weuse ourinitial stockpile of steel to increase auto capa-

city, 1.e., we let z, be a delta function concentrated at 0 bringing x, down

to zero. Thereafter, we let z,; = x, and use any remaining steel to increase

auto capacity, 1e.,

(11) 21 — Xo, zg = =" £3 = X4, Zz, = 0.

This solution is optimal because it can be paired with the basic w solution

of Fig. 1.
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In Case IIIB wefind ourselves short on steel capacity. The policy and

proof are the same as in Case IB.

In Case IIIC we can make aninitial adjustment so that x, becomeszero

and x, = b, x,. We do this by choosing z, and z, to be delta functions

concentrated at 0. After that we let z; = x,, z, = 0, 23 = %4, 2, = O. This

solution is optimal because it can be paired with the equilibrium w solu-

tion of Fig. 3.

Case lV: T < by. There are three subcases which depend ontheinitial

values:

 

 

b1 Cs
IVA: Cy— b,c, > ——

be

(12) IVB: cy—b,c, > T

— €3 1
IVC: <¢,—b,6, <> 6,

b, b,

In Case IVA the solution and proof are the same as in Case IIIA.

In Case IVB we choose z, = 0 and z, = 0 for all ¢. As always welet

Z, == x,. We choosez, in any way suchthat z, (¢) < x, (t) and x, (7) = 0.

Thus, in this case the solution is not unique. Any solution of this form

can be seen to be optimal by pairing it with the w solution of Fig. 2 for

which #4, = T.

In case IVC wefind ourselves in an intermediate case, unable to follow

the policies suggested by IVA and B.In this case we makean initial ad-

justment of the steel stockpile down to the value c,’, using this steel to

increase auto capacity. Thereafter we choose 2, = %9, 22 = 0, 23 = %q,

and z, = 0. The value c,’ is determined so that x, (J) = 0. It is found that

(13) co! = by Cz — by (Cy — 0, Ce)

6,+6,7T
 

has this property. This solution is optimal because it can be paired with

the short-time w solution of Fig. 4.
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SummaryInitial Adjustments

 

Cases| I:4,20 |Hit, <0<%| Ill: <0<T—2},| IV: T <b,
  

A Adjust x, to 0 by Bring x, to 0 by
increasing %4. | increasing %,

“Build auto capacity”’.
 

 

 

   
B ‘“‘Build steel capacity”’. No initial

adjustments.

C No Case No Case Adjust so that x, = 0,; Adjust %,
X%q = b,x, by downward,
increasing x, and but not to 0,
X4. so that

x,(I) = 0.
Increase %». 
 

After the initial adjustments the optimal policy can be determined by

a priority system. Before ¢#,, building steel capacity, 1.e., 24, has first

priority. This continuesafter ¢, until either x, > 6, x, ort = by, whichever

comesfirst. When this happens, which maybeat¢,, of course,first priority

is given to auto production, z,. This will use up all available steel unless

X4 (t,) > 5, x2 (t,). In that case second priority is given to buildingsteel

capacity until the time ¢,. After ¢, second priority is given to building

auto capacity.
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CHAPTER VIII

A Continuous Stochastic Decision Process

§ 1. Introduction

As we haveseen in ChapterII, the formulation of the goldmining prob-

lem in its discrete form leads to a number of unsolved problemsin con-

nection with the three-choice problem, the non-linear utility problem,

and many others we could formulate. We turn, therefore, to a continuous

version of the problem in the hopes of overcomingthese difficulties by use

of the more powerful tools of continuity. As we shall see, we can now

resolve the corresponding questions in complete detail and thereby obtain

a clear insight into the structure of optimal policies. The information we

obtain concerning the structure of policies can now be used to furnish

useful approximationsto the original discrete process.

Onevery interesting andsignificant fact emerges. Whereastheoriginal

discrete problem had certain lineay aspects which made variational ana-

lysis difficult, at least in the case where we considered expected return,

the continuousversion is sufficiently non-linear to permit us to employ a

variational approach in theclassical manner, with certain modifications

required by the presence of constraints. However, in carrying through

this approach, our knowledge of the form of the solution for the discrete

case is of great service in telling us in advance what to expect to find. It

is a combination of the two techniques, old and new, which permit a

successful attack upon the problem.

Before turning to the method we shall actually employ, weshall discuss

two alternative approaches, each possessing certain features of difficulty

which render them inappropriate.

It is perhaps equally as important to know which methodsfail, and

why, as it is to know methods which work. In more general decision pro-

cesses of this type, a correct formulation of a continuous version is not

trivial. Particularly is this true in the case of multi-stage games of con-

tinuous type.

There are many different possible formulations, and the correctnessof

an approach must be judged not only on the groundsof its mathematical

rigor, but also on the grounds of analytic difficulty. If we do not have a

systematic means of resolving specific problems, we do not have satis-

factory theory.
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After this preliminary discussion, we shall turn to the approach we

shall actually employ, which is a compromise between the two prelimi-

nary methods.

A justification of our approachlies in the fact that we can demonstrate

that the limit of the discrete process, in a suitable sense, is the continuous

process we discuss. Weshall, however, not discuss in this volume these

important and interesting questions.

§ 2. Continuous versions—I: A differential approach

Let us now proceed to discuss some possible continuous analogues of

the functional equation of (5.1) of Chapter II.

Our basic assumption in this and the following sections will be that

each operationis to have a high probability of obtaining a small amount

of gold and leaving the machine undamaged. In other words, we re-

nounce any hope ofsolving our problem for all values of the parameters,

and consider, instead, a small region of the parameter space, (71, 72, G1, Ye).

We introduce the quantities

1 — q,6 = the probability of obtaining 7, x 6 and leaving the machine

undamaged if Anaconda is mined,

1 — q, 6 = the probability of obtaining 7, y 6 and leaving the machine
undamaged if Bonanza is mined.

where qg, and gq, are positive and 6 is a small enough positive quantity so

that 1 — g,6 and 1 —q,6 are probabilities, and 7,6 and 7,6 are less

than one.

With f(x, y) as before, we have the functional equation

A: (1—q, 6) (7, x6 + f(x —7, x6, y))
(1) f(%y) = Max |,© (L— 420) (72 V0 + f(%, ¥— 79 4))
This equation is precisely (5.1) of Chapter 2 for these new parameters.

Proceeding formally, on the assumption that f has continuous partial

derivatives, we have, for small 6, the approximate equation

A: f(x,y) +6(7,%—4,f(%, vy) —11 x ef/ox) + 0 (6?)
(2) f(x, y) = Max B: 6 7 2L(x, Y) +0 (129 — Gof (x, ¥) — rey OffOy) -- 0 (0%)
The limiting form as 6 — 0 is the equation

A: 74% —q,f—1™|x ies

B: ry¥—Qf—rey af]oy

This approach does not seem to be a fruitful one because of the diffi-

culty of establishing existence and uniqueness theorems for functional

equations of this type.

(3) 0 = Max
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§ 3. Continuous versions—II: An integral approach

Let us now consider a diametrically opposed approach. Let Sy denote

some sequence of A (or Anaconda)-choices and B (or Bonanza)-choices

totalling N in number. Set

Pnx (x, y) = the probability of surviving N stages and ending in the

state represented by (xwx, ynx), using Sy, upon starting

in state (x, ¥).

Ry (x, y) = expected return from N stages using Sy, starting in state

(x, ¥).

If Sy actually consists of the first N choices of an optimal policy, we

obtain for f(x, y) the functional equation

(1) f (%, ¥) = Rn (x, y) + 7 bux (%, Y) f (4x, Ye)

If N 6, where 6 is as above, is chosen to remain finite as 60 and

N -—> oo, andset equal to #, the analogue of (2.1) is a functional equation

of the type

(2) f(x,y) = Max [Rs(x, y, t) + |[flr ys) dGs (r,s, 2,9, 8)
S r=0 JS=0

where S denotes a continuous policy over the interval [0, ¢] and dGs is a

transition probability determined by this policy.

Functional equations of this type occur in the general theory of sto-

chastic processes. We shall not pursue this approach in this volumebe-

cause of the many difficulties involvedin justifying this equation and in

defining general continuouspolicies. Instead, we shall employ an approach

intermediate between the differential and the integral approach

whichyields a functional equation bearing the samerelation to (2) as the

diffusion or heat equation bears to the Chapman-Kolmogoroff equation

in the theory of diffusion processes.

A justification of this approachis the fact that it can be demonstrated

that the solution of the discrete process approachesthe solution given by

the continuous process as 6 —> 0. However, as stated above, weshall not

discuss this question here.

§ 4. Preliminary discussion

Let us continue to use the simple equation of (2.1) as our model for the

following discussion. According to the solution discussed earlier in Chapter

II, the A- and B-regions are separated by the boundary curve

1, % Yo
(1) Ls: (1— 4, 6) 7m8)

1 Je
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which, as 6 —> 0, approachesthe line

{2) L. — = —

For each 6 > 0, the optimal policy has the following form:

“If below L, continue using the A-policy until in the B-region, above

L,;. Then use the B-policy until in the A-region, below L;, and so on;

similarly if above L, to start.”

 
 

Geometrically:

Y{ B-region Ls

(x,y)

A-region

0 X

Figure |

The limiting form of this policy as 6 — 01s the following:

“Tf (x, y) is below L, use A until the line L is reached, then continue

along L thereafter; if (x, y) is above L, use B until the line L is reached,

then continue along L thereafter.”’

 

  

y L
B-region

(x,y)

~< —- (X,Y)

A-region

0 X

Figure 2

Let us observe that a policy of this type, which requires motion along

L, is not included in the set of policies associated with any nonzero 0.

These policies, allowing only the use of A or B, yield broken-line paths

consisting of horizontal and vertical pieces, as in Fig. 1.

It is clear, however, that a path such as that given in Fig. 2 may be

arbitrarily closely approximated by an optimal policy as 6 — 0.

This suggest the important point that a continuous version of theori-
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ginal discrete problem may not possess an optimal policy yielding a

maximum return. Instead there may only exist a sequence of policies

yielding a supremum-unless wesuitably broaden the conceptof a policy.

The natural way to accomplish this extension 1s to allow for the mixing of

decisions, in some suttable sense, at each time.

§ 5. Mixing at a point

The introduction of mixing at a point is, however, with no intention to

pun, a mixedblessing, since it carries along with it a numberof difficulties

of both physical and mathematical nature. Mathematically, we find

ourselves confronted by the samedifficulties that made us wish to bypass

the integral formulation of § 3; physically, we are reluctant to accept a

policy which involves mixing decisions as one applicable to a problem

where a choice of one or the other decision is required.

To avoid simultaneously the conceptual difficulties of both mathema-

tical and physical origin, let us employ an interpretive device which has

been used before in a very similar situation. The essence of this deviceis

the observation that, under certain natural continuity assumptions,

mixing decisions at a point is equivalent to mixing decisions over small

intervals about the point.

Weshall assume then, to construct our mathematical model, that we

are considering a process which requires at the times ¢ = 0,4, 24, etc.,

that we determine the proportion of the following timeinterval of length

A which will be devoted to A and B respectively. Thus, over a typical

interval [kA, kA + A], we devote the first part, [kA, RA + q, A] to the

use of A; and over the second part [kA + 9,4, kA + A], B is used:

A B
at

‘ ’

| |
| |

kA kA +9,A (A+ 1)A

Figure 3

The choice of g, will depend upon k, or morespecifically upon x (kJ),

and y (kA), and & itself, if the processis finite.

Assuming that 4 is small, so that the process is sufficiently well de-
scribed byfirst-order effects, we shall in the limit as 4 — 0 obtain setof

differential equations which wewill use to define our continuousprocess.!

A continuous policy will now be equivalent to a function q,(¢).

In the next chapter, we shall derive the differential equations. To

illustrate the power of the method weshall, in turn, solve problemscor-

responding to the two-choice problem, to the two-choice problem for a

1 Recall the corresponding comment in Chapter VII.
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finite number of stages, to the two-choice problem with a nonlinear

utility function, corresponding to the problem discussed in Exercise 1

of Chapter II, and to the three-choice problem of § 13 of that chapter.

Although the analysis is quite detailed, the guiding ideasare simple.

To justify the use of this formalism, it should be shown that the con-

tinuous process obtained in this way is actually the limit of the original

discrete process in a natural sense. This will be discussed in the second

volume.

§ 6. Reformulation of the gold-mining process

Let us now proceed to carry through the program outlined in the pre-

ceding sections. An interesting feature of the mathematics will be the

continued interplay between the techniques of the classical calculus of

variations and those of dynamic programming.

Let us, to clarify the issue, rephrase the problem weare considering:

‘At each of the time instants ¢ = kA weshall have to makea decision

concerning the proportion of the followinginterval of length 4 which will

devoted to the use of the machine in mine A andto the use of the machine

in mine B. This involves the choice of a fraction g,, which depends upon

the amounts of gold in the two mines at time /, and upon ¢ itself, if the

processis finite.

Wearbitrarily assume that once this proportion g, has been chosen, the

first part of the interval [kA, (k + q,) A], is devoted to use of the machine

in A, and the second part, [(k + o,) A, (k + 1) A], to use of the machine

in B, If x is the amountof gold in mine A at time £4, there is a probability

1 — q,q@ ,4 that an amount 7, « g, A is mined, and that the machine is

undamaged; and a probability q, g, A that no gold is mined and that the

machineis irretrievably damaged. If mine B contains y at time kA there

is a probability 1— 9g. y, 4 that the amount 7, y gy, J is obtained, and

that the machine is undamaged; and a probability q, y, J that the opera-

tion ceases, where y, = 1 — q.

The problem is to determine the sequence of operations which maxi-

mizes the expected amount of gold mined before the machine is damaged.”’

§ 7. Derivation of the differential equations

It is easily seen that if A is small, permuting the order of operations

in [RA, (k + 1) A] is a second-ordereffect. It is this feature which allows

mixing overintervals to perform the function of mixingat a point.

A policy now consists of a sequence {g, (RA)}, k = 0,1, 2, .... For

any given policy,let
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x (t) = amount of gold remaining in A provided the operation has

continuedto #,

y (t) = amount of gold remaining in B provided the operation has

continuedtof,

# (t) = probability that the machine survives until /, 1e., that the

operation continues until ¢,

f(t) = expected amount of gold mined up to time#,

where ¢ = n4,n =0,1,2,....

Ignoring the second-order terms in A, we have

(1) x (t+ A) = x(t) —11. G1 (4) x(t) A

y(é+ 4) = yl) —12 Ga (t) y (t) A

P(t+ 4) = Ph) (1—1 91 4) A — 42 G2 (4) A)

fté+A=fO+A0lMAn*«OA+e ny OIA

Letting A — 0, we obtain the system of differential equations

(3) dx|/dt = — q,(t) r, x (2), x (0) = Xo,

dy|dt = — 2 (t) 2 ¥ (t), y (0) = Yo,

dp|dt = — p (t) [1 (2) G1 + Pa (2) Qe], p(0) =1

dffadt=PpHigildnxQH+ grey], f(0) =0

Wenowtake these equations as the defining equationsof our process, and.

ignore their formal origin. The problem weset ourselves is that of deter-

mining ~, = Q,(t), where

so as to maximize f(T). A case of particular importance is T = oo.

Weshall derive similar equations for the three-choice problem in § 12

below.

§ 8. The variational procedure

Let gy, and g, be functions furnishing the maximum? andlet

(1) gi = pi + Bi(2),

where é is a small positive quantity, and £,, B, are two functionsof ¢
satisfying for all ¢ > 0 the conditions

(2) 0O<@mtefi<1,6,+8,=0

(which implies| 6; | < 1/e), so that the g; are also admissible ’s.

2 It is easy to show, as a consequenceof the uniform boundedness of the function
gy, (t), that the maximum is attained.
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It follows that B: (t) < Oif q: (¢) = 1, Bi (t) > O if g; (t) = 0, and f; can

be of either sign if 0 < qi: (¢) < 1, the region where free variation is per-

mitted. Performing the variation, we find readily that

(3) x(t) = x (t) (l—er,B,(t)) + 0 (e)

y(t) = y(t) (1 —e 7Bs () + 0 (e)
p(t) =p(t)(l—eq, B, (t) — € q2 By (t)) + 0 (€)

f(T) —f(TeeF(t) (Qi Bi) + Bel) +nBiO pl*

+ 1 B,(t) p (t) v t) + 7, By (t) t) + 72 Be(t) y (t))} dt

+ 0 (e)
where we haveset

(4) Bi (t) = |, Bi (s) ds

and the bars refer to the perturbed variables.

Integrating by parts to eliminate the B;(¢), we find

6) fF) f(T) =e | 1K.BO + KsBr Ol dt + 0)

6) KW=—a[fijds+np)x2)—n [oe

K,( —a {£0\ds + 1,p(T y(D)—n | b'(

Since f (T) —f(T) < 0, we see that whenever K;(¢) > K; (t) we must

have qi (t) = 1, q; (t) = 0. These relations yield implicit equations for

gi and q;. In the next section we shall discuss the behavior of the K-
functions in more detail, in order to determine q,(¢) explicitly.

§ 9. The behavior of K;.

The fundamentalrelation is

(1) d/dt (Ky — K2) = (41 — @) f(t) —B' () a9 — 11 ¥)

= [91 %2¥ — 271 *].

3 The term o (ce) denotes a function of ¢ which approaches 0 as « — 0 for all?
in [0, 7].
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Thus a “mixed policy”’ (one for which more than oneof the q; 1s positive

for a given ¢t, which implies K, (¢) = K,(¢t)) can be optimal only on the

line 9,72 V = q27, x. This line is precisely the boundary line that one

obtains by passage to the limit from the solution in the discrete case as

A — 0, as in § 4.4

If a mixed policy is pursued along theline, y, and g, must be chosento

stay on this line, which means that the slope, s = y/x, must be kept

constant. Since

(2) dldt (y/x) = y'/x — (x’/x) s (t) = [71 G1 — re 2] S

we see that we must have

V9 11
P2 =

rt 7,’ m+,

  
(3) i=

§ 10. The solution for T= co

With these preliminaries out of the way, let us determine the optimal

policy for the infinite process, 7 = oo. The infinite problem is, as usual,

simpler than the finite case because of the homogeneity introduced by

infinite time; after any initial actions, we are confronted by a problem of

the same type, with different initial values. Let us note that a conse-

quenceof this, and the homogeneity of the equations with respect to x

and y, is that the decision at any point is a function only of the slope

S = y/x.

Let us begin by observing that if policy A is ever used abovethe line

91%. VY = G27, x in the (x, y)-plane, it is used thereafter. This follows im-

mediately from (9.1) which shows that K, — K,is increasing when q,72 y

— G27, % > 0. Since use of A decreases x and leaves y unchanged, once

kK, > K, the use of A maintains the inequality.

Near the y-axis, however, the use of A continually is not as rewarding

as continual use of B. For with g, = 1, gy, = 0, for t > 0, we have

(1) x(t) = Xo e711!

y (t) = Yo

p(t) = ena
f(t) = , 1, Xo e~MN8 E-US AS

and thus

fa (00) = 1% %o/(Qi + 11).

4 Having been led to expect the appearance of this line as a consequence of
the analysis of the discrete case, it is relatively easy to spotit.
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However, 9; = 0, 2 = | for all é yields similarlyfz (co) = 72 yo/(G2 + 72).

For yo/%o sufficiently large fz (co) > fa (co). Thus, there is a region near

the y-axis where B 1s used.

This region where B is used extends down to the line 9,72. y = q2 7, X.

To prove this we observe that a mixed policy cannot be pursued above

the line, and that if A is ever used abovetheline it is always used there-

after. Using A indefinitely, however, would eventually take (x, y) into

the region near the y-axis where B is known to be optimal, a contradic-

tion. Hence B is always used above the line. Similarly, below the line A

is always used.

Whenthe line q, 72 V = 9271 * 1S reached, the point (x, vy) must remain

on the line thereafter. For if not, then an A policy must be used ina B

region or vice versa, which is impossible. Hence, on the line itself the

mixed policy of (9.3) must be employed.

Wehave thus demonstrated

THEOREM 1. With reference to the equations (7.2) and the constraints (7.3),

the maximum value off (oo) ts attained by use of the policy

  

(2) Qi=lforgrny<@nx,
Pe = 1fordrey > 921%,

Ye al

a non? prNRY Ahn.

Note that gy, and ¢, are determined almost everywhere by the above

arguments, and hence are essentially unique. The above constructive

derivation of the solution furnishes an alternative existence proof.

§ 11. Solution for finite total time

In finding the solution for finite T, we shall begin by determining what

policy is used last. Since an optimal policy has the property that its

continuation after any initial part is also optimal, we shall considerfirst

the case where T is small. We have

(1 F(T) = [° B(s) [gals) %1 #15) + Gal) ray (9)]
=r ¥0 |gals) ds + r2¥o [- ga(9) ds + o(7)

for T close to 0.

It follows then that for small 7 the maximum is obtained by taking

Qi (s) = 1, G2 (s) = O for 7, Xo > 72 yo and g,(s) = 0, Me (s) = 1 for 72 Vo

> 7, Xo. As is to be expected, for processes of small duration expected

gain, without worry about termination, is the determining factor.
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If 9, = gz the lines 7, y = 7, x and 9, 7%. V.= 927, x coincide, and the

optimal policy is easily found to be the same as that for J’ = oo.

Let us consider the general case where g, ~ q2. Assume, without loss

of generality, that the line 7, y = 7, x lies above the line q, %. vy = 271 X.

The positive quadrant then is divided into three regions, which we label

I, II, III. (Fig. 4).

 
 

Toy Xx

yea de q
Ul

I

X
Figure 4

Asbefore, it follows that in region I a B-policy once used must be con-

tinued thereafter, while in regions II and III the same holds for an

A-policy. Also, in regions I and II an A-policy is usedif the time remaining

is sufficiently small, and in III a B-policy under the same conditions.

From this we conclude that an A-policy is always usedin I, and a B-policy

always while in III.

Let us now establish that an optimal policy never switches from A to

B. Let us suppose otherwise and let ¢, be the time at which the change

occurs. Since at ¢, A is terminated, the point (x (to), y (¢o)) must be in

region I, or on the boundary between I and II. Using B will keep the

point (x (t), y (¢)) in I for all ¢ > ¢, since we know that B once used in I

must be continued. However, this contradicts the fact that A is used in I

wheneverthe time remainingis sufficiently small. Similarly, the combina-

tion of using the mixed policy and then B cannotoccur,since the change-

over must occur on the boundary between I and IJ, and then B is used

thereafter in region I, a contradiction.

This reduces the number of types of solutions to six: A always; B

always; the mixed policy followed by A; A then the mixed policy and

finally B; B then the mixedpolicy and then A; B followed by A.

Let ¢, be the value of ¢ at which the last change of policy is made in an

optimalstrategy, 1f such a change occurs. For tj <¢< 7, we must have

Q, (t) = 1, y2 (t) = 0. We now compute the value of K, (to) — Kg (to).
We have fori, <i<T,
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(2) x (t) = x (to) e~"0), y (£) = ¥ (to)
P(t) = P (to) e~ a &%),

f(t) = BP (to) e- Gtr) Et) 11 x (to)

and, after some simplification,

Ge

Mat"

 (3) Ky (tc) — Ko (to) = P (to) 71 x (te) (1 _ Jeter (T-t,)

 de Ye o]

7 a+r 71 X (to)

For any fixed point (x (¢o), y (¢0)) in II, the right side is positive for

I’ — t, small, and negative for T — ¢, large. It is equal to zero for pre-

cisely one value of J —?,. This zero determines when the changeover

occurs. Whenit occurs, A is used for the remaining time, with any of the

six beginnings above, depending uponthe location of the initial point.

§ 12. The three-choice problem

The continuous version of the three-choice problem mentioned above

in § 13 of Chapter II leads via the same formal processas given in §7 to the

following. Given

(1) dx/dt = —[qy, (4) 11 + @s (2) 79] x (2), x (0) = Xo

dy|dt = — [2 (t) 72 + Ps (t) v4] v (2), y (0) = Yo

ap|dt = — p (t) [p. (¢) 41 + G2 (4) 92 + Ps (4) Gs], 2 (0) = 1,

df[dt = p (t) [(p1 (¢) 71 + @s (2) 7s )x (t) + (Po (f) V2 + Ps (4) 4) ¥ (2)]

f(0) =0,

where,forall ¢,

(2) Qtitgtg=l1, gid,

It is required to determine the qi (#) so as to maximize f (7).

Weshall consider only the case where 7° = oo.

As before, let us set gi = gi + efi, and B; (t) = |, fi (s) ds

Weobtain

(3) x x

y (t) = y (t) (1 —e 72 By (t) — € 73 Bg(#)) + 0 (€)

pp (t) = pt) (1 — e X a Bi(t)) + o(¢)
i=1

afjat = p [(p1 ry + Ps ¥3) x + (Pz to + Ps 1) y]
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Consequently, following the same techniqueas before, we obtain

(4) f(T) —f(T) =e | (KiB, + Ka Be + Ko Bal dt + 0 (0
where

(6) KO =—a[sfdstnp()x(D—n [° p(s) x (9) as

Ki) =—a |f(s) dst rnp D)y(Z)—n |p(s) 9) ds

Ks) =— 95 |S'(8) ds + 2 (D) fro x (7) + rey (TY

— [°° () fre ¥ 65) + rey (9)

§ 13. Some lemmasand preliminary results

The statements in the lemmasbelow concerning the dependence of the

upon the K; are, of course, taken to hold almost everywhere.

Lemna 1. If K; (t) > K; (¢), then gi (t) = 1 or g; (t) = O.

PrRooF: Let £ be theset of ¢ for which the assertion does not hold. Let

fbi = 1, Bj = — 1 for ¢in E, and let the 6's be zero otherwise. The varia-

tion is admissible for ¢ sufficiently small and makes f(T) —f(T) positive

if m(E) > 0.

Lemna 2. If K; (¢) > K;j(t) for] 41, theng;: = 1.

The proof follows immediately from the above.

Lemna3. If there 1s a7 such that K; (t) < K; (0), then gi = 0.

Again a simple consequence of Lemma1.

Let us now compute the derivatives of the K;. A straight-forward cal-

culation yields the symmetric results

(1) Ky" (t) = P1Cy pe + Co Ga]

K,' (t) = p[-—-Ci g1 —C3 Gs]

Ks’ (t) = p[—C.91+ Cs 92]

where we haveset

(2) C1 =UMl2V— Gar x

Co = M14 ¥ — (93 %1 — 91") X

Cs = (Ys %2— 92 %4) VY — Gas X
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The relative positions of the three lines C; = 0 are determined by the

quantity

(3) D = 1 %21%3 + G21 %4— 93 "112

If we assume that all three lines lie in the positive quadrant, a straight-

forward calculation shows that if D > 0 the lines have the position shown

in Fig. 5, while if D < 0 they le as shownin Fig.6.

    

 

Figure 5 Figure 6

It is possible for both cases D > 0, D < 0 to occur. The case where one

of the lines C, = 0, C; = 0 hes outside the positive quadrant yields an

immediate simplification of the following arguments without changing

the over-all structure. Consequently, we shall discuss in detail only the

abovecases.

§ 14. Mixed policies

As above, we denote by the term “‘mixed policy”’ a situation in which

some of the gi have values different from 0 and 1. By an A-policy we

shall mean gy, = 1, a B-policy gy, = 1, andaC-policy y; = 1. Let us prove

Lemma 4. No optimal policy contains a mixture of A, B, and C policies.

ProoF: Let us assume that in some interval we have simultaneously

P1, Po, P3 > O. In this interval we must have K, = K, = Ky.

This yields

(1) Pitot o=l

Ky’ — Ky’ = £[Ci g, + Ci Ge + (C2 + Cs) G3] = 0

Ky — Ky’ = PlCegi + (Ci —Cs) Ge + Co Hs] = 0

The solution for 94, 2, 3 1S, if C; —C, —C, £0,

—Cs _ —C, _ Cy

C.—C,—C,'"* C,—C,—-C,'"*~ C,—6,—G,
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Since the g: must be positive in this interval, we must have C,, —C,,

and — C,all of the samesign. It is easily verified upon referring to Figs.

2 and 3 that in both cases D > 0, D < 0, this can never occur.

Furthermore, C,; —C, —C, = 0 only if the lines C, = 0, C, = 0,C,

= 0 coincide. When this occurs the problem is equivalent to the two-

choice problem.

Let us now investigate the possibility of using mixed policies involving

only two of the three policies, A, B, or C.

LEMMA 5. Concerning the mixing of two and only two policies, we have the

following results:

(3) (a) A mixture of A and B 1s permissible only along

C, = 0, where yy = 7o[ (71 + 72), Po = 11/(%1 + 72).

(b) A mixture of A and C 1s permissible only along C, = 0, where

Yag— Vz "
QQ, =>3FOO

Vy + 14-715 Vy +14 —T7z

(c) A mixture ofB and C 1s permissible only along C, = 0, where

   

ProoF: If 91, ¢, > 0,93; = 0, we must have K, = K, > Kj. In an

interval where this occurs,

(4) 0O= Ky’ — kK,’ = p[C, (1 + ¢)]

Hence C, = 0. The values of y, and ¢, which keep (x, y) on this line are
determined as in the two-choice case. The other assertions in Lemma 5

are obtainedsimilarly.

§ 15. The solution for infinite time, D > 0

Having obtained these auxiliary results, we now proceed to find the

solution to the problem of maximizing f (oo). We shall assume that 7; >

7,, since the case 7, > 7, can be handled by interchangingthe roles of x

and y and A and B. The degenerate case, 7, = 7, will be discussed

separately.

Let us make an initial observation that when 7, > 7, the mixed

AC policy is never used, for by (14.3) y, and m3 cannot both bepositive.

The solution takes two distinct forms depending upon whether D > 0 or
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D <0. Let us begin by considering D > 0. Weshall establish the prin-

cipal results in a series of lemmas.

Lemma6. In an optimal policy, B 1s used near the y-axis.

ProoF: There is a region near the y-axis where A is not used. Forif

C, >0,C, >0 and A is used, 1e., g, (t) = 1, we have K,’ = 0, K,’

<0,K,’ < 0. This means that AK, remainsthe largest for t, >t. Hence,

if A is used in this region, it must be pursued thereafter. Let us now

compute the results of a continued A-policy, a continued B-policy, and a

continued C-policy. We have

(1) fa (00) = 14 olla +7)
fa (00) = ra Volga + 72)

fe (co) = —2™2_ 8
da ts G3 +1,

A comparison of fa (co) and fg (co) shows that fp (oo) > fa (oo) for

Vo/xo sufficiently large.

Let us now showthat in the region above the line C, = 0, if C is used

it 1s used continually thereafter. Using C increases the slope (¢) =

y (2)/x (¢), for with gy, = 1 we have

(2) s’ (t) = s(t) (73 —1%) > 0

On the other hand, using B decreases the slope. Hence, we cannot use B

after C, for to do so would return us to a region where C wasto be used.

We have already shown that A cannot be used after C whenclose to the

y-axis. A comparison of fg (co) and fe (co) showsthat it is better to use

B rather than C near the y-axis if 7, v/(@2 + 72) > 1% /(@3 +74), OF

Ys %2— G21, > 0. This, however, is precisely equivalent to the condition

that C; = O lie within the positive quadrant, which we have assumed.

It follows that there is a region near the y-axis where neither A nor C

is used. Since by Lemma5 no mixedpolicy is used above the line C; = 0,

we conclude that there is a region adjoining the y-axis where B must be

used.

LEMMA 7. The lower boundary of the B-region adjoining the y-axts 1s the

line C, = 0. On that line a mixed BC-policy is employed. Below C; = 0,

B ts never used.

ProoF: Let us begin with initial values (%», yo) near the y-axis in the

region where B is used and consider what form an optimal strategy can
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have. B cannot be used indefinitely since this would eventually take

(x, y) near the x-axis where comparison of f4 (co) and fg (co) shows that

A is superior. However, since both A and C increase the slope y/x, B

cannot be followed by A or C since both of these would immediately put

the point (x, y) back into a region whereB is to be used. Consequently, B

must be followed by one of the mixed policies.

As we have already seen, for 7, > 7, the mixed policy AC is never used

in an optimal strategy. Weassert that if a mixedpolicyis used in an optt-

mal strategy, then continuing the mixed policy forever is optimal. For

let (to, ¢,) be an interval on which the mixed policy is pursued. Since the

point (x (¢,), y (¢;)) hes on the same ray as (x (to), y (t0)), because of the

homogeneity the same policy, continued for an equal length of time,

is optimal. Hence the mixed policy may be continued forever. Taking

this remark into account, we can show that for D > 0 the mixture AB

never occurs in an optimal strategy. By Lemma 5a, AB could only be

used on the line C, = 0. If AB were used there, we would have

Ky = PiC3G2—C§2 M1] < 0

since C, > 0 and C, < 0 there (cf. Fig. 2). Since Ky (oo) = K, (co) =

K,; (co) = 0 and K, = K, = 0 while ABis being used, it follows that

K, > K, = kK, while the AB-mixture is being used. This, however,

implies that y; = 1, y, = %2 = 0, which is a contradiction.

The remaining possibility then is that BC is used after B on the line

C, = 0. B cannot be used below this line as a consequence of the above

arguments.

LemMMa~A8. There is a line L = 0 between C, = 0 and the x-axis such that

C is used 1n the region between C, = Oand L = 0, andthe policy A 1s used

in the region below L = 0.

ProoF: By the results already established we knowthat the only policies

which can be usedin the region below the line C, = 0 are A and C. Since

both of these policies increase the slope exponentially, eventually the

point (x, y) will reach the line C; = 0 where the mixed policy BC is em-

ployed.

Let us investigate the possibilities of changes from A to C and from

C to A. By (13.1) we have

Ky’ (2) —K,(t) = ‘Cy Qe + Cy P3 + Cy Yi — Cs Pol

and hence when only C or A is used,

(3) Ky! (t) — Ky’ (t) = PCelqi + Gs]

whichis positive above C, = 0 and negative below. Now in a changeover

from C to A we must have K,’ — K,’ > 0. Consequently, a change from
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C to A cannot occur below C, = 0. Similarly, we observe that a change

from A to C cannot occur above C, = 0. Also there cannot be a change

from A to BC because when 4 is used above C, = 0, K, — K;,is positive

and increases; hence BC, which requires K, > K,, cannot be used. Thus

the assumption that A can be used above C, = 0 leads to a contradiction,

since, as we know, BC must be used eventually.

Wealso can prove that a change from A to C cannot occur on the line

C, = 0. For suppose that such a change occurred. At this time of change

we would have kK, = K;. The C-policy will then take the point (x, y)

above the line C, = 0 where K, — K,’ >0O, hence K, > K3, which

means that A must be used, a contradiction.

There are now twopossible cases:

(1) C is used in the entire region below C; = 0.

(2) There is a line L = O lying between the x-axis and C, = Osuch that

A is used below L = 0 and is used above.

The following proof by contradiction showsthat the first case does not

occur. Let (%o, Vo) be a point below C; = 0. By assumption C and BC

are the only policies used so that we must have KA,’ (?) = 0 for all ¢ > 0.

Since K; (co) = 0, we have K, (0) = 0. Because C is preferable at (Xo,

Vo), we must have 0 = K, (0) > K, (0). Hence, since K, (co) = 0, we

have by (13.1)

(4) 0K, (0) —K, (0) = |pCa + [> PW (Crp. + Coal at

where ?’ is the time of changeover from C to BC. Keeping x» fixed, let

Vo —> 0. This entails ¢’ — oo. Since C, y, + C, 3 1s uniformly bounded,

the secondintegral tends to zero. We havethen, using the expressions for

x, ¥, p, obtained from a C-policy

 

t’

(5) lim | €~ 4 [G1 74 Vo €~78* — (Gg 7% — G1 13) Xo e- "| dt > O
Vg > 0 YO

OT

°° (93% — M73)
(6) — I (3 71 — G1 V3) Xo eG + 13) dt == —- “Qor, x9 > 0,

which contradicts the assumption that the hne C, = 0 passes through

the positive quadrant.

This completes the consideration of the case D > 0 when both C, =

O and C, = O are contained in the positive quadrant. The completeresult

iS

THEOREM 2. If D = 41 7%27%3 + 9211141 — Y3 %1%2 > O, the solution to the

problem ofmaximizingf (oo) subject to (12.1) 1s given schematically by Frg. 7.

It does not seem possible to specify L in any simple way.
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Figure 7

Finally, let us discuss the degenerate cases in which C, = 0 or C, = 0

do not lie in the positive quadrant. If C; = 0 hes outside, the C-region

extendsall the way to the y-axis.

§16. D< 0

Let us now consider the case in which D < 0. In this case it turns out

that C is never used, which means that the solution is as given in the

two-choice problem

LemnaII]. Bits used near the y-axis.

PRooF: Precisely as before.

LEMMA 12. The lower boundary of the B-region adjoining the y-axis ts

C, = 0. On that line AB ts used. Below the line B is not used.

ProoF: Asin the case D > 0 we conclude that a B-policy must be follow-

ed by one of the mixed policies AB or BC. However, in the present case

where D < 0, the mixed policy BC cannot be used in an optimalstrategy.

For when BC is used, we have

(1) Ky’ (t) = P(Ci G2 + Cos] <0

because C; = 0 is below C, = 0 and C, = 0. Also K, (co) = K, (oo)

= K, (co) = 0, and K,’ (t) = K,’ (t) = 0 when the mixed policy BC is

used. Hence K, (2) > K, (#) = Ky (¢t) when the BC-mix is used. This,

however, is a contradiction since it implies that g, = 1, g. = 3 = 0.

Hence, a B-policy must be followed by use of AB on C, = 0.

Again the same argument as above showsthat B is not used below C,

= 0,

LEMMA 12. A 1s used in the entire region between C, = 0 and the x-axts.

PRrooF: First, C is not used just before the AB-mixture. While AB is em-

ployed, K,’ (t) = K,’ (t) = 0, and K,’ (t) = 6[ —C.9, + C3 9,] > 0, as
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can be seen from Fig. 7. It follows that K,; < K, and K, < K, immedia-

tely before the changeover to AB occurs. Hence C is not used immediately

before AB.

It follows then that there is a region below C, = 0 and adjoining this

line, where A is used. However, it is impossible to use another choice

before A is an optimal policy. When A is used below C,, we have

(2) Ky’) = 0, K,' () = — pC, > 0,K,' () =— PC, > 0
Hence, K,is the largest for all smaller ¢, and the A-region extends to the

x-axis.

Collecting the above results, we have

THEOREM 8. If D = 4, 1%21%3 + G21%1%% — 93 1%1%2 <0, the solution to the

problem of maximizing f (oo) never uses a C-policy and has the two-choice
form:

y C,=0

  
Figure 8

§ 17. The case r,=r,

Some of the preceding argumentsfail in this case because the C-policy

keeps the slope y/x constant. It follows from (14.3b) and (14.3c) that

neither of the mixed policies AC or BC is ever used.

Let us first of all show that if D < 0, C is never used. To do this we

comparetheresult of using AB repeatedly with that obtained trom using

C,

When ABis used continually, an easy calculation yields

V
 

  

(1 fan (co) =~ (vo + 9)
where

(2) pai5eTel
N+. 11s
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Similarly the result of using C continually is

3 (3) fc (eo) (Xo + Vo)
93 + 1s

The inequality faz (co) > fc (oo) 1s equivalent to D < 0.

If D > 0, the above argument proves that no mixed policies are pur-

sued. Different cases arise depending upon whichof the lines C, = 0,C,

= 0 pass through the positive quadrant. Asbefore, it can be established

that if C; = 0 is the positive quadrant,it is better to use B rather than C

near the y-axis. Let us now determine where the changeover from B to C

can be made. Let ft. be the time of changeover. For tj < ¢ < o, we

have

(4) Ky’ () =—Cy, Ky’) = — pC, Ky’ () =0
Also, we must have K,(to) < K(to) = Kg (to). Using again the remark

that K, (co) = K, (oo) = Kz;(oo), we see that for ¢ >7%,, we must have

C; — 0. Thus, B is followed until the line C,; = 0 is encountered and then

C is followed. In this degenerate case C plays the role of BC. Similarly,

changeover from A to C occurs when C, = 0 1s reached. If C, does not lie

within the positive quadrant, C is used upto the y-axis. If C, = 0 does

not lie within, C is used up to the x-axis.

§ 18. Nonlinear utility—two-choice problem

Let us now consider briefly the two-choice problem discussed in § 6—10

under the condition that we wish to maximize the expected value of some

function w# of the total return R.

In view of the results obtained for the discrete problem, or rather of

the lack of results, it is somewhat surprising to find that for every utility

function #, which is strictly increasing and has a continuous derivative,

the optimal policy is precisely the same as that for the linear utility

problem solved above. This alone should be sufficient to warn the un-

wary that continuous versions should not be used without close atten-

tion to the kind of approximation they afford.

Since any monotone-increasing utility function can be approximated

arbitrarily closely by a function of the above type, it follows that this

policy is optimal for any monotone-increasing utility function, although

not necessarily unique. A function of this class of great theoretical and

practical importance 1s

(1) u(k) =Ofor0O<R< Rk,

=lforR>R,
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The expected value of wu (R) is the probability that R is greater than or

equal to Ro.

Let the variables have their previous connotations; we obtain as

before |

(2) ax|dt == — qq (t) 7, x (bt) , x (0) = Xo

dy|dt = —M(t)rzy (t) , y(0) = Yo

dp|dt=— p(t)[pr (t) @1 + Pe(t)Ge], p(0) =1

Let z(t) = %0 + Vo — x (t) — y(t), the quantity which represents the total

amountof gold mined upto ¢ if the machinehassurvived upto this time.

The expected value of u (R) is given by the integral

(3) G=— |" ule() dl
This is easiest seen by considering that we are paid for the total amount

of gold that the machine has mined up to the time that the machine is

damaged.

Our aim is to find the functions q,(¢), @(¢) subject to the constraints

(4) 0<gm<1ot+g,=1

which maximize G.

Pursuing the same perturbation techniques as above, we obtain after

some straightforward calculation

(5) GC—G=e|[Ki BO) + Ke(l)Bal dt + 0(6)

where

6) K, =a pul) — |) #@) nx
— h P' (s) u (s))]ds

Ne = oh (t) u (2 (0) — | [p' (s) uw! (z(3)) 729 (8)

— qo p’ (s) u (s))]as

Furthermore,

(7) Ky)Ket) =p) (24) (arey ) — Gan (2)]

It follows that if we assume that wv’ (z) > O when z > 0, the arguments

and results of the linear case carry over with very slight modifications.
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CHAPTER IX

A New Formalism in the Calculus of Variations

§ 1. Introduction

In two previous chapters, in our treatment of multi-stage production

processes, we encountered the problem of maximizing the functional

(x(T), a) over all functions z (¢) subject to the relations

(1) a. dx/di= Az, x(O0)=c,

b Be<iCx,

c 2z>0.

Utilizing the fact that the maximum, which we assumeis attained, is a

function only of the initial vector c and the duration of the process T, we

obtained a functional equation for f(c, 7) = Max (x (T), a), which we
z

converted into a partial differential equation. As we mentioned at the

end of Chapter 7, this same approach is equally available for the studyof

other classes of problems in the calculus of variations.

Weshall pursue the investigation in this chapter, devoting our atten-

tion to two particular classes of problems. Thefirst is that of determining

the maximum or minimumoffunctionals of the form

T

(2) I (2) = | F(X, Xo, - ++, Xn, 21, 2g, «++, Zm) ab,

subject to relations and constraints of the form

(3) a. axi/dt = Gi (x, 2), xi (0) = ci,2 = 1,2, ..., 0,

b. Rx (x, 2) <0,k = 1,2,...,0.

The second is the eigenvalue problem associated with the equation

(4) u"+Aop(thu=O0, u(0) = u(l)=0.

Since this problem is, under reasonable assumptions concerning @ (2),

equivalent to the problem of determining the relative minima of

(5) J (u) = [« dt,
0
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subject to the constraints

(6) a. [e@wa=1,

b. u(0)=u(l)=0,

we have a problem closely related to that described in equations (2) and

(3). The two-point boundary condition, however, introduces features of

novelty and difficulty.

Following our usual approach, we shall introduce suitable state vari-

ables and derive a functional equation for the minimum of / (uw) as a

function of these variables. The limiting form of this functional equation

will be a partial differential equation.

Weshall then turn to a discussion of the numerical solution of these

equations. After indicating the conventional solution by meansof partial

difference equations, we shall show how difference equations can enter

along another route. The importanceof this alternate approachlies in the

fact that it enables us to bypass a numberof thorny, analytic difficulties

native to the domain of the calculus of variations. It also enables us to

avoid a numberof difficulties associated with the stability of computa-

tional techniques.

Using this approach, weshall consider also some problems involving a

Cebycev functional

J (2) = Max F (x4, Xo, ..., nj 21, 22, . ++, 2m)
O<t<T

In any case, we shall throughout the chapter consistently adopt a

purely formal viewpoint. In this introductory, expository account we

are primarily interested in presenting the basic principles of the func-

tional equation method. A rigorous account, necessarily of a higher level

of difficulty, will be reserved for the second volume.

§ 2. A new approach

Before embarking upon the high seas of analysis, let us discuss the

basic idea of this new approach to continuousvariational problems.

The classic technique in the calculus of variations, patterned directly

upon the finite dimensional techniques of calculus, depends upon the

concept of a function yielding an extremum asa point in function space,

and the characterization of this point by meansof variational properties.

Weshall instead consider the calculus of variations as consisting of a

particular class of multi-stage decision processes of continuous type. A

function yielding an extremum may then be considered to be a contin-

uous policy.
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Let us give some simple examples which mayservetoillustrate this

idea moreclearly than any abstract discussion.
EXAMPLE 1. Determine the curve connecting two points, P and Q, having
the property that a particle travelling along the curve under the influence of
gravity will go from P toQ in minimum time.

y

  
Figure |

(the classical brachistochrone problem)

It is clear that along an extremal, whatever the path between P and

some intermediate point R, the path between R and Q must be such as to

minimize the time required to traverse RQ, given the left-hand velocity
at R.

At each point on the curve, we determine a direction of motion, which

is to say a tangent to the curve. The optimal policy or extremal may be

expressed not only by means of an equation for y in terms of x, the

usual approach, but also by meansof an equation for dy/dx in termsof y

and the given left-hand velocity at (x, y).

EXAMPLE 2. Suppose that we are presented with the problem of drawing a

curve passing through P and Q, as in the figure below, of fixed length L,

which will include a maximum area in the curvilinear quadrilateral bounded

by the curve, the perpendiculars PP’, QQ’, and the segment P’Q' of the
X-AX1S,

It is clear that along an extremal, whatever the path between P and R,

and whatever the shaded area obtained in this way, the continuation

from R to Q must maximize the area RR’ Q’Q subject to the restriction

that the curve RQ have length L — L’.

The optimal policy may be expressed by meansof an equation for dy/dx

in terms of y and L — L’, rather than by an equation for y in termsof x.

Both of the conclusions in these two examples are applications of the

“principle of optimality” discussed in Chapter 3, and applicd in all of the

preceding chapters. The mathematical expression of this principle will

yield our new approachto the calculus of variations.
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0 p’ R’ Q’

Figure 2 (the classical isoperimetric problem)

An advantage of this new approachlies in the fact that very often in

the determination of optimal policies for multistage processes, the deter-

mination of the next move in termsof the current state of the processis

in many ways a simpler, more natural and even more important piece

of information than the determination of the entire sequence of movesin

an optimal policy to be followed from somefixedinitial position.

Speaking in geometrical terms, we seek to determine the intrinsic

equations of extremal curves. In place of considering the curve as the

locus of points, we regard it as the envelope of tangents, a dual approach

to the classical treatment.?

In general, as is always to be expected, the combination of the two

approaches,local and global, will be most powerful, since someaspects of

an extremal are most simply described in point coordinates, and others in

tangential coordinates.

Weshall in the following sections apply these ideas to a number of

representative problems, and discuss the application of this approach to

the computation of solutions.

§3. Max | F (x, y) dt
y o

In Chapter 1 we considered the discrete process which gaverise to the

functional equation

(1) f(x) = Max [g(y) +4(x— y) + flay + b (x — y))], f (0) = 0.
OsSy<2

1 In the terminology of game theory, there may be a considerable advantage
to viewing a process in its extensive rather than normal form. Essentially, only then
do we take full advantage of the intrinsic structure of a process and thusdifferentiate
it from other multi-stage processes and other multi-dimensional maximization
problems.
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A continuousversion of this processgivesrise to the problem of maxim-

izing the functional

(2 To) = [> go) +k@—y)) ae,
with respect to y (¢), where

(3) a. dx/dt = —ay—b(x—y),a,b>0,x(0)=c,

b. O<y(t)<x(),t>0.

Let us then, to introduce our method,considerasourfirst example, the

problem of maximizing an integral of the form

(4) 0) = [° Fy) at,

subject to the relation between x and y ,

(5) dx/dt = G (x, y), x (0) =c.

To begin with, let us omit any constraint such as (3b).

Let us once again repeat that we shall proceed tormally since we are

interested here only in presenting the mechanics of our approach. This is

to say, we shall consistently assume that maxima and minimaexist, and

that the extremals possess the requisite differentiability properties we

shall need. The problem of establishing these properties rigorously is

quite distinct from that of deriving the formalism and will not be con-

sidered here. Furthermore, as we shall indicate below, in a numberof

cases, we can pursue a path whicheliminates any necessity for obtaining

a priori results concerning the nature of the maximizingy.

Returning to the maximization problem posed above, we observe that

the maximum value of / (y) will be a function only of the initial value of

x, namely c. Let us therefore write

(6) Max J (y) =f (c),

and proceed to derive a functional equation for f (c).

Let y = y (t) be a function yielding the maximum of J (y). We have

then

(7) flo)= |F@y)de+ [oF Gy) at,
for any S > 0.

Consider the second integral. The effect of any initial choice of y (f),

for ¢ in the interval [0, S], will be, by way of the differential equation of

(5), to convert c into the value of x at S, which wecall c (S). It follows

then, that whatever the initial choice of y over [0, S], we will have over
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the remaining interval, [S, co], a problem of precisely the same form as

the original, with the difference that c is now c (S) = x (S). Since the

integrand is independentof /, and also the differential equation, the new

interval may be considered to be [0, oo], with x (0) = c (S).

It follows then, invoking the principle of optimality, that equation (7)

may be rewritten

8) flc)= |Fly) dt + F(e(S)).
Since the choice of the function y must be madeso asto yield the maxi-

mum value f(c), we obtain the basic functional equation

(9) fe) = Max[ [°F (x,y) dé + fle (S))1,
forany S > 0.

From this equation we shall derive a differential equation for f(c) by

letting S approach 0, For small S we have, under appropriate assump-

tions of continuity,

(10) f(c) = Max [F(¢, y (0) S + fle + SG (¢, y (0)) + 0 (S)].
y [0, S]

Asthe interval [0, S] shrinks to zero, a choice of y over [0, S] becomes

ultimately a choiceof y (0). Let us, for notational simplicity, set v = y (0).

Then (10) leads to

(11) f(c) = Max [F (c,v) S + f(c) + SG(¢, v) f’ (¢)] + 0 (S),

which in the limit as S — 0 yields

(12) O= Max [F(c,v) + Ge, v) f’ (c)].

Applying calculus to determine this maximum, we obtain the two

equations

(13) 0O=F(c,v) +G(e, v) f'(c),

0 = F, (c, v) + Go (ec, v\ f’ (c).

Elimination of f’ (c) between these two equations yields the determi-

nantal equation

(14) F (c, v) Gc, v) _ 9,

Fy (c, v) Gy (c, v)

which determinesv as a function ofc.

Having determined v as a function of c, whichIs to say, y as a function
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of x, we return to the differential equation of (5) and find x, and subse-

quently y, as functions of ¢ by solving the differential equation

(15) dx/di = Gx, y(x)],x (0) =c.

From this we see that relatively simple policy, y = @ (x), may yield a

relatively complicated extremal function, x = x (t).

§ 4. Discussion

Let us take G (x, y) to be uniformly negative and equal to — A (x, y) so

that we may consider the above to represent a continuous allocation

process where the rate of return is F (x, y) and the rate of expenditure of

resourcesis A (x, y). Starting from the basic equation

 

(1) 0 = Max([F (c, v) — A (c, v) f’ (c)},

we have,for all v,

(2) 0 >F (c, v) —A (ce, v) f’ (c),

and thus

(3) f'(c) 2F (c, v/A (¢, 2).
Since there is equality for at least one value of v, we obtain the equation

(4) f' (c) = Max FAG2)
» AC, 2)

This equation tells us that the policy which maximizes the overall

return proceeds locally to maximize the ratio of the rate of return to the

rate of expenditure of resources, a policy we have encountered before,

cf. Exer. 18 of Chapter 1, § 8 of Chapter 2.

This is a very interesting interpretation of the Euler equation for varia-

tional problems of the above simple form. Weleave it to the reader to

verify that (14) of § 3 is a first integral of the Euler equation obtained in

the classical manner.

§ 5. The two dimensional case

Weleave as an exercise the proof of the result that the same technique

applied to the problem of determining the maximum of

(1) | F (x4, Xe, Vip Vo) at,

over all functionsy, (¢) and y, (¢) subject to

(2) dx,/dt = G (%1, Xe, V1, Vo) , x, (0)

Ax,/dt = H (x4, Xo, V1, V2) » %» (0)

Ci,

| Co,
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yields the determinantal equation

F (c,, Cy, 4, v) G (Cy, Cs, u,v) H (cy, Ce, 4, v)

(3) F, Gy Hy

FE, Gy A,

— 0,

connecting the values y; (0) = u (C1, C2), V2 (0) = v (Cy, Ce).

It is an open problem as to whether or not a solution to the above

variational problem can be obtained in the same form as in the one-

dimensionalcase,1.e., in the form y, = 9, (%, %2), Vo = Me (X41, Xo).

T
§ 6. Max | F (x, y) dt.

¥y o

Let us now consider the more general problem of determining the

maximum of

(1) Jy) = | F (x, y)dt

subject to the relation connecting x and ,

(2) dx/dt = G (x, y), x (0) =c.

As weshall point out again below, there are certain advantages to

considering the finite problem, despite the complication caused by an

additional parameter.

The two state variables are now c and J. In many applications, c

represents the initial quantity of resources and T the duration of the

process. We now write

(3) Max J (y) =f (c, 7).
y

Employing precisely the same reasoning as in the previoussection, we

obtain the functional equation

4) fT) = Max [ [F(x y) dt +fe(S), TS),
which leads, in the limit as S — 0, to the nonlinearpartial differential

equation

(5) 0 = Max [F (c, v) + G(c, v) fe —fr].

This, in turn, leads to the simultaneous equations

(6) fr =F (c,v) +G@(, v) fe
0 =F, (c, v) + Go (ec, v) fe.
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Solving for f. and fr we have

(7) fe = — Fv (c, v)/Gr (c, v) = P (ec,v)

fr =F —GF,/Gr=OQ (c, v)

To obtain an equation for v, the fundamental variable, we equate fre

with fer and obtain the equation

(8) Pyvr =Qvtve + Qc.

This is a first order linear partial differential equation for v = v (c, T),

which maybe solved by means of the method of characteristics, a point

we shall mention again below in § 14, or by numerical means, given v

(0, 2) or v(c, 0).

It is here the advantage of a J7-dependent formulation becomesclear.

Wecan determine v as a function of c for T = 0 quite readily, since for

small 7, we have

(9) f(c, T) = Max [F (c, v) T + 0(7)].

Consequently, for T = 0,v = v (c, 0) is determined by the condition

that it maximizes F (c, v).

T
§ 7. Max | F(x, y) dt under the Constraint 0 <y <x

¥y o

Let us now consider the problem of determining the maximum of

Ti) = | F (x, y) dt subject to the relations

(1) (a) dx/dt = (x,y), x(0) =c,

(b) OS y<x.

As far as the classical approach is concerned, the difficulty of the

problem resides in the fact that y cannot be determined, in general, by

means of an unrestricted variation. When 0 < y <%, we may vary

freely, and in intervals where this inequality holds, y must satisfy the

Euler equation. However, when y = 0 or x, we merely have an Euler

inequality. The heart of the problem hes in determining how to fit

together the three types of solution, y = 0, y = x, and y a solution of the

Euler equation. This is equivalent to determining the transition points

where two typesof solution join.

At the present time, there exists no uniform technique for solving

these problemsin explicit analytic form. Certain classes of problemsof this

type do have a simple structure to their solution, as we shall briefly

discuss below.
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Let us now see how the functional equation technique applies to this

problem. Define

(2) f(c, £) = Max J (y)
y

As above, we derive the partial differential equation

(3) fr = Max [F (c,v) + G(¢,») fe].
O<v<e

The original constraint 0< y< x has been translated into the con-
straint O << v<c. The initial condition is

(4) f(c, 0) = 0,

for all c.

Wesee that the constraint 0 << v<c prevents us from differentiating

freely with respect to v. In § 10, we shall show how (3) can be used to

derive the structure of the solution, under certain assumptions concerning

F and G.

§ 8. Computational solution

Let us examine the nonlinearpartial differential equation

(1) fr = Max[F (c, v) + @(, v) fel,

with f(c, 0) = Oand sketch a procedure that may be used to computethe

solution.
In place of allowing the variables T and c continuous variation, we

restrict their range to the set of values

(2) T = 0,4, 24, ..., kA, ...

c=0,+ 06, + 26,...,+k6,...

where JA and6 are both positive quantities.

The partial derivatives fr and f. are now approximated to by the

difference quotients

,f+A)—f l(c, T3 jrfO Tt a—Sen 

~ fe +8,T) ~f(c—8,T)
f= 26
 

with the result that the nonlinear differential equation in (1) assumes the

approximate form
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(4) f(c,T +A) =f, T)
6, T) —f(c—6,T

+A Max |F (c,v) + G(c, v) fle + | aL a 

f (c, 0) =0
Starting with the known values for f(c, 0) we can compute successively

the values of f(c, A), f(c, 24),..., and so on.

Although this method is conceptually very simple, there are great

difficulties encountered in actual computing practice. Essentially the

main question is how to choose the quantities 4 and 6. The convergence

of the process and the stability of the numerical solution depend upon

the proper ch oice ofthese parameters. For the linear equations that appear

when the maximum is removed, there is a fairly complete and satis-

fying theory of these matters. For nonlinear equations, however, prac-

tically no theory exists and the matter rests in the realm of art and

experience.?

It is interesting to observe that the numerical solution of (7.3), an

equation with a constraint, is easier to obtain than the numerical solution

of (1) above, due to the fact that the existence of the constraint narrows

the range that must be examined to determine the maximum. Conse-

quently, in many cases, the morerealistic process will possess a simpler

computationalsolution.

In § 11 we shall discuss an alternate computational scheme, also based

upon difference equations, which in practice seems to be more efficient

and which enables us to proceed in a rigorous fashion, without having to

enter difficult domainsof the calculus of variations.

§ 9. Discussion

We have mentioned abovethe difficulties that may arise in solving a

variational problem subject to restraints, and also the fact that certain

cases may be completely resolved.

Let us show how the functional equation in (8.1) may be used to yield

information concerning the structure of the solution. We shall consider

only the case whereF (c, v) is strictly concave in v for all c, and (c, v)

is linear in v. The nonlinear partial differential equation then has the

form

(1) fr = Max [F (c, v) + (g (c) + A (¢) ») fel
O< t<e

2 There is also the problem of choosing a suitable difference-quotient approxim-
ation. In (3), we choose a symmetric approximation for f, and an asymmetric
one for fr. For the case of linear equations, stability considerations may often
be helpful. For nonlinear equations, practically nothing is known.
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The function F (c, v) + (g (c) + h(c) v) f is strictly concave in v for all

values of c and T, and the maximum overv is uniquely assumed.It may,

however, occur at v = 0, v = c or at an interior point.

Assuming that all the functions involved vary continuously with c and

T, we can make the following important observation. Since the function

F (c, v) + (g (c) + A (c) v) fe varies continuously andis strictly concave,

the maximum cannotshift from v = 0 to v = c without passing through

interior points of the interval [0, c] first.

This is a particular case of the fact that the maximum value for v

depends continuously upon c and 7. This remark can be used to shorten

greatly the time involved in the computational solution of these proces-

ses, and furthermore, it makes feasible the numerical solution of multi-

dimensional processes.?

It follows that any extremal must have the following structure. An

interval where y = 0 must be followed and preceded by an interval in

which 0 < y < x, and similarly for an interval where y = x.

The question arises as to how often the solution can switch from one

type to another. In order to answer this, we must make further as-

sumptions concerning the functions which appear. It is not difficult to

construct examples showing that there may be an arbitrarily large num-

ber of such transitions if F is chosen suitably. In the example considered

in the next section we will carry through the discussion in greater detail.

§ 10. An example

Let us consider the problem of determining the maximum of

(1 Ty) = |" w—y) at
under the conditions

(2) a. dx/dt = b(y), x (0) =c

b O<y<x

The basic equation is

(3) fr = Max [c —v + b(v) fel.

Let us now assumethat0 (y) satisfies the conditions

(4) a. 6(0) =0, b' (0) = 00
b. O’(y) >0, b’ (vy) + O0asy—>oo

c. db" (y) <0,

3 Cf. the remarks in § 22 and § 23 of Chapter I.
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A simple function satisfying these conditions is 1/2,
Let us assume,as is quite plausible, that /. > 04. Then, turning to the

determination of the maximum of K (v) = c —v + b(v) fc, we see that

the derivative with respect to v, K’ (v) = —1-+)' (v) fc, is positive for

small v, negative for large v and zerofor just one value of v. Let us further-

more assume,asIs also plausible in this case, that f, = Oat T = 0 and

monotoneincreasing thereafter as a function of T.

If we allow v to traverse the interval 0 < v < 00, wesee that there

will always be a solution of K’ (v) = 0. However,if v is constrained by the

condition that 0 << v<c, then if f; is large, whichis to say,if T is large,

K’ (v) will remain positive throughout the interval O<v<c. This

means that the maximum will be at v = c, ory = x, for T large compared

to ¢.

It remains to determine the transition curve T = T (c) at which this

cross-over in policy occurs. We knowthatthe solution will have the form

(5) a. Y=X, O<t<t,

b O<y<x, ti<t<T,

The first part of the curve, where y = x, will appear only if T is suff-

ciently large. If T is small, the solution will consist only ofthe second part,

where 0 < y < x.

Consider then the case where 7 is small. There are two courses we may

pursue. We mayfirst use the fact that the maximum in (3) occursinside

the interval, which meansthat (3) 1s equivalent to the two equations

(6) fr =¢e—v-+ b (0) fe
O =—1+40'(v) fe

These equations, combined with the boundary values

(7) fic, 0) = 0, v(c, 0) = 0

suffice to determine f(c, 7), for T small.

Alternatively, we may use theclassical variational technique, armed

with the knowledge that we can ignore the constraint 0 < y < x. Setting

T t

(8) To) =| e+ | oo) ds—y) at,
we readily obtain as the variational equation, the Euler equation

(9) (I — t) '(y) —1=0.
With y determined uniquely by this equation, we can compute J (y) for
the extremal and thus f/f (c, T).

4 In the following section, we shall show how these results may be derived by
a consideration of the discrete process.
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As T increases, the critical value of 7, as a function of c, is furnished

by the value for which the equation

(10) —140'(v) fp =0

has the solution v = c, which is to say the value of T furnished by the

equation

1
11 e(c, T) = —-~(11) fle T) 55

If f- (c, T) is monotone increasing as a function of T, as surmised, this

equation has one root T (c). Once we have determined thiscritical value

the solution is completely determined.

§ 11. A discrete version

One of the methods we can employ to make the above arguments

rigorous is based upon the discrete approximation to the continuous

problem.® Considering the problem abovein § 10, a discrete version is the

problem of determining the maximum of

(1) T.0) = Jo. Yu Ino Is) =E(te — yy)
over all y; subject to the relations

(2) a. Xe+1 = %e + 5 (ye),

b O<yrx<ixer, &kR=O,1,2,...,N.

If we set

(3) un (c) = Max J (y)

we obtain the recurrence relations

(4) a. u(c)=—c,

b. unwii(c) = Max [c—v+uy(c+ d(v))], N=O,1,....
O<v<e

Using the same methods we have employed in § 12 of Chapter 1, and in

our discussion of the optimal inventory equation, it is easy to establish

the followingresult:

THEOREM 1. For each N > 1, there exists a function vy (c) with the follow-

ing properties:

5 They may also be rigorously established using classical techniques. A reference
will be found in the bibliography at the end of the chapter.
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(5) a. un (c) ts monotone decreasing as c increases,

b. uv +1(c) > un (c), N= 1,2,...

c. There ts a unique solution to vy (c) = c which wecall

CN;CN+1 > CN.

d. ForO<c< cn, un (c) = un-1{e + b(c)), lev =.

e. For cn < C, un (c) = ¢ — vn (c) + un -~1fe + 5 (un (c))],

f. un’ (c) > un’ -1(c), N = 1,2,..., forc >0.

The proof, which is inductive along the usual lines, we leave to the

reader.

A similar result can be obtained for the more general case, correspon-

ding to the problem in § 7, if we impose suitable conditions on F (x, y)

and G (x, y). The proof is much more detailed.

As wesaw in § 7—8,the problem of determining the maximum of J (y)
T

== | F (x, y) dt subject to the relations

(6) (a) dx/dt = (x, y), x (0) =c

(b) O<Sy<x

can be reduced to the problem of solving the nonlinear partial differen-

tial equation

(7) fr = Max [F(c,v) +G(¢,») fel, f(c, 0) =0
QO<v<ce

This equation may be approached numerically by converting it into a

partial difference equation.

In order to use this method with confidence, we mustfirst establish the

fact that the variational problem is equivalent to solving this nonlinear

equation, a matter of some difficulty when constraints are imposed, and

then that thefinite difference methodyields an approximatesolution to the

nonlinear equation, again a complicated question. Both of these problems

may be avoidedin the following way. Wereplacethe original problem by

the problem of determining the maximum overyx of the function

N
8) F (yx) = 4SFem ya),
subject to the relations

(9) (a) %e+1 = Xe + AG (Xx, Vu), X = €

(b) O<ye<xr,k =0,1,2,...,N,

where x, =x (kA), ye=y(RKA), NA=T.
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Setting

(10) In (¢) = Max J (tyes),

we replace the above maximization problem bythe recurrence relations

(11) To (¢) = 9,
fv+i(c) = Max [AF (c,v) + fy(c + 4G (c, v))].

O<cr<e

In cases treated to date this has turned out to be a more reliable

computational procedure, and it possesses a numberof other attractive

features from the numerical point of view aswell.

It turns out to be not too difficult to show that

(12) lim fw (c) =f(c,T),
A—0O

under conditions upon F and G that are normally assumedin the calculus

of variations. Actually, these conditions can be greatly lightened. How-

ever, any discussion of this would take us too farafield.

§ 12. A convergence proof

Since a discussion of the convergence question, even under strong

assumptions, becomes quite long-winded in its full generality, without

adding much in principle, we shall content ourselves with the proof of a

typical result.

Let us set

(1) f(c, T) = Max ["F (x, y) dt,
y 0

subject to the constraints

(2) a. dx/dt =G (x,y), x (0) =c,

b O<y<x.

It is convenient to set y = @ x,° so that we have, introducing a new F

andG,

(3) f(c,T) = Max [° F (x, y) dt,

6 This is particularly so in the numerical calculation since this change of inde-
pendent variable permits the maximization to be over a fixed region, 0 < g, < I,
rather than over a variable region. On the other hand, there are cases where the
variable region is desirable, particularly in connection with shrinking processes.
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where

(4) a. adx/dt = G(x, q), x (0) =c,

b O<q@<lforalli>0.

Let us now define, for m = 1, 2,..., a sequence of approximating

problems: Maximize

NV

5) J (Kpu} n) =EF (xe, palin, N= (Tn).

where x; and gx are related by the equations

(6) Ke+1—Xe =G (Xx, yx)/n, k—0O,1,...,n—1,

Xo = C ,

and the variables mx are constrained bytherelations

(7) O<or<l, k=0,1,...,N.

Here, as above, x, == x (k A), pe == p (RA).

For each c and 7,let

(8) f(c, T, n) = Max Jw ({pe}, 0).
Wewish to show that

(9) lim f(c, T,n) = f(c, T).

Wefirst require the following

LemMA: LetG (x,y) satisfy a Lipschitz condition for m<x< M,

O<g<l. Let

(10) a. @(t) be a step-function ve constant value gr, OX ye< 1, in

the interval Rin <t<(k + 1)/n,k =0,1,...,N;

b. {xx} be defined recursively by (6), and let the» uniform bounds on

the sequence be mand M;m<ixer< M.

c. x (t) be stepfunction with constant value x,fork|/n<t < (k + 1)/n,

d. x (t) be defined as the solution of the differential equation in (4).

Then there exists a constant k depending only upon G and T such that

x (t) — x (t) |< k/n, forO<t<QN.
This may be proved by the Cauchy-Lipschitz method, applied in the

same wayasin the proof of the existence theorem for systems of ordinary

differential equations.
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Let us nowstate the limit relation of (9) as

THEOREM 2. Under the assumptions

(11) a. F and G have continuous second partial derivatives.

b. There exist constants p,q,7 such that px <G (x,y) < qx +7,

forx >OandO<y<ix

c. Gy ts of one sign: either Gy > 0 or Gy <0for all x > 0, and

O<y<x

we have

(12) lim f(c, T,n) =f(c, T),
n> Cc

forallic >0,T > 0.

ProoF: Givenc > Oand JT > 0, let N = [T/n], as above. The condition

of (1lb) enables us to assert the uniform boundedness of x (¢) tor

O<t<T. Let m< x(t) < M, and thus m< x, < M.Since, by as-

sumption, F (x, pg), and G (x, gy) satisfy Lipschitz conditions in the region

mox<M,0<y <1, byvirtue of the Lemma above, there exists a

constant B, dependent only on c, 7, F and G,such that

(13) IJ (¢) —SIy MPs 2) |S Bln,

whenever¢ (¢) and yx; are as in Lemma 1 above. It follows that

(14) fle, T,n)<f(c, T) + B'/n,

forallu=1,2,....

Let {ni} be a subsequence of {2} for which lim f(c, T, n:) = lim inf
ti-> © n—-> co

f(c, T, n). Given ¢ > 0, let y (¢) be chosen so that

(15) fle, T) <J (py) +6.

Now 9 (¢) is the limit almost everywhere of a sequence {qm (¢)} of step-

functions for which 0< gm (¢t) <1, and we have lim J (gm) = J (9).

Hence we may take the @ appearing in (15) to be a step-function, and

actually a step-function constant in each interval of the form k/n <t <

(k + 1)/n, for some arbitrarily large 1 = n;. From (13) we have

(16) f(c, T) < Jy ({pe}, 2) + Bn +e<flc,T,n) + Bin te.
Hence

(17) f(c,T)< hm f(c, T, 1) -- e = liminff(c, 7,”) +e.
n,—» CO n—-> co
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On the other hand, using (14) we see that

(18) lim sup f(c, 7,2) <f(c, T).
> CO

Since ¢ is arbitrary, we see that (12) holds.

If {yen} maximizes Jy ({yx}, ), then {qxn} determines for each n

= 1,2, ...,a step function @n (¢) with the property that

(19) lim J (yn) = fe, T).

If there is a convergent subsequence which converges almost everywhere

to a limit g (¢), then lim J (gn) = J (g), and g (¢) is a maximizing func-
n—-> co

tion.

If this function possesses suitable monotonicity properties we can

employ Helly’s theorem to obtain a convergent sub-sequence. Otherwise,

we must use weak convergence arguments or analogous techniques.

T
§ 13. Max | F (x, y, t) dt

¥ oO

So far we have considered time independent processes—those where

F and G are independent of ¢. Let us now treat the more general case,

that of maximizing

T

(1) Jo)= | Fewgat,
subject to the relation

(2) dx|dt == G (x, y, t) , x(O)=c.

In order to apply the functional equation technique, we imbed this

problem within the wider problem of determining the maximum of

(3) J(y) = [. F (x, y, t) dt,

subject to the constraint

(4) ax|/dt = G (x, y, t) , x(a) =c.

Here a ranges overthe interval [0, T].

Keeping J fixed, the two state variables are now a and c, and we may

write

(9) Max J (vy) =f (a,c).
y
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The functional equation for fis

(6) f(a) = Max CfFf) dt + fla+ S,e(S))),
[aca + 8]

for0 << S <T—a.
Letting S — 0, we obtain the equation

(7) O = Max[F (c, v, a) + fa + G (ec, v, a) fol,

where v = v (a, c) is the valueof y (a).

From (7) we obtain the two equations

(8) 0O=F(c,v,a)+fa+G(c, v, a) fe

0 = Fy (c, v, a) + Gy (c, v, a) fe

Solving for fa and f:, we obtain

(9) fe = — Fy/Gv = P(e, v, a)

fa = (FG, — F,G)/G» = Q (c, 0, a),
As above, equating the values of fea and fac, we obtain the first order

partial differential equation forv,

(10) Pyvat Pa =Qvtve + Qe.

Those whoare familiar with quasi-linear partial differential equations

of this type will readily verify that the characteristics of this equation

are equivalent to the Euler equations obtained byclassical variational

techniques.

§ 14. Generalization and discussion

If we now consider the problem of determining the maximum of the

functional

(1) To) = | Fe @.¥@)ae,
subject to relations

(2) dx/dt = g(x,y), x(0)=c,

where x, y, c and g are n-dimensional column vectors, and F is a scalar

function of x and y,”? we can proceed in a similar fashion. Setting

(3) f(c, T) = Max J (y),

‘ Any explicit dependence upon ¢ can always be removed by consideration of ¢
as a dependent variable x, ,,, defined by dx, + ,/dté = 1, x, + , (0) = 0.
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the principie of optimality yields the functional equation

(4) fie S+T) = Max [F (x, y) dt + f(c(S), T)]
yl0.S| Jo

The classical transversality conditions fall out as a special case in this

equation, as might be expected on the basis of the duality between point

and tangential coordinates which we haveindicated above.

Carrying throughthe calculations similar to those in (8) and (9) in § 11

above, we obtain a system of quasi-linear partial differential equations

for the vector v = v(c, T) = y (0).

This equation has a characteristic theory, and, as is to be expected,

the characteristics are equivalent to the Euler equations of the varia-

tional problem. The rigorous proof is quite complicated and will not be

presented here.

§ 15. Integral constraints

Weconsidered above in §7 a variational problem where y was con-

strained by the condition 0 < y < x. Let us now discuss the problem for

the case where we impose the additional constraint

(1) | yatsm.
0

T

The minimum of | F (x, y) dt will now be function of the three state

variables c, TY and m. Denote it by f(c, T, m). Using the above methods,

we see that f satisfies the equation

(2) fr = Max [F (c, v) + G(c, v) fe —vfm].
O<v<e

Problems involving constraints of the type encountered in the pre-

ceding sections arise in the consideration of many physical problemsif

we impose realistic bounds on such quantities as velocity, acceleration,

radius of curvature, rate of allocation of resources, and so forth. Integral

constraints, such as that appearing above, or a constraint of the form
T

| y'? dt << m, appear if we assumethat resources are bounded, that the
0

kinetic energy is bounded, and so on.

Generally speaking, integral constraints are more readily handled than

point constraints. Although, theoretically, the Lagrange multiplier

method is capable of treating both types of constraints, as well as more

general classes, in practice we encounterthe difficulty discussed above of

determining when the variable is within the domain of variability, and

whenit is on the boundary.
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§ 16. Further remarks concerning numerical solution

Let us consider the problem of determining the maximum ofthe in-

tegral

(1) J (x) = [, Fe x', t) dt,

where x (0) = c, but x is otherwise unrestrained. Assuming that F satis-

fies appropriate conditions, the solution is determined by the Euler

equation

(2) OF|éx — d/dt oFox’ = 0.

This is a second order equation, of the form

(3) x" = (x, x’, 2),

which means that two boundary conditions are necessary to determine

the solution. One condition is furnished by the original constraint x (0)

= c, while the other, arising from the variational procedure is

oF
(4) ah =0

OX t-T

 

AS wesee, one condition is at ¢ = 0, and the other at t = 7. On the

other hand,in order to integrate (3) in a convenient fashion, either with

a digital computer or an analog computer, we require the values of x and

x' att = 0 or at ¢ = T. Unfortunately, we do not obtain either of these

sets of conditions from the above analysis.

Weare thus confrontedby theclassical difficulty of a two-point bounda-

ry condition. If is linear in x and x’, we face no particular difficulty; It,

however, as is generally true, G is nonlinear, we must face the fact that

there is no systematic technique for determining the solution of (3),

satisfying (4) and the initial condition.

The usual procedureis to start the integration at ¢ = 0, beginning with

a range of values of x’ (0), and narrowing the range until (4) is sufficiently

well approximated. [his is a time-consuming procedure, sometimes com-

plicated by stability problems, which becomesrapidly more inefficient as

the dimension of the variational problem increases.

We have assumedthat Fis a function possessing a sufficiently smooth

behaviorto justify the use of (2). If we allow F to possess terms such as

|x —a|or Max (x —a, x’ — b, g (t)), functions which arise very na-

turally in economic and engineering processes, the application of the

usual variational approach becomesincreasingly difficult.

Combine the above complications with those furnished by the exist-

ence of constraints, and we see that conventional methods must be sup-
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plemented if we wish to resolve a variety of problems arising in a very

natural way from the physical world.

Let us note, finally, that the remarks we made concerning the need

for a sensitivity or stability analysis, in Chapter 7 and in connection with

discrete decision processes, are, of course, equally valid in the context of

continuous decision processes.

§ 17. Eigenvalue problem

Let us now devote our attention to the problems of determining the

values of A which permit a non-trival solution of the equation

(1) u" +-Ry(thu=0,

u (0) = u (1) =: 0,

to exist.

The connection between our previous work and this problem, which at

first sight seems far removed,arises from the fact that under light condi-

tions on g (4), the eigenvalue problem is equivalent to the problem of
1

determining the relative minimaof | u’* dt subject to the gonstraints

1

(2) [o@ wat=1, u (0) =u(l) =O,
1

or, conversely, to that of determining the relative maximaof | gy (t) u? at
0

subject to the constraints

(3) [wra=a, u (0) =u(1) =0.

What makes this problem different in quality from those we have

considered aboveis the fact that as we traverse an extremal the condition

(0) = 0 is violated. Consequently, we must imbed this problem in a

more general class of problems possessing the requisite invariance pro-

perties if we wish to employ the functional equation approach. Happily,

there are several ways of doingthis.

In the first approach, we consider the minimization of

(4 J(u) = |wae,
over all w satisfying the conditions

(5) (a) u(a) =k, u(1) =0
(b) [ eQwa=1
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Here the new state variable a satisfies the condition 0<.a< 1. We

assume that the function  (¢) satisfies the constraint0 << ),<p(t) <b,

for 0< ¢< 1, and is continuousover(0,1].

An equivalent problem is that of maximizing

6) K(u) =| puede,
subject to the constraints

(7 (a) u (a) =k, w(1) =0
(b) [, wea,

a

A secondless obvious formulation that serves the purposeis the follow-

ing: Minimize

(8) J(u) =| wat
a

subject to the constraints

(9) (a) u(a)=0,u(1)=0,

(>) | POW +k —)eO uldt=1.

§ 18. The first formulation

Let us set

(1) f (a, k) = Min [. uw’? at ,

subject to the constraints :

(2) (a) u(a)=k,u(l) =0,

(b) [90 w2 dt = 1

We write, along an extremal,

(3) @) [| p@wdt=1—se(@k,
at+s

(b) u(a+ts)=k+ 50,

(c) f(a, k) = 08s + [ u'? at ,
at+s

to terms in 0 (s).8

8 In order to simplify the analysis, we shall proced directly to the derivation
of the limiting partial differential equation.
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Nowmake the change of variable

(4) w(t) =(l—sg(a)k/2)w(t)at+ts<cti<l,

in order to maintain the condition (2b). We then have

(5) (a) w(a+s) =k + sv + sp (a) R°/2,

(b) f(a, k) = v's +(1—sq (a) B*) [.. w"? dt

to termsin 0 (s).

Combining the above results, we obtain the approximate functional

equation

(6) f(a, k) = Min [v? s + (1 —sq (a) k?) f(a +s,k + sv

+ s y (4) R?/2)] + 0(s).

Letting s —> 0, the result is the equation

 , y (a) R°
(7) O = Min [v? + vfx] + fa + 5, fi — oy (a) k* f,

or

(8) fa = fu?/4 — p (a) RP fe/2 + y (a) RS

The initial condition is at a = 1, and not trivial, since f(a, k) > coas

a—> 1. There are two ways to determinethis initial condition, as we shall

discuss in the next section.

§ 19. An approximate solution

If ais close to 1, and @ (¢) continuous, as assumed, we mayreplace the

variational problem in (17.1) and (17.2) by the approximate problem:
1

Minimize i u’? dt, subject to the constraints
a

(1) (a) w(a)=k,u(l) =0

upon absorbing the factor (1) into the function u (é).

This problem may be approached in two ways. Using the classical ap-

proach, we obtain the Euler equation

(2) u" +Au-=-O0O,

which mayberesolved explicitly. The unknown parameteris determined

by the constraints in (la) and (1b).
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The second methoduses (17.8) with @ (a) = 1. Since the solution of the

problem in (1) above is known for k = 0, namely

m2

(3) f (a, 0) = 1?’

we can obtain a solution to (17.8) as a powerseries in k, for k > 0. Since

we are primarily interested in the solution for small k, this is a useful

form of the solution for numerical purposes.

§ 20. Second formulation

Weleave the derivation of the corresponding partial differential equa-

tion for the variational problem defined by (16.8) and (16.9) as an exercise

for the reader, with the hint that the essential point is to renormalize

u(t) constantly so as to maintain the initial condition u (a) = 0.

§ 21. Discrete approximations

Since the partial differential equation for the minimum (a, k) posses-

ses certain unpleasant features as far as initial values are concerned, the

following discrete formulation may be of value.

Let us consider the problem of minimizing the function

N

(1) F (uy, Ug, ..., UN —-1) = 2X (ux — ux —1)?,

k=]

subject to the constraints

N—1

(2) (a) 2 goeue=1,
b=1

(b) Ug = A, UN =O.

Corresponding to the use of the state variable R, we consider the se-

quence {fr (a)} defined as follows
N

(3) fr(a) = Min & (uy — ue -1)?,
{u,} k= R

where the #, are subjected to
iV

(4) (a) LS peut =1,
k=R

(b) ur-1=4,un = 0,

fork =1,2,...,N—1.

Since this involves a variable range for each quantity wx, let us make a

change of variable

(5) Pre = Vk,
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under the assumption that 0 <b,<gr< db, < ofork = 0,1,2,...,N.

Then

NN fue  ve-1\?
(6) Fr (a) = Min 2 (" —a ,

{x} k= R\PK PR-]

where

N

(7) (a) » VE? = 1

b= R

(b) vr-1=@r-14,Un = 0.

Weleave as an exercise the task of determining the recurrence relation

for the sequence{fr (a)}.

§ 22. Successive approximation

Returning to the equation

S

(1) f(c) = Max [| °F (x,y) dt + f(e(S))).
D{0,S} Jo

obtained in § 3, it is tempting to envisage the use of successive approxi-

mations for the solution of the equation. If, however, we choose an

initial function f, (c), and define a second approximation by meansof the

equation
S

(2) fi(c) = Max [ F (x,y) dt + fo (e (S))],
D(0, 8] o

we see that in the limit, as S + 0, we must have fj (c) = fo (c), provided

that fo (c) is continuous.

At first sight, this would seem to render the use of successive approxi-

mations impossible. Actually this is not so. What is true is that we must

approximate in policy space rather than in function space. We must con-

centrate our attention primarily upon v = v(c,7) rather than upon

f(c, T). Nonetheless, f(c, 7) still plays an important auxilaryrole.

To illustrate this point, let us discuss the problem of maximizing

(3) J iy) = [ F (x, y) dt,

subject to the relations

(4) dx/dt =G (x,y), x(O)=c.

Then, as in § 6, we obtain the equation

(5) fr = Max [F (c, v) + G(c, v) fel.
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Let us now choose an initial approximation v, = vo (c, T), which is

equivalent to yo = Yo (x, TY — #), keeping in mindthe connection between

physical time ¢, and T, the remaining time for the process. Using this

value of yo, we compute % by meansof the differential equation,

(6) AX[dt = G (Xo, Vo (%o, LT —t)), xo (0) =c,

and then f, (c, T) by meansof

(7) fole, T) = |" F (xe, yo) dt.
This function, fo, satisfies the linear partial differential equation

(8) for = F (¢, vo) + G (C, Vo) foe «

To obtain the next approximation to an extremal y, or an optimal v,

we determine v, (c, T) as a function which maximizes the function

(9) F (c,v) + G(c, v) foc.

Using v, (c, T), we obtain y, (x, 7 — 7?) and then x, and f, as above.

Having obtained f, we compute v, as a function which maximizes

(10) F (c,v) + G(c, v) fic,

and continue in this way, deriving a sequence of approximations to

f, {fn}, and a sequence of approximationsto v, {vn}.

§ 23. Monotone approximation

Let us now showthat this sequence of approximations to fis monotone

increasing, a fact which is important theoretically and computationally.

Wehave

(1) fir =F (c, Vv) + G (c, v,) hie ,

for = F (c, vo) + G (C, Vo) foe < F (c, vy) + G (c, v1) foe.

Hence

(2) (fi —fo)r = G (c, v1) (fi —fode.

Since fi (c, 0) = fo (c, 0) = 0, we see that f, —f, > 0 for all T > 0.
Continuing in this way, we readily establish the monotone property

of the sequence {fn}. If the sequence is uniformly bounded, we have

convergence. However, it is essential to know when the sequence of

partial derivatives, {func}, {fnr}, and the sequence of policies {vn} also,

converge. The general question is a difficult one and weshall not enter

into it here.

It is interesting to note, however, that we do possess a systematic

technique for improving any particular policy.
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§ 24. Uniqueness of solution

As we have noted above, we are bypassing any of the rigorous aspects

of the derivation of the partial differential equations we have encoun-

tered and any studyof the existence of the solution of these equations.

It is, however, worth noting that the unzqueness of solution may bees-

tablished quite readily by means of the same device we have formalized

as Lemma 1 in Chapter 3.

Consider, for example, the equation

(1) fr = Max ([F (c, v) + G (ce, v) fel,

and assumethatthere exists another solution of this equation, g = g (c,T),

which possesses the sameinitial value, namelv

(2) f(c, 0) = g(c,0) =9,
for all c. Then, we havealso

(3) gr = Max ([F (c, w) + G(c, w) gel.
u

Let v = v(c, T) be a function which furnishes the maximum in (1) and

w = u'(c, fT) a function which furnishes the maximum in (3). Then we

have the inequalities

(4) fr=F(c,v) + G(c,v) fe > F (c, w) + G (c, w) fe

gr =F (c,w) + CG (c, ve) ge > F (c,v) + Gc, v) ge.

These inequalities yield

(5) fr— gr =G (c, w) (fe — ge)
<= G (¢, v) (fe — 8c) «

Thus, if we set u = f— g, we see that wu satisfies the inequalities

(6) G (Cc, @) Ue Ur<G(c, v) ue.

Since the solutions of

(7) x7 —G(c,w)x%e=0, x(c,0)=0,

yr —G(c,v) ve = 9, ylc,0) = 9,

are identically zero, it follows from a comparison theorem that # is

identically zero.

§ 25. Minimum maximum deviation

Let us now discuss the numerical solution of a variational problem

of the following type:
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Minimize

(1) Max |u—a|,
O<t<T

over all functions v (¢) satisfying the constraint — 1< v<_], where

(2) duldt = g(u,v),u(0O) =c,.

Consider the corresponding discrete process where

(3) Uk+1 = Un + g (Uk, Ve) A, Uo = C4,

and uz, = u(kA),A = T/N, vz = 0 (RA).

Define

(4) fv (¢;) = Min Max |uz—a
{r,} O<hk<Nn

Then

(5) fo (C1) = |¢1— a],

and

(6) fy +1 (€:) = Max [| ¢,— a], wn fy (C1 + 8 (€1, v) A),
je] <1

for N =0,1,2,....

Wehave thus reduced thesolution of the original variational problem

to a computation of a sequence of functions of one variable determined

by the foregoing recurrence relation.

Exercises and Research Problems for Chapter IX

1. Obtain functional equations for the following quantities

a. Max |" fe dt, f (0 e [.fed =1

b. Max [pom dt, f (0) =e, [ Uf)? dt = 1

c Max [-4.F0 = 6, [fr di <a, [ 2ft di <b

2. Obtain functional equationsfor the following quantities

a. Max |feat, £0) == c, fmonotone increasing, [rf dt <1
f 0 O

T

b. Max | feat, f (0) =c, f monotoneincreasing and convex (concave),
if oO

T

[ faah
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3. Carry through the analysis suggested in § 18 and obtain the first few

terms of the expansion of f(a, k) as a powerseries in k, for a close to I.

4. Follow thesameprocedurefor the second formulation of the eigenvalue
problem.

5. Obtain a functional equation for the following quantitv

T

Min | (x —c)? + RP dt,
tf 0

dx/dt = —ax + f,x(0) =c.

6. Obtain a corresponding result for the general case

V—1T a“

Min | PS (x) — cy)? +f] dt,
f Jo K=0

xO) — a, xN8-D4+ ... +anx+f,

xk) (0) = cr, h=0,1,...,N—1.

7. Use the functional equation approach to determine the minimum of

T

| (1 — x)? dt over f where 0<f<M,M +1, dx/dt=—x+f,

T

x (0) = 1, and | fdt<a<T,

8. Under the same conditions determine the minimum of

| " (dxldt)? dt.

T

9, Determine the minimum of | f? at overall f satisfying

dxjdt =—x+f,x*(0)=ll—ax<x<l+ator0<t<T.

r
10. Determine the minimum of | (x — y) dt over y, given that

a. ax/dt = b(y),x(0) =c,O<y<x,

b. 6” (y) is continuous and b" (y) < 0, 0’ (y) > 0

c. b' (0+) = + co

11. Consider the same problem under the assumption that 6’ (0+) is

finite.

275



A NEW FORMALISM

12. Determine the minimum of [

a. kK (0) = L (0) =0

b. A" (x), L” (x) > 0 for all x

c. dx/dt = —ay — b(x — y),

0

K (y) + L (x —y)] dt over all y where

(O) =e,b>a>0.

13. Consider the problem of minimizing the functional

J(x) = [> as (tb,(0)? +aa(W — a (OY)

O<s<T, over all functions x such that x (s) = c, and | "2 dt << 00
s

Assume that all functions appearing are continuous and that a; (¢) > 0

in the interval 0, T]

Define

fi(c, s) = Min J (x,s)

Show that

fs = — a, (s) (¢ — By (s))? + be fe —fe?/4ae (Ss),

f(c, T) = 0 for all c¢

14. Show that f(c, s) = u(s) + cv(s) + cww (s), where wu, v and w depend

only upons.

15. Show that uw, v and w satisfy the equations

(a) m” (s) — ay (s) 6,’ (8) +
(b) vu" (s) = 2a, (s) 6

| by (s) v

1 (s) + 2b, (s) w(s

(c) w’ (s) = — a, (s) — w? (s)/ae (s) ,
with u(T) = v(T) =w(T) = 0

(s) — v? (s)/4az (s) ,

s) — v (s) w (s)/az (s) ,

16. Obtain the corresponding results for the functional

T

T(x) = | ia (0(OY +a2©x! — ba)? +
ay (t) (x"— by (t))*)

17. Consider the following discrete analogue of the problem in 13

Wewish to minimize the function

w
y S |

i
M
y

[px (XK) + Wx (XK — Xx - 4)]
1
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over all possible values of the xx, K = 1,2,...,N, with x, =x. As

usual, assume that mx (x) and wx (x) are continuous functions, with

appropriate properties at x = oo.

Show that this problem leads to the sequence {fx (x)} defined as follows

fn (x) = Minyn(xx) + pw (ew — x)],
uy

fr (x) = Min ime (xr) + pr (¥r — x) + fri (XR).
“R

18. Consider, in particular, the case where yx and yx are quadratic in x,

with mx = bx (x — dx)*, px = cx x?. Show that, in this case, fn (x)

= Un + UN X 4+wy X*, where wy, vw and wy are independentof x.

19. Show that

un—1 = 'bn-10?n—1 + Un — (dw—1 bn -1 — Un/2)?]/fbn-1 + en-1 + WN]

—2en ~1 (dy —~1 bn ~1 — vy/2)

by —-1 + €n-1 + UN

én -1 (On 4- wn)

by 1+ en 1+ WN

UN -1 =

wn -—1 =

20. Let {xx} denote the sequence of minimizing xx’s. Show that

xe, -+ dy db, —2,/2,
X,=- - -——

bg + €y + We

x XK-1+ de—-1 bx —~1— VK 41/2
kK => --—— H—- He - -— — -——

bx + ex + Wk

21. Treat in a corresponding manner the problem of minimizing the

expression
Ny

J (*) = &[aw (xn — bx)? + ex (XK — XK - 1)? + gx (Sk — dx)? ],
A - 1

where sx == %, + %, +... + Xx.

22. Consider the stochastic case where the parameters appearing are

stochastic variables, and it is desired to minimize the expected value of

J (x).

23. Consider the scalar equation

du/dt = g(u,v),u(0) =c,

where v is to be chosen so as to minimize the functional J (v) =

[ h (u —c) dt.
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Let f(c, T) = Min J (v), and derive a functional equation for /.

24. Consider the process where we wish to minimize

[, h (u —w(t) dt.
O

25. Consider the problem where we wish to minimize

Max .u—a(t)i,
Ot: T

where a (¢) is a known function of ¢.

26. Consider a corresponding two-dimensional problem, using the

equation

uw" +b(we—Iw +u=f(,
with —Il1<f(i)<l.

27. Treat in the same fashion the problem of maximizing

T(f.8) = [>Min(x,y)dt,

where

dx/dt == ax + f, x (0) = ¢,,

dy/dt = by + g,v (0) = Cy,
and the functions f(¢) and g(¢) satisfied the constraints.

f+v=lLfe>0.

28. Consider the equation

d*u/dt? 4+- a? u = f(t), u (0) = c, wv’ (0) = c,, a@ <1.

Wewishto choose f (¢) subject to — 1 < f(t) < 1 so as to reduce u to

zero in minimum time. Whatis the corresponding functional equation?

29. Obtain the solutions of the brachistochrone and isoperimetric prob-

lems using the functional equation approach.

30. Determine the path of a ray of hght through an inhomogeneous

medium, assuming that the path minimizes time.

31. Consider the problem of determining the minimum of

| — Vr| |,

 

 y
Jnw(w) = Max Max ‘| uy

Ow kN

over all sequences {u'y} satisfying the conditions |w,| < 1, where

Uk -1 = & (ux, Up, wr), Ug == C1,

Ue ty = h (tx, Uk, Wk), Vo = Co.
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Let

fx(C1, C2) = Min Jy(w).

Show that

fx +1 (€1, €2) = Max! 'ci!, |1 —ce|, Min fy (g (c1, c2, w), A (C1, C2, w)) ].
lar} < 1

32. Obtain the corresponding recurrence relations for the case where

Jv(w) = Max Dx (ux, ve).
Qak<oNn

33. Consider a rocket-powered aircraft moving in level flight with a

mass equal to the fixed mass of the aircraft, w, plus the mass of the

fuel, m. The force of propulsion is taken to be a known function of the

rate of burning of the fuel, the velocity of the aircraft and the mass of

the fuel. Equivalently the force of propulsion is a known function of

the thrust and drag, which are, in turn, known functions of the burning

rate, the velocity, and the mass.

Let

(1) x (2) = the distance along the x-axis from the origin at time¢.

v (t) = velocity of the aircraft.

m (t) = mass of fuel.

ze" = fixed mass of aircraft.

y (t) = burning rate of fuel.

F (y, v, m) = force of propulsion.

Then

d?x FE
(w + m) dt (y, uv, m),

or

dv
(w +m) — = Fy, », m), 2 (0) = vo

and

dm
— = —y,m (0) = mo.
at

34. Consider a discrete version of the process described above, and

impose a restriction on the burning rate, O< y() < R.

Let

f(v, m) = the range covered starting with initial velocity v and a

quantity of fuel m, ending with terminal velocity v7,

using an optimal burning policy.
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Show that

F (y,v,m) A
f(v,m) = vd + Max [ f(v + ————— ,m—yA/)}

O<y<R wt+m

and show how the quantity vr enters.

(R. Bellman — S. Dreyfus, H. Cartaino — S. Dreyfus)*

35. Similarly, let us define

f(v, m,d) = the time required to traverse a distance d, starting from

initial velocity vo and a given quantity m of fuel, with a

required terminal velocity vr, using an optimal burning

policy.

Show that

f(v,m,d) =A + Min [f(v remyad—2A)).
O<y<Rk w+ mM

36. Consider the equation

Satay pearteen F0,400) =a.x' 0) =e

ax ,
where the function v = v (x, TP t)is to be determined, subject to the

constraint |v) < 1, so as to minimize the expected value of

T
J (y= [oat |e (D1,

oO

over a suitable class of random functions (?).

Going over to the discrete version, show that we obtain the recurrence

relation

fo (C1, C2) = Acy? + Icy + C2A| ,

In (C1, C2) = Min [Aci? oF [- In —1 (Cy + cA, Cg +

le] <1

[— (c1? — 1) cz —e1 + 70 + v0] A) dG (10) J,

where dG (70) is the distribution function for the independent random

variables {7;}.

37, Consider the linear equation

a? d
gat ear+e 7.4.40) =a, 2 0) =e,

* H. Cartaino - S. Dreyfus, Application of Dynamic Programming to the
Minimum Time-to-Climb Problem, Aeronautical Engineering Review, 1957.
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where v is to be determined so as to minimize the expected value of

T

J (x) = [0° tx® + (deja)de
oO

Find the corresponding recurrence relations, determine the structure of

the sequence { fx (ci, c2) }, and the optimal policy.*

38. Returning to the problem discussed in 7, consider the problem of

determining v so as to minimize

J =Prob{ Max |x| >a}.
O< t< T

Show that the discrete version leads to recurrence relation

. *Co

fn +1 (C1, C2) = Main | fn (er + ¢2A, cg +
—- OOole] <1

| — (cy2 — 1) cz — ¢1 + 10 + v0JA) dG (ro)

39. Consider the case where the 7; are not independent. Assume,to begin

with, that the distribution of 7» +1 depends on the value of 7x. Define

fn (C1, 2,7”) = Minimum expected value of /x, given the initial state

(c1, C2), and the information that the value of the random

variable at the preceding stage was /.

Show that the recurrence relation for the sequence { fy} 1s

In (C1, C2, r) = Min | Aci? of [ Is _] (Cy + co A, Ce +

[—— (¢12 — 1) co —c1 + ro + vo] A) dG (ro, 7)]

40. Consider the problem of determining a monotone decreasing sequence

of approximations to the first characteristic value of wu” + Ap (t) uw = 0,

u(O) = u(l) = 0. Let w(t) be a continuous positive function of ¢ in

'0, 1], so that the first characteristic value is defined by

1
| u’* at

At = Min o

" [ eo u? at
O

Let us approximate in policy space by considering functions w’ (¢)

which are constant on the intervals |AA, (k + 1).4],

k=0,1,2,...,N—1, N4 = 1,1.

u(t) = up RASt<(k+))A.

Let Ai (N) denote the minimum overthis space. Show that

Ay (N) > Ai (2.N),

* Rk. Bellman, Dynamic Programming and Stochastic Control Processes,
Trans. I.R.E., 1957.
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and derive a recurrence method for computing A; (N).

41. Consider the corresponding problem for the equation

u(t) + Ag (t) u = 0, «(0) =u’ (0) =u (1) =u’ (1) =0,
corresponding to the variational problem defined by

1

| u’2 at
0

Ai = Min ;

" |  (t) u? dt
0
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CHAPTER X

Multi-Stage Games

§ 1. Introduction

In the previous chapters we have discussed a number of decision pro-

cesses which,although of different origins and varying analytic structure,

possess an important feature in common—all decisions are directed

towardsthe single goal of maximizing the value of the criterion function.

In this chapter we shall consider a class of multi-stage decision processes

where this unanimity of purpose no longer holds true. Some decisions

will be made to maximize and some to minimize.

Perhaps the most interesting fashion in which we encounter those cross-

purpose processesis in the study of activities in which two animate adver-

saries counter optimal moves at each stage of the process.

A numberof situations in the economic world may be profitably con-

sidered in these terms, and the theory of games of chance and skill

affords a numberof fascinating applications of the general techniques.

Furthermore, in the physical world, in connection with testing and

experimentation, it is often useful to conceive of nature, in some vague

anthropomorphic fashion, as an opponent attempting to conceal the

truth from us. The design of experiments may be conceived of as a game

in which we attempt to extract information from a stubborn, but fair,

opponent.

The mathematical theory developed in recent years to treat problems

characterized by this interplay between divergent aimsis the theory of

games. Although a good deal of effort had been directed in this direction

by E. Borel, the theory rests upon a fundamental result of von Neumann,

the celebrated min-max theorem. Weshall very briefly discuss the foun-

dations of the theory prior to a discussion of multi-stage games.

These multi-stage games may be considered not only to constitute an

extension of the single-stage theory, but in many ways they may be con-

sidered to be more fundamental. The single-stage game may be conceived

of as a steady-state version of an original dynamic process, namely the

multi-stage process.

After these preliminaries, we shall discuss some particular multi-stage

games arising from multi-stage allocation processes, and then consider
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“games of survival’ and pursuit games. Following these examples, we

shall present a general formulation, along the lines of Chapter 3, and then,

as in Chapter 4, prove a numberof existence and uniqueness theoremsfor

certain important special classes of equations.

In the main, the techniques used correspond to those employed in the

treatment of the one-person processes. Games of survival, however, pre-

sent special difficulties, requiring more advanced tools for a general

treatment. The method we employ1s applicable only to a restricted class

of equations.

One of the interesting aspects of games of survival is the application

of this concept to the study of non-zero-sum games, wherethe playersare

no longer in direct opposition. A formulation of these games in termsof

survival enables us to remetrize these games so as to make them zero-

sum. Furthermore, as we shall show below,a quite reasonable approxima-

tion enables us to derive a new metric for non-zero-sum games, one with

an associated min-max theorem.

§2. A Single-stage discrete game

Weshall now consider a class of decision processes involving two

persons which weshall call games. The two protagonists, whom weshall

call players, will be namedrather prosaically A and B.1 Let us consider a

particular game.

The rules of the game are as follows. The first player, A, has a choiceof

M different plays, which we shall designate by the numbers 1, 2, ...,

M, and the second player, B has a choice of N different plays, denoted by

1,2,..., N. If A chooses the z—t* of his alternatives and B the 7—*® of

his alternatives, A receives a quantity aij and B a quantity Ci,;. If these

quantities are positive, we may think of them as gains, and if negative as

losses.

A convenient way to indicate these returns or payoffs, is by means of

the two payoff or game matrices

(1) Ma = (ai;3),Mp = (0), lt Mi,1l<j<nN.

Let us now consider the single-stage process where each player makes

precisely one play. The determination of optimal play, defined as that

which maximizes return, is straightforward if A is required to move

before B and if B can use this information. If A takes the z—t» alternative,

B chooses 7 = 7(t) so as to maximize 6;;. Consequently A chooses 2 so as to

maximize @;, ji). A similar rule determines the choice of 7if B is required

to movefirst.

1 The successors of the algebraic 4, B, and C discussed by S. Leacock.
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The only interesting case is that where both players are required to

move simultaneously, without knowing of the other’s choice.

In these circumstances, they can protect themselves by mixing their

choices, which is to say they will randomize their choices in a certain

fashion. Let us assume then that A makes the z—*t® choice with prob-

ability #; and B the y7—*® choice with probability g;. The vector p =

(pi, Do, -.-, Pm) Specifies A’s probability distribution and the vector g

= (91, Jo, ---, Yn) Specifies B’s probability distribution.

Asin our discussion of the stochastic processes of the previous chapters,

we can no longer speak of the return, but must agree to consider some

average return. The simplest such, as usual, is the expected return. The

expected return to A will be

MoON

(2) Ealpiqg= 2X 2» ay pig,
i=1 j=1

while that for B is

Mo oN

(3) Es(h,qy= 2% 2 by higz.
i=l j=1

Thefirst player would like to choose so as to maximize E4, while the

second player would like to choose g so as to maximize Fg.

§ 3. The min-max theorem

In order to obtain definitive results, we must assumethat the players

are in direct opposition, expressed by the relation

(1) bi; = — aij.

In this case, the gameis called zero-sum, and only in this case does a

satisfactory general theory exist. We then have

(2) Ex (p,q) =—Ea(p, 9),

from whichit is clear that any choice of # and g which increasesE 4 (P,q)

decreases Ez (p, g), and vice versa.

It is sufficient then to consider FE 4 (p, g) in our further discussion. We

can, using this expression, define two values of the game,

(3) Va = Min Max Ea(, @)
q p

Ve = Max Min Eg (p, q).

p q

The first is the expected return to A if B is required to choose g before A

chooses #, while the second is the value to A if the situation is reversed.
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It is a remarkable fact (the min-max theorem of von Neumann), the

basic result in the theory of games, that

(4) Va=Va.

This commonvalueis called the value of the game. Weshall assume this

result without proof here.

The interpretation of this result is that A can announcehis probability

distribution # in advance,and likewise B can announce q, without either

gaining from this advance knowledge. This is neither an intuitive, nor a

trivial, result, but it is true.

§ 4. Continuous games

Let us now suppose that in place of choosing one of a discrete set of

moves, A must choose from a continuum and similarly B. As a simple

example, suppose that A must choose a real number x in the interval

[O, 1], and B similarly a real numbery in [0, 1]. Considering the zero-sum

case only, there is now a payoff function K (x, y) which measures the

value of this set of moves to A, with — K {x, y) the value to B.

If A chooses a distribution F (x) to govern the frequency with which

he chooses x, and B the distribution function G (y), the expected gain to

A will be

(1) Va= [, [,K y) dF (x) dG iy).

The continuous analogue of the min-max theorem is theresult:

(2) Max Min V4 = Min Max V4,
I G G F

where the variation is over the space of functions defined by

(3) (a) dF > 0, [, dF (x) = 1,

1

(b) dG > 0, {, dG (y) =1,

provided that K (x, y) is jointly continuous in x, y over the unit square.

If K (x, y) is not continuous, (2) need not hold, and V4 (F, G) need not

even exist for all & and G.

2 This theorem is a very fine illustration of the utility of the Stieltjes integral,
since the result is not valid if we consider only functions F (x) and G (y) whichare
integrals, i.e., dF (x) = (x) dx, dG (y) = yp (y) dy.
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§ 5. Finite resources

In manysituations involving multi-stage play, the above modelis not

satisfactory. This is particularly so in multi-stage processes where each

player possesses finite resources. Here the choice of plays depends upon

the quantity of resources available, and the game terminates when either

player has no resources. Consequently we cannot consider the set of NV

gamesas consisting of N disjoint plays.

Let us consider a simple example. Suppose that A has a quantity x and

Ba quantity y. At each stage each player mayallocate 1 or 2 units of his

resources with the return ai; to A if A makes an allocation of z and B an

allocation of 7, and a return of — aij to B, where 2,7 = 1, 2.

Here, for the sake of initial simplicity, the return aj; 1s in units different

from those of x and y, and so cannot be reconverted into resources.

Let us take the process to terminate as soon as either side has no re-

sources and suppose that each plays to maximize his total return. As-

sume that we may define the function

(1) f(x, y) = expected return from the process to A when A has x and

B has y initially, and each employs an optimal policy.

On the first move, A mixes his choices according to the probability

distribution p = (f,, f.) and B according to the distribution g = (4, 4s),

where # and q will, in general, be functions of x and y.

An enumeration of possibilities yields the relation

2 2

(2) f(x y)= 2% 2 pig laa t+f(e—ty—a))
~7=17=1

for an optimal policy, assuming for the moment that the principle of

optimality is equally valid for multi-stage games. A proof of this will be

given in § 9. Thus the functional equation for f(x, y) 1s

(3) f(y) = Max Min | S pi ata+fe —iy—9)]
p q W=1j=1

. 2 2
= Min Max | 2 a peas lay +f (ei, y 3)

qg p ~=1j=1

for x, y > 0, with the boundary conditions

(4) f(x,y) = O0ifx<Oory<0.

§ 6. Gamesof survival

Returning to the game described in § 2, let us take A to have x, B to

have y and assumethat the returns a;; and b;; are in the same units as x
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and y, say dollars, and that b:; = — aj, the zero-sum case. Let us now

suppose that the gameis continued until one player is ruined, and that

each player attempts to ruin the other. A gameof this type we call a game

of survival, It is a generalized “‘gambler’s ruin’’ problem.

Assuming the existence of the function

(1) f(%, y) = probability that A ruins B when A has x, B has y, and

each player employs an optimal policy,

and proceeding as before, we obtain the functional equation

(2) f(x, y) = Max Min 2’ f (x + aij, y — aig) Pi Q
pP 4 (i

= Min Max 2 f (x + aij, y — aij) Di Gy ,
q Pp tj

x, ¥ > 0, with the boundary conditions

(3) f(ey) =1x>0,y<0,
=0,*7<0,y >0.

Since the gameis zero-sum, the quantity of resources in the gamere-

mains constant. Thus the state of the process is specified by x, the quan-

tity possessed by A. Setting x + y =c, and f(x, y) = f(x), we obtain

the simpler equation

(4) f(%) = Max Min 2 f(x + aij) iq; = Min Max 2 f(x + ais) iq,; .
p q %,j Dp 1,9

for0 <x <c,withf(x) = Oforx<0,f(v¥)=I1x>c.

§ 7. Pursuit games

Anotherinteresting class of games are those involving the pursuit of

one player by another. In some cases there is a question as to whether

one player can catch the other, in other cases where capture is certain,

the problem is to determine the choice of paths for one player which

minimizes the time of capture and for the other player a path which

maximizes the time of capture.

The continuous versions of these problems are quite difficult to for-

mulate rigorously, and as a consequence mostof the results obtained in

this connection pertain to the discrete version.

Consider the following simple problem. The two players, A and B are

situated at the points kA, /A respectively on the line, where A > 0 and
k and / are integers or zero. At each move of the game, each player has

the choice of moving one unit to the right or to the left. Moves are made

simultaneously with full information as to the positions of each player.
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After each movethere is pay-off from B to A of an amount g (d) where d

= | k—1|A, the distance between the players. Furthermore,there is a
probability 1 — a (d) that the process terminates on that move.

The total pay-off of the multi-stage game is taken to be the expected

value of the quantity that B pays A before the process terminates. Once

again assume that the function

(1) /(d) = expected pay-off if A and B areinitially d units apart and

both employ optimal strategies,

exists. Then proceeding as before, we obtain the functional equation

(2) f(d) = a(d) Max Min[p, 9,f (4) + pogef(d) + £1 92f (4d — 2)
p 4

+ Poaf(d + 2)]) + ¢(@).

= a(d) Min Max[...] + g(d),
q p

where #,, 2 are the probabilities of A going to the left or the right re-

spectively on any move,and q4,,qg,are the corresponding probabilities for

B. In general, optimal #,, po, g, and q, will depend upon d.

§ 8. General formulation

Let us now describe, in some generality, a class of multi-stage games we

wish to analyze. At any stage of the game, the states of the two players,

A and B, are represented by m-dimensional vectors, x and y, which we can

think of as “‘resources.”’

In order to avoid for the moment the conceptual difficulties of infinite

processes, we shall first considera finite process. At the beginning of each

stage of an N-stage process, A allocates a certain quantity of his resour-

ces, a vector u, and B a certain quantity of his resources, a vector v; this

will be represented symbolically by the notationO<u<%,0<v<y,

where the inequalities hold component-wise.

As a result of this allocation, there are two consequences. A receives a

payoff of R (u, v; x, y), a scalar function, and Ba payoff of — R (u, v; x, y)

— a zero-sum process. In addition to these payoffs, there is an alteration

in their resources; x is transformed into T (x, y; u, v), and y becomes

T’ (x,y; u, v). The process now continues in the same fashion for (VN — 1)

additional stages.

The total return to A of the N-stage process is

(1) Rn —= Ry (u, Uy, Ug, --., Un —1, U, Uy, --+, UN —1,%, y)

= R(u,v) + R(m, v,) + ... + R (un -1, vn -1).

There are several ways we can treat this N-stage process. One extreme
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regards the N-stage game as a Single-stage game of complicated type,re-

quiring a choice of a set of vectors (u, 4,, ...,4n-1) by A and a set

(v, vy, ..-, Un —1) by B, where the choice of ux and vx is dependent upon

the choice of 4, 4%, ...,4K-1,U,U1,-..,UK-1. Alternatively, we can

employ the functional equation approach. For the case of unbounded

processes, or processes involving stochastic interaction, the recurrence

techniqueis, in general, the only feasible one. For the caseof finite deter-

ministic processes, this technique is usually simpler analytically and

computationally.

Weshall assume that R (wu,v; x, y) is a continuousfunction of w and v

for all finite values of u and v, x and y, and that similarly T (x, y, u, v),

T’ (x, y, u, v) are continuous functionsof x, y, 4, and v forall finite values

of the vector variables.

The general case where only boundedness and measurability of the

functions are assumed may be handled using the sameprinciples, at the

expense of introducing Sup-Inf operators in place of Max-Min. The par-

ticular case where x, y, u, v, I, T’ assume onlyfinite sets of values is also

interesting to consider, and has the advantage of avoiding continuity

considerations.

One advantage to considering the N-stage process as a single-stage

process, as described above,is that it permits us to define the multi-stage

gameprecisely on the basis of knownresults for the single-stage game and

thus the value of the multi-stage game. Once having defined the game,

we can prove that recurrence techniques are applicable.

The value of the N-stage game described above is given by the expres-

sion

(2) uy = Max Min [ff Ry dG (u, u, U2, ..., un 1) dG’ (v, v4, v2, ..., UW —1)]
G  @

= Min Max[... ],
G «G

where G and G’are distribution functions over regions of quite complicat-
ed form defined by the inequalities

(3) O<u<yx, O<v<y

O<ay<T, O<y<T'

O<un-1<7Ty-1,0<un-1<T'y-1.

The quantities T and T’ depend uponx, y, u, and v; T,, T,’ depend upon

Xx, Y, U, V, U,, V,, and so on.
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§ 9. The principle of optimality and functional equations

Let us now change our notation, replacing x by P and y by P’, in order

to consider more general situations where x and y are not necessarily

vectors whose elements are quantities of resources.

Since vy depends only upon the initial states, we may define the se-
quence of functions

(1) fn (P, P’) = vy, N =1,2,...

Assuming for the momentthat the principle of optimality is valid for

multi-stage games, we obtain the following recurrencerelations.®

(2) fi(P, P’) =MaxMin [Jf  R(u, v) dG (u) dG’ (v)]
G @ 0 Uu P

0 v P’IA
IA

A
I
A

= Min Max[...
G@ Gg

L
o
y

“

fv+i(P, P’) = Max Min [
G @ o<

0<
JJ (R (u,v) + fy (T, T)] dG (u) dG’(v))

P
P’

IN
IA

= Min Max[... ].
G G

That this principle is valid for one-person processes where weare at-

tempting to maximize a return, or minimize a “‘cost”’ is clear by contra-

diction. Since its validity may not be as obvious for gameprocesses, let

us present a brief proof for the sake of completeness.

The recurrence relation in (2) provides a sequence, not necessarily

unique, of pairs of distribution functions, {Gy (u, P, P’), G'n (v, P, P’)}

which furnish the sequence {fy (P, P’)}. In order to show that the func-

tion fy (P, P’) is actually the value of the N-stage game,it is sufficient to

show that A can guarantee an expected return of fy (P, P’) if he chooses

u at the first stage of an N-stage process in accordancewiththe distribu-

tion function Gy (u, P, P’), when the states of A and B are described by

P and P’, respectively, and similarly that B can guarantee an expected

loss of not more than —fy (P, P’).

To demonstrate this, consider the one-person N-stage process in which

A employs the fixed strategy represented by the sequenceof distribution

functions, {Gz (wu, P, P’)},k = 1, 2,..., N, and B attempts to minimize

A’s expected N-stage return. It is sufficient to consider this process,

since any other policy employed by B yields a larger expected return

for A. Let

3 To simplify the notation, we shall write I (u,v) for R (u,v; P, P’).
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(2) wy (P, P’) = N-stage expected return to A when A employs the
fixed strategy {Gx (u, P, P’)}, B employs a minimizing

strategy, and A and B are in the states P and P’

initially.

Then we have the recurrence relations

(3) w,(P,P’)=Inf J [J
GO0O<r< P’ 0

R (u, v) dG (u, P, P’) | dG’(v),
P

lA l
A

wv+i(P,P’)=Inf f
GOo<tr<P’ 0

dGy +1(u, P, P’)] dG’ (v).
{
A
c
o J [R (u,v) + wy (T, T’)]

<P

upon employing the principle of optimality for the one-person process.

Considering the origin of the function G,, we see that the minimum in

the relation for w, (P, P’) in (8) is attained by the function G’ = Gj’, not

uniquely in general. Hence,

(4) w,(P, P’) = 0, (P, P’).

Since w, = v,, the relation for w, yields in the same waythe fact that

W». = ve, and thus, inductively, we see that

(5) wy (P, P’) = on (P, P’).

In precisely the same way we show that if B employs the strategy

Gy’ (v, P, P’), A cannot obtain more than vy (P, P’). Hence vn (P, P’) is

the value of the N-stage game.

§ 10. More general process

Before presenting some precise statements concerning the processes we

havediscussed above,let us consider a sequence of more general processes

which may be treated by means of the same techniques we shall employ

below.

Consider, to begin with, an infinite process of the type described in § 8

in which weallow the transformations 7 and TJ”, as well as the return R,

to depend uponthestage.

Wethen consider the functions

(1) f(P, P’; k) = the value to A of the infinite process beginning at the

k—th stage when A and B possess P and P’at this

stage, and both employ optimalstrategies.

This sequence, with the usual proviso relating to existence, satisfies the

recurrence relation
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(2) f(P, P’; R)
—MaxMin [Jf [R(u,v,k) +f (Te, Te’; k + 1)] dG (u) dG’(v)]

oe gehen
— Min Max[ |.
WG

Let us now complicate the process to a further degree. We have assum-

ed, in the above formulation, that the interaction between the players

was perfectly determined once u and v were chosen. In a variety of pro-

cesses, a choice of u and v determines a distribution of outcomes, which

is to say the interaction is stochastic rather than deterministic. Let

Kx (z, t, t’; uw, v) denote the distribution function, where z is the value of

R, (u, v), ¢ the value of 7, and ?’ the value of T,’.

The functional equation of (2) is replaced by

(3) f(P, P’; R)
= Max Min [ff [J[z+f (t,t; + 1)] dky] dG (u) dG’ (v)]

G GQ O<u<P

O<v< ]}’

= Min Max [ |.
w «4

Finally, let us consider the case where we are concerned with a non-

linear function of the total return, R, rather than the total return itself.

A particularly important situation is that where A wishes to maximize

the probability of achieving a return of at least Ro, a specified constant.

Anotherinteresting utility function is e7”,

Let us assume that A wishes to maximize the expected valueof  (R),

where @ is a given function of &. To describe this nonlinear situation, we
must introduce an additional state variable, a, the total return obtained

by A from the previous stages of the process. Defining the function

f(P, P’, a; k) essentially as in (1), we obtain the associated functional

equation

(4) f(P, Pl, a; )
—=MaxMin [ff [f(t,a+ 2:2 +1) dK] dG (u) dG’(v)]

G G O<u<P
O<v< P’

— Min Max [ ].
G’ G

Noneof these functional equationswill be discussed here in connection

with the existence and uniqueness of solutions since the basic approach

is the sameforall cases.
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§ 11. A basic lemma

Let us present a simple but extremely useful inequality which exhibits

the quasi-linearity of the transformation

(1) L(f) = Max Min T (P, P’; f; G, G’) = Min Max T.
G @ G 6G

It will play the samerole in the existence and uniqueness proofs of this

chapter that Lemma | of Chapter 4 played in that chapter.

Lemna 1.4 Let

(2) L(f) = Max Min [JJ [R (u,v) + h(P, P’; u, v) f(T, T’)] dG (u) dG’(v)]
GQ ues

ves’

= Min Max [ ].
GG

L, (F) = Max Min [[J[Ry (u,v) + a(R, P’; u, v) F(T, T)] dG (u) dG'(v))
. cee

— Min Max [ ].
GG

Then

(3) | L(f) —L,(F) | < Max Max [| R (uw, v) — R, (u, v)|
ueS ves’

+ | A(R, P’5 4,2) || f(0, 7) —F (7, T) [).
ProoF: Let us write

(2) L(f) = Max Min T (P, 2’; f; G, G’) = Min Max (P, P’: f, G, G’)
G GG

L, (fF) = Max Min T,(P, P’; F;G,G'’) = Min Max T, (P, P’; F;G,G’).
G @ GG

Let (G,, G,’) be a pair of functions yielding the value L(f), and let

(G., G,’) be a pair of functions yielding the value L, (F). Then, by virtue

of the saddle-point property, we have the following chain of equalities

and inequalities:

(5) L(f)=T(P, P's f;G,, Gy’) > T (P, P’; f; Ge, Gy’)

<T (P, P'; f; Gy, G2’)

L, (F) = T, (P, P’; F;G,, G,') > T, (P, P’; F; G,, Gy’)

<T,(P, P': F; Gy, Gy’).

4 It is assumed that max-min = min-max for each transformation. A similar

result holds for the one-sided max-min operator; see § 18.
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Combining these inequalities we have

(6) L(f)—L,(f) >T (P, P's f; Ge, Gy’) — T, (P, P’; F; Gs, G,’)

< T (P, P’; f; G,, G,’) — T, (P, P’; F; G,, G,’).

The inequalities in (6) yield

(7) L(f) ~Li(F) = SSR (w, 2) — Ry (u,v) + A(P, P's a, v) (F(T, 7”)
“ues

ves’

—F (I, T’)] ] dG, (u) dG,’(v)

> ff [R (u,v) —R, (u,v) + A (P, P's u,v) (f(T, T’)
ues

veS’

—F (T, T’)] ] dG, (u) dG, (v).
Using as in Chapter 4 the fact that a<ic< bd implies |c | < Max

 

(| a |, ||), we obtain from (7) the further inequality

(8) |L(f)—Li(F) |< Max {JJ | R (uw, v) — Ry (u, v)|

+ [ACP BS u,v) | [f(L, 1) —# (LF, 1) |) dG, (u) dGy’ (r)],

JST | R (u,v) —Ry (4, v) | + | A(P, Pu, ») | (A(T, T)
ue

veS’

—F (T, T’) | ] dG, (u) dG,’ (v)),

from which (3) follows immediately.

It is easy to make the modifications required to obtain the analogous

result for the case where Max Minis replaced by Sup Inf.

§ 12. Existence and uniqueness

Before stating ourresults, let us introduce some notation. Let P and P’

represent n- and n’-dimensional vectors defined over regions D and D’,

respectively, each containing the origin in its respective space. For all

values of u,v, P and P’, the transformed vectors JT (P, P’; u, v),

IT’ (P, P’; u,v), are required to he within these same domains, where u

and v are k- and k’-dimensional choice vectors, respectively, constrained

to domains S and S’, which may or may not depend upon P and P’.

Since we shall be dealing with shrinking transformations in the theorem

below,there is no loss of generality in taking D and D’to befinite.

In each space,let us introduce the norm,| | P | |, equal to the sum of

the absolute values of the components of P,
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(1) HPL =21 Pel,

||P |=2PEI.
Actually, these norms need not beidentical, and, in somesituations,it

might be useful to consider norms moldedto the structure of the func-

tional equation, rather than standard normsof the above type.

The functional equation weshall consider in some detailis

(2) f(P, P!)=MaxMin [ff [R(w,)
G ueS ves’

+ h(P, P'; u,v) f (L, T')] 4G (u) a6’ (v)]
= Min Max [ |;

GG’

where T = T (P, P’; u,v), T’ = T' (P, P’; u,v).

To simplify our notation, let us represent the operator appearing

within the outer brackets in equation (2) by T (P, P’; f; G, G’). The

equation in (2) then assumes the form

(3) f (P, P’) = Max Min T (P, P’; f:G, G’)
G G

= Min Max T (P, P’; f;G,G’).
G’ G

There is a question as to whetherthis should be referred to as one equa-

tion or as a pair of equations. Weshall refer to (3) as ‘‘an equation.”’

The result we shall demonstrate is

THEOREM 1. Consider the equation in (2) under the following assumptions:

(4) (a) The functions R (u, v),h(P, P’; u,v), T (P, P’; u,v) and T’ (P,

P'; u,v) are continuous functions of P and P’, u and v, in any

bounded domain of the variables.

(b) The choice domains, S (P, P’), S' (P, P’), vary continuously with

P and P’.

(c) T and T’ are shrinking transformations, i.e.,

Max (||P P+ IP )sA(II PI] +1 Pl),
ves’

where k 1s a fixed constant less than 1.
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(d) Let X w(k" c) < co for allc > 0, where
n=1

wc) = Max (Max |R(u,v)|).
IPI +IIPI]se wes

(e) Max |lA(u,v, P,P’) |[<1.
u,v, P, P’

If the above conditions are satisfied, we can assert that there is a unique
solution of the equation in (2) within the class offunctions f (P, P’) which

ave continuous for all finite P and P’ and vanish when P and P’ are both

null vectors.
This solution may be found by the method of successive approximations,

(5) fo (P, P’) = Max Min [ff R (u, v) dG (u) dG’ (v)]
G GQ ueS

= Min Max[ |,
G «G

fa+1(P, P’) = Max Min (P, P’; fn: G,G’),aeG
= Min Max T (P, P’; fn; G,G'\,n >0.
GG

The solution ts obtained as the limit f(P, P’) = lm fn (P, P’), in any
n—- co

bounded region of (P, P’\ space.

Weshall further demonstrate

THEOREM 2. Under the hypothesis of Theorem 1, a set offunctions (G (u),

G' (v)) furnished by the functional equation constitute a set of optimal

strategies for A and B, respectively, in the multi-stage game described above.

§ 13. Proof of results

Let us now proceed to the proofs of these results. Let

(1) fo (P, P’) = Max Min [JJ R (u, v) dG (u) dG’ (v)],

oo wes
== Min Max [ ],

G @«G
and

(2) fn+1i(P, P’) = Max Min T (P, P’; fn; G, G’) = Min Max T,
G Gg a «Gg

where T is defined as in (4.2) and (4.4).
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By virtue of our assumptions concerning the coefficient functions and

the domains S and S’, we can assert the existence of the saddlepoint in

(1), and the continuity of f. (P, P’). Inductively, then, all the f, (P, P’)

exist and are continuousfor all finite P and P’.

Let us now show that the sequence {fn} converges uniformly in any

finite portion of the (P, P’)-regions. Using Lemma 1 we obtain the in-

equality

(3) | fn+a(P, P’) —fn (P, P’)|

< Max Max (Jf | fu (T, 7") —fa 2(T, 7")| dG (u) dG" (0)],
n = 2,3,....

Define the new sequence

(4) un+i(c) = Max | fn +1(P, P’) —fn(P, P’) |.
IPI) +1 Pll se

Then (3) yields, using the assumption of (4a) of § 3,

(5) Un +1(C) << Un (kc), n = 2, 3, ...,

Also, we have

(6) | fe (P,P) —fi(P, P’)  , << Max Max JJ | R (wu, v) | dG (u) dG’(v) ,
G @

whence

(7) Uy (c) << wc).

Using our assumption that 2 w (k"c) < oo, we see that the series

» | fuo+i(P, P’) —fn(P, P’)] converges uniformly in any finite region.

Hence fn (P, P’) converges uniformly to a function f(P, P’) whichsatis-

fies the original functional equation.

This completes the proof of existence. Let us now turn to a proof of

uniqueness. Let F (P, P’) be another solution which is continuous at

P = 0, P’ = 0, and bounded in any finite region. Wesee that F (P, P’)

is then actually continuousforall finite P and P’, although this fact is
not necessary for our proof. It does simplify it a bit since we can replace

Sup-Inf by Max-Min.

We then have the two equations

(8) F (P, P’) = Max Min (P, P’; F;G, G’) = Min Max T
G @ GG

f(P, P’) = Max Min T (P, P’; f; G, G’) =Min Max T
GG @ Ge 6G
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Applying Lemma1, wesee that

(9) |F(P, P’)—f(P, P’) |< Max Max[JJ|F(T,T’)—f(T, T’) | dGdc’
G G ueS

veS’

Let

(10) A (c) = Max |F (P, P’) —f(P, P’) |.
IPPIL+ 1 Pll se

The (9) yields the relation

(11) A (c) <A (he),
which, upon iteration, yields A (c) < A (k"c),n = 1, 2, .... Since F and
f are both continuous at P = 0, P’ = 0, and have the common value 0

there, we see that A (k" c) > 0 as u—> oo. Hence A (c) = Oand F=f.
This completes the proof of Theorem 1.

§ 14. Alternate proof of existence

In the study of functional equations of this class, the proof of the
existence is “‘cheap,’’ while the proof of the uniqueness requires varying

degreesof effort. As far as the functional equations arising from thecal-

culus of variations are concerned, the opposite is true; there, existence is

difficult and uniquenessis simple.

Let us indicate how we mayestablish the existence of a solution of the

Sup-Inf equation in the case where we assume that R (u, v) > 0 and

h(P, P’; u,v) > 0. It follows inductively that the sequence {/f, (P, P’)}

is monotone increasing and bounded. Hence the sequence converges to a

function f (P, P’).

To show that this function satisfies the functional equation

(1) J (P, P’) = Sup Inf T (P, P’; f; G, G’)
G @

= Inf Sup T,
@ «

we proceed as follows. We have

(2) F(P, P’) > fn+i(P, P’) = Sup Inf T (P, P’; fa; G,G’'),
G @

and thus

(3) Ff (P, P’) > Sup Inf T (P, P’; f; G, G’).
G @

Conversely, utilizing the positivity of the operator, we have

(4) fn+1(P, P’) < Sup Inf T (P, P’; f; G, G’),
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for all m, and, in consequence,

(5) f (P, P’) < Sup Inf T (P, P’; f; G, G’).

Comparing (3) and (5) we see that we have equality.

§ 15. Successive approximations in general

The sequence of approximations, { fn (P, P’)}, used to construct the

function f (P, P’) was precisely that obtained from thefinite n-stage pro-

cesses. This is actually not the best sequence to use if we are interested

only in the infinite stage process. As we have pointed out in previous

pages, approximation in “policy space’, here “‘strategy space’’, is in

many ways a more natural and more important type of approximation.

To justify this and other types of approximations we require

THEOREM 3. Under the assumptions of Theorem 1, the sequence defined by

(1) fa +1(P, P’) = Max Min T (P, P’; fa:G,G’), n = 0,1,...
G

= Min Max T (P, P’; fn; G, G’)
GV Gg

converges to the solution of (5.3) for any initial function fo (P, P’) which ts

continuous in any finite part of the (P, P’)-domain, and equal to zero at

P=0,P’=0.

The proof is precisely the same as that given above.

§ 16. Effectiveness of solution

Wehaveestablished existence and uniqueness of the functional equa-

tion derived above under the assumption that the infinite process posses-

sed a value for each player. The question now arises as to whether the

functional equation actually yields sufficient information to allow each

player to obtain this value. If so, we say that the solutionis effective, and

theoretically, the functional equation is equivalent to the game.é

The solution will be effective under the hypotheses of Theorem 1,

which is to say, continuity.

To show effectiveness, under the hypotheses of Theorem 2, we must

show that if A uses a distribution function G (uv) = G (u; P, P’) obtained

from a pair (G, G’) which yield the min-max, then, regardless of what B

may do, A can guarantee himself a return of at least f(P, P’).

5 In many ways, however, this is not true. Once the functional equation has
been formulated, and the process discarded, we haverestricted ourselves to a
certain direction of approach which may not be optimal for the derivation of all
properties of the process. It is well then to keep in mind that the above functional
equation is only one of many possible mathematical descriptions of the process.
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Employing this fixed strategy, A’s return will be, at worst, determined

by the solution of the functional equation

(1) F (P, P’) = Min [JJ [R (w, 0)
GQ ouesN

res’

+ h(P, P’;T, T’) F(T, T’)) dG (u) dG’ (v)).

It is easy to show, using the techniques of the preceding chapters,

together with the assumptions we have made, that this equation has a

unique continuous solution whichis zero at P = 0, P’ = 0, Furthermore,

the solution of this equation may be obtainedasthelimit of the sequence

defined by

(2) F, (P, P’) = Min [JJ R (u, v) dG (u) dG’ (v)} ,
wes

Fn+1(P, P’) = Min ff [R (w, v)
GQ ouesS

ves’

+ h(P, P’;u, v) Fn(T, T’)] dG (u) dG’ (v).

It is clear, from the derivation of G (u), that F = f,. Hence, inductively,

Fr+1= fn +1, as defined by (14.1). Thus

(3) F (P, P’) = lim F, = lim fn = f (P, P’).
n-—-> ©co n-> Cc

This demonstrates the effectiveness of the solutions.

With reference to the remarks made in § 6 of Chapter 4, let us now

establish

THEOREM 4. Let

(1) A (c) = Max Max |R (u,v) — R’ (u,v) |.
IPI} +l Pll se wes

Then, under the hypotheses of Theorem 1, the solutions of

(2) f(P, P’) = Max Min ff [R (uw, 0) + h(P, P's u,v)f(T, T’)] dGdG’
G GQ ueS

ves’

= Min Max[...],
G

F (P, P’) = Max Min JJ [R’ (uw, v) + A(P, P’; u, v) F(T, T’) | dGdG'

ooo
= Min Max[...]
GG
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satisfy the inequality
Co

(3) [f(P, P') —F (P,P) |< E Alkne),
n=0

ProoF. Applying the Lemmaof § 3, we see that

(4) | f (P, P’) — F (P, P’) | < Max Max Jf[ | R—R’ |
G G euewN

ves’

+ | f(T, T’) —F (T, T’) | | dGdc’.

Iteration of this inequality yields the desired result.

§ 17. Further results

The results obtained in the previous sections depended upon thefact

that the total resources of the system were diminished as a consequence

of the play at any particular stage of the game. Analytically, we may

express this by the statement that the transformation (P, P’) > (T, T"')

is a shrinking transformation.

Let us now introduce a shrinking transformation in another way by

assuming that

(1) |h(P, P’, u,v) |<k <1,

for all admissible P, P’, u, and v. Provided that we assume that P and

P’ now be within bounded domains, with T and T”’ transformations of

these domains into themselvesfor all w and v, we obtain ready analogues

of the preceding theorems under the assumption of (1). We shall leave

the formulation and proofs of the results as exercises for the reader.

§ 18. One-sided min-max

Let us now consider the equation

(1) f(P, P’) = Min Max [R (uw, v) + A(P, P’3 u,v) f(T, T)),
ves’ ues

which arises from the allocation process described above if the second

player is required to announcehis choice of v to the first player before

each play.

We can obtain an analogue of the basic lemmaof § 10 in the following

way. For any function FR (uw, v) permitting the operations we have

(2) Min Max R (u,v) = Min Max R (u,v),
veS’ ues veS’ ul(vyes

where wu (v) is now a function which maximizes R (u, v) for fixed v. Let

U (v) be this function.
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Let V be a value of v which minimizes R (U (v), v). Then we have the
inequalities

(3) R(U(V),V) <R(U(2), 2),
R(U(V),V) > R(u(V), V),

for any other admissible values of u and v. This saddlepoint property

yields the analogue of Lemma 1. Having obtained this lemma, the

proofs of existence and uniquenessproceed in a straightforward fashion.

§ 19. Existence and uniqueness for games of survival

Weshall prove the followingresult:

THEOREM 5. Consider the equation

(1) f (x) = Min Max [fi gi f(x —1) + fig f(x + 4) +
qg Pp

bog f(x +c) + pede f(x — 4)),

= Max Min [Aig f(x —1) + pigf(x + 4) +
p q

Pogf(x +c) + pega f(x — )],

for x = 1, 2,3, ... d—1, associated with the game matrix

—] a

where a, b, and c are positive integers, a > 1, andf (x) satisfies the boundary

conditions :

(3) f(x) =0,*%*<0, f(x) =1x>d.

There is a unique function f (x) satisfying the inequalities 0 < f(x) <1,

which satisfies (1) and (3).

ProoF. To simplify the notation, let us set V (f(x)) as the value of the
game whose matrix 1s

fle—1) fle +a)
4 ane)
The functional equation in (1) has the form

(5) f(x) = V(f(x)), x=1,2,...d—1

f(x) =0, %<0

f(x) =1, x >a.
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Let us define the sequence {fn (x)} as follows.

(6) fo(x) =1,x>d,
=O0,*<d—l1,

Fn +1(%) = V(fn (*)), n = 0,1, 2,...,% = 1,2,...d—1,

fn +1 (%) =I,*>d,

=O0,x*x< 0.

It is clear that /f, (x) > fo (x) for all x, and hence inductively that

fn+1(x) > fn (x). It follows from the fact that 0< fn (x) <1 for all x

and n, that fn (~) converges as ” — oo for all x to a function f(x). That

} (x) satisfies (5) is easily seen. This completes the proof of existence.

Since fo (x) 1s a monotone increasing function of x,each function fn (x)

is monotone increasing, and hence f(x) 1s monotone increasing. Let us

now demonstrate the importantresult that it is actually strictly monotone.

Upon this fact our proof of uniqueness depends.

We have

7) ray =V(ey 1).
Iff (a) andf (c) are positive, we havef(1) > 0.

To establish the fact that f(a) and f(c) are positive, let us assume, on

the contrary, that f(x) = 0, forx =0,1,2,...,k <d, but f(k+ 1)

= 0. Then

_ypl(flR—lfle+a)\ _ 0
") ="Fey pena)” (race
Since f(kR + a) >f(k +1) >0,f(k +c) > f(k +1) > 0, it follows
that f(k) > 0, which is a contradiction unless k = 0. Thus f (1) > 0.

Wehave

—.f fM. flat2
°) far=Vv(,20, ier).
Sincef (1) > 0, f(a + 2) > f(a + 1), f(ec + 2) Sf (c), f(2 — b) > O,

we must have f(2) > //f (1), unless f (2— 56) = O andthe solution is
be = d. = 1. This is clearly impossible since it yields f (2) = 0 < f(1)
and we know that f(2) > /f(1).

Wethus prove, inductively, that

f(a)
O

(10) 0=f(0) <f(1) <f(2)<...<f(@) =1,

with strict inequality at every step.
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The uniqueness now follows readily. Let us set

(11) T (6,¢.f) =pials(*x—)) + pige f(x + a)

+ pos (x +c) + p292f (x — 6).

Let f and g be solutionsof

{12) f («) = Min MaxT (A, gq, f) = Max Min (4,q,f)
p p 4q

g (x) = Min MaxT (4,q, g) = Max Min (4,g, g),
Pp @q »p

for 0 <x <d,and

(13) f(x) = g(x) =0,x<0
=lx«>d,

with the further assumption that g (x) is cet for0O <%* <d.

Under the assumption that f(x)  g (x), set

(14) | Meer ee|

and let y be the largest integer in (0, @] for which the maximum, assumed

non-zero, is attained. - -

If we let #: = pf: (y), gi = Gi (vy), Pi = Pi (VY), Gi = Gi (vy) besetsof values
for which the Min Max = Max Min is assumed, we have

(15) fy) =T(b4aS)
gly) =T(p,49,8),

and, as in Lemma I,

(16) A= fly y) |< Max[|T (4,9, f—g) |].

Since, for all # and g, i

(17) IT (h9,f—s)|<4,
wesee that (16) is an equality, which means that

(18) T(p,9f)=TbaS),
To¢f)=T(paf).

Consider the relation

(19 f(y) —gly)=Aafy—)—giy—1
g )+ binlfly +e) —giy +e

+ Pr lf (y ++ a)—gly+a)]

+ po dalf(y — 6) —g (ly —9)].

Since » #: 9; = 1, if any of the brackets in (19) have absolute value less
a7
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than A, the corresponding coefficient #:; g; must be zero. By assumption,
y was the largest value for which | f(y) — g (vy) | = 4. Hence #29; =
0, py Ve = 0. _ _ _

Since #, + ~, = 1, both #, and f, cannot be zero, which means g, =

O or g, = 0. Turning to the game matrix

fiy—a) fly+a)
(20) es fon)
we see that the strict monotonicity of f(x) as a function of x makesit

impossible for g, = 0 or g, = 0 to be optimal play at x = y. This yields

a contradiction to 4 > 0 and completes the proof of uniqueness.

Wesee then that the proof of uniqueness of a strictly increasing solu-

tion is relatively easy, with the whole difficulty of the complete unique-

ness proof centering about the proof of strict monotonicity.

The method we have employed is quite general and applies to large

classes of functional equations. It fails, however, to treat the general case

where we assume only that the elements ai; of the game matrix A are real

quantities.

§ 20. An approximation

Let us now return to the general equation

(1) f(x) = Max Min &' pi qj f (x + aii),
Pp Q 1%)

= Min Max » p; 9; f(x + aij) ,
q p 4)

and assume that x is large compared to aj.

The reasoning we shall employ below, while quite formal, possesses

many features of interest. Assume that we can write

(2) F(x + ais) BF (x) + aaj f’ (x).
Then (1) takes the form

(3) f(x) 2 Max Min “ Di Qi (f(x) + aaj f’ (x)]

2 Max Min

[

f(x) +f’ (x) 2 pi gs ais),
p q a

which leads to

(4) 0 Max Min[/’ (x) & pi gy aij]
p q 2,9

2 Min Max [f’ (x) 2 pig; aij].
a,9qg Pp

Assume now that f’ (x) > 0. Then we obtain the approximate equa-

tions for the unknowndistributions # and 4g,
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(5) O = Max Min » aij Di "Vj

poo 4g ij

= Min Max » aij pi q;,
q pp i,j

an equation whichis independentof f (x) !

The meaning of this equation is that for large x, with a large numberof

plays remaining before the end of the game, the play is approximately

the same as that employed in the single-stage game where both players

wish merely to maximize the expected return from oneplay.

In taking ai; small compared to x we are essentially passing over to a

continuous version of the process. As we notedin § 18 of Chapter 8 in the

discussion of the nonlinear utility function, the optimal policy was inde-

pendent of the form of the criterion function. Here is another manifesta-

tion of this general principle, and we shall encounter a further example in

§ 22 devoted to a similar approximation for non-zero-sum games.

§ 21. Non-zero-sum games—gamesof survival

Let us now turn to a discussion of the more general situation where

bi; F- — ai. Here there is no generally acceptable theory for the deter-

mination of optimal play in a single-stage process. Consequently, we shall

turn immediately to the discussion of a multi-stage process. Let us assume

once more that the players are both striving to ruin the other, and that

the game continues until this occurs. They are now in direct opposition

and we can use a Min-Max formulation.

Since the gameis non-zero-sum, the state of the process depends upon

the fortunes of both A and B, x and y,respectively. Let us define

(1) f(x, y) = probability that A ruins B when A has x, B has y, and both

employ optimalpolicies.

Then f(x, y), provided that it exists, satisfies the functional equation

(2) f(x, ¥) = Max Min 2pi gy f (% + aaj, y + by)
p q 1)

= Min Max » pi 9; f(x + aij, y + bi) ,
q p 1%)

with the boundary conditions

(3) f(y) =1x20y <0
=0,*<0,y >0

= 1/2, x = y = 0(by convention).

It is easy to establish the following result, using the methods we have

employed above.

307



MULTI-STAGE GAMES

THEOREM 6. If aij + biz < 0 for all 1,7, there 1s a unique bounded solution

to (2), (3).

§ 22. An approximate solution

Let us assume that we are dealing with a process where ai; and bi; are

always negative. Then assuming that x and y are large compared to ay

and bi;, and that we may write

(1) F(x + ai, ¥ + bij) BH (x,y) + aig fx + Daj fy,

we obtain the approximate equation

(2) f(x, y) @ Max Min 2pi qi [f(%, y) + aaj fe + bify]
Pp Qq 2%)

2 Min Max 2 pi qs[f (x,y) + aus fe + diy fy).
ts)qg Dp

From this we obtain the approximate equations

(3) O = Max Min[fe 2° aij pi gy + fy & dig pi Qi]
p 4 i, j i,j

= Min Max[fx 2' aij piqg + fy & bij Pi qi).
q p 7 a9

Using the same reasoning employedin § 4 of Chapter 9, we see that these

yield

(4) — fxlfy = Max Min[ 2’ bi pi qs] 2 aaj pi Qi]
Pp q t,) v,)

= Min Max[ 2bis pi qi] 2 aij pi Qi) .
q op if i,j

This is a very reasonable criterion. Observe that it makes no difference

whether wesolve for fr=fy or fy/fx, since maximizing f,/fy 1s equivalent

to minimizing fy/fx.

In the next section we shall demonstrate that Max Min in (4) actually

equals Min Max.

§ 23. Proof of the extended min-max theorem

In this section we wish to prove

THEOREM 7. If 2 bij fig; =a > Ofor all distribution vectors p and q,
a9

then

aay Pi 4 aais Pi Gs
(1) Max Min ~+—---_- = Min Max ~

po q¢ wby figi  ¢ pv Ndi pigs
v,) a9
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ProoF. Thereis no loss of generality in further assuming that bi; < m <
1 for allz,7 so that 2 bi; iq; < m for all relevant p and gq. Consider the

1,7

system of recurrencerelations

(2) Uo = Max Min 2 ai; pi gq; = Min Max » ai; pi q;.
p q i) q p i,j

Un +1 = Max Min [ > aij Pigg + [1 — » bij Pi qj| Un|
p q tJ inj

= Min Max[ 2 ai pig; + [1 —2 bij fi gy) un] .
q p ts) ts)

It is easy to show, using the methods discussed above, that the se-

quence {un} converges to a value uw, satisfying the equation

(3) u = Max Min [ “ ai; Pi qj + [1 — > bi; pi qj| “|

p q “9 47

= Min Max[ » ai Pigg + (1 — 2D bij pi qj] uj.

q p 7) 1)

The condition 0 < 1 — J» bi; pi gq; < 1 —d yields geometric convergence
fore) a,j

of the series 2’ (un +1— Un).
n= 0

Since u satisfies (3), it is easy to see that it is given by the expression

(4) u = Max Min » ai; pi q;/ X bij Bi 9;
p q i) ]

= Min Max » aij pig;/ XY bis bi gy,
jq p tj a,

which establishes the theorem.

§ 24, A rationale for non-zero sum games

The importance of the above result, combined with the approximation

procedure discussed in § 14, is that we now havea possible rationale for

the play of non-zero sum games, namely one based uponthecriterion

function

my 4 i

(1) R (p,q) = =e
— LS by pig,

Whetheror not to accept this is a matter of individual taste. It must be

realized that this question must always arise in two-person processes,

whereit is not a priori evident that both individuals are employing the

same criterion function, or, what is worse, they may not have commen-

surable utility scales.
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Exercises and research problems for Chapter X

1. Consider the following game. Two players, I and II, match coins ac-

cording to the followingrules:

a. I and II both lose one, if a head-head combination occurs,

b. I gains one, II loses one if a tail-tail combination occurs,

c. I loses one, II gains one if head-tail, tail-head occur.

The first player starts with a quantity m and the second player with a

quantity ”. Each plays so as to ruin the other. Let p (m, n; x, y) be the

probability that I will be ruined before or together with II if I shows

heads with probability x and II shows heads with probability y.

Define

g, = xy = Probability that I and IT both display heads

dg. = x(1— y) + y(1 — x) = Probability that a head-tail combination

appears

g3 = (1 — x) (1 — y) = Probability that both I and II displaytails.

Obtain the recurrence relation

p(m,n) = qi. p(m—I1,n—1)+ Qh (m—1,n + 1)

+qsp(m+1,n+4+ 1),

for m, n > 1, with the boundary conditions

p(m, 0) =0,m>1,p(0,n) = 1,>0

(R. Bellman and D. Blackwell)

2. Show that for » > 2 we obtain the finite set of equations

b (1, 2) = (41 + G2) + 93 PB (2, n — 1)

(2, n—1) = qb (1, —2) +ged(ln) +436 (3,2 —2)
p(n—1, 2) = gp (m—2, 1) +gan—2, 3) +b (m1)
p(n, 1) = G2 (n — 1, 2)

3. Show that

6 (2,1) = {as + 42) qo

— F2 I3

and hence that Min Max p (m, n, x, y) 4 Max Min # (m, n, x, y) in gene-

ral. (It is interesting to note that Min Max ~ .4397, x’ = .43, y’ = .5,
x y

Max Min & .43804, x’ = .43, y’ = 1, where x’ = 1— x,y’ = 1—y.
y x
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4. It follows from the fundamental min-max theorem for continuous

games that Min Max K(m,n; A, B) = Max “tin K(m,n; A,B), where

K (m,n; A, B) =  [pemass yaa coamy

and A,B range over the space of monotone functions of uniformly

bounded variation equal to 1. Show that the solution for m = 2,” = ]

is given by

a. II chooses the value of y’, yo, for which (2, 1, 0, v’) = # (2, 1, 1, y’),

a pure strategy.

b. I chooses a mixed strategy, using either all headsor all tails in the

combination (a, 1 — a), where a is chosen so that ap (2, 1, 0, y’) +

(1 — a) # (2,1, 1, y’) has a maximumat y’ = yo.

5. Show that the expected probability of ruin for I is yp & .4302, the

unique real root of y’ = (1 — y’)?/(l — y’ + vy’).

6. Prove that as m, nm — oo along anyfixed direction, m/n =, playerII

can choose y so that uniformly in x we have

lim p(m,n)=1.

7. Show that the above considerations lead to the following principle: In

playing a game of this type, I should try to make the stakes as high as

possible, whereas II should try to make them aslow aspossible.

8. Let
N,N

Tn (Uy, Ug, «+, UN} Uy, Ug, ---, UN) = Min Max[ 2 aij x1;

N N . youre
+ Si uixi + &L vj yj] = Max Min[...], N=1,2,...

7=1 7=1 x y

Derive a recurrence relation for {fy}.

9. Consider the game of survival described by the matrix

2—1
4=(_37):

where thetotal fortune of both players is 4 and & describes the fortuneof

the first player. Show that f(A), the probability of survival of the first

player, satisfies the equations

F (1) =f (3) + F(2)/4(2) + F (3)
Ff (2) = f (3)/(. + f (8) —f (1)
f (3) = (L—f (2) FD) —F (2) —f (1) (Hausner)
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10. Hence show that

f(1) = 1— 2/2, f (2) = 1/2, f(3) = 72/2,

and that the corresponding optimal strategies are given by

pi = V2—1, pb: = 1/2, p3 = 2— v2

g= V2—1,4¢= 1— vV2/2,¢, = W2—1

11. Consider the game of survival described by

a—l

4=(_T a)
where a and 6 are positive integers. Let vn (Rk) be the probability that A

survives when the fortunes of both players total m and A possesses k of

this. Show that

Dn v1 (& + 1) = vn (A) + (1 — dn (B)) On 44 (I)
12. Show that

vn+i(1 f+ a) Un +1 (1 f+ b)

Unsi(l +a) +sil +9)
 Un4+1 (1) =

and hence that

 Un+1 (1) __ Vn (a) Un (0)

1+ Von(@) Un (6)
13. Show that

Un (1 + B) Un (1)
a (I) = Yn (1 + a) + 0n(1 +5) un(l a)

bn+il(k + 1) = px (hk) = pa - x 4+1(I1)

14. Prove Theorem 5 by showing that val (A —BA) is a continuous
function of 4 which is monotone decreasing as a function of A. Hence

show that there is exactly one solution of the equation val (A — BA) = 0

which may be represented in the form given in (23.1). (Karlin).

 

15. Consider the equation

u(p)=L(ul(s,g')) +4609),

and the related equation

v (Pp) = Max Min[L (v (6,9, 9')) +4 (6,%9')]
q 4

— Min Max [ - 1.
q q

312



MULTI-STAGE GAMES

Under what conditions may wewrite

v (p) = Max Min u(p) = Min Max u (p) ?
q q q qg

16. Consider, in particular, the system of equations

xi = Max Min[ci (g, g') + 2 ais (9, 9’) x3),
, j=1

qg qg

¢

q

= Min Max [ci (g, g') + 2 ais (q, 9’) xj], = 1, 2, ..., 0.
q J=1

under appropriate conditions concerning the matrix A (gq, q') =

(ai; (9, 9')). (L. Shapley)

17. Suppose that we are given the information that a coin hasa fixed but

unknownprobability # of landing heads and a probability g = 1 — 9 of

landingtails, and that has a knowna priori distribution function dF ().

The coin is to be tossed N times and weareto call heads or tails before

each toss with the full knowledge of the results of the previous tosses.

What policy maximizes the expected numberof correctcalls?

18. Suppose that we can toss the coin as many times as weplease, at a

cost of c per toss, and then are required to furnish a value for #, the pro-

bability of heads. If p’ is the value decided upon, the cost of deviation

from the true value is g (p — ~’), where g is a known function. What

policy minimizes the total expected cost ?

19, Returning to problem 17, suppose that an opponent has the choice

of choosing F (pf) so as to minimize the expected numberofcorrect calls

obtained using an optimal policy. Can one characterize the optimal

selection of F (f) by the statement that the opponent chooses F (f) in

such a way as to minimize the information available after anyfinite set of

tosses ? On this hypothesis, determine Min-Max.

20. Generalize these results to cases where there are many different

possible outcomes at each stage, e.g. a six-sided die.

21. Player A has resources in quantity x, and Player B resources in

quantity y. A divides x up into z parts, x = 2 xi, x; > 0, and B likewise,
i

y = 2 yi, vi > 0. The payoff to A is

P (x, y) = x ci Max (Xi — Vi, 0) '
i=1

and the negative of this to B.
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Write

fn (x, ¥) = Max Min [f P (x, v) dG (x4, xg, ..., Xn) dG’ (V1, Vo, «++, Yn)]

= Min Max[ ... ].
GG

Obtain the recurrence relations connectingf, andfn_1. (Colonel Blotto)

22. Let A be a positive matrix, 1.e. ai; > O for allz, 7. Show that A has a
unique characteristic root of largest absolute value, which is positive,

and that the associated characteristic vector may be taken to be positive.

Denote this root by # (A), the Perron root of A.

23. Show that

pb (A) = Max Min 2 ais xj/x;,
x @ g=l

n

== Min Max » aij xj/x:,
x @ j=l

wherethe variation is over the region x; > 0,2’ x; = 1.
i

24. Show that

p (A) = Max Min 2 aj xj/x:,
Ri j=l

n

= Min Max » aij x5/x:,
Ri j=

where R’ is defined by x; > d, x; = 1, and d maybe taken to be

d = Min ai;/Max (2 aij) .
a, 9 a j

25. Prove that p (A) is the uniquesolution of

A= Max Min > aig Xj + A(L — xi),

or of no

A= Min Max Cs aij Xj + A(L — xi)),

where R’ is as above. | oe

26. Consider the nonlinear recurrencerelation

Un+1 = Min Max[ 2 aij xj + un (1 — xi)].
Roi j=1

with uw, arbitrary. Prove that p(A) = lim an.
n-> 00

(Proc. Amer. Math. Soc., 1956).
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person zero-sum theory because of the lack of a corresponding min-max
theorem. A large part of Von Neumann-Morgenstern is devoted to these
questions, and a fundamental result in the field is contained in J. F. Nash,
“Equilibrium Points in N-person Games,’’ Proc. Nat. Acad. Sct., vol. 36
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Corporation, 1949.
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R. Isaacs, who resolved a number of special games, and developed a general
theory of this class of problems. See R. Isaacs, ‘“Games of Pursuit,’’ P-257,
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Evasion,’’ P-642, The RAND Corporation, 1955, R: Isaacs, ‘Differential
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results on existence and uniqueness were announced by L. Shapley, ‘‘Sto-
chastic Games,”’ Proc. Nat. Acad. Sct., vol. 39 (1953), pp. 1095-1100.

§ 19. The proof presented here is contained in R. Bellman, ‘“‘Introduction
to the Theory of Dynamic Programming,’ RAND, R—245, 1953, Chapter VI.
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the subject. The deepest results so far obtained are contained in M. Peisa-
koff, ‘‘More on Gamesof Survival,’’ RM-884, The RAND Corporation, 1952,

and J. Milnor and L. Shapley, ‘‘On Gamesof Survival,’’ P-622, The RAND
Corporation, 1955.
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sented in R. Bellman, ‘“‘Decision Making in the Face of Uncertainty-II,
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§ 21. This proof of the extended min-max theorem is due to L. Shapley

in the references cited in the comment on § 18. The formulation of the
theorem and the original proof are due to Von Neumann.
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CHAPTER XI

Markovian Decision Processes

§ 1. Introduction

In this chapter we shall study some decision processes of a different

form than those previously encountered, giving rise to a new class of

functional equations.

Weshall consider discrete processes, which lead us to the study of the

difference equation

NV

(1) xi(n + 1) = Max & diz (q) x; (n), x: (0) =C%,t= 1, 2, JN,

qj7=1

and some continuous processes which generate the equation

N
(2) axildt = Max 2 ai; (q) x; (t), x1 (0) = ci,4 = 1,2,...,N,

q j=1

in the one-person case, and the equation

N
(3) dxifdt = Max Min 2 ai; (p, q) x; (4))], x1 (0) = ci, 4 = 1, 2, ..., N,

q p j=

= Min Max[... ],
pq

in the two-person case.

As weshall see, equations of this type have connections withthe clas-

sical theory of differential and difference equations. We shall, however,

reserve any detailed exploration of this liaison until the second volume.

§ 2. Markovian decision processes

Let us describe, in this section, a decision process which motivates the

study of a class of nonlinear difference equations, of which (1.1) is a re-

presentative. We shall then consider the limiting form, namely (1.2).

Consider a physical system S which at any of the times ¢ = 0,4,

24, ... must be in one of a set of states which we denote by S;, So, ...,

Sy. Assume that at any time ¢ there is a probability ~; (¢) that the system

is in the 2state, and that transition probabilities exist governing the
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changeover from one state to another. It is important to realize that

these are very strong assumptions concerning the nature of the system.

Let

(1) aij = the probability that the system will be in state7z at ¢ + A if it
is in state 7 at time ¢.

The relation between the set of probabilities {x; (¢ + A)} and the set

{xi (¢)} 1s then given bythe relations

(2) n(6+4)= Fayf1%,
je

for ¢=0,4,2A,...,. Setting x: (n 4d) = yi(n), we may write these

equations in the simpler form

(3) yi(n + 1) =Fayy (tt = 1% aN.

The asymptotic behavior of the state vector(y,, V2, ..-, Vw) aS t-—> oO

is determined by the algebraic character of the characterisitic roots of

the matrix A = (aij). A process of this type is called a Markoff process.

There exists an extensive mathematical theory of these processes.

Let us now consider Markovian decision processes. Assume that the

transition probabilities, aij, depend upon a parameter g, which may be a

vector, and that at each stage of the process q is to be chosen so as to

maximize the probability that the system is in the state S,. In place of

the equations in (3) we obtain the nonlinear system

N

(4) yi(m + 1) = Max& ay; (q) ys (n),
qj=l

x
yin +1) = »& ai (g*) y; (n), 1 = 2,3, ...,N.

j=l

where g* = q* (n) in the remaining N — 1] equationsis one of the values

of g which maximizes y, (” + 1).

Since the ai are transition probabilities, they are restricted by the

conditions

(4) ay > 0, + ag = 1,7 = 1,2, ..., N,

for all @.

To obtain more general equations, consider the situation in which we

have N different types of items and let x; (¢) represent the quantity of

the zth item at time ¢. These items have the property that a unit quan-

tity of the zt" item generates an amount ai of the 7" item over the time
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interval {t, ¢ + A). Here ai; > 0 represents production, and the reverse

inequality represents consumption. Once again let a;; depend upon a

parameter g and let the purpose of the process be to maximize the

quantity of the first item available at any time. In this case we obtain

the equation in (4) withno restriction on the magnitudeorsign of the ai.
In the limit as 4 -—» 0, we obtain in place of (4) the nonlinear

differential system

dx, v
(5) yw Max 2’ by; (9) xj (), x1 (0) = 1,

q j=l

Ax: Nv ,
dt =— 2 bi; (q*) xj (t), x; (0) =%,t= 2, 3, eee, N.

j=1

To obtain this system, weset, in the usual fashion

(6) aij = biA,
ai = 1— di A,

and then let 4d -> 0. Having obtained the equations by meansof this for-

malism, we now define the continuous process by meansof the equation

in (5). In return for this, we must establish existence and uniqueness of

solutions, which is to say we must show that this method of defining a

process is actually valid.

§ 3. Notation

Taking accountof the foregoing remarks, weshall begin by considering

the continuousversion first. Introducing vector-matrix notation to sim-

plify our notation,

Xy Cy

Xe Ce

(1) x= » A (9) = (44 (9), 6 =

XN CN

the system

AX: ~ ,
(2) qo Max © aay (gq) 43, %¢ (0) = ct = 1,2, ...,N,

qj=1

takes the form

(3) dx/dt = Max A (9) x, x (0) =c.
q

319



MARKOVIAN DECISION PROCESSES

where it is understood that the maximum is taken element by element.
By this we mean that the set of g’s for each row is distinct from thecor-

responding set for any other row. Thus,

(4) ayj (q) = ayj (Qu, Via, +65 Qik) ,

Aj (q) = Aj (Jar, Joa. +++) Jok) ,

anj (7) = 4nj (Gn1, Qn2, +>, qNk) 5

so that there is no interaction between the various maximizations. After

discussing this case, we shall return to the equations obtained in the

preceding sections, where interaction occurs.

It is convenient to employ the notation

(5) I}x|l= 2 |x],

14 ||2Lau |
These fulfill the usual requirements for norms, and in addition we have

(10) HfAx[[< {Alli l+]l.

§ 4. A lemma

As1s usual in the theory of differential equations,thefirst step in esta~-

blishing existence and uniquenessof a solution consists of converting the

differential equation into a suitable integral equation. This enables us to

take advantage of the smoothing properties of integration.

Considering the more general equation

(1) dx|dt = Max [A (q, t) x + b(q, 4], x (0) =,
q

we obtain the integral equation

(2) xe |Max[A (9, 5) 2+ 5(g, )] 4
o 4

which may be written

(3) x= Max(o+] (gs) ds+ [4 (qs) xds].

Since qg is a function of ¢, pointwise maximization yields global maximi-

zation.

It is easy to demonstrate the following result in much the same way as

Lemma1 of Chapter 2 wasestablished.
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LemMMA. Let

(4) T, (x) = Max [),(q, #) + [ A (q, Ss) xds],

Ts (y)= Max(bs (g.)+ [A(@, 8) yds).
qg 0

then

(5) HTT (@) ~ T() | 1s Max] | 5, (g, t) — be (9, t) | |

t

+ [i4@9 II lle—yllas
This lemma will be the fulcrum of our existence and uniquenessproof,

§ 5. Existence and uniqueness—I

Let us now consider the question of the existence and uniqueness of
solutions of the equation

(1) dx/dt = Max [A (q, t) x + 5 (9, 4)], x (0) =c.

There are a number of cases of particular interest, corresponding to

different assumptions that can be made concerning the function A (q,f),

b (g, t), and the set of admissible functions q (¢). We shall discuss one class

of equations and leave the matterthere, since the method used will illus-

trate the procedures that may be employed in other cases.

Ourfirst result is

THEOREM 1. Assume that q ts an element of a set of functions S with the
property that

(2) (AMAL, [lé@AlI<f),

where f (t) 1s integrable over any finite interval O << t< T. Assume further

that the maximum of A (q, t) x + 0 (q, 4) ts attained for ge S for any fixed

tand x values.+

Then there ts a unique solution to (1) satisfying the equation almost every-

where. This solution may be found as the limit of the successive apbproxima-

t101S,

(3) Xo = C,
t

vn st = 6 + Max [ [A (q, 8) xn + 6(q,s)] ds,n=0,1,...
qd 0

1 The purpose of this assumption is to handle simultaneously the case where q
assumes only a discrete set of values, in which case the maximumis alwaysattained,
and the case where qg varies continuously.
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ProoF. Let us first show that the x2 are uniformly bounded in the inter-

val [0, 7]. Specifically, we shall show that

(3) [an | |< aexp (|f(s) ds),
where

(4) a=|lell+ |s(as.

The inequality certainly holds for » = 0. Assume that it is valid for

k = 0,1, ...,”. Then we have, from (3),

(5) [amsal |< lel + |’ Max | |b (g, 9) ||as

+ [tax || 4 (@, 9) (1) [xm | 1a

<at |F() |lan| las

Replacing | | xn | | by its bound, we have

(6) Jansill<a+ |’ f(s)(aexp( |f(ss) ds))] 4

and thus obtain the same boundfor| | xn +1 | |.
Let us now establish the convergence of the sequence {xn}. Applying

the Lemmaof § 4 to the two relations

(7) nea e+ Max[ |(4 (gq, 5) xn + b(g, 5)) a5],
q 0

t

tn = 6+ Max[ | [A (g, 8) xn-1 + (9, 8)] ds
q 0

we obtain the inequality

(8) | |xnsa— xn | |< Max ||| A (a3) ||| — awa ls

< |F() an an-1| dsm = 1,2, _

Iterating this relation, starting with the inequality for | | x,— xo | |,
we obtain the inequality

(9) [ansa— an [SMe + CfFO) dsr yn + ay!
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which establishes the uniform convergence of the sequence {%n} in the
interval [0, 7] to a function x (¢). This function is continuous for 0 < ¢

< T, satisfies the integral equation

t

(10) x(t) =e+ | Max [A (q, s) x + b (q, s)] ds,
eo 4

and hence the differential equation almost everywhere.
Finally, let us demonstrate uniqueness. Let y (¢) be another solution

of the equation, existing in someinterval(0, S]. Then in this intervaly (2)

satisfies the equation in (10). Applying the lemmaof § 4, we derive the

inequality

(1) |x—y|| <Max [||4@s) [[|l*—y| 14s
t

< | 'f0) [lx—y |]

This inequality has the form

(12) HO <[So) aias,

wheref (s), u (s) > 0.

Hence, for an arbitrarily small positive constant a, we have

(13) u(t) <a+ [f6)«(9 ds .

Dividing through,this yields

 
t t

(14) mone SS ().
a+ [ f(s) u (s) ds

Integrating between 0 ands, we have

(15) a+ [fo u (s) ds <a elo

Combining this with (13), we obtain the inequality

t
f(s)ds

(16) u(t)<a ele

Since a is an arbitrary positive constant, we see that u (¢) = 0.
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An alternative proof proceeds as follows. It is clear that a constant b

exists such that | | x — y||< bin (0, s]. Hence

(17) u<b{sO) ds.

Use this inequality on the right side of (12), obtaining

as) w@<b ['(F6) [f(sdoi) ds = 072! ([70 is
Continuing in this way, we have for each n = 1, 2, ..., the inequality

bn ‘F( d n+1

19 u(t) << —- i s) ds" O< Gg in (10%)
Letting 1 —> oo, we see again that u(t) = 0.

§ 6. Existence and uniqueness—II

Let us now consider the equation of (2.5). In general, equationsof this

general type need not have unique solutions, due to multiplicity of

maximizing g-values. Consider, for example, the equation

(1) dx,/dt = Max [1 — g? (1 — q)?}] + %s, %1 (0) = 0
q

Ax,/dt = g* xX, , x, (0) = 1

Since g* = Oor 1, we obtain infinitely many sets of solutions, of which the

following are representative

(2) X= 2t,%, = t+ (e&—1)

Xe=1, x, =e.

Wecan, however, obtain uniqueness theoremsif we restrict ourselves

to solutions obtained in the following way. First solve the equations

N
(3) dx,/dt = b. (q, ¢) +2 2; (q) Xj, X_ (0) = Ce,

7=1

" N
dxn/dt = bn (q, t) + P aNnj (q) xj, xn (0) = cn,

7=1

for the quantities x», %;, ..., xv in terms of function x,, regarding g for

the moment as some unknownfunction.

Each xz, k = 2, 3, ..., N, will have the form

(4) we = uel.) + |on (Qs) m9) ds
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Substituting these expressions into the equation

N
(5) dx,/dt = Max [0, (9, t) + © ayj(q) xj], x1 (0) =c,,

q j= 1

we obtain an equation of the form
t

(6) dx,/dt = Max [6 (q, ¢) 4+- ay; (g) x, + | v (g, t, S) x, (s) ds].
q O

This equation we write in the form

(7) m= 0 + Max( [big 8) ds+ [an (g) mds +

[, (| v (g, t, s) x, (s) ds] dt,]

Using the methods employedin § 5, it is easy to establish the existenceof

a unique solution of this equation under the hypotheses of Theorem 1.

§ 7. Existence and uniqueness—III

It is possible, using the same technique of successive approximation

and inequalities, to establish existence and uniqueness theorems for

more general systems of differential equations of the form

(1) dx/dt = Max f(x, q,t), x (0) =c.

Since these results are more within the provinceof differential equations

than pertinent to the theory of decision processes, we shall leave it for

the ambitious reader to frame his own analoguesof the classical existence
and uniqueness theorems.

§ 8. The Riccati equation

Although we do not wish to penetrate too deeply here into the study of

this class of nonlinear differential equations, the following result seems

particularly worthy of notice.

The change of variable

(1) v= u'lu

converts the general second orderlinear differential equation

(2) u" + p(w +q()u=0,
into the first order non-linear equation

(3) +e + pvt+q() =0.
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This equation is called a Riccati equation. It is clear from the foregoing

that the general solution of (3) is equivalent to the general solution of(2),

and hence,in general, cannot be obtained explicitly in terms of quadra-

tures.

Let us now showthat(3) can be interpreted to be an equation of the

general class exhibited above. We begin with the observation that

(4) —v? = Min (w? — 2 wv).
u

Hence (3) may be written

(5) v’ = Min [w? — 2 wv — p (t) v—q (8)],
w

where w now varies overall functionsof ¢.

Forfixed w, let V (w, t) represent the solution of

(6) V’ = w*—_2w0wV —p() V—gqit),

fixed by the condition V (0) = v (0) = c. This solution has the explicit

representation

t t
-~| (p(s)+2w)ds t —| (p(8,)+2w) ds,

(7) V = elo? + { (w? — g (s)) ols (md re de
0

obtained in the usual way by meansof an integrating factors.

Let us now showthat

(8) v = Min V (w,2).
Ww

For an arbitrary function w = w (¢), we have

(9) uv < w*— 2wv— p(t) v— qh),

which shows that v < V (w, t). Hence v < Min V(w,t). On the other

hand v = V (w*, t) for the minimizing value w*, which is actually (2).

Hence the equality in (8) holds.

Wethus have an explicit representation for the solution of the Riccati

equation in terms of quadratures and a minimization.

§ 9. Approximation in policy space

As we havediscussed in the preceding chapters, there are two types of

successive approximations in the theory of dynamic programming, one

based upon approximation to the functions which satisfy the functional

equation, and the other based upon approximation to the policies which
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yield these solutions. We have applied the traditional method above in

§ 3. Let us now discuss the second method.

Consider the scalar equation

(1) du/dt = Max{b(g,t) + a(qg, t) uj], u(0) =c,

where we imposetherestrictions| a (q, ¢) |, |b(¢, 4) |< f(d), [°s (t) dt <0.

Webegin by guessing an initial policy function qo = go (¢), and determi-

ning “4, by means of the equation

(2) Auo/at = b (do, t) + a (Go, t) Uo, Uo (O) = c.

Next determine g, by the condition that it maximize the function

b (q, t) + a(q, t) uo, and compute uw,as the solution of

(3) du,/dt = b (gy, t) + a (qi, £) uy, uy, (0) =c.

Continuing is this way we determine a sequenceof functions {un} and a

sequenceof policies {gn}. It remains to show that this sequence {un} ac-

tually converges.

We have

(4) du,[dt = b (q,, t) + a (qu, t) uy, uy (0) =,

Au[dt = b (go, t) + a (go,t) Uo

<0 (qi, t) + 4 (1, £) Uo, Uo (0) = c,

referring to the definition of q,.

The solution of

(5) dvjdt = g(t)u + A(t), v (0) =c,

has the form

8 t 1) Uy
(6) v= cei4 h (s) bs ura ds .

which we may write as L (A), an operator on the function h.

t

Since olgn(orts > 0, it follows that

(7) L (hy) > (h,)

if h, (¢) > h, (t) for t > 0. Hence

(8) Up<u,forOx<ti<T

Proceeding in the same fashion, we see inductively that wn < un+1 for
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n = 0,1, 2,... Since each member of the sequence {wn} is uniformly
T Tf(s)ds

bounded by (c + | f(s) ds) el

{un (¢)} converges to a function u (¢). This limit function satisfies the inte-

gral equation

(9) u(t) =e | Max (b (gs) + 4(g, 5) w]ds,
o 4

, it follows that the sequence

and hencethe differential equation almost everywhere. Wesee then that

approximation in policy space leads to convergent sequencesin the one-

dimensionalcase.

Let us turn now to the corresponding question for systems of the form

(10) dx|/dt = Max [b (q, ¢) + A (q, t) x], x (0) =c

Using the same procedure as above, it is easy to see that the problem

reduces to determining conditions upon the matrix A (q, t) which will

ensure that f(¢) > 0 for? > 0 ensures that y > 0 for ¢ > 0, where y is

the solution of

(11) dy/dt = A(q,thy + f(t), ¥(0) =0

Since the solution of (11) 1s given by

(12) w= |YW Y-*6) f(s) ds,

where Y (¢) is the matrix solution of

(13) aY/dt = A(qg,t) Y, Y (0) =T,

we see that a necessary and sufficient conditionis

(14) Y (t) Y-14(s) >Ofor#>s>0,

and uniformly for qe S.

Since this is a difficult condition to verify, we shall content ourselves

with the remark that aj (q, t) > 0,1 7, 1s a sufficient condition.

If then the condition aj; (q, t) > 0,7 7, 1s satisfied for ¢ > 0 and all

g¢« S, we have the desired convergence in policy space.

§ 10. Discrete versions

In this section we wish to ascertain the asymptotic behavior of the

sequence {xi (m)}, 7 = 1, 2,..., N, determined by the recurrencerela-

tions
N

(1) x, (n+1) = Max 2 ai; (q) x; (n),1 = 1, 2,...,N, n >0
q j=l
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under certain assumptionsconcerningtheinitial values c; = x; (0) and the

coefficient matrix A (q).

Weshall begin by considering the homogeneous equation

N

(2) Ayi = Max & aij (q) v0 = 1, 2,...,N,
q j=l

where we impose the following conditions

(3) (a) g = (4%Ye, ---, Yn) runs over a set S with the property that the

maximum is attained in (1) for any set of parameters

(V4, Va, eeey VN).

(b) 0 < ay (q) << m< co forge Sandi,j7 = 1,2,...,N.

(c) for any g, let mw (gq) denote the characteristic root of A (q) =

(ai; (g)) of largest absolute value, the Perron root. It is assumed

that w(g) assumes its maximum for ge S.

Let us now prove

THEOREM 2. Under these assumptions, there exists a unique positive con-

stant 2 with the property that the homogeneous system in (2) has a positive

solution yi; > 0,1 = 1, 2,...,.N. This solution 1s unique up to a multi-

plicative constant, and

(4) A = Max 9 (9)
ges

ProoF. Weshall begin by establishing the existence of a positive A and a

positive solution {yi}. The simplest, though least elementary, method

employs the Brouwerfixedpoint theorem. Considerthe region defined by

iN

(5) v¥% 0, + w= 1
t= 1

The normalized transformation

(6) yi’ = (Max J ay; (g) yi [2 Max[ z aij (9) Vi I,
q j=l ~=1 qd j= 1

is a continuous mapping of this region into itself. It follows that there

exists a fixed point {yi}, constituting the required positive solution since

aij (q) > 0. The parameter A is the denominatorin (6).

To show that this solution ts unique up to multiplicative constant,let

[u, 2] be another solution of (2) with uw > 0 and za positive vector. Let

{q} be a set of values for which the maximum is attained in (2) and {q} a

similar set associated with z. We have
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(7) Ays = &' aij (q) vj S & aaj (9) vg, 7 = 1,2, ...,.N,
7

Lai = 2 aij (q) 2;
)

Assume, without loss of generality that A < mw, and thus that y and z

are non-proportional vectors. If y and z are proportional, then y = z.

Let ¢ be a positive constant chosen so that one, at least, of the compo-

nents y; — & 2; 1S zero, oneatleast1s positive, and the others are non-nega-

tive. If 2 is an index for which y; — ¢é 2; 18 zero, we have

¥

(8) O = uw (yi — E21) > Avi — emi > 2X aij (G) (v3 — € 2;) > O,
7=1

since ai;-(g) > 0, a contradiction. Hence y and z are proportional, which

means that 2 = pu
To show that A = Max  (q), we proceed as follows. Let uw = Max @ (q).

It is clear that A, as the characteristic root of some A (q), satisfiesthe in-

equality A < uw. Assume for the moment that A < pw. Let z = (2, 22,...,2)
be a positive characteristic vector associated with uw and ga set of g-values

which yield u =  (q). Then we have

N
(9) un <= E ay (9) 4 <Max ¥ ay (9) 4

7=1 q j=l

Since each y; 1s positive, we can find a positive constant m suchthat

(10) Z<myi,t = 1,2,...,N.

Then (9) yields
iN

(11) Mai Max( 2aii (Q) Vi) m= mdi
q j=l

Thus, instead of (10) we obtain the result zi < my; A/u. Iterating this, we

obtain 2; < my; (A/u)* for arbitrary k. Since Aju <1, by assumption,

this yields z; = 0, a contradiction. Hence A = us

§ 11. The recurrence relation

Returning to the recurrence relation of (10.1), let us prove

THEOREM 3. If, 1n addition to the conditions of (10.3), we assume that there

1s a unique q for which the maximum value of gis assumed, and that ci; > 0,

then

(1) xi (n) ~ ayia”,

as n—> oo, where a = a (Cy, Co, ..., Cn).
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Proor.Let us take ci; > 0, without loss of generality. There are then two

positive constants & and K such that kyi <i ci < Ky; fori = 1,2. ..., N.

Let us show inductively that

(2) kyih™< xi (n)< Kyid

Assume that we havethe result for ”, then

N
(3) xi(n + 1)< KA" Max 2 aij (gq) yj = K An + hy:

q j=1

N

> kin Max 2 aij (q) Vi kArtry,

q j=1

To establish the asymptotic behavior we show that for sufficiently

large n, the set of g’s which furnish the maximum in (10.1) is precisely

the set which yields Max @ (q).

Assumethe contrary.This meansthat infinitely often in the recurrence

relation of (10.1) we will employ a set {g} which is not identical with the
set, {¢g}, which furnishes the maximumof @ (gq).

We then have

N

(4) xi (n+ 1) = 2X aay (9) xj (n), +1 = 1,2,...,N,
j= 1

N

< (2 aiz (9) ys) K An
j=l

For some index 7 we must have

N
(5) 2) aij (9) vi <Ayi,

j=l

No”
with strict inequality. For if 2 ai; (¢) v3 > Av: for allz, the characteristic

j=l
root of A (q7) = (ai; (q)) of largest absolute value would at least equal A
= Max  (q), contradicting the assumption concerning the uniquenessof

q
the maximum of @ (q).

Hence for some component, say the first, we have

(6) x, (n +1) <O0KAn+1y,0<0<1

Since aij (g*) > O for all 7, 7, where q* is the value of g for which 4 =

py (g*), we see that, for: = 1,2, ..., N,
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N

(7) ti (n + 2) < KA +tT DY aig (Q*) y3 + 8 ais (Q*) a),
p= 2

<0, KAn+2y,,

where 6, < l.

Consequently,if a set of g’s distinct from g* are used R times, we obtain

(8) xi (n) < OF K Anyi,

for n large. Since 0 < 6, < 1, we eventually contradict the lower bound

for x; () if R is large. Hence a set of q’s distinct from g* can only be used

a bounded numberof times, with the bound determined by & and K.

§ 12. Min-max

The same method we employed to demonstrate Theorem 1 establishes

the following result

THEOREM 4. Consider the equation

(1) dx/dt = Max Min [A (A, q,t) x + 6 (p,q,2)]
Pp 4

= Min Max[...],x«(O)=c,
q Pp

where we assume that

(2) (a) For fixed values of x and t, the max-min in (1) 1s equal to the min-

max, where p and gq range over some set of admissible vectors S.

(b) Max || A (6, 4g) | |, Max || (6.9.0) [|< S(O for € = 0, where

[fo it <0.

Then there ts a unique solution to (1) 1n0<t< T which satisfies the equation

almost everywhere, and may be found as the limit of the following sequence

(3) (a) xo =,

(Db) %n+1 = e+ [, Max Min [A (A, g, s) ¥n + 0 (p,q, s)] ds
o p 4

=o-+ |Min Max [4 (6, 9, 5) xm + 0 (6, 9, 8)] ds
o 4 »P

§ 18. Generalization of a von Neumannresult

In the chapter devoted to multi-stage games, we established the result

that
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_ (Ap, q) . (Ad,@)
Max M — Min Max ————~

0) > (BPG) gp (BD) ’
where A and B are matrices, and # and q areprobability vectors, provided

that (Bp, gq) >d > O forall # and q.

Let us now obtain the following generalization

 

THEOREM 5. Consider the scalar equation

 

(2) du/dt = Max Min [(A#,¢) — (Bd, qg) wu], u (0) =,
p 4

= Min Max [(Ap, g) — (BA,q) uv].
q »

If (Bp, q) >d > 0 for all probability vectors p and q, we have

(3) hm u(t) = Max Min ae

| (AP, 9)
= Min M
>» (Bb, q)

Proor. The classical min-max theorem of Von Neumann guarantees the

equality of max-min and min-maxof (Af, q) — (BP,q) u for each u. The

other conditions of Theorem 4 are satisfied and ensure the existence and

uniqueness of u (¢).

To obtain the asymptotic behavior, consider first the scalar equation

(4) du/dt = a — bu, u(0) =,

where a and 0 are constants and where b > 0. It 1s easy to see that the

solution is bounded as t > oo, and we can show that lim u (#) = a/b by
t— co

means of the following simple argument. Whenever du/dt = 0, we must

have u=a/b. Hence u(t) can have at most one turning point for

¢ > 0, and thus is ultimately monotone. Since u(t) is bounded, it ap-

proaches a finite limit which must be a/b.

Consider the nonlinear equation

(5) du/dt = Max [a (p) — b(p) uj, wu (0) = c,

where b (p) > b > 0 for all p, | a (p) | < M for all p, and a (p) and d (p)
are such that the maximum is assumed. At any turning point of 4, we

must have

(6) u = Maxa(p) / 6(p).
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Consequently, «(¢) must be ultimately monotone and approachthefinite

limit given in (6).

Wesee that precisely the same argument works for the equation of (2).

At a turning point we must have

(7) u = Max Min (Ap, 1 = Min Max (Ap, 9)
p 9 (BP,4q) a p (BP, 4)

  

Exercises and Research Problems for Chapter XI

{. A merchant has identical items and a length of time ¢ to dispose of

these. Goods may be sold at times 0, 1, 2, ..., #, and the probability of

selling an item depends uponits price. Let » (z) be the probability that an

item of price z is sold when displayed at a particular time.

Define fn (t) to be the maximum expected return from m items over a

maximum sale period of ¢. Assuming independence of sales, obtain the

recurrence relation

fn (t) = Max [* (i) p (2)* (L— op (2))"~* [fn - «€— 1) + Ae]],
z= r= 0

with fn (0) = 0. (Darling)

2. Assume that the items are on sale continuously, and that @ (z) dé re-

presents the probability that an item of price z will be sold in a time-inter-

val (¢, ¢ + dt). Show that the limiting form of the above recurrencerela-

tion 1s

fx’(t) = Max | — No (2) fn () + No (2) fv - 1 4) + Noe (2)
z>0

fw (0) = 0,
N > 1, fo (e) — 0.

3. Consider the case N = 1 in Problem 4. Show that if we solve the

equation

F(t) =—o(z) F() +), F 0) =9,
obtaining

F(t) =F(,2 = [ oPOM (2) ds,

thenf, () = MaxF (t, 2). "
z>0

4. Show that the equation

Fi’ (t) = Max (— 9 (2) A) +29),(0) = 0
z>0
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is equivalent to the two equations

fi Q=—e¢®)Ad +29 (2),f1 (0) =0

0=—¢y'(2) fi+9 (2) +29’(2).

5. Consider in detail the particular cases where

a. yp (z) = be™

b. p (z) = (R—2z)/k,O<2z<k

= 0, z>k

6. Obtain the solution of the equations in Exercise 2 for general N.

7. Consider the similar situation in which we have the same item in two

price ranges. How do weset the prices?

8. Consider the process in Problem 1 in which we reduce the price per

item for multiple orders. How should this be done to maximize expected

profit ?

9, Establish existence and uniqueness theoremsfor integral equationsof

the form

u() = Max (a N+ | K@ts)u (s) ds),

under appropriate assumptions.
10. Obtain results corresponding to those in § 8 for the equations

w= uk + p(thu+ q(t),
fork >landO<k <1.

11. Consider the general case where

u' = g(u,t),

and g is either strictly convex in w forall ¢, or strictly concave.

12. Consider the Riccati equation

du
7 ta (t), u (0) =<,

and the sequence of successive approximations defined by

 

d
== 2U9Vo — Vo + a (Zt), uo (0) = ¢,

dun
Fp Dit +1 in — tn? + a(t), hn +1 (0) = ¢,

where vo (¢) is an arbitrary continuous function.
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Show that this method is equivalent to a certain approximation in

policy space, and that uw <m<...<ua<..., macommon interval

of definition.

13. Similarly, consider the sequence defined by

dun +1 Oy
_- = n, t n+1——7t&Unzi (un, t) + (Un +1 Un) a  ,Un +1 (0) =,

in connection with the equation du/dt = o (u, t), wu (0) =c.

14. What is the connection between this method of successive ap-

proximations and Newton’s method for solving equations?

15. What is the connection between the approximation schemes outlined

above and the concept of approximation in policy space?
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