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SUMMARY 

A series of graphs is presented that show the estimated degree of bias in logistic coefficient estimates for two 
correlated continuous exposures measured with imprecision. These graphs indicate that even when the 
correlation coefficient between the exposure of interest and a correlated exposure is as low as 0.2, 
imprecision in the measurement of the latter exposure can result in a t  least as serious bias in the logistic 
coefficient estimate for the exposure of interest as measurement imprecision in the exposure of interest itself. 
The implications for the design and interpretation of epidemiological studies are discussed. 

INTRODUCTION 

Inferences about the aetiology of disease are often made from logistic coefficient estimates. 
Logistic models of risk factors for myocardial infarction have been used as a source of 
information as to which, for example, of the serum lipids HDL cholesterol and triglycerides are 
likely to be causally related to coronary heart disease.'-' The multiple logistic coefficient estimate 
for HDL cholesterol has often been found to be of much greater magnitude than that for 
triglycerides, with which HDL cholesterol is highly negatively correlated, when both are included 
in the same model. This fact has been considered as evidence that HDL-cholesterol, and not 
triglycerides, is important in the genesis of coronary heart disease (CHD).'.4s ' 

If a single measurement of an exposure poorly characterizes individuals' true or 'usual' 
exposure, either due to limitations in measuring techniques or because the exposure varies 
naturally within individuals, the relative odds estimate for the exposure will be Mis- 
characterization to some degree occurs in virtually all cases. If this mis-characterization is 
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random (from now on we use the term measurement imprecision to define this random mis- 
characterization for continuous exposures) and non-differential with respect to the outcome, then, 
for the situation where there is only one exposure variable in the model (that is, a univariate 
logistic model) this bias will always tend to be towards zero. This will still be the case for the 
multiple logistic coefficient estimate, as long as the exposure of interest is not substantially 
correlated with other exposures. In these circumstances, where there are no important potential 
confounding exposures, the bias is unlikely to result in inferences which are seriously misleading. 
That is to say, only the magnitude of the effects of exposures will be estimated incorrectly, not 
their direction. If, however, exposures are substantially correlated and measured with varying 
degrees of precision, then the multiple logistic coefficient estimates can be biased in either 
dire~tion.’ .~ Most seriously, the sign of the logistic coefficient estimate can be wrongly estimated. 
It is in this situation, when two exposures are substantially correlated, that measurement 
imprecision can have the most severe consequences. This may be the case in our HDL 
cholesterol/triglycerides example. The two lipids are correlated with coefficient approximately 
- 0.4 and, furthermore, triglycerides are known to vary within individuals more than HDL 

cholesterol. It is possible, therefore, that if this bias could be removed, HDL cholesterol would 
emerge as being less strongly related to risk of CHD than triglycerides. This would have 
significant implications for the study and treatment of CHD. For example, some physicians have 
suggested that consideration be given to intervention with specific HDL-cholesterol-raising 
agents in men with low total cholesterol and low HDL-cholesterol. 

Methods for estimating the degree of bias in such situations have been proposed for both 
continuous exposure variables, with which we are concerned, and for misclassification of 
categorical exposure variables. Based on these estimates, methods of ‘correcting’ for the bias have 
been advanced.’, ‘0-13 W e have previously used one of these methods (described below),’O which 
we compared with a simulation approach of our own, to estimate the degree of bias in the 
HDL/triglycerides e~amp1e. I~  The simulation approach was based on studying the effect on 
multivariate relative odds estimation of adding random error to the exposure variables. The two 
approaches gave similar results. However, we found that the degree of bias was extremely 
sensitive to the amount of measurement imprecision ascribed to the correlated exposures HDL 
cholesterol and triglycerides. A change of just 0.1 (from 0 6  to 0.7) in the reliability coefficient 
(defined as the correlation between the true and measured exposures) ascribed to triglycerides, 
with no change in that ascribed to HDL (0.9), resulted in complete reversal in the apparent 
relative ‘independent’ importance of the two lipids. The ‘corrected’ logistic coefficient estimate, 
corresponding to a one standard deviation change in triglycerides, moved from 0.32 to 016, while 
that for HDL moved from - 0.17 to - 0.31. Because of this sensitivity we concluded that 
methods for ‘correcting’ estimates for measurement imprecision may be useful for assessing 
whether measurement imprecision represents a major problem in a particular situation. If such is 
the case, however, the methods could not be said to give reliable ‘corrected’ estimates of the 
‘independent’ effect of the exposures. This reflects the fact that corrected estimates will tend to be 
more inaccurate as the amount of imprecision in exposure measurement increases. In circum- 
stances where measurement imprecision is a major problem, as it is in the lipids/CHD example, 
we suggest the fact might have to be faced that the methodology of the study which has been 
carried out is inadequate to answer the question. A study in which subjects’ exposures are more 
precisely measured at baseline is required. 

Thus, the situation where serious problems can arise is when two exposures are substantially 
correlated and one or both is measured with a substantial amount of imprecision. The question in 
both cases is what is ‘substantial’? In this paper we attempt to answer this by presenting a series of 
graphs which show the degree of bias in logistic coefficient estimates for the situation where there 
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are two risk exposures correlated to varying degrees, and measured with varying degrees of 
imprecision. 

BIAS IN RELATIVE ODDS ESTIMATES FOR CORRELATED EXPOSURES 
MEASURED IMPRECISELY. 

The ‘corrected‘ logistic coefficient estimates are derived using the method of Rosner et al.10x14 We 
assume that there is normal random ‘error’ in the measurement of two continuous exposures, X ,  
and X , ,  so that they are measured as Z ,  and Z , ,  respectively. It is assumed that the errors are 
uncorrelated. For our multiple logistic model we have 

q P ” 1  - P’)} = a’ + BlC.X1 + P,c.X, 

where p’ is the estimated probability of disease and PIC and BZc are the ‘correct’ logistic coefficients 
and 

ln(pl(1 - PI> = a + P 1 U . Z l  + B2U.Z2 

where p is the estimated probability of disease and PlU and BZu are the ‘uncorrected’ logistic 
coefficients. 

Note that the X s  are unknown, so Blc  and pzc,  the parameters we wish to estimate, cannot be 
estimated directly. Now consider the bivariate linear regression of X ,  on Z ,  and Z ,  and X ,  on Z ,  
and 2,: 

X ,  = a ,  + All.Zl + A12.Z2 + el  

and 

X ,  = a, + 121.Z, + A,,.Z2 + e ,  

where (el ,  e , )  are distributed as bivariate Normal. 
Rosner et al.” suggest that the ‘corrected’ logistic coefficients Blc  and PZc can be estimated by 

and flZc where 

(AE> F Z C )  = ( B l u ,  B Z U )  (:::: ;:y 
Given the assumption of bivariate normality, this method can only be applied to situations where 
there is measurement imprecision in (suitably transformed) continuous exposures, and not where 
there is misclassification of categorical risk factors. Another assumption made is that the 
probability of the disease outcome is small. 

Since interest is typically focused on the effect of one particular exposure and other exposures 
are included owing to a possible confounding role, we refer to the two exposures as the ‘exposure 
of interest’ and the ‘confounding’ exposure. Strictly, the word ‘confounding’ implies a certain 
causal structure. We use the word as a convenient way to describe an exposure which is 
correlated with the exposure of interest, and is therefore only potentially a confounder. The 
graphs show the bias in the coefficient estimates for the exposure of interest. This is calculated 
as the ‘uncorrected’ logistic coefficient estimate minus the ‘corrected’ logistic coefficient 
estimate. The coefficient estimates correspond to a one standard deviation difference in the 
exposure. The measurement imprecision is expressed in terms of reliability coefficient, which was 
defined earlier. This can be estimated by the square root of the intraclass correlation coefficient 
between replicate measures on the same individual.6 When there are two replicates only, the 
intraclass correlation coefficient is equivalent to calculating the usual Pearson correlation 
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coefficient between two measurements, provided each pair of measurements is counted twice, the 
second time in reverse order.6 

RESULTS 

Figure 1 shows the amount of bias in the logistic coefficient estimate for the exposure of interest 
(vertical axis is ‘uncorrected logistic coefficient estimate minus ‘corrected’ logistic coefficient 
estimate) according to different levels of the logistic coefficient estimate for the exposure of 
interest (horizontal axis) and the logistic coefficient estimate for the confounder (diagonal lines). 
This graph is for a correlation between the exposure of interest (as measured) and the confounder 
(as measured) of 0.2, and reliability coefficients of 0.7 and 0 9  for the exposure of interest and the 
confounder, respectively. The first point to note is that, since the diagonal lines are so close 
together, the logistic coefficient estimate for the confounder appears to make a relatively small 
difference to the bias in the coefficient estimate for the exposure of interest, in this instance. 
However, since the exposure of interest is measured with a sizeable degree of imprecision 
(reliability coefficient 0.7), there is a substantial amount of bias in its coefficient estimate. For an 
‘uncorrected’ coefficient estimate (horizontal axis) of 04,  for example, the bias is around - 02.  In 
other words, the ‘correct’ coefficient estimate is around 0.6. For a coefficient estimate of - 04,  on 
the other hand, the bias is around + 0.2. In both instances this represents an underestimate by 
one-third of the magnitude of the logistic coefficient. In this example the correlation between the 
exposure of interest and the confounder is relatively small and the measurement imprecision of 
the confounder is small. Thus this case is similar to the univariate situation. This is consistent with 
the observation that the bias in the logistic coefficient estimate for the exposure of interest tends 
to be towards zero. 

Figure 2 shows a series of graphs in the same format as that in Figure 1 for various correlations 
(increasing from 0.1 to 0.4 across the rows) between the exposure of interest and the confounder 
and for various degrees of measurement error ascribed to the two exposures. The different 
diagonal lines, which represent different estimates for the (‘uncorrected’) logistic coefficient for the 
confounder, are shown for values - 0.4,O.O and + 0.4 only. In every case the lowest diagonal line 
is for - 0.4 and the highest for + 0.4. Clearly, the closer the diagonal lines are to the horizontal 
‘zero bias’ line, the smaller the amount of bias. It can immediately be seen that, in every case, the 
bias is lowest when the logistic coefficient estimate for the confounder is zero, and that the bias 
increases with the magnitude of the ‘uncorrected’ coefficient estimate. On each graph, the shaded 
area represents that region where the bias is such that the ‘uncorrected’ logistic coefficient 
estimate is in the wrong direction. This is when the bias is most serious. For example, consider the 
situation where the Pearson correlation coefficient between the exposures is 0.4 and the 
measurement imprecision of both the exposure of interest and the confounder is given by a 
reliability coefficient of 0.7. For ‘naive’ logistic coefficient estimates of 0.15 for the exposure of 
interest and 0.4 for the confounder, the bias is given as + 0.39. Thus, the ‘correct’ logistic 
coefficient estimate for the exposure of interest is - 0.24, rather than the + 0.15 estimated. 
Clearly, this i s  potentially an extremely misleading bias. 

In studying the graphs, first consider the change in the pattern of bias as, with increasing 
correlation coefficient between the two exposures, we move from left to right across the graphs. 
N o  matter what the measurement imprecision in the exposures, the diagonal lines tend to move 
further apart, and thus from the zero bias line. Thus, as expected, the bias increases with 
increasing correlation between the exposure of interest and the confounder, whatever the 
measurement imprecision ascribed to the two exposures (unless the reliability coefficient of either 
exposure is 1, which is uncommon). In keeping with this, the shaded area, representing situations 
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Figure 1. Graph showing degree of bias in logistic coefficient estimate according to the size of the 'uncorrected coefficient 
estimate for the exposure of interest (horizontal axis) and the confounder (diagonal lines). Correlation between exposures 

0.2, reliability coefficients for exposure of interest and confounder 0.7 and 0.9, respectively 

where the coefficient estimate is in the wrong direction, grows larger as the correlation between 
the exposures grows larger. 

Let us now consider differences between graphs in the four rows, for any given column; we 
consider variation in measurement imprecision of exposures at fixed correlations between 
exposures. When the both exposures are measured quite precisely (reliability coefficient 0.9 for 
both - row 1)  the bias tends to be relatively small, especially when the correlation between 
exposures is small. Increasing measurement imprecision of the exposure of interest, at a constant 
level of measurement imprecision for the confounder, that is moving from row 1 to row 2 or from 
row 3 to row 4, has the effect of increasing the angle of the diagonal lines, but not their separation 
to any great degree. The size of the shaded area increases only slightly. On the other hand, 
increasing the measurement imprecision for the confounder, at a constant level of measurement 
imprecision for the exposure of interest, that is moving from row 1 to row 3 or from row 2 to 
row 4, has the effect of separating the diagonal lines, but not greatly changing their angle. Here the 
shaded area increases substantially. 
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Figure 2. Series of graphs indentical to that in Figure 1 but for different correlations between the exposures and for 
different amounts of measurement imprecision ascribed to the exposures. The first reliability coefficient is for the exposure 
of interest, the second for the confounder. The shaded triangles cover regions where the bias results in the logistic 

coefficient estimate being in the wrong direction 
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Thus, increasing measurement imprecision in the exposure of interest creates increasing bias, 
but this is mainly underestimation of the magnitude of the coefficient. The sign of the ‘un- 
corrected’ coefficient estimate is almost always correct, as reflected by the fact that the shaded 
area is small, as long as the measurement imprecision of the confounder is small. However, when 
there is significant measurement imprecision for the confounder the shaded area tends to be quite 
large, even if there is little measurement imprecision for the exposure of interest. It appears, 
therefore, that measurement imprecision in a confounding exposure is potentially more serious 
than measurement imprecision in the exposure of interest. If there is substantial measurement 
imprecision in the confounder (for example, a reliability coefficient of 0.7) then, even if there is 
little measurement imprecision for the exposure of interest (reliability coefficient 09)  and the 
correlation coefficient between the exposure of interest and the confounder is as low as 0.2, the 
bias can still be important (see graph on row 3, column 2). In a situation where the ‘uncorrected 
logistic coefficient estimate for the confounder is 0.4, a coefficient of - 0.17 for the exposure of 
interest would be estimated as 0.0 without ‘correction’. 

DISCUSSION 

The graphs presented in Figure 2 give useful guidance as to the situations in which measurement 
imprecision in correlated continuous exposures presents a serious problem. They illustrate how 
measurement imprecision in a correlated exposure will often have more important consequences 
than measurement imprecision in the exposure of interest, at least in the situation where the 
exposures are continuous. The situation with misclassification of categorical variables has been 
more widely s t ~ d i e d . ~ ~ ~ ~ ’ ~ ~ ’ ~ ~ ’ ~ ~ ~ ~ - ~ ~  I n this situation some authors have suggested that 
misclassification of confounders can be as important as misclassification of the variable of 
i n t e r e ~ t . ~ , ~  None, to our knowledge, has illustrated that error in confounding variables is actually 
the more serious potential problem, although Kupper has reported a similar result when 
surrogate exposures are used.” Although we have made use of methods of ‘correction’ of logistic 
coefficient estimates in order to illustrate the approximate amount of bias that can arise in 
different situations we would advocate caution in the adoption of these techniques, as the 
‘corrected’ estimates can prove extremely unstable in some  situation^.'^ The greater the factor of 
correction in the estimates, the greater the probable error in the final estimates. Thus, only when 
small degrees of adjustment are involved, relative to the magnitude of the ‘uncorrected’ estimates, 
should ‘corrected’ values be accepted with any confidence. 

When two correlated exposures are measured with a significant amount of imprecision, a study 
in which each exposure is measured only once must be considered to be of inadequate design for 
determining the independent contributions of the two exposures to risk. The optimal solution 
would be to find a study population in which the correlation between the exposures is greatly 
reduced or non-existent. In this situation measurement error in either exposure becomes less of a 
problem. Breaking confounding in this manner is possible when exposures are associated for 
cultural rather than biological reasons. For example, sexual behaviour is considered to be a risk 
factor for cervical cancer. Some  commentator^'^ also consider smoking to be a cause of cervical 
cancer. Smoking and sexual behaviour are related in many societies, however, which leads to 
confounding of the association between cervical cancer and smoking. In theory it should be 
possible to study the relationship within a society in which the correlation between smoking and 
sexual behaviour is weak or non-existent. 

In many situations - such as the HDL/triglyceride example discussed above - the correlation 
between two exposures is probably universal and populations cannot be found in which the 
association does not exist. In these cases the reduction of measurement imprecision in exposures 
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becomes vitally important. Although in some circumstances reduction in measurement impreci- 
sion is impossible, in many instances epidemiologists could obtain improved measurement 
precision if this aspect of study design were given a higher priority compared with issues such as 
sample size and sample selection. For example, more precise characterization of subjects’ 
concentrations of biochemical and haematological variables could be obtained if these were 
measured more than once on each subject and the mean taken. This might mean that the overall 
size of a study would have to be smaller, owing to cost considerations. However, the loss in 
precision of relative odds estimates resulting from the smaller study size would often be more than 
compensated by the decrease in bias which results from the lower measurement imprecision of the 
exposure variables. 

In some situations, when measurement imprecision cannot be improved, observational epi- 
demiological studies may not be able to sort out whether the effects associated with correlated 
exposures are independent of each other. Intervention studies may be able to alter one but not the 
other exposure, providing a better basis for making such decisions. It would, however, be 
preferable to recognize the limitations of available methodologies than to accept the ‘independ- 
ence’ of many effects, which may merely be the result of residual confounding.*’ 
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