
ARTICLES
https://doi.org/10.1038/s41562-019-0787-z

1Department of Economics, University of Bergen, Bergen, Norway. 2Department of Economics, Stockholm School of Economics, Stockholm, Sweden.  
3These authors contributed equally: Amanda Kvarven, Eirik Strømland. *e-mail: magnus.johannesson@hhs.se

M
eta-analyses are often placed at the top of the hierarchy of 
scientific evidence1. The quantitative summary provided 
by a meta-analysis makes it easier to navigate through 

large scientific literatures, and meta-analyses have far greater statis-
tical power than individual studies. For these reasons, meta-analysis 
is viewed as an attractive tool for summarizing scientific research1–3. 
In the past 30 years, the number of meta-analyses published across 
scientific fields has been growing exponentially4 and some scholars 
have called for greater reliance on ‘meta-analytic thinking’ in the 
behavioural sciences2.

However, the properties of a meta-analysis depend on the pri-
mary studies that it includes; if primary studies overestimate effect 
sizes in the same direction, so too will the meta-analysis. The 
recent surge of replication studies in the behavioural sciences sug-
gests that original studies produce larger effect sizes than replica-
tion studies5–10. The pioneering Reproducibility Project: Psychology 
(RP:P) replicated 100 studies in psychology and found that effect 
sizes standardized to the correlation coefficients (r) were on aver-
age about twice as large in the original studies as in the replication  
studies10. Similar relative effect sizes were reported by the 
Experimental Economics Replication Project and the Social 
Sciences Replication Project5,6.

The substantially higher effect sizes in the original studies com-
pared to the replications are likely, at least partially, to be caused 
by publication bias and selective reporting of statistically significant 
results11–22. We use the term ‘publication bias’ to refer to bias due to 
the behaviour of journals, and the term ‘selective reporting’ to refer 
to bias due to the behaviour of researchers such as selective out-
come reporting, P-hacking, significance chasing, garden-of-forking 
paths, misreporting of results and researcher degrees of freedom. 
For examples of direct and indirect evidence on publication bias 
and selective reporting see, for instance, Simmons, Nelson and 
Simonsohn14, Brodeur17, John, Loewensten and Prelec20 and Franco, 
Malhotra and Simonovits21,22. In line with these biases, systematic 
reviews of meta-analyses, sometimes referred to as ‘meta-meta-
analysis’, suggest that smaller studies are associated with larger  
effect sizes than larger studies (the small study effect) and that 

unpublished studies are associated with smaller effect sizes than 
published studies23–26.

Because problems with selective reporting translate into biased 
meta-analytic effect sizes, some have argued that reliance on 
meta-analysis will exacerbate the problems of publication bias 
and selective reporting, and that greater reliance on meta-analytic 
thinking in the behavioural sciences will increase the rate of false 
positives27,28. Others argue that meta-analyses could reduce the 
influence of publication bias and help improve reproducibility 
in the behavioural sciences2. Several meta-analytic methods have 
been developed that aim to adjust effect sizes for the influence of  
publication bias11,29–32, but simulation studies typically find that 
different selection methods can perform either very well or  
poorly depending on the particular setting33–36. In this study, we 
provide empirical evidence on the ability of both standard meta-
analysis and adjustment methods to produce unbiased effect 
sizes and accurate summary conclusions based on evidence from  
primary studies.

Our approach is to use large-scale registered replication studies 
in psychology carried out at multiple laboratories—where publica-
tion bias and selective reporting of results are eliminated by con-
struction—as a baseline to which the results of meta-analyses on the 
same topics will be compared. We refer to these studies as replication 
studies and replication effect sizes below, and contrast these with 
meta-analysis studies and meta-analytic effect sizes. We refer to the 
study being replicated as the original study. We focus on multiple-
laboratory replications, as these involve large sample sizes leading 
to relatively precisely estimated effect sizes. This increases the sta-
tistical power of finding a significant difference between replication 
and meta-analytic effect sizes. Multiple-laboratory replication stud-
ies are in themselves also meta-analyses, as they use meta-analysis 
to pool effect sizes across laboratories. Using our methodology, we 
can both estimate the fraction of studies for which replication and 
meta-analytic effect sizes differ significantly, and estimate to what 
extent these differences are systematic. Moreover, our methodology 
can be applied to test the performance of different methods for bias 
adjustment proposed in the literature.
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results
Meta-replication pairs found in the literature search. We started 
by collecting data on studies in psychology where many different 
laboratories joined forces to replicate a well-known effect accord-
ing to a pre-analysis plan. We identified two data sources in line 
with this criterion: (1) replications published according to the 
‘registered replication report’ format in the journals ‘Perspectives  
on Psychological Science’ and ‘Advances in Methods and Practices 
in Psychological Science’37; and (2) The ‘Many Labs’ projects in  
psychology7–9. Both data sources feature a set of independent  
laboratories replicating some original study according to a pre-
defined analysis plan. We identified 62 such replication effects (see 
Methods for details).

After identification of relevant replication experiments, we 
searched for meta-analyses on the same research question. An ini-
tial search identified 39 studies of potential interest that were fur-
ther assessed for eligibility (see Supplementary Table 1). Of these 
39 meta-analyses, 21 were excluded due to a lack of correspondence 
in the effects estimated in the meta-analyses and replication stud-
ies, and two were excluded due to lack of data. Of the remaining 
16 meta-analyses, two studied the same effect. To ensure that our 
observations were statistically independent, we chose to include 
the largest meta-analysis in the main analysis and include the other 
in a robustness test. One of remaining 15 meta-analyses had three 
separate estimates that could be matched to the same replication 
estimate, and we therefore selected the most precise of these for 
inclusion in the main analysis and used the other two in robust-
ness checks (see Methods for details on the inclusion of studies and  
Fig. 1 for a flow diagram; PRISMA is an evidence-based minimum 
set of items used for reporting in systematic reviews and meta-
analyses). In total we thus included 15 replication meta-pairs in our 
baseline analysis, and our final dataset spans 15 preregistered repli-
cation studies using a multiple-laboratory format (n = 53,365 sub-
jects in total) and 15 corresponding meta-analyses on the same 
research question (n = 336,027 subjects in total; see Supplementary 
Tables 2–4 for details of the 15 original studies38–52, meta-analyses 
and replications).

Of these 15 studies, 11 meta-analyses included the original study 
replicated in the replication studies and one meta-analysis included 
the replication study. For the 11 meta-analyses that included the 
original study, our judgement and those of the original meta-ana-
lysts coincided by definition and we provide a robustness test using 
this sub-sample below (see Methods for a discussion on the four 
meta-analyses that did not include the original study).

Comparison of meta-analytic and replication effect sizes. We 
converted all effect sizes to Cohen’s d, with the exception of one 
meta-replication pair41. One of the replication studies measured 
effect sizes in Cohen’s q units, and there is no established way of 
converting effect sizes from Cohen’s q to d. We therefore measured 
effect sizes in Cohen’s q for this meta-replication pair and treated it 
as being equivalent to Cohen’s d in the analysis, but also performed 
a robustness test without this meta-replication pair.

We compared the meta-analytic to the replication effect size for 
each effect using a z-test (see Methods for details). We used a z-test 
to determine whether the mean effect size differed between the rep-
lication study and the meta-analysis, and this test was based on the 
reported mean effect and standard error from both the replication 
study and the meta-analysis. We wanted to use these estimates as 
reported in the replication and meta-analysis papers, to compare 
meta-analysis as practised in multiple-laboratory replication stud-
ies. All our statistical tests are two-tailed and follow the recent 
recommendation to refer to tests with P < 0.005 as statistically sig-
nificant and P = 0.05 as suggestive evidence against the null53. In 
Supplementary Tables 5 and 6 we show with what effect size differ-
ence we have 80% power to detect at the 5% (suggestive evidence) 

and the 0.5% (statistically significant evidence) levels, for each of 
the 15 meta-replication pairs and for the pooled overall difference 
for the 15 studies.

In Fig. 2 we show the 95 and 99.5% confidence intervals (CIs) 
of the meta-analytic and replication effect size for each study pair  
(Fig. 2), and we show the CIs of the difference in effect size for each 
study pair (Fig. 2) (see also Supplementary Table 5 for detailed 
results). The direction of effect size is based on the direction of the 
effect reported in the original study that was replicated (a positive 
effect implies an effect in the same direction as the original study, 
and a negative effect implies an effect in the opposite direction).

As seen in Fig. 2a, the meta-analysis and replication studies 
reach the same conclusion about the direction of the effect using the 
0.005 statistical significance criterion for seven (47%) study pairs; in 
all seven cases both the meta-analysis and replication studies find 
a significant effect in the same direction as the original study. For 
seven (47%) study pairs, the meta-analysis finds a significant effect 
in the original direction whereas the replication cannot reject the 
null hypothesis and, in the remaining study pair, the meta-analysis 
cannot reject the null hypothesis whereas the replication study finds 
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Fig. 1 | PriSMA flow diagram showing the number of meta-analyses 

considered for inclusion. The diagram illustrates our process of data 

collection, leading up to our analysis sample of 15 meta-replication pairs. 

n, number of observations. Note that the flow diagram indexes n as the 

number of multiple-laboratory replication studies in the first box and as the 

number of meta-analyses in subsequent boxes, not the number of studies 

included in the meta-analysis, which is the conventional use of this flow 

diagram in meta-analysis studies.
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a significant effect in the opposite direction to the original study. 
Note that the replication power is high for the Many Labs replica-
tion projects (see Supplementary Table 4), and failing to reject the 
null hypothesis for these replication studies is unlikely to be due 
to insufficient power. Power is also generally high for the meta-
analyses because most have sufficient power to detect a small effect, 
although three meta-analyses have 80% power to detect a medium 
effect at the 0.5% level (see Supplementary Table 3). In Fig. 2b we 
can see that the difference in estimated effect size is significant for 
12 (80%) of the studies, and there is suggestive evidence of a dif-
ference for one additional study. For all 12 studies, the effect size 
is higher in the meta-analysis. For some of the meta-replication 
pairs the power to find a significant difference is limited, as indi-
cated by the wide variation in CIs for effect size difference (see also 
Supplementary Table 5).

The observed rate of significant differences in effects sizes 
between meta-analyses and replication studies is high, and this  
pattern is reinforced by comparing average effect sizes between 
the two studies. The average unweighted effect size is 0.155 for the  

15 replication studies and 0.419 for the 15 meta-analysis studies, 
implying that the mean meta-analytic effect size is almost three 
times as large as the mean replication effect size. To further estimate  
to what extent there are systematic differences in average effect size  
between studies, we used random effects meta-analysis to estimate 
the mean effect size difference across the 15 study pairs in our sample  
(see Methods for details). This analysis approach could be thought 
of as a meta-meta-analysis. In Fig. 3 we show the CIs for the mean 
difference in replication and meta-analytic effect size. The estimated 
mean difference is 0.263 and is highly significant (n = 15, z = 5.810, 
P < 0.001, 95% CI = 0.175–0.352, 99.5% CI = 0.136–0.391). A non-
parametric Wilcoxon test on the 15 paired meta-replication differ-
ences produced the same outcome (n = 15, W = 1, P < 0.001).

Robustness tests and sub-group analyses. We also conducted sev-
eral robustness tests and sub-group analyses of differences in mean 
meta-analytic and mean replication effect size in the meta-meta-
analysis (Fig. 3; see also Supplementary Table 6 for detailed results). 
We performed three robustness tests on the inclusion criteria: 
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Fig. 2 | results of meta-analyses and replication studies. a, Plotted are 95 and 99.5% CIs of meta-analytic and replication studies effect sizes for each 

study pair estimating the same effects (effect sizes are measured in Cohen’s d). The references listed for the 15 studied effects are the 15 original studies 

replicated in the replication studies. b, Plotted are 95 and 99.5% CIs of the difference in meta-analytic and replication studies effect size for each study 
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NAturE HuMAN BEHAviour | www.nature.com/nathumbehav

http://www.nature.com/nathumbehav


ARTICLES NATURE HUMAN BEHAVIOUR

excluding unpublished meta-analyses (n = 2), so our analysis sam-
ple is n = 13; excluding meta-analyses that included the replication 
study (n = 1), so our analysis sample is n = 14; and excluding meta-
analyses (n = 4) that did not include the original study that was 
replicated, so our analysis sample is n = 11. We also carried out a 
robustness test excluding the meta-replication pair with effect sizes 
measured in Cohen’s q, so our sample is n = 14. In an additional 
robustness test, we also used the alternative meta-analysis for the 
replication study where we identified two meta-analyses. In two 
final robustness checks we used the two alternative meta-analysis 
estimates reported in the same meta-analysis study corresponding 
to the original study44. The results derived are similar to the main 
results in these robustness tests. This is perhaps not surprising, as 
there is very large overlap between the data in each of these robust-
ness tests and those in the main analysis based on the 15 meta- 
replication pairs.

We also carried out some sub-group analyses. We report results 
separately for replications from the Many Labs projects (n = 9) 
and replications from registered replication report studies (n = 6), 
because the selection of studies for replication can differ between 
these. The results are similar in these two sub-groups as well, 
although with a slightly higher point estimate of the difference for 
the registered replication report studies.

Finally, we separated results into sub-groups depending on 
whether the effect was significant in the replication study; we 
defined these groups based on a significance threshold of both 
P < 0.005 and P < 0.05. This was done to test whether the difference 
between the meta-analytic and replication effect size is driven by 
studies where the null hypothesis cannot be rejected in the repli-
cation. If the null hypothesis is true, selective publication may not 
necessarily result in biased meta-analytic effect sizes if ‘significant’ 
results with positive and negative signs cancel out. However, Nelson, 
Simmons and Simonsohn27 and Vosgerau et al.28 suggest that meta-
analyses are prone to producing false positives, and that aggregation 

in meta-analyses in general does not lead to cancelling-out of errors. 
Supporting this mechanism, we find a significant and large differ-
ence measure between meta-analytic and replication effect size for 
replication studies that cannot reject the null hypothesis. Although 
the point estimates are smaller, the difference measure is significant 
also for replication studies rejecting the null hypotheses, implying 
that effect size inflation of both true hypotheses and false positives 
may have contributed to our results. We furthermore tested whether 
the difference measure is significantly smaller for replication studies 
rejecting the null hypothesis than for those failing to reject it, but 
found no evidence for this (see Supplementary Table 7).

To summarize our findings, we find that there is a significant 
difference between meta-analytic and replication effect size for 12 
of the 15 studies (80%), and suggestive evidence for a difference in 
one additional study. These differences are systematic—the meta-
analytic effect size is larger than the replication effect for all these 
studies—and on average for all 15 studies the estimated effect sizes 
are almost threefold higher in the meta-analyses. However, this 
point estimate of the degree of overestimation should be interpreted 
cautiously because the size of overestimation varies considerably 
across studies—from no overestimation to an overestimation of 
>0.5 Cohen’s d. Interestingly, the relative difference in estimated 
effect size is of at least the same magnitude as that observed between 
replications and original studies in the RP:P and other similar sys-
tematic replication projects5,6,10. Publication bias and selective 
reporting in original studies have been suggested as possible reasons 
for the low reproducibility in RP:P and other replication projects, 
and our results imply that these biases are not eliminated by the 
use of meta-analysis. This is not surprising if it is the case that the 
same publication biasing factors are at work in non-original studies 
of a phenomenon as in the original studies, and meta-analyses are 
unsuccessful at including unpublished studies. However, in general 
the direction of the biases in meta-analyses depends on a host of 
often unknown factors. In many cases the meta-analysis might focus 
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Fig. 3 | Mean effect size difference across the 15 meta-replication pairs in our sample, and robustness test and sub-group analyses of this difference. 

Random effects meta-analysis was used to estimate the mean effect size difference. For each analysis we plot the 95 and 99.5% CIs of mean difference in 

the meta-analytic and replication effect sizes for all effects included in that analysis (effect sizes measured in Cohen’s d). The top row is our main random 

effects estimate using the entire analysis sample of 15 meta-replication pairs.
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on an effect where the authors have no vested interests, thereby low-
ering potential biases. In other cases, the meta-analysis may focus 
on an effect where the authors have a strong vested interest and are 
hence potentially subject to biases. Previous meta-meta-analyses 
have also investigated several meta-scientific biases, including the 
decline effect and the early-extreme effect54.

Heterogeneity in meta-analyses. In a meta-analysis there can be 
heterogeneity in the observed effects due to variations in the true 
effect size among different populations (sample heterogeneity)  
and different designs used to test the hypothesis (design hetero-
geneity). By ‘design heterogeneity’ we mean any difference in how  
a hypothesis is tested between studies apart from a difference in 
samples. In the multiple-laboratory replication studies included in 
our study, the design is held constant across laboratories whereas 
the samples vary. In the meta-analyses both sample and design 
heterogeneity can lead to variation in effect size, which suggests 
that there will be greater heterogeneity in effect size for the meta-
analyses than for replication studies. However, a recent study sug-
gests that publication and related biases can have complex effects on 
study heterogeneity55.

Higher heterogeneity per se in the meta-analyses cannot explain 
our findings, but higher heterogeneity increases the potential for 
replication studies to select samples or designs associated with  

systematically lower true effect sizes. We refer to this potential 
mechanism as ‘replicator selection’.

For sample heterogeneity to explain our results, the replications 
need to have been conducted in samples with, on average, lower 
true effect sizes than in those included in the meta-analyses. This 
explanation seems implausible in our setting, where the replication 
studies consist of multiple-laboratory studies in different samples 
that are pooled. The Many Labs replication studies also suggest that 
sample heterogeneity is not sufficiently large to potentially explain 
our findings7–9. These studies often report no significant between-
study heterogeneity7–9 and, in the recent Many Labs 2 study, the 
reported standard deviation in the true effect size across labs (Tau) 
was 0 for 19 of the 28 studies while the average was 0.04 (ref. 8).

For design heterogeneity to explain our results, replication stud-
ies must select experimental designs producing lower true effect 
sizes than the average design used to test the same hypotheses in 
the meta-analyses. The design heterogeneity would have to be sub-
stantial and the replicator selection of weak designs strong for this 
mechanism to explain our findings. Replicator selection implies a 
positive correlation between heterogeneity in the meta-analysis 
and the observed difference in meta-analytic and replication effect 
sizes, because larger heterogeneity increases the scope for replicator 
selection. To test this, we computed the standard deviation in true 
effect sizes across studies (Tau) for the meta-analyses in our sample 
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(see Supplementary Table 3), and estimated the correlation between 
Tau and the difference in meta-analytic and replication effect sizes. 
Mean Tau was 0.305, ranging from 0 to 0.735, the Spearman cor-
relation was −0.300 (n = 15, P = 0.277) and the Pearson correlation 
−0.406 (n = 15, P = 0.133). These correlations show no indication 
of replicator selection in our data, and the point estimates are in 
the opposite direction to that predicted by the replicator selection 
mechanism. This finding contrasts with a recent paper that attri-
butes reproducibility failures in psychology to heterogeneity in the 
underlying effect sizes56.

To further test for replicator selection, we compared the original 
to the meta-analytic effect sizes. If the original study and the other 
studies in the meta-analysis are equally affected by selective report-
ing and publication bias, replicator selection implies a lower effect 
size in the original study than in the others. We were able to obtain 
effect sizes and standard errors of the original studies converted 
to Cohen’s d for all original studies except one, where the standard 
deviation was unavailable (see Supplementary Table 2)51. In Fig. 4 
we show the confidence intervals of the difference in the original 
and the meta-analytic effect size for these 14 observations (based 
on z-test as above). The replicator selection hypothesis implies that 

the effect size should be lower in the original studies, but this is the 
case only in four observations and the difference is small and non-
significant in these observations (for one of these there is suggestive 
evidence for a difference). For the other ten observations the differ-
ence trends in the opposite direction, with higher effect sizes in the 
original studies, but only one of those differences is significant (see 
Supplementary Table 8 for details). The average unweighted effect 
size of these 14 original studies is 0.531 compared to an average 
unweighted effect size of 0.424 of the same 14 studies in the meta-
analyses. The mean random effects difference in original and meta-
analytic effect sizes is 0.09, but this difference is not statistically 
significant (see Supplementary Table 8 for details). We therefore 
do not find support for the replicator selection hypothesis in this 
analysis either. If anything, the comparison suggests that we may 
have underestimated the difference in meta-analytic and replication 
effect size. However, the comparison in original and meta-analytic 
effect size should be interpreted very cautiously as the assumption 
of a constant bias due to selective reporting and publication bias 
is a strong one. One could, alternatively, interpret the comparison 
of original and meta-analytic effect size as a test of whether meta- 
analyses reduce the influence of publication bias or selective reporting  
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compared to the original studies, and with that interpretation the 
point estimate of the random effect difference is consistent with 
meta-analyses reducing the inflated effect sizes in original studies 
somewhat (although the effect is not statistically significant).

Evaluating meta-analysis methods for bias adjustment. Our results  
suggest that the effect sizes reported in the 15 meta-analyses  
substantially overestimate the true effect sizes; given this fact, it is 
interesting to ask whether it is possible to adjust meta-analytic effect 
sizes for overestimation. Because publication bias is a well-known 
threat to the validity of meta-analysis, there exist various tests of 
publication bias and several different bias-adjustment methods and 
estimators for correction of publication bias11,29,31,34,35,57. Simulation 
studies suggest that these bias-adjustment methods often fail to 
adjust for publication bias, or even sometimes lead to underesti-
mation of effect sizes34,58. To assess the performance of bias-adjust-
ment methods in our data, we implemented three bias-adjustment 
methods and compared the results produced by these methods to 

conventional random effects meta-analysis. We use this form of 
meta-analysis as a benchmark model for uncorrected meta-anal-
ysis, because the bias-adjustment methods are based on the ran-
dom effects model. The results for random effects meta-analyses 
differ slightly from those reported in Fig. 1 for some of the meta- 
analyses, as not all of the original meta-analyses used the random 
effects model to pool the results of the individual studies included  
in the meta-analysis. The average effect size (standard error) 
reported in the 15 original meta-analyses is 0.419 (0.051), com-
pared to 0.419 (0.055) if random effects meta-analysis is used in all 
15 meta-analyses.

We restrict our focus to three bias-adjustment methods: (1) the 
trim-and-fill method developed by Duval and Tweedie11, as this is 
the method most commonly used to adjust for publication bias33; (2) 
the PET-PEESE estimator proposed by Stanley and Doucouliagos31; 
and (3) the three-parameter selection model (3PSM) proposed by 
Hedges and Vevea29. 3PSM has been recommended as the minimal 
model to be considered in applied work in a recent review paper  
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Fig. 6 | Estimated differences in meta-analytic and replication studies effect sizes for methods of correcting meta-analyses for bias. Plotted are 95 and 

99.5% CIs of the difference in meta-analytic and replication studies effect sizes for each study pair estimating the same effects (effect sizes are measured 

in Cohen’s d). Differences are shown for four meta-analytic models—the benchmark random effects model and the three bias-adjustment methods 

(trim-and-fill, PET-PEESE and 3PSM). The final row plots the 95 and 99.5% CIs of the mean effect size difference across the 15 meta-replication pairs in 

our sample estimated with a random effects model. The references listed for the 15 studied effects are the 15 original studies replicated in the replication 

studies.
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by McShane, Böckenholt and Hansen35, and has been shown to  
perform relatively well under a large set of conditions in simula-
tion studies34,35 (see Methods for details on these methods and how 
we implemented them). Note that valid interpretation of our results 
for the bias-adjustment methods relies on the assumption that the 
meta-analyses and replications are comparable, in the sense that 
they belong to the same distribution of true effects.

Figures 5 and 6 show that the trim-and-fill and 3PSM models 
generally produce results similar to random effects meta-analysis; 
the degree of overestimation of effect size is almost identical for these 
methods, and the pooled effect size difference is statistically sig-
nificant for all these meta-analytic models (see also Supplementary 
Tables 9–16 for detailed results). PET-PEESE reduces mean differ-
ence substantially, but it also reduces statistical power considerably 
as seen by the wide CIs. As a consequence, PET-PEESE fails to reject 
the null more often than the other adjustment methods—the esti-
mated false-negative rate for PET-PEESE is 71.4% for significance 
level P = 0.005 and 75% for P = 0.05, whereas the three other meth-
ods do not fail to reject the null when the replication rejects it; the 
estimated false-negative rate is always 0% for random effects and 
trim-and-fill, while for 3PSM it is 0 and 14.3% for the P = 0.005 
and P = 0.05 levels, respectively. Although PET-PEESE results in 
less overestimation of effect size on average, it does not substan-
tially reduce the average prediction error (root mean squared error) 
compared to the other bias-adjustment methods (see Table 1 for a 
detailed comparison of different indicators used for assessment of 
the performance of the bias-correction methods).

Discussion
A central caveat in interpreting our findings is the potential 
impact of heterogeneity in the meta-analyses in our sample. As 
discussed above, true effect size can vary among studies included 
in a meta-analysis due to variation in both the samples (sample 
heterogeneity) and the exact design used (design heterogeneity). 
Heterogeneity per se cannot explain our findings, but it introduces 
the possibility that replications are carried out in samples or with 
designs not representative of the samples and designs included in 
the meta-analyses.

The larger the heterogeneity in a meta-analysis, the larger the 
scope for such replicator selection. If there is replicator selection, 
one would thus expect a positive correlation between heterogeneity 
in the meta-analyses and the meta-replication effect size difference, 
but no such positive correlation was observed in our data. Another 
indication of replicator selection would be that the effect sizes of 
the original studies are lower than those of the meta-analyses, as 

that would suggest that the original study design used in the rep-
lication is not representative of the other designs included in the 
meta-analysis. We find no evidence of this in our data either, which 
points to the original studies being reasonably representative of the 
wider set of designs included in the meta-analyses. However, this 
comparison should be interpreted cautiously due to the possibil-
ity that the original studies were associated with a larger bias, due 
to selective reporting and publication bias, than the other studies 
included in the meta-analyses. We find no evidence of our findings 
being explained by heterogeneity in meta-analysis and replicator 
selection but, at the same time, we cannot rule out that replicator 
selection has affected our results. Our results should therefore be 
interpreted cautiously, and further work on heterogeneity and repli-
cator selection is important.

Another caveat about our results concerns the representativity 
of our sample. The inclusion of studies was limited by the num-
ber of preregistered multiple-laboratory replications and by stud-
ies for which we could find a matching meta-analysis. Our sample 
of 15 studies should thus not be viewed as being representative of 
meta-analysis in psychology or in other fields. In particular, the 
relative effect between the original studies and replication studies 
for the sample of studies included in our analysis is somewhat larger 
than that observed in previous replication projects5,6,10—indicating 
that our sample could be a select sample of studies where selective 
reporting is particularly prominent. In future, the number of stud-
ies using our methodology can be extended as more preregistered 
multiple-laboratory replications become available and as the num-
ber of meta-analyses continues to increase. We also encourage oth-
ers to test our methodology for evaluation of meta-analyses on an 
independent sample of studies.

In a previous related study in the field of medicine, 12 large ran-
domized, controlled trials published in four leading medical jour-
nals were compared to 19 meta-analyses published previously on 
the same topics59. They compared several clinical outcomes among 
the studies and found a significant difference between the meta-
analyses and the large clinical trials for 12% of the comparisons. 
They did not provide any results for the pooled overall difference 
between meta-analyses and large clinical trials, but from graphi-
cal inspection of the results there does not appear to be a sizeable 
systematic difference. This difference in results between psychol-
ogy and medicine could reflect a genuine difference between those 
fields, but it could also reflect the fact that even large clinical trials 
in medicine are subject to selective reporting or publication bias. 
An important difference between medicine and psychology is also 
the requirement of the former to register randomized controlled  

Table 1 | results for different indicators used to assess performance of the three meta-analysis bias-adjustment methods

Method False-positive 
rate, 0.5%  
level (5%  
level)

False- 
negative rate, 
0.5% level 
(5% level)

Mean meta-
replication 
difference, random 
effects (z-statistic; 
P value)

Mean meta-
replication 
difference, 
random 
effects 99.5% 
Ci (95% Ci)

Mean meta-
replication 
difference, 
unweighted

overestimation 
factor

root mean 
squared 
error

Mean MDE 
0.5% level 
(5% level)

Random effects 100% (100%) 0% (0%) 0.265 (5.69; 
<0.001)

0.13, 0.40 
(0.17, 0.36)

0.26 2.7 0.31 0.200 (0.16)

PET-PEESE 14.2% (16.6%) 71.4% (75%) 0.0285  
(0.47; 0.636)

−0.14, 0.20 
(−0.09, 0.15)

−0.01 0.95 0.22 0.60 (0.46)

3PSM 85.7% (100%) 14.3% (0%) 0.235  
(5.44; <0.001)

0.11, 0.36 
(0.15, 0.32)

0.23 2.49 0.28 0.30 (0.23)

Trim-and-fill 100% (100%) 0% (0%) 0.24  
(5.66; <0.001)

0.12, 0.36 
(0.16, 0.32)

0.24 2.53 0.28 0.20 (0.16)

In estimating the indicators, the meta-analytic results for the bias-adjustment methods were compared to results for the replication studies (we also included results for the random effects model as a 

benchmark of the value of the indicators for uncorrected meta-analysis). Results for several indicators are shown for both the 0.5 and 5% significance levels (see Methods for definition of indicators).
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trials, which may diminish the biases of published studies; no such 
requirement exists in psychology.

We conclude that meta-analyses produce substantially larger 
effect sizes than replication studies in our sample. This difference 
is largest for replication studies that fail to reject the null hypoth-
esis, which is in line with recent arguments about a high false-
positive rate of meta-analyses in the behavioural sciences27,28. Our 
findings suggest that meta-analysis is ineffective in fully adjusting 
inflated effect sizes for publication bias and selective reporting in 
our sample of 15 meta-analyses. We furthermore find that apply-
ing methods aiming to correct for publication bias does not sub-
stantively improve the meta-analytic results. The trim-and-fill 
and 3PSM bias-adjustment methods produce results similar to the 
conventional random effects model. PET-PEESE does adjust effect 
sizes downwards, but at the cost of substantial reduction in power 
and increase in false-negative rate. These results suggest that statis-
tical solutions alone may be insufficient to rectify reproducibility 
issues in the behavioural sciences, but further research should assess 
whether our results for bias-adjustment methods are valid in other 
study samples. A potentially effective policy for reducing publica-
tion bias and selective reporting is preregistration of analysis plans 
before data collection, an increasing trend in psychology60. This has 
the potential to increase the credibility of both the original stud-
ies and meta-analyses, rendering the latter a more valuable tool for 
aggregation of research results. Future meta-analyses may thus pro-
duce effect sizes that are closer to those in replication studies.

Methods
Below we describe the data collection and conversion of effect sizes, construction 
of CIs in Figs. 2–6, estimation of mean effect size difference, estimation of bias-
adjustment methods and the indicators used to compare the performance of bias-
adjustment methods. For statistical tests based on normality, data distribution was 
assumed to be normal but this was not formally tested.

Data collection and conversion of effect size. First, we identified registered 
replications in psychology of a multiple-laboratory format. This was done by 
looking through issues of the journals ‘Perspectives on Psychological Science’ and 
‘Advances in Methods and Practices in Psychological Science’ which, since 2014, 
have published studies of this format37. Second, we identified three Many Labs 
projects completed to date7–9, each of these projects including several replication 
studies. In total, this yielded 62 replication effect sizes for which we searched for a 
corresponding meta-analysis.

For each of these 62 replications, two independent researchers searched Google 
Scholar for previous—published or unpublished—meta-analyses conducted on 
the same hypothesis as that investigated in the multiple-laboratory replication. We 
performed both a general search and a more restrictive search. In the former, we 
searched for key terms in the replication paper (for instance, ‘ego depletion’) in 
combination with ‘meta analysis’. In the restricted search, we searched for ‘meta 
analysis’ and ‘meta-analysis’ in the database of papers in Google Scholar, citing the 
original study that was replicated in the multiple-laboratory replication.

We identified 39 meta-analyses deemed relevant to assessment for eligibility 
(see Supplementary Table 1 for details). Both researchers then assessed the 
eligibility of each of the meta-analyses by reading the paper alongside the 
replication paper and the original study paper. For unclear cases, agreement was 
reached through consensus and the third researcher was consulted. Twenty-
one meta-analyses were excluded due to a lack of correspondence in the effects 
estimated in the meta-analyses and replication studies, and two were excluded 
due to lack of data (reducing the sample to 16 meta-analyses). The missing data 
related to missing information about standard errors. For meta-analyses where 
the standard error was not available from the published paper, we had to email the 
corresponding author of the meta-analysis for this criterion. In one of these, the 
corresponding author had died 10 years previously and we failed to find the other 
authors, so this meta-analysis was therefore excluded61. In another case, the author 
of the meta-analysis replied to our request but the data were missing because they 
had been collected more than 20 years previously62. Therefore, that study was also 
excluded from our analysis sample due to data unavailability.

For the remaining 16 meta-analyses, two were for the same replication study—
the ego depletion replication63. Two meta-analyses concerned ego depletion 
(Hagger et al.64 and Carter et al.65). If we had included both of these meta-analyses, 
they would not be independent observations and we therefore included only one, 
reducing our sample to 15 meta-analyses paired with 15 replication studies. In the 
main analysis we included the meta-analysis with the largest sample size, which 
was Hagger et al.64, but we also performed a robustness test including, instead, the 
meta-analysis of Carter et al.65 (in Fig. 3).

For the replication of Hauser et al.42 there were two separate replication 
estimates in Klein et al.8. Because the meta-analysis corresponding to these two 
replication estimates66 included both scenarios subjected to replication, and both  
replication estimates used different participants, we therefore chose to pool the 
replication estimates. We did this by downloading the raw data from Klein et al.8 
from the Open Science Framework and ran a random effects meta-analysis 
using each estimate and standard error at the laboratory level as our unit of 
observation, resulting in a single random effects meta-analytical estimate for  
this replication.

For the replication of Schooler and Engstler-Schooler47 by Alogna et al.67  
there were two replication studies, one of study 1 from Schooler and Engstler-
Schooler and one of study 4 from Schooler and Engstler-Schooler. As both  
of these replication studies were included in the meta-analysis by Meissner  
and Brigham68, we pooled these replication studies by conducting a random  
effects meta-analysis using the effect size and standard error for all primary  
studies entering the replication study. Our reason for treating each estimates as 
statistically independent is that different subjects were used in the replication of 
studies 1 and 4.

For the meta-analysis of Kivikangas et al.69 corresponding to Graham, Haidt 
and Nosek44, there were three separate estimates of the three ‘binding foundations’ 
in the meta-analysis, whereas the replication presents a single pooled measure. 
To ensure that the observations included in our overall measure were statistically 
independent, we followed our criterion of selecting the most precise estimate for 
inclusion in the main results, and therefore included the ‘authority’ estimate from 
Kivikangas et al.69. For robustness, in Fig. 3 we present the results using the two 
other possible choices of meta-analytic estimate instead.

For the 15 meta-analyses comprising the final sample, 11 included the original 
study which was replicated in the corresponding replication study. This suggests 
that, for these 11 studies, the meta-analysts and the authors of this article made the 
same decision regarding estimation by the meta-analyses and replication studies 
of the same effects. For the remaining four meta-analyses, we made the decision 
that these study the same effects as in the corresponding replication studies. We 
comment on these four cases below:

•	 Srull and Wyer51: The meta-analysts70 explicitly state that they intended to 
include this study, but suspected a statistical error and therefore chose not to 
include it (thus, they clearly viewed the design of the original study as belong-
ing in the meta-analysis).

•	 Sripada et al.48: The meta-analysis by Hagger et al.64 was published before the 
original study by Sripada et al.48, which was replicated in 2015. Moreover, 
the e-letter task included in Sripada et al.48 is an electronic modification of 
a corresponding design used in Baumeister et al.71, which is included in the 
meta-analysis of Hagger et al.64. For the subsequent meta-analysis of Carter 
et al.6, which is included in the robustness test rather than the meta-analysis 
of Hagger et al.64, we found no obvious explanation for not including Sripada 
et al.48, but Carter et al.65 is a widely published study and argues that it consti-
tutes an improvement over Hagger et al.64.

•	 Oppenheimer et al.38: The meta-analysis by Roth et al.72 does not include or 
cite the original study by Oppenheimer et al.38, but it cites and includes the 
study by Thaler.73. Because the original study by Oppenheimer et al.38 adapts 
the sunk cost question directly from the study by Thaler73 and uses the same 
wording of the question, we find no obvious explanation for why the Oppen-
heimer et al.38 study was not included in the meta-analysis.

•	 Graham, Haidt and Nosek44: The meta-analysis by Kivikangas et al.69 does not 
include the original study but cites it as seminal for the literature reviewed, 
and the authors in fact use the original study as the starting point for defining 
the period used to search for relevant studies. The reason for not including the 
original study is not stated in the meta-analysis.

After deciding on an analysis sample, we obtained the relevant data from  
the replication study either from the information in the published paper or  
from datasets publicly available on the Open Science Framework. For the 
meta-analyses, as far as possible we obtained data on the summary effect and 
the standard error of the summary effect from the information available in the 
published paper (if the standard error was not directly reported, we derived  
it from the 95% CI of the standardized Cohen’s d effect size). In all but two of  
the included meta-analyses, it was possible to extract the relevant information 
directly from the paper; in those two cases we had to email the corresponding 
author of the meta-analysis.

To compare results across studies we needed to ensure that the results were 
measured using the same effect size metric. In most cases the effect size reported 
is a standardized Cohen’s d measure. However, in a minority of the cases a 
correlation coefficient (Pearson’s r or Fisher’s z) is reported, and some studies 
report an unconverted ‘natural unit’ of the effect as their main measure—for 
example, the percentage point difference between treatments. To put all our results 
on the same scale we converted all effects to Cohen’s d, with the exception of one 
meta-replication pair where effect sizes as noted above were measured using 
Cohen’s q (but where we performed a robustness test without this meta-replication 
pair). Two of the meta-analyses also measured effect sizes in Hedges’ g units (see 
Supplementary Table 3), but because that is very similar to Cohen’s d we did not 
convert the effect sizes of these meta-analyses.
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In cases where a correlation coefficient is reported, we convert the effect sizes 
to a Cohen’s d measure using the following formula:

d ¼
2r
ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

and Fisher’s z is converted to r according to the inverse of the Fisher transformation,  
so that

r ¼
exp 2zð Þ � 1

exp 2zð Þ þ 1

which is again converted to d using the above formula. These transformations 
follow from statistical theory and rely on an assumption that the data follow a 
bivariate normal distribution74. In cases where the main effect size is reported as 
the difference in percentage points between conditions, we divide the estimated 
treatment effect by the standard deviation of the dependent variable and obtained a 
Cohen’s d measure of the effect size.

It should also be noted that we initially identified 17 meta-replication pairs, 
but we discovered that two of these were not actually matches after obtaining data 
on the individual studies included in each of the 17 meta-analyses (needed for 
the estimation of the meta-analysis bias-adjustment methods, see below). These 
two meta-analyses did include one study from the original paper75,76 replicated in 
the multiple-laboratory replication project, but it was not the same study as that 
replicated (these two original studies reported the results of several studies; one 
was replicated in the replication study and the other was included in the meta-
analysis). This was not evident from the published meta-analyses, but could be 
seen only after obtaining data on the individual studies included in each of the 
meta-analyses.

Construction of CIs. The point estimates for the effect sizes in Fig. 2a are the 
mean effect sizes (converted to Cohen’s d) reported in the meta-analyses studies 
and replication studies; the 95% CIs are constructed as ±1.96 × s.e.m and the 99.5% 
CIs are constructed as ±2.807 × s.e.m. (based on the reported s.e.m. in both meta-
analyses and replication studies). The point estimates of the effect size differences 
in Fig. 2b denote the difference between meta-analytic and replication effect size  
in Fig. 2a and, as above, the 95% CIs are constructed as ±1.96 × s.e.m. and the 
99.5% CIs are constructed as ±2.807 × s.e.m. (the standard error of the difference 
in meta-analytic and replication effect size as estimated by z-test). The CIs in  
Figs. 3–6 are constructed in the same way.

Estimation of mean effect size difference. We used random effects meta-analysis 
to estimate mean effect size difference across the 15 meta-replication pairs. The 
random effects model treats the true parameters as different draws from an overall 
distribution and weights each study by the inverse of the sum of within- and 
between-study variance74. Statistical inference in the random effects model is built 
on the assumption that random effects are normally distributed77.

For replications that are part of the Many Labs project, the same individuals 
participated in several replication studies within each project. In our study, three 
replications from Many Labs 1 are based on the same individuals and two from the 
Many Labs 3 project are based on the same individuals. In Many Labs 2, data were 
collected in two slates with different samples, and two of the replications are based 
on individuals in slate 1—one from Many Labs 2 is based on individuals from 
slates 1 and 2, and another is based on individuals from slate 2. This introduces 
a violation of independence among some of the replication studies, which could 
affect the estimated standard errors of the pooled effect size differences. In the sub-
group analysis in Fig. 3, we report results separately for replication studies from the 
Many Labs projects and replications from the registered report replication projects 
(where there is no violation of independence among the replication studies). The 
results in both sub-groups are similar.

Estimation of meta-analysis bias-adjustment methods. In Figs. 5 and 6, we 
estimate three different bias-correction models for our 15 meta-analyses and 
compare these to both the non-adjusted random effects results and the replication 
effect sizes. To be able to do these estimations we needed the results of the 
individual studies included in each of the 15 meta-analyses (mean effect size 
and standard error). For some meta-analyses these data had been posted by the 
authors, and for the remainder we obtained them after emailing the authors. The 
sections below detail the general features of each bias-correction method and how 
we implemented them in our analysis.

Trim-and-fill. Trim-and-fill, developed by Duval and Tweedie11, is an algorithm 
that aims to identify ‘missing values’ from a distribution of studies in a standard 
meta-analysis, imputes these missing values into the data and then computes 
the selection-corrected effect by conducting a meta-analysis on the full dataset 
including both the original studies and the imputed values. Formally, the trim-
and-fill method estimates a conventional meta-analytic average (either fixed or 
random effects) for the n studies in the dataset but assumes that there are a number 
of missing studies, denoted by k0. The iterative trim-and-fill algorithm proceeds by 
estimating the number of missing studies using one of several possible estimators, 

then computes an estimate for the missing studies and finally computes a selection-
corrected weighted average of both originally included and imputed studies. We 
use the random effects model as the baseline model when implementing the trim-
and-fill algorithm, because this is the conventional model choice for meta-analysts.

PET-PEESE. PET-PEESE is a regression-based approach suggested by Stanley and 
Doucouliagos31. The basic idea is to run a meta-regression of the effect size on the 
standard error and take the constant term as the measure of the true effect free 
from selection bias. The PET runs the meta-regression

Yi ¼ γ0 þ αSEi þ εi;

where i indexes the primary study, SE is the study-level standard error and εi is an 
idiosyncratic error term. The meta-regression uses 1

SE
2

i

I

 as weights. The estimate of γ0 
is treated as a measure of the selection-corrected true effect (the effect that would 
result in a setting with no sampling variation). PEESE instead replaces SE in the 
above regression equation by the squared standard error. PET-PEESE, which we 
employ in our estimations, is a conditional estimator that uses the PET-estimate 
if PET fails to reject the null hypothesis that γ0 = 0, and uses the PEESE estimate if 
PET rejects the null hypothesis. We use PET-PEESE in our analysis as suggested by 
Stanley and Doucouliagos31. We use PET if PET fails to reject the null hypothesis 
that γ0 = 0 at the 5% level, and otherwise we use PEESE.

3PSM. The 3PSM method was developed by Hedges and Vevea29 and is a 
sophisticated selection model that is estimated through maximum likelihood. 
Similar to conventional meta-analysis, the model posits that effect sizes are 
distributed as θ̂i � N θi; σ

2

i

� �

I

 and that true effects are distributed as θi  N μ; τ2½ 
I. The model allows for selective reporting by representing the likelihood that a 

P value of pi is observed by a (step) weight function w:pi → ωi (where ωi is the 
relative weight assigned to a given P value interval), and is solved by maximizing 
the joint log-likelihood function for the data with respect to the parameters θ, τ2 
and ω using the Newton–Raphson algorithm.

Our implementation of 3PSM follows the default choice for the weight 
function, with a cut-off of one-tailed P = 0.025, so that we allow for different 
weights for observations above and below this threshold. This specification of the 
weight function is the same as that chosen in the simulations of Carter et al.34, 
who found that this implementation of 3PSM tends to perform very well under a 
wide set of conditions. We implemented 3PSM by uploading our data to the online 
app. programmed by Vevea and Coburn, available at https://vevealab.shinyapps.
io/WeightFunctionModel/. For the study by Rabelo et al.78, because there was an 
insufficient number of studies to implement the model, we used the closest possible 
alternative threshold P < 0.025 that returned an estimate. The model returned an 
estimate for a cut-off of P = 0.024, so that was used for this particular study.

Indicators used to compare performance of the bias-adjustment methods. 
We used a number of indicators to compare the performance of the three bias-
adjustment methods and the random effects model to the replication studies. 
The results of these indicators are reported in Table 1. We include the following 
indicators:

•	 False-positive rate: The starting point here is those studies where the replica-
tion study cannot reject the null hypothesis, and the indicator is measured as 
the fraction of these studies where the meta-analysis finds a significant posi-
tive effect size. Note that this measure assumes that the null hypothesis is true 
for all studies where the replication study cannot reject the null hypothesis. We 
report this indicator for both the 0.5 and 5% significance level.

•	 False-negative rate: The starting point here is those studies where the replica-
tion study finds a significant positive effect size, and the indicator is measured 
as the fraction of these studies where the meta-analysis cannot reject the null 
hypothesis. Note that this measure assumes that the hypothesis is true if the 
replication study finds a significant positive effect. We report this indicator for 
both the 0.5 and 5% significance level. One replication study8 found a signifi-
cant negative effect size (see Fig. 2) and is thus not included among the studies 
used to estimate either the false-negative or -positive rate.

•	 Mean meta-replication difference, random effects: This is a random effects 
meta-analysis estimate of the mean effect size differences across the 15 meta-
replication pairs. We report the random effects mean and the z-statistic of this 
mean (the mean divided by standard error).

•	 Mean meta-replication difference, unweighted. This is the mean difference 
between the meta-analysis and the replication study for the 15 meta-replication 
pairs; this measure is referred to as the mean error by Carter et al.34. It is a meas-
ure of by how much meta-analysis overestimates the replication effect sizes.

•	 Overestimation factor: This is estimated as the unweighted mean meta-ana-
lytic effect size divided by the unweighted mean replication study effect size. It 
is a measure of the relative overestimation of effect size in meta-analysis.

•	 Root mean squared error: This is a measure of the prediction error of the 
meta-analysis, and can be seen as a measure of the precision of the meta-
analysis results.

•	 Mean MDE: This denotes the minimally detectable effect size at 80% power, 
which is the effect size that the meta-analysis has 80% power to detect. We 
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take the mean of the MDE across the 15 meta-analyses, which is a measure 
of their average power. We report this indicator for both the 0.5 and 5% 
significance level. To estimate the MDE for each meta-analysis we use the 
z-distribution, where it is computed as 3.65 × s.e.m. for the 0.5% significance 
level and 2.8 × s.e.m. for the 5% significance level.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used in this paper are posted at the project’s OSF repository (link: https://
osf.io/vw3p6).

Code availability
The analysis code for all analyses are available at the project’s OSF repository (link: 
https://osf.io/vw3p6).
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Study description The study is a "meta-meta analysis" of the psychological literature

Research sample Sample of meta-analyses (published and unpublished) and published replication studies

Sampling strategy We started with a sample of all pre-registered multiple lab replication studies, and our finally sample features pairs of studies for which 

there was at least one meta-analysis studying the same research question as the one investigated in the replication study

Data collection Researchers collected data by searching through Google Scholar, and in some cases by e-mailing the original authors for the data

Timing We started screening for replication studies and matching meta-analyses in March 2018 and completed this screening process in 

September 2018. We then collected data for the identified studies until June 2019.
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Randomization N/A
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