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Allocation to groups: Examples of Lord’s paradox
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Background. Educational and developmental psychologists often examine how groups

change over time. Two analytic procedures – analysis of covariance (ANCOVA) and the

gain score model – each seem well suited for the simplest situation, with just two groups

and two time points. They can produce different results, what is known as Lord’s paradox.

Aims. Several factors should influence a researcher’s analytic choice. This includes

whether the score from the initial time influences how people are assigned to groups.

Examples are shown,whichwill help to explain this to researchers and students, and are of

educational relevance. It is shown that a common method used to measure school

effectiveness is biased against schools that serve students from groups that are historically

poor performing.

Methods and results. The examples come from sports and measuring educational

effectiveness (e.g., for teachers or schools). A simulation study shows that if the covariate

influences group allocation, the ANCOVA is preferred, but otherwise, the gain score

model may be appropriate. Regression towards the mean is used to account for these

findings.

Conclusions. Analysts should consider the relationship between the covariate and

group allocation when deciding upon their analytic method. Because the influence of the

covariate on group allocation may be complex, the appropriate method may be complex.

Because the influence of the covariate on group allocationmay be unknown, the choice of

method may require several assumptions.

A common situation in educational and developmental psychology is measuring multiple

groups of people at multiple time points with the goal of trying to understand how these

groups differ over time. This is a complex situation, and not surprisingly, there are

numerous analytic choices. But even its simplest form, two groups at two time points,

presents a difficult statistical choice. Lord (1967, 1969) examined two plausible methods

of analysis. He used the context of university student weight by gender, with the time

points being the beginning and ending of the academic year. The first method is
subtracting the initial weight from the prior weight (i.e., how much weight the student

lost or gained) and doing a t-test on these differences.1 This is called the gain score

approach.

*Correspondence should be addressed toDanielWright, Department of Educational Psychology andHigher Education. University
of Nevada, Las Vegas. 4505 S. Maryland Parkway, Box #453001, Las Vegas, NV 89154 (email: daniel.wright@unlv.edu or
dbrookswr@gmail.com).

1 An alternative that allows this to be extended to more complex problems is to have a 2 9 2 mixed ANOVA. The interaction
between time of the test and group is the same effect as tested by this simpler gain score t-test. The simpler test will be used here.
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An alternative is conducting an analysis of covariance (ANCOVA) on the final weights

using the prior weights as a covariate. Because these can lead to different conclusions,

Lord called it a paradox, and it fits within a class of paradoxes applicablewhen comparing

relationships among three variables (Pearl, 2014; Wainer & Brown, 2007).
In this section, the gain score and ANCOVA procedures will be briefly described, as

well as some extensions to them. The case considered is where there are two groups and

two time points. This is for explanatory ease. Both the number of groups and the number

of time points can be increased. Increasing these would increase the complexity of the

models, but not the fundamental issue considered here.

Thegainscoremodel involves subtracting the time1scores (followingRubin1977called

PreTesti) from the time 2 scores (called PostTesti), and then performing analyses on these

gain scores with a t-test. This tests the null hypothesis of b1 = 0 in the following equation:

gaini ¼ PostTesti � PreTesti ¼ b0 þ b1 groupi þ ei: ð1Þ

This can be re-written as a regression predicting PostTesti:

PostTesti ¼ b0 þ b1 groupi þ 1 � PreTesti þ ei: ð2Þ

Two important assumptions for the gain score model are that PostTesti and PretTesti
are on the same scale so that PostTesti � PreTestimakes sense and that this difference has

the same meaning for all values of PreTesti. While in some cases it may be plausible to

transform the data to meet these assumptions, sometimes this is not plausible.
The second procedure is ANCOVA:

PostTesti ¼ b0 þ b1 groupi þ b2 PreTesti þ ei: ð3Þ

Sometimes an interaction is included; sometimes it is not included. Here, it will not be

included and b1 therefore estimates an average group effect after conditioning on

PreTesti. The difference between Equations 2 and 3 is that for the gain score approach b2
is fixed at 1 and for the ANCOVA it is estimated.

Here, I refer to ‘gain score’ for anymodelwhere the variable predicted is the difference
between the final scores and previous scores. The word ‘ANCOVA’ is used for several

different types of models (Cox & McCullagh, 1982). Here, it is used for any model where

the previous scores are conditioned upon. The conditioning might be linear like

Equation 3 or a complex function, like the monotonic splines that are part of the Student

Growth Percentile (SGP) models (e.g., Betebenner, 2009) used in many US states to

measure student growth (for more discussion of this approach see, e.g., Lockwood &

Castellano, 2015; Wright, 2018). Here, linearity is assumed. A related model is where

covariates are used to match people with similar scores on a set of covariates. One
approach to this is called propensity matching (Rosenbaum, 2002). Matching is related to

ANCOVA and is discussed later in this paper.

There are several other extensions to the basic gain score and ANCOVA models. One

particularly relevant extension for education is that both of these approaches can be used

to describe multilevel models where the students are nested within classrooms and

schools (e.g., Aitkin & Longford, 1986; Goldstein, 2014). Later in this paper, multilevel

versions of gain score and ANCOVA models are used for measuring school effectiveness.

This is of much importance in education as many school systems have implemented
accountability measures (Muller, 2018). For a historical overview of this approach in the
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United Kingdom, see Leckie and Goldstein (2017). The method used in this example is

similar to those used in many US states (Amrein-Beardsley, 2014). Therefore, it is worth

briefly describing the multilevel versions of the gain score and ANCOVA approaches.

Let j refer to the different schools and i to the different students. A simple multilevel
gain score model would be:

PostTestij ¼ b0 þ 1 � PreTestij þ uj þ eij; ð4Þ

where the uj allows for variation around the intercept b0. The corresponding multilevel

ANCOVA is:

PostTestij ¼ b0j þ b1PreTestij þ uj þ eij: ð5Þ

An estimate for uj for each school can be calculated from these models. One approach

is to estimate the conditional modes. The conditional mode for the jth school is the most

likely value, given the model, for this school’s effectiveness. These are sometimes called

school residuals (e.g., Goldstein et al., 1993, p. 428). This approach is sometimes called

the value-added model or VAM, though the name is perhaps presumptuous given the

debate about what these procedures measure (e.g., American Statistical Association,
2014; Goldstein, 1991;Wright, 2017). The complexity of this procedure has lead to many

policy makers to accept over-simplistic explanations and to believe that it accurately

measures value-added (see Braun, 2013).

Regression towards the mean

There was a problem with Darwin’s theory of evolution. Consider human height. If

parents had children whose height naturally varied around the parents’ height, and these

children had their own children and their height varied in the same way, the variance in a

population would increase every generation. Galton collected data showing this did not

happen. The variance remained fairly constant across generations, and Galton realized

that this was a problem for Darwin’s theory. Two very tall parents’ offspring will likely be
taller than the population average but, on average, not as tall as themselves. This

observation has become known as regression towards themean (RTM). Stigler (2016, Ch.

5) describes how Galton went from proposing a clever (but unnecessary and incorrect)

biological mechanism to account for the inter-generational homogeneity of variance, to

realizing RTM occurred more generally, and therefore, its cause was a statistical artefact.

RTM can be explained using the central equation of psychometrics:

Observed Score ¼ True Scoreþ Error: ð6Þ

Assume the True Score and Error are independent. It is expected that those with high

Observed Scores are likely to have above average True Scores and are likely to have above

average Errors. If a second score is observed, and nothing has been done to change the

True Score, it is expected that this True Scorewill still be above average, but the expected

value of Error is zero. The expected value of the observed value will therefore be centred

on the True Score, which will tend to be between the original observed value and the

population mean. Therefore, the expected value will regress from the original observed
value towards the mean of the group.
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Following Efron and Morris (1977), a baseball example will be used to illustrate how

RTM can affect the estimates. Baseball is a good source of data to illustrate statistical

concepts because there is much information on each individual player (Marchi & Albert,

2013). Baseball ispopular inNorthandCentralAmerica, Japan, andKorea, and its popularity
is growing elsewhere. Further, the confrontation between the pitcher and batter, relevant

to the current example, is similar to the one between the bowler and batter in cricket.

Enough information is provided in this paper so that the example should be clear to readers

not familiar with baseball or cricket. The example is about batting averages. A baseball

batting average is, roughly, the proportion of times that the player successfully hits the ball

and reaches a base safely (the calculation is slightly more complicated), so high scores are

better. Averages are reported to three decimal points, for example, .247 for 24.7%

successful. Efron and Morris (1977) took 18 players’ batting averages from the first few
games of the 1970 season and predicted how well they would hit for the remainder of the

season. They showed that the players’ averages tended to regress towards the mean of the

18 players. Here, we will consider RMT when there are two groups.

Baseball players are either pitchers or position players (occasionally, a player is both –
what is called an all-rounder in cricket – but this is rare enough in baseball to ignore for

current purposes). The pitchers are on the team for their defensive (non-batting) skills and

therefore tend tohave lowbatting averages: around .150,meaning they are successful about

15% of the time. The position players are chosen because they are good hitters. Their
average is about .260,meaning they succeed about 26%of the time.RTMworkswithin these

groups, so a pitcher or positionplayer hitting far above or below their groups’ average in the

first half of the season is likely to regress towards their groupmean in the second half of the

season.Data from the2016 season (accessed30October2016, frommlb.mlb.comand theR

data file at https://github.com/dbrookswr/VAM-Work/total.Rdata) are shown in Figure 1.

The gain scores tended to be lower for players who had high first half averages that those

who had low first half averages (the slopes of the regression lines are negative).

Lord’s first statistician would calculate the gain score for each player and then
depending on assumptionsmight conduct a t-test.Welch’s version of the t-test is usedhere

because the standard deviation for pitchers is higher than for position players because

pitchers’ averages are based on fewer at-bats (othermethods could also be used to account

for this heteroscedasticity). The mean gain score for the pitcher is: mean gain = .023 and

the position players is: mean loss = �.005. The result is as follows: t(65.493) = 1.95,

p = .055. Depending on the a level and if a one- or two-tailed test is being used (two-tailed

is used here), the analyst may declare this is a non-significant result (btw, the p-value if

using Student’s rather than Welch’s method is: p = .013).
Lord’s second statistician would conduct an ANCOVA on the second half average,

conditioning on the first half average, and look at the coefficient forwhether the player is a

pitcher or a position player. The finding is a detriment for pitchers of: �.064, or one hit

about every 15 at-bats. The residuals are more dispersed for pitchers than the position

players so robust standard errors were calculated. The HC1 standard errors from the

estimatr package (Blair, Cooper, Coppock, Humphreys, & Sonnet, 2019), based on the

procedure described by MacKinnon and White (1985), were used. The difference is

statistically significant: t(173) = �3.95, p < .001. Conditioning on first half averages,
position players hit higher than pitchers for their second half averages. Sports researchers

could probably come up with clever reasons why this may occur, but this difference can

be accounted for by regression towards the group mean so requires no further

explanation beyond this statistical artefact. The position players are regressing towards a

higher mean than the pitchers are regressing towards (see also Wainer & Brown, 2007).
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Wainer (2007) called this regressing towards different means Kelley’s paradox, for the

influential psychometrician Truman Kelley.2

What happens for matching procedures? Methods like propensity matching (Rosen-

baum, 2002) are popular. They allow researchers tomatch onone set of variables and then

compare some outcomes by other variables. Suppose pitchers and position players are

matched on first half averages for the 2016 season. One pairing in this data set could be

pitcher Gerrit Cole, who hit .208 in the first half, and position player Yasmani Grandal,

whohit .212 in the first half. This average is high for a pitcher, but low for a position player.

Therefore, the prediction is that Cole’s average will decrease in the second half, and

Grandal’s average will increase in the second half. Two players with similar first half
averages are expected to have different second half averages if they are from different

groups and nothing else is known about them. Consistent with these predictions, in the

second half Cole’s average decreased to .188 and Grandal’s increased to .245. Matching

works similar to ANCOVA in this context.

Consider a different sporting example where the appropriate statistical procedure is

different. The US magazine Sports Illustrated (www.si.com) puts an athlete who

performs really well in recent events on its cover. Here, cover athletes are considered a

group. There is something called the Sports Illustrated jinxwhere the cover athletes tend
to performworse after being on the cover than before, compared with other athletes (see

en.wikipedia.org/wiki/Sports_Illustrated_cover_jinx, accessed 1 December 2018). Here,

the gain score approach is inappropriate because the athletes are selected to be on the
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Figure 1. Scatter plots showing, both for pitchers (Panel A) and for position players (Panel B), that those

who hit above their group means in the first half (to the right of the vertical dashed lines) tended to have

lower second half averages (below the horizontal dashed lines). The opposite is true for those initially

hitting below their group mean. The regression lines are in solid.

2 They used the word paradox because of the context in which they were studying this. There was the belief that if universities
enrolled students with good test scores from schools with low-average scores, that when removed from these low-average
environments that the students would excel compared with students with similar scores from schools with high averages. When
they looked at the data, they found the opposite occurred; students regressed towards the mean of the group, and for some, this
seemed paradoxical. While reasons exists for why these groups may go up or down in comparison with the other (and likely in
some contexts these occur), it is important first to account for this regression artefact.
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cover based on their performance. The expectation is that these athletes will regress a bit

towards the level of all athletes. The key difference between these examples, discussed

more in the next section, is whether the covariate (first half average or performance in

recent events) influences which group (pitchers or cover athletes) a person is in. If group
membership is not influenced by the covariate, the tendency is to regress towards that

group’s mean.

It is worth making clear that statistical artefacts, like RTM, do not preclude other

effects. But before speculating on additional or alternative explanations, it is worth ruling

out statistical artefacts. For example, in education there is much discussion about

Mattheweffects (e.g., Stanovich, 1986) or the rich get richer. Evidence for this is increased

variance over time (so the type of increase Galton did not observe with inter-generational

human height). However, if a researcher used an ANCOVA to predict wealth at time 2,
conditioning on wealth at time 1, to show that groups that tend to be rich (higher time 1

values) get even richer at time 2, at least part of this effect could be accounted for by RMT

and therefore should be considered prior to hypothesizing some additional mechanism.

Lord’s paradox and group allocation

Since Lord (1967) dangled this apparent paradox in front of researchers, numerous

authors have taken up the challenge to explain this paradox. Commentators agree that the

two analytic approaches are both accurate descriptions of the data (and other possibilities

exist), but address different research questions (e.g., Hand, 1994;Wainer, 1991). The gain

score approach is ‘an unconditional comparison between the gains of the two groups’

(Hand, 1994, p. 324) while the ANCOVA ‘is a test of an average conditional comparisons,

conditioning on initial weight’ (Hand, 1994, p. 324). Thus, either can be an accurate

description, but of different quantities. Wainer (1991) asks how this relates to making
causal inference about the group. This is the focus here. If trying to decide whether some

variable is causally efficacious in the absence of random allocation, it may be that only one

approach will provide unbiased estimates (and it may not be either of these). The

remainder of this section will focus on approaches that show which approach is more

suitable depending on the causal relationship between the initial score (weight at the

beginning of the year in Lord’s case) and the grouping variable (gender in Lord’s case).

Figure 2 shows graphical models of two situations where both gain score and

ANCOVA procedures might be considered.3 The figure is adapted from Pearl (2016), and
the situations correspond to the examples in §7 of Rubin (1977). Using Rubin’s variable

names, there are PreTest and PostTest scores and a variable forwhether the studentwas in

a computer-aided learning program or the regular program. Panel A corresponds to Lord’s

(1967) original formulationwhere the group variable is exogenous to the system. In Lord’s

original formulation, the weights did not affect gender (similar to how in the baseball

example first half averages do not [usually] affect a player’s position). In Panel B, the

PreTest scores influence which group the student was in. Rubin states that just looking at

the data (in his Table 1) it is not possible to knowwhich of these panels is the appropriate
causal model and therefore which statistical procedure is appropriate. He describes how

assumptions are often necessary to make causal inference.

3 There is a specific mathematical sense of the word ‘graph’ as a set of nodes, some of which are connected by edges. This is an
important area of mathematics and for making causal inference in science (Pearl, 2009).
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Several researchers have shown that which of these panels is more appropriate

informs whether the gain score or ANCOVA model is more appropriate. Holland and

Rubin (1983) use Rubin’s potential outcomes model for causation (for review of this

model, see Holland, 1986). For Panel A, each approach is applicable if different untestable

assumptions are made (Holland & Rubin, 1983, table 1.2). The need tomake assumptions

about how someaspects of thedata arise in order to reachconclusions about other aspects

is nicely summarized by Cartwright’s motto: ‘no causes in, no causes out’ (Cartwright,

2014, p. 312). For the gain score model, the assumption is that without any group effects
the expected value for the PostTest is the PreTest (Holland & Rubin, 1983, equation 3.7).

In Panel B, group membership is influenced by the initial scores. Holland and Rubin

(1983, pp. 21–22) describe this situation in §A.4 of their appendix and show (assuming

linearity and parallel slopes for the groups) that the ANCOVA approach yields appropriate

estimates. Pearl (2016) uses graphicalmodels and reaches a similar conclusion: in Panel A,

both approaches canbe correct depending on the research question and assumptions, but

for Panel B, ‘one [statistician] was right (ANCOVA) and one [statistician] was wrong’.

Wright (2006) reached similar conclusions, but using simulation methods. When the
group is not influenced by the covariate, and the assumptions for gain score model in

Holland and Rubin (1983) hold, the gain score approach provides unbiased estimates and

ANCOVA does not. The converse is true when the covariate influences group

membership.

(A) (B)

Figure 2. Panel (A) shows the graph based on Lord’s original formulation, with Program influencing

PreTest and PostTest. In Panel (B), the direction of causality is now from PreTest to Program. These are

based on figures 2b and 5 of Pearl (2016) and table 1 of Rubin (1977).

Table 1. The mean effectiveness values for data created for Figure 3A or B, and whether there was no

difference or a small difference between the effectiveness of the two categories of schools

(high = historically high performing; low = historically low performing)

Statistical model Group

Figure 3A Figure 3B

No diff :2r diff No diff :2r diff

VAM (multilevel ANCOVA)

postij ¼ b0 þ uj þ b1 preij þ eij

High 0.24 2.37 0.00 1.99

Low �0.24 �2.37 �0.00 �1.99

Diff 0.47 4.74 0.00 3.98

Multilevel gain score

postij ¼ b0 þ uj þ preij þ eij

High �0.01 4.12 �6.11 �1.53

Low 0.00 �0.01 6.10 5.86

Diff �0.01 4.13 �12.21 �7.40

Note. Standard errors are approximately .01.
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An alternativeway of conceptualizing this iswhether to expect regression towards the

group means, as with Panel A of Figure 2, or regression towards the mean for the whole

sample, as with Panel B. The distinction is whether group membership is dependent on

the covariate. In Panel A, the group exists without the measurement of that covariate. In
the baseball example, the players are pitchers or position playerswithout having to have a

first half batting average. In Panel A, students opt for the experimental program without

being influenced by their marks on the PreTest. However, membership of the group,

Sports Illustrated cover athletes, is due to their recent performance. The groupwould not

exist without excellent recent performances. Similarly in Panel B of Figure 2, the group

exists because of themeasurement. In these cases, the group distinction can be thought of

as just recoding the covariate. As such, people will tend to regress towards the overall

sample mean.

Measuring educational equity

The purpose of this section is to show how the choice of statistical model – using

covariance or gain scores – is relevant to a controversial topic in education: measuring

school effectiveness. This was chosen because of the its importance in education. It is a
complex example and therefore illustrates how Lord’s paradox and regression towards

the mean can be applied to important real-world problems.

In education, many jurisdictions estimate the effectiveness of schools and teachers

using student test scores. These estimates can have serious consequences including

school closures, loss of employment for teachers, and have enticed educators to change

student test answers (Blinder, 2015). Use of these to measure educational equity is the

focus here, but policy makers should be cautious in general using this approach (e.g.,

American Statistical Association, 2014; Goldstein, 1991; Wright, 2017).
Achievement gaps in education refer the differences between scores for historically

low-performing groups (e.g., those from low socio-economic status [SES] groups) and

scores for historically high-performing groups. In the United States, Chief State School

Officers are required to submit their plans for how they will try to lessen these gaps (see

www2.ed.gov/programs/titleiparta/resources.html, accessed 1 December 2018). One

reason given for achievement gaps is that some analyses show that historically low-

performing groups of students are more likely to be enrolled in less effective schools than

other groups of students. This is called the educator equity gap. For example, New
Mexico’s 2015 report finds minority students and economically disadvantaged students

attend schools that the state rates as less effective than other schools (https://

www2.ed.gov/programs/titleiparta/equitable/nmequityplan060115.pdf, accessed 1

December 2018). The argument is that if states can ensure equal access to quality

schools, then the achievement gaps should shrink. This is a laudable aim, and programmes

that provide incentives for good teachers towork in less effective schools are encouraged.

The goal here is to explore whether the educator equity gaps are being measured

appropriately. The method used is based on the method used in New Mexico for rating
schools prior to 2019.

How jurisdictions measure effectiveness varies, but many include measures based on

student test scores often using ANCOVA or ANCOVA-like procedures (like the VAM and

SGP methods discussed earlier). The statistical question is in which situations does the

VAM(Equation 5) or themultilevel gain scoremodel (Equation 4) performbetter than the

other. The results of Holland and Rubin (1983), Pearl (2016), andWright (2006) reinforce
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the notion that: ‘knowledge of the assignment process is critical to drawing inferences

about the effect of the treatments’ (Rubin, 1977, p. 22). A simulationwill be conducted to
show how the way in which students are assigned to schools should affect the choice of

statistical method.

Simulation methods

Two different data models are used for the simulation. Figure 3A shows how most US

public K–12 education districts operate. There is variability in socio-economic status (SES)

by region and achievement gaps associated with these variations. These influence where
students usually go to school (though in some locations there is limited parent choice) and

the PreTest and PostTest scores. The school impacts the PostTest, but not the PreTest

scores (the PreTest being ‘pre’ the schools’ influence). Figure 3B is appropriate if the

covariate (here PreTest scores) has a causal influence on which school the student

attends. This is appropriate for some universities and some selective primary and

secondary schools (e.g., if using ACT scores both for admissions and as a covariate in the

model). It is also applicable for teacher evaluation within schools where students may be

streamed into a class based on previous performance (Paufler & Amrein-Beardsley, 2014).
This is important because sometimes these methods are used to estimate teacher

effectiveness (Amrein-Beardsley, 2014).

The simple data models in Figure 3 are used to focus on the importance of knowing

how students are assigned to schools. It is important to stress that these are simplemodels.

If the statistical models exhibit problems with these simple data models, it will allow the

cause of the problems to bemore easily identified than if complex (more realistic) models

were used. In applied settings, other variables will impact each of these variables and it is

likely that for some schools the covariate causally impacts which school the student
attends, but not for others. Appropriate statistical models should take these aspects into

account.

An advantage of using simulationmethods is that the researcher knows the true values

of all variables. Here, the critical variable – the direct effect of schools on students’ scores –
is unobserved with empirical data, but it is known in simulations. The primary question

here is whether these scores differ between groups of schools. This would suggest

(A) (B)

Figure 3. The causal models used to create data for the simulation. The node Region/SES/Achievement

stands for these three associated variables. In Panel A, these directly influence which school the student

attends (in K–12 situations usually based on region). In Panel B, school attendance is influenced by PreTest
(e.g., a university could use ACT or ‘A’ level scores as part of their admissions process, and this could be

conditioned upon in the analyses).
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educator inequity. With simulations, data sets can be constructed where it is known

whether there is a difference between the true effectiveness between schools that serve

predominantly historically low-performing groups of students and those serving

predominantly historically high-performing groups of students. An additional second
advantage of simulations is that the procedure can be repeated thousands of times to

provide precise estimates of the procedure’s performance.

The simulation has a 2 9 2 design. The first factor is whether the data are

constructed according to Figure 3A or B. The second is whether there is no

difference in the true effectiveness of schools serving historically high- and low-

performing groups of students or a difference of .2 of the standard deviation in the

true variability of school effectiveness. Cohen (1988) calls this a ‘small’ difference,

though in this context it would be considered substantial. Lipsey et al. (2012) discuss
how to interpret effect sizes in different educational contexts. While some educators

search for extremely large effects (e.g., Bloom, 1984, talked about searching for

effects ten times larger than this), Chetty et al. (2011) show how much smaller

effects can produce large outcomes when they persist over time. This factor allows

both Type I and Type II errors to be examined. The R code for this simulation is at

the end of this document and is available at https://github.com/dbrookswr/VAM-

Work/2020LordSimul.r.

For each replication, the sample is divided into two equally sized groups (e.g., these
might be those above and below the median on household income, or different

ethnicities). There is a latent variable, called Achieve, for individual differences among

students that influence test scores. The latent variable for both groups is normally

distributed, but the mean for the higher performing group is :2r higher (Cohen’s small

effect). The PreTest scores are based on this variable and normally distributed random

error.Within each group,Achieve and the randomerror have the same standard deviation.

Half the schools are labelled high and half labelled low for which types of students they

tend to serve (historically high- or low-performing groups of students). For Figure 3A,
students from the historically high-performing group have an 80% probability of being

assigned to anupper school and students from the historically low-performing group have

an 80% probability of being assigned to a lower school. For Figure 3B, students who score

above the median on PreTest have an 80% probability of being assigned to a upper school

and those who score below the median have an 80% probability of being assigned to a

lower school.

The true school effects are all drawn from normal distributions. For the no difference

conditions, the true effectiveness scores for all schools are drawn from a distributionwith
a mean of zero; there are no systematic differences in effectiveness between the two sets

of schools. For the ‘small’ difference conditions, the high and low schools’ effectiveness

scores are drawn from normal distributions, but the mean for high schools is :2r greater

than the mean for the low schools. The PostTest scores are based on Achieve, the true

school value-added, and random error. These data are created to adhere to some common

statistical assumptions so that lack of fit cannot be attributed to, for example, skewness of

effectiveness scores. There were 2,000 replications for each condition so the standard

errors are small. There are 500 schools each with 100 students.
The VAM (Equation 5) and the multilevel gain score (Equation 4) are used to estimate

effectiveness (other statistical models were also in the simulation and are available from

the author). The conditional modes are calculated and used to estimate the effectiveness

for the individual schools.
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Simulation results

Table 1 shows the mean effectiveness scores for the two groups of schools, and the

differences, in each of the four conditions of the 2 9 2 design and for the two statistical

models. Starting with the data models from Figure 3A with no true differences between
groups (first column), the VAM (multilevel ANCOVA) estimates that the schools that

predominantly serve historically high-performing students are more effective (Type I

errors). Of these estimates, 1,756 of the 2,000 (88%) were in this direction, and of these,

439 (25%) were statistically significant at a = 5%. Only 2 of the 242 (0.83%) estimates in

the other directionwere statistically significant. The gain score model correctly shows no

overall bias. There were 962 (48.1%) trials showing an advantage for schools serving

predominantly groups of historically high-performing students and 1,038 (51.9%) in the

opposite direction. These are not significantly different from 50% (p = .094). In total, 102
of these (5.1%) were statistical significant, which is not statistically significantly different

from the nominal level of 5% (p = .878). In the next column,where there is a true effect to

detect, both models show 100% statistically significant differences in the correct

direction.

The final two columns of Table 1 correspond to when students are allocated into the

two groups of schools on the basis of the covariate (Figure 3B). The VAM (multilevel

ANCOVA) correctly estimates that there is no group bias (column 3). Nine-hundred and

ninety-three estimates (49.65%) were in the direction of favouring schools serving
predominantly high-performing students and 1,007 (50.35%) in the opposite direction.

This is not statistically significantly different from 50% (p = .771). Overall, 86 of these

(4.30%) were statistical significant, which is not statistically significantly different from

the nominal level of 5% (p = .166). The gain scoremodel estimated statistically significant

effects, for all trials, with an advantage for those schools serving mostly historically low-

performing groups of students. The fourth column showswhen there is an effect. The two

models give 100% statistically significant estimates, but in opposite directions. The VAM

correctly shows the advantage for schools serving predominantly groups of historically
high-performing students. The gain score estimates that those schools are less effective.

Finding an effect in the opposite direction of the true effect is what Gelman and Carlin

(2014) call a Type S error, for an error in the sign of the effect.

Simulation discussion

TheVAM (multilevel ANCOVA) provided biased resultswhen school allocationwas based

on Figure 3A, when the PreTest did not causally influence which school the student
attended. This is because student scores regressed to their groupmeans. This is analogous

to how the pitchers and position players each regressed towards their groupmeans in the

second half of the baseball season. Because ANCOVA, in some sense, compares students

with similar initial scores, this means this statistical artefact will lead the VAM to estimate

schools that serve mostly high-performing students to be more effective than those that

serve mostly lower-performing students. The schools that serve groups that predomi-

nantly historically high achieving will appear more effective even when there are no true

differences (column 1 of Table 1). The gain score model performs better in this situation,
though caution is urged using the gain score model for this purpose. These data were

created to be consistent with the assumptions Holland and Rubin (1983) list for this

model. Before implementing a gain scoremodel in any situation, it is important to address

whether the scores on the two tests are comparable so that their differencesmake sense to

compare.
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The VAM (ANCOVA) procedure performed better than the gain score model when

school allocationwas based on Figure 3B. The gain scoremodel provides biased estimates

here because students regress to the overall sample mean. This is analogous to the Sports

Illustrated jinx discussed above. The fourth column shows when there is an effect. The
ANCOVA correctly shows the effect. The gain score estimates that those schools serving

low-performing students do better: the opposite direction of the true effect.

This is an important conclusion for places using these types of models for estimating

school (and teacher) effectiveness. Analysts should consider whether the covariates,

usually some set of prior test scores, can influence the schools students attend. Wright

(2017) argues that those using these methods for high-stakes decisions should construct

multiple causal models of how they believe the data may arise, simulate data using these

models, and examine the accuracy of their statistical methods. This would allow them to
show their assumptions and demonstrate the performance of their analytic method.

The substantive conclusion is that becausemostK–12 school allocation is not based on
the covariate in these models, that the ANCOVA methods (including VAM, SGP,

propensity matching, etc.) are likely to yield biased estimates and should not be used in

these situations. Thesewill often show large educator equity effects (e.g., theNewMexico

findings discussed above), but as shown here at least part of these effects are a statistical

artefact.

GENERAL DISCUSSION

For over 50 years, Lord’s (1967, 1969) paradox has been used to illustrate how the choice

of statistical methods is not simple, even when there are only three variables. Part of the

reason for this is that when asked what ANCOVA does statisticians sometimes give the

misleading short-hand response that ‘it controls for the covariates’ and that it somehow
allows causal inference for the other variables. This advice is given despitemethodologists

describing the many limitations of the procedure for decades (e.g., Meehl, 1970). The

result is that many non-statisticians come to believe that the procedure does more than it

actually does. With reference to educational effectiveness, Braun (2013) describes how

some policy makers attribute almost magical power to these methods.

Several authors (e.g., Holland & Rubin, 1983; Pearl, 2016; Wright, 2006) discuss that it

is important to consider whether the PreTest scores influence the grouping variable.

These authors use ofmathematical, graphical, and simulationmethods, and their textswill
appear quite technical to many readers. It is hoped that choosing a sports example and

presenting limited mathematical details that the concepts underlying regression towards

themean are clear. The critical consideration iswhether group allocation is determinedby

the covariate or just associated with it. The mechanism to explain the different outcomes

is regression to the groupmean, if the groupmembershipwas not influenced by the initial

score.

The examples and simulations describe situations where a single covariate either does

or does not have a causal impact on group membership. In some real-world situations,
there will be multiple covariates some of which may have a causal influence, some not,

and some may have an influence only on group membership for some in the sample. To

complicatematters further, the researchermay not knowwhich variables influence group

membership and for whom. If the researcher is unsure, several different simulations can

be conducted in order to evaluate how sensitive the different statistical methods are to

whichever aspects of the model that the researcher is uncertain about. This can create a
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very complex situation. It is hoped that this paper helps researchers to take steps towards

these types of situations.

Further, it is important to show how the choice of statistical models can have

important policy implications. There is much debate about using test scores to evaluate
schools and teachers (e.g., Amrein-Beardsley, 2014; Foley &Goldstein, 2012). This is why

this particular example was chosen. It is important to consider the causal models

underlying the data before deciding how to analyse them. Examining these clearly shows

when the statistical method often used is inappropriate.
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