
Chapter 13

Learning and Sequential Decision Making
Andrew G. Barto, Richard S. Sutton, and Christopher
J. C. H. Watkins

I Introduction

In addition to being studied by life scientists, learning is studied by engi-neers and computerscientists interested in developing useful devices andprograms. The study of synthetic leaning has produced an extensivecollection of methods and mathematical theories pertaining to such tasks aspattern classification, prediction, and the adaptive control of dynamicalsystems. Within these theories learning is usually formulated as a searchconducted in an abstractly defined space, and a largecollection of mathe-matical concepts can be broughtto bear on the problemsof understandingand designing procedures, or algorithms, for enabling a device or programto improve its performance over time. Whatis the nature of the corre-spondence,if there is any, between the behaviorof an animalin a classicalconditioning experiment and the mathematical theories and computationalprocedures developed for synthetic learning? Is this behaviortrivial from acomputational perspective, oris it complex and subtle? The answers tothese questions that we attempt to justify in this chapter are that thebehavior observedin classical conditioning experimentsis far from compu-tationally trivial; its strongestties are to mathematical theories and compu-tational procedures that are exceedingly useful in practice and surprisinglycomplex. By relating the behavior of an animal undergoing classical con-ditioning to perspectives developed for understanding synthetic learningsystems, we hope to provide a framework that may lead to increasedunderstanding of animal behavior and to novel computational proceduresfor practical tasks. |
Our analysis is based on the temporal-difference (TD) model of classicalconditioning described by Sutton and Barto in chapter 12 of the present

540 Barto etal.

volume and in their 1987 paper. In this chapter we view the TD model
as a computational method that can be useful in solving engineering
problems. Sutton (1988) has shown how computational methods making
use of “temporaldifferences,” including the TD modelof conditioning, are
useful for adaptive prediction, and other publications illustrate how TD
methods can be used as components of synthetic learning systems (Ander-
son 1987; Barto et al. 1983; Sutton 1984). Here, we restrict our attention

to a slightly simplified version of the TD model, which wecall the TD
procedure. We show how the TD procedureis related to theoretical princi-
ples which serve both to explain the operation of TD methods and to
connect them to existing theories of prediction, control, and learning. Some
of the observations we makeare further elaborated in Sutton 1988 and
in Watkins 1989, and some of the connections to existing theory were
previously described in Werbos 1977 and in Werbos 1987.
We show how a TD method can be understood as the synthesis of

concepts from twoexisting theoretical frameworks: the theory ofstochastic
dynamic programming, which addresses sequential decision tasks in which
both short-term and long-term consequences of decisions must be con-
sidered, and the theory of parameter estimation, which provides the ap-

propriate context for studying learning rules in the form of equations
for updating associative strengths in behavioral models, or connection
weights in connectionist networks. Although a clear explanation of how
the relevant theoretical ideas fit together requires a certain amount of
mathematical notation, it is not our purpose to present a mathematically
rigorous account of these ideas, and there are many issues that we do not
pursue very deeply or do not discuss at all. Our goals are to explain the
main ideas clearly and to provide someaccess to the large body of relevant
theoretical literature.*

Drawing precise parallels between behavioral models and computational
proceduresfacilitates the exchange of ideas between researchers studying
natural learning and those studying synthetic learning. Sutton and Barto
(1981) pointed out that the Rescorla-Wagner (1972) model of classical

conditioning is identical (with some minor caveats) to the equation pre-
sented by Widrow and Hoff (1960) as a procedure for approximating
solutions of systemsof linear equations. As a behavioral model, this equa-
tion provides a remarkably simple account of a range of stimulus context
effects in classical conditioning; as a computational procedure,it has proved
exceedingly useful in technological applications, whereit is called the LMS
(least mean squares) algorithm. This and closely related algorithms are
widely usedin the fields of signal processing and pattern classification, and
are playing a majorrole in the emerging field of connectionist modeling
(Anderson and Rosenfeld 1988; Hinton and Anderson 1981; McCelland
and Rumelhart 1986; Rumelhart and McClelland 1986). The connection

Learning and Sequential Decision Making 541

between the experimental and computationalliteratures due to the parallel
between the Rescorla-Wagner model and the LMSalgorithm has allowed
a fruitful exchange between researchers having widely differing ranges of
expertise. In this chapter we hope to expandthis basis for exchange by
extending the parallels pointed out in Sutton and Barto 1981. Within the
framework adopted here, the Rescorla-Wagner model—andhencealso the
LMSalgorithm—appearsas a specialization of the TD procedure.

Therelationship between the TD procedure and dynamic programming
outlined in this chapter also has the potential for fostering communication
between animal learning theorists and behavioral ecologists. Dynamic pro-
gramming has been used extensively in behavioral ecology for the analysis
of animal behavior (Krebs et al. 1978; Houston et al. 1988; Mangel and
Clark 1988). In these studies, dynamic programming is used to determine
decision strategies meeting certain definitions of optimality to which ani-
mal behavior is compared. Behavioral ecologists do not suggest that the
animals themselves perform dynamic programming—indeed, most of the
forms of behavior studied are regarded as innate, and dynamic program-
ming would appear to provide a poor modelof learning. In sense that will
be made clear below, dynamic programming methods work backward,

_ from the end of a decision task to its beginning, calculating information
_ pertinent to decision making at each stage on the basis of information

previously calculated from that stage to the task’s end. As a result of this
back-to-front processing, it is difficult to see how dynamic programming
can be related to learning processes that operate in real time as a system
interacts with its environment. However, we show howthe TD procedure
can accomplish much the sameresult as a dynamic programming method
by repeated forward passes through a decision task (that is, through re-
peated trials) instead of by explicit back-to-front computation. This re-
lationship of the TD procedure to dynamic programming suggests a range
of research questions involving links between animal behaviorin carefully
controlled learning experiments and the less restricted forms of behavior
studied by behavioral ecologists.

Sections 2 and 5 present the basic ideas of stochastic dynamic pro-
gramming. Section 2 describes, in both informal and mathematical terms, a
general class of tasks, known asstochastic sequential decision tasks, to which
the methodsof stochastic dynamic programmingapply; section 5 describes
some of these methods. This material is tutorial in nature and is based on
the formulation of Ross (1983). Section 6 is a tutorial on parameter estima-
tion based on the view taken in the field of adaptive control as described
by Goodwin and Sin (1984). Some of this material also appears in Barto (in

press). Section 7 shows how the TD procedure emerges as a synthesis of
the ideas from dynamic programming and parameter estimation coveredin
the aforementioned sections. Here we also show how the TD procedure

542 Barto etal.

can be used in conjunction with another procedure and applied to stochastic
sequential decision tasks to produce an analogue ofinstrumental learning.
The combination of these two procedures corresponds to the use of the
“adaptive critic element” and the “associative search element” in the pole
balancer of Barto et al. (1983). The framework of stochastic sequential-
decision theory helps explain the interaction of these two procedures and
suggests other learning methods for this and related tasks. We conclude
with a discussion of what the theoretical basis of the TD procedure sug-
gests about animal learning and of some directions that can be taken in
extending this approach.

2 Sequential Decision Tasks

Animals face manysituations in which they have to make sequences of
actions to bring about circumstances favorable for their survival. We are
interested in tasks in which the consequencesof an action can emergeat a
multitude of times after the action is taken, and we shall be concerned with
strategies for selecting actions on the basis of both their short-term and
their long-term consequences. Tasks of this kind can be formulated in terms
of a dynamical system whose behavior unfolds over time under theinflu-
ence of a decision maker’s actions.

Modeling the behavior of such a system is greatly simplified by the
conceptofstate. The state of a system at a particular time is a description
of the condition of the system at that time thatit is sufficient to determine
all aspects of the future behavior of the system when combined with
knowledgeof the system’s future input. Whatever happenedto the system
in the pastthatis relevantto its future behavior is summedupinits current
state—future behavior does not depend on how the system arrivedatits
current state, a property sometimes called “path independence” of the
system description. The conceptofstate is also useful in describing systems
which operate according to probabilistic rules. In this case, the system state
and future input determine the probabilities of all aspects of the future
behavior of the system independently of how the state was reached. This
is the Markov property of a stochastic dynamical system.

Consider a decision-making agent, which we simply call an agent, facing
the following task: The agentinteracts with a system in such a waythatat
the beginning of each of a series of discrete time periods it observes the
system andis able to determine the system state at that time. On the basis
of observedstate, the agent performs an action, thereby causing the system
to deliver to the agent a “payoff,” which we think of as a number whose
value dependson the system state, on the agent's action, and possibly on
random disturbances. The system then makes a transition to a new state
determined by its current state, by the agent’s action, and possibly by

Learning and Sequential Decision Making 543

random disturbances. Upon observing the newstate, the agent performs
another action and receives another payoff, and the system changesstate
again. This cycle of state observation, action, payoff, and state change
repeats for a sequence of time periods. The agent's task, described mathe-
matically in section 4, is to select the actions that maximize the total, or
cumulative, amount of payoff it receives over time. This is more difficult
than merely trying to maximize each individual payoff. Some actions may
be useful in producing a high immediate payoff, but these same actions
may cause the system to enter states from which later high payoffs are
unlikely or impossible. Hence, performing these actions would result in a
smaller total amount of payoff than might be possible otherwise. Con-
versely, some actions that may produce low payoff in the short term are
necessary to set the stage for greater payoff in the future. The agent's
decision-making method must somehow account for both the short-term
and the long-term consequencesof actions.

The total amount of payoff received by the agent over many time
periods depends on the numberof time periods over which this total is
determined, on the sequences ofactions and states that occur over these
time periods, and on the outcomes of whatever random factors influence
the payoffs and the state transitions. The number of time periods over
whichthe total amountof payoff is determined is called the horizon of the
decision task. If the horizonis finite, the total amount of payoff is simply
the sum of the individual payoffs received at each time period until the
task’s horizon is reached. If the horizon is infinite, however, this sum may
not be finite—adifficulty that is remedied by introducing a discount factor
that allows payoffs to be weighted according to when they occur. In this
case, what we mean bythe total amount ofpayoff overan infinite number
of time periods is a weighted sum of the infinite number ofindividual
payoffs received, where the weights decrease with increasing temporal
remoteness of the payoffs (we define this precisely in section 4). If the
discountfactor is chosen appropriately, then this weighted sum will always
have

a

finite value despite its dependence on an infinite number of payoffs.
In chapter 12, Sutton and Barto refer to this as imminence weighting. In this
chapter, werestrict our attention to infinite-horizon tasks where a discount
factor is used in determining the relevant measure of the total amount of
payoff.

Describing a decision task in termsof system states permits one to make
a relatively simple statement of how action andstate sequences determine
the total amountof payoff an agentreceives. Supposethe agentusesa rule
to select action depending on system state. This rule, called the agent's
decision policy, or simplyits policy, associates an action with each system
state. The agent's action upon observing a state is the action associated
with that state by the policy. If no random factors are involved in the task,

544 Barto etal.

then the sequences of actions and states depend only on the agent's policy
and on the system at the beginning of the task (i.e., the task’sinitial state).

Consequently, the total amount of payoff received until the task’s horizon
is reached (where the total amountis determined by discountingif the task
has an infinite horizon) also depends only on the agent's policy and on the
task’s initial state. By a policy’s return for a given system state we mean the
total amountof payoff the agentreceives until the task’s horizon is reached,
assuming that the task’s initial state is the given state and the agent uses
the given policy. For infinite-horizon tasks where a discountfactor is used,
a policy’s return for a state is the weighted sum (where the weights depend
on the discount factor) of the payoffs the agent would receive over an
infinite number of time periods for the giveninitial state if the agent were
to use the given policy to select an infinite sequence of actions.* Thus,
when no random factors are involved in a sequential decision task, the
payoff for a system state depends on a single action of the agent, but the
return for a state depends on the consequences of the agent’s decisions as
specified by its policy for the duration of the task.

Whena decision task involves random factors, a policy’s return for each
system state is a random variable. In this case, one can define the expected
return for each policy and system state. For the infinite-horizon case with
discounting, which is our concern here, the expected retum for a policy and
a system state is the mathematical expectation, or mean, of the random
variable giving the return for that policy and state. The expected return
depends onthedistribution functions of all the random factors influencing
the task and can be thought of as the average of an infinite number of
instances of the decision task, where the agent uses the same policy and the
system starts in the sameinitial state in each instance. As formulated here,
the objective of a sequential decision task is defined in terms of expected
return: The objective is to find a policy that maximizes the expected return
for all possible initial system states. Such a policy is called an optimalpolicy.

Although wediscuss tasks requiring maximizing expected return, this
class includes as special cases tasks in which the objective is to obtain any
payoff at all. For example, suppose that for all but one system state the
payoffs received by the agent are zero no matter what action the agent
selects. Also suppose that the task ends when a nonzero payoff is obtained.
Onecan think of the state from which nonzero payoff is available as the
goal state. In this case, a policy’s return for eachinitial state is zero unless
its use by the agent brings about the goal state. Hence, in this case,
selecting actions to maximize return is the same asselecting actions that
cause the system to enter the goalstate. If a discount factor-is used, it turns
out that the return is maximized by selecting actions that bring about the
goal state in the fewest time periods. Tasks such as this, in which the
objective is to reach a designated goal, are included in the theory we

Learning and Sequential Decision Making 545

describe, and the example used throughoutthis chapter is an instance of
this type oftask.

There are numerous examples of sequential decision tasks, many of
which havegreatpractical significance. The task of finding the least costly
route from one place to another is perhaps the most generic example.
Choicepoints along a route correspondto the states of the system, actions
determine whatplace is reached next, and the magnitude of the payoff
received in response to an actionis inversely related to the cost of the path
traveled (so that by maximizing the total amountof payoff, one minimizes
the total cost of the path). More complex tasks involving resource alloca-
tion, investment, gambling, and foraging for food are also examples of
sequential decision tasks. Most of the planning and problem-solving tasks
studied byartificial intelligence researchers are sequential decision tasks.
Other examples are studied by control engineers, such as the problem of
placing a spacecraft into a desired orbit using the least amountof fuel. In
some sequential decision tasks, the distinction between the agent and the
system underlying the decision task may notbe asclear-cut as our discus-
sion would lead one to believe. For example, in a foraging model in
behavioral ecology, the state of the system may be the forager’s energy
reserves (Mangel and Clark 1988), a quantity apparently describing an
aspect of the agent itself instead an external system.It can be misleading
to identify an agent with an entire organism.

Weuse a simple route-finding tasktoillustrate the concepts and methods
described in this chapter. This is merely an example; these concepts and
methodsare applicable to tasks that are much more complex.

Example
Figure 1 showsa grid representing a region of space. Each intersection of
the grid lines is a “location,” and the region contains a C-shapedbarrier and
a goallocation. For the 8-by-12 grid shown, there are 96 locations. Two
locations are adjacentif they are connected by

a

grid line that does not pass
throughany otherlocations. A pathis a set of line segments tracing a route
through the region, where each segment connects two adjacent locations
in the region. The length of a path is the numberof distinct line segments
it contains. The task weconsideris to find, for each location, a path to the
goal that begins at the given location, does not cross the barrier, and has
the smallest possible length. Each such shortest path is an optimalpath.

Wecan formulate this task as a sequential decision task by considering
an agent that can movefromits current location to an adjacentlocationin
each time period. The spatial environment defines the system underlying
the decision task. For each time period, the state of the system is the current
location of the agent, and the state at the next time period—the new
location of the agent—is determined by the the current location of the

546 Barto etal.

Goal Barrier

Figure I
Plan view ofa spatial environment for the route-finding example. Theintersections of the
lines are possible locations for the agent.

agent and by the action chosen: Welet the agent choose any one of the
four actions North (N), South (S), East (E), and West (W) at each time
period. Theeffect of an action depends on the current system state, i.e., the
current location of the agent. For most locations, the action causes the
agent to move to the location adjacent to its current location in the
direction indicated by the action. However, for locations from which a
moveis blocked by a barrier or would take the agent out of bounds, the
effect of any “disallowed”actionis to leave the agent's location unchanged.
If the agent is located at the goal, it stays there no matter whatactionit
performs. Thus, the set of actions available to the agent is always the same,
but actions can have differing consequences depending on the agent’s
locations.$,
A policy, in this example, is a rule that assigns an action to eachlocation.

Onecould think of a policy as one of the manypossible patterns of placing
at each location a signpost (indicating N, S, E, or W) which the agentis
compelled to follow. The objective of the task is to form a policy (i.e., to
place a pattern of 96 signposts) that directs the agent from each location to
the goalin the fewest possible time periods—thatis, that directs the agent
along an optimal path. To formulate this as the problem offinding a policy
that maximizes expected return, we effectively punish the agent every time
period in whichit is not at the goal. The agentalwaysreceives a payoff of
—1 unless the agent is located at the goal, in which case it receives a
payoff of 0 for any action. Therefore, the sum of payoffs over a path from
a starting location to the goal,i.e, the return produced over the path,is the
negative of the numberof time periods taken to reach the goal (assuming
no discounting). Selecting actions to maximize return therefore minimizes
the number of time periods taken to reach the goal. An optimal policy
directs the agent along an optimal path from eachlocation.

Learning and Sequential Decision Making 547

In whatfollows, we discuss several versions of this task that differ in
terms of the amount of knowledge we assume forthe agent. Althoughall
these tasks are relatively easy instances of the tasks encompassed by the
theory, some of the sources of additional complexity can be appreciated
clearly by means of the route-finding example. For example, the payoff
received for a move need not always be —1 butcan instead reflect the
distance of a path, or the degree of difficulty encountered in traversing
it. Additionally, the payoffs and the state transitions need not be deter.
ministic. Actions may only influence the probabilities that specific places
are reached.Finally, additional complexity, which we do not addressatall
in what follows, occursif the agent does not have access to complete state
information—asituation that would appear in the route-finding example
whenthe agentis unable to distinguish all possible locations.

Before discussing solution methods for sequential decision tasks, we make
several observations about the theoretical framework implied by this class
of tasks. All these observations are reminders that it can be misleading to
take the abstractions involvedin this framework too literally.

¢ Discrete time. What do the discrete time periods of a decision task
mean in termsof real time? In the kinds of discrete-time models to which we
restrict our attention, these time periodsare called time steps and are merely
computationalinstants that may correspondtoinstantsofreal time separated
by some interval, or to separate collections of events (such astrials). In
modeling conditioning behavior, for example, a time step may represent
some small interval of real time, as in the TD model presented by Sutton
and Barto in this volume. Alternatively, each time step might be an entire
conditioningtrial, as in a trial-level model such as that of Rescorla and
Wagner (1972). In the discussion to follow, a time step merely refers to a
time period of an abstract sequential decision task.

¢ Receiving payoff. The framework described above is sometimesinter-
preted to mean that payoffs are delivered to the agentas if there were
a single sensory pathway dedicated to this function. If one identifies the
agent with an entire animal (which can be misleading, as we emphasized
above), this view suggests that an animal has a single sensory input
dedicated to the function of receiving all primary reinforcement, which is
obviously notthecase.It is better to think of the payoff at each time period
as a concise way of summarizingthe affective significance of the immediate
consequencesof performing an action. Because the immediate payoff and
the system’s next state are both functions of the current action and the
system’s currentstate,it is a special case to regard each payoff simply as a
function of the system's current state. One can think of this function as
being computed by the agentitself and not by the system underlying the
decision task.

548 Barto etal.

¢ Complete state information. The assumption is made that at each time
step a complete description of the state of the system underlying the task
is available to the agent. Clearly, this is a strong assumption. Although the
consequences of weakening this assumption are theoretically significant
and relevant to the study of natural learning, they are complex and beyond
the scope of the present chapter. However, it is important to keep in mind
the following two observations. First, one need not think of the current
system state as something that must be read directly from the agent's sense
organs. More generally, the state of the system can be provided through
the aid of complex world models and memories of past sensations and
behavior. The theory requires the availability of state information, butit is
not sensitive to how this information is obtained. Second, knowing the
current state of the system underlying a decision task is not the same
as knowing beforehand how the system will behavein responseto actions;
that is, it is not the same as having an accurate modelof the decision task.

¢ Optimality. The objective of a decision task considered hereis to find
an optimal decision policy—a policy that maximizes the expectation of
the discounted sum of future payoffs. Some theories of animal behavior
invoking optimality principles are “molar” optimality theories which pro-
pose that behavior can be understood in terms of optimization, but they do
not specify mechanistic computational procedures by which the conditions
of optimality can be achieved. “Molecular” optimization theories, on the
other hand, specify procedures that operate from moment to moment but
which only approximate optimal solutions in mosttasks (see, for example,
Rachlin et al. 1981 and Staddon 1980). Although here it is not our
goal to provide a theory of animal behavior, we can describe the kind
of theory with which the perspective taken in this chapter is consistent.
The framework of sequential decision theory adopted here provides a
molar view of behavior involving a specific optimality criterion, and the
temporal-difference and policy-adjustment procedures we describe provide
molecular accounts of how optimal behavior might be approximated.
Because these procedures usually only approximate optimal policies, they
do not imply that optimal behavior will be achieved. The performance of
these procedures in specific decision tasks depends on the specification of
many details, such as the manner of representing system states. Choices
madein specifying these details strongly influence the degree of optimality
achievable.

3 Solving Sequential Decision Tasks

Because so many problemsofpractical interest can be formulated as se-
quential decision tasks, there is an extensive literature devoted to the study
of solution methods for this type of task, the large majority of which

Learning and Sequential Decision Making 549

require the agent to have a complete modelofthe decision task. Evenif one
has a complete model of the decision task, which means knowingall the
state-transition and payoff probabilities of the system underlying the task,
determining the best policy can require can extremely large amount of
computation becauseit effectively requires a search through theset ofall
possible state sequences generated by all possible sequences of actions,
Except for very specialized tasks in which analytical methods can be used
instead ofsearch, the required amountof computation increases so rapidly
with increases in a task’s size (as determined by its horizon, its number of
states, and its number of actions) that it is not feasible to perform this
search for large tasks. Dynamic programming, a term introduced by R. E.
Bellman (1957), consists of particular methods for organizing the search
under the assumption that a complete model of the decision task is avail-
able. Although these methods are much moreefficient than explicit exhaus-
tive search ofall possible state sequences, the amount of computationstill
growsso rapidly with the size of the task that large tasks remain intract-
able. Search methods specialized to take advantage of specific kinds of
“heuristic” knowledge can be applied to some types of larger tasks, but
these methods also require a complete modelof the decision tasks and can
still require prohibitive amounts of computation.4

Methodsfor estimating optimal policies in the absence of a complete
model of the decisicn task are known as adaptive or learning methods.
Because the most difficult aspect of applying dynamic programming is
often the accurate modeling of the decision task, adaptive methods have
great practical importance.In addition,if an adaptive method can improve
a decision policy sufficiently rapidly, the amount of computation required
may be less than would be required by an explicit solution via dynamic
programming. Howcan an optimal policy be constructed when a complete
modelof the decision task is not available? Instead of being able to gen-
erate a solution by manipulating a task model,it is necessary to learn about
the system underlying the task while interacting with it. Two general
approachesare possible. The one that has been much more widely studied
is the model-based approach, which requires constructing a model of the
decision task in the form of estimates of state-transition and payoff proba-
bilities. These probabilities can be estimated by keeping track of the fre-
quencies with which the various state transitions and payoffs occur while
interacting with the system underlying the decision task. Assuming that
these estimates constitute an accurate model of the decision task, one can
then apply a computational technique for finding an optimal policy, such as
a dynamic programming technique, which requires an accurate model of
the decision task.°

In this chapter our concern is with other approachesto learning how to
solve sequential decision tasks, which wecall direct approaches. Instead of

550 Barto etal.

learning a model of the decision task (that is, instead of estimating state-
transition and payoff probabilities), a direct method adjusts the policy as a
result of its observed consequences. Actions cannot be evaluated unless
they are actually performed. The agenthasto try out a variety of decisions,
observe their consequences, and adjust its policy in order to improve
performance. Wecall this process reinforcement learning after Mendel and
McLaren (1970), who describe its relevance to adaptive control.® Tofacili-

tate the direct learning of a policy,it is possible to adaptively improve the
criteria for evaluating actions so that the long-term consequencesofactions
becomereflected in evaluations that are available immediately after an
action is performed. The TD procedureis a method for accomplishingthis.

In terms of theories of animal learning, a policy is a stimulus-response
(S-R) rule, and the payoffs delivered to the agent at each stage of the
decision task correspond to primary reinforcement. The TD procedure
provides a gradient of secondary reinforcement by anticipating events that
provide primary reinforcement. According to this view, secondary re-
inforcement is defined in terms of estimates of the expected sum of future
primary reinforcement (possibly discounted). In subsection 7.2 we describe a
direct method for adjusting policies on the basis of primary and secondary
reinforcement, but it is not our aim to propose this method as a model of
animal learning in instrumental tasks. Such learning probably involves
more than can be accountedfor by this kind of S-R model(see, for example,
Dickinson 1980 and Rescorla 1987). Combining the TD procedure with
model-based methods may provide a moresatisfactory account of animal
behaviorin instrumental conditioning tasks. Watkins (1989) discusses some

of the issues that arise in combining direct and model-based learning
methods.

4 Mathematical Framework

4.1 Systems and Policies
Weassumethat the system underlying the decision task is a discrete-time
dynamical system with a finite set of states, X. At any time step f = 0, I,
2,..., the system can be in a state x € X. After observing the system state
at time step f, the agent selects (and performs) an action from finite set,
A, of possible actions. Supposethat at time step f, the agent observesstate
x and selects action a. Then, independentofits history, the system makes
a transition from state x to state y with a probability that depends on the
action a. We denote this probability P,,(a). When this state transition
occurs, the agent receives a payoff, denoted r, which is determined ran-
domly in a manner depending on x and a. This sequence of events repeats
for an indefinite numberof time steps. Because weshall be concerned only

Learning and Sequential Decision Making 551

with the expectation of the total amount of payoff accumulated over time,it
is not necessary to specify the details of the probabilistic process by which
a payoff depends onstates andactions.It suffices to specify only how the
expected value of a payoff depends on actions and states. We let R(x, a)
denote the expected value of a payoff received as a consequence of per-
formingaction a when observingstate x. We assume that the payoff whose
expected value depends on the system’s state and on the agent's action at
time step f is received by the agentat the next time step: + 1. Although
this formalism can be modified to let the set of actions available to the
agent dependonthe system’sstate, for simplicity we have chosentolet the
set of actions, A, be the samefor eachstate.

The objective of the decision taskis to find a policy for selecting actions
that is optimal in some well-defined sense. In general, the action specified
by the agent’s policy at a time step can depend ontheentire history of the
system. Here werestrict attention to stationary policies, which specify
actions entirely on the basis of the current state of the system. A stationary
policy can be represented by a mapping,denoted z, that assigns an action
to each state. The action specified by policy x when the system is in state
x is denoted x(x). For the route-finding example, a policy specifies what
direction to move from anylocation.In subsection 7.2, we consider policies
that specify actions probabilistically based on the current state of the
system. |

Letting x, denote the system state at timestep f, if the agent is using
policy then the action it takes at step f is a, = n(x,). The system state
changes according to

Prob {2,41 = Y|%0-40/%X4,4,-..,%, = 2a, = a}

= Prob{z,,, =y|z,=2,4, = a\ = P.,(a).

Letting r,,, denote the payoff received by the agent at time step f + 1, we
have

Elri+1 | xp, a,| = R(x, Ar), (1)

whereE indicates expected value. Figure 2 illustrates this formulation by
showing whenthe relevant quantities are available to the agent, how they
change over time, and on what information they depend. Because we
assumethe policy 7 is stationary, the sequence of states forms a Markov
chain with transition probabilities Py = P,,(m(x)). For this reason, decision
tasks of this kind are called Markovdecision tasks.

For the route-finding example, the state set, X, consists of the 96 differ-
ent locations, one of which is the goal; the action set, A, is {N, S, E, W};
R(x,a) = —1 forall states x and actions a, except for the goalstate, g, for
which R(g,a) = 0 for all actions a. Because the system in this example is

552 Barto etal.

disturbance disturbance disturbance

state action P state
x a x
iat pe t

I R i

Poiy disturbance] disturbance] /, 1 disturbance

payoff payoff payoff

t—1 t | t+1

Figure 2
Howthestate, the action, and the payoffs change over time in a sequential decision task.
The computation of the action, the state, and the payoff are shown for three successive time
steps. The squares labeled x, P, and R respectively represent the decision policy, the
state-transition computation, and the payoff computation. The stochastic aspects of the
system areillustrated as disturbances influencing the latter two computations. In “space-
time” diagramsofthis type, several of which appear below, the quantities between two bold
vertical lines are labeled with the same time subscript (exceptions to this which occur below
are explainedin the text). The repetition of a rectangle representing a system component
indicates the same component viewedat different times.

deterministic, R(x, a) is the actual payoff received by the agent for perform-
ing action a in location x, and the transition probabilities equal either 1 or
0: P,,(a) = 1 if action a moves the agent from location x to location y, and
is zero otherwise.

4.2 Return and Evaluation Function
It is now possible to define a policy's return, which for our purposeswill be
the infinite-horizon discounted return. Suppose an agentbeginsinteracting
with a system at time step f = 0 andis able to continue for an infinite
number of time steps. Using discount factor y, the measure of the total
amountof payoff that the agent will receive overthis infinite time period is

rye biyta beyers to tyta Bo (2)

When 0 < y < 1, the powers of » weighting the payoffs form a decreasing
sequence so that later payoffs are weighted less than earlier ones, with
payoffs in the far distant future contributing negligibly to the return. If
y = 0, the sum in expression 2 is simply the immediate payoff, r,, due to
the first action, ag; if y = 1, it is the sum ofall the payoffs received and it —
generally is notfinite.’ The discount factor adjusts the degree to which the
long-term consequencesof actions must be accounted for in a decision task
and influences the rate at which learning occurs. Although we do not

Learning and Sequential Decision Making 553

discuss the problem of determining what discount factor is appropriate for
a particular application, it is clear that a value close to 1 is appropriate
whenthereis a high degree of certainty about how the system will evolve
over time. One would wantto sacrifice short-term return only for long-
term return that is highly certain. We also do not discuss procedures for
dynamically adjusting y with experience, even though this would be useful
in manyapplications.

In addition to depending on the system underlying the decision task, the
initial system state, and the decision policy used by the agent, the sum
given by expression 2 depends on unknown or random factors influencing
the state transitions and the payoffs. The expected value of this sum over
all possible decision tasks starting with initial state x when the agent uses
policy z is

E,|5 Ytr41 [Xo = | (3)
t=

where E, indicates that the expected value is taken under the assumption
that policy x is used to select actions. We can think of this quantity as the
value of a function, denoted V™%, assigning an expected return to each
system state x:

V(x) = E|y v'ta1 [Xo = |. (4)

This function is the evaluation function for policy n. For each state x, V*(x)
is the expected return overthe infinite numberof time steps beginning at
f = O underthe conditions that the system begins in state x and the agent
uses policy 2, where it is understood that the discount factor, y, has some
specified value. Wecall V*(x) the evaluation ofstate x.

Because a system state has the property that the future behavior of the
system does not depend on how or whenthe system arrivesat a state, the
evaluation ofa state is in fact the expected return overan infinite number
of time steps beginning whenever the system enters that state under the
condition that the agent continues to use policy x thereafter. The evalua-
tion of a state is a prediction of the return that will accrue throughout the
future wheneverthis state is encountered. If one can determine the evalua-
tion of a state merely from observing the system whenit is in that state,
then this prediction is effectively available immediately when the system
enters that state, even though the prediction contains information about
the entire future.

For the route-finding example, the evaluation of location x for policy z
depends on the expected numberoftime steps the agent takes to reach the
goal from location x using policy x. If x always brings the agentto the goal

554 Barto etal.

in, say, n time steps from a location x, then

V"(x) — —J[— y— y? eee yrt,

The series has n terms because the payoff is O for all time steps after the
goal is reached. When y = 1, this series sums to —n, and as y decreases,
the sum becomesless negative, approaching —1 as y approaches 0. The
evaluation of the goal, V*(g), is O for any policy. In this task, because a
location’s evaluation is directly related (depending on y) to the negative of
the numberof time steps to the goal, the larger a location’s evaluation for
policy x, the fewer time steps are required to movefrom it to the goal
using 2. If x does not generate a path from x to the goal in anyfinite
numberof steps, which can happenif x produces a looped path, then

@

VVa@=— > ¥
t=0

which converges to

—Ii/I—y)s -1

ifO<y<1.

4.3 Optimality
Let x and x’ be any twopolicies. Policy x’ is an improvementover policy
nm if the expected return for x’ is no smaller than that for x for anystate,
and is larger for at least one state. More precisely, x’ is an improvement

over 7 if V™(x) > V*(x) forall states x, with strict inequality holding forat

least one state. A policy is an optimal policy, which we denote n*, if no
policy is an improvement over it. Because the optimality of policies de-
pends on the discount factor, technically we should refer to y-optimal
policies. As y changes, different policies become optimal because a policy
best for short-term versions of a task will generally not be best for long-
term versions. However, for simplicity, we omit reference to y if no confu-
sion is likely to result, and we assume that wheneverpolicies are compared
they are compared according to expected returns defined for the samey.In
the route-finding example, recalling that a location's evaluation is directly
related to the negative of the numberoftime steps to the goal, an optimal
policy takes the agent from any location to the goal in the fewest possible
time steps.

There can be many optimal policies for a given decision task. For
example,in the route-findingillustration, there are several different ways to
move from most locations to the goal in the minimum numberof time
steps. However, the evaluation functions for any two optimalpolicies must
be identical. In the route-finding example, this corresponds to the simple
observation that all the minimum-time paths from any location to the goal

Learning and Sequential Decision Making 555

must be traversable in the same number of time steps. We can therefore

define the unique optimal evaluation function (which we denote V*) for a

given decision task as the evaluation function for any optimal policy. For

any optimal policy x",

V™(x) = V*(x)

for all states x. An agent using an optimal policy will maximize the ex-

pected return from any system state. The object of a sequential decision

task is to find one of the optimal policies.

5 Stochastic Dynamic Programming

The definition of the evaluation function for a given policy given by

equation 4 does not immediately suggest how the values of this function

can be computed. For policy 2, the evaluation of a state depends onall

possible state sequences that can occur when policy x is used, and on the

probabilities that these sequences occur. Even if one knowsall the transi-

tion probabilities and the expected valuesof all payoffs, it is not immedi-

ately obvious how one can compute the evaluationsof states. Similarly, it

is not obvious how to determine the optimal evaluation function or an

optimal policy. Stochastic dynamic programming provides methods for

computing the evaluations of states, or for approximating their evaluations

as closely as desired, as well as for approximating the optimal evaluation

function and an optimal policy, under the assumption that one has an

accurate model of the decision task. Having an accurate model of the

decision task means knowing the payoff expectations, R(x, a), and state-

transition probabilities, P,,(a), for all states x and y andall actions a.

Wefirst describe a dynamic programming methodforfinding the eval-

uations of states for a given policy, , under the assumption that we have

an accurate model of the decision task. Then we describe dynamic pro-

gramming methods for finding the optimal evaluation function and an

optimal policy, again assuming an accurate model of the decision task.

Consequently, in this section we discuss the computation of these various

functions given that wehaveall the relevant knowledge about the decision

task. These computational methods provide the background for under-

standing how these various functions can be learned without assumingthis

kind of knowledge using the methods presented in subsections 7.1 and 7.2.

5.1 Computing State Evaluations for a Given Policy

The evaluation of state x for policy x, V"(x), gives the expected return if

policy z is used throughout an infinite-horizon decision task beginning in

state x. One method for determining a state’s evaluation is to approximate

it as the evaluation for a finite-horizon version of the task with a horizon

556 Barto etal.

chosen large enough to produce an approximation of sufficient accuracy.
As the horizon of this finite-horizon task increases, the approximation
approachesthe state’s true evaluation. This is a simple method of succes-
sive approximations, although it can be computationally costly if there is a
large numberofstates. |

If the agent interacts with the system by using policy x for some finite
numberof time steps, n, then we can consider the expected return for this
finite-horizon task. This n-step expected return for state x, denoted V,"(x),
is the expected value of the sum ofthe first n terms of expression 2. We
call this the n-step evaluation of state x. The successive approximations
method begins with n = 1. It is easy to find the one-step evaluation of
state x, V,"(x). This is the expected value of the payoff the agentwill receive
by using policy 1 for one step starting in state x. According to the
framework described in section 4, we know that the action the agent will
make is determined by applying policy x to the state x. This actionis

1 = 7(x). We also know from equation 1 that the expected value of the
_payoff as a result of performing action a from state x is R(x,a). Then we
have

Vit(x) = R(x, a) = R(x, 2(x)).

Applying this equation to all system states completely determines the
one-step evaluation function, V,*, for policy z.

Suppose this has been accomplished so that V," is known, and now
suppose that the agent faces the two-step task starting in state x. After the
agent performs action a = n(x), it receives payoff with expected value
R(x, a), and the next system state is y with probability P,,(a). If we call the

actual next state y, then the agent faces the one-step task from state y, and
it already knowsthat the expected return for using policy x for one step
beginningin state y is the one-step evaluation of y, V,"(y). Thus,if the next
system state is y, the two-step evaluation of x (i.e., the two-step expected
return for state x) will be the expected value of the immediate payoff,
R(x, a), plus the one-step evaluation, discounted by », of y, which is yV,"(y).
However, in general, the transition to a next state, y, occurs with prob-
ability P,,(a). Thus, instead of using the one-step evaluation of the actual

next state, one must use the expectation overall possible next states of the
one-step evaluations of these states, which is

Y. P,, (a) V"(y).

Wetherefore have

Vo (x) = R(z,a) + y d. P.(a) Vi"(y) (5)

Learning and Sequential Decision Making 557

for all states x, where a = x(x). In a similar manner we can determine V+

from V7, V{ from V3, and so on. The general rule for determining V," in
terms of V,"_, is a basic equation of stochastic dynamic programming:

Vit(x) = Ra, n(x)) + y d, P,., (a(x)V1 (y) (6)

for all system statesx.
This iterative process for computing the evaluations of system states

makes it clear why dynamic programming methodsare said to proceed
from a tasks’s end to its beginning. Computing V,* can be viewed as
considering the decision task when one step remains before the horizonis
reached; computing V3 can be viewed as considering the decision task
when two steps remain before the horizon is reached; and so on. For an
infinite-horizon task, which is our major concern here, it turns out that
the desired evaluation function is the unique limiting function generated
by continued successive application of equation 6 (provided y < 1) and,
further, this evaluation function is the unique function, V%, satisfying the
following equation for each state x:

V"(x) = R(x, n(x) + dX P,y(1(x)) V*(y). (7)

In fact, the function V™® satisfying this equation is the unique limiting
function generated by successive application of equation 6 beginning with
an arbitrary real-valued function of system states, and not just with V,*.
Because of the discount factor, the influence of the initial function on V,"
decreases with repeated applications of equation 6. However, choosing the
initial function to be a good approximation of the desired evaluation
function can considerably reduce the numberof iterations required to
achieve a given degree of accuracy, as can reducingy.?

The successive application of equation 6 can be illustrated with the
route-finding example. First, we know from the description of the task in
section 2 that V;*(x) = —1 forall locations x except the goal, whereit is 0.
Now apply equation 6 with n = 2 to determine V(x) for each location x.
To do this , note that, because the task is deterministic, for any location x,
P,,(1(x)) = 1 only for the onelocation y (say y = x’) that is always reached

from x by performing action x(x). Therefore,

y Pey(ea) Vir(y) = Viz’).

So we need only consider in turn each location, x, and its immediate sequel,
x’, determined by the action x(x). Applying equation 6 with n = 2, if
neither x nor x’ is the goal, g, we have

Vi(x) = —1+yx(—-I)= —-1-y7;

558 Barto etal.

if x # g but x’ = g, then

Vr(q) = -—I1+yxO= ~-1;

and if x = g then it must be that x’ = g and

Vi(~)=O0+yxO0=0.

We can now apply equation 6 with n = 3 to each location to determine
V3. Again consider in turn each location, x, and its immediate sequel, x’,
determined by theaction x(x). Applying equation 6 with n = 3,if neither
x nor x’ is the goal, we have

V(x) = —1+y x (-1-y7)= —-1-—y—
if x # g but x’ = g, then

V3(z7)= -1l+yxO=-tL

and if x = g then it must be that x’ = g and

V3(x1) =O+yxO=0.

Continuing the application of equation 6 eventually produces the location
(or state) evaluations given in subsection 4.2.

5.2 Computing an Optimal Policy
Wenow discuss two methodsforfinding a policy that maximizes expected
return under the assumption that a complete and accurate model of the
decision task is available. Consequently, we assume that R(x, a) and P.,(a)
are knownforall actions a andforall states x and y. Recall that an optimal
policy is a policy that cannot be improved upon in terms of expected
return—thatis, in terms of the expected total amount of payoff (suitably
discounted and summed) it produces over the course of the decision task.
The optimal evaluation function is the evaluation function corresponding
to an optimal policy. Although there can be many optimal policies, there is
only one optimal evaluation function.

If we know the optimalevaluation function, V*, it is relatively easy to
form an optimalpolicy. The optimal action when the system is in state x is
the action, a, that maximizes

R(x,a) + y d, P,,(a)V*(y). (8)

This is the sum of the expected value of the immediate payoff, R(x, a), and
the expected value, taken overthe states that can be reachedin one step, —
of the infinite-horizon evaluations of possible next states, discounted by y,
under the assumption that an optimal policy is used throughoutthe future.
Selecting an action that maximizes expression 8 effectively answers the

Learning and Sequential Decision Making 559

question “Whataction is best to perform now, on the assumption that an
optimal policy will be followedin selecting all the future actions?” If we
know V*, it is relatively easy to select an action that maximizes the
quantity given by expression 8. We need only examine the consequences
of applying action sequencesof length 1, because the consequencesofall
the longer action sequences are summarized in the known optimal evalua-
tion function, V*. Because we are assuming a complete model of the
decision task and knowledge of V*, all the quantities involved in expression
8 are known. Hence, wecan find an optimalaction for state x by calculating
expression 8 for x and eachaction,a, and selecting the action that produces
the largest result. Doing this for all system states x produces an optimal
policy. For a discountfactor close to 0, the optimal action for eachstate is
most strongly influenced by the expected value of the immediate payoff,
R(x, a); for a discount factor equal to 1, on the other hand, the estimated
total amount of payoff that will be accumulated throughout the future,
given by

> Pry(a)V*(y),
yex

is given a weight nearly equal to that of immediate payoff. Therefore
the discount factor can be regarded as determining how the agent trades
off an estimate of future return with an estimate—whichis usually more
accurate—of immediate payoff.

According to the aboveanalysis, for an infinite-horizon task, finding an
optimal policy can be reducedto thetask of finding the optimal evaluation
function. The optimal evaluation function can be approximated by a
method of successive approximations similar to the one described above
for approximating the evaluation function for a given policy (equation 6).
Here, however,it is necessary to determine the maximum expected return
at each step. Let Vy’ denote the optimal evaluation functionfor the first n
steps of the infinite-horizon decision task; that is, V*(x) is the maximum
expected return if the decision task is terminated n steps after starting in
state x. For n = 1, the maximum expected return is just the maximum of
the expected values for the immediate payoff.

Vi (x) = max R(z, a). (9)
acA

Suppose, then, that we know V/, and the agent now faces the two-step
task starting in state x. If the agent performs an action a (whateverit may
be), it will receive a payoff with expected value R(x, a), and the nextstate
of the system will be y with probability P,,(a). If we call the actual next
state y, then the agent faces the one-step task from state y, and wealready
know that the maximum expected return for this one-step task is V;*(y).
Thus, if the next system state is y, the maximum expected return for

560 Bartoetal.

two steps starting in state x is obtained by performing the action that
maximizes the sum of the expected value of the immediate payoff, R(x,a),

and the one-step optimal evaluation, discounted by the factor y, of y, which
is yVi(y). However, because the transition to the next state, y, occurs with
probability P,,,(a), instead of using the one-step optimal evaluation of the
actual next state, one must use the expectation overall possible next states
of the one-step optimal evaluations of these states, which is

 P,,(a) Vz(y).
y

Wetherefore have

Vz(@) = maxRe a)t+y)) Pyyla)V;| (10)
ae yex

for all states x. In a similar manner we can determine V3 from V2, Vz from
V3, and so on. Therule for determining a V; in terms of V*_, is

V*(x) = max Rex a)+y > P,,(a) V4 (| (11)
acA yex

for all states x (cf. equation 6).
The limiting values obtained by the repeated application of equation 11

are the values of the desired optimal evaluation function, V*. Moreover,
this function is the unique function that satisfies the following equation,
which is another basic equation of stochastic dynamic programming(cf.
equation 7):

V*(x) = max Re a)+y \ P.,(a) V*(»| (12)
acA yex

for all states x. The repeated application of equation 11 is a methodof
successive approximations,called value iteration, for computing the optimal
evaluation function. Here too,it is not necessary to begin the process with
Vi; one can begin with an arbitrary real-valued function of the system
state.'° Choosing this function to be a good approximation of the optimal
evaluation function can reduce the numberof iterations required to achieve
a given degree of accuracy.

In order to find an optimal policy, then, one first approximates the
optimal evaluation function, V*, by value iteration (repeated applications of
equation 11) and then determines an optimalpolicy, x*, by defining it to
select an action that maximizes expression 8 for eachstate x. If more than
one action maximizes equation 8, it does not matter which oneis selected.
If V* is computed with sufficient accuracy, this process producesa policy
(there may be others) that maximizes the expected return given by equa-
tion 4.

Learning and Sequential Decision Making 561

To make value iteration more concrete, consider how it applies to the
route-finding task. Assuming that we have nobetter approximation for the
optimal evaluation function, we begin by determining the one-step optimal
evaluation function using equation 9. For the one-step task, no matter what
action is chosen from any non-goallocation, the one-step return is — 1.
Hence, V;‘(x) = —1 for all locations x # g, and clearly V;*(g) = 0. Apply-
ing equation 11 with n = 2 to find the optimal two-step evaluation func-
tion can be visualized as follows. For each location x, determine the result
of applying each of the four actions in terms of the sum of the immediate
payoff and the discounted evaluation, yV;*, of the location that results
from the action. The maximum of these four sums is V(x). In this case,
V3(x) = —1-— y forall locations x except the goal, g, and those locations
immediately adjacent to g: g retains an evaluation of 0, and locations
adjacent to g retain the evaluation — 1. Ina similar manner, one can see that
V3(x) is O for x = g; it is —1 for locations immediately adjacentto g,it is
—1— forlocations two steps away from g, and it is —1 — y — y? forall
other locations. As this computation is repeated, the evaluations of loca-
tions stabilize from the goal outward until the evaluations of all locations
are determined. In the route-finding task this happensin a finite numberof
applications of equation 11, becauseall optimal paths must reach the goal,
after which payoff no longer accumulates. An optimal policy always moves
the agent to the adjacent location that hasthe largest evaluation according
to the optimal evaluation function. If two or more adjacent locations have
this maximum evaluation, it does not matter which oneis chosen.

Wenow describe a different method of successive approximations for
constructing an optimalpolicy that is more closely related to the learning
method wedescribe in section 7 than is value iteration. This method is
called the policy-improvement method,orpolicy iteration (Howard 1960; Ross
1983), because it generates a sequence of policies, each of which is an
improvement overits predecessor.

Although one needs to know the optimal evaluation function in orderto
define an optimal policy, the policy-improvement method is based on the
observation that all one need knowin order to improve a givenpolicyis the
evaluation function for that given policy. Suppose that the current policy
is m and that we have constructed the evaluation function, V*, for this
policy. Further, suppose that 1’ is some proposed policy, and that we wish
to see if x’ is an improvement over 7. Recall that a policy x’ is an
improvement over x if V*(x) > V(x) forall system states x, with strict
inequality holding for at least one state, where V*and V” are the evalua-
tion functions, respectively, for policies x’ and x. Thus, one way to de-
termineif x’ is an improvement over x would be to compute V*(x) and to
compareit with V“(z) for every state x. However, there is a much simpler
way to do this that does not require constructing V*. Consider the ex-

562 Barto etal.

pected return, starting in state x, that would result from using policy x’ for
one step and then using policy x thereafter. The expected return for this
composite policy is

R(x, m'(x)) + y 2, Psy(n (x)) V*(y). (13)
ye

If this quantity is greater than or equal to V*(x) for all states x, and strictly
greater for at least one state, then it can be shown that x’ is an improve-
ment over7.

Instead of using expression 13 just to check if a proposed policy is an
improvementoverthe current policy, one can useit to define a new policy
that improves over the current one. Define a new policy to be the onethat
for each state, x, specifies the action, x’(x), that maximizes expression 13.

Thus, the new policy is an optimal policy with respect to the evaluation
function of the current policy, V™. It can be shown that either this new
policy is an improvement overthe current policy or else both the current
policy and the newpolicy are optimal (Ross 1983). Because we are assum-
ing that we know the evaluation function for the current policy, determin-
ing the new policy by maximizing expression 13 requires looking only one
step ahead from every state.

The policy-improvement method is based on the foregoing ideas and
works as follows. First select an arbitrary initial policy; call it 2). Then
compute the evaluation function, V*°, for m9 by solving the system of
equations defined by equation 7 by the repeated application of equation 6
or some other means. Given V*°, determinea policy which is optimal with
respect to it by defining that policy to select for each state, x, an action,a,
that maximizes

R(x,a) + y d, P.,(a) V™(y).

Call the resulting policy z,. Either x, is an improvement over 7, orelse
they are both optimal. If they are not optimal, the next step is to compute
the evaluation function, V*!, for policy 2,, and then define a policy thatis
optimal with respect to it. Call this policy 2,. It will be an improvement
over 7, or else both 2, and z, are optimal. The method continuesin this
way; policies are formed, evaluation functions corresponding to them are
computed, and then new, improvedpolicies are formed. If the state set, X,
of the system underlying the decision task is finite, this method will
produce an optimalpolicy after somefinite numberofiterations.

This completes our exposition of the basic concepts and computational
methods of stochastic dynamic programming,all of which are well known
to control and decision theorists. In addition to requiring a complete
and accurate model of the decision task in the form of knowledge ofall
the state-transition and payoff probabilities, the procedures described

Learning and Sequential Decision Making 563

above for approximating the evaluation function for a given policy, the
optimal evaluation function, and an optimal policy can require considerable
amounts of computation. The concepts and methods of stochastic dynamic
programming permit clear statements of some of the most important things

we would like an agent to learn from its experiences interacting with a
dynamical system, but they do not provide more than hints about how to
devise learning methods that can operate in real time and that do not
require a complete model of the decision task. For this we have to turn to
another bodyof theory, also well known within mathematical and engi-
neering disciplines, that concerns techniques for estimating parameter
values. Weshallsee in section 7 that the temporal-difference procedureis a
method for estimating the parameters specifying the evaluation function
for a given policy in the absence of a model of the decision task. Weshall
also describe how the TD procedure can be incorporated into real-time
procedures for improving decision policies.

6 Parameter Estimation

The TD procedure is a method for estimating an evaluation function by
meansof parameter estimation. Methods for parameter estimationare central
to the fields of pattern classification (Duda and Hart 1973; Sklansky and
Wassel 1981), adaptive signal processing (Widrow and Stearns 1985), and
adaptive control (Goodwin and Sin 1984), as well as to the field of con-
nectionist modeling (Anderson and Rosenfeld 1988; Hinton and Anderson
1981; McClelland and Rumelhart 1986; Rumelhart and McClelland 1986).

For example, one way to construct a useful pattern classifier is to assume
that theclassification rule, or decision rule, is a memberofa specific class
of rules, where eachrule in theclassis specified by selecting values for a set
of parameters. The problem of constructing a useful decision ruleis there-
fore reduced to the problem of finding parameter values that specify a
useful decision rule. The latter problem is usually formulated as one of
estimating the parameter values that are optimal according to somepre-
defined measure of decision-rule performance.

In signal processing and control, one is often seeking mathematical
formulas capable of producing numerical values that match values mea-
sured from some physical system. One may wish, for example, to have a
formula giving a patient's blood pressure as a function of the amountof a
drug administered (Widrow and Stearns 1985). Such a formula constitutes

a model of a functional relationship implemented by the physical system,
and it can be used for a variety of prediction and control purposes. Wecall
this functional relationship the modeled function.‘1 Given an encoding of
some input information (e.g., the amount of a drug administered), the

564 Barto etal.

model output should match the output of the modeled function for that
same input(e.g., the patient's resulting blood pressure).
Among the most important elements in formulating a parameter-

estimation task is the selection of a method for representing the physical
aspects of the problem as signals that act as input and output of the
decision rule or model. Whataspects of objects, inputs, states, etc. should
be measured to provide data for decision making or modeling? If basic
physical variables (e.g., blood pressure) are obvious candidates, should they
be represented simply as real-valued measurements, or should they be
coded in some other way? Similarly, how is the output of the decision rule
or model to be interpreted? There is little useful theory to guide these
aspects of formulating a parameter-estimation task.

Another aspect of formulating parameter-estimation tasks for which
thereis little theory is the selection of the parameterized class of decision
rules or models, a choice that includes deciding how many parameters to
use and how their values define the rule or model. Generally, one must
make a compromise between the complexity of a rule or a model andits
adequacy for the application. In this chapter, we restrict our attention to
one of the simplest classes of models and use a very simple representation
for the route-finding example, but we indicate how more complex choices
can be accommodated. |

Other important elements in formulating a parameter-estimation task are
the choice of a performance measure andthe type ofestimation algorithm
most appropriate.'* Estimating parameters depends on comparingtheper-
formance of the different decision rules or models specified by different
parameter values. The best measure of performance might evaluate the
overall, final performance of the system that makesuse of the decision rule
or model. However, in practice one has to devise simpler criteria that are
closely correlated with overall performance and yet can be measuredeasily
and quickly. It is common to measure performance by the average of the
squared error between the output of the decision rule or model and some
target values.

Parameter-estimation methodsare classified as either off-line or on-line
methods. Off-line methods operate whenall the information relevant to
measuring the performance of a decision rule or modelis available at one
time. This information is collected before the analysis that determines
suitable parameter values is performed. On-line methods, on the other
hand, process information as it becomes available over time. Because
on-line methods of parameter estimation incrementally adjust parameter
values while a decision rule or modelis in use, they are often regarded as
leaming methods, and the information they use to adjust parameter values
is called training information. For applying on-line methods toclassification
tasks, training information takes the form of a collection of training

Learning and Sequential Decision Making 565

patterns togetherwith their correctclassifications, which are assumed to be
supplied by a “teacher.” For modeling tasks, training information consists
of examples of how the modeled function behavesfor a variety of inputs.
In this case, the role of the teacher is played by the modeled function.

Weshall be concerned exclusively with on-line methods of parameter
estimation in this chapter. Nearly all the learning methods for connectionist
networks are on-line parameter-estimation methods in which the form of
the decision rule or model is determined by the structure of the network
(which includes the types of units, how many of them there are, and how
they are interconnected). Theparameter values correspondto the synaptic
weights. Similarly, many models of animal learning, such as the Rescorla-
Wagner model andthe TD model discussed by Sutton and Barto in this
volume, can be regarded as on-line parameter-estimation methods in which

the parameter values correspondtothe associative strengths of the compo-
nents of stimuli.

Viewing a learning process as on-line parameter estimation does not
imply a tabula rasa view of that process. Prior knowledgeis incorporated in
the task representation,in the class of decision rules or models,in theinitial
parametervalues, and in the constraints enforced among parameter values
during learning. Using increased levels of prior knowledge in selecting
these aspects of a task can both accelerate the learning process and improve
the utility of the solutions achieved. The roles played by prior knowledge
in parameter estimation may correspond to the roles played in animal
learning by genetically specified mechanisms and behavior.

6.1 Feature Vectors, Decision Rules, and Models
The framework in which parameter-estimation techniques are applied is
essentially the sameforclassification tasks and tasks requiring the modeling
of functional relationships. For a classification task, let x denote any one of
the objects we wish to classify. For a function-modeling task, let x denote
any ofthe collections of data that can be providedas input to the modeled
function. In what follows we will call all such collections of data patterns,
even though this is not the usual term in many function-modeling tasks.
Supposethat a set of measurements can be made ofpattern x to produce a
description in the form of a list of attribute or feature values.If there are n
measurements, let ¢, (i = 1, ..., nm) denote the “measuring instruments.”If

we assumethat the measurementsare real numbers,asis usual, each ¢,; is a
function from the set of possible patterns to the real numbers.** With ¢,(x)
denoting the value of the ith measurementof x,

h(x) = (6, (2), «--, Gu (X))™

is the feature-vector description of x. (We assume here that vectors are

column vectors, so the superscript T indicates that the row form shownis

566 Barto etal.

the transpose of the default column form.) We can think of ¢(x) as the
parameter-estimation system’s internal representation of pattern x.

Fora classification task, suppose that each decision rule amongtherules
to be considered is defined by a vector of n + 1 parameters,

V = (V1, ..., Upay)!,

where each 2; (i = 1,...,n + 1) is a real number. For example, one might
assumethat the decision is made by weighting each feature value ¢,(x) by
v; and comparing the weighted sum to a threshold given by —v,,, (the
minus sign is present for a technical reason to be madeclear below). The
object is in class 1 if the weighted sum exceeds0:it is in class 2 if the
weighted sum is less than 0. Each decision rule ofthis type has the form

- class1 ifv,¢,(x) +--- + 0,4,(x) > —Un44
6 class2 if v,¢,(x) + +--+ Un Pn(X) << —Up44

for some parameter vector v. This is the linear threshold rule often used in
connectionist networks, where it is implemented by an abstraction of a
neuron. The parameter values (synaptic weights) specifying the best ap-
proximation to the desired decision rule are initially unknown and are
estimated through theuse of a parameter-estimation method.

In a modeling task, one of the simplest classes of models consists of
linear models defined by weighted sums of n feature values, plus the
parameter v,4,:

0, 9.(x) + ++ + 16, (x) + Up4y- | (15)
This sum is the output of the model specified by the parameter vector v
for input x. Although the development ofefficient parameter-estimation
methodsfor nonlinear models is important for the utility of the methods
discussedin this chapter, the issues we address here are very different, and
for simplicity we assume the use of linear models. It should be clear,
however, that the learning procedures we discuss can be extended to
nonlinear cases (Anderson 1986, 1987).14

Twoconventionsare usually followed when decision rules or models in
the form of expressions 14 and 15 are used.First, to thelist of n functions
g;, one adds an (n + 1)st, which is always 1; that is, for any pattern x,
$,+1(*) = 1. This makes it possible to write the decision rule given by
expression 14 as follows:

_ fclass1 if o'¢(x) > 0

6 class2 if o™¢(x) < O,

(14)

(16)

where v0'¢(x) = v,¢,(x) +--+ 4+ Un+19n41 (x) is the inner product, or scalar
product, of the vectors v and (x). Similarly, the parameterized linear model

Learning and Sequential Decision Making 567

given by expression 15 can be written as

v'h(x). (17)
A second useful convention is to refer to the time at which pattern x
appears for classification, or as input to the modeled function, instead of
referring directly to x. Let ¢, and », respectively denote the feature vector
and the parameter vectorat time f. The set of values that the time variable,
f, can take depends on whether one considers continuousordiscrete-time
parameter estimation. Werestrict attention to discrete-time methods, so f
is a non-negative integer.

6.2 Parameter-Estimation Methods
The methods for parameter estimation that we consider are error-
correction methods because they adjust parameters on the basis of errors
between actual and desired outputs of the decision rule or model. Error-
correction methods operate by receiving sequences of training pairs, each
pair consisting of a feature vector and the cutput desired of the decision
rule or model whenit is presented with that feature vector as input. The
collection ofall training pairs that are available constitutes the training data
for the parameter-estimation task. This paradigm is knownas “supervised
learning” or “learning with a teacher.” In theclassification task a “teacher”
provides the correct objectclassifications, whereas in the modeling task the
modeledfunction acts as a teacher. In what follows, we discuss parameter
estimation in the context of modeling a functional relationship instead of
forming a decision rule, because the TD procedure can be best understood
in this context. Parameter estimation applied to forming a decision rule
becomes relevant in subsection 7.2, where we discuss the estimation of
optimalpolicies.
An on-line estimation method operates asfollows(see figure 3). At time

step f, there is a currentestimate,»,, for the unknown parameter vector that
specifies the best model within the class of models under consideration.
Thereis also available a feature vector, ¢,, describing the current input, z,,
to the modeled function (so that ¢, is a simpler way to write ¢(z,)). The
feature vector is used as input to the model specified by the parameter
estimate v,, and the resulting output of this model is an estimate for the
outputof the modeled function given input x,. For the linear model given
by expression 17, this estimate is v¢,. This estimate is then compared with
the actual output of the modeled function, which we assume becomes
available at the next time step, f + 1. This actual output, denoted y,,,, can
be thoughtof as the “target” value for the estimated output v,'¢,, and the
estimation erroris the scalar

fr44 = Yt vfdy. (18)

568 Bartoetal.

output of. Modeledinput x, Function ¥1,1 modeled
+ function

Representation error &,,

_ Model vig mode!feature _ ~

|

parameter f"' outout= x,
vector = OCH) vector Mr ing kiJ

- (assuming linear model)

Figure 3
On-line parameterestimation for modeling a functional relationship. The error, ¢,,,, result-
ing from comparing the output of the modeled function, y,,,, with the model's estimate of
this output, v/'¢,, is used to update the parameter vector, v,. The input to the modelis the
feature vector, ¢, = ¢(x,), determined from the input to the modeled function,x,, by the box
labeled “Representation.” The output of the modeled function is assumed to be a linear
function of the feature vectors. The circle labeled “):” in this and following figures is a
summation unit, with the signs of the summed quantities labeling each input. Error updates
parameter vector.

In the most widely used methods, a new parameter vector, Vai, is
determined from the currentvector, »,, as follows:

+1 = &% + Mies+1 Per (19)

where M, is sometimes called the algorithm “gain” at step #. A numberof
on-line methods for parameter estimation follow the form of equation 19
but differ in what M, is and in howit is computed. In some methods, M,is
an (n + 1) X (n + 1) matrix computedin an iterative manner onthe basis
of the training data (Goodwin and Sin 1984). Here werestrict ourattention
to the simplest case, in which M, is replaced by a positive constant, B,*°
which, together with the magnitude ofthe error, determines the magnitude
of changes in parameter values from onestep to the next. In this case we
can write the following parameter-up date rule:

O44 = 0, + Berss dy. (20)

Figure 4 is an elaboration of figure 3 showing how thevarious quantities
involvedin on-line parameterestimation change over time and showing on
what quantities their successive values depend.It shows these quantities for
two successive time steps. The box labeled “Update Parameters” imple-
ments a parameter-updaterule such as the one given by equation 20. The
inputs to this box correspond to the variables on the right-hand side of
equation 20.

Because we express parameter-update rules in the vector notation of
equation 20 throughoutthis chapter, it is important to understand how an
equation written in this form specifies how the value of each parameter

Learning and Sequential Decision Making 569

input

y Xeat

Modeled {+1 e| Modeled
Function + Function

| Representation|

Model = Pat —~| Model
Ve Pri error y

Enuy

> Update ~ Update
Parameters parametervector Vv, Parameters parameter vector Vout

t {+17
Figure 4
How the various quantities involved in on-line parameter estimation change over time.
Values for two successive time steps are shown, and a linear model is assumed. The box
(shown once for each time step) labeled “Update Parameters” implements a parameter-
update rule such as the LMSrule.

making up the parameter vector is updated. In equation 20, B and ¢,,, are
single numbers(scalars) and v, and ¢, are vectors having the same number
of components. Hence, this equation indicates that at time step f one adds
Be,4, times the feature vector ¢, to the parameter vector v, to form the next
parameter vector, v,,,. This means that the value of the ith parameterat
step f + 1 is its old value plus fe,,, times the value of the ith feature at
step f.

If the parameterized linear model given by expression 17 is assumed,
then equation 20 can be expanded via equation 18 to yield

O41 =O + BC Yp41 — v1d,) by. (21)

This estimation method, presented by Widrow and Hoff (1960) and also
known as the LMSrule, is essentially the same as the Rescorla-Wagner
model ofclassical conditioning (Rescorla and Wagner 1972; Sutton and
Barto 1981).'°
Some on-line estimation procedures, such as the LMSrule, can be under-

stood as gradient-descent procedures, which are methodsfor finding a local
minimum of a surface by moving down theslope, or gradient, of the
surface.’ According to this view, there is a surface, defined over the
space of parameter vectors, whose height at each parameter vector gives a
measure of the error overall patterns of the model specified by that pa-
rameter vector. The task is to search for a parameter vector at which this
surface is minimal. Updating estimates according to equation 19 tends to
form new estimates that are steps down on this error surface. The gain

570 Bartoetal.

matrix, M,, which in the LMSrule (equation 21) is equal to the constant f,adjusts the direction and size of the step on the error surface. For the LMStule, the error measure is the mean value ofthe squared error of the modeloverall patterns (henceits name),!8
Webriefly discuss how the LMSrule is derived in terms of gradientdescent because the derivation requires a step similar to one we use inexplaining the TD procedure. The objective is to adjust the parametervalues ofthe linear model in order to minimize a measure of model erroroverall patterns. Letting ¢,,, = Vi+1 — ¥;¢,, as above, one wants to mini-mize E[e,”], where E is the expectation overall patterns and wherethe erroris squared to produce a quantity that is always positive. This quantity——the mean square error—depends on the parameter values. At each stepof the estimation process, one would like to adjust the parametervalues insuch a way that the mean squareerroris reduced. Because the mathematicalexpression defining this error measure is known,it is possible to pre-compute the gradient of the error measure as a function of the parametervalues. The result of this computation specifies that one has to add to thecurrent parametervector,v,, a vector proportional to

Flea]
(22)

where, again E is the expectation overall possible patterns.
Unfortunately, in an on-line procedure one cannot determine at eachtime step the quantity given by expression 22, becauseit depends on howwell the current parameter values work forall possible patterns. Therefore,the crucial step in deriving the LMSruleis to assumethat E,41¢%, for just thecurrent feature vector, ¢,, is a good estimate of the quantity given byexpression 22. This assumption yields the parameter-update equation ofthe LMS rule given above (equation 21). Because the expected value ofE141, Overall patterns is the gradient of the error measure that is to beminimized (expression 22), ¢,,,¢, is an unbiased estimate of this gradient.For the class of parameterized linear models defined by expression 17, theLMSrule can be shown to minimize the mean Square erroroverall patternsunder appropriate conditions, with certain caveats that need not concern us

here (Widrow and Stearns 1985).
The theory of the LMS rule, and of the parameter-estimation methods,

is very well-developed but is beyond the scope to the present chapter.Theoretical treatments of parameter estimation can be found in the follow-
ing references: Duda and Hart 1973; Goodwin and Sin 1984; Ljung and
Séderstrom 1983: Sklansky and Wassel 1981: Widrow and Stearns 1985.This theory specifies conditions under which a parameter-estimation method
convergesto

a

final estimate and whatcriterionofbestfit the final estimate
satisfies. To obtain some ofthese theoretical results, one must assumethat

Learning and Sequential Decision Making 571

the manner of presenting training data to the algorithm satisfies certain
properties. For modeling tasks, for example, the output of the modeled
function has to be observed for a sequence of inputs that are sufficiently
varied to reveal the function's form. Theoretical results concerning param-
eter estimation forclassification tasks similarly require a training regime
that repeats the training pairs sufficiently often or uses as training data a

- sufficiently large sample of the set of possible patterns. |

7 Learning and Sequential Decision Tasks

Weare nowin a position to combine the concepts from stochastic dynamic
programming described in section 5 with those just described concerning
parameter estimation. We address tasks that require learning evaluation
functions and optimal decision policies in the absence of the knowledge
necessary to apply the dynamic programming techniques presented in
section 5. Although these dynamic programmingtechniques are therefore
notapplicable, the principles they involve can be applied to the design of
leaming methods. In subsection 7.1 we consider the problem oflearning
the evaluation function for a given decision policy. The TD procedure
(equation 29) emergesfrom this analysis as an on-line methodfor this task.
Although a methodfor learning an evaluation function for a given policy
does notitself improvea policy in terms of expected return, the evaluation-
function estimates that result from applying such a method have great
utility for improving policies. An evaluation function provides an immedi-
ately accessible prediction of the long-term return a policy will achieve.
This information can be used in adjusting policies so that decisions are not
dominated by the short-term consequences of behavior. In subsection 7.2
we considerlearning the optimal evaluation function and an optimal deci-
sion policy by a method that takes advantage ofevaluation-function esti-
mates produced by the TD procedure.

For all these learning tasks, we must assume that the agent has the
opportunity to interact with the system underlying the task in a manner
sufficient to produce good parameterestimates. Howthis requirement can
be metgenerally depends on details of the system, and the issues that arise
are beyond the scope of the present chapter. Hereit suffices to assumethat
the system underlying the decision task is set to a randomly chosenstate,
either periodically or whencertain conditions are met. For example, in the
route-finding task weplace the agentat a randomly chosen location andlet
it interact with the system (i.e., move around) while updating its parameter
values for a given numberoftimesteps or until it reaches the goal. This
constitutes a trial. We run a sequenceoftrials until some performance
criterion is satisfied or a time limit is reached.

572 Barto etal.

7.1 Learning an Evaluation Function

Here we consider the problem of learning an evaluation function for a
given policy in a sequential decision task. The learning system is given the
opportunity to interact for a sequence oftrials with the system underlying
the decision task. A fixed policy, 2, is used throughout the sequence of
trials. We wish to form the evaluation function, V", for policy x without
having prior knowledge of the quantities R(x,a) and P,,(a), for system
states x and y and action a. Recall that V* assigns to each state, x, its
evaluation, which is the expected infinite-horizon discounted return if
policy x is used to select actions after the system enters state x (equation 4).
We formulate the problem of learning an evaluation function as a

parameter-estimation task. A set of features for representing system states

must be selected. Let ¢(x) denote the feature vector representing state x. A

parameterized class of models for the evaluation function is thenselected,
and the task is to adjust the parameter values in order to best approximate
the true evaluation function according to a measure of how closely the
model's evaluations match the true evaluations of states.‘? Here, for
simplicity, we select the class of linear models given by expression 15 or
17 and consider models that assign to eachstate, x, the evaluation estimate

V1 Py (x) + a + OnPn (X) + On+1 — vu"A(x) (23)

for parameter vector v = (0,, ..., U,4,)'. Expression 23 is a linear model of
the evaluation function V*.

Because weare seeking an on-line estimation method, werefer to eval-
uation estimates, parameter vectors, and feature vectors by the times at
which they occur. We let V, denote the estimate at time step f for the
evaluation function V*. Letting v, denote the parameter vectorat time step
f, the estimate at time step f for V"(zx)is

V(x) = 0b(x). - (24)

If we were to follow the general form for parameter estimation described
in subsection 6.2, given the current system state x,, an error, €,,,, would be
determined by comparing V,(x,), the estimated evaluation of x,, with V"(x,),
the actual evaluation of x, for policy nm:

Eva, = V"(x,) — V(x). (25)

Unfortunately, because we do not know thetrue evaluation function V%,
we do not know V“%(z,). What quantity can be used as a target to define

error useful for parameter estimation?
The true evaluation of state x, is the expected infinite-horizon discounted

return if policy 2 is used to select actions after the system enters state x,.
Therefore, althoughit is obviously not practical, we might consider waiting
forever and using as a target the actual infinite-horizon discounted return

Learning and Sequential Decision Making 573

that would accrue while policy x is used from time step f onward. Because
the expected value of this actual return would be the true evaluation ofx,,
this actual return would be an unbiased estimate of the true evaluation and
could serve as a useful target. More practically, we could wait n time steps
and use what Watkins (1989) calls the n-step truncated return as a target:

heat tte tag bebYna (26)

Depending on y, one can choose an n large enough to make the n-step
truncated return suitably approximate the actual return. As y decreases
toward zero, truncated returns more closely approximate actual returns.

However,it is possible to define a better target than the n-step truncated
return by using the current parameter vector, v,, to determine a “correc-
tion” to the n-step truncated return. That is, one can use as a target what
Watkins (1989)calls the corrected n-step truncated return:

Te44 + Ye+2 + 43 to Ytan + VV(Xan) (27)

where V,(x,,) is the estimated evaluation of state x,,,, using the parameter
vector v,. Because V,(x,,,,) is an estimate of the expected return that would
accrue while policy 7 is used from time step ¢ + n onward, y""'V,(z,4,,) is
an estimate of the sum of the terms of the actual return (expression 26)that
are not present in the n-step truncated return (expression 27). To see this,

note that y""'V,(x,,,,) is an estimate of the expected value of

Wtetntt +ante + YNint3 + --°].

Multiplying through by y", this equals

YNtnt1 + Yotant? +: "7

which is the part of the actual return not included in the n-step truncated
return. Therefore, to the extent that the correction term y""!V,(x,,,) is a
good estimate for this truncated part of the actual return, the corrected
n-step truncated return will be a good estimate of the expected infinite-
horizon discounted return.

But why would one expect this correction term, which is based on the
estimated evaluation function V,, to be a good estimate for the truncated
part of the actual return whenit is V, itself that we are attempting to
estimate? The key observation (Watkins 1989)is that if the parameterized

class of models chosen for modeling the evaluation function is adequate,
then the corrected n-step truncated return starting in state x, is always a
better estimate of the true evaluation V(x,) than is V,(z,). Intuitively, this
is true because the corrected n-step truncated return is based on more data
than is V,(x,)—namely, the payoffs r,,,, where k = 1, ..., n. Hence, even
if V, is a poor estimate for the evaluation function, the estimated evaluation

574 Barto etal.

V,(x,) can be improved by adjusting the parameter vector to make V,(z;)
more closely match the corrected n-step truncated return forstate x,.

Onthe basis of the argument outlined above, one can approximate the
error given by equation 25 by using the corrected n-step truncated return
as a target. In particular, one can use the corrected one-step truncated
return as a target to define what wecall the TD error:

Eret = [tear + YViCr41)] — Vile). (28)

Substituting this error into the equation for an on-line estimation method
(equation 20) yields the TD procedure:

41 = & + Bitar + YViGi41) — V(x)1G. (29)

This is identical to a special case of the TD model ofclassical condition-
ing (Sutton and Barto, this volume) obtained by setting the parameters «;

of that model to 1 and the parameter6 to O. If 6 were present within the
framework developed here, setting it to a nonzero value would have the
effect of replacing ¢, in equation 29 with ¢, plus a weighted sum of the

feature vectors representing states through which the system passed in

time steps preceding step f. Using such a stimulus trace in the TD proce-

dure can accelerate the learning. process (Sutton 1988), and this kind of
stimulus trace can be viewed within the framework of dynamic program-

ming (Watkins 1989).
Additional insight into the TD procedure can be gained byrelating the

TDerror (equation 28) to one of the basic equations of stochastic dynamic

programming. According to the discussion of stochastic dynamic pro-
gramming in section 5, we know that the evaluation function V* must
satisfy equation 7 for each state x. In particular, we know that

Va(x,) = RO, a,) + y X P.,y(a,)V*(y),
ye

and wecan define an error on the basis of how muchthe current estimate

for the evaluation function dependsfrom this condition for state x,:

Re aj+y du Pa(0VA) — V(x). (30)
ye

If it were possible to adjust the parameter vector v, to reduce this error, the

new evaluation function estimate would tend to be closer to the actual

evaluation function. Updating the parameter vector this way would be

similar to applying a step of the successive-approximation method spe-

cified by equation 6, but only to state x,. The quantity

RX, &) + 7 d, PyyA) Vily)
ye

Learning and Sequential Decision Making

=

575

is likely to be a better estimate for V*(x,) than is V,(z,), becauseit takes into

account the expected consequences of performing action a, whenthe sys-

tem is in state x,, whereas V,(x,) does not.

However,it is not possible to determine the error given by expression

30 in an on-line estimation method, because it depends on the unknown

payoff expectations, R(x,, 4,), and the unknowntransition probabilities,

P,y(a,), for a, x,, and all state y. The TD error (equation 28) can be

regarded asthe result replacing these unknown quantities with approxima-

tions that are available during on-line learning. First, the payoff actually

received at step t + 1, which is r,,1, is substituted for the expected value

of this payoff, R(x,,a,). Because E[r,41|x,,4,] = R(@,,4,) (equation 1), r,41 is

an unbiased estimate of R(x,,a,). Second, the current evaluation estimate of

the state actually reached in onestepis substituted for the expectation of the

evaluation estimates over the states reachable in one step. That is, V,(%,41)

is used in place of >’, P,.,(a,) V:(y) in equation 30. V,(2,41) = v!¢41 is the

evaluation estimate of the next system state using the current parameter

values. These substitutions yield the TD error given by equation 28, which

involves only quantities available at time step f + 1.

This substitution of quantities available at each time step for unknown

expected values is similar to a step taken in deriving the LMS rule as a

gradient-descent procedure, as discussed in subsection 6.2. The LMSruleis

a consequenceof assuming that the error in responding to a single training

pattern can be used to approximate the model's expected error over all

patterns. Similarly, the TD procedure is a consequence of assuming that the

payoff actually received at a time step is a good estimate for the expected

value of the payoff at that step, and that the evaluation estimateof the next

state is a good estimate of the expected value of the evaluations of the

possible next states.

Despite this similarity to the LMS rule, the situation is considerably

more complex for the TD procedure, andit is not as easy to interpret the

TD procedure in terms of gradient descent. For example,if the objective

were to minimize the expected value of the square of the error given by

expression 30 overall states by gradient descent, one would arrive at

a parameter-update rule that would differ slightly from the TD proce-

dure and would not perform as well in practice.?° Another source of

complexity is that the training examples experienced by the TD procedure

can be influenced by the agent’s actions so as to bias the estimate of

yy P.y(a)V,(y). Sutton (1988) has been able to prove that, under certain

conditions, the TD procedure given by equation 29 converges to form the

desired evaluation function with repeated trials, each consisting ofa finite

number of time steps. Among the conditions required for convergenceis

that the parameter values are not updated during

a

trial. The parameter

adjustments determined by the TD procedure are accumulated during each

576 Barto etal.

trial, and are used to update the parametervalues only at the end ofthat

trial. In practice, however, it is often adequate to update parameter values

at each time step.

It is beyond the scope of this chapter to discuss the more theoretical

aspects of the TD procedure. The theory of the TD procedureis neither as

simple norasfully developed as the theory of the LMS rule. However,it is

noteworthy that a special case of the TD procedure is thoroughly under-

stood because it is the LMS rule. Wheny is set equal to 0 in equation 29,

the result is

a1 = & + Blrisi — Vi(x,)1@,, (31)

which is exactly the LMSrule give by equation 21. We can think of the

LMStule usedin this way as a one-step-ahead adaptive predictor, which is

a standard application of the LMS rule (Widrow andStearns 1985). Applied

to a sequential decision task, this rule adjusts the parameter values so that

V.(x,), the evaluation estimate ofthe state at time step f, predicts the payoff

to be received at the next time step: r,,,. Setting y equal to 0 in equation

29 therefore renders the TD procedure capable ofestimating only the most

“short-sighted” evaluation function. :

Let us summarize the application of the TD procedure given by equation

29. Figure 5 showstwosuccessive time steps of the application of the TD

procedure. This figure is a combination of the diagram of the system

underlying the decision task shown in figure 2 (appearing at the top of

figure 5, although here the “disturbances” shown in figure 2 are omitted

to simplify the figure) with the diagram of on-line parameter estimation

shown in figure 4, where the latter has been modified according to the

special features of the TD procedure.

An agent employing the TD procedureinteracts with a dynamical sys-

tem that can be in any one of a numberof states at each time step. The

agent uses some fixed policy, x, for selecting its actions, which influence

the behaviorof the system. At present, it does not matter whatthis policy

is: it could be a goodpolicy or a bad onein termsofits expected return for

system states. The agent is attempting to estimate the function that associ-

ates to each state an estimate for the expected return ofpolicy 1.

Although the expected return depends onthe current state of the sys-

tem, the agent does not necessarily receive enough information to

accurately determinethe state. At time step f, the agent has access to the

feature vector ¢, = ¢(x,), determined from state x, by the box labeled

“Representation” in figure 5. One can think of this feature vector as a

pattern of sensory stimulation produced by the current state of the system,

or as a representation provided by some mechanism (not discussed here)

that estimates the system’s state. Although states with different evaluations

may giverise to the samefeature vector, and states with similar evaluations

Learning and Sequential Decision Making 577

state action P state

x
t | r a, Xtet

R
> payoff

 Representation

9p g
t discount tet

. . factor . :
Evaluation Evaluation Evaluation Evaluation

Function 0?" =Function Function re?) Function H+

Model Model Model Model

iY ry, — 4 Viet
 fy y Y ?, y

 > Update Eval > Update Eval
evaluation function V4 Parameters evaluation function y Parameters
parameter vector ~ parameter vector

t t+7

Figure 5
Twosuccessive time steps of application of the TD procedure. This figure is a combination
of the diagram of the system underlying the decision task shown in figure 2 (here appearing
at the top of the figure) with the diagram of on-line parameter estimation shownin figure
4, wherethe latter is modified according to the special features of the TD procedure. Notice
that if y = 0, the left box labeled “Evaluation Function Model”in each time period becomes
disconnected, and the lowerpart of the figure takes the same form asfigure 4. In this figure
and in figure 6, crossing lines do not represent connections unless there is a dot on the
intersection.

may give rise to different feature vectors, it is obviously better if the
representation assigns similar feature vectors to states with similar evalua-
tions. Better estimates and faster learning are possible if the representation
is suited to the task. Ideally, one would like features that are highly
correlated with the evaluations of the states. For example, a wind-blown
odor may bestrongly correlated with high return if the policy is to travel
upwind. In any case, assume that the representation is given as well as the
parameterized class of models for the evaluation function. In this chapter
we consider only linear models for the evaluation function; that is, we
assumethat the evaluation function is a weighted sum of the feature values.
The agent's task is to find values of these weights to produce a good
estimate of the actual evaluation function.

Uponreceiving the feature vector ¢,, the agent determinesits estimate
for the expected return using its current parameter vector, v,. This is the

578 Barto et al.

evaluationestimateofstate x, given by V,(x,) = vu; ¢,. It is computedby the
rightmost box labeled “Evaluation Function Model” within the time = t
part of figure 5. (At this point, the leftmost box labeled “Evaluation Func-
tion Model” within the ¢ part of the figure has already been used to provide
information for updating v,_, to form the current parameter vector UV, a
process we explain below in terms of time step f + 1). Policy x is used to
select an action on the basis of the current systemstate, x,. After the action
is performed at step ft, the system makes

a

transition to a new state, Mee
and the agentreceives another feature vector, ¢,,,, and a payoff, r,, 1:

Refer now to the f + 1 part offigure 5. Using parameter vector0, (which
has not been updated yet), the agent computes an estimate for the return
expected from time step f + I onward. Thisis

: —— ant
Vi, (X41) —= UO; P41.

which is computed bythe leftmost box labeled “Evaluation Function Mod-
el” within the f+ 1 part of figure 5. Now,if the linear model of the
evaluation function is adequate and the parameter vectoris correct, then on
the average it should be true that the evaluation estimate of the state at
time f,

Vi(%) = UFbe,

equals r,,, plus y times the evaluation estimate of the state at time f + 1:
that is, V,(x,) should, on the average, equal r,4, + yV,(x,4,). The discre-
pancy between these estimatesis the error, é,4, (determined by the summa-
tion unit on the left-hand side of the f + 1 part of figure 5), which is used
to update the parameter vector v,. This update process is shown in figure
5 as the box in the ¢ + I area labeled “Update Eval Parameters,” which
implements equation 29 to produce the parameter vector v,,,. Using this
parameter vector, state x,4, is reevaluated by the rightmost box labeled
“Evaluation Function Model”in figure 5, and theresult is available at time
step { + 2 for a repeat of the steps described above.?}

Figure 5 makes a subtlety of the TD procedure clear: At each time step,
two estimates of the evaluation of the system state are computed—the
first using the parameter vector beforeit is updated and the second using
the parameter vectorafter it has been updated. This is why there are two
boxeslabeled “Evaluation Function Model”for each time step (although,of
course, one can think of the computation for each time step as using the
same box twice, with a different parameter vector each time).?”

The Route-Finding Example Toillustrate the application of the TD proce-
dure to the route-finding example, we use one of the simplest state rep-
resentations possible. We assumethat the 96 states (spatial locations) are
numbered 1 to 96, and werepresenteachstate, x, by a feature vector of 96

Learning and Sequential Decision Making 579

components:

P(x) = (6, (2),..., Py¢(x))!,

where

1 ifx=i

#:(z) = to otherwise.
(32)

The feature vector (x) thereforeis a list of zeros with a single one in theposition correspondingto state x. With this set of features, the linear modelof V® given by equation 23 takes the simple form

01 9,(x) + +++ + V96Po6(x) + V97 = 0, + U97
for parameter vector (U1,...,U,x,..., 097)", where v, is the parameter, orweight, associated with state x. For simplicity, we let v), = 0,23 and we letv, denote the value at time step f of the parameterassociated with state x.Thus, the estimate at time step # for the evaluationofstate x is simply

V(x) = v,.
(33)

Whereas V,(x) denotes the estimate at time step ¢ of the evaluation of statex, it is not necessarily the case that x is the system state at time step f.Supposethe agent usesa fixed policy to decide how to move around thespace. Assumethat it moves from location x at time step f to location y atstep t + 1. If x is not the goal, then a payoff of —1 is received. Applyingthe TD procedurein the form it takes given the simple way we representlocations, only the parameter v,, which is the current estimate of theevaluation oflocation x, is updated after the agent makes this move. Thisevaluation estimate, v,, is adjusted by adding to it B[—1 4+ yv, — v,]. Tosimplify things even more,let us assume that y = I and B = I. Then thenew evaluationestimateof x, ie, the new value of the parameter v,, is
% FI-1+%—2,]= -149,.

Given the foregoing mannerof representing states and evaluation estj-mates of states, adjusting parameter v, directly adjusts the evaluationestimate of state, or location, x. A feature vector can be thought of asindexing into a lookup table that lists the evaluation estimates ofall thelocations.?* Because (x) contains a single 1 in the position correspondingto state x, and appears multiplicatively on the right-handside of equation29, at each time step, the TD procedure updates only the evaluationestimate of the agent's current location. We use feature vectors defined byequation 32 because they make the application of the TD procedure easyto understand, and they allow us to represent an arbitrary evaluationfunction using a linear model. However, this is a very special case of therange of possibilities encompassed within the theoretical framework pre-

580 Barto etal.

sented here, and many interesting phenomenainvolving the transfer of
evaluation information among the states do not appear if one uses the
feature vectors defined by equation 32.°

Normally, one would begin the process of estimating the evaluation
function for a given decision policy by setting the parameters to provide
as good an approximationto the true evaluation functionasis possible. For
simplicity, however, suppose we begin bysetting all the parameters to 0
and then run series oftrials, beginning each trial by placing the agentin
a randomly chosen location and letting it take some reasonably large
numberof steps. As the agent movesin thefirsttrial, it will leave a trail of
— 1s in its wake as the parameters that correspond to eachlocation visited
are updated. If it reaches the goal, the parameter determining the goal’s
evaluation, v,, will remain 0. On the secondtrial, the same thing will
happen except whenthe agent’s path joins and moves along a path taken
in a previous trial (once the agent’s path intersects a path previously
traversed, it will always follow that path if the decision policy is deter-
ministic). The parameter for eachlocation visited one step before visiting a
location already assigned a —1 will be set to —2.If the goal is reached,
the location visited one step earlier will remain at — 1. On the third trial,
somelocations will be assigned — 1, some will be assigned — (asintrial
2), and some will be assigned —3 (if the next place visited had been
assigned — 2 in the secondtrial).

Notice what happensif, in this third trial, the agent approaches the goal
on path traveled in both precedingtrials. It will reach a location (call it x)
assigned an evaluation estimate of — 2, then moveto a location assigned
an evaluation estimate of —1 (call it y), and then reach the goal, g, which

still has an evaluation estimate equal to 0. Moving from x to y generates a
payoff of —1, and the TD rule will update v, to produce the new evalua-
tion estimate

-1+y= —I—1i= -2,

whichis the sameas its previous value.Similarly, v, will not change when
g is reached, because its current evaluation estimate already equals the
payoff received upon movingto the goal, — 1, plus the goal’s evaluation,
0. As various paths are followed on subsequenttrials, evaluation estimates
stabilize in a similar fashion, from the goal outward, to minus the number
of steps required to reach the goal using the given decision policy. If the
policy prevents the goal from being reached from somelocation, then the
evaluation estimate of that location can become more negative with each
trial, being decremented by the TD rule each time thelocationis visited.
With an unbounded numberoftrials, evaluation estimates for such loca-
tions grow negative without bound, whichis correct (since the numberof
steps to the goal using the policy is indeed infinite) but which may be

Learning and Sequential Decision Making 581

considered an undesirable form of instability. The use of a discount factor
with a value less than 1 eliminates the possibility that evaluation estimates
can grow without bound.

7.2 Learning an Optimal Decision Policy
Subsection 7.1 addressed the problem of learning the evaluation function
for a fixed policy in the absence of a model of the decision task. The TD
procedure is a parameter-estimation methodfor estimating such evaluation
functions. Here we consider one way of using the TD procedureto facili-
tate the approximation of an optimal policy, again in the absence of a

- model of the decision task. Although the resulting method is not gua-
ranteed to converge to an optimal policy in all tasks, it is relatively simple
and is closely related to traditional views of animal learning. Throughout
the present subsection we will assume that we do not know the quantities
R(x, a) and P,,, (a), for system states x and y and actions a, which are required

for the application of dynamic programming methods.
The approach described here for learning an optimalpolicy is related to

the policy-improvement method described in subsection 5.2. In the policy-
improvement method, one computes the evaluation function for some
initial policy and then defines a new policy that specifies the actions that
maximize expected return as measured by that evaluation function. One
then computes the evaluation function for this new policy, defines another
policy so as to maximize the expected return as measured by this second
evaluation function, computes another evaluation function, and so on. The
policies defined in this sequence keep improving until an optimal policy is
obtained. The method for forming an optimal policy described below can
be thought of as combining, on a step-by-step basis, the process of forming
an evaluation function with the process of forming a new policy. Whereas
the policy-improvement method computes a complete evaluation function
for a given policy (thatis, it computes the evaluation ofall states for that
policy, and then usesthese evaluations to define an improvedpolicy), the
method described below performs one step of an on-line procedure for
estimating an evaluation function for a given policy and at the same time
performs one step of an on-line procedure for improving that policy.
Consequently, both the current evaluation-function estimate and the cur-
rent policy change at each time step while the agent interacts with the
system underlying the decision task. Because each policy adjustment is

based on an estimate of the evaluation function for the current policy, the

policy will not necessarily improve at each step, as it doesin the policy-
improvement method. However, because the evaluation estimates improve

over time, the policy also tends to improve.
Twoon-line procedures are therefore required for the approachto learn-

ing an optimal policy considered here. The procedure for estimating the

582 Barto etal.

evaluation function is the TD procedure, and the procedure for improving

the decision policy is an example of a reinforcement learning procedure

(see section 3). Because our goal in this chapter is to describe the computa-

tional aspects of the TD procedure, we do not provide a detailed exposi-

tion of reinforcement learning. Instead, we describe the general characteris-

tics of these methods and discuss a specific example as it applies to the

route-finding task. The processes involved are diagrammedin figure 6, to

which wewill refer throughout this subsection. This figure is an expansion

of figure 5. Whereasin figure 5 thefixed policy is represented by the boxes

labeled 7, in figure 6 the policy is adjusted by the procedure diagrammed

in the top part of the figure. The bottom part of figure 6 shows the

operation of the TD procedure andis identicalto figure 5.

In subsection 7.1 the TD procedure was developed as an on-line

parameter-estimation method for estimating an evaluation function. Simi-

larly, the procedure for improving policies that we describe is an on-line

parameter-estimation method. Referring to the concept of a parameterized

model described in section 6, each policy available to the agent is assumed

to be given by some parameterized model, called the policy model. Select-

ing specific values for the parameters, which wecall the policy parameters,

determines a specific policy. Policy parameters are adjusted in an attempt

to improve the policy they specify (accomplished by the boxes labeled

“Update Policy Parameters” in figure 6). At the same time that the policy
parameters are adjusted, the TD procedure adjusts different parameters

specifying the evaluation-function model.
Attime step f, the state of the system underlying the decision task is

represented by the feature vector ¢, = ¢(z,), which acts as input to the
model of the evaluation function. In figure 6, this representation is pro-
duced by the box labeled “Representation A”in the ¢ portion ofthe figure.
Anotherfeature vector representating the state at step f acts as input to the
model of the policy. This feature vector is denoted ¢; and is shown in
figure 6 as the output of the box labeled “Representation B”in the ¢ portion
of the figure. Although it may be not always be necessary to use different
feature vectors for the evaluation-function model and the policy models,
in general these two models do not place equal demands onstate rep-

resentations. However, two different parameter vectors are necessary:the

parameter vector v, which specifies the evaluation function as described
in subsection 7.1, and the vector w, which specifies the policy. For simplic-

ity, we consider only linear models for evaluation functions and decision

policies.
As the agentinteracts with the system, it senses the feature vectors of

successive states and receives a payoff at each time step. The TD procedure

(equation 29) is applied exactly as described in subsection 7.1 to update the

parameter vector v. Here, however, the policy changes over time as the

Learning and Sequential Decision Making 583

Update Policy policy parameter vector Ww t Update Policy policy parameter vector Wtet
~ Parameters "

|

Parameters |

action actionii a Ad 2_ Policy a t Policy tel
~ Model “"t ~ Model {+7
E £ E 't j ?, (+1 4 Pret

Representation B Representation B

state p state P

x x, +1 =

r
_ t ad A r, +7 aa A | =

Representation A Representation A

9p 9
discount (discount t+T

. . factor . .Evaluation Evaluation Evaluation Evaluation
_ Function (3 Function Function 3) Function RT—

Model Model Model Model
TD error| — ry ~ | AYeuy Vr En Vi — Veet

4 1 | ?% f
_y| Update Eval »| Update Eval

evaluation function Parameters evaluation function Vv Parameters
parameter vector '¢-1 parameter vector ¢

~~

t t+17
Figure 6
An elaboration of figure 5 showing the operation of an on-line method for adjusting a
decision policy. The policy is adjusted through the process diagrammedin the upperpart of
the figure. The lower part of the figure shows the operation of the TD procedure and is
identical to figure 5.

584 Barto et al.

parameter vector w is adjusted. Let 2, denote the policy used to select the

action at time step 4. This policy is specified by ™, the value of the

parameter vector w at time step t for the policy model. Although at each

time step f the TD procedureis approximating the evaluation function for

policy m,, over many time steps it is approximating the policy to which 7,

is tending as ¢ increases. Because under ideal circumstances this limiting

policy should approximate an optimal policy, we regard the TD procedure

used in this way as approximating the optimal evaluation function.

How does w, specify the policy 7%, and how is w, updated? A policy is a

mapping, or function, from system states to actions that can be para-

meterized in many different ways. If a policy can assign to each system

state one of only two possible actions, a policy might be represented as a

linear decision rule having the same form used in pattern classification

(equation 16). If more than two actions are possible, as in the route-finding

example, a more complicated parameterization is required. Several possi-

bilities for parameterizing multi-category decision rules are suggested in

the pattern-classification literature (Duda and Hart 1973; Sklansky and

Wassel 1981). One method, which we adapt for the route-finding example

is to use a separate parameterized function for each possible action. Each of

these functions assigns a numberto each state. An action is then selected

by comparing the numbers produced by these functions for the current

state and selecting the action whose numberis largest. This is a kind of

competition among the actions that can be implemented by connectionist

networks withlateral ‘nhibition (Feldman and Ballard 1982).

An additional consideration in parameterizing policies is that some

policy-adjustment methods require stochastic policies instead of deter-

ministic policies. In this case, one has to parameterize functions that assign

action probabilities, instead of specific actions, to system states. We shall

describe an example of a parameterized class of multi-action stochastic

policies in the context of the route-finding example. In the meantime,

however, it is not misleading to think in terms of the simpler case of

deterministic, two-action policies, the simplest example being policies

defined by the linear threshold rule given by expression 16.

If it were possible to know whataction is desired for each state, it would

be possible to adjust the policy parameters by applying a parameter-

estimation method, such as the LMS tule given by equation 21, using the

supervised learning paradigm.If we knew the expected values, R(t, a), of

all the payoffs and transition probabilities, P..,y(a), for the current system

state, x,, and all possible next states y underall the actions a, then we could

use the current evaluation function, V,, to select the desired action. It would

be the action, a, that maximizes

Rix, a) +y > P..(a) V,(y)-
(34)

yeX

Learning and Sequential Decision Making =585

A policy selecting this action for state x,, and otherwise following policy

n,, either improves policy 7, or leaves its performance unchanged, under

the assumption that the estimate of the current evaluation function, V,, is

an accurate estimate of the true evaluation function for policy 7,. Un-

fortunately, lacking knowledge of the expected payoff and transition prob-

abilities that appear in expression 34, and also lacking estimates for these

quantities, we cannot directly specify a desired action. Therefore, we can-

not update the current policy using a rule for supervised learning, such as

the LMS rule, which requires a known desired response for each input

vector. It is necessary to employ a method that is capable of learning to

perform the desired actions(here, the actions that maximize expression 34)

when these actions are not known by a “teacher.” In order to do this,

we use a reinforcement learning method instead of a supervised learning

method.
The agent might overcome the unavailability of a teacher capable of

providing desired responses by forming estimates of the quantities in

expression 34 while it interacts with the system underlying the decision

task. This meansthat it would effectively have to construct a modelof the

decision task. However, reinforcement learning is possible without such a

model: Think of the agent as beginning an instrumental conditioningtrial

at each time step. At time step f, it emits an action, a,, based on a policy

that shows some form of variation. At.time step ¢ + 1,it receives payoff

r,,, and estimates the evaluation of the state reached at + 1 by applying

the evaluation-function estimate specified by the parameter vector 9,(see

equation 24). This evaluation estimate, V,(x,41) = 0¢G41, Which is an esti-

mate of expected return, is added to the immediate payoff r11, after .

discounting by y, to produce a measureoftheutility of emitting 4,, ie. a

measure of how usefula,is in causing high return. This utility measureis

eat + YViGr41). (35)

This measure, whichis identical to the sum ofthe first two terms of the

TD error 4, (equation 28), can be used to alter the strength of the

associative link between the feature vector ¢/ and a, in order to change the

probability that a, will be performed wheneverstate x,, or a state rep-

resented by a feature vectorsimilar to ¢/,is encounteredin the future. The

expected value of the measure given by expression 35 is largest for the

action that, if performed at time step f, would be the best action for

improving policy m, under the assumption that V, is an accurate estimate of

the evaluation function for the current policy. We need a learning rule that

increases the probability of performing action a, when the utility measure

given by expression 35 is large, and that decreasesthis probability whenit

is small.

586 Barto etal.

But what values of this utility measure should be considered “large” or

“emall’? How can a measure of the utility of an action, such as that given

by expression 35, be translated into a quantity that can be used effectively

as a “reinforcement factor” to adjust action probabilities? If one had access

to the expected value of the utility measure over all actions performed

whenthe system is in a given state, it would make sense to treat measures

larger than this expected value as indicating performance improvements

and to treat measures smaller than this expected value as indicating perfor-

mance decrements.”® According to this approach, a reinforcement factor

would be obtained by subtracting the expected value ofthe utility measure,

or an estimate of this expected value, from the actual utility measure

obtained for a given action. Using this reinforcementfactor, a learning rule

could favor actions leading to better-than-expected performance while

selecting against actions leading to worse-than-expected performance.

Conveniently, within the framework described here, for each system

state we already have an estimate for the expected value of the utility

measure given by expression 35 over actions performed in that state: We

can use the evaluation estimate of a state given at time step ¢ by the

evaluation function estimate V, (equation 24). To see why the evaluation

estimate of a state can serve this purpose, consider what happensto the TD

error

E44 = Trt 1 yVi(141) — V,(%)

(equation 28) as the TD procedureadjusts the parametervector, v,, defining

V,: The expected value (over system states) of 2,,, should tend to 0, and

we would expectV,(x,) to approach the expected value of r44 + pV.(41),

whichis the utility measure of performing action a, given by expression 35.

Consequently, a reinforcement factor can be formed by subtracting this

evaluation estimate, V,(x,), from fui + V,(0,41). The resultit just the TD

erroritself (equation 28), repeated here for emphasis:

Ear = [naa + ViCe41)] — V,(%;)- (36)

The TD error, %,4,, therefore provides information about how good

action a, is in comparison with how good previousactions taken in response

to ¢/ (see figure 6) have been “on the average.” If é,,, is positive, then 4,is

better than average and should be made to occur more frequently in

responseto ¢; in the future;if &,,, is negative, then a, is worse than average

and should be made to occur less frequently in response to ¢;. It is

relatively easy to use a quantity having these properties as a reinforcement

factor for adjusting the policy parameters. This is accomplished by the

componentlabeled “Update Policy Parameters”in figure 6, which receives

the TD error as oneofits inputs.

Learning and Sequential Decision Making 587

Several types of rules have been studied for adjusting a policy on the
basis of a reinforcementfactor, such as é,,,, instead of direct specifications
of desired actions required for supervised learning. In order for these
reinforcement learning rules to work effectively, different actions must
be performed in response to each system state so thatthe relative merits
of performing different actions can be assessed. One way to maintain
the necessary variability in activity is to let the agent “explore” by using
and improving stochastic policies. It is beyond the scope of this chap-
ter to describe stochastic reinforcement learning in detail, but we can
give an example of this approach in the context of the route-finding
example.?’

The Route-Finding Example A deterministic policy for this task assigns to
each location one of the four actions N,S, E, W. Although we would like
to end up with a deterministic policy selecting a shortest path to the goal
from each location, the learning process we describe modifies a stochastic

policy. A stochastic policy selects actions probabilistically, so that over
time manyactions are tried fromeach location. This exploratory behavior

is refined as learning continues, favoring the actions appearingto yield the
highest return. In other words,the stochastic policy is adjusted, by modify-
ing the parametersspecifyingit, so that for each location the probability of
one action (which should be the optimal action) approaches 1, while the
probabilities of the other actions approach 0.
Of the many different ways to define stochastic policies for the route-

finding example, we used the following. The set of policy parameters,ie.,
the parameters defining a stochastic policy, consists of a separate parameter
for each location, x, and eachaction, a € {N, S, E, W}. Welet w(z, a) denote
the value of the parameter for location x and action a. This value can be an
arbitrary real number. The probability that any one of the actions is emitted
when the agent visits location x is determined by the parameters corre-
sponding to location x: w(x,N), w(x,S), w(x, E), and w(x, W). Actions are

selected by meansof the following probabilistic competitive process. At
each time step t, four positive random numbers are drawn from an expo-
nential distribution so that smaller values are more probable than larger
values. If the agent is positioned at location x,, a different one of these
random numbers is added to each of w(x,,N), w(x,,S), w(x,,E), and

w(x,, W), and the action for which this sum is the largest is performed by
the agent, which movesto a new location and receives payoff r,,,. In other
words, the action, a,, performed at time step f is the action a such that
w(x,a) + y, is largest, where n, is the random number drawn for a. The
parameter values w(x, a) are notaltered in this selection process. Selecting

actions using this competitive process has the advantage that no special

588 Barto etal.

precautions have to be taken to ensure that valid action probabilities are
maintained throughoutlearning.

Now,the parameter value w(x,, a,), corresponding to the action actually
selected, a,, is updated so that the new valueis

W(X, 4,) + p41, (37)

where x, is the agent’s location at time step f, p is a positive constant, and
é,+1 is the reinforcement factor (equation 36) corresponding to performing
action a, whenthe system state is x,. Thus,if é,,, is positive, the move that
was taken from location x, will be chosen with a higher probability when
location x, is visited again. If @,,, is negative, a, will be less likely to be
chosenfrom location x,. The parameters corresponding to the actions not
selected are not changed,althoughthe probabilities of these actions being
selected are changed asa result of the changein the values w(z,, a,) and the
competitive action-selection process described above. As the parameter
values, w(x,a), for the various places visited and actions selected change
according to expression 37, the decision policy changes, becoming more
deterministic as specific actions become selected with higher probabilities.
At the same that the parameter values w(x, a) are updated, the TD proce-
dure (equation 29) is applied to adjust the values of the parameters specify-
ing the evaluation function.

Because the reinforcementfactor, @,4,, used to adjust the policy param-
eters according to expression 37 is the same as the error used by the TD
procedure (equation 29), w(z,,a,) is updated in exactly the same waythat
the TD procedure updates the parameter v, specifying the evaluation
estimate of state x,. Indeed, there is only one difference between the TD
procedure and the rule used to update the policy parameters. Whereas the
TD procedure updates the evaluation-function parameters in a mannerthat
is insensitive to the action chosen at timestep f, the rule given by expres-
sion 37 updates only those policy parameters correspondingto the action
chosen at step f. Moregenerally,if the decision policy is represented in a
manner more complicated than the oneillustrated here—for example,if
actions are represented as patterns of activity over a set of connectionist
units—then the updating of policy parameters is modulated by the rep-
resentation of the chosen action so as to appropriately influence the action
probabilities. In figure 6, notice that the component “Update Policy Param-
eters” receives actions as input, whereas the component “Update Eval
Parameters” does not. Aside from this dependence of the policy-update
procedure on the action performed, and possibly different values for the
constants B in equation 29 and p in equation 37, the parameter-update
procedures for evaluation estimation and policy improvementare exactly
the same.

Learning and Sequential Decision Making 589

Goal

Figure 7 7
Estimates of the optimal evaluation function for the route-finding examples. Surface A:after
50 trials. Surface B: after 500 trials. Surface C: after 5000 trials. The surface height at each
location is the estimate of the minimum numberof steps to the goal from thatlocation (and
henceis the graph of the negative of the correspondingestimate of the optimal evaluation
function). Because surface C corresponds to the optimal evaluation, an optimal policy is any
policy selecting the actions leading most steeply down this surface, with the exception, of
course, of the actions blocked by the barrier (see figure 1 for the position of the barrier).

Figure 7 showsthe estimates for the optimal evaluation function for the
route-finding example after various numbersoftrials in which both the TD
procedureand the policy-update procedure just described were applied at
each time step. A trial begins when the agent is placed at a randomly
chosenlocation and ends whenthe agentreaches the goal. Each evaluation-
function estimate is shown as a surface whose height at eachlocation is the
estimate of the minimum numberofsteps to the goal from that location.
Since evaluation functions in this task give the negative of the numberof
steps to the goal, each surface shown in figure

7

is actually a graph ofthe
negation of an estimate of the optimal evaluation function. The goal is
marked on each surface, and the reader should refer to figure 1 for the
position of the barrier. If a surface corresponds to the optimal evaluation
function, as can be shown for surface C in figure 7, then an optimal policy
is any policy selecting the actions leading most-steeply down the surface
(with the exception, of course, of the actions blocked by the barrier). By the
definition of the optimal evaluation function, the surface corresponding to
the optimal evaluation function can have nolocal minimum thatis not at
the goal.

590 Bartoetal.

Surface A is the result after 50 trials. Surfaces B and C show theresults
after 500 and 5000trials, respectively. Examination of surface C reveals
thatit is a close approximation of the (negated) optimal evaluation function
for this task. Additionally, the agent’s policy improves overtrials until it
becomes an optimal policy with a slight degree of nondeterminism. The
average over 100 trials of the number of steps required to reach the goal
before learning was 2690stepspertrial. After 50 learning trials the average
over 100 non-learning trials was 41; after 500 trials it was 9.14; after 5000
trials it was 6, which is near the minimum possiblefor this task. From these
data one can see that, although manytrials were required to optimize
performance,rapid initial improvement occurred. This improvement would
not have occurred if the agent had spent these trials estimating only
state-transition and payoff probabilities.

Althoughthe route-finding exampleillustrates manyof the properties of
the learning methods we havedescribed,it is too simple toillustrate others.
For example, the applicability of the methods to stochastic decision tasksis
not illustrated. In the example, an action performed in a given location
always causes the same payoff and the samestate transition. This determin-
ism in the state-transition and payoff processes makes the application of the
TD procedure and policy learning procedure easier to understand, butit
does not test the ability of this learning method to estimate an optimal
evaluation function and improve a decision policy in the presence of
uncertainty. Sutton (1988) and Watkins (1989) present examples of the TD

procedure applied to stochastic tasks. Anothersimplification present in the
route-finding example is due to the particular representation used. The
estimates of the optimal evaluation function and the optimal policy are
representedin the form ofa lookuptable, with a separate set of parameters
for each system state. As was mentionedin subsection 7.1, this representa-
tion prevents generalization: the agent must visit a location in order to
update the estimates associated with that location.

The method described in this section for improving a policy consists of
two concurrent adaptive processes: evaluation estimation and policy ad-
justment. The agent continually estimates an evaluation function forits
currentpolicy, and also uses its current evaluation function to improve the
policy. To improve its policy, the agent must experiment with different
actions; in the course of its visits to each state, the agent must repeatedly
try out all the actions possible at that state to establish which actionis best.
In the learning method described here, the agent's currentpolicy is stochas-
tic; thus, the agentwill try a variety of actions at each state while following
its policy. As time goes on, the stochastic policy is adjusted so that in each
state the probabilities that less-than-optimal actions are chosen should,
underideal circumstances, decrease toward zero.

Learning and Sequential Decision Making 591

Methods such as the one described in this section involve a tradeoff
between acquiring information to aid decision making in the future and
using the information already acquired in the attempt to select optimal
actions. Always performing actions that appear optimal on the basis of
current estimates (of evaluation functions, etc.) can prevent the expe-
rimentation required to improve these estimates. Although adjusting a sto-
chastic policy is one way to decrease the severity of this problem,it is not
easy to design methods that work wellin all decision tasks. The amount of
experimentation that an agent using a stochastic policy can dois limited by
the degree of randomness ofthe policy. In the later stages of learning, the
policy becomes almost deterministic, and the rate of experimentation (and,
hence, the rate of policy improvement) becomes very low. At intermediate
stages of learning, the policy may becomeless than optimal and almost
deterministic for some states. Because experimentation for these states is
conducted at such a low rate, changesin the policy for these states may be
very slow. Although the method of adjusting a stochastic policy while
estimating an evaluation function described in this section does perform
effectively in a variety of tasks, especially if learning involves

a

series of
trials with random starting states, we know of no one whohas worked out
conditions under whichit always converges to an optimal policy.

Watkins (1989) has suggested a general approach to minimizing the
difficulties caused by the tradeoff between estimation andcontrol. The idea
is to separate exploration from evaluation estimation byletting the agent
deviate from thepolicy for whichit is estimating an evaluation function—
its estimation policy—as long as it switches off its evaluation-estimation
procedure whensuch a deviation is made. The agent may do anything it
likes, as long as it does not modify its estimate of the evaluation function
on the basis of information acquired when it deviates from its estimation
policy. The agent is only correct to use its experience to estimate the
evaluation function for the estimation policy whenit is actually following
that policy; however, it can adjust its estimation policy all the time,
whetherit is followingit or not. This enables an agentto experiment while
maintaining the integrity of its current estimation policy and its current
evaluation-function estimate. The agent might choose experiments with
more randomness than is specified by its estimation policy;it might have
specific innate curiosities that lead it to try certain actions in certain circumn-
stances; or it might imitate the actions of others. Beneficial outcomesof any
of these experiments can be incorporatedinto the estimation policy.

8 Conclusion

We have shown how the temporal-difference procedure emerges as a
combination of techniques from stochastic dynamic programming and

592 Barto etal.

parameter estimation. Embedding the TD procedure within these theoreti-
cal frameworks connects it with very rich traditions of theoretical research
and helps explain what kinds of computational tasks it can help solve.
Placing the TD procedure in this computational perspective suggests how
this procedure might be applied to practical engineering problems as well
as how it might help explain aspects of animal behavior.

Wethink the best way to relate the sequential-decision framework and
the TD procedureto real-time view of classical conditioningis as follows.
Think of the process of updating an evaluation-function estimate as
occurring continuously throughouteach trial in response to continuously
varying stimulus patterns and reinforcement values. The stimulus patterns
provide information (possibly incomplete) about how the state of some
underlying system is changing continuously over time, where the dynamics
of this system are determined by the experimental procedure. The applica-
tion of the TD procedure at discrete time intervals is a discrete-time
simulation of a process having no explicitly demarcated steps. According
to this view, the learning mechanisms that play the majorrole in classical
conditioning construct a gradient of secondary reinforcement byfacilitating
connections from stimuli, and perhaps from internally stored representa-
tions, that are predictive cues for events that provide primary reinforce-
ment. The values r,,, and yV,(x,4,) — V,(x,) respectively correspond to the
primary and the secondary reinforcement received at time f + 1, with the
total reinforcement being the sum ofthese given by the TDerror,é,,,. The
evaluation V,(x,) is an estimate of the expected discounted sum of future

primary reinforcementavailable after time #. On this interpretation, a sec-
ondary reinforcer is any stimulus that causes a changein the prediction of
cumulative primaryreinforcement, a view developed more completely by
Sutton and Barto in chapter 12 of this volume.

The task of improving a decision policy within the framework devel-
oped here is similar to the task faced by an animal in instrumental con-
ditioning. The amount of payoff the agent receives dependsonits actions,
and feature vectors representing the states of the system underlying the
decision task act as discriminative stimuli. The method of updating a
decision policy that we outlined in the context of the route-finding exam-
ple is a rather straightforward implementation of an S-R view ofinstru-
mental conditioning based on the Law of Effect (Thorndike 1911): Actions
are selected according to their consequences in producing payoff byal-
tering the strengths of connections between those actions and stimuli
present when they were emitted. In the method wedescribed, the con-
sequences of actions are assessed by meansof the sum of the immediate
primary and secondary reinforcement. Although this role of secondary
reinforcement in instrumental learning is also a standard feature of tradi-
tional views of animal learning, here we define secondary reinforcementas

Learning and Sequential Decision Making 593

the state-to-state change in an estimate of an evaluation function, ice,
YV,@r41) — V,(,), where the estimate is updated through time by the TD
procedure.

Although learning methodssimilar to the one we described in subsec-
tion 7.2 for improvingpolicies have been studied by means of computer
simulation (Anderson 1987; Barto 1985; Barto and Anandan 1985; Sutton
1984), we do notclaim that the method we described always produces an
optimalpolicy orthatit is a valid model of animal behaviorin instrumental
conditioning experiments. However, we think it is significant that the
proceduresconstituting this method—oneof which updatesan evaluation-
function estimate (the TD procedure) and other of which updates the
decision policy—are almost identical. The same parameter-update rule

is used in these procedures, but whereas it is applied uniformly to all
the parameters specifying the evaluation function, it is applied to the
parametersspecifying the decision policy in a fashion that is modulated by
a representation of the action that was emitted by the agent.

Whatever method the agent uses to adjust its decision policy, a means
for approximating the evaluation function correspondingto a policy, such
as the TD procedure, has obvious utility. An evaluation function provides
an immediately accessible prediction of the long-term return a policy will
achieve throughoutthe future. This information can be used in adjusting
policies so that decisions are not dominated by the short-term conse-
quencesof behavior.If the evaluation function for a given policy is avail-
able, it is possible to select actions on the basis of their future consequences
without waiting for the future to unfold. Because it is unlikely that exact
evaluation functions are ever available to a behaving animal, evaluation-
function estimates mustserve instead. The TD procedureis a simple on-line
method for forming these estimates.

Wedistinguished the TD procedure from model-based methods which
use a model of the decision task in the form of estimates for the state-
transition and payoff probabilities of the system underlying the decision
task. The TD procedure is a direct method for estimating an evaluation
function. It does not rely on a model of the decision task. The lack of such
a model rules out many alternative strategies for basing decisions on

estimates of the long-term consequences of behavior. Without a model of
the decision task,it is not possible for the agent to implement conventional
dynamic programming methods, such as value or policy iteration, or to
perform explicit look-ahead planning of the type widely studiedin artificial
intelligence. Lacking a model, the agent cannot evaluate actions or action
sequences without actually performing them. Model-based methods are
more advanced than direct methodsandcan providecapabilities impossible
to obtain with direct methods.

594 Bartoetal.

However,the additional capabilities of model-based methods should not
diminish the appeal of direct methods as computational procedures and as
models of animal learning. Direct methods are not only much simpler than
model-based methods, they can be used in natural ways as components of
model-based methods. For example, it is as easy to apply the TD procedure
to state sequences contemplated with the aid of a task modelas tostate
sequences that are actually experienced. Additionally, direct methods ap-
plied to actual experience cannot be misled by modeling inaccuracies in the
same way that model-based methods can be. The desired consequences of
executing a carefully crafted plan based on an erroneous modelofreality
can bearlittle relation to what actually happens. Although direct methods
are themselves subject to many sources of inaccuracy, they do notrisk the
compounding of errors due to applying iterative methods to inaccurate
task models. By using, as it were, the real task as its own model, direct
methods maintain contact with the actual consequences of behavior.

Although wepresented the TD procedure as a synthesis of ideas from
stochastic dynamic programming and parameter estimation, the route-
finding example used throughout this chapter involves only the simplest
elements of these theories. Being a task with very simple, deterministic
state-transition and payoff structures,it does notillustrate the generality of
the dynamic programmingconcepts.Similarly, our applications of learning
methods to this task do not adequately illustrate the wide range of possi-
bilities for representing evaluation-function estimates and policies. Lookup
tables are easy to understand and can be useful in solving some tasks,
but the learning procedures presented here apply also when evaluation-
function estimates and policies are represented by other means, such as
connectionist networks parameterized by connection weights. Indeed, some
of the most interesting open questions concerning the learning procedures
described in this chapter concern their use with various kinds of state
representations and parameterized classes of functions. For example, the
kind of generalization produced by a representation can either aid the
learning process or hinderit, and methods can be studied for adaptively
re-representing functions during learning as proposed by Michie and
Chambers (1968) and Riordon (1969). Good features for representing poli-
cies will tend to be highly correlated with optimal actions, and good
features for representing evaluation functions will tend to provide descrip-
tions of states that are highly correlated with the optimal return available
from thosestates.

In addition to providing a framework in which to understand the opera-
tion of the TD procedure, the formalism of sequential decision making
provides a framework in which to study a variety of other problems
involving learning. Tasks requiring the control of incompletely known
dynamical systems are ubiquitous in engineering applications. They are

Learning and Sequential Decision Making 595

clearly related to problemsthat animals routinely solve by meansof learn-
ing, and they offer a rich set of challenges to designers of learning algo-
rithms. It is our hope that the connections described in this chapter en-
courage research which brings together ideas from animal learning theory,
behavioral ecology, and adaptive-control engineering. As we have atat-
tempted to show for the TD procedure, computational methods inspired
by biological learning are not necessarily simple special cases of existing
methods.

Acknowledgments

The authors acknowledge their indebtedness to C. W. Anderson and A. H.
Klopf, who contributed greatly to the development of the methods pre-
sented here. We also thank S.Bradtke, J. E. Desmond,J. Franklin, J. C. Houk,
A. I. Houston, and E. J. Kehoe for their helpful comments onearlier drafts
of this chapter, M. Rosenfield for figure reconstruction, and J. W. Moore
for his helpful criticism. A. G. Barto gratefully acknowledges the support
of the Air Force Office of Scientific Research, Bolling AFB, through grants
AFOSR-87-0030 and AFOSR-89-0526; the National Science Foundation,
through grant INT-8815252; andthe King’s College Research Centre in
Cambridge, England, where muchof this chapter was written.

_ Notes

1. Because ofits connection to theories and computational methods that are in widespread
use in many disciplines,it is not possible to describe all the literature relevant to the TD
procedure. However, we are not aware that methods are currently in use which
combine parameter estimation and dynamic programming in the way they are com-
bined in the TD procedure, although there has been much research on related problems.
(Ross 1983 and Dreyfus and Law 1977 provide good expositions of dynamic pro-
gramming, and notes 5 and 6 provide references to some of the related engineering
research on the adaptive control of Markov processes.) To the best of our knowledge,
the earliest example of a TD procedureis a technique used by Samuel (1959, 1967) in
a checkers-playing program. Samuel's program usedthedifference between the evalua-
tion of a board configuration and the evaluation of a likely future board configuration
to modify the equation used to evaluate moves. The evaluation equation was adjusted
so that its value when applied to the current board configuration cameto reflect the
utility of configurations that were likely to arise later in the game. Using this method,
it was possible to “assign credit” to moves that were instrumental in setting the stage
for later moves that directly captured the opponent's pieces. Minsky (1954, 1961)
discussed the credit-assignment problem and methods similar to Samuel's in terms of
connectionist networks and animal learning. Mendel and McLaren (1970) discussed
similar methods in the context of control problems, and the learning method of Witten
(1977), presented in the context of Markov decision problems,is closely related to the
method wedescribe here. Werbos (1977) independently suggested a class of methods
closely related to the TD procedure and wasthefirst, to the best of our knowledge, to
explicitly relate them to dynamic programming. Werboscalls these “heuristic dynamic

596 Bartoetal.

programming” methods. A similar connection was made recently by Watkins (1989),
whouses the term “incremental dynamic programming.”

Sutton (1984) developed the “adaptive heuristic critic” algorithm, which is closely
related to Samuel's method but is extended, improved, and abstracted away from the
domain of gameplaying. This work began with the interest of Sutton and Barto in
classical conditioning and with the exploration of Klopf’s (1972, 1982) idea of “gen-
eralized reinforcement,” which emphasized the importance of sequentiality in a neuro-
nal model of learning. The adaptive heuristic critic algorithm was used (although in
slightly different form)in the reinforcement-learning pole balancer of Barto, Sutton, and

Anderson (1983), where it was incorporated into a neuron-like unit called the “adaptive
critic element.” This system, which wasinspired by the “BOXES” system of Michie and
Chambers (1968), was further studied by Selfridge, Sutton, and Barto (1985) and by
Anderson (1986, 1987). Since then, Sutton (1988) has extended the theory and has
proved a numberoftheoretical results. His results suggest the TD procedures can have
advantages over other methodsfor adaptive prediction.
A number of other researchers have independently developed and experimented

with methods that use TD principles or closely related ones. The “bucket brigade”
algorithm of Holland (1986) is closely related to the TD procedure as discussed by
Sutton (1988) and by Liepins, Hilliard, and Palmer(in press). Booker’s (1982) learning
system employs a TD procedure, as does Hampson’s (1983) proposed learning system,
which is very similar to the one we discuss here. Other related procedures have been
proposed as models ofclassical conditioning in publications cited in chapter 12 of the
present volume.

2. Other formulations of sequential decision tasks result from different definitions of a
policy’s return. One formulation commonly studied defines a policy’s return as the
average amount of payoff per time step over a task’s duration. Ross (1983) also
discusses this formulation.

3. An action in a sequential decision task is not the same as a componentof the agent's
observable behavior. Observable behavior is a joint consequence of the agent's action
and the state of the system underlying the decision task. |

4. A large componentofartificial intelligence research concerns search strategies of this
type, called “heuristic search” strategies, although their objective is usually not to
maximize a measure of cumulative payoff. See Pearl 1984.

5. Most of the methods for the adaptive control of Markov processes described in the
engineering literature are model-based—see, for examples, Borkar and Varaiya 1979;
El-Fattah 1981; Kumar and Lin 1982; Lyubchik and Poznyak 1974; Mandl 1974;
Riordon 1969; Sato et al. 1982. Most of these methods apply to the case in which the
retum is the average payoff per time step and the underlying system is an ergodic
Markovchain for each possible policy. They differ in how the policy is adjusted over
time on the basis of the current estimates for the transition and payoff probabilities.

6. For examples of various direct methods for learning how to solve sequential-decision
tasks, see Lyubchik and Poznyak 1974; Lakshmivarahan 1981; Wheeler and Narendra
1986; Witten 1977. Most of these methodsrely on results about the collective behavior

of stochastic learning automata and ergodic Markov chains (see also Narendra and
Thathachar 1989).

7. Onesituation in which this sum is finite when y = 1 is when the structure of the task
ensures that all payoffs are O after a certain point in the decision task. However,
restricting y to be greater than 0 andstrictly less than 1 ensures a finite return underall

circumstances (if the payoffs themselvesare finite).
8. In this case, it is not necessary to know thetransition probabilities and the payoff

expectations for state-action pairs that can never occur with the given policy.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Learning and Sequential Decision Making 597

See Ross 1983 for a detailed discussion and proofof these results. Equation 7 defines aset of simultaneouslinear equations, one equation for each system state, which can besolved by matrix inversion. The successive application of equation 6 is an iterative
procedure for solving this system of equations. In practice, one continues to apply
equation6 forincreasing values of n until the difference between successive approxima-
tions becomessmaller than a predefined amount, or until some time limit is reached. Of
course, any resulting function can also be checked via equation 7 to see if it is the
desired evaluation function. Althoughthis method of successive approximations gener-
ally only approximates the actual evaluation function, in what follows we loosely refer
to the result of this computation as the actual evaluation function.
See Ross 1983 for a detailed discussion and proof of these results. If there is a finite
numberofstates and actions, as we are assuming throughoutthis chapter, this method
converges after a finite numberofiterations.
In adaptive control, where the modeling process is called system identification, the
functional relationship being modeled is a dynamical system which is usually more
complicated than a function from input to output (owing to the influence of internal
states—see Goodwin and Sin 1984). For our purposes, however,it suffices to discuss
only the modeling of input-output functions.
See Goodwinand Sin 1984. Their discussion of these issues forms the basis for our
remarks.
For some applications, it is commontolet some,orall, measurements produce only two
values to indicate, for example, whethera logical predicate applied to the object or state
is true orfalse. This is a special case of the framework adopted here.
Evenin thecase of a linear model, the model outputcan be a nonlinear function of input
patterns, because the ¢.functions can be nonlinear functions of the patterns. But because
these functions are not parameterized, they do notdirectly enter into the derivation of
a parameter-estimation method.
This is the special case in which each entry in M,is equal B for each t.
If one replaces the linear model of equation 15 with the linear threshold decision rule
given by expression 16, one obtains the perceptron learning rule of Rosenblatt (1961),
whichis identical to equation 21 except that the weighted sum 0°,is replaced by the
threshold of the weighted sum as defined by expression 16. These correspondencesare
explained in more detail in Barto 1985, Duda and Hart 1973, and Sutton and Barto
1981.

A function, f, from an n-dimensional space to the real numbers can be viewed as a
surface.If x is a point in the n-dimensional space, then the gradientoff at x is the vector

Of of .\"
(Zon eee ee) ,

where

of
ax,”

is the partial derivative off with respect the ith dimension evaluated at the point x. This
vectorpoints in the direction of the steepest increase of the surface at the pointx.
The error back-propagation method (Rumelhart et al. 1986) is derived by computing
this error gradient for a particular class of models in the form of layered connectionist
networks.
The model considered here is a model of the evaluation function, not of the decision
task; that is, it does not modelthe state-transition and payoff probabilities of the system
underlying the decision task.

598

20.

21.

22,

23.

24,

25.

26.

27.

Barto etal.

The resulting parameter update rule would be

V+ =O + Blriss + VViGr41) ~ V(x) (¢, ~ 1Pr41),

which is obtained by differentiating expression 30 with respect to v,. See Werbos (in
preparation).

When y = 0 (the case of the TD procedure equivalent to a one-step-ahead LMS
predictor), the leftmost “Evaluation Function Model” box for each time step becomes
disconnected, and the flow of computationis identical to that shown in figure 4 for the
task of modeling an unknown function whose true evaluations becomeavailable to the
estimation process in one timestep.

The procedure used by Barto etal. (1983) for the “Adaptive Critic Element” in their
pole balancer differs from the TD procedure describedhere in that it computes a single
evaluation for each feature vector at each time step. In termsoffigure 5, the leftmost
“Evaluation Function Model” for each time step is missing and the result of the
rightmost computation is fed leftward into the summation unit. If changes in parameter
values remain small, this is a reasonable approximation to the TD procedure described
here, but it can become unstableif the parameter values change rapidly (Sutton 1984,
1988). The Adaptive Critic Element also uses stimulus traces as in the TD model of
conditioning described by Sutton and Barto in chapter 12 of this volume.
Setting v9; = 0 in the linear model does not limit the model's ability to represent
arbitrary evaluation functions of the 96 states, but it does prevent a simple form of
generalization in which vg, might be adjusted to equal, for example, the average state
evaluation.
A lookup-table representation of a function is simply list of its values. To evaluate the
function for a particular item in its domain, one simply accesses the entry in the place
in the table corresponding to that item. Here, ¢(x) can be thoughtof as accessing the
place where 2, is stored.
Much ofthe study of parameter estimation, especially in the context of connectionist
networks, is concerned with the problem of finding representations and classes of
models thatfacilitate useful formsof transfer or extrapolation, often called generaliza-
tion. See, of example, Anderson and Rosenfeld 1988; Hinton and Anderson 1981;
McClelland and Rumelhart 1986; Rumelhart and McClelland 1986. Most of these
methods for representation and modeling obviously can be used to advantage with the
TD procedure in the route-finding example, but the lookup-table representation allows
us to addressin a simple form the issues most relevant to the focus of this chapter.
Some of the issues that arise when more complicated representations are used in
sequential decision tasks are discussed in Sutton 1984, and examplesinvolving other
representations are provided by Anderson’s (1987) use of layered networks in the
pole-balancing problem and Watkin’s (1989) use of the representation method pro-
posed by Albus (1979) in a model of the cerebellum.

Sutton (1984) calls this the “reinforcement comparison” approach to reinforcement
learning.
Someof the rules for adjusting stochastic policies have been inspired by the theory of
stochastic learning automata developed by cybemeticians and engineers (Narendra and
Thathachar 1989; Tsetlin 1973). A precursor of this theory is the statistical learning
theory developed by psychologists (Bush and Mosteller 1955; Estes 1950). Barto and
Anandan (1985) and Barto (1985, 1989) discuss a learning rule ofthis kind called the
Associative Reward/Penalty (Ag_p) rule. Sutton (1984), Anderson (1986, 1987), and
Gullapalli (1988) describe the results of computer simulations of related methods.
Williams (1986, 1987) provides theoretical analysis of a more generalclass of stochastic

learning rules. There are other approaches to reinforcement learning that we do not

Learning and Sequential Decision Making 599

addressatall in this chapter. These include the estimation of evaluations of state-action
pairs instead of just states (Watkins 1989), the computation ofevaluation gradients us-
ing the model of the evaluation function (Munro 1987); Werbos 1987, 1988; Robinson
and Fallside 1987; Williams 1988, and the use of systematic, instead of stochastic,
variation in activity.

References

Albus,J. S. (1979) Mechanismsof planning and problem solving in the brain. Mathematical
Biosciences 45: 247-293.

Anderson, C. W. (1986) Learning and Problem Solving with Multilayer Connectionist
Systems. Ph.D. thesis, University of Massachusetts, Amherst.

Anderson, C. W. (1987) Strategy Learning with Multilayer Connectionist Representations.
Technical report TR87-509.3, GTE Laboratories, Inc., Waltham, Mass. This is a cor-
rected version of the report published in Proceedings of the Fourth International Workshop
on Machine Learning (Morgan Kaufmann).

Anderson, J. A., and Rosenfeld, E., editors (1988) Neurocomputing: Foundations of Research.
MITPress.

Barto, A. G. Connectionist leaming for control: An overview.In Miller, T., Sutton, R. S, and
Werbos, P.J., editors, Neural Networks for Control (MIT Press, forthcoming).

Barto, A. G. (1985) Learningbystatistical cooperation ofself-interested neuron-like comput-
ing elements. Human Neurobiology 4: 229-256.

Barto, A. G. (1989) From chemotaxis to cooperativity: Abstract exercises in neuronal
learning strategies. In Durbin, R., Maill, R., and Mitchison, G., editors. The Computing
Neuron (Addison-Wesley). |

Barto, A. G., and Anandan, P. (1985) Pattern recognizing stochastic learning automata. IEEE
Transactions on Systems, Man, and Cybernetics 15: 360-375.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983) Neuronlike elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics
13: 835-846. Reprinted in J. A. Anderson and E. Rosenfeld, eds., Neurocomputing:
Foundations of Research (MIT Press, 1988).

Bellman,R. E. (1957) Dynamic Programming. Princeton University Press.
Booker, L. B. (1982) Intelligent Behavior as an Adaptation to the Task Environment. Ph.D.

thesis, University of Michigan, Ann Arbor.
Borkar, V., and Varaiya, P. (1979) Adaptive control of MarkovchainsI: Finite parameterset.

IEEE Transactions on Automatic Control 24: 953-957.
Bush, R. R., and Mosteller, F. (1955) Stochastic Models for Learning. Wiley.
Dickinson, A. (1980) Contemporary Animal Learning Theory. Cambridge University Press.
Dreyfus, S. E., and Law, A. M. (1977) The Art and Theory of Dynamic Programming. Academic

Press.
Duda, R. O., and Hart, P. E. (1973) Pattern Classification and Scene Analysis. Wiley.
El-Fattah, Y. (1981) Recursive algorithmsfor adaptive controlof finite Markov chains. IEEE

Transactions on Systems, Man, and Cybernetics 11: 135-144.
Estes, W. K. (1950) Toward

a

statistical theory of learning. Psychological Review 57: 94—107.
Feldman, J. A., and Ballard, D. H. (1982) Connectionist models and their properties. Cagni-

tive Science 6: 205-254.
Goodwin, G. C., and Sin, K. S. (1984) Adaptive Filtering Prediction and Control. Prentice-Hall.
Gullapalli, V. (1988) A stochastic algorithm for learningreal-valued functionsvia reinforce-

ment feedback. Technical report 88-91, University of Massachusetts, Amherst.
Hampson,S. E. (1983) A Neural Model of Adaptive Behavior. Ph.D.thesis, University of

California, Irvine.

600 Barto etal.

Hinton, G. E., and Anderson, J. A., editors (1981) Parallel Models of Associative Memory.
Erlbaum.

Holland, J. H. (1986) Escaping brittleness: The possibility of general-purpose learning
algorithms applied to rule-based systems. In Michalski, R. S$. Carbonell, J. G, and _
Mitchell, T. M., editors, Machine Learning: An Artificial Intelligence Approach, volume 2
(Morgan Kaufmann).

Houston, A., Clark, C., McNamara,J., and Mangel, M. (1988) Dynamic modelin behavioral
and evolutionary ecology. Nature 332: 29-34.

Howard,R. (1960) Dynamic Programming and Markov Processes. MIT Press.
Klopf, A. H. (1972) Brain function and adaptive systems—A heterostatic theory. Technical

report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, Mass. A
summary appears in Proceedings of the International Conference on Systems, Man, and
Cybernetics, 1974 (IEEE Systems, Man, and Cybernetics Society, Dallas).

Klopf, A. H. (1982) The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence.
Hemisphere.

Krebs, J. R., Kacelnik, A., and Taylor, P. (1978) Test of optimal sampling by foraging great
tits. Nature 275: 2M—31.

Kumar, P. R., and Lin, W. (1982) Optimal adaptive controllers for unknown Markovchains.
IEEE Transactions on Automatic Control 25: 765-774.

Lakshmivarahan, S. (1981) Learning Algorithms and Applications. Springer-Verlag.
Liepins, G. E., Hilliard, M. R., and Palmer, M. Credit assignmentanddiscovery in classifier

systems. International Journalof Intelligent Systems (in press).
Ljung, L., and Sdderstom, T. (1983) Theory and Practice of Recursive Identification. MIT Press.
Lyubchik, L. M., and Poznyak, A. S. (1974) Learning automata in stochastic plant control

problems. Automatic and Remote Control (USSR) 35: 777-789.
Mandl, P. (1974) Estimation and control in Markov chains. Advances in Applied Probability 6:

40-60.

Mangel, M., and Clark, C. W. (1988) Dynamic Modeling in Behavioral Ecology. Princeton
University Press.

McClelland,J. L., et al. (1986) Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, volume 2: Applications. MIT Press.

Mendel, J. M., and McLaren, R. W. (1970) Reinforcement learning control and pattern
recognition systems. In Mendel, J. M., and Fu, K. S., editors, Adaptive Learning and
Pattern Recognition Systems: Theory and Applications (Academic Press).

Michie, D., and Chambers, R. A. (1968) BOXES: An experimentin adaptive control. In Dale,
E., and Michie, D., editors, Machine Intelligence 2 (Oliver and Boyd).

Minsky, M.L. (1954) Theory of Neural-Analog Reinforcement Systemsandits Application
to the Brain-Model Problem. Ph.D.thesis, Princeton University.

Minsky, M.L. (1961) Steps toward artificial intelligence. Proceedings of the Institute of Radio
Engineers 49: 8—30. Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers
and Thought (McGraw-Hill).

Munro,P. (1987) A dual back-propagation schemefor scalar reward learning. In Proccedings
of the Ninth Annual Conference of the Cognitive Science Society (Erlbaum).

Narendra, K., and Thathachar, M. A. L. (1989) Learning Automata: An Introduction. Prentice-
Hall.

Pearl, J. (1984) Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley.

Rachlin, H., Battalio, R., Kagel, J., and Green, L. (1981) Maximization theory in behavioral
psychology. Behavioral and Brain Sciences 4: 371-417.

Rescorla, R. A. (1987) A Pavlovian analysis of goal-directed behavior. American Psychologist
42: 119-129.

Learning and Sequential Decision Making 601

Rescorla, R. A., and Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in

the effectiveness of reinforcement and nonreinforcement. In Black, A. H., and Prokasy,
W.F., editors, Classical Conditioning II (Appleton-Century-Crofts).

Riordon,J. S. (1969) An adaptive automaton controller for discrete-time Markov processes.
Automatica 5: 721-730.

Robinson, A. J., and Fallside, F. (1987) The Utility Driven Dynamic Error Propagation
Network. Technical report CUED/F-INFENG/TR.1, Cambridge University Engineer-
ing Department.

Rosenblatt, F. (1961) Principles of Neurodynamics: Perceptrons and the Theory of Brain Mecha-
nisms. Spartan Books.

Ross, S. (1983) Introduction to Stochastic Dynamic Programming. Academic Press.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) Learning internal representations
by error propagation. In Rumelhart, D. E., et al. Parallel Distributed Processing: Explora-
tions in the Microstructure of Cognition, volume 1: Foundations (MIT Press).

Rumelhart, D.E., et al. (1986) Parallel Distributed Processing: Explorations in the Microstructure

of Cognition, volume 1: Foundations. MIT Press.

Samuel, A. L. (1959) Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, pp. 210—229. Reprinted in E. A. Feigenbaum and
J. Feldman, editors, Computers and Thought (McGraw-Hill, 1963).

Samuel, A. L. (1967) Some studies in machine learning using the game of checkers. II—
Recent progress. IBM Journal onResearch and Development, pp. 601-617.

Sato, M., Abe, K., and Takeda, H. (1982) Learning control of finite Markov chains with

unknowntransition probabilities. IEEE Transactions on Automatic Control 27: 502-505.
Selfridge, O., Sutton, R. S., and Barto, A. G. (1985) Training and tracking in robotics. In

Joshi, A., editor, Proceedings of the Ninth International Joint Conference of Artificial In-
telligence (Morgan Kaufmann).

Sklansky, J., and Wassel, G. N. (1981) Pattern Classifiers and Trainable Machines. Springer-
Verlag.

Staddon, J. E. R. (1980) Optimality analyses of operant behavior and their relation to
optimalforaging. In Staddon, J. E. R., editor, Limits to Action: The Allocation of Individual
Behavior (Academic Press).

Sutton, R. S. (1984) Temporal Credit Assignment in Reinforcement Learning. Ph.D. thesis,
University of Massachusetts, Amherst. |

Sutton, R. S. (1988) Learning to predict by the methods of temporal differences. Machine
Learning 3: 9—44.

Sutton, R. S, and Barto, A. G. (1981) Toward a moden theory of adaptive networks:
Expectation and prediction. Psychological Review 88: 135-171.

Sutton, R. S., and Barto, A. G. (1987) A temporal-difference modelof classical conditioning.
In Proceedings ofthe Ninth Annual Conference of the Cognitive Science Society (Erlbaum).

Thorndike, E. L. (1911) Animal Intelligence. Darien, Conn.: Hafner.

Tsetlin, M. L. (1973) Automaton Theory and Modeling of Biological Systems. Academic Press.
Watkins, C. J. C. H. (1989) Learning from Delayed Rewards. Ph.D. thesis, Cambridge

University.
Werbos,P.J. (1977) Advanced forecasting methodsfor global crisis warning and models of

intelligence. General Systems Yearbook 22: 25-38.
Werbos,P. J. (1987) Building and understanding adaptive systems: A statistical/numerical

approachto factory automation and brain research. IEEE Transactions on Systems, Man,
and Cybernetics 17: 7—20.

Werbos, P.J. (1988) Generalization of back propagation with applications to a recurrent gas
market model. Neural Networks 1: 339-356.

602 Barto etal.

Werbos,P.J. (1990) Consistency of HDPapplied to simple reinforcement learning problem.
Neural Networks 3: 179-189.

Wheeler, R. M., and Narendra, K. S. (1986) Decentralized learning in finite Markov chains.

IEEE Transactions on Automatic Control 31: 519-526.

Widrow,B., and Hoff, M. E. (1960) Adaptive switching circuits. In 1960 WESCON Conven-
tion Record. Reprinted in J. A. Anderson and E. Rosenfeld, eds., Neurocomputing: Founda-
tions of Research (MIT Press, 1988).

Widrow,B., and Stearns, S. D. (1985) Adaptive Signal Processing. Prentice-Hall.

Williams, R. J. (1986) Reinforcement learning in connectionist networks: A mathematical
analysis. Technical report 8605, Institute for Cognitive Science, University of Cali-
fornia of San Diego.

Williams, R. J. (1987) Reinforcement-learning connectionist system. Technical report 87-3,
College of Computer Science, Northeastern University.

Williams, R.J. (1988) On the use of backpropagation in associative reinforcement learning.
In Proceedings of the IEEE International Conference on Neural Networks, San Diego.

Witten, I. H. (1977) An adaptive optimal controller for discrete-time Markov environments.
Information and Control 34: 286-295.

