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Abstract—Many software development organizations strive to enhance the productivity of their developers. All too often, efforts aimed
at improving developer productivity are undertaken without knowledge about how developers spend their time at work and how it
influences their own perception of productivity. To fill in this gap, we deployed a monitoring application at 20 computers of professional
software developers from four companies for an average of 11 full work day in situ. Corroborating earlier findings, we found that
developers spend their time on a wide variety of activities and switch regularly between them, resulting in highly fragmented work.

Our findings extend beyond existing research in that we correlate developers’ work habits with perceived productivity and also show
productivity is a personal matter. Although productivity is personal, developers can be roughly grouped into morning, low-at-lunch and
afternoon people. A stepwise linear regression per participant revealed that more user input is most often associated with a positive,
and emails, planned meetings and work unrelated websites with a negative perception of productivity. We discuss opportunities of our
findings, the potential to predict high and low productivity and suggest design approaches to create better tool support for planning

developers’ work day and improving their personal productivity.

Index Terms—Productivity, developer activity, work fragmentation, interruptions, human factors, user studies

1 INTRODUCTION
A software developer’s work day might be influenced by
a wide variety of factors such as the tasks being per-
formed, meetings, interruptions from co-workers, the infra-
structure or the office environment (e.g., [1], [2], [3]). Some
of these factors result in activity and context switches that
can cause fragmented work and that can have a negative
impact on the developer’s perceived productivity, progress
on tasks, and quality of output (e.g., [4], [5]). As a result,
researchers and practitioners have both had a long interest
in better understanding how developers work and how
their work could be quantified to optimize productivity and
efficiency.

Researchers have investigated work practices and work
fragmentation in detail from various perspectives, specifi-
cally the effect of interruptions on fragmentation (e.g., [6],
[71, [8], [9]) and how developers organize their work in
terms of tasks and working spheres (e.g., [5], [10]). Using
both a diary and an observational study format to under-
stand software developer work practices, Perry and col-
leagues gained several insights, including that most time

A.N. Meyer and T. Fritz are with the University of Zurich, Ziirich 8006,
Switzerland. E-mail: {ameyer, fritz)@ifi.uzh.ch.

L.E. Barton and G.C. Murphy are with the University of British Columbia,
Vancouver, BC V6T 174, Canada.

E-mail: n4v9a@ugrad.cs.ubc.ca, murphy@cs.ubc.ca.

T. Zimmermann is with Microsoft Research, Redmond, WA 98052.
E-mail: tzimmer@microsoft.com.

Manuscript received 9 May 2016; revised 21 Nov. 2016; accepted 11 Jan.
2017. Date of publication 22 Jan. 2017; date of current version 18 Dec. 2017 .
Recommended for acceptance by A.J. Ko

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2017.2656886

<+

was spent coding, and that there was a substantial amount
of unplanned interaction with colleagues [2]. Singer and col-
leagues, using several study methods including tool usage
statistics, found that developers spent most of their time
reading documentation and that search tools were the most
heavily used [3]. Since the time these earlier studies on
developers” work practices were conducted, empirical stud-
ies of software development have focused more on particu-
lar aspects of a developer’s work day. For example, Ko et al.
observed software developers to determine what informa-
tion was needed to perform their work and how they found
that information [11]. Other studies have focused on how
developers spend their time inside the Integrated Develop-
ment Environment (IDE) (e.g., [12], [13]). The industry has
also seen an increasing trend with self-monitoring tools to
track activity and work habits, with applications such as
RescueTime [14] or Codealike [15].

Starting in the 1970s, researchers have also been explor-
ing various different ways to quantify a developer’s produc-
tivity. Most of these identified productivity measures
capture a small part or single aspect of a developer’s work,
such as the number of tasks per month [16], the number of
lines of code written [17], or the resolution time for a modifi-
cation request [18]. However, these studies on productivity
are generally separate from studies of work fragmentation
and of how developers work. Furthermore, these measures
do not take into account the individual differences in devel-
opment work that might affect productivity as pointed out
by previous work [5], [19], [20], [21].

In this paper, we study developers’” work practices
and the relationship to the developers’ perceptions of pro-
ductivity more holistically, while also examining individual
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differences. In particular, our study seeks to answer the fol-
lowing research questions:

RQ1 What does a developer’s work day look like?

RQ2 How fragmented is a developer’s work?

RQ3  Are there observable trends in how developers per-
ceive their productivity?

RQ4 What is the relationship between developers’ activity

and perceived productivity at work?

To investigate these questions, we designed and con-
ducted a study involving the monitoring of 20 developers’
interactions with their computer over a two week time
period. From this monitoring, we were able to gather logs
describing how a developer was interacting with the com-
puter (i.e., through the keyboard or the mouse) and in what
applications the interaction was occurring. Our monitoring
also gathered self-reports from the developers about their
current task(s) at 60 minutes time intervals, and a self-rating
of their perceived productivity. The 20 developers from
whom we gathered data worked for 4 different companies
of varying size, with varying projects, project stages and
customers, providing more diversity in our results than has
been available in previous holistic studies. This approach
also allows us to see whether earlier research findings, such
as how much time developers actually spend coding [2] and
typical coding related activities [22], hold in contemporary
development, and to enhance emerging theories about frag-
mented knowledge work [10].

Based on our analysis of the gathered data, we observed
that productivity is a highly personal matter and perceptions
of what is considered to be productive are different across
developers. No one model we built relating actions and
activity to perceived productivity was able to explain a large
number of developers. However, we did find that many
developers consider email, planned meetings and work
unrelated browsing as less productive activities, and usually
perceive themselves as more productive when they have a
higher user input rate as measured by mouse clicks and key-
strokes. Further, developers” work is highly fragmented, as
developers are spending only very short amounts of time
(0.3 to 2 minutes) in one activity before switching to another
one. Even though we observed that some aspects of a devel-
oper’s work habits are highly individual we found consistent
trends across multiple people. For example, some developers
parcel their work out over a longer time span, while others
choose to contain their work time and stay off of the com-
puter during the evening. Some seem to be morning people,
with higher productivity ratings in the morning hours,
others are afternoon people. Finally, we discuss implications
and opportunities of our findings to help improve and pre-
dict developer productivity.

This paper provides the following contributions:

e it provides insights into software developers” work
habits, including the frequency and duration of per-
forming particularly activities and application use;

e it provides data about the rhythms in developers’
perceived productivity, which opens opportunities
for retrospective tools and recommender systems for
when developers might best perform particular
activities;
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e it demonstrates that productivity patterns for indi-
viduals are consistent, but vary when comparing
across groups of software developers; and,

e it shows that perceived productivity and the factors
that influence it, such as emails, meetings, or activity
switches, are highly individual.

Section 2 presents relevant related work on developers’
work practices, the high fragmentation of their work,
approaches on quantifying development activities and on
measuring productivity. Sections 3 and 4 describe the study
method employed and the data collected. Section 5 presents
the results of our study in terms of what a developer does,
the fragmentation of a developers” work, the rhythms of a
developer’s perceived productivity and which activities
and actions a developer perceives as productive. Section 6
outlines the threats to our results. Section 7 discusses impli-
cations and opportunities of the findings of our study for
future tool support and presents results of a preliminary
analysis on predicting two levels of productivity. Section 8
summarizes the paper.

2 RELATED WORK

Related work can broadly be classified into four categories:
developers” work practices, work fragmentation, the quanti-
fication of development activities and productivity.

2.1 Developers’ Work Practices

Early studies that focus on a holistic perspective of how
software developers spend their time at work, were con-
ducted by Perry et al. and Singer et al. With two experi-
ments, a diary-study and observations, Perry et al. found
that by far most time was spent on coding, that there is
much unplanned interaction with colleagues, and that work
is generally performed in two-hour chunks [2]. Using a
combination of surveys, interviews, observations, and col-
lecting tool usage statistics, Singer and colleagues found
that software developers spend most of their time searching
for information as well as reading documentation and
source code [3]. Most empirical studies since then have
focused on various specific aspects of software develop-
ment, such as the collaboration and communication of
developers [23], the typical activities and tools related to
coding [22], as well as developers information needs [11]
and comprehension of software [24]. As an example, Gon-
calves and colleagues found in their observations and inter-
views that developers spend 45 percnet of their time
collaborating, 32 percent for seeking information, and they
only use software process tools during 9 percent of their
time [23]. More recent studies by Minelli et al. [12] and
Amann et al. [13] focused on how developers spend their
time inside the IDE.

Our work confirms some of these findings, such as the lit-
tle time developers spend in software development tools
and on actual coding related activities. At the same time, it
provides a more holistic and more complete picture of how
a developer’s work day looks across several companies and
with detailed insights into how developers spend their
work time on their computer (also outside the IDE), what
programs they are using during their work, and how their
work spreads over the whole day.
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2.2 Work Fragmentation

One aspect of developers” work that has drawn much atten-
tion is the fragmentation of work. Developers work is frag-
mented and frequently interrupted, for instance, due to
planned meetings, unexpected requests from a co-worker,
unplanned or blocking tasks or even just background noise in
the office. A large body of research has investigated interrup-
tions—a major reason for fragmentation—in great detail, e.g.,
the length and types of interruptions, the frequency of self-
versus externally initiated interruptions, their social context,
the response time to certain types of interruptions, resump-
tion strategies after an interruption, and their impact on work
performance [6], [7], [8], [25], [26], [27], [28]. For example, by
observing software developers and other information work-
ers at work, Mark et al. found that 57 percent of all tasks are
interrupted and are thus often fragmented into small work
sessions [29] and Chong and Siino found that most interrup-
tions—many of them were also self-initiated—lasted around
2 to 3 minutes [26]. While many of these interruptions are nec-
essary, they can lead to a higher error rate, slow task resump-
tion and an overall lower work performance [9], [30], [31],
[32]. Parnin and Rugaber found, for instance, that only one
out of ten interrupted programming tasks is being continued
within a minute after the interruption [9].

Looking more broadly at the fragmentation of work,
researchers have also investigated how developers organize
their work in terms of tasks or working spheres (interrelated
events that share a common goal), and the switching between
these. In a study over a 7 month period, Gonzalez and Mark
observed and interviewed software developers and found
that there is a high level of discontinuity in developers’ work,
with an average of 3 minutes spent per task before switching,
and an average of 11.5 minutes per working sphere [10]. In an
extension of this study, Mark and colleagues also examined
the influence of collocation and interruptions on the work
fragmentation [29]. More recently, Sanchez and colleagues
used interaction logs with an IDE to analyze fragmentation on
software evolution tasks. Their analysis found that more inter-
ruptions and longer activity switches lead to a smaller edit
ratio, indicating a lower productivity [33]. Further, they found
that short breaks or interruptions between 3 to 12 minutes are
most prevalent in developers’ work with an IDE.

Supporting previous research on work fragmentation, we
found that developers spend their time on a wide variety of
activities and that they spend very little time in each one
before switching to another. As one example, our results
show that developers switch activities on average after less
than two minutes except for meetings, which confirms the
short switching times that Gonzdlez and Mark found [10].
Similarly, our results on developers having an average of 2.5
short breaks away from their computer per hour, with about
4 minutes of duration each, confirm the high frequency and
impact of self- and externally initiated interruptions reported
in other studies (e.g., [8], [26]). Our study extends previous
research, by examining activities performed during a devel-
oper’s work day from a more holistic perspective and by cor-
relating them with perceived productivity.

2.3 Quantification of Work Activities

An increasing amount of people are using applications and
wearable devices to track certain aspects of their lives, in
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particular related to physical activity and health [34], [35].
These applications provide users an opportunity to reflect
upon their own activities as well as they support an
improvement therein, such as a more active lifestyle [36],
[37], [38], [39]. Along with this ‘quantified self’ movement
of activity tracking, new applications such as Rescue-
Time [14], TimeAware [40] and Hubstaff [41] have been
developed to expand the self-quantification to work activi-
ties by automatically tracking and summarizing a worker’s
computer activity, sometimes even providing some produc-
tivity scores as in the case of RescueTime. A few of these
applications, including Codealike [15] and Wakatime [42],
also specifically target software developers and their work
activities within the IDE.

In our study, we are also tracking all interactions of a
developer with their computer, similar to but on a finer
grained level than the mentioned tools and use the collected
data to analyze developers’ work, activities and practices
and how it relates to their perceived productivity.

2.4 Quantification of Productivity at Work
Early on, researchers and practitioners explored multiple
ways to quantify productivity of developers” work. Most of
these productivity measures are based on a single artifact or
deliverable over a time interval, for instance, the number of
lines of source code (SLOC) written in a time interval [43],
[44], [45], the number of function points per month [46],
[47], the number of tasks completed per month [16], or the
resolution time for modification requests [18], [48]. A more
complete list of approaches to quantify productivity on the
technical factors can be found in our previous work [5].
Most of these measures only capture a small part of a devel-
oper’s work, also making it difficult to provide a more holis-
tic picture of a developer’s work and productivity [49]. The
Personal Software Process (PSP) has taken this a step further
by focusing on a set of basic metrics, such as time, size, qual-
ity, and schedule data, with the aim of improving an indi-
vidual developer’s skills and quality of work [19], [20], [50].

Researchers have also looked more broadly into the factors
that affect the productivity of software development. In their
systematic literature review, Wagner and Ruhe listed related
work in a chronological order, starting in the late 1970s [51].
They categorized factors that influence productivity into
technical (related to the product, process or IDE) and soft fac-
tors (related to the company and team culture, the
developer’s capabilities and experience and the work envi-
ronment). DeMarco and Lister found, for instance, that the
characteristics of a workplace, such as noise, privacy, and
interruptibility can have a significant influence on a devel-
oper’s performance for a given task [1]. As further examples,
Boehm looked at factors such as the hiring of people and the
use of language and tools, and their impact on improving
development output [4] and Vasilescu et al. examined the
influence of project-switching on productivity [21]. More
recent studies have also looked more at soft factors on the
individual level, such as the correlation of affective states and
self-assessed productivity for programming tasks [52], or the
impact of mood on performance for debugging tasks [53].

In a previous study, we took a first cut at investigating
the trends and activities in developers” work with respect to
their perceptions of productivity based on observations and
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TABLE 1
Study Participants (IC: Individual Contributor, Distribution Is on
a Seven-Point Likert Scale: Left = “Not at All Productive” (1),
Right = “Very Much Productive” (7))

Participant Total Dev. Prof. Dev.|# Work| Perc. Prod. Ratings
ID  Comp. Role [Experien. Experien.| Days # Distribution
s1 C IC 15 10 8 45 —=fllE_
s2 C IC 25 18 8 101 _ .=l
s3 C IC/Lead| 23 16 9 62 (11 | =
s4 C Ic 20 15 8 9% _.=ll.
S5 C IC 19 15 8 40 _ami.
6 C IC/Lead| 20 20 8 62 allu_
s7 C IC 16 11 15 80 _ulB_
S8 C IC 40 40 11 73 g
s9 C IC 29 29 12 89 .. _will
s10 C IC 225 19 12 92 JEL
s11 B Lead 14 6 9 51 __—willa
s12 B IC 15 0.5 7 40 -__ul
S13 D Lead 23 12 10 76 mmmsl_-
s14 D IC 8 4 9 88 —mull_
s15 D IC 5 1 9 71 —=lnm
s16 A IC 20 15 11 2 _ _Hlua
s17 A IC 19 5 17 62 =0g
518 A Lead 17 17 16 53 Hla
s19 A IC/Lead| 33 23 20 100 wHlE_
$20 A IC 8 7 13 30 B _m_
Average 18.9 14.2 11.0 | 67.6

people’s self-reporting [5]. This, however, left several ques-
tions unanswered, especially on what a developer’s work
day actually looks like, and how this relates to productivity
over a longer period in time. We attempted to answer these
lingering questions in this paper with a multiple-week field
study of industrial software developers. Our work provides
findings on various measures to model developer produc-
tivity and on the individual differences therein.

3 STuDY METHOD

To answer our research questions, we conducted an in situ
study at four international software development compa-
nies of varying size. We collected data from 24 professional
software developers using a combination of experience
sampling (diary study) and a background monitoring appli-
cation. The monitoring application logged a wide range of
digital activities over several weeks with detailed precision.
Experience sampling was used to collect participants’ per-
ceptions of productivity, as well as self-reported tasks and
activities they performed throughout their work day.

3.1 Participants

We used personal contacts, emails and sometimes a short
presentation at the company to recruit participants. Of the
total 24 participants, we discarded the data of four partici-
pants as they did not respond to a sufficient amount of
experience samples. Two participants responded to less
than 5 experience samples over the course of the study, as
they thought it was too intrusive for their work. The other
two participants responded to very few samples since they
were either working on a different machine as the one ini-
tially indicated or did not use their machine for more than
an hour per work day.
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Of the remaining 20 participants, 1 was female and 19
were male. All participants are professional software devel-
opers, with varying roles between individual contributors'
and lead. At the time of the study, our participants had an
average of 14.2 years (£9.6, ranging from 0.5 to 40 years) of
professional software development experience and an aver-
age of 18.9 years (£ 9.2, ranging from 1.5 to 40 years) of total
software development experience, including education. An
overview of our participants can be found in Table 1.

To capture various kinds of software development prac-
tices, we sampled developers from 4 different companies of
varying size, in different locations and project stages, using
different kinds of programming languages, and with differ-
ent kinds of products and customers. Companies resided
either in the USA (company A), Canada (company B and C)
or Switzerland (company D). The company sizes varied
from less than 10 developers (company D), to a few hun-
dred (company C), and thousands of developers (company
A and B). The project stages varied from working on initial
releases (company D), over working on a next big release
(company D and B) to being in a project maintenance cycle
(company A and C). The developers in company A were
mainly programming in C++ and C#, in company B in Java
and C#, in company C in JavaScript, C# and SQL, and in
company D in JavaScript, Java, C# and SQL. The products
developed by the companies range from developer support
tools, to power monitoring and robotics software, all the
way to cloud-solutions for B2B and B2C customers.

3.2 Procedure and Monitoring Application

The monitoring application was developed and tested to
run on the Windows 7, 8 and 10 operating system. To make
sure it works properly, the collected data is accurate and to
optimize the performance, we deployed the tool in multiple
steps. After an initial phase of extended testing on three
researchers’ machines, we deployed it to three developers
in company B and one developer in company C over several
weeks, to ensure correct functionality in many different
computer set-ups and use cases and to ensure the tool is sta-
ble and reliable enough for daily use.

We then installed the monitoring application on the first
day of the study after a presentation that included an intro-
duction to the study and details on the data that was being
collected with the monitoring application. Participants were
assured of the anonymity and privacy of their data and were
shown the location where the logged data was stored on their
computer to give them full control over their data. Partici-
pants had the opportunity to censor parts of the collected
data, which was reportedly done a few times, e.g., when par-
ticipants were using their private e-banking. The monitoring
application logged the currently active process and window
title every 10 seconds, or an ‘idle” entry in case there was no
user input for longer than 10 seconds. In addition an event
for each mouse click, movement, scrolling, and keystroke
was logged. For keystrokes, we avoided implementing a key
logger and only logged the time-stamp of any pressed key.

Perceived Productivity Self-Reports. To capture how devel-
opers perceive their own productivity, we used experience

1. We defined an individual contributor as an individual who does
not manage other employees.
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Fig. 1. Notification to prompt participants to respond to the experience sampling survey.

sampling in the form of regular self-reports. Experience
sampling has previously been used in multiple studies (e.g.,

[8], [54], [55], [56]), and allowed us to capture perceived
productivity on a periodic and fine granular basis. For the
experience sampling, a notification window appeared on
the bottom right corner of the participants’” main screen in
regular intervals (see Fig. 1a) prompting the participant to
answer a short survey on productivity. To minimize the risk
of negatively influencing the participant’s work, the notifi-
cation window also offered options to postpone the survey.
By default, the notification window was shown every
60 minutes, but participants could also change the interval,
which was only done by one participant who changed it to
a 90 minute time interval. Additionally, participants were
also able to manually trigger the survey in case they wanted
to answer the questions more often. If the participant was
regularly working on a virtual machine or secondary
device, we installed the application on the other devices as
well, but disabled the pop-ups so as to not interrupt the
participant more than necessary. Overall, participants
answered 74.6 percent of the triggered self-reports within
five minutes of the notification, 21.6 percent were post-
poned for an average of 38 (£43) minutes, and 3.8 percent
were ignored.

Once the participant started the self-reporting, another
window with the survey appeared (see Fig. 1b). This survey
asked participants about their perceived level of productiv-
ity for the previous work session using a seven-point Likert
scale and to specify the activities and tasks they performed.
To facilitate the participant’s response, the text boxes
offered auto-completion and quick-insert buttons for fre-
quently used and previously inserted activity descriptions.
We only used a single question on productivity to minimize
the disruption and also since previous research has shown
that participants interpret different terms of productivity,
such as efficiency, effectiveness, or accomplishment, very
similar [56]. Since the survey questions remained the same
throughout the study and were related to the current

context, we expected the cognitive burden on the partici-
pant and the distraction for answering the survey to be rela-
tively low, as also illustrated in other research [31], [57].
Participants used an average of 33.5 (£ 39.4) seconds to
answer the two questions. We found no significant differen-
ces in the total number of times participants answered the
survey per day over the whole course of the study, suggest-
ing that they used similar effort throughout the study and
the burden of answering did not increase for them.
Procedure. After we explained the study and installed the
application, we asked participants to resume their normal
working habits during the period of the study and answer
the experience sampling probes when the pop-up appeared.
We also told participants to ask us any questions about the
study, the application or captured data at any point in time
during the study. At the end of the study, we interviewed
each participant to collect demographic information and
information on the project they were working on, the com-
pany and their experience of using the monitoring tool and
participating in the study. We then collected the monitoring
and self-report data and un-installed the application. Table 2
summarizes the data we collected from the participants.

4 DATA COLLECTION AND ANALYSIS

During the study, the monitoring application collected data
from 2,197 hours of participants’ computer use over a total
of 220 work days. Table 1 shows that each participant was
part of the study for between 7 and 20 work days (mean:
11.0 days, £3.6). Table 2 shows how much of each type of
information we collected. This section describes how we
prepared the collected data for the analysis.

4.1 User Input Data

Whenever a study participant pressed a key, or clicked,
scrolled or moved their mouse, the event-type and its time-
stamp were recorded by the monitoring application. We
divided the events into work days, where a day spanned
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TABLE 2
Data Collected by the Monitoring Application
Data Description Data Collected
Background Monitoring
Program usage current process name and currently active window title, captured once 1,479,383 items
every 10 seconds
User Input
Mouse clicks as event happens 798,266 clicks
Mouse movement distance aggregated pixels moved per second 2,248,367 entries
Mouse scroll distance aggregated pixels scrolled per second 296,763 entries
Keystrokes only count, not exact keystrokes (for privacy reasons) 3,515,793 keystrokes
Survey Pop-Ups
Tasks and Activities participants self-reported tasks and activities from the past 60 minutes 2,237 items
(for one participant: 90 minutes)
Perceived Productivity slider where the participant rates the perceived productivity of the 1,350 ratings

previous work session

from 04:00:00 to 03:59:59 A.M. the following morning, very
similar to Amann et al. [13]. This division was chosen as
some participants stayed up late and logged input continu-
ously before and slightly after midnight, suggesting that
their "'work day’ was not yet over at that time. With respect
to time usage, but not application usage, we removed week-
ends, as we wanted to examine trends and based on initial
inspection the weekend data was highly irregular. If a day
had less than 10 minutes of recorded active input for a given
developer, that day was not included when considering
keyboard and mouse input.

Within a day, we determined inactive and active periods of
computer use. An inactive period is a lapse in any type of
input for 2 minutes or longer; conversely, an active period is
2 minutes or longer during which there is no inactivity. This
2 minute mark was chosen as a reasonable boundary based
on previous research that found an average time of 2 min
11 sec being spent on any device or paper before switch-
ing [10], as well as research by Chong and Siino [26] who
found that a typical interruption for one work team lasted 1
min 55 sec, and 2 min 45 sec for another team. We further
defined inactive periods by sorting them into two categories:
short and long breaks away from the computer. A short break
from the computer is defined as a period of inactivity that
lasts at least 2 minutes but less than 15 minutes and that is
often spent with answering a co-workers question or as a cof-
fee break. A long break from the computer is defined as a
period of inactivity equal to or longer than the 15 minute
threshold, and is often used for meetings and longer breaks
from work, such as a lunch [33], [58]. We used a 15 minutes
threshold based on previous work by Sanchez et al. that
described a typical developer’s coffee break to be 12 minutes
on average and factored in a 3 minute deviation [33].

4.2 Preparing Program Data and Mapping to
Activities

Our monitoring application recorded the current process
and window titles of participants’ program usage during
their work day, once every 10 seconds. To provide a higher-
level, aggregated view on participants” work, we mapped
each entry of a program’s use to activity categories, also tak-
ing into account the window titles for clarification. These
activity categories group actions undertaken by a developer,

for example the category Coding denotes any developer
action that is related to reading, editing or navigating code.
We reused the activity categories we identified with an
open-coding approach in our previous study [5]. This map-
ping process was a semi-automated open-coding process;
automated, where an action fit into an obvious category
(e.g., SourceTree belonging to the activity category Version
Control) and manual, where actions could not automatically
be classified distinctively using the program and window
title names (e.g., website names to the activity categories
Work Related Browsing or Work Unrelated Browsing). When a
participant did not switch programs or have any mouse or
keyboard interaction for the past 10 seconds, the application
logged it as ‘idle’.

In order to complete the coding, we first defined a set of
keywords for each activity that distinctly map a program to
an activity. For instance, we mapped Microsoft Word to
Reading or Writing Documents and Microsoft Outlook either
to Email or Planning, depending on the details in the window
title. We created a script using these keywords to produce
the initial mapping, then inspected the results and iteratively
refined the keywords until most programs were mapped. In
cases where a program could be mapped to two or more
activities, we performed a manual mapping. For example, as
work in a text editor could be mapped to several activities
(e.g., Coding, Reading or Writing Documents, or Planning), we
manually mapped all editor use. Similarly, we mapped most
website use manually, either to Work Related Browsing or
Work Unrelated Browsing. In both cases, the window title held
valuable information about the activity a developer was per-
forming. We further manually checked all automated map-
pings for the following activities: Debugger Use, Code Reviews,
and Version Control. All entries, related to coding, which
could not distinctively be mapped to one of these categories,
were mapped to Coding.

To better understand what participants were doing when
they were not actively working on their computer (‘idle’
events), we combined the data logged by the monitoring tool
with participants’ self-reports. As most participants not only
reported the tasks they worked on in the past work session,
but also planned and informal meetings, and lunch and cof-
fee breaks, we could in many cases infer if a period of ‘idle’
time belongs to one of these categories. In cases where the
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Fig. 2. Total hours of work versus hours active.

participant did not report a meeting or break, we had no way
of identifying the reason for the ‘idle’ time, which is why the
amount of time spent with planned and informal meetings
might be higher than reported in this paper. The self-reports
were not only used to map ‘idle’ time, i.e., time not actively
spent on the computer, to breaks and meetings, but also to
analyze developers’ self-reported tasks.

The mapping algorithm is described in detail in the
Appendix.

5 RESULTS

This section presents the results of our study on developers’
work practices and their relation to the perceived produc-
tivity by investigating the following research questions:

RQI1
RQ2
RQ3

What does a developer’s work day look like?

How fragmented is a developer’s work?

Are there observable trends in how developers per-
ceive their productivity?

What is the relationship between developers’ activity
and perceived productivity at work?

RQ4

5.1 What Does a Developer Do?

To answer our first research question, “What does a devel-
oper’s work day look like?”, we analyzed the span of a
developer’s work, the amount of time during the span the
developer was active, the nature of the breaks taken, the
applications used, and the activities pursued.

5.1.1  Hours Spanned and Hours Active

The number of hours spanned by a developer’s work day is
defined as the time between the earliest and latest inputs on a
given day, regardless of intervening activities or inactive
periods. For example, if the first mouse click happened at
9:00 A.M. and the last keystroke happened at 17:30 P.M., the
time span would be 8.5 hours. The number of hours active is the
cumulative time when a participant was logging active input.

T T T T T T T T T T T
S10 811 812 S13 S14 S15 S16 S17 8518 S18 S20

Participant

Fig. 2 contrasts the hours spanned and hours active per
developer across all days monitored. Some participants
(e.g., S13 and S20) tend to space their work out over as
many as 21.4 hours, whereas others (e.g., S12 and S15) keep
more compact work hours and remain active during the
bulk of their time. Overall, developers averaged spans of 8.4
(£1.2) hours per day, with active time of 4.3 (+-0.5) hours. It
should be noted that the hours active are not synonymous
with an individual’s total working time; since the hours
active value is based on the time the participant is using
their mouse or keyboard, it does not account for meetings
or other work activity away from the computer.

5.1.2 Short and Long Inactive Periods

Every hour, developers take an average of 2.5 (£0.8) short
breaks that are about 4.2 (£0.6) minutes long each and in
which the developers are not interacting with their computer.
This results in a total of 10.5 minutes of inactive time every
hour of work, which we assumed to be likely unplanned
interruptions, such as co-workers asking a question or a quick
coffee break. According to Minelli et al. [12], who analyzed
how developers spend their time inside the IDE, inactive
times are often spent with program comprehension. This
notion of taking a few minutes to understand, think about or
read the current artifact, such as code, a website or document,
is likely another reason for these short inactivities. There was
no obvious trend towards taking more or fewer short breaks
during a particular part of the day; rather, short breaks appear
to be fairly evenly distributed for all participants.

The number of long breaks in which developers did not
interact with their computer for longer than 15 minutes
averaged 3.3 (£1.4) per day, with a total length of 54.7
(£28.2) minutes; this corresponds to an expectation of two
longer coffee breaks, a lunch, and perhaps a meeting. The
participants with a high number of long breaks appear to be
those who have a tendency towards longer hours spanned,
with additional long breaks happening in the late afternoon
or evening before these individuals returned to work. Since
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TABLE 3
Top 10 Used Applications (Sorted by Usage)
Application % of time used # of users
Microsoft Outlook 14.2% 18
PuTTY 12.8% 8
Google Chrome 11.4% 16
Microsoft Internet Explorer 9.4% 20
Microsoft Visual Studio 8.3% 13
File Explorer 6.6% 20
Mozilla Firefox 5.9% 8
Eclipse 3.0% 10
Microsoft OneNote 2.3% 9
Command Line 2.2% 16

these long breaks were likely planned by the developers,
they were also more likely to be self-reported as a distinct
activity in the pop-up surveys.

5.1.3 Applications Used and Frequency of Use

Participants used a total of 331 different applications, with
each participant using an average of 42.8 (+13.9) different
applications over the study duration and 15.8 (£4.1) appli-
cations per day.

Table 3 shows the ten most popular applications across
all participants (all were using Windows operating sys-
tems). There is a notable amount of time spent using File
Explorer, although this may be due to the fact that it is the
only application, other than Internet Explorer, that was
used by all 20 participants. Despite everyone using Micro-
soft Internet Explorer, 80 percent of the participants also
used Google Chrome and spent more time in it than in the
Internet Explorer.
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5.1.4 Activities Pursued

Table 4 shows the activities developers pursue during their
work days. A developer’s typical work day is mostly spent on
coding (21.0 percent), emails (14.5 percent), and work-related
web browsing (11.4 percent). Using the debugger, reviewing
other developers” code, and version control account for just
2.4 percent of the participants” time. When looking at individ-
ual versus collaborative activities, 24.4 percent of a devel-
oper’s day is spent pursuing collaborative activities with
co-workers, customers, or managers, such as planned or
ad-hoc meetings and emails. These percentages do not
include uncategorized inactive time towards the total time as
the monitoring application could only capture non-computer
work in case the participants self-reported it.

When we inspected the data, we observed a notable range
between the minimum and maximum time developers spent
on each activity per day. The minimum time was virtually 0,
or only a few seconds per day. The maximum time a partici-
pant spent on a single activity was 12.8 hours on one day:
513, who was evaluating various continuous integration and
build systems. It is clear that the duration and type of activi-
ties vary greatly depending on the individuals and their cur-
rent goals. We also observed differences in the distribution
of the activities between companies. For example, develop-
ers 511 and 512, both from the same company, spent signifi-
cantly less time on emails, on average just 0.7 minutes (+0.5)
per day, compared to the other participants, who spent an
average 74.3 minutes (£74.8) on emails.

The amount of time spent in coding or debugging might
be higher than reported, as it was not possible to map all
activities from the category Remote Desktop (OtherRdp), as
there was not enough context available for an accurate
mapping either automatically or manually. Similarly, the

TABLE 4
Developers’ Fragmented Work: Activities Performed

% of time over

Activity Category Duration per Time spent before
whole period day (in hrs) switching (in mins)
Avg Stdev Max Avg Stdev Max
Development
Coding reading/editing/navigating code (and 21.0% 15 <£16 73 06 +26 1357
other code related activities)
Debugger Use using the debugger inside the IDE 0.4% 01 +£02 08 05 08 134
Code Reviews performing code reviews 1.3% 03 +04 21 13 +45 134
Version Control reading/accepting/submitting changes 0.7% 01 +£03 22 06 £1.0 129
Email reading/writing emails 14.5% 1.1 +£13 81 09 +48 896
Planning editing work items/tasks/todos; 4.8% 05 411 51 11 425 675
creating/changing calendar entries
Read/write documents reading/editing documents and other 6.6% 05 £07 45 08 £33 1147
artifacts, e.g., pictures
Planned meeting scheduled meeting/call 6.5% 1.0 +£13 71 158 =353 203.1
Informal meeting ad-hoc, informal communication; e.g., 3.4% 05 406 42 20 465 1382
unscheduled phone call / IM, or colleague
asks a question
Work related browsing Internet browsing related to code/work/ 11.4% 08 £13 128 05 £55 1026
task
Work unrelated browsing Internet browsing work unrelated 5.9% 05 +£07 34 11 +43 0918
Other Anything else; aggregates several small 11.4% 08 +14 105 04 +56 1125
sub-categories, such as changing music,
updating software, using the file explorer
or having a break
Other RDP Remotedesktop use which could not be 12.0% 1.5 +£18 82 03 £26 854

mapped to another category
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amount of time spent in planned and informal meetings
might be higher than reported, as participants likely did not
self-report all meetings they attended via the pop-up sur-
vey. This made it impossible to map all ‘idle’ time to an
activity.

5.1.5 Developers’ Self-Reported Tasks

An analysis of developers’ self-reported tasks shows that
there is a wide variety in what developers work on, but in
particular also, in what developers denote as a task. In
many cases, participants reported activities they were per-
forming, such as “coding”, working on “emails” or per-
forming a “web search”, rather than the intention of the
activity, such as the change task or the bug they were trying
to fix. Only in very few cases, did participants mention a
bug ID on which they were working. Furthermore, reported
and worked on tasks varied in their granularity. While
some participants were working on a task only a single time
for a part of the 60 to 90 minutes time window, others
reported to work on the same task for several days.

Overall, due to this variance in task definition and granu-
larity, the self-reported tasks did not provide much further
insights into developers’ work days other than help with
disambiguation of our mappings in some cases. Also, while
the number of resolved or worked on tasks has been rated
as a relatively good measure for assessing one’s own pro-
ductivity [5], the variance in self-reported tasks, especially
also across developers, suggests that it might be a somewhat
individual help for assessment at best.

5.2 How Fragmented Is the Work?

To answer our second research question, “How fragmented is
a developer’s work?”, we analyze how much time they spend
on an activity before switching to the next one. The last three
columns of Table 4 present the times a developer pursues
each one of the activities before switching to another one.
With the exception of planned meetings, a developer only
remains in an activity between 0.3 (£2.6) and 2.0 (£6.5)
minutes before switching to another one. These very short
times per activity and the variety of activities a developer pur-
sues each day illustrate the high fragmentation of a devel-
oper’s work. The low standard deviations for each activity
further emphasize this finding, which is similar to Mark et al.”
s, Ko et al.’s and our previous observations [5], [10], [11]. At
the same time, our data also suggests that there are exceptions
to this high work fragmentation and that in rare occasions,
developers spend long hours without switching activities. For
example, participant 54 was coding in the late afternoon for
135.7 minutes, without any break longer than 2 minutes.
Planned Meetings are the only exception to the short time
periods spent on a single activity with an average duration of
15.8 minutes (£35.3) before switching. Our analysis of the
data also suggests that developers are not using their com-
puter in most of these planned meetings. The opposite is true
for informal meetings, for which our monitoring tool
recorded user input every few minutes. It is important to note
that an activity switch, while contributing to work fragmenta-
tion, is not necessarily a task switch. A developer might
switch activities several times while working on the same
task, e.g., switching from coding in the IDE to the web
browser to search for API documentation or code snippets.
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To better understand the high number of activity
switches, we performed an n-gram analysis to identify the
activities which developers often perform in a sequence
together. The activity pattern, which occurred most often,
was a quick switch to emails during coding tasks. This find-
ing is supported by our results in a previous observational
study, where we learnt that developers often perform very
quick and short context switches during waiting times,
which increases their perceived productivity [5]. Similarly,
Amann et al. found that developers continue working while
builds run in the background [13]. Developers also regularly
switch away from coding to work related web browsing
(22.1 percent), reading or writing documents (14.3 percent)
or planning (14.2 percent). These switches can be explained
with the search for additional information necessary to com-
plete a task, such as a task description from an email, a quick
research on the web (e.g., for a code snippet or tutorial), or
reading a documentation-file. After these quick switches,
developers usually switch back to their main coding task.

We were also interested in better understanding what
activities developers were performing before they were inter-
rupted by a co-worker, to learn where to focus for building
task resumption tools. When developers switched their activ-
ity to an informal meeting, they were emailing in 40.1 percent
of the cases, coding in 18.1 percent of the cases, and browsing
the web (work related) in 13.5 percent of the cases before the
switch. Switches to work unrelated web browsing were most
often caused during coding tasks (35.5 percent) and during
work related web searches (26.7 percent), likely to get a quick
break from work.

5.3 Perceived Productivity Changes?

Our third research question asks “Are there observable
trends in how developers perceive productivity?”. We use
the developers’ self-ratings of their productivity via the
pop-up survey to investigate this question. For each partici-
pant, we plot the perceived productivity ratings against the
time of day the rating was collected; thus, all ratings from
an individual are condensed across the hours of the day in
one plot.

From an analysis of these plots, we found that although
there was a lot of variation between individuals, the plots
can be categorized into three broad groups: morning peo-
ple, afternoon people, and those whose perceived produc-
tivity dipped around lunch. Fig. 3 shows examples of these
three types. The curved regression line in the figures shows
the overall pattern of what part of the day an individual
developer typically felt more or less productive with the
shaded area showing the confidence range. Morning people
were rare in our sample set (20 percent of all participants);
Fig. 3a shows S5’s perceived productivity pattern, which is
our clearest example of the trend but is not very pro-
nounced. Afternoon people (8 out of 20, 40 percent) may be
those who are industrious later in the day, or that feel more
productive as a result of having the majority of their work
day behind them (Fig. 3c). The greater number of afternoon
people in our sample reflected previous research that
showed that information workers perceive themselves as
most productive in mid-afternoon, peaking around
2-3 P.M. [59]. The low-at-lunch group (35 percent) may see
long breaks as unproductive, or they may simply lag in
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Fig. 3. Three types of developers and their perceptions of productivity over the course of a work day.

effectiveness as their physical processes draw focus away
from work (Fig. 3b).

These graphs and numbers suggest that while informa-
tion workers in general have diverse perceived productivity
patterns, individuals do appear to follow their own habitual
patterns each day. Only for one of the twenty participants it
was not possible to determine a dominant category.

5.4 What Are Productive Activities?

To answer our fourth research question, “What is the rela-
tionship between developers’ activity and perceived pro-
ductivity at work?”, we built explanatory models relating
the action and activity data to the productivity ratings.

The purpose of the explanatory models is to describe which
factors contribute to the productivity ratings reported by the
study participants. For each participant, we built one step-
wise linear regression model for a total of 20 models. We
chose linear regression because it is a simple and intuitive
way to model data. The dependent variable is the reported
productivity rating and the independent explaining varia-
bles are: (1) session duration, (2) number of certain events
such as activity switches, (3) keystrokes per minute, (4)
mouse clicks per minute, (5) amount of time spent in activi-
ties normalized by session length, and (6) how much of a ses-
sion was before mid-day (noon) in percentage.” By choosing
linear regression, we assume that the productivity ratings
are interval data meaning that the distance between the pro-
ductivity ratings 1 and 2 is the same as the distance between
the ratings 2 and 3, and so on. To facilitate comparison across
models, we specified the intercept value for all models as 4,
which corresponds to an average perceived productivity.

Table 5 shows the results of the explanatory modeling.
Each column corresponds to the perceived productivity
model of a participant and each row corresponds to a factor in
the model. To reduce the complexity of the table, we only
report the sign of the coefficients; the full coefficients are
available as supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2017.2656886 [60]. A
plus sign (+) in a cell indicates that a factor has positive influ-
ence in a model; for instance, S1 reported higher productivity

2. We chose mid-day, since a previous study found differences in
knowledge workers’ activities before and after mid-day [59].

ratings with a higher number of self-reported tasks. Similarly,
a minus sign (—) indicates negative influence; for instance, S3
reported lower productivity ratings for higher session dura-
tions. Empty cells correspond to variables that either were
removed as part of the stepwise regression, or were not statis-
tically significant. An NA value indicates that an event or
activity did not occur for a participant in the study period; for
instance, the NA for S1 in Debugger Use means that S1 never
used the debugger in the IDE during the study period. In a
few cases, we were also not able to map all ‘idle’ log entries to
the two activity categories of informal meetings or planned
meetings due to a lack of information provided in the self-
reports. These cases are also denoted with NA.

Based on the results presented in the table we can make
several observations:

(i) No two explanatory models are the same. This sug-
gests that productivity is a highly personal matter
and that perceptions of what is considered to be pro-
ductive are different across participants.

No single factor provides explanatory power across
all participants. Furthermore, the same factor can
have positive influence for one participant, and neg-
ative influence for another participant, for example
the Number of Self Reported Tasks has both negative
(2x) and positive influence (2x).

The Number of Keystrokes and the Number of Mouse
Clicks have more often positive influence (7x) than
negative influence (1x and 2x respectively).

The activities Email (5x negative), Planned Meeting
(6x negative), Work Unrelated Browsing (5x nega-
tive), and Idle (6x negative) have more often nega-
tive influence.

(ii)

(iii)

(iv)

5.5 Summary of Results

Our analysis provides a broad range of insights on the rela-
tionship between developer’s work practices and activities
and their perceived productivity. Table 6 summarizes some
of the key findings.

6 THREATS TO VALIDITY

The main threats to our study are construct validity threats
due to the monitoring application we used to collect data.
These, and the threats to internal and external validity, are
described in this section.
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TABLE 5
Explanatory Productivity Models for Participants (‘+” Indicates Positive, ‘-’
Negative Influence; ‘NA’ Indicates a Never Performed Activity)
Particpant S1 S2 S3 S4 S5 Sp 57 S8 S9 S10 511 512 S13 514 S15 S16 S17 S18 519 S20
Ratings (total) 45 101 62 94 40 62 80 73 89 92 51 40 76 88 71 42 62 53 100 30
Ratings (discarded) 0o 29 3 4 0 0 O 7 1 10 1 0 7 0 0 0 4 8 11 4
Ratings (included in model) 45 72 59 S0 40 62 80 66 79 82 S0 40 69 88 VI 42 58 45 89 26
Neg Pos NA  Ratings (distribution) B | I Y | P | S PO | MY PO | N IO "I | AR N N TR | PSS | M |
3 3 0 Session Duration (in hours) + - - + -— +
2 1 0 Percentof Session Before Noon -_— -— +
Per Minute
2 2 0 #SelfReportedTasks -+ —_ - +
2 4 0 # ActivitySwitches + -_— + + - +
1 1 4 #Meetings + I JA
2 1 7 #InstantMessagingSwitches + 1A + —
1 7 0 #KeyStrokes + + + = + + 4+ +
2 7 0 #MouseClicks + + + + + 4+ - + -
Percent Activity
4 1 0 DevCode — - —_— - -
0 1 9 DevDebug S 3 N
2 1 12 DevReview | -_ .
2 0 3 Dewc -_ -—
5 0 0 Email — -— - — -
2 3 0 Planning + + - 4 -
4 3 0 ReadWriteDocument + + — —_— -— -
6 0 5 PlannedMeeting p P e - - —
3 2 9 InformalMeeting + A -_— — + P
2 0 B8 InstantMessaging A ! A - N4 —
1 2 0 WorkRelatedBrowsing e + +
5 0 2 WorkUnrelatedBrowsing o NA -_— | ey
2 1 0 Other + - .
2 1 4 OtherRdp - + (- —
§ 2 2 Idie = == = + = s

Columns ‘Neg’ | ‘Pos’ count the number of times a variable had negative | positive influence. The ratings are distributed on a 7-point Likert scale: left = “not at all

productive” (1), right = “very much productive” (7).

6.1 Construct Validity

The main threat comes with the metrics we base our analy-
sis on, as it is limited to the data we collected with our moni-
toring application. We believe that a chronological record of
application use, user inputs, and the addition of self-
reported productivity, tasks, and activities provide a rea-
sonable basis to analyze a developer’s work. Though, we
cannot exclude the possibility that any other factors influ-
ence a developer’s work day and productivity.

Running a monitoring application in a real-world sce-
nario might capture inaccurate data, due to bugs in the log-
ging application or stability issues. To mitigate this risk,
we ran several test-runs in different scenarios prior to the
study, and observed a user for several hours to compare
the logged with the observed data. No major problems with
the tracker were reported during the tests or at the time of
the study.

Even though the monitoring tool is able to capture a
broad range of activities on a participants’ computer, it does
not capture activities away from the computer. Therefore,
we asked participants to record their activities/tasks for
their time away from the computer in the periodic self-
reports. Furthermore, to capture activities performed on
secondary computers or remote desktops, we asked partici-
pants to install the monitoring application without the self-
reporting feature on these machines as well.

Understanding, categorizing and analyzing the data
poses another threat to validity, especially since it is not
straightforward to identify all activities from the collected

TABLE 6

Summary of Some of the Study Key Findings

Finding

Section

F1

F2

EF3

F4

F5

Fé6

F7

F8

Developers only spend about half their time
active on their computer.

For every work hour, developers have an
average of 2.5 short breaks, totaling 10.5
minutes of unplanned time away from their
computer.

Developers spend about a fourth of their
time on coding related activities and another
fourth of their time on collaborative
activities.

The range and time spent on activities varies
greatly depending on the individual and
company.

Developers” work is highly fragmented,
spending very short amounts of time

(0.3 to 2 minutes) in one activity before
switching to another one.

Developers’ perceived productivity follows
habitual patterns, broadly categorisable as
morning people, afternoon people and
“low-at-lunch” people.

Productivity and the factors that influence it
are highly individual.

The number of mouse clicks and key strokes
often have a more positive, email, planned
meetings, and work unrelated browsing a
more negative impact on perceived
productivity.

5.1.1

512

514

514

52

5.3

54

54
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data. For instance, mapping ‘idle’ times to self-reported
breaks, planned meetings and informal meetings could not
be automated. We also needed to discard outliers, such as
very short work in the middle of the night or on weekends.
To mitigate this risk, we did a manual mapping of activities
we were uncertain about and checked random samples of
the semi-automated mapping. Assumptions made and
thresholds defined were carefully discussed, based on pre-
vious related work, and described in the paper in detail.
The short interviews at the end of the study further helped
us to interpret each participants’ data and work behavior.

6.2 Internal Validity

Running a monitoring application on participants’ com-
puters might pose privacy concerns to participants. To
address these concerns, we tried to be very transparent about
the data we collected. The participant was shown the loca-
tion where the logs were saved and given the opportunity to
censor them. We did not collect information about what was
being typed or clicked on, merely that these events were
occurring. We also assured the participant that all collected
data will be anonymized and saved on password-protected
devices or in locked filing cabinets.

Monitoring participants” during their work bears the risk
of changing their behavior. To mitigate these risks, we tried
to collect as much data as possible in the background and
optimized the performance of the data collection to avoid
lags, creating a non-intrusive experience for participants.
Several participants explicitly mentioned that they usually
forgot about the monitoring application and were only
reminded when they were prompted about the self-reports.

Interrupting participants with a short survey once an
hour might have influenced their work behavior and habits.
To address these concerns, we tried to only show the pop-
ups when necessary and reduce the effort needed to fill
them out by showing previous responses, having quick
response buttons, and auto-completion boxes. Additionally,
the participant had the chance to postpone the survey in
case it interrupted at an inopportune moment. The continu-
ously very short but stable amount of time used to answer
the periodic survey throughout the study and the small var-
iation in the number of responses per participant and day
also suggests that participants’” behavior was not affected
much and that they did not get annoyed by the survey.

6.3 External Validity

The number of participants or the selection of participants
might limit the generalizability of the results of this study. In
particular, our participants were all using Windows as their
operating system due to our monitoring application being
built for Windows. Overall though, we tried to mitigate the
threats to external validity and generalizability by selecting
participants from four different software companies of vary-
ing size, with more and less well-established products, dif-
ferent kinds of customers, and different stages of product
development. Studies were spread to three different coun-
tries, Canada, US, and Switzerland, and across half a year.
Additionally, all participants are professionals who were
studied in their everyday, real-world work environment and
not in an experimental exercise. The external validity is fur-
ther strengthened by the broad range of development
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experience of our participants, ranging from junior to senior
developers with an average professional development expe-
rience of 14.2 years (£9.6, ranging from 0.5 to 40 years).
Finally, our participants worked on projects using 7 of the
top 10 most used programming languages according to a
recent large-scale study [61]. While the large-scale study also
showed that 55 percent of all developers use Windows as an
operating system and our focus on Windows thus maps to a
majority of developers, further studies with a broader partic-
ipant pool are needed to assess the generalizability of our
results.

Another limitation might be the study running for
roughly two weeks per participant, as developers’ activities
might vary greatly at different stages and iterations of their
projects. We tried to mitigate this risk by having partici-
pants from different teams at different stages of their project
and iterations, and by staggering the monitoring period
between participants so that varying times of the year were
covered. In the final interview, most participants also
agreed that the study took part in fairly usual, and not
extraordinary, work weeks.

7 DISCUSSION

The results of our study shed new light on the work practi-
ces, fragmentation and perceptions of productivity of indi-
vidual software developers. In the following, we discuss
implications and opportunities of our findings, in particular
the individuality of productivity and its use for designing
better tool support, and we report on an exploratory analy-
sis to predict high and low productivity sessions.

7.1 Individuality of Productivity

To quantify a developer’s productivity, related work pre-
dominantly focused on a single or a small set of outcome
measures, such as the lines of code or function points. While
these measures can be used across developers, they neglect
to capture the individual differences in the way that devel-
opers’ work as well as the differences in their work and
their perceived productivity. The results of our study show
that perceived productivity is in fact a very personal matter
and the influence and impact of the factors used for our
explanatory productivity models varied greatly. This sug-
gests that measures or models of productivity should take
into account the individual differences in what is perceived
as productive or not and capture a developer’s work more
holistically rather than just by a single outcome measure.
Such individual models could then be used to provide bet-
ter and more tailored support to developers, for instance, to
foster focus and flow at work.

At the same time, our results also show that while there
are individual differences, there are tendencies amongst
groups of software developers, for instance, with the num-
ber of key strokes and mouse clicks having a positive
influence on productivity perception for seven of the
20 participants. Similarly, we identified types of developers
with similar trends of perceived productivity over the
course of the day, including morning and afternoon people,
which resemble the morningness and eveningness types
that Taillard et al. identified in their large-scale study on
people’s sleeping habits [62]. These results suggest that it
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might be possible to identify clusters of software developers
with fairly similar productivity models despite individual
differences, which could then be used to provide tool sup-
port tailored to these clusters, for instance, for scheduling a
productive work day.

7.2 Supporting Flow and Retrospection

In our previous study, we found that developers feel partic-
ularly productive when they get into “the flow” without
having many switches [5]. Results from this and other stud-
ies suggest that getting into the flow during work might not
be very easy, given the high fragmentation of work and the
many short breaks and interruptions.

At the same time, our analysis of the collected data sug-
gests that it might be possible to identify individualized
proxies for developer productivity, such as using the num-
ber of mouse clicks or key strokes per minute or the time
spent in work-unrelated browsing for certain developers.
Knowing if a developer is productive or unproductive at
the moment by using such proxies could be used to support
getting and staying in a highly productive “flow” state. In
particular, one could use this to indicate the availability of a
developer for interruptions by changing the availability sta-
tus in instant messaging tools, or with a visual external cue
to avoid external interruptions at particularly inopportune
moments, similar to what Ziiger and Fritz suggested [63].
Or, one could also use this to provide awareness to the
developers themselves on their flow and productivity, by
indicating them when they are stuck and it might be time to
ask a co-worker for help or to take a break, or even blocking
work-unrelated websites for 25 minutes—similar to the
Pomodoro technique [64]—and helping them to focus when
they are procrastinating.

Being able to predict, to some extent, a developer’s pro-
ductivity on an individual basis could also be used to pro-
vide developers with individualized retrospection support,
in the form of daily or weekly summaries of their work.
With the Quantified Self movement, more and more people
are using applications and devices to track themselves—
mostly with a focus on the non-work related activities, such
as sports. These persuasive technologies provide users an
opportunity to reflect upon their own activities and support
desired improvements, such as a more active lifestyle (e.g.,
[34], [35], [39]), due to self-monitoring and goal-setting [39].
A proxy of an individual developer’s productivity might
provide such benefits for the software development
domain, by increasing developers’ awareness about their
own work practices and productivity and thereby helping
them to improve them.

7.3 Scheduling a Productive Work Day

By knowing the trends of developers’ perceived productiv-
ity and the activities they perceive as particular productive/
unproductive, it might be possible to schedule the tasks and
activities developers must perform in a way that best fits
their work patterns. For example, if a developer is a morn-
ing person and considers coding particularly productive
and meetings as impeding productivity, blocking calendar
time in the morning for coding tasks and automatically
assigning afternoon hours for meeting requests may allow
the developer to best employ their capabilities over the
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whole day. Or, it could remind developers to reserve slots
for unplanned work or interruptions at times where they
usually happen.

7.4 Predicting High & Low Productivity

To examine whether we might be able to identify high and
low productivity sessions with the collected data, we per-
formed an initial, exploratory analysis, building predictive
models using logistic regression. For each participant, we
computed the median productivity rating individually,
which we assumed to be the standard perceived productiv-
ity of a developer. We then used the productivity (high and
low) as the dependent variable and the factors used in the
explanatory models (see Table 5) as the independent varia-
bles, and we built two prediction models using binary logis-
tic regression:

Model 1: Is the reported perceived productivity above the
median productivity? (High Productivity)

Model 2: Is the reported perceived productivity below the
median productivity? (Low Productivity)

We built and evaluated the models for each participant
using 50 random split experiments: 2/3 of the participant’s
data was used for training and the remaining 1/3 of the
data was used for testing the model. In total, we ran 50 x 2
x 20 + 50 = 2,050 experiments. For each experiment, we
measured the success of the predictions with precision and
recall. Precision represents how many of the returned
results are relevant (correct), and recall represents how
many of the relevant results were returned. We then aver-
aged the precision ratings over the 50 experiments for each
model and participant to receive a single precision rating.
We did the same for recall.

Table 7 shows the results. In addition to the precision and
recall values, we report in the Ratio columns the percentage
of High productivity and Low productivity sessions for
each participant. On average, the models have a precision
of 0.57 (High Productivity) and 0.56 (Low) and recall of 0.48
(High) and 0.43 (Low). For some participants, the precision
and recall values are above 0.70. The results are promising
and suggest that even with a relatively small number of
reported productivity ratings, it is possible to build person-
alized, predictive productivity models. To build the models
we used the session length and information about events
(keystrokes, mouse clicks), and activities. We expect that
with more context and data, such as active task information,
window contents, calendar information, development expe-
rience, time of day, or possibly biometrics, the quality of the
predictions can be improved further.

7.5 Privacy Concerns

As with all approaches that collect personalized data on
people, collecting information on a developer’s activities on
the computer potentially raises many privacy concerns.
Especially given the focus of our study on productivity,
some people were skeptical and declined to participate.
This indicates the sensitivity of the data and the need for
further research on the privacy concerns of such broad,
work-related data. We believe that integrating potential
users early on in the design process of building such a tool
is crucial to increase acceptance of and engagement with
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TABLE 7
Models to Predict High/Low Productivity Sessions
Ratings  High Productivity Low Productivity

Partic.  Distr.  Ratio Prec. Recall Ratio Prec. Recall
S1 -=08_ 036 064 0.39 0.24 0.85 0.03
s2 __ -=8_ 054 076 071 0.15 0.41 0.46
S3 [ 1] 0.36 0.69 0.48 0.39 054 0.58
S4  _-=l. 0.13 046 011 039 0.62 0.33
S5 —=nll. Q.43 Q.55 Q.27 045 053 047
S6 =0=_ 027 032 043 0.26 0.56 0.59
S7 -mlN_ 038 0.63 0.64 0.26 036 0.11
S8 ] 0.03 0.60 042 0.02 052 0.68
S9 - _aul 041 041 043 0.27 0.62 0.38
$10 n_ 0.07 0.17 041 0.09 056 0.48
S11 __=lna 0.36 0.60 0.62 0.26 0.48 042
S12 -——0l. 050 071 076 050 0.67 0.62
$13 wmmafl. 041 059 062 0.45 0.54 0.52
S14 _-=ull_ 049 0.60 0.64 0.27 0.59 0.45
515 -=lmm 046 067 077 0.18 0.64 0.18
516 __HE== 0.29 054 0.40 0.40 0.73 0.52
S17 =in 0.34 061 0.52 0.22 029 0.13
S18 -08= 018 0.47 040 0.47 0.54 049
$19 w=Hlm_ 0.25 0.72 0.08 0.43 048 0.54
$20 W __a__ 0.50 0.67 0.52 0.50 0.60 0.62
Average 0.57 0.48 0.56 0.43

the tool. Furthermore, we expect that the voluntary use of
such applications and its ability to tailor to the individual is
important for its success since it focuses on the intrinsic
motivation of developers to improve or better understand
themselves. Requiring the use of such tools by upper man-
agement on the other hand will lead to a ‘gaming’ as previ-
ous research found and suggested (e.g., [49]), since
developers might fear that the gathered information could
influence their employment and increase pressure.

8 SUMMARY

Related work has proposed a wide variety of approaches to
quantify the productivity of software developers, mostly
only taking a single aspect of a developers’ work into
account. In our paper, we present a more holistic approach
to examine developers” work practices and their relation to
perceived productivity. We conducted a study with 20 pro-
fessional software developers in four different companies in
situ, to investigate how developers spend their work days
and what activities they perform. We applied a combination
of computer logging and experience sampling by using a
background monitoring application and by letting develop-
ers answer pop-up questions every 60 minutes. The results
show that developers spend their time on a wide variety of
activities, about a fourth of it on collaborative activities,
such as meetings or emails. On average, participants spend
only between 0.3 and 2 minutes on each activity, before
switching to the next one. They also have 2.5 short per hour
and 3.3 breaks per day. This demonstrates how fragmented
a developer’s normal work day is.
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Based on developers’ self-reports, we analyzed how their
perceived productivity changes throughout a work day. We
found a lot of variation between individuals, but that they
can roughly be grouped into morning people, low-at-lunch
people and afternoon people. We also correlated perceived
productivity with activities and user input using a stepwise
linear regression model per participant. The data suggested
that productivity is a personal matter and that perceptions
vary greatly as different factors in a developer’s work day
can influence productivity either positively or negatively.
More user input was often associated with a positive, while
emails, planned meetings and work unrelated websites
were most often associated with a negative perception of
productivity. Based on our findings, we propose a number
of design approaches and tools to help increase developer
productivity. For instance, by supporting developers to get
into and stay in “the flow”, by reducing interruptions at
inopportune moments and by helping them to focus when
they are procrastinating. Finally, we ran an exploratory
analysis of predicting productivity for individuals, based
on their computer usage. The results are promising and sug-
gest that even with a relatively small number of reported
productivity ratings, it is possible to build personalized,
predictive productivity models. In the future, we plan to
work on improving the quality of these predictions by
including more context and data, such as active task infor-
mation, experience, time of the day, and biometrics.
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