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This study represents one of the first quantitative field 
tests of the sunk-cost effect. We tested whether the 
amount teams spent for players in the National 
Basketball Association (NBA) influenced how much 
playing time players got and how long they stayed with 
NBA franchises. Sunk costs were operationalized by the 
order in which players were selected in the college draft. 
Draft order was then used to predict playing time, being 
traded, and survival in the NBA. Although one might 
logically expect that teams play and keep their most 
productive players, we found significant sunk-cost effects 
on each of these important personnel decisions. Results 
showed that teams granted more playing time to their 
most highly drafted players and retained them longer, 
even after controlling for players' on-court performance, 
injuries, trade status, and position played. These results 
are discussed in terms of their implications for both 
sunk-cost research and the broader literature on 
managerial decision making.' 

Common sense tells us that people try to avoid losing 
courses of action. They move away from lines of behavior 
that have not been rewarded and hesitate to follow 
strategies that are not likely to yield future benefits. Yet 
some behavioral research has challenged this logic. Coming 
under the rubric of escalation of commitment, a number of 
studies have shown that people can become stuck in losing 
courses of action, sometimes to the point of "throwing good 
money after bad." 

Evidence of this escalation effect was initially provided by 
three independent lines of research. Staw (1976) used a 
simulated business case to show that people responsible for 
a losing course of action will invest further than those not 
responsible for prior losses. Tegar (1980) took advantage of 
an unusual competitive bidding game (Shubik, 1971) to 
demonstrate that people can become so committed to a 
position that they will pay more for a monetary reward than 
it is worth. Finally, in several related studies, Brockner and 
Rubin (1985) showed that people are likely to expend 
substantial amounts of time and money in efforts to reach a 
receding or elusive goal. These initial investigations have 
been followed by a wide range of studies on conditions 
likely to foster persistence in a course of action, along with a 
set of theories accounting for these effects (see Staw and 
Ross, 1987, 1989; Brockner, 1992, for reviews). 

Though the escalation literature has grown dramatically over 
the past two decades, it has continued to suffer from some 
serious problems. One issue is that escalation researchers 
have borrowed heavily from other research areas, such as 
cognitive and social psychology, without strict guidelines for 
selecting those variables most parallel to the conditions or 
events present in escalation situations. A second problem is 
that much of the escalation literature, despite its intent to 
explain nonrational sources of commitment, has not directly 
challenged the assumptions of economic decision making. 
By and large, the escalation literature has demonstrated that 
psychological and social factors can influence resource 
allocation decisions, not that the rational assumptions of 
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decision making are in error. A third weakness is that almost 
all the escalation literature is laboratory based. Aside from a 
few recent qualitative case studies (e.g., Ross and Staw, 
1986, 1993), escalation predictions have not been confirmed 
or falsified in real organizational settings, using data that are 
generated in their natural context. Therefore, despite the 
size of the escalation literature, it is still uncertain if 
escalation effects can be generalized from the laboratory to 
the field. 

This paper presents one of the first quantitative field studies 
in the escalation literature. The study does not resolve all the 
problems of the escalation area, but it was designed with 
these deficiencies in mind. Because escalation situations 
involve the expenditure of resources over time, it is 
important to know whether the amount one initially spends 
on a course of action can affect subsequent commitment. 
Therefore, the study of sunk costs (past and irreversible 
expenditures) is central to the escalation question. Research 
on sunk costs is also a form of inquiry that confronts directly 
the assumptions of rational economic decision making. 
Economists universally caution against the use of sunk 
(rather than incremental) costs in decisions to invest further 
time, money, or energy in a course of action (Samuelson and 
Nordhaus, 1985; Frank, 1991). Therefore, any demonstration 
that sunk costs influence subsequent investment decisions 
calls into question the description of people as economically 
rational decision makers. Finally, and perhaps most 
importantly, by constructing a test of sunk costs using real 
organizational data, a large void in the escalation literature 
can be filled. If sunk-cost effects can be demonstrated in the 
field, then we may have greater confidence that escalation 
hypotheses can be generalized to situations devoid of the 
props, scenarios, and student samples generally used by 
laboratory researchers. 

Research on Sunk Costs 

Probably the most important set of sunk-cost studies is a 
series of ten experiments conducted by Arkes and Blumer 
(1985). Their most well-known study used a "radar-blank 
plane" scenario. Students were asked to imagine they were 
the president of an aircraft company deciding whether to 
invest $1 million in research on an airplane not detectable by 
conventional radar. These students were also told that the 
radar-blank plane was not an economically promising project 
because another firm already had a superior product. As one 
might expect, only 16.7 percent chose to commit funds to 
the project when funding was characterized as being used to 
start the unpromising venture. But, as predicted, over 85 
percent chose to fund the venture when it was described as 
already 90 percent completed. 

Follow-up studies by Garland and his colleagues replicated 
the sunk-cost effect yet posed questions about its 
interpretation. Using variations of Arkes and Blumer's (1985) 
radar-blank plane scenario, Garland (1990) demonstrated that 
sunk costs influenced investment decisions across several 
combinations of prior expenditures and degrees of project 
completion. When Conlon and Garland (1993) independently 
manipulated the level of prior expenditures and degree of 
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project completion, however, they found only effects for 
degree of completion. Garland, Sandefur, and Rogers (1990) 
found a similar absence of sunk-cost effects in an 
experiment using an oil-drilling scenario. Prior expenditures 
on dry wells were not associated with continued drilling, 
perhaps because dry wells were so clearly seen as reducing 
rather than increasing the likelihood of future oil production. 
Thus it appears that sunk costs may only be influential on 
project decisions when they are linked to the perception (if 
not the reality) of progress on a course of action. 

Though sunk-cost effects have not been shown to be as 
simple as originally predicted for project decisions, a more 
robust sunk-cost effect has so far been demonstrated on 
resource utilization decisions. Again, several of Arkes and 
Blumer's (1985) scenario studies provide illustration. In one 
study, students had to decide which of two prepaid (but 
conflicting) ski trips to take: a trip likely to be the most 
enjoyable or a trip that cost the most. A second Arkes and 
Blumer study asked students which of two TV dinners they 
would eat: one for which they had previously paid full price 
or an identical dinner purchased at a discount. In a third 
study, Arkes and Blumer (1985) arranged to have theater 
tickets sold at different prices, with researchers monitoring 
subsequent theater attendance. The results from each of 
these resource utilization studies showed evidence of the 
sunk-cost effect. When people had to decide which of two 
similar resources to utilize, they used that resource for 
which they had paid the most. 

Sunk Costs in the NBA 

Using a design that parallels the resource utilization studies, 
this research tests the sunk-cost effect in the context of 
professional basketball. We use the National Basketball 
Association (NBA) draft to determine the initial cost of 
players. We then examine whether this cost influences the 
amount players are utilized by teams and the length of time 
they are retained by NBA franchises. 

Probably the most important asset of any team in the NBA 
is its roster of players. Typically, players are selected from 
the college ranks via the NBA draft. Because each team is 
assigned only one draft selection for each round of the draft 
(barring any prior trades or deals for additional draft choices), 
the order in which players are taken in the draft represents 
an expenditure teams make to attain the services of a 
particular player. Salary contracts extended to players are 
roughly in line with their draft order, such that players 
drafted earlier expect to be paid substantially more than 
those taken later in the draft. Thus, the draft order of players 
represents an important and tangible cost to NBA teams. 
The draft order also represents a set of opportunities 
foregone, since choosing any particular player means 
passing over many other candidates who might also help the 
team. 

Drafting high in the NBA draft does not guarantee teams 
having the best talent on the court, however. Teams may 
pass up players that turn out to be all-stars and may draft 
players that never reach their basketball potential. As one 
commentator noted on the eve of the 1994 draft: 
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Whether a team drafts in the Top 5 or not until the second round, 
nothing in pro basketball is quite as chancy as the draft. This is 
where Portland in 1984 gambled that it was much wiser to take 
Sam Bowie than the showboat Michael Jordan, and where, in the 
same year, Dallas decided they would go with the sure thing in 
Sam Perkins rather than chance a pick on that unusual kid from 
Auburn, Charles Barkley. One year later, the top pick was Patrick 
Ewing, followed by, in order, Wayman Tisdale, Benoit Benjamin, 
Xavier McDaniel, Jon Koncak and Joe Kleine, leaving for the 
latecomers such picks as Cris Mullin (No. 7), Joe Dumars (18th) and 
A. C. Green (23rd). (Shirk, 1994) 
Because of the vagaries of forecasting talent, teams may 
have invested more in some players than is merited by their 
performance on the basketball floor. Therein lies the 
sunk-cost dilemma. Do teams use players they have 
expended the most resources to attract, even if their 
performance does not warrant it? Likewise, do teams retain 
high-cost players, beyond the level warranted by their 
performance on the court? These questions are analogous to 
those posed by Arkes and Blumer in their resource utilization 
studies, in which the use of an asset can depend more on 
its previous cost than its future utility. 

Hypotheses 

All things being equal, one would expect teams to play their 
most productive players. One might also expect that those 
who were selected high in the draft would, in general, 
constitute teams' most productive players. Thus, as a null 
hypothesis one might predict that, after controlling for 
productivity on the court, draft order will add little to the 
prediction of playing time in the NBA. If, however, sunk 
costs actually do influence utilization decisions, then draft 
order will be a significant predictor of playing time, even 
after the effects of on-court performance have been 
controlled. 

Analogously, one can also investigate the role of sunk costs 
in decisions to retain the services of NBA players. Logically, 
one might expect on-court performance to be the primary 
determinant of decisions to cut or trade players in the NBA. 
If sunk costs are influential,however, then it can be 
hypothesized that draft order will constitute a significant 
predictor of keeping players, even after controlling for 
players' on-court performance. 

We used three separate analyses to test the effects of sunk 
costs on personnel decisions in professional basketball. The 
first examined the role of sunk costs in the decision to use 
players on the court (minutes played); the second assessed 
whether sunk costs can predict the number of seasons 
players survive in the NBA; the third examined the effect of 
sunk costs on whether players are traded from the team 
that originally drafted them. 

ANALYSIS OF PLAYING TIME 

Method 

The NBA draft. Conducted at the end of the season, the 
draft is the principal mechanism for teams to secure new 
talent or rebuild after a losing season. The rules of the draft 
dictate the order in which professional teams get to select 
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In 1993, the NBA changed the draft 
lottery to a weighted system. The team 
with the worst record of the 11 
nonplay-off teams has a 17 percent 
chance of getting the number-one draft 
pick, the next worst team has a 15 
percent chance, and the probability 
descends to a 1 percent chance for the 
team with the best record among those 
eligible for the lottery. 

amateur college basketball players. Before 1985, the first 
pick in the draft was determined by a coin toss between the 
teams from the Western and Eastern Conference with the 
worst win-loss records. The rest of the teams in the league 
then selected players in the inverse order of their prior 
regular season records, with the best team picking last in 
each round. To reduce the incentive for teams to 
underachieve deliberately so as to get one of the best picks, 
the draft lottery was inaugurated in 1985. The lottery 
allowed all teams that did not make the play-offs to have an 
equal chance of getting the number one draft pick.1 

Sample. The sampSle included all players selected in the first 
two rounds of the 1980-1986 drafts of the National 
Basketball Association. We restricted our sample to the first 
two rounds of these drafts because players selected beyond 
this point were rarely offered contracts. In 1989, the NBA 
itself narrowed the draft to two rounds. We also restricted 
our sample to players who received contracts and played at 
least two years in the NBA, so that we could track their 
performance over time. Of those who were drafted in the 
first two rounds, 53 players never received a contract and 
one player left to play in Europe and returned to play only 
one year in the NBA. Thus our sample included 241 players 
selected from the 1980-1986 drafts who eventually received 
contracts and played at least two years in the NBA. 

Dependent variable. The number of minutes each 
basketball player plays per game is a carefully recorded 
statistic in the NBA. In these analyses we used readily 
available information on the number of minutes played 
during the entire regular season. The Official NBA 
Encyclopedia (Hollander and Sachare, 1989) and the Sports 
Encyclopedia (Naft and Cohen, 1991) were the principal 
sources of data on the amount of court time each player 
received yearly. These volumes were also the sources of 
data on regular season performance statistics, trade and 
injury information, and positions played by NBA personnel in 
the sample. 

Development of a performance index. A variety of 
fine-grained statistics are maintained on each player's 
performance. To create an index for player performance, we 
used nine widely recorded player statistics: total number of 
points scored in a season, assists, steals, shots blocked, 
rebounds, personal fouls, free-throw percentage, field-goal 
percentage, and 3-point field-goal percentage. Because 
players with more minutes will naturally have a greater 
number of points, assists, steals, fouls, shot blocks, and 
rebounds, we controlled for playing time by dividing these 
measures by the total number of minutes played during the 
season. The free-throw, field-goal, and 3-point percentages 
were calculated by dividing the number of shots made by 
the total number of shots attempted for each category. Thus 
our measures of performance reflect the productivity of 
players while they are on the court rather than simply being 
a reflection of playing time or attempts at various shots. 

We expected the underlying skills measured by the 
performance statistics to differ according to a player's 
position. Big players who typically occupy the forward and 
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2 
Although personal fouls loaded on the 
scoring factor for guards, we excluded it, 
for two reasons. First, it was the only 
performance statistic that was not 
consistent in its loading across the two 
subsamples of guards and 
forwards/centers. Second, interpreting 
the meaning of fouls was more 
problematic than the other performance 
statistics, because they could be 
associated with either playing hard 
defense or being aggressive on offense. 

Sunk Costs 

center positions are more likely to have a high number of 
rebounds and blocked shots. Therefore one might expect 
that rebounds and blocked shots would emerge as~a 
performance factor for forwards and centers, rather than 
guards. Conversely, one might expect steals and assists to 
constitute an important dimension of performance for 
guards, rather than forwards and centers, since the guard 
position is staffed by smaller, quicker players who are 
responsible for ball handling. 

To reduce multicollinearity problems due to the 
intercorrelation of several performance measures, we factor 
analyzed the performance data to form broader, more 
independent performance indices. To avoid confounding a 
player's performance with his position, we conducted two 
separate factor analyses on the performance statistics: one 
for guards and another for those in the forward or center 
position. For each group of players the nine performance 
statistics were subjected to a principle components factor 
analysis with varimax rotation. Three factors with an 
eigenvalue greater than 1.0 emerged for both subsamples, 
explaining 58 percent of the variance in the correlation 
matrix of performance statistics for guards and a similar 58 
percent of the variance for the sample of centers and 
forwards. 

Somewhat surprisingly, the results of the factor analyses 
indicated that the same three factors underlie the 
performance statistics of both groups. As shown in Table 1, 
these three factors also appeared to form a logical structure 
for the components of performance. We labeled these 
performance components as "scoring," "toughness," and 
"quickness." The first factor consisted of points per minute, 
field-goal percentage, and free-throw percentage.2 In the 
sample of forwards and centers, this factor (with an 
eigenvalue of 2.7) explained 30 percent of the variance, 
whereas it accounted for 23 percent of the variance 
(eigenvalue of 2.1) in the sample of guards. The second 
factor consisted of rebounds per minute and blocks per 
minute. This factor accounted for 16 percent (eigenvalue of 
1.5) and 20 percent (eigenvalue of 1.7) of the variance in the 
samples of forwards/centers and guards, respectively. 
Finally, the third factor was composed of assists per minute 
and steals per minute. This factor accounted for 12 percent 
(eigenvalue of 1.1) and 16 percent (eigenvalue of 1.4) of the 
variance in the samples of forwards/centers and guards, 
respectively. 

Based on the factor analyses we constructed three indices 
of player performance: scoring, toughness, and quickness. 
For each of the factors, we standardized the component 
measures, summed them, and then divided by the total 
number of items in the factor, thus creating an index with 
the mean of zero and standard deviation of one. To ensure 
that performance on any of these dimensions was not 
biased by the position of a player and to facilitate 
comparisons of players' performance, we standardized each 
of these performance indices by position, calculating the 
performance of each player relative to the performance of all 
other players in the sample at his particular position. 
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Table 1 

Factor Analysis of Performance Statistics by Player Position 

Factor Loadings for Forward/Centers Factor Loadings for Guards 

Variable Scoring Toughness Quickness Scoring Toughness Quickness 

Points/min. .79 - .17 - .22 .63 .47 - .33 
Field-goal percentage .75 .39 .03 .66 .28 .05 
Free-throw percentage .62 -.33 -.09 .67 -.17 .08 
Rebounds/min. .02 .82 .05 - .15 .73 - .07 
Blocks/min. -.1 1 .66 -.14 -.05 .77 .10 
Assists/min. .33 - .50 .49 .15 - .29 .82 
Steals/min. - .05 - .06 .93 - .10 .36 .79 
Personal fouls/min. -.58 .40 .08 -.65 .30 -.13 
3 Pt. field-goal percentage .17 -.44 .13 .53 -.15 -.08 

Additional control variables. Because a player's 
performance may be affected by injuries or illness, we 
included such information in our analyses. We coded 
whether players suffered from fourteen types of injuries or 
illness. We created a dummy variable, injury, as a broad 
indicator and coded for the presence of any type of injury or 
illness. 
Another possible influence on playing time is whether an 
individual has been traded, but the effect of being traded is 
difficult to predict. A trade could increase playing time if the 
player moves to a team that has a greater need for his 
services. But being traded can also signal that a player is no 
longer at the top of his game, thus leading to a reduction in 
playing time at the new team. A dummy variable, trade, was 
created to control for these possible effects. It was coded 1 
if the player was traded before or during a particular season 
and coded 0 otherwise. 
A player's time on the court may also be determined by the 
overall performance of his team. Being drafted by a winning 
team, composed of other quality players, may make it more 
difficult for the incoming player to receive significant playing 
time. In contrast, being drafted by a weaker team may mean 
that the incoming player will be given more time on the 
court. Thus we coded the team record for each player (win) 
by taking the percentage of games won over the total 
number of games played during the season. 

Since playing time may differ by position, we also included a 
dummy variable, forward/center, in the regression equation 
that was coded 0 if the player was a guard and coded 1 if he 
was a forward or center. 

Resu Its 

The means, standard deviations, and zero-order correlations 
among the independent variables and dependent variable, 
minutes played, are shown in the Appendix. 

We conducted four regression analyses to test for the 
effects of draft order on playing time in the NBA, controlling 
for each player's prior performance, injury, trade status, and 
position. To predict playing time in a given year, we entered 
the performance statistics (scoring, toughness, quickness) 
from the prior year, position (guard vs. forward/center), data 
on whether the player had been injured or traded during the 
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year, and finally, the player's draft number. This procedure 
was repeated for years 2, 3, 4, and 5 of the player's career 
in the NBA. 
As shown in Table 2, a player's scoring was the primary 
performance variable associated with greater playing time 
over the five years of data. The occurrence of an injury or 
being traded were also consistent predictors of minutes 
played over the five years. In contrast, the measures of 
quickness, toughness, and the player's position were not 
(with the exception of quickness during the second and 
fourth years) significant predictors of playing time. 

Table 2 

The Effect of Draft Number on Minutes Played 

Minutes Played 
(1 ) (2) (3) (4) 

Variable Year 2 Year 3 Year 4 Year 5 

Forward/center -11.68 -139.99 -206.81 - 63.45 
Prior year scoring 324.79--- 712.53--- 315.16--- 446.21--- 
Prior year toughness - 23.35 80.09 120.26 112.48 
Prior year quickness 133.25- 53.97 243.310- 76.51 
Injury - 658.97- - 982.57--- -649.53--- - 916.14--- 
Trade - 466.66- * - 547 89---* 437 95---* - 362.65* 
Win -1.37 -6.15 6.69 .93 
Draft number - 22.77-- - 16.21- -16.46-- -13.770 

Intercept 2100.7400- 2415.6600- 1955.0600- 2258.8900- 

N 241 211 187 165 
R-square .34 .46 .34 .34 

*p < .05; ep < .01; eeep < .001, one-tailed tests, except where noted. 
* Two-tailed tests. 

3 

The number of players drafted in a round 
is equal to the number of teams in the 
NBA. Because the number of teams in 
the league changed during the time 
period of this study, we used an average 
of 24 teams to compute the difference 
between first- and second-round draft 
picks. 

Table 2 also shows that draft order was a significant 
predictor of minutes played over the entire five-year period. 
This effect was above and beyond any effects of a player's 
performance, injury, or trade status. The regressions showed 
that every increment in the draft number decreased playing 
time by as much as 23 minutes in the second year (I, = 
-22.77, p < .001, one-tailed test). Likewise, being taken in 
the second rather than the first round of the draft meant 552 
minutes less playing time during a player's second year in 
the NBA.3 Though a player's draft number was determined 
before entering the league, it continued to be a significant 
predictor of playing time up to and including the fifth year of 
a player's NBA career (P2 = -16.21, p < .001, one-tailed 
test; f3 = - 16.46, p < .001, one-tailed test; 4 = 

- 13.77, p < .01, one-tailed test). 

Although the magnitude of the effect for draft order 
appeared to decline over time, this pattern should be 
interpreted with caution. Because players left the league 
over time, there were changes in our sample across the five 
periods. Since the departure of players is no doubt 
associated with a decrease in their skills (e.g., being cut or 
not making the final team roster), one could argue that our 
population became increasingly elite over time. Due to the 
restriction in range, demonstrating significant effects of draft 
order might have been more difficult in year 5 than in year 2, 

481/ASQ, September 1995 



thus making any interpretation of the trend of effects 
problematic. Our second set of analyses specifically 
examined the effect of draft order on the exit of players 
from the NBA over time. 

ANALYSIS OF CAREER LENGTH 

We hypothesized that the decision to keep or cut 
players-like the decision to give players court time-is 
based on sunk costs as well as performance criteria. 
Therefore, we investigated whether survival in the league 
could be explained by a player's initial draft number, after 
controlling for his levelof performance in the NBA. 

Method 

Examining survival in the NBA poses several challenges to 
standard regression techniques. First, ordinary regression 
analyses cannot easily incorporate changes in the value of 
explanatory variables over time. Creating performance 
variables for every year (up to twelve years) spent in the 
league would not only be very cumbersome but would also 
introduce problems of multicollinearity. Second, there is no 
satisfactory way of handling right-censored cases, i.e., the 
players for which the event of being cut from the league is 
not observed within the time period of the study. 
Conducting a logistic regression on a categorical dependent 
variable that distinguishes those who were cut from those 
who were not cut would retain information on both groups. 
But logistic regression cannot incorporate the effect of 
duration or time spent in the state prior to the occurrence of 
the event. The effect of duration, measured by length of 
tenure in the NBA, is particularly important because we 
would expect that a player's risk of being cut will increase 
the longer he remains in the league. 

To address each of these challenges, we used event history 
analysis to examine how draft order influenced the risk of 
being cut from the NBA. A model of the survival process 
using this framework can explicitly include (1) explanatory 
variables that vary over time, such as on-court performance; 
(2) data on those who were and were not cut from the 
league; and (3) information on duration of time before 
leaving the league. Morita, Lee, and Mowday (1989) 
specifically recommended this technique for the analysis of 
turnover data and provided detailed information on its use. 

Sample. For the event history analysis we again used a 
sample consisting of all players selected in the first two 
rounds of the 1980-1986 NBA drafts. We restricted the 
sample to those who played at least one year in the league 
after being drafted, yielding a final sample of 275 players. 
We followed all the players' careers until they were cut from 
the league or until the 1990-1991 season, the last year for 
which data were obtained. During the time frame of this 
study, we observed that 184 of the 275 players in this 
sample were eventually cut from the league. 

Dependent variable. The dependent variable in event 
history analysis is the hazard rate. The hazard rate is 
interpreted roughly as the probability of the event of being 
cut occurring in a time interval t to t + At, given that the 
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We also analyzed the data using the 
Weibull model, in which the log of the 
hazard rate could increase or decrease 
with the log of time. The results were 
not significantly different. 

Sunk Costs 

individual was at risk for being cut at time t (Petersen, 1994). 
Dividing the probability P(t, t + At) by At, and letting At go 
to zero, gives us the more precise formulation of the hazard 
rate expressed as an instantaneous rate of transition: 

r(t) = P (t, t + At)/At 
lim Ate- 0. 

Model. We specified a model in which the hazard rate is a 
linear function of time, thereby allowing the risk of being cut 
from the league to increase or decrease over time. The 
hazard rate function can be expressed as: 

ret) = exp[a + 01X + p2X(t) + YW(t)], 

where r(t) is the hazard rate or risk that a player is cut from 
the NBA, ao is a constant, X is the vector of time-constant 
variables such as draft number, X(t) is the vector of 
time-dependent variables such as performance that are 
updated each year, and t, the time variable, is the length of 
tenure in the NBA. 1, 2, and y are the coefficients to be 
estimated. The hazard rate is exponentiated to keep the 
hazard rate greater than zero. 

Control variables. In the event history analysis we used the 
same performance indices as those in the study of playing 
time: scoring (points per minute, field-goal percentage, and 
free-throw percentage), toughness (rebounds and blocked 
shots per minute), and quickness (steals and assists per 
minute). Injuries, trades, and player position were also entered 
into the event history analysis as control variables. Being 
injured can obviously affect the length of a player's career. 
Being traded can also influence career length, although, again, 
we do not offer a prediction on the direction of the effect. The 
player's position was included as a control variable to account 
for the relative scarcity and greater difficulty in replacing larger 
players (i.e., forwards and centers). 

We also included as a control variable the player's team 
record, measured as the percentage of games won during 
the season. Because poorly performing teams often make 
major roster changes in efforts to improve performance, 
players may be more likely to be cut when teams undergo 
such rebuilding. In addition, we controlled for tenure in the 
NBA, since the risk of being cut can be expected to increase 
with the number of years a player has already spent in the 
league. The tenure "clock" stopped, however, for some 
players who left to play for teams in Europe for one or 
more years and restarted again when they returned to the 
NBA. 

Results 

The results of the event history analysis appear in Table 3. 
The full model with control variables and draft number 
offered a significantly better fit than the null model (X2 = 

123, 9 d.f., p < .01). 
In this sample, 184 events were observed. The proportional 
hazard rate for dropping out of the NBA was therefore .13. 
The expected time until the event of being cut from the 
league occurred at 7.9 regular seasons (or years), without 
controlling for the independent effect of an increasing hazard 
rate over time. 
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Table 3 

The Effect of Draft Number on Survival in the NBA* 

Variable 13 

Forward/center .84 
(21.34) 

Scoring -45.57 
(7.07) 

Toughness - 18.46- 
(9.51) 

Quickness -3.17 
(8.37) 

Injury -14.55 
(27.96) 

Trade 61.81 -t 
(15.57) 

Win - .74 
(.48) 

Tenure 6.88- 
(3.03) 

Draft number 3.300- 
(.61) 

Intercept - 299.90 
(33.01) 

Number of events 184 
Number of spells 1455 
Chi-square 123 

p < .05; Up < .01; *p < .001, one-tailed tests, except where noted. 
* Standard errors are in parentheses. All coefficients and standard errors are 

multiplied by 100. 
t Two-tailed tests. 

As hypothesized, the effect of being chosen later in the draft 
had a significant positive effect on the hazard rate for career 
mortality (I = .03, p < .001, one-tailed test). To make the 
coefficient meaningful, it must be exponentiated and 
converted into a percentage, using 100[exp(b) - 1]. For 
continuous variables, this calculation gives us the percentage 
change in the hazard rate given a one-unit change in the 
explanatory variable (Allison, 1983). We can approximate the. 
effect of the explanatory variable by subtracting the change 
in the hazard rate from the proportional hazard rate, r(t), to 
get the new hazard rate r(t)'. (This calculation is an 
approximation because it is independent of the moderating 
effect of tenure on the hazard rate.) The time until the event 
of interest can then be computed by taking 1r(t)'. Using this 
method, every increment in the draft number raised the 
hazard rate function by 3 percent. A first-round draft pick 
would therefore stay in the league approximately 3.3 years 
longer than a player drafted in the second round. 
The results also showed that two performance statistics, 
scoring and toughness, significantly affected the hazard rate 
for career mortality. The effect of a one-standard-deviation 
increase in the scoring index decreased the hazard rate 
function by 37 percent, or added approximately 4.6 years to 
a player's career (13 = -.46, p < .001, one-tailed t-test). A 
similar increase in the toughness index, a measure of 
rebounding and blocked shots, decreased the hazard rate by 
16 percent (I = -.18, p < .05, one-tailed t-test). The 
results also showed that players were more likely to be cut 
if they had been traded in the season prior to their release 
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from the NBA (a = .62, p < .001, two-tailed test). 

The duration variable that counted the number of years in 
the NBA showed that, independent of the other covariates, 
the hazard function for being cut from the league increased 
with time (X = .07, p < .05, one-tailed t-test). Each 
additional year in the NBA increased the hazard for career 
mortality by 7 percent. Therefore, one additional year in the 
NBA decreased the time to the event of being cut from the 
league by approximately half a year. 

ANALYSIS OF BEING TRADED 

By the time mcist players leave the NBA, they are no longer 
playing for the team that originally drafted them into the 
league. Therefore one might argue that the analysis of 
career length is only a rough test of the sunk-cost effect. 
Because of the frequency of trades, the effects of draft 
order on career length may largely represent sunk-cost 
effects that have been passed from team to team as players 
are traded over their entire careers.5 Thus a more sensitive 
test of the initial effects of sunk costs would consist of an 
analysis of NBA players' first trade. The principal question is 
whether draft order (having selected a player early or late in 
the draft) influences teams' decisions to trade players, 
controlling for their performance as well as other logical 
predictors. To answer this question, we again used event 
history analysis. 
Method 
Sample. The sample of players for this second event history 
analysis included those who played in the NBA for two or 
more years. We used a two-year cutoff because players are 
typically traded during the interim period between seasons, 
and being traded implies playing at least a second year with 
a new NBA team. For the analysis of a player's initial trade, 
we followed players until they were traded from their 
original team or until the 1990-1991 season, the last year for 
which we obtained data. Of the 241 players in the sample, 
157 were traded at least once. 
Dependent variable. The dependent variable was the hazard 
rate for a player's first trade. Although players are often 
traded more than once, we focused on the first trade to test 
specifically whether sunk costs affected the likelihood that 
NBA teams would trade their draft picks. 
Model. Because the decision to trade a player may involve 
many of the same factors that contribute to the decision to 
cut players, we again modeled the hazard rate as a linear 
function of the performance variables, injury, team record, 
duration, and draft number. The predicted direction of the 
effects of these control variables is the same as in the 
previous analysis of career length. 

Results 
Table 4 shows the results of the event history analysis for 
the first trade. The full model with control variables and draft 
number represented a significantly better fit than the null 
model (X2 = 40, 8 d.f., p < .01). 
In this sample, 157 events were observed. The proportional 
hazard rate for a player's first trade was therefore .21. The 
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expected time until the event of being traded for the first 
time occurred at 4.8 regular seasons, without controlling for 
the independent effect of an increasing hazard rate over 
time. 

Table 4 

The Effect of Draft Number on First Trade* 

Variable 1 

Forward/center 3.07 
(24.40) 

Scoring -10.43 
(9.32) 

Toughness - 19.04' 
(11.23) 

Quickness - 7.52 
(11.39) 

Injury -37.64 
(34.47) 

Win - 1 .51-- 
(.55) 

Tenure 7.73' 
(4.50) 

Draft number 2.6800- 
(.63) 

Intercept - 176.30-- 
(38.12) 

Number of events 157 
Number of spells 746 
Chi-square 40 

op < .05; Up < .01; eeep < .001, one-tailed tests. 
* Standard errors are in parentheses. All coefficients and standard errors are 

multiplied by 100. 

Draft number had a significant, positive effect on the hazard 
rate for being traded (a = .03, p < .001, one-tailed test). 
The hazard rate function was raised by 3 percent with every 
increment in the draft number. Moving from the first to the 
second round of the draft therefore increased a player's 
chances of being traded by 72 percent. 
The results also showed that players were less likely to be 
traded if they were on winning teams (1 = -.02, p < .001, 
one-tailed test). For example, by playing on a team that 
increased its win percentage by 10 percent, a player would 
reduce his risk of being traded by 20 percent. 
Surprisingly, scoring did not have a statistically significant 
influence on the hazard rate (1 = -.10, p < 0.1, one-tailed 
t-test). As in the analysis of career length, however, 
toughness affected the hazard rate for a player's first trade 
(a = -.19, p < .05, one-tailed t-test). A one-standard- 
deviation increase in this index (based on players' 
rebounding and blocked shots statistics) decreased the 
hazard rate function by 17 percent, or added approximately 
one year to the time until the first trade. 

DISCUSSION 
The descriptive data on the usage and retention of NBA 
players are interesting in their own right. As can be seen 
from these results, a major determinant of a player's time on 
the court is his ability to score. These same skills also 
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helped players survive in the league. In contrast, defensive 
skills such as rebounding and blocked shots (included in our 
toughness index) were not very predictive of playing time, 
although they did improve a player's chances of staying on a 
particular team and remaining in the league. Quickness did 
not appear as a strong indicator of either playing time or 
survival over time. Thus one might conclude that, as much 
as coaches preach the value of team-oriented skills such as 
rebounding, blocked shots, assists, and steals, they are 
actually more likely to use individual scoring in their 
important personnel decisions. 

To test the sunk-cost hypothesis, we analyzed data on 
playing time, survival in the league, and the likelihood of 
being traded. Each of these analyses supported the 
sunk-cost effect. Regressions showed that the higher a 
player was taken in the college draft, the more time he was 
given on the court, even after controlling for other logical 
predictors of playing time, such as performance, injury, and 
trade status. Similarly, the higher the draft number of a 
player, the longer was his career in the NBA and the less 
likely he was to be traded to another team, controlling for 
performance and other variables. 

The results of this study are not only consistent, they are 
also provocative. They challenge conventional models of 
decision making because the use of sunk costs is 
specifically excluded from models of rational economic 
choice. The results of this study also challenge prevailing 
practices of running professional basketball teams, since as 
one NBA insider noted, "coaches play their best players and 
don't care what the person costs. Wins and losses are all 
that matters."6 

Alternative Explanations 
Because sunk-cost effects are controversial, it is important 
to discuss a number of alternative interpretations of the 
results. These alternatives involve versions of economic or 
decision rationality that could account for the same pattern 
of results obtained from the NBA data. 
One alternative might involve the NBA salary cap. It could be 
argued that teams were obligated to play and retain top draft 
choices because of the difficulty of making trades under the 
salary cap. If the salary of top draft choices could not be 
spent on substitute players, then teams may have had no 
choice other than to use their most highly drafted players, 
regardless of their performance. The logic of this argument 
has two problems, however. First, under NBA rules, teams 
are free to trade players who are not performing up to a 
desired level, as long as their total team salary (after the 
trade) does not exceed the designated salary cap. Second, 
under the rules of the salary cap (passed in 1983 and put 
into effect starting with the 1984 season), teams can exceed 
the cap by waiving a player (for any reason) and signing a 
substitute player. The major limitation is that the substitute 
player's salary cannot exceed 50 percent of the former 
player's salary. Thus, if a highly paid, early draft choice does 
not perform up to expectations, it is actually easier to 
replace that player than the more modestly paid, lower draft 
choice. There is simply more room under the salary cap to 
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find a qualified player with a high rather than low salary. A 
sports writer recently lamented this fact in discussing the 
Golden State Warriors' difficulties in trading Latrell Sprewell 
(their 23rd pick in the 1992 draft): 
Like it or not, they have an All-Star shooting guard in Sprewell, who 
is going to be very difficult to trade for value right now because of 
the salary cap. In the NBA, you have to trade salary slot for salary 
slot. To find a comparable talent who would match Sprewell's 
relatively low $900,000 salary would be impossible. (Nevius, 1995) 

Another argument concerns the fan appeal of highly drafted 
players. The reasoning here is that top draft choices, having 
been stars in college basketball, would likely attract more 
fans to the stadium than lower draft choices. Thus, 
regardless of their performance, it might make economic 
sense for teams to play those who were most highly 
drafted. The biggest problem with this alternative is that fan 
appeal is ephemeral. Though popularity among fans may be 
based on a player's college reputation for the first year or 
two he is in the NBA, it is likely that popularity erodes 
quickly if it is not backed up by performance at the 
professional level. One only has to consider how fast fans 
soured on college stars such as Ralph Sampson and Danny 
Ferry, two top draft picks, after their performance in the 
NBA did not live up to expectations. As a result, we consider 
fan appeal to be a reasonable alternative for some of the 
early data on playing time, but not for playing time in years 3 
through 5. For these later years, fan appeal is probably so 
intertwined with NBA performance that it is effectively 
controlled when prior performance is controlled in the 
analyses of playing time and turnover. 

A third alternative interpretation concerns the value of the 
draft lottery as a predictor of future NBA performance. It can 
be argued that draft order contains information not reflected 
in other performance statistics and that, even with its flaws, 
the draft is a good predictor of players' future performance. 
If this is true, then it would be wise for teams to be 
extremely patient with their top draft choices. Teams should 
logically play and retain their most highly drafted players, 
since these are the athletes that will likely perform best in 
the long run. 

Because of the seriousness of this alternative, we 
conducted some additional quantitative analyses to 
determine its merits. We checked whether draft order could, 
in fact, predict subsequent performance of players, beyond 
what is known about their current level of performance. We 
regressed the overall performance of players (using an index 
of scoring, quickness, and toughness) on draft number, as 
well as prior year's data on each of the performance factors, 
position, trades, and injuries. The results showed draft 
number to be a significant predictor of subsequent 
performance during players' second and third years in the 
NBA, but not for their fourth or fifth years. Thus, while draft 
order does appear to contain some useful information on 
players' early performance, it is not a significant predictor 
over longer periods of time. This means that the effects of 
sunk costs cannot be explained by a set of rational 
expectations contained in the NBA draft. It also means that 
when NBA teams are especially patient with high draft 
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choices, such patience cannot be defended simply on the 
grounds of predicting future performance. 

The final alternative we consider concerns the development 
of young players. Few athletes enter the NBA with the skills 
to make an immediate impact at the professional level. An 
investment of playing time is often necessary to bring 
players up to the level of competition in the NBA. Thus if top 
draft choices hold the most promise, it may logically make 
sense to invest the most playing time in these select 
players. Of course, one might argue, conversely, that playing 
time should be invested in lower draft choices, since these 
players must make the greatest jump in skill level from the 
college to professional ranks. 

To help determine whether it is wise for teams to invest a 
disproportionally large amount of playing time in high draft 
choices, we conducted some additional analyses. We 
regressed performance for years 2 through 5 on prior year's 
performance, prior year's time on the court, draft number, 
and the interaction of draft number and playing time. The 
results of these four analyses supported a straightforward 
investment hypothesis. For years 2, 3, and 4, an increase in 
performance was associated with the investment of prior 
playing time. But none of the interactions of draft choice and 
playing time proved to be significant predictors of 
subsequent performance. From these results it does not 
appear that it pays off for teams to invest playing time 
disproportionally in high rather than low draft choices, at 
least when prior performance is held constant. 

As evidenced by these several analyses, we believe the 
sunk-cost effect can survive a great deal of logical and 
empirical scrutiny. Because of the many controls allowed by 
this research, and the consistency of the results across 
separate empirical tests, we can be relatively confident that 
sunk costs influenced personnel decisions in professional 
basketball. Teams did play their most expensive players 
more and hang on to them longer than players they 
expended fewer resources to obtain. Such observations 
would be obvious, of course, if it were not for the fact that 
the effects were always beyond those explained by 
performance variables. Such observations would likewise be 
ambiguous if it were not for the fact that other alternatives 
did not account for the results as well as the sunk-cost 
hypothesis did. 

Although we have discounted a series of alternatives to the 
sunk-cost hypothesis, this does not mean that decision 
makers have not pursued what they have perceived as 
logical goals in making personnel decisions. Team managers 
and coaches may play high draft choices, beyond what is 
merited by their on-court performance, because they believe 
these players will soon excel. They may believe that a little 
extra playing time will soon pay off in on-court performance. 
All of these beliefs can appear logical to the actors involved, 
and they may indeed be the kind of reasoning (or 
justification) stimulated by sunk costs. Our purpose has not 
been to rule out these notions as perceived rationales for 
decision making, but to demonstrate that these arguments 
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cannot serve as rational explanations for the sunk-cost 
effect. 
Reexamining the Sunk-cost Literature 

The sunk-cost effects observed in the NBA data are 
analogous to those found by Arkes and Blumer (1985) in 
their resource utilization studies, in which subjects chose to 
use more expensive tickets or food over those that were the 
same in all respects except cost. The NBA results can, 
however, be contrasted with studies using project- 
completion scenarios. As noted earlier, Garland and his 
associates found that decision makers were more likely to 
invest in a project when it was closer to completion but that 
the amount of prior investment did not, by itself, predict 
future allocations. Why is there such a disparity between the 
results for sunk costs in the product-usage versus 
project-completion situations? And does this disparity mean 
that sunk costs are not important to projects for which large 
sums have been expended without there being substantial 
progress toward completion? 

The disparity in results between product-usage and 
project-completion situations may have more to do with the 
way controlled laboratory research is carried out than with 
the way the world naturally works. Although Garland could 
not find sunk-cost effects that were independent of 
project-completion information, this does not mean that 
costs are unimportant. In natural settings, decision makers 
may regularly confound the amount they have expended 
with progress on a project. Such a perceived linkage (or bias) 
was, for example, observed in Ross and Staw's (1993) study 
of the construction of the Shoreham nuclear power plant. In 
the Shoreham case, expenditures moved from approximately 
$70 million to $5.5 billion over twenty years. During much of 
this construction period, decision makers believed that the 
more that was spent on the nuclear plant, the closer would 
be the plant's opening date. Had decision makers fully 
anticipated the failure of Shoreham ever to go on-line (and 
its eventual sale to the State of New York for $1.00), they 
would have surely abandoned the project at an earlier date. 
Therefore, experiments that try to hold constant the 
perceived progress on a project (e.g., by presenting clearcut 
evidence of success and failure) may be missing a key 
element of what binds actors to losing courses of action. 

Theoretical Mechanisms 

Many theoretical mechanisms have been offered for the 
sunk-cost effect. Arkes and Blumer (1985) described the 
sunk-cost effect as a judgment error, that people believe 
they are saving money or avoiding losses by using sunk 
costs in their calculations. This desire not to "waste" sunk 
costs can, as we noted, result from an assumed covariation 
between cost and value (in resource utilization decisions) or 
between expenditure and progress (in project-completion 
decisions). It can also result from a more primitive form of 
mental budgeting in which decision makers simply want to 
recoup past investments, regardless of their utility (e.g., 
Heath, 1995). In both formulations, people may be 
attempting to achieve economic gain; they just do not have 
the proper tools and information to do it right. 
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Other explanations of sunk-cost effects go beyond cold 
miscalculation. They involve "warmer" psychological 
processes such as framing (Kahneman and Tversky, 1979), 
self-justification (Aronson, 1984), or behavioral commitment 
(Kiesler, 1971; Salancik, 1977). A framing explanation would 
emphasize that sunk costs are losses that must be accepted 
if the individual decides to dispose of a product or withdraw 
from a course of action. Thus if framing were the crucial 
force underlying sunk-cost effects, one might see sunk-cost 
effects only when an investment is defined in terms of 
losses rather than gains. Self-justification theory also tends 
to focus on negative situations, contexts in which one might 
suffer an embarrassment or loss of esteem if sunk costs 
were ignored. A crucial assumption of the self-justification 
explanation is that there is some personal responsibility for 
prior expenditures; without responsibility, sunk costs may 
not be a potent factor in decision making. Finally, a 
behavioral commitment explanation would stress that sunk 
costs are important only when they have implications for 
accompanying beliefs. Sunk-cost effects would therefore be 
strongest when expenditures are made publicly, freely, 
irrevocably, and are linked to other values or intentions of 
the decision maker. 

The main purpose of the present study was to validate the 
sunk-cost effect in a natural organizational setting, not to 
sort out the competing theoretical processes that may 
underlie this effect. But the NBA data do seem to imply a 
more complex behavioral process than many social scientists 
are comfortable with. Consider the fact that most players in 
our sample (157 out of 241) were traded sometime during 
their careers. This means that draft order continued to have 
meaning in player personnel decisions, even though the 
team deciding to use or cut a particular player may not have 
been the team that originally drafted him. Such a result 
implies that people may perceive an association, however 
faulty, between draft order and the prospect of future 
performance. For example, even though top draft choices 
such as Ralph Sampson or Benoit Benjamin failed to 
produce for the teams that drafted them and were 
subsequently traded to other franchises, they still retained 
enough value to survive for many years in the NBA. Being 
drafted high may create such a strong expectation of 
performance that the belief persists long after the decline in 
court skills. As a result, sunk costs can actually be passed 
from one team to another, with each transaction being 
influenced by an overestimate of the performance of the 
traded player.7 

Although the transferability of sunk costs across NBA 
franchises makes the effect look like a cold error in 
calculation or misjudgment, there is more to sunk costs than 
this. Consider the fact that being traded, by itself, was 
always associated with a decrease in the usage and 
retention of NBA players, even when performance was held 
constant (see Tables 2 and 3). This means that the further 
teams were from the original drafting of players, the less 
committed they were to them (see Schoorman, 1988, for a 
similar effect on performance appraisals in industry). The 
influence of being traded on player usage and retention 

491/ASQ, September 1995 



therefore implies that "warmer" psychological processes 
such as justification and commitment may also play a part in 
the sunk-cost phenomenon. 

In our view, the presence of cognitive bias, commitment, 
wastefulness, and justification may all be interwoven in 
natural situations. In the case of the NBA, taking a player 
high in the draft usually involves some extremely high, often 
biased, estimates of the person's skills. The draft also 
involves a very visible public commitment, one that 
symbolizes the linkage of a team's future with the fortunes 
of a particular player. Moreover, the selection of a player 
high in the draft signals to others that a major investment is 
being made, one that is not to be wasted. If the draft choice 
fails to perform as expected, team management can expect 
a barrage of criticism. Having to face hostile sports 
commentators as well as a doubting public may easily lead 
to efforts to defend or justify the choice. In the end, team 
management may convince itself that the highly drafted 
player just needs additional time to become successful, 
making increased investments of playing time to avoid 
wasting the draft choice. 

As illustrated by this basketball scenario, there may be 
multiple processes underlying the sunk-cost effect. Such 
complexity may be anathema to the traditional goal of 
seeking a single parsimonious cause for behavior and for 
finding the one theoretical model that dominates others as a 
causal explanation. Yet we may be forced to live with this 
kind of complexity in understanding sunk-cost effects. 
Picking apart the various theoretical explanations has little 
utility if the natural situation includes multiple causal forces. 
Our task in-future research therefore goes beyond showing 
whether a particular set of antecedents can lead to 
sunk-cost or escalation effects. It is to map the set of 
consonant and conflicting forces as they naturally occur in 
organizational settings, knowing full well that this search 
involves as much understanding of the context as the 
theoretical forces involved. 
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APPENDIX: Means, Standard Deviations, and Correlations among Variables* 

Variable 1 2 3 4 5 6 7 8 9 10 11 

1. Draft number 
2. Forward/center -.07 
3. Minutes in year 2 -.45-- .03 
4. Scoring in year 1 -.34-- .02 .38- 
5. Toughness in year 1 -.05 .08 .02 .05 
6. Quickness in year 1 -.07 .03 .15- .09 -.05 
7. Trade in year 2 .29- .03 -.34-- -.18-- -.140 -.10 
8. Injury in year 2 .00 -.07 -.10 .08 -.03 .06 -.12 
9. Win in year 2 -.13- .11 -.01 -.12 .03 -.09 -.07 .02 

10. Minutes in year 3 - .410* .03 .75- .34- .09 .10 - .25-- .02 .04 
11. Scoring in year 2 - .29-- .01 .57- .39- .05 - .01 - .09 .03 .00 .56- 
12. Toughness in year 2 -.06 .07 .07 .04 .76- -.19`- -.10 -.04 .09 .07 .15- 
13. Quickness in year 2 - .04 .06 .23- .16- - .20 .65- - .14- .02 - .04 .10 .13- 
14. Trade in year 3 .21- -.09 -.36-- -.12 -.14 -.06 .26- -.04 -.14- -.38-- -.28-- 
15. Injury in year 3 -.09 .00 .04 .07 .01 -.02 -.03 .12 -.05 -.19- .02 
16. Win in year 3 .01 .12 .07 .07 .10 .00 -.05 -.05 .46- .06 .16- 
17. Minutes in year 4 - .30-- - .09 .57- .29- .00 .10 - .29-- .09 .02 .68- .45- 
18. Scoring in year 3 -.31-- .01 .45- .36- -.04 -.02 -.01 -.08 -.02 .58- .57- 
19. Toughness in year 3 -.08 .06 .01 -.03 .81- -.25- -.12 -.10 .17- .11 -.01 
20. Quickness in year 3 -.12 .09 .34- .02 -.23-- .80- -.13 .04 -.06 .24- .17- 
21. Trade in year 4 .09 -.04 -.27-- -.04 -.01 .01 .09 -.03 .04 -.33-- -.25-- 
22. Injury in year 4 .03 .11 .06 .07 .08 .07 .02 .00 -.04 .01 .04 
23. Win in year 4 .02 .04 .10 .08 .04 .02 - .15- - .02 .22- .03 .09 
24. Minutes in year 5 - .23- .01 .41 .22- .04 .06 - .12 - .04 .03 .58- .38- 
25. Scoring in year 4 - .25-- - .13 .38- .42- - .21- - .01 - .11 .09 -.02 .46- .59- 
26. Toughness in year 4 .04 .02 -.08 -.07 .79- -.32-- -.08 .01 .03 .03 -.15- 
27. Quickness in year 4 - .11 .01 .33- .22- - .26-- .61 - - .07 .09 - .02 .27- .23- 
28. Trade in year 5 .16- -.03 -.26-- -.04 -.09 -.30 .23- .13 -.01 -.14 -.11 
29. Injury in year 5 -.14 -.02 .15- .09 .08 .14 -.08 -.02 .00 .10 .02 
30. Win in year 5 .00 .03 .03 -.02 -.08 .04 -.13 -.09 .22- -.05 .03 

Mean 21.11 .62 1464.32 .01 -.02 -.05 .23 .05 48.20 1603.73 -.01 
S.D. (12.74) (.49) (918.78) (.73) (.73) (.73) (.42) (.21) (13.38) (967.80) (.77) 
N 275 275 241 275 275 275 241 241 241 211 241 

Variable 12 13 14 15 16 17 18 19 20 21 22 

13. Quickness in year 2 -.16- 
14. Trade in year 3 -.12 -.06 
15. Injury in year 3 .02 .03 -.06 
16. Win in year 3 .08 .01 -.23- -.14- 
17. Minutes in year 4 .07 .13 -.25- -.07 .02 
18. Scoring in year 3 -.02 .05 -.17- -.07 .05 .38- 
19. Toughness in year 3 .80- -.25-- - .13 - .07 .10 .08 .02 
20. Quickness in year 3 -.23- .75- -.10 -.02 .02 .22- .13 -.20-- 
21. Trade in year 4 -.03 -.05 .11 -.05 -.06 -.30-- -.24- -.04 -.07 
22. Injury in year 4 -.25 .07 -.13 .20- .09 -.26-- -.08 -.06 ..00 .01 
23. Win in year 4 .08 -.06 -.11 .03 .59- .12 .07 .04 .01 -.02 -.02 
24. Minutes in year 5 .08 .14 -.16- -.19- .10 .70- .36- .05 .18- -.28- -.14 
25. Scoring in year 4 -.17- .14 -.13 -.17-- .04 .48- .54- - .12 .09 -.15- -.11 
26. Toughness in year 4 .83- -.26- -.07 -.04 -.07 .03 -.14 .83- -.30- .01 -.01 
27. Quickness in year 4 -.21- .73- -.13 .01 .03 .22- .22- -.23- .71- -.06 -.01 
28. Trade in year 5 -.14 -.09 .08 -.07 -.12 -.27-- -.06 -.10 -.10 .20- .03 
29. Injury in year 5 .08 .08 -.17- .20- .07 -.06 .03 .11 .09 -.05 .29- 
30. Win in year 5 -.03 -.01 -.15 -.04 .36- .07 -.15 -.03 .05 .01 .02 

Mean .03 - .02 .26 .06 49.13 1737.95 .00 .04 - .03 .25 .10 
S.D (.78) (.85) (.44) (.24) (14.09) (917.85) (.74) (.74) (.68) (.43) (.30) 
N 241 241 211 211 211 187 211 211 211 187 187 

Variable 23 24 25 26 27 28 29 30 

23. Win in year 4 
24. Minutes in year 5 .14 
25. Scoring in year 4 .07 .45- 
26. Toughness in year 4 -.02 .05 -.05 
27. Quickness in year 4 .01 .17- .32- -.20- 
28. Trade in year 5 -.18- -.19- -.08 -.02 -.05 
29. Injury in year 5 .06 -.32-- -.10 .02 .07 -.08 
30. Win in year 5 .52- .06 .05 -.10 -.05 -.22 -.11 

Mean 50.55 1759.82 .00 - .03 -.04 .22 .13 50.65 
S.D. (13.93) (954.41) (.73) (.80) (.85) (.41) (.34) (13.51) 
N 187 165 187 187 187 165 165 165 

*p <05; * p < .01; two-tailed tests. 
* The sample size for an intercorrelation is the lower number of the pair. 
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