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Children who experience adversities have an elevated risk of mental health 

problems. However, the extent to which adverse childhood experiences 

(ACEs) cause mental health problems remains unclear, as previous 

associations may partly reflect genetic confounding. In this Registered 

Report, we used DNA from 11,407 children from the United Kingdom 

and the United States to investigate gene–environment correlations and 

genetic confounding of the associations between ACEs and mental health. 

Regarding gene–environment correlations, children with higher polygenic 

scores for mental health problems had a small increase in odds of ACEs. 

Regarding genetic confounding, elevated risk of mental health problems 

in children exposed to ACEs was at least partially due to pre-existing 

genetic risk. However, some ACEs (such as childhood maltreatment and 

parental mental illness) remained associated with mental health problems 

independent of genetic confounding. These findings suggest that 

interventions addressing heritable psychiatric vulnerabilities in children 

exposed to ACEs may help reduce their risk of mental health problems.

Adverse childhood experiences (ACEs) are well-established risk fac-

tors for mental health problems. For example, a wealth of research has 

shown that children exposed to abuse, neglect and dysfunctional home 

environments (such as domestic violence, parental separation, parental 

mental illness, criminal behaviour or parental substance abuse) have 

a higher risk of developing internalizing disorders such as depression 

and anxiety1–4, and externalizing disorders such as conduct disorder 

and attention-deficit hyperactivity disorder (ADHD)5–7. However, as 

highlighted recently by policymakers8, charities9 and scientists10,11, the 

extent to which ACEs cause mental health problems is not known. This 

is because ACEs are not randomly distributed in the population, and 

children exposed to ACEs are likely to have other risk factors for mental 

health problems. In addition to wider environmental risks, one key 

potential vulnerability is genetic liability to mental health problems12.

There are at least two reasons why children exposed to ACEs might 

have an elevated genetic liability to mental health problems. First, 

parents with mental health problems may pass on genetic variants 

conferring psychopathology risk to their children and may provide 

them with an adverse rearing environment. This represents a passive 

gene–environment correlation13,14 and is plausible as parental mental 

illness is considered to be an ACE, and other ACEs often occur in families 

in which parents have mental health difficulties15. Second, a child with 
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index and intelligence) independently predicted exposure to bullying 

victimization in a multi-polygenic score model (with standardized βs 

ranging from 0.04 (risk taking) to 0.07 (depression)). These findings 

are also consistent with evidence from retrospective studies showing 

that adults reporting childhood maltreatment had higher polygenic 

scores for depression, schizophrenia and bipolar disorder (with odds 

ratios ranging from 1.03 (bipolar disorder) to 1.20 (depression))24,25 

as well as autism (standardized β = 0.03)26. However, no study has 

systematically tested whether polygenic scores for a range of mental 

health problems predict a range of different ACEs, including indicators 

of household dysfunction (for example, domestic violence, parental 

separation, parental mental illness, criminal behaviour or parental 

substance abuse) as well as maltreatment. It is therefore not known 

whether some ACEs are more strongly linked to genetic risk of mental 

health problems than others and whether certain genetic liabilities are 

particularly important in the risk of exposure to ACEs.

To examine genetic confounding, we can test the extent to which 

the associations between ACEs and mental health are reduced when 

accounting for children’s polygenic scores for mental health prob-

lems27. To date, no study has examined whether this is the case for the 

associations between ACEs and mental health. However, studies have 

examined whether this is the case for related environmental experi-

ences, such as adoption and parenting. With regard to adoption, Lehto 

and colleagues28 found that the associations between adoption and 

mental-health-related outcomes in adulthood (depressive symptoms, 

bipolar disorder, neuroticism and life satisfaction) were attenuated by 

3% (for bipolar disorder) to 18% (for life satisfaction) when controlling 

for the respective polygenic scores. With regard to parenting, Wertz 

and colleagues29 found that the associations between cognitive stimu-

lation, warm, sensitive parenting, household chaos, and a safe, tidy 

home environment with child educational attainment were reduced 

by approximately 8% when controlling for the child’s polygenic score 

for education. Furthermore, Krapohl and colleagues30 found that the 

associations between parental slapping or smacking with ADHD and 

conduct problems were attenuated by 6% and 7%, respectively, when 

controlling for the child’s polygenic score for educational attainment.

Controlling for polygenic scores for mental health problems in this 

manner can indicate whether there is likely to be a genetic contribution to 

the association between ACEs and mental health. However, one limitation 

of this methodological approach is that polygenic scores capture only a 

small proportion of heritability and thus do not fully account for genetic 

confounding. This can be addressed by a newly developed genetic sensitiv-

ity analysis27 that estimates shared genetic effects under scenarios in which 

the polygenic score captures additional genetic variance in the outcome 

(that is, SNP-based and/or twin-based heritability; see ‘Analysis plan’ in the 

Methods for a detailed description of this method). A recent application 

of this genetic sensitivity analysis found that the associations between 

maternal education and offspring ADHD, educational achievement and 

body mass index were moderately explained by shared genetic effects27, 

consistent with findings from children-of-twins studies and adoption 

designs31. For example, a latent polygenic score that captured SNP-based 

heritability in educational achievement (that is, 31%; ref. 32) explained 50% 

of the association between maternal education and child educational 

achievement27. However, this approach has never been applied to assess 

the extent to which genetic influences contribute to the associations 

between ACEs and mental health.

In this study, we systematically investigated the role of genetic 

liability in the associations between ACEs and mental health problems. 

To do so, we used data from more than 11,000 genotyped children from 

two cohorts in the United Kingdom (the Avon Longitudinal Study of 

Parents and Children (ALSPAC)) and the United States (the Adoles-

cent Brain Cognitive Development (ABCD) Study), with prospective 

measures of ACEs and mental health. (Note that the ABCD Study was 

not originally included in the Stage 1 pre-registration, but we used it 

because the original dataset, the Child and Adolescent Twin Study in 

early phenotypic expressions of genetic liability to mental health prob-

lems might be more likely to elicit harsh parenting or stress responses 

in their parents (for example, depressive symptoms). This represents 

an evocative gene–environment correlation13,14 and has been evidenced 

in adoption studies, whereby children at genetic risk of externalizing 

problems were more likely to experience negative parenting from 

adoptive parents16,17. Importantly, if children with increased genetic 

liability to mental health problems have an elevated risk of ACEs, the 

association between ACEs and mental health problems may partly 

reflect genetic confounding.

It is important to investigate the extent to which genetic influ-

ences contribute to associations between ACEs and mental health to 

provide insights into causality and interventions. For example, if the 

associations are partly confounded by genetic influences, then the 

causal contribution of ACEs to mental health is likely to be smaller than 

estimates from non-genetically informative studies. If this is the case, 

then even if we succeeded in implementing effective primary preven-

tion of ACEs, this would only partly reduce children’s risk of mental 

health problems. In addition, secondary preventative strategies that 

support exposed children and address heritable vulnerabilities to 

psychopathology would be needed to reduce their risk of developing 

mental health problems. For example, this could include skill-building 

components to manage negative emotions and behaviours as part of 

trauma-focused cognitive behavioural therapy9. Of course, there is a 

moral imperative to reduce the likelihood that children will experience 

ACEs, regardless of the degree to which they impact mental health. 

However, this research can improve our mechanistic understanding 

of the relationship between ACEs and mental health in ways that can 

help optimize approaches to prevention and intervention.

To examine the extent to which genetic influences contribute to 

associations between ACEs and mental health, particular genetically 

informed methods are needed. Twin methods (which have traditionally 

been used to test for genetic confounding)18,19 can be limited because 

many ACEs affect all children in a family, and thus, twins typically do 

not differ in their exposure. In addition, the adoption design (which 

can rule out genetic confounding due to passive gene–environment 

correlation) has limited utility because ACEs are rare in adoptive fami-

lies20. Fortunately, recent advances in genome-wide association stud-

ies (GWASs) have allowed us to assess genetic influences in samples 

of unrelated individuals though polygenic scores. Polygenic scores 

capture common genetic influences by summing the effects of many 

genetic variants (known as single nucleotide polymorphisms (SNPs)) 

on a trait into a single individual-level score. Through using polygenic 

scores, we can test whether (1) children with increased genetic liability 

to mental health problems are more likely to be exposed to ACEs (that 

is, gene–environment correlation) and (2) such genetic influences 

contribute to the associations between ACEs and mental health (that 

is, genetic confounding).

To examine gene–environment correlation, we can test whether 

a child’s polygenic score for a mental health problem (for example, 

depression) predicts their exposure to ACEs. Three prospective studies 

employing this method have suggested that children with genetic liabil-

ity to mental health problems may be more likely to experience ACEs. 

First, Sallis and colleagues21 found that children with higher polygenic 

scores for schizophrenia, ADHD, bipolar disorder, depression and neu-

roticism had a greater risk of exposure to broadly defined childhood 

trauma (including maltreatment, bullying and domestic violence), with 

each standard-deviation increase in the polygenic score predicting 

childhood trauma with odds ratios ranging from 1.07 (bipolar disor-

der) to 1.16 (depression). Second, Zwicker and colleagues22 found that 

young people exposed to higher levels of broadly defined childhood 

adversity (including maltreatment, bullying and domestic violence) 

had higher polygenic scores for ADHD (standardized β = 0.24), but not 

schizophrenia. Third, Schoeler and colleagues23 found that polygenic 

scores for depression, ADHD and risk taking (as well as body mass 
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Sweden (CATSS), was not accessible after Stage 1 acceptance (detailed 

in the Methods).) We addressed the following aims and hypotheses 

(summarized in Table 1).

To examine gene–environment correlations, we investigated 

whether children with genetic liability to mental health problems 

are more likely to be exposed to ACEs (Aim 1). We addressed this by 

testing three hypotheses. First, we tested whether polygenic scores 

for mental health problems (depression, ADHD, schizophrenia and 

others) are associated with exposure to ACEs. We hypothesized that 

polygenic scores for mental health problems would be associated 

with an increased risk of exposure to ACEs (Hypothesis 1a). Second, we 

tested whether polygenic scores for certain mental health problems are 

more strongly associated with ACEs than other polygenic scores. We 

hypothesized that there would not be evidence for differential associa-

tions between polygenic scores for different mental health problems 

and ACEs (Hypothesis 1b), given that previous research has identi-

fied similar-sized bivariate associations between a range of polygenic 

scores and ACEs21. Third, we tested whether certain ACEs are linked to 

greater polygenic risk for mental health problems than other ACEs. We 

hypothesized that parental mental illness, parental substance abuse 

and parental criminality would be associated with higher polygenic 

risk for mental health problems than would maltreatment, domestic 

violence and parental separation (Hypothesis 1c), because the former 

exposures are most likely to be linked to intergenerational transmission 

of genetic risk for psychopathology.

To examine genetic confounding, we investigated the extent to 

which genetic liability to mental health problems contributes to the 

associations between ACEs and mental health (Aim 2). We addressed 

this by testing two hypotheses. First, we examined the proportions 

of the associations between ACEs and internalizing and externaliz-

ing problems that are explained by observed polygenic scores for 

mental health problems. We hypothesized that observed polygenic 

scores would explain a small proportion (5% to 20%) of the associations 

between ACEs and internalizing and externalizing problems (Hypoth-

esis 2a), given that a similar proportion of covariation between other 

early environments (adoption and parental discipline) and psychopa-

thology was captured by polygenic scores29,30. Second, we estimated 

the proportions of the associations between ACEs and internalizing and 

externalizing problems that would be explained by latent polygenic 

scores which capture additional heritability in mental health problems. 

We hypothesized that polygenic scores that capture SNP heritability 

in internalizing and externalizing problems would explain a moder-

ate proportion (20% to 40%) of the associations between ACEs and 

these outcomes (Hypothesis 2b). This is based on evidence showing 

that accounting for SNP heritability in an outcome can increase the 

covariance captured in an association by more than double, relative 

to a standard polygenic score27.

Results
Sample description
After imputation, the samples included 6,411 participants from ALSPAC 

and 4,996 participants from the ABCD Study. (Note that the ABCD Study 

was not originally included in the Stage 1 pre-registration, but we used 

it because the original dataset, CATSS, was not accessible after Stage 1 

acceptance. Further information on the change in sample from CATSS 

to the ABCD Study is reported in the Methods, ‘Change in replication 

cohort’.) Descriptive statistics are shown in Supplementary Table 1. 

Below, we report the results for the imputed samples, before testing 

whether the findings replicate in the complete case samples (N = 4,106 

in ALSPAC and N = 4,662 in the ABCD Study).

Hypothesis 1a: do children with genetic liability to mental 
health problems have an increased risk of ACEs?
ALSPAC. We first tested the associations between polygenic scores for 

mental health problems (depression, anxiety, bipolar disorder, autism, 

ADHD, antisocial behaviour, alcohol use disorder and schizophrenia) 

and individual ACEs (maltreatment, domestic violence, parental mental 

illness, parental substance abuse, parental separation and parental 

criminality). To obtain a single effect size reflecting the average associa-

tion between polygenic scores for mental health problems and ACEs, 

we pooled the results across all individual associations. On average, we 

found that children from ALSPAC with higher polygenic scores for men-

tal health problems had a small increase in the odds of ACEs (pooled 

odds ratio (OR), 1.05; 95% confidence interval (CI), 1.01–1.10; P = 0.0081; 

Fig. 1a). To examine whether this effect size was trivially small, we 

performed equivalence tests, which assess whether the 90% CIs for 

the effect size lie entirely within pre-specified equivalence bounds of 

OR = 0.94–1.06 (indexing the smallest effect size of interest; Methods, 

‘Analysis plan’). The 90% CIs for the pooled association between poly-

genic scores for mental health problems and ACEs (1.02–1.09) did not 

fall completely within the equivalence bounds, suggesting that the 

association was of meaningful magnitude. In contrast, negative-control 

polygenic scores for handedness and cataracts were not associated with 

ACEs (pooled OR, 0.98; 95% CI, 0.94–1.02; P = 0.39; Fig. 1b).

ABCD. Similar to ALSPAC, children in the ABCD cohort with greater 

polygenic scores for mental health problems had a small increase in 

odds of ACEs (pooled OR, 1.09; 95% CI, 1.03–1.15; P = 0.0021; Fig. 2a),  

and the 90% CIs (1.04–1.14) did not fall completely within the equiva-

lence bounds (0.94–1.06). Conversely, negative-control polygenic 

scores were not associated with ACEs (pooled OR, 1.02; 95% CI, 0.97–

1.07; P = 0.52; Fig. 2b). Taken together, the findings from both cohorts 

pooled across ACEs support the hypothesis that polygenic scores 

for mental health problems are associated with an increased risk of 

exposure to ACEs.

Hypothesis 1b: are polygenic scores for certain mental health 
problems more strongly associated with ACEs than other 
polygenic scores?
ALSPAC. Next, we examined whether polygenic scores for mental 

health problems differed in their average associations with ACEs. In 

ALSPAC, we found that polygenic scores for various mental health prob-

lems were differentially associated with ACEs (Wald-test F (7, 16,573), 

2.62; P = 0.011). Pairwise comparisons showed that the polygenic scores 

for depression, ADHD and schizophrenia predicted average risk of 

ACEs more strongly than various other polygenic scores (particularly 

for autism and alcohol dependence; Fig. 3a). The 90% CIs for these 

differences did not fall entirely within the pre-specified equivalence 

bounds (−0.10 to 0.10 on the log odds scale; Fig. 3a), suggesting that 

the differences were of a meaningful size.

ABCD. In the ABCD Study, polygenic scores for various mental health 

problems also showed different associations with ACEs (Wald-test 

F (7, 436,521), 7.68; P = 2.60 × 10−9). Consistent with the ALSPAC 

findings, polygenic scores for depression, ADHD and schizophre-

nia showed stronger average associations with ACEs than various 

other polygenic scores (particularly for autism and alcohol depend-

ence; Fig. 3b). However, in contrast to ALSPAC, polygenic scores 

for antisocial behaviour and bipolar disorder were more strongly 

associated with ACEs than some other polygenic scores (particularly 

autism and alcohol dependence). The 90% CIs for these differences 

did not fall within the equivalence bounds. The findings from both 

cohorts therefore do not support the hypothesis that polygenic 

scores for different mental health problems are equally associated  

with ACEs.

Hypothesis 1c: are some ACEs linked to greater polygenic risk 
for mental health problems than other ACEs?
ALSPAC. We next examined whether the associations between poly-

genic scores for mental health problems and ACEs differed across ACEs. 
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Table 1 | Summary of the study’s research questions, hypotheses, power calculations, analyses and conditions for 
interpretation

Question Hypothesis Sampling plan 

(including power 

analysis)

Analysis plan Interpretations given to different outcomes

Do children with 

genetic liability 

to mental health 

problems have an 

increased risk of 

ACEs?

(1a) Polygenic 

scores for mental 

health problems will 

be associated with 

an increased risk of 

exposure to ACEs.

N = 4,700 gives 0.96 

power to detect an 

average odds ratio of 

1.04 for the pooled 

association between 

polygenic scores and 

ACEs

•  Use logistic regression models 
testing the association between 

each polygenic score (including 

negative controls) and each ACE.

•  Pool the results from all 
logistic regression models in 

an aggregate meta-analysis 

model for associations between 

(1) polygenic scores for mental 

health problems and ACEs, and 

(2) negative-control polygenic 

scores and ACEs.

•  Assess whether the 90% CI for 
the pooled odds ratio for the 

association between polygenic 

scores for mental health 

problems and ACEs lies between 

0.94 and 1.06 (equivalence 

bounds).

•  A positive and statistically significant pooled 
association between polygenic scores for mental 

health problems and ACEs will suggest that children 

with genetic liability to psychopathology have an 

elevated risk of ACEs. A non-significant association will 

suggest the absence of evidence for this.

•  If CIs for this association are within the equivalence 
bounds, it will suggest that children with genetic 

liability to psychopathology do not have a meaningful 

increase in risk for ACEs. If the CIs do not fall within 
the equivalence bounds, it will suggest that the 

association is of meaningful magnitude.

•  If the pooled association between negative-control 
polygenic scores and ACEs is statistically significant, 

it will suggest that the results may be affected by 

biases in polygenic scores. If this association is 
non-significant, it will suggest that such biases do not 

affect the results.

•  Hypothesis 1a will be supported if (1) the pooled 
association between polygenic scores for mental 

health problems and ACEs is statistically significant, 

(2) the CIs for this association do not fall within the 
equivalence bounds, and (3) the pooled association 

between negative-control polygenic scores and ACEs 

is non-significant.

Are polygenic 

scores for 

certain mental 

health problems 

more strongly 

associated with 

ACEs than other 

polygenic scores?

(1b) Polygenic 

scores for different 

mental health 

problems equally 

predict exposure to 

ACEs.

N = 4,700 gives 1.00 

power to detect a 

significant difference 

of 0.11 in odds ratios 

reflecting the average 

association between 

different polygenic 

scores and ACEs, 

using a Wald test.

•  Use a structural equation model 
to estimate the associations 

between each polygenic score 

and each ACE (Supplementary 

Fig. 1). Calculate the average 

association between each 

polygenic score and all ACEs.

•  Conduct a Wald test to assess 
whether the average association 

of each polygenic score with 

ACEs varies across polygenic 

scores.

•  If the Wald test is significant, 
conduct pairwise comparisons 

to assess which polygenic 

scores differ in prediction of 

ACEs.

•   Calculate differences in log 
odds ratios between average 

associations between different 

polygenic scores and ACEs, and 

assess whether the 90% CIs for 
the differences fall within −0.10 

to 0.10 (equivalence bounds).

•  A statistically significant Wald test will suggest that 
polygenic scores differ in their association with ACEs. 

Follow-up pairwise comparisons will show which 

polygenic scores differ. A non-significant Wald test 

would suggest the absence of evidence for differences 

between polygenic scores in association with ACEs.

•  If the CIs for differences between polygenic scores 
in their associations with ACEs are within the 

equivalence bounds, it will suggest that there are not 

meaningful differences between polygenic scores 

in their association with ACEs. If the CIs do not fall 
within the equivalence bounds, it will suggest that the 

differences are of meaningful magnitude.

•  Hypothesis 1b will be supported if (1) the Wald test is 
non-significant and (2) CIs for differences between 
polygenic scores are within the equivalence bounds.

Are some ACEs 

linked to greater 

polygenic risk 

for mental health 

problems than 

other ACEs?

(1c) Parental mental 

illness, parental 

substance abuse 

and parental 

criminality will 

be associated 

with higher 

polygenic risk 

for mental health 

problems than 

will maltreatment, 

domestic violence 

and parental 

separation.

N = 4,700 gives 1.00 

power to detect a 

significant difference 

of 0.10 in odds ratios 

reflecting the average 

association between 

polygenic scores and 

different ACEs, using a 

Wald test.

•  Use a structural equation model 
to estimate the associations 

between each polygenic score 

and each ACE (Supplementary 

Fig. 1).

•  Calculate the average 
association between each ACE 

and all polygenic scores.

•  Conduct a Wald test to assess 
whether the average effect of all 

polygenic scores on each ACE 

varies across ACEs.

•  If the Wald test is significant, 
conduct pairwise comparisons 

to assess which ACEs differ in 

the association with polygenic 

scores.

•  Calculate differences in log 
odds ratios between average 

associations between different 

ACEs and polygenic scores, and 

assess whether the 90% CIs for 
the differences fall within −0.05 

to 0.05 (equivalence bounds).

•  A statistically significant Wald test will suggest 
that ACEs differ in polygenic risk for mental health 

problems. Follow-up pairwise comparisons will show 

which ACEs differ. A non-significant Wald test would 

suggest the absence of evidence for differences 

between ACEs in polygenic risk for mental health 

problems.

•  If the CIs for differences between ACEs in their 
associations with polygenic scores are within the 

equivalence bounds, this will suggest that there are 

not meaningful differences between these ACEs 

in polygenic risk for mental health problems. If the 
CIs do not fall within the equivalence bounds, this 
will suggest that the differences are of meaningful 

magnitude.

•  Hypothesis 1c will be supported if (1) the Wald test 
is significant; (2) pairwise comparisons show that 

parental mental illness, parental substance abuse 

and parental criminality are associated with higher 

polygenic risk than other ACEs; and (3) the CIs for 
these differences are not within the equivalence 

bounds.
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There was no evidence in ALSPAC to suggest that the average polygenic 

risk for mental health problems differed across ACEs (Wald-test F (5, 

5,319), 1.07; P = 0.37). Furthermore, equivalence tests suggested that 

the majority of ACEs were associated with similar polygenic risk of 

mental health problems, as the 90% CIs for the differences between 

most ACEs fell inside the equivalence bounds (−0.05 to 0.05 on the log 

odds ratio scale; Fig. 4a).

ABCD. Similar to ALSPAC, in the ABCD cohort, the average poly-

genic risk for mental health problems was not significantly different 

across ACEs (Wald-test F (5, 246,200), 2.00; P = 0.08). Equivalence 

tests also suggested that the majority of ACEs were associated 

with equal polygenic risk of mental health problems, as the 90% 

CIs for most differences between ACEs fell inside the equivalence 

bounds (Fig. 4b). The findings from both cohorts therefore did 

not support the hypothesis that parental mental illness, paren-

tal substance abuse and parental criminality would be associ-

ated with higher polygenic risk for mental health problems than  

other ACEs.

Hypothesis 2a: what proportion of the associations between 
ACEs and internalizing and externalizing problems is 
explained by observed polygenic scores for mental health 
problems?
ALSPAC. To test genetic confounding, we next examined the propor-

tion of the associations between ACEs and childhood mental health 

problems that were explained by polygenic scores for mental health 

problems (depression, anxiety, bipolar disorder, autism, ADHD, anti-

social behaviour, alcohol use disorder and schizophrenia), using a 

structural equation model (Fig. 5c). In ALSPAC, polygenic scores for 

mental health problems explained a very small average proportion 

of the associations between ACEs and internalizing problems at age 

ten (4.4%; 95% CI, 1.9–6.8%; P = 0.0004). These polygenic scores also 

explained a small average proportion of the associations between 

ACEs and externalizing problems at age ten (5.8%; 95% CI, 3.4–8.2%; 

P = 3.18 × 10−6). The results for associations between specific ACEs and 

internalizing and externalizing problems are shown in Fig. 6a,b (red 

points) and Supplementary Table 2a. In contrast, negative-control 

polygenic scores for handedness and cataracts did not explain any part 

Question Hypothesis Sampling plan 

(including power 

analysis)

Analysis plan Interpretations given to different outcomes

What proportion 

of the 

associations 

between ACEs 

and internalizing 

and externalizing 

problems is 

explained 

by observed 

polygenic scores 

for mental health 

problems?

(2a) Observed 

polygenic scores 

will explain a 

small proportion 

(between 5% 
to 20%) of the 
associations 

between ACEs 

and internalizing 

and externalizing 

problems.

N = 4,700 gives 0.95 

power to detect the 

proportion of the 

association between 

ACEs and mental 

health explained by 

observed polygenic 

scores in a structural 

equation model. 

For the aggregate 

model, N = 4,700 

will give a power of 

1.00 to detect an 

average proportion 

of 5% (of the 
association between 

ACEs and mental 

health explained by 

polygenic scores).

•  Use structural equation models 
(Fig. 5c) to test whether the 

associations between each ACE 

and each mental health outcome 

are mediated by polygenic 

scores (statistically equivalent to 

testing confounding).

•  Calculate the proportion of the 
association between the ACE 

and the mental health outcome 

explained by the polygenic 

scores.

•  Pool the results in an aggregate 
model to assess the average 

proportion of the associations 

between ACEs and mental 

health outcomes explained by 

observed polygenic scores.

•  Repeat the analyses using 
negative-control polygenic 

scores.

•  The average proportion of associations between ACEs 
and mental health outcomes explained by observed 

polygenic scores will be interpreted as follows, broadly 

in line with guidance for interpreting effect sizes:123

○ <5%, ‘very small’
○ 5–20%, ‘small’
○ 20–40%, ‘moderate’
○ >40%, ‘large’

•  Hypothesis 2a will be supported if (1) polygenic scores 
for mental health problems explain, on average, 

between 5% and 20% of the associations, and (2) the 
average proportion of the association explained by 

negative-control polygenic scores is not significantly 

different from zero.

What proportion 

of the 

associations 

between ACEs 

and internalizing 

and externalizing 

problems is 

explained by 

polygenic scores 

that capture 

additional 

heritability in 

mental health 

problems?

(2b) Polygenic 

scores that capture 

SNP heritability 

in internalizing 

and externalizing 

problems will 

explain a moderate 

proportion 

(between 20% 
to 40%) of the 
associations 

between ACEs and 

these outcomes.

N = 4,700 gives 1.00 

power to detect the 

proportion of the 

association between 

ACEs and mental 

health explained by 

increasingly powerful 

polygenic scores in 

a structural equation 

model.

•  Use a structural equation model 
(Fig. 5b) to test whether the 

associations between each 

ACE and each mental health 

outcome are mediated by 

polygenic scores capturing SNP 

heritability in the outcome.

•  Estimate the model from a 
correlation matrix, modified 

to reflect additional genetic 

variance captured in the 

outcome27,124 and ACE according 

to the ratio observed based on 

the observed polygenic scores.

•  Pool the results in an aggregate 
model to assess the average 

proportion of the associations 

between ACEs and mental health 

outcomes explained by polygenic 

scores capturing SNP heritability.

•  The proportion of associations explained by polygenic 
scores capturing SNP-based heritability will be 

interpreted as specified above.

•  Hypothesis 2b will be supported if polygenic scores 
capturing SNP-based heritability explain between 20% 
and 40% of the associations between ACEs and mental 
health outcomes on average.

If our findings differed between ALSPAC and the ABCD Study, we proposed to interpret this as reflecting (1) differences between countries (the United Kingdom (ALSPAC) versus the United 
States (ABCD)) or (2) differences between historical periods (as the ALSPAC participants were born in 1991–1992 and the ABCD participants were born in 2006–2008). Differences in results 
between cohorts are less likely to be due to polygenic scores (as the same GWAS summary statistics will be used for both cohorts), ACE measures (as both cohorts used similar questionnaires 

reported by parents and children), mental health measures (as both cohorts used similar parent-reported questionnaires) and timing of assessments (as ACEs were assessed from birth to 

age nine or ten in both cohorts, and mental health was assessed at age ten in ALSPAC and age nine or ten in the ABCD). Note that the ABCD Study was not originally included in the Stage 1 
pre-registration, but we used it because the original replication cohort (CATSS) was not accessible after Stage 1 acceptance (detailed in the Methods, ‘Change in replication cohort’).

Table 1 (continued) | Summary of the study’s research questions, hypotheses, power calculations, analyses and conditions 
for interpretation
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of the associations between ACEs and internalizing problems (aver-

age proportion, 0.0%; 95% CI, −0.6% to 0.5%; P = 0.91) or externalizing 

problems (average proportion, −0.1%; 95% CI, −0.5% to 0.4%; P = 0.77).

ABCD. Similar to ALSPAC, in the ABCD Study, polygenic scores for 

mental health problems explained a very small average proportion of 

the associations between ACEs and internalizing problems at age nine 
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b
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Fig. 1 | Associations between polygenic scores and ACEs in ALSPAC. a, 

Associations between polygenic scores for mental health problems and ACEs.  

b, Associations between negative-control polygenic scores and ACEs. The data 

are presented as odds ratios ± 95% CIs, obtained from logistic regression models. 

The P values for individual associations between polygenic scores and ACEs are 

from two-sided tests and are false discovery rate corrected. The sample size for 

the ALSPAC analyses was N = 6,411.
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or ten (3.0%; 95% CI, 1.0–4.9%; P = 0.003) and a small average propor-

tion of the associations between ACEs and externalizing problems at 

age nine or ten (5.0%; 95% CI, 3.3–6.7%; P = 6.38 × 10−9). The results for 

associations between specific ACEs and internalizing and externaliz-

ing problems are shown in Fig. 6c,d (red points) and Supplementary 

Table 2b. Negative-control polygenic scores did not explain any of 
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Fig. 2 | Associations between polygenic scores and ACEs in the ABCD Study.  

a, Associations between polygenic scores for mental health problems and ACEs.  

b, Associations between negative-control polygenic scores and ACEs. The data 

are presented as odds ratios ± 95% CIs, obtained from logistic regression models. 

The P values for individual associations between polygenic scores and ACEs are 

from two-sided tests and are false discovery rate corrected. The sample size for 

the ABCD analyses was N = 4,996.
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the associations between ACEs and internalizing problems (average 

proportion, 0.0%; 95% CI, −0.3% to 0.4%; P = 0.90) or externalizing 

problems (average proportion, 0.1%; 95% CI, −0.3% to 0.5%; P = 0.56). 

Taken together, these findings broadly support the hypothesis that 

observed polygenic scores account for a small proportion (defined 

as 5–20%) of the average association between ACEs and mental health 
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Fig. 3 | Pairwise differences between polygenic scores in their association 

with ACEs. a,b, Differences between polygenic scores in their association with 

ACEs in ALSPAC (a) and in the ABCD Study (b). The data are presented as log odds 

differences ± 90% CIs. Positive effect sizes reflect the first labelled polygenic 

score having a stronger positive average association with ACEs than the second 

polygenic score. The red dashed lines show the pre-specified equivalence 

bounds. The P values are for the difference in log odds ratio between polygenic 

scores (two-sided tests). N = 6,411 in ALSPAC and N = 4,996 in the ABCD Study.
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problems, although the proportion captured for internalizing prob-

lems was slightly smaller (<5%) than hypothesized.

Hypothesis 2b: what proportion of the associations between ACEs 

and internalizing and externalizing problems is explained by latent 

polygenic scores capturing additional heritability in mental health 

problems? Because polygenic scores for mental health problems 

captured only a very small proportion of variance in internalizing 

problems (<1%) and externalizing problems (1.6%; Supplementary 

Table 3), the previous analyses probably underestimated the magni-

tude of genetic confounding. To address this, we conducted a genetic 

sensitivity analysis27, which estimates genetic confounding using latent 

polygenic scores capturing SNP heritability in outcomes (6% and 9% for 

internalizing and externalizing problems, respectively33,34).
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Fig. 4 | Pairwise differences between ACEs in their association with polygenic 

risk for mental health problems. a,b, Differences between ACEs in their 

association with polygenic risk for mental health problems in ALSPAC (a) and 

in the ABCD Study (b). The data are presented as log odds differences ± 90% 

CIs (two-sided tests). Positive effect sizes reflect the first labelled ACE having 

a stronger positive association with pooled polygenic risk for mental health 

problems; negative effect sizes reflect the second labelled ACE having a stronger 

positive association with pooled polygenic risk for mental health problems. The 

red dashed lines show the pre-specified equivalence bounds. N = 6,411 in ALSPAC 

and N = 4,996 in the ABCD Study.
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ALSPAC. In ALSPAC, the genetic sensitivity analysis suggested that a 

large average proportion of the associations between ACEs and inter-

nalizing problems was explained by genetic confounding (90.3%; 95% 

CI, 80.1–100%; P = 1.76 × 10−68), with proportions ranging from 56.9% 

for parental mental illness to 100% for domestic violence, parental 

substance abuse, criminality and separation (Supplementary Table 

4a and Fig. 6a (blue points)). Similarly, a large average proportion 

of the associations between ACEs and externalizing problems was 

accounted for by genetic confounding (76.5%; 95% CI, 59.5–93.6%; 

P = 1.43 × 10−18), with proportions ranging from 49.4% for child mal-

treatment to 100% for parental substance abuse (Supplementary Table 

4a and Fig. 6b (blue points)). However, CIs could not be reliably com-

puted for some individual estimates (where the genetic confounding 

effect explained 100% of the associations; Supplementary Table 4 

and Fig. 6a,b), and such estimates should therefore be interpreted  

with caution.

ABCD. In the ABCD Study, the genetic sensitivity analysis suggested that 

genetic confounding accounted for a large average proportion of the associa-

tions between ACEs and internalizing problems (68.6%; 95% CI, 55.5–81.7%; 

P = 1.07 × 10−24), with proportions ranging from 22% for parental mental 

illness to 100% for parental criminality and separation (Supplementary 

Table 4b and Fig. 6c (blue points)). Similarly, a large average proportion of 

the associations between ACEs and externalizing problems was captured 

by genetic confounding (60.3%; 95% CI, 48.7–71.9%; P = 2.22 × 10−24), with 

proportions ranging from 30.2% for parental mental illness to 100% for 
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Fig. 5 | Structural equation models to estimate the genetic contribution to 

the associations between ACEs and mental health. a–c, In all diagrams, MH 

represents the mental health outcome (for example, internalizing problems 

or externalizing problems), and PGS represents the polygenic score, with one 

polygenic score shown in a and b, and all eight polygenic scores (PGS_1 to PGS_8) 

shown in c. a depicts the underlying conceptual model, in which the polygenic 

score is treated as a confounder. b depicts the statistical model to calculate 

the genetic confounding effect, in which the polygenic score is treated as a 

mediator. Note that conceptually, the polygenic score cannot be a mediator in 

the association between ACEs and mental health because genetic variants are set 

at conception and do not change throughout the lifespan. However, statistically, 

we can estimate the genetic confounding effect by treating the polygenic score as 

a mediator and calculating the indirect effect of ACEs on mental health through 

the polygenic score. c represents the statistical model in which all eight polygenic 

scores are included as mediators. Though not depicted in the figure to aid clarity, 

we account for correlations between polygenic scores in the model. Paths are 

labelled as ‘a’ (for the association between polygenic score(s) and ACEs), ‘b’ (for 

the association between polygenic score(s) and mental health), and ‘cp’ (for the 

adjusted association between ACEs and mental health).
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parental criminality (Supplementary Table 4b and Fig. 6d (blue points)). 

These results indicate that the proportion of the associations between ACEs 

and mental health explained by genetic confounding is greater than the 

moderate amount (between 20% to 40%) hypothesized.

Robustness analyses
To assess the robustness of our results, we conducted three sets of 

analyses. First, because reliable CIs could not be computed for some 

results in the genetic sensitivity analysis (Supplementary Table 4), we 

were concerned that these results might have biased the pooled esti-

mates of genetic confounding. We therefore re-estimated the average 

proportions of genetic confounding after excluding these results with 

unreliable CIs. The average proportion of the associations between 

ACEs and internalizing problems explained by genetic confounding 

was attenuated but still large (ALSPAC: 70.8%; 95% CI, 40.4–100%; 

P = 4.88 × 10−6; ABCD: 52.9%; 95% CI, 33.2–72.6%; P = 1.33 × 10−7). This 

was also the case for the associations between ACEs and externaliz-

ing problems (average proportion genetically confounded: 71.8% in 

ALSPAC (95% CI, 51.4–92.3%; P = 6.01 × 10−12) and 52.4% in the ABCD 

Study (95% CI, 38.5–66.3%; P = 1.66 × 10−13)).

Second, we repeated all analyses in the complete case samples 

from ALSPAC and ABCD (N = 4,106 and N = 4,662, respectively) and 

observed largely consistent results (Supplementary Results 1).

Third, because we constructed the polygenic scores for bipolar 

disorder from an updated GWAS35 that differed from the older GWAS36 

that we proposed to use in the Stage 1 pre-registration (Supplementary 

Table 5), we repeated the analyses with polygenic scores for bipolar 

disorder derived from the pre-registered GWAS. The results were con-

sistent with the main findings (Supplementary Results 2).

Discussion
This Registered Report examined the genetic contribution to the asso-

ciations between ACEs and mental health, in two prospective cohorts 

of over 11,000 children from the United Kingdom and the United 

States. Our findings provide insight into gene–environment correla-

tions and genetic confounding of the relationship between ACEs and  

mental health.

With regard to gene-environment correlations, we made three 

key findings. First, children with higher polygenic scores for mental 

health problems had an elevated risk of ACEs. This gene–environ-

ment correlation was small but robust (replicating across cohorts), 

and negative-control polygenic scores were not associated with ACEs. 

This supports our hypothesis and other (largely non-pre-registered) 

research showing that polygenic scores for mental health problems 

are associated with greater risk of exposure to childhood adversi-

ties21–25,37,38. Importantly, this does not suggest that exposure to ACEs 

is determined by genes, is the fault of the child or is not preventable. 

Rather, the findings suggest that children with higher genetic liability 

to mental health problems are on average slightly more likely to experi-

ence ACEs. However, ACEs are influenced by many factors (including 

–0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

Maltreatment Domestic
violence

Parental
mental illness

Parental
substance

abuse

Parental
criminality

Parental
separation

S
ta

n
d

a
rd

iz
e

d
 β

a

ALSPAC—internalizing problems

–0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

Maltreatment Domestic
violence

Parental
mental illness

Parental
substance

abuse

Parental
criminality

Parental
separation

Maltreatment Domestic
violence

Parental
mental illness

Parental
substance

abuse

Parental
criminality

Parental
separation

Maltreatment Domestic
violence

Parental
mental illness

Parental
substance

abuse

Parental
criminality

Parental
separation

S
ta

n
d

a
rd

iz
e

d
 β

b

ALSPAC—externalizing problems

–0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

S
ta

n
d

a
rd

iz
e

d
 β

c
ABCD—internalizing problems

–0.05

0

0.05

0.10

0.15

0.20

0.25

0.30

S
ta

n
d

a
rd

iz
e

d
 β

d
ABCD—externalizing problems

Total association Adjusted for observed polygenic scores Adjusted for latent polygenic scores capturing SNP heritability of outcome

Fig. 6 | Genetic confounding of the associations between ACEs and 

internalizing and externalizing problems. a, The associations between 

ACEs and internalizing problems in ALSPAC. b, The associations between ACEs 

and externalizing problems in ALSPAC. c, The associations between ACEs and 

internalizing problems in the ABCD Study. d, The associations between ACEs 

and externalizing problems in the ABCD Study. The data are presented as 

standardized β coefficients ± 95% CIs for associations between ACEs and mental 

health outcomes, before accounting for polygenic scores (yellow points) and 

after accounting for (1) observed polygenic scores for mental health problems 

(red points) and (2) a latent polygenic score capturing SNP heritability in the 

outcome (blue points). The tests were two-sided. Confidence intervals could not 

be reliably computed for associations attenuated to zero, and therefore these 

estimates should be interpreted with caution. N = 6,411 in ALSPAC and N = 4,996 

in the ABCD Study.
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social and environmental risks39) and can be effectively prevented 

through social interventions40,41.

Second, in both cohorts, polygenic scores for ADHD, depression 

and schizophrenia were more strongly associated with risk of expo-

sure to ACEs than some other polygenic scores (particularly alcohol 

use and autism). In the ABCD Study, polygenic scores for antisocial 

behaviour and bipolar disorder also showed stronger associations with 

ACEs. These results do not support our hypothesis that there would 

be no differences between polygenic scores, but they broadly align 

with evidence showing that polygenic scores for ADHD, depression 

and schizophrenia are independently associated with child maltreat-

ment37 and bullying victimization23, while polygenic scores for other 

psychiatric disorders are not. Nevertheless, this finding should be 

interpreted with caution, as it may reflect differences in the predictive 

power of polygenic scores, given that the most predictive polygenic 

scores tended to be based on large GWAS samples and have higher 

SNP heritability (Supplementary Table 5). Alternatively, such differ-

ences might be because genetic liabilities to ADHD, depression and 

schizophrenia have greater causal effects on exposure to ACEs than 

other genetic liabilities (for example, because of stronger passive or 

evocative gene–environment correlations).

Third, different ACEs were associated with similar genetic risk 

of mental health problems in both cohorts. This was contrary to our 

hypothesis that parental mental illness, parental substance abuse and 

parental criminality would be associated with greater (child) genetic 

risk of psychopathology than other ACEs, due to intergenerational 

genetic transmission. While these ACEs (originating in the parents) are 

likely to be linked to child genetic risk of psychopathology largely via 

passive gene–environment correlation, other ACEs might be related 

to genetic risk of psychopathology in part via evocative gene–environ-

ment correlation. Indeed, evidence suggests that children at genetic 

risk for externalizing problems are more likely to experience negative 

parenting via evocative gene–environment correlation16,17, and evoca-

tive gene–environment correlations were found to partly underlie risk 

of maltreatment42. Importantly, evidence of such evocative gene–envi-

ronment correlations does not mean that children are to blame for 

ACEs—rather, parents are responsible for protecting them and reacting 

to their behaviour in an appropriate way42. Evidence of evocative gene–

environment correlation would therefore highlight the importance 

of family-based interventions to help parents respond effectively to 

their children’s behaviour and support children with vulnerabilities.

With regard to genetic confounding, we first found that observed 

polygenic scores for mental health problems explained on average 

3–5% of the associations between ACEs and internalizing problems and 

5–6% of the associations between ACEs and externalizing problems. In 

contrast, negative-control polygenic scores did not account for any 

of the associations between ACEs and mental health problems. These 

results broadly support our hypothesis that a small proportion (defined 

as 5–20%) of the associations between ACEs and mental health would 

be captured by polygenic scores for psychopathology. However, these 

results probably underestimate the magnitude of genetic confounding, 

as the polygenic scores for mental health problems captured only a very 

small amount of variation (<1% and <1.6%, respectively) in internalizing 

and externalizing outcomes.

To address this, we conducted a genetic sensitivity analysis27 using 

latent polygenic scores capturing SNP heritability in internalizing 

and externalizing problems (6% and 9%, respectively). This analysis 

suggested that genetic confounding accounted for a large average 

proportion of the associations between ACEs and internalizing and 

externalizing problems, in both cohorts. However, we caution against 

drawing strong conclusions based on the specific proportions of 

genetic confounding, for three reasons. First, the precise magnitude 

of genetic confounding varied between cohorts, and the point esti-

mates were greater in ALSPAC than in the ABCD Study. This is likely to 

be because ACEs had weaker associations with mental health problems 

in ALSPAC (Fig. 6), increasing the likelihood that genetic confounding 

could account for larger proportions of the associations. In contrast, 

the magnitude of associations between polygenic scores and ACEs did 

not differ between cohorts (Supplementary Table 3). Second, CIs could 

not be reliably estimated for some specific estimates of genetic con-

founding, in particular for proportions of 100% (largely observed for 

internalizing outcomes in ALSPAC), suggesting that these proportions 

may not be reliable. Third, the genetic sensitivity analysis is best suited 

for scenarios in which the polygenic score strongly and specifically pre-

dicts the outcome27. Given the lack of available GWASs for child internal-

izing and externalizing problems, we used polygenic scores for adult 

psychiatric disorders, which showed similar or stronger-magnitude 

associations with ACEs than with child internalizing and externalizing 

problems (Supplementary Table 3). The use of a polygenic score that 

is not specific to the outcome may result in overestimated genetic 

confounding (discussed in detail in the Supplementary Discussion). 

It will therefore be important to repeat the genetic sensitivity analysis 

with polygenic scores derived from future GWASs of child internalizing 

and externalizing problems, when available.

Despite our cautious interpretation surrounding specific esti-

mates of genetic confounding, the overall pattern of results supports 

findings from other genetically informed designs with different 

assumptions and sources of bias. For example, we found that child 

maltreatment was largely associated with internalizing and external-

izing problems, independent of genetic confounding. This is consistent 

with evidence of causal effects of maltreatment on psychopathol-

ogy from Mendelian randomization42, co-twin control43 and other 

quasi-experimental studies44. We also found that parental mental 

illness was associated with internalizing and externalizing problems 

independent of genetic confounding, which supports evidence from 

children-of-twins and adoption studies45–47. In contrast, we found that 

parental substance abuse, parental criminality and parental separation 

were predominantly associated with internalizing and externalizing 

problems via genetic confounding. Notably, similar genetically con-

founded associations with psychopathology have also been reported 

for parental substance abuse in children-of-twins48,49 and adoption 

studies50, for parental criminality in an adoption study51, and for paren-

tal separation in some52 (though not all53) children-of-twins studies.

We acknowledge some limitations. First, it is possible that the 

observed associations might be inflated by reporting bias, as parents 

with genetic liability to psychopathology might be more likely to per-

ceive ACEs54 and child psychopathology, as well as transmit genetic 

liability to their children. Future studies using different informants 

to measure ACEs and psychopathology (for example, from objective 

records to more subjective self-reports) are needed to map the impact 

of reporting biases on observed gene–environment correlations38,55 

and estimates of genetic confounding. Second, ALSPAC and the ABCD 

Study differed in various ways, such as the country of origin (the United 

Kingdom versus the United States), the historical context (born in 

1991–1992 versus 2006–2008) and the prevalence of ACEs (for exam-

ple, higher rates of maltreatment and parental criminality in ALSPAC, 

perhaps due to repeated assessments (versus a single assessment in the 

ABCD Study)). The ABCD analysis is therefore not a direct replication of 

the ALSPAC findings, and any differences in findings might be attribut-

able to these cohort differences. However, the overall pattern of results 

was consistent across both cohorts, indicating that the findings are 

robust. Third, as discussed, it was not possible to infer whether differ-

ential associations between polygenic scores for psychiatric disorders 

and ACEs reflected specific genetic liabilities underlying risk of ACEs, 

or differences in the predictive power of polygenic scores (for example, 

due to different GWAS discovery sample sizes). Fourth, our analysis 

was limited to individuals of European descent to match the ancestry 

of the GWAS discovery samples56. Once large-scale trans-ancestry 

GWASs become available, it will be important to replicate our find-

ings in ancestrally diverse samples to ensure greater representation 
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in research57. Finally, these findings reflect average population effects 

and do not preclude the existence of causal effects of certain ACEs (for 

example, parental substance abuse, parental criminality and parental 

separation) on child psychopathology in subpopulations.

Our findings have implications for future research. First, to under-

stand the extent to which the observed gene–environment correlations 

are passive or evocative, future studies should integrate polygenic 

scores into family-based designs (for example, parent–offspring 

trios)30. Second, to the extent that ACEs are causal risk factors for psy-

chiatric disorders, genetic variants influencing exposure to ACEs (that 

is, gene–environment correlations) might be captured in GWASs of 

those disorders55,58. If GWASs of ACEs were to become available, future 

genetically informed studies could test whether this reflects one of 

the origins of the observed associations between polygenic scores for 

psychiatric disorders and ACEs. Third, the gene–environment correla-

tions observed here challenge the assumption in gene–environment 

interaction studies that genetic influences on psychopathology and 

ACEs are independent13,59. Future gene–environment interaction stud-

ies on childhood adversity and psychopathology should adopt meth-

ods that account for such gene–environment correlations to mitigate 

bias13,59. Lastly, this study suggests that non-genetically informative 

studies are likely to overestimate the causal contribution of ACEs to 

mental health problems. To provide accurate estimates of the causal 

effects of ACEs, future studies should employ methods that account 

for genetic confounding and triangulate evidence across methods 

with different assumptions and sources of potential bias60,61. More 

broadly, combining genetically informed methods with open science 

practices (for example, pre-registration and Registered Reports) will 

help address multiple sources of bias (for example, genetic confound-

ing, researcher bias62 and publication bias63) to enable the collection 

of rigorous evidence on the effects of ACEs on health.

Our findings also have implications for interventions. Because child 

maltreatment and parental mental illness were largely associated with 

child psychopathology independent of genetic influences, preventing 

these ACEs may not only improve child welfare and family functioning 

but also help prevent child psychopathology in the population. Such 

interventions could include parenting support programmes to prevent 

maltreatment40, as well as more accessible psychiatric treatment for 

parents with mental health problems. In contrast, preventing ACEs 

with entirely genetically confounded effects is unlikely to substantially 

impact child psychopathology at the population level, although such 

interventions are likely to have other important positive outcomes (for 

example, for child welfare, family functioning and potentially physical 

health64–67). Furthermore, because polygenic scores for mental health 

problems accounted for at least part of the associations between all 

ACEs and psychopathology, strategies that address heritable psychiatric 

vulnerabilities in children exposed to ACEs (for example, through skill 

building68 or fostering positive family interaction) should reduce their 

risk of developing psychopathology.

Methods
Change in replication cohort
As stated in our Stage 1 protocol (https://doi.org/10.6084/

m9.figshare.13580777.v1), this Registered Report originally proposed 

to replicate findings from ALSPAC in the CATSS dataset and not the 

ABCD Study. However, after receiving Stage 1 in-principle acceptance, 

we experienced two unforeseen issues that meant that we could not 

use the CATSS dataset: (1) the data could not be accessed in a timely 

manner because of COVID-related travel restrictions for Sweden, and 

(2) data access restrictions from the Swedish National Board of Health 

and Welfare meant that we could not use national registry data to 

measure ACEs, as originally proposed. We therefore proposed and 

received permission to use the ABCD Study as an alternative replica-

tion sample to CATSS (after peer review of the protocol for analysis 

on ABCD). Importantly, we had not accessed data from either CATSS 

or the ABCD Study at the time at which we proposed to use the ABCD 

Study, so we were blind to the results in these cohorts (though we had 

undertaken analysis in ALSPAC). To provide transparency about what 

we intended to do in the Stage 1 protocol, we report all details about 

the CATSS dataset in Supplementary Methods 1.

Ethics information
Ethics approval for ALSPAC was obtained from the ALSPAC Ethics and 

Law Committee and the Local Research Ethics Committees. Informed 

consent for the use of data collected via questionnaires and clinics was 

obtained from the participants following the recommendations of the 

ALSPAC Ethics and Law Committee at the time. Consent for biological 

samples has been collected in accordance with the Human Tissue Act 

(2004). Ethics approval for the ABCD Study was given by a central 

Institutional Review Board at the University of California, San Diego, 

and in some cases by individual site institutional review boards (for 

example, Washington University in St. Louis)69. Parents or guardians 

provided written informed consent after the procedures had been fully 

explained, and children assented before participation in the study70.

Design
ALSPAC and the ABCD Study are prospective longitudinal cohort stud-

ies. A description of these datasets and their measures is below.

ALSPAC
Sample. The ALSPAC is a longitudinal study of children born in the 

United Kingdom in 1991–1992. ALSPAC sought to recruit all preg-

nant women in the former county of Avon, United Kingdom, with an 

expected due date between 1 April 1991 and 31 December 1992. The 

initial sample consisted of children of 14,541 mothers. Children have 

been followed up and assessed repeatedly across development through 

questionnaires, face-to-face interviews, and physical and psychological 

assessments (including biological assays)71–73. The study website con-

tains details of all the data that are available through a fully searchable 

data dictionary and variable search tool (http://www.bristol.ac.uk/

alspac/researchers/our-data/). The analytic sample was 49% female.

Measures. ACEs. We examined six ACEs: maltreatment, domestic vio-

lence, parental mental illness, parental substance abuse, parental separa-

tion and parental criminality. These experiences all involve adversity in 

the family context and were included in the Centers for Disease Control 

and Prevention Adverse Childhood Experiences Study3,74 and the World 

Health Organization ACE international questionnaire75. In ALSPAC, these 

ACEs were assessed prospectively through parent and child reports via 

questionnaires at multiple assessment phases from birth to age nine 

years (115 months). Details of these assessments are provided in Sup-

plementary Table 6. We derived binary measures reflecting exposure to 

each ACE according to the definitions shown in Supplementary Table 6 

and recommended by a previous ALSPAC Data Note on ACE measures76. 

Note that subtypes of maltreatment (neglect and physical, sexual and 

emotional abuse) were combined into a single measure due to low indi-

vidual prevalence and high co-occurrence76,77. Measures of each ACE 

were derived for participants with responses to ≥50% of the questions 

assessing that ACE between birth and age nine years. We used multiple 

imputation to estimate ACE exposure in participants with responses 

to <50% but ≥10% of questions assessing the ACE (see Supplementary 

Methods 2 for further details of the multiple imputation procedure).

Mental health problems. Internalizing problems and externalizing 

problems were assessed through parent reports on the Development 

and Well-Being Assessment (DAWBA)78 at age ten years. The DAWBA 

is a semi-structured interview assessing multiple domains of child 

psychopathology with good validity78 and reliability79. Items from the 

DAWBA used to derive the mental health measures are presented in 

Supplementary Table 7.

http://www.nature.com/nathumbehav
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Internalizing problems were assessed through modules on sepa-

ration anxiety (11 items, scale from 0 to 20), social anxiety (6 items, 

scale from 0 to 12), generalized anxiety (15 items, scale from 0 to 28) 

and major depression (15 items, scale from 0 to 15). We derived one 

overall measure of internalizing problems through the following steps. 

First, we calculated the mean for each of the four modules (separation 

anxiety, social anxiety, general anxiety and major depression) for 

participants with data for ≥50% of the items, before standardizing the 

scores. Next, we summed the scores across the anxiety subscores and 

standardized the measure, so we have one overall measure of anxiety 

and one for major depression. Last, we summed these anxiety and 

depression scores before standardizing the overall single measure.

Externalizing problems were assessed through modules on hyper-

kinesis/ADHD (18 items, scale from 0 to 36) and conduct/oppositional 

disorders (17 items, scale from 0 to 34). To derive one overall measure 

of externalizing problems, we first calculated the mean for each of the 

two modules for participants with data for ≥50% of the items. We then 

standardized the two scores and summed them before standardizing 

the overall single measure.

Genotyping and quality control. ALSPAC children have been geno-

typed using the Illumina HumanHap550 quad chip genotyping plat-

forms by 23andMe subcontracting the Wellcome Trust Sanger Institute 

and the Laboratory Corporation of America. Quality control (QC) was 

carried out in PLINK80, adhering to the standard guidelines81,82, which 

have been previously used effectively for the analysis of genetic data 

in ALSPAC21,23,83. Specifically, samples were removed on the basis of (1) 

low call rate (poor DNA quality), (2) outlying heterozygosity across 

autosomes, (3) relatedness (based on identity by state), (4) gender 

mismatches and (5) non-European population ancestry. SNPs were 

removed on the basis of (1) low call rate, (2) extreme deviation from 

Hardy–Weinberg equilibrium and (3) low minor allele frequency. Fur-

ther details are provided in Supplementary Table 8.

Polygenic scores. We derived polygenic scores for mental health prob-

lems—namely, major depressive disorder, anxiety disorder, bipolar 

disorder, autism, ADHD, antisocial behaviour, alcohol use disorder 

and schizophrenia. We selected these polygenic scores because they 

(1) index genetic liability to a range of mental health problems and (2) 

have been found to be associated with ACEs21–23,26 and/or psychopathol-

ogy in young people84–87. We also derived negative-control polygenic 

scores for traits with no known association with ACEs or mental health 

(namely, handedness and cataracts). All polygenic scores were gener-

ated using GWAS summary statistics that (1) were derived from Euro-

pean samples that did not include ALSPAC or ABCD participants (to 

avoid sample overlap) and (2) had N > 16,000 in the discovery sample 

(to ensure adequate power). Supplementary Table 5 provides details 

of the GWAS summary statistics that were used to derive the polygenic 

scores.

In our Stage 1 protocol, we specified that if new, larger GWASs were 

published after submission, we would use the updated summary statis-

tics to benefit from greater power (and report any such changes in the 

Stage 2 submission). Since the Stage 1 submission, new, larger GWASs 

were published for bipolar disorder35 (N = 413,466 versus N = 51,710 in 

the original GWAS36) and antisocial behaviour problems88 (N = 83,674 

versus N = 16,400 in the original GWAS87), and so we derived polygenic 

scores from these updated summary statistics for our main analy-

ses. For transparency, we also report the results using the originally 

pre-registered GWAS summary statistics36 to derive the polygenic 

score for bipolar disorder. We did not do this using the older GWAS for 

antisocial behaviour87, as we realized that there was sample overlap for 

ALSPAC, which could have led to biased estimates89.

Polygenic scores were derived in PRSice software90,91, using the 

following method. First, SNPs from the participants were matched with 

SNPs reported in the GWAS summary statistics for each phenotype (for 

example, each mental health problem). Clumping was conducted to 

remove SNPs in linkage disequilibrium (r2 > 0.1 within a 250-base-pair 

window). Next, we summed the alleles associated with the phenotype 

and weighted them by their effect sizes reported in the correspond-

ing GWAS, to compute polygenic scores. We included all matched 

SNPs regardless of the nominal significance for their association with 

ACEs. To control for population stratification, we residualized the 

polygenic scores for the first ten principal components estimated from 

the genome-wide SNP data. To facilitate interpretability, all polygenic 

scores were standardized to have a mean of 0 and a standard deviation 

of 1.

The ABCD Study
Sample. The ABCD Study is a prospective cohort of 11,878 children 

born in 2006–2008 and their parents from 21 sites in the United States. 

The 21 geographic locations of the ABCD research sites are nation-

ally distributed and generally represent the range of demographic 

and socio-economic diversity of the US birth cohorts comprising the 

ABCD study population92. Full details on the recruitment strategy are 

available elsewhere93. Briefly, children aged nine to ten years were 

recruited through probability sampling of public and private elemen-

tary schools within the catchment areas of the 21 research sites. School 

selection was based on gender, race and ethnicity, socio-economic 

status, and urbanicity. The inclusion criteria were the child’s age and 

attending a public or private elementary school within the catchment 

areas. The exclusion criteria for children were limited to not being flu-

ent in English, having a parent not fluent in English or Spanish, major 

medical or neurological conditions, gestational age <28 weeks or 

birthweight <1,200 g, contraindications to MRI scanning, a history of 

traumatic brain injury, a current diagnosis of moderate/severe autism 

spectrum disorder, intellectual disability, schizophrenia, or alcohol/

substance use disorder94. Assessments were made through in-person 

visits. This study used data from the baseline assessment (ages 9–10) 

and a one-year follow-up (ages 10–11) from ABCD Data Release 3.0. The 

analytic sample was 47% female.

Measures. ACEs. Consistent with the ALSPAC cohort, we assessed 

six ACEs (maltreatment, domestic violence, parental mental illness, 

parental substance abuse, parental separation and parental criminal-

ity) between birth and age nine to ten years. These ACEs have been 

assessed through parent and child reports from validated question-

naires at the baseline and one-year follow-up assessments95. The 

details of these assessments are reported in Supplementary Table 

9. In brief, maltreatment was assessed using the parent-reported 

Kiddie-Structured Assessment for Affective Disorders and Schizo-

phrenia module for post-traumatic stress disorder96,97 (KSADS-PTSD; 

with eight items for physical, sexual and emotional abuse) and the 

Children’s Report of Parental Behavioral Inventory98 (with five items 

for neglect), consistent with previous studies42. Domestic violence 

was assessed using parent reports on the KSADS-PTSD and parent and 

child reports on the Family Environment Scale—Family Conflict Sub-

scale99,100. Parental mental illness and substance abuse were assessed 

via parent reports on the Family History Assessment Module101 and 

the Adult Self Report102,103. Parental criminality was assessed through 

parent reports on the Adverse Life Events Scale104, and parental separa-

tion was assessed through parent reports on the Demographic Survey. 

Measures of each ACE were derived for participants with responses 

to ≥50% of the questions assessing that ACE between birth and age 

nine to ten years.

Mental health problems. Internalizing problems and externalizing 

problems were assessed using parent reports on the Child Behavior 

Checklist (CBCL)105 from the baseline assessment at age nine or ten. 

The CBCL is a 119-item, three-point scale questionnaire that measures 

problems occurring in the past six months, with excellent reliability 
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and validity106. Items from the CBCL used to derive the mental health 

measures are presented in Supplementary Table 10.

Internalizing problems were assessed through the anxious/

depressed, withdrawn/depressed and somatic complaints subscales 

(32 items), as recommended previously107. Externalizing problems were 

assessed through the rule-breaking behaviour, aggressive behaviour 

and attention problems subscales (45 items). These subscales broadly 

map onto the DAWBA subscales used to assess internalizing and exter-

nalizing problems in ALSPAC, maximizing consistency between the 

samples. To derive composite scores of internalizing and external-

izing problems, we summed the scores across the relevant items (for 

participants with data for >50% of the items) before standardizing the 

summary measures.

Genotyping and QC. Children from the ABCD Study have been geno-

typed from blood and saliva samples using the Affymetrix NIDA Smoke-

Screen Array108. Sample preparation and genotyping was performed by 

Rutgers RUCDR. Initial QC was performed by the ABCD Data Analysis, 

Informatics & Resource Center following the Ricopili pipeline109 (see 

Supplementary Table 8 for the details). Imputation was then performed 

on the genotype data using the TOPMed imputation server, follow-

ing the pre-imputation steps instructed at https://topmedimpute.

readthedocs.io/en/latest/prepare-your-data/. In line with previous 

ABCD studies42,110,111, we performed additional QC on the imputed 

genetic data (Supplementary Table 8), including removing samples 

with high relatedness and non-European population ancestry and 

removing SNPs that deviate from Hardy–Weinberg equilibrium, have 

a low minor allele frequency and have poor imputation quality.

Polygenic scores for mental health problems. We derived polygenic 

scores for mental health problems and negative controls using the 

same procedure as described for the ALSPAC participants. We also 

residualized the polygenic scores for genotyping batch, as the ABCD 

participants have been genotyped in multiple batches.

Analysis plan
We conducted all statistical analyses in R v.3.6.2 (ref. 112), focusing first 

on the ALSPAC cohort before testing whether the findings replicate in 

the ABCD Study (originally planned to be the CATSS dataset). Below we 

describe the statistical analyses that we used to test each of our aims 

and hypotheses (summarized in Table 1). The multiple imputation 

procedure for the ALSPAC and ABCD data is described in the Supple-

mentary Methods 2 and 3.

Aim 1: investigate whether children with genetic liability to 

mental health problems are more likely to be exposed to ACEs. 

Hypothesis 1a. We first tested the associations between polygenic 

scores for mental health problems and ACEs through logistic regres-

sion models. We ran separate models for each ACE and each poly-

genic score (including negative controls). Log odds coefficients were 

exponentiated to obtain odds ratios reflecting the odds of exposure 

to each ACE per one-standard-deviation increase in the polygenic 

score. These models (and all further analyses) controlled for sex 

and were two-sided. To account for multiple testing, we computed 

false-discovery-rate-corrected P values113.

To obtain a single effect size reflecting the average association 

between polygenic scores for mental health problems and ACEs, we 

pooled the results across all logistic regression models within each 

cohort. This procedure was performed using the agg function in the MAd 

package114, which accounts for correlations across effect sizes (as a func-

tion of the same sample). We pooled two sets of results: (1) for associations 

between polygenic scores for mental health problems and ACEs, and (2) 

for associations between negative-control polygenic scores and ACEs.

Because null hypothesis significance testing cannot enable 

substantive interpretation of statistically non-significant findings, 

we conducted an equivalence test115 to quantify support for the null 

hypothesis. This involves assessing whether the 90% CIs for the effect 

size lie entirely inside pre-specified equivalence bounds indexing 

the smallest effect size of interest. If the CIs lie inside the equivalence 

bounds, the effect size can be said to be no more than trivially small. 

If the CIs are not inside the equivalence bounds, the effect size can be 

said to be of meaningful magnitude. Note that the 90% (rather than 

95%) CIs are used, corresponding to (1 − 2α) × 100%, because the effect 

size is tested against two equivalence bounds separately (that is, the 

upper and lower bounds).

To select equivalence bounds, we followed guidance to use the 

lower CI of a meta-analytic estimate of the effect of interest115,116. 

Because no such meta-analysis exists, we conducted a meta-analysis 

of all studies21–26, to our knowledge, that have tested the association 

between polygenic scores for mental health problems (see https://osf.

io/2uc4p/?view_only=2d9afc1b072b4507ba11ba8771aaab62 for the 

code and results). The pooled association between polygenic scores for 

mental health problems and ACEs was OR = 1.10 (95% CI, 1.06–1.14). We 

thus selected equivalence bounds of 0.94–1.06 on the odds ratio scale, 

because 1.06 was the lower CI of the meta-analytic effect and 0.94 is the 

equal delta of 1.06 in the opposite direction on the log odds ratio scale.

We proposed to infer support for Hypothesis 1a (that children 

with greater genetic liability to mental health problems would have 

a higher risk of experiencing ACEs) if (1) the pooled odds ratio for the 

association between polygenic scores for mental health problems and 

ACEs was greater than 1 and statistically significant, (2) the 90% CI for 

this effect was not within the equivalence bounds, and (3) the pooled 

odds ratio for the association between negative-control polygenic 

scores and ACEs was non-significant. The interpretation of alternative 

patterns of results is shown in Table 1.

Hypothesis 1b. We next tested whether polygenic scores for certain 

mental health problems are more strongly associated with ACEs than 

other polygenic scores. To do so, we first used a structural equation 

model to estimate the association between each polygenic score and 

each ACE (Supplementary Fig. 1). This model accounted for correlations 

between polygenic scores, allowing us to estimate the independent effect 

of each polygenic score on each ACE. From the model, we calculated 

the average effect of each polygenic score across all ACEs, estimated as 
(a
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+…+a

6

)

6

 for the first polygenic score (PGS_1 in Supplementary Fig. 1), 

(b

1

+b

2

+…+b

6

)

6

 for the second polygenic score (PGS_2 in Supplementary 

Fig. 1) and so forth for each polygenic score. These analyses were con-

ducted using the lavaan package117, using the WLSMV estimator with 

robust standard errors, and the ‘ordered’ argument (for the binary ACE 

endogenous variables). To aid interpretation, we converted the result-

ing probit coefficients into odds ratios using the formula exp(probit 
̂

β × 1.8)118,119. We then conducted a Wald test (using the lavTestWald 

function) to test whether the average effect of each polygenic score on 

all ACEs varied across polygenic scores. If the Wald test was statistically 

significant (P < 0.05), we conducted pairwise comparisons to assess 

which polygenic scores differ in prediction of ACEs.

Lastly, we tested for statistical equivalence between different 

polygenic scores in their average association with ACEs by (1) calculat-

ing differences in the average effects of polygenic scores, expressed 

as (log) odds ratios120, and (2) assessing whether the 90% CIs for these 

differences fall within equivalence bounds of −0.10 to 0.10. We selected 

these equivalence bounds by identifying the smallest effect size that we 

have 95% power to detect (log odds difference, 0.10; 95% CI, 0.07–0.13). 

This approach is recommended in the absence of a strong theoretical 

justification for equivalence bounds115, which was the case because 

no previous study has formally tested differences between polygenic 

scores in the association with ACEs.

We proposed to infer support for Hypothesis 1b (that polygenic 

scores for different mental health problems would equally predict 
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exposure to ACEs) if the Wald test was statistically non-significant 

(P > 0.05) and the 90% CIs for the differences between polygenic scores 

(in their associations with ACEs) fell within the equivalence bounds. 

The interpretation of alternative patterns of results is shown in Table 1.

Hypothesis 1c. Next, we tested whether some ACEs were associated 

with higher polygenic risk of mental health problems than other ACEs. 

To do so, we used the same structural equation model as estimated for 

Hypothesis 1b (shown in Supplementary Fig. 1) and calculated the 

average effect of all polygenic scores for mental health problems on 

each ACE, estimated as 
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+…+h

2

)

8

 

for the second ACE (ACE_2) and so forth for each ACE. We converted 

the results to odds ratios using the formula exp(probit ̂β × 1.8)118,119. We 

then used a Wald test to test whether the average effect of all polygenic 

scores for mental health problems on each ACE varies across ACEs. 

Lastly, we tested for statistical equivalence between different ACEs in 

their association with polygenic scores by (1) calculating differences 

in (log) odds ratios between ACEs and (2) assessing whether the 90% 

CIs for these differences fall within equivalence bounds of −0.05 to 

0.05. We selected these equivalence bounds because 0.05 is the small-

est effect size that we have 95% power to detect (log odds difference, 

0.05; 95% CI, 0.03–0.07). We adopted this approach in the absence of 

theoretical justification for equivalence bounds115, as no previous study 

has tested for differences between ACEs in their association with poly-

genic scores for psychopathology.

We proposed to infer support for Hypothesis 1c (that parental 

mental illness, parental substance abuse and parental criminality would 

be associated with higher polygenic risk for mental health problems) 

if (1) the Wald test was significant (P < 0.05) and further pairwise com-

parisons (between parental mental illness, parental substance abuse 

and parental criminality and all other ACEs) showed that these ACEs 

were associated with higher polygenic risk than other ACEs, and (2) the 

90% CIs for these differences were not within the equivalence bounds. 

The interpretation of alternative patterns of results is shown in Table 1.

Aim 2: investigate the extent to which genetic liability explains the 

associations between ACEs and mental health. Hypothesis 2a. To 

test the proportion of the associations between ACEs and mental health 

(internalizing and externalizing problems) explained by observed 

polygenic scores, we used structural equation models in the lavaan117 

package. Figure 5 depicts these models, with Fig. 5a showing the under-

lying conceptual model, Fig. 5b showing the statistical model with one 

polygenic score and Fig. 5c showing the statistical model with multiple 

polygenic scores. As shown in Fig. 5b,c, polygenic scores were treated 

as mediators, because mediation and confounding are statistically 

equivalent121. The genetic confounding effect was therefore calculated 

as the indirect effect of the ACE on mental health through the polygenic 

scores: a
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, on the basis of Fig. 5c. Notably, this esti-

mate does not conflate genetic confounding with genetic effects on 

mental health mediated via exposure to ACEs (see ref. 27 and https://

osf.io/2uc4p/?view_only=2d9afc1b072b4507ba11ba8771aaab62 for 

further explanation and simulations demonstrating this). In turn, the 

proportion of the association between the ACE and mental health 

outcome explained by the polygenic scores was calculated as 
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For this analysis, we included all polygenic scores (that is, eight 

mediators) and estimated separate models for each ACE and each men-

tal health outcome (internalizing and externalizing problems). As a QC 

check, we estimated a separate model including only negative-control 

polygenic scores (Supplementary Fig. 2).

To obtain a single estimate reflecting the proportion of the associa-

tions between ACEs and mental health outcomes captured by observed 

polygenic scores, we averaged the results across six models for all ACEs 

(for internalizing and externalizing problems separately). This was 

performed using the agg function from the MAd package114. Prior to 

aggregating the results, we planned to transform the proportions using 

the Freeman–Tukey double arcsine transformation122 to normalize and 

stabilize the variance of the sampling distribution. However, it was not 

possible to apply this transformation across the results because several 

proportions were less than zero, which can arise when the direct and 

indirect effects are in different directions. We therefore used the raw 

proportions for consistency across all models. We pooled two sets 

of results, reflecting proportions of the associations between ACEs 

and mental health captured by (1) polygenic scores for mental health 

problems and (2) negative-control polygenic scores.

We proposed to infer support for Hypothesis 2a (that a small pro-

portion of the associations between ACEs and mental health problems 

would be explained by polygenic scores) if (1) polygenic scores for 

mental health problems explained, on average, between 5% and 20% 

of the associations, and (2) the average proportion of the association 

explained by negative-control polygenic scores was not significantly 

different from zero. We proposed to interpret alternative proportions 

of less than 5% as ‘very small’, proportions between 20% and 40% as 

‘moderate’, and proportions of more than 40% as ‘large’, broadly in line 

with guidance for interpreting effect sizes123.

Hypothesis 2b. Lastly, we estimated the proportion of the associa-

tions between ACEs and mental health problems explained by a latent 

polygenic score that captures SNP heritability in the mental health 

outcome. This genetic sensitivity analysis27,124 involves estimating the 

structural equation model shown in Fig. 5b from a correlation matrix. 

This matrix includes correlations between the polygenic score and 

the ACE (the a path), the polygenic score and the mental health out-

come (the b path), and the ACE and the mental health outcome (the 

cp path). Critically, this correlation matrix can be modified to reflect 

additional genetic variance captured in the outcome. For example, as 

the SNP-based heritability of parent-reported childhood internalizing 

problems is 6% (ref. 33), the correlation coefficient from the polygenic 

score to internalizing problems (the b path) can be changed to r = 0.24 

(calculated by taking the square root of 0.06). The correlation coef-

ficient for the a path between the polygenic score and the ACE will 

also increase to k√(0.06), where k reflects the ratio between the path 

from the polygenic score to the ACE and the path from the polygenic 

score to internalizing problems (k = a/b). Note that the SNP heritability 

estimate for childhood externalizing problems that was used for this 

analysis is 9% (ref. 33) (hence, r = 0.30). Supplementary Table 11 shows 

the method for estimating each of the original paths included in the 

correlation matrix.

To obtain a single estimate reflecting the proportion of the associa-

tions between ACEs and mental health outcomes captured by polygenic 

scores capturing SNP-based heritability, we averaged the results across 

six models for all ACEs (for internalizing and externalizing problems 

separately). As described above for Hypothesis 2a, this was performed 

using the MAd package125.

We proposed to infer support for Hypothesis 2b (that a moder-

ate proportion of the association is explained by polygenic scores) if 

polygenic scores capturing SNP-based heritability explained between 

20% and 40% of the associations between ACEs and mental health out-

comes on average. We planned to interpret alternative proportions of 

less than 5% as ‘very small’, proportions between 5% and 20% as ‘small’, 

and proportions of more than 40% as ‘large’.

Sampling plan
Inclusion criteria and sample size. ALSPAC. We planned to include 

ALSPAC children if they had data on genotype that passed QC (see the 

QC exclusions in Supplementary Table 8), ACEs (defined as responses 

to ≥50% of the questions in the assessments between birth and age 

nine years for each ACE), internalizing problems at age ten (defined as 

responses to ≥50% of items assessing separation anxiety, social anxiety, 
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general anxiety and major depression on the DAWBA) and externalizing 

problems at age ten (defined as responses to ≥50% of items assess-

ing hyperkinesis/ADHD and conduct/oppositional disorders on the 

DAWBA). On the basis of a previous ALSPAC study using data on geno-

type and the DAWBA at age ten126, we expected the sample of complete 

cases to be about 5,900. However, to maximize the sample size and 

reduce selection bias due to attrition, we proposed to use multiple 

imputation to impute missing values in the ACEs and the internalizing 

and externalizing problems measures (see Supplementary Methods 2 

for details of the inclusion criteria for imputation).

ABCD. We planned to include children from the ABCD Study if they 

had data on genotype that passed QC (see the QC exclusions in Sup-

plementary Table 8), ACEs (defined as responses to ≥50% to items 

assessing each ACE), and internalizing and externalizing problems at 

age nine to ten (defined as responses to ≥50% of the relevant items on 

the CBCL). On the basis of previous ABCD studies using genotype data 

and ACEs/CBCL data, we expected the sample size to be between 4,700 

and 5,400 (refs. 42,127). However, because we anticipated that the sample 

size may vary across different assessments (used to derive measures 

of ACEs and mental health), we proposed to use multiple imputation 

to maximize the sample size by imputing missing values in measures 

of ACEs and mental health (see Supplementary Methods 3 for details 

of the inclusion criteria for imputation).

Power calculations. We calculated the power to test each of our hypoth-

eses assuming a conservative minimum sample size of N = 4,700, as 

the minimum expected sample sizes were 4,700 for the ABCD Study 

and 5,900 for ALSPAC. (Note that the ABCD Study was not originally 

included in the Stage 1 pre-registration, but we used it because the 

original dataset, CATSS, was not accessible after Stage 1 acceptance. The 

expected sample size for CATSS was 11,000.) We conducted each power 

analysis using simulation (1,000 simulated datasets) in the MASS128 and 

stats112 packages and set the α level for statistical significance to 0.05. As 

described below, the power to test each hypothesis was ≥0.95.

Hypothesis 1a. We calculated the power to obtain a single effect size 

reflecting the average association between polygenic scores for mental 

health problems and ACEs across 48 logistic regression models (that 

is, 8 polygenic scores × 6 ACEs). This analysis showed that the power is 

0.96 to detect an average odds ratio of 1.04 for the effect of polygenic 

scores on ACEs using the agg function in the MAd package114 (account-

ing for dependent effect sizes). An odds ratio of 1.04 is a conserva-

tive estimate, as the average odds ratio for the associations between 

polygenic scores for mental health problems and ACEs in previous 

research21–26 was 1.10 (see https://osf.io/2uc4p/?view_only=2d9afc1b

072b4507ba11ba8771aaab62 for the details).

Hypothesis 1b. We calculated the power to detect a significant differ-

ence in the associations between polygenic scores and ACEs according 

to the type of polygenic score, using a Wald test in lavaan117. This analysis 

showed that we have 1.00 power to detect a difference across eight 

effect sizes (reflecting the average effect of each polygenic score on 

ACEs) when the smallest and largest odds ratios differ by 0.11 (for exam-

ple, OR = 1.05 versus 1.16), with other effect sizes taking intermediate 

values. A simulation using a structural equation model (shown in Sup-

plementary Fig. 1) showed that these odds ratios are plausible assuming 

previously observed effects of polygenic scores on ACEs (odds ratios 

of between 1.03 and 1.16; ref. 21) and average correlations of r = 0.06 

between polygenic scores23 and r = 0.30 between ACEs in ALSPAC77.

Hypothesis 1c. Similarly to Hypothesis 1b, we calculated the power to 

detect a significant difference in the associations between polygenic 

scores and ACEs according to the type of ACE, using a Wald test in 

lavaan117. This analysis showed that we have 1.00 power to detect a 

difference across six effect sizes (reflecting the average effect of all 

polygenic scores on each ACE) when the smallest and largest odds 

ratios differ by 0.10 (for example, OR = 1.05 versus 1.15), with other 

effect sizes taking intermediate values. As described above, these 

effect sizes were found to be plausible in a simulation based on 

the structural equation model in Supplementary Fig. 1, assuming 

previously observed odds ratios for the effects of polygenic scores 

on different ACEs varying between 1.03 and 1.16 (ref. 21) and average 

correlations of r = 0.06 between polygenic scores23 and r = 0.30 

between ACEs in ALSPAC77.

Hypothesis 2a. We calculated power for two analyses: (1) a structural 

equation model to estimate the proportion of the association between 

(individual) ACEs and mental health outcomes explained by polygenic 

scores, and (2) an aggregate model to average the results across indi-

vidual structural equation models. For the structural equation model 

(shown in Fig. 5c), the power was 0.95 to detect the proportion of the 

association between ACEs and mental health explained by observed 

polygenic scores. This is assuming previously observed small, inde-

pendent effects of polygenic scores for mental health problems on ACEs 

(r = 0.03–0.07)23 and internalizing and externalizing problems (r = 0.01–

0.05)84, small effects of individual ACEs on internalizing and external-

izing problems (r = 0.06)129, and average correlations between polygenic 

scores of r = 0.06 (ref. 23). For the aggregate model, the power was 1.00 to 

detect an average proportion of 5% (of the association between ACEs and 

mental health explained by polygenic scores), assuming correlations 

of r = 0.30 between effect sizes. We consider 5% to be a conservative 

estimate of the likely proportion of the association between ACEs and 

mental health explained by multiple polygenic scores, given that prior 

studies have found that a single polygenic score can account for larger 

proportions of the associations between environmental exposures and 

mental health (for example, 6% (ref. 30) and 18% (ref. 28)).

Hypothesis 2b. We calculated power for a structural equation model 

with a single mediator (that is, a polygenic score capturing additional 

genetic variance in the outcome), as shown in Fig. 5b. The power was 

1.00 to detect the proportion of the association between ACEs and 

mental health explained by a polygenic score that captures SNP her-

itability in the outcome. This is assuming a path from the polygenic 

score to internalizing problems of r = 0.24 (that is, the square root of 

0.06, as the SNP-based heritability of internalizing problems is 6%  

(ref. 33)), a path from the polygenic score to the ACE of r = 0.07 (assum-

ing that k = 0.33—that is, that the effect of the observed polygenic 

score on the ACE is a third of the size of the effect of the observed 

polygenic score on internalizing problems) and a path from the ACE 

to internalizing problems of r = 0.06 (as observed previously129). Note 

that the power will be equally high for analyses on externalizing prob-

lems because the SNP-based heritability of externalizing problems is 

slightly higher than for internalizing problems (9% versus 6%; ref. 33). 

Furthermore, note that the power will be ≥0.96 to aggregate these 

results to obtain an average proportion across models, assuming that 

the proportion will be 5% or greater (as tested above for Hypothesis 

2a). This is because as the strength of the association between poly-

genic scores and mental health outcomes increases, the proportion 

of the association between ACEs and mental health explained by 

polygenic scores will increase27.

Protocol registration
The Stage 1 protocol for this Registered Report was accepted in princi-

ple on 4 January 2021. The protocol, as accepted by the journal, can be 

found at https://doi.org/10.6084/m9.figshare.13580777.v1

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

http://www.nature.com/nathumbehav
https://osf.io/2uc4p/?view_only=2d9afc1b072b4507ba11ba8771aaab62
https://osf.io/2uc4p/?view_only=2d9afc1b072b4507ba11ba8771aaab62
https://doi.org/10.6084/m9.figshare.13580777.v1
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Data availability
The ABCD Study anonymized data, including all assessment domains, 

are released annually to the research community. Information on how 

to access the ABCD data through the NDA is available on the ABCD Study 

data-sharing webpage: https://abcdstudy.org/scientists_data_sharing.

html. Instructions on how to create an NDA study are available at https://

nda.nih.gov/training/modules/study.html. The ABCD data repository 

grows and changes over time. The ALSPAC data are not publicly available, 

as informed consent for public data-sharing and ethical approval for 

public data-sharing were not obtained from the participants. Research-

ers can find the details of how to apply for access to the ALSPAC dataset 

here: http://www.bristol.ac.uk/alspac/researchers/access/.

Code availability
The analysis code can be found at https://github.com/jr-baldwin/

ACEs_mental_health_RR.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection This study used existing data and therefore the authors did not collect data.

Data analysis All analyses were conducted using R Version 3.6.2, and the code is available on GitHub (https://github.com/jr-baldwin/
ACEs_mental_health_RR). Packages used included PRSice, Amelia, MAd, lavaan, MASS, and stats.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The ABCD Study anonymized data, including all assessment domains, are released annually to the research community. Information on how to access ABCD data 
through the NDA is available on the ABCD Study data-sharing webpage: https://abcdstudy.org/scientists_data_sharing.html. Instructions on how to create an NDA 
study are available at https://nda.nih.gov/training/modules/study.html. The ABCD data repository grows and changes over time.  
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The ALSPAC data are not publicly available as informed consent for public data-sharing, and ethical approval for public data-sharing were not obtained from 
participants. Researchers can find details of how to apply for access to the ALSPAC dataset here: http://www.bristol.ac.uk/alspac/researchers/access/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We controlled for sex but did not present sex-specific results because there was not a strong theoretical reason to expect sex 
differences in gene-environment correlations or genetic confounding. This is because previous studies on gene-environment 
correlations involving childhood adversity have not detected sex differences (Schoeler et al., 2019), and studies on ACEs and 
mental health have not found sex differences (McLaughlin et al., 2012, Mersky et al., 2013; Lee and Chen, 2017; Houtepen et 
al., 2020).

Population characteristics See above

Recruitment ALSPAC: ALSPAC sought to recruit all pregnant women in the former county of Avon, United Kingdom, with an expected due 
date between April 1, 1991 and December 31, 1992. The initial ALSPAC sample consists of 14,541 pregnancies. This is the 
number of pregnancies for which the mother enrolled in the ALSPAC study and had either returned at least one 
questionnaire or attended a "Children in Focus" clinic by 19/07/99.  
 
ABCD Study: Children aged 9-10 years were recruited through probability sampling of public and private elementary schools 
within the catchment areas of the 21 research sites. School selection was based on gender, race and ethnicity, 
socioeconomic status, and urbanicity. Inclusion criteria were the child’s age and attending a public or private elementary 
school within the catchment areas. Exclusion criteria for children were limited to not being fluent in English, having a parent 
not fluent in English or Spanish, major medical or neurological conditions, gestational age <28 weeks or birthweight <1200 g, 
contraindications to MRI scanning, a history of traumatic brain injury, a current diagnosis of moderate/severe autism 
spectrum disorder, intellectual disability, schizophrenia, or alcohol/substance use disorder.

Ethics oversight ALSPAC: Ethics approval for ALSPAC was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 
Committees. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants 
following the recommendations of the ALSPAC Ethics and Law Committee at the time. Consent for biological samples has 
been collected in accordance with the Human Tissue Act (2004).  
 
ABCD Study: Ethics approval for the ABCD Study was given by a central Institutional Review Board (IRB) at the University of 
California, San Diego, and in some cases by individual site IRBs (e.g. Washington University in St. Louis). Parents or guardians 
provided written informed consent after the procedures had been fully explained and children assented before participation 
in the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Prospective longitudinal birth cohort study (ALSPAC) and prospective longitudinal cohort study (ABCD Study)

Research sample We chose to use data from the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Adolescent Brain and Cognitive 
Development (ABCD) Study, as both are large longitudinal cohort studies with genotype data, prospective measures of ACEs, and 
child mental health data. In ALSPAC, 49%  of the analytic sample was female and in the ABCD Study, 47% was female. Analysis was 
limited to individuals of European descent to match the ancestry of the GWAS discovery samples. Therefore, the samples are not 
fully representative of the communities the participants reside in. 

Sampling strategy ALSPAC aimed to recruit all women resident in a defined geographical area in the South West of England with an expected date of 
delivery between 1 April 1991 and 31 December 1992 (85% participation). The ABCD Study aimed to utilize a multi-stage probability 
sample of eligible youth, selecting a stratified, probability sample of schools across the U.S. in order to capture demographic diversity.

Data collection ALSPAC and ABCD are existing cohort studies and the researchers involved in this study were not involved in data collection. The 
study staff who collected ALSPAC and ABCD data were thus blind to this manuscript's hypothesis (which was developed several years 
after data were collected). 
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ALSPAC: Children have been followed-up and assessed repeatedly across development through questionnaires, face-to-face 
interviews and physical and psychological assessments (including biological assays). ACEs were assessed using parent questionnaires 
(and very occasionally, child questionnaires) and mental health was assessed using parent questionnaires. ALSPAC children have been 
genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 23andme subcontracting the Wellcome Trust Sanger 
Institute, Cambridge, UK and the Laboratory Corporation of America, Burlington, NC, US. 
 
ABCD: Assessments were made through in-person visits. Like ALSPAC, ACEs were assessed using parent questionnaires (and very 
occasionally, child questionnaires) and mental health was assessed using parent questionnaires. Children from the ABCD Study have 
been genotyped from blood and saliva samples using the Affymetrix NIDA SmokeScreen Array. 

Timing ALSPAC includes children born between between April 1, 1991 and December 31, 1992, assessed repeatedly (~40 times) between 
birth (1991-1992) up to age 10 years (2001-2002). 
ABCD includes children born during the period 2006-2008, assessed at age 9-10 (2017-2018) and age 10-11 (2018-2019).

Data exclusions Exclusion criteria were pre-established and included participants who (1) did not pass genotyping quality control, (2) had less than 
10% data on ACEs, and (3) did not have data on mental health. 

Non-participation Complete cases included N=4,106 in ALSPAC and N=4,662 in the ABCD Study. We used multiple imputation to impute missing data 
for participants with 10% data on ACEs and some available data on mental health (imputed sample sizes were 6,411 for ALSPAC and 
4,996 for the ABCD Study).

Randomization Participants were not randomised to ACEs because of obvious ethical concerns. Analyses controlled for sex and where relevant, 
polygenic scores for psychiatric disorders.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


