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Preface

The present volumeis a record of lectures given at a conference Truth in Math-

ematics, which was held in Mussomeli, Sicily, Italy, from 13 to 20 September,

1995. All of the papers collected in this volume are based on lectures given

at the conference; some are essentially verbatim records of what was spoken in

Mussomeli, and some have been extended and somewhat changed.

Unfortunately, Professor Penelope Maddy was not able to attend the con-

ference; we are grateful to her for sending a paper and to Professor Alexander

George for reading this paper in Mussomeli. The paper of George and Velleman

was also read by Professor George.

Stimulating lectures were given at the conference by Dr Daniel Isaacson and

Professor Angus Macintyre, both of Oxford University. Unfortunately, papers

based on these lectures are not included in the present volume.

The papers have been grouped into certain ‘parts’ of this volume; this is a

necessarily rough classification. ‘The notes to individual papers and their bibli-

ography are collected at the end of each paper; further, there is a union of the

separate bibliographies on pages 353-370.
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1

Truth and the foundations of mathematics. An

introduction

H. G. Dales and G. Oliveri

The concept of truth occupies a central position both in mathematics and in

its philosophy. As we shall see in what follows, different conceptions of what it

means to say of a mathematical statement that it is true give rise to different and

mutually incompatible mathematical theories and to mutually exclusive positions

on whether there are such things as mathematical knowledge and reality and on

how these ought to be characterized.

The purpose of this introduction is to guide the reader to an appreciation of

the importance of the theme of the book through: a preliminaryclarification of

the historical background relevant to the contemporary debate on the concept of

truth in mathematics; a brief discussion of the mathematical and philosophical

importance of such a concept; and a sketch of the applicability of the concept of

truth in set theory.

Since some readers will be mathematicians lacking in philosophical back-

ground and others will be philosophers lacking in mathematical background, we

have attempted, in writing this introduction, to define as many as possible of

the important notions which are relevant to what we here say. We are confident

of the fact that those who will read this introduction will be very much aware of

the difficulty inherent in the task we have set ourselves to accomplish and that,

therefore, they will treat in a benevolent way our efforts even when they appear

to fall short of the target.

Explicit reference to chapters contained in this collection will be made when-

ever we touch upon a topic there treated in greater depth.

1 The pre-Tarskian debate: Kant

The origins of the debate on the nature of truth in mathematics lie in ancient

antiquity. The Greeks—in fact, the school of Pythagoras, in the fifth century

BC—discovered that, in our terms, there is no rational number x such that

z* = 2. It follows that /2 is not a rational multiple of 1, and that there

are segments (of length 2 and 1) which are incommensurable, a disturbing

realization! Since the Pythagoreans did not go beyond the rational numbers, this

discovery posed fundamental problems, challenging their central identification of
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number and geometry. In particular, they asked: What is the ‘true’ concept of

number? Does V2 really exist? It will be seen that analogous questionsarestill

relevant today.

However, since we cannot discuss the long history of the debate on ‘truth’

from the timeof Greek civilization,! we move immediately to the XVIIIcentury

of our era.

Contemporary speculations concerning the truth of mathematical statements

originate from Kant’s discussion of this problem, a discussion which results in

the view that mathematical statements are synthetic a priort. But what does

this mean?

For Kant judgements are expressed by statements which have a subject-—

predicate structure, that is, for example, by statements of the type ‘Johnis bald’.

An analytical judgement is, for him, a judgement expressed by a statement in

which the predicate does not increase the amount of information contained in

the concept of the subject, e.g., 1) ‘The Sun is a body’—in this particular case

the concept of bodyis implicit, contazned in the definition of ‘Sun’.

A synthetic judgement is, on the contrary, a judgement expressed by a state-

ment in which the predicate increases the information contained in the concept

of the subject, e.g. 2) ‘\/2 is an irrational number’ or 3) ‘On the 21st of June

1995 Rome had more than one million inhabitants’. If someone were to give us

a definition of Romeas thecapital of Italy, etc., we would not be able to derive

from this how many inhabitants Rome had on the 21st of June 1995; moreover,

saying that \/2 is the positive real number m such that m? = 2 does not give

immediately any indication as to whether m is rational or irrational. There-

fore, asserting that \/2 is an irrational number and saying that Rome had more

than one million inhabitants on the 21st of June 1995 are ways of extending the

amount of information made available to us simply through an analysis of the

definition of \/2 or of Rome.”

Furthermore, for Kant, a judgement is true (false) a prior: if it is true (false)
independently of experience—the judgement expressed by 1) would be a good

example of an a priori true judgement because we would be able to show thatit

is true simply through an inspection of the definition of ‘Sun’; and that expressed

by 2) would also be an example of a priori true judgement because we would be

able to determine its truth by producing an abstract proof and not by experience.

Lastly, a judgement is a posteriori true (false) if only experience can justify

the attribution of truth (falsity) to it: a clear example of a posteriori true judge-

ment is represented by that expressed by 3). In fact, only a census taken in

Rome on the 21st of June 1995, or a similar empirical verification procedure,is

able to confirm or refute such a judgement.*
Kant’s classification of judgements, and therefore statements, according to

the analytic/synthetic and a priori/a posteriori distinctions allows us to con-

struct a useful classification table, as in Table 1.

™
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Table 1 Judgements classification table

| apriort a posteriori
 

analytic 1)

synthetic 2) 3)

In this table, the box individuated by the pair analytic/a posteriori is empty

because, if a judgement is analytically true, then it is true in virtue of the fact

that the predicate belongs to the concept of the subject. In other words, if we

were to know the concept of the subject, that is, the list of predicates expressing

properties of the subject, then, independently of experience, we would realize

that the judgement is true, because we would find the predicate (occurring in

the judgement) in ourlist. Therefore, such a judgement could not be a posteriorz.

If, on the other hand, a judgement is genuinely a posteriori, that is for exam-

ple, there is in principle no wayof telling whetherit is true or false independently

of experience, then the judgement could not be analytic, because thelist of predi-

cates expressing the properties of the subject would neither contain the predicate

occurring in the judgement nor a predicate which is inconsistent with it.

For Kant, mathematical judgements are synthetic a priori, because they are

true independently of experience and, at the same time, extend the knowledge

we can obtain simply bylisting the properties of the subject.*

Although what we have so far said explains the meaning of the Kantian claim

that mathematical judgements are synthetic a priori, we have said nothing about

what Kant thinks true mathematical judgementsare true of and about what, for

him, is the relation between logic and mathematics. Both these questions need

to be addressed, because they bear directly upon Kant’s conception of the truth

of a mathematical statement. The first, in fact, leads us to discuss his ideas on

mathematical reality; the second helps us to clarify the nature of mathematical

judgements by contrasting them with logical judgements.

In Kant’s view, our reason is endowed with a spatio-temporal system of repre-

sentation which produces a pre-reflective ordering of the perceptual input, that

is, an ordering of the perceptual input that precedes the reflective activity of

reason—this is the activity exercised by reason through the formation of judge-

ments. What this means is that when we have a perception, this is not entirely

determined in its properties and structure by the external object(s), but that

such perceptory input is spatially and temporally ordered by reason. Moreover,

such an ordering is pre-reflective because it is not the consequence of our attempt

to interpret and/or understand what we are perceiving; it is simply given to us

and determines, to an in principle unspecifiable extent, how things appear to us.

For Kant, the objects of study of mathematics are provided by this system of

representation when certain a priori concepts are introduced; weare referring to



4 H. G. Dales and G. Oliveri

concepts such as ‘space is three-dimensional’, ‘given two points a and b in a plane

a, there is one and only one straight line r in a on which a and lie’, ‘adding two

numbers m and n means ...’, etc.° It is only because we have a spatial system

of representation that, once we have introduced Euclidean geometry, we can

discover, by studying instantiations of triangles and other geometrical figures,

that ‘the sum of the internal angles of a Euclidean triangle is 180°’. We could

not have discovered this property of Euclidean triangles simply from an analysis

of the definition of the a priori concept of triangle, because the analysis of an

a priori concept always leads to the formulation of analytical judgements, and

‘the sum of the internal angles of a Euclidean triangle is 180°’ is a synthetic

judgement.

Mathematical concepts must be a priori for Kant, and, therefore, cannot be

abstracted from experience because of the necessity and universality of judge-

ments obtained from their application; if mathematical concepts were empirical,

the judgements in which they occurred would always have the contingency typ-

ical of judgements which can only be justified by induction.®

Moreover, for any concept and, in particular, for a mathematical concept to

become meaningful, this has to refer to an object of our experience (an object

given to us by our pre-reflective system of representation), hence the need to

draw geometrical figures, write numbers, etc., that there is in mathematics.’

One of the most important consequences of Kant’s meaningfulness condition for

concepts, when this is applied to mathematical concepts, is that it provides a

strong justification for the belief that true mathematical statements must be

true of something. [This statement is the ‘principle C of Michael Dummett’,

which is discussed in the chapter of Martin-Lof (see pp. 105-114).
Concerning the relation between logic and mathematics, it must be empha-

sized that, according to Kant, what he calls ‘general logic’, which is what in his

system comesclosest to what Frege and the following tradition meant by ‘logic’,

is essentially concerned with the study of the laws of thought;® this is a study

which is analytic in character because it:?

. resolves the whole formal procedure of the understanding and

reason into its elements, and exhibits them asprinciples ofall logical

criticism of our knowledge.

Furthermore, despite the fact that this part of logic is seen by him as a

propaedeutic to all the other sciences, it is not identifiable with them. Kant

states that logic:!°

. is justified in abstracting—indeed, it is under obligation to do

so—tfrom all objects of knowledge and their differences, leaving the

understanding nothing to deal with save itself and its form. [...]
for reason to enter on the sure path of science is, of course, much

more difficult, since it has to deal not with itself alone but also with

objects. Logic, therefore, as a propaedeutic, forms, as it were, only

the vestibule of the sciences; and when we are concerned with specific

modes of knowledge, while logic is indeed presupposedin anycritical
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estimate of them, yet for the actual acquiring of them we have to

look to the sciences properly and objectively so called.

Kant’s views on the nature (synthetic a priort) and structure (subject/predi-

cate) of mathematical judgements and on the relation between logic and some

mathematical theories (arithmetic) have been strongly criticized by Frege. We

will begin the next section with a brief account of Frege’s opinions on the nature

of mathematical judgements and on therelation between logic and mathematics.

2 The pre-Tarskian debate: Frege

Frege is regarded as the founder of modern mathematical logic; his views are

expounded in his Die Grundlagen der Arithmetik (1884) and Grundgesetze der

Arithmettk (1893, 1903).
There are several points of contact between Kant’s and Frege’s viewsof logic

and mathematics. Both of them agree that logic is concerned with the study of

the laws of thought;!! mathematical concepts are not arrived at by abstraction;
the study of mathematical judgements, conducted through the introduction of

the a priori/a posteriori and analytic/synthetic distinctions, is very important

to provide a correct characterization of mathematics; etc. Although these are

certainly facts worthy of notice and of serious consideration, perhaps, the points

on which Kant’s and Frege’s ideas about logic and mathematics are at odds with

one another are even morerelevant, at least to our general discussion, which, let

us recall, revolves around the question ‘How do we characterize the truth of a

mathematical statement?’

For us, at the root of all the major differences between Frege’s and Kant’s

representations of mathematics there are two irreconcilable conceptions of the

relation between logic and mathematics. For Frege, contrary to Kant, there is no

solution of continuity between logic and arithmetic; arithmetic zs part of logic.

However, this view of the relation between logic and arithmetic leaves him with

a problem of difficult solution: if logic is, as Kant says, essentially analytic and

arithmetic is part of logic, then arithmetic must be analytic as well. But, if this

were the case, then arithmetic would lose the ampliative character possessed by

@ proper science.

Given the serious nature of the problem to be faced, Frege, to keep his views

concerning the relation between logic and arithmetic, reformulates the definition

of analyticity.!?
For Frege, it is correct to say that arithmetical statements are analytically

true (or false), because their proofs involve only laws of logic and definitions.!°

(From this follows, a fortiori, that logical judgements are analytic as well.) This

move doesthetrick, for it allows Frege to say that arithmetical statements are

analytical, preserving, at the same time, their ampliative nature of statements

which, as Kant had already discovered, produce new information with respect

to that contained in the concept of their subject.

According to Frege, the analytic/synthetic and a priori/a posteriori distinc-

tions apply to justifications for making judgements, that is, to proofs, whereas,
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for Kant, they apply to judgements. Moreover, the proof of an arithmetical

judgementis not constitutive of its truth, but is only a justification for asserting

it:14

It not uncommonly happens that we first discover the content of a

proposition, and only later give the rigorous proof of it, on other

and more difficult lines; and often this same proof also reveals more

precisely the conditions restricting the validity of the original prop-

osition. In general, therefore, the question of how we arrive at the

content of a judgement should be kept distinct from the other ques-

tion, Whence do wederive the justification for its assertion?

These last considerations show, in a very concise manner, how Frege attempts

to hold on to his idea that arithmetic is just a part of logic without having to

renounce the ampliative nature of arithmetical judgements. But they also, in

particular those on the réle of proof in arithmetic, coupled with Frege’s belief

in numbers as objects, which we have not discussed here,'° make a case for

attributing to Frege a realist account of the truth of arithmetical judgements.

However, as is well-known, despite the admirable array of arguments devised

by Frege, the unsurpassable limitations of the logicist conception of the relation

between logic and arithmetic were finally exposed when it became clear that

logical notions alone are not sufficient to derive arithmetic.

Not only had Frege a compelling belief that arithmetic could be reduced to

logical principles, but he also held that his base for such a reduction was secure.

However,in a letter written to Frege shortly before Volume II of Grundgesetze

der Arithmetik was published in 1903, Bertrand Russell showed that this was

not the case, describing a logical contradiction that did arise: Russell’s paradox

considers the‘set of all sets that are not members of themselves’. Thus the naive

set theory which was part of Frege’s logical basis is inconsistent in itself.

3 The pre-Tarskian debate: the rdle of Kronecker, Hilbert,
and Brouwer

The relation between logic and mathematics, which has already provided us

with a fruitful way of comparing Kant’s and Frege’s thoughts on the truth of

mathematical statements, will also help us to introduce the seminal ideas of

another author who has greatly contributed to such a debate: L. Kronecker.

Kronecker’s approach to mathematics appears to be purely combinatorial.

For him, mathematical activity is expressible as the ability to calculate; and such

an ability can be acquired only once the natural numbers are given. According

to Kronecker, as Marion putsit:'§

(1) everything must be construed from the natural numbers[. . .];

(2) no completed infinities [are admissible within mathematics];

(3) no proof of existence or definition [is given] without an algorithm.

In attempting to provide an explanation of the above principles (1)-(3), we

must keep in mind that Kronecker’s fundamental aim, which inspires the whole
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of his mathematical activity, is to proceed to the arithmetization of analysis and

algebra. Seen in this light, principle (1) loses much of its ontological overtones,

in the sense that it does not assert that the only mathematical entities are

the natural numbers and that everything else has to be seen as a collection of

illusions, but that we must endow each mathematical entity with an arithmetical

significance through constructions starting from the natural numbers.

[For a discussion of two different conceptions of the natural numbers, see the

chapter of George and Velleman on pp. 311-327.|

However, according to Kronecker, to achieve a rigorous arithmetization of

analysis and algebra we must not presuppose the existence of completetotalities,

because these are unnecessary—principle (2); in our reasonings, whenever we

provide a definition or a proof of existence, we must also provide an algorithm

which, in the case of a definition, enables us to show in a finite numberof steps

whether or not a given object belonging to the domain falls under it;'” and, in

the case of a proof of, say, dxy(x), enables us to produce, in a finite numberof

steps, an entity a belonging to the domain and to show that a has the property
p38

[For a deep discussion of the notion of ‘algorithm’, leading to a significant

proposal for ‘founding the theory of algorithms’—this is part of the more general

problem of ‘founding computer science’—see the chapter of Moschovakis on pp.

71-104.|

Logical proofs of drp(x), that is, arguments which appeal to the law of ex-

cluded middle, do not deserve to be called ‘mathematical proofs’.19 Weierstrass’s

arithmetization of analysis is not rigorous in Kronecker’s eyes because, although

Weierstrass succeeded in providing arithmetical significance to notions such as

that of limit and continuous function, by means of his € — 6 notation and proofs,

separating out these fundamental concepts of analysis from geometrical intuition,

he disregarded the combinatorial character that arithmetical proofs must have

to be logically compelling and madean indisciminate use of completedinfinities.

However, for Kronecker, logical proofs are not sets of statements empty of

any mathematical significance. They have an important role to play, not as

justifications for mathematical assertions, but as heuristic devices which call for

an improvement to be given in purely combinatorial terms.

These few remarks show that, for Kronecker, there exists a sharp divide be-

tween logic and mathematics and that mathematical truth, which still preserves

a realist flavour, has to be given an arithmetical (numerical) significance. As

we shall see in what follows, Kronecker’s ideas greatly influenced the thought of

Hilbert, Brouwer, and, later this century, Errett Bishop.

Another relevant contribution to the debate on the truth of mathematical

judgements/statements—from here on weshall use these two terms interchange-

ably—is that given by Dawid Hilbert.

In his work concerning the foundations of mathematics, Hilbert had to deal

with two main problems: i) ‘How do wejustify the acceptance of Cantor’s theory

of transfinite numbers?’ and ii) ‘How do we deal with the set-theoretical para-
doxes?’. (We shall describe Cantor’s theory and the paradoxes in §6, below.)
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Both these problems have an important characteristic in common which was

well individuated by Hilbert: the concept of infinity. In fact, Cantor’s theory

of transfinite numbers might be described as an extension of arithmetic beyond

the realm of the finite; and set-theoretical paradoxes such as Cantor’s, Russell’s,

and Burali-Forti’s are sensitive to contexts in which restrictions are placed on

the size of totalities which we are allowedto call ‘sets’.?°
Perhaps, in the light of such a characteristic common to the two questions,

we might be able to reduce i) and ii) to (a) ‘Is there a way of treating the
concept of infinity that might enable us to retain the results obtained by Cantor

in transfinite theory of numbers, but avoiding, at the same time, the formation

of the set-theoretical paradoxes?’.

Hilbert attempted to provide a positive answer to this question by develop-

ing what became known as Hilbert’s programme.*! But, before we proceed to

illustrate Hilbert’s views concerning how question (a) should be addressed, we
need to set in place some important ideas.

For Hilbert, given a mathematical theory such as number theory, we can

distinguish between finitary and ideal statements. Finitary statements are in-

tuitively characterizable as those (and only those) whose truth can be assessed

by an actual procedure of computation which takes place in a finite number

of steps.2? All the other statements are ideal. An example of finitary number-

theoretical statement is provided by ‘1 + 355 = 356’. In fact, in this case there

exists a well-specifiable computational procedure which, in a finite number of

steps, is able to determine whether the statement is true or false.2? Quantified

number-theoretical statements which are not expressible as finite conjunctions

or finite disjunctionsof finitary statements are ideal. ‘The reason for this is that

an infinite conjunction (or disjunction) of number-theoretical statements is not
something whose truth value can be determined by a computational procedure

which terminates in a finite number of steps, but only by arguments which are

essentially non-combinatorial—here the influence of Kronecker’s ideas ought to

be evident!

The distinction between finitary and ideal statements of a given mathematical

theory is very important because all true finitary statements can beeffectively

shown to be so (true) and, therefore, the finitary fragment of the given mathe-

matical theory must have a model and hence must be consistent.

According to Hilbert only finitary statements are meaningful, that is, true

or false. Ideal statements, on the other hand, despite their lack of meaning,

turn out to be useful to the development of mathematics, because they help

us to preserve the laws of logic and mathematics in their simplest form.24 The

only requirements for ideal statements to be accepted as legitimate members of

mathematical theories are their mathematical usefulness and the fact that they

do not generate contradictions when adjoined to the finitary fragment of the

given theory.?°
Hilbert’s programmeconsisted essentially in the attempt to show that the

formalized version of a given mathematical theory is consistent by using a meta-

theory which appeals exclusively to finitary statements and reasoning. If the
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programmecould beeffectively carried out, it would indeed provide a positive

and satisfactory answer to question (a). In fact, if Cantor’s theory of transfinite

numbers could be conceived as an extension of arithmetic and we were able to

prove the consistency of a formalized version of arithmetic by meansofa finitary

meta-theory of arithmetic, then this consistency proof would be compelling—in

force of its combinatorial character—and would show that we have nothing to

fear from being admitted to Cantor’s paradise!

As is well-known, even if some authors have recently disputed this,?° the orig-

inal version of Hilbert’s programme cameto grief as a consequence of Godel’s

second (or incompleteness) theorem; see 86, below.?” But what is of interest to

us here is Hilbert’s belief that only finitary (verifiable) mathematical statements
are meaningful (true or false), and that mathematics has a subject matter repre-

sented by symbols and their immmediately clear and representable structure.”®

However, Hilbert’s view is strained by an internal tension generated by two

beliefs which seem to be pulling in opposite directions. On the one hand, we have

the opinion that only finitary statements are meaningful (true or false); which

seems to imply that the predicate ‘true’ ought to be understood as a synonym

of the predicate ‘combinatorially provable’. From this it would, in particular,

follow that the use of the predicate ‘true’ would not suggest any reference to a

subject matter. On the other hand, Hilbert’s appeal to an extra-logical reality,

even thoughthis is a reality populated by structured symbols, and his holding

on to the law of excluded middle, that is, to logical proofs in Kronecker’s sense,

seem to hint at the possibility that it is not after all correct to take ‘X is true’

to mean ‘X is combinatorially provable’.

As we shall see in what follows, such a tension is resolved in the thought of

the intuitionists by keeping thebelief that only finitary mathematical statements

are meaningful and dropping, together with the law of excluded middle, any hint

at a subject matter of mathematical theories.

[A position that is more radical than that of Hilbert is developed by Effros

in his chapter on pp. 131-145. Effros sees mathematics as a language, discussing

this language as a vehicle for expressing our ideas of the physical universe. A

defense of a purely formalist view—namely, that mathematics is a mental game

with strict rules—may be found in the chapter of Manin, pp. 147-159.]

The last of the thinkers who contributed to the pre-Tarskian debate on the

truth of mathematical statements that we are going to consider here is L. E. J.

Brouwer, the prophet and high priest of Intuitionism in the philosophy of math-

ematics.

For Brouwer saying ‘A is true’ means ‘There is a constructive proof of

A’,*® but what do we have to understand by ‘constructive proof’ or ‘construc-

tion’, in Brouwer’s sense? Well, the answer to this question cannot be com-

pletely straightforward, because, although Heyting produced an interpretation

of the logical constants, which is currently accepted as a fair embodyment of

the ‘constructive’ ideas about intuitionistic first-order logic (see note 45), the
Brouwerian notion of mathematical construction, as involving vastly more than

logic, has been taken as primitive by the faithful followers of Brouwer. The
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reason for this is that, since constructions are creative acts of the subject, we

can distinguish between them, as van Stigt says, ‘genetically’, but we cannot

provide a complete classification of constructions. This situation is determined

not so much bythe fact that there are too many of them (constructions) or by

the inadequacy of ways of formalizing constructions, but by the openness of the

notion of construction, which is made to depend on the vague notionof ‘creative

activity’ of the subject.*°
However, to try to makethe situation concerning the notion of construction

more precise, we can say that, at the level of what wecalled ‘finitary reasoning’,

intuitionists and followers of Hilbert’s programmeare in complete agreement,

that is, finitary reasoning 7s constructive—this, in particular, shows that Brouwer

was also influenced by Kronecker’s ideas.*! The differences between Brouwer’s

approach and that of the Hilbertians begin to arise at the stage in which ideal

statements (in Hilbert’s sense) are called into question. These last are deemed
to have no mathematical value by Brouwer who, by adopting a more severe view

on these matters than Kronecker, courageously attempted to extend the finitary

standpoint to the treatment of any meaningful mathematical statement.

Here the extension of the finitary standpoint in mathematics must be inter-

preted in the sense that: i) we can consideras legitimate those operations which

can be in principle, but not necessarily actually, carried out (they do not halt

after a finite numberof steps); ii) we are allowed operations which are not de-
terminate in advance by a law; iii) sentences which do not lend themselves to be
treated by such finitary methods are not part of mathematicsatall.

The rationale for the extension of the finitary standpoint expressed by i) and

ii) is represented by the need to deal with infinite structures and, in particular,

with the continuum. Unfortunately, there is not enough space here to justify

this assertion; the interested reader may consult on this standard texts, such

as Dummett’s Elements of Intuitionism.?* Concerning the motivation for the

adoption of principle iii), we need to consider that:*9

The point is not just that the intuitionist prefers constructive proofs

to a greater degree than other mathematicians. A classical mathe-

matician may spend a considerable amount of time looking for a con-

structive proof of a result for which he already has a non-constructive

one. The intuitionist is not in this position; he must have a construc-

tive proof because the intuitionistic interpretation of the conclusion

is always such that no non-constructive proof could count as a proof

of it.

The consequencesof this attitude are momentous. The law of excluded mid-

dle is rejected, together with much of the mathematical practice and results

achieved through theclassical approach.*4
Oneof the most important consequencesof the fact that, in Brouwer’s system,

the predicate ‘true’ collapses on to the predicate ‘constructively provable’ is that

when we assert ‘X is true’, we do not need to refer to the existence of a reality

that X is true of.
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Brouwer’s intuitionism and other constructive approaches have had consid-

erable philosophical impact in this century, but only a small number of mathe-

maticians have espoused the cause of ‘doing intuitionistic or constructive math-

ematics’. The most important of these mathematicians was Errett Bishop. |For
our account of modern constructive mathematics, see the chapter of Bridges, pp.

53-69. |

The situation concerning what we must understand when wesay that a math-

ematical statement is true remained rather fluid until Tarski’s contributions to

the debate, contributions which we shall examine in the next section.

4 ‘Tarski

Tarski’s work on truth*° represents a watershed in the understanding of what

it means to say that a statement is true in formalized languages.*° As is well-

known, Tarski held a semantic conception of truth—based on the concept of

satisfiability—aiming at capturing the Aristotelian intuition that:3”

The truth of a sentence consists in its agreement with (or correspon-

dence to) reality.

For Tarski a definition of truth that captures such an intuition must imply

all the equivalences of the kind:*®

1) ‘The cat is on the mat’ is true if and only if the cat is on the mat.

Weshall not attempt to rehearse here a very well-known theory; the interested

reader should have no difficulty in accessing the relevant literature. What is of

interest to us is to individuate the factor present in Tarski’s ideas that caused

the traditional debate on the truth of mathematical statements to change.

The decisive novelty in Tarski’s ideas is not contained in his account of what

it means to say of a mathematical statement that it is true; as we have already

seen, such a view is but a rediscovery of one of Aristotle’s intuitions on these

matters. The new and crucial move made by Tarskiis rather part of his successful

attempt to dispose of the semantic paradox of the liar, a paradox expressed by

sentences such as:

2) This sentenceis false.

Such sentences turn out to be true if and only if they are false, generating

contradictory statements.

According to Tarski’s analysis, two conditions must be satisfied to generate

the liar paradox: i) we must be dealing with sentences belonging to a semantically

closed language,°*® and ii) we must useclassical logic. Tarski’s strategy in dealing

with the liar paradox consists in keeping classical logic and dispensing with

semantically closed languages. The elimination of semantically closed languages

is obtained by meansof the introduction of the well-known distinction between

object language and meta-language.*©
Oneof the consequences of Tarski’s monster-barring solution is the relativiza-

tion of the definition of truth to a particular language L. It is such a relativization
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of the notion of truth which determines an important shift with respect to the

past. Until Tarski, thinkers in the philosophy of mathematics and logic worked

with an unrelativized, absolute notion of truth of a statement.

[A defense of the Tarskian conception of mathematical truth, based on an
account of mathematical experience, may be found in the chapter of Oliveri on

pp. 253-269.|
From the time of the appearance of Tarski’s theory of truth onwards, the

discussion concerning how we should understand the claim that certain mathe-

matical statements are true became polarized between two main parties: those

who accepted Tarski’s account—weshall call them ‘classical mathematicians’

and will refer to classical mathematics by the term CLASS—and the construc-

tivists, that is, the followers of Brouwer (INT) and of other mathematicians such
as Markov (RUSS), Bishop (BISH), and Yessenin-Volpin, who produced systems

of constructive mathematics which differ from Brouwer’s.*!

A simple example will, perhaps, be sufficient to highlight the distinction be-

tween the classical and constructive interpretation of a statement being true. Let

us consider the following Tarskian definition of truth for a first-order language
L.*?

Definition 4.1 A well-formed formula A 1s true for the interpretation or model

Mt (written Eon) af every sequence in % satisfies A. The formula A is said to be

false for IN if no sequence in d satisfies A.*%

Nowfor a classical mathematician to prove that a well-formed formula A of a

first-order language L is true for 2M, it is sufficient to show that —=—A is true for

Mt. The reason for this is as follows. We can prove from our definition that:44

(a) A is false for an interpretation SWt if and only if —A is true for MN;

(b) A is true for an interpretation St if and only if —A is false for DM.

Thus, if we can prove that ——A is true for I, then this will imply, by (a), that

—A is false for 2; and this last result will imply, by (6), that A is true for 0.

However, for the constructivist mathematician the argument we have given

above is not at all sufficient to show that A is true because it has not provided

us with a procedure to transform a proof of ——.A into a proof of A; in fact, the

constructivist mathematician would be prepared to hold A to be true just in

case he can produce a constructive proof of A.

A good insight into the approach to truth in terms of constructive provabil-

ity may be given by studying the constructivist’s interpretation of the logical

constants. This is an interpretation which greatly differs from that of CLASS.

Following 'Troelstra and van Dalen, we shall call this interpretation the BHK-

interpretation (or the Brouwer, Heyting, Kolmogorov interpretation).*
However,the difference between CLASSand the various types of constructive

approaches to mathematics does not end here. In fact, as a consequence of the

BHkK-interpretation of the logical constants, INT, RUSS, and BISH do not accept

the law of excluded middle P V —P*° and, moreover, analysis as developed in
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INT and RUSSis inconsistent with analysis as developed in CLASS.

Some authors, including Bridges in his chapter in this volume, dispute this

last point. They assert that certain results which are provable in INT analysis

and are classically false are only apparently so. This impression vanishes, they

say, when we correctly state them. Bridges gives the example of the theorem of

INT analysis stating that:

(*) Every function from [0,1] to R is uniformly continuous;

the apparent absurdity of (*) (and its inconsistency with CLASS analysis) dis-

appears when were-state it more carefully as:

(**) Every intuitionistically defined function from the intuitionistic

interval [0,1] to the intuitionistic real line is, intuitionistically, uni-
formly continuous.

Wedo not intend to contribute here to the debate on this issue. Bridges (and
others) may well be right, but, if this were the case, then INT and RUSS,far

from being competing interpretations of current mathematical practice, interpre-

tations which pose a strong challenge to CLASS (and to each other), would turn

into mutually exclusive and incommensurableactivities for which justifications

ought to be provided to call them ‘mathematical’.

However, regardless of what the situation is with respect to this issue, the

differences existing between CLASS,on the oneside, and INT, RUSS, BISH,etc.,

on the other, in the interpretation of what it means to say that a mathematical

statement is true have profound metaphysical and epistemological consequences

which we shall briefly discuss in the last section. In the next section we shall set

out the background for our discussion of the notion of truth in set theory.

5 Truth in set theory: preliminaries

We now expanda little on the notion of model, introduced above. [A more
detailed version of these ideas, leading to a formulation of Godel’s completeness

theorem, is given in Woodin’s chapterin this volume, pp. 329-351.] The concept

of ‘truth’, in the sense to be described, informs most of twentieth-century set

theory, and hence, implicitly most of the mathematics of our century.

We must start with a ‘language’ of set theory; we are thinking of‘first-order

language, with equality’, but other, more general, languages are possible. The

alphabet of the language is an infinite set of positive integers, some of which are

denoted by V, =, (, ), 3, and =; somefinite sequences in the alphabet are the

formulae of the language. The syntax specifies which sequences are formulae:

it is a specific list of rules which state how formulae are formed (for example:
‘if y is a formula and z is a variable symbol, then ‘dx(y)’ is a formula’.) The
language is the smallest set of finite sequences which is closed under applications

of the rules. A sentence is a formula which has no free variables; intuitively, a

sentence is an assertion that is either true or false. A theory (in the language)is

a (possibly infinite) set of sentences.
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How does a theory ‘prove’ a formula? The language contains certain logical

azioms (for example, ‘y — (WW — (pA ¥y))’ is regarded as trivially true). The

classical mathematician takes ‘yV(-w)’ as a logical axiom; as explained above,it

is this controversial act that fundamentally separates the classical mathematician

from the constructivist. A rule of inference is a procedure for deriving a new

formula from an existing collection. Modus ponens is the rule:

from {y, p— w}, derive w.

A theory T proves a formula in the language if there is a finite sequence

(Y1,---;Yn) Of formulae such that y, = y and each y; (for i = 1,...,n) is

either an element of T or a logical axiom or is derived from two formulae of

(1,---,~i-1) by modus ponens. In this case we write IT’ | yw. Note that this

definition does not imply that there is an algorithm that determines whetheror

not TF yo.

Let I’ be a theory. Then T is inconsistent if there is a sentence y such that

TE yA (7); otherwise, T is consistent, and we write

ConT'.

A sentence y is relatively consistent with T if

ConT implies Con(T'+ )

(that is, either T is inconsistent or T + y~ is consistent).

A model IN (of our language) is just a pair (M, EF), where M is a non-empty

set and F is a subset of M x M.

Let St be a model, let y = y(x1,...,2n) be a formula of our language,

and let a1,...,@, be elements of M. There is a natural interpretation of y as

a statement (relative to Nt) about the elements a1,...,a@,; the truth of » at

(a1,...,@n) is defined by various natural rules. In particular we have the notion

of a sentence y being true in IN; we write Mt — vy in this case. The theory of M,

written Th(20), is the collection of sentences y such that It E ~; Mt is a model
of a theory T if TC Th(9N), and we then write It — T.

It is easy to see that, if a theory T has a model, then T is consistent. The

foundation of the subject is the converse: it is Gédel’s completeness theorem.*"

Theorem 5.1 Let T be a theory in our language. Then T is consistent if and

only if T has a model. 0

It follows from Gédel’s completeness theorem that a sentence is logically

derivable if and only if it is true in every model. More generally, for a theory T,
T’' » if and only if each model of T is also a model of y. This is the importance
of the theorem: it identifies the notions of proof and of truth.

|The chapter of Lolli (pp. 117-129) is an account of the notion of truth that
stresses the fundamental role of Godel’s completeness theorem.|

[A related, but distinct, notion of proof is that of ‘verificationism’, which

derives from the ideas of Gentzen, and is explained in the chapter of Prawitz
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(pp. 41-51); Prawitz concludes by claiming ‘we should identify the truth of a

sentence not with it being proved but with it being provable’. Gentzen’s workis

also discussed in the chapter of Moschovakis, pp. 71-104.]

Naturally, we would like our theories to be consistent. Another apparently

desirable feature of a theory is that it be complete. Let 7’ be a theory in a

language. Then Thm(T) denotes the set of sentences y such that T+ y. A
theory T is complete if, for each sentence y, either py € Thm(T) or -~y € Thm(T).

A sentence is independent of T if yp ¢ Thm(T) and -y ¢ Thm(T). Thus y
is independent of T if T’ proves neither y nor -y; if T is consistent, then ¢ is

independent of T if and only if both y and -arerelatively consistent with

T. Certainly there are modest theories that are consistent and complete: for

example, the theory for a dense total order without end-points has these two

properties. But we would like more significant complete and consistent theories.

The search for such theories is described in the following section.

6 ‘Truth in set theory: axiomatics and independence

The background to Hilbert’s questionings lay in the tumultuous development of

new ideas in set theory in the latter part of the nineteenth century. These new

ideas were primarily due to Cantor.*® After Cantor’s work, which we discuss

below, smouldering controversies broke into the open, and the question of the

proper foundation of mathematics became moreinsistent.

A crucial role in the debate about mathematical truth is played by the con-

tinuum hypothesis (CH), a matter first recognized and formulated by Cantor.

Let us explain this statement.

Let S and T’ be two sets. Then S and T are equipotentif there is a bijection

from S onto T; we also say that S and T have the same cardinality. Cantor

studied the cardinality of sets (he used the term ‘powerof a set’), and he quickly

singled out twocases of infinite set: denumerable sets, which are equipotent to N,

and non-denumerable sets, which are equipotent to the set R of all real numbers.

Already in 1874, he had shown that R is not equipotent to N and had also proved

that, in our terminology, |S| < |P(S)| for each set S, where |S| is the cardinality
of S and P(S) is the powerset of S.

However, Cantor could not decide whether or not there is a set J’ such that

IN| < |Z| < |R|. In the standard modern formulation (whose notation derives
from that of Cantor), we have: |N| = No; the next cardinal larger than No is Xj;

and |R| = 2°°. We know that X; < 2°°, but we cannot determine whether or

not Xj = 2°. The continuum hypothesis is the statement:

Nj =2°

(There is also a generalized continuum hypothesis, namely Xoi1 = 2°* for each

a. This statement is explained in numerous books.) It was a basic dogma of
Cantor that CH is true.

Cantor was also troubled by whether or not every set could be well-ordered,

and thereby associated with one of his aleph numbers as its cardinal; he did
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not know how to deal with the ‘set of all sets’. Russell’s paradox exhibited the

intrinsic untenability of this latter concept. A magisterial attempt to preserve

the essence of Frege’s approach, avoiding the danger of paradoxes, was the Prin-

cipia Mathematica of Russell and Whitehead (1910-13). This work develops an

elaborate theory of ‘types’; antinomies are avoided by enforcing a ‘vicious-circle

principle’ that no set may be defined by reference to a totality that contains the

set to be defined. [A modern view somewhatrelated to this programme,is given

by Tait in his chapter, pp. 273-290.

However, to most mathematicians the Principia must have seemeda desolate

undertaking. Hilbert did not follow this approach; he certainly did not wish to

be driven out of the ‘paradise’ that was Cantorian set theory. His aim was to

make the foundations of set theory secure, and he led the new advance into

axlomatics.

Hilbert had already had a successful approach to the axiomatic foundation

of geometry in his Grundlagen der Geometrie of 1899. ‘The next part of his

programme was to set out the primitive concepts of arithmetic and to deter-

mine relations among these concepts by introducing appropriate axioms. ‘The

key feature of the approach was to establish that the resulting system was con-

sistent and complete: that no contradiction could result from any combination

of axioms, and that the system of axioms was sufficient to proveall theorems

concerning the real numbers; in particular CH would be confirmed.

Hilbert’s axiomatization of the real number system was followed by Zermelo’s

attempt to do the same for set theory itself. This attempt was the great focus

of the debate on what is true in mathematics in the first part of this century.

We have for example, the great mathematician Poincaré arguing that most of

the ideas of Cantorian set theory should be banished from mathematics; that

knowledge of mathematical entities originated in intuition and that they were

thus synthetic a priori judgements in the Kantian sense; that Russell and logicism

should be opposed because then mathematics would be nothing more than a

system of tautologies. Versions of these ideas can be found in this volume.

Nevertheless, the wave of axiomatization surged forward, and in due course

a fairly canonical collection of axioms of set theory emerged. This is the ZF

= Zermelo—Frenkel system, eventually enlarged by the addition of the Axiom

of Choice AC to become the system ZFC. (There are other systems of axioms,

such as GB = Godel-Bernaysset theory.) The inclusion of AC in this list was
very controversial in its day, but the dust has probably settled on this dispute

now; almost all working mathematicians do freely use, implicitly or explicitly,

this axiom in their work.*® [A list of the axioms of ZFC, together with some
discussion, is given in §2 of Woodin’s chapter in this volume (pp. 329-351); of

course there is a multitude of texts containing this list.
[A view that is a descendant of that of Hilbert is espoused by Dalesin his

chapter of this volume, pp. 181—200.|

The first question to be asked in connection with this approach to the foun-

dations of mathematics is whether or not ZF or ZFC are consistent, that is,

whether or not they have a model; the second is whether or not they are com-
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plete. These are most important questions. It was widely hoped and expected

that the answer to both questions would be ‘yes’.

However, there is a less precise question about ZFC that is very relevant to

the nature of truth. If the axioms of the theory ZFC are simply an attempt to

capture basic intuitions about sets, a judgement on the success of the enterprise

must be subjective. But is this really the case? In other words, are there ‘true’

statements about sets that the axioms try to capture, or do the axioms define

what is ‘true’ about sets?

Consider the question of whether ZFC is complete. If this were so, mathemat-

ics as we know it would reduce to a ‘finite search’. However, happily, this is not

the case. The bombshell that shook the axiomatic approach to its foundations

was the announcement of Godel in 1931 of his incompleteness theorems.°° The

first incompleteness theorem states that, if Tis a consistent theory containing

arithmetic (a subset of ZF) and such that the set of axioms of T is ‘recursive’,

then there is a sentence which is independent of T. Thus a consistent theory

cannot be complete!

The sentences manufactured by the proof of the first incompleteness theorem

to be independent of ZFC are neither exciting nor natural. One might hope that

all ‘natural’ sentences are not independent; in this case, the failure of Hilbert’s

programme would not seem to be very important. However, let us consider the

hypothesis CH; most people regard CH as a ‘natural’ statement about the real

line R, and some regard it as ‘exciting’. But we can now prove that CH is

independent of ZFC.

The method of proof that has been most successful in this area is algebraic.

Let y be asentence; we seek to show that y is relatively consistent with ZFC.

Our assumption is that ZFC is consistent, and so has a model, and we seek to

build a model of ZFC + y. Godel followed this method in 1938, when he proved

that Con ZFC implies Con (ZFC + CH); under the assumption that ZFC has a

model St, there is a submodel Nt of MN such that WE ZFC + CH.
In essence, Godel discovered an effective method of building submodels of

a given model. The actual submodel that he used is called the constructible

universe. It was not until 25 years later that a method of building extensions

of a given model was found; the technique of forcing, which was discovered

by Cohen in 1963, allows one to extend models by adding new elements in a

controlled manner; the sentences true in the extended model are exactly those

which are forced to be true.°!

The method of forcing, as developed by Cohen, proves that Con ZFC implies

Con (ZFC + —CH); under the assumption that ZFC has a model M, there is an
extension St of IN such that NW - ZFC + =CH. Thus CHis independent of ZFC.
Similarly, it is shown that AC is independent of ZF.

Godel’s original approach to his first incompleteness theorem was not alge-

braic, but number-theoretic. Formulae are coded and acquire a certain Gédel

number. Thus the question of the independence of certain sentences from a

theory can be reduced to the question of whether or not the Gédel numbersof



18 H. G. Dales and G. Oliveri

certain formulae are in the range of a certain polynomial in k variables on theset

N*. Highly relevant here is Matijacevié’s solution to Hilbert’s tenth problem: it

is not possible to find an algorithm for testing an arbitrary polynomial equation

p(X1,...,Xn) = 0, where p has coefficients in Z, for the possession of a solution

in integers. (One can take n to be 9, and p could be written down quite explicitly

if one had sufficient fortitude.) The point of these remarks is to stress the fact
that statements about the independence of CH can be transformed into state-

ments about the solutions of polynomials, and that all these latter statements

involve only the integers, the most basic building blocks of our science.

Nowadays a vast numberof natural statements are known to be independent

of ZFC; indeed it is rather a surprise to find a statement that is not so indepen-

dent. An extensively played gameis to take a statement, to decide whetherit or

its negation can be proved in the theory ZFC, and then,failing that, to decide

whether the statement or its negation (or both) are relatively consistent with
ZEC.

Thus we come to a basic challenge to philosophies of truth in mathematics:

what does it mean to say that CH, and other independent statements,are ‘true’,

given the theorems described above? This question is explored in several chap-

ters in this volume. For example, Field (pp. 291-310) explains that “The usual

platonist view is that ... there is still a serious question as to whether [CH]is
true, and we can still find indirect evidence for its truth. The plenitudinous

platonist view is that there is no such question ...’. Field seeks to show that at

least the concept of ‘finite’ can be given a determinate truth value, and hence

that ‘... every number-theoretic sentence gets the same truth-value in everyal-

lowable model ...’. Again, Martin (pp. 215-231) discusses what could count as
evidence for a mathematical truth. The two interesting examples he discusses

go some way to justifying various ‘determinacy axioms’ that go beyond ZFC.

(These determinacy axioms have been shown, by some very deep, sophisticated,

and technical recent work of Martin, Steel, and Woodin, to be essentially equiv-

alent to various ‘large cardinal axioms’; these results, which were very surprising

and not contemplated until rather recently, again show that theorems proved

within set theory can throw light on the philosophical debate about the nature

of mathematical truth.) A starting point for the chapter of Maddy (pp. 161-

180) is also the fundamental methodological problem raised by the Continuum

Hypothesis: in the words of Maddy, ‘should the work of Godel and Cohen be

regarded as settling the continuum hypothesis, or does a mathematical question

remain, amenable to solution by mathematical methods?’

Maddy’s chapter shows how methodological questions within mathematics

lead quickly to philosophical debates; she describes some of the philosophical

responses that have been made, and concentrates upon ‘naturalism’.

Let us briefly report on how these ‘undecidable’ statements are being viewed

by working mathematicians. First we should say that, whilst a minority of prac-

tising mathematicians are seriously and thoughtfully interested in such matters,

and a few become involved in polemical arguments, a substantial majority is es-

sentially indifferent to such philosophical discussions, and has not so far felt that



Truth and the foundations of mathematics. An introduction 19

their daily mathematics is affected by such matters; this view may well change

in the future, when the fact that different views on the size of the continuum

can lead to different results in branches of mathematics apparently far removed

from set theory becomes more widely known.

Second, let us examinebriefly the current state of opinion on the fundamental

undecidable statements that we have mentioned.

The Axiom of Choice (AC) was very controversial in the early years of this

century. However, as we have explained, it is now almost universally accepted.

This is surely because it has as a consequence manyresults that mathematicians

wish to be true (a list of some of these consequencesis given in the chapter of

Dales, pp. 181-200); these consequences are not provable in the system of ZF.°?

It seems very unlikely that this view of AC will changesignificantly in the foresee-

able future. Earlier in the century, the fact that the proof of a theorem depended

on AC was often noted, but this practice has now almost disappeared. It isstill

the case that the fact that a result depends on the continuum hypothesis (CH)is
usually explicitly noted. Since CHtells us the size of the continuum,it is obvious

that a decision on the value of 2%° will have a profound impact on set theory,

infinite combinatorics, topology, and measure and category theories.°? However,
it was a surprise to working mathematicians that the answer to a problem in

abstract analysis on the continuity of homomorphisms from the Banach algebra

C(I) of all continuous functions on the closed unit interval I was found to be
independent of ZFC and to dependon thesize of 2*°. [This example is discussed
in the chapter of Dales, pp. 181-200.) There is now a substantial list of results—

in areas apparently far away from set theory—which are known to depend on

the size of the continuum. So what view will mathematicians take on CH in the

future? This is hard to predict. At present, there may be a slight inclination

among set theorists to concentrate on exploring the universe of ZFC + =CH,

whilst mathematicians who are not set theorists are inclined to use CH freely

when they need it to make progress. But there is certainly no consensus on

whether or not CH should be accepted. Our view is that a style is evolving in

which one states one’s assumption on the size of the continuum, but is neutral

about its preferred value.

Perhaps most interesting are the questions that are independent even of ZFC

+ GCH. These questions involve such famous ones as those about measurable

cardinals, the Souslin hypothesis, and the Whitehead problem, which are de-

scribed in the notes.°* The resolution of such questions often involves ‘large

cardinal axioms’. Here is an apparently totally elementary question. Let f and

g be continuousfunctions on the real line R. Is f(R\g(B)) Lebesgue measurable
for every Borel subset B of R? This cannot be decided in ZFC, but is resolved

positively by the assumption that there is a certain large cardinal, a measurable

cardinal. There is an ongoing debate about which large cardinal axioms should

be accepted; the basis on which such a discussion could be resolved is discussed

in several chapters.

Given that, for suitable formal systems T’, there exist undecidable statements

y such that there is no proof of either y~ or —w from T,, it is natural to consider



20 H. G. Dales and G. Oliveri

what statements can be decided, and whether there is a natural hierarchy of

such statements. One such class of statements consists of those computed by an

algorithm. A historically and philosophically important doctrine is the Church-—

Turing thesis: the collection of computable, or effectively calculable, functions

is exactly the collection of recursive functions. This thesis is now very generally

accepted. [A full explanation of what a recursive function is is given in the

chapter of Slaman, pp. 233-251. Note that the projective sets, which play a

significant réle here, appear in the chapters of both Slaman and Martin.|

Let us now return to ourfirst question: whether or not ZF is consistent. The

second incompleteness theorem of Godel states that, if T’ is a theory containing

arithmetic, then T (f ConT’. Thus Con ZFC can only be proved in ZFC if ZFC

is inconsistent. How then can we determine whether or not ZFC is consistent?

Perhaps the main reason for mathematicians’ confidence in the consistency of

ZFCis the fact that, despite enormous (implicit) testing of the axioms through-

out this century, no contradiction has been revealed, and so almost everyoneis

essentially convinced that no contradiction will appear; or, at least, if a contra-

diction does emerge, a modest fine-tuning of the axioms will produce a modified

system that does not obviously imply any inconsistency. Is this a reasonable

view? According to the view of (Bourbaki 1949):

There are now twenty-five centuries during which mathematicians

have had the practice of correcting their errors and thereby seeing

their science enriched, not impoverished; this gives them the right to

view the future with serenity.

[The question of the consistency of theories is the topic of the thought-

provoking and somewhat uncomfortable chapter of Woodin.|
It is now time to move on, in ourfinal section, to a brief discussion of math-

ematical knowledge.

7 The realism/anti-realism debate and the question about

mathematical knowledge

Although there may well be those for whom, with Heraclitus:°°

TOAELOS TAaVTWY Lev TaTHp ~oTL, TAaVTWY b& BaatrEU<s,

it is certainly the case that strife, in a philosophical context, has often fathered

unhelpful comments and positions. An example of a less than happy outcomeof

philosophical strife is the following polemical remark of A. Tarski:°®

...1n no interpretation of the term ‘metaphysical’ which is familiar

and more orless intelligible to me does semantics involve any meta-

physical elements peculiar to itself.

Those acquainted with the history of science are aware of the fact that many

terms belonging to the language of the natural sciences change in meaning over

time, often as a consequence of the change of theories. A very well-known exam-

ple of this phenomenonis that provided by the term ‘atom’, which wasoriginally
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intendedto refer to indivisible components of matter.°’ However, from the time
of Leucippus and Democritus the meaning of ‘atom’ has changed considerably,

so much so that present-day physics uses it to refer to components of matter

which are indeed divisible.

Wefind a similar situation obtaining in mathematics; terms such as ‘axiom’

and‘function’ have all been subject to change in meaning from the time they were

first introduced; and given that this is a destiny that befalls most of the terms

belonging to the languageofall the natural sciences, it will not come as a surprise

that the term ‘metaphysics’ has also undergoneseveral shifts in meaning during

the long and honouredservice it has paid to philosophy. It is this consideration

that, in our attempt to assess Tarski’s claim, prompts us to take as the meaning

of ‘metaphysics’ that currently adopted in analytical philosophy.

Problems which, within this school of thought, are classified as metaphysical

are, as Dummett says, those:°°

58

... about whether or not we should take a realist attitude to this or

that class of entity. In any one instance, realism is a definite doctrine.

Its denial, by contrast may take any one of numerous possible forms,

each of which is a variety of anti-realism concerning the given subject

matter: the colourless term ‘anti-realism’ is apt as a signal that it

denotes not a specific philosophical doctrine but the rejection of a

doctrine.

Having hinted at some of the problems which, within analytical philosophy,

are called ‘metaphysical’, let us attempt to bring out the close-knit relationship

between such problems and mathematical truth.

If, with the classical mathematician, we hold that to believe in the truth of

PV@ it is sufficient to show that it is impossible that both P and Q arefalse, we

commit ourselves to the belief in the existence of a reality that the statements P

and @ are about. To see this, let us assume that it has been shown that P and

@ cannot be both false and that we have proof neither of P nor of Q. Clearly,

in this situation, only if we believe in the existence of a reality that P and Q

are about would it make sense to hold that either P or Q is true (of such a
reality) and, therefore, assert P V Q. Hence, the realist’s inclinations which are

manifested by classical mathematicians in the philosophy of mathematics.

On the other hand, if we believe that the statement PV Q is true just in case

we can give a constructive proof either of P or of Q, then, if we have no proof

either of P or of Q (or of their negations), the statement P V Q lacks a truth

value. The fact that P V @ has no truth value dispenses with a commitment to

the belief in the existence of a reality that P V Q (and in particular P and Q)

is (are) about. These considerations justify us in saying that the constructivist
mathematician adopts an anti-realist position in the philosophy of mathematics.

So, just as the apparently arcane filioque dispute—one of the causes which led

to the separation of Eastern and Western Christendom—wasreally an outward

sign of deep differences on the nature of the Trinity and of God, so the use or

prohibition of the law of the excluded middle is a sign of deep differences in our
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perception of mathematical reality and the nature of truth in mathematics.

(Jones, in his chapter, pp. 203-214, adopts an original and interesting realist

position, arising from his own experience of creating stunning new mathematics,

that proof is a necessary, but not sufficient, condition for mathematical truth.]

What we have said so far in this section ought to show that there is a meta-

physical element peculiar to semantics and, in particular, to the semantic con-

ception of truth of mathematical statements, a metaphysical element represented

by the postulation of a reality, whatever this might turn out to be, that mathe-

matical statements are true of.

Another important philosophical problem related to the debate concerning

how best we ought to understand the claim that a mathematical statement is

true is that concerning mathematical knowledge. If the best characterization of

a true mathematical statement is that provided by CLASS, then we are indeed

right in believing that mathematics produces knowledge. This is knowledge of

the reality that mathematical statements are about.

On the other hand, if the best characterization of a true mathematical state-

ment is that offered by constructivism, the belief in the existence of mathe-

matical knowledge would not be warranted. The reason for this is that, for the

constructivist, statements and constructions, although non-arbitrarily generated,

but bound by a set of conventions, are nevertheless the outcome of a process of

onvention rather than one of discovery.

It is our hope, in concluding this introduction, that what we have said so far

might be sufficient to justify the philosophical and mathematical importance of

clarifying what it means to say that a mathematical statement is true; and that

the essays which follow may shed somelight on this problem.

Notes

1. There are many bookson thehistory and philosophy of Greek mathemat-

ics. See, for example, (Kline 1972), for a clear summary.

2. (Kant 1990, Introduction, §IV, p. 48):

In all judgements in which the relation of a subject to the predicate

is thought (I take into consideration affirmative judgements only, the

subsequent application to negative judgements being easily made),

this relation is possible in two different ways. Either the predicate

B belongs to the subject A, as something which is (covertly) con-

tained in this concept A; or B lies outside the concept A, although

it does indeed stand in connection with it. In the one case I entitle

the judgement analytic, in the other synthetic. Analytic judgements

(affirmative) are therefore those in which the connection of the predi-
cate with the subject is thought through identity; those in which this

connection is thought without identity should be entitled synthetic.

The former, as adding nothing through the predicate to the concept

of the subject, but merely breaking it up into those constituents con-

cepts that have all along been thought in it, although confusedly, can
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also be entitled explicative. The latter, on the other hand, add to

the concept of the subject a predicate which has not been in any wise

thought in it, and which no analysis could possibly extract from it;

and they may therefore be entitled ampliative.

3. The following passage shows an application of the a priori/a posteriort

distinction to the concept of knowledge. The generalization of this distinction

to judgements (statements) is trivial. (Kant 1990, Introduction,8I, p. 43):

... we shall understand by a priori knowledge, not knowledge inde-

pendent of this or that experience, but knowledge absolutely indepen-

dent of all experience. Opposed to it is empirical knowledge, which

is knowledge possible only a posteriori, that is, through experience.

4. In the Critique of Pure Reason, Kant gives the example of the arithmetical

statement ‘7 + 5 = 12’; his discussion, from (Kant 1990, pp. 52-3), is as follows:

First ofall, it has to be noted that mathematical propositions, strictly

so called, are always judgements a priori, not empirical; because they

carry with them necessity, which cannot be derived from experience.

If this be demurred to, I am willing to limit my statement to pure

mathematics, the very concept of which implies that it does not con-

tain empirical, but only pure a priort knowledge. We might, indeed,

at first suppose that the proposition 7 + 5 = 12 is a merely analytic

proposition, and follows by the principle of contradiction from the

concept of a sum of 7 and 5. But if we look moreclosely we find that

the concept of the sum of 7 and 5 contains nothing save the union of

the two numbers into one, and in this no thought is being taken as to

what that single number may be which combines both. The concept

of 12 is by no means already thought in merely thinking this union

of 7 and 5; and I may analyse my concept of such a possible sum as

long as I please, still I shall never find the 12 in it. We have to go

outside these concepts, and call in the aid of the intuition which cor-

responds to one of them,ourfive fingers, for instance, or, as Segner

does in his Arithmetic, five points, adding to the concept of 7, unit

by unit, the five given in intuition. For starting with the number 7,

and for the concept of 5 calling in the aid of the fingers of my hand

as intuition, I now add one by one to the number 7 the units which

I previously took together to form the number 5, and with the aid

of that figure [the hand] see the number 12 comeinto being. That 5
should be addedto 7, I have indeed already thought in the concept of

asum = 7+5, but not that this sum is equivalent to the number 12.

Arithmetical propositions are therefore always synthetic. This isstill

more evident if we take larger numbers. Forit is then obvious that,

however we might turn and twist our concepts, we could never, by

the mere analysis of them, and without the aid of intuition, discover

what [the numberis that] is the sum.
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5. The study of what is, for Kant, the relation between mathematics and what

we have called ‘pre-reflective system of representation’ leads to very involved,

technical discussions which would be inappropriate to even attempt to summarize

here. The interested reader can consult (Friedman 1992, Part One, Ch. 2, pp.

96-135).

6. (Kant 1990, Preface to Second Edition, p. 19):

The true method [discovered by the founder father of mathematics]
was not to inspect what he discerned either in the figure, or in the

bare conceptof it, and from this, as it were, to read off its properties;

but to bring out what was necessarily implied in the concepts that

he had himself formed a priori, and had put into the figure in the

construction by which he presented it to himself. If he is to know

anything with a priori certainty he must not ascribe to the figure

anything save what necessarily follows from what he has himself set

into it in accordance with his concept.

7. (Kant 1990, Transcendental Analytic, Analytic of Principles, Ch. III, pp.

259-60):

Take ... the concepts of mathematics, considering them first of all in

their pure intuitions. Space has three dimensions; between twopoints

there can be only one straight line, etc. Although all these principles,

and the representation of the object with which this science occupies

itself, are generated in the mind completely a priori, they would

mean nothing, were we not always able to present their meaning in

appearances, that is, in empirical objects. We therefore demand that

a bare concept be made sensible, that is, that an object corresponding

to it be presented in intuition. Otherwise the concept would, as we

say, be without sense, that is, without meaning. The mathematician

meets this demand by the construction of a figure, which, although

produced a priori, is an appearance present to the senses. In the

same science the concept of magnitude seeks its support and sensible

meaning in number,andthis in turn in the fingers, in the beadsof the

abacus, or in strokes and points which can be placed before theeyes.

The concept itself is always a priori in origin, and so likewise are the

synthetic principles or formulas derived from such concepts; but their

employment and their relation to their professed objects can in the

end be sought nowhere but in experience, of whose possibility they

contain the formal conditions.

8. (Kant 1990, Preface to Second Edition, p. 18):

The sphere of logic is quite precisely delimited; its sole concern is to

give an exhaustive exposition and a strict proof of the formal rules

of all thought, whether it be a priori or empirical, whatever beits

Origin or its object, and whatever hindrances, accidental or natural,

it may encounter in our minds.
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9. (Kant 1990, Transcendental Doctrine of Elements, ‘Transcendental Logic,

III, The Division of General Logic into Analytic and Dialectic, p. 98).

10. (Kant 1990, Preface to Second Edition, p. 18).

11. The following quotations, from (Frege 1977, pp. 1-2), provide evidence

for this thesis endorsed by Frege introducing, at the same time, the well-known

distinction between the laws of thought—a thoughtis, for Frege, the content of

a proposition, and it is the only thing concerning which the question of truth

can arise—and the laws of thinking (the psychological processof... ):

From the laws of truth there follow prescriptions about asserting,

thinking, judging, inferring. And we may well speak of laws of

thought in this way too. But there is at once a danger here of con-

fusing different things. People may very well interpret the expression

‘law of thought’ by analogy with ‘law of nature’ and then have in

mind general features of thinking as a mental occurrence ...In or-

der to avoid any misunderstanding and prevent the blurring of the

boundary between psychology and logic, I assign to logic the task of

discovering the laws of truth, not the laws of taking things to be true

or of thinking.

12. A very interesting discussion of Frege’s notion of analyticity and of its

relevance can be found in (Dummett 1995, Ch. 3, pp. 23-35).

13. (Frege 1884, §3, p. 4):

If ... [in finding the proof of a mathematical truth and in following

it right back to the primitive truths] we comeonly on generallogical

laws and on definitions, then the truth is an analytic one, bearing in

mind that we must take account also of all propositions upon which

the admissibility of any of the definitions depends. If, however, it is

impossible to give the proof without making use of truths which are

not of a general logical nature, but belong to the sphere of some spe-

cial science, then the proposition is a synthetic one. For a truth to be

a posteriori, it must be impossible to construct a proof of it without

including an appeal to facts, i.e., to truths which cannot be proved

and are not general, since they contain assertions about particular

objects. But if, on the contrary, its proof can be derived exclusively

from general laws, which themselves neither need nor admit of proof,

then the truth is a priori.

14. (Frege 1884, §3, p. 3).

15. For Frege, contrary to Kant, numbers are not objects given in the intu-

ition (sensibility). (Frege 1950, §89, p. 101):

I must also protest against the generality of Kant’s dictum: without

sensibility no object would be given to us. Nought and one are objects

which cannot be given to us in sensation. And even those who hold
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that the smaller numbers are intuitable, must at least concede that

they cannot be given in intuition any of the numbers greater than

100091000"| about which nevertheless we have plenty of information.

Perhaps Kant used the word ‘object’ in a rather different sense; but

in that case he omits altogether to allow for nought or one,or for our

001, — for these are not concepts either, and even of a concept Kant

requires that we should attach its object to it in intuition.

Those interested in finding out more about Frege’s conception of numbersas

objects might benefit from reading Wright (1983) and (Dummett 1995, Chapter

11, pp. 131-40, and Chapter 18, pp. 223-40).

16. (Marion 1995, p. 191).
17. An exampleof a definition satisfying Kronecker’s requirements is that of

prime number:

Definition An integer p > 1 is a prime if tts only divisors are 1 and p. An

integer greater than 1 which is not a prime 1s termed composite.

Wehave a simple procedure to decide whether an integer k is prime or com-

posite: we check to see whether k is divisible by any of the positive integers

d such that 1 < d < k. If we find at least one such d then k is composite;

otherwise k is prime. Notice that since there are finitely many values of d such

that 1 < d<k, and we can decidein a finite number of steps whether or not a

positive integer k is divisible by a positive integer d, our procedure of decision

will have to halt after a finite number of steps and produce an answer, and,

therefore, it deserves to be called an ‘algorithm’.

18. An example of a theorem satisfying Kronecker’s requirements is the

following:

Theorem Every statement form A is logically equivalent to one in disjunctive

normal form.

Proof Given a statement form A, compute its truth table. Isolate the rows

of the truth table where A takes the value ‘true’; say, A takes the value T only in

YOWS T1,.--,Tn- If 7; is arow such that 1 <7 <n, examine which truth value the

corresponding structure assigns to the variables occurring in A, and, if a variable

A has been assigned the truth value T, write down A; if it has been assigned

the truth value F, write down —~A. When you have completed this procedure

for all the variables occurring in A in relation to r;, form the conjunction T; of

the formulae you have written down. If A contains m different variables, then

Ti = Ager A,, where A, = A, if Ay is assigned the value T in 7;; A, = Ak,

if A, is assigned the value F in r;. Once you have completed this routine for

all the rows r1,...,1, form the disjunction A* = \/i_,T;. The statement form

A* will be logically equivalent to A. Since a statement form contains a finite

numberof variables and connectives the procedure must be completedin a finite

number of steps and, therefore, is an algorithm. O

19. A classical example of logical proof is that of the following theorem.
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Theorem Suppose that a and b are any positive integers. Then there exists

a positive integer n such that na > 6.

Proof Assume that the statement of the theorem is not true, so that for

some a and b, na < b for every positive integer n. Then the set

S = {b—na: nis a positive integer}

consists entirely of positive integers. By the well-ordering theorem, S' will possess

a least element, say b— ma. But b — (m+ 1)a also lies in S, since S containsall
integers of this form. Furthermore, we have

b—(m+1)a = (b-—ma) —a < b—™ma,

contrary to the choice of b — ma as the smallest integer in S. O

The above theorem and proof have been taken almost word for word from

(Burton 1980, Ch. 1, 81.1, pp. 2-3). Notice that the proof given does not provide

a finite procedure such that, given any two positive integers a and b, we can find

a positive integer n such that na > b. Of course, the trivial proof of the theorem

(‘Take n = 6’) does provide such an n.
A second logical proof establishes a result, the intermediate value theorem

for continuous functions, that is the basic foundation of an enormous amount of

analysis.

Theorem Let f be a continuous function on the closed interval{a, b|. Suppose

that f(a) <0 < f(b). Then there exists x in (a,b) such that f(x) = 0. O

The proof of the theorem is immediate from the fact that a non-empty set

of real numbers that is bounded above has a supremum. The standard proof

is a logical proof because it uses proof by contradiction and does not give an

algorithm which produces the number x. What is the status of the fact that

a set bounded above has a supremum? It could be an axiom, the axiom that

states that an ordered field is (Dedekind) complete. [See the chapter of Dales,

pp. 181-200.] It could be an attempt to describe the‘reality’ of the real line.

20. Let us take as an example von Neumann’s universe V. The class V is a

typed universe with the following defining properties: i) Vo = 9; ii) Va41 = P(Vo)
if a is not a limit ordinal; iii) Va = Ug. Vp if ao is a limit ordinal. Wecall set
any of the totalities occurring in V. A fundamental characteristic of V is that the

first occurrenceof a totality X in V is at a level which is strictly above the level

of the first occurrence of any of the elements of X. Keeping this in mind, we can

now prove that the totalities A= {r: zis a set}, R= {y: yis asetA-(y € y)}
and BF = {z: z is an ordinal} are not sets. In the case of A there is no type
Va in which A can occur because any level of V contains sets which occur

there for the first time. Secondly, since for any X occurring in V we have that

=(X € X), if X occurs in V then X € R and we can apply the samereasoning as

above to show that R cannot occur in V. Lastly, if we choose the von Neumann

definition of ordinal number and his representation of finite ordinals, that is,

Or Q,...,n’ ry nU{n},..., we can conclude that, since each level ofV contains
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the first occurrence of an ordinal, BF does not occur in V. The totalities A, R

and BF are too large to besets.

21 For a stimulating discussion of Hilbert’s programmesee (Detlefsen 1986).

22. Things are often not so simple as they might seem to be at first sight.

For quite some time there has been a lively discussion about what, according

to Hilbert, the finitary part of number theory might be. Most of the scholars

seem now to agree that this is embodied in what is known as Primitive Recursive

Arithmetic—a rigorous characterization of Primitive Recursive Arithmetic can

be foundin (Troelstra and van Dalen 1988, Chapter 3, §2, pp. 120-6). On these

issues see (Tait 1981) and (Detlefsen 1986, Chapter 1, §2, and Chapter 2, §2).

23. If we want to be very rigorous, we ought to say that, for Hilbert, the

numerals ‘355’ and ‘356’ are simply names for totalities whose elements are ‘1s’,

that is, in the same way that ‘2’ is the namefor the totality 11 and ‘3’ the name

for the totality 111, so ‘355’ and ‘356’ are the namesfor the appropriate totalities

(of 1s).

24. (Hilbert 1983, p. 195):

Let us remember that we are mathematicians and that as mathe-

maticians we have often been in precarious situations from which

we have been rescued by the ingenious method of ideal elements. I

showed you someillustrious examples of the use of this method at

the beginning of this chapter. Just as i = ./—1 was introduced to

preserve in the simplest form the laws of algebra (for example, the

laws about the existence and numberof roots of an equation); just

as ideal factors were introduced to preserve the simple laws of di-

visibility for algebraic whole numbers (for example, a commonideal

divisor for the numbers 2 and 1 + /—5 was introduced, though no

such divisor really exists); similarly, to preserve the simple formal

rules of ordinary Aristotelian logic, we must supplement the finitary

statements with ideal statements.

This particular stand on the value of ideal statements is what has motivated

some authors in classifying Hilbert as an instrumentalist. We disagree with this

view because Hilbert’s instrumentalism seems to be localized exclusively in the

area of ideal statements.

25. (Hilbert 1983, p. 199):

There is just one condition, albeit an absolutely necessary one, con-

nected with the method of ideal elements. That condition is a proof

of consistency, for the extension of a domain by the addition of ideal

elementsis legitimate only if the extension does not cause contradic-

tions to appearin the old, narrower domain,or, in other words, only

if the relations that obtain among the old structures when the ideal

structures are deleted are always valid in the old domain.

26. See (Detlefsen 1986, Chapters III-V).
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27. See (Kleene 1952, Part II, Chapter VIII, §42, Theorem 30, p. 210); and

(Mendelson 1987, Chapter III, §5, p. 166). Concerning the so-called ‘partial

realizations’ of Hilbert’s programme, see (Simpson 1988). More information

about Hilbert’s programme may be found in (Sieg 1988) and in (Feferman 1988).

28. (Hilbert 1983, pp. 191-2):

Material logical deduction is indespensable. It deceives us only when

we form arbitrary abstract definitions, especially those which involve

infinitely many objects. In such cases we haveillegitimately used

material logical deduction; i.e., we have not paid sufficient atten-

tion to the preconditions necessary for its valid use. In recognising

that there are such preconditions that must be taken into account,

we find ourselves in agreement with the philosophers, notably with

Kant. Kant taught — andit is an integral part of his doctrine — that

mathematics treats a subject matter which is given independently of

logic. Mathematics, therefore, can never be groundedsolely on logic.

Consequently, Frege’s and Dedekind’s attempts to so ground it were

doomedto failure. As a further precondition for using logical deduc-

tion and carrying out logical operations, something must be given

in conception, viz., certain extralogical concrete objects which are

intuited as directly experienced prior to all thinking. For logical de-

duction to be certain, we must be able to see every aspect of these

objects, and their properties, differences, sequences, and contiguities

must be given, together with the objects themselves, as something

which cannot be reduced to something else and which requires no

reducction. This is the basic philosophy which I find necessary, not

just for mathematics, but for all scientific thinking, understanding,

and communicating. The subject matter of mathematics is, in ac-

cordance with this theory, the concrete symbols themselves whose

structure is immediately clear and recognizable.

29. (Heyting 1971, §2.2.2):

Every mathematical assertion can be expressed in the form: ‘I have

effected the construction A in my mind’. The mathematical negation

of this assertion can be expressed as ‘I have effected in my mind a

construction B, which deduces a contradiction from the supposition

that the construction A were brought to an end’, which is again of

the same form.

30. (van Stigt 1990, Chapter IV, 84.5.2, p. 167):

The lack of simplicity and uniformity in the domain of mathematical

constructions is mainly due to the freedom of the Subject to cre-

ate ever more and more complex constructions, using Intuition and

previously constructed entities and tools in ‘a free unfolding’. The
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condition ‘previously constructed’ is not just a restriction,it is a sanc-

tion of their mathematical birth-right to be exploited to the full. For

example, (Brouwer 1913, p. 81) points out that in the construction

of the infinite ordinal w ‘of course, every previously constructed set

of every previously performed constructive operation may serve as

the unit.’ In this free-unfolding, however, the ‘previously acquired’

can only be a general principle for a genetic hierarchy of complex

constructions, and was used as such in e.g. Brouwer’s hierarchy of

species. A comprehensive hierarchical classification of all mathemat-

ical constructions must remain illusory.

Since the time of Brouwer, Intuitionism has developed into a broad church with

different people holding different opinions on certain things. The main differences

of opinion are on mathematics as a construction of the thought and on the

importance of language in mathematics. See (Dummett 1985).

31. (Brouwer 1913, p. 82):

In the domain of finite sets in which the formalist axioms have an in-

terpretation perfectly clear to the intuitionists, unreservedly agreed

to by them, the two tendencies differ solely in their method, not

in their results; this becomes quite different however in the domain

of infinite or transfinite sets, where, mainly by the application of

the axiom of inclusion, quoted above, the formalist introduces var-

ious concepts, entirely meaningless to the intuitionist, such as for

instance ‘the set whose elements are the points of space,’ ‘the set

whose elements are the continuous functions of a variable,’ ‘the set

whose elements are the discontinuous functions of a variable,’ and so

forth.

32. For more details, see (Dummett 1977, Chapter 3, §3.1, pp. 55-65).

33. (Dummett 1977, p. 11).

34. It is important to notice that classical logic and arithmetic are very

similar to intuitionistic logic and arithmetic, as has been proved by Gédel and

others; see (Dummett 1977, Ch. 2, §2.1, p. 36) and (Troelstra and van Dalen
1988, Ch. 2, §3, pp. 57-59). The radical differences between the two approaches

begin to emerge in analysis.

35. See (Tarski 1952) and (Tarski 1956).

36. The debate about whether considerations similar to those relative to for-

malized languagesare also applicable to ordinary language are beyond the scope

of the present discussion. We are here concerned only with truth in mathematics.

However, those interested in these other aspects of the problem can see (Kripke

1975) and (Kirkham 1995, Ch. 9).

37. (Tarski 1952, §3, p. 15).
38. Remember that, for Tarski, 1) can be considered only as a partial defi-

nition of truth in the sense that it explains on what the truth of the sentence:
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‘the cat is on the mat’, rests; and that, if we substitute in 1) the sentence vari-

able p for the sentence: ‘the cat is on the mat’—on the right-hand side of the

biconditional—and the term X for ‘the cat is on the mat’—ontheleft-hand side

of the biconditional—what we obtain:

1*) X is true if and only if p,

cannot bea definition of truth either, because 1*) is not a sentence, but a schema

known as 7’-schema.

39. A language L is semantically closed just in case: i) LD containes the names

of its expressions; ii) LD contains the predicate true, and such a predicate can be

applied to sentences of LD; iii) all the sentences which determine the use of true

are expressible in L.

40. The essential conditions which, if satisfied, would dispense with the liar

paradox are: that the definition of truth relating to sentences of L and all the

equivalences of the form:

2*) X is true if and onlyif p,
where p belongs to L, can only be formulated in the meta-language M(L) of L;

and that M(L) must be essentially richer than L. Thereasonsfor this are that:
i) the sentences about sentences of L which could generate the paradox would
not belong to L, but to M(L) and,ii) if M(L) is essentially richer than L, this
implies that there is no way of representing (translating) M(L) into L.

41. The system of abbreviations CLASS, INT, RUSS and BISHis taken from

Bridges’s chapter in this volume.

42. This definition is taken from (Mendelson 1987, Chapter 2, §2, p. 48).

43. Here % is the set of all denumerable sequences (as opposedto finite se-

quences) of elements of the domain D of the interpretation It. For the definition

of the notion of satisfaction, see (Mendelson 1987, Chapter 2, §2, p. 48).

44. See (Mendelson 1987, ibid. p. 49).

45. The CLASSinterpretation of the logical constants is the typical model-

theoretical interpretation, which answers questions of the type ‘When is it true

to assert —P?’, etc., by producing truth-tables, see (Mendelson 1987, Chapter1,

§1); and questions of the type ‘Whenis it true to assert VzF(x)?’, etc., through
the standard use of the Tarskian concept ofsatisfiability (ibid., Chapter 2, §2).

The BHK interpretation of the logical constants is given in terms of provability,

namely, it is aimed at answering questions of the type ‘Whatis a proof of =P?’,

etc. We shall hereby quote from (Troelstra and van Dalen 1988) what are called

Heyting’s axioms:

H1 A proof of AA B is given by presenting a proof of A and a proof of B.

H2 A proof of AV B is given by presenting either a proof of A or a proof

of B (plus the stipulation that we want to regard the proof presented as

evidence for A V B).

H3 A proof of A — B is a construction which permits us to transform any

proof of A into a proof of B.
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H4 Absurdity | (contradiction) has no proof; a proof of —A is a construction
which transforms any hypothetical proof of A into a proof of a contradic-

tion.

H5 A proof of VzA(z) is a construction which transforms a proof of d € D (D
the intended range of the variable x) into a proof of A(d).

H6 A proof of 4xA(z) is given by providing a d € D, and a proof of A(d).

Heyting’s axioms were originally produced by A. Heyting to axiomatize intu-

itionistic logic, but, in fact, play a much wider réle in constructivism, because

‘The constructivist mathematician interprets connectives and quantifiers accord-

ing to intuitionistic logic.’ (Bridges and Richman 1988, Chapter 1, §3, p. 10).

46. If PV =P were a law of constructive logic, asserting it would imply,

according to axiom H2 of the BHK interpretation, that we have either a proof

of P or a proof of —P, for any proposition P. But if P is, for instance, a

mathematical conjecture which has not yet been proved (or refuted), we would

not be able to assert P V =P. Note how different the CLASS interpretation of

P\V —7Pis from the BHK interpretation. Of course, P V —P is a law of CLASS

logic.

47. ‘There are numerous accounts of Godel’s completeness theorem. See, for

example (Barwise 1977, Chang and Keisler 1973, Enderton 1972, and Mendelson

1987).

48. For a study of the mathematics and philosophy of Cantor, see (Dauben

1979).

49. For an historical account of the controversy about the Axiom of Choice,

see (Moore 1982); for a mathematical discussion of the significance of this axiom,

see (Jech 1973).

90. For Godel’s results, see (Gddel 1931). For a discussion of the incomplete-
ness theorems, see (Smorynski 1977); the results are proved in many standard

texts, such as (Enderton 1972).

51. Cohen’s original paper was (Cohen 1963-64); see also (Cohen 1966).
There are now many methods in the standard texts of proving that CH is in-

dependent of ZFC, and other independence results; the methods are surveyed

in (Kunen 1980, VII). See, for example, (Jech 1978). A rather elementary ap-
proach, designed to appeal to non-logicians, using Boolean-valued models, is

given in (Dales and Woodin 1987).

o2. [here is a weaker version of AC, called DC, the Axiom of Dependent

Choice. This allows some results to be proved, but avoids some ‘undesirable’

consequences of the full AC. It is known that, under a certain large cardinal

axiom, there are models of ZF + DC in which ACis false; in these models, every

subset of R is Lebesgue measurable and every linear map from a Banach space

into another Banach space is continuous. These might be thought to be desirable

results. However, few mathematicians have chosen to workin this setting; they

prefer the full power of AC, at the cost of non-measurable subsets of R and

discontinuous linear operators.
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53. Here is asample application in set theory itself. We write MA for Martin’s

Aziom: this is an axiom introduced by Martin and Solovay in (1970) to settle
questions in ZFC + 3CH that could not otherwise be resolved. The cardinal

numbers 2%° and 2™: are clearly basic in any theory of the‘size’ of infinite sets,

and certainly 2%: > 2%°. However, whether or not 2": = 2¥° cannot be resolved

in ZFC: with CH, 2™: > 2°, but, with MA + —CH, 2°12 = 2%o,

54. We describe briefly these three famous questions. We must utilize

some standard mathematical terminology without explanation; we hope that

the reader will at least absorb something of the flavour of these questions.

(i) A {0,1}-valued measure on a non-empty set S is a countably additive
function defined on the family of all subsets of S and assuming only the values 0

and 1. A cardinal number « is measurable if there is such a measure ps on & with

u(«) = 1 and p({x}) = 0 for each x € k. The class of non-measurable cardinals
is very extensive; it contains No and is closed under all the standard operations

of cardinal arithmetic. It cannot be proved in ZFC that measurable cardinals

exist; the axiom that there is such a cardinal is a large cardinal axiom.

There is now a multitude of ‘large cardinal axioms’, and an industry that

describes the relationships between these axioms. Whatis striking is that the

axioms so far promulgated seem to fit into a beautiful pattern.

(ii) Consider the real line R with the usual order <. Then (R, <) is a totally
ordered set with neither a maximum nor a minimum element, and R is connected

and separable with respect to the order topology, which is the usual topology on

R. It is easy to see that these properties characterize (R, <), in the sense that any
totally ordered set (5, <) with these properties is order-isomorphic to (R,<). In
1920, Souslin raised the question whether ‘separable’ could be replaced by ‘every

collection of pairwise disjoint open intervals in (S,<) is countable’. The Souslin

hypothesis (SH) is that every totally ordered set satisfying this latter condition

is separable, and hence order-isomorphic to (R,<). Much later than 1920, it

was proved that this hypothesis is independent of ZFC + CH: SH follows from

MA +-CH,and, by a result of Jensen, SH is consistent with GCH, but —~SH

follows from a principle ©, called ‘diamond’, which is consistent with ZFC +

GCH.See Jech (1978) and Kunen (1980), for example.

(iii) We now give an example from algebra.
Let (G,+) be an abelian group. A subset S of G is linearly independentif

Ny = +++ =n, = 0 whenever n,$,+---+nzps, = 0 for ny,...,n, € Zand distinct

elements s1,...,S~% of S, and S spans G if each element of G can be written as

mys; + --: +nxS, for some n1,...,n~ € Zand s1,...,5, € S. The group is

free if it has a linearly independent subset that spans G. There is a clear sense

in which the free groups are the basic groups from which other groups can be

obtained. An abelian group G is a Whitehead group if, whenever 7: G —> H

is a surjective group homomorphism from G onto another group H such that

the kernel of 7 is isomorphic to Z, there is a group homomorphism p: H — G

such that m(p(t)) = ¢ (t € H). (The latter condition says that a splits.) It
is easy to see that a free group is a Whitehead group. It was a fundamental
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problem of Whitehead whether the converse holds: is every Whitehead group

free? This question too is undecidable in ZFC. In Gddel’s constructible universe,

every Whitehead groupis free, but MA + =CH implies that there is a Whitehead

group which is not free.

In fact CH does not resolve the question: there is a model of ZFC + CH

in which there is a Whitehead group which is not free. See Ekloff (1977) for a
discussion of this problem.

55. This is (Heraclitus, Fragment 53).

56. See (Tarski 1956, §19, p. 36).

57. The word ‘atom’ originates from the ancient Greek word @rojoc, which

derives from the verb réuvw =: I cut, I divide; and the prefix &4— which was

used to negate the concept expressed by the suffix.

58. See (Oliveri 19975).

59. (Dummett 1991, Introduction,p. 4).
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PART I

Knowability, constructivity, and truth



2
‘Truth and objectivity from a verificationist point

of view

Dag Prawitz

Truth in mathematics is a very appropriate theme for a conference on what

mathematics is about. Questions of truth often work as a catalyst in bringing out

contrasts between different positions concerning the nature of a given field. For

instance, the question of the applicability of truth is a main issue in discussions

on the position known as mathematical formalism, a position that occurs in

many versions. Hilbert’s variant of formalism is based on the idea that so-called

real sentences are true or false while all other sentences lack truth values. In his

chapter in this volume, Dales (1998) seems to advocate a moreradical formalism.

Challenging the realist conception of mathematics by saying that it takes truth as

a key notion but leaves unanswered how truth is established, he takes the merit

of formalism to be that it accounts for the nature of mathematics without relying

upon any notion of truth. The critics of such a strict formalism typically claim

that in the end even the formalist account will depend on somenotion of truth. I

think that such a criticism can berightly levelled also against Dales’s formalism.

He proposes that a mathematical theorem is to be understood as asserting that

a certain formula follows logically from certain axioms, but if follows logically

is understood as follows according to the rules of predicate calculus, then the

proposal reduces mathematics to a body of truths about a certain calculus, a

certain formal game if you want. ‘his makes mathematics a science that still

pursues truths, although truths of a special kind, and weareleft with explaining

the nature of such truths.

I am though in partial agreement with Dales’s thinking that realism is un-

satisfactory in not providing an informative explanation of its concept of truth.

In this chapter I shall consider an alternative, constructive approach to truth.

In other words, I shall discuss how truth is to be understood from the point of

view of intuitionism or verificationism. I use the term verificationism to indicate

that, following Michael Dummett, I am thinking of intuitionism as based on

considerations of meaning approached from a verificationist point of view rather

than on considerations of an ontological kind.

The kind of verificationism that I have been interested in is inspired by some
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of Gentzen’s work, which may not be known to everyone. ‘Therefore, I shall first

say something about the main idea of Gentzen (1934-35) that is relevant here.

1 Gentzen’s idea

One of Gentzen’s main ideas, which underlies his system of natural deduction,is

that the meaning of our logical concepts is determined by special kinds of infer-

ence rules that Gentzen called introduction rules. For instance, the introduction

rules for implication, the existential quantifier, and the universal quantifier may

be written respectively as follows

 

[A]
| | (a)
B A(t) A(a)

A-B drA(z) VrA(x) ’

where A within square brackets indicates that assumptions of the form A occur-

ring in the derivation of B are discharged at an inference of this kind so that the

conclusion A — B becomes independent of them, and where| (a) indicates that
the parameter a occurring in the derivation of A(a) is bound when VzA(z) is
inferred, which requires that a does not occur in an assumption that A depends

on. Accordingly, Gentzen’s idea is that we are to understand A — B assaying

that there is a derivation of B from the assumption A, 4xA(zx) as saying that
for some term ¢ thereis a derivation of A(t), and VxA(z) as saying that thereis
a free variable derivation of A(a), that is, a derivation of A(a) for an arbitrary
a about which no assumptions are made.

This may sound as a formalist position: the meaning of the logical constants

are given by inference rules that are just taken for granted, in other words, their

validity is not thought of as depending on anything. However, Gentzen’s point

was that only inference rules of a certain kind, that is, the introduction rules, were

given as valid in the sense that they just state what we mean by the sentences

that occur as conclusions of the inferences in question. Other inference rules

were to be justified on the basis of the meaning given to the logical constants by

the introduction rules. For instance, we can justify modus ponens, what Gentzen

calls the elimination rules for +, where a formula B is inferred from premisses

A and A — B givingrise to a derivation of the form

| |
A A-B

B

as follows: since, in view of the meaning of —, the premiss A — B guarantees

that there is a derivation
A

|
B

that is, a derivation of B from A, we mayin this derivation replace the assump-
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tion A by the derivation of A guaranteed by the other premiss, and we then

have a derivation of B, the conclusion of the inference in question, in which B

does not depend on the assumption A. Diagrammatically we may picture the

given situation by the figure to the left below, where the derivation of B from A
guaranteed by the premiss A — B is inserted above A — B;a derivation of this

kind can thus be transformed into a derivation of the form shown to the right

below:

 

[A] |
| A

| B |
A A-B B

B

Similarly, universal instantiation, the elimination rule for V, where a conclusion

A(t) is inferred from a premiss VrA(x), is justified as follows: given the free
variable derivation of A(a) guaranteed by the meaning of the premiss, we may

in this derivation replace all the occurrences of the parameter a, which cannot

occur in any assumption on which A(a) depends, by the term t, and we then

have a derivation of A(t), the conclusion of the inference in question. We have

here transformed a derivation of the form shownto theleft below into one of the

form shown to the right below:

| (a)
A(a) | (¢)

VrA(z) A(t).
A(t)

 

Gentzen remarked that an introduction rule ‘defines’ the meaning of the logical

constant exhibited in the conclusion and that an elimination rule is justified by

this definition. However, being aware of the fact that the inference rules are

not real definitions, he did not make much of this remark, that is, he did not

try to spell it out in a more coherent way. Nevertheless, the idea hinted at

in this somewhat inadequate way is clearly fundamental for his Hauptsatz, his

result about cut-free proofs. Above I have explained the idea in terms of certain

transformations of derivations. These transformations are identical to so-called

reductions used in proof theory to normalize proofs. It can be shown (Prawitz

1965, 1971) that by carrying out such reductions we obtain a normal proof in

which no formula simultaneously stands as the conclusion of an introduction

inference and as major premiss of an elimination inference, a result which is

equivalent to Gentzen’s Hauptsatz.

Gentzen’s idea, which was formulatedfor first-order predicate logic, has been

extended to other areas. For instance, Martin-Lof (1971) showed how to extend
it to first-order arithmetic, where
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are taken as introduction rules for the assertion that something is a natural

number, and the principle of induction

N(t) A(0) A(a’)
A(t)
 

is the corresponding elimination rule, which can be justified by the introduction

rules in the same general way as explained above, essentially amounting to the

kind of transformation used by Gentzen (1938) in his consistency prooffor arith-
metic. Martin-Lof’s type theory (1974) is a further extension by which several
mathematical concepts are analysed in a Gentzen-like way.

2 Basic ideas of verificationism

A way of formulating Gentzen’s idea more systematically in semantic termsis

to start from the idea that the meaning of a statement is determined by what

counts as a proof of the statement, an idea formulated already before Gentzen by

Heyting in his account of intuitionism. We can then say, for example, that the

introduction rule for the existential quantifier states that an existential statement

4zA(x) is to be understood as a statement such that a proof of A(t) for some
term ¢t is what counts as a proof of it—in this way it gives the meaning of

4xzA(x). We see here the similarity between Gentzen’s idea and the intuitionistic
explanations of the logical constants; compare also what Bridges (1998) calls the

‘key feature of constructive mathematics’ in his chapter of this volume. Wealso

see the importance of the fact that the sentences occurring as premisses of the

introduction rules are of lower complexity than that of the conclusion: because

of this feature, the statement of what counts as a proof of a sentence can be

taken as a recursive clause in an explanation of the meaning of the sentence.

One must add here an important distinction between canonical proofs and

indirect proofs. An introduction rule for a sentence in Gentzen’s system amounts

to a statement of what counts as a canonical proof of the sentence in question.

Of course, the sentence can be proved also in other ways by inferring it as the

conclusion of the application of an elimination rule; we then say that we have

an indirect proof. The justification of the elimination rule shows how such an

indirect proof can be transformed to canonical form; or, more precisely, that is

what the normalization theorem says—by successive applications of the reduc-

tions (that correspond to the justifications of the elimination rules) we obtain a

normal proof whichis in canonical form, that is, which ends with an introduction.

The idea of various canonical forms is of course well-known in many mathe-

matical contexts, but it has been objected to in this semantic context by some

philosophers, for instance, by W. V. Quine. To extend the verificationistic idea

to empirical areas outside mathematics, one must also explain the meaning of

sentences in such areas in terms of proofs, or as we may prefer to say when we

are outside of mathematics, in terms of verification; that is why we use the term
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‘verificationism’ for this idea about how meaning is given. Again it is essential

that we talk about canonical verifications and distinguish them from indirect

verifications. ‘The meaning of a statement is given by what counts as a canonical

verification of it. We cannot exhaustively describe our indirect means of prov-

ing or verifying a statement, and therefore we cannot explain the meaning of a

statement by saying what counts as a (direct or indirect) verification of it. If the

meaning of a statement dependedonall that counts as verification of it, then the

meaning would change each time we found a new wayofverifying the statement,

which is contradicting a common experience. The distinction between canonical

and indirect verifications is thus essential for a viable verificationism. However,

Quine contests that we can legitimately make such a distinction; it would essen-

tially amount to a distinction between the analytic and the synthetic. I shall

not enter now into a discussion of this distinction, but I think it is a well-known

phenomenon both in mathematical and non-mathematical practice that certain

proofs or verifications are in need of no further justifications because they are

clearly valid in virtue of what we mean by the terms involved—wecannotjustify

them except by referring to what we mean—while other proofs or verifications

are such that when they are challenged we are willing to give further justifications

(see Prawitz 1995).

3 Correctness of an assertion

That the meaning of a statement is determined by what counts as its canonical

proof or verification is thus the essence of theverificationism that I have in mind.

An indirect proof or verification can then be defined as something that shows

that a direct verification can be given, could have been given,or will be possible

to give; the tense to be chosen here depends on the tense of the sentence. In

mathematics, where we do not need to take time into account, we can simply say

that an indirect proof shows how a direct proof can be obtained, that is, it gives

us a method that in principle allows us to find a canonical proof of the sentence

in question.

Almost everyoneagrees that in mathematics the conditions for the correctness

of an assertion is that you know a (direct or indirect) proof of the sentence in
question. It may of course happen that the sentenceis true although your proof

is wrong, or that you are just lucky in asserting a true sentencein spite of lacking

all good reasons for thinking it to be true. We then normally say that although

the sentence is true, its assertion was incorrect. Also a realist agrees to all that,

so what has just been said is not something particular to verificationism. A

realist does not give the same analysis of what a proofis as the verificationist,

but regardless of how one analyses the notion of proof, one wants to say that to

know a proof of a sentence is the (sufficient and necessary) condition for being
right in asserting the sentence. It is true that (Jones 1998) claims in his chapter
of this volume that knowledge of a proof is only a necessary condition for the

correctness of an assertion. What he has in mind is, however, what we may

call an alleged proof, while I have in mind proofs as just defined. If an alleged
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proof is found to be erroneous, then of course we have to withdraw an assertion

based on that alleged proof—what I have called the condition for asserting the

sentence was then not satisfied. The possibility of mistakes can never be ruled

out. One may therefore say with Jones that to think that one has a proof is

only a necessary condition for being right in asserting the sentence. But while

we can never be absolutely sure that what we think is a proof is really a proof,

it often happens, it seems, that we are in the possessions of real proofs and that

accordingly we are right in asserting the corresponding sentence. I think that

there need to be no disagreement on this point.

4 Truth

Even those who agree about the part of verificationism stated so far often disagree

when it comes to the analysis of truth. One standpoint, which has sometimes

been taken by Michael Dummett, is that a verificationist or intuitionist does not

need a notion of the truth of a sentence different from that of the correctness of

asserting a sentence. An assertion is on this view simply to be understood as a

claim to the effect that a proof of the asserted sentence is known, thus a claim of

knowing either a canonical proof or an indirect proof, which allows one to find

a canonical one.

A realist certainly objects to that way of understanding a sentence. Although

he may agree that one who asserts a sentence is obliged to know a proofofit,

he maintains that this is not to be taken as the content of the sentence. He

may express this by saying that you must make a distinction between what

is guaranteed and what is said by an assertion. By asserting a sentence you

guarantee that there is a proofof it, but that is not what the assertion says; the

content of the sentence, what you say by asserting it, is simply that the sentence

is true, not that you have a proof ofit.

My standpoint is that the verificationist should say the sameastherealist

on this issue. It seems to be a misrepresentation of the assertion to think of

its content as being that a proof has been found. It is to put too much in the

content. Therefore, the verificationist also needs a notion of truth to be able to

say that the content of the assertion is that the asserted sentence is true. As

already indicated, Dummett is right in saying that the intuitionist is able to

account from his point of view for the conditions for assertions of mathematical

sentences in terms of just the notion of proof without invoking any notion of

truth. My objection that we also need to account for what is said by an assertion,

different from what is guaranteed by it, seems to havelittle weight if we confine

ourselves to the practice of stating theorems within pure mathematics.

In applied mathematics the situation is different. Dummett agrees that the

time element which is then added (as already hinted to in the above) has the
effect that an indirect verification may only show that a direct verification could

have been given; in other words, an indirect verification does not any more

amount to the possession of a method for finding a direct verification. But I

think that the problem is more general.
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When mathematics is applied we typically have a sequence of inferences that

involve both sentences belonging to pure mathematics and sentences of empirical

content. The natural thing to say is then that such a sequence of inferences

is correct if each inference preserves truth, where truth is a notion explained

uniformly for all the sentences. Let me take a concrete example.

Up to quite recently I have been the owner of 52 sheep. From the premiss

‘only 50 of my sheep are now in the meadow’ made at that time one may thus

correctly draw the conclusion ‘two of my sheep are missing’. I can assure you

that it is very tiresome to verify that there are 50 sheep in a field, because sheep

constantly move around, and therefore you very easily lose track of them and

have to start counting again. Given this, would it be correct to infer from the

premiss ‘only 50 of my sheep are now in the meadow’ the conclusion ‘there is

now a very tired observer’? Clearly not. This conclusion seems, however, to

follow if we take the premiss to mean the sameas ‘it has now been observed

that only 50 of my sheep are now in the meadow’. If this has been observed

there is indeed a very tired observer. This illustrates the strange consequences

of understanding the content of the assertion to be that the asserted sentence

has been verified; as already said, it is to put too much into the assertion. The

unwarranted conclusion about the tired observer does not follow if we understand

the premiss as only saying that the sentence in questionis verifiable, that is, that

it can be verified by a hypothetical suitably placed observer that only 50 of my

sheep are now in the meadow. From the premiss so understoodit still follows

that two of my sheep are missing, that is, this is verifiable (it can be verified

even by the same hypothetical observer).

My suggestion is that the content of the assertion should be analysed along

the lines just suggested, that is, as being that the asserted sentenceis verifiable.

I also suggest that this is how truth is to be understood from a verificationist

point of view, which then has the result that the content of an assertion is simply
that the asserted sentence is true.

Also in pure mathematics there are phenomena that seem difficult to account

for without such an objective notion of truth which does not refer to properties

belonging to the speaker. We do not only assert sentences in mathematics, we

also make conjectures and ask questions to ourselves. If we wonder whether

there are infinitely many twin primes, we do not wonder whether this has been

proved—we know already that it has not, that is why we wonder. We may of

course wonder whether it will be proved, but a verificationist must be allowed

to wonder not only that, but also whether it can be proved. Similarly, he may

conjecture that there are infinitely many twin primes, and normally heis then not

making the conjecture that it will be proved that there are infinitely many twin

primes, which is a conjecture about future history. From a verificationist point of

view the natural way to take the conjecture is to understandit as saying thatit

is provable that there are infinitely many primes. This may also be expressed by

saying that there exists a proof of the proposition that there are infinitely many

twin primes, where ‘exists’ is to be taken in a tenseless sense, not as implying

that a proof has already been constructed by us.
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I am thus arguing that even within a theory of meaning in terms of proofs

(or verifications) we must make room for the possibility of entertaining ideas of

provability or of abstract existence of proofs; it would be too narrow to construe

our speech to be only about what is proved or about actual existence of proofs.

Once we accept the notion of provability as legitimate, it is hardly controversial

within verificationism that the truth of a proposition is to be identified with

provability or existence of proofs. To avoid confusions it is here convenient to

distinguish between actual and potential existence as Martin-Lof (1998) does,

for example, in his chapter in this volume. We can then say that the correctness

of an assertion requires the actual existence of a proof, while the truth of the

asserted proposition requires only (andis identical with) the potential existence

of a proof of the proposition. (As seen from his chapter in this volume, Martin-

Lof is also analysing truth as the potential existence of a proof. However, he

distinguishes between proofs and demonstrations, and has removedall epistemic

content from the proofs. It is a demonstration that makes us know the existence

of a proof or proof object. I say this only to indicate that there is a verbal

agreement between us, but that our notions of proof are different; here I cannot

enter into a deeper discussion of how theyarerelated.)

But is it really permissible from a constructive point of view to speak of

provability or (potential) existence of proofs? Dummett (1987; 1994) answers
this question in the negative. He remarks that, if we identify truth with the

existence of a proof and think of mathematical proofs as existing independently

of our hitting upon them, then it is hard to see how we canresist the idea that a

proof of a statement either exists or fails to exist, and since the non-existence of

a proof must be identified with the falsity of the statement in question, we are

then back to the law of bivalence and full realism.

Although the idea of proofs existing independently of our hitting upon them

certainly contains a flavour of realism, I do not think that it amounts to a full

step to realism. I want to give two reasons for thinking so. Firstly, proofs as

here understood are something that in principle can be known by us, and hence

there is no talk about in principle unknowable proofs. Secondly, I do not see

why the disjunction ‘either there exists a proof of A or there does not exist a

proof of A’ must be taken in a classical way. Although wethink of the proofs as

having some kind of existence even before we find them, an intuitionist maystill

maintain that to assert the disjunction that either there is or there is not a proof

of A requires that we know how to find a verification either of the existence of

a proof of A or of the non-existence of a proof of A. For an arbitrary A we do

not know howto find such a verification, and we should then have no difficulty

in resisting the thought that the disjunction in question is true.

5 Objectivity

Mostofus, including myself, are convinced that mathematics is objective. Some-

thing does not becomecorrect in mathematics because we hold it to be correct.

It is conceivable that we all think that a theorem has been proved, but as a
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matter of fact the proof is erroneous and the asserted proposition is false. A

realist picture of some domain such as mathematics is commonly held to enforce

this kind of objectivity. According to the realist picture a sentence is understood

as saying something about an independently existing world, andit is true if the

world is as the sentence says it is. Whether a sentence is true is thus something

thoroughly objective, which has nothing to do with us but depends only on how

it is in the world. The problem that I want to take up is how objectivity comes

out when one takes a verificationist point of view. Can objectivity then bestill

maintained?

Martin-Lof (1987) answers this question positively emphasizing the objectiv-

ity of the notion of the validity of a proof, and contrasting his position to that of

a subjectivist who lacks such a notion and who can only say that a judgementis

evident for him—in case of conflicts where an opposite judgement is evident for

someoneelse, the subjectivist has nothing to appeal to that allows him to think

of it as a conflict that should be resolved.

Similarly, in discussions of Wittgenstein’s philosophy, Dummett (1978; 1987)

rejects the subjectivist view which he ascribes to Wittgenstein that there is

nothing more to the validity of a proof than our treating it as a proof. On

such a view the practice of deduction loses its point, Dummett says, because the

point of a deduction is not just to settle issues in one way or the other but to

prove propositions that are true in virtue of the meaning that we have already

conferred upon the terms involved. Accordingly, Dummett rejects not only the

platonistic picture that the mathematician discovers how it is in the world of

mathematical objects, but also the subjectivist picture that we freely create

that world. Between these two metaphysical pictures, Dummett interposes a

third intermediate picture

. of objects springing into being in response to our probing. We

do not make the objects but must accept them as we find them ...;

but they were not already there for our statements to be true or false

of before we carried out the investigation which brought them into

being (Dummett 1978, p. 185).

I agree with the view that a philosophy of mathematics that cannot account

for the objectivity of mathematics is amiss. But is it so clear that the objectivity

of mathematics can be maintained when onetakesa verificationist point of view?

Of course, we can say from that point of view that truths are objective because

a sentenceis true in virtue of the fact that there is a proof of it. But what is it

that makes proofs objective?

Asdefined here, something is a proof in mathematicsif it is either a canonical

proof or a method for finding a canonical proof. We may claim that once we

have laid down what counts as canonical proofs, it is a factual matter whether

an alleged proof amounts to such a canonical proof. If it is not a canonical proof,

then it is again a factual matter whether the alleged proof yields a methodfor

finding a canonical proof. Hence it should be clear that it is not our treating

it as a proof that makes it a proof. This seems to be a reasonable claim. It
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makes something a proof in virtue of the meaning of the expressions involved,

which is also reasonable. But it also seems to imply that the question of whether

something is a proof is fixed when the meanings are given, that is, when it is

given what counts as a canonical proof. From this it is natural to conclude that

already, before a proof of a sentence is found, it is determined that there is such

a proof. Provability, which I want to identify with truth, becomes in this way

something objective.

My point is that the same features which make proof and to be proved objec-

tive notions also make provability objective. If we discard the notion of provabil-

ity, maintaining that before a sentence is proved it is not determined whetherit

is provable, then it seems that we pull away the groundsfor the objectivity of

proofs. I am thus concluding that, if we are to reject subjectivity, then we should

maintain that the question of whether something is a proof of a given sentence

is objectively determined by features which also determine whether the sentence

is provable and which determine this already before it is proved. Having thus

accepted the notion of provability, we should obviously identify the truth of a

sentence not with it being proved but with it being provable.
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3
Constructive truth in practice

Douglas 5S. Bridges

1 What is constructive mathematics?

In this chapter, which has evolved over the last ten years to what I hope will

be its perfect Platonic form, I shall first discuss those features of constructive

mathematics that distinguish it from its traditional, or classical, counterpart,

and then illustrate the practice of that distinction in aspects of complex analysis

whose classical treatment ought to be familiar to a beginning graduate student

of pure mathematics.

My experience shows that a typical mathematician believes that constructive

mathematics is characterized by either a rejection of the law of excluded middle

from logic or else a rejection of the full axiom of choice from set theory. In fact,

although some authors (notably Richman (1996)) seem to endorse the former
characterization, the pioneers of constructivism—Brouwer, Markov, Bishop—all

arrived at their rejection of the law of excluded middle (and hence, implicitly,
at a rejection of the axiom of choice—seelater in this chapter) as a consequence

of their insistence that the phrase there exists be interpreted strictly as we can

construct. Thus the key feature of constructive mathematics is the identification

EXISTENCE = COMPUTABILITY

At this point one might ask what is wrong with the classical computability

theory based on recursive functions: does not that theory provide a suitably

constrained framework for the discussion of questions of constructivity, outside

which we can continue to handle ‘idealistic’ existence theorems with impunity?

Consider the following example of a function f from the set N of natural

numbers toitself:

Q if the Goldbach conjectureis false,

f(n) =
1 if the Goldbach conjecture is true.

(The Goldbach Conjecture states that every even integer greater than 2 is a

sum of two primes.) In classical mathematics this is regarded as a computable

function, since there exists (in the idealistic sense—it is absurd that there not

exist) an algorithm that, applied to any natural number n, outputs f(n). In

fact, there are two algorithms—one, Ap, that always outputs 0, and one, Aj,

that always outputs 1—one of which must, classically, compute f.

o3
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Now,I find it strange to describe a function f : N — N as computable when,

with our present state of mathematical knowledge, we cannot even computeits

value at the input 0. The following example is, however, even stranger. Define

g:N-N by

0 if the Continuum Hypothesis is false,

g(n) =
1 if the Continuum Hypothesis is true.

(The Continuum Hypothesis says that 2° = X,.) A platonist would certainly

have no trouble accepting this as a good definition of a function, and would have

to say that g, like f, is computable; but this time we have no possibility what-

soever of determining the value g(0) within ZFC (Zermelo—Frenkel set theory
plus the axiom of choice), the normal setting for classical mathematics.

Is it, then, sensible to call such functions as f and g ‘computable’? The

constructivist would say

No. It only makes sense to call f computable if we can decide which

of the two algorithms Ap and A, computes f; and it only makes sense

to call g computable if we can decide which of Ag and A, computes g.

In other words, we are only justified in calling f computable if we can

decide the Goldbach conjecture; and we are only justified in calling

g computable if we can decide the Continuum Hypothesis—which, of

course, we will never be able to do unless we step outside ZFC.

Unfortunately, classical logic is not refined enough to enable us to distinguish

between computability in the constructivist’s stronger sense—we can pinpoint

the algorithm that computes the function—andthe notion of computability that

includes our freakish, continuum hypothesis-based, function g. Fortunately, there

is a logic that makes it easier for us to avoid bringing such examples into our

mathematics: I refer, of course, to intuitionistic logic, abstracted by Heyting

from the practice of Brouwer’s intuitionistic mathematics.

For example, in that logic:

e PVQ holdsif and only if we have either a proof of P or a proof of Q;

e dz P(x) holds if and only if we have an algorithm for constructing x, and

one for verifying that P(x) holds;

e as we shall see later, even for a decidable property P(n) of natural numbers

TN,

Vn P(n) V -Vn P(n)

need not hold; and so

e the law of excluded middle, P V —P, does not hold.

There are grounds for arguing that intuitionistic logic is more natural than

classical logic in the study of computability.1 Certainly, as Richman (1983) has

shown, fundamental results in elementary recursion theory, such as the s-m-n

Theorem, Rice’s Theorem, and the Recursion Theorem, can be proved using
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intuitionistic logic. However, the restriction to that logic would lose us many

important results, the full form of the Speed-up Theorem being a case in point

(see (Bridges 1994a, (6.20) and (6.26))).

2 Varieties of constructive mathematics

Meaningful distinctions deserve to be maintained. (Bishop 1973)

There are three major varieties of constructive mathematics that are currently

the domain of serious research activity. In making this claim I do not wish

to belittle some of the other approaches to constructivity, such as the ultra-

intuitionistic, finitist programmeof Yessenin-Volpin (1970); but such approaches

are, at present, of marginal significance.

The first variety, and historically the oldest, is Brouwer’s intuitionistic math-

ematics (INT). For several decades after the publication of his thesis (Brouwer
1907), Brouwer developed mathematics based on his philosophy of intuztzonism,

a philosophy that led him to a numberof concepts and principles which,on first

reading, appear to contradict classical mathematics (CLASS). For example, a

theorem of INT states that

(*) Every function from [0,1] to the real line R is uniformly cont-

INUOUS.

The apparent absurdity of this statement is, however, illusory, as is suggested

by the following more careful re-statement ofit:

(**) Every intuttionistically defined function from the intuitionistic

interval [0,1] to the intuitionistic real line 1s, intuttionistically, unt-
formly continuous.

In fact, there is a strong case for saying that, except at certain levels of formalism,

INT and CLASSare so divergent that it is not possible to capture fully the

spirit and meaning of intuitionistic statements, such as (**), within a classical
framework.

For more details about INT, see (Dummett 1977), (van Dalen 1981), (Troel-
stra and van Dalen 1988), and (Bridges and Richman 1987).

The second variety is the recursive constructive mathematics (RUSS) of the
Russian school founded by Markov. In this variety, the fundamental objects are

natural numbers and recursive functions, and the logic is intuitionistic. More

complex objects are represented by Godel numbers; so, for example, a func-

tion between sets of recursive reals is represented by a function between the

corresponding sets of Godel numbers. This leads us to a theorem that prima

facie contradicts the Uniform Continuity Theorem (Dieudonné 1960, (3.16.5)) of
classical mathematics:

(4) There exists a pointwise continuous function f : [0,1] > R that
is not uniformly continuous.

Once again, the apparent contradiction disappears when weinterpret our state-

ment more carefully:
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(4h) There exists a recursive function, mapping the recursive in-
terval [0,1] into the recursive reai line, that is recursively pointwise

continuous but not recursively uniformly continuous.

Since the recursive reals form a classically countable set, (qh) is perhaps not
surprising; yet it is hard to prove within RUSS, in which the recursive real line

is not recursively countable (effectively enumerable).
My third variety is the constructive mathematics (BISH) first described in

the late Errett Bishop’s ground-breaking monograph (Bishop 1967); see also

(Bishop and Bridges 1985). Without committing himself either to the philo-

sophical/metaphysical principles espoused by Brouwer or to the constrictive

framework of recursive function theory, and treating algorithm, or finite rou-

tine, as a primitive, undefined notion, Bishop was able to confound Hilbert’s

prediction that constructive mathematics would be unable to produce deep re-

sults: single-handedly, he obtained constructive analogues of such cornerstones

of analysis as the Hahn—Banach theorem, the spectral theory of self-adjoint op-

erators, abstract measure theory (including Haar measure on locally compact

groups), and the elements of Banach algebra theory. I will try to give the flavour

of Bishop’s mathematics with examples from complex analysis in the second half

of this chapter.

There is a strong case for regarding BISH as the constructive core of math-

ematics, since every theorem of BISH is also a theorem of INT, RUSS, and

CLASS; at a certain level of formalism, BISH is consistent with each of those

three varieties of mathematics, which we can therefore regard as models of BISH.

This observation leads to some interesting independenceresults. For example,

each of the statements (*) and (4) mentioned above is independent of BISH.For
if (*) were provable in BISH, then it would be a theorem of RUSS, which would
contradict (4); whereas if (4) were provable in BISH, then it would be a theorem
of INT, which would contradict (*). Similarly, each of the statements

Every function from [0,1] to R is Lebesgue integrable

(a theorem of INT) and

There exists a bounded, pointwise continuous function from [0,1] to

R that is not Lebesgue measurable

(a theorem of RUSS) is independent of BISH. To provethefirst of these state-
ments in BISH, we would need to add some principles like those invoked by

Brouwer; to prove the second, we would need to add to BISH somethinglike

Church’s thesis (Bridges and Demuth 1991).
There is another view of constructive mathematics that is worth mentioning

here. Fred Richman has come to regard constructive mathematics as mathemat-

ics that deals with the normal objects of CLASS, but rejects the law of excluded

middle; see (Richman 1996). I have some sympathy with this view, but would

hold that the rejection of the law of excluded middle derives from the require-

ment that all methods employedin constructive mathematics be algorithmic; in

other words, algorithmic method drives our choice of logic and techniques.



Constructive truth in practice ov

3 Omniscience principles

From now on, I shall only consider constructively defined objects. So when I

speak of a ‘binary sequence’, I shall assume without comment that this sequence
is presented constructively; in other words, there is a finite routine which gener-
ates the terms of the sequence one by one.

One feature of constructive mathematics, originating with Brouwer, that of-

ten irritates the classical mathematician is the use of what Bishop called om-

niscience principles to demonstrate that certain classical results are essentially

non-constructive. Among these omniscience principles, which are really weak

forms of the law of excluded middle, are the following:

The limited principle of omniscience (LPO): If (a,) is a binary se-
quence, then either a, = 0 for all n or else there exists n with a,, = 1.

The lesser limited principle of omniscience (LLPO): If (a,) is a
binary sequence with at most one term equal to 1, then either ao, = 0

for all n or else aan41 = 0 for all n.

Both of these principles are false if interpreted recursively, even with classical

logic (see (Bridges 1994a, Chapter 4)). In other words, their non-constructive
nature stems not from the underlying logic but from their failure in the recursive

model.

The following omniscience principle is not a consequence of the law of ex-

cluded middle, and holds in the classical recursive model:

Markov’s principle (MP): If (an) is a binary sequence for which it
is contradictory that all terms be zero, then there exists n such that

An = 1.

This principle

e represents an unboundedsearch;

e is accepted in RUSS;

e is contradicted by Brouwer’s theory of the creating subject (Heyting 1971);

e is not used in BISH.

Although many classical theorems are equivalent, constructively, to Markov’s

principle, applications of that principle can often be avoided by careful use of

the completeness of an appropriately chosen metric space. Such applications of

completeness often also enable us to prove constructively propositions that are

trivial consequences of LPO or LLPO.I shall return to this shortly.

By a Brouwerian counterezample to a classical proposition P we mean a

constructive proof that P entails some omniscienceprinciple; if the omniscience

principle is MP, we often speak of a Markovian counterexample, rather than a

Brouwerian one.

Brouwerian counterexamples are not counterexamples in the usual sense, but

provide strong evidence that certain classical propositions will never be proved
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constructively. (Note, however, that when the omniscience principle involved in

a Brouwerian counterexample to a proposition P is one, such as LPO or LLPO,

that is false in the recursive model, then that Brouwerian counterexample can be

turned into a proof that the recursive interpretation of P is false.) As we shall see
when I talk about the Riemann Mapping Theorem, a Brouwerian counterexample

to P can also provide positive information, by suggesting additional constructive

hypotheses that will lead to a constructive counterpart to P.

Here are two Brouwerian counterexamples that pertain to the constructive

real numberline R.

(1) Vz € R (cx =0 or xz £0) implies LPO.

Proof: First note that « # 0 means that we can compute a rational

number between 0 and zx. Let (a,,) be a binary sequence, and let x be the

real number whose binary expansion is 0 - aja2a3---. This is certainly a

well defined constructive real number, as we can specify it to any degree

of accuracy simply by computing enough terms of the binary sequence. If

x = 0, then a, = 0 for each n. If x # 0, then we can compute a positive

integer k such that x > 2—*; by testing the terms aj,...,a,41, we can then

find one that equals 1. O

(2) Ve ER (x >0 or x <0) implies LLPO.

Proof: In this case, given a binary sequence (a,,) with at most one term

equal to 1, we need only consider the real number

a a2 a3 a4

2

If an = 1 and N is even, then

I *| Q
O

— o
O

t= —ay/2% <0;

so if x > 0, then a, = 0 for all even n. Similarly, if x < 0, then a,, = 0 for

all odd n. O

Now,after these two Brouwerian examples you may be thinking that it must

be impossible to do much with the constructive real line R. Fortunately, such

thoughts are wrong: there are constructive principles that enable us to get round
the inadmissibility of

Ve E R(x =0 or xs £0)

and

VzER(x>0 or x <0)

within BISH. Two commonly used constructive principles of this type are

Ifa> b, then, for eachx €R, eithera>z orx>b

and

If x > 0 is contradictory, then x < 0.



Constructive truth in practice 59

The first of these is proved by taking sufficiently close rational approximations

to a,b, and x. The second follows from the formal constructive definition of real

number in Bishop (1967, Chapter 2). (Note, incidentally, that the statement

V2 € R (A(z > 0) > & <0)

is equivalent to Markov’s Principle, and is therefore not used in BISH.)

There is one further matter that I would like to tidy up here: the status of

the axiom of choice within BISH. The following result was proved in (Goodman
and Myhill 1978), but was surely known to Bishop when he wrote his original

monograph (see Bishop (1967, page 58, Problem 2)):

The axiom of choice implies the law of excluded middle.

To show this, let P be any constructively meaningful statement, and define

the set A to consist of the two elements 0 and 1, together with the equality

relation

0O=1 if and only if P holds.

(We could have defined A in moreclassical terms as a set of equivalence classes
under the equivalence relation

O~ if and only if P holds,

but it is more in keeping with Bishop’s approach to proceed as we have done.)

Let B be the set {0,1} with the standard equality, and let

S = {(0,0), (1,1)} CAXB,
where the equality on S is derived in the usual way from those on A and B:

(x,y) = (2’,y’) ifand only if c=2' inA and y=y' inB.

Suppose that there exists a function f : A — B such that (2, f(x)) € S for all
zé€A. lf f(0) =1 or f(1) = 0, then 0 = 1, and hence P holds; if f(0) = 0 and
f(1) =1, then —=(0 = 1), and hence P is false. Thus we have derived P V —P.

I should point out here that most constructive mathematiciansfreely use the

weaker axioms of countable choice and dependent choice.

4 Completeness in constructive analysis

Another foundation stone of classical analysis that crumbles to dust in the con-

structive framework is the expression of the completeness of R in the least upper

bound principle: every non-empty subset of R that is bounded above has a least

upper bound. Indeed, we cannot even guarantee the construction of the least

upper bound of an increasing binary sequence. To see this, let (a,) be any in-

creasing binary sequence, and suppose that s = supa,, exists. Then either s > 0,

in which case there exists n with a, = 1, or else s < 1; in the latter case it is

impossible for any a, to equal 1, so a, = 0 for all n. It now easily follows that

the classical least upper bound principle implies LPO.
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There is, however, an extremely useful constructive version of the least upper

bound principle—namely,

LUB,: Let S be a subset of R that 1s non-empty and bounded above.

In order that S have a supremum, it is necessary and sufficient that

for all real numbers a, 8 with a < 6, either there exists s € S such

that s > a or else B 1s an upper bound of S.

(Non-empty here means that we can construct an element of S; in other words,

S is inhabited.) This can be proved using Bishop’s definition of real numbersas

special Cauchy sequencesof rationals, together with the ‘Cauchy sequence com-

pleteness’ of the constructive real line; see (Bridges 19946). It can also be used
as the axiom of completeness in an axiomatic development of the constructive

real line (Bridges 1998).
To illustrate the use of LUB,, we prove that

A totally bounded subset of R has a supremum.

Let S Cc R be totally bounded; so for each ¢€ > O there exists a finite

€-approximation to S—that is, a finite set F Cc S such that for each s € S

there exists x € F with |s — 2x| < ¢€. Let a, f be real numbers with a < §, and
set ¢€ = (G—a)/3. Let {x1,...,2,} be a finite e-approximation to S, and choose

N such that

ZN > sup{x1,...,In}—é.

(This supremum exists since it applies to a finite set.) Either a < zy or ry <

a-+eé. In the latter case, if s € S and |s — rz| < €, then

s<a,t+e<a2nt2<a+3e=6,

so 6 is an upper bound of S. Thus sup S' exists, by LUBg.

I have already commented that Brouwerian counterexamples have the pos-

itive role of suggesting hypotheses—in many cases, ones which hold trivially

in CLASS—which, when added to the normal ones of a classical, but essen-

tially non-constructive, theorem, enable the augmented theorem to be proved

constructively. For example, let a be a real number and define a uniformly

continuous function f : [0,1] — R such that

bd f(0) =-1, fQ) =I, f(1/3) = —a, f (2/3) =a;

e f is linear in each of the intervals [0, 3 , [3 2] , EE 1].

It is not hard to show that, if there exists x € [0,1] such that f(x) = 0, then
either a > 0 or a < O. It follows that

The classical intermediate value theorem implies LLPO.

Now,a little reflection on this function f should convince you that if we could

rule out the possibility that its graph ever flattens, then we could construct a zero

of f. We can accomplish this, using an approximate interval-halving argument

and therefore, implicitly, the completeness of R, if we add the hypothesis that
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f is locally non-zero: that is, for each x € (0,1) and each r > 0 there exists z’
in the interval (x —r, x +r) such that f(x’) #0. We then obtain the following
proposition, which is one of several constructive substitutes for the classical
intermediate value theorem:

If f is uniformly continuous and locally non-zero on the unit interval

[0,1], and f(0)f(1) <0, then there exists x with f(x) = 0.

Here is another substitute, in which we retain the weaker classical hypotheses

but also weaken the constructive conclusion:

If f is uniformly continuous on [0,1], f(0)f(1) <0, ande > 0, then
there exists x with |f(xr)| < «.

For more on the Intermediate Value Theorem, see (Bishop and Bridges 1985,

Chapter 2) and (Bridges and Richman 1987, Chapter 3).

This is an example of the bifurcation of a classical theorem, a phenomenon

in which the theorem has several constructively inequivalent constructive coun-

terparts, each of which is classically equivalent to the others. We shall meet

another example of this shortly, when we look at Picard’s Theorem.

I would now like to return to a matter alluded to earlier: namely, how we

can use completeness to avoid appealing to omniscience principles. Consider the

linear space

Ra = {ax: rE R},

where a is a given real number.It is trivial that

e if a = 0, then Ra = {0} andis 0-dimensional;

e ifa #0, then Ra = R andis 1-dimensional;

e if Ra is finite-dimensional, then either a = 0 or a 0, and Rais closed in

R.

In particular, it follows from the third of these statements and ourfirst Brouw-

erian counterexample that, if Ra is finite-dimensional for any a € R, then LPO

holds; so we have no hope of proving that Ra is finite-dimensional in general.

However, we can prove that

If Ra its closed in R, then tt ts finite-dimensional.

To this end, assuming that Ra is closed in R, we construct a decreasing binary

sequence (A,,) such that

1 = al <1/n?,

0 => lal >1/(n+1);
Xn
Xn

this construction is possible since either 1/n? > |a| or ja] > 1/(n +1)?. The
completeness of R ensures that the series }>°°., Ana converges by comparison

with )~°_, 1/n?. Since Rais a closed subset of R, the sum of the series )>~_, Ana
has the form €a for some € € R. Choose N > |€|, and consider Ay. If Aw = 0,
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then a # 0 and wearefinished; so we may assume that Ay = 1. Suppose there

exists m > N such that Am4i1 = 1— Am. Then Ay = Ag =::: = Am = 1, and

Ap = 0 for all k > m; so

a= 7 Ana = 57 Ana = ma,

n=1 n=1

and therefore € = m. (Note that, as Am41 = 0, Ja] > 1/(m +2)? and we can
divide by a.) This is absurd, as m > N > |€|. We concludethat if Ay = 1 for
our special choice of N, then A, = 1 for all m > N and hence for all m; it

follows that |a| < 1/m? for all m, and therefore that a = 0. Thus, by a careful
construction of a series whose convergence depends on the completeness of R,

and an equally careful estimation using its sum, we have been able to show that

if Ra is closed, then either a = 0 ora £ 0.
Now, this may look like a rather uninteresting example, since spaces of the

type Ra do not occur very often in advanced analysis. But our result about Ra

suggested, and is a special case of, the more general theorem,

A Banach space with a compact generating set is finite-dimensional

(Richman et al. 1982),

whose proof requires several applications of completeness similar to, and in one

case generalizing, the one we have just used. In turn, this theorem enables us to

prove that if the range of a compact linear mapping between normed spacesis

complete, then that rangeis finite-dimensional—a result whose standard classical

proof depends on a version of the Open Mapping Theorem that is not known to

be constructive (see Theorem 4.18 of (Rudin 1973), and (Bridges et al. 1989)).
Those of us working in constructive analysis have found many situations

where an application of completeness similar to the one used above has enabled

us to circumvent omniscience principles. The completeness usually has to be

added to the hypotheses of what would otherwise be a trivial classical theorem.

In our discussion of Ra, although the completeness of R is used to establish the

convergence of the series )>°°_, Ana, we really need Ra to be complete in order

to ensure that the series converges to a sum that belongs to Ra; the required

completeness is implicitly contained in the hypothesis that Ra is a closed subset

of R.

Among manyinteresting constructive theorems whose proofs use such appli-

cations of completeness are the following:

e If f 1s a non-negative Lebesgue integrable function that is positive through-

out a set of positive measure, then [ f > 0 (Bishop and Bridges 1985,

Chapter 6, (4.13)).

e A linear mapping T of a normed space X onto a Banach space is well-

behaved, in the sense that, if x € X is distinct from each element of the

kernel of T, then Tx # 0 (Bridges and Ishihara 1990).

e Let F be a fintte-dimensional subspace of a normed space X, and leta € X
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have at most one best approximation in F, in the following sense: if x, x’

are distinct elements of F’, then

max {Ja — zl) , ||]a—2'l|} > (a, F) = inf {lla — yl] sy € FY.
Then there exists a unique element b € F such that ||a — 6|| = p(a, F)
(Bridges 1981).

5 Complex analysis

I would now like to turn from the more general, and occasionally more negative,

features of constructive mathematics that we have focused on so far, to demon-

strate its positive features by means of examples drawn from complex analysis.

All our subsequent discussion will be set in the context of BISH.

First, let us look at the classical Jordan Curve Theorem:

If J is a Jordan curve in C, then C\J is the union of two disjoint

open connected sets.

(A Jordan curve is a one-one, uniformly continuous mapping of the unit circle

into C, with a uniformly continuous inverse.) For various reasons, the standard

classical proofs of this theorem fall down constructively. However, Berg e¢al.

(1975) have producedthe following constructive Jordan Curve Theorem:

For any two points a,b bounded away from a Jordan curve J, either

a and b can be joined by a polygonal path bounded away from J, or

else the winding numbers of J with respect to a and b differ by 1.

In other words, we have an algorithm which, when provided with

the data specifying a Jordan curve J,

a pair of complex numbersa,b, and

a proof that a and b are bounded away from J,

will

either construct a polygonal path p: [0,1] — C joining a and b, computethe
number

p=inf{|r—p(t)|:ce J, 0<t<1},

and show that p > 0,

or compute the winding numbers of J with respect to a and 6b, and show that

these are unequal.

In the first case, a and b both belong to the same component (inside or outside)
of C\J; in the second, they are in different components.

There remains, however, the following significant constructive question: start-

ing at any point on the curve, can wetell in which direction we should move to

get inside J? Could it be the case that, if J is sufficiently convoluted (without
crossing itself), we simply cannot tell how to get inside it at certain points?

Again, Berg et al. (1975) have given us the answer:
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If z € J, then there exist z and z,, bounded away from J but arbi-

trarily close to z, such that the winding numbers of J with respect to

Zo and z, are different.

Moreover, comparison of these winding numbers with that of a point far removed

from, and therefore clearly outside, J will enable us to tell which of zp and 2, is

inside, and which is outside, our curve.

For my next example,let f be a differentiable complex function on the punc-

tured disc

U={zeEC:0< |z— Z| <r}.

Picard’s Theorem (sometimes called the Great Picard Theorem) states that

If f has an essential singularity at zo, then the range of f is either

C or else C with one point omitted.

This result was published by Emile Picard in 1879. One hundred yearslater,

I and my co-workers at New Mexico State University carried out a construc-

tive analysis (Bridges et al. 1982) in which we showed, by means of a Brouwe-

rian counterexample, that the classical form of the theorem is essentially non-

constructive. We then proved the following constructive version of the theorem:

If f has an essential singularity at zo), and if ¢,¢’ are distinct complex

numbers, then there exists z in U such that etther f(z) = ¢ or else

flz) =".

A simple application of the law of excluded middle shows that this version is

classically equivalent to Picard’s original theorem.

Now, there is anotherclassically equivalent version that turns out also to be

provable within BISH:

If the range of f omits two complex values, then f has a pole of

determinate order at Zo.

However, our two constructive versions are definitely not equivalent within BISH,

as they embody totally different algorithms. In the first case, we have an algo-

rithm which, when applied to data consisting of

COthe Laurent expansion S77- An(z — 2)” of f about Zo,

a strictly increasing sequence of positive integers (n,)?2., such that a_n, 4 0

for each k, and

two distinct complex numbers ¢,¢’,

computes a point z of U and either shows that f(z) = ¢ or else shows that

f(z) = ¢’. So the first algorithm enables us to solve equations of the type

f(z) =¢.

On the other hand, the second constructive Picard Theorem produces an algo-

rithm which, when applied to data consisting of
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CO
-=o An(z — 20)” of f about zo,the Laurent expansion )>

two distinct complex numbers ¢, ¢’,

a proof that f(z) # ¢ for all z € U, and

a proof that f(z) 4 ¢’ for all z € U,

computes a certain integer v, shows that a, 4 0, and showsthat a, = 0 for all

n < v. So our second algorithm computes the least index of a non-zero term of

the Laurent expansion of f.

My last example from complex analysis is the famous Riemann Mapping

Theorem:

If U is a proper, open, simply connected subset of C, then there

exists an analytic equivalence of U with the open unit disc D: thatis,

a one-one analytic mapping f (a Riemann mapping) of D onto U

with analytic inverse (Rudin 1970, Theorem 14.8).

This time, in order to provide motivation for the hypotheses of the con-

structive Riemann Mapping Theorem,I shall give the details of a Brouwerian

counterexample to the classical theorem. Given a binary sequence (a,,), define

U =U?Sn, where

S, = D if a, = 0, and

S,, is the open disc with centre 0 and radius 2 ifa, = 1.

Then U is open and simply connected, and is clearly a proper subset of C.

Suppose that f is an analytic equivalence of U with D; we may assume that

f(0) = 0. Now,either |f’(0)| > 1 or |f’(0)| < 2. (Recall that this is a decision
that we can make constructively.) In the first case, choosing r € (0,1) such that

1/r < |f’(0)|, and then using standard estimates, we obtain

sup{|f(z)|: |Z] =r} > 1.
Hence there exists z such that |z| = r and |f(z)| > 1; choosing n such that
f(z) € Sp, we see that a, = 1.

In the case where|f’(0)| < 2, consider any positive integer k. If a, = 1, then
U is the open disc with centre 0 and radius 2. It then follows from the max-

imal derivative property of the Riemann mapping—which holds constructively

provided that the Riemann mapping exists—that |f’(0)| = 2. This contradiction
implies that a, = 0. Hence,in this case, a, = 0 forall n.

Putting all this together, we see that the classical form of the Riemann Map-

ping Theorem entails LPO, andis therefore essentially non-constructive.

In order to progress from this apparent stagnation point, we use the following

pathological features of our Brouwerian counterexample as a guide.

e We cannot pin down the boundary of the domain U.

e For each point z € D, we cannot tell the minimum distance we need to

travel from z in order to reach the outside of U; equivalently, we cannot

compute the radius of the largest ball centred on z and lying inside U.
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Perhaps if we were to add to the Riemann Mapping Theorem hypotheses that

ensure that neither of these pathologies can occur, we would be able to recover a

constructively valid form of the theorem. To this end, Cheng (1973) introduced
the following notion of approximate border for a proper open subset U of C. For

simplicity, we shall only deal with the case where U is bounded.

Let zp be a distinguished point of U, and € > 0. An €-border of U relative to

Zo is a finitely enumerable subset B of the complement of U,

U={zeC:WEeu(zF#u)},

such that if y is a path in C with left endpoint zp, and y keeps at least € away

from B, then ¥ lies in U. (A set is finitely enumerable if it is the range of a

mapping of a finite, possibly empty, subset of N. Roughly, a finitely enumerable

set looks like a finite set but we may be unable to tell whether or not any two

of its elements are distinct.)
For example, if the positive integer N is sufficiently large, then the points

ker
i (1+=) eXD (=) (k =1,2,...,2N)

form an ¢-borderof D relative to 0, since the union of the open discs with centres

ZX, and radius € contains the annulus

{z:1-5<lal <1}.

We say that U is mappable if

e it is simply connected, and

e there exists z € U such that for each ¢« > 0 there is an e-border of U

relative to Zo.

(It can be shown that any point of U will then serve as the distinguished point.)
Thus a mappable set is one whose border is approximated arbitrarily closely by

finitely enumerable subsets of the complement.

Turning to the second pathological feature of our Brouwerian counterexample,

we say that U has the mazimal extent property if there is a function p: U — Rt

such that for each z € U,

e the disc with centre z and radius p(z) lies in U, and

e any disc with centre z and radius greater than p(z) intersects ~U.

Weare now able to state the constructive Riemann Mapping Theorem:

The following are equivalent conditions on a simply connected, open,

proper subset U of C:

(i) U is mappable;

(ii) U has the maximal extent property;

(iii) U is analytically equivalent to D.
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The theorem does not require that U be bounded; indeed, using a metric on C

different from the usual one, we can cover the bounded and unbounded cases

at once. For the long anddifficult proof, see Chapter 5 of (Bishop and Bridges

1985).

6 The scope of constructive mathematics

I hope that, by carefully discussing the distinctive features of constructive math-

ematics and then illustrating them with various theorems from a relatively ele-

mentary part of analysis, I have convinced you that constructive mathematicsis

a, viable concern, capable of producingresults at levels far deeper than had been

envisaged, even by some of the greatest mathematicians in our century, before

the appearance of Bishop’s seminal treatise. To complete that conviction, let

me end by appendinga list of some of the areas of mathematics that have been

treated constructively over the last thirty years.

Real and complex analysis: Lebesgue measure; Picard’s theorem; the Riemann

Mapping Theorem.

Abstract measure and probability theory: the Daniell integral and measure

spaces; the Radon—Nikodym theorem; ergodic theory; stochastic processes.

Functional analysis: the Stone-Weierstrass theorem; Hahn—Banach theorems;

the Krein—Milman theorem; Banach algebras.

Ly spaces; duality in Ly and Loo.

Hilbert space: the functional calculus and spectral theory for selfadjoint opera-

tors.

Partial Differential equations: weak solutions of the Dirichlet Problem in R”.

Haar measure on locally compact groups: convolution operators; the character

group; the Fourier transform and duality.

Numerical mathematics: Chebyshev approximation; the Remes algorithm; ap-

proximate interpolation.

Mathematical economics: preferences and utility functions; the existence of

demand functions.

Algebra: the Hilbert basis theorem; Galois theory; valuation theory; Dedekind

domains.

From these create he can

Forms more real than living man,

Nurslings of immortality.

Shelley, PROMETHEUS UNBOUND.

Notes

1. When reading the proofs of this article I came across the following per-

tinent remark of Heyting: ‘The good habit of distinguishing between results on
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recursive functions obtained by intuitionistic logic and those which for their proof

need classical logic is abandoned in many recent papers and books .... I regret

this, because thereby the connection of the theory with the notion of effective

calculability is obscured.’ (Heyting 1962).
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4
On founding the theory of algorithms

Yiannis N. Moschovakis

Mytopic is the problem of “founding” the theory of algorithms, part of the more

general problem of “founding” computer science; whether it needs founding—

which,I will argue, it does; what should count as a “foundation” for it; and why

a specific “mathematical foundation” which I have proposed? gives a satisfactory

solution to the problem—better than the most commonly accepted “standard”

approach. It will be impossible to completely avoid making some comments

about the general problem of “founding a mathematical discipline”, but I will

strive (mostly) to stay away from overly broad generalities, and concentrate on

the aspects of the question which are special to algorithms.

The chapter splits naturally into two parts: a general introduction in §1-4

which lays out the problem and reviewsbriefly the various approachesto it in the

literature, and a morespecific (in some places technical) outline of the proposed

solution, beginning with §5. Before anything else, however, I will start in §1

with a theorem and a proof, a simple, elementary fact which is often included

in a good,first course in computerscience. It will be much easier to understand

what I am after by using this sample of “computer science talk” (and myslant

towards it) as a starting point.

1 The mergesort algorithm

Suppose that L is a set with a fixed (total) ordering < on it, and let L* be the
set of all strings (finite sequences) of members of DL. A string v = (uo,..., Um-—1)

is sorted (in non-decreasing order), if vy < v1 <... < Um-_1, and for each u € L*,

sort(u) is the sorted “rearrangement” ofu,

sort(u) =gr the unique, sorted string v such that for some permutation

m of {0,...,m—1}, v= (Un(0), Un(1)) +++) Un(m—1)):

Theefficient computation of sort(u) is of paramount importance in many com-

puting applications. Most spell-checkers, for example, view a given manuscript

as a finite sequence of words and start by “alphabetizing” it, i.e., by sorting

it with respect to the lexicographic ordering. The subsequent lookup of these

words in the dictionary can be done very quickly, so that this initial sorting is

the most critical (expensive) part of the spell-checking process.
 

During the preparation of this chapter, the author was partially supported by an NSF Grant.
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Among the manysorting algorithms which have been studiedin theliterature,

the mergesort is (perhaps) simplest to define and analyze, if not the easiest to

implement. It is based on the fact that the sorting function satisfies the equation

U if jul <1,
sort(u) = | merge(sort(hs (1), sort(ha(u)) otherwise, (1-1)

where |u| is the length of u; hi(u) and ho(u) are the first and second halves
of the sequence u (appropriately adjusted when |u| is odd); and the function
merge(v, w) is defined recursively by the equation

Ww ifu = 9,
v else, if w = Q,
vo) * merge(tail(v), w) else, if vo < wo,
(wo) * merge(v, tail(w)) otherwise.

merge(v, w) = (1.2)

Here u * uv is the concatenation operation,

(Uo, .++,Um—1) * (Up, -++)Un—1) = (Uo,---)Um=1)U0)+++)Un—1);

and tail(u) is the “beheading” operation on non-emptystrings,

tail((uo, U1,..-,Um—1)) = (U1,.--,;Um-1) (for m > 0).

We establish these facts and the main property of the mergesort algorithm in

four, simple propositions.

Lemma 1.1 Equation (1.2) determines a unique function on strings, and such
that, if v and w are sorted, then

merge(v, w) = sort(u * w), (1.3)

i.e., merge(v, w) is the “merge” of v and w in this case.

Proof This is by induction on the sum |v| + |w| of the lengths of the given
sequences. If either u = @ or v = Q, then (1.2) determines the value merge(v, w)
and also implies (1.3), since 0+ u = ux@ =u. If both v and w are non-empty,

then by the induction hypothesis

merge(v, tail(w)) = sort(v « tail(w)), merge(tail(v), w) = sort(tail(v) « w),

and then (1.2) yields immediately that merge(v, w) = sort(v * w), as required.
O

Lemma 1.2 For each v and w, merge(v,w) can be computed from (1.2) using

no more than |v| + |w| — 1 comparisons of members of L.

Proof This is again by induction on |v|+|w|. At the basis, when either v = 0
or w = Q, (1.2) gives the value of merge(v, w) using no comparisonsatall. If both
uv and w are non-empty, then we need to compare vp with wo to determine which

of the last two cases in (1.2) applies, and, then (by the induction hypothesis)

we need no more than |v| + |w| — 2 additional comparisons to complete the
computation. 0
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Lemma 1.3 The sorting function sort(u) satisfies equation (1.1).

Proof If |u| <1, then wu is sorted, and so sort(u) = u, in agreement with (1.1).
If |u| > 2, then the second case in (1.1) applies, and by Lemma1.1,

merge(sort(h;(u)), sort(he(u))) = sort(sort(hy(u)) * sort(he(u))) = sort(u),

as required. oO

Lemma 1.4 [If |u| = 2”, then sort(u) can be computed from (1.1) using no
more than n-2” comparisons of members of L.

Proof By induction on n, the result is immediate when n = 0, since (1.1)
yields sort(u) = u using no comparisons when u = (uo) has length 2° = 1.
If |u| = 2"*!, then each of the halves of u has length 2”, and the induction

hypothesis guarantees that we can compute sort(hi(u)) and sort(he(u)) by (1.1)
using no more than (n—1)-2”~! comparisonsfor each,i.e., (1—1)-2" comparisons
in all. By Lemma 1.2 now, the computation of merge(sort(hi(u)), sort(ho(u)))
can be done by (1.3) using no more than 2” — 1 < 2” additional comparisons,

for a grand total of n- 2”. oO

If we define the “binary logarithm” of a positive number by

log.(m) = the least n such that m < 2”,

then Lemma 1.4 (with a bit of arithmetic) yields easily the main result that we
have been after:

Theorem 1.5 The mergesort algorithm sorts a string of length n using no more

than n-logs(n) comparisons. O

The above theorem is an important result because the number of required

comparisons is a very reasonable measure of complexity for a sorting algorithm,

and it can be shown that nlog,(n) is asymptotically the least number of com-

parisons required to sort a string of length n.

Programming considerations ‘The mergesort is a recursive algorithm,

and so it is easiest to express in a relatively rich programming language which

understands recursion, like Pascal, C, or Lisp—in fact, all that is needed is to

re-write equations (1.1) and (1.2) in the rigid syntax of these languages;? it is

correspondingly difficult to express it directly in the assembly language of some

machine because in that case we must first implement recursion, which is not

a simple matter. In addition, whether produced by the compiler of a high-level

language or by hand, the implementation of the mergesort requires a good dealof

space and (as with all implementations of recursive algorithms), it may be slow.

Because of these reasons, the mergesort is not often used in practice, despite its

simplicity and optimality.
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2 Deconstruction

Before going on to learn that most of the preceding section was really meaningless

gibberish, the conscientious reader should re-read it and makesure that,in fact,

it makes perfect sense—except, perhaps, for the last paragraph which turned the

computerese up a bit.

Lemmas 1.1 and 1.3 make straightforward, mathematical assertions about

the merging and sorting functions, and their proofs are standard. Not so with

Lemmas 1.2 and 1.4: they proclaim that the values of these functions can be

computed from equations (1.2) and (1.1) using no more than some number of
comparisons. Evidently, these lemmasare not just about the merging and sorting

functions, but also about computations, numbers of comparisons, and (more

significantly) about the specific equations (1.2) and (1.1). We understand the
proof of Lemma 1.2, for example, by reading equation (1.2) as an (implicit)

definition of a computation procedure:

2.1 The merging algorithm

To compute merge(v,w), look first at v; if v = 0, give output w; otherwise, if

w = @, give output v; otherwise, if vp < wo, compute z = merge(tail(v), w)

and give output (uo) * z; and if none of the preceding cases applies, compute

z = merge(v, tail(w)) and give output (wo) * Z.

Andhereis the corresponding reading of (1.1) which we need for the proof

of 1.4:

2.2 The mergesort algorithm

To sort a string u, check first if |u| < 1, and if this ts true, give output u;

otherwise, sort separately the first and the second half of u, and then merge the

values by the procedure (2.1).

But these elaborations are not enough: We also madein the proofs of Lem-

mas 1.2 and 1.4 certain assumptions about the “making” and “counting” of

“comparisons” by the computation procedure we extracted from equations (1.2)

and (1.1). In the proof of Lemma 1.4, for example, we assumed that, if we need

C; comparisons to sort hy(u) and C2 comparisons to sort ho(w), then, altogether
we need C1 +C2 comparisons to (separately) sort both of these strings. These are
very natural assumptions,to be sure, as are the interpretations of equations (1.2)

and (1.1)—which is why the proofs in §1 appear to be solid. Suppose, however,

that in the middle of a mathematical seminar talk about some operator T(f) on
Hilbert space, the lecturer appeals to the equation

T(f +g) =T(f) +T(9);

then he or she would be immediately challenged to prove that T(f) is additive,

starting (presumably) with a precise definition of T(f), if one has not been
given. What is missing in §1 are precise (mathematical) definitions of algorithms,

uses of comparisons, etc., and rigorous proofs, from the definitions, of the basic

properties of algorithms on which the arguments were grounded.
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I have called algorithmsthese purposeful interpretations of equations (1.2)

and (1.1), but computation procedures or effective, deterministic instructions

could do as well (for now)—all these words are used in computersciencelitera-
ture, more-or-less interchangeably.

Implementations The second paragraph of §1 starts with the comment

that [amongsorting algorithms]

... the mergesort is (perhaps) simplest to define and analyze,if not

the easiest to implement,

and the last paragraph of the section elaborates on the issue. Lots of new

words and claims are thrown around in that paragraph. It is asserted that

“the mergesort is a recursive algorithm” which can be “expressed in Pascal or

Lisp”; that “it is not a simple matter to implement recursion [in an assembly

language]”; that “the implementation of the mergesort requires a lot of space”,

etc. The innocent reader should take it on faith that all of this makes perfect

common sense to an experienced programmer, and also that very little of it has

ever been defined properly. Now “not the easiest” and “a lot of space” will never

be made precise, to be sure, but this kind of talk suggests that programmers

understand and (generally) affirm the following:

(1) A given algorithm can be expressed (programmed, implemented)in differ-
ent programming languages, and so (in particular), an algorithm has many
implementations.

(2) Implementations have important properties, e.g., the time and space needed
for their execution.

Moral To found the theory of algorithms, we must define precisely its basic

notions, starting with algorithms, implementations, and the relation between a

given algorithm and its various implementations; andit is important that this be

done so that the arguments in $1 are endowed with precise meaning very nearly

in their present form, because these simple, intuitive ideas are so natural and

appealing as to cast doubt on the necessity for rigor.

3. How do wedefine basic notions?

The Moral declares that we should give precise definitions of algorithms and

implementations, but there is more than one way to go about this. Consider

the following three different approaches (one with two flavors), starting with the

“standard” one, which,in fact, I will adopt.

(I) Define them in set theory This is certainly the “orthodox” method of
making notions precise in modern mathematics: to “found” number theory, we

define the whole numbers and the operations on them in set theory; to “found”

analysis, we give rigorous, set-theoretic definitions of the real numbers, functions,

limits, derivatives, etc.; to “found ” probability theory, we declare that “a random

variable is a measurable function on a probability space,” right after we give

precise, set-theoretic definitions of all the words within the quotes.
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Despite its wide acceptability by working mathematicians, this kind of “set-

theoretic foundation” for a mathematical theory has been attacked by many

philosophers, most seriously Benacerraf (1965), and also by some mathemati-

cians; Saunders MacLane has entertained generations of audiences by asking

plaintively in countless lectures:

Does anybody, seriously think that 2 = {, {0}}?

Probably not, but the von Neumann ordinal {@, {@}} clearly “codes” all the
properties of two-element sets which depend only on their cardinality; somewhat

more fancifully, {0,{0}} models faithfully the number 2 (whatever that is) up
to equinumerosity—as, in fact, does any two-element set. For some less trivial

examples, any Peano system (M,0,S) models faithfully “the natural numbers”
(whatever they are), up to first-order isomorphism;? and any countable, dense

linear ordering without endpoints models faithfully “the order type” 7 of the

rational numbers (whatever that is), up to order-isomorphism.*°
The properrole of a “set-theoretic definition” of a mathematical notion is

not to tell us in ultimate, metaphysical terms exactly what the C-objects (those

which fall under C’) are, but to identify and delineate their fundamental, mathe-

matical properties. Typically, we do this by specifying a class of sets Mc and an

equivalence relation ~c on Mc, with the intention that each a € Mc faithfully

represents (codes) some C-object ac, and that two members a, 8 € Me codethe
same C-object exactly when a ~c 6G. A modelling of this type is successful if the

~c-invariant properties of the members of Mc capture exactly the fundamental

properties of the C-objects—which implies that every fundamental property of

a C-object can be “read off” any of its codes.®

For the case of algorithms, I will first introduce the class of recursors, which

model the “mathematical structure of algorithms” (much like measurable func-

tions on probability spaces model random variables), and the relation of recursor

wsomorphism between them, which models “algorithm identity”. Algorithms,

however, do not make sense absolutely, but only with respect to certain “data”

and certain “given” (possibly higher-order) operations on these data, relative

to which they are “effective”; for the full modelling, then, I will also introduce

the appropriate structures which model such data+givens contexts (up to struc-

ture isomorphism), and finally claim that the recursors which are explicitly and

immediately definable (in a specific, precise sense) on each structure I model

faithfully “the algorithms of 97”.

(IIT) Deny that they exist In the original, “naive” developmentofthe cal-
culus, there were real numbers, variables, limits, infinitesimals, differentials and

many other things. Some of these were eventually given rigorous, set-theoretic

definitions, perhaps not always completely faithful to their naive counterparts,

but close enough; for example, a real-valued function is not exactly the same

thing as a dependent variable and the modern notion of a differential is far

removed from the classical one, but we can still recognize the old objects in

their precise counterparts. There are, however, no infinitesimals in (standard)

modern analysis; classical statements about infinitesimals are viewed as informal
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(and vague) “ways of speaking” about real numbers, functions and limits, and

they must be replaced by precise statements which make no reference to them

and (roughly) mean the samething.
There are two, wildly different, approaches to the foundations of computersci-

ence which treat algorithms as “pre-mathematical” notions, to be denied rather

than defined.

(IIa) Algorithms as implementations By this “standard view”, espe-
cially popular among complexity theorists, there are no algorithms, only 7m-

plementations, variously called machines or models of computations;’ these are

modeled in set theory; and assertions about algorithmslike those in §1 are un-

derstood as informal “ways of speaking” about implementations. I will discuss

this approach in detail in §4.

(IIb) Algorithms as constructive proofs Another, more radical pro-
posal which also denies independent existence to algorithms is the claim that
algorithms are implicitly defined by constructive proofs. Consider, for example,

an assertion of the form

@ = (Vz € A)(sy € B)P(z, y). (3.1)

A constructive proof of ¢ should naturally yield an algorithm for computing a

function f : A — B, such that

(Va € A) P(x, f(x)),

and there exists a considerable body of work verifying this for formalized sys-

tems of constructive mathematics, typically using various notions of realizability

or (considerably deeper) applications of the Gentzen cut elimination procedure.

To pursue the reduction suggested here, however, one needs to argue the con-

verse: that statements about algorithms (in general) are really assertions about
constructive proofs, and that they can be re-formulated so that all references to

“algorithms” are eliminated.®
One problem with this view is that algorithms “support” many auxiliary

notions, like “number of comparisons” and “length of computation”, which are

not usually associated with proofs. Girard, who is its foremost expositor, has

introduced linear logic partly in an attempt to associate with proofs some of

these notions, especially an account of use of resources which is often important

in algorithm analysis. I suppose one could re-prove the results of §1 in some

dialect of linear logic, and show that no more than n-log,(n) “assumptions” of
comparisons are needed to prove that sort(u) is defined, if u has length n. This,

or something very muchlike it, would be the assertion about constructive proofs
which captures the meaning of Theorem 1.5. Now, some considerable effort

is required to do this proof-theoretic analysis, and, in the end (I believe) one

will again need to write down and argue from theall-important equations (1.2)

and (1.1). But the mere (classical) truth of these equations suffices to “yield
the algorithm” and its basic property, and so I do not see the foundational

significance of constructing the linear logic proof.
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Although I doubt seriously that algorithms will ever be eliminated in favor

of constructive proofs (or anything else, for that matter), I think that this view

is worth pursuing, because it leads to some very interesting problems. With spe-

cific, precise definitions of algorithms and constructive proofs at hand, one could

investigate whether, in fact, every algorithm can be extracted (in some concrete

way) from some associated, constructive proof. Results of this type would add

to our understanding of the important connection between computability and

constructiuity.

(III) Axiomatize their theory This is what we do for set theory: Can we
similarly take “algorithms”, “implementations”, and whatever else we need as

primitive notions and formulate a reasonable axiomatic theory which will make

sense out of computerscience talk such as that in $1?

I am trying to ask a methodological question here, one which could be an-

swered without making a commitmentto any specific philosophy of mathematics.

We can understand a proposed set of axioms for a theory T formally,? as being

“all there is to T”; realistically, as expressing some important truths about the

fundamental objects and notions of T, which exist independently of what we

choose to say about them; and, surely, in many more, subtler ways. It seems,

however, that the foundational value of a specific axiomatization (how much it
helps us to understand T’) is independent of our general view of the axiomatic

method. It has more to do with the choice of primitives and axioms, and what

the development of T from them reveals about T.!°
I will also exclude from this option the kind of “second-order axiomatizations”

which accept (uncritically, as part of logic) quantification over all subsets of

the domain. It is often claimed, for example, that the Peano axioms provide

a foundation of arithmetic in second-order logic, because of the “categoricity”

theorem (b) in Note 3. This is true, as far as it goes, but we cannot account

for all uses of whole numbers in mathematics by appealing to such an external

(metamathematical) interpretation of (b). In many important applications we
need to understand (b) internally (as part of our mathematics), for example, to

prove that “every two complete, ordered fields are isomorphic”.‘! This problem
is even more severe for complex notions like algorithms (or topological spaces,

random variables, etc.) whose basic properties are explicitly and irreducibly set-

theoretic; second order “axiomatizations” can yield (at most) a poor shadow of

the account of them that we need to understand their uses in mathematics.

What remains is the possibility of an axiomatization of computer science

whose natural formalization would be in first-order logic, or (at least) in a

many-sorted, first-order logic, where some of the basic sets are fixed to stand

for numbers (so we can talk of “the number of comparisons” or “the numberof

steps” in a computation) and a few other, mathematical objects. The trouble

now is that the theory is too complex: there are too many notions competing for

primitive status (algorithms, implementations and computations, at the least)

and the relations between them do not appear to be easily expressible in first-

order terms. I doubt that the project can be carried through, and, in any case,
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there are no proposals on the table suggesting how we might get started.

Syntax vs. semantics Finally, I should mention—and dismiss outright—

various vague suggestions in computerscienceliterature that algorithms are syn-

tactic objects, e.g., programs. Perhaps (Frege 1892) said it best:

This connection [between a sign and its denotation] is arbitrary. You

cannot forbid the use of an arbitrarily produced process or object as

a sign for somethingelse.

In the absence of a precise semantics, Pascal programs are just meaningless

scribbles; to read them as algorithms, we must first interpret the language—and

it is then the meanings attached to programs by this interpretation which are

the algorithms, not the programs themselves.}?

4 Abstract machines and implementations

The first definition of an abstract machine was given by Turing, in the clas-

sic (1936). Without repeating here the well-known definition (e.g., see (Kleene
1952)!), we recall that each Turing machine M is equipped with a “semi-infinite

tape” which it uses both to compute and also to communicate with its environ-
ment: to determine the value f(n) (if any) of the partial function!* f : N—- N
computed by M, we put n on the tape in some standard way, e.g., by placing

n +1 consecutive 1s at its beginning; we start the machine in some specified,

initial, internal state go and looking at the leftmost end of the tape; and we wait

until the machine stops (if it does), at which time the value f(n) can be read
off the tape, by counting the successive 1s at the left end. Turing argued that

the number-theoretic functions which can (in principle) be computed by any de-

terministic, physical device are exactly those which can be computed by a Turing

machine, and the corresponding version of this claim for partial functions has

come to be known as the Church-Turing Thesis, because an equivalent claim

was made by Church at about the same time. Turing’s brilliant analysis of “me-

chanical computation” in (1936) and a huge body of work in the last sixty years

has established the truth of the Church—Turing Thesis beyond reasonable doubt;

it is of immense importance in the derivation of foundationally significant un-

decidability results from technical theorems about Turing machines, and it has

been called “the first natural law of pure mathematics.”

Turing machines capture the notion of mechanical computability of number-

theoretic functions, by the Church—Turing Thesis, but they do not model faith-

fully the notion of mechanical computation. If, for example, we code the input by

putting the argument n on the tape in binary’? (rather than unary) notation (us-

ing no more than log,(n) Os and 1s), then the time neededfor the computation of
f(n) can sometimesbe considerably shortened; and if we let the machine use two
tapes rather than one, then (in some cases) we may gain a quadratic speed-up of

the computation; see (Maass 1985). This means that important aspects of the
complexity of computations are not captured by Turing machines. We consider

here a most general notion of model of computation, which (in particular) makes

the mode of input and output part of the “machine”.
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Definition 4.1 For any two sets X and W, an iterator @: X ~ W is a

quintuple (input, S,o,T, output), where:

(1) S is an arbitrary (non-empty) set, the set of states of 9;

(2) input : X — S ts the input function of o;

(3) 0:5 —S is the transition function of $;

(4) TC S is the set of terminal states of ¢, and s € T => o(s) = s; and
(5) output : T — W its the output function of 9.

The computation of ¢ for a given z € X is the sequence of states {8n(Z)}nen
defined recursively by

So(xz) = input(z),
Sn (Z) if s,(x) € T,

Sn4i(2) = 1 erty) otherwise;

the computation length on the input x (if it is finite) is

(x) = (the least n such that s,(z) € T) +1;

and the partial function 6: X — W computed by ¢ is defined by the formula

$(z) = output(s¢x)(z)).

Each Turing machine M can be viewed as an iterator M:N ~N,by taking

for states the (so-called) “complete configurations” of M,i.e., the triples (oc,q,7)

where is the tape, q is the internal state, and 2 is the location of the machine,

along with the standard input and output functions.

It is generally conceded that this broad notion of iterator can model the

manner in which every conceivable (deterministic, discrete, digital) mechanical

device computes a function, and so it captures the structure of mechanical com-

putation. It is too wide to capture the effectivity of mechanical computation,

because it allows an arbitrary set of states and arbitrary input, transition and

output functions, but (for the moment) I will disregard this problem;it is easy

enough to solve by imposing definability or finiteness assumptions on the com-

ponents of iterators, similar to those of Turing machines, see Proposal IV in 88.

The question I want to address now is whether the notion of iterator is wide

enough to model faithfully algorithms, as it is typically assumed in complexity

theory;!® put another way,

are algorithms the same as mechanical computation procedures? (4.1)

A positive answer to this question expresses more precisely the view (IIa) in §3

and it might appear that it is the correct answer, especially as we have been

using the two terms synonymously up until now. There are, however, at least

two serious problems with this position.

Recursion and iteration If all algorithms are modeled by iterators, then

which iterator models the mergesort algorithm of §1? This was defined implicitly

by the recursive equations (1.1) and (1.2) (or so we claimed in §1), and so we
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frst need to transform the intuitive computation procedure which we extracted

from these equations into a precise definition of an iterator. The problem is

not special to the mergesort, which is just one of many important examples of

recursive algorithms defined by systems of recursive equations.

To clarify the situation, consider the following description of an arbitrary

iterator ¢ = (input, S,o,T,output) by a while-program in a pidgin, Pascal-like

programming language:

s := input(z);
while (s ¢T) s:=a(s);
w := output(s);
return Ww.

We do not need any elaborate, precise definitions of the semantics of while-

programs to recognize that this one (naturally understood) defines ¢, and that,

conversely, the algorithm expressed by any program built with assignments and

while-loops can be directly modeled by an iterator. The first problem, then, is

how to construct while-programs which express the intuitive computation pro-

cedures implicit in systems of recursive equations like (1.1) and (1.2).
This can be done, in many different ways generally called implementations

of recursion.‘ These methods are not simple, but they are precise enough so
that they can be automated. For example, one of the most important tasks of

a compiler for a “higher level” language like Pascal is exactly this conversion

of recursive programs to while-programs, in the assembly language of a specific

processor (a concrete, physical iterator, really), which can then run them.

Assume then that we associate with each system FE of recursive equations

(like (1.1) and (1.2)) an iterator ¢z, using some fixed “compilation process”,
and we make the view (IIa) precise by calling ¢g the algorithm defined by E.
Now the first problem with this view is that ¢g is far removed from E and

the resulting rigorous proofs of the important properties of dg are complex and

only tenuously related to the simple, intuitive arguments outlinedin §1.

The complaint is not so much about the mere complexity of the rigorous

proofs, becauseit is not unusual for technical complications to crop up when we

insist on full rigor in mathematics. It is the artificiality and irrelevance of many

of the necessary arguments which casts doubt on the approach, as they deal

mostly with the specifics of the compilation procedure rather than the salient,

mathematical properties of algorithms. Still, this is not a fatal objection to

(IIa), only an argument against it, on the grounds that the loss of elegance and

simplicity which it requires is out of proportion with the gain in rigor that it

yields.

The non-uniqueness of compilation The second problem with the

view (IIa) is that there are many ways to “compile” recursive programs—to
assign an iterator dg to each system of recursive equations E—and there is

no single, natural way to choose any one of them as “canonical”. This is a

most serious problem, I think, which makesit very unlikely that we can usefully

identify algorithms with computational procedures,or iterators.
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Take the mergesort, for example, express it formally in Pascal, C and Lisp,

and suppose @p, ¢c and ¢y are the iterators which we get when we compile these

programs in somespecific way for somespecific processor. Each of these three

iterators has equal claim to be “the mergesort algorithm” by (IIa), and there

is no obvious way to choose among them. Moresignificantly (because we might

allow ourselves somearbitrary choice here), these three iterators, obviously, have

something in common, but exactly

what is the relation between @p, ¢dc and dz? (4.2)

The natural answer is that

they are all implementations of the mergesort algorithm, (4.3)

but, of course, we cannot say this without an independent notion of the merge-

sort algorithm. Even if we give up on making precise and answering fully Ques-

tion (4.2), we would still like to say that

every computational procedure extracted from the recursive equa-

tions (1.1) and (1.2) satisfies Lemmas 1.2 and 1.4

(suitably formulated for iterators), and it is hard to see how we can expressthis

without making reference to some one, semantic object, assigned directly to (1.1)

and (1.2) and with a prior claim to model the mergesort algorithm.

Proposal I: Implementations are iterators From this discussion, it

seems to me most natural to assume that iterators model implementations, which

are special, “iterative algorithms,” and that results such as Lemmas 1.2 and 1.4

are about more abstract objects, whatever we decide to call them; each of these

objects, then, may admit many implementations, and codes the “implementation

independent” properties of algorithms.

5 The theory of recursive equations

To motivate our choice of set-theoretic representations of algorithms in the next

section, let us first outline rigorous formulations and proofs of the results in 81

in the context of the theory of recursive equations. This is a simple, classical

theory, whose basic results are very similar in flavor to those of the theory of

differential equations.

A poset (partially ordered set)'® (D,<p) is inductive or complete if every

chain (linearly ordered subset) A C D has a least upper bound, sup A, and a

mapping (function)
mr: D—-E

on one poset to another is monotone if

d<p— ™(d) <E m(d’).

The basic fact about complete posets is that monotone mappings haveleast fixed

points, in the following, strong sense.
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Theorem 5.1 (The monotone, least fixed point theorem) Suppose that

am: XxD—D

is a monotone mapping on the poset product X x D to D, and that D is inductive.

Then, for each x € X, the equation

d=n(x,d) (xEX,deD)

has a least solution

d(x) = (ud € D)|d = r(z, d)},

characterized by the conditions that

d(x) =m(z,d(z)), (Vee D)le <p m(z,e) => d(x) <p el;

in addition, the function x ++ d(x) is monotone on X to D.'% O

The simplest, interesting inductive posets are the partial function spaces

(A= B)={p|p:A-B} (={p|p:A— BU{1L}})

partially ordered “pointwise”,

p<sq => (VreE A)[p(z) < ¢(z)]
<> (Vee A,y € B)[p(x) = y = az) = y},

and products of these, i.e., spaces of pairs (or tuples) of partial functions. To

apply Theorem 5.1 to the sorting problem of 81, for example, we need the posets

(L* — L*) and (L* x L* — L*), which contain the functions sort and merge,
and also the poset

(Lx L— (ff, t}),

where {ff, i} is some arbitrary set of two, distinct objects standing for falsity

and truth and which contains the characteristic function

t ifs <t,xelt)={ tec.
of the given ordering on L. In general, a partial function c: LD x L — {ff, t#} can
be viewed as the characteristic partial function, of a partial, binary relation on

L. The idea is to generalize the problem, and try to find (partial) “merging” and

“sorting” functions, relative to an arbitrary partial relation c: L x L — {ff, t},

which stands for some approximation to a total ordering. We can get this very

easily from Theorem 5.1: for eachce: Lx L — {ff, t}, there exist partial functions

sort(c): L* — L* and merge(c) : L* x L* = L*,

which are (least) solutions of the recursive equations

U if |u| < 1,
sort(c)(u) = |enge(e)(sort(o)(ha(1u)),sott(e)(ha(u)) otherwise, (5-1)
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w ifv = Q,
v else, if w = Q,

vo) * merge(c)(tail(v),w) else, if c(vp, wo) = &,
wo) * merge(c)(v, tail(w)) else, if c(vo, wo) = ff;

merge(c)(v,w) = ’ (5.2)

(

and which depend monotonically onc: Lx L — {ff,t#}. If < is the given

ordering on L, then merge(x<) and sort(v<) are obviously the merging and

sorting functions we need; and on the other hand, using exactly the arguments

(by induction on |v| + |w] and |u|) for Lemmas 1.2 and 1.4, we can show the
following:

Theorem 5.2 Suppose that sort(c) and merge(c) are monotonic functions of

c:LxL— {ff, tt} which satisfy the recursive equations (5.1) and (5.2).
(a) If merge(c)(v,w) = z € L*, then there exists a partial function c’ < c

which is defined on at most |v|+|w|—1 pairs, and such that merge(c’)(v, w) = z.
(b) If |u] = 2” and sort(c)(u) = z € L*, then there exists a partial function

c' <c which is defined on at most n- 2” pairs, and such that sort(c’)(u) = z. O

There is no mention of “algorithms” or “uses of comparisons” in Theorem

5.2, but it is not hard to find in it the heart of the claims of Lemmas 1.2 and

1.4. The key moveis from the equations (1.1) and (1.2) (which we know to hold
of the sorting and merging functions), to the “parametrized” equations (5.1),

(5.2), whose meaning is unclear for arbitrary c, but which have least solutions
sort(c) and merge(c) by Theorem 5.1, and these solutions depend monotonically
on “the parameter” c. Let us now makethe natural assumption that any method

for extracting a computation procedure (perhaps an iterator) ¢ from the equa-

tions (1.1) and (1.2), should also apply to and yield a generalized computation

procedure ¢(c), for each c, which computes sort(c)—simply by replacing each

instruction to check if s < t by compute c(s,t). If sort(u) = z, so that ¢ applied

to u computesz, then sort(c)(u) = z, for some small c < y< by Theorem 5.2,
and hence ¢(c) applied to u should also compute z—but it cannot “ask” for

comparisons outside the domain of c, because then it would diverge.

This simple method of varying the parameter (here the ordering < on L) and

then applying Theorem 5.1, is a powerful tool for deriving properties of functions

which are (least) solutions of recursive equations.

6 Functionals and recursors

What do we learn from the rigorous arguments of the preceding section about

choosing a set-theoretic object to model “the mergesort algorithm”? It seems

that all we needed was the “semantic content” of equations (1.1) and (1.2), ice.,
the pair (f,g) of operations defined by their right-hand-sides,

if |u| < 1,
P(tPs 4) = + op(ta(u)) (hat) otherwise, (6.1)
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Ww ifv = Q,
v else, if w = Q,
Uo) * q(tail(v),w) else, if up < wo,
(wo) * g(v, tail(w)) otherwise.

g(v, Ww, p,q) = (6.2)

Formally, these are functionals on L*, in a technical sense which is basic and

useful enough to deserve special billing.

Definition 6.1 <A functional on a collection of sets M 1s any monotone,

partial function
h:X,X::+X X, 4 W,

whereW € M or W = {ff, t}; and each X; is either a set in M, or a partial

function space X; = (U — V), with U = Uy x --- x U; a product of sets in M

andV €M orV = ({ff, t}.

For example, the operation of m-ary partial function application

ADPm(L1,---)Z2m;,P) = P(@1,---,L2m) (L1,---,2m € M,p:M™"™ -~W) (6.3)

is a functional on the sets M, W; and the operation

__

f

tt if (Ax € M)[p(x) = 44,dm (p) = ‘ if (Vz € M)[p(x) = ff],

is a functional on M which “embodies” (in Kleene’s expression) existential quan-
tification on M. Note also that, by this definition,all partial functions and partial

relations on M are functionals.

It was (essentially) systems of functionals like (f,g) that I chose initially

in (Moschovakis 1984, 1989b) to model algorithms, and these are the concrete
objects which come up in the most interesting applications. To develop the

general theory simply and smoothly, however, it is best to use a class of more

abstract objects, which includes suitable representations of these systems.?°

(6.4)

Definition 6.2 A recursor a: X ~ W ona poset X (perhaps discrete, just

a set) to a set W is a triple (D,T, value), where:

(1) D is an inductive poset, the domain or solution set of a;

(2) 7:X x D— D its a monotone mapping, the transition mapping of a;

and

(3) value: X x D — W is a monotone, partial mapping, the value mapping

of a.?+

The partial function a: X — W determined (computed) by a is defined by

a(x) = value(z, (ud € D)|d = T(z, d)}),

where, for each x € X, (ud € D)|d = r(z,d)] is the least, fixed point of the
recursive equation

d=rt(z,d) (rE X,deE D);

and it 1s monotone, by Theorem 5.1. We say that a is arecursor on a collection

of sets M tifa: X - W is a functional on M as in Definition 6.1.
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Two recursors ay = (D,,71, value,),a2 = (D2,T2, value) : X ~ W (on the

same X and W) are isomorphic if there exists an order-preserving bijection

WT: Dy, — Do

which respects the transition and value mappings, t.e., for allx € X anddeé Dy,

m(r1(x,d)) = T(z, 7(d)),
value;(xz,d) = valueg(z, 7(d)).

Isomorphic recursors (easily) determine the same partial functions, that is
Q1 = A.

Proposal II : Algorithms are recursors The mathematical structure of

every algorithm on a poset Xto a set W is modelled faithfully by some recursor

a:X ~ W; and two recursors model the same algorithm if they are tsomorphic.

The where notation Defining and manipulating recursors becomes much

easier with the following, compact where notation, one of several variants of the

notation for recursive definitions used in programming languages: to specify that

a = (D,7T, value) : X ~ W, we write

a(x) = value(z, d) where {d = r(z, d)}, (6.5)

suggesting that to compute the value @(z) using a, we first take the least solution

of the equation within the braces { } and then plug it into the “head” partial
mapping in the front. We can have more than one equation within the braces in

this notation,

a(x) =  value(x, d,,d2) where {d; = 71(2, di, do), dz = T2(z, di, d2)}

=gq¢ value(z, (d,,d2)) where {(d1, do) = (71(2, di, da), T2(x, di, de) },

where the angled brackets indicate that the domain of a is the product poset

D,; x D2; and we can also allow recursive equations involving (partial) functions

within the braces,

a(x) = value(z,p) where {p(u) = T(z, u, p)}

=gp value(z, p) where {p = A(u)7(z, u, p)},

in which case the domain of a is the partial function poset (U — W), the range

of the variable p.??
The judicious application and combination of these conventions facilitates

significantly the definition and manipulation of recursors. For example, each

monotone partial function f : X — W (and, in particular, each functional) is
naturally represented by the “degenerate” recursor

r(x) =ae f(x) where {d = d},
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with domain {1} and such that (obviously) rr» = f. Less trivially, each iterator
¢ = (input, S,o,T, output) on X to W,is represented by the recursor

rg(x) =a¢ p(input(x)) where {p(s) = if s € T then output(s) else p(a(s))} (6.6)

with domain the partial function poset (S — W), which computes the same
partial function F(z) = ¢(z) as ¢ and codes ¢ upto iterator isomorphism.?? Fi-
nally, the “systems of functionals” which arise in the study of recursive equations

can also be represented by recursors, e.g., we set

mergesort;(u) = p(u) where {p(u) = f(u,p, ¢), g(v, w) = g9(v,w,p,q)}, (6.7)

where f and g are defined by (6.1), (6.2).74
It is natural and convenient to “identify” monotone partial functions, iter-

ators and systems of functionals with these recursors which represent them, so

that the class of recursors may be said to include these objects.

Algorithm identity Supposethat A is an (intuitive) algorithm which com-

putes (say) the first one billion prime numbers, and you define A’ by saying

first add 2+ 2 and then do A;

or, you let A” be

do A two times (simultaneously, in parallel) and give as output just

one of the results:

Are A, A’ and A” different algorithms, or are they all identical? They are,
clearly, very closely related, but most people would call them different—orgrant,

at least, that any rigorous representation of algorithms would model them by

non-isomorphic objects; and, indeed, if a, a’ and a” are their natural recursor
representations, then no two of these three recursors are isomorphic.

In fact, recursor isomorphism is a very fine equivalence relationship which is

not preserved by many useful algorithm transformations (optimizations, refine-

ments, etc.), and we must often introduce “coarser” equivalences (or reductions)

to express important facts of informal algorithm analysis.2° Rather than a de-

fect, this is a virtue, in most cases, as it forces out a precise version of exactly

what it is which is being proved.

Infinitary recursors; graph connectivity It is clear that not every re-

cursor models an algorithm,*° because we have allowed the transition and value
mappings to be completely arbitrary, as they are for iterators. We will deal

with this question of “effective definability” of algorithms in §8. In contrast to

iterators, however, a recursor may fail to determine an “effective computation”

in a more dramatic way, as in the following example.

Suppose that (G, R) is a graph,i.e., a non-empty set of nodes G together with

asymmetric, binary edge relation R on G, and consider the recursive equivalence

p(t,y) <> c=yV (Az)[R(z,z) &p(z,y)]| (po Gx G). (6.8)
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Quite easily, the least binary relation p on G whichsatisfies (6.8) is

p(xz,y) <=> thereis a path which joins x with y, (6.9)

and from this it follows that, if we set

conn & (Az)q(x) where {q(x) = (Vy)p(z, y), (6.10)

p(z,y) + 2 =y V (z)[R(z, z) &p(z,y)]},

then conn : I ~ {ff, #} is a nullary?” recursor which “verifies” the connectedness
of the graph G,i.e.,

conn > t <= is connected.

We can also extract from the recursive equivalence (6.8) a computation pro-

cedure (of sorts) for verifying whether an arbitrary x € G can be joined with

some arbitrary y € G, much as wedid in 81: [fx = y, give output t, and if not,

check (simultaneously) for each immediate neighbour z of x, if it can be joined

with y, and give t only if one does. So far, so good, but how long—how many

basic, computation steps—does it take to verify that G is connected,i.e., to carry

out all the verifications required to show that every x can be joined with every y

in G? Well, it depends on the so-called diameter of G, the supremum of shortest

paths connecting its points. If this is finite (and, in particular, if G is finite),

then we can clearly do all the verifications in a finite numberof steps, but if G

is connected with infinite diameter, then it seems that we need to useinfinitely

many steps to check that every point in G can be joined with every other one,

and so the total “computation” of Conn requires at least w (= the least infinite

ordinal) steps.

Whether (in the proper context) we can take conn to represent an “algo-
rithm” is an interesting question, to which I will return in §9—but,if it does,

then that should be somesort of (absolutely) non-implementable, infinitary algo-

rithm, since “real,” terminating computations cannot take infinitely many steps

for their completion.

The “numberof steps” required by a recursor a to “compute” a value Q(z)is

an important quantity associated with a, part of a bundle of notions with which

the mathematical theory of recursors starts.

Recursor iteration Fix a recursor a = (D,7, value) : X ~ W and some

xe xX, let

Tz(d) = T(az, d),

and for each ordinal number &, set (by ordinal recursion)

d& (x) =a¢ Tx(sup{d? (zx) | 7 < €}) (with sup@ = _L),

a(x) =a¢ value(z, d§(x)), (6.11)

llal| =ar the least € (Va © X)[d§(x) = sup{a3 (x) | n < g}]
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It is not hard to show that these definitions make sense?® and that they determine

the partial function computed bya,ie.,

a(x) = supe(2).

Wecall a finitary if ||a|| < w, and infinitaryif ||a|| > w.

The closure ordinal||a|| and the (partial) stage assignment

lo|(x) =ar né [AS (x) € W] < loll, (6.12)

(defined exactly when G(x) is defined) are fundamental invariants of a: for the

recursor rg associated with an iterator ¢ by (6.6), for example, ||rg|| =w, and

Irg|(z) = £(xz) — 1 = (the computation length on x) — 1.

In the case of 6.6,
||conn|| = the diameter of G + 2,

so that if G has infinite diameter, then ||conn|| = w + 2.
One may chooseto view the iteration sequence {d°(z) | € < ||a||} as some sort

of very abstract, “logical computation” of @(x), whose length (if it terminates)
is the possibly infinite ordinal |a|(x). More loosely, but closer to the truth,
we may say that each iterate d§(x) codes some “information” about the value

a(x), which can be extracted by the value mapping and increases with €; and

when enough such information is available, then G(x) = a§(x) = value(z, d§(zx))
becomes defined.

These iterates are also the key tool for “rigorizing” many informal arguments

about algorithms extracted from recursive equations. I will not go into this

here, and I will also avoid any further discussion of the mathematical theory of

recursors, whose basic facts are presented in (Moschovakis 1989a, 19896, 19940).

7 Implementations

Imagine a world (presumably run by mathematicians) where one could patent

algorithms, so that each time you used Professor X’s “superfast multiplication” a

you should pay him a fee.2? Now to use a, you must first implementit, i.e., write

a program P which (in some sense) expresses a@, and which can be understood

and “run” by some actual machine; and Professor Y has written just such a

program P, but he claims that it has nothing to do with X’s a,it is actually

an implementation of some other algorithm 6, unrelated to a and invented by

himself. What are the relevant objective criteria—the mathematical relations

which hold or do not hold between a and P or @ and P—forsettling the dispute?

The humoris dubious, but the problem of making precise exactly what it means

to say that the program P implements the algorithm a is very serious, one of the

basic (I think) foundational problems in the theory of algorithms.
Having already resolved in Proposal I that implementations are iterators,

and that each iterator ¢ can be identified with a recursor rg, (6.6), I will propose
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an answer which follows from a general theory of reductzon among recursors.

First I will define a relation a <, @ between recursors, which (roughly) means
that “the abstract computations of @ are faithfully simulated by those of 6”,

and then I will say that ¢ emplements a if a <, rg.

Definition 7.1 A recursor a, = (D1,7, value) : X; ~ W is reducible to

another Q2 = (Do,T2, valuez) : X2 ~ W (on the sameset of values), and we

write a1 <, Qo, tf there exist monotone mappings

p:X,—7X9, w:X,x Dy > Dao,

so that:

(1) For allx € X; anddé Dy, Te(p(x), m(z, d)) < m(z, 71(2, d));
(2) for allx € X1 and d € Dy, valueo(p(z), 7(z, d)) < value; (zx, d); and
(3) for each x € X1, @ (x) = Go(p(z)).

It is easy to show that the reduction relation is reflexive and transitive on

the class of all recursors.

Proposal III: “To implement” means “to reduce” An implementa-

tion of a recursor a ts any iterator @ such that a <, rg; and a is (abstractly)
implementable if 7¢ admits an implementation.

In the concrete examples of this very abstract notion, the universe X92 of ag

is an expansion of the universe X, of a; by new “data structures,” e.g., stacks

and caches. To understand how the abstract computations of the two recursors

are related, imagine (as at the end of §6) that each d € Dy, represents some
information about the value @,(x), which by (3) of Definition 7.1 is the same as

@2(p(xz)); for each x, now, m(z,d) gives us a corresponding piece of information
about @(e(x)), and (1) and (2) prescribe that each step of ag “increments no
more” the available information and “contributes no more” to the computation

of the common value @(x) = @2(p(z)) than the corresponding step of a,.°°
Technically, (1) and (2) yield that for all ordinals €,

r(x, di (x)) > d3(p(x)),
from which it follows that

af (2) > a§(o(2)), (7.1)
and (3), then, says simply that the iteration of az eventually “catches up” with

that of a1, so that, in the limit, the same partial function is computed.

From (7.1) we also obtain

Jai|(x) < Jaa|(o(x)) (if @1(x) is defined),

so that in particular

Hora|| < |||); (7.2)

and this implies that, if a ts abstractly implementable, then |la|| < w. It is not
hard to verify that the converse is also true,*! so that the following holds.
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Proposition 7.2 The abstractly implementable recursors are exactly those with

closure ordinal < w. Oo

To justify this modelling of “¢ implements a”, one must (at least) show that

it covers simply and naturally the standard reductions of recursion to iteration,

and that it extends the precise definitions which already exist for simulating one

iterator by another. This can be done, quite easily, but the inevitable technical-

ities are not suitable for this paper.

8 Algorithms

It is tempting to assume that the successor operation S(n) = n+1 on the natural

numbersis “immediately computable,” an absolute “given,” presumably because

of the trivial nature of the algorithm for constructing the unary (tally) repre-

sentation of S(n) from that of n—just add one tally; if we use binary notation,
however, then the computation of S(n) is not so trivial, and may require the

examination ofall log.(n) binary digits of n for its construction—while multipli-
cation by 2 becomestrivial now—just add one 0. This point was madein 84, to

argue that the mode of input must be part of any model of computation, but it

also shows that while there is one absolute notion of computability on N (by the
Church—Turing Thesis), there is no corresponding absolute notion of “algorithm”
on the natural numbers—muchless on arbitrary sets. Algorithms make sense

only relative to operations which we wish to admit as «immediately given on the

relevant sets of data. Any set can be a data set; as for the given operations, we

may have partial functions, functionals, or, in the most general case, recursors.

Definition 8.1 A (recursor) structure is a pair M = (M,F) such that the
following hold.

(1) Each M € M is a set and at least one such M is non-empty; these are the
basic or data sets of SM.

(2) Each a € F is a recursor on the data sets of M, 1.e.,a@:X + W isa
functional on M as in 6.1.

IM is a first-order structure if every given is a (total) function, and a functional

structure if every given is a functional.

Simplest among these are the usual (single- or many-sorted) first-order struc-

tures of model theory, e.g.,

yt = (N,0,8S,P, xo), (8.1)

where 0 is the (nullary) constant; S(n) = n+1; P(0) =0 and P(n+1) =n; and
xo: N — {ff, #} is the characteristic function of {0}; the choice of givens in this
simplest structure of arithmetic implies (in effect) that we take the numbers to

be finite sequencesof tallies. The expansion

(MN, dN) = (N, 0,S, P, Xo, dN); (8.2)
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Term: A:=ff|\|t
| p(Z1,---,2Zn)

| f(Z4,... , Zn; 71), - oe , Tm)

| if Ag then A; else Agfi
(for FLR) | Ao where {pi(t1) = Aj,..-,Dn(tin) = An}

(for FLI) | p(I) where {p(5) = if T then O else p(Z)fi}
=ulA

A-term: 7 := p| X(u1,...,Un)A
 

TABLE 1. The syntax of FLR and FLI.

of St by the existential quantifier (6.4) is an important example of a func-
tional structure, and every first-order structure 9 has an analogous expansion

(MN, dor). In the most general case, the “given” recursors of a structure represent

algorithms which weaccept as “black boxes,” right from the start, and they are

the basic ingredients with which we build the algorithms of a structure.

Formal definability With each structure Jt = (M,F), we can associate

a vocabulary (signature), with variables over the data sets of SJt and the partial

functions and partial relations on them, and with constant, function symbols

for the given recursors; and using such a vocabulary, we can then build formal

languages, which codify various notions of definability on IN. Simplest among

these is the Formal Language of Recursion FLR, a language of terms and )-

terms, built up from the vocabulary using (partial) function application (6.3),
definition by cases (conditional), calls to the givens, and recursion, using the

“where” notation of §6. We will also need the fragment FLI of FLR, obtained by

replacing the general where construct by its special case used in iteration. Table

1 gives a summary definition of the syntax of these languages, computer science

style.

The algorithmic or intensional semantics of FLR which concern us here

are defined in (Moschovakis 1989b), using the main result of (Moschovakis 1989a).
Roughly, a recursor

int4 = int (8.3)

(the intension of A in 9) is naturally associated with each structure 0 and
term A, in such a way that the domain of int, is a product of the domainsof the

givens of SJt and its data sets, and its transition and value mappings are defined

explicitly and immediately using application, conditionals and calls.*°

Proposal IV: Algorithms are definable recursors Every algorithm rel-

ative to given recursors F is (modeled faithfully by) the intension int, of some

FLR-term A on the structure It with the givens F; and, conversely, each int

on IN 1s an algorithm relative to F.

The iterative algorithms of a first-order structure SN are the IN-intensions of

FLI-terms.*4
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A functional on the data sets is recursive or computable relative to F if it is

computed by an algorithm of 30, andit is cteratively computable if it is computed

by an iterative algorithm of IN. These are exactly the functionals definable by
FLR- and FLI-terms on 0, in the natural, denotational semantics of FLR.

Notice that, in a trivial sense, every recursor a : X ~ W models an algorithm

of somestructure, e.g., the structure (X,W,a)! On the other hand, no function

or relation on an arbitrary set M is automatically computable by somealgorithm,

not the equality relation x = y on M,not even the identity function f(x) = z.

It is usual, of course, to include such simple functions among the givensof a

structure, but it is not necessary—andthere are examples whereit is not natural.

Definition 8.2 A structure IN 1s implementable in a first-order structure

Mm’, written
mM <j sr ?

if every M-algorithm is reducible to some iterative algorithm of DW.

In standard, computerscience terminology, It <; Mt’ is expressed by saying

that every recursive program in IN can be simulated by a while-program in MN’.

For the integers, 3t <; MN, but it is not generally true of first-order structures that

mt <, Mt, and, in fact, there are natural (infinite) examples in which not every

Mt-recursive function can be computed by a while-program of I.°° The standard

reductions of recursion to iteration establish 20 <,; Dt*, where SM is first-order

and SJt* is an expansion of Xt by a stack or other, auxiliary data structures.

A serious attempt to defend and support Proposals I — IV requires a detailed

examination of several examples and a comparison of the rigorous theory built

upon them with the “naive” theory of algorithms, as it has been developed

(especially) by complexity theorists, and this I cannot do here. I will confine

myself to a final re-examination of the mergesort, and a brief discussion, in the

next section, of the infinitary algorithms which arise naturally in this theory.

The mergesort algorithm The natural structure for the mergesort has

data sets L and L*, and the obvious functions for the manipulation of strings

for its givens:

£ = (L, L*,0, eqg, head, tail, append, x<), (8.4)

where @) is the empty string (as a nullary function); eqg : L* — {ff, #} checks for

equality with Q,
eqg(tt) = t, ifu=9Q,

Jo." =) ff, otherwise:

head(u) and tail(u) are as in §1 (with head(@) = tail(@) = 0 to make them total
functions); append : L x L* — L* prefixes a sequence with an arbitrary element

of L,

append(z, (a1,..-,@n—1)) = (Z,@1,..-,@n—1),

so that, in particular, append(zx,@) = (x); and y< is the characteristic function
of the given ordering on L. The basic equations (1.2) and (1.1) refer directly to
several, additional operations on strings, but these can be defined (computed)
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from thoseof £, e.g.,

test;(u) = if eqg(tail(u)) then # else ff

tests if |u|] < 1 or not. This is an explicit definition, while hi(u) and ho(u) are
(easily) defined by recursion, but FLR has recursive construct and it is quite

trivial to write in the end a single FLR term A for the mergesort, with one
free variable, a formal version of (6.7) with embedded, recursive terms for the
parts f(u,p,q) and g(v,w,p,q). Now the official “model” for the mergesortis

the recursor

msort = int, : L* ~ L’,

whichis assigned to this term by the algorithmic semantics of FLR, andit codes

not only how the mergesort depends on the ordering, but the whole “flow of

computation” determined by the equations (1.1), (1.2). By the general theory,

msort(u) = fo(u,p) where {p1(Z1) = fi(2%1,D),---;Pn(2Zn) = fn(Zn,D)}, (8-5)

where each of the functionals f; is defined explicitly and immediately from the

givens of £. I have not repeated this full definition here, but in this case*® it
means that each f; is an application with nesting no more than one-deep, for

example

fi(Z1, Z2) = pj (pe (21), 22, 21);

or an immediate conditional, for example

fi(z1, Za) = if pi(z1) then p;(z1, 21, Z2) else py (z2);

or a truth value f;(z1, 22) = ff; or, finally, a direct call to the givens, for example

fi(z1, 22) = append(z1, z2).

Because thecritical given y< occurs only once in the equations (1.1), (1.2) (when
we write them carefully, using the conditional), only one of the f;’s depends on

it; and from this it follows that

msort(u) = a(u,c) where {c(s,t) = x<(s,t)}, (8.6)

where c varies over the set of partial relations (LD x L — {ff, t}); a(u,c) is
an algorithm of the reduct of £ which does not include the ordering x<; and

(most significantly) the where notation has been extended to make sense when
it is applied to arbitrary recursors, not just functionals.*’ Notice that (8.6) is a
recursor identity; and once we haveit, it is natural to define the dependence of

msort(u) on x< in terms of the dependence of a(u,c) on the partial relation c,
from which point on the proof of the basic property of the mergesort follows by

the arguments of §1, as we made them precise in §5.

An important aspect of this “finished” analysis of the mergesort is that the

application of the method of parameter variation, which (maybe) seemed a bit

ad hoc in 85, arises now naturally from the move from (8.5) to (8.6), one of the
basic, general transformations of the theory.
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9 Infinitary algorithms

It is clear, from the discussion so far, that, in this approach, there is no absolute

notion of effectively implementable algorithm, just as there is no absolute notion

of algorithm, independent of any given. We can only talk of implementing an

m-algorithm int, in Dt’, meaning that we can find an implementation of int,

among theiterative algorithmsof Jt’. At the same time, the theory makes room

for the infinitary algorithms discussed in §6, those with closure ordinal greater

than w, which cannot be implemented in any structure whatsoever: what are

we to make of them, do they serve any useful purpose, do they help illumi-

nate our intuitive notion of algorithm? I will consider here, briefly, two ways

in which infinitary algorithms arise naturally, as generalizations of concretely

implementable algorithms and as interesting mathematical objects of study, in

their own right.

Algorithms on finite structures If we read (6.10) as the definition of an
FLR-term C' on the expansion (G, R, =, dq) of an arbitrary graph (G, R) by =
and the existential quantifier, it yields a nullary algorithm of this structure

conng = intc :I~ {ff, d}, (9.1)

which, like conn of (6.10), computes the connectivity of G,

conng & # <> is connected.

Now conn, is somewhat more “detailed” than conn (because it also accounts
for the explicit steps in the computation), but still, there is some number m such

that
||conng|| = diameter of G+ ™; (9.2)

and so, again, conn, is implementable if and only if G has finite diameter, by

Proposition 7.2. For finite G, we can easily build real, practical implementa-

tions of conng which can be programmed on a physical processor—even the

trivial implementation suggested in Note 31 is not too bad in this case. These

implementations are useful in database theory, but the fact of G’s finiteness is

hardly used in their construction—typically, we only appeal to it at the very last

moment, to build up an implementation of the quantifiers. So, would it help to

build a conceptual wall between the implementable and the infinitary definable

recursors, fixing the terminologyso that the latter would be denied the honorable

title of algorithm? I would argue that the crucial fact about conng is (9.2) and
its Corollary (by (7.2)) that every implementation of conng has closure ordinal
>= diameter of G+ m, and this has nothing to do with the cardinality of G.

The same considerations apply to much of the workin structural complexity,

a flourishing area of research in theoretical computer science. It is traditional

in this field to study only finite structures, but its basic questions are about

algorithms; they often make perfectly good sense on infinite structures as well;

and, it seems to me, the field might gain much in clarity (and perhaps even some

interesting mathematical results) if people seek answers, at least initially, on
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arbitrary structures, and put off imposing finiteness conditions until they need

them—typically not until the very end of the argument.

The Gentzen algorithm In one of the most celebrated and seminal results

of modern logic, Gentzen (1934-35) showed that every proof of predicate logic

can be transformed into a cut-free proof of the same conclusion, in a canonical

proof system based on a few intuitive natural deduction rules. The Gentzen cut

elimination operation is defined recursively, by an equation not unlike that of

the mergesort:

else if T2(d) then fo(y(7(d)))

else f3(y(o1(d)), y(o2(d))),

where d varies over the set II of (formal) proofs. The conditions T;, Tz and the
transformations f; — fz, T, and 01, 02 are complex, but (at least, in principle)

they can be defined explicitly in a natural first-order structure 6 with data sets

for formulas, variables, proofs, etc., and the usual syntactic operations on these

objects as givens, so that the construction yields a 6-algorithm g : II ~ II with

g = 7. An implementation of g (or the similar algorithm invented by Herbrand)

is one of the basic routines of every theorem prover.

For classical proof theory, the most important fact about the Gentzen algo-

rithm is that it yields a (cut-free) value y(d) of the conclusion of every proof
d, which, together with the special properties of cut-free proofs has numerous

metamathematical consequences. Not far behind it is the upper bound of the

necessary blowup in the size of proofs:

ly(d)| < e({dl, |dl), (9.3)

where the size |d| of a proof is (say) the number of symbols in it and e(n,k)is
the iterated exponential,?° defined by the recursion

e(0,k) =k, e(n+1,k) = 2°™*),

Some time after (1934/35), Gentzen (1943) extended this theorem to Peano
arithmetic, where, however, matters are considerably more complex because the

Godel Incompleteness Theorem rules out the possibility of a finitary cut elimina-

tion result. In a modern version of this construction, we introduce an infinitary

version of the Gentzen proof system for arithmetic, whose set II* of “formal”

proofs includes now someinfinite objects and admits an infinitary operation, the

so-called w-rule: (roughly) from the infinitely many premises ¢(n), one for each
numeral n naming a numbern, infer (Vx)A(x). The extended Gentzen operation
is defined again on II* very much like 7, by a recursive equation of the form

y"(d) = if T,(d) then f1(d)

else if T>(d) then fo(y*(r(d)))
else if T3(d) then f3(y"(o1(d)), y*(a2(d)))
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else fa(A(n)7"(o(n, d))),

where f4 is a functional embodying the w-rule; and this equation, as before,

defines a 6*-algorithm g*, where 6* is very muchlike 6, except that it has a

functional embodying the w-rule. Proofs now have infinite, ordinal length but—

and this is the important fact—the upper bound estimate (9.3) persists, with the

extended, iterated exponential on the ordinals; and so Gentzen showsthat every

theorem of Peano arithmetic admits a cut-free, infinitary proof of size no more

than
Eq = theleast ordinal closed under + andar w”.

There is a large number of metamathematical consequences and by-products of

the proof of this fundamental theorem, which rivals the basic Cut Elimination

Theorem for its importance.

Now, much of this can be done without ever mentioning the word “algo-

rithm”, by dealing directly with the defining, recursive equations, much as we

did in 85. But it is not a natural thing to do, and the literature on Gentzen’s the-

oremsis full of references to “computational procedures”, “constructions” and,

in fact, “algorithms”. It seems to me that the finitary, implementable, g and its

infinitary extension g* share so many common properties, that it is natural and

profitable to study the two of them together, within one, unified theory which

takes recursor structure and effective definabitlity rather than implementability

as the key, characteristic features of “algorithms”.

Notes

1. Myfirst publication on this problem was (Moschovakis 1984), a broad,

discursive paper, with many claims, some discussion and no proofs. This was

followed by the technical papers (Moschovakis 1989a, 1989b, 1994b) and also

(Moschovakis 1991, 1995, 1997), (Moschovakis and Whitney 1995), (Hurkens
et al. 1998), on the related problems of the logic of recursion and the theory of

concurrent processes. My main purposes hereare: (a) to return to theoriginal,

foundational concerns which motivated (Moschovakis 1984) and re-consider them

in the light of the technical progress which has been achieved since then; and

(b) to propose (in §7) a modelling of the connection between an algorithm and
its implementations, which, in some sense, completes the foundational frame of

this program. I have tried hard to make this chapter largely independent of the

earlier technical work and as broadly accessible as possible, but I have, almost

certainly, failed.

2. I am cheating just a bit here: this re-write is easy if the language can

deal with strings (as Lisp and some extensions of the others do), but a bit

cumbersomeif we must first “teach” the language the basic operations on strings.

3. A triple (M/,0,S) is a Peano system if M is aset;0€ M;S: M — M\{0}

is an injection; and every subset X of M which contains 0 and is closed under S

exhausts M. All foundations of the natural numbers start with the facts that:

(a) there exists a Peano system; and (b) any two Peano systems are isomorphic,
and differ only in what they do with them.
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4. Any two countable, dense linear orderings with no endpoints are order

isomorphic (Cantor).

5. In fact, I believe that most mathematical theories (and all the non-trivial
ones) can beclarified considerably by having their basic notions modeled faithfully

in set theory; that for many of them, a (proper) set-theoretic foundation is

not only useful but necessary—in the sense that their basic notions cannot be

satisfactorily explicated without reference to fundamentally set-theoretic notions;

and that set-theoretic foundations of mathematical theories can be formulated so

that they are compatible with a large variety of views about truth in mathematics

and the nature of mathematical objects. Without explaining it in detail or

defending it, the textbook (Moschovakis 1994a) applies this view consistently to
the presentation of the elementary theory of sets and its applications. The brief

remarks here are only meant to clarify what I aim to do with algorithms in the

more technical sections of the chapter, following this one.

6. Sometimes we can do more and choose C' so that ~o is the identity

relation on C’, notably in the case of Cantor’s ordinal numbers wheretheclass of

von Neumannordinals has this property. In other cases this is not possible. For

example, Cantor dealt with linear order types exactly as he dealt with ordinal

numbers, but (apparently) there is no way to define in Zermelo—Fraenkel set

theory a class of linearly ordered sets which contains exactly one representative

from each order isomorphism class. Becauseof this, “linear order types” can be

“defined in set theory” only in the minimal way described here, but their study

does not appear to have suffered because of this defect.

7. Not all who adopt it will approve of my description of this view. In his

classic (Knuth 1973), for example, Knuth dubs “algorithms” (essentially) what
I call “implementations” and avoids altogether the second word. It amounts to
the same thing.

8. Still more radical would be to simply define “algorithm” to be constructive

proof of an assertion of the form (3.1), but I cannot recall seeing this view

explained or defended.

9. Here “formally” means “without regard to meaning” and not (necessarily)

“in a formal language”. A coherent axiomatization in ordinary language can

always be “formalized,” in the trivial sense of making precise the syntax of the

relevant fragment of English and the logic; whether (and how) the formal version

corresponds to the naive one is hard to talk about, and involves precisely the

philosophical issues about axiomatizations which I am trying to avoid.

10. Zermelo’s axiomatization of set theory is a good example of this. It was

first proposed in (Zermelo 1908) quite formally, as an expedient for avoiding

inconsistency, and only much later in (Zermelo 1930) was it justified on the basis

of a realistic, intuitive understanding of the cumulative hierarchy of sets. By the

time this happened, the axioms (augmented with replacement) had been well-

established and there was no doubtof their value both in developing (technically)
and in understanding the theoryofsets.
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11. This and the fundamentally set-theoretic nature of (b) in Note 3 are part

of the argument for the “necessity” of set-theoretic foundations alluded to in

Note 5.

12. It has also been suggested that we do not need algorithms, only the

equivalence relation which holds between two programs P and Q (perhaps in
different programming languages) when they (intuitively) express the same al-

gorithm. It is difficult to see how we can do this for all programming languages

(current and still to be invented) without a separate notion of algorithm; and,

in any case, if we have a good notion of “program equivalence”, we can then

“define” algorithms to be the equivalence classes of this equivalence and solve

the basic problem.

13. Turing machines are modeled in set theorybyfinite sets of tuples of some

form, but their specific representation does not concern us here.

14. A partial function f : X — W is an (ordinary, total) function

f: Ds -W,

from some subset Dy C X of X into W; or (equivalently) a (total) function
f:X >~ WU{L}, where L ¢ W is some fixed object “objectifying” the

“undefined,” so that “f(x) is undefined” is the same as “f(x) = L”. For most
of what we do here it does not matter, but the official choice for this paper is

the second one, so that “f : X — W”is synonymous with “f: X ~>WU{L}’.

15. The binary representation of a natural number n is the unique sequence

QpAp~—1-+: Go of Os and 1s (with a, = 1, unless n = 0), such that

nN = Ao + 2a, + 27a9 +--- + 2¥ay.

16. (Knuth 1973) (essentially, in the present terminology) defines an algo-
rithm to be an iterator ¢ : X ~» W, whichalso satisfies the additional hypothesis

that for every x € X, the computation terminates. This termination restriction

is reminiscent of the view (IIb) in 83, and it is hard to understand in the con-
text of Knuth’s own (informal) use of the notion. Suppose, for example, that

Professor Prewiles had proposed in 1990 a precise, mechanical procedure which

searched (in a most original and efficient way) for a minimal counterexample
to Fermat’s last theorem; would we not have called this an “algorithm,” just

because Prewiles could not produce a proof of termination? And what would

be the “meaning” of the Pascal program produced by Prewiles, which (by gen-

eral agreement) implemented his procedure? It seems more natural to say that

Prewiles had, indeed, defined an algorithm, and to say this even now, when we

know that the execution of his program is doomedto diverge.

17. In the simplest of the classical, “sequential” methods for implementing

recursion, the most important part of the state is a “stack”, a finite sequence

of pieces of information which (roughly) reminds the machine what it was doing

before starting on the “recursive call” just completed. There are also “parallel”
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implementations, in which the “stack” is replaced by a “tree” (or other struc-

ture) of “processes” which “communicate” among themselves in predetermined
ways. This listing of buzzwords is as far as I can go here in suggesting to the

knowledgable reader the reduction procedures to which I am alluding.

18. A poset is a structure (D,<p), where the binary relation <p on D

satisfies the conditions: (a) d <p d; (b) di <p dg &d2 <p d3 => d; <p ds3;

and (c) [di <p dz & dz <p dy| => d; = dz. Every set X is a discrete poset with

the identity relation, 71 <x rq <=> 2X1 = 2X2; and for every W and 1 ¢ W,

the set W U{L} is a flat poset, with <y => r=LVazr=~y. Since the
emptyset is (trivially) a chain andits least upper bound (whenit exists) is easily
the least element of D, every inductive poset has a least element lp = sup @.

It can be shown that a poset (D,<p) is inductive exactly when it has a least
element and every non-empty, directed subset of D has a supremum. Thereis a

tendency in recent computerscience literature to widen the notion by omitting

the requirement that D has a least element, which is why I am avoiding the

common term dcpo for these structures. Computerscientists also tend to study

only continuous (in the appropriate Scott topology), rather than the more general

monotone mappings. This makes the theory easier but it is not general enough

to cover all the applications that we need here. The basic facts about inductive

sets and monotone mappings can be found in most textbooks on denotational

semantics and in someset theory books, e.g., (Moschovakis 1994a).

19. Various versions of this basic fact have been attributed to different math-

ematicians, but a special case (with a proof which suffices for the full result)
is already a subroutine of Zermelo’s first proof of the Wellordering Theorem in

(Zermelo 1904).

20. The present version yields, in particular, a natural and comprehensi-

ble formulation of recursor isomorphism, a notion whose original definition (in

(Moschovakis 1989b)) is quite opaque.

21. This means that d, < dz => value(z,d;) < value(z, de), or, equivalently,

dy < dz & value(z, d) is defined => value(z, di) = value(z, do).

See Notes 14 and 18 for the precise conventions about partial functions.

22. If t(u) is an expression which takes values in W U {1} and in which the
variable u occurs, ranging over U, then X(u)t(u) stands for the partial function

p, where p(u) = #().
23. An isomorphism between twoiterators ¢; = (input,, 5;,0;,7T;, output,)

(i = 1,2) on X to W is a bijection p : S; — S2 between thesets of states, such

that p[T1] = T2; (input, (x)) = inputa(x); p(o1(s)) = 72(p(s)), for every s € Sj;
and output,(s) = output,(p(s)), for every s € T, which is input-accessible,

i.e., such that for some x € X and some n, s = of (input,(x)). The precise
result is that the recursors r; and rq associated with two iterators $1 and dg are

wsomorphic if and only if d1 and do are isomorphic iterators.
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94. This is only approximate; see “The mergesort algorithm’, in §8. Note,

also, that we might equally well have set

mergesorte(u) = p(u) where {q(v, w) = g(v, w, p,q), p(u) = f(u, DP, @)};

but mergesort; and mergesort2 are isomorphic: It is an easy, general fact, that re-

ordering thelisting of the parts within the braces of a where expression produces

an isomorphic recursor.

25. By the simple result quoted in Note 24, however, changing the order in

which we specify computations which are to be executed in parallel “preserves

the algorithm”.

26. Well, maybe not so clear; see the remarks following Proposal IV.

27. Here I is some fixed set with a single element (say 0), so that a recursor

a:I~ {ff, t} has no real arguments, and simply computes an object

a=a(d)€ {ff,#, 1}.

I am also using “&” for the equality relation on {-L, ff, #} in the definition of

conn, since conn is a partial relation.

28. This is an outline of the standard proof of Theorem 5.1.

29. In our world, the law is vague andstill not fully formed, but (as I
understandit) it denies patents to algorithms, but grants copyrights to programs.

30. It is not always true for a monotone 7 that d < 7,(d), but 7, is only

applied to such ds in the construction (6.11) of the iteration sequence

{d*(z) | € < ||},

so that, where it is relevant, applying the transition mapping, indeed, does not

decrease our information about the value.

31. You cook up an iterator whose computation for each zx is the sequence of

iterates d°(x),d+(x),..., and then check that a is reducible toit. It is, in general,
an inefficient implementation, but it is used routinely in finite model theory, and

(I have been told) it is also used for some very special database applications.

32. The only non-obvious side condition in the syntax is that in the recursion

construct for FLI, the “recursion variable” p occurs only where it is explicitly

shown.

33. The language FLR“evolved” somewhat between (Moschovakis 1989a) and
(Moschovakis 1997), and the intensional semantics are constructed in (Mosch-
ovakis 1989) for a more restricted class of recursors, but none of this is very

important or affects the present discussion. The mapping A +> int, is defined

(basically) by recursion on the structure of A, as one might expect. It is not a dif-
ficult construction, but it does involve some subtleties and technicalities (mostly

in making precise this “explicitly and immediately”) which make it impractical

to give a useful summary of it here. In addition to the papers already cited,

(Moschovakis 19946) discusses some applications of intensional semantics to the
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philosophy of language and establishes the decidability of algorithm identity on

any fixed structure with finitely many givens.

34. The notion of an iterative algorithm does not have a clear meaning,

except on first order structures.

35. There is a large literature on the reduction of recursion to iteration under

various conditions; see, for example, (Tiuryn 1989) and the paperscited there.

36. In fact, the forms listed describe fully the normal form for intensions in

first-order structures.

37. This follows from the basic, general facts of the theory of recursors, a

natural (and not very difficult) extension of the fixed-point theory of monotone
mappings which keepstrack (in effect) of the recursive definitions, not just their

fixed points.

38. The conclusion of the given proof cannot haye free and bound occurrences

of the same variable, but such details are of no consequence for the point I want

to make and I will steer clear of precise definitions and sharp, optimal statements

of facts. A good reference for this discussion is (Schwichtenberg 1977), which

explains clearly all the results I will allude to—and much more.

39. The precise result is much better than this; see (Schwichtenberg 1977).
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o
Truth and knowability: on the principles C’ and

kk of Michael Dummett

Per Martin-Lot

Truth is a highly ambiguous term. At least four clearly recognizable senses, all

of relevance for this meeting, can belisted, namely,

Tarski’s notion of truth of a closed formula, or sentence,

truth of a proposition,

truth of an assertion, or judgement,

truth in the sense of reality, as opposed to appearance.

There is an ambiguity in the term ‘assertion’: you may use it either generally

for a claim, a knowledge claim, or specifically for an affirmation, that is, for a

claim of the form ‘A is true’, where A is a proposition. In this talk, I shall use it

consistently in the first of these two senses. Also, I shall use the terms ‘assertion’

and ‘judgement’ synonymously. At the bottom of mylist is the notion of truth

as one pole of the distinction between appearance andreality: it is so to speak

the high notion of truth, often capitalized, although I have put it at the bottom.

At the top is the notion of truth of closed formulas, or sentences, which is the

lowest notion in the sense that it is a purely mathematical notion, determined

by Tarski’s well-known recursive definition, and I shall not be concerned with

that either, but remain in the middle region, dealing exclusively with the notion

of truth of a proposition and the notion of truth of an assertion, or judgement.

Now, in his long paper ‘What is a theory of meaning? (II)’ from 1976,
Michael Dummett posed the problem, quoting verbatim, of how the notion of

truth, within a theory of meaning in termsof verification, should be explained.

The idea is of course that, in a truth-conditional theory of meaning, the notion of

truth has to be there from the very beginning, since the meaning explanations of

the various logical constants are given in terms of truth conditions. But suppose

now that we replace the notion of truth as the basic notion by the notion of proof,

or verification. Then, at the most basic level, we shall not speak about truth

any longer, but instead about proof, or verification, and there then arises the

problem that Dummett formulated: even if the notion of truth of a proposition

is no longer the basic notion, wearestill interested in how it is to be understood.

And, in that same paper, he formulated two principles that ought to be satisfied

105
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by the notion of truth of a proposition, or statement, as he himself says, namely,

C: If a statement is true, there must be something in virtue of which

it is true,

and

K: If a statement is true, it must be in principle possible to know

that it is true.

Actually, these two principles form a recurring theme in Dummett’s writings.

The first principle occurs already in his very early paper “Iruth’ from 1959,

where the formulation is even more explicit, saying as it does that a statement

is true only if there is something in the world in virtue of which it is true. Both

principles occur together for the first time in the Postscript that was added to

it in 1972, and they then recur in Chapter 13: Can Truth be Defined? of Frege:

Philosophy of Language as well as in ‘What is a theory of meaning? (II)’, which

is where they are labelled C and Kk.

It is clear from the label of the first principle, C’ for Correspondence, that it

is meant to be a formulation of the well-known correspondenceprinciple, which

as we know goes back to Aristotle and is so basic that it so to speak has got to

be right if it is sensibly interpreted. For instance, if I say, ‘My fountain pen is

blue’, there is something in the world in virtue of which that is so,if it really is

so, namely, the blueness of my fountain pen. Sothis is it, in this case, which is

there and verifies, or makes true, the proposition that my fountain pen is blue.

It is clear that the correspondenceprinciple, understood in this very general and

unsophisticated way, is somehow right, and has to be right on any conception,

whether it be in terms of a truth-conditional or a verificationist, a classical or

an intuitionist theory of meaning.

Then there is the second principle K, where I suppose K stands for Know-

ability, or at least something having to do with Know, which says that, if a

proposition is true, it must be in principle possible to know that it is true. As

you see, this is a principle which is quite different from C’, and, whereas C' is so to

speak readily accepted, when you look at K, I think you immediately get some

feeling of uneasiness: could the ‘true’ that you have in the conditional clause

possibly be the same ‘true’ as you have in the main clause? It sounds somehow

strange to say that, if a proposition is true, then, from that alone, it follows that

it is in principle possible to know that it is true, in the same sense of ‘true’ as

you have in the conditional clause: it seems somehow unlikely. At least, this

has left me with uneasiness, and the purpose of this talk is to try to resolve the

difficulties which are inherent in the principle K, and actually also to emend it

in such a way that it becomes acceptable.

The key to resolving the perplexities surrounding the principle K turns out

to be the very distinction between the notion of truth of a proposition and the

notion of truth of an assertion, or judgement, with which I started. First of

all, I should say that you cannot hope to explain these two notions, truth of a
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proposition and truth of a judgement,in isolation: they are two concepts that fit

into a certain conceptual structure, where also other notions are involved, and,if

we want to clarify them, we shall have to display, as it were, this little conceptual

structure, or conceptual system, and see how the variouspieces fit together and

what functions they fulfil in it. The key elements of this conceptual structure

are the ones that are displayed in the following table:

Non-epistemic concepts Epistemic concepts

 

proposition judgement

proof (verification) proof (demonstration)
of a proposition of a judgement

truth of a proposition truth (correctness) of a judgement

So we shall have to clarify the notion of proposition and the notion of judgement,

and we shall have to clarify the notion of proof of a proposition as opposed to

the notion of proof of a judgement. Here we have a good terminological possi-

bility, because in English we have both the term ‘proof’ and the term ‘demon-

stration’, and ‘demonstration’ is quite unambiguously associated with making

something evident, which is to say that it is an ideal word to use on the epis-

temic side, demonstration of a judgement, and then we get the term ‘proof’ free

for propositions, or, if you prefer, you could also use verification in connection

with propositions. Finally, we shall have to clarify the two notions with which

I started, namely, the notion of truth of a proposition and the notion of truth

of a judgement, and, if one finds it inconvenient to use truth in both caseshere,

although it is sometimes unavoidable, one can decide to use correctness, or ob-

jective correctness, in connection with assertions, or judgements: that is what

Dummett usually does. But, of course, this means already deciding to make a

technical distinction between truth and correctness, because no doubt dAnOr7>

and do@6s were usedessentially synonymously in connection with the Greek é6d6£a

and, similarly, in scholastic philosophy, you had the Latin judicium verum seu

rectum. But now that we have the two words, this is a convenient technical

terminology.

To begin with, I would like to say something preliminary about the distinction

between propositions and judgements, before properly answering the questions,

‘What is a proposition?’ and, ‘What is a judgement?’ Now propositions are

the things that are held true, or sometimes held false, and the things on which

the logical operations operate: the connectives operate on propositions and the

quantifiers on propositional functions. Judgements, on the other hand, are what

we demonstrate: in each step of a chain of reasoning, or demonstration, we

proceed from some previously demonstrated judgements to a new judgement,
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which is evident on the grounds of the previous ones, such a step being an

inference with the previously made judgements as premises and the newly made

judgement as conclusion. The forms of judgement are totally different from the

logical operations. First of all, we have the affirmative form of judgement

A is true,

where A is a proposition. This is the only form of judgement that I shall need to

consider in the course of this talk, but there are also hypothetical judgements, or

consequences, general judgements, and hypothetico-general judgements, which

all have their own characteristic forms. A Gentzen sequent is an example of a

hypothetico-general judgement, that is, a judgement which is both hypothetical

and general. These are some forms of judgement that are used in predicate

logic, but there are many more forms of judgement, and, just as we cannot

limit in advance ourlogical operations, we cannot limit in advance our formsof

judgement: indeed, in type theory, there are several other forms of judgement,

in particular, the form of judgement which is used to say that something is an

object of a certain type, and, just as crucially, that two objects of a certain type

are the same, where ‘same’ means definitionally or intensionally the same.

In the preceding, I made the distinction between propositions and judgements

in a preliminary fashion by simply giving examples of some well-known forms of

proposition and some well-known forms of judgement, but, by doing so, I have

of course not really defined what a proposition is and what a judgement is. So

what is a judgement? Well, the notion of judgement, and everything actually

that stands in the right-hand column of mytable, is an epistemic notion, which

means that the notion of knowledge is crucially involved. The simplest answer

to the question of what a judgement is seems to be to say that a judgement

is defined by laying down what it is that you must know in order to have the

right to make it. Or, using the term ‘assertion’ rather than ‘judgement’, an

assertion is a knowledge claim, and hence, in order to clarify the assertion, you

have to clarify what knowledgeit is that you claim to have when you make the

assertion. So, however you phrase the explanation, the crucial question is, ‘What

knowledge?’

Now, once we have fixed the notion of judgement in this way, the notion

of demonstration of a judgement, which is located on the second line of the

right-hand column of mytable, is defined simply by saying that a demonstration

is what makes a judgement known, or evident: a demonstration is a chain of

reasoning, and what it purports to do is to make the final judgement of that

chain known, or evident. There are many words that you can choose among

here, and from a logical point of view it is immaterial which of these terms you

choose, because they are but different labels of one and the samepiece in the

conceptual structure, and you may label that piece in any way you want: the

only important thing is how it functions in the structure. The natural labels

here are to say known,evident, demonstrated, justified, or warranted: this is the

term usually adopted by Dummett, contrasting as he does an assertion’s being
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warranted with its being correct, which is the next notion to be analysed, or you

may say reasoned, or grounded. So the notion of evidence here comes before the

notion of truth, or correctness, of a judgement in the conceptual order.

But now, having the notion of evidence, or knownness, how do wedefine the

notion of truth, or correctness, of a judgement? Well, the proper conceptual

connection seems to be this: a judgement is by definition true, or correct, if

it can be known, or made evident. You see, evident means known, which is

to say, actually known, but a judgement is true, or correct, if it is knowable,

evidenceable, demonstrable, justifiable, warrantable, or groundable, whichever

you prefer. The crucial notion that comes in hereis the notion of possibility, and
it is of course a question of possibility in principle. So the difference between, on

the one hand, known, evident, demonstrated, and so on, and, on the other hand,

knowable, evidenceable, demonstrable, and so on, is nothing but the difference

between actuality and potentiality. Now this definition of the notion of truth,

or correctness, of a judgement validates Leibniz’s principle of sufficient reason.

The most widespread formulation of it has several ingredients, but, if we restrict

ourselves to what has to do with the truth of judgements, then what Leibniz’s

principle of sufficient reason says is that, if a judgement is true, then it can

be known. A judgement is not true unless there exists a reason for it, that

is, unless a reason for it can be given: that is the content of the principle of

sufficient reason. And why does it hold? Well, it holds because of the definition

of the notion of truth of a judgement: truth of a judgement is simply defined as

knowability, and therefore the principle holds. This was also Leibniz’s own view,

that the principle of sufficient reason is contained in the definition of the notion

of truth.

Now, as an indication that the conceptual connections have been properly

made here, I would like to say a few words about Descartes’ criterion of truth.

Stated as briefly as possible, it says that, if a judgementis evident, then it is true:

st quid intellectuz meo sit evidens, tllud omnino est verum. There is no surer sign

of the truth of a judgement than our having madeit evident to ourselves: that is

the gist of Descartes’ truth criterion. So evidence implies truth, or correctness,

of a judgement. Now, as Brian McGuinness said in his introduction to this

meeting, Descartes had to invoke the veracity of God in order to justify his

truth criterion, because why does it hold, according to Descartes? Well, it holds

because he took it as an axiom that God does not deceive us. But, at least to

my mind, it would be very strange if one should have to invoke the notions of

God and deception in order to see that the evidence of a judgement entails its

truth. Things of this sort normally hold on purely conceptual grounds, and you

see now how it comes out: truth is simply defined as evidenceability, and hence

Descartes’ truth criterion, saying as it then does that, if a judgement has been

made evident, then it can be made evident, follows from the principle that, if

something has been done, then it can be done. This, on the other hand,is the

truly fundamental metaphysical principle which was given the succinct scholastic

formulation ab esse ad posse valet consequentia, a formulation which in its turn

probably derives from the short passage €€ eveoyelias 1) é6UVvapus in Aristotle’s
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Metaphysics, Book ©, Chapter IX. So Descartes’ truth criterion, fundamental

as it may seem to be,is actually a consequence of this even more basic principle,

the ab esse ad posse principle.

Another effect of this definition of the notion of truth of a judgement is that

the traditional Platonic characterization of knowledge as justified true opinion,

66£a dAnOns eta Adyov, opinion true with justification, or by aid of justifi-

cation, does not look natural any longer when the notion of truth receives the

conceptual determination that I have just given to it. Indeed, since true is

the same as justifiable, justified true opinion becomes justified justifiable opin-

ion. But, if an opinion is justified, it is superfluous to say that it is justifiable

by the ab esse ad posse principle. Hence ‘justifiable’ can be omitted from the

formulation, and we get the simpler characterization of knowledge as justified

opinion. Also, although 60d€a is traditionally rendered by opinion, it is equally

well translated by judgement, so a piece of knowledge is the same as a justified,

or demonstrated, judgement. Presumably, the reason for the more complicated

formulation is that, from Plato onwards, the notions of knowledge and truth have

been associated with infallibility, and, if you include infallibility in the notion

of truth of a judgement, then you cannot argue from evidence to truth in this

simple way by the ab esse ad posse principle, and that is precisely why Descartes

had to invoke the veracity of God at this point. Now, as a matter of fact, our

demonstrations are not infallible: a demonstration purports to make something

evident to us, and it is the best guarantee that we have, but it is not infallible.

We do sometimes make mistakes in our demonstrations, and hence,if you include

infallibility in the notion of truth of a judgement, then the step from evidence to

truth cannot be taken any longer. That means that the problems that have to

do with infallibility have to be moved to anotherlevel, so to speak, and that is

the level that I put at the bottom of mylist, that is, the highest level that has

to do with the notion of truth in the sense of reality as opposed to falsehood in

the sense of appearance,illusion, or deception, and that will be completely left

out of my talk.

This finishes the semantical explanations of the concepts occurring in the

right-hand column of my table, that is, the epistemic concepts that are associ-

ated with the notion of judgement. There remain the non-epistemic concepts

in the left-hand column of the table, which is to say, the notion of proposition,

the notion of proof, or verification, of a proposition, and the notion of truth

of a proposition. So what is a proposition? Well, in a truth-conditional the-

ory of meaning, a proposition is defined by its truth conditions, whereas, in a

verificationist theory of meaning, this explanation is replaced by saying that a

proposition is defined by its proof conditions, or verification conditions, which

state what a proof, or verification, of the proposition looks like. Now it has some-

times been said, for example, by Dummett in his paper ‘Truth’ from 1959, that

the-difference between a classical and an intuitionist, or constructivist, account

of the meanings of the logical constants is that truth conditions are replaced

by assertion conditions. But observe that that is not what I am saying here: I

am saying that truth conditions are replaced by proof conditions, or verification
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conditions. Now the notion of assertion condition is also important, but the

role of an assertion condition is to determine the meaning of an assertion, or

judgement, the concept that we had at the top of the right-hand column of the

table of concepts to be explained: an assertion, or judgement, is defined byits

assertion condition, that is, by laying down what it is that you must know in

order to have the right to assert it.

As concerns the notion of proof of a proposition, we must distinguish between

proofs, or verifications, of the forms that enter into the meaning explanations of

the various logical constants on the one hand, and arbitrary proofs, or verifica-

tions, on the other. Weall know the Brouwer—Heyting—Kolmogorov explanations

of the meanings of the logical constants, which run according to the pattern: a

proof of a conjunction A&B is a pair consisting of a proof of A and a proof

of B, and similarly for the other logical operations. But we also have to allow

proofs which are not directly of one of the forms that enter into the meaning

explanations of the logical constants, just as, when we let the natural numbers

be defined by the first two Peano axioms, ‘Zero is a natural number’, and, ‘If

n is a natural number, the successor of n is a natural number’, some innocent

person may come and ask, But what about 2 + 2, is it not a natural number?’

The answeris of course that, when you give an inductive definition, like that of

the natural numbers,it is tacitly understood that something should count as a

natural number even if you may need to calculate it a few steps to get it into

zero or successor form, and similarly here, in the Brouwer—Heyting—Kolmogorov

explanations, a proof in general may have to be calculated before you get it into

the form, or one of the forms, that define the proposition in question. We then

have two terminological possibilities, either to call proofs of the forms that enter

into the meaning explanations of the logical constants simply ‘proofs’, in which

case we would in general only have a method of proof, or to call proofs of the

forms prescribed by the meaning explanations ‘canonical proofs’, or ‘direct ver-

ifications’, in which case we also have to allow non-canonical proofs, or indirect

verifications. Choosing the latter alternative, a non-canonical proof, or indirect

verification, becomes clearly the same as a method of canonical proof, or direct

verification. So we have these two terminological possibilities.

Now, if a proposition is defined in this way by its proof conditions, then,

when you come to the next question in the left-hand column of my table, which

is to say, ‘What is a proof of a proposition?’, the answer is exceedingly simple,

because a proposition was defined precisely by laying down how its proofs are

formed, which means that there is nothing more that needs to be said. Indeed,

once we have understood the proposition, we already know whata proofofitis,

a canonical proof in thefirst place, and then a proof in general is a method such

that, when you execute it, you obtain a canonical proof as result.

There now remains in the left-hand column only the notion of truth of a

proposition, which appears on the third and last line. So we must ask ourselves,

‘How is the notion of truth of a proposition to be defined?’ This is precisely the

problem of Dummett’s that I started by quoting, namely, of how the notion of

truth, within a theory of meaning in termsof verification, should be explained.
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The answer is most simply given in the form of the chain of equations

A istrue = there exists a proof of A

= a proof of A can be given

= A can be proved

= A is provable,

in which the equality sign signifies sameness of meaning. So here again the notion

of possibility in principle comes in, but now it is in connection with the notion of

truth of a proposition, whereas previously it was in connection with the notion of

truth, or correctness, of a judgement. And‘proof’ is here to be understood in the

sense of ‘canonical proof’, which means that the truth of a proposition is equated

with the possibility of coming up with a canonical proof, or direct verification,

of it. So here I have chosen the first of the two terminological alternatives that

I mentioned. Now what are given in the chain of equalities are but different

permissible readings of one and the same form of judgement ‘A is true’. After

all, I have to follow my own official explanations, and, since ‘A is true’ is a

form of assertion, or judgement, its meaning is determined by laying down its

assertion condition, that is, by laying down what it is that you must know in

order to have the right to make a judgement of this form, and, in this case, the

explanation is that, to have the right to make a judgement of the form ‘A is

true’, you must know a proof of A, a proof which is in general non-canonical,

that is, which is in general merely a method such that, when you execute it, you

get a canonical proof as result. Now that is the official meaning explanation, but

it is clear from that meaning explanation that you may allow yourself to read ‘A

is true’ in these different ways, which are of course quite similar, actually, to the

reading that Kleene used in his realizability interpretation: forgetting about all

other differences, Kleene read the proposition that there exists a realizer of A,

where A is an arithmetical formula, as ‘A is realizable’.

Now let me return to my original promise of clarifying Dummett’s principles

Cand Kk.If youfirst look at C, ‘If a statement is true, there must be something in

virtue of which it is true’, you will see that it is in complete agreement with what

I have said about the notion of truth of a proposition. Indeed, the verificationist

definition of truth is that a proposition is true if there exists a proofofit, so,if

we just call that something in virtue of which a statement is true its proof, or

verification, then C is nothing but the definition of truth that I just gave. That

means of course that the intuitionist, or verificationist, notion of truth is really

a version of the correspondence notion of truth, truth as agreement with reality:

the only novelty is that we call that thing in reality, or in the world, which has

to be there in order for the proposition to be true, its proof, or verification.

Let us now finally turn to the principle K, ‘If a statement is true, it must

be in principle possible to know that it is true’. So remember the principle of

sufficient reason, which says that, if a judgement is true, then it can be known.

Now apply theprinciple of sufficient reason to a judgement of the particular form

‘A is true’, where A is a proposition. Then what weget is that, if a judgement
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of the form ‘A is true’ is correct, then this judgement can be known, but that

is the same as saying that the proposition A can be known to be true. So we

have now achieved in the main clause exactly what you find in the principle K,

but there is a fundamental difference in the conditional clause, which no longer

takes the simple form ‘if the proposition A is true’, but the more complicated

form ‘if the assertion, or judgement, “A is true” is correct’. This means that

two truth operators have turned out to be involved here: oneis the truth of the

given proposition, and the other is the truth, or correctness, of the judgement

which is obtained by applying the first truth operator to the given proposition.

So this is the corrected form of the principle K that we havearrived at:

If a judgement of the form ‘A is true’ is correct, then the proposition

A can be knownto betrue.

Now, unfortunately, this reads a bit awkwardly, but it may be rephrased in the

following way, if only we accept the principle that a judgement of the form ‘A is

true’ is correct if and only if the proposition A really is true. This is a principle

that I think everybody accepts: the only difference that you find between the

realist and the idealist is in the sense that they give to the qualifier ‘really’ that

appears here. Therealist takes that notion as a primitive notion that cannot be

reduced to anything else, whereas, on the analysis that I have given, the notion

of reality that comes in here is nothing but the notion of knowability. In any

case, the principle is acceptable as it stands, and hence we can replace saying

that the judgement that A is true, where A is a proposition, is correct by saying
that the proposition A really, or in reality, is true. If we make that replacement,

we arrive at the following

Emendation of K: If a proposition really is true, then it can be known

to be true.

This is the amendedversion of the principle K that I propose. It agrees entirely

with the principle K in the main clause, but has a crucial modification in the

conditional clause, and it is an almost immediate consequence of the principle

of sufficient reason.
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6
Logical completeness, truth, and proofs

Gabriele Lolli

When discussing such topics as ‘truth in mathematics’, it would be culpable

negligence to ignore what logic has to say on the subject. What logic has to

offer are theorems, not speculations. We teach these theorems in logic classes,

but apparently to no avail, since the teaching does not seem to leave any trace

in grown-up mathematicians. Perhaps this is due to the fact that when proving

theorems their significance is seldom discussed; only their mathematical useful-

ness, as opposed to general wisdom, is stressed. Theorems are admittedly not

a, detailed description of reality; they refer to idealized models; logic deals only

with models of reasoning; but mathematicians, and scientists in general, should

know what a tremendous amountof reliable and useful information is conveyed

by properties of abstract models. We should sometimes pauseto reflect on the-
orems, besides proving new ones, especially when, as is the case in logic, they

concern our own activity.

One theorem that is includedin all introductory courses, perhaps the only one

always proved, is the completeness theorem. It deals precisely with questions of

truth; we will discuss what it has to teach about mathematical activity and refer

to Lolli (1995) for a more general appraisal of its import on‘semantic matters.

1 Logical truth

The starting point of these reflections is that there is no place for truth in

mathematics, no so-called mathematical truth. If we look at (statements that
are labelled) theorems in any written mathematical text, in no one of them do
we find the word ‘true’. Theorems are statements which are accompanied by

arguments—so-called proofs—linking them to others and eventually, by itera-

tion, to statements called axioms of a theory. The link is that of logical conse-

quence. There is no theorem which upon careful inspection does not turn out to

be a logical consequence of the axioms. Hence every theorem is a statement B

for which there is another statement A which is a conjunction of a finite number

of the axioms of the theory and such that A — B is logically true.

This is a fact, not an a priort definition of mathematics, although it could

be converted into one. Actually, it has been done, not by formalists but by
mathematicians of quite different philosophical bents. At the turn of the century
mathematicians had to make sense of the axiomatic method, never before so
powerful and pervasive. Scholars with such a variety of outlooks as Poincaré,

117
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Hilbert, Enriques, Pasch, Peano, and others all gave this same characterization

of theoremhood,even if they did not use our logical terminology. We recall just

one example, dating from still unsophisticated times. Moritz Pasch (1882, p.

98) warned that in order for geometry to becomea truly deductive science it

was necessary that the derivations of consequences be independent of the sense

of geometrical concepts, as they were from pictures.

In the course of a deduction, it is allowable, and it can be useful to

think of the meaning of the involved geometrical concepts; but it is

by no means necessary; when it becomes necessary, it is a symptom

of a defective character of deductions, and of the inadequacy of the

propositions assumed for the proof.

He also stressed that, if a theorem is deduced from a set of assumed prop-

ositions, called generators, then the value of the deduction surpasses the original

goal: by changing the geometrical concepts in the generators, with no supplemen-

tary work one gets a new proposition which is a consequence of the transforms

of the generators.

It has been argued that the logical definition of theoremhood does not exhaust

the philosophy of the founders of modern axiomatic methods, but when you have

said what a theorem is, it is difficult to see what else you need.

It could also be argued that the logical definition would be a good one,since

it would be consistent with, and would take seriously, the fact that so-called

mathematical statements are formulae. It is their being formal words devoid

of any meaning that allows and explains multiple interpretations; hence the

applications of mathematics. There is nothing to be gained by substituting a

fixed abstract meaning to the plurality of potential meanings. It only makes

it more difficult to come back to the concrete ones in ordinary applications.

Nobody knows whatit really means to substitute a meaning, unless by passing

through an invariant form. In his confused way, Pasch was quite clear about

this.

Any other characterization of theoremhood, especially in terms of truth (ei-

ther objective, say in a universe of sets, or conveyed by assertability conditions,

for example, by a truth-founding notion of proof) introduces from the outside

unnecessary concepts. When a mathematician says that some proposition is true

in the universe of sets, he (or, once for all, she) is stating a theorem of ZF; he

could have in mind a modelof ZF with additional structure, but if he is capable

of describing it then he is doing nothing else than enunciating a new axiom,
and its consequences. If not construed in an eliminative way, founding concepts

such as truth by Tarski’s analysis are bound to import (either vagueness and
unregimented intuition or) higher and higher abstract notions in an unending
ascent.

Logical truth itself is not an easy notion. But logical truth is not a notion of

truth and does not require any definition of truth. ‘Logically true’ means ‘true

under any interpretation whatsoever’, and this implies ‘true under any notion

of truth’—granted only compositionality with respect to the logical particles.



Logical completeness, truth, and proofs 119

Logical truth is all kinds of truth, hence no special truth. An interpretation

might be a mappingin a set-theoretical structure as it could be a translation in

a natural language, each with its own more-or-less explicit notion of truth. Truth

is a concern of the applied mathematician, or of the scientist, or of the layman

as well, for each particular interpretation. We do not want to get entangled in
the question of uniqueness of truth, but it is likely that truth of common-sense

physics is quite another truth than that concerning elementary particles.

Weare referring of course to logical truth as defined in contemporary math-

ematical logic. Logical truth has been tailored to the needs of the mathematical

method. The multiple-interpretation version comes from the practice and theory

of the axiomatic method, and it is by no means a natural one (though one can

find some anticipation as far back as Aristotle). In the nineteenth century there

were still at least two other competing notions in logic, that of necessity and

that of the laws of thought. They were hard to define, and with mathematical

explication they faded away; as usual with a scientific definition, something of
the intended meaning has beenlost, but this does not mean that we cannotstill

be interested in it; actually it lurks in our minds when wetend to attribute to

logic the force of a conclusive argument, or we take it as the bannerof rationality.
The great success of mathematical logic is to have shown that all of logic is

independent of a definition of truth (and luckily so, since the latter is undefin-

able). In modern logical theory, truth is a technical but dispensable device, as

has been explained by Quine (1970, Chapter 3). To say that a statement is true

is tantamount to uttering and asserting the statement. This does not mean that

a truth predicate is useless:

where the truth predicate has its utility is in just those places where,

thoughstill concerned with reality, we are impelled by certain techni-

cal complications to mention sentences... [and this happens in par-

ticular] where we are seeking generality.

For example, ‘Tom is mortal or Tom is not mortal’ cannot be generalized by

quantifying over humans (as with ‘Tom is mortal’, ‘John is mortal’,... , and ‘all

men are mortal’), nor by quantifying over predicates, because the statement is

somehow about a sentence and not about reality. We want to say that every

sentence of the form ‘p or not-p’ is true, so we have to quantify over sentences.

These become, through quotation, terms in a meta-language, and we need then

a device of disquotation, the truth predicate, to get the truth conditions: ‘p’ is

true if and only if p. Unfortunately, by Tarski’s analysis, the truth predicate ‘is

not eliminable by any facile paradigm, only in a devious way if some powerful ap-

paratus is available’. But it is, in a roundabout way: we substitute the statement

that every sentence of the form ‘p or not-p’ is true with the statement that the

formula p or not-p is logically true, and we quantify over interpretations instead

of over sentences; then to prove equivalence we use the completeness theorem in

the substitutional version (a formula is valid if and only if every substitution of

its schematic letters with formulae of a language—say arithmetic—transformsit

in a true sentence of the language).
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2 Proofs

Since we started with questions of fact, the fact cannot be denied that ‘truth’

has a prominentplace in the discourses of mathematicians,if not in their written

texts. They use it both in the course of conceiving a theorem andin discussing

their progress with colleagues, and when philosophizing. The latter can be dis-

missed, since it seldom attains the level of a consistent position; see, for example,

(Penrose 1994), where the most recurrent words are ‘unassailable truths’, to refer
to properties of the natural numbers, supposedly accessible to the human mind

while inaccessible to machines (see also (Putnam 1995)). When philosophizing,
mathematicians are caught in the coils of the sterile traditional philosophical

schools, as has been denounced by Hersh (1979). We believe that it is possible

to make sense of the way that mathematicians talk of truth, while at the same

time saving the central place of logic in the definition of mathematics.

When mathematicians assert their statements ‘B is a theorem of theory A’,

or ‘A — B is logically true’, they might be telling the truth or not. If there is no

truth in mathematics, there is a problem of the truth of mathematics. While

theorems have no truth, the fact that a statement is a theorem is a fact that can

be either true or false. Mathematics in polished form is a kind of speech, and we

could simply assert ‘A — B is logically true’ in the normal flow of discourse. But

to add emphasis, we often say ‘we assert that A — B is logically true’, ‘it is a

fact that A — is logically true’, ‘it is evident that A — B is logically true’, or

sometimes‘it is true that A — B is logically true’; it is the italicized ‘true’ that

is in need of explanation. It is not pleonastic, as the logical theory would haveit.

Orit is, from a logical point of view, but the emphasis suggests that there is more.

It warns that we have done something to verify the statement before asserting

it. We do not want to confuse truth and verification; verification is needed here

as it is for all scientific statements, but verification has a very special character,

because of the special character of statements of logical truth.

The truth of ‘A — B is logically true’ is not a mathematical truth, it is

a truth of this world, though a world enriched with abstract entities (such as

linguistic types). It says that if we take any interpretation whatsoever, we can

safely anticipate that A — B will come out true under that interpretation.

The assertion certainly does not describe any simple empirical fact; it shares

more of the nature of natural laws, at least in the sense of having a universal

character. Universal true propositions (like ‘all humans are mortal’) are never
checkeddirectly, say by enumeration, or inductively; they are always established

in an indirect way, for example deduced by some other morebasic physical laws.

We are not allowed this move for ‘A — B is logically true’, unless to delay

things, since at most we would only possibly find some other hypothesis to add

to A, if we had overlooked some. Logical truth on the other hand can seldom be

shown to hold by a straightforward verification of the definition, the latter being

infinitary and concerning such vague entities as interpretations.

Here comes, as a blessing, the completeness theorem, together with twenty

five hundred years of mathematical practice. The theorem asserts that whenever



Logical completeness, truth, and proofs 121

A — B is logically true, there is a proof of it—an amazing fact not true for other

kinds of universal laws, or we would have a strong case for omniscience. It has

been remarked by Kreisel (1967) that the completeness theorem also showsthat

well-defined set-theoretical interpretations are sufficient, but this is no decisive

gain—if it is not a loss, as far as the richness of interpretations is concerned:

logical truth remains infinitary, although better mathematically defined, with

respect to set-theoretical interpretations.
In fact mathematicians are usually busy at building proofs, not just uttering

sentences; the mathematical discourse is not made only of statements of the form

A — B,but of these accompanied, as we said, by proofs. This is why a theorem

is introduced with a warning, that the authoris going to establish it: what he

means and hesays is that ‘there is a proof that A — B is logically true’, and

then he always proceeds to give one.

The statement ‘A — B is logically true’ must be true in the same sense

as any scientific statement (we fully endorse the plea of Maddy (1998c) for

naturalism): all scientific truths must in a sense be proved; but it is difficult
to define ‘proof’ in general; it is of the same order ofdifficulty as defining the

scientific method. One could amass several specifications, say that a proof is

a logical argument, possibly supported by experiments, rationally convincing,

giving irrefutable reasons to accept its conclusion. But these notions, having to
do both with objectivity and with belief-building, are undefinable. The plain

fact is that the prover argues until people say: ‘OK, we are convinced’. A logical

proof is something different. First of all it is homogeneous to the statement to
be proved, being made of the same kind of formulae as the conclusion itself.

A proofis a finite structured object; we can also verify it mechanically. If we

are looking for a proof, we can search in a space offinite objects. But thanks to

the validity of the rules a proof is a label bearing the notice: “This is to certify

that A — B is logically true’. If we recognize and accept the object as a proof,

we have as an extra bonus logical truth. This is the good news: logical truth

becomes inter-subjectively and effectively checkable when a proof is given. Its

overall structure allows direct checking of the relevant syntactic features, instead

of infinitely many interpretations. When sufficiently detailed, proofs allow the

verification of (the truth of) something being a theorem to become a kind of
empirical search and verification in the space of finite combinatorics (though not
necessarily confined to combinatory means). They may have other functions,

but this one certainly cannot be denied.

So this is the good news, but good newsis always accompanied by bad news.

Through the above argument, the main theme hasshifted from that of truth in

mathematics to that of proof in mathematics, with its web of questions: formal

vs. informal proofs; how formal a proof can be; how formal a proof should be;

surveyability of proofs; long proofs; mechanical proofs; what kind of confidence

a proof can give, what kind of certainty, and so on and so forth. There has been

a lot of discussions on these topics in the last years, especially in connection with

automation of proofs and computer-assisted proofs; I shall not try to summarize

the discussion, but shall concentrate on two points (as a sample of the literature
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see (Appel and Haken 1986), (Davis and Hersh 1980), (Lolli 1986), (Detlefsen
1992), (MacKenzie 1995), (Swart 1980), and further references therein).

The first bad newsis that ‘finite’ is an elusive notion; it can easily convert

itself into ‘exceedingly long’ and ‘unmanageable’ in the trade-off between preci-

sion and length. One could safely say from this point of view that perfect formal

proofs do not exist. If they exist at all, they exist within a computer, be it made

of silicon or of neurons, and we cannot put our hands on them. Verification

becomes again a matter of indirect persuasion.

Not only do formal proofs not exist in a surveyable sense, but they do not

seem to exist even intentionally, since mathematicians do not conceive their

proofs as following logical rules. No mathematician, indeed no sane person,

makes logical deductions according to codified rules, but for those steps so easy

and natural that any person does them also in real life. But what is more

damning is that mathematicians do not seem to be aiming at building a logical

proof. They do not see themselves as craftsmen building finite objects. Their aim

is to convince their peers, to have them repeat their mental processes, in order to

lead them to see as they see the inescapable conclusion. Notwithstandingthelip

service paid to logic, proof is apparently all that has been left out of the logical

definition of consequence and proof.

Attitudes and practices concerning proofs being what they are, one can only

rejoice at their success; problems are not to be solved by decree; we cannot

impose uniform and unnatural standards. (See Manin’s contribution (1998) to
this volume for a balanced view.) We can only try to makesenseof the situation

by ensuring that there is no contradiction in the tension between formal and

informal proofs. Formal proofs are the ideal objects asserted to exist by the

completeness theorem; by informal proofs we mean those arguments that are

explicitly produced by mathematicians.

3 The mathematician as a meta-mathematician

Here again the completeness theorem comes to the rescue. The theorem says

that, no matter how it is established or accepted, the fact that a sentence is a

logical truth, say that God sees it, or a Greek oracle says it, implies that its

proof exists.

What people, who are not gods, do is to argue and to reason. That is

their nature as language-speaking beings. They communicate through words

and pictures and gestures. Since thought has nothing but itself to reach the aim

of building a proof, we would expect that what is offered as a proof is just the

report of the actual reasoning that has been done. We would expect the actual

reasoning to bear some structural resemblance to the final object, which is itself

(called) a linguistic text. But it need not be so. The objects need not resemble
the machinery they are produced by. Final formal proofs are a kind of limit to

which the proofs tend through a tangled web of abstract, infinitary, intensional

reasoning, just as nets of sets converge to points.

When a mathematician argues for a theorem he can use whatever type of
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argument he prefers and considers valid. And he can changestyle in progress.

He can start by noting that something easily follows from the axioms (as when

one begins group theory by proving the uniqueness of the neutral element), then

pass to the semantic definition and talk of structures and operate on them.

Later he can interrupt this line of thought, and start doing computations, thus

following formal rules, or even insert a computer printout. According to the

audience, he might rely more on geometrical insights or else expound analytical

considerations. He can stick to the language of the problem or explore what

Hilbert called impure demonstrations. It does not matter. When his actual

reasoning is accepted by the community in the large (not only by restricted
groups of specialists) it is always the case that this reasoning is recognized as

being or containing a sufficiently detailed set of instructions to build a proof.
The existence of the formal proof is guaranteed also if the mathematician did

not intend to reach one,if he has for example a purely rhetorical conception of

logic. Of course when a proof is accepted the community as a whole could have

been led astray by the prestige of the author, or by other factors such as the will

to believe, but this is not a mathematical fact, it is a sociological fact.

It is usually said: ‘the proposed argument could be converted into a formal

proof, given enough time and resources and patience’. But the conversion need

not consist only in breaking a step into smaller steps, or in expanding modules.

It could contemplate a call to the completeness theorem itself, to replace a whole

chunk of impure reasoning and restore the proper language. It could be in the

end a non-effective affair, as non-effective as the completeness theorem itself.

One could, however, object that in the case of a very informal proof the math-

ematician has not proved the theorem, but has at most shown that there exists

a proof. This description can be accepted, together with the related one of the

mathematician as a meta-mathematician. First of all such description is realistic;

the mathematician acts as a general scientist, often relying on consequences and

side effects to show that a theorem must hold. Secondly, it explains the fact that

mathematicians prefer to work with stronger theories, rather than with logically

strictly sufficient assumptions. They like set theory, because its languageis less

mathematical and more akin to natural ones (somesayit is a logical language).

This preference tells us a great deal about the meta-mathematical attitudes of

mathematicians. Greater ease of finding proofs, even shorter ones, in stronger

theories can be formalized by reflection principles. Probabilistic proofs of the

existence of a proof, such as the zero-knowledge proofs of S. Micali and S. Gold-

wasser, and interactive protocols could fit into this meta-mathematical frame

(see the expository papers of Buhler (1986) on zero-knowledge proofs and of

Cipra (1992) on the work of L. Babai’s team).

But this is an extreme andpartial position: if actual reasoning need not bear

a resemblance to the structure of the formal proof, it can bear some resemblance,

not only in the formal fragments always present, but in the structural develop-

ment. Then we are entitled to say that the informal proof is a sketch of the

formal one. The similarity of informal and formal proofs is perhaps still more

surprising then their divergence. The formal proof in itself is not a discourse,
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let alone a reasoning; it is a chain of abstract elements connected together ac-

cording to simple rules. But in a Paschian sense it can be seen as a schema of

an actual reasoning. Trained mathematicians are able to reason formally in this

way, forgetting the meaning. Now this possibility is also a consequence of the

completeness theorem, not of what it says, but of its being provable at all, or

of the way it is proved. It is a consequence ofthe fact that the rules for which

completeness holds and by means of which we enchain formal derivations have

been isolated, or abstracted from a long history of argumentative practices.

The rootedness of completeness in human history and nature might enhance

our confidence in it, but does not make its truth less amazing. We can probably

accept that it is possible to build (or to prove that there exists) a finite structure

which encodes the information relative to the fact that a logical truth holds; but

that this code, compressing information concerning the possible interpretations

and what happens in them to our formal sentences, should have a parallel in

what goes on in our brains (or is reported as such by the language) is a new

version of pre-established harmony that does not cease to surprise.

Could it be that the rules are laws of thought? It is unlikely, and not even

meaningful; we do not know what a law of thought could possibly be. In any

case we do not have a completeness theorem for this notion, but only for the

extensional one.

4 The psychology of mathematical thinking

The question however of how mathematicians can reason formally deserves in-

vestigation. ‘The psychological literature does not help us much; scholars arestill

debating pseudo-foundational issues, such as whether there are mental laws or

not; for two competing approaches, see Johnson-Laird (1983) and Rips (1994).

To reason formally means combining formulae and at the same time capturing

the notion of logical truth. How do weperceive logical truth (in itself, apart

from and preliminary to the proof), or how do wearrive at it?

When a mathematician begins his argument (let us not consider for now

false starts) to reach B, or somestill unknown or confused thesis, he thinks

of A, or better, since one does not think of a formula, he builds an image, a

mental model of A. In the usual jargon, he considers a structure in which A
is true. ‘The syntactic elements of A suggest the relevant features to visualize

(relations, functions), and their mutual connections. After setting the stage,
the mathematician then goes on describing what he sees as being true in the

structure, possibly after active intervention on his part to disclose some hidden

properties.

If the conclusion B is acceptable as a logical conclusion, however, there must

be something else; if a statement is true in a structure it is not a theorem of

the theory having that structure as a model, but for special cases of complete

theories—a notion mathematicians are seldom awareof, and in any case complete

theories are rare and exceptional.

In the end, conclusion B is true not only in the envisaged structure, but in all
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those satisfying A. People say that they perceive truth in a structure, while

what they are doing is more (orless if you prefer): they are perceiving logical

truth. It must be the case that the mathematician is using by experience only

those properties of the structure which are actually shared by all models. This is
moreeasily said than done, or explained how it is done. But on second thoughts

it could not be that mysterious. This notable performance could depend on the

nature of seeing.

Seeing is not a passive action, not even at the physiological level, where

neurophysiology showsthat it is heavily theory driven, the more so for abstract

objects. To see a mathematical object we have to know at least that we want

to do mathematics. We do not see a triangle, even if we have three points in

front of us, unless we are disposed to do geometry. Otherwise, we could also

see a graph. What we see depends on the problem and on the theory we are

developing.

In mathematics, seeing does not consist in seeing a drawing or a particular

concrete set. Mathematicians see structure, not a structure. Truth in a struc-

ture, which figures so prominently in the mathematical discourse, would not be

a problematic notion, but for the fact that structures are not there to be seen.
When people say that they are describing a structure they are not describing

what they see, even with the mind’s eyes, as a pre-existing reality. They are

expounding a (form of) description and at the same time seeing what the de-
scription purports to be about.

This means that mathematicians see only things or properties describable in

words. Sometimes words may be lacking and it takes some time to pass from

the sensation of grasping something important to a descriptive statements, with

new words which have to be invented and mastered—mathematics is the field

where more new words keep being invented.

Mathematicians know, from the axiomatic method (indeed, from the com-
pleteness theorem itself), that when they describe a concept in words, they al-

ways end up with an incomplete description. So the image evoked by A is never

unique; as far as describable properties are concerned, it is the common imageof

a class of structures. And truth in the imagined structure means automatically

truth in a lot of structures falling under the same description.

Different models may differ for negligible particulars, or else for momentous

ones, but such as not being expressible in words (of the language used). A good

example is that of non-standard models of arithmetic; we have an overall image
of them, but we cannot say from within how theydiffer from the standard one,

at least using statements of first-order arithmetic. We cannot really imagine

a model being non-standard if we are working in it according to arithmetical
axioms; we have to focus our attention on an explicit non-standard element.

When weare really able to say, not just to see, in the language of arithmetic

that we have two different models, then we enter the realm of independence

proofs.

So a proof begins by stating the hypotheses and thus seeing somestructure.

Sometimes the proofs end in the same way, since the conclusion is easily seen
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in the picture, or with a few added elements. It is the case of Euclid’s proofs

consisting of just one word: Look! But also in this case there is some logic

involved. The very possibility of forming a mental model of the assumptions

depends on the assumptions being consistent.

The last statement appears to be contradicted by proofs by contradiction, or

in some cases of false starts: here one states a (later to be shown) impossible
hypothesis, but seems to be able to visualize it, as in a normal proof, even to

draw (part of) a picture (later to be shown incompletable). The reasonis that,
in stating a hypothesis, one is not really seeing, but just carefully considering a

description and preparing to look at the consequences of the description. The

image is so to speak held over; the picture is blurred in critical points. If the

description turns out to be consistent, then one can safely see the related image.

The explanation is given again by the completeness theorem, in the equivalent

form of the model existence theorem: if a set of sentences is syntactically con-

sistent, then it has a model. If the description turns out to be inconsistent, the

image was an illusion, not unlike those we havein visual perception. But contra-

dictions are impossible to visualize, they can only be stated in words; this is one

of the difficulties of psychological theories of mental models which are presented

as alternative to logic.

Seeing and deducing are tied together. If the conclusion is not immediately

evident in the model associated to the assumptions, then the proof develops

the description in a discursive way, enlarging the view, adding details—always

suggested by the syntactic structure of drawn consequences—until the conclusion

is seen by everybody.

A good proof is going to give the reason why the conclusion depends on the

assumptions. Different proofs give different reasons. The reader is invited to

reflect on different proofs of his favourite theorem; mine in the present contextis

Euler’s theorem on connected simple graphs: such a graph has an Eulercircuit

if and only if the degree of every vertex is even. The degree of a vertex is the

number of different edges incident on it. A circuit is a path whose last vertex

coincides with the first one. An Eulercircuit is a circuit that contains each edge

of the graph just once; it is only an Euler path if it does not contain all edges.

Call a connected simple graph an Euler graph if every vertex has an even degree.

The necessity of the condition is obvious; to some also the sufficiency; this is

probably why Euler did not prove the theorem; see Fowler (1988) for further
information.

One proof, reported in Galovich (1989, pp. 303-13), is roughly as follows.

Suppose that there exists an Euler graph without Euler circuits, and let G be

one such graph with a minimum numberof vertices. Consider in G a maximal

circuit with no repeated edges 0, which cannot be an Eulercircuit. Then G—ca is

obviously defined and easily seen to bestill an Euler graph, with a lesser number

of vertices; it has a connected subgraph with a vertex in common with oa; here

there is an Euler circuit; by linking it with o, one contradicts the maximality of

ao. The details can all be filled in and are not important; the point is that this

proof does not show how the hypothesis of the even numberof edges works, but
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;t must be verified in order to apply the induction hypothesis.

There are algorithms to define Euler circuits in Euler graphs; one such algo-

rithm is that of Fleury, which says that each move in the stepwise construction

of the circuit is indifferent, so long as you do not blatantly blunder: if vertex

A has been reached, take as next edge any edge incident on A, unless by doing

so you put yourself in the impossibility of continuing, since the graph remaining

after taking away the path so far constructed turns out to be disconnected. The

above sketched proof could not be transformed into a proof of the correctness of

the algorithm; for this, one needs a proof based on the fact that with an even

number of edges one can always enter any vertex from an edge and leave by

another, or conversely.

The proof might run as follows, again by induction. Given an Euler graph G

with n +1 vertices, let us consider a vertex A; A could be the vertex reached at

any stage in the construction of the circuit. If there are only two edges leaving

from A to the same B, thenit is easily seen how they can be eliminated, reducing

G to a graph with n vertices. If there are two edges b and c connecting A to B

and C’, then there are two cases. Suppose that B and C' are connected, and 7

is an Euler path connecting them; then by subtracting from G the cycle formed

by a and 6 and c one can apply the induction hypothesis; this means, however,

that, if we enter A through b, then by going to C' through c and coming back to

B through 7 we can resume the thread in the remaining part of the graph.

If B and C are not connected, then we get a contradiction; by eliminating

A, b, and c and identifying B and C’ we obtain an Euler graph; but leaving B

through one of the old edges incident on B—an odd number of them—we can

come back to it only through one of the same, and similarly if leaving it through

an old edge incident on C’; count of parity shows that this is impossible. The case

is not difficult but it is instructive; it is an example of what we said above on the

visualization of impossible situations; the drawing one contemplates is the same

as before, with parts of the graph shown under B and C’,, some edges and some

dots and dashes; but it does not exist. There are other cases to consider—more

than two edges incident on A—but they are not meaningful.

Both proofs are almost formal, in the sense that they are written in the lan-

guage of the problem; they can be formalized by adding details without changing

their overall structure; but they also show,in different ways—in our opinion one

more than the other—whythe conclusion must hold in the envisaged Euler graph.

5 Conclusion

Wehave beeninviting you to reflect that the old-fashioned features of the logical

notion of consequence are in a sense preserved in the formal one, or at least they

are not incompatible with it. We want to check validity in all interpretation; we

know that a formal proof encodes by syntactic structures all the relevant infor-

mation concerning possible interpretations; a proofis a link between assumptions

and thesis realized by syntactic transformations; to show that it is possible to
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transform the assumptions in the thesis and to point to the direction, if not actu-

ally doing all the steps, of the transformation we give compelling and convincing

reasons that a particular use of the premises will get the conclusion (that the
latter is contained in them,as it used to be said in the logical tradition). Very

often, these reasons consist in just seeing how the premises get transformed.

At the end, we must anticipate an obviousrejoinder: all this talk of theorems

in the light of the completeness theorem should apply self-referentially to the

completeness theorem itself. But it does, with some peculiarities.

As a mathematical property, completeness is best formulated and proved in

set theory, having to deal with languages and interpretations. It has a proof—

indeed several proofs—not too long, quite manageable; this does not mean that

is absolutely certain; proofs serve to show the reasons why we should accept a

theorem. As a set-theoretical notion, it shares in principle the possible inter-

pretations of the set concept, which admittedly are not easy to define. Among

them there is the anthropological one referring to the languages we use and the

thoughts we think.

On the other hand, being equivalent to the Boolean prime ideal theorem,

and only a little less strong than the axiom of choice, the nature of completeness

is more that of an axiom than of a theorem. We have not been discussing

axioms, but this much can besaid, if not exhaustively: that axioms are accepted

for their usefulness, and that they usually say that we can reason in a certain

way (inductively, or by algebraic manipulations, or by appealing to geometrical

concepts such as continuity). The completeness theorem partakes of all the

mathematical argumentsin favour of the Boolean prime ideal theorem; moreover,

it has a great deal to say about reasoning.
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Mathematics as language

Edward G. Effros

1 Introduction

According to an anecdote popular among physicists, it is easy to tell when you

are speaking to a mathematician: if you should ask him ‘do you or do you not

own an umbrella’, it is likely that after some thought he will answer ‘yes’.

Ever since mathematics was codified in terms of symbolic logic in the early

part of this century, it has been understood that all of mathematical discourse

consists of tautologies of the above variety. Owing to the seemingly absolute

precision of axiomatic deduction, few mathematicians are concerned with the

grammatical truth of their subject. Thus despite the fact that they recognize

that the axioms of logic are necessarily incomplete, and even possibly inconsis-

tent, most mathematicians are confident that any future difficulties will yield

to technical adjustments. ‘This complacency has been reinforced by the remark-

able progress that logicians have madein delineating the limits of the axiomatic

method.

By contrast, in the broader context of meaning, questions of truth are of

growing concern to a wide range of mathematicians. In a trend that is partic-

ularly evident in the United States, a number of individuals both within and

outside the profession have questioned the methods and even the purposes of

mathematics. Many of my colleagues were dismayed with the recent publication

in Scientific American of an article entitled “The death of proof” predicting a

major shift in the way mathematics would be done (Horgan 1993). This view

was also promoted by D. Zeilberger (1993). In that article he predicted that

with the ever-increasing use of computers, the very nature of mathematics will

change. He went on to prophesy:

Although there will always be a small group of ‘rigorous’ old-style

mathematicians... , they may be viewed by future mainstream math-

ematicians as a fringe sect of harmless eccentrics...

With the weakening of the mathematical establishment in Eastern Europe,

mathematics has become more monolithic. As a result, what is fashionable in

the United States is more likely to take root elsewhere, and these ideas must be

taken seriously by mathematicians everywhere. I believe that these challenges to
the discipline are due in part to a fundamental misunderstanding of the nature

of mathematical thought. This meeting has provided a timely opportunity to

131
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explain to a wider audience what many mathematicians believe constitutes the

‘truth’ that may be found in mathematics, and the manner in which we believe

that it is threatened by recent developments.

This chapter begins with a brief explanation of why I believe that mathe-

matics is in essence a language. Next I summarize some of the more disturbing

attempts that are being made to change the ways in which mathematicsis taught

and used. In subsequent sections I will try to show that these new methodsare

likely to damage the basic content of mathematics. I conclude with anillustra-

tion of one of the many ways in which mathematics is continuing to evolve, by

considering recent attempts to quantize mathematics.

2 Mathematics is most valued as a language

The recent solution of Fermat’s problem undoubtedly came as a blow to a large

number of amateur mathematicians. Fortunately, there is no reason for despair:

many problems which are even more important remain open. Amateurs and

professionals alike cherish the idea that they might some day solve a famous

open problem. The formulation and solution of problems has provided what is

regarded by many as the most characteristic feature of the subject. It must be

stressed, however, that the primary purpose of problem solvingis to facilitate

the discovery of new mathematical concepts, and to gauge the success of these

methods. Those involved in the solution of Fermat’s problem have been quick to

point out that the new ideas used to solve the problem are much more important

than the result itself.

Much of mathematical research is devoted to developing new machinery with-

out specific problems in mind. The success of modern mathematics is in large

part due to the axiomatization and elaboration of such notions as connectivity,

symmetry, smoothness, and infinite-dimensional analysis. These represent fun-

damental developments in the language of mathematics, and it is precisely these

conceptual advances that have proved to beso essential to modern science.

Our premise is that mathematics is a language since it provides both a con-

veyancefor and a substantiation of our thoughts. It is that aspect of mathematics

that explains the key role it plays in modern science. This is well illustrated by

modern physics. One need only briefly examine current journals to appreci-

ate the extent to which modern mathematical concepts such as curvature and

connectivity have been adopted by the physicists. Although they are not as

concerned with mathematical precision, they are fully aware that one cannot ef-

fectively use the modern mathematical tools without a deep understanding of the

associated deductive machinery. The success of modern physics is in no small

part a consequence of the mathematical language they haveat their disposal.

3 Three challenges to mathematics

Two of the recent criticisms of traditional mathematics are pedagogical in nature.

Mathematical research is inextricably linked with mathematical education. The
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imperative to pass on the theory to succeeding generations of young mathe-

maticians is particularly strong in mathematics, since young investigators play

a central role in the subject. Furthermore, teaching mathematics requires that

researchers reformulate and clarify their work, and to a large extent it is this

process that has consolidated our mathematical knowledge. It is thus not sur-

prising that challenges to the subject are often first reflected in attempts to

change mathematical instruction.

It is argued that mathematical fluency ts being over-emphasized in the schools.

Quoting from two documents widely circulated by the National Research

Council:

Since few arithmetic calculations are done most efficiently using pa-

per and pencil, the level of arithmetic skill that is the current goal in

most elementary school class roomsis far in excess of what is needed

for tomorrow’s society. (Research Council 19896)

and

Weakness in algebraic skills need no longer prevent students from

understanding ideas in more advanced mathematics. Just as compu-

terized spelling checkers permit writers to express ideas without the

psychological block of terrible spelling, so will the new calculators

enable motivated students who are weak in algebra or trigonometry

to persevere in calculus or statistics. The argument has been made

that with the availability of calculators and computers, students with

only a minimum background in the basic techniques of algebra or

even of arithmetic should be able to take suitably designed calculus

courses. (Research Council 1989a)

Many of the new textbooks have taken the solution of ‘problemsarising in

the real world’ to be the primary purpose and motivation of mathematics. These

texts base their approach on communicatinga ‘feeling’ for mathematical concepts

based on pictures, computer experiments, and qualitative arguments.

Proofs are indeed dead in secondary and even in college education in the

United States.

In a dramatic change of curriculum, the method of proof has been virtually

eliminated from the high schools and the elementary college courses. Recently

Steen, a well-known figure in mathematical education, examined a large sample

of calculus examinations given in a numberof colleges. He reported:

You find very rarely—only 1 problem out of 20 examinations—the

kind of question that used to be very common 20 to 30 years ago:

‘State and prove ...’ problems dealing with the theory of calculus or

with rigorous calculus have simply vanished from American calculus

examinations. (Steen 1994)
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This development was in part a response to an earlier misguided attempt

to introduce formal set-theoretic methods into elementary school mathematics.

Despite the warnings of a number of mathematicians that it was a pedagogical

error to introduce these notions to primary school children, the ‘new mathe-

matics’ swept the nation in the sixties and seventies, with often catastrophic

consequences.

The elimination of deductive methods is particularly evident in some of the

latest ‘reform’ calculus texts, in which some of the fundamental deductive build-

ing blocks of the subject, including the mean value theorem, have been dropped

from the syllabus. Turning to a striking quotation from a recent guideline for

educators,

. secondary schoolis [not] the place for students to learn to write
rigorous, formal mathematical proofs. That place is in upper division

courses in college.

This was quoted in (Steen 1994)—thelatter contains an excellent analysis of the
current fashion to de-emphasize proofs.

It is being claimed that computers have rendered many of the methods of

mathematics obsolete.

It is indeed the case that many of the concepts of mathematics were developed

precisely because we did not have efficient methods of computation in the past.

Thusit is claimed that the mental gymnastics that these methods required now

serve little purpose. It has been suggested that mathematicians would better

spend their time if they approached mathematical problems from an empirical

point of view. With the advent of computer technology, we can now perform

‘experiments’ in mathematics which can indicate what is ‘likely’ to be the case.

Someeven claim that our search for the certainties of logical deduction no longer

serves any useful purpose.

4 Language and fluency

The current educational reform movement is but one in a long series of exper-

iments that have been attempted in the United States. These have been prompted

by an increasing feeling of despair throughout the academic community. The de-

cline in the preparation of American students in virtually all forms of intellectual

endeavor is universally acknowledged (see, e.g., (Chira 1991)). The impact of
this deterioration has been particularly severe in mathematics, since the disci-

pline requires many years of preparation. As in dance or music, most students

who have not received a reasonable mathematical backgroundin their early years

are irreparably damaged by the time they reach college.

Reviewing the first two challenges considered in the previous section, we note

that they are both concerned with the language of mathematics. The abilities to

do unassisted computations and frameprecise proofs are the two most important

components of mathematical fluency. Thus the proponents of these changes are
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advocating that we dilute our attempts to teach our students how to use a
coherent system of mathematics.

The argument that we should instead concentrate on teaching ‘problem solv-

ing’ methodsrepresents a basic misunderstanding of the purpose of mathematical
education. We do not include algebra in the high school curriculum in order to

enable students to solve ‘word problems’. Although these exercises are essential

for motivating and reinforcing the algebraic techniques, they are not particularly

important in themselves. The reason that we teach algebra is quite simply that

it is an essential part of the language of modern science and engineering, and

that without it, students cannot enter those fields.

Turning to a related aspect of the ‘reform’ movement, it should be noted that

the simple-minded problems used in algebra can inevitably be solved without

algebra by using graphical and computer methods. These methods are elegant

and often require originality on the part of the students. But it is a mistake

to over-emphasize these approaches. Although we must of course encourage

original thinking on the part of our students, once again, the most invaluableskill

that we can give to our students is mathematical fluency—the ability to speak

the language. Without that facility, each student will be forced to continually

‘reinvent the wheel’.

The pedagogical principles underlying mathematics instruction are quite simi-

lar to those used in language instruction. One need only consider what it would

be like to teach a French literature class to students who did not have a basic

knowledge of French vocabulary and grammar. There is no way that a student

can understand a French text if he can only stumble over the simplest words.

But it is just this point that is not acknowledged in the current mathematical

texts. Students who have not fully mastered the one-place multiplication ta-

ble (which is the case for many of our college students today) will learn little
from the pictures and calculators that are supposed to make the subject more

accessible.

Just as it would be ridiculous to claim that hand-held translators provide

a pivotal technology for teaching language, the sameis true for calculators in

mathematics. There is no question that these devices provide worthwhile new

approaches to the subject. However, it does not seem to be understood that

elementary calculations should never be done on a calculator. Imagine the situa-

tion of a student who tries to understand algebra if he does not know arithmetic.

Whenconfronted with the problem of computing (x°)’, he will be disconcerted
by the fact that he has to first calculate 8 x 7. A lack of fluency is even more

crippling when onetries to understand calculus. The fact that one will soon be

able to factor polynomials on a hand-held calculator is completely irrelevant to

the requirement that our students must be able to instantly factor an expression

such as x? — 9.

The current stress on calculators and computers is a distraction from the
primary educational issues. The most immediate cause for theilliteracy and
‘innumeracy’ of our students is the simple fact that they are devoting only a

minimal amountof timeto their studies (see, e.g., (Chira 1991)). These problems
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are rooted in our societal decline, and they must be addressed by political action

to change the attitudes of the citizens toward education.

Regarding the second challenge, the decision to delay mathematical deduc-

tion until upper division mathematics has proved to be disastrous. It is becom-

ing increasingly clear that this is a problem that cannot be solved by remedial

courses—it is just too late for most of our students. We have heard from col-

leagues across the country that it is now virtually impossible to teach basic

courses such as Real Variable theory to our undergraduates. As a result, our

students are grossly unprepared for graduate school. At the graduate level we

now find that many (most?) of our graduate students are simply unable to prove
theorems.

The most pernicious effect of these developments has been the increasingly

popular claim that the basic methods of mathematics, and in particular, the

method of deduction, are not important to mathematics or to society at large.

These attitudes are related to the third challenge to mathematics, which wewill

consider in the next section.

5 Computers and mathematics

Chess provides a microcosm of the world of mathematics. It is now not unusual

for a computer to defeat a grandmaster in a chess game. With the exponential

increase in computational speed that has continued unabated for the last forty

years, it seems only a matter of a decade or so before a desktop, or perhaps even

a hand-held computer, will be able to overcome any human being. If and when

this happens,will the world of chess also be reduced to ‘a fringe sect of harmless

eccentrics’ ?

Some argue that the demise of chess is unlikely. Pointing out the parallel in

athletics, they note that runners have not been discouraged by the invention of

bicycles or cars. We might therefore expect chess players to be sufficiently moti-

vated by the intellectual challenge of the game. Furthermore, it seems probable

that, with time, computers will become a powerful tool for understanding the

nature of the game.

Unfortunately, there is evidence that this is not a valid comparison. It is a sad

truth that most of us find mental exertion much more painful than physicaleffort.

Many regard unnecessary mental gymnastics as more a sign of masochism than

of self-discipline. There may in fact be a physiological mechanism underlying this

phenomenon. Weare told that the feeling of well-being that is experienced by an

athlete is mediated by a chemical system of endorphins and their receptors. As a

result, physical activities such as running can even becomeaddictive. Although

intellectual success can lead to increased self-esteem, and for some can become

an obsession, there does not seem to be a direct biological mechanism that is

involved. ‘Thereis little evidence that we have a ‘mathematics pleasure receptor’

in the brain.
The possible effects of computers on chess were recently examined by Mark

Saylor (1997), a US national champion, in a newspaper report on an upcom-
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ing match between Kasparov and IBM’s program “Deep Blue”. Quoting an

international master (Peters), he wrote

A computer victory would devastate chess, though the impact would

not be felt for a generation. ... I fear that if computers are perceived

to play chess better than humans can, then new future Kasparovs

won’t study chess.... Chess requires years of study to reach the

grandmaster level. If computers are perceived to be the best, the

people with the biggest egos won’t take it up. We'll still have chess

andstill have top players, but not Kasparovs.

Regarding mathematics, it is worth recalling how pocket calculators changed

the public’s view of ‘mental computers’. Fifty years ago there was a select group

of individuals who devoted themselves to performing arithmetical calculations

in their heads. Their remarkable feats attracted considerable admiration from

the public. Today calculators and computers serve as the ‘great equalizer’. Indi-

viduals who enjoy calculating in their heads are regarded as more peculiar than

talented.
Computers have unquestionably rendered certain techniques of mathematics

obsolete. Virtually no one uses logarithmsor slide-rules to do arithmetical cal-

culations any more. A more instructive example, however,is associated with the

problem of integration,i.e., the calculation of continuous sums. This constitutes

the computational heart of the physical sciences, since physical laws are gener-

ally formulated in terms of ‘infinitesimal quantities’ which must be integrated to
make predictions.

Integration problems were first systematically studied by the Greek mathe-

maticians, who tried to determine the areas of simple geometric figures. Of

course it had been understood long before that time that one could approximate

an area by trying to pave the interior with a collection of small rectangles. But it

was the Greek mathematicians who madethe first attempt to develop an exact

theory of areas. They recognized that the areas of ‘ideal’ figures in classical

geometry, such as the interiors of circles, are universally fixed, and that one

might try to relate these constants. Although the Greek mathematicians were

able to find a few such relations, it was not until the seventeenth century that a

general approach was discovered. The fundamental theorem of calculus provided

a magical key for integration, and a significant portion of modern mathematics

grew out of the need to perfect this method.

It has been proposed that if computers had been invented in the sixteenth-

century, mathematicians might not have discovered the fundamental theorem of

calculus. Computers make the evaluation of areas a completely routine exercise.
In order to explore the implications of this idea, it is helpful to dramatize them

with an imaginary scenario. The example is well-known to calculus students.
In 2195, a young applied (will there be any other type?) mathematician by

the name of Dick is asked by his boss, Jane, to find the area A between the

curves

} and = I
1+ 2? y=

 Y=
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and the lines x = —1 and x = 1 (see Fig.1).
Like so many young people today, he turns to his computer and in an instant,

determines that the answer is A = 3.14159... Being a bright fellow, it dawns

on him that this is suspiciously close to 7. Checking further, he discovers that

his hunch is apparently true to at least a billion decimal places. Reporting the

answer to his boss, he asks her why the answer should have anything to do with

the area of a circle of radius 1. After informing Dick that he is wasting company

time, Jane remarks that he might (on his own time) try looking in someof the

old mathematics books. She is under the impression that ‘people used to worry

about such things’.

It is not difficult to guess the end of this story. Dick manages to locate some

antique calculus books. He soon discovers that indeed, the old-timers seem to

have had arcane ways of calculating areas without a computer, and that these

techniques often enabled them to find exact relationships between areas of very

different shapes. But calculusis difficult to learn in the twentieth century, and it

will be even less accessible when it is no longer ‘needed’. After some frustration

with all of the abstract ideas associated with functions, anti-derivatives, and

definite integrals, Dick throws up his hands with the exclamation ‘How could

people have wasted so much time on suchirrelevant questions?’. In fact, if he

were informed of the herculean efforts by mathematicians in the twentieth cen-

tury to extend the fundamental theorem (see, e.g., the Atiyah—Singer theorem),

Dick might be tempted to compare these efforts with the construction of the

pyramids—spectacular, but useless.

If and whenchess, or the fundamental theorem of calculus is abandoned, we

must ask ourselves exactly whatit is that we will have lost. The beauty of chess
as a game is that to become adept, one must understand profound notions of

strategy and tactics that show an uncanny resemblance to the principles of human

conflict. The satisfaction of winning a game was that it seemed to demonstrate a

deeper understanding of these concepts. But human understandingis irrelevant
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if determining who winsis our only objective. If that becomes our perception, the

irrelevance of playing chess in the age of computers will be apparent. Similarly,

‘f our only concern in mathematicsis finding the answer, it is my feeling that the

very purpose of mathematics will be lost. I find it puzzling and ironic that we

are now teaching most of our students how to adjust to a world in which there

is no significant mathematics.

As in the otherscientific disciplines, the most valuable product of our enter-

prise has been discovering concepts. ‘These concepts in turn represent extensions

in our ability to use language, the mediator of human understanding.

6 The continuing evolution of mathematics

Perhaps the most intimidating aspect of mathematics is its symbols. For most

young students,it is the transition from specific numbersto ‘unknowns’that con-

stitutes the most daunting feature of high school mathematics. The next trauma

occurs when letters are introduced for ‘complex numbers’. The biggest, and an

often terminal intellectual leap, is required in calculus, in which the variables are

taken to stand for unknown functions rather than individual numbers.

These successive layers of instruction reflect the evolution of mathematics.

Algebra was the major tool that was missing in ancient Greece. Complex num-

bers first arose in an essential manner in the sixteenth century solution of alge-

braic equations of the third-order. Werecall that the equation

ax? +br+c=0

has the solutions
—b+ Vb? — 4ac

L= ,
2a

One need not introduce complex numbers into this formula, since one can simply

declare there to be no solution if b? — 4ac < 0. Turning to third-order equations,

one may use graphical methods to show that the equation

 

rc? +pr+q=0

has three distinct real roots for suitable values of p and q. Tartaglia and Cardano

succeeded in finding a general formula for these solutions. What distinguished

their result from the quadratic case was that even when one sought real roots,

the formula often required that one manipulate complex quantities (see (Penrose

1994)).

With the invention of the calculus, the focus of mathematics shifted from

individual numbers to functions. In this context, one is most interested in solving

differential equations such as

y’ +ay'+b=0,

where the letters a and b stand for given functions, and y is an unknown function,

rather than an unknown number.
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It was not until the second half of the nineteenth century that mathematicians

fully realized that they werefree to create all kinds of algebraic systems in which

the ‘variables’ stood for completely new objects. It is this trend more than

any other that distinguishes the essential features of modern mathematics. The

key to this step forward was the axiomatic method. In each case one begins

by stating the axioms (such as commutativity) that these variables and their

operations must satisfy. Roughly speaking, this is analogous to the importance

of generalizing Euclid’s axiomsin order to formulate non-Euclidean geometries.

In this century mathematics has grown in innumerable directions. I will

confine this discussion to what is perhaps the most revolutionary change. In

1925 Heisenberg (1925) made the remarkable discovery that one could begin to

understand particle physics provided one introduced quantum variables. Despite

the universal acceptance of this notion in physics, most mathematicians were

hesitant to explore its implications in mathematics. It is only now that these

new variables have begun to have a significant impact on the subject.

In classical physics, the variables correspond to quantities that we measure,

i.e., the observables, and their values depend on thestate of a given experimental

system. To be more accurate, an observable is the measuring device, or ‘meter’

for keeping track of a quantity, and the state describes how we set up the exper-

iment. In the classical mathematical model we assume that we are given a set

of states 2) and a mapping X :Q —R. Theinterpretation is that if we prepare

the system to be in state w € 2, the meter X will register the value X(w). In
order to accommodate uncertainties in the way that we set up our experiment,

it is often useful to extend this notion. Instead of assuming that we are ‘trying

out’ a particular w, we assume that our experiment corresponds to a probability

measure P on 22. In this context X is called a random variable. The idea is

that an experiment leads to a fluctuating reading X(w). In this morerealistic

construction, the best that we can dois to describe the variation of X(w), rather
than assign a particular value a to X. The behavior of X is represented by a

probability measure on R, where the probability that a reading will occur in a

given interval B = (a—¢€,a+ 6) is a number u(B) = P(X~1(B)) lying between
O and 1. Turning to the algebra associated with this system, we have that the

observables comprise an algebra A of functions X on the set 1. It is one of the

first theoremsof functional analysis that, under the appropriate conditions, one

can use integration to identify a probability measure P with a linear functional

P on A satisfying P(I) =1 and P(ff) > for f € A (ie., P is ‘positive’). The

measure pt is determined by the integral relation

[aut = Px) = [x)" dP)
or to put it another way, yu is the ‘restriction’ of the functional P to the subalgebra

of A generated by X. It should be noted that we may regard p as a probability

measure on the set X(Q2). It is useful to think of the numbers in X(Q) as the
values that the meter is allowed to register. This set is also known as the range

or the spectrum of the function X.
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It is a moreor less implicit assumption of classical physics that, in principle,

experiments can be refined. By this we mean that, if we set up our experiment

more carefully, we can decrease the variation of the readings of our observables,

i.e., we can ‘purify’ the state. If this were not possible, the set {2 would be-

come ‘physically unanalysable’—there would be no way to physically distinguish

one part of the set from another. In more technical terms, there would be no

physically meaningful procedure for coordinatizing the set.

Radioactivity provided the first examples of observables that violate the clas-

sical pattern. Any attempt to segregate a sample of radium into more stable and

less stable subpopulations failed. The overwhelming evidence is that radium

atoms are in this sense indistinguishable. One cannot, for example, decrease the

variation of the observable X that measures thelifetime of an atom of radium.

In order to get some feeling for quantum variables, we turn to one of the

simplest of quantum experiments: the measurement of the polarization of pho-

tons. Classically, the polarization of a monochromatic beam of light parallel to

the Z-axis is described by a vector w = (1, we) in the two-dimensional complex

Hilbert space C?. This is an elementary consequence of classical wave theory.

Theelectric field at the plane z = 0 is given by

Ex (t) = Acos(wt ++ ~1) — Re Ael(wtt1)

Ey(t) = Bcos(wt + yo) = Re Belvtt+2)

or, in other words,letting E(t)=(E;(t), Ey(t)), we have that

E(t) = Re pel"

where y = (Ae'¥!, Be'*2). The vector w has length ||~|| = VA? + B?, where
I= Ip ||° is just the intensity of the light beam. For simplicity, let us restrict
our attention to the case that 7 is a vector in R*. Physically this corresponds to

a beam that is polarized in a plane determined by a vector w in the (X, Y)-plane
(complex vectors include circularly polarized waves). We may also use a unit
vector @ in the (X,Y)-plane to indicate the direction of a polaroid filter placed

perpendicular to the beam. The key calculation is that when a beam with state

w passes through a polaroid filter whose state of polarization is 6, the resulting

beam has the state vector (W-@) 6, and in particular it has intensity |(- 6)|?.
In the first decade of this century, it was discovered that a light beam was

composed of particles called photons. It was through the attempt to understand

how these photons‘conspire’ to give the beam its physical properties that quan-

tum mechanicsfirst arose. In this context, Heisenberg proposed that the state

w of the beam is the only physically meaningful quantity that can be attributed

to each of its photons. Furthermore,since the intensity I = ab) simply corre-
sponds to the number of photons in the beam,the state of an individual photon

is completely described by the normalized unit vector, i.e., we may assume that

||| = 1. An individual photon does not have any further properties that can be
used to predict its polarization behavior. Thus when a photon of polarization w
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passes through a 6 polarized filter, all that can be said is that with probability

\(z-0)|? it will pass through and comeout with the state vector 0, and otherwise
it will be absorbed.

In a quantum system, observables depend upon the states in an entirely new

manner. In particular they cannot be modelled by functions or by classical ran-

dom variables, but instead one must use matrices for their description. From the

point of view of mathematics, this is not a completely mysterious development.

In what must be regarded as one of the most spectacular convergences of phys-

ical theory and the axiomatic technique in mathematics, Gelfand and Naimark

showed that complex numbers, functions, and matrices are all examples of a

single simple notion: an element of a C*-algebra (Gelfand and Naimark 1943).
This theory has provided us with the most natural axiomatic extension of the

number concept. As in the case of numbers, the elements of a C*-algebra A can

be added together and multiplied, and there is a *-operation a +> a* which is

analogous to the conjugation operation a ++ @ for complex numbers. (See also

(Jones 1998).) We may also assume that A has a multiplicative identity J. The
analogue of the real numbers are the self-adjoint elements, i.e., the elements a

in A for which a* = a. Furthermore there is a complete norm a +> |\a|| which,
for the complex numbers, is just the absolute value operation a + |a|. Over
and above the usual Banach +-algebraic axioms we need assume only one more

condition, namely that |a*a|| = ||al|.
Restricting to the bounded case, a quantum variable is just a self-adjoint

element a of a C*-algebra A. The quantum states are just the linear functionals

p on A satisfying p(I) = 1 and p(a*a) > 0 for all a in A. To see how quantum
states typically arise, we note that, if A is the algebra M2(C) of 2 x 2 matrices,

and we write a for a matrix

[on O12
G21 A292 ’

then a unit vector yp = (w1, ~2) in C? determines a state py on A bytherelation

2

py(a) = apy = [x Oa] | UAT a] = So candi.
1,j=1

Returning to polarized photons, a simple example of an observable is a device

that will check to see whether a photon is polarized in the direction of a unit

vector 6 in the (X,Y)-plane. To be more precise, we pass the photon through a

birefringent crystal which splits the beam into a beam of @ polarized light and a

beam of light polarized in the perpendicular direction. We then use photomulti-

plier tubes to check which path has been taken by a given photon. Finally we at-

tach these to a meter a = ag whichregisters 1 if the photon is 9 polarized and —1

if it is polarized in the perpendicular direction. As in the case of classical random

variables, we cannot associate a specific number with this procedure since the

outcome will vary unpredictably. Rather it is determined by a probability mea-

sure on the allowed values or spectrum of the variable a (in this case —1 and 1).
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Assuming that our birefringent crystal has the appropriate axis along the

X-axis, ie., if we let @ = (1, 0), the observable a = ag may be identified with the

self-adjoint 2 x 2 matrix

{1 0

o= 10-1]

and a state with unit vector ~ determines a probability measure on {—1,1}
by the relation

[ trau(t) = av v= pola”),

Putting it another way, py is the restriction of the state py to the subalgebra of

M2(C) generated by the observable a. Using this ‘calculus’, it is easy to check

that if a photon comes from a beam oflight polarized at an angle of 45° to @ will

produce 1’s and —1’s with equal probability, i.e., 4 will simply be the measure

which assigns 1/2 to the values 1 and —1.
Without going into any further details, we note that purification is excluded

in this simple model. The ‘physically pure’ state of polarization w necessarily

determines a probabilistic state on the allowed values {—1,1}. This is not a

defect of the model—the implied variation of the observable a corresponds to

the experimental fact that ~ photons are indistinguishable! The limits of our

physical knowledge are clearly reflected by the mathematical structure. On the

other hand, this example provides a typical illustration of how precise mathe-

matical models help one to abandon notions that are not physically meaningful.

In this case, it is predictability that must be discarded.

There is a common misunderstanding among mathematicians, and even some

physicists, that quantum mechanics is an incomplete theory that provides prob-

abilistic distributions because we have not developed sufficiently sensitive instru-

ments. Certainly there will be remarkable discoveries in the future, but most

physicists are convinced that along with such classical notions as energy and mo-

mentum,or the relativistic understanding of time and space, quantum variables

will always play a central role in our understanding of the universe.

A seemingly endless series of books has appeared in which various attempts

have been made to explain quantum theory to non-specialists. A most com-

pelling introduction to the subject has recently appeared in a rather speculative

book by Penrose (1994). In his beautiful exposition, Penrose emphasized that
the quantum-theoretic view of the world is not more restrictive than the classical

picture, it is simply different. Quantum objects have remarkable non-classical

properties that enable one to observe things in manners that are classically ‘in-

conceivable’. Specifically, photons have the ‘impossible’ ability to check things

out without actually ‘being there’. With the advent of lasers and other devices,

it is now possible to witness such physically paradoxical phenomena on a macro-

scopic level (see Penrose’s discussion of the ‘bombtester’ (Penrose 1994, Chapter
V) and (Kwiat et al. 1996)).
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As in other physical theories, the elegance and ultimately the simplicity of

the mathematical framework has given additional credence to quantum theory.

But the reverse is also true. It is unlikely that the theory of quantum variables

in mathematics would have ever been conceived without the stimulus of the

physicists. The study of quantum variables now constitutes one of the most

exciting and vital portions of modern mathematics, but that is a story that

must be told elsewhere (see, e.g., (Connes 1991)).

7 Conclusion

As we hope is apparent from the above discussion, mathematics is continuing

to develop in exciting new directions. This is mathematics at its best, in which

completely new ways of thinking are being developed. The mathematical success

of this program will ultimately be judged by the depth of the rapidly increasing

opus of new theorems that have been proved using these new techniques.

We must make it clear to our students that the purpose of mathematics is

to expand our powers of thought, and not just to ‘get an answer’. As in any

language, we mustfirst acquire an instinctual knowledgeof the basic vocabulary,

before we attempt to use the language effectively. We are doing our students

a grave disservice by de-emphasizing fluency, and we are doing the profession a

disservice by minimizing the importance of conceptual thought.

Science has reached the pinnacle of success in this century. The prospects

for the twenty-first century are clouded. It remains to be seen whetherthereis

a sufficient body of mathematicians who will defend their discipline.
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8
Truth, rigour, and common sense

Yu. I. Manin

To Misha Saveliev on the occasion of his 50th anniversary

The main difficulty of discussing the nature of mathematical truth in 1995 as I

see it is that no new insights into it have been gained since the epoch of deep

discoveries crowned by Godel’s results of the late thirties.

To avoid repetition and to enliven the discourse one can try to put the matter

into a broader context and add a personal note. Both solutions tend to divert the

reader’s attention to vaguely related topics, and I offer my apology for choosing

these dubioustactics.

This chapter is divided into three parts:

a) musings on the history of mathematics perceived as a genre of symbolic

(or semiotic) games;

b) a discussion of truth and proof in the context of contemporary research
(centering on a recent controversy prompted by a letter by A. Jaffe and F.

Quinn (1993));

c) materials for three case studies (it being understood that the studyitself
will be carried out by the interested reader).

Weadopt for this chapter a very naive philosophical background.

Naively, a truthful statement is a statement that could be submitted to verifi-

cation, and would then passthis test. Verification is a procedure involving some

comparison of the statement with reality, that is, invoking an idea of meaning.

(This applies equally well to ‘evident’ statements whoseverification is skipped.)

The reality in question can be any kind of mental construct, from freely falling

bodies to transfinite cardinals. We will pass over in silence the problem of how

to verify statements about transfinite cardinals, which surely will be addressed

by other speakers.

The statement itself is a linguistic construct. As such, it must be grammat-

ically correct in the first place, and meaningful in the second, before it can be

submitted to a verification procedure.

Logic teaches us that certain formal constructions produce truthful state-

ments when applied to truthful statements (syllogisms were the earliest exam-

ples). Mathematics uses such constructions recursively. All comparison with

147
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reality is relegated to comparatively scarce encounters with applications and,

possibly, foundational studies. The main body of mathematical knowledge looks

like a vast mental game with strict rules.

We might also contemplate the notion of truth applied, not to isolated state-

ments, but to entities like a novel, a scientific theory, or a theological doctrine.

The ideas of grammatical correctness, meaning, reality, and verification proce-

dures acquire new dimensions, but seemingly do not lose their heuristic value.

A new phenomenon is what can be called their non-locality: neither meaning-
fulness nor truthfulness of a theory resides entirely in its constituent statements,
but rather in the whole body of the doctrine.

All the common-sense notions mentioned above have been submitted to fine

theoretical analysis in many philosophical works. All of them, including the idea

of reality, were also thoroughlycriticized, to the extent that they were completely

annihilated. One pertinent example is that of the idea of verification of a theory:

it has been argued that a theory can never be verified, but only falsified.

In what follows I will try to be commonsensical and to avoid extremist views.

Some truth creeps into even the wildest deconstructions of this notion, but the

weaknesses of such attacks usually become apparent as soon as we start judging

them by their own standards.

1 Mathematical truth in history

The modern notion of mathematical truth goes back to ancient Greece; as Bour-

baki succintly puts it, ‘Dépuis les Grecs, qui dit Mathématiques, dit démon-
stration.’

It is the demonstration that counts, which is understood as a chain of well—

organized, consecutive, standard steps, not as a physical act of showing, contrary

to what the etymology of the word ‘demonstration’ suggests.

Among other things, this means that modern mathematics is an essentially

linguistic activity relying upon language, notation, and symbolic manipulation as

a means of convincing even when dealing with geometric, physical et al. realities.

Consistency of argumentation, free of contradictions and avoiding hideous gaps,

plays a majorrole in establishing that a given utterance proves what it purports

to prove. The status of the postulates P upon which the demonstration/proofof

the statement S is built strictly speaking need not be discussed in mathematics,

which is responsible mainly for the structure of the deduction.

This idealized image had a long pre-history, and wewill try to briefly review

some archaic modes of proto-mathematical behaviour.

The economic and military life of early human collectives was correlated with

accounting and keeping track of food resources, the size of the tribe, the seasons,

etc. Elementary arithmetic as we know it only gradually emerged as a subdialect

of language supporting suchactivities.

Whereas the main (and for millennia, the only) form of existence of natural
languages was oral speech, the oral and then written language of elementary
arithmetics must have slowly crystallized from many archaic forms including
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counting by fingers and other body parts, collecting stones and sticks, and ty-

ing knots. (This process is now being reversed as we observe how electronic

arithmetics take over the written one.)

If a mathematician is inclined to stress the ‘isomorphism’ of all these real-

izations describing the universe of natural numbers and operations on them, he

must understand that this is an appalling modernization.

In terms of the classical Saussurean dichotomy Langue (as system) versus

Parole (as activity), we observe a slow anddifficult emergence of ‘language’ from

‘speech’, the latter involving direct manipulation of things and body parts as

symbols of something else. Whatever notion of truth can be read into such

activity, it must be in the final account a function of the efficiency of social be-

haviour supported by it. Exchange and trade furnish obvious examples. Correct

counting means just exchange andprofitable trade, pure and simple.

This is not however the whole story. It is important to realize that not only

is it materially profitable, but virtually any form of organized behaviour can

have a special meaning for a human being or a humancollective. This puts

archaic arithmetic on a par with rites, music and dance,andall sorts of magic.

The traces of this undifferentiated perception of mathematics as a form of magic

are registered quite late in the history. A person who predicts efficiently an

eclipse, or an outcome of an uncertain situation, is not necessarily a sage, but

more appropriately a trickster who makes things happen by manipulating their

symbolic representations.

Many philosophers tried to demythologize the image of mathematics as pre-

dominantly intellectual activity. A. Schopenhauerfor one, already in the days of

modern institutionalized mathematics, wrote: ‘Rechnungen haben blo&B Werth

fiir die Praxis, nicht fiir die Theorie. Sogar kann man sagen: wo das Rechnen

anfangt, hort das Verstehen auf’. Citing this, S. Hildebrandt (1995, p.13) contin-

ues: ‘Die Anbetroffenen lesen es staunend und denken sich, da Schopenhauer

schwerlich einen Blick in die Arbeiten von Euler, Lagrange oder Gauf8 getan

haben kann’.

However, taken literally, Schopenhaueris right. Not only does computation

temporarily interrupt thinking, but an ultimate justification of the act of com-

putation is that it replaces the act of thinking (or a stage of it) by a virtually
mechanical interlude, in order to support a much higher level of competence for

the next act. If thought is an interiorized and tentative action, then computation

is an exteriorized thought, and the degree of possible exteriorization achieved by

modern computers is stunning.

In the same vein, during the previous era of biological evolution, the emer-

gence of conscious thinking served to stop instinctive action and to replaceit

by planned behaviour. An animal brain calculates in order to keep the animal

body alive and kicking, running, flying, seeing, hearing. A human brain does

the same, andthis activity is the main content of the (non-Freudian) individual
subconscious which must not allow any intervention of consciousness in order

not to break the complex architecture of the relevant computations. Otherwise

correct (biologically optimal) results cannot be secured.
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Thearrival of language and consciousness in a sense allowed the human brain

to elevate this unconscious computation to the level of common-sense thinking

and later to the level of theoretical thinking. A price paid was a loss of spon-

taneity of action and emergenceof less and less biological patterns of individual

and collective behaviour. In short, civilization was made possible.

This complementarity of action/thought/computation tends to reproduceit-

self at various levels.

The new alienation of thought in computerized systems of information pro-

cessing is a grotesque materialization of the (non—Jungian) collective uncon-

scious. Its running out of control is a recurring nightmare of our society, as well

as the condition of its efficient functioning.

The abstract nature of modern mathematics, understood not as its epistemo-

logical feature but as a psychological fact, supports our metaphor. The gaping

abyss between the habits of our everyday thinking and the norms of mathemat-

ical reflection must remain intact if we want mathematics to fulfil its functions.

The heated battles about the foundations of mathematics which continued

for several decades of this century did not resolve any of the epistemological

problems under discussion. Let me remind you that at the centre of attention

and criticism was Cantor’s theory of infinity.

Cantor’s tremendouscontribution to XX* century mathematics was twofold.

First and foremost, he introduced an extremely economical and universal lan-

guage of sets which subsequently proved capable of accommodating the seman-

tics of all actual and potential mathematical constructions. This was understood

only gradually, and a full realization came only somewhere in the middle of this

century. What I mean is a kind of Bourbaki picture: every single mathematical,

or even metamathematical, notion, be it probability, Frobenius morphism, or

a deduction rule, is an instance of a structure which is a construct recursively

produced from initial sets with the help of a handful of primitive operations.

The formal language of mathematics itself is such a structure. (Sometimes, as

in categorical constructions, classes instead of sets are allowed, but from the

viewpoint I am advocating here this is a minor distinction.)
I believe that Hilbert, when he spoke with prescience about ‘Cantor’s Par-

adise’, had this grandiose picture in mind.

But second, Cantor produced some deep and unconventional mathematical

reasonings about orders of infinity, thus spurring a long and heated controversy.

As we now see it, he discovered probably the simplest imaginable and natu-

ral undecidable problem, the Continuum Hypothesis (CH). (For a penetrating

discussion of the meaning of undecidability in this context, see (Gddel 1995,
p. 162).)

The austere and barren world of unstructured infinite sets of various orders of

magnitude undoubtedly has a magic charm of its own, andreflections about this

world have in turn attracted and repelled philosophically minded mathematicians

and mathematically minded philosophers for several decades. Cohen’s famous

proof of the consistency of the negation of CH, completing Gédel’s earlier proof

of the consistency of CH itself, came when the fascination with mysteries of
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infinity was already waning, precisely because by that time the languageofsets

had become the language of virtually every mathematical discourse.

Rethinking these old arguments, recalling the birth of intuitionism and con-

structivism, I am struck by the utterly classical mind-set of some of Cantor’s

critics. A considerable part of the discussion concentrated on the principles of

thinking about infinite sets. The Axiom of Choice was considered basically as

a wild extension of the mundane experience of picking randomly individual ob-

jects from heaps of them. Both the constructivist and intuitionist view of this

picture revealed a deep emotional revulsion towards such an action involving in-

finite choice (in a later Essenin—Volpin decadent, ultra-intuitionistic world, even

imagining finite and rather small collections of things became an unbearable

strain.)
Of course, the idea of a collection of distinguishable and immutable objects

belongs to layman’s physics. Many actors of the great Foundations Drama seem-

ingly were convinced that the axiomatics of Set Theory must be understood as

a, direct extension of this naive physics.

The fact that even small sets of quantum objects behave quite differently was

never taken in consideration. (It probably should not be.) The fact that working
infinities of working mathematicians (real numbers, complex numbers, spectra

of operators, etc.) were efficiently used for understanding of the real world was

deemed irrelevant for foundations. (It probably is.)
In any case, the uneasiness about Cantor’s argumentsled Hilbert to start a

deep formal study of the syntax of mathematical language (as opposed to the

semantics of this language), thus preparing the ground for Tarski, Church, and

Godel (and prompting philosophical platitudes like Carnap’s view of mathemat-

ics as ‘systems of auxiliary statements without objects and without content’, cf.

(Gédel 1995, p. 335)).

What these studies taught us was a highly technical picture of the rela-

tionships between the structure of formal deductions, their naive (or formal)
set-theoretical models, and degrees of (un)solvability and (un)expressibility of
the relevant precisely defined versions of mathematical truth. Popularizations

(‘vulgarizations’) of Gédel’s work rarely manage to convey the complexity ofthis

picture, because they cannot conveytherichness of its mathematical (as opposed

to epistemological) context.
It is this richness that fascinates us most.

2 Truth for a working mathematician

The Bourbaki aphorism cited at the beginning of the previous section does not

imply two millennia of common agreement on what constitutes a proof. More-

over, the following quotation from A. Weil’s talk at the 1954 International Mathe-
matical Congress in Amsterdam leaves an impression that the notionof ‘rigorous’

proof is quite recent, perhaps even due to the efforts of Bourbaki himself.

Rigor has ceased to be thought of as a cumbersomestyle of formal

dress that one has to wear on state occasions and discards with a
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sigh of relief as soon as one comes home. We do not ask any more

whether a theorem has been rigorously proved but whether it has

been proved. (Weil 1980, p. 180)

Alas, this seems to be only wishful thinking. In the individual psychological

development of a mathematician and in the social history of mathematics both

the understanding of what constitutes a proof and the perception of its role

greatly vary.

Below I have collected a sample (A-F) of quite recent opinions of actively
working mathematicians, taken from (Jaffe and Quinn 1993), and (Responses

1994). The reader is urged to read the whole discussion; it is quite instruc-
tive. It was sparked by the letter of A. Jaffe and F. Quinn (1993) entitled
‘Theoretical Mathematics: towards a cultural synthesis of mathematics and the-

oretical physics’. The authors were worried by the local situation in the very

active domain of mathematics bordering on mathematical physics. It seemed

to them that the standards of physical reasoning (which are considerably lower

than those in mathematics) tended to influence unfavourably the standards of
today’s mathematical research. At the same time theyfully recognized the value

of cross—fertilization, and suggested some rules of conduct that should be im-

posed upon all players, in particular the rules of assigning credit. (The word

‘theoretical’ in the title in the present context is used in a non-standard way,

and this usage is not a very happy one because the authors have in mind a mix-

ture of educated speculations, examples, and computer outputs, as opposed to

theorems with proud quantifiers.)

A. WhenI started as a graduate student at Berkeley, I had trouble

imagining how I could ‘prove’ a new and interesting mathematical

theorem. I didn’t really understand what a ‘proof’ was.

By going to seminars, reading papers, and talking to other gradu-

ate students, I gradually began to catch on. Within any field, there

are certain theorems and certain techniques that are generally known

and generally accepted. When you write a paper, you refer to these

without proof. You look at other papers in the field, and you see

what facts they quote without proof, and what they cite in their

bibliography. You learn from other people some idea of their proofs.

Then you’re free to quote the same theorem and cite the samecita-

tions. You don’t necessarily have to read the full papers or books

that are in your bibliography. Many of the things that are generally

known are things for which there may be no known written source.

As long as people in the field are comfortable that an idea works, it

doesn’t need to have a formal written source. W. Thurston, Fields

Medal 1983 (Responses 1994, p. 168)

Thurston eloquently argues that the principal goal of the proof is understand-

ing and communication, and that it is most efficiently achieved via personal con-

tacts. His opponents in particular notice that trans-generational contacts can be
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achieved only via written texts of sufficient level of precision, and that the fate

of Italian algebraic geometry should serve as a warning.

B. We must carefully distinguish between modern papers containing

mathematical speculations, and papers published a hundred years

ago which we, today, consider defective in rigor, but which were per-

fectly rigorous according to the standards of the time. Poincaré in

his work on Analysis Situs was being as rigorous as he could, and cer-

tainly was not consciously speculative. I have seen no evidence that

contemporary mathematicians considered it ‘reckless’ or ‘excessively

theoretical’ [in the JQ sense, Yu. M.|. When young Heegard in his
1898 dissertation brashly called the master’s attention to subtle mis-

takes, Poincaré in 1899, calling Heegard’s paper ‘tres remarquable’,

respectfully admitted his errors and repaired them. In contrast, in his

1912 paper on the Annulus Twist theorem (later proved by Birkhoff),

Poincaré apologized for publishing a conjecture, citing age as his ex-

cuse. M.W. Hirsch (Responses 1994, p. 187)

C. Intuition is glorious, but the heaven of mathematics requires much

more[...| In theological terms, we are not saved by faith alone but by
faith and works[...] Physics has provided mathematics with many

fine suggestions and newinitiatives, but mathematics does not need

to copy the style of experimental physics. Mathematics rests on

proof—andproofis eternal. S. Mac Lane (Responses 1994, pp. 190-3)

D. Philip Anderson describes mathematical rigor as ‘irrelevant and

impossible’. I would soften the blow by calling it besides the point

and usually distracting, even when possible. B. Mandelbrot (Re-

sponses 1994, p. 194)

Mandelbrot’s contribution is a vehement attack, not only on the abstract

notion of rigorous proof, but also on a considerable part of the American math-

ematical community, ‘Charles mathematicians’, who allegedly are totalitarian,

concentrate on credit assigning, and strive to isolate open minded researchers.

E. Before 1958 I lived in a mathematical milieu involving essen-

tially Bourbakist people, and even if I was not particularly rigor-

ous, these people—H. Cartan, J.-P. Serre, and H. Whitney (a would-

be Bourbakist)—helped me to maintain a fairly acceptable level of

rigor. It was only after the Fields medal (1958) that I gave way to

my natural tendencies, with the (eventually disastrous) results which
followed. Moreover, a few years after that, I became a colleague of

Alexander Grothendieck at the IHES, a fact which encouraged me to

consider rigor as a very unnecessary quality in mathematical think-

ing. R. Thom (Responses 1994, p. 203)
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Thom’s irony requires a slow reading. In what sense did following his natu-

ral tendencies have eventually disastrous results? How exactly did becoming a

colleague of Grothendieck’s influence Thom’s thinking? An outsider may remain

puzzled whether Grothendieck himself shared Thom’s convictions, or whetherit

was the other way around. Later in the same contribution Thom invokes rigor

mortis as an appropriate connotation to the idea of mathematical rigour.

F.I find it difficult to convince students—whoare often attracted into

mathematics for the same abstract beauty and certainty that brought

me here—of the value of the messy, concrete, and specific point of

view of possibility and example. In my opinion, more mathematicians

stifle for lack of breadth than are mortally stabbed by the opposing

sword of rigor. K. Uhlenbeck (Responses 1994, p. 202)

I would like now to summarize, contributing my own share to the general

confusion.

First, individually, producing acceptable proofs is an activity that takes ard-

uous training and evokes strong emotional response. A person feels aversion

if required to do something contradicting his or her nature. Innate or acquired

preference of geometric reasoning or algebraic calculations can inform our career.

When we philosophize, we unavoidably rationalize and generalize these basic

instincts, and the whole spectrum of our attitudes can be traced back to the

feelings of bliss or frustration that overwhelm us during confrontations with

intellectual challenges of our métier.

Second, socially, we have to rely upon our contemporaries and forebears even

when devising a very rigorous proof. Authority in mathematics plays a two-fold

role: we acquire from our fathers and peers a value system (what questions are

worth asking, what domains are worth developing, what problems are worth

solving), and we rely upon the authority of published and accepted proofs and

reasonings. Nothing is absolute here, but nothing is less important because of

the lack of absoluteness.

Third, epistemologically, all of us who have bothered to think about it know

what a rigorous proof is. It has an ideal representation which was worked out

by mathematical logicians in this century, but is only more explicit and not

fundamentally different from the notion Euclid had. (In this respect, Bourbaki

was quite right.) This ideal representation is an imaginary text which step-by-

step deduces our theorem from axioms, both axioms and the rules of deduction

being made explicit beforehand, say in a version of axiomatic set theory.

If this image arouses in your heart a strong aversion, or at least if you want

to be realistic, you may (and should) object that this ideal is utterly unreach-
able because of the fantastic length of even the simplest formal deductions, and

because the closer an exposition is to a formal proof, the more difficult it is to

check it. Moreover, since formal deduction strives to be freed of any remnant of

meaning (otherwise it is not formal enough), it ends by losing meaningitself.
On the contrary, if this image arouses your enthusiasm, or once again if you

want to be realistic, you will agree that the essence of mathematics requires daily
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maintenance of the current standards of proof. Whether we are engaged in the

mathematical support of a vast technological project like a moon-landing, or

simply nurture a natural desire to know which assertions have a chanceof being

true and which do not, we have to resort to the ideal of mathematical proof as

an ultimate judge of our efforts.

Even the use of mathematics ‘for narrative purposes’ as is nicely put by

Hirsch is not an exception, because such a narration is built of blocks of solid

mathematics to a non-mathematical blueprint.

An author with a story to tell feels it can be expressed most clearly

in mathematical language. In order to tell it coherently without the

possibly infinite delay rigor might require, the author introducescer-

tain assumptions, speculations and leaps of faith, for example: ‘In

order to proceed further we assumethe series converges— the random

variables are independent—the equilibrium is stable— the determi-

nant is non—zero—.’ In such casesit is often irrelevant whether the

mathematics can be rigorized, because the author’s goal is to per-

suade the reader of the plausibility or relevance of a certain view

about how some real world system behaves. The mathematics is a

language filled with subtle and useful metaphors. The validation is

to come from experiment—very possibly on a computer. The goal

in fact may be to suggest a particular experiment. The result of

the narrative will be not new mathematics, but a new description of

reality (real reality!). M. W. Hirsch (Responses 1994, pp. 186-7)

A beautiful recent example of such a narrative use of mathematics is fur-

nished by D. Mumford’s talk at the first European Congress of Mathematicians

(Mumford 1992). About mathematical metaphors, see also (Manin 1990).

3 Materials for three case studies

In this section, I present three cases relevant to our discussion: Godel’s proof

of the existence of God (1970), the tale of the faulty Pentium chip (1994), and
G. Chaitin’s claim (1992 and earlier) that a perfectly well and uniformly defined

sequence of mathematical questions can have a ‘completely random’ sequence of

answers. Forall their differences, these arguments represent human attempts to

grapple with infinity by finitary linguistic means, be it the infinity of God, real

numbers, or mathematics itself.

‘Whatever moral lessons(if any) can be drawn from these materials, the reader
is free to decide.

Godel’s ontological proof

The third volume of K. Gédel’s Collected Works recently published by Oxford

University Press contains a note dated 1970. It presents a formal argument pur-

porting to prove the existence of God as an embodimentofall positive properties.
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An introductory account by R. M. Adams (Gédel 1995, pp. 388-402) puts

this proof into a historical perspective comparing it in particular to Leibniz’s

argument and discussing its possible place in theoretical theology.

The proof itself is a page of formulas in the language of modal logic (using

Necessity and Possibility quantifiers in addition to the usual stuff). It is sub-

divided into five Axioms and two Theorems. A photocopy of the published

version of this page (p. 403) may help the reader.

What does a computer compute, or truth in advertising

In the January 1995 issue of SIAM News the front page article ‘A Tale of Two

Numbers’ started with the following lines:

This is the tale of two numbers, and how they found their way over the

Internet to the front pages of the world’s newspapers on Thanksgiving

Day, embarrassing the world’s premier chip manufacturer.

Briefly, it was found that the Intel Corporation’s newly launched Pentium

chip (the central processing unit in personal computers) contains a bug in its

Floating-Point-Divide instruction so that, for example, on calculating

r = 4195835 — (4195835/3145727) (3145727)

it produces r = 256 instead of the correct value r = 0.

Now, this is not something very unusual. In fact, in all computers the so-

called real number arithmetic is programmed in such a way that it systematically

produces incorrect answers (round-off errors). In this particular case a (slightly

inflated) public outrage was incited by the fact that in some cases the error was

larger than promised (simple-precision when double-precision was advertised).

Completely precise calculations with rational numbers of arbitrary size can

be programmedin principle (and are programmed for special purposes). This

requires a lot of resources and might need also specialized input-output devices.

The ideal Turing machineis highly impractical to implement, and real computers

are not designed to facilitate this task.

It is not difficult to imagine a computerized system of decision—making which

is unstable with respect to small calculational errors. Stock market or military

applications are sensitive to such problems. Here is one more example.

A recent study of sexuality in USA purportedly designed to support epidemi-

ological models of the spread of AIDS did not include the 3 per cent of Americans

who do not live in households, i.e. those who live in prisons, in homelessshelters,

or on the street. A critic of this study (R. C. Lewontin, New York Review of

Books, 20 April 1995) reasonably remarks:

The authors do not discuss it, and they may not even realize it, but

mathematical and computer models of the spread of epidemics that

take into account real complexities of the problem often turn out,

in their predictions, to be extremely sensitive to the quantitative

values of the variables. Very small differences in variables can be
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Ontological proof

(*1970)

Feb. 10, 1970
P(y) is positive (or ye P).

Aviom 1. P(y).P() > P(y.).}

Aziom 2. P(p) V P(~y).?

Definition 1. G(x) = (y)[P(v) > y(x)] (God)

Definition 2. yEss.x = ()[p(x) D N(y)[y(y) D v(y)]]. (Essence of x)?

P2y@ = N(p rq). Necessity

Axiom 3. P(y) > NP(¢)

~P(¢) > N~P(¢)
because it follows from the nature of the property.

Theorem. G(x) > GEss.z.

Definition. E(x) = (~)[y Essa D N(Az) y(z)]. (necessary Existence)

Aziom 4. P(E).

Theorem. G(r) D> N(Ay)G(y),
hence (4z)G(x) D N(Ay)G(y);
hence M(Azr)G(z) D MN(Ay)G(y). (M = possibility)

M(Az)G(r) > N(Ay)G(y).

| M(Axr)G(x) means the system of all positive properties is compatible. 2
This is true becauseof:
Aziom 5. P(p).y Dy Y:D P(w), which implies

X=2Z is positive

x#az_ is negative.

1 And for any number of summands.

2Exclusive or.

3 Any two essences of x are necessarily equivalent.

 

*Godel numbered twodifferent axioms with the numeral “2”. This double numbering

was maintained in the printed version found in Sobel 1987. We have renumberedhere

in order to simplify reference to the axioms.

Fig. 1. Gédel’s ontological proof. From Kurt Godel, Collected Works, Vol-
ume II: Unpublished Essays and Lectures (1995), reproduced by permission
of Oxford University Press.
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the critical determinant of whether an epidemic dies out or spreads

catastrophically, so the use of inaccurate study in planning counter-

measures can do more harm than does total ignorance.

The problem of understanding what is computed by a computer becomes

also more and more relevant with the spread of computer-assisted proofs of

mathematical theorems. I quote M. Hirsch once again (Responses 1994, p. 188):

Oscar Lanford pointed out that in order to justify a computer calcu-

lation as a part of proof(as he did in the first proof of the Feigenbaum

cascade conjecture), you must not only prove that the programis cor-

rect (and how often is this done?) but you must understand how the
computer rounds numbers, and how the operating system functions,

including how the time-sharing system works.

Randomness of mathematical truth

Following A. N. Kolmogorov’s, R. Solomonoft’s, and G. Chaitin’s discovery of

the notion of complexity and a new definition of randomness based uponit,

Chaitin constructed an example of an exponential Diophantine equation

F(t; 21,...,2n) = Q

with the following property (Chaitin 1992). Put e(to) = 0 (respectively,1), if this

equation has, for t = to, only finitely (respectively, infinitely) many solutions in

positive integers x;. Then the sequence €(1), €(2), €(3),... ts random. (Chaitin in
fact has written a program producing F’. The output is a 200-page long equation

with about 17000 unknowns).
This is a really subtle mathematical construction, using among other tools

the Davis-Putnam—Robinson—Matijacevi¢ presentation of recursively enumer-

able sets. The epistemologically important point is the discovery that random-

ness can be defined without any recourse to physical reality (the definition is

then justified by checking that all the standard properties of ‘physical’ random-

ness are present) in such a way that the necessity to make an infinite search to
solve a parametric series of problems leads to the technically random answers.

Some peoplefind it difficult to imagine that a rigidly determined discipline

like elementary arithmetic may produce such phenomena. Notice that what

is called ‘chaos’ Mandelbrot-style is a considerably less sophisticated model of

random behaviour.
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9
How to be a naturalist about mathematics

Penelope Maddy

‘Naturalism’, as I use the term, is a metaphilosophical principle describing the

proper relations between philosophy and methodology, between philosophical

theorizing about a given practice and methodological decisions about how that

practice should be pursued. This usage springs from work of Quine and Putnam

in the philosophy of science, but I have recently applied it to mathematics in

ways that depart substantially from the views of these authors.'
My focus so far has been on how naturalism affects the evaluation ofset-

theoretic methodology, that is, on its implications for particular, practical deci-

sions. But a principle on the relations between philosophy and methodology can

be expected to raise philosophical issues as well, and perhaps to have philosoph-

ical ramifications. I will focus here on the philosophical aspects of naturalism.

This is a big topic, so I can only attempt a preliminary sketch of the terrain.

1 Naturalism in mathematics

Let me begin with a review of the type of methodological quandary that moti-

vates the move to naturalism in the first place; I have in mind the well-known

methodological difficulties raised by contemporary set theory. The most familiar

of these centers on the continuum hypothesis (CH): should the work of Godel and

Cohen be regarded as settling the continuum problem, or does a mathematical

question remain, amenable to solution by mathematical methods? Thedifficulty

this question raises is a methodological one because it concerns the proper pur-

suit of set theoretic mathematics: should the CH continue to be pursued as an

open problem? Less familiar examples of the same form arise in descriptive set

theory, concerning, for example, the Lebesgue measurability of definable sets of

reals, the existence of perfect subsets of uncountable definable sets of reals, and

similar questions.
A methodological difficulty of a slightly different sort involves the axioms of

set theory: what justification can properly be offered for an axiom candidate?

This problem becomes particularly dramatic if we assume, in answerto thefirst

difficulty, that the CH and the questions of descriptive set theory are mathemat-

ically legitimate, and if we undertake a search for new set-theoretic axioms to
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settle them. But it arises just as inevitably for the familiar axioms of ZFC. On

what grounds do we justify the adoption of these axioms? 3

Even the most superficial survey of the literature on these methodological

difficulties reveals that the debates often turn philosophical, that is, that they

often involve discussionsof traditional philosophical issues. For example, we hear

such familiar ontological questions as these: do mathematical objects or concepts

exist? Are they like fictional objects? Is there no mathematical ontology at

all? Is mathematics merely a matter of determining which conclusions follow

logically from which premises? Other examples are more generally metaphysical:

is mathematical existence objective? Do we create mathematical things by acts

of mind or definition? Are mathematical objects located in space-time? Are

they abstract? Acausal? Andso on.

These questions and their purported answers produce a bewildering array of

philosophical stances on the methodological difficulties of set theory. Consider,

for example, a Simple Realism, which holds that set theory is the study of an

objectively existing world of sets. From this point of view, CH andthe rest are

still legitimate mathematical questions, with determinate answers, and to justify

an axiom candidateis to provide evidencethat it is true in the world of sets. Some

versions of Simple Realism even posit a strong analogy between mathematics and

natural science, so that the implication of lower level truths counts as evidence

for the truth of more theoretical statements or axiom candidates.*

But there are other forms of Realism, which hold just as staunchly that

mathematical things exist objectively, but which nevertheless provide different

answers to our difficulties. For example, consider Plentiful Platonism, the view

that there exists an objective world of sets corresponding to each and every

consistent theoryin a first-order language with € asits sole non-logical symbol.°

On such a view, CH has no determinate truth value—it is true of somesets,false

of others—and the same goes for the open questions of descriptive set theory.

Furthermore, any relatively consistent axiom candidate is on a metaphysical par

with any other, because each and every consistent theory correspondsto its own

objective world of sets.

Outcomes intermediate between these two Realisms might result in the view

that (non-plentiful) mathematical things exist objectively, but that they are

somehow incomplete. On appropriate accounts of this incompleteness, ques-

tions like CH would have no answers, but the requirement that axioms be true

would nevertheless rule out somerelatively consistent candidates. One might
also consider views that countenance mathematical concepts, rather than ob-

jects. Versions of Conceptualism parallel to these three forms of Realism would

hold that CH is either true or false to the concept of set (analogous to Simple

Realism), or that there is a concept of set corresponding to every consistent set

theory (analogous to Plentiful Platonism), or that the concept of set is vague
in spots, so that CH has no determinate truth value (analogous to Incomplete

Object Realism). As the methodological consequences of these versions of Con-
ceptualism will also run parallel to those of their corresponding Realisms,I will

not treat them separately in what follows.
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Metaphysical questions about the nature of the Realist’s objects—are they

spatio-temporal? Acausal? etc.—often appear in the course of philosophical

arguments against Realism, especially Simple Realism. In the most familiar of

these, the qualities usually taken as characterizing the abstractness of mathe-

matical things—their non-spatiotemporality and acausality—are argued to pre-

clude a satisfactory epistemological theory of our knowledge of them.® These

and other worries often motivate the search for non-Realistic philosophical ac-

counts of mathematics. One familiar example is the view that mathematicsis

not a study of objects (or concepts), but a purely logical inquiry into which

conclusions follow from which hypotheses. From this perspective, the only legit-

imate questions in the vicinity of the CH are of the sort that Godel and Cohen,

Levy and Solovay,’ have settled. The simplest version of this position—which

I will call ‘Glib Formalism’ ®—would go on to hold, in considerable agreement

with Glib versions of Plentiful Platonism,? that all consistent theories are on a

par, mathematically speaking, that the only justification an axiom requires is

evidence for its consistency, that the choice between various axioms, between

various theories of sets, is guided not by rational principles, but by aesthetic or

psychological or sociological influences.

Though there are many others, I will mention only one more popular philo-

sophical position on mathematics, namely, Fictionalism: the view that mathe-

matical theories are like fictional stories, that mathematical objects are meta-

physically akin to thefictional characters of imaginative literature.° The precise
status of mathematical entities will then follow from the accompanying theory of

fictional objects, on which philosophers have a wide range of views. As far as our

methodological questions are concerned, the Fictionalist might hold that the CH

is a pseudo-question, comparable to the question, ‘how long is Hamlet’s nose?’;

the answer is neither explicit in, nor derivable from, the story that defines the

character, so it has no answer. Like the Glib Formalist and the Glib Plentiful

Platonist, a Glib Fictionalist might say that all (consistent) mathematical stories

are on a par, that there is no principled way to justify a choice between them.

Of course, this is just the barest beginning; the range and the subtleties

of this philosophical literature, of these ontological and metaphysical debates,

goes far beyond anything that has been so muchas hinted at here. Fortunately,

only two relatively simple observations are crucial for our purposes. The first

is that the introduction of these philosophical controversies into the discussion

of proper mathematical method brings with it a wealth of forms and styles of

argument that were not previously to be found in the mathematical practice

itself. To take just a few examples, there are pro-realistic arguments in terms of

a purported analogy between mathematics and science; there are anti-realistic

arguments based on theories in epistemology or cognitive science or on physi-

calistic intuitions; there are ontological arguments based on the role of mathe-

matics in applications, debates over the nature of applied mathematics, debates

over whether or not science could be conducted without mathematics; there are

metaphysical debates about the nature of truth and objectivity, and much more.

My point is just that these are not the sorts of considerations that ordinarily
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play a role in the practice of modern mathematics. New evidential standards are

being introduced along with the philosophy.

Furthermore, the logic of this literature and these arguments suggests that the

methodological decisions of contemporary set theory cannot be reached until (at

least some of) these outstanding philosophical disputes have been resolved. Not

only are new standards introduced, but these new standards must be exercised

before the mathematical work can carry on with confidence. My second obser-

vation is just this: given that the most fundamental philosophical controversies

have not been, and probably neverwill be, put to rest, this state of dependencyis

a most disheartening one for the mathematician out to make practical decisions

on how to proceed.

In fact, a look at the historical record reveals that situations of this structure

have arisen before in modern mathematics, that is, situations in which philo-

sophical argumentation has entered a debate about mathematical method. I

have in mind two such debates, one over whether or not impredicative defini-

tions should be allowed, the other over whether or not the Axiom of Choice

should be adopted. In both these cases, philosophical considerations of the sort

rehearsed above were raised and contested, and in both cases, the fate of the

method seemed to hinge on the outcome of those philosophical contests. But,
again in both cases, this is not how things turned out. Impredicative definitions

and the Axiom of Choice are now respected tools in the practice of contem-

porary mathematics, while the philosophical issues remain subjects of ongoing

controversy. The methodological decision seems to have been motivated, not by

philosophical argumentation, but by consideration of what might be called, for

want of a better expression, mathematical fruitfulness (for example, the classical

theory of reals, among other things, in the case of impredicative definitions, and

fundamental results in a mind-boggling array of fields in the case of choice).

What are we to make of this? One response would be to insist that the

mathematical community has been too hasty in its embrace of these disputed

methods, that they are being used, as it were, without justification, without

their essential philosophical underpinnings. The response I propose turnsthis

position on its head: given that the methods are justified, that justification

must not, after all, depend on the philosophy. Mathematical naturalism, as I

understand it, is just a generalization of this conclusion, namely, that mathe-

matical methodology is properly assessed and evaluated, defended orcriticized,

on mathematical, not philosophical (or any other extra-mathematical) grounds.

The particular instances of mathematical fruitfulness that played the decisive

roles in the impredicativity and choice controversies stand as ready examples of

the type of ‘mathematical grounds’ that I have in mind.

This use of the term ‘naturalism’ derives from the scientific naturalism of

Quine and Putnam:

... naturalism ... sees natural science as an inquiry into reality, fal-

lible and corrigible but not answerable to any supra-scientific tri-

bunal, and not in need of any justification beyond observation and
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the hypothetico-deductive method. (Quine 1975, p. 72)

. it is silly to agree that a reason for believing that p warrants

accepting p in all scientific circumstances, and then to add ‘but even

so it is not good enough’! Such a judgement could only be madeif

one accepted a trans-scientific method as superior to the scientific

method; but this philosopher, at least, has no interest in doing that.

(Putnam 1972, p. 356)

However, neither of these scientific naturalists is so respectful of the methodsof

mathematics; they both see the ultimate justification of mathematical practice to

lie (via a philosophical argument) in its applications in science, not in the usual

justificatory apparatus of mathematics itself. This approach leaves out large

parts of contemporary mathematics (the as yet unapplied part), and submits the

rest to an extra-mathematical tribunal. My suggestion is that the success story

of modern mathematics has been won by the application of actual mathematical

methods, not by exercise of the extra-mathematical standards Quine and Putnam

propose, and thus, that the methodologist should judge those methods on their

own terms.

The picture, then, is this. All naturalists begin their study within natu-

ral science; this is scientific naturalism. All scientific naturalists notice that

mathematicians employ methods different from those of natural scientists. The

response of the Quinean or science-only naturalist is to regard mathematical

claims as justified only in so far as they are supported by scientific, as op-

posed to mathematical, methods. In contrast, the response of the mathematical

naturalist—influenced by the observation that mathematics has flourished by

its own methods, not by those recommended by the science-only naturalist—

opts to evaluate mathematical methods in their own terms, opts not to hold

mathematical methods answerable to natural science.

This is how I will understand the proper naturalistic approach to the study

of mathematical method. Our next question is: how is it to be carried out?

2 The naturalistic methodologist

To return to our original motivation, the naturalistic methodologist hopes to dis-

cover what constitutes good grounds, that is, rational grounds, for settling the

methodological difficulties of contemporary set theory, for example, for decid-

ing whether or not CH and the open questions of descriptive set theory remain

legitimate mathematical concerns, or for defending or criticizing potential new

axioms. As a naturalist about mathematics as well as science, this same nat-

uralistic methodologist proposes to investigate these methodological difficulties

using standards drawn from mathematicsitself, not from any extra-mathematical

source.

At first glance, it might seem it would be easy to focus attention exclusively

on intra-mathematical considerations; it might seem that this could be done sim-

ply by focusing on what mathematicians actually say and do. But we’ve already

seen that actual mathematical discourse includes philosophical discussion, for ex-
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ample, when Hadamard in 1905 argues for the Axiom of Choice, (see (Hadamard

et al. 1982)), or when Gédel (1947) argues for the legitimacy of the continuum
problem. How,then, is the naturalist to distinguish the properly mathematica]

from the extra-mathematical incursions?

One approach would be to expound and defend a principled distinction be-

tween mathematics and philosophy, or more generally, between mathematics and

everythingelse. I doubt this is possible; at any rate, it is not the course I will take

here. Instead, following the lead of our historical examples, I will propose a natu-

ralized model of practice. This naturalized model will not include considerations

that seem, by extrapolation from the historical cases, to be methodologically

irrelevant, and it will include more detailed analysis and development of the

considerations that remain.'! Myclaim is that this purified and amplified model
provides an accurate picture of the actual justificatory structures of contempo-

rary set theory and that this justificatory structure is fully rational. I will say

more below about how this claim can be tested, about how the model can be

assessed for adequacy.

Before I begin, let me note that the philosophical incursions I will be elim-

inating in the naturalistic model do play an important and legitimate role in

practice; the naturalist’s claim is only that they are not justificatory. Their ac-

tual role, I have claimed elsewhere,!? is inspirational: the mathematician may

be inspired to certain investigations by her extra-mathematical beliefs, though

the proper defense of that work lies solely in the mathematics it produces. It

would besilly not to admit the importance andinterest of such inspirations, but

as our focus hereis on the justification of set-theoretic methods, inspirations will

be set to oneside.!9
What, then, is the counsel of our historical cases? The negative counsel

is that certain, typically philosophical issues are ultimately irrelevant to the

defense or criticism of mathematical methods. Among these are issues about

the metaphysical status of mathematical things: are they objective? Are they

spatio-temporal? And so on. To apply this negative counsel to the cases that

interest us will require us to extrapolate from the historical cases by identifying

elements and themes in contemporary discussions that seem analogous to those

historically irrelevant elements.

The historical cases also provide positive counsel. There is a pattern in what

remains after the extraneous is eliminated, a pattern in the considerations that

are relevant, in the considerations that are ultimately decisive. In both ourcases,

the community eventually reached a consensus that the controversial method was

admissible because it led to certain varieties of mathematics, that is, because it

was an effective means to particular desirable ends. Thus the positive counsel

of history is to frame a defense or critique of a particular method in two parts:

first, identify a goal (or goals) of the relevant practice, and second, argue that

the method in question either is or is not an effective means towards that goal.

In detail, we should expect that some goals will take the shape of means towards

higher goals, and that goals at various levels will conflict, requiring a subtle

assessment of weights and balances. But the simple counsel remains: identify



How to be a naturalist about mathematics 167

the goals and evaluate methods by their relations to those goals.

Following these positive and negative counsels from history, the naturalist

eliminates the methodologically irrelevant distractions from the actual practice

and brings out the means/ends considerations implicit there, all with the aim

of drawing out sound methodological arguments. I have attempted to apply

this technique to aspects of our set-theoretic difficulties in a numberof places. !4

As our focus here is on the philosophical aspects of naturalism, rather than its

practical repercussions, I will confine myself to sketching a few illustrations for

future reference.

For a sense of how the naturalist’s technique plays out in the case of CH,

consider Gédel’s famous paper, ‘What is Cantor’s continuum problem?’. Géodel

argues that the CH remains a legitimate mathematical question despite its

independence,’° and his most conspicuous argument is decidedly metaphysical:

_.. the set-theoretical concepts and theorems describe some well-

determinedreality, in which Cantor’s conjecture must be either true

or false. (Gédel 1947; p. 260 of 1990 version)

This ontological claim is defended by philosophical means,in terms of an analogy

between mathematics and science, intuition and sense perception, and so on.

But when the naturalist stubbornly sets that material aside, a second line of

argument emerges:

... the question of the objective existence of the objects of mathe-

matical intuition ... is not decisive for the problem under discussion

here fi.e., the legitimacy of CH]. (Gédel 1964, p. 268)

... it is possible to point out ways in which thedecision of a question,

which is undecidable from the usual axioms, might nevertheless be

obtained. (Gédel 1947; p. 260 of 1990 version)

This last claim is defended mathematically, by pointing to mathematically rea-

sonable ways of extending the axioms of ZFC. This is the hint that the naturalist

takes up; in so far as a problem is amenable to mathematically sound solution,

it is obviously, ipso facto, a mathematically legitimate question.

So, the naturalist asks, how strong is this argument for the legitimacy of the

CH? In other words, how plausible is the claim that there is a mathematically

sound solution, that there are mathematically defensible new axioms that will

settle it? As it happens, there is more room for this type of confidence in the

legitimacy of the open questions of descriptive set theory. Set theorists already

have two different axiom candidates that settle those questions (V = L and
LC),'® and they settle them in different ways. Here the (mathematical) case for

the legitimacy of the questions is at least as strong as the (mathematical) case

for one or the other of the new axiom candidates.

There is a strong consensus among set theorists against one of these axiom

candidates (V = L) and for its competitor (LC). I have attempted to give natu-
ralistic arguments, in terms of goals and effective means, for the conclusion that

this consensusis rationally justified.” But even if this line of thought is cogent,
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the situation for CH remains problematic. Neither the goals identified in these

arguments nor the general methods justified in terms of them seem to provide

any guidance for the case of CH, and a survey of the literature for other clues

is not encouraging. There is no general consensus on CH, and the methods on

which there is consensus are provably inadequate for its solution.

Under the circumstances, some contemporary set theorists say things like

‘the CH may be neither true nor false’, and such statements are customarily

explicated in philosophical terms. In opposition to the Simple Realist, the Plen-

tiful Platonist says that a robust correspondence obtains between CH and some

set-theoretic universes and between not-CH and otherset-theoretic universes, so

that CH has no determinate truth value. Or the Formalist says that there are

not any such set-theoretic universes, that ‘CH is true’ or ‘CH is false’ can only

mean ‘CH follows from our current theory of sets’ or ‘not-CH follows from our

current theory of sets’, and that neither of these is true. Or the Fictionalist says

much the same, with ‘our current theory of sets’ replaced by some story about

sets.

I think it takes very little extrapolation from the historical record to classify

this sort of discussion as philosophical and extra-mathematical. And again, if

this material is eliminated, the naturalist finds a simple surrogate for the set the-

orist’s remark, a surrogate that bypasses the philosophically charged word ‘true’.

In brief, the idea is simply to replace ‘CH maybe neither true norfalse’ by ‘there

may be no mathematically sound grounds on which to settle CH one wayor the

other’ in the naturalist’s model. More fully, the proposed argumentfor the legit-

imacy of the open questions of descriptive set theory defends two set-theoretic

methods that potentially conflict, methods which I have called Maximize and

Unify. So far, it has been possible to satisfy both at once, but in the case of

CH, this might not be possible. If so, Maximize might reasonably be taken to

overrule Unify, which might lead set theorists to adopt a variety of set theories,

all with different values for the size of the continuum.!® This possibility is the
naturalist’s de-philosophized version of the discouraged set theorist’s remark.

In fact, I think most seemingly robust uses of ‘true’ in set theoretic discussion

will disappear in the naturalist’s model. Things like ‘Borel determinacy turned

out to be true’ can be naturalized as the claim that Borel determinacy turned

out to be a theorem of ZFC. A statement like ‘Since the Axiom of Choiceis true,

the full axiom of determinacy must be false’ can be replaced by the observation

that set theory with the Axiom of Choice serves the ends of set theory better

than set theory without it, so that adding the Axiom of Determinacy to our

preferred theory is not an attractive option (assuming Consistency is an over-

arching goal). The proposal that everything true in V is actually true in some

V,, takes the naturalistic form: if you can argue for y, conclude that thereis a

«k such that V, thinks y. In discussions of axiom candidates, a statement like

‘Such-and-such an axiom is probably true’ can be replaced by ‘Such-and-such

an axiom is probably an effective method for achieving the goals of set theory,

probably better than the alternatives’. On this reading, the evidence for the

statement of ‘probable truth’ will come in terms of what would follow if the
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axiom candidate were adopted. And so on.

Some stubborn hold-outs will remain, of course. For example, any claim of the

form ‘if axiom candidate T is true, ...’ that cannot be replaced by something of

the form ‘if axiom candidate T’ were added to the standardlist of axioms, ... ’,

any truth claim that is viewed as independent of what set theory is adopted

and what consequences that set theory has—any such claim would involve a

more robust notion of ‘truth’. Here the guidance of history again prompts the

naturalist to excise such considerations as extra-mathematical.!%

Suppose, then, that the naturalist has extrapolated from the historical record

and proposed a naturalized modelof set theoretic practice. In this model, some

elements of the actual practice are absent, namely, those elements that the histor-

ical record suggests are actually extra-mathematical. In what remains, the purely

mathematical elements are highlighted, and various methodological choices are

defended by arguing that mathematics, in general, and set theory, in particular,

have various internal goals, and that the methods defended(criticized) are the
most effective available?° means (ineffective means) for achieving those goals.
The result—this purified and amplified version of actual practice—claims to re-

flect the underlying justificatory structure of that actual practice and to show

that this structure is rational. In other words, the naturalist claims:

(a) that the identified goals are actual goals of mathematics, in general, and

set theory, in particular (and, in complex cases, that they interact as they are

portrayed to do);

(b) that the methods defended(criticized) really are the most effective avail-
able means (ineffective means) for achieving those goals; and

(c) that there are no other available considerations, overlooked or improperly

excised, that in fact support or undermine the methodological conclusions drawn.

How are these claims to be tested?

I think the naturalist’s model can be assessed in at least three ways. First,

we can ask whether it yields accurate readings of historical cases that have, in

fact, been resolved. As the naturalist’s techniques are derived from our two his-

torical cases, some success on this first test is built in. Second, the naturalist’s

methodological arguments can be tested for their plausibility in the eyes of con-

temporary practitioners. On this test, the jury is out. The conclusions argued

for (for example, that V = LD should berejected) reflect the general consensus of

the community, but this by no means guarantees that the arguments provided

in support of that consensus will be judged to be the correct ones. Third, and

finally, the naturalist’s arguments can be viewed as predictions—that these de-

bates will eventually be resolved in these ways on these grounds—and eventually

history will report on the fate of these predictions. So the naturalist’s claims are

eminently falsifiable.

The issues raised by these questions of testing intertwine with a range of

questions standardly put to naturalistic positions, beginning with the scientific

naturalism of Quine and Putnam. For example, naturalists are asked: is the

word of the practitioner to be taken as gospel? Is naturalism purely descriptive?



170 Penelope Maddy

Is the naturalistic study of methodology just sociology of science? I would answer

all these questions in the negative, and I think somelight will be cast if I say a

bit more about whythis is so.

First, consider part (b) of the naturalist’s claim: that the methods defended

(criticized) are the most effective means (ineffective means) for achieving the
identified goals. This is an objective matter, about which individual practition-

ers, and even the entire community, could be mistaken. Of course, the conclusion

that the entire community is mistaken on such a matter should be viewed with

considerable skepticism; more likely the naturalistic observer is mistaken about

the means being used or the ends being pursued. But it remains logically possi-

ble that the community could falsely believe that method A rather than method

B is best suited to its goals. So, on this score, in principle, expert testimony is

controvertible.

Now consider part (a): that the identified goals are the actual goals of the

practice. Notice again that the individual practitioner or the community might

reject a sound naturalistic evaluation of one of its methods for failure of self-

analysis, for failure to recognize the goal identified in the argument as its own.

Again, this logical possibility is an unlikely one, to be viewed with considerable

skepticism, but it reinforces the conclusion that expert testimony can conceivably

be defeated by other considerations. We should also note that this (remote)
possibility of error only concerns the identification of goals, not the choice of

goals. The naturalist has no independent grounds on which to defendorcriticize

the actual goals of the practice.

Finally, in connection with part (c)—the claim that no relevant justificatory

considerations have been overlooked or improperly excised—it must be noted

that the naturalist departs from absolute faith in the testimony of practition-

ers at the very outset, by insisting that extra-mathematical considerations are

irrelevant to sound evaluation of mathematical methods and by undertaking to

eliminate them. According to the naturalist, the individual practitioner can be

wrong about the evaluation of certain methods, for example, by founding them

on philosophical views that inspire rather than support their use.

In fact, naturalistically unacceptable justifications of this sort are often id-

iosyncratic or special to a certain segment of the community, in which case the

naturalist is only eliminating what fails of stable consensus. A more difficult

question is whether or not the entire community could rightly be said to err in

its evaluation of a particular method by basing it on external, thus naturalis-

tically unacceptable, grounds. If those grounds are ‘sociological’—for example,

intellectual fashion, browbeating from philosophers, political pressure, etc.—and

if the efforts of naturalistic philosophers of science and mathematics are success-

ful in drawing a principled distinction between the sociological and thescientific,

the sociological and the mathematical,?! then I suppose it could be rightly said

that the entire community is in error. But I have offered no principled distinction

between philosophical and mathematical considerations; I have used historical

cases and our rough-and-readysense of the distinction to extrapolate from those

historical cases. If the entire community were to agree on the force of a certain
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consideration that I label as extra-mathematical philosophy,if that consider-

ation ultimately led the community to a stable methodological decision, this

would count as reason to reject my proposal on where the line between extra-

and intra-mathematical should be drawn, not as a reason to count the entire

community as mistaken.

In sum, then, practitioners, like anyone else, can be wrong about facts: they

can be wrong (thoughthis is unlikely) about what methodsareeffective for fur-

thering a certain goal; they can be wrong (though this is again unlikely) about

what their goals actually are; and they can be wrong (this point has been our

focus) about justification, for example, by mistaking inspiration for justification.

Conversely, they cannot be wrong,collectively, in adopting a certain goal, and

they cannot be wrong,collectively, in making a methodological decision on cer-

tain grounds.”* It follows, in answer to the question for naturalism, that the

testimony of practitioners should not be taken as gospel. But I should empha-

size that the question concernsthe logical possibility of error; it is a conceptual

question. In naturalistic practice, I suggest that the first two possibilities of er-

ror can safely be ignored, that the opinions of practitioners can safely be taken

as the central guides to the formulation of naturalistic arguments for or against

particular methods, and that the reactions of practitioners can safely be used
as central tests in evaluating those arguments. The only likely possibility of er-

ror, the one which the naturalist must guard against, is that extra-mathematical

considerations will confuse and distort methodological discussions.

If the word of practitioners is not to be taken as gospel, it might seem that

the naturalist must depart from pure description, and hence from sociology, but

in fact this is not so clear. The first stage of the naturalist’s analysis—that

of constructing the purified model of practice—can be viewed as a more-or-

less sociological undertaking: guided by the structure and outcomes of various

historical disputes, the naturalist attempts to prune away contemporary consid-

erations that seem likely to prove irrelevant in the long run (for example, certain

typically philosophical arguments), and to highlight and enhance contemporary

considerations that seem likely to be decisive (for example, various means/ends
analyses). Granted, the practitioner's pronouncements are not taken at face

value, but working sociologists certainly admit that the testimony of subjects is

sometimesless that fully trustworthy, that an accurate description of a practice

will sometimes require discounting the practitioner’s reports.

It is only at the second stage—when arguments are offered within the prac-

tice for or against particular methodological choices—that the naturalist departs

from sociology, and, for that matter, from natural science itself. At this point,

the naturalist is using the methods of mathematics, not those of science, and she

is doing so exactly as a mathematician might do, except that her choices among

the available styles of argument are guided by the results of the first stage of

her analysis. In other words, in this second stage, the naturalist is functioning

within mathematics, just as a mathematician might, except that she uses only

those styles of argument that her previous analysis suggests are the effective

ones, the instrumentally rational ones. But the arguments themselves show no
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sign of sociology; the naturalist does not argue ‘this method is preferable be-

cause it conforms to previous practice’, but ‘this method is preferable becauseit

is the most effective method available for achieving this goal’. At this stage, the

naturalist is doing what the sociologist might call ‘going native’. Going nativeis

something the sociologist avoids as detrimental to scientific objectivity, but for

the naturalistic methodologist, it marks one desired payoff of the analysis.

The third and final stage of the naturalist’s analysis involves the sort of

testing sketched earlier: the arguments produced in the second stage, under the

guidanceof the first stage analysis, are put to the tribunal of practitioners and

of history. This process is also carried out within natural science. A negative

outcome would cast doubt on the accuracy of the first stage analysis or on the

quality of the second stage arguments, perhaps both.

In sum, then, the naturalistic methodologist differs from the sociologist in

going native, or at least, in the motivation for going native: while the sociologist

might participate in activities like the naturalist’s second stage argumentation—

for example, in order to test the first stage analysis—the naturalist has the added

(admittedly faint) hope of clarifying the justificatory structure of the practice

for the practitioners themselves, and thus, of contributing to that practice. In

addition, the desired outcome of the naturalist’s third stage is an evaluation

of the rationality of certain methodological decisions, a style of conclusion the

sociologist is unlikely to draw. For this, what the naturalist needs—in addition

to ‘mere’ sociological observations—is a generic notion of instrumental reasoning

as a legitimate variety of practical reasoning. Given that rather modest tool, the

naturalist can judge effective means/ends arguments to be fully rational.??

I hope this somewhat meandering discussion provides some insight into how

a naturalistic evaluation of set-theoretic methodology might proceed and how its

results could be evaluated. Let us turn now from methodology to philosophy.

3. The naturalistic philosopher

Notice that this proposed naturalism about mathematics differs markedly from

naturalism about science in its treatment of philosophical considerations. Con-

sider, for example, the typically metaphysical claim that mathematical objects

exist objectively and non-spatiotemporally. The mathematical naturalist holds

these issues to be external to mathematics proper and thusirrelevant to method-

ological decision-making, but the analogous claim about physical objects—that

they exist objectively and spatiotemporally—is part and parcelof scientific think-

ing. This is not true of the corresponding mathematical questions, which is why

the mathematical naturalist undertakes to eliminate them from methodological

arguments.

For these reasons, the mathematical naturalist pursuing questions of method-

ology ignores traditional philosophical questions such as ‘are mathematical things

objective or subjective?’, ‘is their existence dependent on our theories or defi-

nitions?’, ‘are mathematical objects incomplete?’, ‘are they morelike fictional

objects or physical objects’, ‘are the axioms true in the real world of sets?’,
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and so on. But perhaps methodology is not the only subject of interest. From

a wider perspective, what does the mathematical naturalist say about meta-

physical questions like these? Are they pseudo-questions? Or is the naturalist

required to hold that there are no mathematical objects? Or that mathematical

statements are not true? Qua methodologist, the naturalist has nothing to say

on these topics, but qua philosopher?

The relevant notion of pseudo-question arises from Carnap’s distinction be-

tween internal and external questions. Within the linguistic framework of mathe-

matics, the internal question—are there numbers?—gets a quick and easy answer:

yes. But philosophers, on Carnap’s reading, often want to ask another question,

a question external to the mathematical linguistic framework, a question that

precedes and motivates the adoption of that framework; this question is also

phrased—are there numbers?—but it has no easy answer. Carnap argues that

the only legitimate external question is a pragmatic one—‘are there good reasons

to adopt the linguistic framework of number talk?’—and that the philosopher’s

external question, asked without the supportof a linguistic framework to provide

the grounds for answeringit, is in fact a pseudo-question.

Carnap took the same view of philosopher’s questions such as ‘is there an

external world?’ or ‘are there really atoms?’. Quine, the scientific naturalist,

replied that these questions are in fact internal to science, questions to be an-
swered by the very scientific methods that answer Carnap’s internal questions.

Quine does this by assimilating Carnap’s ‘pragmatic’ considerations to ordinary

scientific considerations. In so far as metaphysiciansinsist on the extra-scientific

status of their questions, those questions will be immune to Quine’s move and

remain pseudo-questions, but short of this, many traditional debates can be

brought within the range of naturalistic philosophy in this way.

But we have seen that mathematics does not run parallel to science in this

respect; mathematics itself takes no stand on the status of its entities. As only

mathematical considerations are relevant to mathematical methodology, it fol-

lows that metaphysics is methodologically irrelevant. But if the mathematical

naturalist is also a scientific naturalist,24 as I have been assuming, then there is

still room for a naturalistic philosophy of mathematics, for a scientific study of

the practice of mathematics. This study would reasonably undertake questions

like: what is the relationship between mathematics and science? Is the language

of pure mathematics best accounted for as analogous to scientific language or to

fictional language? Do mathematical things exist in the same sense as physical

ones? The mathematical naturalist sets these metaphysical questions aside for

purposes of assessing mathematical methods, but from thescientific naturalist’s

point of view, they are legitimate questions, not pseudo-questions, regardless of

their irrelevance to methodology.

Scientific naturalists have always held that within science there is room for

a scientific study of science, a study of scientific language, scientific truth, scien-

tific method. What I am suggesting is that there is also room for a parallel and

even comparative study, within science, of mathematical language, mathemat-

ical truth, mathematical method. The difference is that the scientific study of
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science uses the same general methods and pursues the same general goals as its

object, while the scientific study of mathematics uses scientific, not mathemati-

cal methods, and pursuesscientific, not mathematical goals. It is conceivable,if

only barely, that a crackerjack scientific study of scientific language or scientific

truth might properly influence the practice of scienceitself, given that the study

and the practice share the same methods and goals. But the mathematical nat-

uralist notes that mathematical methods and goals are not those of science, that

the scientific study of mathematical method is extra-mathematical and, for that

reason, cannot properly interfere with mathematical practice.

Thus, mathematical naturalism has consequences not only for our practical

evaluation of mathematical methods, but also for our naturalized philosophical

study of mathematics: that study must leave the practice, or rather, the natu-

ralistic methodologist’s purified and amplified model of the practice, untouched.

Consider, for example, the effects of our naturalistic methodologist’s account of

the status of CH. If a version of Simple Realism insists that there is a fact of

the matter about CH and that the set theorist’s job is to find an axiom system

that settles it, then the possibility that it might one day be rational to sacrifice

Unify to Maximizeis ruled out; from the mathematical naturalist’s point of view,

this is an unacceptable interference of metaphysics in methodology. Similarly, a

Glib Formalism or a Glib Plentiful Platonism that denies there can be rational

mathematical reasons for choosing one consistent axiom system over another also

conflicts with the naturalist’s reading of practice.

On the other hand, a Subtle Formalist could hold that mathematics is the

study of what follows from which hypotheses, that all consistent axiom systems

are metaphysically on a par, but that there are rational reasons, springing from

the goals of mathematics itself, that justify the choice of one axiom system over

another for extensive study. This Subtle Formalist’s purely methodological in-

quiries might well coincide with the work of the naturalistic methodologist. The

same goes for a suitably Subtle Plentiful Platonism: every consistent axiom

system correctly describes some world of sets, but there might be sound math-

ematical reasons for preferring to study one world rather than another. Similar

Subtle versions of Fictionalism can also be imagined.” The point is that these

philosophies, treated as scientific theories of mathematical practice, are natural-

istically acceptable, while the above Simple and Glib philosophies are not.

I leave to others the task of determining which of these acceptable theories

is best, but I should pause to take note of a disparity in the motivations behind

various proposed philosophical theories of mathematics. Here, I have been ar-

guing for a scientific, naturalistic approach that puts somerestrictions on the

range of acceptable philosophies and specifies that generally scientific criteria are

applicable to the choice within that range. But recall the naturalist’s claim that

the role of extra-mathematical philosophy in mathematics is inspirational rather

than justificatory. Some writers, usually mathematicians, philosophize about

mathematics from this perspective, and it is not to be expected that an excel-

lent inspiration will always be a scientifically adequate philosophy, or vice versa.

A philosophy might, for example, be effective as an inspiration without even
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being adopted consistently; one philosophy might be better suited to one type of

problem or one branch of mathematics, another to another. A philosophy might

be effective as an inspiration even if it is ‘justified’ on unscientific grounds, for

example, as direct communication from extra-terrestrial aliens. There is noth-
ing wrong in the inspirational use of philosophy—indeed, there is much to be

lauded—butthescientific naturalist is motivated by a different, standardly sci-

entific goal.

The picture I have been painting begins with scientific naturalism, with sci-

ence as the fundamental study. Mathematical naturalism extendsscientific natu-
ralism by treating mathematics as a separate undertaking, open to investigation

by scientific methods, but not subject to methodological interference from that

source. As this picture takes shape, it is natural to ask why mathematics merits

this special treatment. What, for example,is to block an astrological naturalism,

which holds that astrological methods are not subject to scientific criticism? A

move in this direction might be welcometo the pluralist, but the scientific natu-

ralist is likely to feel some discomfort. Thetrick, then, is to explain what singles

out mathematics from the rest. From the scientific naturalist’s point of view,

that is, from the point of view of science itself, I think there are two conspicuous

points of disanalogy between mathematics and, for example, astrology—points

that justify disanalogous treatment.

First, the scientific naturalist notes that the domain of science includesall of

spatio-temporal reality, the entire causal order, but that pure mathematics has

nothing to say about this domain. Philosophical accounts of mathematics might

say something about it—for example, that it does or does not include mathemat-
ical things—but mathematics itself, on the naturalist’s model, does not. When

questions of spatio-temporal location or causality do arise, what’s involvedis

actually a mathematized physical object, for example, an impureset or a field.

The question of how these mathematized descriptions of scientific reality work

is a deep and important one, but the point remains that the domain of pure

mathematics does not overlap the domain of science. Philosophical accounts of

mathematics might impinge on the domain ofscience, but that sort of conflict is

another matter, to be settled by rejecting the philosophy(if it is unnaturalistic)

or by scientific methods (if the philosophy is naturalistic).

Astrology is another story. Webster’s”® definesit as:

. a pseudo-science claiming to foretell the future by studying the

supposed influence of the relative positions of the moon, sun, and

stars on humanaffairs.

In this sense,”” astrology posits new causal powers and makes new predictions

about spatiotemporal events, a clear incursion into the domain of science. As that

incursion makes claims that are not supported by standardscientific methods,it

is to be counted an invasion and deplored. The contrast with pure mathematics

is stark.

This first disanalogy between mathematics and astrology may explain why

the scientific naturalist will find it less troubling to follow the mathematical
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naturalist’s admonition not to criticize mathematical methodology than to fol-

low an analogous admonition from the astrological naturalist. However, it does

not explain why thescientific naturalist should be particularly interested in giv-

ing an account of mathematics. Consider, then, the second disanalogy, from

the scientific perspective, between mathematics and astrology: pure mathemat-

ics is staggeringly useful, seemingly indispensable, to scientific theorizing, and

astrology is not. Thus, one part of understanding science, within science, is un-

derstanding what pure mathematics is, what it does for science when it is used

in application, and why it does this job so well. This is a strong motivation for

a naturalistic study of mathematics with no parallel in the case of astrology.

Thefinal question in this line of thought is: why does the naturalist prefer the

standpoint of science to begin with? Is not this just scientism? One fundamental

goal of scientific naturalism is to provide a justification of scientific method as

the best available way of achieving the goals of science.*® But this, even if it
were accomplished, would not establish that our science is the only reasonable

science. As Quine puts the point:

Might another culture, another species, take a radically different line

of scientific development, guided by norms that differ sharply from

ours but that are justified by their scientific findings as ours are by

ours? And might these people predict as successfully and thrive as

well as we? Yes, I think that we must admit this as a possibility in

principle; that we must admit it even from the point of view of our

own science, which is the only point of view I can offer. (Quine 1972,

p. 181)

On the one hand, even ourscience tells us that our way of describing the world

is probably not the only way, or even the only effective way; on the other hand,

it is the only way we have, a fact which must ultimately carry the day.

Notice, finally, that even if we establish that our science is the best way we

know of achieving our goals, even if we accept that we can do no better than to

embracethe best available way of achieving our goals, we have not justified those

goals themselves. A culture or a species with different goals would properly elect

to proceed differently. But there is no way around this, and I think thescientific

naturalist who shares the goals of science must and should besatisfied with this

much justification and ask no more.

4 Conclusion

I have suggested that the spirit of naturalism is better served by a mathemati-

cal naturalism that treats mathematics on its own terms than by a science-only

naturalism that subjects mathematics to external evaluation. Implementation of

this mathematical naturalism requires some subtle techniques; I have tried to in-

dicate how these can be developed and tested. Finally, though the mathematical

naturalist sees properly philosophical questions as irrelevant to practical method-

ological decisions, there remains room for a naturalistic philosophical study of

mathematics within science, a study that must be sensitive to the conclusionsof
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the naturalistic methodologist of mathematics; I have tried to cast somelight on

these interconnections. My guiding hopeis that mathematical naturalism better

understood will be mathematical naturalism better loved.

Notes

1. See (Maddy 1995), (Maddy 1996), (Maddy 1998a), and especially (Maddy
1997), where some themesof this paper are also developed in more detail.

2. See (Maddy 1990, Chapter 4) for details.

3. For the sake of completeness, it is worth noting a third, closely related

difficulty, this one involving set-theoretic claims that do not present themselves

as attractive axiom candidates, but which might, nevertheless, be regarded as

welcome consequences of more appealing axiom candidates. (I have in mind,

for example, V # L or Projective Determinacy. See (Maddy 1998b).) The
first problem is to explain what, if anything, legitimately disqualifies these from

serious consideration as axiom candidates; the second problem is to explain what,

if any, support they legitimately provide to axiom candidates that imply them.

4. Examples of Simple Realism can be found in (Gédel 1964) and (Maddy

1990).

5. For example, see Balaguer’s ‘full-blooded platonism’ (1995).

6. The contemporary developmentof this line of thought begins with Benac-

erraf (1973), though Benacerraf raises it as a question about Simple Realism,

not as an argument against it. For discussion, see (Maddy 1990, §2.1), (Field

1989, pp. 25-30), and (Burgess 1990).

7. Levy and Solovay (1967) show that CH is also consistent with and inde-

pendent of ZFC plus various large cardinal axioms.

8. The logic here is assumedto be first-order. The position sketched should

not be confused with Hilbert’s more complex and subtle view.

9. Not to be confused with Balaguer’s version, cited earlier. More subtle

versions of these Glib views will be considered in §3, below.

10. One version appears in Chihara (1973, Chapter 2), under the name

‘Mythological Platonism’. This is not, however, the view that Chihara defends.

11. This may soundlike an idealization of actual practice, in the sense of the

physicist’s frictionless plane, but I think that this is the wrong analogy. What

the physicist leaves behind are real causal factors; they are left out of the story

to simplify it, so that deeper, more fundamental factors can be brought to the

fore. But when a description of set-theoretic practice leaves out the philosophy

(and other extra-mathematical considerations), the naturalist’s position is that

nothing truly functional has beenleft out; rather, distortions have been stripped

away. A better analogy would be the removal of impurities to obtain a pure

sample of a substance under study.

12. I discuss this point in (Maddy 1996).
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13. We are focused here on the philosophical intruders, but there are others,‘

For example, a mathematician’s beliefs about the preferences of the NSF panel

might influence her preference for one theory over another, but this influence,

according to the naturalist, is not legitimately justificatory, and will also be set

to oneside.

14. For example, in (Maddy 1996; 19984; 19986), and especially in (Maddy

1997).

15. Actually, he argues that it would remain legitimate even if it were shown

to be independent, and he predicts (correctly) that this will be shown.

16. That is, Gddel’s axiom of constructibility (V = L) and large cardinal

axioms (LC).

17. See (Maddy 1998a; 19986), and especially (Maddy 1997).

18. To say this, obviously, is not to deny that within any particular theory

of sets, the sentence ‘CH or not-CH’is true, that is, a theorem.

19. See (Maddy 1996) for an example.

20. This term is meant to signal and to set aside the complicated question,

familiar to philosophers, of how far you have to look, how careful or how smart

you have to be, for your neglect of a certain possibility not to undermine the

claim that you are proceeding rationally.

21. I have nothing to add to the debate on how these distinctions might be

drawn.

22. Here I am ignoring the possibility, noted earlier, that a principled distinc-

tion between sociology and mathematics could some day convict a mathematical

community of erring by making their practice conform to somesociological (hence

extra-mathematical) goal.

23. A third distinction between the mathematical naturalist and the soci-

ologist applies also to the scientific naturalist: leaving philosophical consider-

ations aside, both naturalists undertake to separate legitimately justificatory

arguments (like agreement with experiment or proof from accepted axioms)

from other extra-scientific (extra-mathematical) pressures, like the preferences

of grant-conferring agencies. Once again, I have nothing to contribute to the

debate over this distinction.

24. Though obviously not a science-only naturalist.

20. Some who find Formalism or Fictionalism attractive as accounts of set

theory maystill be tempted to insist that the identities of simple arithmetic are

robustly true, and I suspect that this position is defensible. Though I doubt that

the role of mathematics in well-confirmed science can yield the general ontological

consequences drawn in the well known indispensability arguments (see (Maddy

1995)), simple arithmetical identities do seem to be applied in uniquely literal

form; perhaps these applications are even logical rather than fully mathematical.

But admitting that 2+ 2 = 4 is true in a sense that the Axiom of Choiceis not,

admitting even that the former is ‘contentful’ in a sense that the latter is not,
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need not commit one to a Hilbert-type program of justifying the content-free in

terms of the content-ful. To be motivated in that direction, one must also hold

that pursuit of the content-ful is the overriding goal of mathematics, and this

claim hardly squares with practice.

96. Webster’s New World Dictionary of the American Language, second

college edition, (Cleveland, OH: William Collins Publishers, 1979).

97. There are other interpretations of the goal and method of astrology.

For example, discussions of an astrological chart between the astrologer and the

subject are expressed in terms of archetypes that seem to go deep into human

psychology; some astrologers hold that this process allows the subject to tap

mto a deeper level of understanding of his/her life and actions, which can be

beneficial. On this interpretation, the astrologer is engaged in psychological

counseling, not in describing causal mechanisms or making predictions. There

remains room for debate within psychology about the effectiveness of this ther-

apeutic technique, but this is a local discussion within science to be settled by

standard scientific methods.

28. Note the similarity to the mathematical naturalist’s assessment of math-

ematical methods.
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10
The mathematician as a formalist

H. G. Dales

1 Introduction

The existence of this meeting bears testimony to the anodyne remark that there

is a continuing debate about what it means to say of a statement in mathematics

that it is ‘true’. This debate began at least 2500 years ago, and will presumably

continue at least well into the next millennium; it would be implausible and

perhaps presumptuous to suppose that even the union of the talented and dis-

tinguished speakers that have been assembled here in Mussomeli will approach

any solution to the problem, or even arrive at a consensus of what a solution

would amount to.

In the end, it falls to the philosophers, with their professional expertise and

training, to carry forward the debate and to moveusto a fuller understanding of

this subtle and elusive matter. Indeed, we are hearing at this meeting a variety

of contributions to the debate from different philosophical points of view; also,

there is a good number of recent published contributions to the debate (see
(Maddy 1990), for example).

What then is the réle of the mathematician in this debate? Some mathe-

maticians take the view that, since they are doing mathematics, they certainly

know what they are about—that ‘true mathematics’ is ipso facto what mathe-

maticians are doing, and that philosophers have only the relatively minor role

of clarifying what mathematicians know they are doing, mainly for the benefit

of those unfortunate people who are not mathematicians. This must be an ar-

rogant and mistaken view; there is no reason to suppose that mathematicians

have an innate understanding of the philosophical foundations of their subject,

or even any coherent and well-thought-out view of what exactly they are engaged

in. Even those mathematicians who do believe they have such a coherent view

of their subject may well find that, when this view is exposed to the scrutiny

of a philosopher, the coherence is illusory and that they must squirm as the

inadequacies of their thoughts become apparent.

Thus we cannot expect mathematicians to resolve the problems of ‘truth in

mathematics’ for the philosophers. But this does not mean that the thoughts

and practices of mathematiciansare irrelevant to the philosophers who are grap-

pling with the problem: philosophers of mathematics must come to terms with

mathematics as it is practised today, and they should not be content to base

181
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their theories on, say, the very different style of mathematics that was extant

in the early years of this century. Modern philosophers of mathematics must

understand the nature and content of modern mathematics, and have at least a

nodding acquaintance with the working assumptions of modern mathematicians,

elucidating the ‘best practices’, even if only to criticize the inadequacies of this

Weltanschauung. (Therole of ‘practitioners’ is discussed in (Maddy 1998c).)
There are two different aspects of modern mathematics that philosophers

must take particular account of.

The first of these is the collection of specific theorems that mathematicians

have proved within their subject. Even an apparently technical remark, such as

Tychonoff’s theorem that an arbitrary product of compact topological spacesis

compact, has philosophical significance. More obviously there are many great

theoremsof this century that have profound philosophical implications and that

must be taken into account by modern philosophers; I am thinking, of course, of

Gédel’s theorems, and the nowclassic proofs of the independence of the Axiom

of Choice (AC) from ZF and of the Continuum Hypothesis (CH) from ZFC.
However, there are now many recent and very significant specific results that

are probably not well known to philosophers of which account must be taken;

some of these, involving, for example, ‘large cardinal theory’ are also discussed

in (Maddy 1998c).
The second aspect that surely must be taken into account is the style of

presenting mathematics that is the orthodoxy of the present day, for this style

should represent the (perhaps implicit) thoughts of the community of mathe-

maticians about the fundamental nature of their subject; our perceptions may

be naive or mistaken, but philosophers should know what these perceptions are

and why the underlying view is attractive to mathematicians, before criticizing

and trying to lead us into a different direction.

My purpose hereis to describe this modern orthodoxy and to explain how it

has arisen and howit applies.

Thus I make a weak claim that the views I am expressing are those of a

‘normal’ working mathematician; it is true that I have made no survey of the

views of these mathematicians, and I am well aware that many different views

would be expressed by others—including other speakers at this meeting—and so

probably I can only say that I am expressing my own views; I present myself as

some sort of specimen. I should also explain how I am using the term ‘mathe-

matician’. In this talk, I shall exclude from the set of mathematicians what is

really the subset of mathematical logicians and set theorists! and deal with the

complementary set. Also I am thinking particularly of practices within analysis

and algebra; number theory may have a special rdle because of the perception

that questions about natural numbers are particularly fundamental, and geom-

etry and mathematical physics have a special connection with our philosophy of

the physical universe.
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2 Philosophical possibilities

First let me very briefly explain, perhaps caricature, some possible philosophical

yiews, as seen by my mathematician. I apologize if these simplistic formulations

give offence to adherents of particular doctrines.

A realist, or platonist, believes that the set-theoretic universe has an existence

outside of ourselves, and hence that statements about this universe (such as the

Continuum Hypothesis) are either true or false; that the axioms of ZFC are

merely obviously true principles about sets that capture some of the total truth

about real sets; that it is interesting that it is now known that we can neither

provenor refute CH from these axioms, but that this is not significant in deciding

whether or not CH is true in the platonic universe. Thus it is possible for the

realist to ask ‘Is the Axiom of Constructibility (V = LD) true?’ or ‘Do inaccessible
cardinals exist?’, and to believe that these are meaningful questions. (I am
probably here describing the Simple Realism of (Maddy 1998c); this sounds a

little better than ‘naive realism’.)
My main problem with this simple realism is that I cannot see how we could

possibly decide on this basis whether or not CH is a true statement about the

universe of sets: we can collect evidence, and discuss what would amount to

evidence (cf. (Maddy 1998c), (Martin 1998)), but to know the truth of CH
seems quite inaccessible to us.

The move to formalism at the beginning of this century came, I presume,in

response to the emergence of paradoxes about the very notion of set;* to avoid

these paradoxes we must be more careful about the notion of ‘a property defining

a set’ and our use of language. The solution, proposed by Freenkel and Skolem,

consists in eliminating everyday language from mathematical statements, and

replacing it by formal languages, hence ‘formalism’.

For a formalist, mathematics is the science of rigorous proof: we start from

axioms chosen in some way; we hope that the axioms are not inconsistent; and

we deduce what we can from the axioms by using a logical system that we have

precisely delineated (probably first-order logic?) and by working in a formal

language. The interpretation given to the axiomsis irrelevant; we are concerned

only with the validity of the deductions from them. Results proved in this way

from the axioms are called ‘theorems’; incautiously, mathematicians tend to say

that the theorems are ‘true’, but in fact the statements have no content, for

they are not about anything, and ‘true’ is merely a brief way of saying that the

theorems are what can be deduced from the axioms. A problem for the formalist

is why we choose one set of axioms rather than another (we do quickly discard

systems of axioms knownto be inconsistent, but you will know that proofs that

systems are consistent are not obtainable in the cases that interest us). Thus

mathematics is seen, not as a science, but as a language; in Russell’s harsh phrase,

it is a subject in which practitioners do not know what they are talking about

and do not know whether or not what they are saying is true; in Dieudonné’s

words ‘Mathematics is just a combination of meaningless symbols’. Thus I seem

so far to be a Glib Formalist in the sense of Maddy (1998c); to quote Maddy, such
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persons hold that ‘all consistent theories are on a par, mathematically speaking,

that the only justification an axiom requires is evidence for its consistency, that

the choice between various axioms, between various theories of sets, is guided not

by rational principles, but by aesthetic or psychological or sociological influences’,

I do believe that all consistent theories have the same mathematical status, but

I go beyond this in claiming that the choice among competing theories is not

irrational; this is moving towards the Subtle Formalism of (Maddy 1998c).
The doctrine of naturalism is described in the previous chapter (Maddy

1998c); it will not be discussed further here.
It is not my present purpose (or within my capability) to engage in a seri-

ous philosophical defence of formalism in this talk; my intent is to describe how

(some) mathematicians act as formalists when they are writing down their math-
ematics. Others can attempt to explain whether or not these mathematicians

are standing on firm philosophical ground.

There is a distinction for the formalist between the formal theory and the

metatheory. For example, within ZFC, a (formal) theorem is a sentence in the
formally prescribed language provable from the axioms of ZFC; a metatheorem

is a statement about what can be proved in the formal theory.* It seems that

formalists are constructivists in respect of what can be proved in the metatheory.°

I shall speak only of the debate between realists and formalists. There are

of course many nuanced versions of realism and formalism, and several other

important philosophies of mathematics; some are expoundedin other talks at

this meeting. I will not discuss these here, save to say that I am not aware

of any significantly large schools of working mathematicians who have adopted

their tenets. For example, finitism has a certain appeal, but this point of view

seems to discard much of modern mathematics. The case for constructivism

is cogently presented by Bridges in this volume (Bridges 1998); clearly there

is much beautiful mathematics here that has a wide appeal—for example, the

constructive version of Picard’s theorem, described by Bridges, has been much

appreciated—butit seems that only a small group of mathematicians has actively

embraced the philosophical tenets of this doctrine and incorporated them into

their own work.

3 Attitudes of mathematicians

The first remark must surely be that most mathematicians are, at best, rather

indifferent to the debate between realists and formalists, and a good numberis

totally indifferent, or even antagonistic, to the existence of such philosophical

musings. ‘lhe extreme case is that of applied mathematicians and physicists,

who, as Effros remarks in his lecture (Effros 1998), whilst valuing our language,
often have little patience even for our insistence on rigour in proofs, and so these

people are scarcely going to concern themselves with the difference between

formalism and realism. But this is also so of (pure) mathematicians in my

sense: a natural question for gossip in barsis ‘Is the cohomology theory of a von

Neumannalgebra necessarily zero?’, rather than ‘What does it mean to say that
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it is true that the cohomologyis zero?’. But I will indicate below that questions

of foundations can come and disturb even ‘normal’ mathematicians.

The second remark is one madeseveral times before by other people: math-

ematicians are ambivalent between realism and formalism. For example, I quote

from Davis and Hersh (1981, p. 320):

_.. the typical working mathematician is a [realist] on weekdays and
a formalist on Sundays. That is, when he is doing mathematics

he is convinced that he is dealing with an objective reality whose

properties he is attempting to determine. But then, when challenged

to give a philosophical account of this reality, he finds it easiest to

pretend that he does not believe in it after all.

Let me continue with a quotation from Yiannis Moschovakis (1980, p. 605):

Nevertheless, most attempts to turn these strong [realist] feelings into
a coherent foundation of mathematics invariably lead to vague dis-

cussions of ‘existence of abstract notions’ which are quite repugnant

to a mathematician. Contrast this with the relative ease with which

formalism can be explained in a precise, elegant and self-consistent

manner and you will have the main reason why most mathematicians

claim to be formalists (when pressed) while they spend their working

hours behaving as if they were completely unabashedrealists.

The above two comments are certainly true at one level. However, I would

change the emphasis from that in the first quotation. It seems to me that

most mathematicians really are formalists for all the days of the week. It is

of course very useful when seeking proofs within the formal system to have

a ‘realistic picture’ in one’s mind, and so it is temporarily convenient, during

the week, to be a realist, but it is the realism that the mathematician does

not really believe in. A proof is that which can be achieved within the formal

situation, and not that which can be pictured in the image; even though one can

become morally convinced of the validity of a general deduction by feelings that

arise from consideration of the mental picture, the rdle of the mental construct

is only psychological, and cannot convince in the written account that must

eventually be producedif the insight is to find its place in the corpus of accepted

mathematics, and not just be a private revelation. (This view contrasts with
that of Jones in this volume (Jones 1998); it may very well be more applicable

in areas of abstract analysis and algebra, which are my natural home, than in

such geometric subjects as knot theory.)
I think that the success of the major mathematicians in resolving problems

and advancing the subject owes muchto their ability to formulate in their mind

an appropriate image of the abstract problem: it must be sufficiently subtle and

complicated to capture the essential features of the question at issue, yet remain

sufficiently simple to allow our limited minds absolutely and fully to explore, in

quiet contemplation, all aspects of this image until we understand it sufficiently

to begin the attempt to transfer this understanding to a written account of the
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general, abstract situation. On the other side, I know that graduate students

and all mathematicians sometimes falter because their intuitive, realistic image

does not capture all relevant aspects of the question.

Thus my view is that we are genuine, believing formalists who temporarily

act as realists for reasons of expediency in solving problems.

4 The style of formalists

I said earlier that philosophers should seek to understand the XX*centurystyle

of presenting mathematics; this has basically settled down since around 1930 to

be the formalist’s style. (As I have said, there are several penetrating critiques

of this orthodoxy.)
The first remark is that formalists practically never use a truly formal lan-

guage in their writings (and may not know how to do this, even under pressure);

they formulate their theorems in the naive language of set theory developed in

the XIX*® century by Dedekind and Cantor. But they are confident that, if their

results had to be formalized, this could be done; and doubtless they are correct

in this.

How then does a formalist choose his axioms and definitions? The choiceof

the axioms for set theory has been extensively discussed elsewhere, not least in

other talks at this conference, and so I will draw my examples from other areas.

Nevertheless it is clear that the fundamental axioms that underly the math-

ematics that I am talking about are the Zermelo—Frenkel axioms of set theory
ZF, almost always taken with the Axiom of Choice AC to form the system ZFC;

these axiomsarelisted by Woodin (1998). It could be said that the ‘axioms’ that
I am presenting are merely abbreviations for concepts that arise in the theory

ZFC: my point is to show examplesof collections of axioms that mathematicians

have chosen to delineate, and to try to indicate why these particular collections

of ‘meaningless symbols’ are so honoured.

The first example is that of a group. The systematic study of group theory

dates from the early part of the XIX** century;it took a long timefortheprecise,

abstract concept to be formulated. The formal definition now stands as follows.

Definition 4.1 A group is a triple (G, -,e) such that:

(i) G ts a non-emptyset;

(ii) -: Gx G > is a binary operation such that r - (s - t) =(r-s) +t for
all r,s,t in G;

(iii) e is an element of G such thatr-e=e-r=r forallr inG;

(iv) for each r in G, there exists s inG such thatr-s=s-r=e.

Certainly even this elementary definition uses words that need a prior defini-

tion. In particular, the definition of a group presupposes the definition of a set,

and all that this implies.
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It follows easily that the element e (called the identity of G) is uniquely
specified by condition (iii) and that, for each r € G, s is uniquely specified in

condition (iv). These facts are very easily proved from the above axioms; the

point is that in a careful exposition of group theory, they must be proved. Here

is the proof that e is uniquely specified. Indeed suppose that e; and eg are

elements of G that both satisfy the axiom (iii). By using two different equalities
contained within (iii), we see that e; - eg = e; and that e; - eg = e2, and so, by

a, more basic axiom, €] = é2.

The notion of a group arose from the idea of permutations of a fixed (finite
or infinite) set, the group operation being composition of permutations; these

ideas, which are concerned with what we nowcall groups of permutations, arose

in the early years of the XIX* century—Cauchy played a significant r6le—after

much experimentation with specific results on the roots of polynomials in one

variable, and, in particular, after the attempt ‘to solve the general polynomial

of the fifth degree by radicals’.© Of course examples of groups are ubiquitous in

our mathematical world.

It is of fundamental importance to know when two groups are the same, or

are isomorphic.

Definition 4.2 Two groups (G,-, eg) and (H, x, ey) are isomorphic if there

is a bijection 9: G — H such that O(r - s) = O(r) x O(s) for eachr ands inG.

It is this notion of isomorphism that underlies the great transformation in

ideas of the XIX*® century: we moved from the concept of mathematical objects

(natural numbers for arithmetic, single equations for algebra, space and figures

for geometry, specific functions in analysis) to that of relations between objects,

epitomized by the notion of isomorphism. It is remarkable that apparently no

one before 1850 noticed that the sets of real and complex numbers form a group

with respect to addition, that the set of invertible (n x n)-matrices over C forms
a group with respect to composition, etc., and so the relations understood for

hundreds of years in one context could easily spread to new situations.

My second example is that of a Hilbert space, arising from around 1920. I

give the definition in a briefer form that begs the earlier definition of some terms.

Definition 4.3 A Hilbert space (over C) is a linear space H over C together
with a complex inner product, mapping the pair (x,y) in H x H to the complex

number (x,y) in C, such that:

(i) (ax + By,z) =a(z,z)+B(y,z) (a, BEC, z,y,z € A);
(ii) (y,z) = (z,y) (x,y € A);
(iii) (2,z)>0 (xe A);

(iv) (x,xz) =0 only when x = 0.

Further, the space H must be complete with respect to the associated norm defined

by
lel = (2,2) (we H).
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Even for such an elementary object, the formal definition is a little comp-

licated. Again, two Hilbert spaces H and K (we suppress the notation for the
additional structure) are the ‘same’if all the structures of H are indistinguishable

from those of K: H and K are isomorphic if there is a bijection 7’ from AH onto

K such that T is a linear map over C and T' preserves the inner product in the

sense that (Tx,Ty) = (x,y) for each z and y in HZ.

The third example is that of a Banach algebra, first defined around 1940. |

now give the definition in a decently terse form.

Definition 4.4 A normedalgebra (A, +, -,||- ||) 2s @ structure such that:

(i) (A, +4, ||-|]) ts a normed space;

(ii) (A, +, -) ts @ complex algebra;

(iii) |[abl| < |lal| |b] (a,b € A).

The structure is a Banach algebra if the normed space (A, || ||) 7s complete.

For example, let be a compact space, and let C((Q) denote the family of
all continuous, complex-valued functions on 2. Then (C(Q), +, -) is an algebra

with respect to the obvious pointwise operations, and (C(Q),+,-,|-|9) isa
Banach algebra, where the uniform norm |- |, is defined by

flo =sup{lf(z)|: 2 EQ} (f €C(Q)).

When are two Banach algebras the ‘same’? There are now two variants of

the basic definition: two Banach algebras A and B are isomorphic (respectively,
isometrically isomorphic) if there is a bijection 0: A — B such that

6:(A,+,-)—7 (8, 4+,°)

is an algebra homomorphism and such that 0: (A, ||- ||) — (B, ||- ||) is a contin-
uous (respectively, an isometric) map.

The point of giving these definitions is to stress the fundamental view that

a group, a Hilbert space, a Banach algebra is exactly what is specified by the

definitions; they are no more and no less than this. Theorems about groups,

Hilbert spaces, and Banach algebras are those results that can be deduced from

the axiomatic definitions by the formal procedures that we allow; I do not see

that we have any independent knowledge about these objects other than what

can be provedin this way.

The definitions do come with an associated definition of when two objects

are ‘the same’. In a sense it is unnecessary to state these additional definitions

because they can be subsumed underthe diktat: ‘two structures in a category are

isomorphic if there is a bijection between the underlying sets that preservesall

the structures’.’ But note that we may have two somewhatdifferent ‘isomorphic

theories’: for example, in the case of Banach algebras we may chose to preserve

the topological structure and work with isomorphic Banach algebras or to also

preserve the geometric structure and work with isometrically isomorphic Banach



The mathematician as a formalist 189

algebras. If two structures are isomorphic, there is nothing that we can prove

about the one that cannot be proved about the other.

These axiomatically defined objects are only useful and understandable if

there are natural examples of the concepts.

There are two natural examples of a Hilbert space. First, let Hy consist of

the set of sequences a = (a, : n € N) of complex numberssuch that the sum

oO

> onl”
n=1

is convergent. Then His a Hilbert space with respect to coordinatewise linear

space operations and the inner product defined by

((Qn = YoanB ); (Bn) € Hi).

Second, let H» consist of the family of Lebesgue measurable functions f on the

closed unit interval I = [0,1] such that

|“LAP

is finite. Then H> is a Hilbert space with respect to the pointwise linear space

operations and the inner product defined by

9) = | f(a) dt (f,g € He).

(There is a certain subtlety about the second example,in that, strictly Ho is the

space of equivalence classes of functions, where f ~ g if and only if

[\wo- g(t)| dt =0;
so there is a certain ‘unreality’ about specifying an element of H2 as a function.)

For the formalist, H; and H» are the same Hilbert space because (this is not

quite obvious, but not very deep) the two spaces are isomorphic. But looked at

through other eyes, H; and Ho are clearly very different. Does the realist have

a concept of a Hilbert space? If so, which of my two examplesis closer to the

‘real, platonic’ Hilbert space—oris it just the axioms which capture the essence

of the ‘real, platonic’ Hilbert space? In the latter case, the difference of a realist

from a formalist seems to evaporate. I see no reason why either example should

be preferred to the other.

Again let me remark that two Banach algebras C'(Q,) and C(Q2) are isomor-
phic if and only if the two compact spaces 2; and Q»2 are homeomorphic, but

that, regarded as Banach spaces, C'(Q1) and C(Q2) are isomorphic whenever 2);
and Q. are both compact, uncountable metric spaces; the concept of ‘being the

same’ depends on the structures that we take account of.
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Let me detour briefly to give an example of a deduction from the axioms

that gives pleasure to a mathematician. Look again at Definition 4.4. A Ba

nach algebra has two different structures, in that it is both a Banach space and

an algebra, and the two structures are related by the apparently weak condi-

tion 4.4(iii), which essentially asserts that the algebraic operation of taking the

product is continuous with respect to the topology defined by the Banach space

structure. However, it is a deep and beautiful result—it took about 25 years

to evolve—that, under a simple algebraic condition, the Banach space struc-

ture is uniquely determined by the algebra structure; an algebra isomorphism is

necessarily an isomorphism of Banach algebras.®

One could argue that the realist has no a priori concept of a Hilbert space

or of a Banach algebra, and so they have no pressing necessity to pronounce on

the intrinsic nature of these concepts of mathematicians. But surely the realist

does have a concept of that fundamental construct, the real line R? Whatis

the formalist’s real line? This depends on the aspects of the real line’s structure

on which one wants to concentrate. For example my preferred definition is the

following.

Definition 4.5 A field is a structure (K, +,-,0, 1) such that:

(i (K, +, 0) is an abelian group;

(i Kk\‘o}. ,1) ts an abelian group;

)

i)
(iii) the destributive laws hold.

orderedfield is a structure (K, +, -,0, 1, <) such that:

i) (K, <) ts a totally ordered set;

(ii) (K, +, -, 0, 1) ts a field;

(iii) a+c<b+c whenever a,b,c € K witha < b;

(iv) ab > 0 whenever a,b € K with a,b > 0.

An

(

An ordered field (K,+,-, 0,1, <) is (Dedekind) complete if each non-empty

subset of K which is bounded above has a supremum.

This is the standard definition of a complete ordered field that is offered (or,
at least, used to be offered), with some preparation, to first-year students. We

have an immediate definition, as in the above diktat, of when two orderedfields

are isomorphic. But now we have a clear theorem: any two complete ordered

fields are tsomorphic to each other. Thus my view is that any two complete

ordered fields are the same, and so there is just one such field; this field has

the properties that one would wish thereal line R to have; and so, by its very

definition, R is exactly ‘the’ complete ordered field; the properties of R are the

theorems about the structure ‘complete ordered field’. Note immediately that

these properties do not include a resolution of the question whether or not there

is an uncountable subset of R which is not equipotent to the whole of R; the

notion of isomorphism that flows from the structure I have chosento call that of
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R is not refined enough to carry this extra information. I will describe shortly

how I believe we should proceedin deciding this matter.

It will be said that there are other definitions of the real line that capture

different properties, perhaps that others consider to be more important. This

ig indeed the case. My view is exactly this: the idea of the real line is the

inspiration of many different topics within mathematics, and can be captured by

different sets of axioms; that when onetalks of R as a complete ordered field,its

properties are just the theorems about such fields; but when one characterizes

R by different axioms, one obtains a different collection of properties.

Presumably the realist’s real line has the union of the properties that have

been formulated, and others not yet, or perhaps never to be, known. One of

these properties will tell us the size of the continuum, but I cannot see how this

property is discoverable.

5 The choice of axioms; discovering the truth

I have indicated that the formalist must choose the axioms, must decide which

structures to study. The realist must seek a way of determining what are the

‘rue’ statements about his real world. I will discuss how, in practice, the for-

malist makes his choice; it may well be that this method is philosophically naive.

My claim is that, mathematically, the process is very successful; I leave it to

philosophers to decide how justifiable it is.
Ultimately the only binding constraint on the formalist’s choice of axiomsis

that they should be consistent, or at least that they should not be known to be

inconsistent.’ This gives us a great deal of freedom. Nevertheless I am arguing

that there are rational reasons, arising from the subject itself, that justify the

consensus among mathematicians for the choice. The purpose of my examples

was to exhibit some choices that have been made; I now seek to explain how this

happened.

It appears to me that the realist has a far bigger challenge to justify how it is

knowable that certain statements—however obvious, however useful—are‘true’.

Actually, the previous sentence is a euphemism. I cannot at all see how the

significant mathematical statements that are the basis of our modern science—I

am referring to statements about infinite sets—can be established as ‘true’; this

is a problem for the realist, and I trust that I shall receive enlightenment on

this point during this week. At present I shall take as my guide the procedure

whereby Penelope Maddy (1993) seeks to determine whether or not the Axiom

of Constructibility is true; see also (Maddy 1998c).
In fact, it clearly emerges that the evidence that Maddy adduces in favour

of the truth of a statement is very similar to that which I believe the formalist

would adduce in favour of the choice of a particular scheme of axioms. Thus, in

practice, the mathematical structures that are studied by formalists andrealists

(and naturalists—see (Maddy 1998c)) cannot be systematically distinguished
from each other; the range of opinion within each sect on, say, the status of CH
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seems to be the same as that between the sects. This is the main reason why

working mathematicians are indifferent to the philosophical dispute betweenfor-

malists and realists: whichever way the debate moves, mathematicianswill basi-

cally still study the same structures. The objects of study, the style of work, the

questions that are considered important will evolve with time (and there may be
a lack of unanimity among practitioners), but this evolution will be driven not
by philosophical debate, but rather by reasons that arise within the subject and

by the pressure to find a mathematical framework in which to express the ideas

that arise in physics and other sciences.

What then are the criteria that the formalist adopts in deciding on the axioms

and definitions to be studied?

(I) The first criterion is that azioms should be simple and clear, and should
isolate the essential aspects of many diverse, known examples; the choice will

have been successful if they are fecund in suggesting other, new examples, and in

encompassing examples which arise in other contezts.

The examples from which the axioms are abstracted will have arisen already
in mathematics; they may be rather close to our physical perception (however

unreliable) of the universe in which we exist, or they may have been abstracted

from this perception, perhaps through several layers, so that the physical intu-

ition lies far away.

For example, consider the definition of a ‘group’. Without going into a history

of the long evolution of this ubiquitous concept, let me just point to the theory of

permutations, Cauchy’s notion of the composition of substitutions of the early

XIX*® century, Galois’ study of the roots of equations of 1830,1° Hamilton’s

quaternions of 1843, matrices, congruence classes in number theory, geometric

transformations, etc., etc. Yet even Kronecker and Cayley, great algebraists of

the XIX** century, did not work with the general notion of group: it seems

that this emerged only around 1890. It is surely now universally recognized that

the abstract concept of group is astonishingly successful, with a multitude of

applications in science and elsewhere:!! group theory is a pervasive language,

now conquering new areas of physics, for example with the notion of a quantum

group.!?
The notion of Hilbert space arose from a desire to generalize that of finite-

dimensional Euclidean space, namely, the spaces R” with the inner product

(x1, wee , Zn); (y1, vee ,Un)) = S554;

j=l

This desire was fuelled by the need for a language to express important physical

concepts. The actual axioms arose in particular from contemplation of the two

examples, H, and Ho, that I mentioned above. They do seem to capture in a

simple, clear way both our geometric and analytic concepts of ‘space’, allowing

us the concepts of orthogonality and angle, but taking us beyond finitely many

dimensions. In the hands of von Neumann, the theory of bounded linear oper-

ators on Hilbert spaces became, in the 1930s, the language for the new science
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of quantum physics.'° Thus Hilbert spaces have a rather direct application in

physics. It is not asserted that an abstract Hilbert space ‘is’ a physical space

arising in quantum theory, but that the language of Hilbert-space theory is a

fruitful way of modelling the physical theory. The philosophical problem is why

this theory is so unreasonably successful in this, allowing physicists to make

predictions that are confirmed experimentally to an astonishing accuracy.

The rather complicated notion of a Banach algebra arises, not directly from

physical concepts, but from the realization!* that the concept captures the es-

sential features of many mathematical structures that have already been deemed

to be significant; these include algebras of continuous functions such as C({2) and

its subalgebras, convolution algebras arising in harmonic analysis and the the-

ory of Fourier transforms, and algebras of bounded linear operators on a Banach

space; in particular, the subclass of C*-algebras includes the algebra of bounded

linear operators on a Hilbert space already mentioned.

The above examples lie within mathematics, and philosophers may not be

well-acquainted with, say, the theory of Banach algebras. But they are well-

acquainted with the real line R. I make the bold claim that the notion of ‘com-
plete ordered field’ is very simple and clear and does indeed capture, at least

from one perspective, our essential conception of what R is. Moreover our for-

mulation does suggest further examples: by dropping the requirement that the

field be Dedekind complete, we encompass a plethora of examples, including the

much-studied ultrapowers.!° I wonderif the realist would agree that it captures

what is ‘true’ about the real line?

The final claim is that it seems that the axioms ZF or ZFC of set theory do

capture our present intuition about sets; the axioms are so simple and clear that

most mathematicians do not specifically mention that they are working in ZFC,

and may not evenrealizeit.

(II) The second criterion that I apply ts that of the depth of the development

that takes place within the subject specified by the axioms.

Consider the notion of a group. For a group G, a subgroup A is normal

if{r-s:s ¢€ H}={s-r:s € H} for each r in G; this is a fundamental
concept, for normal subgroups are just the kernels of group morphisms. The

group G is simple if the only normal subgroups are {eg} and itself. Any

classification theory of groups will seek to build an arbitrary group in some way

from simple groups. So it is an immediate question what the finite, simple groups

are. This is an easy question to ask, but formidably difficult to resolve: after

decades of effort, the solution, giving a full list,!° is a triumph of our era. That

there are developments of such depth within group theory by itself justifies the

formulation of the concept. I claim that knowledge of the classification result,

and more particularly the accumulation of techniques and understanding that

led to the proof, enriches our subject.

(III) The third criterion that I apply is the frankly aesthetic one.

Mathematicians are willing to make such judgements. For example, justifying

their book on Banach algebras, Bonsall and Duncan (1973, p. vii) write:
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The axioms of a complex Banach algebra were very happily chosen.

They are simple enough to allow wide ranging fields of application

... At the same time they are tight enough to allow the development

of a rich collection of results ... . Many of the theoremsare thingsof

great beauty, simple in statement, surprising in content, and elegant

in proof.

The words ‘beauty’, ‘simple’, ‘surprising’, and ‘elegant’ are doubtless not easy

to justify philosophically, but there is a wide consensus among mathematicians

on how to recognize these attributes, and on how important they are.

(IV) One should not arbitrarily restrict the notions under consideration unless
forced to do so by the desire to avoid contradiction.

This criterion is taken directly from Maddy’s argument against the sugges-

tion that the Axiom of Constructibility be true. For example, I quote from

Moschovakis (1980, p. 610):

The key argument against accepting [the Axiom of Constructibility]

. is that [it] appears to restrict unduly the notion of arbitrary set

of integers; there is no a priori reason why every subset of w should

be definable ....

The argument is carried forward by Maddy (1993) with a discussion of the

historical extension of the notion of function; through the centuries, there has

been a movement to a more inclusive concept of function, so that I regard a

function from S to T to be a subset R of S x T’ such that, for each s in S, there

is a unique ¢ in T with (s, t) belonging to R. Of course, other views, expressed

in lectures here, would restrict the notion of ‘function’ to that which can be

constructed in some way.

It is clear that the criteria that I have noted are subjective; they involve

questions of judgement and experience within mathematics; the tests that are

suggested will have answers that evolve with time; they are by no means un-

controversial, a very different view of the fourth criterion being taken by con-

structivists, for example. Perhaps they are aesthetic criteria. My argumentis

that the realist who seeks to justify the claim that his theorems are ‘true’ has

no fundamentally more secure criteria for truth at his disposal.

6 Arguments against realism

Myfirst argument against realism is clear: I do not see how we can know whether

statements about the platonic set-theoretic universe are true or not. Arguments

adduced for the alleged truth of the negation of the Axiom of Constructibility

are convincing enough to lead me to make the aesthetic choice of not accepting

this axiom; but I find them well short of compelling me to know the axiom to

be a false statement about real sets. Maybe I will have been enlightened by the

end of this conference! The extreme case is to convince me why various (very)

large cardinals do or do not exist.
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It has been suggested (Godel 1947) that we shall resolve the size of the

continuum because in time our understanding of sets will evolve to such an

extent that eventually an ‘obviously true’ axiom about sets that resolves CH

will be enunciated; I am very sceptical of this claim. Even if we do discover

a very persuasive axiom that, inter alia, resolves the Continuum Hypothesis,

and a majority of mathematicians absorb this axiom into their work, this does

not make the axiom ‘true’. The Axiom of Choice is not ‘true’ because, in this

century, the vast majority of practitioners have adoptedit into their work, unless
‘true’ is defined by the last clause.

It has also been suggested that the questions whose truth we cannotresolvelie

a long way from fundamental statements, and so an inner area can be delineated

in which we can readily recognize truth. This would seem to be an unsatisfac-
tory procedure, even if possible. But the area of uncertainty encroaches on the

heartlands. For example, it is now known that questions on the existence of large

cardinals have influence on apparently elementary questions about R. Consider

the following example. It is not difficult to prove that f(B) is a Lebesgue mea-

surable subset of R for each Borel subset B of R and each continuous function

f:R—R. But now suppose that f and g are continuous functions on R.It is a

remarkable fact that it cannot be decided in ZFC whether or not f(R \ g(B)) is
necessarily Lebesgue measurable, but, with the additional hypothesis that there
is a measurable cardinal, all these sets are indeed Lebesgue measurable.!” Here

is another example. We have remarked that (C(I),|-|,) is a Banach algebra.
It was a famous question of Kaplansky whether any other norm || || such that
(C(I), ||- ||) is a normed algebra is necessarily equivalent to the uniform norm
|-|,;. It was eventually proved that, with CH, there are non-equivalent norms;'®

it was assumed that this introduction of CH was a removeable blemish of the

proof, but in fact it was proved by Solovay and Woodin that this result cannot be

proved in ZFC.’ It is also known that there are models of ZFC + DC, where DC

is the axiom of dependent choice, in which all sets of real numbers are Lebesgue

measurable and all linear maps between Banach spaces are continuous.*° Here

we are seeing ‘real’ and fundamental questions from the perspective of analysts

which cannot be resolved without precision about the set-theoretic axioms to be

used. These are not isolated examples; they permeate the subject. I can give

feeble indications why I prefer one resolution of these questions to another, but

I cannot see how to determine the ‘true’ solution.

My second argument, as a glib formalist against realism, is that realism is

restrictive. If it were known that a particular statement, such as CH, were true

about R, then no one could justifiably work in models in which the statement
was false.

Let us suppose that we are working in ZF, and consider the two most basic
independent axioms. The rdéle of the Axiom of Choice (AC) was very contro-
versial in the early years of this century,”! but it is now generally accepted by
working mathematicians because, with this axiom, one can establish many re-
sults which we ‘wish’ to be true. For example, among the many facts that hold
in ZFC, but which cannot be proved in ZF, are the following: each linear space
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has a basis; in a unital algebra, each properideal is contained in a maximalideal.

each field is contained in an algebraically closed field; each filter on N can be

extended to an ultrafilter; Tychonoff’s theorem; the Hahn—Banach theorem. We

would feel unduly restricted without these facts at our disposal. Nevertheless

the mathematics of the few who explore the consequences of ZF + —ACis surely

valid.??

The balance of opinion about CH is more evenly divided, and I would notcare

to guess what the consensus, if any, will be in the future. The formalist position

is strictly that any two relatively consistent extensions of ZFC are equally valid;

I wish to know the theorems that arise in both ZFC + CH and ZFC + —=CH,

Both sets of axioms lead to exciting mathematics; let both theories flourish!

7 Summary

I have explained, writing as a specimen of a working mathematician, that |

am not unrepresentative of those who, if forced to make a decision, would call

themselves formalists; that formalism is explainable in a ‘precise, elegant, and

self-consistent manner’ that appeals to mathematicians; that we live our formal

lives with rationally-chosen and enormously successful, albeit subjective, systems

of axioms to which we have a real commitment; that this formalistic method has

informed the great mathematical advances of the XX* century, and has become

the dominant modeof exposition. It is unlikely that philosophical attacks at the

level that we have experienced so far will drive us from our fertile fields whilst

we are garnering such a rich harvest.

Notes

1. The view is taken by some mathematicians that mathematical logic and

set theory are not part of their subject; perhaps even that it is to be dismissed

from the canonof ‘serious mathematics’ because of its alleged lack of substantial

content and its association with philosophy. It is very surprising to me that such

views can be expressed, and I reject them; they must be based on ignorance. As

a non-set-theorist, it is clear to me that the theorems proved within set theory

in recent years are among the deepest, most technically sophisticated, and most

significant within any area of mathematics.

2. For example, suppose that 2 is the set of all sets. Then every subset of 2

is a member of 22, and so the powerset P(Q) is a subset of 2; this implies that

[P(Q)| < |Q|, contradicting a well-known theorem of Cantor.

3. Dummett (1994) distinguishes between strict formalists, who usefirst-
order logic, and semi-formalists, who permit second-orderlogic.

4. An example of a metatheorem is the statement that the consistency of

both of the theories ZFC + CH and ZFC + —=CHfollows from the consistency

of ZFC; see the Introduction for a discussion of the independence of CH.

5. Essentially our thoughts are derived from those of Hilbert and explained in

86 of the Introduction; but note the ‘internal tension’ in Hilbert’s view described
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in §4 of the Introduction.

6. Even today, the formula

—_ —b+/b? ~— dac

2a
 

for the roots of the quadratic ax? + br + c is known to undergraduates; similar

formulae for the roots of cubics and quartics were known from early modern

times; however there can be no such general formula for the roots of quintic

polynomials. ‘Galois theory’ makes this statement precise, and explains exactly

why this is the case. For a popular account, see (Dieudonné 1992).

7. Formal definitions that generalize this idea arise in the branch of mathe-

matics called category theory ; see (Mac Lane 1971), for example.

8. Let A be an algebra which is semisimple, and suppose that A is a Ba-

nach algebra with respect to two norms||-||, and ||: ||,. Then the identity map
from (A,||-||,) onto (A,||- ||.) is automatically continuous. This is Johnson’s
uniqueness-of-norm theorem; see (Bonsall and Duncan 1973, 25.9).

9. Mathematicians are confident that, if an inconsistency were to emerge

in, say, the axioms of ZFC, then a modest modification of the axioms would

lead to a similar system without the inconsistency; this confidence can only be

based on intuition and experience with the subject acquired by the community

of mathematicians over two and a half millennia.

10. Just before he was killed in a duel at the age of 21, Galois laid out a

general theory, based on the notion of a group, to the age-old problem of when

a general polynomial can be solved ‘by radicals’. For this theory, and a note on

Galois’s life, see (Stewart 1989), for example.
The further history of Galois’s ideas is not without interest. In 1831, Galois

submitted his memoir to the French academy; the referee, Poisson, declared it

‘incomprehensible’; it was not absorbed into general mathematical culture until

the beginning of the XX* century; for many years, it has been a standard part

of the undergraduate curriculum in England and throughout the world; and

now, in the last two or three years, for reasons Effros (1998) would recognize,

it seems to be disappearing from our curriculum because undergraduatesfindit

‘incomprehensible’.

11. The seminal rdle of group theory in the great physical theories of the

XX** century, including relativity theory and quantum theory, is well-known;

see, for example, the massive treatise (Cornwell 1984).

12. A ‘quantum group’ is not a type of group, but an analogue of a group,

and so it is probably misnamed. Thegroup algebra of a finite group and the en-

veloping algebra of a finite-dimensional Lie algebra have extra structure beyond

their structure as an algebra (in the technical language they have a coidentity,

comultiplication, and an antipode map); these extra structures make them into

Hopf algebras. ‘Quantum groups’ are certain Hopf algebras. Whether all Hopf

algebras ‘deserve’ to be called quantum groups is a matter for ongoing debate.
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I explain the above for the following reason. Formally, a formalist studies

the consequences of sets of axioms. But at this point in history the axioms to

define a ‘quantum group’ may well not yet have evolved to a final form; there

is genuine debate. The process of discussing which set of axioms most happily
describes what we wish to call a ‘quantum group’is a totally valid part of thelife

of a formalist; this is a period in which the criteria which I have suggested are

being applied to delineate what will presumably within a few years become part

of the canon — just as the concept of ‘group’ itself evolved in the last century.

13. See also the chapter of Jones (1998).

14. This was primarily by the great Russian mathematician, I. M. Gelfand,

in the seminal paper (1941).

15. For an exposition of the theory of ‘super-real fields’, which are the natural

generalization of the above concept of the real line R as a complete orderedfield,
to ‘bigger’ real lines, see (Dales and Woodin 1996).

16. See (Solomon 1995) for a non-technical account. The proofof the classifi-
cation theory was the work of very many mathematicians; in its present form,it

could take 1000 pages for a full account, proving all the necessary intermediate

results.

17. This example is taken from (Dales and Woodin 1996,p.viii).

18. See (Dales 1979) and (Esterle 1978).

19. The argumentis the following. Consider the statement (NDH): for each
compact space 2, each norm ||- || such that (C(Q,||- ||) is a normed algebra is
equivalent to the uniform norm |-|,. We know from the result of Dales and of
Esterle that NDH cannot be proved as a theorem in ZFC. We nowstart from the

assumption that there is a model for ZFC, and, by a processof ‘forcing’, construct

another model of ZFC such that NDH is a statement which holds in this model.

(In this model, CH is necessarily false.) This establishes that the negation of
NDH cannot be proved from ZFC, and hence that NDH is independent from

ZFC. For an account of this proof, and a general exposition of forcing, see (Dales

and Woodin 1987).

20. See (Solovay 1970).

21. For an interesting historical account, see (Moore 1982).

22. For an investigation into life without Choice, see (Jech 1973).
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Realism in mathematics
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A credo of sorts

V. EF. R. Jones

Let me begin by claiming to be quite ordinary among mathematicians in my

attitude to my subject, with little understanding of its philosophical underpin-

nings. I remember being worried by Russell’s paradox as a youngster, and am

still worried by it, but I hope to demonstrate, by a series of anecdotes and mus-

ings, that it is not at all difficult to live with that worry while having complete

confidence in one’s mathematics. Let us start on very very solid ground.

The Fourier transform of f(z) is the function

oa +00 .

i(k) = =[ f(a)el** de.

Fourier inversion is the remarkable fact that

_ 1 Fo —ikaxf(a)= =f Flyer ak.

This property, known also as “unitarity”, expresses the fact that nothing is lost

about f(z) by passing to f(k). The Fourier transform is a great workhorse of

mathematics, both pure and applied. Passing, as it does, between differentiation

and multiplication, it can transform your problems out of existence in differential

equations. It is at the heart of the uncertainty principle of quantum mechan-

ics. It allows one to control subtle properties of the smoothness of functions.

Fourier analysis splits complicated waves up into simpler components allowing

us to understand both sound and light. The “Fast Fourier transform” can in

some cases compute the outcome of a natural process faster than it is actually

happening. Data can be adequately reconstructed from only a partial knowl-

edge of its Fourier transform. The eigenfunctions of the Fourier transform are

the Hermite functions, themselves of no small interest—thefirst is the Gaussian.

All of harmonic analysis on groups begins with the Fourier transform. Wavelets

provide alternatives to the Fourier transform which may work better for spe-

cific kinds of function, but surely the “uniformly best transform” is the Fourier

transform.

To doubt the “truth” of the Fourier transform, however the word truth be

interpreted, would be mathematical lunacy. It stands impregnable to any attacks

of logical inconsistency or contradiction. I believe that Fourier himself gave

several proofs of the convergence of a Fourier series, some correct, some wrong.

203
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To emphasize my point even further, let me recall a story from my undergraduate

days.

As a physics student I once took an introductory course on quantum optics,

Oneof the first topics on the agenda was, naturally, the Fourier transform, and

our enthusiastic mentor undertook a proof of Fourier inversion. His proof was

totally wrong. Not just technically, but utterly, with no redeeming features. The

professor, however, was blissfully unconcerned and, looking back on it, went on

to show a more than useful intuition for the Fourier transform.

Of course, a solid proof is part of mathematics and the main significance for

me of this event was to launch me on my journey away from physics and towards

mathematics, where I felt I would never have to put up with such intellectual

outrage. For mathematics is seductive to the young mind in that the decision

to accept an assertion as correct is entirely up to the individual pondering the

question. There is no outside authority who can decide the matter. No need to

draw authority by quoting Kant, Frege, or some other old luminary. It is within

oneself, independent of age, culture, stature, maturity, or experience, that the

decision is to be made.

A less subjective significance of the Fourier inversion anecdote is in showing

that the “truth” of a great piece of mathematics amounts to far more than its

proof or its consistency, though mathematics stands out by requiring as a sine

qua non, a proof that holds up to scrutiny. Our physicist, on the other hand

(and I do not claim that all are like him), could not have cared less about how
to prove Fourier inversion. He knew it was true from the tangible evidence of

his science.

Hereis a further story along similar lines. A certain physicist, who had made

major contributions to conformal field theory (where analytic functions are the

sourceof the rich structure), was giving an “introductory” lecture on the subject.

Oneof his arguments involved a dubious use of analytic functions and a member

of the audience (also a physicist in fact) made a series of queries ending with
“So you’re talking about a non-constant holomorphic function with compact

support?” The answer: “Yes, of course.” Here the physicist did not have the

direct experimental verification of his conclusions as in the case of the Fourier

transform, but was relying on the richness of the structure he was describing and

the consensus of his fellow workers to free him from worry over this absurdity.

In both cases the physicist’s reaction on being told that his proof was rid-

dled with holes would be essentially to say, “Oh that’s just something for the
mathematicians to worry about.” So it is for the mathematician with respect

to the logician. If the day ever comes when the logicians find some inconsis-

tency in arithmetic, our reaction will surely be, “Oh that’s just a trick of the

logicians; let them worry about it.” And one can almost hear the inconsistency

coming—perhaps there will be a proof of the existence of a contradiction, but

that contradiction is too long to even contemplate, so we may quite happily

behaveas if it did not exist. (I believe that Woodin (1998) raises a similar possi-
bility, though much more carefully considered, in his chapter.) The inconsistency

will come with its own disclaimer. It must. The Fourier transform cannotfall.
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But one may ask questions of the Fourier transform. For what functions

f(z) does it work? What is the nature of the convergence of the integral? One
is immediately in the heartland of analysis—the Hilbert space L?(R, dz), the

Schwarz space and distributions (themselves originally created to justify the

physicists’ fanciful 6-functions, such justification being regarded as little more

than a joke by legions of physicists). All these extremely carefully thought
out concepts are built on the real numbers. So the next question: what is

a real number’? Here a sense of unease begins as we know full well that our

answer—an element of a complete ordered field of which there is only one up

to isomorphism—is a poor rendering of one’s feeling for the real numbers. And

of course the real numbers are a set, are they not? And here, only two simple

questions away from the rock-solid Fourier transform, we are in trouble, for what

is a set? My own notion of a set is very primitive, certainly not going beyond

“naive set theory”.

One hundred years ago the romantic mathematician would have wantedto,

and sometimes did, try to construct an edifice of impeccable logic starting from

scratch and ending up with the Fourier transform and its kin. We must thank

Godel for freeing us from the bonds of this romantic desire, for we now know

that any such attempt is doomed to failure. We must at some point say that

we believe in the soundness of our mathematics in a way not at all dissimilar to

religious belief, though I would guess that a poll would show the vast majority

of mathematicians to be disbelievers in the theistic dogma of any conventional

religion. Perhaps a better analogy is with evolution. It is impossible to “prove”

that evolution of species has occurred, but if one is even slightly acquainted with

the fossil record and other empirical evidence, a pattern so powerful emerges

that it is clearly folly to deny that species are descended from others with quite

different characteristics.

The mathematician is as certain of his faith in mathematics as he is in the

fact that a ball will drop if held above the ground and released—more sure than

that the sun will rise the next morning. I would like to illustrate the grounds for

this faith with a few selected mathematical events with which I am familiar. I

cannot expect to fully convince the doubter with a few vignettes, though. This

mathematical faith is earned at least as much as it is given—earned by many

years of work.

I have mentioned Hilbert space. With that we are close to von Neumann

algebras, which are the best-behaved infinite-dimensional generalization of ordi-

nary matrix algebra. A von Neumannalgebra is a family of continuouslinear

maps from a Hilbert space 7 to itself, which is closed under addition, multipli-

cation, the adjoint *, and convergence, where (a*é,7) = (€,an) defines a*, and

dy, converges to a if an€ — a€ in the norm ||- ||, € and 7 being any vectors in H.

(The inner product in the Hilbert space is denoted by (-,-), and the norm is

defined by

ISll= V6) (€€H).)

We write B(H) for the family (actually, C*-algebra—see (Dales 1997)) of all
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continuous linear maps from H to itself.

Whyshould we study von Neumann algebras? Given that we have decided

our whole house is built on faith, this becomes a vital question. Not any mathe.

matical structure should be as worthy of study as any other. It would not suffice

to say that von Neumann algebras are a generalization of matrix algebras. In

fact there are many motivations—ergodic theory, group representations and,for

me by far the most important, the mathematical structure underlying quantum

mechanics, where the states of a system are rays in some Hilbert space and

observables are linear operators.

Although it requires knowledge of some elementary facts about Hilbert space,

I would like to give the proof of von Neumann’s celebrated “density” or “bicom-

mutant” theorem as it was this beautiful result, as much as any motivation, that

began study in the area. The theorem (von Neumann 1929) asserts that a von
Neumann algebra M (containing the identity operator J) is equal to its own

double commutant M”, where the commutant S”’ of a set S of linear operators

on 7 is

{a € B(H):as=sa (s€S)}.

Since M is topologically closed, it suffices to show that M is dense in M”, which
is obviously closed, any commutant being closed. So we let a be in M”, and

choose a neighborhood V = V(e;&1,...,€) of a, where € is a real number > 0

and €,,...,€% are vectors in H. The set V is

{b € B(H) : ag; — b&:|| <e (i =1,...,h)}.

Let € be the vector £1 ®£o@...@€& inH@H®--- BH =K. The von Neumann

algebra _

M={rO@re@::- @xr:rEM}

acts on K. We consider the closure in V of the subspace M(£1 @ €24@--- PE).

Since M is a *-algebra, the projection onto V commutes with M and, by a

simple matrix computation, this projection is given by a matrix with entries in

M'. Sinceae M",a@®a@...@a also commutes with this projection, so that

(a@a®-:- Pa)M(1GHO-- ® x)

is in the closure of M(£1 Bo ®--- BE). Applying this to the identity element

of M, we deduce the existence, for our given €, of an element b of M with

|| (bE B bEo @ --+ OB bE,) — (aki Baka ® --- PBak,)|| < e/k.

This ends the proof. I shall discuss this proof later in the talk.

The simplest von Neumann algebras are “factors”, i.e., their centres (those

elements which commute with all others in the algebra) consist only of scalar

multiples of the identity. The most obvious factor is the algebra B(H) ofall op-
erators, elements of which are matrices (with respect to some orthonormalbasis)

with some growth condition on the size of the matrix entries. The trace is the
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artially defined function B(H) + C given by the sum of the diagonal elements,

rovided that sum converges appropriately. Projections are the operators which

can be written as matrices

(3 \

  \ *
with respect to some orthonormal basis. Clearly the trace of a projection is the

_dimension of its range space.

Murray and von Neumann (in the 1930s) made the remarkable discovery that

there are factors R of an entirely different nature, the so-called type IT; factors,

which are infinite-dimensional but admit a trace tr which is a linear function,

defined everywhere, for which

tr(ab) = tr(ba) (a,b € R)

and for which the trace of a projection, in contrast to the B(H) case, can be
any positive real number (though one may normalize the trace so that the set

of traces of projections is the unit interval [0,1]). This brought a notion of
continuous dimension into mathematics, and remains one of the main seductive

features about von Neumann algebras. The study of general factors has been

greatly advanced by many people, most notably ‘Tomita, Takesaki, and Connes,

and in somesense all factors other than B(H) itself can be obtained relatively
easily from a II, factor at their core. A lively interaction with mathematical

physics has more than justified the original motivation for the study of von

Neumann algebras from the mathematical foundations of quantum mechanics.

Given the interest of factors M one might want to study subfactors N of a

given factor M. Ironically, although this has proved an extremely fruitful area,

the a priort justification was rather weak—flying in the face of our insistence on

serious motivation for the study of von Neumann algebras. Progress in mathe-

matics will never follow any rules imposed upon it. Returning to our situation

N CM of II, factors, the projection operator from M to N becomes a projec-

tion in a IT; factor, and one can think ofits trace (or rather than inverse ofits
trace because of the normalization) as giving the “dimension” of M as a “vector
space” over N. We call this number the index of N in M,written [M : N]. For
instance if M were the (k x k)-matrices over N, we would have [M : N] = k?.

The Murray—von Neumann theory would suggest that any real number > 1

can be the index [M : N] for an appropriate N Cc M.Infact this is not the case.
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The allowed values of [M : N] less than 4 are precisely the numbers

4 cos? r/n

for n = 3,4,5,6,... But from 4 onwards, continuous dimensionality comesinto

play and one may obtain any real number > 4.

This is a striking result which needed careful proof. ‘There is to date es.

sentially only one proof of the result (there are several variations, all quite sy-

perficially equivalent). But from the beginning it seemedlikely that the result

would be true. The very surprising nature of the conclusion suggested that the

arguments to prove it would be justified. And although there has been an undis.

puted proof from the beginning, I personally would still have trouble believing

the result were it not for circumstantial evidence, such as the wealth of structure

and interrelations that have grown up aroundit. This is the point in this chapter

where I perhaps comeclosest to saying somethingoriginal.

Proofs are indispensable, but I would say they are necessary but not sufficient

for mathematical truth, at least truth as perceived by the individual.

To justify this attitude let me invoke two experiences of current mathematics,

which very few mathematicians today have escaped.

The first is computer programming. To write a short program, say 100 lines

of C code, is a relatively painless experience. The debugging will take longer

than the writing, but it will not entail suicidal thoughts. However, should an

inexperienced programmerundertake to write a slightly longer program, say 1000

lines, distressing results will follow. The debugging process becomes an emotional

nightmare in which one will doubt one’s own sanity. One will certainly insult

the compiler in words that are inappropriate for this essay. The mathematician,

having gone through this torture, cannot but ask: “Have I ever subjected the

proofs of any of my theorems to such close scrutiny?” In my case at least the

answer is surely “no”. So while I do not doubt that my proofs are correct (at

least the significant ones), my belief in the results needs bolstering. Compare

this with the debugging process. At the end of debugging we are happy with

our program because of the consistency of the output it gives, not because we

feel we have proved it correct—after all we did that at least twenty times while

debugging and we were wrong every time. Why not a twenty-first? In fact we

are acutely aware that our poor program has only been tested with a limited set

of inputs and wefully expect more bugs to manifest themselves when inputs are

used which we have not yet considered. If the program is sufficiently important,

it will be further debugged in the course of time until it becomes secure with

respect to all inputs. (With muchlarger programsthis will never happen.) Soit

is with our theorems. Although we may have proofs galore and a rich surrounding

structure, if the result is at all difficult it is only the test of time that will cause

acceptance of the “truth” of the result.

The second experience concerning the need for supplements to proof is one

which I used to dislike intensely, but have come to appreciate and even search

for. It is the situation where one has two watertight, well-designed arguments
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that lead inexorably to opposite conclusions. Remember that research in math-

ematics involves a foray into the unknown. We may not know which of the two

conclusions is correct or even have any feeling or guess. Proof at this point is

our only arbiter. And it seems to have let us down. I have known myself to be in

this situation for months on end. It induces obsessive and anti-social behaviour.

Perhaps we have found an inconsistency in mathematics. But no, eventually

some crack is seen in one of the arguments andit begins to look more and more
shaky. Eventually we kick ourselves for being so utterly stupid and life goes on.

But it was no tool of logic that saved us. The search for a chink in the armour

often involved manytricks including elaborate thought experiments and perhaps

computer calculations. Much structural understanding is created, which is why

I now so value this process. One’s feeling of having obtained truth at the end

is approaching the absolute. Though I should add that I have been forced to
reverse the conclusion on occasions...

Let us return to the result that led us here, namely the surprising conclusion

about the index of subfactors. It is not a particularly elementary result, so I

will leave it behind to explore one of the outcomes of it, which is one of the

structural items enhancing the truth of the subfactor result. It is indeed an

elementary result and because of the quirks of mathematical history, at least as

striking. I refer to the discovery of a new polynomial invariant for knots (see

(Jones 1990)).
By knot I mean a smooth closed curve in R°, and two knots are considered

the same if they can be smoothly deformed from one to another. A link is

a collection of disjoint knots. The smooth deformation corresponds precisely

to the intuitive notion of moving a real piece of string around in space. This

has the interesting effect of bringing simple physical intuition to bear on the

mathematics, something quite absent in von Neumann algebras. I would like

to illustrate by giving a proof of a simple result due to Alexander in the 1920s

(Alexander 1923). It was explained to me by Joan Birman within five minutes.
A braid is a system of curves in R® which begin on a certain horizontal plane

and end at points on another plane, directly below the starting point, the key

defining property being that the curves never have a horizontal tangent vector.

Here is a picture of a braid where, as is traditional, all the points at the top

lie on a straight line:
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We have given an informal definition, but the notion of a braid is readily

formalized, the most difficult part being to say exactly when two braids are “the

same”. As with knots, that corresponds to an intuitive physical notion of smooth

motions between the two horizontal planes. One may take a braid and form a
knot (or link) by tying the tops to the bottoms. For the above braid the link

which is its “closure” is depicted below.

The link obtained in this case is visibly rather simple and could be redrawn

as follows.

Note that closed braids come with an orientation inherited from that of the

braid, as shown. The result of Alexander is that any oriented knot or link can

be obtained as the closure of some (highly non-unique!) braid. To provethis
result requires two observations. The first is that if there is a point somewhere

on the diagram of a knot, around which the orientation of the knot moves in a

consistently clockwise (or anticlockwise) direction, the job is done. Just open
the knot on any ray coming out from the central point and stretch that part so

that it becomes the straight “back” of the closed braid, as in the next diagram.

© -0-0-f)-9)
The central point (or rather a straight line through it perpendicular to the

paper) is called the “braid axis”.
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To complete the proof one simply has to show that there is always a braid

axis. Unfortunately this is not always the case, as we see in the next picture.

B A

x
v4

What we can do is choose any point in the plane and rearrange the picture

so that it becomesa braid axis. This is done by going around the knot until one

finds a stretch that is going the wrong way. One then isolates a short stretch

going the wrong way and “throws it over one’s shoulder” until it is on the other

side of the knot, going around correctly. For the above example the only bad

stretch is between A and B andafter throwing it over one’s shoulder one gets

the picture below

B A

SB

The picture above is now a closed braid. The only thing that could go

wrong in the above procedure is that, in trying to throw a bit of string over

one’s shoulders, one may meet a crossing. This is easily handled. Since we

are proceeding one short stretch at a time around the knot, simply isolate that

crossing and, if it happens to prevent our throwing over our shoulders, throw

it the other way. When we have arrived back at the beginning point, we see a

closed braid. This ends the proof.

Historically, this “knot-to-braid” process played a majorrole in the discovery

of the knot polynomial in (Jones 1985), but that is not the point I want to make
here, though one could say a lot about how it reinforced both one’s belief in

the index result and someresults about knots and braids. Rather I would like

to compare and contrast the two proofs—of von Neumann’s density theorem
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and Alexander’s closed braid theorem,call them Theorem vN and Theorem 4

respectively.

Theorem vN is a difficult theorem. To even understand what it is sayin
requires considerable mathematical background. To properly understand the

proof takes many hours, and to have discovered the result and its proof was 4

major achievement. Theorem A, on the other hand,is easy. The result andits
proof could be explained quite rapidly to a clever high school student. Yet a

careful analysis of these proofs reveals that the proof of Theorem A,if properly

formalized, would be much longer than that of Theorem vN. One would have

to be precise about the kinds of continuous deformations that are allowed, and

constructing the functions required for the “throwing over the shoulder”trick

would be a nightmare. So why do we consider ‘Theorem A to be so easy? The

answer is that Theorem A concerns a very concrete situation, and we are able to

bring to bear ourfull intuition about three-dimensional space on the problem. If

we were two-dimensional creatures then proving this theorem would be another

story entirely and would require much more formal argument. Theorem WNis,

by contrast, infinite-dimensional and we cannot rely on simple three-dimensional

intuition, so a formal proof is required. All the details of the proof, going back

to the definition of Hilbert space, would require only a couple of pages.

One of the interesting consequences of the use of three-dimensional intuition

is that the field of low-dimensional topology has advanced in a way that is

significantly different from other branches of mathematics. One is expected to

“see” results in this field, and oncetheresult, or partial result, has been “seen”,

it requires no further discussion. I do not wish to criticize this approach. I have

myself “seen” several results in this field, and believe them to be as correct as

any other mathematics.

Here is an example which is the first significant “seeing” requirement—the

point of entry into low-dimensional topology. The three sphere S° is

{(£1,%2,23,24) € R?: x? + 23 + 23 + 23 = 1}.

It cannot be embeddedin R?so is not wholly concretely visualizable, but almost—

if one point is removed from S* it becomes the sameas R? itself (this is readily
seen by stereographic projection). Thus another way to approach S® is as the

one-point compactification of R°. The result to which I refer is that S° is the

union of two solid tori, joined along the boundary so that a meridian of one

becomes a longitude of the other and vice versa.

a
Meridian

 

   Longitude

To “see” this, think of a solid torus as a central circle surrounded by tori of
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increasing size up to the boundary torus. Now place a solid torus in R® so that

it, lies on the (xz, y)-plane with the z-axis through the middle. We can choose

to add our point at infinity so as to compactify the z-axis to a circle. Now S3

minus this circle is the same as R° minus the z-axis and one can readily see

a, family of tori filling up R? minus the z-axis, which give a solid torus when

the compactified z-axis is added. Perhaps the following picture of one of these

intermediate tori helps:

Se

/ sniemediat

f torus

Basic torus

This is a very murky story from the formal mathematical point of view and

the uninitiated will no doubt find it difficult, and my explanation inadequate.

Fortunately there is a very simple formal description of the samepicture: clearly

=T, UT> with

T, = {(x1,22,23,24) € R4: 2? +22+4+234+ 07 =1, 274 23 < 1/2},

Ty = {(21,22,23,24) © R*: 2? 4+22+234 23 =1, 03+ 23 < 1/2}.

Then J, is obviously a solid torus since for each r with 1/2 < r < 1, setting

a? + 22 = 1—r gives a circle and x3 + 24 = r gives another so we get a family
of tori, with the central circle being r = 0.

This formal picture (rendered even simpler using complex coordinates

Zj = £1 + ixg, z2 = x3 + ix4) is complete but inadequate. If one does not

“see” the other picture and how the tori, and the two circles, fill up the 3-

sphere, one is not ready to take the next steps in low-dimensional topology. Of

course this is just the beginning. There are more complex things to “see” and

sequences of such visions are compounded one upon another in the same way as

the elementary logical steps in a formal argument. If one “sees” the pictures,

then one understands, but otherwise one cannot follow. In principle one could

formalize the whole argument, but that would add nothing.

We see that mathematical “truth” in this field is very much contingent on
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our physical intuition and experience in three-dimensional space.

The reader not acquainted with low-dimensional topology may feel I am

exaggerating for effect. Not at all. Once, at a seminar, one of the world’s best

low-dimensional topologists was presenting a major result. At a certain point

another distinguished topologist in the audience intervened to say he did not

understand how the speaker did a certain thing. The speaker gave an anguished

look and gazed at theceiling for at least a minute. The memberof the audience

then affirmed “Oh yes, I hadn’t thought of that!” Visibly relieved, the speaker

went on with his talk, glad to have communicated this point to the audience.

Such is truth in mathematics.
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Mathematical evidence

Donald A. Martin

1 Introduction

I will be discussing the subject of this conference, truth in mathematics. I will

not, however, talk about the nature of mathematical truth but only about what

counts as evidence for mathematical truth. I will do this not in general but only

by way of two nearly thirty-year old examples from descriptive set theory, ex-

amples that seem similar to typical cases of evidence in empirical sciences. (The

examples are not, of course, intended to be typical examples of mathematical

evidence.) I hope it will be clear that my examples are cases of strong scientific

evidence for the truth of mathematical propositions. I will raise and discuss the

issue of whether there are stronger canons of evidence in mathematics, canons

that my examples do notsatisfy.

From the start, I want to make clear that I have nothing to say about the

ontology of mathematics: about whether the subject matter of mathematics is

platonic objects or whether it is other things, such as structures, concepts, or

proofs. I also have nothing to say about the semantics of mathematical discourse.

Nor do I have anything to say about whether evidence for accepting mathematical

assertions is evidence for taking them asrealistically true or is merely evidence

for adopting them in some conventional or methodological sense. In short, I have

nothing to say about the content of mathematical propositions.

This may appear foolish. How can one hope to decide what is evidence for

a mathematical proposition until one knows what the proposition is about—

what the content of the proposition is? For surely the answer to the content

question can have great significance for questions about evidence. If, for example,

mathematics concerns abstract objects with which we have no causalinteraction,

then one might—as did Paul Benacerraf in his famous paper (1973)—doubt that

there can be any source of evidence for the truth or falsity of mathematical

propositions.

The first and most important reason for my not discussing ontology and se-

mantics is that I have no good ideas or even opinions about these questions.

I confess that they mystify me. On the one hand, it is hard to avoid—in any

account of mathematics that is at all realistic—an appeal to some kind of math-
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ematical objects. On the other hand,thereis a strong intuition that objects do

not really matter. I remain impaled on the hornsof this dilemma.

Another, and perhaps more acceptable, reason for studying epistemology

while ignoring ontology and content is that we seem to have moreintuitions,

and—inthe intersubjective sense, at least—morereliable intuitions, about math-

ematical truths and evidence for them than we do about the other questions. |

hope the two examples presented later will illustrate this. Another illustration

from the field of set theory is provided by the fact that set theorists with widely

divergent philosophical views (formalists and platonists, say) often agree about

what set-theoretic axioms are plausible or are reasonable to adopt, even when

they are in complete disagreement about the significance of the adoption.

What I have just said about mathematics applies also to empirical sciences

like physics. There is a disagreement among physicists—and even more among

philosophers of science—as to whether physical theories are to be interpreted

realistically. Sometimes such disagreement influences views about directions of

research and about which theories should be accepted, but not all that often.

My hope is then that we can simply follow our intuitions about truth and

evidence, bracketing all questions about ontology and content. When, in the

sequel, I talk about how we obtain evidence for truth, platonists may—if they

must—take meto be talking about how we discover facts about abstract math-

ematical objects. Formalists may take me to be talking ultimately about the

proper grounds for choosing our axioms and so for deciding what is to count as

true. But the frame of mind I prefer is one that puts aside issues about platon-

ism, formalism, etc., considering truth and evidence in a direct and unanalyzed

way.

2 Proof and axioms

What then does count as mathematical evidence? There is, of course, an obvious

answer to the question of how one can cometo know the truth of a mathematical

proposition: namely, proof. Indeed, this may seem the only way to establish

mathematical truth. When one says that a mathematical proposition is known,

does not one just mean that it has been proved? And when one says that a

mathematical question is open, does not one mean that no one has provedthat

the question has a positive answer or that it has a negative answer?

What is it to give a mathematical proof, a rigorous mathematical proof, of

some statement S? It is rather surprising that such a clear and unambiguous

standard answeris available to this question. To prove S, one must show that S

follows by pure logic from the basic principles of mathematics. It is one of the

triumphs of modern logic that one can say precisely what ‘pure logic’ is, in the

relevant sense: namely, first-order logic. And it is a rather surprising fact that

one can say precisely what the ‘basic principles of mathematics’ are: namely, the

Zermelo—Frenkel (ZFC) axioms for set theory.
I do not want to make too much of the fact that the basic principles are

axioms of set theory rather than of some other subject. It is simply a fact about
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current mathematics that all mathematical concepts can be defined in terms of

sets (a minor qualification needs to be madefor large objects such as categories)

and that something is counted as a mathematical theorem if and only if it has

been shownto follow logically from the ZFC axioms. I do not mean to imply that

the ZFC axioms are the axioms of mathematics. Indeed, I think that further

axioms are needed. I do not even mean to imply that a mathematician need

know the ZFC axioms,at least not all of them. I do not mean to imply that set

theory provides the foundation of mathematics. The alternative foundational

notions that have actually been suggested do not provide anything essentially

different, but perhaps a really different, richer foundation can be found. I do

not want to suggest that I think that the division of mathematical knowledge

into axioms and proved statements has ultimate significance. Finally, I do not

mean to belittle the fact that some mathematicians think that the notion of

mathematical proof should, in some way or other, be morerestrictive than the

standard notion.

The standard notion of mathematical proof that I have described provides

us directly with examples of mathematical assertions that are accepted without

proof: the ZFC axioms. (I ignore the degenerate sense of proof according to

which each axiom can be proved by deducing it from itself.) Whatever is the

evidence that leads to or led to the acceptance of the axioms, it is certainly

not proof. Thus I will concentrate on the question of how one can come to

accept—and to justify accepting—axiomsof set theory.

One can raise this question about the current standard axioms, the ZFC

axioms. How do we know they are true? Are theyself-evident? In somecases,

this seems implausible, at least on the surface. There was a bitter dispute about

the Axiom of Choice, chronicled in (Moore 1982). Is Choice self-evident? What
about Power Set, Replacement, and Infinity? If the axioms are not all self-

evident, are there convincing arguments for their truth? If not, are they true by

convention? I will make no general attempt to deal with this topic here. For the

most part, I will be content to record, without justifying, my skepticism that the

truth of each of the ZFC axioms is known with certainty. If my skepticism is

misplaced, then some of what I say later will have diminished significance; so it

matters that I am correct. For support I refer the reader to the discussion of the

history of and evidence for the ZFC axioms in (Maddy 1988a). Maddy’s account
is intended ‘to counteract the impression that these axioms enjoy a preferred

epistemological status not shared by new axiom candidates’. (Considerations of
the kind presented in (Woodin 1998) suggest that we lack certainty not just in

set theory but even in number theory.)
There is, however, one important attempt to justify the ZFC axioms on

which I feel impelled to comment, if only briefly. This attempt argues that the

ZFC axiomsare true of the intended conceptof set, the iterative concept of set.

(Gddel (1947) was perhapsthefirst to assert that the iterative concept implies

the ZFC axioms, although see also (Zermelo 1930).) According to the iterative
concept, sets are to be regarded as formed in a transfinite sequence of stages. At

each stage is formed every possible set whose members were formed at earlier
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stages. The number of stages is supposed to be ‘absolutely infinite’. Though

this intuitive concept is obscure in several ways, it seems sharp enoughto let one

see that most or all the ZFC axioms are true of it. Consider, for example, the

Axiom of Power Set. If a set x is formed at a stage s, then all members of s were

formed at earlier stages. But then each possible subset of s—so each subset that

is ever formed—is formed at stage s or earlier. Consequently the powerset of x

is formed at the next stage after x, and so x has a power set. Such arguments

for justifying the axioms are important. I myself often present them when I

teach courses in set theory. Nevertheless, I do not think that they establish with

certainty the truth of the ZFC axioms. There are two ways to raise doubts about

the arguments. One wayis to admit that the iterative concept implies the axioms

but to question whether that concept is a coherent one. One might, for example,

question the consistency of ZFC. Another way to raise doubts is to argue that

the iterative concept as ordinarily presented is really a combination of (1) a

concept and (2) alleged facts about that concept. It would be possible to give

pure formulation of the underlying iterative concept (whose core idea is simply

that sets are formed from sets that have already been formed), a formulation

from which PowerSet, Infinity, etc., could not be deduced. (The first person I

heard argue in this second way was Byeong-Uk Yi.)

Even the question of why the axioms are accepted, as opposed to that of why

they should be, is a difficult one. The very fact—asociological fact—that they are

the standard axioms, and have been for quite some time, increases the difficulty

of evaluating their epistemic status. For individual mathematicians, acceptance

of an axiom is probably often the result of nothing more than knowing that it

is a standard axiom. It would be easier to investigate the evidence for the ZFC

axioms if we could move back in time to the period when they had been put

forward, but had not yet becomeofficial dogma. Of course, we can read what

people of that epoch said on the matter. Instead of doing this, though, I will

take another route.

A standard complaint about set theory is that its concepts and methods are

not sufficiently related to those of central parts of mathematics. This complaint

is raised against set theory as a foundation for mathematics, andit is also given

as a criticism of set theory as a branch of mathematics in its own right. In

both cases I have doubts about the justice of the criticism. For my present

purposes, however, there is an important way in which the complaint is true,

and this—oddly enough—is a way in which set theory’s location on the fringe

of mathematics makes it more relevant to my concerns. The ZFC axioms are

a largely adequate basis for current mainstream mathematics. But they are far

from an adequate foundation for set theory itself as a mathematical discipline.

The famous independence results of Godel and Cohen showed that the ZFC

axioms do not yield an answerto one of the most basic and simple questions of

set theory: that of Cantor’s Continuum Hypothesis. Moreover the methods they

introduced, especially Cohen’s methodof forcing, have been used to show that a

vast number and vast variety of set-theoretic sentences are consistent with and

independent of the ZFC axioms. By nowit is almost a major event in set theory
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if something is shown to follow from these axioms.

Now it is true that the independence phenomenonis not limited to set the-

ory itself. In most parts of mathematics, analysis, algebra, even number theory,

significant propositions have been proved consistent with and independent of

7FC. Mathematicians in these disciplines can usually console themselves that

the propositions in question have a set-theoretic or a metamathematical char-
acter, and so lie on the fringe of their discipline. This is not always the case.

Nevertheless, most mathematicians can, at least so far, not worry very much

about the incompleteness of ZFC.

Within set theory, the matter is quite different. As a set theorist, one can

spend one’s time proving independence results. Admittedly, many set theorists

are content to do this, and some of them consider proving independenceresults

the main business of set theory. But if one wants outright answers to the im-

portant questions of set theory, then one must find new axioms that go beyond

those of ZFC. Indeed, there has been considerable interest in new axioms for

quite a long time, and somecandidates have come forth. One prominent class of

such candidates is the class of determinacy hypotheses. A substantial body of al-

leged evidence for determinacy hypotheses has been uncovered. Looking at this
alleged evidence may be a way to shed somelight on the question of what should

and what should not count as good evidence for fundamental axioms. And there

are advantages in considering axiom candidates rather than the standard ZFC

axioms. The very fact that the former are not standard axioms allows one to

evaluate their status in a cleaner way.

It should be admitted immediately that determinacy hypotheses (or there-

lated large cardinal axtoms, of which I will speak briefly later) are not likely in

the near future to be adopted as full members of the canonical list of axioms—at

least, not by the general mathematical community—howeverstrong the evidence

in their favor might be. As long as the ZFC axioms are more or less adequate

for mainstream mathematics, the mathematical community will feel no need for

new axioms. (Recall that perhaps the most influential of Zermelo’s arguments

for the Axiom of Choice was that the axiom was indispensable.) This means

that the evidential requirements for adoption of new axioms are de facto very

strong indeed, and the evidence for determinacy hypotheses does not fulfil these

requirements. This may lessen the significance for current mathematics of the

discussion that follows, but I do not see that it destroys the relevance of that

discussion to the basic epistemological questions.

3 Mathematically proper evidence

In discussing mathematical evidence, it may be important to distinguish evidence

simpliciter from what I will call mathematically proper evidence. By mathe-

matically proper evidence for a mathematical proposition I mean evidence that

counts toward giving mathematical knowledge of the truth of the proposition.

Here ‘mathematical knowledge’ is intended to mean something like ‘knowledge

obtained in the mathematical way’ or ‘knowledge that makes the proposition
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count as mathematically “known”.’

Remark. The term ‘proper’ is chosen for lack of a better one. I certainly do

not want to imply that there is any lack of propriety in evidence to which the

term does not apply.

Examples of mathematically proper evidence might be (a) proof, and (b) di-
rect intuitions of truth, for example, intuitions of the truth of the principle of

mathematical induction and of some of the axioms of set theory. I will later

mention other, more problematic, examples.

For a possible example of evidence that is not mathematically proper, con-

sider the contention of some mathematicians that the four-color theorem has not

been mathematically established, because a physical system—a computer—has

been relied on for part of the proof. The alleged problem in this case is appar-

ently that the knowledge provided by the computer-assisted proof is not fully a -

priort. Surely many mathematicians do think that proper mathematical knowl-

edge must be a priori. Someone may allege that computer-assisted proofs suffer

from a second defect: a failure to provide certainty. Computer proofs, though,

are no more susceptible to error than human ones; so it is hard to see the force

of the allegation. Perhapsit is just a reformulation of the complaint about lack

of aprioricity.

Some other kinds of evidence that may not qualify as mathematically proper

are (a) inductive evidence for generalizations obtained by verifying instances, and
(b) proofs establishing that statements hold with high probabilities. To avoid
mixing up two different issues, let us consider (a) and (b) only in cases where
the evidenceitself is known in a mathematically proper manner(in particular,

where there is no use of computers). Then what the evidence fails to convey
seems to be certainty. Certain knowledge of the evidence does not yield certain
knowledge of the proposition for which it is evidence. Is giving certainty then

necessary for evidence to be mathematically proper? This cannot be true, at

least if I was correct earlier in saying that some of the axiomsof set theory are

not known with certainty. Nor does something like ‘high degree of certainty’

help, since this will not eliminate the probabilistic proofs.

The discussion so far has turned up two candidates for necessary conditions

that a kind of evidence be mathematically proper: being known a priori and

yielding certainty. The former seems a plausible necessary condition, but the

latter does not. In the last section of this chapter, I will examine a third candidate

for a necessary condition, a candidate I will also find wanting. Though I am sure

that the notion of mathematically proper evidence has at least a sociological

significance, I will in the end be dubious aboutthe real significance of the notion,

and I am even dubious about whetherthereis a satisfactory way to characterize
the notion.

The two examples of mathematical evidence that I will later describe do

not provide certainty, but they are fully a priori. Thus they are morelike the

inductive and probabilistic cases than like the computer-proof case. They differ

from these kinds of examples in two important ways.
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First, they provide evidence, not just for isolated mathematical statements

but for candidates for fundamental axioms. Thus they raise the general question:

What kind of evidence is and should berelevant, or even decisive, for a proposi-

tion’s being adopted as a fundamental axiom of mathematics? ‘his is a question

about what counts as a particular sort of mathematically proper evidence.

The second way my examples differ from the ones mentioned aboveis that

with them much more is involved than, say, mere inductive confirmation. They

provide a richer kind of evidence that is analogous to evidence for general theo-

retical statements in empirical sciences. I suspect that there are examples with

this property in other branches of mathematics, but such examples are surely

ones of evidence for propositions that one expects the ZFC axioms to decide.

4 Determinacy

Since both my examples are about determinacy hypotheses, it is time to say

what determinacy hypothesesare.

Determinacy hypotheses concern strategies for infinitely long gamesof perfect

information. Games of this sort were first studied by Polish mathematicians in

the 1930s. (See pages 113-117 of (Mauldin 1981).) They were rediscovered by
Gale and Stewart (1953) in the 1950s. In such games, two players, I and II, take

turns making moves and continue to do so forever:

I ao a2 Q4...

I] Q1 3 Ash «s+.

By somecriterion, it is ‘then’ decided which player has won. The notions of

strategy and winning strategy for I or II are defined in the obvious way. A game

is determined if one of the players has a winning strategy.

Zermelo proved that all finzte games of perfect information are determined.

Is this true of all infinite games also? It turns out that it is not.

Steinhaus, who had suggested the idea that all infinite games might be de-

termined, and Mycielski, who had refuted this suggestion, found and presented

(Mycielski and Steinhaus 1962) an interesting way to weaken the refuted hypoth-

esis. The weakening is now called the Aziom of Determinacy (AD). The axiom
AD says that all infinite games in which the players are required to choose a

natural number at each move are determined.

The problem with AD is that it contradicts the Axiom of Choice. One can

try to make a virtue of this, as did Mycielski and Steinhaus, by arguing that it

contradicts only the bad consequences of Choice. Choice implies that there are

pathological sets of real numbers, non-measurable sets, uncountable sets without

perfect subsets, etc. As Mycielski and others showed, AD implies that sets with

these pathological properties do not exist. Nevertheless, few mathematicians

were anxious to give up Choice, which had become a well-entrenched axiom.

Soon people hit upon the idea that, while AD is false in general, it might be

true of all simple or definable sets. (Indeed, something like this was proposed in

the original (Mycielski and Steinhaus 1962).) To see what this means, consider
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a general game of the type to which AD applies: a game in which the players

take turns playing natural numbers. How are the winning conditions for player

I given? They are given by a set A of infinite sequences of natural numbers. If

the play ao, a1, @2,... belongs to A, then I wins;if it does not belong to A, then

II wins. In fact—at least if we restrict ourselves to games in which any natural

number may legally be played in any position—a set A completely characterizes

a game. We can, and do, call this game G4. The Axiom of Determinacy says

that G4 is determined for every A. Restrictions of it say that Gy, is determined

for restricted classes of A. For classes of sets A characterized by some notion

of definability or simplicity, no contradiction with Choice, i.e., no contradiction

with ZFC, has been found or is expected.

Here are some examples of such classes of sets A.

Open sets. The set A is open if, whenever an infinite sequence z belongs to A,

there is a finite initial part s of x such that every infinite extension of s belongs
to A. This is easier to understand in terms of the game Gy. If A is open and

player I wins a play of Gy, then during the play somefinite position s arises at

which I has already won the play. If I wins, then I wins in finite time.

Borel sets. The Borel sets form the smallest class of sets containing the open

sets and closed under countable unions, countable intersections, and comple-

ments. The Borel sets are classified into a transfinite hierarchy: a set is at level

a if it takes a steps to build it from the open sets (where we do not count taking

complements as steps).

Projective Sets. There is an obvious way to define open and Borel for sets B
of n-tuples of infinite sequences of natural numbers. A set B is projective if it can

be obtained from a Borel set by finitely many applications of the operations of

complement and projection. Here we say that a set B of n-tuples is the projection

of a set C of (n+ 1)-tuples if B is defined by

(21,---,%n) € Be (Srn41)(21,.--,Ln,2n41) EC.

The projective sets are classified into a hierarchy by counting the number of

projections needed in generating them from Borelsets.

Sets Constructible from R. These are the sets belonging to the smallest inner

model of ZF (not including Choice) that contains all the ordinal numbers and
all the real numbers. The inner model in question is called L(R). The sets
constructible from R form a much widerclass than the class of projective sets.

Let Open Determinacy be the assertion that Gy, is determined for every

open A. Similarly, we define Borel Determinacy and Projective Determinacy.

theassertion that Gy, is determined for every set constructible from R is called

AD’,

Open Determinacy and even Borel Determinacy can be proved in ZFC. (See

(Gale and Stewart 1953) and (Martin 1975).) But Projective Determinacy, even
for the first level of the projective hierarchy, is not provable in ZFC. (This follows

from a result of (Davis 1964).)
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Starting in the 1960s, researchers discovered that determinacy hypotheses—

jin particular, Projective Determinacy and AD#®)_have many important con-

sequences. The hypothesis Projective Determinacy was used to settle almost

every important question about projective sets. Developing the consequencesof

determinacy hypotheses becamea veryactive field and remained so throughout

the 1970s. Much of this work is described in (Moschovakis 1980) and in (Kechris
1995). By the end of the 1980s, another kind of support for Projective Deter-

minacy and AD?®) was found: they were deduced in (Martin and Steel 1989)
and (Woodin 1988) from so-called large cardinal azitoms and were shown (mainly
by Woodin) to imply large cardinal axioms, in a sense. Large cardinal axioms

form another class of candidates for new axioms of set theory. The results just

mentioned show that, over a wide range, large cardinal axioms and determinacy

hypothesis are one class of axiom candidates, not two classes.

Remark. When speak of ‘determinacy hypotheses’, I always mean assertions

like Projective Determinacy and AD#() | assertions that do not contradict the

Axiom of Choice. I never mean ADitself, which was never taken seriously as an

axiom candidate.

In the next two sections, we will look at two particular consequences of de-

terminacy hypotheses, each one proved in the year 1967.

5 Turing cones

The first example concerns the degrees of unsolvability, also called the Turing

degrees. Each sequence of natural numbers, that is, each function f : N —N,

has a Turing degree deg(f), which should be thought of as a measure of the

information that the f encodes. If f and g are functions, then deg(f) < deg(g)
if g has enough information to compute f mechanically, to answer mechanically

questions about values of f. (The formal definition of < is given in terms of

the technical notion of recursive in.) Two different functions can have the same
degree, as for instance do f and g if g(n) = f(n) +1 for all n. The recursive
functions all have the smallest degree, 0, because they are all computable by

Turing machines. Two degrees can be incomparable. For example, two functions

chosen in a sufficiently random fashion have incomparable degrees. For any two

functions f and g, there is a least upper bound of deg(f) and deg(g), namely
deg(h), where h(2n) = f(n) and h(2n +1) = g(n) for each n. The function h is
the join of f and g.

If d is a degree, the cone of d is the set of all d’ such that d < d’. A set of

degrees is a cone if it is the cone of some degree.

The chapter (Slaman 1998), in this volume, discusses the Turing degrees and

also discusses issues related to the lemma we are aboutto state.

One of the early consequences of the Axiom of Determinacyis the following,

from (Martin 1968).

Cone Lemma Assume that AD holds. If A is a set of Turing degrees, then

either A contains a cone or else the complement of A contains a cone.
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Proof. Let A be a set of degrees. Let A be the set of all f such that deg(f)
belongs to A. By AD,either player I or player II has a winning strategy for the

game G4.

Suppose that I has a winning strategy 0. Now itself is not a function from

N to N, but it is easy to define a function d : N — N that encodes oc. Let

d = deg(d). Wewill prove that the cone of d is contained in A. Let g be any
function such that deg(g) > d. Let h be the play of the game produced when II

‘plays g’, that is, chooses h(2n+1) = g(n) for each n, and I plays accordingtoa.

Then fh, is the join of f and g, where f(n) = h(2n) for each n. Since deg(g) > d,

I’s moves can be computed using g. In other words, deg(f) < deg(g). Thus
deg(h) < deg(g). But also deg(g) < deg(h). Thus deg(h) = deg(g). Since o
is a winning strategy, deg(h) € A, and so deg(g) € A.

If IT has a winning strategy for G,, then a similar argument shows that the

complement of A contains a cone. O

The proof just given is ‘local’, so that it gives consequences if one weakens

the hypothesis AD to hypotheses consistent with the Axiom of Choice, thatis, to
determinacy hypotheses, as I am using the term. Say the set A of Turing degrees

is open, Borel, projective, etc., if the set of all f : N > N such that deg(f) ¢ A
is open, Borel, projective, etc., respectively. By the proof of the Cone Lemma,

Borel Determinacy implies that, if A is any Borel set of degrees, then either A

or its complement contains a cone. Similarly, Projective Determinacy implies

that every projective set of degrees or its complement contains a cone, etc. Since

Borel Determinacy is provable in ZFC, the fact that every Borel set of degrees

or its complement contains a cone is provable in ZFC. It is worth noting that

the proof of Borel Determinacy came seven years after the proof of the Cone

Lemma.

WhenI discovered the Cone Lemma, I became very excited. I was certain

that I was about to achieve some notoriety within set theory by deducing a

contradiction from AD.In fact I was pretty sure of refuting Borel Determinacy.

I had spent the preceding five years as a recursion theorist, and I knew many

sets of degrees. I started checking them out, confident that one of them would be

give me my contradiction. But this did not happen. For each set I considered,it

was not hard to prove, from the standard ZFC axioms, that it or its complement

contained a cone. (Of course, one can use Choice to construct a counter-example

to the unrestricted version of the theorem.)
I take it to be intuitively clear that we have here an example of prediction and

confirmation. What was predicted, moreover, was not just individual assertions.

Though there had been much work on the structure of the degrees, no attention

at all had been paid to the notion of a cone. There was one known theorem

(Richard Friedberg’s ‘criterion of completeness’), which we would now describe

as showing that a certain set contains a cone. Afterwards cones and calculations

of ‘vertices’ of cones becamesignificant in degree theory. In determinacy theory,

the Cone Lemma became an important tool. What was predicted by the Cone

Lemma was thus a whole phenomenon, not merely isolated facts. The example
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seems fully analogous to striking instances of prediction and confirmation in

empirical sciences.

6 Wadge degrees
I now turn to the second example: it is similar to the cone theorem but perhaps

it is more basic and important.
Let NN be the set of all infinite sequences of natural numbers,thatis, of all

functions f : NN. A function F : NN = NNis continuous if the value of the
function F(f) is determined by finitely many values of the function f (in the
jargon of sequences, if each term of the sequence F'(f) is determined byfinitely
many terms of the sequence f). Under the natural topology giving rise to this

notion of continuity (the product of the discrete topology on N), N¥ is homeo-

morphic to the space of the irrational numbers with the usual topology. Thus

we can almost, but not quite, think of our continuous functions as continuous

functions from the reals to the reals.

Suppose that F : NN — NN is continuous and B C NN. The preimage of B

under F is the set A of all f € N% such that F(f) € B. For any topological
notion of simplicity, the preimage A is at least as simple as B. If B is open, then

A is open; if B is Borel, then A is Borel; etc. If one thinks of continuous functions

as computable, then A is computable using B in the sense that a question of the

form “Is f € A?” can be answered by computing F(f) and using an (oracular)
answer to the question “Is F(f) € B?”.

These considerations motivate the notion of what are called ‘Wadge degrees’.

If A and B are subsets of NN, then we say that the Wadge degree of A is < the

Wadge degree of B if there is a continuous F : NN — NN such that A is the

preimage of B under F’. The following result was proved by William Wadge in

1967.

Wadge’s Lemma Assume that AD holds. If A and B are subsets of NN, then
either the Wadge degree of A is < that of B or else the Wadge degree of the

complement of B is < the Wadge degree of A.

Proof Let A and B be subsets of NN. We define a set C C NN bysetting

(ko, ki, ke, .-.) ¢ Cw ((ko, ke, ka,...) EAH (k1, kg, ks,.-.) € B).

The axiom AD implies that one of the players I and II has a winning strategy

for the game Go.

Assumefirst that 7 is a winning strategy for II. The strategy 7 defines a

function F : NN — NN as follows. For any sequence f, consider what happens

when I plays the sequence f as (ko, ko,...). Let F(f) be the sequence (kj, k3,...)

that II, using 7, plays. The function F is continuous, for the n*® term of F(f)

dependsonly on thefirst n terms of f. Since 7 is a winning strategy for II, it

follows that A is the preimage of B under F. Thus the Wadge degree of A is <

that of B.
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The existence of a winning strategy for I similarly implies that the Wadge

degree of the complement of B is < that of A. 0

Like the proof of the Cone Lemma, the proof of Wadge’s Lemmastill gives

results if we weaken the AD hypothesis to hypotheses consistent with Choice,

Borel Deteminacy implies that the conclusion of Wadge’s lemma holds forall

Borel sets; Projective Determinacy implies that it holds for all projective sets;

etc. Since Borel Determinacy is provable in ZFC, this latter consequence is

provable in ZFC as well. As with the Cone Lemma, there was a seven-year gap

between the proof of Wadge’s Lemmaand the proof of Borel Determinacy.

Remark. The proof of Borel Determinacy, though a proof in ZFC, is in a

certain sense not an elementary proof. It uses the existence of uncountably

many cardinal numbers. By the work of (Friedman 1971), any proof of Borel
Determinacy must make some such appeal to uncountably many cardinal num-

bers. There is also an elementary proof of the Borel case of Wadge’s Lemma, a

proof not going through Borel Determinacy. This proof is due to Louveau and

Saint-Raymond (1987 and 1988), and is much longer and more complex than the
combination of the proofs of Borel Determinacy and Wadge’s Lemma.

It follows directly from Wadge’s lemma that, under AD, the Wadge degrees

are linearly ordered(i.e., of any two, one is < the other), except that a set and

its complement may have incomparable Wadge degrees. (This is dramatically

different from what happens with the Turing degrees.) Thusit is provable in

ZFC that Wadge’s ordering restricted to Borel sets is essentially linear, and

determinacy hypotheses imply that this linearity holds for wider classes ofsets.

It was later shown (by me, using an idea of Leonard Monk) that the Wadge

linear ordering is actually a well-ordering. The proof, which may be found on

pages 158-9 of (Kechris 1995), is not as simple as that of Wadge’s Lemma, but

it is nevertheless fairly short.

Remark. Everything we have said about Wadge degrees for subsets of NN

goes through for subsets of R, provided that the definition of < is modified by

an appropriate weakening of the continuity requirement.

Though the significance of continuous preimages has of course been well-

knownfor a long time, the discovery of Wadge’s lemma uncovered a phenomenon
that is very basic in nature but had never been suspected: that all sufficiently

simple sets (sets of reals, subsets of NN, etc.) are arranged in a very natural
well-ordered hierarchy of increasing complexity. There is no incomparability,

except for the trivial kind mentioned above. For simple enough sets, namely

Borelsets, the existence of the Wadge hierarchy is provable in ZFC. Determinacy

hypotheses like Projective Determinacy imply that the hierarchy extends through

widerclasses of sets.

For many special cases of Wadge’s Lemma, its conclusion has been verified

by deduction from the ZFC axioms. A typical kind of instance is the following.

When two naturally occurring sets are shown to have the same position in the

Borel, projective, or another standard hierarchy, it can usually be shown that
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they are continuous preimages of one another, though the proof of this may be

difficult. There were many instances of this phenomenon before Wadge’s proof,

and there have been many instances afterward. Of course, the proof of Borel

Determinacy verified all Borel instances of Wadge’s Lemma.

The conclusion of Wadge’s Lemmais a powerful tool, useful in many contexts.

Wadge himself used it to classify completely all the Borel sets.

7 Discussion

How far do the two examples I have described go toward establishing the truth

of determinacy hypotheses like Projective Determinacy and ADZ®)? More im-

portantly, could more—perhaps much more—evidence of the sort provided by

the examples besufficient for justifying scientific acceptance of determinacy hy-

potheses? (There is, in fact, a great deal of other evidence of this sort; but it is

not my aim here to present the case for determinacy hypotheses, so I will not

present this evidence.)
There is an oft-quoted passage from (Gddel 1947, page 477 of the expanded

version) that I cannot resist quoting now:

There might exist axioms so abundantin their verifiable consequences,

shedding so much light upon a whole discipline, and furnishing such

powerful methods for solving problems (and even solving them,as far

as that is possible, in a constructive way) that quite irrespective of

their intrinsic necessity they would have to be assumed in the same

way as any well-established physical theory.

My two examples exhibit for determinacy hypotheses all three of the properties

Godel mentions: abundant verifiable consequences; sheddinglight on a discipline;

powerful methods for solving problems. (I do not understand Godel’s cryptic

parenthetical remark well enough to know whetherit applies to the examples.)

We can certainly imagine a situation in which there was an enormous amount

of evidence of the same general character for determinacy hypotheses. It seems

clear that Goddel’s conditions would then be satisfied. It also seemsright that the

hypotheses would have to ‘be assumed in the same way as any well-established

physical theory’.

In our imagined situation, would determinacy hypotheses count as mathe-

matically known? In the jargon of 83 above, is the evidence of my examples

mathematically proper evidence?

To ask this question is almost the same as asking whether, in the imag-

ined situation, determinacy hypotheses would or should become basic axiomsof

mathematics. I will treat the two questions as identical, although this is not

quite the case. One might, for example, deem the subject matter of determinacy

hypotheses too specialized for them to be axioms of set theory. Perhaps one

could do this while at the same time counting the hypotheses as mathematically

known truths (and known because of the supposed evidence, not because,say,

they followed from new axiomsofa different kind).
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If the answer to our question is ‘yes’, then—although the business of math-

ematics may be proving theorems—it is nevertheless not ruled out that among

the basic axioms to be assumed without proof there are some whose epistemic

status is like that of a well-confirmed physical theory.

If the answeris ‘no’, then there is a science different from mathematics but

having the same subject matter as mathematics, a science that—though it may
contain no empirical elements—yet has in essential ways the epistemic structure

of an empirical science.

What is the answer? If determinacy hypotheses were not known to be inde-

pendent of the standard ZFC axioms, then I am confident that the answer that

would actually be given would be ‘no’. One might say that there was strong

evidence for the truth of determinacy hypotheses, but that the mathematical

significance of this evidence was merely to give hope that the hypotheses could

be proved.

If the kind of evidence in my examples is not mathematically proper, then

precisely how doesit fail to be so? In §3, I considered two candidates for earmarks

of mathematically proper evidence. One candidate that I did not reject was that

of being known a priori, but the evidence of the examples is as a priorz as any

mathematical evidence. Another candidate was certainty. However, I rejected

certainty as a necessary condition for proper evidence,rejecting it on the grounds

that the condition of certainty is not met by the evidence for some of the standard
ZEC axioms.

In her comprehensive account (Maddy 1988a; 1988b) of the evidence for the
ZFC axioms and proposed new axioms of set theory, Maddy distinguishes in-

trinsic and extrinsic evidence. The formeris initially (Maddy 1988a, p. 482)

described in terms of obviousness and self-evidence and later in terms of ‘intu-

itiveness’ (Maddy 1988), p. 758). The latter is described as ‘pragmatic, heuristic’

(Maddy 1988a, p. 482). Maddy also talks of a third way of justifying axioms:

rules of thumb, ‘vague inutitions about the nature of sets, intuitions too vague

to be expressed directly as axioms, but which can be used in plausibility argu-

ments for more precise statements’ (Maddy 1988a, p. 484). Later, however, she

classifies the evidence for individual rules of thumb as intrinsic, extrinsic, and

other. Thus, if we forget about ‘other’, we may think of a simple division into

intrinsic and extrinsic evidence.

My two examples (like typical experimental examples in empirical sciences)
count for Maddy as extrinsic. Moreover they no doubt fail to show what Godel

in the quoted passage calls ‘intrinsic necessity’, so it is perhaps fair to count

Godel also as classifying them as ‘extrinsic’.

Wecan try to use the intrinsic—extrinsic distinction to clarify the notion of

mathematically proper evidence. Specifically, we can consider the idea that only

intrinsic evidence is mathematically proper.

Recall the attempt, discussed earlier, to argue for the ZFC axioms from the

iterative concept of set. Such arguments, even if not yielding certainty, do seem

to provide intrinsic evidence for the axioms. Furthermore, arguments from the

iterative concept are not limited to the ZFC axioms. Remember that, according
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to the iterative concept, sets are to be regarded as being formedin a transfinite

sequence of stages and that the numberof these stages is supposed to be ‘abso-

lutely infinite’. From this absolute infinity one ‘derives’ the related principles of

resemblance (there should be pairs of stages that are alike in any given respect)

and reflection (there should be stages that look like the whole universe of sets in
any given respect). From thereflection principle comeprecise reflection schemata

in the formal language of set theory. One such reflection schema is equiva-

lent with Infinity plus Replacement in the presence of the other ZFC axioms.

Otherreflection schemata imply the existence of various kindsof large cardinals,

e.g., inaccessible cardinals. (See (Tait 1998) for a discussion of some reflection
schemata and a strategy for justifying them.) The existence of various kinds of

large cardinals can also be deduced from assertions motivated by the principle

of resemblance. As I said earlier, all the determinacy hypotheses mentioned in

this chapter have been deduced from large cardinal axioms—propositions stat-

ing the existence of large cardinals of various kinds. If principles like reflection

and resemblance yield intrinsic evidence for the formal schemata obtained from

them, then perhaps we can regard as known or supported by intrinsic evidence

not just the ZFC axioms but also many large cardinal axioms and, indirectly,

determinacy hypotheses.

One problem with the idea just enunciated is that the large cardinal axioms

from which determinacy can be deduced are very strong ones. At the level of the

large cardinal hierarchy where these axioms are found, the thread connecting the
intuitive principles of resemblance and reflection with the large cardinal axioms

is very thin indeed. Thus these intuitive principles provide little intrinsic justifi-

cation for such strong large cardinal axioms. Though there is evidence for them,

it is in fact overwhelmingly extrinsic. One might conclude from this that there is

a real difference between the epistemic status of weak and strong large cardinal

axioms. Perhaps the standard ZFC axioms and weaklarge cardinal axioms (as

in (Tait 1998)) have intrinsic—and so mathematically proper—evidence, while

stronger large cardinal axioms and determinacyare only extrinsically supported.

Perhaps, consequently, there is mathematically proper evidence for the former

but not for the latter.

I do not think it implausible to regard, in the way just indicated, ZFC and

weak large cardinal axioms as supported by a larger body of intrinsic evidence

than that which supports strong large cardinal axioms and determinacy. But I

do not think that this provides a significant difference between the total body of

evidence for the two classes of propositions. The reason is that, even for some of

the ZFC axioms, the intrinsic evidence is not the main evidence. Consider, for

example, the Axiom ofInfinity. There is certainly intrinsic evidence for it. But

there is intrinsic evidence against it that is at least as compelling: the intuitive

idea that there can be no completed infinite totalities, for example. The reason

for Infinity’s acceptance is not that the intrinsic evidence for it is stronger than

that against. The reason, as Maddyindirectly says, is evidence that is ‘predom-

inantly extrinsic, lying in the depth, breadth and effectiveness of the subject it

launched’ (Maddy 19885, p. 759), (that is, Cantorian set theory). Similar points



230 Donald A. Martin

can be made for other ZFC axioms and for weak large cardinal axioms such as

that asserting the existence of an inaccessible cardinal. Woodin (1998) might be
taken as making a similar point even for axioms of Peano Arithmetic, although

he is talking of consistency rather than of truth.

I believe, then, that the attempt to make being intrinsic the earmark of math-

ematically proper evidence will not stand up. Like the corresponding attempt

based on certainty, it fails because it does not explain the properness of the

evidence for the standard ZFC axioms.

In general, I do not see any convincing rationale for ruling out as mathe-

matically proper the kind of evidence provided by my two examples. Nor do I

feel that such evidence’s being mathematically proper is unsatisfying or counter-

intuitive. It does not follow that mathematicsis indistinguishable from empirical

sciences. One canstill hold that mathematics is an a priori science. Moreover,

the character of mathematics can still reside in proofs, whatever the groundsfor

accepting the basic axioms.
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Mathematical definability

Theodore A. Slaman

1 Introduction

One might fairly say that the mathematical analysis of definability began in 1931,

with the appearance of Gédel’s Incompleteness Theorem (Gédel 1931). Gédel

showed that, for sufficiently strong formal systems 7’, there exist undecidable

statements y such that there is no proof of y or of =y within T. This theorem

pointed to an intrinsic incompleteness within the formal notion of proof.
The method of computation by algorithm is more general than that of verifi-

cation by formal proof. It too was shown to be incomplete, but it took some time

to develop the technical apparatus needed to state this incompletenesscorrectly.

(Kleene 1987), in his biographical memoir of Gédel,recalls this development and

we summarize some of his remarks. Kleene describes the intuitive notion of an

algorithm as follows.

An algorithm is a procedure described in advance such that, whenever

a value is chosen for the variable or a respective value for each of the

variables of the function (or predicate), the procedure will apply and

enable one in finitely many steps to find the corresponding value of

the function (or to decide the truth orfalsity of the corresponding
value of the predicate).

Several specific implementations of the notion of algorithmic procedure were pro-

posed; see (Church 1936a), (Godel 1965), (Kleene 1936), (Post 1936), and (Tur-
ing 1936). Upon the discovery that, while the details of presentation varied from

one to the other of these models of computation, the sameclass of functions (the

recursive functions) was declared computable byall of them, the Church—Turing

Thesis, that the collection of computable, or effectively calculable, functionsis

exactly the collection of recursive functions, was generally accepted.

Definition 1.1

e A function or relation ts recursive if and only it is computable on a Turing

machine.

e A relation is recursively enumerable if and only if it is the domain of a

recursive function.
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e A function or relation is recursively approximated if it is the pointwise limit

of a uniformly recursive sequence. For example, tf g 1s a recursive function of two

variables such that limso.g(z,s) exists for all x, then this limit is recursively

approximated.

We define the relation X is recursive relative to Y similarly, and denoteit

by Y >7 X.

With the precise definition of a recursive function came the proofs of the

existence of arithmetically definable sets which are not recursive. Kleenecredits

(Church 19366) and (Turing 1936) with showing

the existence of ‘intuitively undecidable predicates’, that is, predi-

cates for which there is no ‘decision procedure’ or ‘effective process’

or ‘algorithm’ by which, for each choice of a value of its variable, we

can decide whether the resulting proposition is true or false.

Kleene goes on to claim for himself the establishment of the connection be-

tween the proof theoretic and the computational lines of development. In short,

in any reasonable proof system thereis an algorithm to recognize the valid proofs.

If JT were to be a complete axiomatization of number theory, then the truth of

any number theoretic statement y would be determined recursively by finding

either a proof of y from T or a proof of ~y from TJ. This would contradict the

Church and Turing theorems.

Kleene summarizes his reaction to these incompleteness theorems by saying

that the theory of the natural numbers ‘offers inexhaustible scope for mathemat-

ical ingenuity’. No recursive axiom system is sufficient to prove all of the true

number-theoretic statements. Similarly, no countable syntax and semantics are

sufficient to describeall of the definable sets of natural numbers.

One way to gain mathematical leverage is to expand the metamathematical

environment. (Gédel 1932) noted that if elementary numbertheoryis

... successively enlarged by the introduction of variables for classes

of numbers,classes of classes of numbers, and so forth, together with

the corresponding comprehension axioms, we obtain a sequence (con-

tinuable into the transfinite) of formal systems ... it turns out that
the consistency (w-consistency) of any of those systems is provable

in all subsequent systems.

By the same enlargement in language, we obtain a sequence of families of defin-

able sets. Analogously, the universal set for any of those families is an element

of all subsequent families. This is the starting point for the discussion below.

In §2 we will give an introduction to the hierarchy of definability in first- and

second-order arithmetic. On the one hand, we ignore distinctions of finite size

and thereby miss the details of computational complexity. On the other hand,

we will give a short treatment of those aspects of definability which are tied to

axiomatic set theory and the large cardinal hierarchy.

In 83 we will illustrate the utility of a detailed structure theory for definability.

We give mathematical examples which exactly occupy distinguished positions
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within the hierarchy, such as arithmetically definable sets which are not recursive

and analytically definable sets which are not Borel. We also discuss how insights

into definability lead to insights into provability within second-order arithmetic.

We endin §4 with a discussion of whether the proposed hierarchy of definability

is intrinsic, with the conclusion that it is so.

2 The intuitive hierarchy

First-order arithmetic We generate the formulas in a first-order language by

recursion from logical symbols (, ), —>, 7, and =; variables x1, 22,...; quantifiers

4 and V; and non-logical symbols for constants, functions, and relations. The

first-order language of arithmetic includes the constants 0 and 1, the functions

+ and x, and the binary relation <.

We use (Vz < y)y or (Sz < y)y as abbreviations for (Vz)[z < y —> y} and
(Ax)[z < y —> y]. We say that (dr < y) and (Vz < y) are bounded quantifiers.

The standard hierarchy for definability within first-order arithmetic is based

on counting alternations between unbounded quantifiers. One can also keep track

of the bounded quantifiers, and be led to questions of computational complexity.

Definition 2.1 Let »~ be a formula in first-order arithmetic. Then:

ey is D9 and II9 if it has no quantifiers which are not bounded;

ey is XD), , if it is of the form (Axr1)--- (Atm), where p is IID; w ts ID,,
if it is of the form (Vr1)---(V2m)W, where w is d°.

For example, (Ar)(Vy)(z + y = y) is a D9 sentence.
We say that a predicate R on the natural numbers is ©2 or II? if it has a ©?

or II® definition. That is, there is a £2 or II® formula y(x1,...,2m) such that,
for all n1,...,%m from N,

R(ni,...,N%m) if and only if (N, 0,1, +, x, <) FE y(mi,...,mm).

We say that R is A® if it is both X° and II°.
It is worth mentioning that bounded quantifiers do not amount to much in

this hierarchy. If y is a ©° formula, then the relation defined by (Vx < y)y is

also D2. Similarly, if y is a II? formula, then the relation defined by (dz < y)y
is also II°.

Thefirst levels of the syntactic hierarchy have dynamic interpretations.

Theorem 2.2 Let R be a predicate on the natural numbers. Then:

e R is AY if and only if it is recursive;

e R is x9 if and only if it ts recursively enumerable;

e R is AS if and only if it is recursively approximated.

The shortest route to a set of integers which is not recursive is through

Cantor’s theorem that the power set of the natural numbers is not countable.

Since there are only countably many Turing machines, there is a set of integers

which is not computed by any Turing machine. But this argument is not the
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one to which we referred above. We seek a set which is definable, even definable

in elementary number theory, and which is not recursive.

There is a canonical way to produce a definable set which is not recursive,
the diagonal method.

e Show that there is a recursive way to use single numbersto represent finite

sequences of numbers.

e Show that there is a universal D9 predicate: First, fix a recursive enumer-
ation ofall of the =} formulas of one free variable, (y.(y) : e € N). Then,
show that there is a =? formula 7(e, y) such that for all e and y, W(e, y) is
equivalent to ye(y).

e If w(e, y) did define a recursive set of pairs, then there would be an eg such
that, for all e, 7(e, e) if and only if y.,(e). Evaluate this equivalence at eo

to get (eo, €o) if and only if y.,(e9), which contradicts the equivalence

between w(eo, y) and Ye, (y).

The above is a purely syntactic argument. It does not use any detailed

information about definability in first-order arithmetic, and so it applies in a wide

variety of situations. It points out that whenever there is a universal predicate

within some definability class, then negating elements of that class results in

greater expressive power.

To be precise, we define the existence of a universal set as follows.

Definition 2.3 Suppose that T is a collection of sets, and let '(X) be those

elements of1 which are subsets of X. Then a subset U of (Nx X)NT ts universal
for T(X) if T(X) ts equal to the collection of sets Ue = {x : U(e,z)}.

Wewill speak simply of the existence of a universal set whenthereis little risk

of confusion about the intended values of X. The special case of the universal

do? set will be important.

Definition 2.4 For each A, a subset of N or function from N to N, we let A’

denote the universal X9 set relative to A. The set A’ is called the Turing jump

of A.

The diagonal argument can be used to conclude thefollowing.

Theorem 2.5 For each n, there is a universal X° relation and it is not II®.

Similarly, for each n, there is a A),relation which is not ©° and not II?.
The set of sentences in the first-order language of arithmetic which are true of

the natural numbersis not ©°, for any n.

This diagonal argument may apply in wide generality. However, even in

its original form it does not show that any particularly interesting set is not

recursive, but only that some recursively enumerable set is not recursive.

The fixed point theorem The diagonal argument given above implies that

there is no universal total recursive function. By this we mean that there is no

recursive function f such that for all e and m, f(e,m) is defined and for which,

for every total recursive g, there is an e such that for all m, g(m) = f(e,m). If f
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were to be total recursive, then the diagonal function g(m) = 1+ f(m,m) would
also be recursive, and this conclusion would lead to a contradiction.

Werecall the Kleene Fixed Point Theorem. We use Kleene’s notation andlet

{e} denote the e*® recursive function, in the standard enumeration of recursive

functions by the programs which compute them.

Theorem 2.6 (Kleene) For any recursive function f there is an e such that

{e} = {f(e)}.
One interpretation of Theorem 2.6 is that the class of recursive functions is

impervious to attempts to build a function which is not recursive by means of

an effective diagonal argument. Shoenfield (1995) remarks that it was Theorem
2.6 that convinced Kleene of the validity of the Church—Turing hypothesis.

If we drop the constraint that f must be defined at all arguments, so we

include computations that do not halt, then the existence of a universal D9

predicate is essentially the same as the existence of a universal partial recursive

function.

Second-order arithmetic We obtain the language of second-order arithmetic

by adding new function variables F, Fy,.... We allow for forming a new term

F,(t) when t is a term and allow quantifiers to range over numbertheoretic and
function variables.

It is typical in mathematical logic to use analysts and second-order arithmetic

synonymously and to refer to functions on the natural numbers as reals. What

is really meant here is that we work within a mathematical realm in which
everything is countable, except that the quantifiers range over an uncountable

collection of countable objects.

Wedefine the (lightface) projective hierarchy as follows.

Definition 2.7 Let ~ be a formula in second-order arithmetic. Then:

ey is Xd and Ilif it has no quantifiers over real variables;

ey is Uh, , if tt is of the form (AF,)---(AFm)W, where wp is II};

ey is Il,, if it ts of the form (VF\)---(VFim), where w is DF.

Asin first-order arithmetic, R is ©) or I} if it has a 0} or I! definition and
Ris A} if it is both X} and II}.

Just as bounded quantifiers (quantifiers over finite sets) do not contribute
within the arithmetic hierarchy, number theoretic quantifiers do not contribute

in the projective hierarchy. Let x be a number theoretic variable. If y is a Xt

formula, then the relation defined by (Vz)is also ©}. Similarly, if y is a Tt

formula, then the relation defined by (Ar)y is II}.
There is an obvious and profound difference between definability within first-

and second-order arithmetic. Every natural numberis definable within first-order

arithmetic: 0 is explicitly defined by a constant symbol and each n > 0 is defined

by the term obtained by adding 1 to itself n times. Consequently, if R is defined

by a formula with a natural number parameter, then thereis a definition of R by a

formula of the same arithmetic complexity in which there are no parameters. But
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there are uncountably many reals, only countably many of which are definable.

Thus, more sets become definable when one uses parameters. ‘To take a trivial

example, for each real A, {A} is definable using A as a parameter.

The collection of Borel sets of reals makes a more substantial example. We

can generate the Borel sets by transfinite recursion through the countable ord-

inals: start with the open sets and iterate the operations of complementation

and countable union. The same collection is obtained by starting with the open

intervals with rational endpoints, each of which is definable without parameters.

However, an arbitrary countable union has the same complexity as an arbitrary

real number, and so real number parameters appear in an essential way in the

Borel hierarchy.

Definition 2.8 A relation R is U} if there are real parameters P,,...,P, and

a it formula p(Fi,..., Fm, Fm41,---;Fmin) such that R is the set of solutions

to y(Fi,...,; Fm, P1,...,Py). Define TI, Al, U9, 03, and A}, similarly.Tn?

Thefirst levels of the syntactic hierarchy can be formulated in classical de-

scriptive set theoretic terms. The projective sets are formed by starting with the

Borel sets, in arbitrary finite dimension, and closing under complementation and

projection. At thefirst level, the analytic sets are the projections of Borel sets

and the co-analytic sets are their complements.

Theorem 2.9 For any predicate R:

e R is At if and only if it is Borel;

e R is &t if and only if it ts analytic;

e R is II} if and only if it is co-analytic;

e R is projective if and only if there is an n such that R is X}.

The specific interest in definability lies in understanding those mathematical

objects specified without parameters. We discuss a few examples.

The Aj sets The syntactic presentation of the A} setsis by pairs of comple-

mentary Dj predicates. (Kleene 1955) shows that there is a transfinite recursion
to generate exactly the A} sets: essentially, they are the effectively presented

Borel sets. Kleene introduces the following effective theory of the countable

ordinal numbers and of the Borel operations to generate the A} sets.

e Define a system of notations O for ordinals with recursive operations of

successor, limit, ordinal addition and so forth. Use the Kleene Fixed Point

Theorem to define recursive functions on © by transfinite recursion.

e Associate a real number H, with each notation a in O so that Ho is the

empty set, ordinal succession corresponds to the Turing jump, and count-

able limits correspond to uniform amalgamation.

e Say areal is hyperarithmetic if it is recursive relative to some H,. Similarly,

define a real to be hyperarithmetic in F by starting with Hf = F.

e Define a set of reals R to be hyperarithmetic if there is an a and a recursive

function f such that the following conditions hold for all F: a € O*, and

F € Rif and only if f(H*) =0.
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Theorem 2.10 (Kleene) A real or a set of reals is Aj if and only if it is

hyperarithmetic.

The IIj sets In Kleene’s analysis of the At sets, he not only provided a detailed

structure theory for the A} sets but also for the II} sets.
First, reduce to the following normal form for II} predicates. Using the ef-

fective pairing function and absorbing quantifiers over natural numbervariables,

for each II} set R there is a ©? predicate (An)y(n, F) such that R is defined
by the formula (VF)(dn)y(n, F). Here, we mean that y may have other free
variables but no other quantifiers other than bounded number quantifiers.

Second, given a formula (VF)(dn)y(n, F), define the tree T of functions Fo
with somefinite domain [0,..., mJ] such that =(Sn < m)y(n,Fo). In other words,
T is the tree of possible initial segments of counter-examples to (VF)(An)y(n, F).
Then (VF)(An)y(n, F) is equivalent to the statement that T is wellfounded(that
is, has no infinite path). So the set

{e : the et recursive binary relation is a wellfoundedtree.}

is a universal II} set of natural numbers. Similarly, the set

{e: the e*® recursive in F binary relation is a wellfounded tree.}

is a universal II} set of reals.
The elements of a Aj set are determined by meansofa transfinite recursion,

whose length can be specified in advance. The elements of a II} set are also
determined by a transfinite recursion, but it only converges on the elements of

the set, and diverges on the elements of the complement. In this way, the A}

sets and the II} sets are analogous to the recursive and recursively enumerable
sets, respectively.

The II} sets When weconsider II+ predicates, we must also consider meta-
mathematical questions. We begin with Shoenfield (1961) Absoluteness Theo-
rem. Here ZF denotes the Zermelo—Freenkel axioms of set theory.

Theorem 2.11 (Shoenfield) Suppose that M, and M2 are models of ZF, My,

is a submodel ofM2 containing all of the ordinals ofMz and y is aII3 predicate

with parameters from M,. Then, Mi - 9 if and only if Mz - y.

Wesay that II} statements are absolute between wellfounded inner models of
ZF’,

Godel’s universe of constructible sets Gédel (1938) proved the consistency
of the Continuum Hypothesis and of the Axiom of Choice by a remarkable and

beautiful analysis of definability. We mention a few of the highlights of Gédel’s

proof and its consequences for the II} sets. (In the following, we will work
within a model of set theory and prove consistency, rather than work within

arithmetic and prove relative consistency, but the same proof can be used for

both purposes.)
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Define a hierarchy of sets by:

In = 9;
Deg41 = {x : 2 is first-order definable in parameters over Lg};

Ly =Uacy Le -

Say zx is constructible if and only if there is an a such that z is an elementof Ly.
Let L be the class of constructible sets.

Showing that L is a model of the axioms of set theory involves a reflection

argument. Suppose that » is a formula using parameters from L. Then,for

arbitrarily large ordinals a, for all x in Lg,

Da = v(x) ifandonlyif LE y(z).

Thus the closure properties of the class of ordinals imply that closing underlocal

definability at each step a implies closure under global definability in the limit.

The constructible sets are presented with an intrinsic definable well-ordering
coming from theorder of their construction. Thus, L is a model which establishes

the consistency of the Axiom of Choice.

Godel’s proof that L is a model of the Continuum Hypothesis requires a

further insight. Suppose that X is a constructible real number. Then there is

an ordinal a such that X is an element of L,. Let H be a countable elementary

substructure of DL, with X € H, and let 7: H — H* beits transitive collapse.

Then 7 is the identity on N, and so X is an element of H*. Now, #™* is a

transitive structure, built by transfinitely iterating first-order definability over

the empty set. Thus, H* is a countable initial segment of L, say H* = Ly«. Then

X is an element of L,,1, where wt is the least ordinal which is not countable

in L. There is a constructible bijection between Lit and w?, so L satisfies the

statement that there are at most w, reals, and thereby satisfies the Continuum

Hypothesis.

Godel could also draw some further information from the above argument.

Given two reals X and Y, X is constructible before Y if and only if

(Ja < w)[Ly / X is constructible before Y].

We can rewrite this condition as

(3Z) Z codes a countable initial segment of DL
and X is constructible before Y in the coded model.

A countable model M is isomorphic to an initial segment of L if and onlyif

M is wellfounded and built by transfinitely iterating first-order definability over

the empty set. The latter condition is II}. Consequently, within L there is a D4

well-ordering of the reals. Of course, once one has a definable well-ordering of

the reals, then the various pathologies associated with the Axiom of Choice are

realized by definable sets of reals. For example, in L there is a 04 set which is

not Lebesgue measurable.

On the other hand, we can use L to mathematical advantage through the
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Shoenfield Absoluteness Theorem. Suppose that y is a II} statement. Then y is

true if and only if y is satisfied within L. Consequently, if we can prove y using

the Axiom of Choice, the Continuum Hypothesis or any of the other structure

theory of L, then we may conclude that y is a theorem of ZF. Kechris (1991)

includes a very nice example of an argumentof this type.

The A} sets Bythe previous discussion, ‘X is constructible’ is a D3 statement
about X. Consequently, ‘There is a nonconstructible real’ is a D4 sentence.
Simultaneously with proving the consistency of the failure of the Continuum

Hypothesis, Cohen (1966) proved that it is consistent (with ZFC) that thereis a
real number whichis not constructible. Cohen introduced the method of forcing

to add newsets to a given (countable) model M of ZF.
Briefly, the new sets are approximated by conditions in M. For example,

Cohen could add a new subset of w using the collection of finite approximations

to such a set as the conditions. The conditions are partially ordered so that

stronger conditions give more information about the set being approximated.

Then one considers only generic sets, that is sets which realize every possible

behavior as measured by M. Precisely, one considers sets which meet every

dense subset D € M of the forcing partial order. The model M[G] is obtained

starting from a generic set G and the elements of M, and transfinitely iterating

first-order definability through the ordinals of M. M{[G] is well approximated

within M by what is called the forcing relation. The closure of M implied by

its being a model of ZF implies a similar closure of M|G], and so M[G]is also
a model of ZF.

It might seem that these sets produced by forcing, because of their generic

nature, could not be individually definable. Kreisel raised the following question.

Does every set of natural numbers which is 41, for some n, belong to L? An

affirmative answer would have made for a very simple analysis of the definable

reals but such is not the case. In fact, the simplest possible counterexamples are

possible and can even be found by forcing.

Theorem 2.12 (Jensen and Solovay 1970) If ZFC is consistent, then so is ZFC

with the statement:

There is a Ad real number which is not constructible.

Large cardinals The most remarkable, or perhaps the most natural, devel-

opment in the theory of definability within second-order arithmetic is its depen-

dence on metamathematical considerations and especially its interactions with

the global properties of the universe of sets. By the Lowenheim-Skolem Theo-

rem, one should anticipate large scale phenomenato reflect to countable ones.

But the opposite occurs as well. Unfortunately, we cannot do justice to the beau-

tiful mathematics in this area, but we will mention someof its first generation

of results.

Definition 2.13 A set of order indiscernibles for a model M is a linearly

ordered set I from M such that for any ay <--- < Gn and by <-*- < bn and
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any formula in the language of M,

M i y(aj,...,@n) if and only if M — (b1,..., bn).

Gaifman (1964) shows that the existence of a measurable cardinal implies
that there is a unique class of ordinals S containing all uncountable cardinals

such that, for all uncountable cardinals k,

e SM « has order type «, and if « is regular, then Sk is a closed and

unbounded subsetof «;

e SK is a set of order indiscernibles for (Lx, €);

e every element of L, is definable within LD, using parameters from Sk.

Such a set S is called a set of Silver indiscernibles for L. It follows from

the above properties that, for each a in S, Dg is an elementary substructure of

L. We define 0# to be (the codes for) the elementary theory of L,,, relative to
parameters from S. We write ‘exists 0*’ to indicate that there is such a class of

indiscernibles for L.

To give an idea of its metamathematical strength, we show that if 07 exists,

then every definable element of DL is countable, though not necessarily countable

in L. Suppose that a is the unique solution to y in L; then L — (Azr)(y(x)) and
so Ly, - (Ar)y(xz); every element of L,,, is countable; hence, a is countable.

Now, we go to the connection with definability in second-order arithmetic.

Solovay showed that, if 0* exists, then it is a A} real, and that there is a II}

formula @ such that (provably within ZFC) 6 has at most one solution, whichis

O# , if it exists.

3. Applications

Matijasevié’s theorem Matijasevié’s solution (Matijasevié 1970) to Hilbert’s
tenth problem (Hilbert 1901-2) is a canonical example of an undecidability the-

orem.

Hilbert’s tenth problem is equivalent to the following one: find an algorithm

to determine whether a given polynomial with integer coefficients has a solution

within the natural numbers. That is to say that Hilbert’s problem is to give an

algorithm to tell whether a given Diophantine equation has a solution within the

natural numbers.

Matijasevic showed that every set of natural numbers which is defined by

a D9 formula is also defined as being the set of solutions within the natural

numbers of some Diophantine equation. Of course, this part of the proof involves

a substantial analysis of Diophantine equations. It follows from the fact that the

universal ©? subset of N is not recursive that there is no recursive algorithm as
required by Hilbert.

We can also use Matijasevic’s theorem to refine our discussion of the arith-

metic hierarchy. We defined a =? formula to be one of the form (Az) --- (Arn)y,
where y had no unbounded quantifiers. We explicitly allowed y to have bounded

quantifiers. Now, by Matijasevié’s theorem, we know that every D9 set is defined
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by a Diophantine equation and so using the bounded quantifiers did not result

in any new sets being defined.
Of course, there is a large number of undecidability results, sufficiently well

known that we will not give further examples here. In fact, nontrivial decidability

theorems are harder to find than undecidability ones.

Compactness ‘Typically, a compactness theorem asserts the existence of an

infinite set under a finite closure hypothesis. For example, Konig’s Lemmastates

that, if T is a binary tree with arbitrarily large finite branches, then T' has an

infinite branch. Similarly, the compactness theorem of first-order logic states

that any finitely satisfiable first-order theory is satisfiable. When we apply these

compactness theorems, we construct a particular tree and are willing to accept

any path through it, or we construct a consistent theory and are willing to accept

any model in which it is satisfied. We must be content to work with a generic
path or a generic model.

We look closely at some examples and draw some conclusions concerning

Friedman’s (1975) subsystems of second-order arithmetic. Define RC’Ag to be
the axiom scheme specifying that the natural numbers satisfy induction for ©?

formulas and that the reals are closed under relative computability.

Definition 3.1 A Turing ideal is a nonempty set of reals T such that, for all

X€T andallY, if X >r Y, thenY ET.

So RC'Ap is something of an axiomatization of the theory of a Turing ideal.

Friedman compares systems by their sets of theorems. We will pay attention

to the complexities of their first differences.

Definition 3.2 Suppose that T,; and T> are first-order theories and T is a set

of sentences in their common language. We say that Ty is ['-conservative over

T; tf, for ally ET, af p ts a theorem of Tz, then ~ is a theorem of T}.

Konig’s lemma

Definition 3.3 A Scott set is a Turing ideal S such that if X € S andT is a

binary tree recursive in X, then T has an infinite path in S.

Questions about Scott sets measure what can be built (recursively) from ap-

plications of Konig’s lemmaor equivalently from applications of the compactness

theorem in first-orderlogic.

Theorem 3.4 (Jockusch and Soare 1972)

e Every binary infinite tree T has an infinite path X such that X' <7, T".

e There is a Scott set S such that for all X € S, X' <0’.

One interpretation of Theorem 3.4 is that applications of compactness do

not generate complicated sets. Let WKLI be the statement of Koénig’s lemma

for binary trees given above. Harrington, in an unpublished result, used the

Jockusch and Soare machinery to prove the following result.

Theorem 3.5 (Harrington 1978) RCA)+ WKL is II}-conservative over RCA.
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In fact, any statement of elementary number theory which is proven by

RCAjp +WKL can be proven in first-order arithmetic using only induction for

° formulas, without mention of infinite sets or of compactness.

Ramsey’s theorem

Definition 3.6 For X CN, let [X]” denote the size n subsets of X. Suppose
that n and m are positive integers and F is a function from |N]” to {0,...,m-—1},
Then H CN is homogeneous for F if F is constant on [H]”.

Theorem 3.7 (Ramsey 1930) For all positive integers n and m, ifF maps [N]”
to {0,...,m—1}, then there is an infinite set H such that H 1s homogeneous

for F.

If we fix n and m, werepresent the above conclusion as N — [N]?..
Theorem 3.7 has a noneffective proof and has been a fruitful example for

mathematical logicians. (Jockusch 1972) showed that the noneffective methods
in the proof of Theorem 3.7 cannot be eliminated.

Theorem 3.8 (Jockusch)

e There is a recursive partition of [N]? into two pieces such that 0’ is recursive
in any infinite homogeneous set.

e There is a recursive partition of [N]? into two pieces with no infinite homo-

geneous set which is recursively approximated.

Theorem 3.8 gives a good understanding of the definability aspects of Ram-

sey’s theorem, except for the case of partitions of [N]?._ Jockusch posed the
following question: Is there a recursive partition of [N]? into two pieces such

that 0’ is recursive in any infinite homogeneousset?

More generally, we consider Turing ideals closed under applications of Ram-

sey’s theorem.

Definition 3.9 A Ramsey ideal zs a Turing ideal R such that, if X € R and

F : [N]? — 2 ts recursive in X, then there is an infinite homogeneous set for F
mR.

Seetapun answered Jockusch’s question negatively.

Theorem 3.10 (Seetapun). There is a Ramsey ideal which omits 0’.

Thus, Ramsey’s theorem is weak with regard to constructing arithmetically

defined sets. However, it is strong in a numbertheoretic sense, as shown by the

following theorem of Slaman.

Theorem 3.11 (Slaman). There is a II? statement y such that

RCAyg +N—>[N]Z2+ y~ and RCAg' y.

(For Theorems 3.10 and 3.11, see (Seetapun and Slaman 1995).)
When we can invoke Ramsey’s theorem, the apparatus of infinite sets can

be applied to obtain first-order consequences beyond those of RCAg. It is open

whether RCAp + N — [N]2 proves PA.
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Transfinite recursion and II} definability Hilbert’s tenth problem was to
give an algorithm to determine whether a Diophantine equation has an integer

solution. One was asked to give a recursive description for a set which came with
a natural recursively enumerable presentation. Matijasevic’s Theorem states that

the recursively enumerable presentation is best possible.

There is an exact second-order analogy to such an undecidability result. One

could be given a II} set of reals and ask whether it is Borel. In the case of a

negative answer, we have a second-order nondefinability result. Examples of this

sort are not as well known as those of undecidability and we mention a few of

them. An enlightening discussion of these examples and of descriptive set theory

in generalis given in (Kechris 1995), from which we draw muchof ourdiscussion.

Here is a prototypical example, the Cantor—Bendixson theorem. A perfect

set is a closed set with no isolated points.

Theorem 3.12 (Bendixson 1883) Suppose that C' is a closed subset of the real

numbers. Then either C is a countable set or C has a perfect subset.

In the proof of this theorem one defines an operation on sets, called the

Cantor—Bendixson derivative, A ++ A*, where A* is the set of limit points of A.

Since the real numbers are separable, A — A* is countable. Then, one goes by

transfinite recursion to define:

Co =C;
Cat = Co3

Ch = Ma<x Ca -

Again by separability, there is a countable ordinal a such that Cy = Cq41. For

this a, either C, is a perfect subset of C’, or Cg is empty and so C' is countable.

A closed subset of the reals is determined by the set of open intervals with

rational endpoints which are contained in its complement and thereby can be

regarded as a real numberitself. So we can ask, how complicated is the set of

uncountable closed sets? By the Cantor—Bendixson theorem, C’ is uncountable

if and only if it has a perfect subset, which is a =} property. Could it be Borel?

The answer would beyesif there were a fixed countable a such that for all closed

sets C, Cg = Co41. Of course, we chose this example because the answeris no.

The most direct route to verifying the above claim would be to show that

the collection of uncountable closed sets is a universal ©} set. One would define
a recursive function {e*} such that for all e and X, the eth X} statement holds
of X if and only if {e*}(e, X) is a code for an uncountable closedset.

There is a less direct route, which seems easier to apply in general. Here

ORDis the class of ordinals.

Definition 3.13 A TT} -rank of a set A is a map 7: A — ORD such that the

initial segments Ay = {x € A: n(x) < a} are uniformly At.

The following is a generalization of a theorem of Spector; see (Kechris 1995,

Chapter IV).

Theorem 3.14 If A is a II} set and x is a I}-rank such that the range of r
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applied to A is unbounded in w,, then A is not Borel.

So one can show that the collection of uncountable closed sets is not Bore]

by showing that there is a II} collection of closed countable sets for which the

Cantor—Bendixson rank is a II}-rank and for which that rank is unbounded in
w1. In fact, the closed countable subsets of the Cantor set have this property.

Now for some other examples. Mazurkiewicz has shown that the set of dif.

ferentiable functions in C[0,1] is a II} set which is not Borel (see (Kechris and
Woodin 1986) for a modern proof using ranks); Solovay and Kaufman (inde-

pendently) have shown that the collection of closed sets of uniquenessis a II}

set which is not Borel (see (Kaufman 1984) and (Kechris and Louveau 1987)).
Slaman and Woodin [unpublished] have shown that the set of countable par-
tial orders which cannot be extended to dense linear orders merely by adding

instances of comparability is a [Ij set which is not Borel.

4 The fine hierarchy

Now we turn to the question of the inevitability of our hierarchy of definability.

Definition 4.1 The Turing degree or degree of unsolvability of a real A is the

set

{X:A>rX and X > A}.

That is, the equivalence class of A under the relation of equicomputability.

Boolos and Putnam begin their paper (1968) as follows.

Why the Post—Kleene arithmetical hierarchy of degrees of (recursive)
unsolvability was extended into the transfinite is not clear. Perhaps

it was thought that if a hierarchy of sufficiently fine structure could

be described that would include all sets of integers, some light might

be thrown on the Continuum Hypothesis, and its truth or falsity

possibly even ascertained.

They then say that the continuum ‘has been found to be darker than it was

previously known to be’ and continue with:

Nonetheless, the general, ‘conceptual’ questions of how to extend the

extensions of the arithmetical hierarchy so as to include all sets of

integers and how to assign a degree of unsolvability to every ordinal

< (classical) w1 in a ‘natural’ way were interesting in themselves ....

Of course, if there is a >7-increasing sequenceof reals of length w; such that

every real is recursive in some element of the sequence, then the Continuum

Hypothesis must hold. But, if one either accepts the Continuum Hypothesis or

requires only that every naturally definable real is recursive in some element of

the sequence, then there is no reason to deny its existence. In fact, the implicit

thesis behind our discussion so far is that there is a sequence of this type which

at least covers all of the sets which are defined in commonplace mathematical

practice.
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Boolos and Putnam proposeda hierarchy of sets, based on Godel’s hierarchy

of constructibility. For each a such that there is a real in Lg41 — La, choose an

E, from Lo41 so that every real number in L,41 is arithmetically definable from

Ey. (They showed that such a choice is always possible.) This hierarchy of sets

is flawed in several ways, most of which were acknowledgedin the original paper.

For example, it only determines sets of level a up to arithmetical equivalence, a

failure of detail, and it only encompasses constructible sets, a failure of scope,

and it comes unsupported by any compelling evidence of its uniqueness,a failure

of predestiny.

As was worked out by Hodes (1980), the missing detail could be provided by

replacing the L hierarchy by Jensen’s J hierarchy, which providesa finer analysis

of constructibility. The sets &, could be replaced by Jensen’s master codes and

the sets at each level are naturally determined up to Turing degree, a reasonably

fine measure. At the first levels, Ey would be a recursive set; E,+11 would be

the universal 7,, set; if a is isomorphicto a recursive well-ordering of N, then
E., would have the Turing degree of the sets at the ath level in Kleene’s hyper-

arithmetic hierarchy; and if a is w?* the first non-recursive ordinal, then EF,

would be © (Kleene’s universal II} set).
There is no mandate that restricts a Boolos and Putnam hierarchy to the

constructible reals. Every real in L is recursive in 07, and so 0# would make

a reasonable entry as the w/th real in the transfinite hierarchy of Turing de-

grees. Without an obvious obstruction in sight, the problem of scope is one of

implementation.

Even if we could give a detailed hierarchy to satisfy the first two objections,

then we would still need to argue that it is the right one, that it is predestined.

Remarkably, there is a conjecture of Martin which, if true, would succeed on

all points (see (Steel 1982)). But, before we can formulate it, we need to explain
the context in which it is intended.

We have been considering an w, sequence of sets or rather of Turing degrees.

We were basing this sequence on the universal sets from the hierarchy of defin-

ability embodied by L. Now, we move to a hierarchy of functions from thereals

to the reals based on the same hierarchy of relative definability. For example,

the Turing degree of the recursive sets is replaced by the identity function, 0’ is

replaced by X +> X’, and so forth.

Suppose that A is a set of reals. The game Gy is played between twoplayers,

who alternate playing natural numbers aj, bj), a2, b2,.... The first player wins

Ga if the resulting infinite sequence belongs to A and otherwise the second

player wins. A strategy is a map from finite initial segments of the game to next

moves. A strategy is a winning strategy (for one of the players) if it produces

a& win against every possible play by the opponent. Finally, A is determinedif

there is a winning strategy for one of the two players in G4. The Axiom of

Determinacy (AD)is the statement that every A is determined.
We should note that (Martin 1985) has shown that every Borel gameis

determined. Martin [unpublished] and (Harrington 1978) have shown that every
It game is determined if and only if, for every real X, X* exists. Martin,
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Steel, and Woodin have shown that a sufficiently strong large cardinal hypothesis

implies that AD holds in L[IR] (see Martin and Steel 1989). So the assumption
of AD is not vacuous.

Definition 4.2

e A property P holds almost everywhere in the Turing degrees if there is a

degree d such that, for all x, ifx >r d, then x satisfies P.

e A function F : NN — NN is degree invariant 2f, for all X andY, ifX =, Y

then F(X) =r F(Y). Let TZ be the collection of degree invariant functions.

e For F andG inZ, F >y G if F(X) >r G(X) holds almost everywhere in
the Turing degree of X.

We write Martin’s conjecture as a conjectured consequence of AD. However,

it is more attractively expressed as a conjectured property ofall of the functions

in D[R}, that is all of the functions which are constructible from the reals, under
the assumption that L[R] is a model of AD.

Martin’s conjecture (AD) (i) [fF €Z and F ?y id, then F is constant
almost everywhere.

(ii) The order >y is a prewellorder of the set

{F:Fe€T and F >y id}

with the successor of F given by F’, where F’: X > (F(X))’.

Each level in the hierarchies of definability which we have discussed is nat-

urally associated with a function from Z. Namely, for each real number X and

each level of definability there is a universal set relative to X at that level. We

have already mentioned X’, the universal D9 set relative to X, O*, the univer-

sal II} set relative to X, and X*, the theory of a set of Silver indiscerniblesfor

L|X]|. In particular, Martin’s conjecture states that any two functions obtained
by taking X to such a universal set are comparable. It states in a precise sense

that there is only one direction along which to build a hierarchy of definability.

Under Martin’s conjecture, the Boolos and Putnam and the Hodes hierarchies

were initial segments of the only possible one.

Martin’s conjecture has another attractive feature: it is essentially proven.

Definition 4.3 A function F from the reals to the reals 1s uniformly degree

invariant if there are functions t;: N—N, forz either 1 or 2, such that when-

ever X and Y are Turing equivalent with {e;}(X) = Y and f{eo}(Y) = X,
then F(X) and F(Y) are Turing equivalent with {t1(e,)}(F(X)) = F(Y) and

{t2(eo)}(F(Y)) = F(X).
In other words, the equivalence of X and Y is transferred to the equivalence

of F(X) and F(Y) in a way that does not depend on X and Y. Note thatall of
the functions that arise as universal sets for notions of relative definability are

uniformly degree invariant. Let Z,, be the collection of uniformly degree invariant

functions.
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Theorem 4.4 (i) (Slaman and Steel 1988) If F € Z, and F ?y id, then F is

constant almost everywhere.

(ii) (Steel 1982) The set

{F: Fe, and F >y id}

is prewellordered by > and the successor of F given by F’.

In short, Martin’s conjecture is true of the uniformly degree invariant func-

tions.
On the full Martin’s conjecture, Slaman and Steel have verified it for all

F €Z such that id >y F. They have also shown that the variation of Martin’s

conjecture to refer to arithmetic invariance rather than Turing invarianceis false.

In this sense, the failure in detail of the Boolos and Putnam hierarchy also leads

to a failure in predestiny.

Even without a proof of Martin’s conjecture, in the form that Martin origi-

nally proposed it, we regard Steel’s Theorem 4.4(ii) as strong evidence that there
is only one hierarchy of definability: the one that we have been exploring.
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14
‘True to the pattern

Gianluigi Oliveri

1 Introduction

The aim of this chapter is to sharpen and defend the view advocated by Wittgen-

stein in Philosophical Investigations that an aspect is not‘|...] a property of the

object, but an internal relation between it and other objects’.*
This conception of aspects is philosophically very important for the following

reasons.

First, it provides a view of experience which differs from that inherited by a

large part of the post-Kantian tradition.
Secondly, it can be used to establish that aspects (or patterns, as I from here

will interchangeably call them) are real even though they are neither objects nor

properties of objects.

Thirdly, it shows that, if mathematics is a science of patterns, the conception

of truth which fits best with it is that of Aristotle/Tarski.
The first section of this chapter will contain a discussion of the traditional

views held by Kant, and by much of the post-Kantian tradition, on the ex-

clusively intellectual function of concepts, that is, the function of concepts is

contributing to understanding by means of judgements. I will express this in

Wittgensteinian terminology by saying that concepts, for Kant, are not involved

in seeing, but in znterpreting.

In §2, I shall analyse the applicability of the notions of seeing and interpreting

to the way in which mathematical patterns are given to us. I will show how

unsatisfactory the two above-mentioned notions are to this end and will argue

that aspect seeing is a characteristic of the imagination that imposes structure

over sensory input not by means of Kantian a priori intuitions (of space and

time), but by meansof concepts.

In §3, I shall examine the concept of internal relation, a concept which will

enable me to give a more satisfactory characterization of mathematical experi-

ence.

In §4, I shall study the impact that the points discussed in the previous

sections have on our conception of the metaphysics of experience. In particu-

lar, I will attempt to show that the réle performed by concepts in structuring

imagination does not commit one to be anidealist.

Finally, in §5, I will argue in favour of the adequacy of the Aristotle/Tarski

203
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theory of truth to mathematical theories.

2 Traditional Kantian teachings concerning concepts and

perception

For Kant, the réle of concepts is that of producing understanding by means of

the activity of combination that they perform over the manifolds independently

given (independently of concepts) through intuitions.2 (What Kant means by
intuition is ‘That representation which can be given prior to all thought ...’.)

This feature of Kant’s ideas about the sharp separation existing in the way

that human reason operates between perception and concepts emerges very

strongly from the following passage in which Kant compares human understand-

ing with Divine understanding:*

. were I to think an understanding which is itself intuitive (as,
for example, a divine understanding which should not represent to

itself given objects, but through whose representation the objects

should themselves be given or produced), the categories would have
no meaning whatsoever in respect of such a mode of knowledge. They

are merely rules for an understanding whose whole powerconsists in

thought, consists, that is, in the act whereby it brings the synthesis

of a manifold, given to it from elsewhere in intuition, to the unity

of apperception—a faculty, therefore, which by itself knows noth-

ing whatsoever, but merely combines and arranges the material of

knowledge, that is, the intuition, which must be given to it by the

object.

If my interpretation is correct, for Kant, concepts do not play any role in

perception, whose sole factors are the objects belonging to the external world,

the senses and the a priori pure intuitions of space and time. Once percep-

tion takes place, concepts represent the conditions according to which human

understanding can be generated.

However, it is extremely important to point out that even though concepts,

for Kant, have no part in perception, they are considered by him as a priori

conditions of experience.° There is no contradiction generated here by the opin-

ions expressed above concerning the function of concepts, because, for Kant,

there is much more to experience than mere perception.© These ideas of Kant

remained very influential for quite some time. Manyanalytical philosophers took

on board the Kantian tenet that concepts have nothing to do with perception re-

formulating it in a more modern terminology. An example of this is given by the

traditional distinction operated within analytical philosophy between sentences

that are observational and sentences that are not.

The factor that is common to the several definitions provided by different

philosophers of what an observation sentence is is that ‘A sentence S' is obser-

vational just in case S is not theory-laden’. The sentence ‘X is a microscope’

is theory-laden, because to understand what a microscope is we need to know
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optics, etc., therefore, observation sentences ought to be sentences that we can
understand independently of any theory. In a sense, observation sentences ought

to be reports of our observation rather than of our interpretation, reports about

what we see and not reports about how we interpret what wesee.

Such a Kantian distinction between observation and non-observation sent-

ences has been attacked from many quarters. It has been, in particular, attacked

by philosophers of science such as Kuhn who believe that there are no basic
facts which are observed/perceived by everybody in the same way, but that the

adoption of a particular scientific theory affects also what we perceive:

Since remote antiquity most people have seen one or another heavy

body swinging back and forth on a string or chain until it finally

comes to rest. To the Aristotelians, who believed that a heavy body

is moved by its own nature from a higher position to a state of natural

rest at a lower one, the swinging body was simply falling with diffi-

culty. Constrained by the chain, it could achieve rest at its low point

only after a tortuous motion and a considerable time. Galileo, on the

other hand, looking at the swinging body, saw a pendulum, a body

that almost succeeded in repeating the same motion over and over

again ad infinitum. And having seen that much, Galileo observed

other properties of the pendulum as well and constructed many of

the mostsignificant and original parts of his new dynamics around

them. From the properties of the pendulum, for example, Galileo

derived his only full and sound arguments for the independence of

weight and rate of fall, as well as for the relationship between verti-

cal height and terminal velocity of motions downinclined planes. All

these natural phenomena he saw differently from the way they had

been seen before.

However, if Kuhn, and others, succeeded in showing that there are no such

things as observation sentences, they did not provide us with a new theory of

experience which might recognize and give an account of the rdle played by

concepts in perception. This latter problem is, in my view, at the heart of the

second part of Wittgenstein’s Philosophical Investigations and will be the object

of analysis of what follows in this chapter.

3 Seeing or interpreting?

Budd, in his interesting analysis of Wittgenstein’s position on aspect-seeing,

reaches the conclusion that, for Wittgenstein:®

... the concept of seeing an aspect lies between the concept of seeing

colour or shape and the concept of interpreting: it resembles both of

these concepts, but in different respects.

The concept of seeing an aspect, says Budd, is similar to that of seeing a

colour, because when we say that we see something as a cube or as a wire-box

it does not make any sense to ask whether what we areseeing is true or false.
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We are not making a conjecture, we are having a perception and reporting it. In

other words, there is no being right or wrong involved here.

Moreover, ‘seeing an aspect’ and ‘seeing a colour’ are terms that refer to

states. Both seeing a colour and seeing an aspect have duration.

On the other hand, seeing an aspect is also analogous to interpreting, in that

seeing an aspect is subject to the will. We can change at will the aspect we

perceive of a particular shape simply by concentrating our attention on certain

particulars rather than on others as in the well-known duck-rabbit example.

To this, I would add that, for Wittgenstein, a further similarity existing

between seeing an aspect and interpreting is represented by the fact that, in

order to perceive an aspect, we need to have learned something. We can imagine

a baby perceiving a red object, but it does not make sense to say that the baby

perceives something as a cube.”

According to Budd’s interpretation, we ought to say that, for Wittgenstein,

human reason performs a third type of activity besides imagining and judging:

seeing aspects.

If I understand Budd correctly, seeing an aspect ought to be, for Wittgenstein,

a phenomenon that, having characteristics in common both with seeing and

interpreting, ought to be described, in the absence of further qualifications, as

a kind of looking + thinking. However, this conclusion is explicitly rejected by

Wittgenstein: !°

Is being struck looking plus thinking? No. Many of our concepts

cross here.

What I take to be one of the clearest accounts given by Wittgenstein of the

phenomenonhecalls ‘dawning of an aspect’ is given by the following passage:!!

The colour of the visual impression corresponds to the colour of the

object (the blotting paper looks pink to me, and is pink)—the shape

of the visual impression to the shapeof the object (it looks rectangu-

lar to me, and is rectangular)—but what I perceive in the dawning

of an aspect is not a property of the object, but an internal relation

between it and other objects.

From an analysis of the quotation above it seems clear to me that, whatever

an internal relation might be, i) it is what we perceive in the dawning of an

aspect, ii) what we perceive in the dawning of an aspect is not a property of the

object.

Some of the consequences I can derive from i) andii) are that, for Wittgen-

stein, seeing an aspect is part of the faculty of imagination, i.e. we perceive an

aspect, and secondly, an aspect not being a property of an object, such a per-

ception is possible, as expressed in note 9, because the person who has it can do,

has learnt, is master of certain techniques, i.e. understands certain concepts.

The correctness of this view is particularly visible in the case of mathematical

aspects (or patterns)/*, as we see from the following example.

In science we very often come across the problem of solving a system oflinear

equations, for example the system:
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Z1 —- 2x9 + 423 = 1

22, — 2+ 23 = 2

47, + 42-23 = 1.

Now the most powerful way of attacking this problem so far found is given by:

i) ‘seeing the coefficients of the system as a matrix’, ie.,

1-2 1
A=|{2-1 11];

4 1-1

ii) examining the augmented matrix:
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and
iii) applying concepts and results of matrix theory to find out whether the

system of equations hassolutions,etc.’

If we carefully consider what happens when weare faced with a situation

like that described in the example above, we realize that we can suddenly see

the coefficients of the system of linear equations as a matrix and that such an

aspect is not a property of the system of equations, as, instead, would be that

individuated by the proposition “The term on the right-hand side of the equality

sign of the first equation (from the top) is 1’. (If we change the system of
representation, we will not see the coefficients of the system of linear equations

as a matrix, but 1 will always be at the right-hand side of the equality sign of

the first equation (from the top) belonging to the system.)**
On the other hand, it is just as obvious that concepts are here in play as

necessary conditions for the aspect/pattern of matrix to become perspicuous

when we examine a system of linear equations.

If my analysis is correct, what is revealed in Wittgenstein’s discussion of

aspect seeing is not his belief in some kind of phenomenon which interpolates

between imagination and intellect showing the existence of another faculty of

reason besides the two already mentioned, but the interesting fact that concepts

reach very deep.

4 Internal relations

In the elucidation of Wittgenstein’s ideas on seeing an aspect, I have produced in

the previous section a crucial notion that remained unexplained: that of internal

relation.

Wittgenstein does not say anything about the nature of internal relations in

Philosophical Investigations and his silence might be evidence in favour of the

opinion that his views on the matter held in the Tractatus,'° the Notebooks'®
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and the Notes on Logic!’ remained, to a large extent, unchanged in his later

thought.

What I take these views to be can be summedupin the two following theses:

i) a 2-place relation R is internal to two objects a and 6 just in case it

is impossible (Wittgenstein says ‘unthinkable’) that a and 6 do not stand in

relation R to one another,

ii) internal relations (and properties) are what determinesthe features, struc-
ture of a fact.18

One of the most important consequences of characteristics i) and ii), within
the system of the Tractatus, was that internal relations performeda rdle typical

of elements of what Wittgenstein called ‘logical form’, that is, what he thought

propositions and reality must have in common for representations of reality to

be possible.!®
The changes that occurred in the later period were mainly related to the

metaphysical account of the formality of internal relations. What I mean by

this is that, although internal relations were still seen by Wittgenstein in the

later period not as properties of objects, but as what was part of our system

of representation of objects, he had abandonedhis early period account of how

such representations are possible.

However, this is not the place to carry out Wittgensteinian exegesis, but to

produce clarifications concerning the concept of internal relation.

As on other occasions, Wittgenstein’s ideas, despite their suggestiveness, do

not produce sharp characterizations of the notions analysed.

I find that, on the contrary, G. E. Moore’s way of tackling the problem of

internal relations, besides capturing characteristics i) and ii) of Wittgenstein’s

remarks on internal relations, provides us with a sharp and informative definition.

G. E. Moore, in his seminal paper ‘External and Internal Relations’,?° pro-

duces an application of the modal context to give a characterization of internal

relations able to distinguish them from external relations.*!

Before I begin a discussion of Moore’s definition, I must say that Moore does

not deal with relations in general, but with what hecalls ‘relational properties’.

Having madethese provisos, which do notalter the relevance or the generality”?

of the discussion, I can give Moore’s definition of internal relational property:24

Let ® be a relational property, and A a term to which it does in fact

belong. I propose to define what is meant by saying that ® is internal

to A... as meaning that from the proposition that a thing has not

got ®, it ‘follows’ that it is other than A.

To express this in modern terminology, we can say that a relational property

® is internal to a term A just in case A has the property ® and it is necessary

that for any x, if x does not have the property ©®, then z is different from A.”°

An example of an internal relational property is the following. Let A and B be
triangles in a Euclidean plane a and ®(z) := ‘x has the same numberof angles
as B’, a relational property. Then clearly ® is internal to A.
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An example of an external relational property is the following. Let (Z,+) be

the algebraic structure obtained when we define + on Z (a group), A := 2 and

6'(x) := ‘x is the inverse of —2’. In this case we have that ’(A) is true, because
2 is the additive inverse of —2, but, if we consider the structure (Z, x) then 2,

in this case, is not the inverse of —2.7°

From the Moorian definition of the notion of internal relational property

(and, therefore, also from the corresponding definition ofinternal relation), we
can show howthis satisfies condition i) of Wittgenstein’s requirements by saying

that if ® is an internal relational property of an object A then it is necessary for

A to have such a property or, equivalently, it is zmposszble to have A without

®(A) being true (Wittgensteinian condition).
The second Wittgensteinian condition (formality) that must be satisfied by

an internal relation can also be seen to obtain for internal relational properties

in Moore’s sense. In fact, since an internal relational property of an object A is

a property without which A could not exist, and since A has also many external

relational properties which are important to characterize it as an individual, the

set of internal relational properties has as elements the necessary conditions for

A to be individuated, and these conditions, if they are not also sufficient, can

only individuate the general form that something must haveif it has to be an A.

Havingsoclarified the notion of internal relational property (and, therefore,

that of internal relation), we must now turn to the problem of checking the
claim made that seeing a mathematical pattern can be explained as an act of

perceiving an internal relation holding between objects.

Let us consider the example which I gavein §3. Is it possible, given a system

of linear equations, that the set of coefficients of the system in the order in

which these appear in the equations, does not form a matrix? ‘The answer

to this is ‘No’, because every linear equation in the system contains a finite

number of coefficients, the system contains a finite number of equations and

there actually is an effective way of constructing the corresponding matrix of

coefficients. Therefore, seeing the coefficients of a system of linear equations as

a matrix is an act of perceiving an internal relation existing among the entities

which compose the system.

Another example would be seeing something as a circle. The aspect that

would become perspicuous to us of an object which lookslike a circle is that the

set of border points of the object is made of entities which look as if they have

the same distance from the centre point of the object. Of course, once again

we are perceiving an internal relation existing between different sets of points

(centre point and borderpoints).

9 The metaphysics of experience

In §2, I showed that seeing a pattern (or an aspect) is what reveals that concepts
play a fundamental réle in perception as well as in the intellectual activity of

making judgements.
However, the discussion I conducted there did not shed any light on the
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function that concepts play in perception, that is, that discussion did not clarify

whether we have to consider them as supplementary senses or as what produces

magnifications and extensions of the senses, etc.

But, perhaps, some of the investigations contained in §3, where I studied

the correctness of the Wittgensteinian assertion that seeing something as is a

perception of an internal relation existing among objects, will enable me to

address successfully this problem.

In the example I gave there of seeing a mathematical pattern (aspect),?” we

can very clearly identify what concepts do in perception. The example presents

us with the purest form of organizational function that concepts perform in

structuring representation.

If we observe the system of equations, the seeing part of the act of seeing the

coefficients of the equations belonging to the system as a matrix has no relevance

whatsoever, in the sense that we can conceive of this very aspect/pattern dawn-

ing on a blind man acquainted with matrix theory and with systems of linear

equations.

Now the fact that we can safely generalize this interpretation to the seeing of

any mathematical pattern leads us to conclude that, although aspect-seeingis a

phenomenon characteristic of perception, it does not belong to the sensory part

of it. It is what brings purely sensory input into a manifold and the extremely

interesting feature of this phenomenon (in the Kantian sense) is that concepts
perform the structuring/organizational rdle which brings sensory input into a

manifold.

According to the above interpretation, concepts, besides presiding over the

judgement-making activity of the intellect, perform a function very similar to

that of the Kantian a priori pure intuitions of space and time. They provide

structure (organization) to the sensory input.

The model of experience which derives from these results is very different

from that inherited from the post-Kantian tradition. I will list below some ofits

most remarkable characteristics.

First, although the perceptual and intellectual faculties of reason remain

distinct and there is no justification for presupposing the existence of a third

faculty of reason interpolating between these two, someof the theoretical vehicles

through which such faculties are exercised (concepts) are shared by them.

Secondly, such shared theoretical vehicles are not given a priori in the mind,

etc., but they are rather the outcome of the cultural activity of human kind.

This is a very important point, because it shows that perceptions are influenced

by external, non-psychological factors. What this implies is, among otherthings,

that not only language has a very important social aspect, but also so does the

mind.

Thirdly, patterns (or aspects) are real, but they are not properties of objects.

When I see the coefficients of a system of linear equations as a matrix and

then assert ‘The matrix which represents the coefficients of the system of linear

equations. ..in the order in which they occur in the system is ...’, the sentence

I assert is true or false independently of my possibility of proving it or not. The
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sentenceis true or false according to the structure of the internal relation holding

amongthe coefficients of the equations belonging to the given system. Therefore,

the matrix pattern that suddenly dawns on me when I contemplate a system of

linear equations is real.

On the other hand, the fact that I see the coefficients of a system of linear

equations as a matriz is not a property of the object, but is a relation and, at

that, an internal relation in which its parts stand to one another. If I changed

the system of representation then also the aspect that would become perspicuous

to me would change, but not the lines and the paper. The object I perceive by

my ‘bare sight’ has all sorts of properties: I draw it with a certain kind of ink

on a certain kind of paper, etc.

However, since a discussion of the characteristics and consequences of the

new model of experience, which might attempt to do justice to the number and

depth of the open problems, deserves much more space than that available in this

chapter, I will have to stop here, marvelling once again at the depth of insight

present in Wittgenstein’s later thought.

6 Truth

If mathematics is a science of patterns, what happens to the notion of mathe-

matical truth? Well, a quick answer to this question is that, whatever patterns

might be, since, as I have argued in 85, they are real, the concept of truth which

best fits mathematical statements has to be the classical Aristotelian/Tarskian
concept of truth.

However, since patterns are admittedly neither objects nor properties of ob-

jects, but internal relations which are perceived once a system of representation

is in place and objects are given, it is legitimate to ask whether, by accepting

such a position, we introduce psychologism into mathematics.

Moreover, if seeing a pattern is a process influenced by learning or by acquired

experience, do we also run the risk of introducing full-blown empiricism into

mathematics?

Before attempting to answer these two questions, let me say what full-blown

empiricism is and why, if psychologism or full-blown empiricism were conse-

quences of the view that mathematics is a science of patterns, this would repre-

sent a serious problem for such a position.

What I mean by full-blown empiricism in mathematics is the position which

states that mathematical concepts are generated from our experience or, to put

it in another way, that mathematical truths are inductive truths, i.e., general-

izations obtained from particular truths.?°
This type of empiricism is opposed to what I call modest or quast-empiricism

which is the view that mathematical theories, and therefore, not single state-

ments, can be falsifiedin the sense that they can be replaced with better theories,?°

as in the case of the substitution of ZF set theory for naive set theory and of the

Cumulative Hierarchy of types for the Ramified Theory of Types,etc.

The reason why full-blown empiricism and psychologism are serious problems
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for any theory they are consequencesof is that they are plainly in contrast with

essential features of mathematical theories.

Full-blown empiricism is in contrast with the a priori nature of mathematical

statements (judgements), that is, with the fact that we can provide a justification
for asserting that a mathematical statement is true which is independent of

experience. To justify that ‘if m,n € N and n # 0 then (m+ 7n’) = (m+n),
where z’ means: the immediate successor of x’, it is necessary and sufficient to

provide a proof of this statement.

A proof of a mathematical statement has nothing to do with experience in

the sense that experience has no bearing on whether or not two mathematical

statements A and B are such that B is a logical consequence of A. What has an

effect on the existence of a relation of logical consequence between two mathe-

matical statements A and B is the meaning of these two statements for how this

is given within the theory to which A and B belong.

Therefore, the meaning of a mathematical statement and the justification

of the claim that the statement is true are independent of experience. And

if particular experiences, such as those we have when we use a computer to

investigate the distribution of certain numbers or to construct models, etc. may

serve important heuristic purposes in helping us to bring out patterns clearly or

provide displays of particular entities: functions, groups, sets, etc., they have,

nevertheless, nothing to do with the meaning and the justification of the truth

of a mathematical statement.

If full-blown empiricism falls foul of the a priori nature of mathematical

statements, the same does not apply to a quasi-empiricist view of mathematics.

The reason for this is that for a quasi-empiricist it makes sense to say of a

mathematical statement that this is true or false only within a theory. ‘This

proviso—within a theory—is crucial, because, for a quasi-empiricist, a theory is

not a collection of mathematical statements inductively obtained from experience

through observation, etc., but, on the contrary, a la Popper, the theory, together

with its deductive apparatus, comesfirst.

In other words, the theory is set up before we can even begin to make sense

of our perceptions, etc. and carry out our observations. This is what justi-

fies the acceptability of a priori true or false mathematical statements within

a quasi-empiricist view of mathematical theories and explains the occurrence of

the term ‘quasi’ in the description of such a position. The reason for this is that

if the theory is given prior to experience then the relation of logical consequence

holding (or not holding) between its statements has obviously nothing to do with

experience.

On the other hand,it is the theory as a whole that faces, as Quine put it, the

tribunal of experience, in the sense that the theory might always be discarded in

favour of a better one. This is what justifies calling this view of mathematical

theories ‘empirical’, because, as Lakatos argued, the possibility of deciding which

theory among any twotheories is better allows us to write all these theories in

the form of a convergent sequence. Thefact that the sequence converges shows

that there is a reality that these theories are approximating, the experience of
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which guides us in the construction of new theories.

Psychologism in mathematics is the view that mathematical concepts and

relations are founded on mental activity of some description: sensations, memory,

mental images and processes, etc.

The reason why psychologism is a very unwelcome consequence for any phi-

losophy of mathematics is that such a position contrasts with the nature of

mathematical necessity. Mathematical necessity has nothing to do with mental

states. The fact that, ‘if m,n € N and m—n>0, then m > n’ has nothing to

do with how quickly we grasp that this is the case, or with the duration of the

state of understanding, its intensity, etc.

Mathematical necessity has to do with whetheror not the truth of a mathe-

matical statement follows from the truth of other mathematical statements.

Obviously, as Frege repeatedly remarked in the Foundations of Arithmetic,

in judging whether a mathematical statement B follows from a mathematical
statement A, only logical considerations are relevant. There might be disputes

about what a good logic is or on whether or not something is a proof of a

particular statement, but, in all cases, the justification for asserting a particular

mathematical statement is going to be logical. No experiment or intuition or

experienceis such as to be able to supplant the function performed by the concept

of proof as the only acceptable means for justifying mathematical statements.

If A and B are mathematical statements, then asserting ‘B follows from A’is

true or false independently of whether the psycheof the utterer works according

to Freudian or Jungian or Adlerian psychoanalytic models, that is, independently

of the mental process whereby that conclusion is reached.

In particular, proving the statement ‘B follows from A’ means finding an

argument showing that in any circumstance in which A is true B is also true.

The proviso any in ‘any circumstance’ is evidence of the logical necessity of the

relation ‘x follows from y’, where x and y range over mathematical statements,

and of the independence of such relation from considerations which take into

account factors other than truth.

Having clarified what full-blown empiricism and psychologism are in the

philosophy of mathematics, it is time to see whether the characterization I have

provided of patterns has one of those views of mathematics as a consequence.

The fact that a pattern is perceived does not have psychologism as a conse-

quence because seeing something as a triangle does not imply that the concept of

triangle has a mental connotation, that is, that it is identifiable with a particular

mental process that takes place in our minds whenever weidentify or re-identify

something as being a triangle.

On the contrary, the necessary condition for identifying somethingas a trian-

gle or, in other words, to see something as a triangle, is given by our possession

of the concept triangle prior to identification. The crucial factor here is repre-

sented by the fact that possessing a certain concept is meant as the ability to

perform a numberof public activities, such as distinguishing triangles from other

geometrical figures or being able to recognize properties of triangles.

The possession conditions of a concept are crucial at this juncture because
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they clearly point to the fact that having a concept is not a matter of being

in a particular mental state, but of being able to do certain things. Therefore,

presenting concepts in terms of public possession conditions and showing that

the possession of concepts is a necessary condition for pattern seeing dispenses

completely with the need to introduce psychological factors into the explanation

of seeing mathematical patterns and, in particular, shows that our conception

of mathematical activity does not have as a consequence the adoption of psy-

chologism.

But is full-blown empiricism a consequence of my view of patterns? I cer-

tainly admit, as I said earlier in this section, that ‘seeing a pattern is a process

influenced by learning or by acquired experience’. However, the fact that learn-

ing and acquired experience influence the phenomenonI called ‘pattern seeing’

does not imply that mathematical truths are inductive truths, that is, general-

izations obtained from particular truths. In fact, we can learn from experience

by meansof a Popperian process of conjecture—refutation which, in the very first

term of the pair of characteristics describing it, bears a strongly anti-inductive

mark.

Moreover, the fact that I exclude the possibility of ‘seeing something as ...’,

in the absence of any previous conceptualization, does not commit me to consider

a conceptualization as the framing of a conjecture. (As if, when I perceive

something as ..., I make some kind of unconscious hypothesis about what the

object is, etc.) But, it speaks in favour of some kind of theoretical commitment

to represent the world within a given framework, and this is an attitude which

clearly contrasts with the inductive view of mathematical truths.
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possession conditions, have a public, social dimension which rests on inventing,

learning and mastering a numberof conventions and techniques, conventions and

techniques which comeinto being at the same time as the concepts they express.

15. See (Wittgenstein 1981).
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16. See (Wittgenstein 1979a).

17. See (Wittgenstein 19790).

18. See (Wittgenstein 1981, §4.1221, p. 27):

An internal property of a fact can also be called a feature of that fact

(in the sense in which we speak of facial features, for example).

Also, from (Wittgenstein 1981, §4.123):

A property is internal if it is unthinkable that its object should not

possess it. (This shade of blue and that one stand, eo ipso, in the

internal relation of lighter to darker. It is unthinkable that these

two objects should not stand in this relation.) (Here the shifting
use of the word ‘object’ corresponds to the shifting use of the words

‘property’ and ‘relation’. )

19. From (Wittgenstein 1981, §4.1222, p. 26):

In a certain sense we can talk about formal properties of objects and

states of affairs, or, in the case of facts, about structural properties:

and in the same sense about formal relations and structural rela-

tions. (Instead of ‘structural property’ I also say ‘internal property’;

instead of ‘structural relation’, ‘internal relation’. I introduce these

expressions in order to indicate the source of the confusion between

internal relations and relations proper (external relations), which is
very widespread among philosophers.) It is impossible, however, to

assert by means of propositions that such internal properties and re-

lations obtain: rather this makes itself manifest in the propositions

that represent the relevant states of affairs and are concerned with

the relevant objects.

20. See (Baldwin 1993, pp. 79-105).
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21. Moore’s methodology in tackling this problem anticipates by many years

that adopted by Kripke (1980).

22. If x < y is a 2-place relation, which has as extension the set

B= {(a,b):a,b€R and a< db} (B CR’),

we call x < 5 ‘a relational property of the real numbers’, because the extension

of x <5 isthe set A={z:x2¢R and z <5} (in this case AC R).

23. If you can obtain a relational property from a 2-place relation by substi-

24. See (Moore 1922, p. 90).

20. Formally speaking we could put it in this way:

(6(A) A OV2(-8(2) 3 x ¢ A).

tuting an individual constant for a free variable, you can obtain a 2-place relation

from a relational property by substituting for an individual constant a variable

which differs from the variables (free or bound) occurring in the expression.
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26. This means that

© dx(-8'(r) Ax = A)

is true and, therefore,

OVz(78'(r) > x # A)

is false. Therefore ®’ is an external relation. Moore, in the same paper, had also

drawn the conclusion that the propositions formalized by

(x) (@(A) A OV2z(-®(2) > x # A))

and

(**)  (®(A) AVeO(-O(z) > x # A))

are not equivalent. Indeed, when you consider external relational properties,

(**) is true and (*)is false.

27. The mathematical example I gave was that in which, confronted by a

system of linear equations, we suddenly see the coefficients of such equations as

a matrix.

28. This is the position defended by J. S. Mill and criticized by Frege (1884,

§§ 9-10, pp. 12-17).

29. See (Oliveri 19975).
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PART IV

Sets, undecidability, and the natural numbers



lo
Foundations of set theory

W. W. Tait

The topic of our conference is truth in mathematics, and certainly the implied

question is in part: what constitutes truth in mathematics where, in contrast to

the natural sciences, there are no phenomena to be saved? In the fourth century

BC, Plato answered this question by observing that we begin with the idea of a

certain structure, perhaps derived from experience, and, by analysis (which he

called ‘dialectic’), we arrive at the principles which define this structure. What

is true of the structure then is what can be derived from thosefirst principles.

This prescription works very well in the cases of Euclidean geometry, the the-

ory of real numbers, and the theoryof finite sets (or of sets of rank less than

the least inaccessible cardinal, etc.), where we have ultimately agreed on certain

(second-order) axioms which characterize the structures in question to within
isomorphism. However, even in these cases, the status of certain propositions

about these structures—for example, the Continuum Hypothesis—remains un-

determined, pointing to an incompleteness of the laws of the underlying higher-

order logic and, in particular, the laws governing the logical notion of set (to

use the term of (Shapiro 1991)) implicit in the second-order comprehension ax-
iom. In another direction, Godel’s incompleteness theorems yield propositions

in predicate logic of any order which are not provable in that system, but which

are provable by passing to logic of still higher-order. In this direction we are

led to the theory of transfinite ordinals and to set theory; in particular, we are

led to the question of the existence of large cardinals. However, in this case, as

opposed to the case of Euclidean geometry et al., there does not seem to be just

one generally accepted idea of the universe of set theory and of the laws defining

it. Thus, perhaps there is no one notion of truth in this subject; there may be

different conceptions, each carrying its own notion of truth—as in the case of

different geometries.

1 Iterative conception of set theory

But I will speak about a particular conception of set theory, which I will call the

iterative conception. It is explicitly formulated in (Godel 1947) but is implicit

in (Zermelo 1930). In brief, it is the conception according to which sets are the

 
 

This is an expanded version of the lecture I prepared for the conference Truth in Mathematics.
In my lecture, I spoke mainly about the ideas in Sections 1 and 3; but this material will appear

in (Tait 1998), and so has been condensedhere.
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objects in any memberofthe hierarchy of domains obtained from the null domain

by iterating the powerset operation g. This idea presupposes the more primitive,

logical notion of set, the one which is formalized in second-order predicate logic,

namely the idea of passing from a domain D of objects to the domain g(D)of

all sets of objects in D. The non-empty domains that can be obtained in this

way are, to within isomorphism, the models of the theory T; whose languageis

that of set theory, together with the unary function constant ran (for the rank

function) added and with the following axioms: Extensionality, Regularity (in

the second-order form asserting that there are no classes which form descending
€-chains), Union, second-order Separation, Choice,’

Vaelran(xz) = LJ{ran(y) U {ran(y)}:y € x}

(formulated in primitive notation so as to avoid the general assumption of the

Axiom of Unordered Pairs) and, with a ranging over the von Neumannordinals,

Val{z : ran(z) € a} is a set].

For a a von Neumannordinal in such a domain D, {x : ran(x) € a} defines the
set R(a) of all sets of rank < a, which constitutes an initial subdomain of D

which we also denote by M,. Since every domain D is an initial subdomain of

another, for example, g(D), all domains are of the form My.

We may begin simply with the null domain and the operation D + g(D)

for obtaining new domains or, what amounts to the same thing, with 0 and the

operation a + a+ 1 for obtaining new (von Neumann) ordinals. We obtain
new such operations by admitting closures under operations that have already

been admitted. For example, applied to the operation a> a+1, we obtain the

operation at» a+w. The extensions of JT, that are admitted on the iterative

conception are obtained by axioms which express the existence of operations

that are obtained in this way. In particular, we shall see that the Axioms of

Infinity and (second-order) Replacement follow on this conception. The theory

T; together with Replacement and Infinity is the full system of impredicative

second-order set theory To.

The term “iterative conception” has also been used in the literature to refer,

not to this autonomously generated hierarchy, but to the sets in the hierarchy

obtained from the null domain by iterating the operation go along some given

system of ordinals. In this case the question of what sets exist is relative to the

system of ordinals with which we start, and there are no grounds for asserting

either the Axiom of Infinity or of Replacement on this conception. I will use the

term always to refer to the autonomously generated hierarchy.

In (1947), Godel actually introduced anothercriterion for accepting new ax-

ioms. On p. 265 of the 1964 version of that paper, he writes

Secondly, however, even disregarding the intrinsic necessity of some

new axiom, and even in case it had nointrinsic necessity at all, a prob-

able decision about its truth is possible also in another way, namely,

inductively by studying its “success”. Success here meansfruitfulness
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in consequences, in particular in “verifiable” consequences,i.e., con-

sequences demonstrable without the new axiom, whose proofs with

the help of the new axiom, however, are considerably simpler and

easier to discover, and make it possible to condense into one proof

many different proofs.

This criterion seems to have had some influence amonglogicians studying mod-

els of first-order set theory. But it is difficult to reconcile it with the iterative

conception. On the latter conception,the ‘intrinsic necessity’ of an axiom arises

from the fact that it expresses closure under some operation that we have ob-

tained for constructing domainsor ordinals. To introduce a new axiom as ‘true’

on this conception because ofits ‘success’, would have no morejustification than

introducing in the study of Euclidean space points andlines at infinity because of

their success. One may obtain an interesting theory in this way and one worthy

of study; but it will not be Euclidean geometry. A ‘probable decision’ about the

truth of a proposition from the point of view of the iterative conception can only

be a probable decision about its derivability from that conception. Otherwise,

how can we know that a probable decision on the basis of success might not lead

us to negate what we otherwise take to be an intrinsically necessary truth?

I want to emphasize that we shall consider only the iterative conception of set

theory here and, in particular, the question of its strength, measured by what

large cardinal axioms can be derived from it. Surely this corresponds to one

notion of truth in set theory? I do not want to consider here the question of

whether there are other, equally or more satisfactory, notions of truth.

In discussing the iterative conception of set theory further, we shall want

to consider formulas of set theory of finite type and their relativizations to a
domain.

Definition 1.1

e The finite types are inductively defined by the condition that, ifn >0 and

T1,+++,T are finite types, then T =(1),...,T7) ts a finite type.

e The order of t is defined to be 1 greater than the maximum order of the

Ti.

e When n = 0, the objects of type 7 = () are sets. When n > 0, the objects

of type T are relations whose elements have the form (t1,...,tn), where t;

1s of type T% fori =1,...,n. Objects of type ((...()...)) of order n (i.e.,
with n pairs of parentheses) will be called classes of order n.

e The formulas are built up by means of the propositional connectives and

quantification of variables of arbitrary finite type from atoms of the form

rey, where x andy are of type (), or (Xj,...,Xn) € Y, wheren>0, Y
is of type (T1,-.-,Tm) and X; is of type 7; fori =1,...,n. The formulas

(x) € Y and (X) € Y are written simply asx € Y and X €Y,respectively.

e The order of a formula is the maximum order of the bound variables in it

(though it may contain free variables of higher order ).
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e When is a formula, then its relativization y? to R(f) is the result of

restricting the bound variables of type () in y to the set R(G,()) = R(G) of
sets of rank < 6 and, forn > 0, the bound variables of type T = (T1,---,T,)

to the set R(G,7T) = e(R(G,7m) x --- x R(G,T™)).

So when werefer to T; or 72, we are not referring to a second-order theory:

its axioms are indeed second-order, but the framework of the theory we are

considering is not second-orderpredicate logic, but rather predicate logic offinite

order. (So, for example, in the logical comprehension axiom, yielding second-

order classes {x : y(x)}, y may beof arbitrary finite type.) We could of course
consider formulas of transfinite type; but I will avoid that complication here.

Generally, in considering set theory of finite order, it is sufficient to introduce

just one type of each order n, namely the type (...()...) of classes of order n,

since other objects of order n can be coded by classes of order n. But we need

to consider the widerclass of formulas, because in §4 we shall be interested in a

special kind of formulas, the positive formulas (see Definition 4.1 below), and the
coding in question does not preserve the property of being positive. However,

for more immediate purposes, it will be useful to recall the classification of the

set of formulas all of whose variables of each order n > 1 range over classes of

order n. (Compare ourdefinition with Definition 2.1 of (Slaman 1998).)

Definition 1.2 Letn> 1.

e A formula of order <n is called a IIG formula and a XG formula.

e A II?., formula is one of the form VYW(Y), where w is a UP formula

and Y 1s a class variable of order n+ 1.

e A yi41 formula is the negation of a II? formula.

When X is first-order, let X* = X. When X is second-order of type

((),---,()), X® denotes X N (R(B) x --- x R(@)). From the point of view
of R(B), X denotes X*. For example, when X and Y are second-orderclasses,

then X and Y are equalrelative to R(G) just in case

Vz € R(B)\[z € X — ze Y).

So when A,...,B are of order 2 and those among them which are sets are in

R(@), then p?(A®,...,B*) expresses the truth of y(A,..., B) in (R(), €) or, as
weshall say, in R(G). Up to now in the developmentof the iterative conception of

set theory, the engine of iteration has been restricted essentially to the reflection

principle,

VX[y(X,...,Y) — Fey? (X%,..., ¥%)], (1.1)

where X,...,Y are variables of order at most 2 and are the only free variables

in y(X,...,¥). When y is II”, and k is the maximum orderofits free variables,
then we denote the principle (1.1) by

RF(n,m, k).
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Definition 1.3

e An ordinal y is y-indescribable if (1.1) holds in R(1).

e If9 1s a class offormulas, then y is O-indescribable @f tt 1s ~-indescribable

for each yp € © containing only free variables of orders < 2.

e 7 is totally indescribable if zt 1s O-indescribable, where © ts the class of

all formulas of set theory of finite type.

So y is II”-indescribable if RF'(n,m, 2) holds in R(y). We shall sometimes,
for simplicity, apply these definitions also to the ‘totality’ Q of all ordinals, as
though it were an ordinal. Thus, the principle RF(n,m, 2) is equivalent to the

assertion that © is II?-indescribable. However, the reference to (2 is simply a

convenience and can always be eliminated.

2 First- and second-order reflection

In this section, we shall discuss the strength of RF(1,m,1) and RF(1,m,2),
before considering more precisely how they may be derived from the iterative

conception. Gddel seems to have accepted RF(1,m,k) form <1 and < 2,at

least, as intrinsically necessary on the iterative conception, since he takes, not

only the axioms of ZF to follow from that conception, but also the existence of

(strongly) inaccessible cardinals and Mahlo cardinals. (See page 264, and, in

particular, footnote 20 of (Gddel 1947).) These two kinds of cardinal will be
defined below.

Applications of RF(1,0,1) to Sy[z = y|, which we shall abbreviate by z € V,

and then to

VadBlae BAxre V|

imply in T\, first, that every ordinal has a successor (from which the Axiom of

Power Set follows in 7,), and then, that every ordinal is less than some limit

ordinal; and so, in particular, they imply the Axiom of Infinity. Let y(z,Y) be

the formula

Y is a function with domain z and z € V.

Then RF'(1,0,2) applied to y(z, Y) clearly implies the (second-order) Axiom of

Replacement. It follows by an application of RF(1,1,1) (with y(z) expressing
the conjunction of z € V, Replacement and Power Set) that there is an un-
boundedclass of (strongly) inaccessible cardinals, that is, cardinals « such that
M,, is a model of Ty. In fact, we obtain something more about this unbounded

class of inaccessible cardinals by going to RF‘(1, 1, 2).

Definition 2.1

e A class C' of ordinals is closed if, for every ordinal B, if CNB is unbounded

in B, then BEC.

e Aclass S of ordinals 1s stationary if, for every closed and unbounded class

C,SAC#F®.
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Lemma 2.2 Let y(X,...,Y) be II?r, where X,...,Y are of order < 2. Then
RF(n,m, 2) implies

VX...V¥[y(X,...,¥) — {6: yp? (X%,...,Y")} is stationary].

For assume y(A,...,B), and let C be a closed unbounded class of ordinals.

Apply RF(n,m,2) to

[p(A,...,B) AC is unbounded]

to obtain a @ such that y®(A%,...,B°) and CNB = C®is unboundedin 8, so

that GEC.

So, in particular, it follows using RF(1,1,2) that the class A of inaccessible

cardinals is stationary, since the assertion that @ is inaccessible is II}. Applying

RF‘(1,1, 2) to the assertion that A is stationary, which is II}, we obtain a cardinal

«& such that AM « is stationary in k, that is, K is a so-called Mahlo cardinal.

Using Lemma2.2, we can iterate this procedure and obtain a stationary class B

of Mahlo cardinals, and so cardinals & such that BM & is stationary in k, that

is, hyper-Mahlo cardinals; and so on.

RF(1,1,2) yields something more than the existence of Mahlo cardinals,
hyper-Mahlo cardinals and thelike.

Definition 2.3

e A binary tree is a class T of functions f such that, for some ordinal £,

f : 6 — 2 and such that, if f € T and f has domain B, then f restricted

to any ordinal less than @ 1s in T.

e A binary tree T is path-bounded if, for every function F :Q —= 2, there

ws ana such that F restricted to a is not in T.

e T ts bounded ?@f there 1s an a such that, for all F : Q — 2, F restricted

to a 1s not in T.

e The binary tree property is that every path-bounded binary tree is bounded.

The instance

T is path-bounded — 36[T® is path-bounded]?

of RF(1,1,2) implies the binary tree property. So, since a cardinal « is weakly

compact just in case it is inaccessible and R(«) has the binary tree property,

RF(1,2,2) implies the existence of a stationary class of weakly compact car-

dinals. We can of course go on to construct a stationary class of hyper-weakly

compact cardinals; and so on.

The principle RF(1,0,2) not only implies, but is equivalent to, (the conjunc-

tion of the axiomsof) T2 in T,, and RF(1,1, 2) not only implies, but is equivalent

to, Z2, conjoined with the binary tree property. In other words, inaccessibility

is equivalent to IIj-indescribability, and weak compactness is equivalent to II}-

indescribability. Let Y be a second-order class variable. We may restrict the
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instances of RF(1,m,2) to II}, formulas y(Y) with just Y free, since multiple

free variables of maximum order 2 can be coded in T> by Y. For m > 1, there is a

single II;, formula (x, Y) such that in T2 every II), formula containing at most
Y as free variable is provably equivalent to y(e, Y) for some finite ordinal e. It

easily follows that, not just for m = 0 and 1, but for all m, RF(1,m,2) can be

expressed by a single formula WY» in T2. So pm expresses II}-indescribability in

T>. The formula wm is itself a It,41 formula. So, by Lemma 2.2, RF(1,m-+1, 2)

implies that the class of II;,-indescribable cardinals is stationary. In other words,

the class of IT}-indescribable cardinals less than a given II},,;-indescribable car-
dinal is stationary. So the principle RF(1,m,2) strictly increases in strength as

m increases.

A similar argument establishes that, for n > 1, the hierarchy of principles

RF(n,m,2) is strictly increasing in m. But, for n > 1 and m > 1, it is not so

clear that RF(n,m, 2) follows from the iterative conception. Anyway, there is
in any case a relatively low limit to the cardinals obtained by RF(n,m, 2) for

arbitrary n and m. Let [C]” denote the set of all n-element subsets of C’, and

let [C]<” denote theset ofall finite subsets of C.

Definition 2.4 Let DC kK.

e D — (stationary). denotes the following partition property of D: for

any function f :|D|" — A, there is a stationary subset S of & such that

SCD and f is constant on [S]”.

e D — (stationary)<” denotes the following partition property of D: for

any function f : [D]<” —> 4,there is a stationary subset S of & such that

S CD and, for eachn <w, f is constant on [S]”.

e We may also write D — (a)? or D — (a)<* meaning that the set S' is
to be of order type a.

Notice that the notation suppresses the cardinal k, which may also be 22, and

which, in each case where it is not explicitly mentioned, will be determined by

the context. Now, when « satisfies even the relatively weak principle

kK —> (stationary),

then the set of totally indescribable cardinals < « is stationary in &.

3 Domains and the universe of sets

As an axiom ofset theory, (1.1) asserts that, if y(A) is is true in a given model
M,,, then it is true in Mg for some G < «. But on the iterative conception, we are

justified in introducing a given instanceof (1.1) as an axiom only bythereflection

(1.1) —> 46(1.1)%, having first established that (1.1) is true in the universe of
all sets—call it Mp. But it has been known since (Cantor 1883) that Q and,
consequently, My cannot be regarded as determinate totalities. Contemporary

set theorists frequently write informally as if Mg were a model of set theory and,
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indeed, treat it as if it were a set, except that for some mysterious reason it is

not an element of the universe of sets.2 From their point of view, there is no

difficulty with the notion of truth in Mp nor with the notion of a higher-order

object, say a second-order class A: truth in Mg is just truth in a model and 4

is just a subset of My which may or may not be (coextensive with) an element
of Mg. When, as in the case of Mo itself, it is not, then it is called a proper

class. But giving it a name does not really eliminate the mystery of why, when

we treat it in all other respects as a set, we nevertheless reject it as a set. The

paradoxes of set theory on this point of view become the only explanation of

why properclasses are not sets—if we admit them as sets, a contradiction arises;

but the paradoxes themselves are left with no explanation. I prefer to side with

Zermelo (1930) in rejecting the universe ofall sets as a well-defined totality and
in regarding the paradoxes as arising from the contrary assumption. Indeed,I

think that, internal to the iterative conception, there is an explanation of why

Mg cannot be regarded as a well-defined totality. But, accepting this point of

view, the notion of truth in Mop requires explanation and we need to explain

what we mean by a higher-order object. First, before considering the universe

of all sets, we should consider, by way of contrast, the notion of a domain.

3.1 Domains

We have spoken of domains being built up from the null domain by meansof

iterations of the power set operation g. But what exactly are we to mean by a

‘domain’? It certainly does not coincide with the logical notion of set, since a

set in this latter sense is always a set of objects from some prior domain. It is

also not useful to identify it with the notion of set that we are analysing in terms

of the notion of a domain. In fact, we shall regard domains as a species of type.

A type is a proposition-like entity (the objects of the type corresponding to the

proofs of the proposition): it is given by introduction rules, which specify what

objects of the given type may be constructed, and by elimination rules, which

specify how we may reason about them. I shall not go into details about the

notion of a type; but someidea of it will be gathered by comparing M —> N as

an implication between propositions M and N withthe interpretation ofit as the

type of functions from type M to type N. Similarly, compare Vz: M.N(2x) and

dz:M.N(zx) as universal and existential quantifications over the objects of type

M with them as types, namely the product, usually written [],.,, N(x), and

the disjoint union or sum, usually written >>, N(x). (Read x: M as ‘zx is an
object of type M’.) In each case, the rules of proof on the logical interpretation

are the rules of construction on the ontological interpretation.?

The distinction between a domain and a set is now clear: to introduce a

type—andin particular, a domain—is to introduce a new kind of mathematical

object. The question of whether or not an object is of a given type is always

a trivial question (like the question of whether a proof is a proof of a given

proposition). The object is given as an object of a certain type or else no object

has been given at all. In contrast, if s is an object of the domain D andt is a

set of objects of D, then the question of whether or not s € t can be nontrivial.
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As a type, the null domain is just the empty type (absurd proposition) and,

the domain ¢(M)is just the type D — TWO, where TWOis the 2-element
type. Corresponding to any system of ordinals, that is, a type W with a well-

ordering relation defined on it, we may associate with each ordinal a € W the

domain M,, where Mo is the null type and Mgi1 = g(Ma,). Given ordinals
a < B, let Fug denote the natural embedding of My in Mg. If y is a limit
ordinal in W, then M,, is the direct limit of the family of maps

(Pop: a<cB<y).

This direct limit operation is not reducible to the ordinary logical operations;

but in the Appendix we will establish that it is nevertheless ‘proposition-like’.

The problem of constructing domains thus reduces to that of constructing

systems of ordinals. Given a system W ofordinals, we may introduce the domain

My as the direct limit of the domains M, indexed by ordinals from W. We
consider systems W that are introduced in the following way. Let P denote some

property of ordinals. If A is a set of ordinals in some system W ofordinals, then

P*(A) is an abbreviation for Va € A.P(a). Relative to P, we may introduce
objects of type W = Wpbytheintroduction rule:

A:o(W),q:P*(A) = S(A,q):W.

Here S(A,q) is the supremum of A. The elimination rule for W is the principle

of definition by recursion:

p:VX:9(W)Vvy: P*(X)[F*(X) — F(S(X,y))], a:W = Rpa: F(a)

for any property F of ordinals. The meaning of R is given by the recursion

equation

RpS(A,q) = pAg (Aa € A.Rpa).

(Here pA denotes p(A), and pAg denotes p(A)(q), etc.) Using definition by
recursion, we may define the transitive closure TC'(A) of a subset A of W as the
least subset of W which includes A and such that S(B,q) € TC(A) implies that
BCTC(A). The system W becomes a system of ordinals when we define the
ordering relation by

a<S(A,q)—-~aéTC(A).

Of course, to establish that < is a total ordering, we must define by recursion

the notion a = 6 of equality between ordinals of type W. Namely, a < @ just in

case for every a’ < a there is a 8’ < G such that a’ = @’; and a = G just in case
a<fand G<a.

Of course, not every property P of ordinals can coherently give rise to a

system Wp of ordinals. For example, if P(a) — a = a,then the introduction

of Wp would lead to inconsistency. Indeed, consistency requires that ~P*(Wp).

The iterative conception of set theory yields a plausible restriction on those P for

which Wp may beintroduced: let A,...,B be of order < 2 and let y(A,..., B)

be a true sentence in the universe of sets (assuming, for the moment, that we



282 W. W. Tart

know what this means). Let P(a) mean that y(A,...,B) is not true in M,, and
let W be the corresponding system of ordinals. It is easy to show that W has

a greatest element @ and that y(A,...,B) is true in Mg; indeed, @ is the least

ordinal for which this is true.

3.2 The universe of all sets

The objects of Mg are to be all the sets we obtain in any domain, where we

abstract from the difference between x € My and Fo.a(z) € Mg when < 8.
For two sets x and y in Mg, x € y meansthat, for some (, x has a representative

x’ € Mg, y has a representative y’ € Mgii = o(Mg), and x’ € y’. The universe
Mg thenis parasitic off domains. Domains, or, what is the same thing, the cor-

responding order types @, are what we may construct in developing the iterative

conception. The universe Mg, on the contrary, can be understood only in terms

of what might be constructed on that conception or, better, in terms of the op-

erations we accept or might accept for constructing ordinals or domains; Mg can

be regarded only as a potential totality, partially determined by the operations

for constructing ordinals that have been admitted on the iterative conception in

any particular argument, but not as a well-defined extension, because there is

no characterization of just those operations whose existence is implied by the

iterative conception. For a precise characterization of any such set of operations

should lead to a new one, namely to ordinals 6 such that R() is closed underall

of these operations. Moreover, it is uncertain whether there is only one direction

in which the iterative conception could develop; perhaps ‘at the limit of inquiry’,

there are divergent paths in its development, yielding different notions of truth.

For this reason, the notion of truth in Mp should not be regarded as de-

termined for every sentence and the logic that applies to this universe should

be constructive logic, not classical. In particular, when we think of the theo-

ries 7; and J> and their extensions as theories about Mg, then we should take

their logical framework to be intuitionistic predicate logic of finite type. In the

frameworkofclassical predicate logic of finite type, they are not theories of Mg;

rather, their models are domains in the proper sense.*

3.3 Higher-order objects

Since Mp cannot be regarded as a well-defined extension, neither can any other

second- or higher-order object. Thus, we must regard higher-order objects in-

tensionally, as given by definitions—though, naturally, we do not restrict the

definitions to any particular formal system. But when wereflect the object, say

the second-order class A, in R(G), we do not reflect its definition: that is, if
A= {r:(z)}, then A¥ is AN R(@), not {x € R(B) : p(z)9}.

One consequence of this should be noted. Remembering that the logic of Ma
is constructive, it can happen that the second-orderclass A, say, is not decidable,

in the sense that

Va(r € AV x ¢ A)

cannot be derived. For example, the assertion 0 € A may imply the existence
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of a measurable cardinal, where it turns out that nothing conclusive about the

existence of such a cardinal is derivable on the basis of the iterative conception.

But A® for any ordinal @ is to be an element of R(8+1), and sois to be decidable.
In other words, 0 € A% V0 ¢ A® should hold; but when 0 < £, this implies that

0¢ AVO¢A. The upshot of this is that, in (1.1), we must restrict the second-

order variables, including those among X,...,Y, in y(X,...,Y) to decidable

objects. A similar remark applies to variables of order < 2, which we shall be

considering in the next section. In general an object A of type (71,...,7), with

n > 0, is decidable, just in case,

VX1-°-Xn[(X1,...,Xn) E AV (X,...,Xn) ¢ Al

is derivable, where the variable X; ranges over the decidable objects of type 7;

fori=1,...,n. (First-order objects, that is, sets, are of course decidable.)°

However, having noted this complication in the correct formulation of (1.1),

which also applies to the reflection principles we shall discuss in the following

sections, we shall proceed to ignore it. The reason that we can afford to do so

is that what we are ultimately interested in is what cardinal numbers can be

obtained on the basis of the iterative conception. Now, if we have admitted

an instance w of a reflection principle for Mp with the suitable decidability

restrictions, then we shall be able to reflect w itself to M, for some cardinal k.

So any large cardinal property we can obtain by meansof the principle will be

obtainable for cardinals < k. But, relativized to M,,, the decidability restrictions

in ~ become vacuous.

4 Higher-order reflection

As we have noted,relative to R(@), the second-order class A is A? = AN R(f).

So the relativization X¥% of a third-order class X, for example, is the the class

of these. In general, when X is of order > 2 and of type (7,...,7), then we

should set

X8 ={(YP..., V8): (%,...,¥n) € X}.1 n

With this definition, y?(A*,...,B°), where A,..., B are of arbitrary finite type

# ( ), expresses that y(A,...,B) is true in R({).
Notice that (1.1) now has meaning for X,...,Y of arbitrary finite type. But

there is a problem with the generalized (1.1), even for X,...,Y at most third-
order: when U is the class of bounded or of unbounded second-orderclasses,

we have the true sentence y(U) that every class in U is bounded or unbounded,

respectively; whereas for every @, y’(U®) is false since U® is just R(G +1) and,
in particular, contains both R(@)) and the null set. The problem is not merely

with generalizing (1.1) to cases in which some of X,...,Y are of order greater

than 2, but equally with the case that y(X,...,Y) contains quantifiers of order

greater than 2, no matter what the order of X,...,Y. For example,

y(A) = sYp(A,Y)



284 W. W. Tazt

may be true, where A is a second-order class or a set and Y is of order greater

than 2, because 7)(A, B) is true for some B. If p?(A*, B®) is false for all @, then
on what grounds do we infer the existence of a 3 such that y?(A°,B°)? The

difference between reflecting formulas containing parameters or bound variables

of order at most two, and the reflection of formulas containing parameters or

bound variables of higher-order is this: when a < 6 < Q, the second-order

structure of M, is a substructure of Mg; but this is not so for their higher-order
structures. In the formercase, if y is a basic (that is, atomic or negated atomic)

sentence containing parameters and it is true in Mg, then its relativization to

R(q) is true for any a such that the set parameters in y are of rank less than q.

This is clearly so of s =t,s#t,s€ét,s ¢t, (s,...,t) € S, and (s,...,t) ZS,

when S' is second-order. Moreover, it remains true for the higher-order basic

sentences (S,...,7°) € R; but it is not in general true for their negations. Thus,
the consideration of (1.1) only for sentences containing no quantifiers of order

greater than 2 hides the needfor a restriction that is required in the more general

case.

Definition 4.1 A formula is positive if it is built up by means of the operations

A,V,V and ad from atoms of the formz=y,r#y,rEey, cr¢y, LEY,zrEY,
X =Y and (xX,...,Y)€ Z. A formula is negative if it is built up in the same

way, but with (X,...,Y) € Z’ replaced by (X,...,Y) ¢ Z’.

So from now on,we shall admit (1.1) in the general case, where both y andits

free variables are of arbitrary finite type and ¢ is positive. But before discussing

this further, we should note and resolve a small difficulty. In the case of a higher-

order instance w of (1.1), y is positive, and so w itself is negative. Hence, unlike

the case of R(2,m,2), we cannot apply (1.1) to w to obtain ordinals @ with
true in R(@). However, there is a negative version of (1.1) which is valid on
the iterative conception on precisely the same grounds: For A of order < 2, let

Al6] — A®. For A of type r and order > 2, define A! by the condition

R(G,7) — All = {(X!4l,..., ll): (xX,...,¥) € A}

The operation A +> Al‘ preserves negative basic sentences, and so on the same

grounds that we accept (1.1), we should accept the principle of negative reflection

WX[p(X,...,¥) — 369(Xl8l,... yl) ,

where yp is negative and X,...,Y are the only free variables in y. So our difficulty

is resolved: if is an instance of positive reflection (1.1), then it is a negative

formula without free variables, and so, by negative reflection, we obtain ordinals

(@ such that w is true in R(G)—indeed, we obtain a stationary class of such
ordinals.

The information that we have on higher-order applications of positive reflec-

tion (1.1) concerns only a special case.

Definition 4.2 Letn> 0.
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e I, will denote the set of all positive formulas of the form

VX15Y,---VXndYny

where w is first-order, the X; are all second-order and, fori = 1,...,n,

JY; is a sequence 4Z;1...42Z;.m,, and the Z;,; are variables of arbitrary
types.

e A subclass B of the cardinal « is n-reflective in K if

VX +» V¥[p(X,..., Y) — 56 € By®(X®,...,Y*)|

for all p(X,...,Y) inTpn with X,...,Y of any order <1. In particular,
K is n-reflective if and only if M,, satisfies (1.1) for all such vp.

In fact, O-reflection is relatively weak.

Lemma 4.3 Let « be a regular uncountable cardinal, let p(X,...,Y) € To and

suppose that w = y(A,..., B) is true in R(k). Then there ts a closed unbounded
subclass C of « such that w is true in R(G) for all BEC.

It suffices to take C to bethe class of ordinals G < « such that R(@) is closed
under some complete set of Skolem functions for ~. Just note that, in the case

where (D,...,E) € F occurs in w, it occurs positively; and so, if it is false in

R(«), it contributes nothing to the truth of w in any R(@). On the other hand,
if it is true in R(«), then it is true in R(G)for all 6B < k.

The main result that we have concerning higher-order instances of (1.1) is
the following:

Theorem 4.4 Forn>0, if D Ck is n-reflective, then it has the property that

D — (stationary)}*".

In particular, the iterative conception of set theory implies the existence of

cardinals « such that, for every n < w, & —> (stationary)5”.
The theorem holds even when ,, is further restricted to formulas y(X) in

which X is of order at most n+ 2. When n > 1, it is unknown whether or not

the converse also holds.

There is a very natural property which turns out to be equivalent to n-

reflection and which we will use in the proof of Theorem 4.4: a function K

defined on [«]” such that, for K > 61 >... > Bn, K(61,--+Bn) C R(Gn), is called

a fat n-sequence on kK. When, morestrictly, K(G1,...6,) is always C 6,, then

K is called a thin n-sequence on Kk. If K is a thin or fat 1-sequence on «& and

BC R(x), set

[K, B) ={a€«:K(a) =BNR(a)}.

Let K be a fat or thin n-sequence on «. A subset A of & is called homogeneous

for K if there is a B C R(k) such that K(61,...6n,) = BON Bn for all

(G1,--.Bn) € [H]” with 6, >---> Bp.
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If K is a 1-sequence on & and B C R(x), then the classes homogeneous for K

are precisely those of the form [K, B].

Definition 4.5 Let DC kK.

e D is 0-stationary if and only if it ts stationary.

e D is n+ 1-stationary if, for every fat 1-sequence K on k, there its an

n-stationary class C D which is homogeneous for K.

Theorem 4.6 Let x be a regular uncountable cardinal, DC kK andn <w. Then

D is n-reflective if and only if it is n-stationary.

Notice that being n-stationary and, hence, being n-reflective is a second-order

property; so we do not need to invoke negative reflection in order to reflect it—to

obtain, for example, a stationary class of n-reflective ordinals.

We sketch the proof of Theorem 4.6. First, a definition. Let 7) be the type

(()) of second-order classes. Set T4141 = (70; 70, Tn):

Definition 4.7 Let DC kK.

e We define the notion of an n-box for D by induction on n. An n-bor ts of

type Tn.

* A 0-box for D is a closed unbounded subset C of & such that DNC = 9.

* Ann-+1-box for D is an object T of type Tnh41 such that for some

1-sequence K on k, called the witness for T’:

(1) Every element of T is of the form (K,X,S), where X C Rik), S
is an n-box for |K, X].

(2) For every X C R(k), there is an S such that (K,X,S) €T.

e Let X be of type T and of type T,. We define al, formula 0,(X,T) by

induction on n.

* O9(X,T) —— T is an unboundedclass of ordinals.

* On4i1(X,T) > VYAKSAS|(K,Y,S) € TAO, ((K,Y] NX, S$).

Now,to prove that, if D is n-reflective, then it is n-stationary, we show by

induction on n that:

e D is not n-stationary if and only if it has an n-box and,if S is an n-box
for D, then 6,(D,S) is true in R(k);

e If S is an n-box for D, then 6,,(D,S) is false in every R(G) with G € D.

In the other direction, assume that D is n-stationary.

e Ifn =0, then D is n-reflective by Lemma2.

e Letn =m-+1,and let y(A,...,B) be aT, sentence which is true in R(k).
Then y(A,...,B) is of the form VXAYW(X, Y,A,...,B), where pw € Im.

If y(A,...,B) is false in R(G) for all G € D, then there is a 1-sequence K
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on « such that VY-y~(K(@),Y,A,...,B) is true for each 6 € D. Choose

Xo such that C = [K,Xo|N D is m-stationary. There is a Yo such that

w(Xo0, Yo, A,...,B) is true in R(«) and so, by the induction hypothesis,is

true in R(@) for some @ € C—a contradiction.

On the face of it, partition properties such as

Kk —> (stationary)s

do not appear to be susceptible to derivation by reflection (although one should

note that both inaccessibility and weak compactnessare reflection properties and,

at the same time, partition properties). An essential step in the proof of Theorem

4.4is aresult of (Baumgartner 1973), which transforms k —> (stationary) into
something more like a reflection property.

Definition 4.8 DC « is n-ineffable 2f, for every thin n-sequence K on k, there

is a stationary class C D which is homogeneous for K.

Before stating Baumgartner’s result, it will be of later use to note the follow-

ing lemma.

Lemma 4.9 Let K be a fat n-sequence on k, n > 0. Then there is a sequence

(G1,..-,;Gn) of functions such that, for all X1,...,Xn-1 € R(k),

Ky = Gi(X1,..., Xi-1)

is a fat 1-sequence fori =1,...,n and, if (),<,,|Ki, Xi] 1s unbounded in k, then
it 1s homogeneous for K. 7

The proof is by induction on n. When n = 1, there is nothing to prove. Let

K be a fat n + 1-sequence on «, and define the fat 1-sequence G, on Kk by

G1(q) = {(G1, ce Bn, K(a, 61, ve Bn)) Pr < a}.

For each X,; C R(x), define the fat n-sequence L(X1) on & by

L(X1)(Biy--+s Bn) = K(0,814. 18x)
for all (that is, any) a € [G1, X1] with a > G,. If there is no such aq, let

L(X1)(B15---1Ba) = 0.
Now apply the induction hypothesis to L(X,).

Theorem 4.10 (Baumgartner 1973) Let & be a regular uncountable cardinal.
Then D C k is n-ineffable if and only if it satisfies

D — (stationary)3*°.

So, in order to prove Theorem 4.4, it suffices to show that an n-stationary

D C « is n-ineffable for n > 0. Again, we sketch the proof.
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e For n = 1, we need simply to note that every thin 1-sequence on is a fat

1-sequence on «. As a matter for fact, it is easy to show that the converse

also holds in this case: 1-ineffability implies 1-stationary. Let C’ be the class

of all inaccessible cardinals and limits of inaccessible cardinals < k. Then

C' is closed and unboundedin k,since k is the limit of totally indescribable

cardinals. So there is a bijective map F : « —> R(k) such that, for each
A € C, F(A) = A and the restriction of F to 2 is a bijection from 4 onto
R(X). One easily constructs, corresponding to each fat 1-sequence K on k,

a thin 1-sequence K’ such that K(a) = F[K’(a)| fora €C. S50 H C Cis
homogeneous for K’ if and only if it is homogeneous for K. It is unknown

whether D —> (stationary)§ implies n-stationary for n > 1.

e Let D be n+ 1-stationary, n > 0, and K a thin n+ 1-sequence on «K. Let

G be as in the proof of Lemma 4.9. There is an X; C R(«K) such that
B = [G,, X,] is n-stationary. Now let D(X1) be defined as in the proof
of Lemma 4.9. Since B is n-stationary, by the induction hypothesis it has

a stationary subset A which is homogeneous for D(X). So A is clearly
homogeneousfor K.

So, in particular, 2) is n-ineffable for each n > O and, therefore, there is a

stationary class of cardinals with this property. The properties

K ——> (stationary)5

are progressively stronger; an n+ 1-ineffable cardinal has a stationary class of

n-ineffable cardinals below it (Baumgartner 1973).
‘The best bound on thestrength of the (1.1) restricted to formulas in I, that

is known at the moment has not so far been derived from the iterative conception

of set theory.

Theorem 4.11 Every measurable cardinal is n-reflective for all n.

Let « be measurable and let U be a normalultrafilter on «. So U containsall

closed unbounded subclasses of k. Theorem 4.11 easily follows from the following

lemma.

Lemma 4.12 Let K be a fat 1-sequence on k. For every X € U, there is a

Y €U,Y CX, which is homogeneous for K.

e As we already noted in the sketch of the proof of Theorem 4.10, since x is

the limit of inaccessible cardinals, we may assume that all 1-sequences on

K are thin.

e Let X € U and let K be a thin 1-sequence on k. Baumgartner’s proof of

Theorem 4.10 exhibits a particular fx : [X]? —> 2 and aclosed unbounded
class D of « such that, if fx is constant on H, then HND is homogeneous

for K.
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e Rowbottom (1971) proves that, for every g : [K]” —> 2, there is an H EU
such that g is constant on [H|". Take g to be some extension of fx. Then

HnXOD €U is homogeneous for K.

5 Appendix: quotient and direct limit types

Let A be a type, and let g: A —> A, where gog=g. The quotient type A/g is

defined by the introduction rules

s: A= [s]: A/g

and the elimination rule

t:A/g = >t«: A,

where [s]« = g(s) and [tx] = ¢. Thus [s] corresponds to the equivalence class of
all s’ such that g(s’) = g(s).

Let (W, <) be a well-ordered type and, for each a: W, let Dg be a type. For
a< Gin W,let fog: Da — Dg be injective, where fo,q is the identity map

on Dg and fora < 6 < 4, fa,y = fay ° fag. Let D= da: W - Dg and let
g: D' — D'bedefined by 9(G,y) = (a,2) for the least a < 6 such that y is in
the range of fag and fag(x) = y. We have gog = g, and so the quotient type

D = D'/g is defined. For a € W,let the maps fy : Da —> D be defined by
fo(x) = [(a,x)]. Clearly D armed with these maps has the required properties
of a direct limit of the family of functions fo,,.

Notes

1. I agree with Zermelo (1930) in regarding the Axiom of Choice in set theory

as a consequence of the logical principle

Vedyy(z,y) —> IF[F is a function A Vry(z, F(x))],

which follows from the meaningof the logical constants V and J. For a discussion

of this, see (Tait 1994).

2. Of course no theorem depends on this assumption. The theorem can

always be interpreted in any domain satisfying the axioms being assumedor,

since the latter are generally in first-order set theory, in any first-order model of

the axioms.

3. This conception of types goes back to (Howard 1980), which has been

circulating in manuscript form since 1969.

4. This conception of the universe of all sets is discussed more extensively in

(Tait 1997).

5. An alternative approach would be to restrict the higher-order objects in

the intuitionistic predicate logic of finite types to decidable relations. In other

words, we could adopt a restricted form of the logical comprehension axiom,

admitting the relation {(X,...,Y): p(X,...,Y)} only underthe condition that
it be decidable. On this approach, no restriction on (1.1) is required.
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Which undecidable mathematical sentences have
determinate truth values?

Hartry Field

1 Metaphysical preamble

I will begin by contrasting three metaphysical pictures about mathematics. The

first, about which I will have little to say in what follows, is the fictionalist

picture. This says that strictly speaking, there are no mathematical entities;

still, we can perfectly well reason from premises that postulate such entities,

and systematic reasoning from such premises is both intrinsically interesting

and highly useful in our practical affairs. On this view, mathematical theories

are not literally true. Of course, a fictionalist needs to say something about

why these theories are useful if they are not true: in disciplines other than

mathematics, the utility of a theory is generally taken as good reason to believe

that the theoryis at least approximately true, and,if it is not a good reason in the

mathematical case, then we need to know what the relevant differences between

the mathematical and the non-mathematical are. Myself, I think that there are

such relevant differences, and that the fictionalist view can be defended,' but I

will almost completely ignore it in what follows.

The second picture about mathematics is standard platonism. On the usual

version of this view, mathematical theories like number theory and set theory

and the theory of real numbers are each about a determinate mathematical

domain; or at least, a determinate mathematical structure, for there is no need

to suppose that isomorphic domains (domains that have the same structure) are

distinguishable from a mathematical point of view.? Even if a certain sentence

in set theory or whatever could not be decided in any mathematical theory that

we could have reason to accept, still there is a fact as to whether it is true in

the relevant domain or structure. If it is, then it is determinately true, and if

not it is determinately false, so it has a determinate truth value despite its being

undecidable.

The third picture about mathematics might be called ‘plenitudinous platon-

ism’.* In one sense of ‘platonism’ it is an extremely platonist view; in another

sense, it is the antithesis of platonism. It is extremely platonist in that it pos-
 

Thanks to Dan Isaacson and Tony Martin for some helpful questions at the conference, which

affected the final version of this chapter.
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tulates lots of mathematical objects: at least as many as standard platonism

does, and in some loose but intuitive sense, many more. But Kreisel famously

remarked that the interesting issue is not mathematical objects but mathemati-

cal objectivity, and on the objectivity issue, plenitudinous platonism is virtually

indistinguishable from fictionalism.

So what exactly is ‘plenitudinous platonism’? Well, roughly what it is, is

the view that whenever you have a consistent theory of pure mathematics (that

is, a consistent theory that neither postulates non-mathematical objects nor

employs non-mathematical vocabulary), then there are mathematical objects

that satisfy that theory under a perfectly standard satisfaction relation.* It is

of course simply a theorem of set theory that, whenever you have a consistent

(first-order) theory (pure mathematical or not), then there are mathematical
objects that satisfy it under some satisfaction relation or other: that is the

completeness theorem. What plenitudinous platonism adds is that as long as

the consistent theory is purely mathematical, then you do not need to cook

up someartificial model out of sets to satisfy the theory; rather, the theory is

trivially satisfied by entities that the theory is about and that exist purely by

virtue of the consistency of the theory. Indeed, the plenitudinous platonist will

add, the idea that you need to cook up some model out of sets to satisfy the

theory is only motivated if one thinks that there is a uniquely privileged notion of

set. But there are many internally consistent set theories that conflict with each

other (differing, for instance, over the size of the continuum); for each one, there

are mathematical entities satisfying it; and there is no point in supposing that

there is a privileged notion of set such that the entities satisfying each of these

theories are all constructed out of the entities satisfying the privileged theory.

I do not pretend that this is a claim of extreme precision, but I do think it

has a fairly clear intuitive content. Another imprecise way to put it is as the

view that all the consistent concepts of set and membership are instantiated side

by side. ‘Instantiated side by side’ is intended to convey the idea just stressed:

we refuse to single out one instantiation as privileged and to regard all others

as merely ‘unintended models’ generated by the completeness theorem. But it

also suggests that we could regard all quantifiers over mathematical entities in

a mathematical theory as implicitly restricted by a predicate to which all other

predicates of mathematical entities in the theory are subordinate. In different

mathematical theories the overarching predicate is different; so mathematical

theories that appear to conflict with each other when written without their

overarching predicates do not really conflict. (It is not necessary to say that

there is anything to preclude meaningfully quantifying over all mathematical

entities at once, without an overarching predicate; one can say just that thereis

not anything interesting and true to say about so plenitudinous a realm.)

The phrase ‘instantiated side by side’ suggests that nothing is included under

more than one overarching predicate. Actually though it is better to say that

there is no mathematical interest to the question of whether things falling under

one overarching predicate also fall under another, and the matter can be conven-

tionally decided either way. If setso3 are entities that satisfy standard set theory
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plus the claim that the size of the continuum is No3, and setsg;7 are entities that

satisfy standard set theory plus the claim that the size of the continuum is Ngi7,

then it is mathematically uninteresting whether the setso3 are included among

the setsg17, or the setsg17 are included among the setsg3, or neither inclusion

holds. (If an inclusion does hold, or there is overlap, the membership relations

Eo3 and €gi7 need not coincide on the common domain.) If we want to decide

the matter by convention, the best convention is probably to say that neither

inclusion holds, simply in order to emphasize that for mathematical purposes

neither setse3 nor setsg;7 have privileged status.

There is a strong contrast then between plenitudinous platonism and Quinean

platonism. Quinean platonism takes as basic some one conception of set, and

constructs out of sets so conceived all other mathematical objects: natural num-

bers, real numbers, and, if we wish, sets corresponding to other conceptions.

Most platonists think that Quinean insistence on viewing natural numbers and

real numbersas ‘really sets’ is perverse and arbitrary: why not regard them as

perfectly good objects existing on their own? Plenitudinous platonism just goes

this anti-Quineanism one better: we should also regard sets that satisfy concep-

tions other than our ownas perfectly good entities in their own right, in no way

requiring an explanation in terms of‘our’sets.

Ontologically speaking, then, plenitudinous platonism is highly platonistic,

indeed more platonistic than standard platonism: roughly, it postulates multiple

mathematical universes where standard platonism (especially Quinean platon-

ism) postulates only one. But methodologically speaking, plenitudinous pla-

tonism is quite anti-platonistic (or, as I prefer to say, anti-objectivistic). To

illustrate: the usual platonist view is that even after we know that the contin-

uum hypothesis is undecidable from the standard axioms,thereis still a serious

question as to whetherit is true, and we can still find indirect evidence forits

truth. The plenitudinous platonist view is that there is no such question: set

theory with the continuum hypothesis and set theory with various alternatives

to it are all consistent, so all are true of their appropriate domains; and the

‘indirect evidence’ is simply a matter of exploring the logical implications of

each set theory and making aesthetic judgements about their attractiveness and

practical judgements about their utility based on these implications. Obviously

this is methodologically identical to the fictionalist view, that takes each such

set theory to be a fiction and evaluates the fictions on aesthetic and practical

grounds.

Actually in saying that plenitudinous platonism has this ‘anti-objectivist’

methodological consequence, I am being a bit quick. After all, one might adopt

the ontological position that there are multiple ‘universes of sets’ and hold that

nevertheless we have somehow mentally singled out one such universe ofsets,

even though anything we say that is true of it will be true of many others as

well. But since it is totally obscure how we could have mentally singled out one

such universe, I take it that this is not an option any plenitudinous platonist

would want to pursue.

I have tried to spell out plenitudinous platonism in a way that makes it look
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attractive, but it really does not matter for the rest of the chapter whether you

think it even makes sense.° For myreal interest is not plenitudinous platonism

per se, but the associated issue about objectivity just distinguished from it. And

this issue can arise even in the usual platonist picture of a single universe ofsets.

That is, if we now take ‘standard platonism’ to mean simply the usual ‘single

universe’ picture, then the advocate of standard platonism could find himself

wondering how we have managed to single out the full universe as opposed to

a subuniverse, and the standard membership relation as opposed to some non-

standard one. This is just the question that Hilary Putnam raised in (Putnam

1980), from a ‘single universe’ perspective. Putnam argued in fact that thereig

no way that we can have managed to determinately single out the full universe

of sets and the membership relation on it, and that the incomplete content we

have succeeded in giving to ‘set’ and ‘member of’ is not enough to determine

the truth value of all set-theoretic sentences. In this way, he drew the same

anti-objectivistic methodological consequence that the plenitudinous platonist

arrives at more directly. In other words, though the usual version of standard

platonism has built into it that we do have the set-theoretic universe and theset-

theoretic membership relation determinately in mind, this is really not part of

standard platonism per se; and, if Putnam is right, this usual version of standard

platonism cannot be maintained.

JY am inclined to think that Putnam is right: that the ‘anti-objectivist’

methodology is in the end the right consequence for anyone to draw, whatever

their ontological views. Perhaps the main advantage of plenitudinous platon-

ism over standard platonism is that (like fictionalism) it leaves little room for
disguising this.

2 The objectivity issue

The issue that I will be concerned with, then, is the objectivity issue. If we

put the fictionalist option aside, we can formulate the issue as: which of our

mathematical sentences have determinate truth values? I will assume that the

mathematical sentences we accept are all determinately true (or rather, that

those we would continue to accept when anylogical errors are filtered out are

all determinately true). This seems reasonable, given that the content of our

mathematical sentences is determined in large part by which ones we accept,

and that there is no reason (independent of fictionalism anyway) to think that
such independent determinants of content as there may be exert any pressure

toward taking accepted mathematics as untrue. (Roughly speaking, then, ac-

cepted mathematics is ‘true by convention’, or true by the logical consequences

of our conventions.®”) Given this, we can rephrase the question as:

(DTV) Which undecidable mathematical sentences®
have determinate truth values?

By ‘undecidable mathematical sentences’ I mean ‘mathematical sentences such

that neither they nor their negations follow in first-order logic from our fullest
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mathematical theory’. Platonists in Kreisel’s sense—objectivists, I am calling

them—assumethe answerto be‘all’ (all the ones well formulated in our currently
best mathematical language, that is); the extremeanti-objectivist position is that

the answeris ‘none’. Although the remarks at the end of Section 1 might suggest

that I favor extreme anti-objectivism, I actually tend to favor an anti-objectivism

not quite so extreme; for we will see that our conventions can sometimes make

determinately true certain sentences of pure mathematics that are not logical

consequences of those conventions.”
Two points of clarification are required. First, when I say that certain math-

ematical sentences might lack determinate truth value, I do not intend to suggest

that we must abandonclassical reasoning in connection with those sentences. In

my view a great many concepts involve somesort of indeterminacy—forinstance,

vagueness—and as a result many sentences containing them lack determinate

truth value. It would cripple our ability to reason if we were prevented from

using classical logic whenever indeterminacy might arise. Fortunately, it is not

necessary to do so: we can perfectly well say that everyone is either bald or

not bald, as long as we add that not everyone is either determinately bald or

determinately not bald. What is crucial to the logic of vaguenessis not that we

give up classical logic but that we add to it a new ‘determinately’ operator—

in effect, a notion of a sentence being determinately true. The same holds in

the case of other sorts of indeterminacy. Consequently, standard mathematical

reasoning can go unchanged when indeterminacy in mathematics is recognized:

all that is changed is philosophical commentaries on mathematics, commentaries

such as ‘Either the continuum hypothesis is determinately true, or its negation

is determinately true’.

Second clarification: it might be protested that it is unclear what should

count as ‘our fullest mathematical theory’, and that this makes ‘undecidable’ in

(DTV) unclear. I agree, but I do not think it matters much for question (DTV):
for on any reasonable construal of what countsas our fullest mathematical theory,

there will be sentences undecidable in it,!° and the question is which (if any) such
sentences have determinate truth value. We should construe the extreme anti-

objectivist as asserting that, if a sentence is undecidable on every reasonable

candidate for our fullest theory (and some mathematical sentences surely will

meet this condition), then it definitely has no determinate truth value; whereas

if it is undecidable on some reasonable candidates but decidable on others then

there may be noclear fact of the matter as to whetherit has a determinate truth

value.

I think that anti-objectivism has considerable plausibility for the typical un-

decidable sentences of set theory. It has much less plausibility for the unde-

cidable sentences of elementary number theory: these strike almost everyone

pre-theoretically as having determinate truth value, though we may not know

what it is. I suspect that this feeling arises from the feeling that we have a

determinate notion of finitude (that is, of ‘finite set’, or of the quantifier ‘only

finitely many’, which I abbreviate ‘¥’). Let Nt be elementary number theory
plus ‘Every natural number has only finitely many predecessors’. Our fullest
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mathematical theory includes Nt; and if ‘finite’ is determinate, all models of

this that are not definitely ‘unintended’ are isomorphic, so all give the same

truth value to any number-theoretic sentence A, so A determinately has this

truth value by virtue of our commitment to Nt. The incompleteness of formal

arithmetic results from the incompleteness of the theory of F; but if the latter is

held determinate despite the undecidability of certain sentences in it, the same

will hold derivatively of the concept of natural number.

If we do assume the determinacy of finitude, then we can give determinate

sense to a conception of semantic consequence for sentences which builds in that

‘F’ gets ‘the correct’ truth conditions. Then if we-call a sentence f-decidable if

and only if either it or its negation is a semantic consequence (in this sense) of

our fullest mathematical theory, any f-decidable sentence will get a determinate

truth value. So the key question is: can the assumption that ‘F’ is perfectly

determinate be maintained?

There is certainly reason to hope that it can: the notion of finitenessis after

all a central ingredient in many key notions, such as that of a sentence in a given

language (sentences being finite strings of symbols meeting certain conditions)

and that of a proof in a given system (proofs being certain finite strings of

sentences). Any indeterminacy in the notion of finiteness would doubtless infect
the notion of sentence and proof, of logical consequence andlogical consistency,"

and perhaps indirectly even the first-order logical constants themselves (since
our understanding of them depends on proof or consequence). Whether such a

conclusion would be completely devastating is a question I will return to. Butit

is clear that we would like to be able to maintain the determinacyof ‘finite’, and

thus of ‘natural number’. And I think we can: I will argue that there is a natural

account of how our practices might give determinate content to undecidable but

f-decidable sentences, an account that does not extend to the typical undecidable

sentences of set theory.

3  Putnam’s ‘Models and Reality’ and the conceptsof finite-
ness and natural number

In the first half of (Putnam 1980), Hilary Putnam gave what I think is a com-
pelling argument against the objectivist position in set theory: he argued that,

even accepting the component of standard platonism that says there is a sin-

gle set-theoretic universe (V, FE), there is nothing in our inferential practice that

could determine the truth-value of typical undecidable sentences. (The argument

easily extends to an argumentagainst the objectivity of the semantic consequence

relation in second-orderlogic, even if that is interpreted as in (Boolos 1984).!*)
In basic outline, the argumentis this:

(Ia) There is nothing in our inferential practice that could determine that our
term ‘set’ singles out the entire set-theoretic universe V rather than a suitably

closed subpart of V.

(Ib) Even on the assumption that it singles out the whole set-theoretic uni-
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verse V, there is nothing in our inferential practice that could determine that

our term ‘€’ singles out the membership relation E on V as opposed to some

other relation on V that obeys the axioms we have laid down.

(II) The indeterminacy in (Ia) and (Ib) is sufficient to leave indeterminate
the truth value of typical undecidable sentences of set theory. (Actually (Ib) by
itself would suffice. In many cases (Ia) by itself would also suffice.)

My interest in this part of the chapter is in the scope of this argument:

assuming it basically correct, just what undecidable statements does it cover?

What are the limits of the semantic facts that our inferential practices might

determine? I will try to show how ourinferential practices might determine the

semantics of ‘set’ and ‘€’ well enough to make determinate the quantifier ‘only

finitely many’ (when defined in termsof ‘set’ and ‘€’ in one of the standard ways),
and hence determine the truth value of f-decidable but undecidable sentences,

including the undecidable sentences of numbertheory.

Some readers of Putnam have thought that his argument for indeterminacy

is based simply on the existence of non-standard models.!* But if that were so,

it would apply as much to non-mathematical language as to mathematical. It

seems pretty clear that that is an unattractive consequence: the natural picture

is that our practice of accepting and rejecting sentences containing predicates

like ‘red’ and ‘horse’ and ‘longer than’ largely determines which of the objects

and pairs of objects that we quantify over satisfy these predicates. This seems

plausible because our inferential practice with these words includes not only
general theoretical principles, but an observational practice which causally ties

their extensions down. Other physical predicates, say ‘neutrino’, are less tied

to observational practice, but the theoretical principles governing them include

words that are more tied to observational practice, and this does a lot to fix

their extension. The prima facie problem in the mathematical case is that the

theoretical principles of pure mathematics do not tie down predicates like ‘e’

even in this indirect way.

This might suggest that in the case of mathematical predicates, indeterminacy

of extension follows simply from the existence of non-standard models. If this

were so, there would be no hope of exempting the finiteness quantifier from

indeterminacy. Let a grossly non-standard model of set theory be one in which

there are objects y that satisfy ‘finite set’ even though for infinitely many objects

zr, the pair (x, y) satisfies ‘€’. (This is equivalent to a non-w model.) If set theory
has models at all, it has grossly non-standard ones, and in these F gets a non-

standard interpretation.

But our inferential practice with terms like ‘set’ and ‘€’ extends beyond pure

mathematics: we use these notions in physical applications. That is, anyone

who has learned the notions of set and membership will apply them (and related

notions like that of a function, that are usually defined in terms of them) to the
physical world. These physical applications of ‘set’ and ‘€’, not just the math-

ematical applications, are available to help determine their extensions (given

that the extensions of the physical predicates are reasonably determinate). And
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perhaps these physical applications make determinate the extension of F.

I will argue that if our physical theory includes certain reasonable but not

totally obvious ‘cosmological assumptions’, and if these assumptionsare correct,

then the extension of F will indeed be determinate, so thatf-decidable sentences

will get determinate truth values.

The cosmological assumptions I will use are these:

(A) time is infinite in extent;
(B) time is Archimedean.

Moreprecisely, define ®(Z) to mean

Z is a set of events which (i) has an earliest member and a latest
member; and(ii) is such that any two of its members occurat least
one second apart.

Then assumption (A) is that there is no finite bound on the size of sets that
satisfy ®; assumption (B) is that only finite sets satisfy it.

In accordance with the discussion above, I am going to assume that our phys-

ical vocabulary is quite determinate. Indeed, for simplicity, I will assume that it

is completely determinate, at least relative to a choice of domain of quantifica-

tion. (I will not need to assume that the domain of our quantifiers is determinate,
even when the quantifiers are restricted to physical entities.) More precisely, I

will take an interpretation or model of our own language to be ‘unallowable’

or ‘objectively unintended’ unless the extension of ‘cow’ in the model includes

precisely those members of the domain of the model that are cows; and simi-

larly for every other physical predicate of the language. As I have said, this is

doubtless a little more determinacy than we actually have, but I do not think the

over-simplification is harmful in the present context. Reasons for not assuming

the analogous determinacy in the mathematical case were given earlier in this

section.

Now,let S consist of the above cosmological assumptions plus set theory.

(Impure set theory, that is, set theory that postulates sets whose members are

non-sets, including a set of all non-sets, and including sets defined using physical

vocabulary.) From S we can infer the following:

(*) FxA(x) = SY AZ Af [©(Z) & Y contains precisely the x such
that A(z) & f is a function that maps Y injectively into Z].

I claim that if we accept S, then this consequence of it allows us to extend

the determinacy in the physical vocabulary to the notion of finiteness.

I do not deny of course that the theory S has non-standard models, in which

certain infinite sets satisfy 6(Z) and hence in which certain infinite sets satisfy
the predicate ‘finite’. However, if assumption (B) is true, any such model must

assign a non-standard extension to the formula ®(Z); and in particular, it must

either contain things that satisfy ‘event’ which are not events, or it must contain

pairs of events which satisfy ‘earlier than’ or ‘at least one second apart’ even
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though the first is not earlier than the second or the two are not one second
apart. Either way, the model will violate the constraint on the interpretation

of the physical vocabulary: that the extension of such a predicate in the model

can only contain things that actually have the corresponding property. In sum:

if assumption (B) holds, then no model of S in which ‘event’ and ‘earlier than’

and ‘at least one second apart’ satisfy the constraints on the interpretation of the

physical vocabulary can be one where any infinite sets satisfy ®(Z).\* But it is
easy to see that no pair of an infinite set and a finite set can satisfy

Af(f is a function that maps Y injectively into Z)

in any model; so no allowable model of S can be one whereanyinfinite sets satisfy

‘finite’. And of course there are no models of S where anyfinite sets fail to satisfy

‘finite’, since S' includes set theory and genuinely finite sets satisfy ‘finite’ in every

model of set theory; so (if assumption (B) holds) in every allowable model of S,
a set satisfies ‘finite’ if and only if it is genuinely finite. As a corollary, every

number-theoretic sentence gets the same truth-value in every allowable modelof

S.

This would be cold comfort if assumption (A) were not also true: if it were
false, no model meeting the constraints on the interpretation of our physical

vocabulary could satisfy set theory plus (*) (since finite sets bigger than any
sets that actually satisfy ® would be constrained to be both finite and infinite);
in that case, the interpretation of ‘finite’ could not be fixed by (*): (B) without
(A) is not enough.'°

The key to the argument, of course, is the assumption that the physical world

provides an example of a physical w-sequence that can be determinately singled

out. The cosmological assumptions (A) and (B) are really unduly restrictive,
since they entail a specific way in which a physical w-sequence might be deter-

minately singleable out. Other ways are possible too: for instance, it might be

that while time is non-Archimedean, a certain kind of matter exists only in the

initial w-sequence of it (but exists arbitrarily late through that w-sequence); or

it might be space rather than time that provides the physical w-sequence. How-

ever the physical w-sequence is determinately singled out, it is easy to then use

the bridge between the physical and the mathematical that is given in standard

(impure) mathematics to make the notion offiniteness fully determinate even in
its mathematical applications.!®

It might be thought objectionable to use physical hypotheses to secure the

determinacy of mathematical concepts like finiteness. I sympathize—I just do

not know any other way to secure their determinacy. It might be thought es-

pecially objectionable to use physical hypotheses to secure the determinacy of

mathematical concepts like finiteness when those hypotheses are themselves ex-

pressed in terms of those mathematical concepts. But recall that in my view, we

need not first secure the determinacy of a concept before we use it in reasoning:

if that were required, reasoning could never get started. Rather, we can reason

classically with our concepts from the start. Indeed, I have claimed that such
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classical reasoning is not to be called into question should we later discover by

such reasoning that the concepts employed in it lack determinacy; it certainly

is not to be called into question when (as envisioned here) we discover by such
reasoning that the concepts are determinate.

4 Extreme anti-objectivism

I think it is pretty clear that the sort of considerations just given in the case of

the theory of natural numbers do not extend to typical undecidable statements

of set theory, such as the continuum hypothesis.!’ This does not seem to me in

the least disturbing: I do not see any pre-theoretic reason why such statements

should be assumed to have determinate truth value. Their lack of determinate

truth value seems to me to be fully compatible with accepted methodology in

mathematics. I have already pointed out that the recognition of indeterminacy

in no way forces us to give up classical reasoning. Also, we can still advance

aesthetic criteria for preferring certain values of the continuum over others; we

must now view these not as evidence that the continuum has a certain value,

but rather as reason for refining our concepts so as to give the continuum that

value, but I do not see this as in violation of any uncontroversial methodological

demand.

What might be more disturbing about the considerations advanced hereis

that the case for the determinacyof finiteness was based on certain ‘cosmological

hypotheses’. Not, to be sure, on the specific cosmological hypotheses (A) and

(B): as noted, these could fail and other cosmological hypotheses be usedin their

place. But if neither (A) and (B) together, nor any suitable surrogate for them,
were correct, then the argument that undecidable but f-decidable statements

have determinate truth value would break down. And this may seem disturbing:

most of us feel that we have a perfectly definite conception of finiteness, which

gives a definite truth value to f-decidable statements even if we do not know

what it is. The consequences of giving this up seem quite radical: I observed

earlier that if we do not have a determinate conception of finitude, then we do

not have a determinate conception of formula of a given language, or theorem of

a given system, or consistency of a given system. Should wereally conclude that

our conviction that we do have such determinate conceptions ought to depend

on the belief that either cosmological hypotheses (A) and (B) or somesuitable
surrogate for them are correct?

J am not sure what the answer to this is. It would be nice if the mere

possibility of cosmological hypotheseslike (A) and (B) should somehow be enough
to ensure the determinacyof‘finite’ and thus of f-decidable sentences. But there

is a considerable obstacle to seeing how this would go: for instance, we cannot

expect a generalization of (*) in which a possibility operator precedes the ‘AZ’,

since then the possibility of infinite sets satisfying ® would make infinite sets

comeout finite. (It is possible for the universe to be non-standard—in whatever
sense it is possible for it to be infinite if in fact it is finite.)

But I do not think it completely obvious that we could not live with the
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idea that our conception of finitude (and hence of formula, proof, consistency,

etc.) is not fully determinate. For even if there is no way to makesense of the

idea that ‘non-standard’ models of ‘finite’ are ‘objectively unintended’, still that

does not show that ‘finite’ is not determinate enough to give determinate truth

value to typical sentences containing it. So, for any string of less than (say) 107°

symbols, it would seem to be a perfectly determinate matter of fact whether it

was a formula of a given language; and if it is humanly provable that a certain

string is infinite, then that string is definitely not a formula of the language.

Perhaps this is all the determinacy that we have reason to be confident of.

But even if one is willing to swallow that our conception of finitude is some-

what indeterminate, one may think that some undecidable sentences must have

determinate truth values, contrary to ‘extreme anti-objectivism’. In particu-

lar, one might think that the Godel sentence of our fullest mathematical theory

must certainly have determinate truth value: it must be determinately true if

our fullest mathematical theory is consistent, and determinately false otherwise.

I am going to argue that this argument is question-begging, but before doing

so, I should deal with an objection to the way I have formulated it: some may

feel that the right way to put what Godel’s theorem showsis that there is no

such thing as ‘our fullest mathematical theory’, or that if there is such a thing,

it is not recursively enumerable and therefore has no Godel sentence. More

fully, the view is that no consistent recursively enumerable theory M could be

our fullest mathematical theory, since ‘our fullest mathematical theory’ would

have to be closed under Godelization: if it included M, it would have to include

M’s Gédel sentence Gyy.'® If we accept this, and exclude the possibility that

‘our fullest mathematical theory’ is inconsistent, we are left with the conclusion

that ‘our fullest mathematical theory’ either does not exist or is not recursively

enumerable.

This objection seems to me misguided: the most one can get from Gédel’s

theorem is that the phrase ‘our fullest mathematical theory’ is vague, and that

for each consistent and recursively enumerable theory M that is a pretty good
candidate for its denotation, MUG~y(or a theory that includes that) is also not
bad as a candidate for its denotation. Compare ‘bald’: under the usual crude

idealization that baldness depends only on the numberofhairs on the head, we

know that if

{x : x has fewer than n hairs}

is a pretty good candidate for the extension of ‘bald’, then

{x : x has fewer than n+ 1 hairs}

is not a bad candidate either. But of course one cannot conclude from this that

the extension of ‘bald’ is closed under the addition of a hair, for that would

imply that everyone is bald (as long as they do not haveinfinitely many hairs).

Similarly, the fact that MU {Gy} is about as good a candidate as M for the
denotation of ‘our fullest mathematical theory’ does not imply that our fullest

mathematical theory is closed under Godelization. And that conclusion would
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be thoroughly implausible, at least if we stipulate that by ‘our fullest mathe-

matical theory’ we mean something like ‘the set consisting of all our explicit

mathematical beliefs, plus perhaps those mathematical sentences we could eas-

ily be brought to believe explicitly, plus perhaps their logical consequences’.'®
If we mean anything like this by ‘our fullest mathematical theory’, then there

can be no question that on any way of making the phrase precise, the set ex-

ists and is recursively enumerable, and hence(if consistent) is not closed under
Gédelization. It is just that there is no maximally inclusive way of making the

phrase precise.

How then must the extreme anti-objectivist position be formulated, so as to

make explicit the vagueness of ‘our fullest mathematical theory’? The position

is that in so far as M is a good candidate for our fullest mathematical the-

ory, sentences undecidable in M have no determinate truth value. So if A is a

sentence undecidable on all reasonable candidates for our fullest mathematical

theory, it definitely has no determinate truth value; whereas if it is decidable

on some but notall of the reasonable candidates for our fullest theory, it is in-

determinate whether it has determinate truth value. We have a second-order

indeterminacy, since ‘indeterminate’ is tied to ‘fullest mathematical theory’ (ac-

cording to the philosophical principles here under consideration) and hence is

just as indeterminate as that is.

Let us now return to the argument against extreme anti-objectivism that

I claimed was question-begging: the argument, modified slightly to allow for

the second-order indeterminacy just noted, was that the Godel sentence of any

candidate M for our fullest mathematical theory must certainly have determinate

truth value: it must be determinately true if M/ is consistent, and determinately

false otherwise.

As I have said, this is question-begging. Let us grant for now that, if M is
consistent, its Godel sentence Gy is true, and that, if it is inconsistent, then Gy,

is false. It only follows that Gy is either determinately true or determinately

false if we assume that M is either determinately consistent or determinately

inconsistent. And while of course that will be the case if ‘finite’ is determinate,

we are now exploring the possibility that ‘finite’ is not determinate. Indeed,

we are exploring the possibility that the only mathematical claims that are de-

terminately true are those that are provable in M. (And some of those may

not be determinately true either, if their negation is also provable in M.) But

if CONy is the standard formalization of the consistency of M, CONy,, is not

provable in M, unless =CONy is too; so in so far as the extreme anti-objectivist

identifies consistency with the standard formalization thereof, he will say that

it is not determinate whether M is consistent and hence it is not determinate

what truth value its Gédel sentence has.?? (Here I have in mind the case where
M contains no humanly recognizable inconsistency. If it contains a humanly

recognizable inconsistency, it is natural to hold CONy and Gy determinately

false; in a moment I will show that this verdict can be reconciled with extreme

anti-objectivism.?)
I do not deny that it is an awkward feature of extreme anti-objectivism that
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it may be indeterminate whether a candidate for our fullest theory is consistent

(or more accurately, indeterminate whether a candidate for our fullest theory—

predicate picks out a consistent theory—see notes 18 and 21). To investigate how

serious this awkwardnessis, let us look first at what an extreme anti-objectivist

should say about the possibility that our fullest theory is definitely inconsistent:

say, that it contains a humanly recognizable inconsistency. Probably the best

thing to say (as observed in note 7) is that the adoption of an inconsistent theory
would make determinately true just those sentences A that are implied byall of

the most natural consistent replacements for that theory.2? Presumably,if a can-

didate M for our fullest theory contains a humanly recognizable inconsistency,

the inconsistency lies outside Peano arithmetic (P), and every natural consistent

replacement for M implies both P and CONp (as does every consistent candi-

date for our fullest theory). So P and CONp come out determinately true on

all reasonable candidates for our fullest theory, even the definitely inconsistent

ones. On the other hand, if M contains a humanly recognizable inconsistency,

then presumably every natural consistent replacement of M implies >CONy (as

does every consistent candidate for our fullest theory); so CONy would then be

determinately false. And so too would M itself. These conclusions seem to be

what we wouldintuitively want, so the possibility of definite inconsistency in can-

didates for our fullest mathematical theory does not seem especially problematic

for extreme anti-objectivism.

But what are the consequences for extreme anti-objectivism of its not being

determinate whether a candidate M for our fullest theory is consistent? Pre-

sumably Peano arithmetic and CONpstill come out determinately true, since

I have argued that they come out true whether or not M is consistent; but

presumably CONjy and M now lack determinate truth value, since they come

out determinately false if M is inconsistent and not determinately false if it is

consistent. And these conclusions too seem to be what we ought to expect. So

it is hard to see how to reduce to absurdity the position that it is indeterminate

whether the candidates for our fullest theory are consistent. I do not claim that

that is an attractive position; only that it might be the least unattractive option

to adopt if all cosmological hypotheses like those considered in §3 were to prove

to be false.

There is another kind of argument against extreme anti-objectivism based

on Gédel’s theorem. It claims that we know that the Géddel sentences of the

candidates for our fullest mathematical theory not merely have determinate truth

value, but are true. The argument is a mathematical induction: all the logical

and non-logical premises of M are true; the rules of inference preserve truth; so

all the theorems must be true; so the theory must be consistent, so the Godel

sentence must be unprovable, and hence true. Of course, the induction cannot

be formalized in M; but it is often felt that it is somehow ‘informally valid’.?%

I have doubts about the intelligibility of this idea of ‘informal validity’, but

would rather not rest on them: I will argue rather that the induction is not

simply unformalizable,it is fallacious, in that it relies on the incorrect principles

about truth that are responsible for the semantic paradoxes. My argument will
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presuppose that ‘true’ as applied to mathematical sentences is a perfectly good

mathematical notion. Of course, though restrictions of this notion (for example,

to sentences that do not themselves contain ‘true’ and that have only restricted

quantifiers) are definable in set theory, the full notion of mathematical truth is
not definable in more ordinary mathematical terms, by Tarski’s Theorem. Still,
it is a notion that we can axiomatize: we all implicitly accept many axioms

involving it (for example, the instances of the schema

(T) True(‘p’) if and only if p

for ‘p’ not containing the word ‘true’, and the claim that all of these instances
are true); and it is possible to consistently extend these axioms in any of several

attractive ways, perhaps adding somespecial rules of inference involving ‘true’

as well. Whatever axioms and rules of inference about truth we accept are part

of our mathematical theory M.

What I now want to argue is that the inability to carry out formally the

inductive argument that all theorems of M are true need not rely on excluding

the notion of truth from the formal principle of induction. (If it did rely on

that, then, if we could convince ourselves that inductions involving ‘true’ were

‘informally valid’, we would have an informal argument for the truth of the Godel

sentence of M.) In addition, the inability to carry out formally the induction

need not rest on an inability to pass from asserting of each axiom that it is true

to asserting that all of them are true (or analogously for the rules of inference);

indeed, there is no difficulty in making such a passage if M has only finitely

many axioms and rules, and I know of no strong reason why this should not

be so. Rather, the most fundamental source of the problem, I claim, is the

assumption for each axiom of M that it is true and for each rule of inference

that it preserves truth: some of these assumptions are not only unprovable, but

refutable in M.

Exactly which axiom of M fails of truth or which rule fails of truth-preserv-

ingness depends on your theory of truth, but in any adequate theory of truth,

one of the axiomsor rules of M will suffer this fate. For instance, in all versions

of the Kripke supervaluational theory (without ‘closing off’) or of the Gupta-

Belnap revision theory,”4 the inference rules include both modus ponensand the

inference from A to True(‘A’). But now consider the claims that these rules are
truth-preserving: indeed, consider just the weak schematic forms of these claims,

that is, the schemas

I ‘True (‘A’) & ‘True (‘A — B’) —> True (‘B’) and

II True (‘A’) — True(‘True (‘A’)’).

Noversion of either the Kripke theory (without closing off) or the Gupta—Belnap
theory accepts both these schemas. (The attractive versions of each accept the

first schema, but not the second.?°) And indeed, each version of either theory

explicitly rejects certain instances of one or the other schema: adding the schemas

not accepted to the theory would engender a version of the Liar paradox. In a

Kripke theory obtained by ‘closing off’ a fixed point, the axiom schema
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True (‘A’) ~ A

will typically hold; but then the schema

True (‘True (‘A’) — A’)

that asserts the truth ofall instances of the previous schema has counter-instances

(for instance, when you instantiate on the Liar sentence). The point made here

for the Kripke and Gupta-Belnap theories can be made with great generality

for other theories of truth.2®° The upshot is that the premises of the inductive

argument for the truth of all theorems (and hence the consistency of the theory
and the truth of the Gddel sentence) cannot all be accepted; the unprovability of

the Gddel sentence is not due to an inability to carry out formally an induction

that is ‘informally valid’.

I have been arguing that the consideration of the Godel sentence of (a can-

didate for) our fullest mathematical theory gives no decisive reason for thinking
that some undecidable sentences have determinate truth values. But my discus-

sion in the last few paragraphs has implications also in a different context, where

we assume(either on account of cosmological assumptions like those in §3, or
for other reasons) that the Gédel sentence does have determinate truth value,
and we are interested in whetherit is determinately true or determinately false.

In that context, my claim is that we have less of an argument that the Godel

sentence is true than many people think. Of course, to say this is not to say that

we should not hope that the Godel sentenceis true: hoping that is tantamount

to hoping our theory is consistent, which seems like a reasonable attitude. It is

also not to say that we should not have a positive degree of belief that it is true:

we can reasonably have positive degrees of belief in many things that we do not

think even informally provable.?”
This point may be usefully combined with the point, stressed several times,

that there is no uniquely best candidate for ‘our fullest mathematical theory’.

If M is a relatively good candidate for my fullest mathematical theory, I am

likely to have a fairly decent degree of belief in Gyy. This will probably make

M’' = M U{Gyy} a pretty good candidate for my fullest mathematical theory

too, given the way my degrees of belief work, even though Gy is not even

informally provable from M. (The theory M' may be a better candidate than

M is, if M is ‘on the weak side’ of the cluster of theories that are candidates

for my fullest mathematical theory.) We can reiterate the addition of a Gédel
sentence through the constructive ordinals, as in Feferman (1962). My position

is that at some point in this process, the claim of the theories to be ‘our fullest

mathematical theory’ begins to decrease gradually. It decreases gradually, as

opposed to dropping off suddenly: this seems to me the natural attitude to take,

and it is one that is facilitated by taking the considerations that favor passing

from a theory to its Godel sentence as less than ‘informal proof’.

These last two paragraphs have been a bit of a digression. The main theme

of this section is that the consideration of Gédel’s theorem gives no decisive rea-

son for thinking that some undecidable sentences have determinate truth value.

And Putnam’s argument makes it hard to see how any sentences undecidable
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in all candidates for our fullest theory could have determinate truth value, if

cosmological hypotheses like those considered in §3 are incorrect.

Notes

1. An interesting recent paper relevant to its defense is (Hawthorne 1996).

2. Ido not mean to commit the standard platonist to assuming that ‘domains’

or ‘structures’ are sets; the view that set theory is true of some determinate

domain is not supposed to involve a commitment to a set of all sets.

3. Mark Balaguer (1995) calls it ‘full-blooded platonism’. An earlier version
of Balaguer’s paper (a chapter from his dissertation) helped convert me to the

attractions of the position. (I had hinted at somethinglike it earlier, but wihout
following through on its implications: see (Field 1989), pp. 275-8, especially

the discussion of whether there is a broadest possible notion of set.) David
Papineau (1993) calls the position ‘postulationism’; he argues against it. My

term ‘plenitudinous platonism’ is an adaptation of the term ‘plentiful platonism’

in Penelope Maddy’s chapter (1998c).

4. More generally, one might hold that whenever you have a theory that

postulates mathematical objects, then, as long as the theory is ‘nominalistically

correct’, in the sense that all its consequences that do not postulate such objects

and do not use specially mathematical vocabulary are correct, there are math-

ematical objects that satisfy the theory under a perfectly standard satisfaction

relation.

5. For a response to one doubt about the coherence of plenitudinous platon-

ism, see (Field 1994, Appendix). (Many of the other main ideas of the present

chapter are discussed there as well.) Tony Martin raised another interesting
doubt after the conference which I do not have the space to pursue here.

6. Quine pointed out long ago that there is no hope of making sense of the

idea that mathematics and logic together are true by convention (since logic is

required in determining the consequences of one’s conventions); but the difficulty

does not arise if one confines the claim to mathematics alone.

7. I am assuming in this paragraph that the mathematics we accept is con-

sistent: were we to accept inconsistent mathematical claims, we would not want

to take them all as true. (Probably the best thing to say is that, if our overall

mathematical theory is inconsistent, then anything implied by all the most natu-

ral consistent replacements of it is true by convention, whereas anything implied

by some, but not all, of the natural consistent replacements gets no determinate

truth value from our inconsistent convention.)

(I take consistency as a logical notion rather than a mathematical one (see
(Field 1991)), so that taking our mathematics as true merely by convention does
not make consistency claims true merely by convention. I do not doubt that

our mathematical conventions could indirectly affect the notion of consistency;

but they do not do so in a way that makesit trivial that our mathematical
conventions come out consistent.)
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8. By a ‘mathematical sentence’ I do not mean any sentence that mentions

mathematical objects or employs mathematical vocabulary: that would allow

mathematically formulated sentences of physics to count as mathematical, and I

do not intend (DTV) to cover them. On the other hand, ‘sentence that neither
postulates non-mathematical objects nor employs non-mathematical vocabulary’

is too restrictive: it is a reasonable definition of a pure mathematical sentence,

but I think ‘Thereis a set of all grapes’ should count as (impurely) mathematical.

Roughly, by a mathematical sentence I mean the sort of sentence that would be

appropriate to: be settled by mathematical considerations alone. But it is too

much trouble to try to make this precise, and for present purposes it will not do

much harm to restrict attention to pure mathematical sentences.

9. A simple example of how this could happen in principle is the following:

suppose that our fullest mathematical theory did not imply the axiom ofinfinity
(taken as the axiom that there are infinite pure sets), but did include both the
axiom that there is a set of all physical things and a replacement schema that

applies to physical vocabulary as well as mathematical. If the determinate truths

of physics include the claim that there are infinitely many physical things dis-

cretely ordered under some physical relation, then the axiom ofinfinity follows

from true physics plus the mathematics, but not from the mathematics alone.

(The point is that set theory with the denial of the axiom of infinity is not ‘con-

servative’: see (Field 1989, pp. 56-7), for an elaboration.) A similar illustration
might in principle arise for the axiom of inaccessibles, but only if the claim that

there are inaccessibly many physical objects could in principle achieve the status

of a determinate truth about the physical world.

10. Assuming it to be consistent.

11. This is so even if consequence and consistency are not defined in terms of

proof (or in terms of modeleither), but are related to proof and modelindirectly
by a ‘squeezing argument’: see (Field 1991).

12. So attempts to use the second-order consequence relation to evade Put-

nam’s argument are question-begging. For a further discussion, see (Weston

1976) and (Field 1994).

13. See, for instance, (Lewis 1984). That reading is not without textual

support, both from other writings of Putnam at about the same time as (Putnam

1980), and even from the second half of that paper; nonetheless it seems to me

to miss the interesting argument in the first half of that paper.

14. By ‘infinite set’ here I really mean ‘object y such that for infinitely many

Z, (x,y) satisfies ‘€’ in the interpretation’.

15. If we modified (ii) in ®(Z) to say merely that there is some unit of
time such that any two members of Z occur at least that unit of time apart,

the infinitude assumption becomes easier to satisfy (thoughstill non-trivial);
but the Archimedean assumption would be correspondingly harder to satisfy,

given the possibility of points that are infinitesimally close. Since it might in

any case be doubted that there is a definite physical fact as to whether there
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are infinitesimals, I think it safer to stick with a formulation for which they are

irrelevant.

16. Although the argument as presented assumes the complete determinacy

of the physical vocabulary (relative to a choice of domain of quantification), |

thinkit is clear that relaxing this would not undermine the force of the argument,

17. Given a reasonable assumption about the limits on how determinate

quantification (even restricted to physical things) can be, this follows from a

slight generalization of the usual relative consistency proofs to the case of im-

pure set theory, coupled with a downward Skolem—Lowenheim argument. But,

even if the assumption about the indeterminacy of quantification is relaxed, the

prospects for giving sentences about the size of the continuum definite truth

value are quite bleak. There is no space for discussion of these points, but the

discussion on pp. 415-16 and 419-20 of (Field 1994) (in addition to that in
(Putnam 1980)) might provide enough to enable the reader to extrapolate them.

18. Strictly speaking, ‘the G6ddel sentence of M”is ill-defined: the Godel

sentence depends not just on M but on a way of defining ‘axiom of M’ and

‘rule of inference of M’ (as well as on various choices that can be made once
for all theories in a given language, such as a Gédel numbering). To set things

right, the discussion in the text (here and in subsequent paragraphs) should re-

ally be done not in terms of (candidates for) our fullest mathematical theory M,
but in terms of (candidates for) our fullest theory—predicate S: where a theory
predicate is an RE-formula (in one variable) which numerates the axioms and
rules of some theory M. (I am using the terminology of (Feferman 1962).) For
instance, the sentence to which this note is attached should read: the view is

that no theory—predicate S that numerates a consistent mathematical theory

could be ourfullest mathematical theory—predicate, since ‘our fullest mathemat-

ical theory—predicate’ would have to be closed under Gédelization: if what it

numerates included S, it would have to include S’s Godel sentence G's.

(The correction hereis of little significance for finitely axiomatized theories,

but is of more importance when M is not finitely axiomatized. And it is arguable

that in that case, theory—predicates rather than theories are moredirectly ‘psy-

chologically real’: that the theory predicate is the means by which an infinitely

axiomatized theory is represented in our finite heads.)

For readability I have chosen to speak sloppily of theories instead of theory-

predicates in the text, though in a note I will mark one place where it is of

philosophical interest to observe the more correct formulation.

19. We would probably want to refine this a bit, to reduce the chance that

all reasonable candidates for our fullest theory are inconsistent; but this will not

affect the case for recursive enumerability.

20. On the other hand, if T is a theory that (like Peano arithmetic) is
provably consistent in all reasonable candidates for our fullest theory, then Gr

and CON? will be determinately true.

21. As I observed in note 18, the sort of formulation given in this paragraph
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is rather sloppy: to set things right, I should speak not of a theory M, but of a

theory—predicate S that picks out atheory. This is of philosophical interest in the

present context, since it points up the fact that, intuitively, the indeterminacy

as to the truth of Gg and CONg maybepartly due to the fact that when ‘finite’

is not assumed determinate, there can be an indeterminacy in which theory the

predicate S picks out.

22. Anyone who thinks that my use of ‘inconsistent’ and ‘consistent’ here

assumes the determinacy of the notions should recall the second paragraph of

§2. But if you like, you can replace ‘inconsistent’ by ‘definitely inconsistent’here,

and likewise for ‘consistent’. Similar remarks apply to much of the discussion in

the next few paragraphs.

23. The reader will note that this argument would, if valid, establish only the

truth of the Géddel sentence, not its determinate truth. The gap could befilled by

the principle that, if we can informally prove the truth of something, it must be

determinately true (a principle that is plausible, though not beyond controversy);

alternatively, we could have done the induction in terms of determinate truth

in the first place (though the premises of the induction then seem somewhat

less obvious). Either way, the argument for the determinate truth of the Godel
sentence is a bit shakier than the argumentfor its truth. But I want to respond

to even the less shaky argument.

24. Kripke and Gupta-Belnap present their accounts as explicit definitions

of truth; to do this requires that the quantifiers of the object language be in-

terpreted as ranging over less than everything (in particular, ranging over some

set D), so what they are really defining is not truth but ‘comes out true when

the quantifiers are restricted to domain D’. Obviously we could not use such re-

stricted truth predicates in the inductive argument under consideration. But the

Kripke and Gupta—Belnap definitions are of interest in that one can investigate

which principles of truth they validate, and one can then use those principles

in an axiomatic theory of truth; that way the restriction to a domain is not

required, and the use of the truth predicate in the inductive argument is prima

facie more promising. This approach (advocated in (McGee 1991)) is what I am
presupposing.

25. By a ‘version’ of the Kripke theory or the Gupta-Belnap theory, I mean

a decision as to what conditions we impose on: (i) the sets of sentences we

supervaluate over in the Kripke case; (ii) the sets of sentences we allow in the

limit stages in the Gupta-Belnap case. Attractive versions of these theories

impose closure under modus ponensas one of these conditions; this guarantees

Schema I, but at the same time rules out SchemaII.

26. For more on this, see (Field 1994, note 18).

27. It also is not to deny that there is something awkward about believing

M while simultaneously believing =Gyy: this is tantamount to believing M

and at the same time believing ~CON,y, and (at least in the context of an
assumption of the determinacy of finiteness, where there is no question that

CONy adequately formalizes the consistency of M) the beliefs do not cohere
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well with each other. So, were we to believe both M and ~Gy, we would have

motivation to revise one of our beliefs; but it could be M rather than ~Gyy that

was the prime candidate for revision, so it is hard to see how this consideration

gives reason to believe Gy.
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17
‘T’'wo conceptions of natural number

Alexander George and Daniel J. Velleman

The distinction between the completed and the potential infinite is well known.

Less noted is a corresponding contrast between two different conceptions of nat-

ural number. It is only to be expected that there would be such a contrast,

since the natural numbers form our most basic model of an infinite collection.

In this note, we present these two distinct conceptions by articulating the philo-

sophical visions that inspire them and the mathematical definitions that give

them substance. We show how these analyses satisfy, in interestingly different

ways, the basic demandsthat any such definition must meet. In keeping with the

fundamental difference in perspective between these accounts of natural number,

we should expect that those who advance the one definition will find the other

wanting. We try to describe what form these respective criticisms will take and

to say why they will appear misguided to proponents of the conception against

which they are directed.

An intuitive way to try to characterize the natural numbers is to use the

mathematical idea of the closure of a set under an operation. If A is a set and

f is an operation, then A is said to be closed under f if, for every object a in

A, the result of applying the operation f to a, denoted f(a), is also in A. The

closure of A under f is the smallest set containing A that is closed under f. For

example, in this terminology the set N of natural numbers would be the closure

of the set {0} under the successor operation 9.
There are two ways that mathematicians commonly form theclosure of a set

A under an operation f. Thefirst is to begin with the set A, and add additional

elements to form the closure. For example,if a is in A, then f(a) must be added

to A if we are to obtain a set that is closed under f. But then f(f(a)) must
also be added, and then f(f(f(a))). In fact, anything that can be obtained by

applying the operation f repeatedly to elements of A must be in the closure of

A under f. Let A, be the set of all elements of A, together with those objects

obtainable by applying f repeatedly to elements of A. Then A, is closed under

f, and therefore it is the closure of A under f.

Another way to form the closure of A under f is to let A* be the intersection

of all sets that contain A and are closed under f. In other words, the elements

of A* are those objects that have the property of belonging to every set that

contains A and is closed under f. It is not hard to see that A* contains A andis

closed under f, and as the intersection of all sets with this property it must be

311
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the smallest such set. Thus A* is also the closure of A under f, and therefore

A* = A,. (See, for example, (Enderton 1972, pp. 22-5).)

These two ways of forming the closure of a set under an operation suggest

two ways of trying to characterize the natural numbers. If we let A = {0} and f
be the successor operation, then they correspondto the definitions we have given

of A, and A*. The first characterization says that the natural numbers are just

those objects obtainable from 0 by repeatedly applying the successor operation.

We might regard this characterization as giving two rules for generating natural

numbers:

(1) 0 is a natural number, and

(2) If nm is a natural number, then so is S(n).

The natural numbers, according to this characterization, are those, and only

those, objects that are generated by these rules, so it is natural to call it the

build up (BU) definition of “N”. The restriction that only objects generated by

rules (1) and (2) are numbersis often referred to as the extremal clause of the
definition.

The second characterization says that the natural numbers are precisely those

objects that belong to every set that contains 0 and is closed under the successor

operation. This characterization starts with sets that contain 0 and are closed

under successor, most of which are larger than the set of natural numbers, and

then eliminates the non-numbers from these sets by intersecting them. It is

therefore appropriate to call it the pare down (PD) approach to defining the

natural numbers.

The pare down definition of the natural numbers wasfirst advanced indepen-

dently by Richard Dedekind and Gottlob Frege in the nineteenth century. Note

that the validity of mathematical induction is easily seen to follow from the PD

definition. For if a predicate holds of 0, and it holds of S(n) wheneverit holds of
n, then its extension is a set containing 0 and closed under S. Since any natural
number, according to the PD definition, must belong to every set containing 0

and closed under S, it follows that the predicate in question must apply to every

natural number.

It is also apparent that the PD definition captures all and only the natural

numbers. “All” because each natural number belongs to every set that contains

0 andis closed under the successor operation; and “only” because anything that

belongs to every such set will also belong to N, since N is itself such a set. But

note that this reasoning will apply only if we reckon the set of natural numbers

to be in the range of the second-order quantifier in the PD definition. This

impredicativity may lead to concern. If one views the definition as offering a

recipe for constructing the set of natural numbers, impredicativity is fatal: for

it would then have us creating the collection of natural numbers through appeal

to that very collection.

But this is clearly not the purpose of the definition according to those who

offer it. Its object is not to create the collection of natural numbers, which,

on the contrary, is viewed as already existing, but rather to identify which of
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the existing completed collections of objects N is. Viewed as picking out the

already existing collection N, it is, as W.V. Quine has remarked, “not visibly

more vicious than singling out an individual as the most typical Yale man on

the basis of averages of Yale scores including his own” (1969, p. 243).

It should be clear that the PD definition of “N” is most natural from a

platonist perspective. For the PD approach is at home with a conception of the

natural numbers as a completed infinite collection that exists, independently of

our activity, amidst other likewise completed infinite sets. On this view, the task

of an adequate definition is to pick out the set N from this universe of entities.”

But now consider the matter from a constructivist standpoint. There is no

circumscribed domain of sets “out there” in advanceof our activity. The domain

of sets is indefinitely extensible; that is, given any particular delimitation of the

universe of sets, we can construct in terms of it another set not previously in

the universe. In particular, the set of natural numbers will not exist until we

construct it. Now the impredicativity of the PD definition is a serious problem.

For given this definition, how can one show that, to cite a famous example,

Julius Caesar is not a natural number? Only if there exists a set containing 0
and closed under successor that does not contain Caesar. The argument that N

itself is such a set will not satisfy the constructivist, since N cannot be assumed

to exist before it is constructed.

The impredicativity of the PD definition means that it cannot be viewed as

a procedure for the construction of N. The build up definition, however, can

be. The BU approach coheres best with a constructivist stance, according to

which a definition of “N” should provide us with an account of how to generate

all and only the natural numbers. For the constructivist, the only exclusionary

clause that is required is one to the effect that only those objects generated by

the two specified rules of construction are natural numbers. Once we knowthis,

we can see, for example, that Julius Caesar is not a natural number, for heis

not identical to the output of either rule.?

But just as the PD approach appears problematic from the constructivist

perspective, so does the BU approach appear wanting to the platonist. Yes,

the platonist will grant, the BU definition excludes the use of other than the

intended rules in generating the members of N, but it does not explicitly exclude

unintended uses of those rules. In particular, there is nothing in the BU definition

that bars non-finite iteration of the second generating rule. And such iteration

must be ruled out, the objection continues, for otherwise there is no guarantee

that the definition will capture only the natural numbers, and nothing else.4 The

complaint is not that those who offer the BU definition fail to realize that only

finite iteration is permitted, but rather that this realization is no thanks to the

definition.

For this reason, the BU definition will appear at best elliptical from the

platonist perspective: it must be understood that the second rule of the definition

permits only finzte iteration of the successor operation to yield natural numbers.

Of course,if “finite iteration” means “iteration n times, for some natural number

n,” then the definition is circular, as Dedekind himself objected:
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If one presupposes knowledge of the sequence N of natural numbers

and, accordingly, allows himself the use of the language of arithmetic,

then, of course, he has an easy time of it. He need only say: an

element n belongs to the sequence N if and only if, starting with

the element 1 and counting on and on steadfastly, that is, going

through a finite numberofiterations of the mapping  [...], I actually

reach the element n at some time; by this procedure, however, I shall

never reach an element t outside of the sequence N. But this way

of characterizing the distinction between those elements ¢ that are

to be ejected [...] and those elements n that alone are to remain is
surely quite useless for our purpose; it would, after all, contain the

most pernicious and obvious kindof vicious circle. The mere words

“finally get there at some time,” of course, will not do either; they

would be of no more use than, say, the words “karam sipo tatura,”

which I invent at this instant without giving them anyclearly defined

meaning. (Dedekind 1967, pp. 100-1)°

Consequently, the platonist might offer the following as a friendly amend-

ment to the BU proposal: delete the extremal clause, which perforce will be

either inexplicit or circular, and secure its intent by specifying that induction

is valid. For the platonist, the requirement that induction is a valid means of

forming generalizations about the elements of some collection guarantees that

non-numbers will be excluded from the collection. For the predicate “natural

number” applies to 0, and applies to S(n) if it applies to n, and therefore it must

apply to every element of a collection for which induction is valid. Of course,

this entailment presupposes that “natural number” (or a predicate of a piece

with it) is taken to be well-defined: the validity of induction does not articulate
the intentions of the extremal clause unless induction is understood impredica-

tively, as a generalization over a pre-existing domain of predicates that includes

the very predicate being defined. As we have observed, this impredicativity is

unacceptable from the constructivist point of view, and therefore the construc-

tivist will not consider induction to be an adequate replacement for the extremal

clause.®7
In fact, the constructivist will find the friendly amendment not only unhelp-

ful, but unnecessary as well. For just as the constructivist’s objection to the

PD approach appears off the mark to the platonist, so too will the objection

about BU’s inexplicitness seem to the constructivist. From the constructivist

viewpoint, no intelligible but unwanted possibility has yet been described that

would require changes to, or replacement of, the extremal clause: since the

constructivist accepts the potential infinite, but not the completed infinite, the

idea of applying the generation rules an infinite number of times is unintelligi-

ble from the constructivist perspective, and so nothing need besaid to rule out

those alleged entities that would be constructed as a result of such an impossible

application.®9: 10
If BU is not to postulate induction, how then is its validity to be secured?
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The argument traditionally offered by constructivists is just this. Consider a

predicate P for which the premises of induction hold and let n be any given

natural number. The second premise of induction tells us that if P holds of 0

then P holds of S(0). Taken together with thefirst, which states that P does hold
of 0, we can conclude that P holds of S(0), by modus ponens. Since we know,

again by the second premise, that if P holds of S(0) then it holds also of S(.5(0)),
we can likewise infer that P holds of S(S(0)). And so on. Thus, we see that
at every stage of a construction that begins with 0 and proceeds by repeatedly

applying the successor operation, P must hold of the object constructed. But on

the BU view, n was obtained by precisely such a construction (this is what the

extremal clause asserts), so we may conclude that P holds of n. Thus, induction

is valid with respect to any well-defined predicate.+
Earlier, we noted that the impredicativity of the PD definition of natural

number renders it unacceptable to the constructivist, who will turn instead to

the BU account for an adequate analysis. This turn will clearly be rewarding for

those who believe that in assessing a definition’s impredicativity, it suffices to

confine one’s examination to that definition. For, as we have seen, the source of

the impredicativity is the second-order quantifier in the principle of mathematical

induction, and induction is not actually a part of the BU definition, but is rather

a consequenceofit.

But someone might think that the assessment of a definition’s impredicativity

cannot proceed through scrutiny of it alone, but also requires examination of con-

ceptual truths about the defined notion, in this case the validity of induction.!?

Or someone might be convinced that a definition of “N” cannot merely specify

the extension of “natural number” but must also specify the grounds for gener-

alizations about natural numbers; even if induction is not used for the first task

(say, by appealing to the BU definition), it is needed for the second, and hence

reference to it will have to be made in any adequate analysis of the meaning of

‘natural number.”!° While we do not here endorse these, or similar, proposals,

they do make it worthwhile to inquire whether impredicativity lurks in the BU

account of induction and, if it does, whether it is of the same nature as that

encountered in the PD conception.

In fact, there is something in that account about which one might worry.

According to the constructivist, the domain of predicates to which induction

applies is indefinitely extensible. Indeed, the very act of defining “N” extends

this domain, by creating the new predicate “natural number,” along with other

predicates defined in terms of it. Induction ought to apply to these new predi-

cates. We have argued that the BU definition implies the validity of induction,

but might it imply it only for predicates previously defined? If so, then the BU

definition would in a sense undermineitself: it would justify induction for all

previously defined predicates, and it would simultaneously create new predicates,

thus rendering obsolete the very version of induction that it implies.

This same self-sabotage is avoided in the PD definition at precisely the cost

of impredicativity. For this definition picks out a set N, which then gives us the

new predicate “natural number” and other predicates defined in termsof it, and
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these new predicates have the potential to undermine the work done previously

by the PD definition, since their extensions should have been included among

the collections that were intersected to produce N in the first place. Of course,

from the platonist perspective, they were indeed included, since they existed all

along, and so all is well. But a constructivist cannot likewise argue that the

BU justification of induction goes through because all well-defined predicates

already exist quite independently of mathematical activity, for this is precisely

what a constructivist denies. How, then, to respond to this concern about BU’s

justification of induction?

Webelieve that Charles Parsons suggests the answer when he notesthat:

the principle [of induction] refers to arbitrary predicates, without any

assumptions having been made about what counts as a predicate.

Like the principles of predicate logic itself, we have a purely formal

generalization about predicates, which is not a generalization over a

given domain of entities and could not be, since it is not determined

what predicates will or can be constructed and understood. (Parsons

1992, p. 143)

Our understanding of Parsons’ insight is as follows. Often when one makes a

generalization—say, that everything in some domain D has property P—one

justifies it by examining the objects in D. The most straightforward case would

be when one examines the elements of D one by one to see if they have prop-

erty P (as may happen when the domain is finite). If we take this as our
model, we might be inclined to say that one cannot arrive at a generalization

about the elements of a domain D until one knows what is in the domain. But

this is not always true. The intuitionistic understanding of “every” illustrates

another possibility: even if D is indefinitely extensible, one might arrive at the

generalization that everything in D has property P by examining P, not the

elements of D, and realizing that something about P makes it true of anything

that we would allow into D, even if we do not yet know what is in D. This is

precisely what happens with induction, on the BU view. Accordingto thelatter,

we believe induction applies to all predicates, not because we have surveyed the

available predicates and noted that the induction principle applies to all of them

(this procedure would indeedlead to the feared self-undermining), but rather, as

we saw above, because of the extremal clause, which implies that induction will

apply to any predicate, even predicates not yet constructed. Thus, one should

not suppose that a grasp of the whole domain of predicates is needed in order

to understand why induction holds for all predicates. If this justification still

involves impredicativity, then it is an attenuated impredicativity that should be

distinguished from that present in the PD approach.

It may well be that an analysis of natural number that succeeds in justify-

ing the principle of induction will have either to be impredicative or to interpret

constructively the principle’s second-order quantifier. Someone whorejects these

two options will find it difficult not to reject the induction principle in its full

generality.!4 In any event, one advantage of sharply distinguishing, as we have,
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between the two accounts of natural numberis that doing so enables one to see

that the oft-repeated claim that all definitions of natural number are impredica-
tive elides interesting differences.!°

We would like to conclude, however, by stressing an important affinity be-

tween these two approaches, one that has perhaps not always been recognized.

In the case of both the PD and the BU definitions of natural number, something

has to be in place in order for them to be taken as intended by someonetrying

to learn the meaning of “natural number.” In thefirst case, the learner must

understand the second-order quantifier as ranging over a pre-existing completed

totality of sets, including the set N itself. And in the second, the learner must

grasp the concept offinite iteration (perhaps because, as we saw constructivists

would insist, this is the only kind of iteration that is intelligible to him). With-

out this stage-setting, the definitions cannot be understood as intended bytheir

respective proponents.

It is important to notice that what must be in placeis, in each case, akin to

a grasp of the very notion being defined. These definitions are not circular, but

taking them in the intended ways does presuppose some understanding of the

very concepts being defined. Let us call such definitions elucidations.'®

We do not want to say that elucidations must fail to convey the target con-

cepts to someone whodoes notalready possess the relevant understanding. After

all, the BU and PD elucidations, as a matter of fact, often do help students to

acquire the defined notions. Rather, our point is that such elucidations cannot

convey these notions to someone who lacks them through being understood as

intended, for these definitions cannot be so understood except by someone who

already grasps in essence the notions being defined.

Elucidations that succeed in conveying an understanding of a term are com-

parable to speech to infants that facilitates acquisition of language. For such

talk likewise does not convey knowledge of language through its being under-

stood as intended—if it were so understood, there would be no need to convey

this knowledge.

Wewill not speculate here regarding how such learning is accomplished. We

do not know of any reason, though, for distinguishing between the BU and PD

conceptions as regards their conveyability. In the first place, the conceptions

behind the BU and the PD definitions are, of course, both infinitistic, and as

such neither can be exhaustively displayed by any observable stretch of human

behavior.

Secondly, if a learner lacks the relevant conceptions (say because they are not

given as part of his innate conceptual endowment), then, as just noted, he cannot

gain either of them by takingin their definitions as intended, for so understanding

them requires a grasp of something akin to those very conceptions. And if under

these circumstances a learner can nevertheless somehow work his way to the

target conceptions by taking in their definitions as other than intended, then,

pending further information regarding how this takes place, we cannot say that

the one conception is any more easily arrived at than the other.

Finally, if appeal to innate notions is made, there is no a priori reason why



318 Alexander George and Daniel J. Velleman

the one conception should be natively given to us and not the other. It might be

tempting to argue that there is such a reason, namely that the PD conception

is not intelligible and so not there to be given to us, whereas the BU conception

is. But if the argument for unintelligibility is ultimately grounded (as it often

is) on considerations of acquisition, we are plainly movingin circle.

In conclusion, though we have been at pains to show that the above two

conceptions of natural number do indeed differ in significant ways, we cannot

say with any confidence that they do so in point of conveyability.1”

Notes

1. We are not concerned here about exactly how 0 and the successor operation

are defined. One could, for example, use von Neumann’sset-theoretic definitions

0 =@ and S(x) = x U {2}, or one could regard numbersasstrings of strokes and
take 0 to be the empty string and the successor operation to be the operation

of adding one more stroke to a string. The discussion in the rest of the paper

would apply equally to either definition.

2. Henri Poincaré seems to have been thefirst to note the link between a PD

approach to the natural numbers and a commitment to the completed infinite;

see sections VIII and XI of “The Last Efforts of the Logisticians” in (Poincaré
1952). Because Poincaré held that “There is no actual infinity” (p. 195, original
italics), he also rejected PD-type definitions of the natural numbers.

3. Although we have emphasized the strong connection between, on the

one hand, PD and platonism, and, on the other, BU and constructivism, note

that we have taken no position here regarding whether PD requires a platonist

perspective, or BU a constructivist one.

4. For example, if numbers are taken to be strings of strokes, we must ensure

that infinitely long strings of strokes are excluded from N.

5. The circularity becomes even more apparent if we try to formalize in set

theory the build-up method of forming the closure of a set A under an operation
f. The usual approachis to define recursively a sequence of sets Ag, Ai, Ao, ...

by letting Ap = A and, for each n, Anyi = { f(z): 2 € An}. The set A, can
then be defined to be the union ofall sets A,,. Of course, our sequence of sets

is indexed by the natural numbers, so it would be circular to use this method

(with A = {0} and f = S) to define the natural numbers.

6. Poincaré may be theearliest proponent of the BU approach conscious of

the distinction between it and the PD perspective. According to one definition,

Poincaré says, “a finite whole number is that which can be obtained by successive

additions, and which is such that n is not equal to n — 1,” while the other

holds that, as he puts it, “a whole number is that about which we can reason by

recurrence.” Poincaré continues: “The two definitions are not identical. They are

equivalent, no doubt, but they are so by virtue of an a priori synthetic judgment;
we cannot pass from one to the other by purely logical processes” (“The New

Logics,” reprinted in (Poincaré 1952, p. 173), original italics). The “a priori



Two conceptions of natural number 319

synthetic judgment” here is the validity of mathematical induction, for, as we

shall see shortly, inferring that induction holds from the BU definition requires

the use of induction itself. Because the second definition of natural number

(essentially, the PD account) is unacceptable to Poincaré (see note 2 above), he
concludes that the validity of mathematical induction cannot be established by

purely logical means from any adequate account of natural number and, hence,

that the logicist reduction of arithmetic fails.

7. Someone disturbed by a perceived inexplicitness in the BU definition

might alternatively offer the following amendment: specify that when the second

generation rule is iterated, the set of steps in the iteration must be Dedekind
finite, where a set is said to be Dedekind finite just in case it cannot be mapped

one to one onto any proper subset of itself. The amended definition is not

circular, for it does not employ the notion of “finite” or “natural number,” and

it avoids the use of induction in securing the effect of BU’s extremal clause. Yet,

this proposal would likewise be rejected by a proponent of BU for it continues

to involve an impredicativity. To say that a set is Dedekindfinite is to say that

there does not exist a function of a certain kind. This claim therefore involves

quantification over all functions, including those defined in terms of the natural

numbers. (For example, this is the reason why Solomon Feferman and Geoffrey

Hellman (1995) chose not to take this approach; see their note 3 and page 15.)

8. Michael Dummett, for example, seems to suggest that no replacement for

the extremal clause is needed:

Even if we can give no formal characterisation which will definitely

exclude all such elements, it is evident that there is not in fact any

possibility of anyone’s taking any object, not described (directly or

indirectly) as attainable from 0 by iteration of the successor opera-

tion, to be a natural number. (Dummett 1978, p. 193)

9. Even those who accept the completed infinite can defend the extremal

clause of the BU definition against the criticisms of the platonist, if they are

willing to accept the concept of finiteness as being understood in advance of the

characterization of the natural numbers, and then to use this concept to express

the extremal clause. This seems to be the standpoint taken by Feferman and

Hellman (1995). Their approach,in effect, is to prove the existence of structures

satisfying Peano’s axioms by constructing an example of one. The universe

of their example is defined to be the set of all those objects x such that there

exists a finite set containing precisely the predecessors of x underiteration of the

operation S, with 0 being the only one of these predecessors that does not itself

have a predecessor. This finite set could be thought of as recording the process

of constructing x by finite iteration of the successor operation, beginning with

0, and thus this definition could be thought of as a version of the BU definition.

Note that it is important that the recording set be finite so as to ensure that

the iteration is finite. (For their analysis, see the first line of their proof of

Theorem 7 on p. 10, and their definition of “Fin” on p. 4. The requirement

that the recording set be finite is enforced in their formal system by the axiom
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(Card), which guarantees that the set is Dedekind finite. This axiom is used to

prove that the induction axiom holds in their example. For some discussion of

the history of this proposal, and further elaboration on the relationship between

their definition and the BU definition, see the following note.)
Feferman and Hellman call their approach “predicativism”, or “predicative

logicism”, and contrast it with classical logicism as follows:

Classical logicism provides a complete analysis of the concepts “fi-

nite”, “infinite”, and “cardinal number”, but at the price of im-

predicative comprehension with all of its attendant “metaphysical”

commitments. Predicativism avoids the latter but must presuppose

the concept of “finite” in some form or other. However, [...] it can
do this in a natural way without thereby taking the natural number

system as given. (p. 15)

The fact that predicativism must presuppose the concept “finite” will make

it unacceptable to anyone who believes that this concept is as much in need

of analysis as the concept “natural number”. As Daniel Isaacson (1987) sug-

gests, the predicativist definition will be successful only if (i) the second-order
quantifier in the definition ranges over a domain that includesall finite initial

segments of N, and (ii) the domain contains no infinite sets. He concludes that
the definition therefore “does not fare significantly better on the score of avoiding

impredicativity than the one based on full second-orderlogic” (p. 156). Feferman
and Hellman (1995, note 5, p. 16) argue in response that the existence of the

required finite initial segments can be justified predicatively, but it seems to us

that they have failed to answerpart (ii) of Isaacson’s objection, namely that infi-
nite sets must be excluded from the domain of quantification. As we saw earlier,

it is this exclusion of infinite sets from the second-order domain that guarantees

that Feferman and Hellman’s definition will capture only natural numbers. In

fact the difficulty here is in effect the same as the difficulty that the platonist

finds with the BU definition; it is not the inclusion of the desired elements in the

domain that causes problems, but rather the exclusion of unwanted elements.

Charles Parsons also considers a similar definition and finds it wanting for

the same reason:

As a defense of the claim that induction on natural numbersis after

all predicative, this exercise is hardly impressive. What has been

assumed about finite sets will just reinforce the reply that although

perhaps one can escape the impredicativity of induction on natural

numbers, one merely throws the matter back to the notion offinite

set, where the same problemswill arise. (Parsons 1992, p. 148)

10. Feferman and Hellman (1995, note 5), say that their approach “realizes

in effect a suggestion attributed to Michael Dummett”. This appears to raise a

problem for our analysis, according to which Feferman and Hellman’s proposalis

to be reckoned a BU approach to the natural numbers, for Dummett’s suggestion

was originally attributed to him by Hao Wang, who claims that it “is more
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closely related to the Frege—Dedekind definition [than to the approach of Zermelo,

Grelling, and Bernays, who manage without the axiom ofinfinity]” (Wang 1963,

p. 52).
Illumination of this apparent conflict is not furthered by the variation one

finds in descriptions of Dummett’s suggestion. Wang attributes to Dummett a

definition of “N” according to which k € N just in case

(i) (VX)(OE X & (Vy)((ye X KY Fk) > Sly) € X)) 7k EX) and
(ii) (AX) eX & (Vy)((ye X &y Fk) > Sly) € X)).

Parsons, referring to Wang’s attribution to Dummett, offers a definition similar

to (i) and (ii) and traces the idea back to Zermelo and Grelling (Parsons 1987, p.
206). Isaacson, by contrast, though likewise referring to Wang’s attribution to

Dummett, offers only clause (i). He adds, however, that in orderfor (i) “to define
anything” (ii) must also obtain for every k (Isaacson 1987, p. 155). Feferman
and Hellman (1995, note 5) apparently following Isaacson, also give only clause

(i) when describing Dummett’s definition. In spite of this, their actual definition

is closer to (ii) than to (i), being essentially existential rather than universal.
This confusing variation might be due to different assumptions about the

range of the definition’s second-order quantifier. If it is assumed to include

infinite sets, then (ii) alone will not suffice to exclude all non-numbers (since
each such will render it true, for X includes N in its range), but (i) will. Hence,
under this assumption,(ii) is superfluous and(i) will do by itself. On the other

hand,if the range of the second-order quantifier is taken to consist only of finite

sets of all sizes, then (i) will not suffice to exclude all non-numbers(since the
antecedent of its instances will be false, if k is not a natural number), whereas
(ii) will. Hence, in this second situation, (ii) by itself suffices and (i) is not
needed. Offering both clauses, as Wang does, will inevitably be redundant, but

may be appropriate if one wishes to provide a definition that works whether or

not infinite sets are included in the range of the second-order quantifier.

We are now in a position to resolve the conflict presented in the first para-

graph of this note. If one is imagining that second-order quantifiers range over

infinite sets, then Dummett’s definition effectively consists in clause (i) and Wang
is correct to assimilate it to Frege-Dedekind’s PD definition: for the elimination

of non-natural numbers will require N itself to be in the domain of second-order

quantification. On the other hand, if one takes these quantifiers to range only

over all finite sets, as Feferman and Hellman do, then Dummett’s definition in

effect amountsto (ii) and therefore, for reasons given in the previous note, should
be likened rather to the BU definition.

In this context, it is worth mentioning another definition of the natural num-

bers, this time first offered by Quine (1961); see also (Quine 1969, pp. 75ff.).

According to this definition, k € N just in case

(iii) (VX)((kK EX & (Vy)(S(y) Ee X > yEX))H0EX).

If we assume that the second-order quantifier ranges over infinite sets, then this

definition captures all the natural numbers(sinceif k is a natural number then
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every set containing k and closed under predecessor will contain 0) and only them

(for if k is not a natural number, say an entity with infinitely many predecessors,

then the complement of N contains k and is closed under predecessor, but does

not contain 0, and hence the closure of {k} under predecessor will not contain

0).
However, contrary to Quine’s suggestion, the definition does not work to

exclude non-numbersif the range of the second-order quantifier is restricted to

finite sets of all sizes: for if k has infinitely many predecessors, then(iii) will be
vacuously true. If the domainis so restricted, then (iii) could be supplemented
by (iv):

(iv) (AX)(kK EX & (Wy)(S(y) € X > ye X)).

It is certainly true that if k is a natural number, then there exists a finite set

containing k and closed under predecessor. Furthermore,if k has infinitely many

predecessors, then it fails to satisfy (iv), for there will not exist a finite set of the

requisite kind. Can one, in this context, make do with (iv) alone? No,for (iv)

fails to rule out Caesar as a natural number, because there does exist a finite set

containing Caesar and closed under predecessor, namely {Caesar}. But, taking

X to be this set, we see that Caesar does notsatisfy (iii). In sum, if the second-
order quantifier ranges only overall finite sets, then one emendation of Quine’s

definition consists of the conjunction of(iii) and (iv). (See (George 1987) and
(Parsons 1987, pp. 210-1).)

It is not easy to say where this particular emendation of Quine’s definition

falls in our classificatory scheme, for it contains elements of both the PD and

the BU approaches. There is, however, another way of supplementing(iii) that

leads to a morestraightforward outcome. Consider:

(iv’) (AX)(kK EX & (Wy)(S(y)E X a yEX)&

(Vy)((ye X & y #0) — (Az)(S(z) =y))).

Clearly, if k is a natural number,it satisfies (iv’). Also, (iv’) rules out all non-
natural numbers, including Caesar, since he is unequal to 0 and has no prede-

cessor. Hence, when the second-order quantifier ranges only overall finite sets,

(iii) is superfluous and can be replaced by(iv’). Furthermore, (iv’) is plainly in
the spirit of a BU approach to the natural numbers.

Although Feferman and Hellman say that their own approach realizes Dum-

mett’s definition, it is in fact closer to (iv’) than it is to (ii), for their definition
employs closure under predecessor rather than closure under successor. (Their
definition differs from (iv’) in only one respect: they require that the set X be

the smallest set containing k and closed under predecessor. However, an exam-

ination of the proof of their Theorem 7 shows that this additional requirement

plays no role in the proof, and therefore could have been eliminated. Thus,(iv’)
captures the essence of Feferman and Hellman’s definition.)

Recently, Peter Aczel has shown that the existence of a structure satisfying

Peano’s axioms can be proven in Feferman and Hellman’s system without using

their axiom (Card), which restricts the range of the second-order quantifiers to
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Dedekindfinite sets (Feferman, personal communication). Aczel’s approachis,

roughly, to let the universe of the structure be defined by the conjunction of(iii)

and (iv), rather than (iv’). This conjunction characterizes the natural numbers
whether or not the range of the second-order quantifiers includes infinite sets.

However,if infinite sets are included then, as we observed earlier in this note,

the exclusion of non-numbersby (iii) requires reference to a collection, the com-

plement of N, that is defined in terms of N, the very set being defined. Thus,

despite Feferman and Hellman’s description of their formal system as “predica-

tively justified,” it seems questionable to us whether Aczel’s definition should be

called predicative. Aczel’s theorem can also be proven using the conjunction of

(i) and (ii), rather than the conjunction of(iii) and (iv). However, if infinite sets
are not excluded from the range of the second-order quantifiers, then the use of

(i) will once again render the definition impredicative.

11. There is a circularity in this argument, for mathematical induction will

be needed in order to show that P holds at every stage of the construction.

This is not a circularity in the BU definition of natural number; rather, it is

a circularity that appears in the justification of induction on the basis of that

definition. (It is reminiscent of the circularity Hume discovered in attempting
to justify empirical induction.) Yet the argument is, as Parsons has noted, “no

worse than argumentsfor the validity of elementary logical rules” (1992, p. 143).

One way of summarizing both this argument for induction from the BU

definition and the argument for why the PD definition captures only the natural

numbers (see above) is to say that the extremal clause and the principle of

mathematical induction are interderivable. For example, this is essentially what

S. C. Kleene says (1952, p. 22). While correct as far as it goes, we prefer not to

put the matter this way, for it obscures the distinctive approachesto the natural

numbers that we believe animate the two definitions.

Even more obscuring is to construe the extremal clause as saying that in-

duction is valid. Parsons, for example, at one time articulated the view that

the principle of induction “could be regarded simply as an interpretation of”

the extremal clause. Yet, he did not then advance the position and in fact also

mentioned the possibility that “the induction principle[...] will be in some way

a consequence of” the extremal clause (Parsons 1967, p. 194). More recently,

however, he appears to endorse this view, as when he describes induction as “a

principle cashing in our intention that the numbers should be what is obtained

by the introduction rules and those alone” (Parsons 1992, p. 143). This way of

viewing the matter no doubt contributes to his analysis of possible options:

The readily available alternatives to something like the induction-

definition model of the concept of natural number|...] would be to
give it an explanation that is blatantly circular, such as, the natural

numbers are what is obtained by beginning with 0 and iterating the

successor operation an arbitrary finite numberof times, or to take the

concept of natural number as given and theprinciple of induction as

evident without any explication connecting it with the concept of
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natural number. Either alternative seems to me a counselof philo-

sophical despair that leaves us with no motivation for the principle

of induction. (Parsons 1992, p. 143)

Yet, as we have seen, these alternatives are not exhaustive, for the proponents

of the BU definition view it as neither “the induction-definition model of the

concept of natural number” (i.e., the PD definition), nor as circular, nor as

failing to provide a justification of induction.

Again, we are not arguing in favor of one or the other definition, but rather

attempting to delineate two philosophically distinct approaches to the nature of

number.

12. For example, this thought may be behind Parsons’ claim that “If one

explains the notion of natural number in such a way that induction falls out of

the explanation, then one will be left with a similar impredicativity”— similar,

that is, to the impredicativity of the PD definition (Parsons 1992, p. 141). For

a discussion, see (George 1987).

13. Parsons gives voice to this view as well when he suggests that “induction

is constitutive of the meaning of the term ‘natural number’” (Parsons 1992,

p. 155). Dummett, also, believes that “the meaning of the expression ‘natural

number’ involve[s], not only the criterion for recognising a term as standing for a

natural number, but also the criterion for asserting something aboutall natural

numbers” (Dummett 1978, p. 194).

14. Edward Nelson, for example, adopts a principle of induction restricted

to those predicates involving bounded quantification (Nelson 1986, p. 2).

Another example is (Feferman and Hellman 1995), in which the authors es-

tablish induction only for formulas containing no quantification over the collec-

tion of all classes. In fact, it can be shown that induction for all formulas is not

provable in their system EFSC*. The reason is that, if full induction were added

to EFSC* as a new axiom, it would be possible to define a satisfaction relation

and use it to prove that all theorems of PA are true in N, and therefore that PA

is consistent. But as Feferman and Hellman show in their Metatheorem 9, the

consistency of PA is not provable in EFSC*.

It might be helpful to spell out a few more of the details of this proof. The

satisfaction relation for formulas in the language of PA can be represented as a

function assigning to each pair (y, s), where y is a formula and s is an assignment

of values to the free variables of y, one of the values 1 or 0, representing true and

false. By assigning Godel numbers to both formulas and assignments of values

to variables, we can think of this function as mapping N x N to {0,1}. Let us say

that a function from {0,1,2,...,n} x N to {0,1} is an n-satisfaction function if
it satisfies the usual recursive definition of satisfaction for formulas with Godel

numbers up to n. Then wecan prove by induction that (Vn € N)(SF)(F is an n-
satisfaction function). Note that the formula being proven by induction contains

the quantifier “(SF)”, where “F” stands for an infinite class, so the weak form

of induction proven by Feferman and Hellman would not be sufficient for this
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proof. Oursatisfaction relation Sat(z, y) can now be defined to be the formula:
(AF)(F is an z-satisfaction function & F(z,y) = 1).

It is interesting that full induction is provable in a slight strengthening of

Feferman and Hellman’s system. Let EFSC* be the same as EFSC*, except

with no restrictions on the formula y in (Sep), the separation axiom for finite

sets. Then we can prove full induction in EFSC* by imitating the proof of

Feferman and Hellman’s Theorem 8. Let y(n) be any formula, and suppose

we have both y(0) and (Vn)(y(n) — y(n +1)). If ~y~(m) for some natural
number m, then lett B={n:n<m}, a finite set since m is a natural number,

and let Y = {n € B: -y(n)}. Then, as in Feferman and Hellman’s proof of
their Theorem 8, it can be shown that Y is both finite and Dedekind-infinite,

contradicting the cardinality axiom of EFSC*t. Note that the definition of Y

requires the strengthened version of (Sep), since y might involve quantification

over the collection of all classes.

It is difficult to say whether or not EFSCt should be considered predicative.

The strengthened version of (Sep) allows one to quantify over the collection of

all classes when defining a subset of a finite set, and such a definition would

appear to be impredicative. But even the original version of (Sep) allows one to

define a subset of a finite set by quantifying over the collection ofall finite sets,

a collection that includes the very set being defined, and Feferman and Hellman

do not consider this to be impredicative. Their reason is that they “assume that

the notion of finite set is predicatively understood, governed by some elementary

closure conditions” (p. 2). Feferman and Hellman appear to take this to mean

that a definition of a set that involves quantification over the collection of all

finite sets is predicative, but one involving quantification over the collection of

all classes is not. Thus, they consider their version of (Sep) to be predicatively

acceptable, but would presumably reject the strengthened version of (Sep) as

impredicative.

Some might question whether such closure conditions for the collection of

finite sets should be considered to be predicatively acceptable. But if closure

conditions are to be accepted, we believe an argument can be madefor a closure

condition that implies the strengthened version of (Sep). One way of justifying
such a closure condition would be to argue that given a finite set, it is possible

to make finite list of all subsets of that set. Each of these subsets is definable

by a predicative definition that simply lists its elements. Any other definition of

a subset of the original finite set, even an impredicative one, must pick out one

of these subsets, whose existence has already been established by a predicative

definition. Thus, for any definition that specifies unambiguously which elements

of the finite set are to be included in a subset, there must exist a subset containing

precisely the elements specified by that definition. This reasoning would apply

whether the definition involves quantification over only the collection ofall finite

sets or quantification over the collection of all classes, so it would justify not only

the original version of (Sep), but also the strengthened version.

15. For example, see the quotation from Parsonsin note 12; see also (Nelson
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1986, pp. 1-2).

16. This term is suggested by Ludwig Wittgenstein’s (1921, 3.263).

17. Thus, we dissent from what seems to be Michael Dummett’s position in

(Dummett 1993); see p. 443. For some further discussion, see (George 1994).
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18
The tower of Hanoi

W. Hugh Woodin

1 Introduction

A concern perhaps more prevalent amonglogicians than among mathematicians

in general is that the formal axioms chosen for set theory lead to a contradiction.

Further, possible inconsistency has been a frequent point in thecriticism of the

study of large cardinals in general. This is without question a valid concern;

howevertheintricate structure that has evolved in the course of this study seems

to provide justification for the belief in the consistency of these axioms.

By Godel’s Second Incompleteness Theorem, any system of axioms of rea-

sonable expressive power is subject to the possibility of inconsistency, including

of course the axioms for number theory. A natural question is how profound an

effect could an inconsistency have on our view of mathematics or indeed on our

view of physics.

Define an iterated exponential function Exp,(n) as follows by induction on
k:

(1) Exp; (n) = 2";
(2) Exppyr(m) = 2P*Pa(),
By a routine Godel sentence construction we shall produce a formula 2(21)

in the language for set theory which implicitly defines a property for finite se-

quences. For a given sequence this property is easily decided; if s is a sequence

of length n with this property, then s is a sequence of non-negative integers each

less than n and theverification can be completed (with appropriate inputs) in

significantly fewer than n? steps.

If there exists a sequence of length n with this property, then

Exp9911 (7)

does not exist, in the sense that there is a finite state Turing machine which

cannot halt (the machine has no final state), and yet cannot run for this many

steps. This machine is easily specified in advance and does not depend on n.

The philosophical consequencesof the existence of such a sequenceare clearly

profound, for it demonstrates the necessity of the finiteness of the universe.

Clearly such a sequence should not exist. However this sentence has the feature

that, if abitrarily large sets can exist, then, for each suitable n, there is no proof

of length less than n that no such sequence of length n can have this property.

329
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We shall make these claims more precise.

Can such finite sequences exist? In the universe of sets there are very rea-

sonable worlds (that is, models) in which they do exist, though in these models

the sequences have nonstandard length (of course). Perhaps our experience in

mathematics to date refutes the existence of such sequences with more accessible

length. It would be comforting to know that no one will by any meansfind such

a, sequenceof length say 1024. A consequence of quantum mechanics (as opposed

to classical mechanics) is that one could build a device with a non-zero (though
ridiculously small) chance of finding such a sequence, if such a sequence exists.

Weshall argue that there are limitations to the extent our experience in

mathematics to date refutes the existence of such sequences. In fact we shall

argue that a consistent philosophical view must in effect acknowledge the possi-

blity that the sequences of length 1024 could exist, just as those who study large

cardinals must admit the possibility that the notions are not consistent.

There are related mathematical questions which we shall also discuss.

2 Preliminaries

There are some metamathematical considerations to be dealt with. We shall

work as mathematicians. We assume that the universe of sets exists and that

the accepted axioms hold for this universe. Our constructions refer to objects

in this universe. This is simply a device to facilitate our discussions. Ourfinal

productis a concrete object, specifically a formula which we could for amusement

explicitly write down.

We detour and develop the basics of mathematical logic that we shall need.

Weshall assume familiarity with set theory at a naive level, though werecall the

basic axioms, as follows.

Axiom 0 There exists a set.

Axiom 1 (Extensionality) Two sets A and B are equal if and only if they
have the same elements.

Axiom 2 (Pairing) If A and B are sets, then there exists a set C = {A, B}
whose only elements are A and B.

Axiom 3 (Union) If A is a set, then there exists a set C whose elements are
the elements of the elements of A.

Axiom 4 (Powerset) If A is a set, then there exists a set C whose elements
are the subsets of A.

Axiom 5 (Regularity or Foundation) If A is a set, then either A is empty

(i.e., A has no elements) or there exists an element C' of A whichis disjoint

from A.

Axiom 6 (Comprehension) If A is a set and P(x) formalizes a property of
sets, then there exists a set C whose elements are the elements of A with

this property.
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Axiom 7 (Replacement) If A is a set and P(z,y) formalizes a property of
pairs of sets which defines a function of sets, then there exists a set C

which contains as elements all the values of this function acting on the

elements of A.

Axiom 8 (Axiom of Choice) If A is a set whose elements are pairwise dis-
joint and each nonempty, then there exists a set C' which contains exactly

one element from each element of A.

Axiom 9 (Infinity) There exists a set W which is nonempty and such that,

for each element A of W, there exists an element B of W such that A is

an element of B.

We make some remarks.

Axiom 6 and Axiom arereally infinite lists or schemata corresponding to

the possibilities of the acceptable properties. ‘These axioms are vague in that it

may not be clear what an acceptable property is. Intuitively these properties are

those that can be expressed using only the fundamental relationships of equality

and set membership. This becomes clear with an understanding of elementary

mathematical logic.

Axioms 0-8are (essentially) a reformulation of the axioms of numberthe-
ory. It is the Axiom of Infinity that takes one from number theory to set

theory. An exact reformulation of number theory is given by Axioms 0-8 to-

gether with the negation of Axiom 9 and a strengthened form of Axiom 5

(which is necessary to eliminate certain sets).
Mathematical constructions specify objects in the universe of sets; this is our

informal point of view. For example, by using a property that cannot be true

for any set, namely x # z, one can easily show using Axiom 0 and Axiom 4

that there exists a set with no elements. By Axiom 1 this set is unique; it is

the empty set and is denoted by 9@.
Wediscuss several examples of how familiar mathematical notions are for-

malized as sets. If A and B are sets, then the ordered pair (A, B) is the set

{{A},{A,B}}. This set exists by three applications of Axiom 2. This defini-
tion of an ordered pair is due to von Neumann,andit is easily verified that this

definition performs as desired; ie., if (A,B) = (C,D), then A=C and B = D.

Now it is routine to define the notion of a function as a set of ordered pairs, with

the obvious constraints.

Wedefine those sets which we view to be the non-negative integers or whole

numbers. A set A is transitive if each element of A is also a subset of A. A set A
is an ordinalif it is transitive and has the additional property that, if B,C are

elements of A, then BEC, B=C, or Ce B. (This definition originates with

von Neumann.) It is not difficult to show that, if A and B are ordinals, then
AéB,A=B,or B€ A. For this, one uses Axiom 5 and Axiom 6. Thus the

relationship of membership linearly orders the ordinals. If A and B are ordinals

we write A < B to indicate that A € B. Suppose that A is an ordinal. Then

A= {B|B is an ordinal and B < A};
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each ordinal is simply the set of ordinals which precedeit in the given order. For

each ordinal A, there exists an ordinal B such that A < B and such that, if C’

is an ordinal with A < C, then either B = C or B < C.. The ordinal B is the

successor of A andit is denoted by A +1. It is easily verified that

A+1=AU{A}.

Thus the natural definition of a finzte ordinalis as follows. An ordinal A is finite

if, for each B € A, either

B=9% or B=C4+1 forsome CEA.

Clearly the finite ordinals form an initial segment of the ordinals. The first

four ordinals are:

0, {0}, {0, {OF}, {0, {0}, {0, {O}}}.

These are the numbers 0,1,2,3. More generally the finite ordinals are the non-

negative integers. The Axiom of Infinity in conjunction with the other axioms

implies the existence of an infinite ordinal. The least infinite ordinal is denoted

by w. Thefinite ordinals are exactly the ordinals A such that A < w.

We now define finite sequences. Suppose that M is a set and that n is a

non-negative integer(i.e., a finite ordinal). The set of n-tuples of elements of M
is the set M” of all functions

f:n—-M.

The finite sequences of elements of M is the set

M<* =|J{M"|neo}.

If s and ¢ are finite sequences of elements of M, then s+¢ is the finite sequence

defined by concatenating s and t. Thus, if s € M* and if t € M/, then we define

s+te Mt) by
_ s(k) ifk <i,

HNw={eP» if k >i.

3 First-order logic

Wegive a brief development of formal logic. In this we continue to discuss objects

in the universe of sets. Formal logic involves the definition of language and the

definition of proof for the language. Intuitively the language consists of certain

expressions involving symbols from an alphabet. Formally, the alphabet is the

set of finite ordinals, the first seven of which are regarded as the logical symbols

and as such are denoted by

Ef()v4a,
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and the remaining are the variable symbols and as such are denoted in increasing
order by

LQ, L1,22,.--,;Lk,----

The expressions of our language are certain finite sequences of elements of

the alphabet. We adopt the usual conventions and write for example

(21=2)

to indicate the 5-tuple

((, T1; =, D1; ))s

which is really the function

f:5-7W

given by f(0) = 2, f(1) =8,f(2) =1, f(3) = 8, and f(4) =3.
Also, if w and y are finite sequences of elements of the alphabet, then

(ww V vy)

indicates the finite sequence

(()+(H) +(VY) +(e) + ()).

The expressions of the language are formulas; these are defined by induction.

We begin with the atomic formulas. 'These are the 5-tuples of the form

(x;=2z)

or of the form

(x;Exrz).

The formulas are generated from the atomic formulas by the following oper-

ations or rules of formation.

Connective Rule Suppose that w and » are formulas. Then

(~Vy) and (7y)

are formulae.

Quantifier Rule Suppose that w is a formula and that 2; is a variable. Then

(sz,~p)

is a formula.

Suppose that w and » are formulas. The formula wp is a subformula of y if it

is a consecutive subsequence of wy. For example consider the formula

((v1=22) V (Areq(r2=a3))).

Thus (21=22) is a subformula of this formula, as is the formula (x2=z3). Note
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that the formula (x,;=z3) is not a subformula, though it is a subsequence of the

given formula.

It is not difficult to show that the subformulas of a formula w are exactly

the formulas involved in the formation of w. Thus the formula ~ has a unique

presentation as a finite sequence generated from the atomic formulas using the

rules of formation.

Suppose that w is a formula. An occurrence of dz; in wp is an occurrenceof J

immediately followed by an occurrence of z;. The scope of an occurrence of Iz;

in w is the unique subformula defined by that occurrence of 4x;. For example in

the formula

((21=22) V (Are(x2e=z3))),

the first occurrence of x2 is not in the scope of any occurrence of Jr. The second

occurrence of r2, as well as the first occurrence of x3, are each within the scope

of the first occurrence of 5x9.

All of this serves to motivate the following definition. An occurrence of a

variable x; in a formula w is free if it is not within the scope of any occurrence

of dxr;; otherwise the occurrence of x; is bound. A variable x; is a free variable

of w if there is a free occurrence of x; in w.

A formula wp is a sentence if w has no free variables.

Weshall write ~(zo,..., £2) to indicate that w is a formula such that every
free variable of w is in the set {ro,21,..., Zn}.

4 A definition of truth

A structure or model for our languageis a pair

M = (M,E)

such that M is a non-empty set and such that E is a binary relation on M;ice.,

ECMxM,

where M x M is the set of ordered pairs of elements of M.

Every set naturally defines a model for our language by defining F to be the
binary relation of set membership restricted to the set. For example, if X is a
non-empty set then the model corresponding to X is the pair

(X, F),

where

E = {(a,b)|aeX,beEX, andaed}.

We denote the model (X, EF) by (X,€). Models of the form (X,€) are standard
models.

Suppose that

M =(M,E)
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is a model, w is a formula with its free variables contained in the set

{xo,21,- ‘ , Zn } ’

and that ao,@1,...,@n, are elements of M. There is a natural interpretation of

the truth of win M at (ao,...,@n). This arises from interpreting the symbol‘=’

by the relation of equality, the symbol ‘€’ by the relation E, ‘V’ by ‘or’, ‘“’ by

‘not’, ‘a’ by ‘there exists’, and for each 1 < n, ‘x,’ by a; at each free occurrence

of x; in wp.

Wewrite

M E wlao,---, Gn]

to indicate that w is true in M at (ao,...,@n).
If w is a sentence, then the truth of » in M does not depend on the choice

of (ao,---,@n), and we can unambiguously define w~ to be true in M orfalse in
M. In this case we write

MF ¢

to indicate that w is true in M.

We give a more precise definition of

M E wlag,..-, an]

as follows.

Suppose that S' is a set of formulas and that S is closed under subformulas;

ie., if y € S and if y is a subformula of w, then wy € S. Suppose that n is such

that every variable occurring in some formula of S is in the set {xo,...,2,}.

Further, suppose that M = (M, E) is a model. An oracle for the pair (M, S) is

a function

I:SxM"t {0, 1}

such that, for all (ag,...an) € M"*!, the following hold.

Atomic Case (1) If (2,;=z,;) € S, then

I((z;=2;), (@o,---,@n)) = if and only if a; = a;.

(2) If (x;Ex;) € S, then

I((x;€x;), (ao,---,@n)) = 1 if and only if (a;,a;) € E.

Connective Case (1) If (1 V ve) € S, then

I((1 V we), (@o,---,@n)) =1

if and only if

I(1, (@o0,---,@n)) = 1 or I(oe, (ao,..-,@n)) = 1.

(2) If (-) € S, then

I((>), (a0,.-+,@n)) = 1 if and only if I(, (ao,...,an)) = 0.
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Quantifier Case If (dzr;1) € S, then

T((Sxi), (ao,-.--,@n)) = 1

if and only if

I(y, (do, wee »Aj-1, 4, A741; oe .An)) =]

for soomeae M.

It is routine to check that the function J exists and is uniquely specified.

Further, if I, : S; x M"++ — {0,1} and Ip : Sp x M"t! — {0,1} are oracles for
(M, 51) and (M, So), respectively, and if S; C Sg, then J; is the restriction of I,

to S,x M"+!, Similarly, if J, : Sx M™+! — {0,1} and Ig: 9x M™*! — {0,1}
are oracles for (M,S), and if ny < ne, then

I(y, (do, os ,Qn;)) — In(y, (do, me : Ong))

for all » € S and (ao,...,@n,) € M™*?.
Suppose that w is a formula, and let S be the set of subformulas of w (in-

cluding ~). Suppose also that I: S x M"t! — {0,1} is an oracle for (M, S$)
and that (ao,...,@n) € M"*+. Then we define

M = wlao,.--, Gn]

if I(W, (ao,..-,@n)) = 1. This is well-defined, and the relation

M |= ylao,.--,@n|

depends only on those a; for which the variable x; is a free variable of w. Thus,

if w is a sentence, then

M - wlao,.--, Gn]

does not depend on (ao,...,@,,) and is independent of n. Weleave the verification
of these claims to the dedicated reader. Our purpose here was the definition of

an oracle, a notion we shall require later.

We give sometrivial examples. Suppose first that w is the sentence

(Say (r2(>(r1=22))))

and that M = (M, E) is a model. Then M E if and only if M contains at
least two distinct elements. Secondly, the sentence

(Ari1(-(r1=21)))

is not true in any model.

5 A definition of proof

We denote by £(=,€) the set ofall formulas of our language. We remark thatthis
set exists as a consequence of our axioms, specifically the Axiom of Infinity.

A theory is a subset of £(=,€) which contains only sentences.
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Suppose that T is a theory and that w is a sentence. We define the notion

that the theory T proves w. We write

Thy

to indicate that T' proves w.
It is useful to introduce some standard abbreviations. The first expresses

‘implies’ in terms of ‘not’ and ‘or’, the second expresses ‘and’ in terms of ‘not’

and ‘or’ and the third expresses ‘if and only if’ in terms of ‘not’ and‘or’.

Suppose that ~ and » are formulas. Then

py

indicates the formula ((-~) V y),

(pA 9)

indicates the formula (—((-=w) V (-w))), and, using these abbreviations,

(pb > ¢)

indicates the formula

(py vy) A(e y)).

Suppose that w is a formula and z; is a variable. We express‘forall’ in terms

of ‘there exists’ and ‘not’, letting

(Vz,1)

indicate the formula (=(Sz;(-~))).
Suppose that S is a set of formulas. A formula wy is obtained from S' by

modus ponens if there exists a formula y € S such that (py > w) € S.
Suppose that T is a theory. A proof from is a finite sequence

(Wo, tae Yn)

of formulas such that, for alli <n, wy; € T, yy is a logical axiom, or vy; is obtained

from { We lk< i} by modus ponens.

Note that, if (Wo,..-,%n) is a proof from T’, then wo and wyare necessarily

elements of J or logical axioms.

It remains to specify the logical axioms. To avoid a technical digression we de-

fer this to the appendix. Intuitively the logical axiomsare formulas ~(x0,..., 2x)

such that for trivial reasons M — w[ao,...,a@%] for any model M = (M, E) and
for any (do,...,a%) € Mk+l For example, the formula (1;=21) is a logical ax-

iom. Werestrict the list slightly so that the verification that a formula of length

n is a logical axiom is relatively simple, as is the custom in computer science.

Suppose that T is a theory and that ~ is a sentence. Then

Trey

if there is a proof (wWo,...,Wn) from T such that pp = wp.
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Suppose that T is a theory and that M is a model. Then we write M — T
to indicate that M — for all y € T. Suppose that w is a sentence. We write

TEY
to indicate that, for all models M, M — w whenever M FE T.

The connection between the notions of ‘proof’ and ‘truth’ is the relation

between Tt w and TE w.

Theorem 5.1 (Gédel’s completeness theorem) Suppose that T C L(=, €) is a
theory and that w € L(=,€) is a sentence. Then the following are equivalent:

(1) THY;
(2) TK y. o

6 The formula

Our pathological sequences will be associated to finite integers n of the form

1074*. These will be specified by producing for each k a sentence of our language,

L(=,€). For technical reasons it is important that the sentence we indirectly
associate to n be ‘short’. These constructions require the following technical

devices.

The Xio-formulas are the formulas generated from the atomic formulas using

the operations given by the Connective Rule and the following modified version

of the Quantifier Rule.

Bounded Quantifier Rule Suppose that yw is a formula, x; is a variable, and

that x; is a variable. Then

(Ar, ((xsEa3) A v))

is a formula.

Suppose that w is a formula. The universal closure of w is the sentence y*,
obtained from w as follows. Let rn,,...,2%n, be the free variables of ». Then y*

is the formula indicated by

(Vin,(..-(VEn,W)---))-

Suppose that w is a formula and that x; is a variable with no occurrences in

wp. Let w[x,;:2;] be the formula obtained from w by substituting x; for each free

occurrence of z;. For example, if y is the formula

(Sr9(x1=29)) V (xpEx2)) ,

then ~[xr3:Zo| is the formula

((Aro(r1=20)) V (x3€22)) .

Wefirst define the theory with which we shall be working; it is our base

theory, and we denote it by Jp. The elements of Zo are the universal closures of

the formulas generated as follows.
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Axiom I (Extensionality):

(V1 (Vare((a1=22) — (Vr3((x3Ea1) + (z3Ez2))))))

Axiom II (Xp-Regularity):

(Saro((Axro((toEx1) AY))—(((r2Ea1) Ap2) A (Wara(7((w4E21) A(WaA(24€2))))))

where w is a %io-formula with no occurrences of the variables x2 and 24,
we is the formula w[x2:z0], and a4 is the formula ~[xr4:x9].

Axiom I is the Axiom of Extensionality andis, as given, a sentence. The

axioms generated by Axiom IT are forms of the Axiom of Regularity.

We caution that this is a rather weak theory; it contains no axioms for gen-

erating sets. If M is any non-empty transitive set, then

(M, €) E To.

Weassign to certain finite sets A a formula, ~,4(Z0), that completely specifies
the set. For example, to the empty set we assign the formula

(Vx1(7(21Ez9))).

The sets that we are interested in are finite ordinals and finite sequences of

ordinals. Wefirst handle the finite ordinals. We proceed by induction. We have

just defined 7%. Suppose that k is a finite ordinal and that 7; is defined for

i<k. Let n = 2k + 2, so that, by induction n is the least natural number such

that x, does not occur in the formula y,. Then x41 is the formula

(Vtn((tnEL0) > (Helen 2 Lo] V (Atn41(Veltn41 : Lo] A (ToETn+1)))))) -

Now supposethat A is the orderedpair (7,7), where 2 and j are finite ordinals. It

is routine, though cumbersome, to define w(;,;). First we define w.;} and 4,5}.

Let n = 2+2-max {2,7}. As above, n is the least natural numbersuch that x,
does not occurin either ~; or wj. Then w1;} is the formula

(Wrn((LnEL0)  YilTn:Xo])) ;

and ,;,;} is the formula

(Van ((tnExo) + (Piltn: 20] V o;[2n:20]))).

Also ;,;) is the formula

(Van41((Ln41E20) + (Yay V Yeg})))-

Finally suppose that A is a function

A:i+1vrjt+l,

where 7 and j are finite ordinals. Let n be the least natural number such that

Z, does not occur in any of the formulas =x,4(,4)) where k < i+ 1. For each
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k<a4+1, let y, be the formula

W(k,A(k)) [En : Lo] -

Then w, is the formula

(Van ((tnExo) + (.--((Yo V Y1) V Ya)... V Ya)))-

We need to define the length £(A) of a proof. This we define in the obvious

fashion. Suppose that w is a formula and that ~ = (mo,...,mx). Then

£() =domyp=k+1.

Suppose that (wWo,...,W,) is a sequence of formulas. Then

k

£((Wor-++1e)) = de L(di).
4

We makethe following observation. Suppose that A is a proof and €(A) <n.

The formulas of A can involve at most n variables and so, by substituting, if

necessary, we can suppose that all the variables occurring in the formulas of A

are included in the set {xo,...,2,}. It follows that A can be codedin a natural
fashion by a binary sequence of length at most

n{logs (n)| ’

where [z] is the greatest integer function.
We now define the Gédel sentences from which we shall obtain our formula.

This requires the construction of formulas that express many of the concepts

we have defined. The explicit construction of these sentences is a tediousaffair,

which weshall, for the most part, spare the reader. For example we have defined

an ordered pair. A formula that expresses this is

JaeIxg3z34r4((r3€z9) N (x4Ex9) A (x1 E23) A (x1Ex4)A

(12€ar4) A (VW25(((a5E€x3) > (L5=21))A

((t5Er4) > ((%5=21) V (5=22)))))) ,

where we have dropped some parentheses and used our abbreviations.

Weindicate these formulas as follows. The formula above asserts that ‘zo is

an ordered pair’. We denote this formula by

“[ Zo is an ordered pair”.

Similarly

‘“ is a function”

indicates the formula we could write down (with painful effort) for the defini-
tion of a function. This formula would involve the formula above for specifying

ordered pairs. Of course there is no unique way of constructing these formulas,

but there are natural formulations based on the definitions we have indicated.
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Similarly it is straightforward to find formulas for

‘“ is a transitive set”,

‘ is a finite ordinal”,

and for

“{ Zo is a finite sequence”.

One formula we shall need is a formula which expresses

“[ x0 is a finite ordinal, is a finite ordinal and = 2 [£0 |p ,

Such a formula may be specified using the previous formulas by formalizing the

usual definition; m = 2” if there exists a sequence s of length n+ 1 such that

s(0) = 0, such that, for all k <n, s(k +1) = 2-s8(k), and such that m = s(n).
The axioms of Jo prove that this uniquely specifies 2”.

This formula in turn requires a formula expressing

“zo is a finite ordinal, is a finite ordinal and = 2- [zo]’,

which can be defined in an analogousfashion, noting that one can easily specify

a formula expressing

“{ £0 is a finite ordinal, is a finite ordinal, and = +2”,

From these formulas we easily obtain a formula which expresses

“[ £0 is a finite ordinal, is a finite ordinal, and = Expy911([o})”.

Wecontinue the discussion of the formulas that we shall need.

Perhaps more confusing at first is the formula

‘ is a variable”,

or the formula,

“[ zo is the variable x4”.

The latter is simply the formula

“ is the finite ordinal 11”,

which can be taken to be 74.

Wediscuss some formulas that are perhapsa little moredifficult to construct.

Wefirst consider the formula

“ is a formula”.

For the construction of this formula we define the notion that a set is a formula

witness. A set A is a formula witness if A is a finite sequence A =(ao,..., ax)

such that ao is an atomic formula and such that, for each i+1 < k, aj41 is
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an atomic formula or a;41 is obtained from elements of {ao,...,a;} by a single

application of one of the rules of formation. Thus

“ is a formula”

is the formula

(Ax, (“ is a formula witness” A “ occurs in [z;]”)).

From this formula it is routine to build the formulas indicated by

“ is a logical axiom”,

indicated b

, [20] °0 is a sentence in the theory To”,

and indicated by

“{xo is a proof from Tp”.

The purpose of this formalization of our formalization (and this is the essence
of Gédel sentences in general) is that we can build sentences which refer to their
own provability.

Wefirst give the standard example of a Godel sentence modified to our con-

text (in the language £(=, €) andrelative to the theory Tp).
Let ©(xo) be the formula:

“ is a formula with only one free variable, x”

A(Aar1 (Are(“ is the sentence (=(Az0([20]A pa))) where A = [zo]”

A “ is a proof of the sentence from the theory To”))

Let © be the formula #4, where A is the formula ©. Let 2 be the sentence

(Aro (® A 0)).

The sentence 2 is a Gédel sentence. In essence 1) asserts that its negation, (=Q),
can be proved from the theory Jo.

By the usual arguments it follows (within our universe of sets) that the the-
ory Io does not prove 2 and To does not prove (=); i.e., the sentence 2 is

independent of the theory Jo. We give the argument.

For trivial reasons, Jo cannot prove 2. This is because

({O} ’ €) EF To

and clearly

({O},€) F (70).

Therefore we have only to show that To 1’ (=Q). Assume toward a contradiction
that To + (=). Let M be any transitive set containing such a proof and closed
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underthe necessary witness, so that (M,€) — “Tp + (=Q)”. Then (M, €) — Q,
but (M, €) To, and so (M,€) — (7-=Q), which is a contradiction.

The sentence 2 is too pathological even for our purposes; a proof of (7Q)

cannot belong to a model of Jo with any reasonable extent beyond the length
of the proof. The sentences we seek are obtained by two modifications of the

formula ®.

Let ®*(xo,21) be the formula:

“ is a formula with only two free variables, x9 and 2,”

A(Are (Ax3(“ is the sentence (>(Sr1 ((Ax0([0] A wWa))

(Axo ((zo=21) A WB))))) where A = and B = [z, |”

A “| £2 is a proof of the sentence from the theory To”

A“ is a finite ordinal”

A(Ar4(“ — 1074" where k = [e1]”

AWA “the length of is less than [%4]”))))).

The formula Y(z4) shall be defined below. Informally WV asserts that there
exists a fragment of the universe whichis reasonable.

Let ©* be the formula w,, where A is the formula ®*. Let (x) be the

formula

(Ar9(®* A O*))

and, for each positive integer k, let Q, be the sentence,

(Sa1(Q A (Aro((Zo=21) A x))))-

Roughly (ignoring the effect of V), the sentence 0, asserts that there is a
proof from Tp of (=x) of length less than n, where n = 1074*. The purpose of

the function f(k) = 10?4* is to ensure that the length of Q, is smallrelative to

the numbern.
The indicated function, f(k) = 10?4*, is somewhat arbitrary and can be

replaced by any reasonable function of sufficient growth.

We now define the formula U(x4). Unfortunately this will seem rather tech-
nical even when presented in our informal manner for specifying formulas.

We fix some more notation. Suppose that X is a set. Then

P(X) ={Y|¥ CX},
and thus the formula

“ry — P(20)”
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asserts that x, is the powerset of Zo.

Let W(z4) be the formula:

(Ars ‘“ is a 1001-tuple (Ao, oe , A1000) where

Ao = EXP1991 ({ £4}); for eachi < 1001, Aj4i = P(Ai);

and the standard model corresponding to Aioo0
satisfies each instance of the axiom of comprehension

which belongs to the set Aq”)

We expand this further:

(Ags (Ar6(Sxr7(Azg “ is a 1001-tuple (Ao, ..., A1oo0)

such that Ao = Expjo91([4 |);
for eachi < 1001, Aj44 = P(A;); Aa = and Aiooo = [x6 |”

A“|a7]is a function J: S x M™ — {0,1} , where S
is the set of formulas which belong to [vs], m= Ap,M = ,

and I is an oracle for ((M, €), S) such that I(w,b) =1
for all b € M™ andforall formulas w such that

w is an instance of the axiom of comprehension.”))))

Thus 0, asserts that there is a proof from To of (=O) of length less than

1024* and further that there exists a reasonable transitive set to which this proof

belongs. The formula WV specifies the exact nature of this transitive set. Thereis

no real reason for our particular choice; one could quite easily modify it, perhaps

requiring that the transitive set be larger relative to n and satisfy more sentences.

In our universe of sets (~Q,) is true and so there is a proof of (~Q;,) from
To. It is not clear just how short such a proof can be. This is a very interesting

question. The witness for armageddonis a proof of (=Q;) from To of length less -
than 1024*.

We now make a connection with the title of this chapter. It refers to the

game called The Tower of Hanoi. One description of this game, redolent of a

bygoneage, is the following,! where the gameis called the Tower of Bramah:

In the great temple at Benares, beneath the dome which marks the

centre of the world, rests a brass-plate in which are fixed three dia-

mond needles, each a cubit high and as thick as the body of a bee.

On one of these needles, at the creation, God placed sixty-four discs

of pure gold, the largest disc resting on the brass plate, and the oth-

ers getting smaller and smaller up to the top one. This is the Tower

of Bramah. Day and night unceasingly the priests transfer the discs

from one diamond needle to another according to the fixed and im-

mutable laws of Bramah, which require that the priest must not move

more than one disc at a time and that he must place this disc on a

needle so that there is no smaller disc below it. When the sixty-four

discs shall have been thus transferred from the needle on which at the

creation God placed them to one of the other needles, tower, temple,
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and Brahmins alike will crumble into dust, and with a thunderclap

the world will vanish.

The number of separate transfers of single discs which the Brahmins must

make to effect the transfer of the tower is 2°* — 1, that is,

18 446 744073 709551615.

There is an analogy between the Tower of Hanoi and our construction.

7 Evidence

Webriefly investigate, for various k, the possibilities for evidence that there is

no proof of (=Q;) from Tp of length less than 1074". Weare interested in the

possibilites for evidence which is not necessarily a proof in the usual sense.

We began with the nonstandard case. Here ZFC denotes the Zermelo—

Frenkel Axiomsfor set theory together with the Axiom of Choice. These axioms

are the formal versions of the axioms indicated in §2.

Suppose that M = (M,E) is a model of ZFC. We suppose that M is a
countable set.

Fix a € M such that

ME “ais a finite ordinal”

and such that a is nonstandard; that is, the set {x eM | ch a} is infinite. Let

b € M be such that

M — “b is the formula y,, where k = a”.

Suppose that c € M, that

ME “cis a finite ordinal”,

and that (a,c) € E; that is, ME a<ce.
For each x € M let

Z={yeM|yEx}.

Weiterate and define ;

t= {g|yEs}.

Thus, ifze M,yeM,andif ME “xCcyxy”,thenZCyx J.

Suppose that A C € x € is a set which is internal to M, that is, such that

A = £ for some x € M. Wesay that A is consistent with 0, if there exists a

model
M* — (M*, E*)

such that the following hold:

(1) {a,c}UGUEC M*;

(2) En ({a,c} UGUZ6)? = E* Nn ({a,c} UGU@)?;

(3) be M*, bc M*, and En (b)? = E*n(b)?;
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(4) M* & “b is the formula 7, where k = a”;

(5) there exists 2 € M* such that ¢ = A;

(6) M* — To;

(7) M* = Qfa).
Generally one is interested in the case wherec is relatively large relative to a

(closer to 1024), in which case (3) and (4) can be achieved by simply modifying
the choice of A slightly.

We can now state more precisely our questions. These kinds of questions
have been considered in a slightly different context in (Solovay 1989).

1) Suppose that M and aé€é M are as above. Is 9, consistent with A for each
set A C @ x é which is internal to M, where c = 10/22?

2) Suppose that M anda € M are as above. Is Q, consistent with A for each
set A C @x é whichis internal to M, where c = 10744?

3) Suppose that M and a € M are as above. Is 2, consistent with A for each

set A C éx é which is internal to M, where c = 1074%24¢?

4) Do the answers to (1)-(3) depend on the choice of M and a?

A positive answer to any of these questions would likely involve new insights

to the fundamental questions of computational complexity.

One can also ask whether the answers to these questions are affected by

modifying the choice of the critical formula Y(xr4) used in the construction of
Q(21). For example, one might consider the extreme case where V(x4) is trivial
(for example the formula (r4=2,4)).

The next theorem answers versions of our questions where c is somewhat

small relative to 1024¢, for example when

c= 109[24¢/ log a]

Theorem 7.1 Suppose that M = (M, E) is a model of ZFC, that a € M, and
that

M - “a is a finite ordinal” .

Suppose that a is nonstandard, and let c € M be such that, for each k,

M f= “ck < 10°40”,

Then A is consistent with Q, for each set AC Cx such that A is internal.

It would be interesting to study models M of To such that

M & (4919),

or more generally to study the mathematics of inconsistency through an analysis

of other nonstandard examples.

A striking development of modern set theory is the realization that if, for
example, measurable cardinals are consistent, then one has a very rich structure

theory for the universe of sets which answers many of the classical questions of
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the subject. Of course the consequences of the existence of large cardinals leads

to a far richer theory.

A typical question involving models of To in which the sentence (Sr12) holds

concerns collateral effects. One instance of this category of questions is the

following. Let Q7—RC(L0,21) be a formula which expresses

“{ zo is a proof from ZFC of (Ar0(—(z0=20))) of length less than [x1 |” .

Thus Q7pc asserts that the theory ZFC is not consistent and that this is

witnessed by a proof with an upper bound on the length.

5) Suppose that M = (M,£)is a model of Tp such that M - (dz). Let
a € M beleast such that M — Qla]. Must there exist p € M such that
M — Q7RC[p, 6] where b? = a?

8 The standard case, a second sentence

We nowconsider the standard case. Wefix k, and set n = 1074". Transcribed to

this setting our first question asks in effect if there is evidence of order ,/n that
Q;, is false; the second question asks if there is evidence of order n, and, roughly,

the third question asks if there is evidence of order n!°”.

There is a variety of ways to formulate these questions in the standard

case. For example, suppose that y(zo) is a Xo formula and that the sentence

(Aroyp(xp)) is true. Suppose also that there exists a set A C n x n such that
Yo[A] holds. Is there a proof of (=OQ,) from To U {(Aroy(Zo))} of length less than
n? (of length less than ./n?).

To avoid sometrivialities one needs to assign a weight to the specified sentence

(Aroy(xo)) related to the numberof steps required to verify y[A] and askif there
is a proof of (=Q;) from To U {(Aroy(zo))} such that

“length of proof” < m(n, “weight”)

for various choices of the function 7(z, y).
We shall not discuss this further. Instead we shall define and briefly discuss

another sentence which will generalize 0,. The property we would like Q; to

have is that there is no evidence of order 1074 (or more) that the sequence cor-
responding to 2; does not exist; the sequence being a proof of (=) of length
less than 1024. It may be that 9, already has this feature; for the nonstan-

dard versions of 2; this is implied by a positive answer to our second or third

questions. _

Wedefine a sentence §2;. The precise definition requires discussion of machine

architecture, and therefore we shall be somewhat vague. Suppose that ¢ is

a sentence of £(=,€). The sentence is feasibly true if y is verified by some

machine acting on an input s, wheres is a finite binary sequence. One constrains

the type of machine allowed and the running time to obtain an arguablyrealistic

notion. Having made these choices one can produce a formula

Wreas(t1) = “| £1 is a sentence of L(=, €) which is feasibly true”.
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Weavoid the issue of what it means for a machineto verify a sentence by defining

a class of acceptable machines, and then declaring a sentence to be feasibly true

if:

1. The sentence specifies an acceptable machine and asserts that there exists

an input for that machine on which the machine halts in a given state after a

specified interval of time; suitably transcribed as a statement aboutsets.

2. The sentence is true.

The choice of Vfeag(41) then simply depends on definition of an acceptable
machine.

For a specific choice of Vs.5,(z1) one must argue that one has captured a

realistic notion of being ‘feasibly true’. It is important to emphasize that there

is no requirement that the input for the machine be generated in any feasible

manner; the situation is analogous to that forthe complexity class NP.

For a given choice of Vfea,(%1) we define 9.

Let 6**(x9) be the formula:

“ is a formula with only one free variable, ro”

A(Sa1(Axr2(Szr3( “ is the sentence (—(4z0([20]A Wa))) where A = [zo ]”

\ Vfeas (x1 )

/\ “| £9 is a proof of the sentence from the theory To U { [=z] ”

A(Adza(“ = 1074” AW(x4) A “the length of is less than [t4]”))))))

The formula (x4) is the formula indicated in the definition of ®**. With
a reasonable model of the machine, the verification indicated will belong to the

set witnessing Y(x4). Otherwise one should modify V(z4).

Let ©* be the formula wa, where A is the formula 6**. Then Q, is the
sentence _

(Ar9(6™ A ©O*)).

The pathological evidence associated to Q1 has two components. Thefirst is

a proof of (=) of length less than 1074. This proof may involve one additional
sentence w other than the axioms of Ty. The second componentis the verification

of this sentence. It seems quite likely that the pathology mayresult from either

component separately. _

One can easily define a parameter family of these sentences, 0, for each

positive integer k, and then investigate nonstandard solutions. This leads to the

analogous versions of our basic questions 1)—4).

In some sense 1% is a much better example for supporting our basic thesis.

Nevertheless because 2; may in fact have the desired properties, and because
(2, is much easier to define, we have chosen to focus on the sentences (Q,.
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9 Final remarks

Is there a sequence of length less than 1074 which is a proof of (=0,) from To? It

is not ridiculous that such a sequence exists, in that we do not have any formal

evidence that the sequence does not exist. Much stronger claims can be made

(with more general forms of evidence allowed) using (301), though in this case
the pathological evidence is both a proof of (=) and the verification of the
additional sentence used.

The existence of such a sequence simply implies that the universe is of a

priori necessity finite. Our imaginings oflarge finite sets are a generalization of

our experiences whichis (in this case) not justified.
The sum total of human experience in mathematics to date; i.e., the number

of manuscript pages written to date, is certainly less than 10! pages. With

proper inputs and global determination one could verify with current technology

that a given sequenceis a proof of (=) of length less than 1074. The shortest
proof from Tp that no such sequence exists must have length at least 1024. This

is arguably beyond the reach of our current experience. The issue of course is

the compression achieved by the informal style in which mathematical arguments

are actually written. One might be able to mitigate this somewhat by using a

different formal system in the construction of 0). This again isslightly less of an

issue for the case of (=0,), for then one could eliminate evidence derived from
formal proofs of length 1074 as well as other kinds of evidence of order 107%.

We argue that there are two possibilities.

The first possibility is that there are arbitrarily large finite models of our

mathematical experience, where the largeness notion is based on the lengths of

proofs or some other reasonable metric. Let M = (M,E) be a model of ZFC
containing a nonstandard finite ordinal. Let m € M be finite transitive set

in M such that the submodel Mop = (Mo, Eo) is a nonstandard model of our

mathematical experience, where

Mo ={aEM|(a,m)cEl=m

and

Eo = EN(Mo x Mo).

The relevant parameter(i.e., largeness) of Mo is some nonstandardfinite ordinal,
b. Let a be the nonstandard finite ordinal of M such that

10242 < b < 1024(¢+1) ,

where 1024¢ and 1024(¢+)) are calculated in M. Since a < 0 it follows that
aée Mo.

It follows immediately from Theorem 7.1 that there exists a nonstandard

model M, = (Mj, £1) of To, such that M, — Qla] and which contains some
portion of the Mo, for example all subsets of

10[24¢/ log a] y 19[242/ log a]
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from that model. Since M, — Q{a], one can define in M, (using the witness for
W(x4)) a very reasonable model of Zo containing all subsets of

10242 x 10242

from My, (and containing much more). The unfortunate inhabitants of this
world have available to them all of the tools which are available to us, and

yet have a proof of (=Q,) of length less than 1024¢. Further they possess all

the mathematical evidence of order 10!24¢/!9¢¢] present in Mo. The force of

this argument would begreatly amplified if the answer to either Question 2 or
Question 3, at least, is ‘yes’, for then one could preserve a much larger fragment

of Mo. We conjecture that the answer to Question 3, at least, is ‘yes’ and so we

conjecture that a much stronger version of this argument is in fact valid.

The secondpossibility is that there cannot exist arbitrarily large finite models

of our mathematical experience. This possibility is in many respects as unfortu-

nate as the possibility that there exists, for some k, a proof of (=0,) of length

less than 1074*.
Most mathematicians would argue that as the scale of our mathematical

investigations increases so does the depth and beauty of our discoveries, illumi-

nating patterns within patterns ad infinitum; that our collective mathematical

vision is not an artifact of the scale of our view but instead it is a glimpse of a

world beyond.

10 Appendix

Webriefly specify the logical axioms for the language L(=,€).
We generalize our conventions andlet

plz; : x5]

be the formula obtained from by substituting x; for each free occurrence of z;

provided that each free occurrence of x; is not within the scope of an occurrence

of 4xz;. We no longer require that x; does not occur in y. If there is a free

occurrence of x; in y which is within the scope of an occurrence of dz; then

pai : £3] = ¥.

A formula ¢ is a generalization of w if

p = (VEn,(..- (Vn,) ---))

for somevariables r,,,...,In,-
Thus the universal closure of w is a generalization of y.

Suppose that y1, 2, 93, 94 are formulas and that z;,z; are variables. Then

all generalizations of the following formulas are logical axioms.

(1) (Y1 V (7¢91)).
(2) (Y1 — (1 V Y2)).
(3) (y2 — (1 V ¥2)).
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(4) ((Y1 V Y2) > (791) > ¥2))-

(5) ((Y1 > (Y2 > 3)) > ((Y1 > 2) > (Y1 > ¥3))).
(6) (y1 > (Y2 > ¥1)).
(7) ((¥1 — (>¥1)) > (>¥1)).
(8) (¢1 > ((>-¥1) > ¢2)).
(9) ((Wajy1) > vile : £5)).

(10) ((V2i(y1 > y2)) > ((Veivi) > (Vxi~e)) ).
(11) (yi — (Vaxivi)) if x; is not a free variable of v1.

(12) (xj=2;)
(13) ((1;=2;) — (~1 — Y2)). if v1 is atomic, ye is atomic andif

yilzi : £5) = polzs : Z5].

Notes

1. This description is from de Parville, 1884, as quoted in (Rouse Ball 1905,

p. 108).
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