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Preface

The Origin of this book was a seminar in the philosophy of

mathematics held at Smith College during the summerof 1979. An informal

group of mathematicians, philosophers and logicians met regularly to

discuss commonconcerns about the nature of mathematics. Our meetings

were alternately frustrating and stimulating. We were frustrated by the

inability of traditional philolsophical formulations to articulate the actual

experience of mathematicians. We did not want yet another restatement of

the merits and vicissitudes of the various foundational programs—

platonism, logicism, formalism and intuitionism. However, we were also

frustrated by the difficulty of articulating a viable alternative to founda-

tionalism, a new approach that would speak to mathematicians and philoso-

phers about their commonconcerns. Our meetings were mostexciting when

we managed to glimpse an alternative. Occasionally some reading would

Suggest a new perspective on mathematics or pose fresh problems with

philosophical merit and mathematical relevance. Then the philosophy of

mathematics would seem to comealive again.

Toward the end of the seminar, mycolleague, Stan Stahl, mathematical

logician turned computerscientist, suggested the idea of an anthology of

readings suited to the modern reader. From the first, we conceived of the

anthology as a bridge linking those disciplines concerned with the general

character of mathematics. So weinsisted that it include representatives

from mathematics, philosophy, logic and related fields. In addition, we

preferred accessible articles written in English or generally familiar
notations. It seemed prudentto direct the essays to a sophisticated amateur
since most of us are only amateursin at least one of the fields relevant to the
philosophy of mathematics!

Originally the anthology was to be divided into three major sections. The
first was a group ofessays that challenged the dogmas underlying founda-
tionalist views of mathematics. The second focused on mathematics as

actually practiced, thereby reexamining the data from which the philosophy
ix



PREFACE

of mathematics is to begin. The final section was to have reviewed some of

the recent advances in mathematical logic which bear on general philosophi-

cal issues.

Alas, the exigencies of historical circumstances intervened. Stan Stahl

dropped out as co-editor, and I realized that I could not do justice to each

section in a single volume. So whatwasoriginally to be the third section has

been omitted from the present anthology, althoughit is still projected as a

separate volume.I took this step reluctantly, for there is much to be learned

by using the tools that were originally developed by foundationalists. There

are the recent andlively discussions of mathematicalstructures, the iterative

conceptof set and the new proposals for mathematical definitions of truth.!

Moreover there is a resurgence of constructivism, including provocative

reinterpretations of intuitionism by mathematicians and philosophers.?

Nevertheless, to have includedall points of view would have diluted each—

and would have resulted in a very heavy book. Consequently I chose to

develop a few approachesat length rather than attempt a survey of the field.

Oneresult of this is that the present anthology has a more polemicalcast

to it than was originally intended. It seems to come out swinging against

tradition, both by repudiating foundations of mathematics andbystressing

the quasi-empirical concept of mathematical practice, a concept that many

traditionalists regard as out-and-out heresy. Well, perhaps a little polemicis

appropriate now and again to breathe new life into a discipline, and I have

no objection to providing a stalking horse for future critics. I would only in-

sist that any excess be attributed solely to meas editor and notto any of the

individually well reasonedselections in the anthology.

This volume could not have been completed without the help of manyin-

dividuals. First and foremost, of course, is Stan Stahl and the otherpartici-

pants of the seminar: James Callahan, David Cohen, Jim Henle, Joan

Hutchinson and Stan Wagon.I’ve also benefitted from useful discussions

with Murray Kiteley, Michael Albertson, Phyllis Cassidy and Andrew

Boucher. Kathryn Pyne Addelson and Bert Mendelson provided valuable

suggestions. I am grateful to Klaus Peters of Birkhauser Boston,Inc. and to

Philip Davis and Reuben Hersh for unflagging support. Last, but notleast,

I have benefitted enormously from the editorial assistance of Maria Fleming

Tymoczko, a medievalist by training, a comparatist by profession and a

philosopher by domestic necessity.

NOTES

1. Interest in mathematical structures was stimulated by P. Benacerraf’s essay,

‘“What Numbers Could Not Be,’’ Philosophical Review, 74 (1965), 47-73. Among

the replies to Benacerraf are M. Resnick’s ‘‘Mathematical Knowledge and Pattern

Cognition,’? Canadian Journal of Philosophy, V (1975), 23-39, and P. Kitcher’s

‘‘The Plight of the Platonist,’’ Nous, 12 (1978), 119-136.

Fordiscussionsof the iterative concept of set, see H. Wang, ‘‘The Conceptof Set’’

in From Mathematics to Philosophy, Humanities Press, New York (1974), 181-223; G.

Boolos, ‘‘The Iterative Conception ofSet,’’ Journal ofPhilosophy, 68 (1971), 215-231;

and C. Parsons, ‘‘Whatis the Iterative Conception of Set?’’, Logic, Foundations of

Mathematics and Computability Theory, D. Reidel, Dordrecht (1977), 335-367.
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Recent investigations of truth were spurred by S. Kripke ‘‘Outline of a Theory
of Truth,’’ Journal ofPhilosophy, 72 (1975), 690-716, and considerably extended by
A. Gupta, “‘Truth and Paradox’, Journal ofPhilosophical Logic, 11 (1982), 1-60,
and H. Herzenberger, ‘‘Notes on Naive Semantics,’’ ibid., 61-102.

2. The foremost philosophical expositer of intuitionism is M. Dummett; see, for
example, his essay ‘‘The Philosophical Basis of Intuitionistic Logic,’? Logic Collo-
quium °73, H.E. Rose and J.C. Sheperdson, editors, North-Holland, Amsterdam
(1975), 5-40.

Among mathematicians, E. Bishop is perhaps the leading exponent of con-
structivism with Foundations of Constructive Analysis, McGraw-Hill, New York
(1967). Special mention should also be made of the radical program of A.S.
Yessenin-Volpin, ‘‘The Ultra-Intuitionistic Criticism and the Antitraditional Pro-
gram for Foundations of Mathematics,’’ Intuitionism and Proof Theory, A. Kino,

J. Myhill, and R.E. Vesley, editors, North-Holland, Amsterdam (1980), 3-45. This

program is most clearly explained by D.Isles, for example, in ‘‘On the Notion of

Standard Non-Isomorphic Natural Numbers Series,’’ Constructive Mathematics:

Proceedings, New Mexico, 1980, Springer-Verlag, Berlin (1980), 274-313.

xi



Introduction

The philosophy of mathematics is a formidable subject but a fas-

cinating one, and the source of its appeal is the mystery of mathematics

itself. Mathematics, Alfred North Whitehead oncesaid, ‘‘may claim to be

the most original creation of the humanspirit.’’ Its chief rival, Whitehead

suggested, was music.! Pure mathematics stands at the pinnacle of rational

thought. Mathematical results seem to be the paradigmsof precision, rigor

and certainty—from elementary theorems about numbers and geometric

figures to the complex constructions of functional analysis andset theory.

The results and methods of mathematics are often surprising and elegant,

occasionally revealing an austere, abstract beauty more typically found in

the arts. Mathematics permeates our intellectual life and has helped to

shape modern society. Science is inconceivable apart from mathematics,

and we often measurethe rigor or ‘hardness’ of a science by the amountof

mathematics it employs. We rely on mathematics when webuild bridges, fly

airplanes, use computers or get cash from automatic tellers. Whitehead’s

point is well taken: mathematics is a remarkable achievement.

The philosophy of mathematics begins when weaskfor a general account

of mathematics, a synoptic vision of the discipline that reveals its essential

features and explainsjust howit is that human beingsare able to do mathe-

matics. The difficulty is that it is hard to arrange the various features for

mathematics into a coherent whole. To account for the indubitability,

objectivity and timelessness of mathematical results, we are tempted to

regard them astrue descriptions of a Platonic world outside of space-time.

This leaves us with the problem of explaining how human beings can make

contact with this reality. Alternatively, we could abandon the idea of a

Platonic realm and view mathematics as simply a game played with formal

symbols. This would explain how human beings can do mathematics, since

we are game players par excellence, but it leaves us with the task of

specifying the rules of the game and explaining why the mathematical game

is so useful—we don’t ask chess players for help in designing bridges. Still
xii
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other approaches are possible which also clarify some aspects of

mathematics at the cost of leaving other aspects totally mysterious. Never-

theless, tradition has viewed as primary the contrast between realist concep-

tions of mathematics and constructivist conceptions. Realism assumesthe

reality of a mathematical universe which is independent of mathematicians

who discover truths about this reality. Constructivism insists that any

mathematical reality is conditioned by the actual and potential construc-

tions of mathematicians who invent mathematics. The dilemmaas I havein-

dicated, is that both views have considerable plausibility and both en-

counter seriousdifficulties.

Although quite interesting in itself, the philosophy of mathematics has

far reaching ramifications for philosophy in general. Consider ontology and

metaphysics, that part of philosophy dealing with the ultimate nature of

reality. A typical metaphysical question is, are there abstract objects or are

all objects concrete particulars existing in space-time? Obviously, if realism

is the correct approach to mathematics then there are abstract objects, to

wit, the objects of mathematics. Conversely, a defense of physicalism or the

view that all objects are spatio-temporal objects, would most naturally in-

volve a constructive interpretation of mathematics.

Or consider the philosophy of mind. If constructivism provided the cor-

rect account of mathematics, then a good theory of mind should account

for mathematics as an internal mental activity. We would, as it were, be

born with the possibility of doing mathematics. On the other hand, if

realism is to be accommodated bya philosophy of mind, then it must endow

the mind with a primitive faculty of mathematical intuition, or perception

of the mathematical realm—asort of extra-sensory perception. Thus, one’s

philosophy of mathematics colors one’s conception of the mind, andvice-

versa.
Finally, consider the philosophy of language. Realism as an accountof

mathematics disposes us to interpret mathematical languages model-

theoretically, and in general, to develop our theory of semantics in terms of

reference and truth. Constructivism in mathematics disposes us to prefer a

more computational account of meaning and to develop our semantics in

terms of meaning postulates and transformations. So we see how issues in

the philosophy of mathematics can reverberate throughout philosophy and

beyond it to such related fields as natural science, psychology, and

linguistics. It is little wonder that the philosophy of mathematics has been

traditionally regarded as an important testing ground for philosophical

theories. Before accepting a general theory of mind or knowledge, a theory

of what there is or of how language works,weare well advised to work out

and evaluate its consequences for mathematics.

The philosophy of mathematics—orat least philosophical accounts of

mathematics—hasplayed an importantrole in philosophy goingall the way

back to Plato and Pythagoras. As a discipline, however, the philosophy of

mathematics underwent an enormous changeover a period centering on the

turn of the century. If we analogize mathematics to science then, following

Kuhn, we can characterize this change as revolutionary or the creation of a

new paradigm.? The dominant question in the new philosophy of mathe-
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matics became: whatis the foundation of mathematics? And the answerto
this question, it was assumed, was to be found in the newly emerging
discipline of mathematical logic. The new paradigmsofthe philosophy of
mathematics included such achievements as Cantor’s analysis of infinity,
Frege’s analysis of number and Russell and Whitehead’s attempt at a grand
unification. Early foundationalists were often quite explicit about their
revolutionary aims. Russell and Whitehead called their masterprice Prin-
cipia Mathematica, deliberately echoing Newton’s Philosophiae Naturalis

Principia Mathematica. Principia Mathematica wasto do to the philosophy

of mathematics, if not to mathematics proper, what Newton’s workdid to

physics and its philosophy.

Wewill say more about the idea of foundations of mathematics later. For

the moment, we can summarize it with the slogan that the business of the

philosophy of mathematics is to provide the foundations of mathematics.

Philosophyis kept in business by the fact that there are competing alterna-

tives to the title of foundations. What philosophy doesis to adjudicate

among the competition, evaluating the conflicting claims. The instrument of

adjudication is mathematical logic, the same instrument that was used to

generate the competing foundationsin the first place.

Nevertheless, the present anthology does not aim totell the story of foun-

_ dations. This is already well done elsewhere.3 We cometo bury Caesar, not to

praise him. The last few decades have witnessed a growing dissatisfaction

with the foundations approaches to mathematics. There are powerful limita-

tions, often in the form of mathematical theorems, that each foundationalist

approach has come up against. We are no nearerto the correct foundations

today than we were a century ago. The samebasic arguments and objections

can be repeated at ever higher levels of abstraction. Moreover, close analysis

has revealed certain key assumptions behind foundationalism that seemed ob-

vious to its original proponents but seem much moreimplausible to us today.

Finally, the controversy about foundations haslost its power to excite. It no

longer has the revolutionary impact that it had in the early twentieth century,

when each new moveintroduced an important new concept or distinction to

mathematics and philosophy. Now the controversy leads us around in well

worn circles that seem increasingly distant from the everyday concerns of

mathematics and philosophy.

The first aim of the anthology, then, is to challenge the dogma of founda-

tions. To this end, part one collects some of the more pointed and stimulat-

ing critiques of foundationalism. The authors include mathematicians,

philosophers, and logicians. Individually each essay makes a strong case

against foundationalism;collectively, their impact is overwhelming. There

is an additional point served by bringing these essays together. To some ex-

tent, each conveys the impression of a lonely voice crying in the wilderness.

It is worth emphasizing that the wilderness is becoming rather crowded and

that the time is right for the post-foundationalists to move into the main-

stream of the philosophy of mathematics.

In what new directions should the philosophy of mathematics set off once

it abandonsthe search for foundations? The secondpartof this anthology

explores one answerto this question. The essays collected there suggest that

XV
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the philosophy of mathematics can be begun anew by reexamining the ac-

tual practices of mathematicians and those whouse mathematics. If we look

at mathematics without prejudice, many features will stand out as relevant

that were ignored by the foundationalists: informal proofs, historical devel-

opment, the possibility of mathematical error, mathematical explanations

(in contrast to proofs), communication among mathematicians, the use of

computers in modern mathematics, and many more. Foundationalists could

ignore such issues because they interpreted actual practice in terms of foun-

dations. To them, the activity of mathematics wasessentially just the dis-

covery of truths aboutsets, the verification of formal proofs, or some other

foundational characterization. All the rest was irrelevant superstructure.

Apart from the foundational mythology, however, there is no justifica-

tion for philosophy to continue to ignore the actual practice of mathemat-

ics. Indeed, it is this practice that should provide the philosophy of mathe-

matics with its problems and the data for their solutions. Furthermore, as

the early essays in the anthology show,the weakestlinks in foundationalism are

precisely the assumptions it uses to discount mathematical practice. So the

later essays are a natural extension ofthe earlier and take the opportunity to

argue the positive cases for a recharacterization of mathematical ex-

perience. It is useful to have a label for this approach to the philosophy of

mathematics. Following Lakatos and Putnam,I call it ‘quasi-empiricism.’

This anthology delineates quasi-empiricism as a coherent andincreasingly

popular approach to the philosophy of mathematics. However it does not

claim to be a complete representation of contemporary philosophy of mathe-

matics. Foundationalists, for example, are not represented. Moreseriously,it

does not address the basic dichotomy betweenrealism and constructivism; is

mathematics discovered or invented? This issue should be addressed, and I

plan to do so in a later work.* Nevertheless there is a rationale for postponing

that issue until we are more clear about the practice of mathematics.

Although realism and constructivism seem to be incompatible positions

in the philosophy of mathematics, neither is incompatible with quasi-em-

piricism. In fact quasi-empiricism is continuous with contructivism; both

take their start from mathematical practice. A difference between the ap-

proaches is that quasi-empiricism views the constructions of mathemati-

cians more as social products, while constructivism views them in more

strictly mathematical terms. The difference leads constructivists to impose

stronger constraints on mathematical reasoning than does quasi-empiricism,

which is more tolerant of diverse practices.

While quasi-empiricism opens a door for constructivism in the philoso-

phy of mathematics, it hardly closes the door on realism. It might well turn

out that the best characterization of mathematical practice is as an interac-

tion between mathematicians and independently existing mathematical

structures. To use an analogy, our philosophical understanding of astron-

omy might be advanced by emphasizing the practice of astronomy,the role

of astronomers and telescopes and so forth, without ever denying that the

practice is conditioned by a universe of astronomical objects. So too we can

explore quasi-empiricism without denying realism in the philosophy of

mathematics.
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The rationale for presenting quasi-empiricism should now beclear. Al-
though it might not settle the controversy between realism and constructi-
vism, a deeper understanding of mathematical practice will better prepare
us to settle the controversy.

Although this anthology does not completely represent the philosophy of
mathematics, it does, I believe, gather together some of the moreexciting
essays published recently in the field. In this instance, the whole really is
greater than the sum ofall its parts; each essay reinforces the others. One
purpose in bringing these essays together is to demonstrate their collective
force. The collection will have succeededif it stimulates the reader—mathe-
matician or philosopher, professional, apprentice or amateur—to rethink
his or her conception of mathematics.

NOTES

1. Science and the Modern World, New American Library, New York (1948), 25.

2. See his The Structure of Scientific Revolutions, University of Chicago Press,

Chicago (1962).

3. For example, P. Benacerraf and H. Putnam, editors, Philosophy of Mathe-

matics, Prentice Hall, EnglewoodCliffs (1964). (Revised edition 1983.) Thereis also

the more technical anthology edited by J. Hintikka, The Philosophy ofMathematics,

Oxford University Press, Oxford (1963) and the source book edited by J. van Hei-

jenoort, From Frege to Gédel, Harvard University Press, Cambridge (1967). For a

simple introduction, the readeris directed to H. de Long’s A Profile ofMathematical

Logic, Addison-Wesley, Reading, Mass. (1970).

4. For an indication of mytastes in this direction, the reader is referred to foot-
notes 1 and 2 in the Preface, pp. xxi.

xvii



PARTI

Challenging Foundations

The authors of the essays in the first collection represent the major

perspectives on the philosophy of mathematics; two are mathematicians,

two are philosophers, and one a logician. Although their arguments are

drawn from a variety of sources, they have a commontarget, namely, that

view of the philosophy of mathematics known as ‘foundationalism’. The

essays argue that the search for foundations is misguided and that

philosophy should abandonit. In this preliminary essay I will introduce the

idea of foundationsto readers whoare notfamiliar with it. But first I would

like a word with the more experienced readers whoare familiar with the no-

tion of foundations of mathematics and recognize its dominant position in

modern philosophy of mathematics.

Manysuch readers, I suspect, will acknowledge dissatisfaction with the

foundational approach to the philosophy of mathematics. More would do

so if they felt they had a choice, but many people assumethat ‘the philos-

ophy of mathematics’ simply means ‘foundational studies’. ‘Foundational

studies’, in turn, is practically equivalent to ‘mathematical logic’. We have

to work to disentangle the major schools of foundationalism—platonism,

logicism, formalism and intuitionism-—from the major branches of mathe-

matical logic—set theory, proof theory, model theory, and recursion

theory. Such identifications are worth fighting against, for they consign the

philosophy of mathematics to an extremely small groupof experts. It is not

enoughto be an accomplished mathematician versed in general philosophy,

nor to be an accomplished philosopher versed in general mathematics. In

addition, one must buyinto a certain research program and collect a Ph.D.
in mathematical logic.

Reuben Hersh capturesthe present situation among mathematicians quite
well.
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Wearestill in the aftermath of the great foundationist controversies of the

early twentieth century. Formalism, intuitionism and logicism, each left its

trace in the form of a certain mathematical research program that ultimately

made its own contribution to the corpus of mathematics itself. As Dhilo-

sophical programs, as attempts to establish a secure foundation for

mathematical knowledge, all have run their course and petered out or dried

up. Yet there remains, as a residue, an unstated consensusthat the philosophy

of mathematics is research on the foundation of mathematics. If I find

research in foundationsuninteresting or irrelevant, I conclude that I’m simply

not interested in philosophy (thereby depriving myself of any chance of con-

fronting my own uncertainties about the meaning, nature, purpose or

significance of mathematical research).!

Thesituation of philosophers is analogous to that of mathematicians. A

typical intelligent philosopher, versed in general mathematics, will feel that

he does not know enough mathematical logic to comprehendthe philosophy

of mathematics. When he finds research in foundations uninteresting,

unimportant or incomprehensible, the typical philosopher concludesthat he

is not interested in mathematics, thereby depriving himself of any chance to

use the ideas, problems and examples of mathematics in his philosophy.

The following essays should liberate both philosophers and mathema-

ticians from foundational restrictions. They makein greater detail the point

that is nicely summarized by Hilary Putnam.

Philosophers andlogicians have been so busytrying to provide mathematics

with a ‘foundation’ in the past half-century that only rarely have a few timid

voices dared to voice the suggestion that it does not need one. I wish here to

urge with some seriousness the view of the timid voices. I don’t think

mathematics is unclear; I don’t think mathematics hasa crisis in its founda-

tions; indeed, I do not believe mathematics either has or needs ‘foundations’.

The much touted problems in the philosophy of mathematics seem to me,

without exception, to be problems internal to the thought of various system

builders. The systems are doubtless interesting as intellectual exercises; debate

between the systems and research within the systems doubtless will and should

continue; but I would like to convince you (of course I won’t, but one can

always hope) that the various systems of mathematical philosophy, without

exception, need not be taken seriously.”

Readers anxious to pursuethis line of inquiry should turn immediately to

the next essays. For those readers who are not too familiar with the founda-

tional view, I offer a brief sketch of whatit is and how it came to dominate

the philosophy of mathematics.

Philosophers are prone to think in terms of foundations. Phrases like

‘‘the foundations of knowledge,’’ ‘‘the foundation of morality,’’ ‘‘founda-

tions of physics’’ roll easily off our tongues. Ordinarily, philosophical

speculation about foundations is ignored by a discipline that is making

reasonable progress orelse it is treated with a bemused tolerance. When a

discipline is experiencing a crisis, however, philosophical speculation iS

positively reinforced.
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If anyone ever experienced anintellectual crisis in a field, it was
nineteenth-century mathematicians. They were trying to assimilate non-
Euclidean geometries, to separate geometry from arithmetic and analysis,
to ground thecalculus, to assimilate infinity, discover the general nature of
sets, avoid the paradoxes of set theory, and so on. At the same time they
were experiencing an unparalleled increase in generality and abstraction in
mathematics. Mathematicians were shifting from studying only ‘the natural
numbers given by God’ to the consideration of arbitrary number systems,
from solving equations to solving groups. In order to makesense of these
changes, nineteenth- and early twentieth-century mathematicians needed a
new set of criteria for assessing mathematics and mathematical proof. Sym-
bolic logic promised a set of criteria and to nineteenth-century mathema-
ticlans and their immediate descendants, it more than delivered.
The greatest architect of foundationalism was Gottlob Frege. Unfortun-

ately for Frege, his greatness was not publicly recognized duringhis lifetime
and he died in relative obscurity. Fortunately for Frege, his students and

correspondents included some of the greatest minds of the time whodis-

seminated his ideas and establishedhis position as the greatest logician since
Aristotle.

When Frege began his work, ‘logic’ meant Aristotelian logic—subjects
and predicates, the law of the excluded middle, syllogisms, and thelike:

fixed, immutable truths to be sure, but somewhattrivial or tautologous
ones. Kant articulated the general conception of logic when hesaid

since Aristotle [Logic] has not had to retrace a single step, unless we chooseto

consider as improvements the removal of some unnecessarysubtleties, or the

clearer definition of its matter, both of which refer to the elegance rather than

to the solidity of the science. It is remarkable also, that to the present day,it

has not been able to makeonestep in advance,so that, to all appearances,it

may be considered as completed and perfect.

Aristotle has omitted no essential point of the understanding; we have only to

become more accurate, methodical and orderly.?

Against this backdrop, Frege’s work madethe revolutionary claim that

Aristotle had mischaracterized logic! He offered an alternative charac-

terization in terms of what we nowcall quantification theory with identity

together with the rudiments of type theory and set theory. Moreover, and

this is a crucial point, Frege argued that logic thus reconstrued was the

foundation of mathematics in thatall legitimate mathematical concepts

could be defined in logical terms and all mathematical theorems could be

deduced from the principles of logic. To be more precise, Frege argued that

arithmetic and analysis were founded in logic. He distinguished these from

geometry admitting that the truth of Euclidean-geometry was not founded

in logic but rested instead on a primitive intuition of Euclidean space. His

main point was that arithmetic needed no such appealto intuition—it could

be derived solely from logical principles available in theory to any rational

being. In other words, the laws of arithmetic followed from, and were but a

special case of, the most general laws of thought. This solves the mystery of
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mathematical knowledge. Anyrational being is capable of mathematics. At.

the same time, the laws of logic were the most general laws of being, “the

laws of the laws of nature’, to use Frege’s evocative phrase. When logic

demonstrated the existence of something, for example numbers, these

things had a real, objective existence—there was nothing morereal. So

Frege’s theory provides for the objectivity of mathematics and justifies our

picture of an independent mathematical reality whose nature mathemati-

cians discover.

To make his argument, Frege needed to do two things:

(a) spell out his new version of logic, symbolic logic, and

(b) carry out in detail the derivation of classical mathematics from

logic.

He proceededto do this in three major works:

Begriffsschrift, a formula language, modeled upon that of

arithmetic, for pure thought (1879).

Die Grundlagen der Arithmetik, the foundations of arithmetic, a

logico-mathematical enquiry into the concept of number (1884).

Grundgesetze der Arithmetik, the basic laws of arithmetic (two

volumes, 1893 and 1903).

Frege’s achievement, in my opinion,is one of the greatest contributions to

philosophyofall time. According to Montgomery Furth:

Frege’s investigations of the concepts of logical truth and of logical conse-

quence . . . amountedtothe creation single-handed of the subject of mathe-

matical logic as later understood, issuing in a formal system of logic incor-

porating propositional calculus, first and second-order quantification theory,

and a theory of sets developed within second-order quantification theory.°

Jean van Heijenoort says of the first book alone, a mere 88 pages:

Its fundamental contributions, amonglesser points, are the truth-functional

propositional calculus, the analysis of the proposition into function and argu-

ment(s) instead of subject and predicate, the theory of quantification, a system

of logic in which derivationsare carried out exclusively according to the form of

the expressions, and

a

logical definition of the notion of mathematical sequence.

Anysingle one of these achievements would suffice to secure the book a perma-

nent place in the logician’s library.®

In other words, Frege was working outthe rules governing the use of such

concepts as

variable many-place relation formal expression

function many-place function definition

set quantifier proof
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just when mathematics was in desperate need of those concepts! Mathema-
ticians of his day werestill treating variables as names of general non-
descript numbers. They could summarize their knowledge ofinfinity with
the lemniscate, ©. They confused € with C. Philosophers still wondered
aboutthe reality of relations and whether every proposition might havethe
subject-predicate form, P(s).
Of course Frege’s influence wasnot very direct; he was, by andlarge, ig-

noredin his lifetime. However, Frege’s work was Just one of the paradigms
of foundationalism. It was complemented by the works of Cantor, Dede-
kind, Zermelo, Peano, Russell and Hilbert among many others. Together
these mathematicians, philosophers and logicians simultaneously forged the
discipline of mathematical logic and manyofthe basic tools of modern
mathematics. The foundation program, as a whole, directly influenced
mathematical practice. Thus, leaving aside any theoretical or philosophical
justification for foundations (and Frege had provided quite an elegant one),
there remained a very crucial pragmatic justification for it. Founda-
tionalism satisfied some very pressing needs of nineteenth- and early
twentieth-century mathematicians.
Up to this point a reader might conclude that foundationalism is surely

correct. What more could oneask of the philosophy of mathematics? Fair
enough—TI want here to emphasize the plausibility and attractiveness of the
foundationspicture, for the following essays are quite up to the task of
refuting even the best versions of foundations. Nevertheless, I must admit
that my account of foundationalism is so far misleading. I have presentedit
as if everyone agreedas to whatthe foundation of mathematics was—logic as
described by Frege. But I’ve left something out of the account which, when
filled in, explains why foundationalism breaks up into competing schools.
Very early on, Frege’s system of logic was discovered to be inconsistent,

as were many others of the paradigms mentioned above. They produced
contradictions. The project of foundations became to find foundations
which did the job that Frege’s system was supposed to do but which were
consistent, as Frege’s system was not. The problem is that no one has ever
been able to put the pieces together as simply and uniformly and completely
as Frege had while still remaining consistent.
The discovery of Frege’s inconsistency is itself a paradigm of

mathematical logic and goes by the name of Russell’s Paradox. The full
story involves human dramaas well as conceptual discovery and serves to
explain the diaspora of foundationalism into conflicting schools. It’s
worthy of a summary.
As the final volume of the Grungesetze was going to press, when Frege

was slipping the last brick into the foundations of mathematicsasit were,
he got a letter from the youngBritish philosopher, Bertrand Russell. Russell
tactfully pointed out that Frege’s system was inconsistent and so it wascer-
tainly not a foundation of mathematics, or of anything else for that matter.
The human tragedy is eloquently expressed by Russell in a letter to van
Heijenoort.’
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Dear Professor van Heijenoort,

I should be most pleased if you would publish the correspondence between

Frege and myself, and I am grateful to you for suggesting this. As I think

about acts of integrity and grace, I realise that there is nothing in my

knowledge to compare with Frege’s dedication to the truth. His entire life’s

work was on the verge of completion, muchofhis work had been ignored to

the benefit of men infinitely less capable, his second volume was aboutto be

published, and uponfinding that his fundamental assumption wasin error, he

responded with intellectual pleasure clearly submerging any feelings of

personal disappointment. It was almost superhuman anda telling indication

of that of which men are capable if their dedication is to creative work and

knowledge instead of cruder efforts to dominate and be known.

Yourssincerely,

BERTRAND RUSSELL

If anything, Russell understates the case.

The conceptual discovery was that the most natural connection between

ontology and epistemology in mathematics, the principle that every

natural property determinesa set of things satisfying that property, is con-

tradictory. This principle would permit the set of all sets not members

of themselves, which is a logical impossibility. Russell’s Paradox thus

consists of two parts, Russell’s rather elementary theorem (that

— (Ex)(y) (Rxy < = > — Ryy)) and Frege’s rather profound mistake.

Foundationalism, which does not recognize mistakes nor dignify elemen-

tary theorems, is forced to describe the situation as a paradox.

Russell’s Paradox shook the logician’s world and threatened the very

concept of foundations of mathematics. To some, even arithmetic seemed

to totter. But as we’ve seen, the foundations program was far too valuable

and attractive to be abandoned without a fight. The goal was to reconstruct

it while avoiding the paradoxes. However, there was no single way of doing

this. Many techniques were available and choices among different

techniques led to different schools of foundationalism.

Russell, in collaboration with Whitehead, attempted to salvage logicism,

Frege’s thesis that the foundation of mathematics was,literally, logic. In

their influential work, Principia Mathematica, they replaced Frege’s version

of logic with an elaborate theory of types, but their system was cumbersome

and wasfelt by many to paper over too manydifficulties. Logicism has

steadily lost ground as a plausible account of foundations, in part because

of a proliferation of logical theories—beyond type theory and set theory

there is infinitary logic, multi-valued logics, intuitionist logic, and so on.

One alternative was that set theory was the foundation of mathematics.

Set theory has all the power of Russell’s system, and a great deal more

clarity and elegance. Set theoretic platonists hold that the universe of

mathematics is the universe of sets and their foundational program wasto

characterize this universe and reconstruct classical mathematics in terms of

sets. While maintaining the reality of mathematical objects, set theoretic

platonism doeslittle to advance our understanding of how mathematical

truths are known.In addition, there is considerable uncertainty about the

nature of this set theoretic universe (is it, for instance, one or many?)
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and the axioms ofset theory (is set theory identical with the formal SYS-
tem ZF?). |

Anotheralternative to logicism was to replace Russell’s characterization
of logic with metamathematics, the logical manipulation of formal systems.
According to such a formalism, mathematical theorems are merely the
results of logical deductions from arbitrary axioms. The foundations of
mathematics is metamathematics, the study of formal systems, which pro-
vides mathematicians with the tools they need—formal languages, theories
and rules of inference. Formalism’s hope of finding the consistent and com-
plete formal theory adequate for mathematics was dashed by Gédel’s
discoveries and formalism has had difficulty reformulating its goal. Not
just any formal theory can count as mathematics afterall; for we can for-
malize parts of physics, and even parts ofliterature if the Russian literary
formalists are correct. Moreover, the univocal sense of logic as a framework
for formal systems has given way to a bewildering variety of formal logics
with no clear front runner, as noted earlier.
Now it should be noted that while there is considerable disagreement

among these schools, there is considerable overlap as well. They all shared in
the development of a new conception of logic, now known as mathematical
logic, and a new set of mathematical tools. In addition, we should note,at
least in passing, the emergence of a renegade school in the philosophy of

mathematics, intuitionism. Intuitionists denied that mathematics had foun-

dations, and they returned to the Kantian idea of a primitive intuition of the

natural numbers. They were no mere platonists, however, for they held a

baroque theory of intuition which forced them to abandonclassicallogicall

the way backto Aristotle’s law of the excluded middle. When their theory of

acceptable constructionsis spelled out, it begins to look suspiciously like just

another putative foundation for mathematics, and the least attractive foun-

dation at that, to the general mathematician and philosopher. |

Of course these basic foundations can berefined and crossbred to yield

more sophisticated candidates such as modified platonism, second-order

logicism, Turing Machine formalism and ultra-intuitionism. But we’ll stop

our account here. There, in a nutshell, is the story of the foundations of

mathematics and its subsidiary schools. Those interested in learning more

about foundations are referred to the excellent surveys and anthologies
available.

Those interested in learning why the foundations program fails as a

philosophy of mathematics should continue on with the following essays.

NOTES

1. Hersh, ‘Introducing Imre Lakatos,’’ Mathematical Intelligencer, 1 (1978), 148.

2. Putnam, ‘‘Mathematics Without Foundations,’’ Journal of Philosophy, 64
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of Mathematical Logic, Addison-Wesley, Reading, Mass. (1970), 36.
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7. Ibid., 127.
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REUBEN HERSH

Some Proposals for Reviving the
Philosophy of Mathematics

Hersn’s essay begins the challenge to foundationalism:

The present impasse in mathematical philosophyis the aftermath of the great
period of foundationist controversies from Frege and Russell through Brouwer,
Hilbert and Gédel. What is needed now is a new beginning...

Manyofthe difficulties and stumbling blocks in the philosophy of mathematics
are created by inherited philosophical prejudices which weare free to discard if we
chooseto do so.

Hersh presents the case from the point of view of mathematicians. For him,
philosophy of mathematics is primarily the working philosophy of the
professional mathematician. In so far as that philosophyis restricted to the usual
mix of foundational ideas, Hersh charges, it is generally inconsistent, always
irrelevant and sometimes harmfulin practice and teaching.
There are difficulties in each of the foundational theories and Hersh discusses

several of these. However, his main concern is to understand how the
preoccupation with foundations came about. At present, Hersh suggests, the best
explanation of foundational concernsis in terms of the historical development of
mathematics which he summarizes. Along the way, he isolates some ofthe basic
presuppositions of foundation studies: ‘‘that mathematics must be provided with
an absolutely reliable foundation’’ and ‘‘that mathematics must be a source of
indubitable truth.’’ Hersh’s pointis that it is one thing to accept the assumption
when,like Frege, Russell or Hilbert, we feel that the foundationis nearly
attained. But it is quite another to go on acceptingit, to go on letting it shape
our philosophy, /ong after we’ve abandoned any hope of attaining that goal.

Very well, if the concerns of foundations of mathematics are the wrong
concerns, then how do wephilosophize about mathematics ? Hersh’s answer
is clear: we begin with the ongoing practice of mathematicians. This is a deep

 

Reprinted, with permission, from ADVANCESIN MATHEMATICS, Vol. 31,
1979, pp. 31-50. Copyright © 1979 by Academic Press, Inc.
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and important point that will be returned to again and again throughoutthis

anthology. The emphasis on mathematical practice is not just a mathematician’s

chauvinism. It is the practice of mathematics that provides philosophy with its

data, its problems andits solutions. At the turn of the century it seemedasif

foundationalism could capture the essence of mathematical practice and no

wonder. As we’ve noted, foundations programs changed that practice. But in the

last half century, foundational research and ordinary mathematical practice have

evolved along quite different lines. To revive the philosophy of mathematics, we

must return to its source for a fresh look.

If we view mathematical practice with an unjaundiced eye, Hersh suggests, we

will observe prominent features that have been ignored by traditional philosophy.

Wemight note, for example, that mathematical knowledgeis inherently fallible

and no foundation can makeit infallible. When informed of Russell’s Paradox,

Frege is alleged to have said ‘‘Arithmetic totters.’’ Hersh might agree but add

that arithmetic doesn’t totter too much and besides, everything totters.

Mathematical knowledgeis ‘‘fallible, corrigible, tentative and evolving as is every

other kind of human knowledge.”’

In a similar vein, we might note that mathematical practice is essentially a

public activity, not a private one. This obvious point is at odds with the standard

foundational attitude that mathematics is essentially a private affair, taking place

in a mind, and that public practice is only a symptom ofit. The emphasis on

mathematical practice, in our time, brings with it an emphasis on the

mathematical community as the ultimate source of mathematical activity.

Hersh concludes his paper with a brief sketch of the new vista in philosophy of

mathematics. It is not without flaws. Professional philosophers will be disturbed by

the free and easy use of ‘idea’ as a basic explanatory notion. After two thousand

years of philosophical reworking, the idea of ‘idea’ has become rather vague.

Indeed in comparison the platonist’s ‘set’ or the formalist’s ‘symbol’ can look like a

positive advance in clarity. In Hersh’s frameworkidea takes on a more substantial

meaning, however, very like ‘cultural product of the mathematical subculture.’ Of

course this interpretation is likely to raise more questions than it answers from both

mathematicians and philosophers. What accounts for the striking differences

between mathematical products and other cultural products? Is mathematical

creativity as unconstrained asartistic creativity? Hersh suggests some answers, but

more importantly, he asks deep questions.

By ‘‘philosophy of mathematics’? I mean the working philosophy

of the professional mathematician, the philosophical attitude toward his

work that is assumed by the researcher, teacher, or user of mathematics.

WhatI propose needsreviving is the discussion of philosophical issues by

working mathematicians, especially the central issue—the analysis of truth

and meaning in mathematical discourse.

Thepurposeofthisarticle is, first, to describe the philosophical plight of the

working mathematician; second, to propose an explanation for howthis plight
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has come about; andthird, to suggest, thoughall too briefly, a direction in
which escape maybepossible. In summary, Our argumentwill go as follows:

(1) The philosophical notions about mathematics commonly held by the
working mathematician are incompatible with each other and with our ac-
tual experience and practice of mathematical work. Manypractical prob-
lems and impasses confronting mathematics today have philosophical
aspects. The dearth of well-founded philosophical discourse on mathema-
tics has observable harmful consequences, in teaching, in research, and in
the practical affairs of our organizations.

(2) The present impasse in mathematical philosophyis the aftermath of
the great period of foundationist controversies from Frege and Russell
through Brouwer, Hilbert, and Godel. What is needed now is a new begin-
ning, not a continuationof the various ‘‘schools’’ of logicism, formalism or
intuitionism. To get beyond these schools,it is necessary to go back in
history to their origin, to see what they hadin common, and howthey were
rooted in the mathematics and philosophyof their day.

(3) Manyof the difficulties and stumbling blocks in the philosophy of
mathematics are created by inherited philosophical prejudices which weare
free to discard if we choose to do so. Someofour philosophical difficulties
will then simply evaporate; others will become tangible problems which can
be investigated systematically, with reasonable hopes for progress.

Each statement will be amplified and argued at some length below.

1 THE PHILOSOPHICAL PLIGHT OF THE

WORKING MATHEMATICIAN

Most writers on the subject seem to agree that the typical ‘‘working mathe-
matician’’ is a Platonist on weekdays and a formalist on Sundays. Thatis,
when he is doing mathematics, he is convinced that he is dealing with an ob-
jective reality whose properties he is attempting to determine. But then,
whenchallenged to give a philosophical account ofthis reality, he findsit
easiest to pretend that he doesnotbelievein it afterall.

We quote two well-known authors:

On foundationswebelieve in the reality of mathematics, but of course when
philosophers attack us with their paradoxes we rush to hide behind formalism
and say, ‘‘Mathematics is just a combination of meaningless symbols,’’ and
then we bring out Chapters 1 and 2 onset theory. Finally weareleft in peace to
go back to our mathematics and doit as we have always done,with thefeeling
each mathematician has that he is working with something real. This sensation
is probably an illusion, but is very convenient. That is Bourbaki’s attitude
toward foundations. (Dieudonné[8].)

To the average mathematician who merely wants to knowhis workis securely
based, the most appealing choiceis to avoid difficulties by means of Hilbert’s
program. Here one regards mathematics as a formal game and oneis only con-
cerned with the question of consistency... . The Realist positionis prob-
ably the one which most mathematicians would prefer to take. It is not

I]
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until he becomes aware of someofthe difficulties in set theory that he would

even begin to question it. If these difficulties particularly upset him, he will

rush to the shelter of Formalism, while his normal position will be somewhere

between the two, trying to enjoy the best of two worlds. (Cohen [4].)

(Throughout the paper, the term ‘“formalism’’ is used, as it is in these

quotations from Dieudonné and Cohen, to mean the philosophical position

that muchorall of pure mathematics is a meaningless game. It should be

obvious that to reject formalism as a philosophy of mathematics by no

means implies any critique of mathematical logic. On the contrary, logi-

cians, whose own mathematicalactivity is the study of formal systems, are

in the best position to appreciate the enormous difference between mathe-

matics as it is done and mathematics as it is schematized in the notion of a

formal mathematical system.)

Wewill shortly offer an analysis of this supposed alternative of Platon-

ism and formalism. At present we merely recordthis as a generally accepted

fact about the mathematical world today: Most mathematicianslive with

two contradictory views on the nature and meaning of their work. Is it

credible that this tension has no effect on the self-confidence andself-

esteem of people who are supposed aboveall things to hate contradiction?

The question of what is interesting in mathematics is a practical question

of the highest importance for anyone whois active in research or whois in-

volved in hiring and promoting people who doresearch. Is it not aston-

ishing that there is no public discussion on this question, no vehicle for

public discussion ofit, hardly even a language or viewpoint which could be

used for such a discussion ?

This is not to say that there can or should be explicit, agreed-upon stan-

dards of mathematical taste. On the contrary. Precisely because tastes dif-

fer, discussion on matters of taste is possible and necessary. Our very ex-

istence as a single profession, and ourability to agree in practice that certain

deeds in mathematics are deserving the highest praise and reward, prove

that there are commonstandardsof excellence which weuse ascriteria for

evaluating our work. To makethesecriteria explicit, to bring them into the

open for discussion, challenge, and controversy, would be one important

philosophical activity for mathematicians. Our inability to sustain such a

public discussion on values in mathematics is an aspect of philosophical

unawareness and incompetence.

The problems of truth and meaningare not technical issues in somere-

condite branch of logic or set theory. They confront anyone whouses or

teaches mathematics. If we wish, we can ignore them. To do so, however,is

to leave oneself the prisoner of one’s unexamined philosophical preconcep-

tions. It would be surprising if this had no practical consequences.

Let us pause to consider two possible examples of such practical conse-

quences. The last half-century or so hasseen therise of formalism as the

most frequently advocated point of view in mathematical philosophy.! In

this same period, the dominantstyle of exposition in mathematical jour-

nals, and even in texts and treatises, has been to insist on precise details of

definitions and proofs, but to exclude or minimize discussion of why a

problemis interesting, or why a particular method of proof is used.
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It would be difficult or impossible to documentthe connection between
formalism in expository style and formalism in philosophicalattitude.Still,
ideas have consequences. One’s conception of what mathematics is affects
one’s conception of howit should be presented. One’s manner of presenting
it is an indication of what one believes to be mostessential in it.
Another example is the importation, during the ’60’s, of set-theoretic

notation and axiomatics into the high-school curriculum. This was not an
inexplicable aberration, as its critics sometimes seem to imagine. It was a
predictable consequence of the philosophical doctrine that reduces all
mathematics to axiomatic systems expressed in set-theoretic language.
The criticism of formalism in the high schools has been primarily on

pedagogic grounds:‘‘This is the wrong thing to teach, or the wrong way to
teach.’’ But all such argumentsare inconclusive if they leave unquestioned
the dogmathat real mathematics is precisely formal derivations from for-
mally stated axioms. If this philosophical dogma goes unchallenged, the
critic of formalism in the schools appears to be advocating a compromise
in quality: he is a sort of pedagogic opportunist, who wants to offer the
studentless than the ‘‘real thing.’’ The issue, then, is not, Whatis the best
way to teach? but, What is mathematics really all about? To discredit for-
malism in pedagogy, one must challenge its philosophical base: the for-
malist picture of the nature of mathematics. Controversies about high-
school teaching cannot be resolved without confronting problems about
the nature of mathematics. In the end, the critique of formalism can be
successful only through the developmentofan alternative: a more convinc-
ing, more satisfactory philosophical account of the meaning and nature of
mathematics.

Mathematicians themselves seldom discuss the philosophical issues sur-
rounding mathematics; they asume that someoneelse has taken care ofthis
job. Weleaveit to the professionals.

But the professional philosopher, with hardly any exception,haslittle to
say to the professional mathematician. Indeed, he has only a remote andin-
adequate notion of what the professional mathematicianis doing. Certainly
this fact is not discreditable; it is to be expected, in view of the formidable
technical prerequisites for understanding what we do.

Still, it has to be said that if a mathematician, uncomfortable with his
philosophical confusion, looks for help in the books and journals in his
library, he will be badly disappointed. Some philosophers whowrite about
mathematics seem unacquainted with any mathematics more advanced than
arithmetic and elementary geometry. Others are specialists in logic or ax-
iomatic set theory; their work seems as narrowly technical as that in any
other mathematicalspecialty.

There are professional philosophers of science who seem to be reasonably
conversant with quantum mechanics and generalrelativity. There do not
seem to be manyprofessional philosophers who knowfunctional analysis or
algebriac topology or stochastic processes. Perhaps there is not need to
know such things, if mathematics can really be reduced to logic or arith-
metic or set theory. But such a presumptionisitself a philosophical stand
whichis (to put it mildly) subject to challenge.

13
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There are a few penetrating comments on mathematics in Polanyi’s

‘Personal Knowledge.’’ But then, Polanyi wasreally a chemist. And thereis

the beautiful work ‘‘Proofs and Refutations’? by I.M. Lakatos [17]. This

dissertation, written under the influence of Karl Popper and George Polya,is

the most interesting andoriginal contribution to the philosophy of mathematics

in recent decades. The fact that Lakatos’ work remains almost unknownto

American mathematiciansin a strikingillustration of our intellectual blinders.

There are, indeed, occasional philosophical comments by leading

mathematicians whoseinterests are not confinedto set theory and logic. But

the art of philosophical discourseis not well developed today among mathe-

maticians, even amongthe mostbrilliant. Philosophical issues just as much

as mathematical ones deserve careful argument, fully developed analysis,

and due consideration of objections. A bald statement of one’s own opinion

is not an argument, even in philosophy.

In the usual university mathematics curriculum, the only philosophical

questions considered are those raised by the various foundationist schools

of 50 years ago. In regard to these,it is mentioned that none of them was

able to carry out its program, and that there is no real prospect that any of

them can resolve the problem of ‘‘foundations.’’

Thus, if we teach our students anything at all about the philosophical

problems of mathematics,it is that there is only one problem ofinterest (the

problem of the foundation ofthereal number system), and that problem

seems totally intractable.

Nevertheless, of course, we do not give up mathematics. We simply stop

thinking about it. Just do it. That, moreorless, is the present situation in

the philosophy of mathematics.

2 HOW DID WE GET HERE?

This dilemma of Platonism versus formalism, of a vacillation between two

unacceptable philosophies, is a characteristic of our own historical epoch.

How did it come about?

I would like to suggest a historical schema—a conjecture, which perhaps

could be investigated by a suitably qualified historian.

Even as an impressionistic conjecture, it may help give us an orientation

on our present situation.

Until well into the nineteenth century, geometry was regarded by everybody,

including mathematicians, as the firmest, most reliable branch of knowledge.

Analysis derived its meaning andits legitimacy from its link with geometry.

I do notsay ‘‘Euclidean geometry,’’ becausetheuse ofthe qualifier became

necessary and meaningful only after the possibility of more than one geometry

had been recognized. Before that, geometry was simply geometry—thestudy of

the properties of space. These existed absolutely and independently, were

objectively given, and were the supreme example of properties of the universe

which were exact, eternal, and knowable with certainty by the human mind.

In the nineteenth century, several disasters took place.

One disaster was the discovery of non-Euclidean geometries, which

showed that there was morethan onethinkable geometry.
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A greater disaster was the development of analysis so that it overtook
geometrical intuition. The discovery of space-filling curves and continuous
nowhere-differentiable curves were stunning surprises which showed the
vulnerability of the one solid foundation—geometric intuition—on which
mathematics had been thoughttorest.

Thesituation wasintolerable because geometry had served, from the time
of Plato, as the supreme exemplar of the possibility of certainty in human
knowledge. Spinoza and Descartes followed the “‘more geometrico’’ in
establishing the existence of God, as Newton followedit in establishing his
laws of motion and gravitation. The loss of certainty in geometry was
philosophically intolerable, because it implied the loss ofall certainty in
human knowledge.
The mathematiciansof the nineteenth century, of course, proved equal to

the challenge. Led by Dedekind and Weierstrass, they turned from
geometry to arithmetic as the foundation for mathematics.

Gradually it becameclear that in reducing the continuum to arithmetic,
one required a kind of mathematics which had hitherto gone unnoticed—set
theory.

Set theory at first seemed to be almost the samething as logic, and so the
hope then appeared that instead of arithmetic, set theory-logic could serve
as the foundation for all mathematics. It was not to be. As Frege put it in
his famouspostscript, ‘‘Just as the building was completed, the foundation
collapsed.’’ That is, Russell communicated to him the Russell paradox.

This wasthe ‘‘crisis in foundations,’’ the central issue in the famouscon-
troversies of the first quarter of this century. Three principal remedies were
proposed:

The program of “‘logicism,”’ the school of Frege and Russell, was to find
a reformulation of set theory, which could avoid the Russell paradox and
thereby save the Frege-Russell-Whitehead program of establishing
mathematics upon logic as a foundation.
The work on this program played a major role in the development of

logic. But it was a failure in termsofits original intention. By the timeset
theory had been patched up to exclude the paradoxes, it was a complicated
structure which one could hardly identify with ‘‘logic’’ in the philosophical
sense of ‘‘the rules for correct reasoning.’’ So it became untenable to argue
that mathematics is nothing but logic—that mathematics is one vast
tautology.

I wantedcertainty in the kind of way in which people wantreligious faith.I
thought that certainty is more likely to be found in mathematics than
elsewhere. But I discovered that many mathematical demonstrations, which
my teachers expected meto accept, werefull of fallacies, and that, if certainty
were indeed discoverable in mathematics, it would be in a new field of
mathematics, with more solid foundations than those that had hitherto been
thought secure. But as the work proceeded, I was continually reminded ofthe
fable about the elephant and the tortoise. Having constructed an elephant
upon which the mathematical world could rest, I found the elephant tottering,
and proceeded to construct a tortoise to keep the elephant from falling. But
the tortoise was no moresecure thanthe elephant, and after some twenty years
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of very arduoustoil, I came to the conclusion that there was nothing more

that I could do in the way of making mathematical knowledge indubitable.

(Bertrand Russell, ‘‘Portraits from Memory.’’)

The response of Hilbert to this dilemma was the invention of ‘‘proof

theory.”? The idea was to regard mathematical proofs as sequences of

formal symbols, rearranged and transformed according to certain rules

which correspond to the rules of mathematical reasoning. Then purely

finite, combinatorial arguments would be found to show that the axioms of

set theory would never lead to a contradiction. In this way, mathematics

would be given a secure foundation—in the sense of a guarantee of con-

sistency.

This kind of foundationis not at all the same as a foundation based ona

theory knownto be true, as geometry had been believed to be true, or at

least impossible to doubt,asit is supposed to be impossible to doubt the law

of contradiction in elementary logic.

The formalist foundation, like the logicist foundation, tried to buy

certainty and reliability at a price. As the logicist interpretation tried to

make mathematics safe by turning it into a tautology, the formalist

interpretation tried to make it safe by turning it into a meaningless game.

The ‘‘proof-theoretic program’’ comes into action only after mathematics

has been coded in a formal language and its proofs written in a way

checkable by machine. As to the meaning of the symbols, that becomes

something extra-mathematical.

It is important to realize that Hilbert’s writings and conversation display

full conviction that mathematical problems are questions about real

objects, and have meaningful answers whichare true in the same sense that

any statement aboutreality is true. If he nevertheless was prepared to

advocate a formalist interpretation of mathematics, this was the price he

considered necessary for the sake of obtaining certainty.

The goal of my theory is to establish once and for all the certitude of

mathematical methods. ... The present state of affairs where we run up

against the paradoxesis intolerable. Just think, the definitions and deductive

methods which everyone learns, teaches and uses in mathematics, the paragon

of truth and certitude, lead to absurdities! If mathematical thinking is

defective, where are weto find truth and certitude? (Hilbert [12].)

As it happened, certainty was not to be had, even at this price. Gédel’s

incompleteness theorems showed that the Hilbert program was unattain-

able—that any formal system strong enough to contain elementary arith-

metic would be unable to prove its own consistency.

Instead of providing foundations for mathematics, Russell’s logic and

Hilbert’s proof theory became the starting points for new branches of

mathematics. Model theory and other branches of mathematical logic have

becomean intrinsic part of the whole structure of contemporary mathe-

matics—and as muchoraslittle in need of foundations as the rest of the

structure.

The third famous school that competed with the logicist and the formalist

was the intuitionist. Brouwer’s position was that the natural numbers were
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reliable and needed no deeper foundation; and that the only acceptable
parts of mathematics were those that could be derived from the natural
numbers ‘‘constructively.’’ His notion of constructivity wasstrict enoughto
exclude the real numbersystem asit is usually understood. As a conse-
quence, even thoughhis opinions were acceptedat least in part by such men
as Hermann Weyl and Henri Poincaré, the vast majority of mathematicians
continued to work nonconstructively.
(Some aspects of the intuitionist viewpoint are still attractive to

mathematicians whoare seeking an alternative to Platonism and formalism;
in particular, the insistence that mathematics be meaningful, and that
mathematics be viewed as a certain kind of human mental activity. One can
accept these ideas, while rejecting the dogma that any mathematics which
cannot be obtained ‘‘constructively’’ from the natural numbersis deficient
in meaning.)

This story is probably too long and familiar for many readers. Butit
makes the point: All three foundationist schools shared the same presup-
position. For us today, in view of their commonfailure, the common pre-
supposition is more important than the much-emphasized differences. By
bringing out and challenging this presupposition, we can escape from the
quagmire where mathematical philosophy has been trappedforfifty years.
The common presupposition was that mathematics must be provided

with an absolutely reliable foundation. The disagreement was onstrategy, on
what hadto besacrificed for the sake of the agreed-on goal. But the goal
was neverattained, and there are few whostill hope for its attainment.
At this point we can see the reason for the ‘‘working mathematician’s’’

uneasy oscillation between formalism and Platonism. Our inherited and
unexaminedphilosophical dogmais that mathematical truth should possess

absolute certainty. Our actual experience in mathematical work offers un-

certainty in plenty. Platonism and formalism, each in its own way, provide

a nonhuman “‘reality’’ where one might imagine absolute certainty dwells.

Pick some familiar theorem: for example, the uncountability of the con-
tinuum; Cauchy’s integral formula; the fundamental theorem of algebra.

Is it a true statement about the world? Does one discover such a theorem,
and does such a discovery increase our knowledge?

If you answer yes to such questions, you maybecalled a Platonist (or a
“‘realist’’). You will then be faced with the next question: to what objects or
features of the world do such statements refer? One does not meet roots of
polynomials (or uncountable sets) or integrals of analytic functions while
walking downthestreet, or even while traveling in outer space. Where, out-
side of our thoughts, can one encounter roots of polynomials, or uncoun-
table sets?

Perhaps such things do not haveanyreal existence after all, and the con-
viction that they exist and are objectively knowable is merely an illusion in
which weindulge ourselves. Perhaps a theorem is nothing more than

a

for-
mula that can be derived bythe rules of logic from somegivenset of for-
mulas (axioms, if you will).

If you prefer to retreat to this modest disclaimer, you maybecalled a for-
malist. Since you have now renounced anyclaim that mathematics is mean-
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ingful, you are no longer underthe difficulty of analyzing its meaning. But

this does not leave you free from philosophical difficulties. On the contrary.

You now maybe asked, howisit that all three of the examples we have

given were known, understood and used long before the axioms on which

they are ‘“‘based’’ had beenstated? If we say that a theorem has no meaning

except as a conclusion from axioms, then do wesay that Gauss did not

know the fundamental theorem of algebra, Cauchy did not know Cauchy’s

integral formula, and Cantor did not know Cantor’s theorem?

The basis for Platonism is the awareness weall have that the problems

and concepts of mathematics exist independently of us as individuals. The

zeroes of the zeta function are where they are, regardless of what I may

think or know on the subject. It is then easy for me to imagine that this

objectivity is given outside of humanconsciousness as a whole, outside of

history and culture. This is the myth of Platonism.It remains alive because

it corresponds to something real in the daily experience of the

mathematician. Yet it remains alive only as a halfhearted, shamefaced

Platonism, because it is incompatible with the general philosophy or world-

view of most scientists—including mathematicians.? Platonism in the full

sense—belief in the existence of ideal entities, independent of or prior to

human consciousness—is of course tenable within a religious world-view

(belief in a divine Mind.) For those whose general world view excludes

mysticism, Platonism in the full sense is very difficult to maintain once the

full force of scientific skepticism is focused onit.‘

At this point the alternative becomes formalism. Instead of believing that

our theoremsare (or should be) truths about eternal extra-humanideals, we

say instead that they are merely assertions about transformations of

symbols (formal derivations). This viewpoint also involves an act offaith.

How, indeed, do we know that our latest theorem about diffusion on

manifolds is formally deducible from Zermelo-Fraenkel set theory? No

such formal deduction is ever written down.If it were, and it were checked

by a humanreader, the likelihood of error would be greater than in

checking an ordinary (not formalized) mathematical proof.

Platonism and formalism, each in its own way,falsify part of the reality

of our daily experience. Thus we speak as formalists when we are compelled

to face the mystical, antiscientific essence of Platonic idealism; we return to

Platonism when werealize that formalism as a description of mathematics

has only a distant resemblance to our actual knowledge of mathematics.

The claim I wish to advanceinthis paperis that we can abandonthem both,if

we abandonthesearch for absolute certainty in mathematical truth. What we

can have instead is a philosophy that is true to the reality of mathematical

experience,at the price of violating some ancient philosophical dogmas.

3 ANECDOTES AND GOSSIP

Let us clear our minds by turning away from the philosophical alternatives

we are accustomedto, and turning instead to our actual experience.

Anyone whohasever beenin the least interested in mathematics, or has

even observed other people who wereinterested in it, is aware that mathe-
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matical work is work with ideas. Symbols are used asaids to thinking just as
musical scores are used as aids to music. The music comes first, the score
comes later. Moreover, the score can never be a full embodiment of the
musical thoughts of the composer. Just so, we know that a set of axioms
and definitions is an attempt to describe the main properties of a mathe-
matical idea. But there may always remain an aspect of the idea which we use
implicitly, which we have not formalized because we havenot yet seen the
counterexample that would make us awareofthe possibility of doubtingit.
The fact is that it is sometimes extraordinarily difficult to achieve under-

standing, certainty, or clarity in mathematics.
In every branch of contemporary mathematics, one hears a version of the

following story (always by word of mouth, never in print).
‘Many of the most important theorems of our subject werefirst dis-

covered by the great Professor Nameless. His intuition was so powerful
that he was able to cometo his conclusions by methodsthat no oneelse was
able to understand. Years later, others were able to find proofs of his results
by arguments that could be followed byall the workers in the field. Of
course, it turned out that (with perhaps one or two exceptions) all of
Nameless’ formulas and theorems were true. It was just that no one was
quite able to follow his explanations of how he discovered them.’’ I am cer-
tainly not going to violate tradition byfilling in the missing name. The same
story is told by probabilists, by partial differential equators, by algebraists
and by topologists—only the name ofthe hero changes. This kind of knowl-

edge before complete proofis inexplicable in terms of the formalist account
of mathematics.

To give another instance—in aninvited talk at an International Congress

of Mathematicians, a famous professor describes someofhis latest results.

He adds that the correctness of these results is not quite certain, because

there has not yet been time for other specialists in his area to check them,

and of course, until you have checked with other people, you can never be

quite sure you haven’t overlooked something.

Even the greatest mathematicians make mistakes, sometimes important

ones, and these may be found even in famous papers which have been well
knownfor a long time.

In the Proceedings of the American Mathematical Society, September

1963, there appeared an article entitled ‘False Lemmas in Herbrand,’’ by

Dreben, Andrews, and Aanderaa. They showed that certain lemmas in a
thesis published by Herbrand in 1929 are false. These lemmasare used in
the proof of a theorem which has been well knownandinfluential in logic
for fifty years. The authors show how Herbrand’s theorem may be proved
by replacing the false lemmas with correct ones.°5

In the Bulletin of the American Mathematical Society, March 1975, there
appeared an article by S. Hellerstein and J. Williamson, entitled
‘*Derivatives of Entire Functions and a Question of Pélya.’’ They wrote:
‘In 1914, Polya asked:If an entire functionfand all its derivatives have only
real zeroes, is f in U,? (the Polya-Laguerreclass). In 1, 2] M. Alander proved
that the answer to Pélya’s question is affirmative for all fin U,, with p s 2
and in [3] purported to have extendedthis result to arbitrary p. However,in
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a famous survey article on zeros of successive derivatives, Polya refers to

Alander’s papers [1] and [2] but not to his more general result [3]. The first

authorof this announcement, while a graduate student under the direction of

A.Edrei, brought this curious omission to the latter’s attention. In response

to Edrei’s subsequent query, Polya replied in a letter that he was aware of

Alander’s moregeneral ‘‘proof’’ but was never convinced by it nor could he

show thatit was fallacious! Alander’s proof involvesa study of level curves of

harmonic functions associated with functions in U,,. Avoiding such

geometric considerations, and using instead direct analytic arguments, we

have succeededin proving a stronger version of Alander’s ‘theorem.’ ”’

Notice that both Alander’s and Herbrand’s theorems were true—even

thoughtheir proofs were defective. This is the most typical case. Whyis it so?

A very interesting article by Philip Davis [6] contains, among other

things, a discussion of errors in mathematical publications, with some

famous names and examples.

Davis suggests that the length and interdependence of mathematical

proof mean that truth in mathematics is probabilistic. I think his argument

shows somethingelse: that mathematical knowledge is fallible, and in this

respect similar to other kinds of knowledge.

Let us mean by ‘‘intuitive reasoning’’ or ‘‘informal reasoning’’ that

reasoning in mathematics which depends on an implicit background of

understanding, and which deal with concepts rather than symbols, as

distinguished from calculation, which deals with symbols and can be

mechanized. Then the checking of an analytic-algebraic proof, as actually

done by a mathematician, is primarily a piece of intuitive reasoning. But

there are many different kinds of intuitive reasoning. The proof that the

angle sum of a Euclidean triangle equals two right angles can be written ina

formal language and deduced using only modus ponens. To understand

such a proof, the reader would have to supply a meaning to these

statements—that is, he would haveto reasonintuitively. On the other hand,

if the proof is given by drawing the familiar diagram, there is a different

kind of intuition in which several steps of the symbolic proof are merged

into a single insight. We have a choice, not between an intuitive fallible

mode of reasoning and a formal, infallible mode, but between two modes of

reasoning (verbal and diagrammatic) both of which are intuitive and

fallible. (Parenthetical aside: The reasoning by words can be formalized,

and this formalization itself can be studied for certain purposes. Butit is

entirely likely that the drawing of diagramscan also be formalized; see [7].)

All this is not to deny the existenceofan interpersonally verifiable notion of

‘‘correct proof’’ at the intuitive level of the working mathematician. It is

merely to point out that this notion is not very similar to the model of formal

proof in which correctness can always be verified as a mechanical procedure.

We do nothave absolute certainty in mathematics; we may havevirtual

certainty, just as in other areas oflife. Mathematicians disagree, make

mistakes and correct them, are uncertain whether a proofis correct or not.

Faced with these obvious facts, one has three choices. The commonestis

hypocrisy. That is, pretend not to notice the gap between preaching and

practice.
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If we renounce hypocrisy, then we haveto give up either the myth or the
reality. Either say that mathematics as practiced every day by mathe-
maticians is not what mathematics really ought to be, or else say that the
theory, that mathematical proofis really (or approximately or in principle)
a mechanical procedure, is not quite right.
A commonresponse is to say, ‘‘True, we aren’t always as careful or

thorough as we should be, but that doesn’t detract from the ideal.’’
In one sense this is unarguable. Certainly, we should try our best not to

make mistakes. Butif it is meant that we really ought to (if we only had the
time and energy) write our proofs in a form that could be checked by acom-
puting machine,then the pointis certainly arguable. Especially by anyone
with experience debugging programs!

It just is not the case that a doubtful proof would becomecertain by being
formalized. On the contrary, the doubtfulness of the proof would then be
replaced by the doubtfulness of the coding and programming.
What really happensevery dayis that the correctness of a formal proof

(i.e., of code written for a computing machine) is checked by a humanbeing
whouses his understanding of the meaning of the steps of the computation
to verify its formal correctness.

Asit has become commonplaceto use very large, complicated programs,
it has become recognized that it is essential to write these programs in a
mannerto be readable by human beings—thatis, to be understandable,not
just formally correct. True, we cannotgive a formal definition of ‘“‘under-
standable.’’ Nevertheless, it turns out in practice that it is understanding
that verifies the correctness offormal computation—notonly the other way
round.

4 WHERE DO WE GO FROM HERE?

The discussion in Sections 2 and 3 was intended to maketwopoints:

(1) The unspoken assumption in all foundationist viewpoints is that
mathematics must be a source of indubitable truth.

(2) The actual experience of all schools—andthe actual daily experience
of mathematicians—shows that mathematical truth, like other kinds of
truth, is fallible and corrigible.

Do wereally have to choose between a formalism thatis falsified by our
everyday experience, and a Platonism that postulates a mythical fairyland
where the uncountable and theinaccessible lie waiting to be observed by the
mathematician whom Godblesses with a good enoughintuition? It is rea-
sonable to propose a new task for mathematical philosophy: not to seek in-
dubitable truth, but to give an account of mathematical knowledgeasit
really is—fallible, corrigible, tentative and evolving,asis every other kind
of human knowledge. Instead of continuing to look in vain for founda-
tions, or feeling disoriented andillegitimate for lack of foundations, we can
try to look at what mathematics really is, and accountforit as a part of
human knowledgein general. That is, reflect honestly on what we do when
we use, teach, invent, or discover mathematics—by studying history, by in-
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trospection, and by observing ourselves and each other with the unbiased

eye of Martians or anthropologists.

Such a program requires a philosophical position whichis radically dif-

ferent from the three classical points of view (formalist, Platonist, in-

tuitionist). The position I will try to present differs from all three of them in

the following sense. It denies the right of any a priori philosophical dogma

to tell mathematicians what they should do, or whattheyreally are doing in

spite of themselves or without knowing it. Rather, it takes as its starting

point the attitude that mathematics, as it is being done now and asit has

evolved in history,is a reality which does not require justification or reinter-

pretation. What has to be done in the philosophy of mathematics is to

explicate (from the outside, as part of general human culture, rather than

from the inside, within mathematical terms) what mathematicians are do-

ing. If this attempt is successful, the result will be a description of

mathematics which mathematicianswill recognize astrue.It will be the kind

of truth that is obvious onceit is said, but up to then was perhaps too

obvious for anyone to bother saying.

There is a comparison with the philosophy of science. At one time

philosophers of science wrote elaborate rules of inductive discovery which

scientists were supposed to follow. The fact that one could hardly find a

scientist who had made

a

discovery in such a fashion seemed quite irrelevant

to them. More recently, K. Popper and M. Polanyi have described science

in a different manner, more closely related to a real knowledge of how

science develops, and not so much based on the traditional philosophizing

of Francis Bacon or John Stuart Mill. These writings of Popper and Polanyi

are not completely ignored by practicing scientists. On the contrary, some

scientists have testified that their work has benefited by the insights they

received from these works on the philosophyof science.

We can try to describe mathematics, not as our inherited prejudices

imagine it to be, but as our actual experience tells us it is. Certainly our

experience does nottell us that it is a game with symbols (formalism) nor

that it is a direct perception of ideal entities (Platonic idealism).

What would be the most straightforward, natural answer to the ques-

tion, what is mathematics?

It would be that mathematics deals with ideas. Not pencil marksor chalk

marks, not physical triangles or physical sets, but ideas (which may be

represented or suggested by physical objects). Whatare the main properties

of mathematical activity or mathematical knowledge, as known to all of us

from daily experience?

(1) Mathematical objects are invented or created by humans.

(2) They are created, not arbitrarily, but arise from activity with

already existing mathematical objects, and from the needs of science and

daily life.

(3) Once created, mathematical objects have properties which are well-

determined, which we mayhavegreat difficulty in discovering, but which

are possessed independently of our knowledge of them. (For example, I

define a function as the solution of a certain boundary-value problem. Then
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the value of the function at someinterior pointis determined, although I
may have noeffective way of finding it out.)

These three points are not philosophical theses which have to be estab-
lished. They are facts of experience which have to be understood. What has
to be doneis to analyze their paradoxes, and to examinetheir philosophical
consequences.

To say that mathematicial objects are invented or created by humansis to
distinguish them from natural objects such as rocks, X rays, or dinosaurs.

Recently, certain philosophers (Korner, Putnam) have argued that the
subject matter of pure mathematicsis the physical world—notits actualities
but its possibilities. To exist in mathematics, they propose, meansto exist
potentially in the physical world. This view has the merit that it does permit
us to say that mathematical statements have meaning,can betrue orfalse.
It has the defect, however, that it attempts to explain the clear by means of
the obscure. Consider the theorem 2° < 2@, or any theorem in homological
algebra. No philosopher has yet explained in what sense such theorems
should be regarded asreferring to physical ‘‘possibilities.”’

The commonsense standpoint of the working mathematicianis that the
objects of algebra, say, or of set theory, are just that—part of a theory.
They are human ideas, of recent invention. They are not timelessly or
tenselessly existing either as Platonic ideas or as latent potentialities in the

_ physical world.
Wemayask howthese objects, which are our own creations, so often

turn out to be useful in describing aspects of nature. To answer this
specifically in detail is important and complicated. It is one of the major
tasks for the history of mathematics, and fora psychology of mathematical
cognition which may be cominginto birth in the work of Piaget and his
school. The answerin general, however, is easy and obvious. Human beings
live in the world andall their ideas ultimately come from the world in which
they live—refracted throughtheir culture and history, which are in turn, of
course, ultimately rooted in man’s biological nature and his physical sur-
roundings. Our mathematical ideas fit the world for the same reason that
our lungs are suited to the atmosphereofthis planet.°

Once created and communicated, mathematical objects are there. They
become part of human culture, separate from their Originator. As such,
they are now objects, in the sense that they have well-determined properties
of their own, which we mayor maynotbe able to discover.

If this sounds paradoxical, it is because of a habit of thinking whichsees
in the world only two kinds of reality: the individual subject (the isolated
ego) on the one hand,and theexterior world of nature on the other.

The existence of mathematics is enough to show the inadequacy of such
a world view. The customs, traditions, and institutions of our society—all
our nonmaterial culture—are aspects of the world which are neither in the
private ‘‘inner’’ nor the nonhuman ‘“‘outer’’ world.7 Mathematics is also
this third kind of reality—a reality that is ‘‘inner’’ from the viewpoint of
society as a whole, yet ‘‘outer’’ from the viewpoint of each individual
memberofsociety.
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That mathematical objects have properties which are well determined 1S

as familiar as the fact that mathematical problems often have well-deter-

mined answers.

To explain more fully how this comes aboutis again a matter for actual

investigation, not speculation. The rough outlines, however, are visible to

anyone who hasstudied and taught mathematics.

To have the idea of counting, one needs the experience of handling coins

or blocks or pebbles. To have the idea of an angle, one needs the experience

of drawing straight lines that cross, on paper or in a sandbox. Later on,

mental pictures or sample calculations prepare the ground for other new

concepts. A suitable shared experience of activity—first physical

manipulation, later on, paper and pencil calculation—creates a common

effect.

Of course, not everyone experiences the desired result. The student who

never catches on to how wewant him to handle the parentheses in our al-

gebraic expression simply doesn’t pass the course.

Whyare we able to talk to each other about algebra? We have been trained

to do so, by a training that has been evolved for that purpose. We can do

this without being able to verbalize a formal definition of polynomials.

Polynomials are objective, in the sense that they have certain properties,

whether we know them or not. That is to say, our commonnotion has im-

plicit properties. To unravel howthis is so is a deep problem comparable to

the problem of linguistics. No one understands clearly how it is that lan-

guages have mysterious, complicated properties unknownto the speakers of

the language.Still, no one doubts that the locus of these propertiesis in the

culture of the language speaker—not in the external world nor in an ideal

other world. The properties of mathematical objects, too, are properties of

shared ideas.

The observable reality of mathematics is this: we see an evolving network

of shared ideas which have objective properties; these properties are ascer-

tained by manykinds of reasoning and argument. These kinds of valid rea-

sonings, which arecalled ‘‘proofs,’’ are not universal, they differ from one

branch of mathematics to another, and from onehistorical epoch to another.

Looking at this fact of human experience, there certainly is matter for

explication.

How are mathematical objects invented?

Whatis the interplay of existing mathematics, ideas and needs from other

branchesofscience, and direct mirroring of physical reality?

How doesthe notion of proof develop, becoming morerefined and subtle

as new dangers and sourcesoferror are discovered ?°

Does the network of mathematical ideas and reasoning, as part of our

shared consciousness, have an integrity as a whole that is more than the

strength of any onelink in the reasoning, so that the collapse of any one

part can affect only those parts closest to it?

These sorts of philosophical questions can be studied by the historian of

mathematics—if we allow, as we should,his field of study to extend up to

yesterday and today. The famous work of Thomas Kuhnis a paradigm of

the kind of insight in the philosophy of science that is possible only on the
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basis of historical studies. Such work has yet to be done in the philosophy
and history of mathematics.!°

Such studies will never make mathematical truth indubitable. But then,
why should mathematical truth be indubitable?

In daily life, we well know that our knowledgeis subject to correction,is
partial and incomplete. In the natural sciences,it is accepted thatscientific
progress consists of enlarging, correcting, and sometimes even rejecting and
replacing the knowledgeofthe past. It is the possibility of correcting errors
by confronting them with experience that characterizes scientific knowledge.
This is precisely the reason whyit is essential that we share our ideas and
check each other’s work.

This account of mathematics contains nothing new.Itis merely an at-
tempt to describe what mathematicians actually are doing and have been
doing for centuries.
The novelty, if any, is the conscious attempt to avoid falsification or

idealization.

SUMMARY AND CONCLUSION

The alternative of Platonism and formalism comes from the attempt to root
mathematics in some nonhumanreality. If we give up the obligation to es-
tablish mathematics as a source of indubitable truths, we can accept its
nature as a certain kind of human mentalactivity.

In doing this, we give up someage-old hopes; we may gain a clearer idea
of whatwe are doing, and why.

Could it be that in mathematics too we need a new Consciousness? ... A

new consciousness stressing the exchange, communication and experience of
mathematical information, a Consciousness where mathematics is told in
human wordsrather than in a mass of symbols, intelligible only to the initi-
ated; a Consciousness where mathematics is experienced as an enlightening
intellectual activity rather than an almost fully automated logical robot,
ardently performing simultaneously a large number of seemingly unrelated
tasks. (P. Henrici, Quart. Appl. Math. (April 1972), 38.)

A world of ideas exists, created by humanbeings, existing in their shared
consciousness. These ideas have properties which are objectively theirs, in the
same sense that material objects have their own properties. The construction
of proof and counterexample is the method of discovering the properties of
these ideas. This is the branch of knowledge which wecall mathematics.

COMMENTSON THE BIBLIOGRAPHY

Thepresent article is strongly influenced by Lakatos’ critique of formalism
presented in the first few pages of [17] and accepts his aim [15] ‘‘to exhibit
modern mathematical philosophy as deeply embedded in general episte-
mology and as only to be understood in this context.’’
No attemptis madehereto discussin detail the issues raised by intuitionism

and constructivism. These were presented by Bishop, Stolzenberg, and
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Kopell at a symposium published in Historia Mathematica 2 (November

1975). The spokesmen for the ‘‘classical’’ viewpoint at that symposium

were remarkably unwilling to deal with the philosophical issues raised by

Bishop. A conscientious evaluation of intuitionism from the classical point

of view has been given by a physicist; see Bunge [3].

A ‘“‘Platonist’’ viewpoint is espoused by Steiner [25], and a formalist one

by Dieudonné [8]. Monk [18], Cohen [4], and Robinson [22] discuss the

Platonist-formalist duality in the light of Cohen’s results on independence

of the continuum hypothesis and the axiom of choice. Putnam’s ‘*modal-

logic’’ version of realism is presented in his recent book [21].

NOTES

1. See, e.g., [8].

2. These issues are developed by Thom [26, 27] and Dieudonné[10].

3. Two whole-hearted Platonists are R. Thom (‘‘Everything considered, mathe-

maticians should have the courage of their most profound convictions and thus

affirm that mathematical forms indeed have an existence that is independentof the

mind considering them. . . . Yet, at any given moment, mathematicians have only

an incomplete and fragmentary view of this world of ideas”’ [26].) and K. Gédel

(‘‘Despite their remoteness from sense experience, we do have somethinglike a per-

ception also of the objects of set theory, as is seen from the fact that the axioms

force themselves upon us as being true. I don’t see any reason why we should have

less confidence in this kind of perception, i.e., in mathematical intuition, than in

sense perception. ... They, too, may represent an aspect of objective reality’’

[11].). Thom’s world of ideas is geometric, whereas Gédel’s is the set-theoretic

universe.

4. “I cannot imagine that I shall ever return to the creed of the true Platonist,

whosees the world of the actual infinite spread out before him andbelieves that he

can comprehend the incomprehensible’ (Robinson [22]).

5. I am indebted to Rohit Parikh for the information that for many years Her-

brand’s thesis was not physically accessible to most logicians. Presumably hiserrors

would have been corrected much sooner in normal circumstances.

6. “I have met people who found it astonishing that the cats have holes in

their furs exactly at the places where the eyes are.’’ (I am indebted to Wilhelm

Magnusfor this quotation from Lichtenberg, an 18th-century professor of physics

at Gottingen.)

7. Related ideas are advocated by Popper [20] and especially by White [28].

They are implicit in the well-known writings of R.L. Wilder on mathematics as a

cultural phenomenon.In a different sense, they are also implicit in the writings on

‘heuristic’? of George Pdolya and their philosophical elaboration by Imre

Lakatos.

8. The work of Piaget [19] is little read by professional mathematicians, perhaps

in part because some of his comments on groups and other abstract mathematical

structures seem naive or misinformed. Nevertheless, one cannot overestimate the im-

portance of his central insight: that mathematical intuitions are not absorbed from

nature by passive observation, but rather are created by the experience of active

manipulation of objects and symbols. The full import of this insight for mathemati-

cal epistemology has yet to be appreciated.
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9. *‘Historically speaking, it is of course quite untrue that mathematics is free
from contradiction; non-contradiction appears as a goal to be achieved, not as a
God-given quality that has been granted us once for all. . . . There is no sharply
drawn line between those contradictions which occur in the daily work of every
mathematician, beginner or master of his craft, as the result of moreorlesseasily
detected mistakes, and the major paradoxes which provide foodforlogical thought
for decades and sometimescenturies.’’ (N. Bourbaki, ‘‘Foundations of Mathematics
for the Working Mathematician,’’ J. Symbolic Logic 14 (1949), 1-8.)

10. ‘‘Under the present dominance of formalism, one is tempted to paraphrase
Kant: the history of mathematics, lacking the guidance of philosophy, has become
blind, while the philosophy of mathematics, turning its back on the most intriguing
phenomenain the history of mathematics, has become empty’’ (Lakatos [17]). How-
ever, recent work in the history of mathematics showsanincreasinginterest in philo-
sophical issues. See, for example, the articles on historiography in Historia Mathe-
matica 2 (November 1975).
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IMRE LAKATOS

A Renaissance of Empiricism in the

Recent Philosophy of Mathematics ?*

Lakatos begins his critique with a point already noted by Hersh: a

basic assumption behind the foundation thesis is that mathematical knowledgeis

a priori and infallible. One can make this assumption without going onto insist

that mathematical knowledgeis innate or that mathematicians ideally never make
mistakes, although these further steps are often taken. The real force of the
assumption, as Lakatos suggests, is that mathematics is radically separate from
the natural sciences where knowledge is so obviously a posteriori andfallible. It is
just this conclusion that Lakatos attacks. His aim is to bridge the gap between
philosophers’ accounts of mathematics and their accounts of natural science. This
is the point of empiricism in mathematics. However, Lakatos does not claim that
mathematicsis just like empirical science; at most it is quasi-empirical.

Drawing on Karl Popper’s philosophy of science, Lakatos distinguishes between
two kinds of theories, Euclidean theories and quasi-empirical theories. The
distinction can be traced back to Aristotle but Lakatos’ version is roughly this.
The basic statements of a Euclidean theory are its axioms; its rules of inference
are precisely determined. Truth (or acceptability for formalists) is injected into
the system at the axioms and ‘‘flows downward’’ to their deductive consequences.
An image of Euclidean theories is that they begin by stating the essential nature
of their subjects and go on to describe its detailed variations. Knowledge, as given
by proof, is infallible. The image of quasi-empirical theories, on the other hand,
is that they begin while their subjects arestill indeterminate. They can describe
and manipulate manyvariations andtheir goalis to get to the underlying
principles. Knowledgeis fallible. The basic statements of a quasi-empirical theory
are a special set of theorems,traditionally, observation sentences or experimental
outcomes, andits rules of inference might be less precisely formulated. Truth and
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falsity are injected into the basic statements butlogically, in quasi-empirical

theories,it is not truth that flows downwardbutfalsity that flows upward. Thus, the

axiomsorbasic principles of quasi-empirical theories are usually the results of bold

speculation that have survived the test of severe criticism. Lakatos’ underlying

argumentis that mathematical theories, like those of science, are quasi-empirical.

It is crucial for his argument that Lakatosfind ‘potential falsifiers’ for

mathematical theories, beyond the obviouslogical falsifiers (inconsistency).

Otherwise, mathematics would not share in the fallibilism of science. Now the

potential falsifiers of science are the ‘hard facts’ of experience and experiment.

Lakatos suggests that the theoremsof informal mathematics can be potential

falsifiers for formal theories. This suggestion does secure a place for informal

theories and proofsin the practice of mathematics. They no more can be superseded

by formaltheories than can experiments be superseded by theoretical science.

Nevertheless, this leaves us with some questions about the nature of informal

theories: eg., do they have potential falsifiers ? Other essays in this volume address

this interesting issue, especially those of Putnam, Kitcher, Tymoczko, and Lakatos

himself.

Lakatos substantiates his assessments with numerous quotations from recognized

experts, including many statements which question the claims for a priori and

infallibility by the foundationalists. Lakatos uses these to defend his belief in the

renaissance of empiricism. However, he had a very discerning eye. Often the

statements were asides in papers developing someother aspect of the foundations

position. The renaissance which Lakatos foresaw, and to which he contributed so

much, is only now beginning to take hold.

This version of the paper was edited after Lakatos’ death by John Worrall and

Gregory Currie (see Acknowledgments).

INTRODUCTION

[According to logical empiricist orthodoxy, while science is a posteriori,

contentful and (at least in principle) fallible, mathematics is a priori,

tautologous and infallible.'] It may therefore come as a surprise for the

historian of ideas to find statements by some of the best contemporary ex-

perts in foundational studies that seem to herald a renaissance of Mill’s

radical assimilation of mathematics to science. In the next section I present

a ratherlong list of such statements. I then go on(in section 2) to explain the

motivation and rationale of these statements. I then argue (in section 3) for

what I call the ‘quasi-empirical’ nature of mathematics, as a whole. This

presents a problem—namely what kind of statements may play the role of

potential falsifiers in mathematics. I investigate this problem in section 4.

Finally, in section 5, I examine briefly periods of stagnation in the growth

of ‘quasi-empirical’ theories.

1 EMPIRICISM AND INDUCTION:

THE NEW VOGUE IN MATHEMATICAL PHILOSOPHY ?

Russell was probably the first modern logician to claim that the evidence for

mathematics and logic may be ‘inductive’. He, who in 1901 had claimed
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that the ‘edifice of mathematical truths stands unshakable and inexpungnable

to all the weapons of doubting cynicism,’? in 1924 thought that logic (and

mathematics) is exactly like Maxwell’s equationsofelectro-dynamics: both ‘are

believed becauseofthe observedtruth ofcertain oftheir logical consequences.”3

Fraenkel claimed in 1927 that ‘the intuitive or logical self-evidence of the

principles chosen as axioms[of set theory] naturally plays a certain but not

decisive role; some axiomsreceive their full weight rather from theself-

evidence of the consequences which could not be derived without them.‘

And he compared thesituation of set theory in 1927 with the situation of the

infinitesimal calculus in the eighteenth century, recalling d’Alembert’s

“Allez en avant, et la foi vous viendra. ”5

Carnap, whoat the 1930 conference in K6énigsbergstill thought that ‘any uncer-
tainty in the foundationsofthe ‘‘mostcertainofall the sciences’ is extremely dis-
concerting,’® [had decided by] 1958 that there is an analogy—if only a distant
one—betweenphysics and mathematics:‘the impossibility ofabsolute certainty.’’

Curry drew similar conclusions in 1963:

The search for absolute certainty was evidently a principal motivation for both
Brouwer and Hilbert. But does mathematics need absolute certainty for its
justification ? In particular, why do we need to be sure that a theory is consistent,
or thatit can be derived by an absolutelycertain intuition ofpure time, before we
use it? In no other science do we make such demands.In physics all theoremsare
hypothetical; we adopt a theory so long as it makes useful predictions and
modify or discard it as soon as it does not. This is what has happened to
mathematical theories in the past, where the discovery of contradictions had led
to modifications in the mathematical doctrines accepted up to the timeofthat
discovery. Why should wenot do the samein the future? Using formalistic con-
ceptions to explain what a theory is, we accept a theory as longasit is useful,
satisfies such conditions of naturalness and simplicity as are reasonableat that
time, and is not knowntolead us into error. We must keep ourtheories under
surveillance to see that these conditionsarefulfilled and to getall the presump-
tive evidence of adequacy that we can. The Gédel theorem suggests thatthisis all
we can do; an empirical philosophyofscience suggestsit is all we should do.8

To quote Quine:

We may more reasonably view set theory, and mathematics generally, in much
the way in which weview theoretical portions of the natural sciences them-
selves; as comprising truths or hypotheses which are to be vindicatedless by
the pure light of reason than by the indirect systematic contribution which
they make to the organizing of empirical data in the natural sciences.?

Andlater hesaid:

To say that mathematics in general has been reduced to logic hints at some new
firming up of mathematics at its foundations. Thisis misleading. Set theoryis
less settled and more conjectural than the classical mathematical superstruc-
ture than can be founded uponit.!°

Rosser too belongs to the new fallibilist camp:

According toa theorem ofGédel . . . ifasystemoflogicis adequate for even a rea-
sonable facsimile ofpresent-day mathematics, then therecan beno adequate assur-
ancethatit is free from contradiction. Failure to derive the known paradoxesis very
negative assurance at best and may merely indicate lack ofskill on our part.!!
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Church,in 1939 thoughtthat: ‘there is no convincing basis fora belief inthe

consistency either of Russell’s or of Zermelo’s system, even as probable.’ !?

Godel in 1944 stressed that under the influence of moderncriticism ofits

foundations, mathematics has already lost a good deal of its ‘absolute cer-

tainty’ and that in the future, by the appearance of further axioms of set

theory, it will be increasingly fallible.”

In 1947, developingthis idea, he explained that for some such new axiom,

even in case it had nointrinsic necessity at all, a (probable) decision aboutits

truth is possible also in another way, namely, inductively by studying its ‘suc-

cess’, that is, its fruitfulness in consequences demonstrable without the new

axiom , whose proofs by meansof the new axiom, however, are considerably

simpler and easier to discover, and makeit possible to condense into one proof

manydifferent proofs. The axiomsfor the system ofreal numbers,rejected by

the intuitionists, have in this sense been verified to some extent owing to the

fact that analytical number theory frequently allows us to prove number

theoretical theorems which can subsequently be verified by elementary

methods. A much higher degree of verification than that, however, is con-

ceivable. There might exist axioms so abundant in their verifiable conse-

quences, shedding so muchlight upon a whole discipline, and furnishing such

powerful methodsfor solving given problems (and even solving them,as far as

that is possible, in a constructivistic way) that quite irrespective of their intrin-

sic necessity they would have to be assumedatleast in the same sense as any

well established physical theory. !4

Also, he is reported to have said a few yearslater that:

the role of the alleged ‘foundations’ is rather comparable to the function

discharged, in physical theory, by explanatory hypotheses . . . The so-called

logical or set-theoretical ‘foundation’ for number-theory or of any other well-

established mathematical theory, is explanatory, rather than really founda-

tional, exactly as in physics where the actual function of axiomsis to explain

the phenomenadescribed by the theorems of this system rather than to pro-

vide a genuine ‘foundation’ for such theorems.!°

Weyle says that non-intuitionistic mathematics can be tested, but not

proved:

No Hilbert will be able to assure us of consistency forever; we must be content

if a simple axiomatic system of mathematics has met the test of our elaborate

mathematical experiments so far . . . A truly realistic mathematics should be

conceived, in line with physics, as a branch of the theoretical construction of

the one real world, and should adopt the same sober and cautious attitude

toward hypothetic extensions of its foundationsas is exhibited by physics.'®

Von Neumann,in 1947, concluded that

After all, classical mathematics, even though one could never again be abso-

lutely certain ofits reliability ... stood on atleast as sound a foundationas, for

example, the existence of the electron. Hence, if one waswilling to accept the

sciences, one mightas well accept the classical system of mathematics.!’

Bernays arguesvery similarly: It is of course surprising and puzzling that

the more content and power mathematical methods have, the less is their
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self-evidence. But ‘this will not be so surprising if we consider that there are

similar conditions in theoretical physics.’!8

According to Mostowski mathematics is just one of the natural sciences:

[Gédel’s] and other negative results confirm the assertion of materialistic

philosophy that mathematicsis in the last resort a natural science, that its no-

tions and methodsare rooted in experience and that attempts at establishing

the foundations of mathematics without taking into accountits originating in

the natural sciences are bound tofail.!?

[And Kalmar agrees:] ‘the consistency of most of our formal systemsis an

empirical fact... Why do we not confess that mathematics, like other

sciences, is ultimately based upon, and hasto be tested in, practice?’°

These statements describe a genuine revolutionary turn in the philosophy

of mathematics. Some describe their individual volte-face in dramatic

terms. Russell in his autobiography, says: ‘The splendid certainty which I

had always hopedto find in mathematics waslost in a bewildering maze.’?!

Von Neumann writes: ‘I know myself how humiliatingly easily my own

viewsregarding the absolute mathematical truth changed . . . and how they

changed three times in succession!22 Weyl, recognizing before Gédel that

classical mathematics was unrescuably fallible, refers to [this state of affairs

as] ‘hard fact.’23

Wecould go on quoting; but surely this is enough to show that mathe-

matical empiricism and inductivism (not only as regards the origin or

method, but also as regardsthe justification, of mathematics) is more alive

and widespread than manyseem to think. But whatis the background and

whatis the rationale of this new empiricist-inductivist mood? Can one give

it a sharp, criticizable formulation?

2 QUASI-EMPIRICAL VERSUS EUCLIDEAN THEORIES

Classical epistemology has for two thousand years modelled its ideal of a

theory, whetherscientific or mathematical, on its conception of Euclidean

geometry. The ideal theory is a deductive system with an indubitable truth-

injection at the top (a finite conjunction of axioms)—sothat truth, flowing

down from the top throughthe safe truth-preserving channels of valid in-

ferences, inundates the whole system.

It was a major shock for over-optimistic rationalism that science—in

spite of immense efforts—could not be organized in such Euclidean

theories. Scientific theories turned out to be organized in deductive systems

wherethe crucial truth value injection was at the bottom—ata specialset of

theorems. But truth does not flow upwards. The importantlogical flow in

such quasi-empirical theories is not the transmission of truth but rather the

retransmission of falsity—from special theorems at the bottom (‘basic
statements’) up towardsthe set of axioms.”4

Perhaps the best way to characterize quasi-empirical, as opposed to
Euclidean theories, is this. Let us call those sentences of a deductive system
in which sometruth valuesareinitially injected, ‘basic statements’, and the
subset of basic statements whichreceive the particular valuetrue, ‘true basic
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statements.’ Then a system is Euclidean if it is the [deductive] closure of

those of its basic statements which are assumedto be true. Otherwiseit is

quasi-empirical.
An important feature of both Euclidean and quasi-empirical systemsis

the set of particular (usually unwritten) conventions regulating truth value

injections in the basic statements.

A Euclidean theory may be claimedto be true; a quasi-empirical theory—

at best—to be well-corroborated, but always conjectural. Also, in a Eucli-

dean theory the true basic statements at the ‘top’ of the deductive system

(usually called ‘axioms’) prove, as it were, the rest of the system; in a quasi-

empirical theory the (true) basic statements are explained by the rest of the

system. ,
Whether a deductive system is Euclidean or quasi-empirical is decided

by the pattern of truth value flow in the system. The system is Euclideanif

the characteristic flow is the transmission of truth from the set of axioms

‘downwards’ to the rest of the system—logic here is an organon ofproof;

it is quasi-empirical if the characteristic flow is retransmission of falsity

from the false basic statements ‘upwards’ towards the ‘hypothesis’—logic

here is an organonofcriticism.” But this demarcation between patterns of

truth value flow is independent of the particular conventions that regulate

the original truth value injection into the basic statements. For instance a

theory which is quasi-empirical in my sense may be either empirical or

non-empirical in the usual sense: it is empirical only if its basic theorems

are spatio-temporally singular basic statements whose truth values are

decided by the time-honoured but unwritten code of the experimental

scientist.22 (We may speak, even more generally, of Euclidean versus

quasi-empirical theories independently of what flows in the logical chan-

nels: certain or fallible truth and falsehood, probability and improbability,

moral desirability or undesirability, etc. It is the how of the flow thatis

decisive.)

The methodologyofa science is heavily dependent on whetherit aimsat a

Euclidean or at a quasi-empirical ideal. The basic rule in a science which

adopts the former aim is to search for self-evident axioms—Euclidean

methodologyis puritanical, antispeculative. The basic rule ofthelatter is to

search for bold, imaginative hypotheses with high explanatory and ‘heur-

istic? power,’ indeed, it advocates a proliferation of alternative hypotheses

to be weeded out by severe criticism—dquasi-empirical methodology is

uninhibitedly speculative.

The development of Euclidean theory consists of three stages: first the

naive prescientific stage of trial and error which constitutes the prehistory

of the subject; this is followed by the foundational period which reorganizes

the discipline, trims the obscure borders, establishes the deductive structure

of the safe kernel; all that is then left is the solution of problemsinside the

system, mainly constructing proofs or disproofs of interesting conjectures.

([The discovery of] a decision method for theoremhood may abolish this

stage altogether and put an endto the development.)

The developmentof a quasi-empirical theory is very different. It starts with

problemsfollowed by daring solutions, then by severetests, refutations. The
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vehicle of progress is bold speculations, criticism, controversy betweenrival

theories, problemshifts. Attention is always focussed on the obscure

borders. The slogans are growth and permanent revolution, not founda-

tions and accumulation of eternal truths.

The main pattern of Euclideancriticism is suspicion: Do the proofs really

prove? Are the methodsused too strong and therefore fallible ? The main pat-

tern of quasi-empirical criticism is proliferation of theories and refutation.

3 MATHEMATICSIS QUASI-EMPIRICAL

By the turn of this century mathematics, ‘the paradigm of certainty and

truth’, seemed to be the last real stronghold of orthodox Euclideans. But

there were certainly some flaws in the Euclidean organization even of

mathematics, and these flaws caused considerable unrest. Thus the central

problem ofall foundational schools was: ‘to establish once and forall the

certitude of mathematical methods.’2? However, foundational studies unex-

pectedly led to the conclusion that a Euclidean reorganization of mathe-

matics as a whole may be impossible; that at least the richest mathematical

theories were, like scientific theories, quasi-empirical. Euclideanism suf-

fered a defeat in its very stronghold.

The two major attempts at a perfect Euclidean reorganization ofclassical

mathematics—logicism and formalism32°—are well known, but a brief ac-

count of them from this point of view maybe helpful.

(a) The Frege-Russell approach aimed to deduce all mathematical

truths—withthe help of ingenious definitions—from indubitably true logical

axioms. It turned out that someof the logical (or rather set-theoretical) ax-

ioms were not only not indubitably true but not even consistent. It turned out

that the sophisticated second (and further) generations of logical (or set-

theoretical) axioms—devised to avoid the known paradoxes—evenif true,

were not indubitably true (and noteven indubitably consistent), and that the

crucial evidence for them was that classical mathematics might be ex-

plained—butcertainly not proved by them.

Most mathematicians working on comprehensive ‘grandes logiques’ are

well aware of this. We have already referred to Russell, Fraenkel, Quine

and Rosser. Their ‘empiricist’ turn is in fact a quasi-empiricist one: they

realized (independently even of Gddel’s results) that the Principia

Mathematica and the strong set-theories, like Quine’s New Foundations

and Mathematical Logic, are all quasi-empirical.

Workersin this field are conscious of the method they follow: daring con-

jectures, proliferation of hypotheses, severe tests, refutations. Church’s ac-

count of an interesting theory based on restricted form of the law of ex-

cluded middle (later shown to be inconsistent by Kleene and Rosser,?!)

outlines the quasi-empirical method:

Whetherthe system of logic which results from our postulates is adequate for

the development of mathematics, and whetherit is wholly free from contradic-

tion, are questions which we cannot now answerexcept by conjecture. Our

proposalis to seek at least an empirical answer to these questions by carrying

out in some detail a derivation of the consequences of our postulates, anditis
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hoped either that the system will turn out to satisfy the conditions of adequacy
and freedom from contradiction or that it can be madeto do so by modifica-

tions or additions.*?

Quine characterized the crucial part of his Mathematical Logic as a ‘dar-

ing structure . . . added at the constructor’s peril’.33 Soon it was shown by

Rosser to be inconsistent and Quine then himself described his earlier

characterization as one that had ‘a prophetic ring’ .*4

One can neverrefute Euclideanism: even if forced to postulate highly so-

phisticated axioms, one can always stick to one’s hopes of deriving them

from some deeperlayer of self-evident foundations.35 There have been con-

siderable and partly successful efforts to simplify Russell’s Principia and

similar logicistic systems. But while the results were mathematically in-

teresting and important they could notretrieve the lost philosophical posi-

tion. The grandes logiques cannot be proved true—noreven consistent; they

can only be proved false—or even inconsistent.

(b) While the Frege-Russell approach aimed to turn mathematics into a

unified classical Euclidean theory the Hilbert approach offered a radically

new modification of the Euclidean programme, exciting both from the

mathematical and the philosophical points of view.

Hilbertians claimed that classical analysis contains an absolutely true

Euclidean kernel. [But alongside this there are ‘ideal elements’ and ‘ideal

statements’ which, though indispensable for the deductive-heuristic

machinery, are not absolutely true (in fact they are neither true nor false).]

But if the whole theory, containing both the concrete-inhaltlich and the

ideal statements can be proved consistent in a Euclidean meta-mathematics,*

the entire classical analysis would be saved. That is, analysis is a quasi-

empirical theory?” but the Euclidean consistency proof will see to it that it

should have no falsifiers. The sophistication of Cantorian speculation is to

be safeguarded not by deeper-seated Euclidean axiomsin the theory itself—

Russell has already failed in this venture—but by an austere Euclidean

meta-theory.*8
Eventually, Hilbertians defined the set of statements whosetruth values

could be regarded as directly given (the set of finitistically true statements)

so clearly that their programme could be refuted.*? The refutation was pro-

vided by Gédel’s theorem which implied the impossibility of a finitary con-

sistency proof for formalized arithmetic. [The reaction of formalists is well

summed up by Curry]:

This circumstance has led to a difference of opinion among modern for-

malists, or rather, it strengthened a difference of opinion which already ex-

isted. Some think that the consistency of mathematics cannot be established

on a priori grounds alone and that mathematics must be justified in some

other way. Others maintain that there are forms of reasoning which are a

priori and constructive in a wider sense and that in terms of these the Hilbert

program can becarried out.”

Thatis, either meta-mathematics was to be recognized as a quasi-empirical

theory or the concept of finitary or a priori had to be stretched. Hilbert

chose the latter opinion. According to him theclass of a priori methods was
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now to include, for example, transfinite induction up to €, used in Gent-

zen’s proof of the consistency of arithmetic.

But not everybody was happy about this extension. Kalmar, who applied

Gentzen’s proof to the Hilbert-Bernays system, never believed that his proof

was Euclidean. According to Kleene: ‘To what extent the Gentzen proof can

be accepted as securing classical number theory... is . . . a matter for in-

dividual judgment, depending on how ready oneisto accept induction up to ¢€,

as a finitary method.?! Or, to quote Tarski:

there seems to be a tendency among mathematical logicians to overemphasize

the importance of consistency problems, and the philosophical value of the

results so far in this direction seems somewhat dubious. Gentzen’s proof of the

consistency of arithmetic is undoubtedly a very interesting metamathematical

result which may provevery stimulating and fruitful. I cannot say, however,

that the consistency of arithmetic is now much more evident to me (at any

rate, perhapsto use the terminologyof the differential calculus, more evident

than by epsilon) than it was before the proof was given. Toclarify a little my

reactions: let G be a formalism just adequate for formalizing Gentzen’s proof,

and let A be the formalism of arithmetic. It is interesting that the consistency

of A can be proved in G; it would perhaps be equally interesting if it should

turn out that the consistency of G can be proved in A.”

However, even those who find transfinite induction up to €, infallible
would not be happyto go onstretching the conceptofinfallibility so as to
accommodate consistency proofs of stronger theories. In this sense ‘the real

test of proof-theory will be the proof of the consistency of analysis,’and

this hasstill to be seen.

Gédel’s and Tarski’s incompleteness results however reduce the chances
of the final success of Hilbert’s programmestill further. For if extant
arithmetic cannot be proved by the original Hilbertian standards, the
gradual, consistent (and indeed, w-consistent) [augmentation] of theories
containing arithmetic by further axioms can only be reached bystill more
fallible methods. Thatis, the future development of arithmetic will increase
its fallibility. Gédel himself has pointed this out in his paper on Russell’s
mathematical logic:

[Russell] compares the axioms of logic and mathematics with the laws of
nature andlogical evidence with sense perception, so that the axioms need not
necessarily be evident in themselves, but rather their justification lies (exactly
as in physics) in the fact that they makeit possible for these ‘sense perceptions’
to be deduced; which of course would not exclude that they also have a kind of
intrinsic plausibility similar to that in physics. I think that (provided ‘evidence’
is understood in a sufficiently strict sense) this view has been largely justified
by subsequent developments, andit is to be expected thatit will bestill more
so in the future. It has turned out that (under the assumption that modern
mathematics is consistent) the solution of certain arithmetical problems re-
quires the use of assumptionsessentially transcending arithmetic, i.e., the do-
main of the kind of elementary indisputable evidence that may be most fittingly
compared with sense perception. Furthermoreit seemslikely that for deciding
certain questions of abstract set theory and even forcertain related questions
of the theory of real numbers new axioms based on somehitherto unknown
idea will be necessary. Perhaps also the apparently unsurmountable difficulties

37



38 IMRE LAKATOS

which some other mathematical problems have been presenting for many years

are due to the fact that the necessary axioms have not yet been found. Of

course, under these circumstances mathematics maylose a good dealofits ‘ab-

solute certainty’; but, under the influence of the moderncriticism of the foun-

dations, this has already happened to a large extent. There is some resem-

blance between this conception of Russell and Hilbert’s ‘supplementing the

data of mathematical intution’ by such axiomsas, e.g., the law of excluded

middle which are not given by intuition according to Hilbert’s view; the

borderline however between data and assumptions would seem to lie in dif-

ferent places according to whether we follow Hilbert or Russell.”

Quine says that in the field of grande logique construction ‘at the latest,

the truism idea received its deathblow from Gddel’s incompleteness

theorem. Gédel’s incompleteness theorem can be made to showthat we can

never approach completeness of elementhood axioms without approaching

contradiction’ .*
There are many possible ways of [augmenting systems including] arith-

metic. One is through adding strong, arithmetically testable, axiomsofin-

finity to grandes logiques.** Anotheris through constructing strong ordinal

logics.47 A third one is to allow non-constructive rules of inference. A

fourth one is the model-theoretic approach.*? Butall of them are fallible,

not less fallible—and not less quasi-empirical—than the ordinaryclassical

mathematics which was so much in want of foundations. This recogni-

tion—that not only the grandes logiques, but also mathematics is quasi-

empirical—is reflected in the ‘empiricist? statements by Gdédel, von

Neumann, Kalmar, Weyl and others.

It should however be pointed out that somepeople believe that some of the

principles used in these different methodsare a priori and they were arrived

at by ‘reflection’. For instance, Gédel’s empiricism is qualified by the hope

that set-theoretical principles may be found which are a priori true. He

claims that Mahlo’s ‘axioms show clearly, not only that the axiomatic

system of set theory as used todayis incomplete, butalso that it can be sup-

plemented without arbitrariness by new axioms which only unfold the con-

tent of the concept of set explained above’.5° (Gédel, however, does not

seem to be very sure of the a priori characterizability of the conceptofset,

as is evident from his already quoted quasi-empiricist remarks and also

from his hesitation in his [1938], where he says that the axiom of construc-

tibility ‘seems to give a natural completion of the axioms of set theory, in so

far as it determines the vague notion of an arbitrary infinite set in a definite

way’.°!) Weyl actually made fun of Gédel’s over-optimistic stretching of the

possibilities of a priori knowledge:

Gédel, with his basic trust in transcendental logic, likes to think that our

logical optics is only slightly out of focus and hopesthat after some minorcor-

rection of it we shall see sharp, and then everybodywill agree that wesee right.

But he who doesnotsharethis trust will be disturbed by the high degree ofar-

bitrariness involved in a system like Z, or even in Hilbert’s system. How much

more convincing andcloserto facts are the heuristic arguments and the subse-

quent systematic constructions in Einstein’s general relativity theory, or the
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Heisenberg-Schrédinger quantum mechanics. A truly realistic mathematics

should be conceived,in line with physics, as a branch ofthe theoretical construc-

tion of the one real world, and should adopt the same sober and cautiousattitude

towards hypothetic extensionsof its foundationsasis exhibited by physics.°?

Kreisel, however, extols this sort of aprioristic reflection by which, he

claims, one gains set-theoretical axioms, and ‘right’ definitions, and calls

anti-apriorism an ‘antiphilosophic attitude’ and the idea of progressbytrial

and error empirically false.s3 What is more, in his reply to Bar-Hillel, he

wants to extend this method to science, thereby rediscovering Aristotelian

essentialism. He adds: ‘If I were really convinced that reflection is extra-

ordinary or illusory I should certainly not choose philosophy as a profes-

sion; or, having chosenit, I’d get out fast.*4 In his comment on Mostowski’s

paperhetried to play down Gédel’s hesitation as out of date.*> But just as

Godel immediately refers to inductive evidence, Kreisel refers (in the Reply)

to the ‘limitations’ of the heuristic of reflection. (So, after all, ‘reflection’,

‘explication’ are fallible.)

4 ‘POTENTIAL FALSIFIERS’ INMATHEMATICS

If mathematics and science are both quasi-empirical, the crucial difference

between them, if any, must be in the nature of their ‘basic statements’, or

‘potential falsifiers’. The ‘nature’ of a quasi-empirical theory is decided by

the nature of the truth value injections into its potential falsifiers.5© Now

nobodywill claim that mathematics is empirical in the sense that its poten-

tial falsifiers are singular spatio-temporal statements. But then whatis the

nature of mathematics? Or, what is the nature of the potential falsifiers of

mathematical theories ?57 The very question would have been aninsult in the

years of intellectual honeymoon of Russell or Hilbert. After all, the Prin-

cipia or the Grundlagen der Mathematik were meant to put an end—once

and for all—to counterexamples and refutations in mathematics. Even now

the questionstill raises some eyebrows.

[But comprehensive axiomatic set theories and systems of metamathemat-

ics, can be, and indeed have been,refuted.] Let us first take compehensive ax-

iomatic set theories. Of course, they have potential logical falsifiers:

statements of the form p &1p. But are there other falsifiers? The potential

falsifiers of science, roughly speaking, express the ‘hard facts’. But is there

anything analogousto ‘hard facts’ in mathematics? If we accept the view that

a formal axiomatic theory implicitly defines its subject-matter, then there

would be no mathematical falsifiers except the logical ones. But if we insist

that a formal theory should be the formalization of some informal theory,

then a formal theory may besaid to be ‘refuted’ if one of its theorems is

negated by the corresponding theorem of the informal theory. One could call

such an informal theorem a heuristic falsifier of the formal theory.%

Not all formal mathematical theories are in equal danger of heuristic

refutation in a given period. For instance, elementary group theory is

scarcely in any danger: in this case the original informal theories have been

so radically replaced by the axiomatic theory that heuristic refutations seem

to be inconceivable.
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Set theory is a subtler question. Some argue that after the total destruc-

tion of naive set theory by /ogical falsifiers one cannot speak any more of

set-theoretical facts: one cannot speak of an intended interpretation of set

theory any more. But even some of those who dismiss set-theoretical

intuition maystill agree that axiomatic set theories perform the task of

being the dominant, unifying theory of mathematics in whichall available

mathematical facts (i.e. some specified subset of informal theorems) have to

be explained. But then one cancriticize a set theory in two ways:its axioms

may betested for consistency andits definitions may betested for the ‘cor-

rectness’ of their translation of branches of mathematics like arithmetic.

For instance, we may somedayface a situation where some machine churns

out a formal proof in a formal set theory of a formula whose intended

meaning is that there exists a non-Goldbachian even number. At the same

time a numbertheorist might prove informally that all even numbers are

Goldbachian. If his proof can be formalized within our system of set

theory, then our theory will be inconsistent. But if it cannot be thus

formalized, the formal set theory will not [have been shown to] be in-

consistent, but only to be a false theory of arithmetic (while still being

possibly a true theory of some mathematical structure that is not

isomorphic to arithmetic). Then we may call the informally proved

Goldbach theorem a heuristicfalsifier, or more specifically, an arithmetical

falsifier of our formal set theory.5? The formal theory is false in respect of

the informal explanandum thatit had set out to explain; we haveto replace

it by a better one. First we may try piecemeal improvements. It may have

been only the definition of ‘natural number’ that went wrong andthen the

definition could be ‘adjusted’ to each heuristic falsifier. The axiomatic

system itself (with its formation and transformation rules) would become

useless as an explanation of arithmetic only if it was altogether ‘numerically

insegregative’,® i.e. if it turned out that no finite sequence of adjustments

of the definition eliminates a// heuristic falsifiers.

Now the problem arises: what class of informal theorems should be ac-

cepted as arithmeticalfalsifiers of aformal theory containing arithmetic ?

Hilbert would have accepted only finite numerical equations (without

quantifiers) as falsifiers of formal arithmetic. But he could easily show that

all true finite numerical equations are provable in his system. From this it

followed that his system was complete with regard to true basic statements,

therefore, if a theorem in it could be provedfalse by an arithmeticalfalsifier,

the system wasalso inconsistent, for the formal version of the falsifier was

already a theorem of the system. Hilbert’s reduction of falsifiers to logical

falsifiers (and thereby the reduction of truth to consistency) was achieved by

a very narrow (‘finitary’) definition of arithmetical basic statements.

Gédel’s informal proof of the truth of the Gédelian undecidable sentence

posed the following problem: is the Principia or Hilbert’s formalized arith-

metic—on the assumption that each is consistent—true or false if we adjoin

to it the negation of the Gédel sentence? According to Hilbert the question

should have been meaningless, for Hilbert was an instrumentalist with regard

to arithmetic outside the finitary kcrnel and would not have seen any differ-

ence between systems of arithmetic with the Gédel sentence or with its nega-



A RENAISSANCE OF EMPIRICISM

tion as long as they both equally implied the true basic statements (to which,

by the way, his implicit meaning-and-truth-definition was restricted). Gédel

proposed®! to extend the range of (meaningful and true) basic statements

from finitary numerical equations also to statements with quantifiers and

the range of proofs to establish the truth of basic statements from ‘finitary’

proofs to a widerclass of intuitionistic methods. It was this methodological

proposal that divorced truth from consistency and introduced a new pattern

of conjectures and refutations based on arithmetical falsifiability: it allowed

for daring speculative theories with very strong, rich axioms while criticiz-

ing them from the outside by informal theories with weak, parsimoniousax-

ioms. Intuitionism is here used not for providing foundations but for pro-

viding falsifiers, not for discouraging but for encouraging andcriticizing

speculation!
It is surprising how far constructive and even finite falsifiers can go in

testing comprehensive set theories. Strong axiomsof infinity for instance

are testable in the field of Diophantine equations.

But comprehensive axiomatic set theories do not have only arithmetical

falsifiers. They may be refuted by theorems—or axioms—of naive set

theory. For instance Specker ‘refuted’ Quine’s New Foundations by prov-

ing in it that the ordinals are not well-ordered by ‘<’ and that the axiom of

choice must be given up.® Nowis this ‘refutation’ of the New Foundations,

even a heuristic refutation? Should the well-ordering theorem of shattered

naive set theory overrule Quine’s system? Even if, with Gédel and Kreisel,

we consider naive set theory as re-established by Zermelo’s correction,™ we

could admit the well-ordering theorem and the axiom of choice as heuristic

falsifiers only if we again extend the class of (intuitionistic) heuristic fal-

sifiers to (almost?) any theorem in corrected naive set theory. (We maycall

the former theclass of strong heuristic falsifiers and the latter the class of

weak heuristicfalsifiers). But this would surely beirrational: at best we have

to consider them as tworival theories (strictly speaking no heuristic falsifier

can be more than a rival hypothesis). After all nothing prevents us from for-

getting about naive sets and focussing our attention on the new unintended

model of New Foundations.©

Indeed, we can go even further. For instance, if it turned out that all

strong set-theoretical systems are arithmetically false, we may modify our

arithmetic—the new, non-standard arithmetic may possibly serve the em-

pirical sciences just as well. Rosser and Wang, who—three years before

Specker’s result—showed that in no model of New Foundations does ‘<’

well-order both finite cardinals and infinite ordinals as long as westick to

the intended interpretation of ‘<’, discuss this possibility:

One may question whether a formal logic which is knownto have no standard

model is a suitable framework for mathematical reasoning. The proof of the

puddingis in the eating. For topics in the usual range of classical mathematical

analysis, the reasoning procedures of Quine’s New Foundationsareas close to

the accepted classical reasoning procedures as for any system knownto us.

However, in certain regions, notably when dealing with extremely large or-

dinals, the reasoning procedures of Quine’s New Foundationsreflect the ab-

sence of a standard model, and appearstrange to the classically minded mathe-
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matician. However, since the theory of ordinals is suspect when applied to

very large ordinals, it is hardly a serious defect in a logic if it makes this fact

apparent.

Wesuspect that the idea that a logic must have a standard modelifit is to

be acceptable as a framework for mathematical reasoning is merely a vestige of

the old idea that thereis such a thing as absolute mathematical truth. Certainly

the requirements on a standard modelare that it reflect certain classically

conceived notions of the structure of equality, integers, ordinals, sets, efc.

Perhaps these classically conceived notions are incompatible with the pro-

cedures of a strong mathematical system, in which case a formal logic for the

strong mathematical system could not have a standard model.©

This of course [amounts to the claim] that the only real falsifiers are

logical ones. [But other mathematicians,] G6del for example, would surely

reject the New Foundations on Specker’s refutation: for him the axiom of

choice and the well-ordering of ordinals are self-evident truths.®

No doubt the problem of basic statements in mathematics will attract in-

creasing attention with the further development of comprehensive set

theories. Recent work indicates that some very abstract axioms may soon be

found testable in most unexpected branches of classical mathematics; e.g.

Tarski’s axiom of inaccessible ordinals in algebraic topology.®§ The

continuum hypothesis also will provide a testing ground: the accumulation

of further intuitive evidence against the continuum hypothesis maylead to

the rejection of strong set theories which imply it. Gédel [1964] enumerates

quite a few implausible consequencesof the continuum hypothesis: a crucial

task of his new Euclidean programmeis to provide self-evident set theory

from which its negation is derivable.

If one regards comprehensiveset theories—and mathematical theories in

general—as quasi-empirical theories, a host of new and interesting

problems arise. Until now the main demarcation has been between the

proved and the unproved(andthe provable and unprovable); radical justifi-

cationists (‘Positivists’) equated this demarcation with the demarcation

between meaningful and meaningless. [But now there will be a new

demarcation problem]: the problem of demarcation between testable and

untestable (metaphysical) mathematical theories with regard to a given set

of basic statements. Certainly one of the surprises of set theory wasthe fact

that theories about sets of very high cardinality are testable in respect to a

relatively modest kernel of basic statements (and thus have arithmetical

content). Such a criterion will be interesting and informative—butit

would be unfortunate if some people should want to use it again as a

meaning criterion as happened in the philosophyof science.

[Another problem is that] testability in mathematics rests on the slippery

conceptof a heuristic falsifier. A heuristic falsifier after all is a falsifier only

in a Pickwickian sense: it does not falsify the hypothesis, it only suggests a

falsification—and suggestions can be ignored.It is only a rival hypothesis.

But this does not separate mathematics as sharply from physics as one may

think. Popperian basic statements too are only hypotheses after all. The

crucial role of heuristic refutations is to shift problems to more imporant

ones, to stimulate the development of theoretical frameworks with more
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content. One can show of mostclassical refutations in the history of science

and mathematics that they are heuristic falsifications. The battle between

rival mathematical theories is most frequently decided also by their relative

explanatory power.7!

Let us finally turn to the question: what is the ‘nature’ of mathematics,

that is, on what basis are truth values injected into its potential falsifiers?

This question can bein part reduced to the question: Whatis the nature of

informal theories, that is, what is the nature of the potential falsifiers of in-

formal theories? Are we going to arrive, tracing back problemshifts

through informal mathematical theories to empirical theories, so that

mathematics will turn out in the end to be indirectly empirical, thus justify-

ing Weyl’s, von Neumann’s and—in a certain sense—Mostowski’s and

Kalmar’s position? Oris construction the only source of truth to be injected

into a mathematical basic statement? Or platonistic intuition? Or conven-

tion? The answer will scarcely be a monolithic one. Careful historico-

critical case-studies will probably lead to a sophisticated and composite

solution. But whatever the solution may be, the naive school concepts of

Static rationality like a priori-aposteriori, analytic-synthetic will only

hinder its emergence. These notions were devised byclassical epistemology

to classify Euclidean certain knowledge—for the problemshifts in the

growth of quasi-empirical knowledge they offer no guidance.”

5 PERIODS OF STAGNATION IN THE GROWTH OF

QUASI-EMPIRICAL THEORIES

The history of quasi-empirical theoriesis a history of daring speculations and

dramatic refutations. But new theories and spectacular refutations (whether

logical or heuristic) do not happen every dayin the life of quasi-empirical

theories, whether scientific or mathematical. There are occasional long
stagnating periods whena single theory dominates the scene without having
rivals or acknowledgedrefutations. Such periods make manyforget aboutthe
criticizability of the basic assumptions. Theories, which looked counterin-
tuitive or even perverted when first proposed, assume authority. Strange
methodological delusions spread: some imagine that the axioms themselves
start glittering in the light of Euclidean certainty, others imagine that the
deductive channels of elementary logic have the powerto retransmit truth (or
probability) ‘inductively’ from the basic statements to the extant axioms.
The classical example of an abnormal periodin the life of a quasi-empirical

theoryis the long domination of Newton’s mechanics andtheoryof gravita-
tion. The theory’s paradoxical and implausible character put Newton himself
into despair: but after a century of corroboration Kant thoughtit wasself-evi-
dent. Whewell made the more sophisticated claim that it had been solidified
by “progressive intuition’’? while Mill thoughtit was inductively proved.
Thus we may namethese two delusions ‘the Kant-Whewell delusion’ , and

the ‘inductivist delusions’. The first reverts to a form of Euclideanism; the
second establishes a new—inductivist—ideal of deductive theory where the
channels of deduction can also carry truth (or some quasi-truth like prob-
ability) upwards, from the basic statements to the axioms.
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The main danger of both delusions lies in their methodological effect:

both trade the challenge and adventure of working in the atmosphere of

permanentcriticism of quasi-empirical theories for the torpor andsloth of a

Euclidean or inductivist theory, where axioms are moreorless established,

where criticism and rival theories are discouraged.”

The gravest danger then in modern philosophy of mathematicsis that those

who recognize the fallibility and therefore the science-likeness of

mathematics, turn for analogies to a wrong image of science. The twin

delusions of ‘progressive intuition’ and of induction can be discovered anew

in the works of contemporary philosophers of mathematics.7> These

philosophers pay careful attention to the degrees of fallibility, to methods

which are a priori to some degree, and even to degrees of rational belief. But

scarcely anybody has studied the possibilities of refutations [in mathe-

matics].76 In particular, nobody has studied the problem of how muchofthe

Popperian conceptual framework of the logic of discovery in the empirical

sciences is applicable to the logic of discovery in the quasi-empirical sciences

in general and in mathematics in particular. How can one take fallibilism

seriously without taking the possibility of refutations seriously ? One should

not pay lip-service to fallibilism: ‘To a philosopher there can be nothing

whichis absolutely self-evident’ and then go onto state: ‘But in practice there

are, of course, many things which can be called self-evident.

.

. each method

of research presupposescertain results as self-evident.” Such soft fallibilism

divorces fallibilism from criticism and shows how deeply ingrained the

Euclidean tradition is in mathematical philosophy. It will take more than the

paradoxes and Gédel’s results to prompt philosophers to take the empirical

aspects of mathematics seriously, and to elaborate a philosophyof critical

fallibilism, which takes inspiration not from the so-called foundations but

from the growth of mathematical knowledge.
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HILARY PUTNAM

What Is Mathematical Truth ?

The themes of Putnam’s essay are by now familiar: mathematical

knowledgeis not a priori, absolute and certain, rather it is quasi-empirical,

fallible and probable, much like natural science. Putnam’s arguments, however,

are both original and forceful.

The claim to be argued is that ordinary mathematics, even numbertheory,is

quasi-empirical. For Putnam, as for Lakatos, quasi-empirical methods ‘‘are

analogous to methods of the physical sciences except that the singular statements

which are ‘generalized by induction’, used to test ‘theories’, etc., are themselves

the product of proof or calculation rather than being ‘observation reports’ in the

usual sense.’’

Putnam first argues that quasi-empirical mathematics is logically possible. He

constructs a hypothetical example of mathematicians who explicitly use quasi-

empirical methods and he shows how well they can defend the cogencyoftheir

position. Indeed, on Putnam’s account, they can even quote Gédel’s Theorems

against their critics, arguing that Gédel’s results establish the need for synthetic

(quasi-empirical) methods in mathematics.

Next Putnam argues that ordinary mathematics has been quasi-empirical all

along. Established general principles such as the correspondence betweenthereal

numbers and the points on a line or the axiom of choice have been established by

quasi-empirical methods. An especially interesting argument is based on Polya’s

example of Euler’s theorem that L !/n* = x*/6. It is possible to provethis
identity by traditional means and so claim to knowit a priori. Butit is also

possible to know it by induction on ‘observations’. We can calculate the values of

the termsfor finitely many places and compare the results. Once we have noted

the agreementto thirty places, it is a quasi-empirical certainty that the identity

holds. Knowledge is here based on probabilistic induction, heuristic and intuition,

rather than on rigorous proof.

 
Reprinted from Mathematics, Matter and Method by Hilary Putnam

by permission of Cambridge University Press. © Cambridge University

Press.
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The last half of Putnam’s essay takes up the issue of realism. Is this backsliding

into foundationalism? No, Putnam has clearly renounced thethesis that set

theoretic platonism provides foundations for mathematics. The issue of realism

that concerns Putnam can be developed along the following lines. The emphasis

on quasi-empirical methodsleads us to rely on social processes for establishing

knowledge in addition to rigorous proofs. A similar situation arises in the

philosophy of science. The claims of realism in both cases are that the sentences

of the underlying theories are either true or false and, further, that what makes

them true is to some extent external to the social processes themselves. Realism,

thus construed, stands opposedto various reductionist philosophies which

attempt to explain the theories only in terms internal to the social processes, such

as sense data, measurements, symbol manipulation or social ritual. Realism insists

that an adequate accountof the theories in question must interpret them as being

about some external reality.

Putnam suggests that the case for realism in the philosophy of mathematicsis

muchlike the case for realism in the philosophyof science. In the first place, there

are the negative arguments thatcriticize particular reductions. In the second place,

the positive argument is the samein both cases: Realism is the only philosophy that

does not make the success of science or mathematics into a miracle.

In this paper I argue that mathematics should be interpreted realis-

tically—that is, that mathematics makesassertions that are objectively true

or false, independently of the human mind, and that something answers to

such mathematical notionsas ‘set’ and ‘function’. This is not to say that

reality is somehow bifurcated—that there is one reality of material things,

and then, over and aboveit, a secondreality of ‘mathematical things’. A set

of objects, for example, dependsfor its existence on those objects: if they

are destroyed, then there is no longer such a set.! (Of course, we may say

that the set exists ‘tenselessly’, but we may also say the objects exist “‘tense-

lessly’: this is just to say that in pure mathematics we can sometimes ignore

the important difference between ‘exists now’ and ‘did exist, exists now,or

will exist’.) Not only are the ‘objects’ of pure mathematics conditional upon

material objects; they are, in a sense, merely abstract possibilities. Studying

how mathematical objects behave might better be described as studying

whatstructures are abstractly possible and whatstructures are not abstractly

possible.
The important thing is that the mathematician is studying something ob-

jective, even if he is not studying an unconditional ‘reality’ of nonmaterial

things, and that the physicist who states a law of nature with the aid of a

mathematical formula is abstracting a real feature of a real material world,

even if he has to speak of numbers, vectors, tensors, state-functions, or

whatever to makethe abstraction.

Unfortunately, belief in the objectivity of mathematics has generally gone

along with belief in ‘mathematical objects’ as an unconditional and non-

physical reality, and with the idea that the kind of knowledge that we have

in mathematics is strictly a priori—in fact, mathematical knowledge has



WHAT IS MATHEMATICAL TRUTH?

always been the paradigm of a priori knowledge. The present paper will

argue that, on the contrary, mathematical knowledge resembles empirical

knowledge—thatis, that the criterion of truth in mathematics just as much

as in physics is success of our ideas in practice, and that mathematical

knowledgeis corrigible and not absolute.

THE METHOD OF MATHEMATICAL PROOF

The first apparent stumbling block that confronts us if we wish to argue

against the a priori character of mathematical knowledge is the method of

mathematical proof. It does seem at first blush as if the sole method that

mathematicians do use or can use is the method of mathematical proof, and

as if that method consists simply in deriving conclusions from axioms which

have been fixed once and for all by rules of derivation which been fixed

once and forall. In order to start our investigation, let us, therefore, first

ask whetherthis is really the only conceivable method in mathematics. And,

since the axioms are most clear and most ‘immutable’ in elementary number

theory,? let us restrict our attention to elementary numbertheory: if we can

make the case that even the elementary theory of non-negative integersis

not a priori, then we shall not have muchtrouble with, say, set theory.

MARTIAN MATHEMATICS

Let us now imagine that we have comein contact with an advancedciviliza-

tion on the planet Mars. We succeed in learning the language of the Mar-

tians without too much difficulty, and we begin to read their newspapers,

magazines, worksof literature, scientific books and journals, etc. When we

come to their mathematical literature, we are in for some surprises.

Whatfirst surprises us is the profundity of the results they claim to have

obtained. Manystatements that our best mathematicians havetried without

success to prove—e.g. that every map can be colored with fourcolors, that

the zeroes of the Riemannzeta functions in the strip above the unit interval

all lie on the line 1/2—appearas assertions in their mathematical textbooks.

Eagerly westart reading these textbooksin orderto learn the proofsof these

marvelous results. Then comes our biggest surprise: the Martians rely on

quasi-empirical methods in mathematics!

By ‘quasi-empirical’ methods I mean methodsthat are analogous to the

methods of the physical sciences except that the singular statements which

are ‘generalized by induction’, used to test ‘theories’, etc., are themselves

the product of proof or calculation rather than being ‘observation reports’

in the usual sense. For example, if we decided to accept the Riemann

Hypothesis (the statement about the zeroes of the Riemann zeta function

mentioned a moment ago) because extensive searches with electronic com-

puters have failed to find a counterexample—many‘theorems’ have been

proved with its aid, and none of these has been disproved, the consequences

of the hypothesis (it has, in fact, important consequences in the theory of

prime numbers and in other branches of ordinary number theory and

algebraic number theory) are plausible and of far-reaching significance,
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etc.—then we could say, not that we had proved the Riemann Hypothesis,

but that we had ‘verified’ it by a quasi-empirical method. Like empirical

verification, quasi-empirical verification is relative and not absolute: what

has been‘verified’ at a given time maylater turn outto be false. Butis there

any reason, other than a sociological one, why quasi-empirical methods

should not be used in mathematics? If it turned out the Martians do use

quasi-empirical methods, and their mathematical practice is highly suc-

cessful, could we say that they are irrational?

One standard response (‘standard’ for a philosopher of recent vintage,

anyway) might be to argue that the Martians would be conceptually con-

fused because they ‘don’t know what a proofis’. And one might go on to

argue that if one doesn’t know whata proofis, then one doesn’t know what

mathematics is, and (more dubiously) that if one doesn’t know what mathe-

matical proof is, then one doesn’t understandthe assertions in question (the

Riemann Hypothesis, or whatever) as mathematical assertions.

But before we allow this line of argument to spin itself out too far, we

may as well ask: What makesyousay that they don’t know what a proofis?

Suppose the Martians say something like this when queried on this point:

Mathematics is much like any other science in this respect: someassertions ap-

pear self-evident (e.g. F = ma in physics, or, perhaps, some of the conser-

vation principles) and others don’t (the Law of Gravitation). Moreover, again

as in other sciences, someassertions that don’t /ook self-evident turn out to be

consequences of evident principles (e.g. in Newtonian physics the Third

Law—action equals reaction—is a consequenceof the other laws)—andothers

are not. What you call ‘proof’ is simply deduction from principles that are

(more orless) self evident. We recognize proof, and we value proofas highly

as you do—when wecan get it. What we don’t understand is why yourestrict

yourself to proof—whyyourefuse to accept confirmation. Afterall, there are

true mathematical statements that are neither immediately nor demonstra-

- tively necessary—epistemologically contingent mathematical truths. Not

recognizing confirmation as well as proof debars you from ever discovering

these truths.

If the Martians make this reply, then we cannot say they don’t have the

concept of proof. If anything, it’s we who lack a concept—the concept of

mathematical confirmation. The Martians know what a proofis; they use

both methods—mathematical proof and confirmation; they are highly suc-

cessful (so might we be if we developed the knack of making quasi-empirical

mathematical inferences).

Finally, it might be objected that such methodsare not necessary in prin-

ciple; that mathematical statements just have the property thatif they are true

then they can be proved. But Gédel’s theorem showsthe contrary. Evenifall

statements that can be proved are epistemologically a priori and conversely?

the statements that can be proved from axioms which are evident to us can

only be a recursively enumerable set (unless an infinite numberof irreducibly

different principles are at least potentially evident to the human mind,a sup-

position I find quite incredible). And Gédel’s theorem can (in a version due,

fundamentally, to Tarski) be expressed by the statement that the class of

truths of just elementary numbertheory is not recursively enumerable.
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In particular, then, even if it were the case that all the axioms weuse in

mathematics are ‘analytic’, as some philosophers have claimed, and that

deduction preserves ‘analyticity’ (which is never shown), it would not

follow that all truths of mathematics are analytic. Indeed, if the analytic

sentences are all consequences of somefinite list of Meaning Postulates (in

the first order logic sense of ‘consequences’), then it is a consequence of the

theorem just cited that there must be synthetic truths in mathematics.

Worse, it is a consequenceof this view that all the statements we can prove

are analytic; that, although there are synthetic truths in mathematics, our

refusal to use quasi-empirical methods debars us from ever discovering a

single one of them. Since philosophers whofavorthis jargon generally hold

that analytic truths have ‘no content’ and that synthetic truths have ‘factual

content’, one wonders whythese philosophers do notinsist that we must use

quasi-empirical methods!

WHY HAVE WE NOT USED QUASI-EMPIRICAL METHODS?

Weare, then, faced with the following puzzle: if the use of quasi-empirical

methods (not to say, empirical methods)is, in principle, justified in mathe-

matics, then why have we not used them? Our answerto this puzzle is that

the foregoing science fiction story about the Martians was a deliberate

hoax: the fact is that we have been using quasi-empirical and even empirical

methods in mathematics all along—we, us humans,right here on earth!

Thus, consider the basic postulate upon which the subject of analytical

geometryis founded (andwith it the whole study of space in modern mathe-

matics, including the topological theory of manifolds). This is the postulate

that there is a one-to-one order preserving correspondence between the

points on the line and the real numbers. Consider the real numbers them-

selves. Were the real numbers and the correspondencepostulate introduced

in a rigorous mathematical fashion with a rigorous mathematicaljustifica-

tion? They certainly were not. The fact is that the ancient Greeks lacked the

mathematical experience, and hence lacked also the mathematical sophisti-

cation, to generalize the notion of ‘number’ to the extent required for the

correspondence to exist. Thus, when they ran into the existence of incom-

mensurables, they could only abandon the correspondence postulate, and

with it the possibility of an algebraic treatment of geometry. Descartes, on

the other hand, waswilling to simply postulate the existence of a number—a

‘real’ number, as we now would say—corresponding to each distance.* He

did not identify these numberswith sets of rationals or with sequencesof ra-

tionals. But once he had shown howgreat the ‘pay off’ of the correspon-

dence postulate was, not only in pure mathematics but also in mechanics,

there was not the slightest question of abandoning either the correspondence

postulate or these generalized numbers, the ‘real’ numbers. In particularit

would be a mistake to argue that Descartes was only ‘justified’ because it

was possible (even if he did not knowit) to ‘identify’ real numberswith sets

or sequences of rationals. Suppose it were not possible to identify real

numbers with sets or sequences(i.e. to ‘construct’ them out of rationals—

i.e. Suppose these constructions had not been discovered). Would we have
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given up analytical geometry and mechanics? Or would wenotrather have

come simply to regard real numbers as primitive entities, much as most

mathematicians regard the natural numbers (pace Frege, pace Russell!) or

as Frege regarded concepts, or Zermelo regarded sets, or some mathemati-

cians today regard categories and functors? And suppose we had consis-

tent axiomatizable mathematics of this kind, mathematics taking real num-

bers as primitive. Would it be unjustified? It doubtless increases the security

of the system to find a way to introduce real numbersby definition (al-

though the degree of security is hard to measure,since part of the price one

has to payis to take sets as primitive, and it seems weird todayto regardsets

as ‘safer’ than real numbers). Butit is not, contrary to the logicists, essential

to identify real numbers with logical constructions out of rationals.

The fact is that once the assumption of real numbers and of the corre-

spondence between points and reals had showntheirfertility in both physics

and mathematics, there was no question, barring the discovery of mathe-

matical contradiction (and possibly not even then—we would certainly have

tried to circumvent any contradiction by meansless drastic than abandon-

ing the real number system, and doubtless we would have succeeded), there

was, repeat, no question of abandoning the real number system. Theexis-

tence of real numbers and the correspondence between real numbers and

points on the line were discovered in part quasi-empirically, in part empiri-

cally. This is as much an example of the use of hypothetico-deductive

methods as anything in physicsis.

The samestory repeatsitself with the introduction of the methods of the

differential and integral calculus by Newton and Leibnitz. If the epsilon-

delta methods had not been discovered, then infinitesimals would have been

postulated entities (just as ‘imaginary’ numbers were for a longtime). In-

deed, this approach to the calculus—enlarging the real number system—is

just as consistent as the standard approach, as we know today from the

work of Abraham Robinson.

The remarks we made aboutthe introduction of the methodsof analytical

geometry apply with full force to this case too. If the calculus had not been

‘justified’ Weierstrass style, it would have been ‘justified’ anyway.’ The

pointis that the real justification of the calculusis its swccess—its success in

mathematics, and its success in physical science.

A very recent example of the fully conscious and explicit use of quasi-

empirical argumentto justify enlarging the axiomatic foundations of math-

ematics is the introduction of the axiom of choice by Zermelo. In his 1908

paper,® Zermelo defends his axiom against the critics of his 1904 paper.

Peano, in particular, had pointed out that the axiom appearedto bein-

dependentof the axioms in Peano’s Formulaire, and had gone on to suggest

that Zermelo’s proof of the proposition that every set can be well ordered

was, therefore, no proofatall, since it rests on the ‘unproved’ assertion of

the axiom of choice. Here is Zermelo’s reply:’

First, how does Peanoarrive at his own fundamentalprinciples and how does

he justify their inclusion in the Formulaire, since, after all, he cannot prove

them either? Evidently by analyzing the modesof inference that in the course

of history have cometo be recognized as valid and by pointing out that the
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principles are intuitively evident and necessary for science—considerations that

can all be urged equally well in favor of the disputed principle. That this axiom,

even though it was never formulated in textbook system, has frequently been

used, and successfully at that, in the most diverse fields of mathematics,

especially in set theory, by Dedekind, Cantor, F. Bernstein, Schoenflies, J.

Konig, and others is an indisputable fact, which is only corroborated by the

opposition that, at one time or another, somelogical purists directed againstit.

Such an extensive use of a principle can be explained only byits self-evidence,

which, of course, must not be confused with its provability. No matter if this

self-evidence is to a certain degree subjective—it is surely a necessary source of

mathematical principles, even if it is not a tool of mathematical proofs, and

Peano’s assertion’ that it has nothing to do with mathematics fails to do justice

to manifest facts. But the question that can be objectively decided, whether the

principle is necessary for science, I should now like to submit to judgment by

presenting a number of elementary and fundamental theorems and problems

that, in my opinion, could not be dealt with at all without the principle of

choice. [Here follows a list of theorems that need the axiom ofchoice.]

In my opinion, Zermelois right on two counts.First ofall, he is right that

‘self evidence’ is somewhat subjective, but nonetheless counts for some-

thing. In empirical science too, it is wrong to think that intuition plays no

role at all. Intuition is a fallible guide—that is what Francis Bacon taughtus

—but a fallible guideis still better than no guideatall. If our intuition were

totally untrustworthy, we would never think of a correct or approximately

correct theory to test in the first place. In mathematics, the desire that our

axioms should beintuitively necessary is a legitimate one, especially when

combined with the desideratum that Zermelo mentions—that they should

formalize the actual practice of mathematicians. But it is noteworthy that

what Zermelo characterizes as ‘objective’ is not the ‘self-evidence’ of the ax-

iom of choice but its necessity for science. Todayit is not just the axiom of

choice but the whole edifice of modern set theory whose entrenchmentrests

on great success in mathematical application—in other words, on ‘necessity

for science’. What argument, other than a quasi-empirical one, can weoffer

for the axiom of Replacement? And the current rumblings in Category

theory are evidence that the hypothetico-deductive evolution and testing of

new mathematical existence statements (new ‘objects’) and axioms and

methodsis still going on.

The use of quasi-empirical methods in mathematics is not by any means

confined to the testing of new axiomsor new ‘ontological commitments’. Al-

thoughit is rare that either mathematicians or philosophersdiscussit in pub-

lic, quasi-empirical methodsare constantly used to discover truths or putative

truths that one then tries to prove rigorously. Moreover, some of the quasi-

empirical arguments by which one discovers a mathematical proposition to be

true in the first place are totally convincing to mathematicians. Consider, for

example, how Euler discovered that the sum of the series 1/n? is 1?/6. Euler

proceeded in analogy with the factorization

P(x) = «(1 -*) (. -2)G. -2)... G2)
where P(x) is a polynomial with roots (# 0) €,,..., €,. He ‘factored’
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sin 7x by considering the ‘roots’ to be the values for which sin 7x = OQ, 1.e.

x=O,x=+1,x =2,... . Thus

sin TX = ex(i -*)(1 +“) -2)( +3)...

(The factor ‘x’ is present because 0 is one of the ‘roots’.) To evaluate the

‘constant term’ c, he used

sin 7X
lim —y;—=T = ¢

x—0

Thus:

; x? x? Vf x?
sin TX = (n) 1X G-)G-2)G-%)... (1)

But by Taylor’s theorem:

; WX 1 1
sin TX = — ——73x3+— xs... (2)

1! 3! 5!

Equating the coefficients of x3 in (1) and (2) gives:

Ww 1 1 1
at ™m-——- 7-7-5) (3)

or

1 1
~—= — — 4- L— (4)

SO

1 1

» n> 6

Euler, of course, was perfectly well aware that this was not a proof. But

by the time one had calculated the sum of 1/n? to thirty or so decimal places

and it agreed with 72/6, no mathematician doubted that the sum of 1/n? was

m?/6, even though it was another twenty years before Euler had a proof.

The similarity of this kind of argument to a hypothetico-deductive argu-

ment in empirical science should be apparent:intuitively plausible though

not certain analogies lead to results which are then checked ‘empirically’.

Successful outcomes of these checks then reinforce one’s confidence in the

analogy in question.?

Let me give another example of this kind, this time from present-day

mathematics. Many mathematicians are quite convinced that there are in-

finitely many ‘twin primes’ (i.e. infinitely many pairs n, n + 2, both

prime, such as 5, 7, or 11, 13) even though there is no mathematical proof

of this assertion. The argument they find convincing goes as follows: it

seems plausible (and agrees with ‘empirical’ data) that the ‘events’ n is a

prime and n + 2 is a prime are independent eventsin thestatistical sense.

But the frequency of primes less than n is approximately 1/log n. Hence the

frequency of twin primesless than n must be (asymptotically) like 1/(log n)?,

which implies that the number of twin primesis infinite.
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Bas van Frassen has asserted that it 1s a consequence of my view that the

following is a good quasi-empirical inference in mathematics: computers

have failed to turn up a counterexample of the Goldbach conjecture,

therefore the Goldbach conjection is true. Of course, this is not a good

quasi-empirical inference. And I do not pretend to be able to give rules by

means of which wecantell which are and which are not good quasi-empiri-

cal inferences. After all, the analogous problem in philosophy of empirical

science—the problem of inductive logic—hasresisted solution for centuries,

but people have not abandoned empiricalscience on that account. But I can

say what is wrong with this simple ‘induction’ that the Goldbach conjecture

is true. The fact is that neither in mathematics nor in empirical science do

wetrust the conclusion of a simple ‘Baconian’ induction to be exactly and-

precisely correct. A universal generalization—a statementthat can be over-

thrown by single ‘for instance’—cannot beverified by mere Baconian in-

duction in any science. But just contrast the ‘inductive’ argument we gave

for the existence of infinitely many twin primes with the bad argument for

the Goldbach conjecture. Even if the events n is a prime andn + 2isa

primeare notstrictly statistically independent, the conclusion will still be

correct. In other words, the deduction that there are infinitely many twin

primes is ‘stable under small perturbations of the assumptions’. One con-

firms inductively a statistical statement,!® not an exceptionless generaliza-

tion, and then deduces from even the approximate truth of the statistical

statement that there will be infinitely many twin primes. My impression is

that there are very few mathematicians who are not convinced bythisar-

gument, even thoughit is not a proof.

Since we do use quasi-empirical methodsa great deal in mathematics (and

we aren’t even Martians!) I believe that it would be of great value to attempt

to systematize and study these methods. Perhaps such anenterprise is pre-

mature in the present state of our knowledge. However, a mathematical

friend has suggested that model theoretic methods might be used, for ex-

ample, to try to convert ‘probability’ arguments like the one for the exis-

tence of infinitely many twin primes, into proofs.

REALISM IN THE PHILOSOPHY OF MATHEMATICS

I am indebted to Michael Dummett for the following very simple and elegant

formulation of realism: A realist (with respect to a given theory or discourse)

holds that (1) the sentences of that theory or discourse are true or false; and

(2) that what makes them trueor false is something externa/—thatis to say,it

is not (in general) our sense data, actual or potential, or the structure of our

minds, or our language, etc. Notice that, on this formulation,it is possible

to be a realist with respect to mathematical discourse without committing

oneself to the existence of ‘mathematical objects’. The question of realism,

as Kreisel long ago putit, is the question of the objectivity of mathematics

and not the question of the existence of mathematical objects.

One wayto spell this out is the following. Mathematics has, since Frege

and Russell and Zermelo and Bourbaki been thought of as describing a

realm of mathematical objects. In principle, all these objects can be iden-

tified with sets, in fact. The language in which these objects are described is
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highly asceptic—no modal notions, no intensional notions(e.g. ‘proof’), in-

deed, in the by nowstandard case, no notions except thoseofthefirst order

theory of ‘epsilon’ (set-membership). Mathematics has, roughly speaking,

got rid of possibility by simply assuming that, up to isomorphism anyway,

all possibilities are simultaneously actua/—actual, that is, in the universe of

‘sets’.

There is another possible way of doing mathematics, however, or at any

rate, of viewing it. This way, which is probably mucholder than the modern

way, has suffered from never being explicitly described and defended.It is

to take the standpoint that mathematics has no objects of its ownat all. You

can prove theorems about anything you want—rainy days, or marks on

paper, or graphs,or lines, or spheres—but the mathematician, onthis view,

makes no existence assertions at all. What he asserts is that certain things

are possible and certain things are impossible—in a strong and uniquely

mathematical sense of ‘possible’ and ‘impossible’. In short, mathematicsis

essentially modal rather than existential, on this view, which I haveelse-

where termed ‘mathematics as modal logic’.!!

Let mesay a few things aboutthis standpointhere.

(1) This standpoint is not intended to satisfy the nominalist. The nomi-

nalist, good man that he is, cannot accept modal notions any more than he

can accept the existence of sets. We leave the nominalist to satisfy himself.

(2) We do have to say something about Hume’s problem. It was Hume

more than any other philosopher who drove the notions of possibility and

necessity into disrepute. What bothered Humewasthefollowing argument:

we only observe what is actual. Since the only generalizations we can make

on the basis of the observation of actual things are to the effect that all As

are Bs—not that all possible As are Bs, or that all As are necessarily Bs,

Humeconcluded that necessity must necessarily be a subjective matter.

It seemsto us that this argument rests on much too simple a view of the

structure of scientific knowledge. Physical theory, for example, has not fora

long time been a mere collection of statements of the form (x)(Fx— Gx).

From classical mechanics through quantum mechanics and general rela-

tivity theory, what the physicist does is to provide mathematical devices for

representing all the possible—not just the physically possible, but the

mathematically possible—configurations of a system. Many of the physi-

cist’s methods (variational methods, Lagrangian formulations of physics)

depend on describing the actual path of a system as that path of all the

possible ones for which a certain quantity is a minimum or maximum. Equi-

librium methods in economics use the same approach. It seems to us that

‘possible’ has long been a theoretical notion of full legitimacy in the most

successful branches of science. To mimic Zermelo’s argumentfor the axiom

of choice, we may argue that the notion of possibility is intuitively evident

and necessary for science. And we maygo onto argue,as he did,thatthe in-

tuitive evidence is somewhat subjective, but the necessity for science is ob-

jective. It seems to us that those philosophers who object to the notion of

possibility may, in somecasesat least, simply be ill-acquainted with physi-

cal theory, and not appreciate the extent to which an apparatus has been

developed for describing ‘possible worlds’. That we cannotdirectly observe
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the possible (unless it happens to be actual) should not count as an argu-

ment against the notion of possibility in this day and age.

(3) The notion of possibility does not have to be taken as a primitive no-

tion in science. We can, of course, define a structure to be possible (mathe-

matically speaking) just in case a model exists for a certain theory, where

the notion of a model is the standard set theoretic one. That is to say, we

can take the existence of sets as basic and treat possibility as a derived no-

tion. Whatis often overlooked is that we can perfectly well go in the reverse

direction: we can treat the notion of possibility as basic and the notionofset

existence as the derived one. Sets, to parody John Stuart Mill, are perma-

nent possibilities of selection.

It is clear that number theoretic statements, with however many quanti-

fiers, can be translated into possibility statements. Thus a statementto the ef-

fect that for every number x there exists a numbery such that F(x, y), where

F(x, y) is a recursive binary relation, can be paraphrased as saying thatit is

not possible to produce a tape with a numeral written on it which is such that

if one were to produce a Turing machineof a certain description and startit

scanning that tape, the machine would never halt. In a previous paper, I

showed that an arbitrary statement!2 of set theory—even one that quantifies

over sets of unbounded rank—canbe paraphrased bya possibility statement.

(4) The main question we must speak to is simply, what is the point ?

Given that one can either take modal notions as primitive and regardtalk of

mathematical existence as derived, or the other way around, whatis the ad-

vantage to taking the modal notions as the basic ones? It seemsto us that

there are two advantagesto starting with the modal concepts. One advan-

tage is purely mathematical. Construing set talk, etc., as talk about possible

or impossible structures puts problems in a different focus. In particular,

different axiomsare evident. It is not my intention to discuss these purely

mathematical advantages here. The other advantageis philosophical. Tra-

ditionally, realism in the philosophy of mathematics has gone along with

Platonism, as we remarked at the outset, where ‘Platonism’ connotessi-

multaneously an epistemological theory and an ontology. The main burden

of this paper is that one does not have to ‘buy’ Platonist epistemology to be

a realist in the philosophy of mathematics. The modal logical picture shows

that one doesn’t have to ‘buy’ Platonist ontology either. The theory of

mathematics as the study of special objects has a certain implausibility

which, in my view, the theory of mathematics as the study of ordinary ob-

jects with the aid of a special concept does not. While the two views of

mathematics—as set theory and as ‘modal logic’—are intertranslatable, so

that there is not here any question of one being true and the other being

false, the modal logical view has advantages that seem to me to go beyond

mere provision of psychological comfort to those distressed by Platonism.

There are real puzzles, especially if one holds a causal theory of reference in

some form, as to how one can refer to mathematical objects at all. I think

that these puzzles can be clarified with the aid of modal notions. But again,

this goes beyond the burden of this paper.

Let us return now to the topic of realism. Realism with respect to em-

pirical science rests on two main kinds of arguments, which we mayclassify
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loosely as negative arguments and positive arguments. Negative arguments

are to the effect that various reductive or operationalist philosophies are

just unsuccessful. One tries to show that various attempts to reinterpret

scientific statements as highly derived statements about sense data or

measurement operations or whatever are unsuccessful, or hopelessly vague,

or require the redescription of much ordinaryscientific discovery as ‘mean-

ing stipulation’ in an implausible way, or something of that kind, with the

aim of rendering it plausible that most scientific statements are best not

philosophically reinterpreted at all. The positive argument for realism is

that it is the only philosophy that doesn’t make the success of science a

miracle. That terms in maturescientific theories typically refer (this for-

mulation is due to Richard Boyd), that the theories accepted in a mature

science are typically approximately true, that the same term can refer to the

same thing even whenit occurs in different theories—these statements are

viewedbythescientific realist not as necessary truths but as part of the only

scientific explanation of the success of science, and hence as part of any

adequatescientific description of science andits relations to its objects.

I believe that the positive argument for realism has an analogue in the

case of mathematical realism. Here too, I believe, realism is the only

philosophy that doesn’t make the success of the science a miracle.

In my view,, there are two supports for realism in the philosophy of

mathematics: mathematical experience and physical experience. The con-

struction of:a highly articulated body of mathematical knowledge with a

long tradition of successful problem solving is a truly remarkable social

achievement. Of course, one might say: ‘well, in the middle ages they would

have said ‘‘the construction of a highly articulated body of theological

knowledge with a long tradition of successful problem solving is...” ’

But ‘Theological knowledge’ was in fact highly inconsistent. Moreover,if

one ‘fixed it up’ so as to restore consistency, the consistency would be a

trivial result—doubtless it would follow from the existence of some kind of

finite model. In mathematics we have (we think) a consistent structure—

consistent notwithstanding the fact that no science other than mathematics

deals with such Jong and rigorous deductive chains as mathematics does (so

that the risk of discovering an inconsistency, if one is present is immeasur-

ably higher in mathematics than in any other science) and notwithstanding

the fact that mathematics deals with such complex infinite structures that,

as we know form Gdédel’s work, no hopeofa finitistic consistency proof ex-

ists. If there is mo interpretation under which most of mathematicsis true,if

we are really just writing down strings of symbols at random, or even by

trial and error, what are the chances that our theory would be consistent,let

alone mathematically fertile?

Let us be careful, however. If this argument has force and I believe it"

does, it is not quite an argument for mathematical realism. The argument

says that the consistency and fertility of classical mathematics is evidence

that it—or most of it—is true under someinterpretation. But the interpre-

tation mightnotbe a realist interpretation. Thus Bishop mightsay, ‘indeed,

most of classical mathematics is true under someinterpretation; it is true

under an intuitionist reinterpretation!’ Thus our argumenthas to stand on
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two legs: the other leg is physical experience. The interpretation under

which mathematics is true has to square with the application of mathemat-

ics outside of mathematics.

In a little book I published not long ago (Putnam, 1971), I argued in de-

tail that mathematics and physics are integrated in such a waythatit is not

possible to be a realist with respect to physical theory and a nominalist with

respect to mathematical theory. In a sense, this means that our intuitions

are inconsistent. For I believe that the position most people find intuitive—

the one that I certainly found intuitive—is realism with respect to the

physical world and some kind of nominalism or if-thenism with respect to

mathematics. But consider a physical law, e.g. Newton’s Law of Universal

Gravitation. To say that this Law is true—to even saythatit is approximately

true at nonrelativistic distances and velocities—one has to quantify over

such non-nominalistic entities as forces, masses, distances. Moreover, as I

tried to show in my book, to account for what is usually called ‘measure-

ment’—that is, for the numericalization of forces, masses and distances—

one has to quantify not just over forces, masses, and distances construed as

physical properties (think of a particular massas a property that any given

thing may or may not have, where the notion of a property is such that the

property does not have anyintrinsic connection with one particular number

rather than another), but also overfunctionsfrom masses, distances, etc. to

real numbers,or at any rate to rational numbers. In short—andthisis an in-

sight that, in essence, Frege and Russell already had—a reasonable inter-

pretation of the application of mathematics to the physical world requires a

realistic interpretation of mathematics. Mathematical experience says that

mathematicsis true under someinterpretation; physical experience says that

that interpretation is a realistic one.

To sketch the argument in a nutshell: if one is a realist about the physical

world, then one wants to say that the Law of Universal Gravitation makes

an objective statement about bodies—not just about sense data or meter

readings. Whatis the statement? It is just that bodies behave in such a way

that the quotient of two numbers associated with the bodies is equal to a

third numberassociated with the bodies. But how can such a statement have

any objective contentat all if numbers and ‘associations’ (i.e. functions) are

alike merefictions? It is like trying to maintain that God does not exist and

angels do not exist while maintaining at the very same timethatit is an ob-

jective fact that God has put an angel in charge of each star and the angels

in charge of each of a pair of binary stars were always created at the same

time! If talk of numbers and‘associations’ between masses, etc. and num-

bersis ‘theology’ (in the pejorative sense), then the Law of Universal Gravi-

tation is likewise theology.

A Digression on intuitionism

It seems to me that the argumentagainst nominalism just sketched also goes

through against intuitionism. Let me be moreprecise. Intuitionism has two

parts: intuitionism gives us a set of notions to use in doing mathematics (an

ideology, in Quine’s sense of the term) andit gives us a set of objects to

quantify over (an ontology). The two questions: is intuitionist ideology
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adequate for mathematics/physics? and is intuitionist ontology adequate

for mathematics/physics? are almost never separated when people discuss

these questions (the work of Georg Kreisel is a happy exception to this sad

state of affairs), but it is essential that they should be. It is my claim that

even if the ideology and ontology of intuitionism prove adequate to derive

all of classical mathematics, the ideology of intuitionism is wholly inade-

quate for physics. The Law of Universal Gravitation, for example, has the

form

(x)[A(x) = ¥(x)] | (1)

where @ and y are empirically given sequences—‘lawless’ sequences. On the

intuitionist interpretation of the logical connectives, what (1) means is that

there is an integer 1 such that given thefirst n decimal places of both @ and y

one can provethat(1) is true. Since this is absurd for lawless sequences, and

since a proofof the absurdity of a proof of (1) counts as a proofof the intui-

tionist negation of (1), it is actually a theorem of intuitionist mathematics that

~ (x)[9) = ¥O)]

—i.e. the Law of Universal Gravitation is intuitionistically false! The reason

Brouwer does not notice this is that he treats the empirical world as a “de-

cidable case’ that is, as a finite system. But this requires him to be a thor-

ough-going fictionalist. Indeed, in his Dissertation he not only takes the

point of view that physical objects are fictions, but also asserts that other

selves and even future states of his own mindare‘fictions’!

PHYSICAL APPLICATION AND NONDENUMERABILITY

I have argued that the hypothesis that classical mathematicsis largely true

accounts for the success of the physical applications of classical mathemat-

ics (given that the empirical premises are largely approximately true and

that the rules of logic preserve truth). It is worthwhile pausing to remark

just how muchofclassical mathematics has been developedfor physical ap-

plication (the calculus, variational methods, the current intensive work on

nonlinear differential equations, just for a start), and what a surprising

amount has found physical application. Descartes’ assumption of a cor-

respondence between the points on a line and the reals was a daring appli-

cation of what we now recognize to be nondenumerable mathematics to

physical space. Since space is connected with physical experience, it 1S per-

haps not surprising that this found physical application. Likewise, the cal-

culus was explicitly developed to study motion, so perhapsit is not surpris-

ing that this too found physical application; but who would have expected

spectral measure, ofall things, to have physical significance? Yet quantum

mechanical probabilities are all computed from spectral measures. (In a

sense, nothing has more physical significance than spectral measure!)

This raises a question which is extremely interesting in its own right, if

somewhat tangential to our main concern: do we have evidence for the non-

denumerability of physical space, or is this merely a physically meaningless,

albeit useful ‘idealization’, as is so often asserted by philosophers of science?
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The reason that I regard this question as tangential to the main question

of this paperis that even if physical space turns outto be discrete, evenifit

only behaves as a nondenumerable space would behave (upto a certain ap-

proximation), still the explanation of the behavior of space presupposes a

correct understanding of how a nondenumerable space would behave, and

the claim we are making for classical mathematics is that it provides this.

THE IMPORTANCE OF PROOF

In this paper, I have stressed the importance of quasi-empirical and even

downright empirical methods in mathematics. These methodsare the source

of new axioms, of new ‘objects’, and of new theorems, that we often know

to be true before we succeed in finding a proof. Quasi-empirical/empirical

inferences support the claim that mathematics is (largely) true, and place

constraints on the interpretation under whichit can be called ‘true’, but a

word of caution is in order. None of this is meant to downgradethe notion

of proof. Rather, Proof and Quasi-empirical inference are to be viewed as

complementary. Proof has the great advantage of not increasing the risk of

contradiction, where the introduction of new axiomsor new objects doesin-

crease the risk of contradiction, at least until a relative interpretation of the

new theory in somealready accepted theory is found. For this reason, proof

will continue to be the primary method of mathematical verification. But

given that formal deductive proofis likely to remain the primary method of

mathematical verification, and that it is developed to an astounding extent

in the science of mathematics, it is surprising how little we really know

about it. In part this is because proof theory developed as an ideological

rather than a scientific weapon. Proof theory was burdened with the con-

straint that only finitist methods must be used—aconstraint with no mathe-

matical justification whatsoever. Only recently have workers like Georg

Kreisel, Takeuti, Prawitz, and others begun to view proof theory as a non

‘ideological’ branch of mathematics which simply seeks to give us informa-

tion about what proof really does.

I should like to conjecture that the modallogical interpretation (or, rather,

family of interpretations) of classical mathematics may help in this enter-

prise. Modal logical interpretations sometimes bear a formal similarity to

intuitionist reinterpretations while being fully realistic. Thus they may play

a role in the study of proofs similar to the role that has been played by in-

tuitionist and allied interpretations, while giving moreorless different ‘in-

formation’.

PHYSICS AND THE FUTURE OF MATHEMATICS

In this paper, I have not argued that mathematics is, in the full sense, an

empirical science, although I have arguedthat it relies on empirical as well

as quasi-empirical inference. The reader will not be surprised to learn that

my expectation is that as physical science develops, the impact on mathe-

matical axioms is going to be greater rather than less, and that we will have

to face the fact that ‘empirical’ versus ‘mathematical’ is only a relative
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distinction; in a looser and moreindirect way than the ordinary ‘empirical’

statement, much of mathematics too is ‘empirical’.

In a sense, this final collapse of the notion of the a priori has already be-

gun. After all, geometry was a part of mathematics—notjust uninterpreted

geometry, but the theory of physical space. And if space were Euclidean,

doubtless the distinction between ‘mathematical’ and ‘physical’ geometry

would be regardedassilly. When Euclidean geometry was dethroned, the

argument was advancedthat ‘straight line’ only means‘light ray’ and ‘any

fool can plainly see’ that interpreted geometry is empirical. It was kind of

an oversight, in this view, that the theory of physical space was everre-

garded as a priori. In the last few years the standard interpretation of quan-

tum mechanics—viz that it no longer makes sense to separate epistemology

and physics, that henceforth we can only talk about physical magnitudes as

they are measured by particular experimental arrangements—has begun to

be challenged by the upstart view that quantum mechanics is a complete

realistic theory, that there is nothing special about measurement, and that

we just happento live in a world that does not obey the laws of Boolean

logic.43 Just as those who defended non-Euclidean geometry sought to mini-

mize the impact of their proposals (or, rather, to make them morepalat-

able) by adopting an extreme operationist style of presentation, so the main

advocates of quantum logic—Finkelstein, Jauch, Mackey, Kochen—also

adopt an extreme operationist style of presentation. They only claim that

quantum logic is true given the precisely specified operational meaning of

the logical connectives. Mackey and Jauch go so faras to suggest that there

is some otherstudy,called ‘logic’ (with, of course, no operational meaning

at all) which they are not challenging. In my opinion, whatevertheir inten-

tions, they are challenging logic. And just as the almost unimaginable fact

that Euclidean geometryis false—false of paths in space, not just false of

‘light rays’—has an epistemological significance that philosophy must some

day come to terms with, however long it continues to postpone the reck-

oning, so the fact that Boolean logic is false—false of the logical relations

between states of affairs—has a significance that philosophy and physics

and mathematics must cometo terms with.

The fact is that, if quantum logicis right, then not only the propositional

calculus used in physics is affected, but also set theory itself. Just what the

effects are is just beginning to be investigated. But it may well be that the

answer to fundamental questions about, say, the continuum will comein

the future not from new ‘intuitions’ alone, but from physical/mathematical

discovery.

NOTES

1. The null set is an exception to this statement, of course; but set theoryis rela-

tively interpretable in the theory of non-empty sets, provided weare willing to as-

sumethat at least one object (other than a set) exists. Thus, ‘unconditional’ sets are

not in any way necessary in mathematics (either in pure mathematics, or in mathe-

matics as part of total science), except as constructions out of ‘conditional’ sets. One

might, nonetheless, insist on the a priori existence of the null set an sich; but this

seems a little strained, even for a metaphysician.
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2. Actually, they are not ‘immutable’ at all; only the consequences (the set of

theorems) is—more-or-less—immutable. Elementary number theory was not axi-

omatized until the end of the nineteenth century (‘Peano’s axioms’). And how ‘im-

mutable’ is the set of theorems? Was mathematical induction in its seventeenth century

form completely grasped by the ancients? Did even the great seventeenth century

numbertheorists go beyond recursive induction?

3. I will argue later in this paper that some of the axioms of mathematics—in

particular, the assumption of a one-to-one correspondence between points in space

and triples of reals (or points on a line and reals), and the axiom of choice—are

quasi-empirical; thus I do not myself accept the claim that proved statements (e.g.

consequences of these assumptions) are epistemologically a priori. (In fact, I don’t

think there is any such thing as an a priori statement, unless ‘a priori’ just means

unrevisable within a particular theoretical frame, characterized both by positive as-

sumptions and a ‘space’ of theoretical alternatives.)

4. It may be argued that this postulate—due to Fermat as well as Descartes—is

no longer assumed in mathematics. For, one can argue, we now distinguish between

physical space and abstract Euclidean space. Mathematics is concerned with thelat-

ter (and with other abstract spaces) not the former. But the latter can simply be iden-

tified with the set of triples of reals; thus the Correspondence Postulate is true by

definition.

Against this we would argue that geometry as the theory of physical space (the

space in which objects are located and moved about) was part of mathematics from

Euclid until (approximately) the time of Riemann’s Inaugural Dissertation. Without

the Correspondence Postulate there would have been no motivation for calling the

set of triples of reals an abstract ‘space’, or for identifying anything as a metric ora

line or a curve. Indeed, talk of acts and functions itself became accepted only after

talk of ‘curves’ had paved the way.

5. I don’t mean to deny the importance of removing contradictions from our

theories. I mean that there is no unique way of removing contradictions from a

somewhatuseful theory, and in particular reductive definition is not the unique way,

ever.

6. ‘A New Proofof the Possibility of a Well Ordering,’ reprinted in Heijenoort

(1967), pp. 183-98.

7. Ibid. p. 187.

8. ‘Additions,’ Revista de mathematica 8, pp. 143-57; reprinted in Peano (1957)

Vol. 1. The assertion Zermelo refers to is on p. 147.

9. The foregoing example comes from Polya, a great exponent of the impor-

tance of plausible reasoning in mathematics.

10. In fact more careful reasoning shows that the events in question cannot be

strictly independent, and therefore ‘the only reasonable conjecture’—the words are

those of a world famous number theorist—is that the number of twin primesless

than x ‘must’ be 1.23 . . . 1/(log x)*. Another world famous mathematician described

this argument as ‘totally convincing’—thatis, the argumentthat there must beinfi-

nitely many twin primes.

11. In ‘Mathematics without foundations,’ chapter 3 Putnam (1975a).

12. Ibid.

13. See my ‘The logic of quantum mechanics,’ chapter 10 Putnam (197S5a).
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‘*Modern’’ Mathematics:

An Educational and Philosophic Error?

Attthough Thom’s paper has engendered considerable discussion among

mathematicians, its inclusion here might appear surprising. His topic, mathematics

education in secondary schools, is not usually regarded as part of serious

philosophy. And Thom,himself, defends a classical realist position, almost

Platonism. So whyis the paperin this anthology?

In regard to the first point, you recall that Hersh already argued that if we

took our foundationsseriously, it would shape our teaching of mathematics.

Thom suggests that this has happened and that the outcomeis very unsatisfactory.

His direct attack on current pedagogical practices is thus an implicit critique of

the foundation ideas supporting them.

In regard to Thom’srealism let us note that in philosophical terms he is whatis

knownas a ‘naive realist.’ His realism applies across the boardto all areas of

mathematics, to geometry as directly as to set theory. As his article makesclear,

he opposesthe set theoretic platonist’s reductionism as vigorously as he opposes

that of the formalist. So Thom clearly takes an anti-foundational position.

Moreover, he suggests that an adequate philosophy of mathematics will have to

deal with methodssuch as analogy, which are ignored by foundation studies. In

addition he offers a penetrating challenge to the concept of rigor that foundations

supposedly provides. What foundations promises, but never delivers, Thom

observes, is a global rigor given once for all of mathematics (it is to be given by

the correct theory of foundations). Howeverall that our experience actually

reveals is local rigor—rigor as a local property of mathematical reasoning.

Finally, in his article Thom considers three philosophies of mathematics:

formalism, realism and his characterization of quasi-empiricism. ‘‘The empirical

or sociological view. A proof P is accepted asrigorous if it obtains the

endorsement of the leading specialists of the time.’’ No one concerned to defend

quasi-empiricism in mathematics would accept this characterization without

qualification. However, the relevant point is that while Thom is quite insistent

 
Reprinted, with permission, from AMERICAN SCIENTIST, Vol. 59, No. 6,

November-December 1971, pp. 695-99.
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that formalism is wrong and that realism is correct, he appears willing to tolerate

quasi-empiricism as a complementto realism. Indeed he argues in a manner

reminiscent of Putnam that a realist view is necessary to accountfor the success

of the social practice of mathematics.

In the minds of most of our contemporaries, so-called modern

mathematics holds a place of high prestige lying somewhere between

cybernetics and information theory in the bag of tricks promoted by decep-

tive publicity as the essentials of modern technology, the indispensable

tools for the future development of all scientific knowledge. And, on

another level, since the modernization of school curricula, many parents,

no longer capable of helping their offspring, have become concerned. They

no longer hear the old familiar notions in the vocabularly of their children

and thus feel lost when confronted with the new terminology. Some,

perplexed, see this as one more symptom of the generation gap and have

adopted an obstructionist stance toward the new ideas. Others, on the con-

trary, particularly those in the teaching profession, have accepted the new

curriculum, ideas, and symbols with enthusiasm. What should we make of

all this?

Curriculum revisions

Let us list briefly the changes madein the curriculum:

1. Added material:

(a) ‘‘Elementary’’ set theory, the use of symbols (€, C, U, 1), the

mappingsof oneset into another, and quantifiers. Most striking ofall, sets

now appear ubiquitously in the curriculum from kindergarten through the

final year of secondary education. We will return to this point later.

(b) Developmentof algebraic notions; laws of composition on a set; con-

cepts of group, ring, and field.

(c) Introduction earlier of fundamentals of differential and integral cal-

culus, derivatives, indefinite integrals, elementary functions such as loga-

rithm and exponential.

2. Eliminated material: Traditional Euclidean geometry, in particular

the intricacies of plane geometry.

In sum, the reader will note that the curriculum has been modified by a

substantial addition of material introduced in the secondary schoolyears.

The tendency to emphasize algebra at the expense of geometry is even greater

in university teaching.

ALGEBRA AND GEOMETRY

The elimination of traditional Euclidean geometry is based on two argu-

ments. Thefirst is theoretical: the axiomatic work resulting from Hilbert’s
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Grundlagen der Geometrie has shownthatthe alleged rigor of the Elements

of Euclid is in large part illusory; it is compromised by frequent appeals to

intuition. As a consequence, the argumentruns,it is better to avoid Euclid-

ean geometry by developing the ideas of algebra, in which a rigorouspre-

sentation is possible. The second argumentis a practical one:classical plane

geometry, with its elaborate study of the triangle’s properties, is useless and

pedantic. Whoin his lifetime ever needsto use the ‘‘Simpson’s line’’ or the

‘‘nine-point circle’?

Let us first discuss the argument aboututility. It is said that algebra is more

useful and necessary than geometry. There is no question of denying the

general scientific utility of linear algebra or of certain notions of multilinear

algebra. As for general commutative algebra—polynomials, etc.—caution is

in order. In ordinary life, who has ever needed to solve a second-degree equa-

tion or to use explicitly the notion of a module over a ring? The argument for

the utility of algebra is not as compelling as it appears. As for differential

and integral calculus—point(c) above—they are indispensable for any pre-

sentation of classical physics.

At an elementarylevel, certainly, the use of algebra leads to massive sim-

plifications. Solving ‘‘through reasoning’’ the ‘‘word’’ problems one used

to have as a twelve-year-old required an extraordinary dexterity of mind,

whereas the algebraic solution was purely mechanical. Here the economy

of thought introduced by algebra is undeniable. With more complexsitua-

tions, however, the advantage of algebra tends to disappear. Descartes de-

vised analytic geometry in order to reduce geometry to algebra. Butit is a

fact well known to all university applicants who have crammedfor ad-

vanced standing in mathematics that the advantage of analytic methods

Over geometric ones for a qualitative theoretical problem is far from being

decisive.

*““Modernism’”’

For professional mathematicians, the use of algebra as an instrument of

proof is highly important and perhapsessential. Contemporary mathemati-

cians, steeped in the ideas of Bourbaki,! have had the natural tendency to

introduce into secondary and university courses the algebraic theories and

structures that have been so useful in their own work and that are upper-

most in the mathematical thought of today. Yet one can ask with reason if

the needs of specialists and their latest findings should be introduced into

the school curriculum.

Mathematicians are not alone in succumbing to this temptation. I have

read biology texts—both for beginners and advanced students—in which

the double helix of DNA of Watson and Crick and the precise enzymatic

mechanism of its replication are presented as definitive scientific truth. In-

novations should not be introduced into the curriculum without a certain

waiting period. In France, we should have been able to rely on the schoolin-

spection corps to assure the necessary curricular stability. However, for fear

of having genuine skepticism interpreted as sclerosis due to old age,this in-

stitution has not functionedwithall its desired efficacy. After all, texts must

change and editors mustlive.
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The problem of geometry

In the last analysis, the argument aboutthe utility of material presented in

the curriculum is perhaps not the decisive one. Let us ignore ‘‘culture’’—

‘“that which remains whenallelse is forgotten’’—asa vestige of times past.

Somestill persist in thinking that, in one form or another, one of the goals

of teachingis selection, that is to say, determining the aptitudes of each stu-

dent and developing them to the maximum,with particular emphasis on the

gifted student. I claim that it is impossible to carry out such a task in the

framework of a discipline that does not include at least some gratuitous,

nonuseful aspects. In order to judge fully the capabilities of a student, itis

necessary to place him in an active role andto call on his individualinitiative

and enterprising spirit. None of this is conceivable within a framework of

‘useful’? studies, where all the elements, included because of their technical

utility, are dogmatically taught and where scholarly excellence is defined as

exact and rapid memorization of given material. Only those topics which

have a quality of ‘‘play’’? have educational value, and of all such games,

Euclidean geometry, with its constant references to underlying intuitively un-

derstood fundamentals, is the least gratuitous and the richest in meaning.

By this line of reasoning, the contemporary trend to replace geometry

with algebra is educationally baneful and should be reversed. There is a sim-

ple reason for this: while there are geometry problems, there are no algebra

problems. A so-called algebra problem can only be a simple exercise requir-

ing the blind application of arithmetical rules and of a preestablished pro-

cedure. With rare exceptions, one cannotask a student to prove an algebra

theorem;either the requested answeris almost obvious and can be arrivedat

by direct substitution of definitions, or the problem falls into the category

of theoretical algebra and its solution exceeds the capacities of even the

most gifted student. Exaggerating only slightly, one can say that any ques-

tion in algebrais either trivial or impossible to solve. By contrast, the classic

problems of geometry present a wide range of challenges.

Geometry problems require a combination oftime,effort, concentration,

and powers of association of which few students are capable. Perhaps

Euclidean geometry, like Latin translation, is one of those lofty, obsolete

exercises that are limited to the elite and incompatible with mass education.

If such is the case, expelling geometry from the curriculum becomesessen-

tially a sociological question that I do not wish to discuss here. Still, it

would be a grave error to hope to simplify the learning of mathematics by

replacing geometry with algebraic structures that are then widely and pre-

maturely taught without adequate motivation.

Rigor

Let us now turn to the objection to Euclidean geometry that criticizes the

axiomatics of the Elements as being flawed and lacking in rigor. One can

point out, first of all, that geometry books long ago gave up the heavy, in-

digestible rhetoric of Euclid. Some cherished the hope of substituting an ac-

ceptable version of Hilbert’s Grundlagen. Not surprisingly, this hope was

defeated by the dreadful complexity of this work. One cannot take a stand
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on this issue without first attacking the philosophical question of what con-

ception of mathematical rigor one should adopt. Three attitudes are possi-

ble: (1) the formal view. In a formal system S, a proposition is trueifit

can be deduced from the axiomsof S by a finite numberof steps permitted

within the system of S. (2) Therealist or Platonic view. Mathematical en-

tities exist independently of thought, as Platonic ideas. A proposition is

true when it expresses a relationship actually existing between ideas,i.e.

whenit is an idea of higher order, structuring a group of ideas that are sub-

ordinate to it. (3) The empirical or sociological view. A proof P is accepted

as rigorous if it obtains the endorsement of the leading specialists of the

time.

Of these three attitudes, mathematicians today favor the first. At first

sight, it is the most tempting; it does notraise the ontological difficulties of

the second, and it is not as vague and arbitrary as the third. Bertrand

Russell has said that ‘‘mathematics is the subject in which we never know

whatweare talking about nor whether what wearesayingis true.’’? Unfor-

tunately, the purely formal view is difficult to uphold, paradoxically for

formal reasons. We knowthedifficulties presented by the formalization of

arithmetic associated with Gédel’s Theorem. Professor Kreisel, in his re-

cent article in L ’Age de la science,} put the formal view ontrial. For myself,

I am content with the following illustration: Let us suppose that we have

been able to construct for a formal theory S an electronic machine M

capable of carrying out at a terrifying speed all the elementarysteps in S.

Wewishto verify the correctness of one formula F of the theory. After a

process totaling 103° elementary operations, completed in a few seconds, the

machineMgivesus a positive reply. Now what mathematician would accept

without hesitation the validity of such a ‘‘proof,”’ given the impossibility of

verifying all its steps?

*“Meaning’’ in mathematics

Any mathematician endowed with a modicum ofintellectual honesty will

recognize that in each of his proofs he is capable of giving a meaning to the

symbols he uses. Because of this, his work differs from that of the theo-

retical physicist, who very frequently does not hesitate to put his trust

magically in the virtues of blind formalism in the hope (often deceived) that

the light at the end of the tunnel will dispel the intervening darkness.

If one gives up the formal definition of rigor, one must of necessity

choose between the two remaining alternatives. Everything considered,

mathematicians should have the courage of their most profound convic-

tions and thusaffirm that mathematical forms indeed havean existence that

is independent of the mind considering them. This existence is without

doubt different from the concrete existence of the external world, butit is

still subtly and deeply related to it. If mathematics is only an arbitrary game

whichis the random product of cerebral activity, how can one explain its un-

questioned success in describing the universe? Mathematics is found not only

in the mysterious fixed order of physical laws but also, in a more hidden

though equally certain manner,in the infinite succession of animate andin-

animate forms and in the formation and breaking up of their symmetries.
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Despite appearance, this is why the hypothesis stating that Platonic ideas

give shape to the universe is the most natural and, philosophically, the most

economical.

Yet, at any given moment, mathematicians have only an incomplete and

fragmentary vision of this world of ideas. As a result, each proof is, above

all, the revelation of a new structure whose elements lie disconnected in

man’s intuition until reason joins them together. In this sense, each proofis

a Socratic experience requiring the re-creation in the reader of the psycho-

logical processes necessary to elicit the implicit truth, all the elements of

which he possessed but which had remained hidden in an unformulated

state. In this sense, there is no contradiction between the second andthird

views. The world of ideas is not revealed to us in one stroke; we must both

permanently and unceasingly re-create it in our consciousness.

The opponents of the ontological view would do well to reflect on the

following: Thereis no case in the history of mathematics where the mistake

of one man has thrown the entire field on the wrong track. Frequently,

mathematics has becomelost in the formal development of insignificant,

uninteresting theories. It has doneso in the past, does so today,and will cer-

tainly continue to doso in the future. But neverhasa significant error slipped

into a conclusion without almost immediately being discovered. How could

one explain such a consensusif it did not correspond to a general opinion

that is the result of the mind’s struggle with permanent, timeless, and uni-

versal constraints? With this confidence in the existence of an ideal

universe, the mathematician need not worry unduly aboutthe limits of for-

mal procedure; likewise, he can forget the problem of noncontradiction, for

the reason that the world of ideas infinitely exceeds our ‘‘technical possi-

bilities.’’ It is in the intuition that the u/tima ratio of our faith in the truth of

a theorem resides. And, according to a now-forgotten etymology, a

theorem is aboveall the object of a vision.

Each must decide for himself. There is no rigorous definition of rigor.

Wewill therefore affirm that any proofis rigorousif it wins acceptance by

all readers who are adequately educated and prepared to understandit. Fur-

thermore, the evidence leading to persuasion results from having a suffi-

ciently clear understanding of each of the symbols involved, so that their

combination convincesthe reader. From this point of view, rigor (or its con-

trary, imprecision) is essentially a /ocal property of mathematical reasoning.

No elaborate axiomatic structure or refined conceptual machine is needed

to judge the validity of a line of reasoning. It suffices merely to have an

understanding of the meaning of each symbol involved and a clear idea of

how to combine them.

Limits and necessity of axiomatization

Such a point of view suggests that we retreat somewhat from axiomatics. To

formalize a theory means,starting with the material presented by the theory

which is organized as an intuitive ‘‘morphology’’ 7, to give a formalset of

symbols and rules generating a formal system S isomorphic to the morphol-

ogy T; the isomorphism S — T being precisely the correspondence whichat-

taches to any symbol s belongingto S its ‘‘meaning,”’ i.e. its intuitive content



MODERN MATHEMATICS

in 7 (its semantic realization, logicians would say). Can one reasonably

hope that the intuitive material of the theory T can be fully covered by the

symbolic expressions of S$? An example immediately comesto mind, that of

natural languages. Linguists of the formalist school have been trying strenu-

ously to reduce natural language grammar andsyntax to axioms. In doing

so they have come up with a certain numberof formal procedures—genera-

tive and transformational grammars—whosevalidity, on the level of formal

description of the sentences contained in the corpus, cannot be denied. But

if these procedures are systematizedinto a series of rules which are then pur-

sued blindly to their logical conclusion, the resulting sentences soon become

so long and complex that they lose all meaning.

I see no reason whya similar phenomenon could not happen in mathe-

matics; in extrapolating a formal mechanism to the limit of its generative

capacities, it does not take long to assemble formulas that are so long and

complex that all possibility of intuitive interpretation disappears. The

“‘theorems’’ thus obtained will probably be formally correct but seman-

tically insignificant. Thus for a given intuitive theory T one must expect to

have to use not one but several ‘‘local’’ axiomatizations; each local axio-

matization S has a contact zone Z, in the morphology for whichS is valid;

but as soon as one constructs formulas in S which are too long or involved,

the intelligibility disappears. At the boundary of the zone Z, the semantic

link between S and Z, breaks down;this prohibits the extension beyond Z,

of the isomorphism S — 7, defined by the meaning. Theidea that a theory

T could be generated by just one formal system is, a priori, just as unlikely

as the idea that the earth should beflat or that one could cover a surface by

a single system of coordinates. It would be interesting to understand this

semantic breakdown more clearly. Below, weshall see a striking example of

what happens when the rules of combination are incompatible with the

semantic qualities of the symbolized entities (in this case, Boolean formal-

ism applied to ordinary language). In the case of mathematics, it appears

that such a semantic breakdownoccursin a progressive, hazy manner(the

case of ‘‘transfinite numbers’’ in set theory, for example).

The undeniable advantage of local formalization is frequently to makein-

tuitively understood ideas more precise and, most indispensably, to permit

communication between mathematicians. As all means of communication,

spoken or written, use a one-dimensional morphology, it is necessary to

code the intuitive morphology T (which in general is defined on a multi-

dimensional space) into a formal system of one-dimensional symbols. Dur-

ing the past few years the importance of axiomatization as an instrument of

systematization and discovery has been much emphasized. As a method of

systematizing, it is certainly effective; as for discovery, the matter is more

doubtful. It is characteristic that no new theorem of any importance came

out of the immense effort at systematization of Nicolas Bourbaki (which in

itself is not a true formalization because Bourbaki uses a nonformalized

metalanguage). If mathematicians refer to Bourbaki, they usually find more

food for thought in his exercises—to which the author relegated the con-

crete material—than in the deductive part of the text. One mustsayit clearly:

axiomatization is the work of specialists and has no place in secondary or
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college teaching except for those professionals specializing in the study of

foundations. All this explains why the reproachesof inconsistency directed

at Euclidean geometryareirrelevant; they do not touch thevalidity of local

intuitive reasoning.

“‘Genetic’’ importance of geometry:

continuity precedes discontinuity

The foregoing considerations reveal the key to the historical success of

Euclid’s Elements. Euclidean geometryis the first example of the transcrip-

tion of a two- or three-dimensional spatial procedure into the one-dimen-

sional language of writing. In this, Euclidean geometry applies to a rigid,

precise situation, a procedure whichis already present in everyday language.

The primary function of ordinary language is, after all, to describe the

spatio-temporal processes which surround us, and whosetopologyis trans-

parent in the syntax of the sentences describing them‘. In Euclidean geom-

etry we are dealing with the same function of language, but this time the

group of equivalences operating on the forms is a Lie group, the metric

group, in contrast to the groups describing the more topological invariance

of the ‘‘gestalten’’ that permit us to recognize objects of the exterior world

as described by their natural language names.

As such, geometryis a natural and possibly irreplaceable intermediary be-

tween ordinary language and mathematical formalism, where each objectis

reduced to a symboland the group of equivalencesis reducedto the identity

of the written symbolwith itself. From this point of view the stage of geo-

metric thought may be a stage that it is impossible to omit in the normal

development of man’s rational activity. Much emphasis has been placed

during the pastfifty years on the reconstruction of the geometric continuum

from the natural integers, using the theory of Dedekind cuts or the comple-

tion of the field of rational numbers. Underthe influence of axiomatic and

bookish traditions, man perceived in discontinuity the first mathematical

Being: ‘‘God created the integers and the rest is the work of man.’’ This

maxim spoken by the algebraist Kronecker reveals more abouthis past as a

banker who grew rich through monetary speculation than about his

philosophical insight. There is hardly any doubt that, from a psychological

and, for the writer, ontological point of view, the geometric continuum is

the primordial entity. If one has any consciousnessatall, it is consciousness

of time and space; geometric continuity is in some way inseparably bound

to conscious thought.

Gradually, however, this initially homogeneous, amorphous continuum

takes on a Structure, and the most important structuring tool is the metric

group.It alone permits us to introduce discontinuity and discrete operations

into the homogeneousexpanse. This is, however, a very sophisticated pro-

cedure. To begin with, we had all the topological properties of the contin-

uum, but only in modern times has mathematics returned to its sources in

founding topology, thus freeing itself from the domination of the metric

group. Such a theory, being neither metric nor quantitative, is basically

qualitative and can rely only on the discrete symbolism of a semiformalized

language. However, topological invariants, being more deeply rooted, are



MODERN MATHEMATICS

more difficult for the mind to conceive than the more superficial metric in-

variants. With this point in mind, we cansee that the transition from every-

day thoughtto formalized thought takes place naturally through geometric

thinking. This has always been the case in the history of human thought

and, insofar as one believes Haeckel’s Law of recapitulation, which states

that in his developmentthe individual passes throughall the stages of the

species, it should be the case in the normal developmentof rational thought.

SET THEORY

I come now to myfirst point, set theory. Thisis the essential litany intoned by

those who advocate the so-called modern mathematics. Someaffirm that the

use of set theory permits the entire renovation of mathematics teaching and

that, thanks to this change, the average student will be able to achieve

mastery of the curriculum. Needless to say, this is pure illusion. As longasit

is a matter of handling the obviousfacts of naive set theory, of course anyone

can get by. But this is neither mathematics nor even logic. As soon as one

comes face to face with real mathematics (i.e. real numbers, geometry, func-

tions), one rediscovers that there is no royal road andthat only a minority of

students are capable of fully understanding the material.

Everything considered, the excessive optimism bred by the use of set

theory symbols hasits roots in a philosophical error. It was believed that by

teaching the use of the symbols ©, C, U, M it was possible to make ex-

plicit the mechanisms underlying all reasoning and deduction. Twentieth-

century man has enthusiastically rediscovered the syllogisms Darapti and

Celarent taught by the medieval scholastics. But what a deterioration has

taken place! When, in the nineteenth century, Boole wrote the celebrated

treatise on algebra that bears his name, he did nothesitate to entitle it ‘‘An

Investigation into the Laws of Thought.’’ The naive belief that every deduc-

tion finds its model in set theoretic manipulations was shared by such

modern philosophers as the neopositivists. Neither Aristotle nor the

-medieval scholastics sharedthis illusion. As J. Vuillemin reminds us,°> Aris-

totelian logic has its base in a rich and complex ontology of substance.

Modern protagonists of set theory should realize that this theoryis insuffi-

cient to account for even the most elementary deductive steps of ordinary

thought. Permit me to give an example ofthis fact.

The Copulas or and and

Classically, it is taught that the grammatical equivalent of the symbol U

(union) is or and that of the symbol / (intersection) is and. Let us apply

this rule to two simple sentences whose subjects are proper names:

(1) Peter or John is coming.

(2) Peter and John are coming.

The first sentence can be paraphrased, ‘‘Peter is coming or John is

coming.’’ Here there is complete agreement of the symbol or with the

logical union U, with the condition that the copula refers not to the subject
but to the verb ‘‘to come.’’
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The second sentence too can be paraphrased, ‘‘Peter is coming and John

is coming.’’ Having donethis, one realizes that the original sentenceis subtly

ambiguous, for it implicitly contains what linguists term

‘“presuppositions.’’ For example, ‘‘Peter and John are coming’’ frequently

presupposes, ‘‘Peter and John are coming together.’’ While the phrase

‘‘Peter or John’’ alone has no semantic interpretation, it is possible to con-

ceive of ‘‘Peter and John’’ as an entity formed by a pair of individuals,

Peter and John, who,spatially, are together. This fact explains the different

grammatical treatments of the verbsin (1) and (2) : the copula and requires

the plural because it presupposesa certain spatial contiguity of the subjects.

Let us consider some sentences in which copulas are used with qualities.

(3) Peter is short or intelligent.

(4) Peter is short andintelligent.

(5) Joan’s hair is gray or brown.

(6) Joan’s hair is gray and brown.

Sentences (4) and (5) are semantically acceptable whereas (3) and (6) may be

dubious or unacceptable. One may extrapolate these remarksto the following

principle:

Exclusion principle: If X and Y are two qualities, the sentences

Ais X or Y cannot both be

A is X and Y semantically acceptable.

When ‘‘X or Y’’ maybe preceded by a subject, one would say that X and

Y belong to the same semantic field: for example, ‘‘gray’’ and ‘“brown’’ in

sentences (5) and (6). In this case, ‘“X and Y”’’ is, in principle, meaningless.

There is, nevertheless, an important exception, the case where and desig-

nates not logical intersection but spatial contiguity. Thus it is perfectly

possible to say:

(7) This flag is white or blue.

(8) This flag is white and blue.

The fact that in (8) the copula does not have the meaning ™ explains why

‘‘This flag is white and blue’’ implies that ‘‘This flag is white’’ is false.

Indeed, the conditions necessary for the expression ‘“X or Y’’ to be mean-

ingful are extremely restricted; thus ‘‘Joan has red or auburn hair’’ is clearly

more acceptable than ‘‘Joan has red or brownhair’’ because, in terms of the

semantic category of hair colors, ‘‘red’’ and ‘‘auburn’’ are adjacent to one

another whereas‘‘red’”’ and ‘“‘brown”’ are not. The copulaor, geometrically

speaking, has the effect of lowering the threshold between the domainsofat-

traction defined by the adjectives ‘‘red’’ and ‘‘auburn.’’ When the semantic

distance between two qualities X and is too large, in particular when these

qualities belong to different semantic fields, as with a physical quality and a

moral quality, then the phrase ‘‘X or Y”’ loses all meaning.

Althoughit is rather obvious, this fact seems to have escaped the authors

of many set theory textbooks. They offer students exercises in Boolean al-

gebra which discuss ‘‘cubes that are big or blue,’’ and ‘Parisians who are

bald or rich.’’ Not only are these exercises outlandish and useless, but, if
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pursued too far, they can become harmfulto the child’s intellectual equilib-

rium. One of the fundamental constraints imposed by accurate thoughtis

precisely the avoidance of mixing distinct semantic fields. This mixing has a

name—delirium. In attempting to attach meaning to all the phrases con-

structed in ordinary languages, according to Booleanrules, the logician pro-

ceeds to a phantasmic, delirious reconstruction of the universe.

All these points show the narrow limits of set theory in describing ordinary

thought. Everyday reasoning calls upon profound psychic mechanisms, such

as analogy, which can never be reduced to the level of set theoretic opera-

tions. An important factor in such casesis the organizational isomorphism

between semantic fields which are homologically associated.

In fact, Boolean schematizations hardly apply without somedefect except

in cases described by spatial inclusions of subsets in space, as in Venn dia-

grams. In such a case, no one will take the trouble to put the reasoningin a

syllogistic form. The fox knowsthatif the hens are in the hen-house and the

hen-houseis in the yard, then the hensare in the yard; he does not bother

with set theory. Everyone usesset theory from the momentheexists, just as

M. Jourdain in Moliére’s Le Bourgeois Gentilhommeuses prose without

knowing it. Some say that it is better to use it knowingly. The advantage

here, if there be anyat all, applies to the rhetoric. It is only to the extent that

the technique of mathematical proof is a type of rhetoric that it becomes

worthwhile to proceed by local formalizations—which actually are local

**spatializations’’—and to apply the set-theoretic formalism to them. The

persuasive force of the logical scheme comes from spatial inclusions, and

not vice versa. This indicates to us the attitude that reasonable educational

thought should take toward set theory. In its simple, concrete form,it

should be introduced in kindergarten, which is its natural habitat. In the

early years of secondary school, students should learn the use of the sym-

bols ©, M, U, C; later they should be introduced to the quantifiers, and

that should be the endofit.

It is not certain that, even in pure mathematics, each deduction can have

a set-theoretic model. Poorly resolved paradoxes that undermine formalset

theory are there to remind the mathematician of the dangers that await him

in the injudicioususe of these seemingly innocent symbols. Perhaps, even in

mathematics, quality subsists, andresists all reduction to sets. The old hope

of Bourbaki, to see mathematical structures arise naturally from a hierarchy

of sets, from their subsets, and from their combination, is, doubtless, only

an illusion. No one can reasonably escape the impression that the most im-

portant mathematical structures (algebraic structures, topological struc-

tures) appear as fundamental data imposed by the exterior world, and that

their irrational diversity finds its only justification in reality.
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NICHOLAS D. GOODMAN

Mathematics as an Objective Science

Gooaman’s article summarizes manyof the issues raised by the preced-
ing papers andservesasa fitting conclusion to this section of the anthology. The

four most prominent candidates for foundations are considered; platonism,

logicism, formalism and intuitionism. They are assessed with expertise, justice and
an unusual amountof charity—and found wanting. Moreover, in the course of
his critique, Goodmanincorporates many of the suggestion for new directions in

the philosophy of mathematics that have been presented, and adds to them.

Goodman’s essay is organized about an abstract philosophical hypothesis, his

principle of objectivity. ‘‘Anything which is practically real should be taken as

objectively real.’’ Roughly speaking, the principle of objectivity comes to this. If

a concept X plays an importantrole in a theory andif failure to acknowledge the

role of X severely limits the theory, then X is practically real. Moreover, ‘‘in the

absence of a strong argumentto the contrary . . . the presumption must be that

anything practically real is objectively real.’’

Fortunately, we don’t need any metaphysics to follow Goodman.In the case of

mathematics, his principle amounts to the claim that whatis practically real in the

public experience of mathematicians should be an integral concern of the

philosophy of mathematics. This standard allows Goodmantobe charitable to
the positive contributions of each foundational theory. Each is rooted in some
deep aspect of mathematical experience: formalism in formal languages and
symbol manipulations, intuitionism in the feasibility of certain constructions,
logicism in the frameworkof logic, and platonism in the discovery of
mathematical objects. However, as a foundation of mathematics each theory
claims to be exhaustive. Goodman methodically shows that these claims require
each theory not merely to ignore, but to rule out some practically real aspect of
mathematical experience.

 

Reprinted from the AMERICAN MATHEMATICAL MONTHLY,Vol. 86,

No. 7, August-September 1979, pp. 540-551.
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So the picture of ‘foundations for mathematics’ which so beguiled Frege and

the other giants of foundationalism turns out, ironically, to be a castle in the sky.

Goodmanconcludesthis section of the anthology by advising us to look for a

new vision of the philosophy of mathematics that ‘‘has yet to be formulated.”’

1 INTRODUCTION

Morris Kline has written that ‘‘mathematics is a body of knowledge. Butit

contains no truths.’’ [13, p. 9] Views of this general kind, which deny that

mathematics has objective scientific content, are widely held by mathemati-

cians and are disseminated in classrooms and in popular books such as

Kline’s. I believe that such views are false and that their dissemination does

no good for our own orothers’ respect for our subject. Below I shall ex-

amine four views which, though they do not exhaust the current range of

opinion in the philosophy of mathematics, are nevertheless sufficiently rep-

resentative to raise what seem to meto be the main issues about the objec-

tivity of mathematics. I shall argue that each of these views arises from an

oversimplification of what happens when we do mathematics.

2 SURFACISM

In order to bring out some of the features which the views I want to oppose

have in common,let me begin with an imaginary analogous view in the

philosophy of physics. Many of the qualities we associate with material ob-

jects—such as definite shape, hardness, color—can be thoughtof as quali-

ties of their surfaces. Consider a philosopher whois misled by this simple

observation and believes that a// qualities of material objects are qualities of

their surfaces. He holds,let us say, that material objects are not solid, as we

usually suppose, but instead are infinitely thin surfaces. It is meaningless,

on his view, to speak of the inside of a material object. Since no one would

refer to his own position as ‘‘superficialism,’’ we may imagine that our

philosophercalls his view ‘‘surfacism.’’ Asked to explain the fact that when

we cut into an object we do not just find a void, our surfacist says that the

edge of the knife pulls on the surface to whichit is applied, thereby stretch-

ing that surface so as to create two new surfaces. Asked to give an account

of a quality which is difficult to treat consistently as a quality of surfaces,

such as weight, he asserts that the quality is illusory. Whatis actually going

on, he claims, is that certain qualities of the surfaces of our bodies, or of

our interactions with other surfaces, are being projected into the external

world. For example, suppose weconsiderthe case of weight morecarefully.

The weight of an object is really just the difficulty I have in lifting it. That

difficulty must, strictly speaking, be located in those points at which the ob-

ject and my bodyinteract. Hence the weight mustreside in the commonsur-

face of the object and my body.It is a gratuitous oversimplification to think

of the weight as a quality of the material object in and ofitself.
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We need not suppose that our surfacist philosopher is always on the

defensive. He may maintain, for instance, that the conventional view first

violates the principle of parsimony bycreating an entirely unnecessary en-

tity—the inside of the object—and then goes on to give that entity absurd

qualities. The inside, for one example,is supposed to be material butinvisi-

ble. Why should insides be so different from outsides? Whence this asym-

metry? If there really is space inside material objects, would it not be more

reasonable to supposethat, like the space outside material objects, the space

inside is filled with air? Occasionally, we may suppose, our surfacist com-

plains about the unscientific and superstitious character of his opponents’

views. Belief in the solid inside of a material object, he asserts, is a remnant of

belief in the immortal soul, which wasthe ‘‘solid’’ inside of a human being.

As a matter of fact, he argues, the usual account is simply incomprehensible.

Whocan visualize a material object except by visualizing its surface? Who,

whenvisualizing a material object, can visualize anything in additiontoits

surface?

It seems to me that the views about the nature of mathematics that I wish

to discuss are forms, moreorless disguised, of surfacism. Henceit will be

useful for me to consider how one mightrefute surfacism in the pure form

just described.

The purpose of having a view aboutthe nature of material objects is to

order our experiences of those objects in a way which is useful in our deal-

ings with them. Such a view is a social artifact which serves a variety of

social functions. Material objects are themselves public in character, and

most of myinteractions with my material environmentare, directly or indi-

rectly, also interactions with my social environment. It follows that the

most important function which such a view mustserveis to facilitate both

those of our interactions with material objects which have public signifi-

cance andthose of our interactions with each other which are mediated by

material objects or which concern material objects. Hence a view about the

nature of material objects which is intended to be more than a debating

position should satisfy the following Priniciple of Objectivity: Anything

which is practically real should be taken as objectively real.

Let me makethis clearer. When I say that an attribute like weight is prac-

tically real, I mean that the attribute plays a role, and that there exists a con-

sensus that the attribute does play a role and shouldplaya role, in ourinter-

actions with the objects that have the attribute. It will follow that thereis at

least a rough consensuson the degree or kind of presence of the attribute in

a particular object. For, to repeat what I said above, our interactions with

objects are generally also interactions with each other. On the other hand,

when I say that an attribute is taken as objectively real, I mean thatit is

taken to reside in the observed object rather than in the subjective ex-

perience of the observer or in the subjective relationship between the

observer and the observed object. A theory about the nature of material ob-

jects, then, is only seriousif it accepts as its data all those attributes which

have a commonly accepted role in our ordinary social dealings with the ob-

jects. It must take those data and unite them into a coherent account, ex-

plaining somein termsof others no doubt, but not explaining any of them

8]
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away. In particular, a theory will undermine our ordinary activities, rather

than support them,if it treats attributes which are important in those ac-

tivities as mere subjectiveillusion. Of course one can find examples in which

entities that formerly appeared to play a role in our practical activities were

later shown not to exist. Nevertheless, in an argument about the objective

reality of something whosepractical reality is evident, the whole burden of

proof should fall on the proponent of the negative position. After all, the

simplest explanation for the apparent practical importance of an entity is

that the entity actually exists and actually plays a role in our practice. In the

absence of a strong argumentto the contrary, then, the presumption must

be that anything practically real is objectively real.

To avoid possible misunderstandings, let me consider a case in which the

principle of objectivity is satisfied. An argument one sometimes hears

against taking physicsliterally is that in the world of the physicist there is no

such thing as yellow. If that were true, it would be a powerful argument.

Fortunately, it is not true.

First of all, it is important to distinguish our experience of yellow from

the color itself. What is relevant to our public dealings with a material ob-

ject is not how it appearsto this observer or that observer under these condi-

tions or those conditions. Whatis relevant is the actual color of the object—

roughly speaking, how it appears to a normal observer under standard con-

ditions. Thus it cannot be the task of physics, as opposed to psychology,to

give an account of our experience of yellow.

It remains, however, that physics does not take color as an ingredientin

its description of the world. Nevertheless, the usual account in terms of

wavelengths of light does give objective content to talk about yellow. Colors

are not denigrated or explained away. They are not madeto reside in our eyes

or in our minds. On the contrary, our ability to deal with color is enriched.

Not only does the theory account for the observed properties of colors, but

it makes possible their manipulation in new ways. The physicists have even

found new colors (for example, in the infrared) which we cannotsee.

Thusin this case theprinciple of objectivity is amply satisfied. The merely pri-

vate aspects of our experience of color are dismissed as subjective. The prac-

tically real coloritself, on the other hand, is supplied with objective content.

The principle of objectivity, then, may be used to refute surfacism as

follows. The weight of a homogeneousmaterial object is proportional to its

volume and notto its surface area. It is reasonable to conclude that the

weight of the object is distributed through it. Hence the surfacist must hold

that weight is merely an illusion—not objectively real. But since weight is

important in our dealings with material objects, and since it can be mea-

sured in a way whichis interpersonally valid, the surfacist who declares

weight to beillusory therebytrivializes his theory.

In order to apply these ideas to the philosophy of mathematics, we must

observe that mathematics is a public activity. It occurs in a social context

and has social consequences. Posing a problem, formulating a definition,

proving a theorem are none of them private acts. They are all part of that

larger social process wecall science. A functioning mathematician is aware

of the work of other mathematicians, publishes his own work, and expects
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other mathematicians to take his work into account. Thus a philosophy of

mathematicsis closely analogousto a view about the nature of material ob-

jects. Its main function should be to facilitate the ongoing social process of

doing mathematics. It follows that a serious philosophy of mathematics

must satisfy the principle of objectivity. That is, it must not deny objective

reality to any aspects of mathematical activity which have practical reality.

3 FORMALISM

No one whoobservesthe behavior of mathematicians can fail to notice that

they manipulate symbols in accordance with rules. Thus ourfirst attempt at

a philosophy of mathematics might be to hold that mathematicsis the rule-

governed, or formal, manipulation of symbols and nothing else. (The

phrase ‘‘and nothing else’’ is the mark of the surfacist.) This view is often

called formalism. Positions moreorless like this may be found in Haskell

Curry [5], Abraham Robinson [17], and Paul Cohen [4]. (The views of

David Hilbert, though often called ‘‘formalism,’’ are quite different from

the position we are discussing here, since Hilbert takes at least the finite,

combinatorial part of mathematics to be meaningful and true. See, for ex-

ample, Hilbert [12] or Kreisel [15].) An example of a different sort is pro-

vided by some computerscientists interested in artificial intelligence. They

naturally want to think that humanintelligence is not in principle different

from what their computing machinesare doing. Thus the humanbrainis as-

similated to a computer, theories are assimilated to programs, and thought

is assimilated to the operation of a Turing machine.After all, says the for-

malist, what else could mathematics be? Can you imagine a mathematician

working in any way other than by manipulating symbols?

To make this somewhat more concrete, let us imagine asking a formalist

what he takes to be the content of the fundamental theorem of arithmetic.

If he is really a strict formalist, he must reply that, standing alone, it has no

content at all. The theorem is, after all, just a string of symbols. What

makesusfeel that it has contentis only thatit plays a definite role in certain

activities we engagein.It is like a frequently encountered position in chess.

If we give a more precise description of our symbolic activities, say by giv-

ing a particular formal system which codifies some part of mathematics,

then we can also give a precise account of the role of the fundamental

theorem of arithmetic. We might specify one or more formal proofs of the

theorem in our system, and we might give some examples of uses of the

theorem in formal proofs of other theorems. For the formalist, however,

the theorem has no meaningapart from its role in our symbolic activities.

For the strict formalist, the theorem does not make anyassertion about

natural numbers, since for him no such objects exist.

Now I agree that mathematics almost always involves the formal manip-
ulation of symbols. I agree that a mathematician can usually be viewed as
working inside some formal system. This seems to me an importantinsight.
There is a branch of mathematical logic whose subject is just this aspect of
mathematical activity. I mean the theory of recursive functions. That the-
ory has contributed morethan anyother part of mathematical logic to our

8&3
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understanding of the inherent limitations of mathematics. Let me state this

quite strongly. I do not believe that mathematicians will ever compute a non-

recursive function, solve a recursively unsolvable problem, or work in a the-

ory whichis not recursively axiomatizable. But all of that is not to concede

that human minds are algorithmic devices in the sense of recursive function

theory. Rather, it is analogous to the harmless concession we might maketo

surfacism that no one will ever see a material object without a surface.

It is easy to understand how a philosopher who neveractually did any

mathematics might hold a formalistic view of its foundations. After all,

what is there for him to see but the outer play of symbols? On the other

hand, I must admit that I find it difficult to understand when, as happens

occasionally, a creative mathematician is a formalist. Introspection shows

that when I am actually doing mathematics, when I am wrestling with a

problem that I do not know howto solve, then I am hardly dealing with

symbols at all, but rather with ideas and constructions. Someof the hardest

work a mathematician does occurs when he hasan idea butis, for the mo-

ment, unable to express that idea in a formal way. Often such ideasfirst

manifest themselves as visual or kinesthetic images. As the mathematician

becomesclearer about them, as they become more formal, he may discover

that they manifest considerable internal structure whichis, so to speak, not

yet symbolically encoded. This point is hard to discuss in a way which

avoids purely psychological categories not directly relevant to the epistemo-

logical point I am trying to make.Still, mathematicians customarily talk

about ideas, constructions, and proofs in a way which makesit clear that

they have in mind something other than the symbols they use. Thus mathe-

maticians may discuss whether two distinct papers embody the sameidea,

whether two distinct strings of symbols express the same construction, or

whethertwodistinct lectures expound the same proof. Every mathematician

knows that the same construction can be used in quite different parts of

mathematics andthat, if you find a new proof of an old theorem, you had

better check that it is not just an old proof in a new form.

As has been customary since Brouwer, let me use the word ‘‘construc-

tion’’ to refer generically to all of these entities which lie behind the symbols

the mathematician writes and which give those symbols life and content. I

think there can be no doubt that constructions are practically real in the

sense I introduced above. Mathematicians discuss them constantly, agree on

their general properties, and agree that they are what is important in

mathematical creation. It follows that an adequate philosophy of mathe-

matics cannot just treat constructions as subjective illusion. Most formalist

philosophers, however, either do not mention them at all or else dismiss

them under some such nameas ‘‘heuristics’’ without giving any account

that would explain the properties that mathematicians agree constructions

have. Indeed, the formalist cannot give a theory of constructions, since he

denies they exist. For example, even if there could be a program which

could recursively recognize whether or not two strings of symbols embody

the sameidea, the formalist could not admit that that is what the program

does. What could it even mean to say that a computing machine had an idea

for a proof but was having trouble formalizing it?
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In order to state this argument morecarefully, let me introduce the word

‘‘intuitive.’’ In the sense that is relevant here, ‘‘intuitive’’ is used to contrast

with the word ‘‘formal.’’ Thus an argument maybecalled intuitive if it is

natural and easy to follow. This is roughly the sense in which the word‘‘in-

tuitive’’ seems to be used in intuitionism. Thus an intuitive proof, in that

context, is one whichis unformalized, independent of symbols, and perhaps

not even entirely communicable. At any rate, there certainly are construc-

tions which are intuitive, in the sense that they are not formal and not sym-

bolic, but which do have internal structure, do enable us to see new facts,

and can be formalized so as to give correct proofs.

Now myargument may be summarizedas follows. Intuitive constructions

are practially real. They are vital to the practice of mathematics.It is of the

essence of formalism that it denies their objective reality. Therefore, by the

principle of objectivity, formalism cannot be an adequate philosophy of

mathematics.

4 INTUITIONISM

If formalism must be rejected because it neglects the intuitive content of

mathematics, then it is natural to make a second attempt at a philosophy of

mathematics as follows. Let us hold that mathematics consists of intuitive

constructions, of the formal manipulation of symbols whichis their exter-

nal expression, and of nothing else. This seems to me to be the essence of

the view usually called intuitionism. It was worked out by L.E.J. Brouwer

and Arend Heyting. A goodintroduction is Heyting [11]. A more recentin-

troduction is Dummet [6]. Perhaps the clearest general statement by

Brouwerhimself is his [3]. A related, but definitely distinct, point of view is

that of Errett Bishop [2]. I should say that very few of my remarksaboutin-

tuitionism apply directly to Bishop’s philosophy of mathematics, since

Bishop haslittle of Brouwer’s subjectivistic tendency.

It is characteristic of intuitionism that it denies the existence of any

mathematical reality external to the mathematician or even of any mathe-

matical truth beyond what the mathematician has actually proved or could

actually prove. Mathematical objects exist for me only as the results of my

constructions, and mathematical facts are true for me only insofar as they

are the conclusions of arguments I can make. Thus the sequenceof natural

numbers, being infinite and hence not surveyable, is only potentially real.

Statements which haveso far been neither proved norrefuted, like Fermat’s

conjecture, have no definite truth-value. The logical law of the excluded

middle, which asserts that every statementis either true or false, is rejected

as inapplicable to statements aboutinfinite sets, and indirect proofs of such

statements are rejected as invalid.

To take an example, let us again consider the fundamental theorem of

arithmetic. The intuitionist, unlike the formalist, does not take this to be a

mere string of symbols. The theorem has a meaning. Nevertheless, he also

does not take the theorem to be a truth about an externally existing domain

of natural numbers. Rather he thinksofit as expressing a certain ability that

we have—namely, our ability to factor an arbitrary natural number into

85



86 NICHOLAS D. GOODMAN

primes andto see, given two such decompositions, that they consist of the

same primes with the same multiplicities. Like the formalist, the intuitionist

takes the meaning of the theorem to reside in our practice, not in any exter-

nal reality to which the statement mightrefer.

Let us examine Brouwer’s rejection of the law of the excluded middle

somewhat more closely. Brouwer does not have available any concept of

truth which could be used to justify, or even to explain, a truth-functional

interpretation of the logical connectives. Moreover, for Brouwer it only

makes sense to assert a mathematical statement as the conclusion of an in-

tuitive proof. But a proof that either A is true or B is true ought to contain

an indication as to which of the twoalternatives is being proved. Otherwise

we could assert the existence of a number7 such that ifn = Othen A,andif

n = 1 then B; but we would not knowthe value of any such number. Surely,

however, we know the value of a number we have actually constructed.

Thus we would be asserting the existence of a number without having con-

structed it. Hence a proof that the Fermat conjectureis either true or false

would have to contain either a proof or a refutation of the conjecture. Since

I can supply neither, it follows from Brouwer’s point of view that I am not

in a position to assert that the conjectureis either true or false. Thus the law

of the excluded middle is ‘‘refuted’’ not by finding a third possibility but by

making an additional demand. An assertion is only to be considered

justified if an intuitive construction can be supplied whichjustifies it.

As an intellectual movement, mathematical intuitionism is similar to

other positions, like existentialism, which emphasizes our isolation from

each other and which conclude from that isolation that we are epistemically

reduced to our own individual resources. That is to say, it is characteristic

of all of these views that they hold that our inner experience, as such,is the

only source of knowledge available to us and that they deny that our inner

experience essentially entails an external reality to whichit refers. In conse-

quence, these views tend to collapse into irrationalism and solipsism. When

Brouwer emphasizes the absolute freedom of the creative subject in mathe-

matics, he is taking a stance related to that of the existentialist emphasizing

the absolute freedom of that samecreative subject in aesthetics, in ethics, or

in politics.

Lookedat in our context, however, intuitionism is a fairly typical form of

surfacism. Its characteristic rhetorical gesture is to ask what a mathemati-

cian could possibly have access to other than his own constructions. Putdif-

ferently, try to think something other than one of your own thoughts,ortry

to visualize something other than one of your images.

Asin the case of formalism, it seems to me important not to overlook the

contributions that intuitionism has made to our understanding of the prac-

tice of mathematics. The writings of the intuitionists are a rich source of

ideas about the internal process of mathematical creation. Here again there

is a branch of mathematical logic devoted to trying to extract and develop the

precise content of these insights. The various realizability notions, func-

tional interpretations, Kripke structures, and the like, seem to me to give

promise of a mathematical theory, perhaps yet to come,of the experience of

doing mathematics.
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I myself have been attracted by intuitionism. But I have gradually come

to see that, in the long term, strong intuitionistic convictions undermine

one’s actually doing mathematics. By embracing intuitionism the mathema-

tician is giving up the most powerful motivation for his work—the search

for publicly validated truth. Mathematics, afterall, is a part of science. The

main purpose of doing mathematicsis to discover new truths. If that con-

ception is given up, asit is in intuitionism, then mathematics is reduced to

an esoteric art form—to a kind of play. There is a sense in which intuition-

ism is inadequate in its own terms, for it overlooks what is introspectively

obvious: that I am interested in my constructions not for their own sake but

for the newtruths they enable meto find. The constructions derive their sig-

nificance from their epistemic role. Who would beinterested in a proof that

established nothing? Just as the constructions lie behind the symbols and

give them their interest and meaning, so there is something behind the con-

structions—mathematical truth.

In this respect mathematical creation is not at all free. A mathematical

argument often gives a feeling of inevitability. The concept of rigor, which

plays such a great role in the mathematician’s talking and thinking abouthis

work, is a restriction on his freedom which he accepts in order that his

theorems maybetrue andin order that his arguments may genuinely estab-

lish their truth.

Mathematical truth, unlike a mathematical construction, is not some-

thing I can hopeto find by introspection. It does not exist in my mind. A

mathematical theory,like any otherscientific theory, is a social product.It

is created and developed bythe dialectical interplay of many minds, not just

one mind. Whenwestudy the history of mathematics, we do not find a

mere accumulation of new definitons, new techniques, and new theorems.

Instead, we find a repeated refinement and sharpening of old concepts and

old formulations, a gradually rising standard of rigor, and an impressive

secular increase in generality and depth. Each generation of mathematicians

rethinks the mathematics of the previous generation, discarding what was

faddish or superficial or false and recasting whatisstill fertile into new and
sharper forms. What guides this entire process is a common conception of

truth and a commonfaith that, just as we clarified and corrected the work

of our teachers, so our students will clarify and correct our work.

In order to formulate a more careful argument, I need to say a few words

about the concept of rigor. It is widely believed that this notion changes.

Arguments that seemed rigorous to Euler seemed inadequate to Cauchy.

Arguments that seemed rigorous to Cauchy seem to us to contain obvious

gaps. Butit is not really the case that the concept of rigor has changed—

only the standard of rigor. That is to say, a rigorous argumentis always an

argument which suffices to establish the truth of its conclusion. As our in-

sight grows, we see that moreis required to establish truth, and therefore

arguments that once seemed rigorous are now seen to have gaps. But the

concept of rigor itself has not changed since at least the time of Euclid.

Moreis true than that the concept of rigor presupposes the concept of

truth. Actually, when we evaluate a mathematical argument, we do not

check to see whetherit accords with someset of rules taken,let us say, from
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a logic text. Rather, we try to determine whether the argument works—that

is, whetherit convinces us, and ought to convince us, of the truth of its con-

clusion. Thus the concept of mathematical truth is directly involved in the

practice of mathematical rigor. It functions as an indispensable ingredient

in the very criterion of rigor.

Now I may formulate my argumentagainst intuitionism as follows. Mathe-

matical truth is practically real. Indeed, without the practical reality of

mathematical truth, there would be no such thing as mathematical rigor.

But it is of the essence of intuitionism that it denies the objective reality of

mathematical truth. Therefore, by the principle of objectivity, intuitionism

cannot be an adequate philosophy of mathematics.

5 LOGICISM

If we reject intuitionism because it neglects mathematical truth, then we

may be led to make a third attempt at a philosophy of mathematics as

follows. Let us hold that mathematics consists of certain truths, of the argu-

ments that establish these truths, of the constructions underlying those

arguments, of the formal manipulation of symbols that expresses those

arguments and truths, and of nothing else. It seems to me that this is the

central thrust of what has traditionally been called /ogicism. Viewsofthis sort

have been advocated most prominently by Gottlob Frege and by Bertrand

Russell. Classical statements of logicism may be found, for example,in Frege

[7] or Russell [18]. A somewhat morerecent statement is in Hempel [9].

A logicist, unlike a formalist or an intuitionist, would take the fundamental

theorem of arithmetic as a truth whose contentis quite independentof our ac-

tivity. For the logicist, however, there are no natural numbers whichexist as

independententities and which happento have the property expressed by the

theorem. Instead, the theorem is to be understood on the basis of a long se-

quence of definitions. When all the expressions used in the theorem are ex-

panded out in accordance with these definitions, then, according to the

logicist, the theorem will turn out to be merely a very complex logical truth.

The fundamental theorem of arithmetic, for a logicist, is on a par with an

assertion like, ‘‘if all A’s are both B’s and C’s, then all A’s are C’s.’’

Whatthe logicist denies is that there is any subject matter for mathematical

truths to be about. Mathematical terms, for the logicist, do not refer—orat

least do not refer uniquely. It follows that mathematical truths are not true by

virtue of successfully describing any actual state of affairs. They are empty of

factual content. Hence mathematical truths must be true solely by virtue of

their own internal structure and of their relations to one another. Thatis the

way in which logical truths are true: Hence the logicist thesis that

mathematics is merely logic. In practice, of course, logicists have tended to

use the term ‘‘logic’’ rather loosely, sometimes including all of set theory

under that name. But the basic idea is always to deny that mathematicalasser-

tions have factual content—that is, to deny that their truth rests on anything

outside of the structure of the mathematical statements themselves. That is

presumably also what Kline means to deny by the words quoted at the begin-

ning of this essay. (For an explicit statement of Kline’s views, see [13, pp.

424-431]. For more details, see Kline [14, pp. 1028-1039].)
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Logicism motivated much of the early work in mathematical logic. I

think that logicism has madegreater contributions than any other philoso-

phy of mathematics to our understanding, not so much ofthe practice of

mathematics, but of its foundations. The desire to reduceall of mathema-

tics to “‘logic’’—that is, to merely conceptual reasoning—has provided a

strong impetusto simplify and unify the basic mathematical notions and to

find and makeexplicit the fundamental principles upon which mathematics

is based. Moreover, logicism is still making such contributions today. Much

of what is now called proof theory can be seen as an effort to view larger

and larger parts of mathematics as consisting of logical truths by extending

the conceptof logic in various directions. To mention only one example, the

past twenty-five years have seen the development of a theoryofinfinitely

long formulas and proofs so as to give a ‘‘logical’’ analysis of arithmetic

and of increasingly extensive fragments of mathematical analysis.

Unlike formalism or intuitionism, logicism does provide an adequate ac-

countof a significant part of actual mathematical practice. Much of mathe-

matics really is just logic. We reason from clearly formulated premises, trying

to find an argumentthat will settle some previously formulated question. I

doubt, however, that any work a mathematician would consider deep can

be accounted for in terms the logicist would accept. Every mathematician

knowsthat his best work is based not on mere reasoning but on the charac-

teristic kind of insight he calls ‘‘intuition.’’ In this sense, the word ‘‘intui-

tion’’ refers to a faculty by which the mathematician is able to perceive

properties of a structure which,at the time,he is not in a position to deduce.

This perception can be trained, andis often quite reliable. Sometimes, when

trying to work deductively, one feels like a man trying to find his way

around an unfamiliar room in the dark. The mindis full of details that fail

to cohere into a pattern. But then, either gradually or suddenly, one’s eyes

adjust to the dark, one sees dimly how the room is arranged, one knows

about chairs one has not yet bumpedinto, and oneis able to get about com-

fortably. It is an everyday occurrence that a mathematician ‘‘knowsintui-

tively’’ that thus and so must be the case but does not have the vaguest idea

how to go about proving it. Often, of course, he is wrong. But far more

often than not heis right. Certainly, if I respect a particular mathematician

and if he has had extensive experience with a particular structure, I will be

willing to rely on his intuitions about the structure even in the absence of a

proof—not absolutely, but to a very large extent.

Let mesay at once that I am not urging the existence of an occult faculty

whereby we have direct knowledge of platonic objects. Rather, I think that

the mathematician’s intuition is a special case of the general humanability

to recognize patterns or, morespecifically, to synthesize complex structures

from scattered cues. Thus I think the mathematician’s intuition abouta par-

ticular structure is simply the result of long experience with that structure.It

is not different in kind from a carpenter’s ‘‘feel’’ for his wood. The factis

that mathematicians are able to arrive at moreorless reliable conclusions

about mathematical objects without having to deduce those conclusions. In-

deed, mathematical creativity is much more a matter of intuition than it is

of logic. (For essentially the same view, see Wilder [19] or Resnick [16].) It

follows that a logicist account of mathematics cannot be adequate.

8&9
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But what is missing? The logicist holds that mathematics is a body of

truths that are not about anything. They are true just by virtue of their in-

ternal logical structure, not by virtue of any external objects to which they

refer. But if that were true, then the phenomenon of mathematicalintuition

would be incomprehensible. For if the logicist is right, then there are no

structures for the mathematician to become familiar with or to haveinsight

into.
Aninteresting special case of this difficulty is the problem, from logicist

point of view, of the status of axioms. A principle whichis neither a logical

truth nor deduced from antecedently accepted principles is not being ac-

cepted merely by virtue of reasoning. Logicists, therefore, often deny that

such principles are being acceptedat all. Thus they tend to think of geometry,

for example, as a hypothetical discipline. If physical space satisfies the ax-

ioms, then it satisfies the theorems. (For this opinion see the references to

Kline above, or see Hempel[10].) But, as a matter of fact, we have a clear in-

tuition of Euclidean space, and the theorems of Euclidean geometry are out-

right true aboutthat structure. It is generally held that the earliest geometrical

knowledge wasarrived at empirically. If so, then that knowledge does not

have a hypothetical character. The non-Euclidean geometries only show the

logical consistency of denying the parallel postulate. They do not show that

the parallel postulate is false. The general theory ofrelativity showsthatcer-

tain esoteric observations are well described by treating space-time as a four-

dimensional manifold of non-constant curvature. It may follow from this,

though I am notsurethat it does, that the space of our intuition does not cor-

respond perfectly to physical space. It certainly does not follow that we do

not have a clear spatial intuition. Moreover, Euclidean geometry remains an

excellent description of the space weactually live in and actually experience.

It is not as though the use of figures in geometrical demonstrations were

derivative from purely logical proofs based on the axioms. On the contrary,

some of the axioms, such as the axiomsof order, are so evident to the intui-

tion that the need for them was not noticed until the nineteenth century.It

seems implausible that all the geometers before Moritz Pasch were guilty of

the samesystematic logical errors. It seems much morelikely that they were

engaged in someactivity other than deducing the logical consequencesofa set

of axioms. I think they were studying space.

Let me summarize the argument. Mathematical intuition is practically real.

It is only comprehensible as a non-deductive insight into structures external to

the mathematicsitself. Hence such external mathematical structures are prac-

tically real. But it is essential to logicism that it denies the objective reality of

any such structure. Therefore, by the principle of objectivity, logicism cannot

be an adequate philosophy of mathematics.

6 PLATONISM

Logicism, in other words, must be rejected as an incomplete philosophy of

mathematics because it omits the objects that mathematics is about. Thus we

may make a fourth attemptat a philosophy of mathematics as follows: Math-

ematics consists of truths about abstract structures existing independently of



MATHEMATICS AS AN OBJECTIVE SCIENCE

us, of the logical arguments that establish those truths, of the constructions

underlying those arguments, of the formal manipulation of symbols that ex-

presses those arguments and truths, and of nothing else. This is the philos-

ophy of mathematics that I think ought properly to be called platonism.Its

most distinguished contemporary proponent was Kurt Gédel. (For example

in his [8].)

A platonist would interpret the fundamental theorem of arithmetic liter-

ally. For the platonist there are such things as natural numbersexisting in-

dependently of us, andit is as a matter of fact true that they are all uniquely

decomposable into prime factors.

The most characteristic expression of platonism within mathematical

logic is model theory. This discipline is the study of the semantic content of

mathematical theories. Of course, formalism, intuitionism, and logicism all

deny that mathematical theories have semantic content. The central prob-

lem of model theory is the question of what properties of structures can be

expressed in particular languages. This question onlyarises if structures are

assumed to exist and to have properties independently of their description.

Let me try to summarize quickly the picture of mathematical activity that

platonism offers. The mathematician, on this view, is confronted by a wide

variety of abstract structures which themselves precede his mathematical ac-

tivity. He does not create these structures; he finds them. In the course of

his training, and then as he develops his powers, he forms and refinesan in-

tuition about these structures. Typically, of course, he will have much more

insight into some of them than into others. His intuition is formed by the

truths about the mathematical world that have been discovered by his

predecessors and byhis colleagues, and then his intuition, in turn, enables

him to find new structures and to make new conjectures aboutthe old struc-
tures. In order to verify these conjectures, to answer the questions that oc-

cur to him, he performs constructions, makes arguments, defines new con-

cepts. These constructions, in turn, get expressed in mathematical English,

are bolstered by computations, are maderigorous and formal. Thereby they

are made publicly accessible and verifiable and becomepartof the larger

social dialectic through which mathematics develops.

This seems to me a fairly satisfactory account of what the pure mathema-

tician is doing. Indeed, I think that most contemporary mathematicians, even

if they have not botheredto articulate it for themselves, would accept some

variant of this view. So satisfactory is platonism that very few recent mathe-

maticians or philosophers of mathematics have felt any need to go beyondit.

Just in the past few years, however, there have been signs of discontent. To

indicate their source, let me pause for some brief historical remarks.

In the eighteenth century, mathematics was considered a science distin-

guished from the othersciences only in being more certain and more funda-

mental. Its special province was the laws governing space and quantity. In

the course of the nineteenth century,this conception of the nature of mathe-

matics was strongly undermined. First the non-Euclidean geometries were

used to denythe existence of a uniquespatial structure for ourintuitions to

be about. Then analytic geometry was used to undercut the view that there

was an intuition of space at all apart from our intuition of the numerical
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continuum. The end product of this developmentis the contemporary math-

ematician whotells his undergraduate students that by three-dimensional

Euclidean space he meanstheset of all ordered triples of real numbers. Ob-

viously, that is not what Euclid meant. Toward the end of the nineteenth

century, even the intuitive conception of quantity or magnitude wasre-

placed, at least officially, by the purely conceptual structures introduced by

Weierstrass, Dedekind, and Cantor. Again, a contemporary mathematician

is likely to tell his students that by a real number he means a Dedekindcut.

Obviously, that is not what Euler meant.

Oneeffect of these changes was to produce what mightbe called a foun-

dational vacuum—asituation in which mathematicians were without any

systematic account of the nature of the structures they were dealing with.

Axiomatic set theory rushed in to fill this void. The set-theoretic view of

foundations, however, is platonism in its most narrowly reductionistic

form. All the objects of the set-theorist’s world are abstract. Even if indi-

viduals are allowed, and they are usually excluded, these individuals are

taken to have neither internal structure nor intensional relationships. They

are mere abstract points. Thus the reduction of all of mathematics to set

theory entails a narrowing of the subject matter of mathematicsso asto ex-

clude all of concrete reality.

For about two generations axiomatic set theory was a great success. I

think there can belittle doubt that set theory provides an elegant and con-

venient framework within which to do pure mathematics. It is wonderfully

simple in conception, almost nevergets in the way of mathematicalpractice,

gives smoothly reassuring answers to questionslike ‘‘But what are numbers,

really?’ and provides a wealth of interesting structures of which no one

before Cantor could have dreamed.

In the past decade, however, set theory has been undermined roughly in

the same way that geometry was undermined about a hundredyearsearlier.

The independenceresults, the proliferation of large cardinal axioms, and

the construction of increasingly bizarre models for set theory have made

mathematicians realize how weaktheir set-theoretic intuition actually is. In

the absence of new insight, the views of set-theorists begin to diverge. Some

still follow Cantor in thinking the continuum hypothesis plausible, but

others follow Géddel in believing more and morestrongly that it must be

false. It is becoming truistic that we need a new concept, one more funda-

mental than that of a set. Unfortunately, no one can imagine where to look

for such a concept.

Noneofthis is incompatible with a sufficiently liberal platonism. Increas-

ingly one hears the suggestionsthat there is not just one set-theoretic universe,

but many. You workin

a

world in which the continuum hypothesis holds, and

I will work in one in which Martin’s axiom holds but the continuum hypoth-

esis fails. He will work in a universe containing a measurable cardinal, and she

will work in one in which,sinceall sets are constructible, a measurable car-

dinal is impossible. These areall just different structures, all equally entitled

to be considered interesting and worthy of study. Where is the problem?

The problem,of course, is the sameasit was in 1890. How do these difer-

ent structures interact? What are they? What are the laws that govern the
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mathematical universe as a whole,if none of these set-theoretic ‘‘universes’’

can any longer be regardedasincludingall of the structures mathematicians

concern themselves with? None of these questions have generally accepted

answers. I think it is out of despair at this situation that some mathemati-

cians retreat to formalism, intuitionism, or logicism—positions from which

such questions cannot arise.

Let me put the problem differently. It seems to me that mathematics can

only flourish if there is a commonconception of what we are about,if there

is an agreement that the different structures we study are aspects of one

reality. Without a foundational consensus, it seems to me, mathematicswill

tend to break apart into schools.

Actually, not only is set theory tending to split into pieces, but mathe-

matical platonism itself is the result of a split in the larger structure of

science. The traditional view of the nature of science, for example in the

time of Newton, wasthat there is only one reality and therefore only one

science. On this view the several special sciences—mathematics, physics,

chemistry, biology—share a commonreality but ask different questions

about it and use different methods to study it. Of course, each special

science will reveal its own particular aspect of the world; it remains a funda-

mental assumption of science as traditionally conceived that these various

aspects are complementary, mutually illuminating aspects of one world. As

a matter of fact, most branches of mathematics cast light fairly directly on

some part of nature. Geometry concerns space. Probability theory teaches

us about random processes. Group theoryilluminates symmetry. Logic de-

scribes rational inference. Many parts of analysis were created to study par-

ticular physical processes andarestill indispensable for the study of those

processes. Thelist could be extended almost indefinitely. From the point of

view of the platonist, however, only pure mathematics is really mathema-

tics. For, according to platonism, the objects which mathematics studies are

necessarily abstract. How can the theory of finite groupstell us about the

structure of crystals if the only groups we considerare built up out of sets of
sets of sets?

When the foundations of mathematics became completely abstract and
ceased to have anything to do with the world of the senses, the connection
between mathematics and the other sciences became obscure. Recently, as
economic circumstances have forced mathematicians to look around for
new meansof support, this divorce of mathematics from the other sciences
has ceased to be a matter for pride and become a matter of concern. Set
theory, however, provides no clue as to how a reconciliation with the rest of
science is to be effected.

Thus I think that mathematical platonism is again a form of surfacism.It
is a practical reality that our best theoremsgive information about the con-
crete world. It is a practical reality that there is no clear boundary between
pure and applied mathematics. There is only onescience. It follows from the
principle of objectivity that an adequate philosophy of mathematics would
identify the objective content of these facts. Such a philosophy of mathema-
tics would be only one chapter in a larger philosophy of science. That
philosophy would makeit clear in what sense there is only one objective world
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and howit is that the objects studied by the mathematician, many of which

are not realized in physical reality, can nevertheless be seen as part of that

world. Unfortunately, that philosophy has yet to be formulated.
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Interlude

I the preceding essays reveal the ultimate implausibility of foun-

dationalism along with its supporting dogmas, they also remind us of how

plausible foundationalism is on the surface. After all, it has been the domi-

nant force in the philosophy of mathematics for over half a century. Never-

theless, there has always been a small (very small) minority of investigators

who wereskeptical of the myth of foundations. I would like to mention

three: the philosophers Ludwig Wittgenstein and Willard Quine, and the

mathematician George Polya.

By the late 1930s, Wittgenstein had developed a view of philosophythat

simultaneously eliminated the idea of foundations of mathematics and

focused philosophical concern on the actual practice of mathematics. The

following quotation, taken from his last work, Philosophical Investiga-

tions, Summarizes his view. !

124. Philosophy may in no wayinterfere with the actual use of language;it

can in the end only describeit.

For it cannot give it any foundation either.

It leaves everything asit is.

It also leaves mathematics as it is, and no mathematical discovery can ad-

vance it. A “‘leading problem of mathematical logic’’ is for us a problem of

mathematics like any other.

125. It is the business of philosophy, not to resolve a contradiction by means

of a mathematical or logico-mathematical discovery, but to makeit possible

for us to get a clear view of the state of affairs before the contradiction is

resolved. (And this does not mean that oneis sidestepping a difficulty.)

However, even in his earliest work, Tractatus Logico-Philosophicus, Witt-

genstein drew a sharpdistinction between mathematics andscience, andthis

distinction he never abandoned. While he would admit to subtle and
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important connections between proofs and calculations on the one hand

and experiments on the other, nevertheless Wittgenstein regarded the two

processes as fundamentally different. ‘‘I can calculate in the medium of im-

agination,’’ he said, ‘‘but not experiment.’’?

By 1950, Quine had becomeskeptical of the very possibility of drawing a

satisfactory distinction between mathematics and science. His point was not

the obvious one that any such distinction would be fuzzy—that, for exam-

ple, applied mathematics and theoretical physics are hard to disentangle.

His point was rather that the philosophical contrast underlying the distinc-

tion was misguided. That contrast was between analytic truths, statements

true solely in virtue of their form or meaning, and synthetic truths,

statements true in part because of facts about experiencedreality. Quine’s

argument was that the analytic-synthetic distinction was not just fuzzy, but

incoherent.3 As he puts the matter in his more recent work, The Philosophy

ofLogic,

Because of these . . . two traits of logic and mathematics—their relevance to

all science and their partiality toward none—it is customary to draw an em-

phatic boundary separating them from the natural sciences. These latter are

seen as monopolizing the information; logic and mathematics serve only in

processing it. This accountis an arresting one, but the trouble comesin press-

ing it beyond the stage of metaphor. Whatclear notion of information would

fit the account? [‘‘Two august notions of information’’ are the cosmological,

“the distribution of elementary particles’’, and the epistemological, ‘‘the

distribution of sensory elements’’.] If each sentence of science could be

assigned its individual share of information in either of these senses, the doc-

trine of analyticity would be sustained: the analytic sentences would include

the truths of logic and mathematics, and would be distinguished from the

truths of nature by their lack of information. Where the myth lies, however,is

in the notion of any such general sorting of information over sentences.

Logic is in principle no less open to revision than quantum mechanicsor the

theory of relativity.*

Nevertheless, while he was establishing a kinship between mathematics and

science, Quine was quick to add that ‘‘The kinship I speak for is rather a

kinship with the most general and systematic aspects of natural science, far-

thest from observation.’’5

In contrast, the mathematician Polya argued that observation impinged

on mathematics in a moredirect way than Quine allowed; Polya maintained

that observation was an everyday feature of mathematical practice. More-

over, Polya continued, the practice of mathematics had many other features

in common with natural science, features such as induction, plausible

reasoning, guesses, and analogies. In a series of bookshe tried to present

mathematics as it is actually done, emphasizing its kinship with science and,

incidentally, undermining foundationalism’s dichotomy between mathe-

matics andscience.®

Polya was an early advocate of manyof the theses argued for elsewherein

this anthology. Among his contentionsare the principles:
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Mathematical practice provides important material for a philosophical

understanding of mathematics.

The questions of mathematical discovery and developmentareessential to a

philosophy of mathematics.

There is a fundamental similarity between the practices of mathematics and

the practices of science.

Pedagogy is an important topic in the philosophy of mathematics.

In order to provide the reader with a sense of Polya’s approach to

mathematics, I include the following selection, which is the second chapter

of his book, Induction and Analogy in Mathematics

Forall of his innovations, however, Polya remainsa transitional figure in

the philosophy of mathematics. He paved the way for quasi-empiricism

without ever taking the final step towardsit. He prefaced his major work by

acceding to the ultimate contrast between mathematics and science that is

postulated by foundationalism. Plausible reasoning, common to mathema-

tics and science, was, he granted, fundamentally distinct from demon-

strative reasoning, the special property of mathematics and logic. In that

preface he maintained that ‘‘Finished mathematics presented in a finished

form appears as purely demonstrative, consisting of proofs only,’’ such

proofs being ‘‘safe, beyond controversy, and final.’’ No foundationalist

could ask for anything more. The philosophy of mathematics, founda-

tionalists would assert, consists in the explanation of demonstrative reason-

ing. To foundational eyes, Polya’s work seems to pertain only to the

development of mathematical proofs andsois interesting to the sociology

or history or pedagogy of mathematics, but not to its philosophy.

Consequently, Polya’s work had little impact on the philosophy of

mathematics until it was taken up by the more radical quasi-empiricists.

They push his analysis one step further by questioning the assumption of

completely safe proofs, ‘‘beyond controversy and final.’’ Indeed, the more

we insist on the safety of demonstrative formal reasoning, the more our

proofs rely on higher-level assumptions that our formalizationsare at least

consistent. According to the quasi-empiricists, as we shall see, it is our in-

formal proofs, the kind investigated by Polya, that are often safer than any

derivative formalizations of them. Once this extra step is taken, Polya’s

work ceases to be a mere gloss on the foundational conception of mathe-

matics but instead becomes a genuine alternative to it. I have prefaced

Polya’s chapter on ‘‘Generalization, Specialization, Analogy,’’ with an ex-

cerpt from his own preface to Induction and Analogy in Mathematics,

which makes clear his own motives andhis relation to foundationalism.

Incidentally, Polya begins the essay (chapter 2 of his text) by alluding to

an example drawn from the first chapter. There he developed the observa-

tion that

3 +7 = 10, 3 + 17 = 20, 13 + 17 = 30,

by successive criticisms and refinements, into the conjecture that ‘‘any even

numberthat is neither a prime nor the square of a prime, is the sum of two
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odd primes.’’ This is known as Goldbach’s Conjecture, and as Polya notes,

Goldbach had not muchbetter evidence for it than Polya elicits. To under-

stand mathematics, it is not enough to understand how mathematicians

prove theorems, according to Polya. One must also understand how they

discover conjectures to prove. As an aid to that understanding, I’ve in-

cluded many of the fascinating exercises of Polya’s that are such an impor-

tant part of his work.

FOOTNOTES

1. Philosophical Investigations, MacMillan, New York (1953), 49-50.

. Remarks on the Foundations ofMathematics, Basil Blackwell, Oxford (1964),b
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Patterns of Plausible Inference (1954), all published by Princeton University Press,

Princeton, New Jersey.

n
a

f
&

W
w



GEORGE POLYA

From the Preface of
Induction and Analogy in Mathematics

This book has various aims, closely connected with each other. In

the first place, this book intendsto serve students and teachers of mathema-

tics in an important but usually neglected way. Yet in a sense the bookis

also a philosophical essay. It is also a continuation and requires a continua-

tion. I shall touch upon these points, one after the other.

1. Strictly speaking, all our knowledge outside mathematics and demon-

strative logic (whichis, in fact, a branch of mathematics) consists of conjec-

tures. There are, of course, conjectures and conjectures. There are highly

respectable and reliable conjectures as those expressed in certain general

laws of physical science. There are other conjectures, neither reliable nor

respectable, some of which may make you angry when you read them in a

newspaper. Andin betweenthere are all sorts of conjectures, hunches, and

guesses.

Wesecure our mathematical knowledge by demonstrative reasoning, but we

support our conjectures by plausible reasoning. A mathematical proofis

demonstrative reasoning, but the inductive evidence of the physicist, the cir-

cumstantial evidence of the lawyer, the documentary evidence ofthe historian,

and the statistical evidence of the economist belong to plausible reasoning.

The difference between the two kinds of reasoning is great and manifold.

Demonstrative reasoning is safe, beyond controversy, and final. Plausible

reasoning is hazardous, controversial, and provisional. Demonstrative rea-

soning penetrates the sciences just as far as mathematics does, but it is in

itself (as mathematics is in itself) incapable of yielding essentially new

knowledge about the world around us. Anything new that we learn about

the world involves plausible reasoning, which is the only kind of reasoning

for which wecare in everyday affairs. Demonstrative reasoning has rigid

standards, codified and clarified by logic (formal or demonstrative logic),
which is the theory of demonstrative reasoning. The standardsof plausible
reasoning are fluid, and there is no theory of such reasoning that could be
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compared to demonstrative logic in clarity or would command comparable

consensus.

2. Another point concerning the two kinds of reasoning deserves ourat-

tention. Everyone knows that mathematics offers an excellent opportunity

to learn demonstrative reasoning, but I contend also that there is no subject

in the usual curricula of the schools that affords a comparable opportunity

to learn plausible reasoning. I address myself to all interested students of

mathematicsof all grades and I say: Certainly, let us learn proving, but also

let us learn guessing.

This sounds a little paradoxical and I must emphasize a few points to

avoid possible misunderstandings.

Mathematics is regarded as a demonstrative science. Yet this is only one

of its aspects. Finished mathematics presented in a finished form appears as

purely demonstrative, consisting of proofs only. Yet mathematics in the

making resembles any other human knowledge in the making. You have to

guess a mathematical theorem before you proveit; you have to guess the

idea of the proof before you carry through the details. You have to combine

observations and follow analogies; you haveto try and try again. Theresult

of the mathematician’s creative work is demonstrative reasoning, a proof;

but the proof is discovered by plausible reasoning, by guessing.If the learn-

ing of mathematics reflects to any degree the invention of mathematics,it

must have a place for guessing, for plausible inference.

There are two kinds of reasoning, as we said: demonstrative reasoning

and plausible reasoning. Let me observe that they do not contradict each

other; on the contrary, they complete each other. In strict reasoning the prin-

cipal thing is to distinguish a proof from a guess, a valid demonstration from

an invalid attempt. In plausible reasoning the principal thing is to distinguish

a guess from a guess, a more reasonable guess from a less reasonable guess. If

you direct your attention to both distinctions, both may becomeclearer.

A serious student of mathematics, intending to makeit his life’s work,

must learn demonstrative reasoning;it is his profession and thedistinctive

markofhis science. Yet for real success he must also learn plausible reason-

ing; this is the kind of reasoning on which his creative work will depend.

The general or amateur student should also get a taste of demonstrative rea-

soning: he may havelittle opportunity to use it directly, but he should ac-

quire a standard with which he can comparealleged evidence ofall sorts

aimed at him in modernlife. But in all his endeavors he will need plausible

reasoning. At any rate, an ambitious student of mathematics, whateverhis

further interests may be, should try to learn both kinds of reasoning, demon-

strative and plausible.

3. I donotbelieve that there is a foolproof methodto learn guessing. At

any rate, if there is such a method,I do not knowit, and quite certainly I do

not pretendto offer it on the following pages. The efficient use of plausible

reasoningis a practical skill and it is learned, as any other practical skill, by

imitation and practice. I shall try to do my best for the reader whois anx-

ious to learn plausible reasoning, but whatI offer are only examples for imi-

tation and opportunity for practice.



FROM THE PREFACE OF INDUCTIONAND ANALOGY IN MATHEMATICS

In whatfollows, I shall often discuss mathematical discoveries, great and

small. I cannottell the true story how the discovery did happen, because no-

body really knowsthat. Yet I shall try to make up a likely story how the dis-

covery could have happened.I shall try to emphasize the motives underlying

the discovery, the plausible inferencesthatled to it, in short, everything that

deserves imitation. Of course,I shall try to impress the reader; this is my duty

as teacher and author. Yet I shall be perfectly honest with the reader in the

point that really matters: I shall try to impress him only with things which

seem genuine and helpful to me. ...
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Generalization, Specialization,

Analogy

1. GENERALIZATION, SPECIALIZATION, ANALOGY, AND INDUCTION.

Let us look again at the example of inductive reasoning that we have dis-

cussed in somedetail (sect. 1.2, 1.3). We started from observing the analogy

of the three relations

3+ 7 = 10, 3 + 17 = 20, 13 + 17 = 30,

we generalized in ascending from 3, 7, 13, and 17 to all primes, from 10, 20,

and 30 to all even numbers, and then we specialized again, came down to

test particular even numbers such as6 or 8 or 60.

This first example is extremely simple. It illustrates quite correctly the

role of generalization, specialization, and analogy in inductive reasoning.

Yet we should examine less meager, more colorful illustrations and, before

that, we should discuss generalization, specialization, and analogy, these

great sources of discovery, for their own sake.

2. GENERALIZATIONis passing from the consideration of a given set of

objects to that of a larger set, containing the given one. For example, we

generalize when we pass from the consideration of triangles to that of poly-

gons with an arbitrary numberof sides. We generalize also when we pass

from the study of the trigonometric functions of an acute angle to the

trigonometric functions of an unrestricted angle.

It may be observed that in these two examples the generalization wasef-

fected in two characteristically different ways. In the first example, in passing

from triangles to polygons with n sides, we replace a constant by a variable,

the fixed integer 3 by the arbitrary integer 7 (restricted only by the inequality

n = 3). In the second example, in passing from acute angles to arbitrary

angles a, we removea restriction, namely the restriction that 0° < a < 90°.

Weoften generalize in passing from just one object to a whole class con-
taining that object.
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3. SPECIALIZATIONis passing from the consideration of a given set of ob-

jects to that of a smaller set, contained in the given one. For example, we

specialize when we pass from the consideration of polygonsto that of regu-

lar polygons, and wespecialize still further when we pass from regular poly-

gons with n sides to the regular, that is, equilateral, triangle.

These two subsequentpassages were effected in two characteristically dif-

ferent ways. In the first passage, from polygonsto regular polygons, wein-

troduced a restriction, namely thatall sides and all angles of the polygon be

equal. In the second passage wesubstituted a special object for a variable,

we put 3 for the variable integer n.

Very often we specialize in passing from a whole class of objects to just

one object contained in the class. For example, when we wish to check some

general assertion about prime numberswepick out some prime number,say

17, and we examine whetherthat generalassertionis true or not forjust this

prime 17.

4. ANALOGY. There is nothing vague or questionable in the concepts of

generalization and specialization. Yet as we start discussing analogy we

tread on a less solid ground.
Analogyis a sort of similarity. It is, we could say, similarity on a more

definite and more conceptual level. Yet we can express ourselvesa little

more accurately. The essential difference between analogy and other kinds

of similarity lies, it seems to me, in the intentions of the thinker. Similar ob-

jects agree with each other in someaspect. If you intend to reduce the aspect

in which they agree to definite concepts, you regard those similar objects as

analogous. If you succeed in getting down to clear concepts, you haveclari-

fied the analogy.
Comparing a young womanto a flower, poets feel some similarity, I

hope, but usually they do not contemplate analogy. In fact, they scarcely in-

tend to leave the emotional level or reduce that comparison to something

measurable or conceptualy definable.

Looking in a natural history museum atthe skeletons of various mam-

mals, you mayfind them all frightening. If this is all the similarity you can

find between them, you do not see much analogy. Yet you mayperceive a

wonderfully suggestive analogy if you consider the hand of a man,the paw

of a cat, the foreleg of a horse, the fin of a whale, and the wing of a bat,

these organs so differently used, as composed of similar parts similarly

related to each other.

Thelast exampleillustrates the most typical case of clarified analogy; two

systems are analogous, if they agree in clearly definable relations of their

respective parts.

Forinstance,a triangle in a plane is analogousto a tetrahedron in space. In

the plane, 2 straight lines cannotincludea finite figure, but 3 may includea tri-

angle. In space, 3 planes cannot includea finite figure but 4 mayincludea tetra-

hedron.Therelation of the triangle to the planeis the sameasthatof the tetra-

hedronto space in so far as both thetriangle and the tetrahedron are bounded

by the minimum numberof simple bounding elements. Hence the analogy.
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One of the meanings of the Greek word ‘‘analogia,’’ from which the

word ‘‘analogy”’ originates, is ‘‘proportion.’’ In fact, the system of the two

numbers6 and 9 is ‘‘analogous’’ to the system of the two numbers 10 and 15

in so far as the two systemsagreein the ratio of their corresponding terms,

6:9 = 10: 15.

Proportionality, or agreement in the ratios of corresponding parts, which

we may See intuitively in geometrically similar figures, is a very suggestive

case of analogy.

Here is another example. We mayregard a triangle and a pyramid as

analogous figures. On the one hand take a segmentofa straightline, and on

the other hand a polygon. Connectall points of the segment with a point

outside the line of the segment, and you obtain a triangle. Connect all

points of the polygon with a point outside the plane of the polygon, and you

obtain a pyramid. In the same manner, we mayregard a parallelogram and

a prism as analogousfigures. In fact, move a segmentor a polygonparallel

to itself, across the direction of its line or plane, and the onewill describe a

parallelogram, the other a prism. We maybe tempted to express these cor-

responding relations between plane andsolid figures by a sort of proportion

and if, for once, we do not resist temptation, we arrive at fig. 2.1. This

figure modifies the usual meaning of certain symbols (: and =) in the same

way as the meaning of the word ‘‘analogia’’ was modified in the course of

linguistic history: from ‘‘proportion’’ to ‘‘analogy.’’

A: L7-b): B
FIG. 2.1. Analogous relations in plane and space.

The last exampleis instructive in still another respect. Analogy, especially

incompletely clarified analogy, may be ambiguous. Thus, comparing plane

and solid geometry, we foundfirst that a triangle in a plane is analogousto

a tetrahedron in space andthen that a triangle is analogous to a pyramid.

Now,both analogies are reasonable, each is valuable at its place. There are

several analogies between plane and solid geometry and not just one

privileged analogy.

Fig. 2.2 exhibits how, starting from a triangle, we may ascent to a

polygon by generalization, descend to an equilateral triangle by specializa-

tion, or pass to different solid figures by analogy—thereare analogiesonall
sides.

And, remember, do not neglect vague analogies. Yet, if you wish them
respectable, try to clarify them.
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more general

<——_- ——>

analogous | analogous

more special

FIG. 2.2. Generalization, specialization, analogy.

5. GENERALIZATION, SPECIALIZATION, AND ANALOGYoften concur

in solving mathematical problems.! Let us take as an example the proof of

the best known theorem of elementary geometry, the theorem of Pytha-

goras. The proof that we shall discuss is not new;it is due to Euclid himself

(Euclid VI, 31).

(1) Weconsider a right triangle with sides a, b, and c, of whichthefirst,

a, is the hypotenuse. Wewish to show that

(A) a? = b* + c?.

This aim suggests that we describe squares on the three sides of our right

triangle. And so wearrive at the not unfamiliar part I of our compound

figure, fig. 2.3. (The reader should drawtheparts of this figure as theyarise,

in orderto see it in the making.)

(2) Discoveries, even very modest discoveries, need some remark, the

recognition of somerelation. We can discover the following proof by observ-

ing the analogy between the familiar part I of our compound figure and the

scarcely less familiar part II: the sameright triangle that arises in I is divided

in II into two parts by the altitude perpendicular to the hypotenuse.

(3) Perhaps, you fail to perceive the analogy between I and II. This

analogy, however, can be madeexplicit by a commongeneralization of land

II whichis expressedin III. There we find again the samerighttriangle, and on

its three sides three polygonsare described whichare similar to each other but

arbitrary otherwise.
(4) Thearea ofthe square described on the hypotenusein is a7. The area of

the irregular polygon described on the hypotenusein III can be put equalto \a?;

the factor \ is determined as the ratio of two given areas. Yet then,it follows

from the similarity of the three polygons described on thesides a, b, and cof the

triangle in III that their areas are equal to \a?, X\b2, and Ac’, respectively.
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FIG.2.3

Now,if the equation (A) should betrue (as stated by the theorem that we

wish to prove), then also the following would betrue:

(B) da? = AD? + Ac?

In fact, very little algebra is needed to derive (B) from (A). Now,(B)repre-

sents a generalization of the original theorem of Pythagoras: If three similar

polygons are described on three sides of a right triangle, the one described

on the hypotenuseis equal in area to the sum of the two others.

It is instructive to observe that this generalization is equivalent to the

special case from which westarted. In fact, we can derive the equations (A)

and (B) from each other, by multiplying or dividing by \ (whichis, as the

ratio of two areas, different from 0).

(5) The general theorem expressed by (B) is equivalent not only to the

special case (A), but to any otherspecial case. Therefore, if any such special

case should turn out to be obvious, the general case would be demonstrated.

Now,trying to specialize usefully, we look aroundfor a suitable special

case. Indeed II represents such a case. In fact, the right triangle described on

its own hypotenuseis similar to the two othertriangles described on the two

legs, as is well known andeasyto see. And, obviously, the area of the whole
triangle is equal to the sum of its two parts. And so, the theorem of
Pythagoras has been proved.

The foregoing reasoning is eminently instructive. A case is instructive if
we can learn from it something applicable to other cases, and the morein-
structive the wider the range of possible applications. Now, from the
foregoing example wecan learn the use of such fundamental mental opera-
tions as generalization, specialization, and the perception of analogies.
There is perhaps no discovery either in elementary or in advanced mathe-
matics or, for that matter, in any other subject that could do without these
operations, especially without analogy.
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The foregoing example shows how wecan ascend by generalization from

a special case, as from the onerepresented byI, to a more general situation

as to that of III, and redescend hence byspecialization to an analogous

case, as to that ofII. It showsalso the fact, so usualin mathematicsandstill

so surprising to the beginner, or to the philosopher who takes himself for

advanced,that the general case can belogically equivalent to a special case.

Our example shows, naively and suggestively, how generalization, special-

ization, and analogy are naturally combined in the effort to attain the

desired solution. Observe that only a minimum of preliminary knowledgeis

needed to understand fully the foregoing reasoning.

6. DISCOVERY BY ANALOGY. Analogy seems to have a sharein all

discoveries, but in someit has the lion’s share. I wish to illustrate this by an

example which is not quite elementary, but is of historic interest and far

more impressive than any quite elementary example of which I can think.

Jacques Bernoulli, a Swiss mathematician (1654-1705), a contemporary

of Newton and Leibnitz, discovered the sum of several infinite series, but

did not succeed in finding the sum of the reciprocals of the squares,

1 1 1 1 1
1+—+—+—+—+—+

4 9 25 36 49

‘If somebody should succeed,’’ wrote Bernoulli, ‘‘in finding whattill now

withstood our efforts and communicateit to us, we shall be much obliged to

him.”’

The problem came to the attention of another Swiss mathematician,

Leonhard Euler (1707-1783), who was born at Basle as was Jacques Ber-

noulli and was a pupil of Jacques’ brother, Jean Bernoulli (1667-1748). He

found various expressions for the desired sum (definite integrals, other

series), none of which satisfied him. He used one of these expressions to

compute the sum numerically to seven places (1.644934). Yet this is only an

approximate value and his goal was to find the exact value. He discovered

it, eventually. Analogy led him to an extremely daring conjecture.

(1) Webegin by reviewing a few elementary algebraic facts essential to

Euler’s discovery. If the equation of degree n

Ay + a,x + a,x? +... + a,x" = 0

has n different roots

Oy, Ay... A,

the polynomial on its left hand side can be represented as a product of n

linear factors,

At AX+ aX +...4+ ax" =

a(x — a) (X — a)* ++ — a@,).

By comparing the terms with the same powerof x on bothsidesof this iden-

tity, we derive the well knownrelations between the roots and the coeffi-

cients of an equation, the simplest of which is

a,-, = —a,a, + a +... + a,)5
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wefind this by comparing the terms with x”-!.

There is another way of presenting the decomposition in linear factors. If
none of the roots a, a, . . . a, is equal to 0, or (whichis the same)if a, is
different from 0, we have also

Qy + AX + A,x* +... + a,x

=a(1-*)(1~*).. 0-2)
and

a, = -a(—-+ at +2).

Thereis still another variant. Suppose that the equationis of degree 2n,
has the form

 

by — Bx? + Byxt*-— 22. + (- 19d," = 0

and 2n different roots

B, — By, By, - B, .-. By — By

Then

by — bx? + bx* - 2.2. + (—1)"d,x2"

x? x? x?_ = b (1 = (1 5 AG -

1 1 1
b, = Dy Ct gtict®

(2) Euler considers the equation

sinx = 0

or

*__¥ x wt = 0,+ —

1 1:2:3 1:2°3:4:5 1-2°:3...7

The left hand side has an infinity of terms, if of ‘‘infinite degree.’’ There-

fore, it is no wonder, says Euler, that there is an infinity of roots

0, aw, -a, 22, -2n, 32, —37,

Euler discards the root 0. He divides the left hand side of the equationbyx,

the linear factor corresponding to the root 0, and obtains so the equation

x2 x4 x6
_ + ~ +...
2:3 2°3°4:°-5 2°3°4:°-5°6:7

with the roots

-=0 1  

T, —, 2x, -2x, 32, —3r7,

We haveseen an analogoussituation before, under (1), as we discussed the

last variant of the decomposition in linear factors. Euler concludes, by
analogy, that
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. 2 4 6

er x + * —_ * + 3

x 2:3 2°3:°:4:°:5 2°3°°°7

x2 x2 x2

= _—— 1 -—— 1 —- tee ly(1-*) G-#) G- 2)
1 1 1 1

——— = —+ —+-——+... ,
2:°3 m2 G2 97?

1 1 1 qm
l+—-+-4+ -4+...= -.

4 9 16 6

This is the series that withstood the efforts of Jacques Bernoulli—butit was

a daring conclusion.

(3) Euler knew very well that his conclusion was daring. ‘‘The method

was new and never used yet for such a purpose,”’ he wrote ten yearslater.

He saw some objections himself and many objections were raised by his

mathematical friends when they recovered from their first admiring sur-

prise.

Yet Euler had his reasonsto trust his discovery. First of all, the numerical

value for the sum of the series which he has computed before, agreed to the

last place with 12/6. Comparing further coefficients in his expression of sin

x as a product, he found the sum of other remarkableseries, as that of the

reciprocals of the fourth powers,

1 1 1 1 m4
1+ ——4+—4+——+--+...=—.

16 81 256 625 90

Again, he examined the numerical value and again he found agreement.

(4) Euler also tested his method on other examples. Doing so he suc-

ceeded in rederiving the sum 72/6 for Jacques Bernoulli’s series by various

modifications of his first approach. He succeededalso in rediscovering by

his method the sum of an importantseries due to Leibnitz.

Let us discuss the last point. Let us consider, following Euler, the equation

1 — sinx = 0.

    

It has the roots

wo 37 aT _ Tr IT _ lla

2 2 2 2 2 2

Eachof these roots is, however, a double root. (The curve y = sin x does not

intersect the line y = 1 at these abscissas, butis tangentto it. The derivative of

the left hand side vanishes for the same values of x, but not the second

derivative.) Therefore, the equation

,-*%4_-*__ —* 4... = 0
1 1:2:-3 1:2°:3°-5

has the roots

T 37 _ 37, 5a 51 10 70
’ —9 —_—_ —n

2 2 2 2 2 2 2 2
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and Euler’s analogical conclusion leads to the decompositionin linear factors

3

1-—sinx = 1-~4—* __ x +...
1 1-2-3 1:2°3°4:-5

2x \2 2x \? 2x \? 2x \?= (1 -—) (1 +——) UU-—J) (1+) ... .

Comparing the coefficient of x on both sides, we obtain

4 4 4 4

 

-jJ=j -—2 ~*~ _ * TL
1 37 51 10

w 1 1 1 1 1
~=1- —~+— -~ 4 - =
4 3 5 7 9 11

This is Leibnitz’s celebrated series; Euler’s daring procedure led to a known
result. ‘“For our method,”’ says Euler, ‘‘which may appear to some as not
reliable enough, a great confirmation comes here to light. Therefore, we
should not doubtatall of the other things which are derived by the same
method.”’

(5) Yet Euler kept on doubting. He continued the numerical verifica-
tions described above under (3), examined moreseries and more decimal
places, and found agreement in all cases examined. Hetried other ap-
proaches, too, and,finally, he succeeded in verifying not only numerically,

but exactly, the value 22/6 for Jacques Bernoulli’s series. He found a new

proof. This proof, although hidden and ingenious was based on more usual

considerations and was accepted as completely rigorous. Thus, the most

conspicuous consequence of Euler’s discovery wassatisfactorily verified.

These arguments, it seems, convinced Euler that his result was correct.2

7. ANALOGY AND INDUCTION. We wish to learn something about the

nature of inventive and inductive reasoning. What can we learn from the

foregoing story? .

(1) Euler’s decisive step was daring. In strict logic, it was an outright

fallacy: he applied a rule to a case for which the rule was not made, a rule
about algebraic equations to an equation whichis not algebraic. In strict
logic, Euler’s step was notjustified. Yet it was justified by analogy, by the
analogy of the most successful achievements ofa rising science that he called
himself a few years later the ‘‘Analysis of the Infinite.’? Other mathemati-
cians, before Euler, passed from finite differences to infinitely small dif-
ferences, from sums with a finite number of terms to sums with an infinity
of terms, from finite products to infinite products. And so Euler passed
from equationsoffinite degree (algebraic equations) to equationsofinfinite
degree, applying the rules madeforthefinite to the infinite.

This analogy, this passage from thefinite to the infinite, is beset with pit-
falls. How did Euler avoid them? He was a genius, some people will
answer, and of course that is no explanation at all. Euler had shrewd
reasonsfor trusting his discovery. We can understand his reasonswith lit-
tle common sense, without any miraculousinsight specific to genius.
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(2) Euler’s reasonsfor trusting his discovery, summarized in the forego-

ing,? are not demonstrative. Euler does not reexamine the groundsforhis

conjecture,’ for his daring passage from the finite to the infinite; he ex-

amines only its consequences. He regards the verification of any such conse-

quence as an argumentin favor of his conjecture. He accepts both approx-

imative and exact verifications, but seems to attach more weight to the

latter. He examines also the consequencesofclosely related analogous con-

jectures® and he regardsthe verification of such a consequence as an argu-

ment for his conjecture.

Euler’s reasons are, in fact, inductive. It is a typical inductive procedure

to examine the consequencesof a conjecture and to judge it on the basis of

such an examination.In scientific research as in ordinarylife, we believe, or

ought to believe, a conjecture more or less according as its observable con-

sequences agree moreorless with the facts.

In short, Euler seems to think the same way as reasonable people, scien-

tists or non-scientists, usually think. He seemsto accept certain principles:

A conjecture becomes morecredible by the verification of any new conse-

quence. And: A conjecture becomes morecredible if an analogous conjec-

ture becomes morecredible.

Arethe principles underlying the process of induction ofthis kind?

EXAMPLES AND COMMENTSON CHAPTERII

First part

1. The right generalization.

A. Find three numbers x, y, and z satisfying the following system of

equations:

9x - 6y —- 102 lI =
"

w
w

—6x + 4y + 72 = 0,

re + yo + 2= 9.

If you have to solve A, which oneof the following three generalizations

does give you a more helpful suggestion, B or C or D?

B. Find three unknowns from a system of three equations.

C. Find three unknowns from a system of three equationsthe first two of

whichare linear and the third quadratic.

D. Find n unknowns from a system of n equations the first n — 1 of

whicharelinear.

2. A point and a “‘regular’’ pyramid with hexagonal base are given in

position. (A pyramid is termed ‘‘regular’’ if its base is a regular polygon the

center of which is the foot of the altitude of the pyramid.) Find a plane that

passes throughthe given point andbisects the volumeof the given pyramid.

In order to help you, I ask you a question: Whatis the right generaliza-

tion?



GENERALIZATION, SPECIALIZATION, ANALOGY

3. A. Three straight lines which are not in the same plane pass through
the same point O. Pass a plane through O that is equally inclined to the
three lines.

B. Three straight lines which are not in the same plane pass through the
same point. The point P is on oneofthe lines; pass a plane through P thatis
equally inclined to the three lines.

Comparethe problems A and B. Could you use the solution of one in
solving the other? Whatis their logical connection?

4. A. Computethe integral
co

\ (1 + x?)~3 dx.

— ©

B. Computetheintegral
Co

\ (p + x?)-3 ax

— ©

where p is a given positive number.

Compare the problems A and B. Could you usethe solution of one in

solving the other? Whatis their logical connection?

5. An extreme special case. Two menareseated at a table of usualrec-

tangular shape. One places a penny on the table, then the other does the

same, and so on,alternately. It is understood that each pennylies flat on the

table and not on any pennypreviously placed. The player who putsthelast

coin on the table takes the money. Which player should win, provided that

each plays the best possible game?

This is a time-honored butexcellent puzzle. I once had the opportunity

to watch a really distinguished mathematician when the puzzle was pro-

posed to him. Hestarted by saying, ‘‘Supposethat the table is so small that

it is covered by one penny. Then, obviously, the first player must win.’’

Thatis, he started by picking out an extreme special case in which the solu-
tion is obvious.

From this special case, you can reach the full solution when you imagine

the table gradually extending to leave place to more and morepennies.It

may bestill better to generalize the problem and to think of tables of

various shapes andsizes. If you observe that the table has a center of sym-

metry and that the right generalization might be to consider tables with a

center of symmetry, then you have gotthe solution, or you are at least very
nearto it.

6. Construct a commontangent to two givencircles.
In order to help you, I ask you a question: Is there a more accessible ex-

treme special case?

7. A leading special case. The area of a polygonis A,its plane includes
with a second plane the angle a. The polygonis projected orthogonally onto
the second plane. Find the area of the projection.
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Observe that the shape of the polygonis not given. Yet there is an endless

variety of possible shapes. Which shape should we discuss? Which shape

should we discussfirst?

There is a particular shape especially easy to handle: a rectangle, the base

of which is parallel to the line /, intersection of the plane of the projected

figure with the plane of the projection. If the base of such a rectangle is a, its

height b, and thereforeits area is ab, the corresponding quantities for the pro-

jection are a, b cos a, and ab cos a. If the area of such a rectangle is A, the

area of its projection is A cos a.

This special case of the rectangle with base parallel to / is not only par-

ticularly accessible; it is a Jeading special case. The other cases follow; the

solution of the problem in the leading special case involves the solution in

the generalcase. In fact, starting from the rectangle with base parallel to /,

we can extendtherule ‘‘area of the projection equals A cos a’’ successively

to all other figures. First to right triangles with a leg parallel to 1 (by bisect-

ing the rectangle westart from); then to any triangle with a side parallel to /

(by combining tworighttriangles); finally to a general polygon (by disecting

it into triangles of the kind just mentioned). We could even passto figures

with curvilinear boundaries (by considering them as limits of polygons).

8. The angle at the center of a circle is double the angle at the cir-

cumference on the same base,that is, on the same arc. (Euclid II, 20.)

If the angle at the centeris given, the angle at the circumference is not yet

determined, but can have various positions. In the usual proof of the

theorem (Euclid’s proof), which is the ‘‘leading special position’’?

9, Cauchy’s theorem, fundamental in the theory of analytic functions,

asserts that the integral of such a function vanishes along an arbitrary closed

curve in the interior of which the function is regular. We may consider the

special case of Cauchy’s theorem in which the closed curveis a triangle as a

leading special case: having proved the theorem fora triangle, we can easily

extend it successively to polygons (by combining triangles) and to curves (by

considering them aslimits of polygons). Observe the analogy with ex. 7 and 8.

10. A representative special case. You have to solve some problem

about polygons with n sides. You draw a pentagon,solve the problem forit,

study yoursolution, and notice that it works just as well in the generalcase,

for any n, as in the special casen = 5. Then you may callm = 5a represen-

tative special case: it represents to you the general case. Of course, in order

to be really representative, the case nm = 5 should have no particular

simplification that could mislead you. The representative special case

should not be simpler than the general case.

Representative special cases are often convenient in teaching. We may

prove a thorem on determinants with rowsin discussing carefully a deter-

minant with just 3 rows.

11. An analogous case. The problem is to design airplanes so that the

dangerof skull fractures in case of accident is minimized. A medical doctor,

studying this problem, experiments with eggs which he smashesundervarious

conditions. What is he doing? He has modified the original problem,andis
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studying now an auxiliary problem, the smashing of eggs instead of the
smashing of skulls. The link between the two problems, the original and the
auxiliary, is analogy. From a mechanical viewpoint, a man’s head and a
hen’s egg are roughly analogous: each consists of

a

rigid, fragile shell con-
taining gelatinous material.

12. If two straight lines in space are cut by three parallel planes, the cor-
responding segmentsare proportional.

In order to help you to find a proof, I ask you a question: Is there a
simpler analogous theorem ?

13. The four diagonals of a parallelepiped have a commonpoint whichis
the midpoint of each.

Is there a simpler analogous theorem?

14. The sum of any two face anglesof a trihedral angle is greater than the
third face angle.

Is there a simpler analogous theorem?

15. Consider a tetrahedron as the solid that is analogous to a triangle.

List the concepts of solid geometry that are analogousto the following con-

cepts of plane geometry: parallelogram, rectangle, square, bisector of an

angle. State a thorem ofsolid geometry that is analogous to the following

theorem of plane geometry: The bisectors of the three angles of a triangle

meetin one point which is the center of the circle inscribed in the triangle.

16. Consider a pyramid as the solid that is analogousto a triangle. List

the solids that are analogousto the following plane figures: parallelogram,

rectangle, circle. State a theorem of solid geometry that is analogous to the

following theorem of plane geometry: The area of a circle is equal to the

area of a trinagle the base of which has the same length as the perimeter of

the circle and the altitude of which is the radius.

17. Invent a theorem of solid geometrythat is analogousto the following

theorem of plane geometry: The altitude of an isosceles trinagle passes

through the midpoint of the base.

Whatsolid figure do you consider as analogousto an isosceles triangle?

18. Great analogies.

(1) The foregoing ex. 12-17 insisted on the analogy between plane

geometry and solid geometry. This analogy has many aspects andis

therefore often ambiguous and not alwaysclearcut, but it is an inexhaust-

ible source of new suggestions and new discoveries.

(2) Numbers and figures are not the only objects of mathematics.

Mathematicsis basically inseparable from logic, andit deals with all objects

which may be objects of an exact theory. Numbers andfigures are, how-

ever, the most usual objects of mathematics, and the mathematicianlikes to

illustrate facts about numbers by properties of figures and facts about

figures by properties of numbers. Hence, there are countless aspects of the

analogy between numbers and figures. Some of these aspects are veryclear.

Thus, in analytic geometry we study well-defined correspondences be-

tween algebraic and geometric objects and relations. Yet the variety of
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geometric figuresis inexhaustible, and so is the variety of possible operations

on numbers, andso are the possible correspondences between these varieties.

(3) The study oflimits and limiting processes introduces another kind of

analogy which we maycall the analogy between the infinite and the finite.

Thus,infinite series and integrals are in various ways analogousto thefinite

sums whose limits they are; the differential calculus is analogous to the

calculus of finite differences; differential equations, especially linear and

homogeneousdifferential equations, are somewhat analogousto algebraic

equations, and so forth. An important, relatively recent, branch of mathe-

matics is the theory of integral equations; it gives a surprising and beautiful

answer to the qustion: Whatis the analogue,in the integral calculus, of a

system of n linear equations with n unknowns? The analogy between the in-

finite and the finite is particularly challenging because it has characteristic

difficulties and pitfalls. It may lead to discovery or error; see ex. 46.

(4) Galileo, who discovered the parabolic path of projectiles and the

quantitative laws of their motion, wasalso a great discoverer in astronomy.

With his newly invented telescope, he discovered the satellites of Jupiter. He

noticed that these satellites circling the planet Jupiter are analogous to the

mooncircling the earth and also analogousto the planets circling the sun.

He also discovered the phases of the planet Venusandnoticed their similar-

ity with the phases of the moon. These discoveries were received as a great

conformation of Copernicus’s heliocentric theory, hotly debated at that

time. It is strange that Galileo failed to consider the analogy between the

motion of heavily bodies and the motion of projectiles, which can be seen

quite intuitively. The path of a projectile turns its concave side towards the

earth, and so doesthe path of the moon. Newton insisted on this analogy:

‘* | . a stone that is projected is by the pressure of its own weight forced

out of the rectilinear path, which bythe initial projection alone it should

have pursued, and madeto describe a curvedline in the air, and. . . at last

brought down to the ground;andthe greater the velocity is with whichitis

projected, the fartherit goes beforeit falls to the earth. Wemay therefore sup-

pose the velocity to be so increased, that it would describe an arc of 1, 2, 5, 10,

100, 1000 miles beforeit arrived at the earth,till at last, exceeding the limits of

the earth, it should pass into space without touchingit.’’® See fig. 2.4.

Varying continuously, the path of the stone goes overinto the path of the

moon. And asthe stone and the moonareto the earth, so arethesatellites

to Jupiter, or Venus and the other planets to the sun. Without visualizing

this analogy, we can only very imperfectly understand Newton’s discovery

of universal gravitation, which wemaystill regard as the greatest scientific

discovery ever made.

19. Clarified analogies. Analogy is often vague. The answer to the

question, whatis analogous to what, is often ambiguous. The vagueness of

analogy need not diminish its interest and usefulness; those cases, however,

in which the concept of analogy attains the clarify of logical or mathe-

matical concepts deserve special consideration.
(1) Analogyis similarity of relations. The similarity has a clear meaning

if the relations are governed by the samelaws. In this sense, the addition of
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FIG. 2.4. From the path of the stoneto the path of the moon.

From Newton’s Principia.

numbers is analogous to the multiplication of numbers, in so far as addi-

tion and multiplication are subject to the same rules. Both addition and

multiplication are commutative and associative,

at+b=b+4a4, ab = ba,

(fa+b)+c=az+(b+o), (abjc a(bc).

Both admit an inverse operation; the equations

a+x = b, ax = b

are similar, in so far as each admits a solution, and no more than onesolu-

tion. (In order to be able to state the last rule without exceptions we must

admit negative numbers when weconsider addition, and we must exclude

the case a = 0 when we consider multiplication.) In this connection subtrac-

tion is analogousto division; in fact, the solutions of the above equations are

x=bD-a4 x=",

respectively. Then, the number0 is analogus to the number1; in fact, the

addition of 0 to any number,as the multiplication by 1 of any number, does

not change that number,

a+OQ=a&@, ael=a.
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These laws are the samefor various classes of numbers; we may consider

here rational numbers, or real numbers, or complex numbers. In general,

systems of objects subject to the samefundamental laws (or axioms) may be

considered as analogousto each other, and this kind of analogy has a com-

pletely clear meaning.

(2) The addition of real numbers is analogous to the multiplication of

positive numbersinstill another sense. Any real numberr is the logarithm

of some positive number p,

= log p.

(If we consider ordinary logarithms, r = —2ifp = 0.01.) By virtue of this

relation, to each positive number corresponds a perfectly determined real

number, andto each real numbera perfectly determined positive number.

In this correspondence the addition of real numbers corresponds to the

multiplication of positive numbers. If

r=logp, r’' =logp’, r” = logp’,

then any of the following two relations implies the other:

r+r= r", pp' _ p".

The formula on the left and that on the right tell the same story in twodif-

ferent languages. Let us call one of the coordinated numbersthe translation

of the other; for example,let us call the real numberr (the logarithm of p)

the translation of p, and p the original of r. (We could have interchanged

the words ‘‘translation’’ and ‘‘original,’’ but we had to choose, and having

chosen, westick to our choice.) In this terminology addition appearsas the

translation of multiplication, subtraction as the translation of division, 0 as

the translation of 1, the commutative law and associative law for the addi-

tion of real numbers are conceived as translations of these laws for the

multiplication of positive numbers. The translation is, of course, different

from the original, but it is a correct translation in the following sense: from

any relation between the original elements, we can conclude with certainty

the corresponding relation between the corresponding elements of the

translation, and vice versa. Such a correct translation, that is a one-to-one

correspondencethatpreserves the lawsofcertain relations, 1s called isomor-

phism in the technical language of the mathematician. Isomorphism is a fully

clarified sort of analogy.

(3) Athird sort of fully clarified analogy is what the mathematicianscall

in technical language homomorphism (or merohedral isomorphism). It

would take too much time to discuss an example sufficiently, or to give an ex-

act description, but we maytry to understand the following approximate

description. Homomorphismis a kind ofsystematically abridged translation.

Theoriginalis not only translated into another language, but also abridged so

that what results finally from translation and abbreviation is uniformly,

systematically condensed into one-half or one-third or some otherfraction of

the original extension. Subtleties may be lost by such abridgement but

everything that is in the original is represented by somethingin the translation,

and, on a reducedscale, the relations are preserved.
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20. Quotations.

“*Let us see whether we could, by chance, conceive some other general
problem that contains the original problem andis easier to solve. Thus,
when weare seeking the tangent at a given point, we conceive that we are
just seeking a straight line which intersects the given curve in the given
point and in another point that has a given distance from the given point.
After having solved this problem, which is always easy to solve by alge-
bra, we find the case of the tangent as a special case, namely, the special
case in which the given distance is minimal, reduces to a point, vanishes.’’

(Leibnitz)

“Asit often happens, the general problem turns out to be easier than the

special problem would be if we hadattackedit directly.”’ (P.G. Lejeune-

Dirichlet, R. Dedekind)

*‘{It may be useful] to reduce the genusto its several species, also to a few

species. Yet the most useful is to reduce the genus to just one minimal

species.’’ (Leibnitz)

**It is proper in philosophy to consider the similar, even in things far distant

from each other.’’ (Aristotle)

‘‘Comparisons are of great value in so far as they reduce unknownrela-

tions to knownrelations.

‘*Proper understanding is, finally, a grasping of relations (un saisir de

rapports). But we understand a relation more distinctly and more purely

when werecognizeit as the same in widely different cases and between com-

pletely heterogeneous objects.’’ (Arthur Schopenhauer)

You should not forget, however, that there are two kinds of generaliza-

tions. One is cheap and the other is valuable. It is easy to generalize by

diluting; it is important to generalize by condensing. To dilute a little wine

with a lot of water is cheap and easy. To prepare a refined and condensed

extract from several good ingredients is much moredifficult, but valuable.

Generalization by condensing compresses into one concept of wide scope

several ideas which appeared widely scattered before. Thus, the Theory of

Groups reduces to a common expression ideas which were dispersed before

in Alegbra, Theory of Numbers, Analysis, Geometry, Crystallography, and

other domains. The other sort of generalization is more fashionable now-

adays than it was formerly. It dilutes a little idea with a big terminology.

The author usually prefers to take even thatlittle idea from somebodyelse,

refrains from adding any original observation, and avoids solving any pro-

blem except a few problemsarising from the difficulties of his own ter-

minology. It would be very easy to quote examples, but I don’t wantto an-

tagonize people.’

Second part

The examples and comments of this second part are all connected with sect.

6 and each other. Many of them refer directly or indirectly to ex. 21, which

should be readfirst.

21. The conjecture E. We regard the equation
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x2 x x
sin x = x (1 -—) (1 -—) (1- |

as a conjecture; wecall it the ‘‘conjecture E.”’ Following Euler, we wish to

investigate this conjecture inductively.

Inductive investigation of a conjecture involves confronting its conse-

quences with the facts. We shall often ‘‘predict from E and verify.”

‘‘Predicting from E’’ means deriving under the assumption that E is true,

‘‘verifying’’? means deriving without this assumption. A fact ‘‘agrees with

E”? if it can be (easily) derived from the assumption that

E

istrue.

In the following we take for granted the elements of the calculus (which;

from the formal side, were completely known to Euler at the time of his

discovery) including the rigorous conceptoflimits (about which Euler never

attained full clarity). We shall use only limiting processes which can be

justified (most of them quite easily) but we shall not enter into detailed

justifications.

22. We know that sin (—x) = — sin x. Does this fact agree with E?

23. Predict from E and verify the value of the infinite product

G--)(-2)G-2 -=)..,
16

24. Predict from E andverify the value of the infinite product

(-2)G-=)(G-2)...G.-4
n2

25. Compare ex. 23 and 24, and generalize.

26. Predict from E the valueof the infinite product

8-10
 

2-4 4-6 6:8 |

32-3 5-5 Te7

27. Show that the conjecture £ is equivalent to the statement

  
sin 7Z , (ztn)y...(2+ Dewz-1)...(@ +n)

= lim ,

1 n= 0 (— 1)n(n!)2

28. We knowthat sin (x + 7) = — sin x. Does this fact agree with E?

29. The methodofsect. 6 (2) leads to the conjecture

4x2 4x2 4
cosx = (1 -—) (1-5) (:-).., 
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Show that this is not only analogousto, but a consequenceof, the conjec-
ture E.

30. Weknowthat

sin x = 2 sin (x/2) cos (x/2).

Does this fact agree with E?

31. Predict from E and verify the value ofthe infinite product

(-*)0-J0-4) 0-4
32. Predict from E verify the value of the infinite product

16 16 16 16
1 - — 1 -— 1 —- — 1 —- —G-*)G-*)G-¥)(-

33. Compare ex. 31 and 32, and generalize.

34. We knowthat cos (—x) = cos x. Doesthis fact agree with E?

35. We know that cos (x + m7) = — cos x. Doesthis fact agree with E?

36. Derive from E the product for 1 — sin x conjectured in sect. 6 (4).

37. Derive from E that

1 1 1 1
cotx =...+—— + +—-+ + +...

| x+ 20 x+ 7 x x-T x — 20

 
 

38. Derive from E that

1 2x a
tx =——-—(14+—+4+—+—+—+...
re XU 4.9 16. 25

2x3 1.41 1
—~—(1 +—4+—+—+— +...

~« A 16. 81. 256 625 )
2x3 1 1
~— +—+——+ )

6 64 729

and find the sum ofthe infinite series appearing as coefficients on the right
handside.

39. Derive from E that

COSX | 7 x

1 —sinx cot (7 >)
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]
- -2( 1 + + + )

poe ye hy Sh yy
2 2 2

4 ] l 1 l

T 3 5 7 9

8x 1 1 1 l
+—f1l+-—4+—+—+—...

—( 9 25 49 81 )

16x2 ] | l
+ 1] —-—+—-=—-+...
a 27 125 343 )

32x3 l ]

+ 1+—+—+ ...
—( 81 625 )

+.

andfind the sum ofthe infinite series appearing as coefficients in the last ex-

pression.

40. Showthat

] l 1 1 1 l ]
14+—4+—4+ —+—+...=> l+—-4+—4+—+...)

4 9 16 925 3 9 25 49

which yields a second derivation for the sum of the series on theleft.

41. (continued). Try to find a third derivation, knowing that

; 1x3 13 x5 135 x
arcsin xX = xX +——+— ——+4——=>

23 245 #2467

and that, form =0,1,2,...,
1 a/2

\ (1 — x2)-1/2x2n+1 dx = \ (sin #2" +! dt = 2.4...2n ;

6 6 3.5...(2n + 1)

42. (continued). Try to find a fourth derivation, knowing that

. 2x4 24x66 246 x8
(arcsin x)? = x? +— — +— — —+

32 353 3574

and that, form = 0,1,2,...
1

 

n/2

1 3 2n — 1Ja = x-ray = | (in pm ar = +2 = 
; 5 ~~ 24°°° Qn 2

43. Euler (Opera Omnia, ser. 1, vol. 14, p. 40-41) used the formula

1 1 l
l+—+—-+—+...

4 9 16
x+QU-x) , 2+— xp

= logx:log(l1 — x) +g g ( ) 1 4

e+Ux

9
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valid for 0 < x < 1, to compute numerically the sum of the series on the
left handside.

(a) Prove the formula
(b) Which value of x is the most advantageousin computing the sum on

the left?

44. An objection and afirst approach toa proof. Thereis no reason to
admit a priori that sin x can be decomposedinto linear factors correspond-
ing to the roots of the equation

sin x = 0.

Yet even if we should admit this, there remains an objection: Euler did not
prove that

0, a, -m, 207, -—2n, 32, —37,

are all the roots of this equation. Wecansatisfy ourselves (by discussing the
curve y = sin x) that there are no other real roots, yet Euler did by no
means exclude the existence of complex roots.

This objection was raised by Daniel Bernoulli (a son of Jean, 1700-1788).

Euler answeredit by considering

sin x = (e* — e-*)/(2/)

= lim P,(x)

where

po) =1[(1 +)" - 0-99
is a polynomial (of degree 7 if n is odd).

Show that P(x) has no complex roots.

45. A second approach to a proof. Assuming that n is odd in ex. 44,
factorize P,(x)/x so that its k-th factor approaches

x2

k27

 

as n tends to o, for any fixed k (k = 1,2,3,...).

46. Dangers of analogy. In short, the analogy between the finite and

the infinite led Euler to a great discovery. Yet he skirted a fallacy. Hereis an

example showing the danger on a smallerscale.

The series

1 1
1-—+—--—+ —

3 4 5 6 7 8

converges. Its sum / can be roughly estimated by thefirst two terms:

N
|
=

VW/2</ <1.
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Now

In this series, there is just one term with a given even denominator(it 1s

negative, but two terms with a given odd denominator (one positive, and

the other negative). Let us bring together the terms with the same odd

denominator:

2-1 21 240
2 3 4 5

-i _1 1
1 3 5

1 1 | 1
=1]—-=+—--+-—-

2 3 4 5

= 1.

Yet 2/ # /, since / 0. Where is the mistake and how can you protect

yourself from repeatingit?

NOTES

1. This section reproduces with slight changes a Note of the author in the American

Mathematical Monthly, v. 55 (1948), p. 241-243.

2. Much later, almost ten years after his first discovery, Euler returned to the subject,

answered the objections, completed to someextenthis original heuristic approach, and gave a

new, essentially different proof. See L. Euler, Opera Omnia, ser. 1, vol. 14, p. 73-86,

138-155, 177-186, and also p. 156-176, containing a note by Paul Stackel on the history of the

problem.

3. Undersect. 6 (3), (4), (5). For Euler’s own summary see Opera Omnia, ser. 1, vol. 14, p.

140.

4. The representation of sin x as an infinite product.

5. Especially the product for 1 — sin x.

6. Sir Isaac Newton’s Mathematical Principles ofNatural Philosophy and his System of the

World. Translated by Motte, revised by Cajori. Berkeley, 1946; see p. 551.

7. Cf. G. Polya and G. Szego, Aufgaben und Lehrstaze aus der Analysis, vol. 1, p. VII.



PART II

Mathematical Practice

Without the myth of foundationsto distract it, philosophy can
quite naturally turn to a reexamination of mathematical practice. It is the
practice of mathematics that gives rise to any philosophical perplexities we
might have about mathematics and the practice that holds the key to any
solutions we might obtain. The essays in the following section were chosen
because they approach the issue of mathematical practice in a fresh way,
withoutallegiance to foundational dogmas. The authors include mathema-
ticians, philosophers, and logicians, as well as a computerscientist or two.

Thefirst set of essays explores somegeneralissues in mathematical prac-
tice, starting with the concept of informal proof. Actually, the phrase, ‘in-
formalproof?is slightly misleading for in fact it denotes the ordinary proofs
of everyday mathematics in all their rigor. When philosophers and
philosophically minded mathematicians reflect on ordinary proofs, they
realize that such proofs are still far removed from the idealized formal
proofs that foundations require. So they coin the term ‘informal proofs’
for ordinary proofs, reserving ‘‘proof’’ as a philosophical synonym for
‘formal proof’. In actual practice it is the other way around: mathemati-
cians have to go out of their way to talk about formal proofs.

It is the ordinary proofs, the informal ones, that are the locus of many
familiar aspects of mathematical experience. Such basic concepts as lemma,
counterexample, explanation and developmenthavetheir roots in ordinary
proofs and apply only derivatively, if at all, to formal proofs. Of these, the
concept of developmentis especially important and so the second group of
essays focuses on the growth of mathematical knowledge. Developmentor
changeis an essential aspect of informal proof. Informal proofs are located
in a continuousprocess that begins with plausibility arguments for conjec-
tures, refines these into (informal) proofs, and finally tests these and
assimilates them into mathematics. From this perspective, anyone who wants
to understand mathematics must come to terms with growth and changein
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mathematics. (From the foundational point of view, on the other hand,

development is noteworthy only because it leads to static, formal proofs

which are the proper object of philosophical concern.) The essays in the sec-

ond section argue that any serious attempt to understand the evolution of

mathematics should begin by locating the practicing mathematicians ina

socio-historical context and proceed by applying the best available methods

of scientific inquiry to this subject.

The final group of essays continues the themes of informal proof and

mathematical change with respect to a particular change that mathematicsis

presently undergoing. Mathematicians are coming to grips with computers.

Eachofthe final essays attempts to draw somegeneral philosophical morals

from the interaction of mathematics and computer technology. Not surpris-

ingly, they all agree that the interaction yields evidence for the quasi-

empiricist account of mathematics. (Foundationalists, by contrast, must

deny that computers can have any significant impact on mathematics.It iS

as if mathematicians were simply using bigger pencils!)

In summary, the following essays argue the philosophical relevance of

mathematical practice. The crucial step in approaching them is our willing-

ness to conceive of mathematics as a rational humanactivity, that is, asa

practice. To some readers, this point will seem obvious. Of course

mathematics is a rational activity, not some kooky cult phenomenon. Of

course mathematics is a human activity—better it should be seen as the ac-

tivity of ants or the product of stars in their courses? Such readers should

turn to the following essays where they will find much to think about.

However,there are other readers whowill find the idea of mixing practice

with philosophy of mathematics to be utterly foreign and wrong headed.

Somereaders of my acquaintance are convinced that this concernis itself an

irrational cult phenomenon! The argumentsfor this position are many, but

not all that varied.

For instance, some note that attention to mathematical practice would in-

troduce all sorts of quasi-empirical elements into the philosophy of math-

ematics, elements such as informal proofs, fallible mathematicians, socio-

historical contexts, and even sophisticated technology. From the founda-

tional viewpoint, the philosophy of mathematics must be a priori, not

quasi-empirical. Hence philosophy should not concern itself with math-

ematical practice.

Secondly, it might be argued that the practice of mathematics is essen-

tially the verification of rigorous proofs. Thus, in order to understand the

practice, we must first understand rigorous proofs, and this is the business

of foundations. So a platonist might explain rigorous proof in terms of

classical logic and insight into the universe of sets; a formalist in terms of

classical logic and the manipulation of formal systems; an intuitionist in

termsof intuitionistic logic and species of mental constructions. Then each

would add that actual practice is just this sort of theoretical activity in

disguise. First comes the theory, only after it comes the practice.

Finally, it might be argued that mathematics does not turn on the accidents

of humanevolution.It transcends the humanspeciesandis, in fact, the most
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transcendental of all subjects. There is no room in the philosophy of
mathematics for such quasi-empirical topics as discovery and communica-
tion, informal proofs, errors, explanations, history or cultures, computers
or psychology.

Myreply to such argumentsis that they are but the vestiges of founda-
tionalism. Apart from the dogmasof foundationalism, the arguments can
be refuted by simply exhibiting the specific philosophical insights that
follow from a study of mathematical practice. The following essays estab-
lish this point in detail. Let me concludethis introduction to the philosophy
of mathematical practice by sketching a more general argument.

Noone can denythat the philosophy of mathematics must eventually ad-
dress the issue of actual mathematical practice. No account of mathematics
can besatisfactory, no matter how rigorous, formal and elegantit may be,
if it leads to the conclusion that no onein the twentieth century knowsany
real mathematics. Any acceptable account of mathematics must explain the
bulk of mathematical practice; otherwise we could not recognize it as an ac-
count of mathematics. The issue open to debateis not whether, but rather
when and to what extent, we should focus on practice in philosophy.
Granted that the philosophy of mathematics must attend to mathematical

practice, how should we characterize this practice? One plausible answer,
and the answerof quasi-empiricism, is that we ought to look at practice in
some detail and let the results of our observations guide our characteriza-
tion. In order to oppose this answer one would have to appeal to some a
priori characterization of mathematical practice. The most obvious charac-
terization is that mathematical practice is essentially the justification of
mathematicians’ claims to knowledge. In other words, practice matters to
philosophy insofar as mathematicians actually prove theorems. Onthe sur-
face, this characterization would appear to rule out many of the quasi-
empirical elements of practice such as discovery, communication, explana-
tion, and pedagogy.
Upon reflection, however, we can see thatthis is not necessarily the case.

Even if the essence of mathematical practice were to prove theoremsor to
justify claims to knowledge,it might well be that the verification of proofs
is a public affair, an elaborate social process that proceeds by the canons
and paradigmsof a particular community of experts. Several of the follow-
ing essays argue just this point. In this case the verification of proofs would
involve such factors as the dissemination ofresults through a community,
the education of experts, the hierarchies of authority—all of which are
quasi-empirical. Indeed the philosophyof science seems to be making prog-
ress by attending to just such possibilities, why not the philosophy of
mathematics?

Thus, even if mathematical practice could be restricted, a priori, to
proving theorems, it would not follow that the details of such practice
would beirrelevant to philosophy. To establish the latter claim, we need
an additional assumption. We need to begin with an a priori conception of
proof as formal deduction or purely demonstrative reasoning, or even, as
a kind of mathematical object itself, for example, as a certain set of finite
sequences of formulas. Only then could the philosophy of mathematics
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justifiably restrict itself to explaining that a priori conception of proof, that

is, to presenting the one and only foundation of mathematics. On the other

hand, if mathematical proofs are ultimately informal proofs, then quasi-

empiricism can take hold by insisting that informal proofs must be

characterized by their roles in the practice in which they appear.

So one can only reject the thesis that mathematical practice is a viable

topic in the philosophy of mathematics by backing oneself into an exceed-

ingly narrow philosophical corner. I can see no reason for doing this other

than an antecedent commitment to foundationalism. Without the doctrine

of foundationalism, the way is clear to a reexamination of mathematical

practice.



What Is Mathematical Practice?

HAO WANG

Theory and Practice in

Mathematics

Fi this essay Hao Wang combinesa technical mastery of mathematical
logic with a sensitivity to the deepest issues of philosophy. The major partofit
was published in 1961 as ‘‘Process and Existence in Mathematics.’’! It does not
offer a continuous development as muchas a tentative sketch of a new landscape,
marking out areas for further exploration. Thestyle is reminiscent of
Wittgenstein’s style of philosophical investigation with a great deal of overlapping
and doubling back. Howevervirtually every important point made anywherein
the anthology is discussed by Wang.

Hebegins his discussion of mathematical activity by considering some simple,
familar proofs to isolate the momentofillumination or of grasping a proof.
From the perspective of mathematical activity it is not enough that a proofexist
in someabstract sense, it must be somehow connected to an actual mathematician
in order to enter into mathematical knowledge.

Even if a miracle reveals that there is a way of seeing the geographical contours of
Venus as a proof of Fermat’s conjecture, how do we know that weshall ever be able
to find suitable perspectives to make such an undigested proof perspicuous?

So Wangis led to the idea that actual proofs (informal proofs, usable proofs) must
be ‘perspicuous’ or ‘surveyable’ or ‘capable of being takenin.’ Closely related to
the idea of perspicuous proofis that of feasible procedure. The value of the
millionth digit in the expansion ofpi is decidable in principle, but we don’t knowit
in the absence of a feasible procedure for obtaining it. These two anthropocentric

 

Reprinted, with permission, from Humanities Press, Inc., Atlantic
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elements of mathematics ‘‘combine to account for and give directions to much of

our mathematical activity.”’

Along the way Wangnotes the relevance (and irrelevance) of mathematical

logic to mathematics. The second section of his essay addresses the question of

reducing mathematics to logic (and set theory) directly. It is a marvelous dialectic

of pros and cons butthe basic conclusion seems a healthy skepticism about the

ultimate significance of such a reduction.

Do we reduce mathematics to abstract set theory or do weget set theory out of

mathematics by padding? . . . In this process [adding more and moresets to make

the surface appear smooth], welose sight of the distinctions between interesting and

uninteresting sets, useful and useless real numbers. In order to recover the

distinctions once more, we have to take off the padding. Could we perhaps describe

this reverse process as reducing (e.g., ‘Mrs E. is on a diet’) abstract set theory to

mathematics ?

The overall effect of Wang’s arguments is to broaden our conception of what iS

philosophically relevant about mathematics. Of course, if one insists on looking

at the world through rose-colored glasses, one sees a rose-colored world. Wang

examines a number of ‘one-sided views’ of mathematics and, like Goodman,

objects to them for what they leave out. When it comes his turn to answer the

question what is mathematics, however, he passes. The correct answer remains to

be given although ‘‘righly or wrongly, one wishes for a type of foundational

studies which would have deeper and morebeneficial effects on pedagogy and

research in mathematics and the sciences.’’ Nevertheless, he does offer some

important suggestions in this direction. The basic concepts, he suggests, will not

be set or structure but the existing body of mathematics. As a first step in

characterizing this body, we might construct an abstract history of mathematics

‘“concerned less with historical details than with conceptual landmarks.’’ Wang

adumbrates such a history, trying to steer between too much fragmentation on

the one hand and too quick generalization on the other.

In the last section of his essay, Wang explores some practical aspects of

mathematics using a list of unsolved problemsto assess the developmentof

mathematics. He notes some provocative analogies between mathematical views

and political views.

Mathematical practice, perspicuity, anthropocentrism, history, now politics—

what a different world from the eternal unchanging realm of Platonic entities! No

wondertraditional Platonists are annoyed by the idea of mathematical practice.

In defense of Wang, we would do well to recall the Aristotelian slogan; ‘‘Of

course I love Plato, but I love truth more.’”?

NOTES

1. Essays on the Foundations of Mathematics, Bar-Hillel et al., eds., North-

Holland, Amsterdam (1961), 328-351. See also ‘‘Logic, Computation and Philos-

ophy,’’ L’age de la Science, 3 (1970), 101-115.

2. See the Nichomachean Ethics, Book One, Chapter Six, for the original source

of this traditional slogan.
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1 ACTIVITY AND FEASIBILITY

In learning elementary geometry, we are asked to prove the equality of the
base angles of an isosceles triangle and observe it. The happyidea of con-
structing a new line from the top vertex to the base enablesus to notice rela-
tions between the parts of the new diagram, thereby proving the conclusion.
Or, alternatively, we can get the conclusion directly by observing the
possibility of a rigid motion in space that interchanges the twobasevertices.

Weareasked to find the sum ofthefirst 10,000 positive integers, andhit
on the device of rearranging the numbersto looklike:

1 2 ... 5000
10000 9999 ... 5001.

Wenotice each of the 5000 columns add up to 10001.
Whenthe service of a mathematician is requested by an engineer or a

physicist, he reformulates the problem in a more idealized form, striking
out all the factual details he judges to be irrelevant. This reformulation may
require the joint efforts of a mathematician and a practitioner of the source
subject, sometimes combined in one person. The new problem is more
abstract andretains only a skeleton of the original problem.It is more per-
spicuous, at least to the properly trained mind whichis often able to juggle
it to get a methodofsolution either by standard techniques or by inventing
new mathematics. Sometimes the application of the methodto the specific
problem may betedious and, for example, calculating machines may have
to be used to supply an actualsolution.

In each case, there are interplays of schematic representations (diagrams,
graphs,arrays of characters such as numerals, variables, schematicletters, logi-
cal and mathematical constants) and mental experimentations. Weareinter-
ested in schemataor diagramsratherthanpicturesor portraits, because we are
concerned notwithall the factual details about them,but rather with their skele-
tons andstructures, the ‘formal facts’ about them, the formsandpatternsre-
vealed by them. Theyare aids to our imaginationin the process of reasoning,
and, as such,essential to mathematics. This does not meanthat we always have
to draw the diagrams on paper or blackboards, nor that mathematics is a
manipulation of symbols.It is not the physical production of the diagramsthat
distinguishes the mathematicalactivity, but the possibility ofusing them toassist
our mental experimentationsin the search for desired necessary connections.
The mind participates actively in seeing, e.g., an array of numbers, as

paired off suitably to create a new uniformity. Thusthis ‘seeing as’ enables
us to take in at a glance the 5000 pairs of numbers which all have the same
sum 10001. In this respect, the dots are not ‘mere abbreviations’ either,
because they, or somethingelse like them, are indispensable for grasping the
array of numbers at one go; they embody the formal fact that we see the
5000 pairs as a whole string with a definite beginning, a definite end, and a
definite way of continuation.In doingthis calculation, oneis likely to make
(mental) experiments such as trying to look for suggestions from summing
up a small numberofintegers. But calculation is not itself an experiment,
since once the path is found, certainty intervenes.
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To prove that for every primep, there is a greater prime, the crucial con-

struction is, of course, the function p! + 1. Hereit is not natural to describe

this function as obtained by the act of ‘seeing as.’ In general, the types of

constructions are varied and heterogenous. Once we have got p! + 1, we

show that, for all g, gq < p, g does not divide it by seeing p! as gP, where P

is the product of all m < p, except m = q.

Suppose weare to prove that in a right triangle, c? = a? + Db’, and are

given the following diagram:

 

 
  

b

Wesee that the area of the big square is the same as the sum ofthe area of

the small square and the area of the four right triangles. We write this out:

(a + bt = 2 + 4 (%ab). Then, lo and behold, we get e= @+ dD,

Here, we would say that for the purpose of proving the desired theorem,

finding the above diagram is a much bigger step than therest.

Or, to prove the same theorem, we mayeasily think of drawing a square on

each side of the right triangle. Then we mayget the vagueidea that if we draw

any three ‘similar’ figures on the sides, the situation would be the same. In

particular, we may choosethree right triangles which are reflections of ACD,

BCD, ABCandsee that since ABC = BCD + ACD,the area of the one on

c is obviously the sum ofthe areas of the triangles on a and b.

B

  

Hence, the samerelation holds amongthe three squares, and c? = a’ + b?.

Manypeople would find the proof not sufficiently conclusive as it stands,

but it can be expanded into a more convincing form.

In searching for

a

solution, theactivity is directed to a definite goal. One

is easily led to ask how the mental experiments are chained together. The

technical problem about methodsof discovering solutions (‘how to solve it’)
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is not one for the philosophy of mathematics, althoughitis of pedagogic in-
terest and central for the mechanical simulation of the mathematical activity.
The nature of inferring and the compulsion of the logical ‘must,’ once the
inference is made, is indeed the concern of philosophers. Weaccept, as a
matter of fact, a sequence of symbols as an application of a certain rule,
e.g. the modus ponens. Here we may easily get into the slippery ground of
truth by convention, synthetic a priori, self-evidence. But an underlying
foundationis the sociological fact thatit is so accepted. Andthis sociolog-
ical fact involves a variety of different factors: among them,the biological
and the physiological, which arelikely to be the ultimately decisive elements.
That Beethoven continued to compose good music after he had gone deaf

is important for the study of the activity of composing music. Similarly,
blind mathematicians are a phenomenon which should shed some light on
the nature of the mathematical activity. It is very Striking that most of us
would find it difficult, if not impossible, to multiply three 7-digit numbers
in our head. Foronethingit is not easy to retain the question without the
assistance of paper and pencil. If a child asks his blind father to help him do
such a sum, he would probably askthe child to serve as his pencil and paper
to record the question and the intermediate results. If such assistance is
denied a blind mathematician who wishes to do complicated numerical cal-
culations, he would haveto train himself to be a calculating prodigy.
That pencil and paper are indispensable to complicated calculations is

certainly an important fact aboutthe calculating activity. Most of us do not
memorize a large numberof telephone numbers but we remember,or rather
know,different methods of finding them out. We donotlearn the multipli-
cation table to 100 times 100 but only to 9 times 9, or 12 times 12. In more
advanced mathematical activities, most of the things which a mathemati-
cian knows have not come to him through a deliberate effort to memorize.
Interconnections not only increase the numberof things remembered but
also their duration and their quality. Certain things are kept simultaneously
in the head, and these enable one to spin out a great many things in se-
quence. The spinning powerof a head with structured memories and dispo-
sitions determines the power to experiment mentally and the ability to do
mathematics. When onesays that mathematicsis an activity of the purein-
tellect, it cannot be to deny that sense perceptions and memory form anin-
tegral part of it, but rather than an excellent eyesight or a good memoryis
not a distinguishing characteristic of better mathematical capabilities.
Some problem-solving is prompted by practical needs, others by analogy

with existing problems. Not all mathematical activity is problem-solving.
Esthetic needs and the desire to systematize and smooth out things lead to
the development and improvement of mathematical theories. It is among
such results that the thesis of the reducibility of mathematics to logic comes
in. And it is along such a path that one is led to what might be called the
librarian’s definition of pure mathematics as the class of all conditional
propositions in which all constants are logical constants.

‘All A are B, all B are C; therefore, all A are C’ is a diagram andtradi-
tional logic is a sort of mathematics, as ticktacktoe is a sort of board game.
One manyfeel that, being so crude and inefficient, it hardly deserves the
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fair name of mathematics. However, family resemblance with mathematical

logic seems to lend somecolorto it. Traditional logic is more a hindrance

than a help to right reasoning that is quite adequately taken care of by our

natural power. This is seen from the fact that the more purely rational an

activity is, the less it is needed. Mathematicsis least in need of it while elec-

tion politics, judging from Susan Stebbing’s studies, needs it most.

Mathematical logic has to a considerable extent suffered the samekind of

misfortune. Logic is primarily interested in the analysis of a proof into as

many distinct steps as possible, and not, like mathematics, in efficient

methods of reasoning which can produce remote consequences in one

swoop or unravel an involved entanglement. When, e.g., an elementary

branch ofit gets practical applications in making machines,it doesthis only,

so to say, accidentally and against its own will. It is by leaving behind the

basic concerns of logic and pursuing the subject as a simple sort of

mathematics that the application is made.

The breaking upof a proofinto a large number of small steps is desirable

in so far as the set of all possible different small stepsis in general less com-

plex than the set of a smaller number of different bigger steps. This seems

obvious, since the union ofall small steps which make up onebig step is

simpler than the big step which contains the simple steps (possibly with

somerepetitions) plus a special mode of combination, and some small steps

generally occur in a numberof different big steps. There is, however, no

equally obvious reason why such simplification should be desirable for the

mathematical activity. In fact, since we are quite at home with the bigger

steps, one is inclined to think that by mutliplying the pieces in each proof,

the breaking up only serves to slow us down and make it harder for us to

take a proof in.

Few mathematicians have taken the trouble to learn the theory of quan-

tifiers and they are none the worse for their ignorance.It soundsidle to re-

joice over the accomlishment that when a logician has analyzed andrefor-

mulated a proof, even a machine can checkit for correctness. Nobody, not

even a logician, checks an elaborate mathematical proof in this manner, and

so far machines have not been used to check proofs.

Thirty years ago it must have appeared that if man finds such a way of

checking proofs tedious, machines would notdo it any better either in speed

or in accuracy. The appearance of large machines and the rapidity with

which their speed andreliability have been improved,is one of the unex-

pected occurrences in history which yield consequences which are hard to

predict.

There is, however, a distinct possibility that in this connection a basic ap-

plication of logic will be found that is based on the essence rather than the

accidents of logic: viz. to handle inferences as efficiently as calculations.

For example, some preliminary work has already enabled a common ma-

chine to prove all theorems in Principia of quantification theory with

equality in a few minutes.

Grammaris oflittle help in learning one’s native language or cultivating

elegant writing. And we do not worry about the theory of sound waves

whenlearning to speak. Phoneticsis a little more relevant, although few can
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afford tuition from Professor Higgins. If mathematical logic were

a

little
less pure, perhapsit could assist a mathematician to learn some alien branch
of mathematics. In its present aloof form, however, a training in
mathematical logic is neither necessary nor likely to speed up the pursuit of
other branches of mathematics.

Onthe other hand,if a machineis to do mathematics,it is necessary that
methods of logic be explicitly included. This provides incentive for doing
more detailed work on the decision problem and proof proceduresforlogic.

Moreover, considerations about the practical feasibility of alternative
procedures are pushed to the forefront. This supplements the basic concern
that a mathematical argument should be perspicuous, surveyable, or ca-
pable of being taken in. These two aspects of the problem of efficiency are
not identical. For example, a less efficient proof procedure is generally
easier to describe, and the argument for proving its adequacyis generally
easier to grasp. On the other hand, the two aspects combineto account for
and give direction to much of our mathematical activity. To stress the re-
quirements that procedures be feasible and that proofs be surveyable, one
might coin the label ‘praximism.’

In a different direction, the project of mechanical mathematics calls our
attention to the problem of formalizing methods of finding proofs. Theo-
retically dispensible methodsandstrategies will be included to speed up the
search for proofs. Here we have anotherhitherto largely neglected domain
which is susceptible of a treatment by methods similar to those used in the
more elementary parts of mathematical logic. Such problemsare on a dif-
ferent level from the study of the psychology of mathematical invention.
We maybe able to simulate the external circumstances of preparation under

which Poincaré’s exceptional subconscious functions. But it seems

preposterous to suppose weare capable of endowing a machine with a sub-

conscious, much less with one comparable to Poincaré’s.

If a machine produces a proof of Fermat’s conjecture with one million

lines, we still have the somewhat easier task of making the proof

perspicuous. This would be a situation where we could say,in a clear sense,

that a proof exists but nobody has understood it. Somebody would un-

doubtedly prefer to say that there is no proofyet, just as he would say that a

machine cannotcalculate, cannot prove, because there must bea final contact

which lights up the whole thing and only a man canestablish this contact by

taking in the whole process that makesup the calculation or the proof.

Wheninteresting mathematical questions can be settled by machines, our

chief concern will be shifted to the methods of proof and their coding. And

we do not expect to have 106 lines of coding. We synthesize and abbreviate
as we makeprogress, in order to press more and moreinto the brain as a
bounded finite machine. With the increasing power of mechanized meth-
ods, an economyin storage is achieved by substituting general methods for
particular arguments. Instead ofa single proof requiring 10° lines, it should
be possible to organize all our mathematical knowledge and haveit contained
in sO manylines.

Definitions generally reveal new aspects and thereby help to direct the
course of our thinking into certain channels. Consider, for example, the
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developmentof arithmetic within the frameworkofset theory. Through the

linking definitions, the theorems of set theory can be divided into two

classes: those which correspond to theoremsofarithmetic and those which

do not. Theoremsof both classes are, oneis inclined to think, in the system

all along; the linking definitions do not change their meaning but merely

provide a different way of lookingat those in thefirst class. Most of us have

seen pictures which appear to be a messat first, but reveal, e.g., a human

face uponcloser scrutiny. The physical object that is the picture is not af-

fected by the different impressions which we get from it. The picture,

however, means different things before and after we discern a face. This,

onefeels, is also the situation when linking definitions enable usto see cer-

tain sentencesofset theory as disguised arithmetic sentences. If one is afraid

that next time he will forget how he can discern a face, he may, as a

reminder, trace certain parts of the picture by a red pencil. As a result,

everybody can immediately see a face, although the configurations in the

picture remain the same. Does it make an essential difference whether the

stress is made by a red pencil or just seen in our mind’s eye?

Does a proof change the meaning of a hitherto unproved mathematical

proposition? Does a new proofof a methematical theorem change its mean-

ing? The answeris undoubtedly: sometimesit does, usually it does not. The

point of the question is probably notto suggest the instability of mathematical

concepts but rather to point to an abstractly human element in the meaning of

mathematical concepts. Think of the proposition as a station in a formal

system. The country is there, but we do not know whether there is any road

which leads to the station. Presently we find one road, then wefind another.

But the country is the same,the station is the same. Both of us understand the

proposition that there are infinitely many prime numbers. You know a proof

of it but I do not. Does it have the same meaning for both of us? It is not yet

known whetherthere are infinitely many pairs of primes n and n + 2 (‘twin

primes’). Will a proof of the proposition change its meaning? Theproofwill

reveal new connections and provide reminders which enable every memberof

the mathematical community to see the proposition as true. Does the increase

of knowledge affect the meaning of a proposition or is the relation between

knowledge and meaning only an external one resembling the relation between

the weight of an elephant and our knowledgeofit?

Elephants exist independently of our knowledge, but in what sense does a

proof exist independently of all knowledge? Once a proof is found,it can

be codified and putat its proper place within a textbook, but wheredidit

reside previously? More, to call several pages of printed marks a proof

presupposes a gooddealof the sociological circumstances which make them

a proof. For instance, they are sufficient to recreate in a few people the

gradual process which culminatesfinally in seeing that the concluding prop-

osition of the several pages must be true. Weare reluctant to deny that every

possible proof in a formal system exists even before we have singled it out

and digested it by constructions, mental or with red pencils. Undersuitable

conditions of size and endurance, a machine can eventually grindit out. In

this sense, the undigested proof has existed all along, even though the di-

gested proof has to be invented. Is, however, an undigestedproof a proof?
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To say thatit is a proof becauseit is, though undigested, digestable, leads to
the question of distinguishing digestable in principle from digestable as a
matter of fact. Even if a miracle reveals that there is a way of seeing the
geographical contours of Venusas a proof of Fermat’s conjecture, how do
we know weshall ever be able to find suitable perspectives to make such an
undigested ‘proof’ perspicuous? It seemslike a dogmato say that every un-
digested proof will eventually be digested. If one does not wish to assert so
much,thenit is hard to provide, without circularity, a sense of ‘digestable’
according to which every undigested proof is digestable.

I think I know howto add and multiply. But it would be easy to find com-
plicated problems which I cannot do within two hours. For instance,
multiplying 78 by 78, 78 times. With some effort, we can also find computa-
tion problems which I cannot do, at any rate by the ordinary technique,
within a month,or within mylifetime. In what sense do I know howto add
and multiply? Not just in the sense that I can handle small numbers,
because I feel I can deal with large numbers too. Or perhaps,if I live long
enough,say by keeping myself fit like a great athlete, I shall be able to com-
plete even the most complicated additions and multiplications? But then
surely I cannot do them with the ordinary technique for there would be
neither enough chalk, norsufficiently large blackboards.

These considerationsstrike one as utterly irrelevant. When I say I can do
addition and multiplication, I do not mean to preclude the possibility that
practical difficulties may prevent me from carrying out certain complicated
calculations. I feel I can do them,shall wesay, in principle. Oneis generally
not expected to doartifically elaborate calculations. If it were the case that
nobodywasinterested in multiplications of less than 300 numbers each with
more than 10 digits, then one might say that nobody could multiply unless
he wasassisted by a machine.

In this connection, it may beinstructive to consider the following induc-

tive argument: 1 is small; if n is small, n + 1 is small; therefore, every
numberis small.

The words ‘can,’ ‘decidable,’ etc. mean different things in pure mathe-
matics and applied mathematics, in actual mathematical activities and in the
discussions of mathematical logicians. A man says that the further expan-
sion of 7 is a further expansion of mathematics and that the question
changesits status when it becomes decidable. Since what the millionth place
of the decimal expansion of 7 is, is a theoretically decidable question, the
man seemsto be inconsistent in saying that a groundforthe decision has yet
to be invented. This is so only if we think of decidable in the logician’s
sense. In the sense of actually doing mathematics, the question is not yet
decidable becauseit is to be expected that some ingenious general argument
is required to supply the required digit and prove to thesatisfaction of
mathematicians that it is indeed the desired one. Andit strikes one as
dogmatism to assert categorically that such an argumentwill be found.It is
true that finitists and intuitionists do not worry about such questions
because once a problem is decidable in theory, they lose all interest in it.
This, however, does not mean one cannotinterest oneself in feasibility as a
concept worthy of philosophical considerations.
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Confusions arise when two men each choose one of the two different

senses and refuse to recognize that there is also the other sense. Perhaps a

phenomenologist is one who permits both senses and distinguishes them

from each other. At any rate, it seems convenient to make use of both

senses, at least until we have more successfully unified them.

Thereis a great gap between what can be done in principle and what can be

donein practice. Often we are interested in broadeningthe rangeofthelatter.

That is why such techniques as the use of the Arabic notation, logarithmic

tables, and computing machinesare important. (The second and the third dif-

fer from the first in that we are not awareofthestepsin the calculation.) Are

they only ofpractical importance orare they also of theoretical interest ? Shall

we say that theoretical and practical significances merge in such fundamental

improvementsin the technology of mathematics?

It is not always easy to draw the line between theoretical and practical.

Numbersof the form 22” + 1 are called Fermat’s numbers because Fermat

conjectured that all such numbersare prime.It has been provedsince Fer-

mat’s time that, for n = 5, 6, 7, 8, all Fermat’s numbersare composite. A

proof for each case was a nontrivial piece of mathematics, even though,

with patience, these questions could be settled simply by the ordinary

methods of calculation. One might say that the proofs provide us with new

techniques for deciding problems which could otherwise be solved by

uninspired laborious computation.

In mathematics the introduction of new techniquesis important and defi-

nitions do serve to introduce new techniques. It is therefore misleading to

speak of them as ‘mere abbreviations.’ Even if, after a proof of a theorem

in number theory has been discovered, it is possible to eliminate defined

terms andtranslate the proof into the primitive notation of set theory, the

translated proof would not have been discovered by one who worked ex-

clusively with the primitive notation of set theory. Nor could the translated

proof in practice be understood correctly even if one was aware of the

definitions.

2 REDUCING MATHEMATICS TO LOGIC

The more sensational reduction of mathematics to logic is the thesis that

definitions of mathematical concepts can be foundin logic such that mathe-

matical theorems can be transformed unconditionally into theorems in

logic. This is plausible only if ‘logic’ is understood in a very broad sense to

include set theory asa part.

The term ‘set theory’ is less familiar than the term ‘logic,’ but then,at the

same time, more unambiguous too. Since set theory is itself a branch of

mathematics, the question is that of reducing other branches of mathe-

matics to this particular one. In this sense, the matteris initially a domestic

affair of mathematics. The concern of philosophers has come aboutpartly

as a result of the historical accident that Frege and Russell, rightly or

wrongly, connected it with philosophy, and that at least one of them is such

a good propagandist. Nonetheless, the persistence of such interest surely

cannot be discarded simply by deploring the poverty of philosophy. After
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all, even if set theory is but another branch of mathematics, the claim that
all other branches are reducible to it makes it a proper concern of
philosophers.
The most interesting case is numbertheory. If we are concerned only with

numerical formulas containing addition and multiplication, it appears
possible to find theorems of logic which correspond to them rathernaturally.
On the other hand, if we are concerned with general laws of arithmetic as
well, the reduction is only possible when wetakeset theory rather thanlogic
proper.

It is puzzling that Kant called ‘7 + 5 = 12? synthetic a priori and that
Frege believed himself to have refuted this by his reduction of arithmetic to
logic. One way to makethe two viewpoints plausible seemsto be the follow-
ing. In order that an equation be analytic, the two sides must have the same
sense, not just the same denotation. Oneis temptedto say that ‘7 + 5’ and
‘12’ have different senses, although they have the same denotation. Hence,
‘7 + 5 = 12’ is synthetic and a priori, its necessity not being questioned
here. But there is a natural way of reducing ‘7 + 5 = 12’ to a theorem of
logic. Suppose weuse the abbreviations:

(E!,.x)Gx for Ax,Vy [Gx, A\(Gy Dy = x,)]

(E'!.x)Gx for

dx,4x,Vy[x, # x, A Gx, A Gx, (Gy Diy=x, Vy = x>))]

Then the corresponding theorem oflogicis:

(*) (E'!,x) Gx A (E!.x)Hx A Vu “1(Gu A Hu) D (E!,,x)(Gx V Hx)

Since it is natural to regard all theoremsoflogic, i.e. the theory of quan-

tifiers with equality, as analytic, Frege seems to have shown that
‘7 + 5 = 12’ is analytic.

There are a numberofdifficulties in this explanation. The negation of
something like (*) does not give us what we want if we are interested in
proving, e.g., ‘7 + 6 # 12.’ The obstacle arises because the letters G, H
serve as free variables so that we have to quantify them to get the correct
negation. Wecertainly do not wish to say that ‘7 + 5 = 12’ is analytic but
‘7 + 6 # 12’ is synthetic a priori. Moreover, there is no way to get around
the need for existence assumptions in one form or another. If there are not
enoughentities in the universe of discourse, the antecedent of (*), for in-
stance, would be always false, and we can derive, e.g., 12 = 13. In fact
both objections can be combined and met by assuming that there are in-
finite sets or that all finite sets exist. We are led back to the reduction of
arithmetic to set theory, and there is an obvious choice between saying that
arithmetic has been shownto be analytic (Frege) and saying that logic (more
correctly, set theory) has been shownto by synthetic (Russell at one time).
Although the numerals, 5, 7, 12 occur in (*) as subscripts, there is no

direct circularity in the reduction, because we can expand (*) and avoid the
use of numerals by employing sufficiently many distinct variables. A strik-
ing feature of the reduction is that short propositions are reduced to long
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ones. As a result, it would be very clumsy if one were to do arithmetic in

such a notation, and we are quickly forced to introduce abbreviations. This

is rightly considered an inessential complication for the simple reason that

the reduction is not meant to introduce a new technique of calculation. It

only yields an informal result about calculations as a byproduct: that one

could do arithmetic in the complicated symbolism too. This depends on the

reduction plus the information that one can do arithmetic in the customary

notation.

A more basic difficulty of the reduction is the accompanying increase in

conceptual complexity. If we attempt to give a proofof (*) in the expanded

form, wefind ourselves counting the distinct variables, and going through,

in addition to operations with logic, exactly the same kind of movesas in

elementary calculations. Weare able to see that (*) is a theorem oflogic only

because weare able to see that a corresponding arithmetic proposition 1S

true, not the other way round. Bytacking‘frills’ on an arithmetic proof of

‘7 + 5 = 12’, we get a proofof(*) in logic. ‘A definition of christening ina

particular church is no longer a definition of christening.’

There are different ways of defining arithmetic concepts in set theory. If

we imagine a determinate situation with one specific formal system of set

theory, one of arithmetic, and one specific set of linking definitions, then

there is a theorem in the primitive notation of set theory that correspondsto

the arithmetic theorem ‘1000 + 2000 = 3000’. The formula would befor-

biddingly long. Does it mean the same thing as the original formula of

arithmetic? When one whois not awareof the definitions is faced with the

long formula, he mightbeat a loss to see any clear connections between the

two formulas. He maybe sufficiently familiar with set theory to understand

the long formula andstill not recognizeits relation to the short one. Or even

if he knowsthe definitions andis asked to simplify the long formula accord-

ing to them, chances are he will make errors and arrive at some incorrect

result. We are inclined to think that such considerationsare irrelevantas far

as the intended meaning of the formulas is concerned. But if a manfails to

see the equivalence of the two formulas even after hours of hard labor, can

westill say that the two formulas mean the samething to him?

This is an artificial question because nobody is expected to write out or

work with the long formula in order to do arithmetic calculations. We have

a short argument to show that there must be such a formula, andthat nearly

exhausts the meaning of the hypothetical assertion that we could work

directly with it too. Whenit is a matter of doing mathematics, we naturally

fall back on the best available technique wehave. If we had only the long

version at first, then we would as a matter of fact not be able to do much

calculating until we hit on some systematic way of changingit into a short

version. We may spend manyhoursto read a long formal proof, but when

we understand it, we do not give each line the samestatus, but work out an

easily memorizable structure which may include known theorems, lemmas,

subcases, reminders that certain successions of steps are of certain familiar

forms. We do not have to keep all details of the structure in mind at the

same time. The proof may be a mile long, but wecanstill plant posts as we

go along and not worry about parts changing when weare not looking at
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them. As soon as weare convinced that someparts do give us a subtheorem
which is the only contribution those parts can make toward proving the
final theorem, we need retain only the subtheorem in our head.

If set theory aloneis given but the linking definitions with arithmetic are
still missing, then we do not yet have arithmetic in full force because we
would not and could not, as a matter of fact, do the arithmetic proofs and
calculations in set theory. If both set theory and the linking definitions are
given, we continue to do arithmetic as before only with the awarenessthat
there is a sense in which our proofs and calculations could betranslated into
set theory. But doing arithmeticis still different from doing set theory. We
do not change our manner of doing arithmetic. That is the sense in which
arithmetic has not been reduced toset theory, and, indeed, is not reducible
to set theory.

Do we reduce mathematics to abstract set theory or do we get set theory out
of mathematics by padding? In analysis, we find certain real numbers such as
m and e of special significance. Somehowweareled to the search for a general
theory of real numbers. Since we wantthe theory to be general, we postulate
many morereal numbersin order to make the surface smooth. Whenwefind
that real numbers, natural numbers and manyotherthingscanall be treated
as sets, we are inducedto search for a general theory of sets. Then we add
many more othersets in order to make the surface appear smooth.‘If tables,
chairs, cupboards,etc., are swathed in enoughpaper,certainly they will look
spherical in the end.’ In this process, welose sight of the distinctions between
interesting and uninteresting sets, useful and useless real numbers. In order to
recoverthe distinctions once more, wehaveto take off the padding. Could we
perhaps describe this reverse process as reducing (e.g. ‘Mrs. E is on a diet’)
abstract set theory to mathematics?

If we think in terms of true propositions about natural numbers, then set

theory is also reducible to arithmetic at least in the sense that, given any

consistent formal system forset theory, a translation can be found suchthat

all theoremsturn into true arithmetic propositions. The sameis true of any

other branch of mathematics on accountof the possibility of an arithmetic
representation of formal systems. Hence, we can also say that all mathe-
matics is reducible to arithmetic, but in a sense quite different from, forin-

stance, what was knownasthe arithmetization of analysis. Arithmetization
of logic involves a change of subject from talk aboutsets, etc., to talk about
how wetalk.

Whenweask, ‘what is a number,’ ‘what is the number one,’ we seem to
be after an answer as to what numbersreally are. If numbers are neither
subjective nor outside of us in space, what could they be? Andthenit is
gratifying to get the answerthat they arereally certain classes. Oneis relieved
to have thus unmasked numbers. What does the unmasking accomplish?
Frege’s definition of number seemsto resemble rather closely our unanalyzed
concept of numberso that we are sometimesinclined to take it as providing
a true analysis of our intentions. But what more?

Apparently there is the belief that the reduction puts mathematics on a
more trustworthy basis. Otherwise, the paradoxes about sets would not
have induced Frege to say that the foundation of arithmetic wobbles. This

14]



142
HAO WANG

is, as we now know,unjustified. We understand arithmetic better than set

theory, as evidenced by the highly informative consistency proofs for

arithmetic. The foundation of arithmetic is more trustworthy than that of

set theory—what would be of greater interest is rather to found set theory

on arithmetic, or on an extension of arithmetic to infinite ordinals.

There are different ways of defining numbersin terms of classes. Each of

them leads to and from the undefined concept of number, and they are seen

to be equivalent not through the interconnection between themselves but by

way of the channels connecting them to the naked concept of number.

Perhapsthis indicates a certain priority of numbers to their corresponding

classes?

Identifying numbers with suitable classes is said to be ‘recommended by

the fact that it leaves no doubtas to the existence-theorem.’ ‘Postulating’ a

limit to fill the gap for each Dedekindcutis said to have advantages which

are the same as those ‘of theft over honesttoil,’ while the course of honest

toil is to identify the limit with the class of ratios in the lower section of the

cut. It is in a sense true that the latter course ‘requires no new assumptions,

but enables us to proceed deductively from the original apparatus of logic.’

This is so, however, only because in the original apparatus of logic we have

already made assumptionsof the same kind.If the existence of the postu-

lated limit is called into question, the existence of its corresponding class iS

equally doubtful. There is no reason to suppose that numbers evaporate but

classes are rocks.

The reduction to set theory gives ‘the precise statement of what philos-

ophers meantin asserting that mathematicsis a priori.’ This is neither an in-

formative statement nor a true one.

It is said that the axiomsof arithmetic admit diverse interpretations while

the reduction eliminates such ambiguities. True, the concept ofset is involved

in the axiom of induction and the intended interpretation of the concept of

set assures the intended interpretation of the axioms of arithmetic. But

arithmetic presupposes only inductive sets which are a particular type ofset.

Moreover, we should not confusethe possibility of incorrect interpretations

with the impossibility of correct interpretations. It is possible both to inter-

pret the axioms of arithmetic correctly and to interpret the axioms of set

theory incorrectly. Moreover, interpreting the axiomsofset theory involves

greater conceptual difficulties.

Surely one cannot denythat Frege’s definition has the great virtue of tak-

ing care of applications? This is undoubtedly the case if we perform a

multiplication just in accordance with the rules of calculation or argue for-

mally by observing the rules of logic. But the application of number to em-

pirical material forms no part of either logic or set theory or arithmetic.

There may be some doubtif we consider the proposition ‘Paris has 4 million

inhabitants’ as an application of the number4 million, and the proposition

‘two rabbits plus two rabbits yield four rabbits’ as an application of the

mathematical proposition ‘2 + 2 = 4.’

Such applications can appear neither in arithmetic nor in set theory for

the simple reason that words such as ‘Paris,’ ‘rabbits,’ ‘inhabitants’ do not

occur in the vocabularies of these theories, and the set-theoretical definition
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of numbersoffers no help. If it is meant that the definition enables usto ap-
ply numbers within the framework of a wider language,thenit is not clear
why the same doesnot apply without the definition. Supposeweareto infer
the proposition ‘she has twovirtues’ from the proposition ‘her only virtues
are beauty and wit.’ It is apparently thought that the inference can only be
made by using Frege’s definition of the number 2, because otherwise the
class of her virtues cannot be shownto have the number2.If, however, the
full richness of ordinary discourse is permitted, we can surely makethein-
ference without appeal to Frege’s definition.

In any case, why should such applications be taken as the proper business
of set theory or of arithmetic? Mathematics andits applications are two
things which can conveniently be studied separately. If the desire is to have
a general language which includes both mathematics and other things, the
link between numberscan just as well be provided by axiomswhichassert,
for example, that a class has m + 1 membersif and only if it is gotten from
a class with n members by adding a new member. In other words, if we
adopt the course of taking numbers as undefined, we can still, if we wish,
add axiomsto dothe job of Frege’s definitions. The effects are the same ex-
cept that mathematics and its application are divided at a more natural
boundary.

3 WHAT IS MATHEMATICS?

The most impressive features of mathematicsare its certainty, its abstract-
ness and precision, its broad range of applications, and its dry beauty. The
precision and certainty are to a large extent due to the abstractness which
also in part explains the wide applicability. But the close connection to the
physical world is an essential feature which separates mathematics from
mere games with symbols. Mathematics coincides with all that is the exact in
science.

According to Kant, mathematics is determined by the form of our pure

intuition so that it is impossible to imagine anything violating mathematics.

If we agree that the physical world,including our brains,is a brute fact, this

view can besaid to imply that the external world, including the physiologi-
cal structure of our mind, determines mathematics. The discovery of non-
Euclidean geometries need not be regarded as refuting Kant’s doctrine,
since we can construe them as superstructures on the Euclidean, or an even
weaker, geometry. A moreserious objection is that Kant’s theory does not
provide enough elucidation of the principles by which these and other
superstructures are to be set up.
As weall know, Shaw was accustomed to exaggerate. He defended him-

self by arguing that shock value is the best way to call attention to new
ideas. In a similar spirit, we may hopeto clarify our vague thoughts by ex-
amining a few one-sided views of mathematics.

3.1 Mathematicsis the class of (logically) valid or necessary propositions
‘p implies q.’ Thus, given any theorem gq, we can write the conjunction of
the axioms employed in its proof as p, and ‘p implies q’ is a theorem in
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elementary logic. In this somewhattrivial sense, all mathematics is reducible

to elementary logic. This really says nothing about mathematics proper,

since one would like to assert p and q unconditionally. This evades the

whole question whycertain p, e.g. mathematical induction, is accepted as a

mathematical truth. Moreover, the concepts of validity and necessity (or

possibility) are to be explained by the concept of set or perhaps by concepts

like law and disposition. A related view is to construe logic more broadly so

as to include propositions such as‘Forall x andy,if x and y have no com-

mon members, x has 7 members, y has 5 members, then x Uy has 12

members.’ then one has to define numbersin logic, and so on. Such a view

is akin to the next one.

3.2 Mathematics is axiomatic set theory. In a definite sense, all

mathematics can be derived from axiomatic set theory. To be definite, we can

adhere to a standard system commonly referred to as ZF. Thisis the counter-

part of Frege’s and Russell’s reduction of mathematicsto logic and paradox-

ically also of Poincaré’s 1900 remark aboutthe arithmetization of mathemat-

ics (‘numbers and their sets’). This is what most impressed the logical

positivists, leading to, among other things, an emphasis on axiomatization

and formalization. There are several objections to this identification. As we

know,there are manydifficulties in the foundationsof set theory. This view

leaves unexplained why,ofall possible consequencesof set theory, we select

only those which happen to be our mathematics today, and whycertain

mathematical concepts andresults are moreinteresting than others. It does

not helpto give us an intuitive grasp of mathematics such as that possessed by

a powerful mathematician. By burying, e.g., the individuality of natural

numbers, it seeks to explain the more basic and the clearer by the more

obscure. Thereis the side issue of logicism which continues to be upheld in

some quarters despite definitive evidence against it. In at least one important

case, this mysteriousstate of affairs is based on a mistaken identification of

Frege’s logical theory of sets (extensions of predicates) with Cantor’s

mathematical theory of sets. The argumentgoeslike this. Frege’s theory looks

like logic and mathematics can be reduced to Cantor’s theory; therefore, by

the identification, mathematics is reducible to logic.

In an autobiography, Einstein gave as his reason for choosing physics

over mathematics the lack of unity in mathematics. We may wonder

whether set theory might not give a unity to mathematics. The formal

system ZF is, of course, neither complete nor categorical. Moreover,it can-

not even decide familiar mathematical propositions such as the continuum

hypothesis. Hence, as a comprehensive system,it is conceptually unsatisfac-

tory. If now weleave aside higher infinities and confine ourselves to more

applicable mathematics such as classical analysis, number theory, and

abstract algebra, it seems reasonable to agree that almost all familiar

theorems have counterparts in ZF. Could weclaim that ZF, together with

the derivation of different branches of mathematics from ZF, provides a

rough indication of the sort of unity we look for?

One objection is that the representation is not faithful enough. In par-

ticular, it tends to miss the more abstract aspect of mathematics. Certainly
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the postulates of a group ora field aresatisfied by various and diverse
models. Even the theorems of classical analysis can be proved in axiom
systemsof very different strength. This suggests the possibility of a web of
axiom systems such that each system determines an abstract structure, viz.
the class of all possible models of the system. Something like ZF or a more
adequate enlargement yet to be contrived encloses all these systems in the
sense that none postulates the existence of any object not envisaged byit.
From this approach one might even prove metatheorems aboutall models

of a system withoutcircularity, because they can also be proved in some
fairly weak system which admits of both very big models and rather small
ones. If we devised such a web of perhaps no more than ten systems, we
would get a sort of skeleton, which could only be madeinto a living form by
the addition of facts about the present state, a guess at future trends, and
the historical highlights of mathematics.

3.3 Mathematics is the study of abstract structures. This appears to be
the view of Bourbaki. Aninfluential sequence of books has been written to
substantiate this view. They make a conscious attempt to divorce mathe-
matics from applications whichis not altogether healthy. The inadequacyof
this outlook is revealed not only by the omission of various central results of
a more combinatorial sort, but especially by the lack ofintrinsic justifica-
tion of the selection of structures which happento be important for reasons
quite external to this approach. The constructive content of mathematical
results is not brought out. Thereis also a basic inconsistency insofar as lip
service is paid to an axiomatic set theory as the foundation, while serious
foundational researches are frowned upon.It would conform moreto the
general spirit if number, set, and function weretreated in a moreintuitive
manner. That would at least be morefaithful to the actual practice of work-
ing mathematicians today.

3.4 Mathematics is to speed up calculations. Here calculations are not
confined to numerical ones. Algebraic manipulations and juggling with
logical expressions(e.g. in switching theory) are also included. A somewhat
broader view would beto say that every serious piece of mathematics must
have somealgorithmic content. A different, though related, position would
be to say that all mathematicsis to assist science, to assist us to understand
and control nature. These views seem to makeit impossible to explain,e.g.,
why weoften prefer more elegant proofs with higher bounds and why we
take great delight in impossibility results. One could argue that thereis in
addition the human element in mathematical activites so thatit is essential,
even for applications, that the situation should be perspicuous. Thus, we
can better grasp an elegant proof and,indirectly, are enabled thereby to
look for more efficient algorithms; and impossibility results tell us the
limitations of given methods, helping the search for positive results in the
long run. This kind of argument is, however, typical of philosophers
stretching a position to try to fit in unwantedfacts.
So much for oversimplifications.
If we review quickly the history of mathematics, we find quite a few sur-

prises. What appearsparticularly attractive is that there is room for

a

serious
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and fruitful synthesis of mathematics and work in the philosophy of

mathematics which would help the progress of mathematics itself by making

the subject more appealing and byfighting against excessive specialization.

Foundational studies in this century have been very fruitful in several

ways. The possibilities and limitations of formalization have been much

clarified. There is a better understanding of constructive methods. And the

explication of mechanical procedures has yielded many fundamental

results, especially negative ones, on decidability and solvability. On the

whole, there remains, however, the impression that foundational problems

are somewhatdivorced from the main stream of mathematics and the natural

sciences. Whetherthisis as it should be seemsa highly debatable point.

The principal source of the detachment of mathematics from mathe-

matical logic is that logic jumps more quickly to the more general situation.

This implies a neglect of mathematics as a human activity, in particular, of

the importance of notation and symbolism, and of the more detailed rela-

tions of mathematics to applications.It is philosophically attractive to study

in one sweepall sets, but in mathematics weare primarily interested in only

a very small range of sets. In a deeper sense, what is more basic is not the

concept of set but rather the existing body of mathematics. For example,

the distinction between linear and nonlinear problems, the invention of

logarithms, the different ways of enumerating finite sequences, the nature

of complex numbersandtheir functions, or the manipulation with infinities

by physicists (such as Dirac’s delta function and the intrustion of infinities

in quantum electromagnetic theory) all seem to fall outside the range of

problems which interest specialists in foundational studies. Rightly or

wrongly, one wishes for a type of foundational studies which would have

deeper and more beneficial effects on pedagogy and research in mathema-

tics and the sciences.

As a first step, one might envisage an ‘abstract history’ of mathematics

that is concerned less with historical details than with conceptual land-

marks. This might lead to a resolution of the dilemma between too much

fragmentation and too quick a transfer to the most general.

3.5.1 Concrete arithmetic began with practical problems. The idealization

of the indefinite expandability of the sequence of numbers and the shift from

individual numbers to general theorems about all numbers gaverise to the

theory of numbers. Only around 1888 was Dedekindable to formulate the so-

called Peano axioms by analyzing the very concept of number.

3.5.2 The solution of equations together with the use ofliteral symbols

such as letters for unknowns marked the beginning of algebra (‘transposi-

tion and removal’). Only in 1591 (F. Viéta) were letters used for known

quantities as well (variables and parameters).

3.5.3 Geometry deals with spatial forms and geometrical quantities such

as length and volume. The numberofa set is an abstraction from that which

is invariant under any changes whatsoeverin the properties and mutualrela-

tions of the objects in the set(e.g. color, weight, size, distance), provided only

the identity of each object is not disturbed (by splitting or merging).

Similarly a geometrical figure or body is an abstraction of an actual body
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viewed purely with regard to its spatial form, leaving outall its other prop-
erties. Rather suprisingly, such an abstract study led not only to pure
geometry but also to the first extensive example of the deductive method
and axiomatic systems. There was even a geometrical algebra in Greece.

3.5.4 Measurement of length and volumeis a union of arithmetic and
geometry, applying units to calculate a number. This, just as the solution of
equations, is a natural way of leading to fractions and even irrational
numbers. The desire to have an an absolutely accurate, or rather indefinitely
improvable, measurement leads to the general concept of ‘real number’.
Algebra led to negative numbers and complex numbers. But a better under-
standing of complex numbers wasonly reached through their geometrical
representations.

3.5.5 By the way, in terms of speeding up computations, the invention of
logarithms (Napier, 1614) was a great advance.

3.5.6 In an indeterminate equation, say 3y — 2x = 1, we may view x
and y not only as unknownsbutas variables so that the given equation ex-
presses the interdependence of these two variables. The general concept of
function or interdependence is the subject matter of analysis. Using the
Cartesian coordinates, we get a connection between algebra and geometry,
with function playing the central role. In this sense, analytic geometry may
be said to be the simplest branch ofanalysis. It is implicitly assumed that we
deal with at least all real numbers.

3.5.7 If we add in addition the concept of change or motion, and study a
broaderclass of functions, wearrive at the calculus. The original source was
geometry and mechanics(tangent and velocity, area and distance). Theories
of differential and integral equations search for functions rather than
numbersas solutions. Such theories develop naturally both from applica-
tions and from anintrinsic combination of the calculus with the algebraic
problem of solving equations. In the samespirit, functional analysis is not
unlike the change from algebrato analysis, the interest being no longer con-
fined to finding individual functions but rather to studying the generalin-
terdependence of functions.

3.5.8 It is not easy to understand why functions of complex variables
turned out to be so elegant and useful. But it certainly was a gratifying
phenomenonthat an extension served to clarify many facts in the original
domain. Incidentally, if we require the axioms offields be satisfied, exten-
sions of complex numbers are not possible, e.g., for quaternions
multiplicaiton is not commutative.
3.5.9 The lively development of the theory of probability has been con-

nected with statistical mechanics, and its foundations are a fascinating but
elusive subject.

3.5.10 In algebra, Galois theory not only gives a conclusive treatment of
the solution of equations but opens up a moreabstractstudyofabstract struc-
tures dealing with operations on arbitrary elements rather than just numbers.

3.5.11 The greatest changes in geometry have been the discovery of non-
Euclidean geometries and Riemann’s general ideas about the possibility of
many different ‘spaces’ and their geometries. Figures are generalized to ar-
bitrary sets of points.
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3.5.12 The development in functions of a real variable touches on

various conceptual problemssuch as the definition of real number, and the

meaning of ‘measure.’

In this century, the developmentof logic, the emergence of computing ma-

chinery, and the prospect of new applications in the biological sciences and

in linguistics all tend to emphasize what might be called ‘discrete

mathematics,’ even though continuous mathematicsis well entrenched and

as lively as ever.

Oneof the very basic problemsis that westill do not have any definitive

theory of what a real number or whata set of integers is. Perhaps we can

never have a definitive theory. It seems quite unknownhowthis fundamental

unclarity affects the rest of mathematics and the novel applications of

mathematics in physics.

Relative to different concepts of set and proof, one could reconstrue most

of mathematics in several different ways. Are these different formulations

just essentially equivalent manners of describing the same grand structure

or does there exist a natural framework in which everything becomes more

transparent?

4 PRACTICAL ASPECTS OF MATHEMATICS

Wehave mentioned the anthropocentric elements of surveyability of proofs

andfeasibility of calculations. There are also ethical, political, andsociological

aspects of mathematics. We mayaskfor practicaljustifications for developing

a particular branch of mathematics or proving a particular theorem. We may

reflect on how the generalline of development of mathematics is determined

and, in particular, how fashions, personalities, applications, intrinsic merits,

and other factors interact. It is remarkable that mathematics is harder to

popularize than other sciences. This is in part caused by the fact that

mathematics has more than othersciencesa special language of its own.

Thereis a familiar aphorism that mathematicsis a language. In one sense,

the concepts of mathematics are more independent of language, tying up

with ‘pure intuition.’ At the same time, mathematics is perhaps the most ef-

ficient language (for those who understandit), as, e.g. exemplified by Lit-

tlewood’s inferences from a diagram on the table of an unfamiliar room.!

Mathematics is much more than a language insofaras it is much more than

just a means of communication.It has its own language, but that is very dif-

ferent from saying that it is a language.

In 1900, Hilbert proposed a very influential list of twenty-three

mathematical problems. H. Weyl once suggested the idea of using this list as

a basis to review the overall progress of mathematics during several

decades. J. von Neumann was asked to offer a modernlist in 1954 but

pleaded inability to cover wide areas of mathematics. It seems likely that

nobody today is in a position to make up

a

list comparable to Hilbert’s

relative to his time.

If a sufficiently representative group of people put togethera list of twenty

or thirty central problems today, one could use this problem list as a basis to
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1 picture the present state of mathematics andits relations to othersciences;

2 review the history; 3 predict future trends; 4 discern some sort of concep-

tual unity of the whole of mathematics; 5 discuss some of the perennial

epistemological questions.

By the way, a comprehensive list of general problems would include(a)

certainty and necessity (synthetic a priori or not); (b) mathematical ex-

istence (and methods of construction); (c) the driving force in mathematics

(utility, esthetic appeal and art for art’s sake, fashions and their cause,

curiosity); (d) the mathematical activity (notation and abbreviations,

heuristics, the phenomenon of physically blind mathematicians); (e) the

nature of mathematical proofs (formalization and intuitive evidence); (f)

exposition, teaching, and mechanization of mathematics (problems of com-

munication contrasted with the obtaining of new pieces of mathematics, the

possibility of mathematical criticism as an analog ofliterary criticism); (g)
pure versus applied mathematics (criterion for judging the value of
mathematical models of empirical situations, distance from applications);

(h) mathematics as a ‘language.’

It is neither necessary nor sufficient that the problems be famous ones.
For example, Fermat’s and Goldbach’s conjectures and the four-color
problem should probably not be included unless somebody has some prom-
ising idea of attack which, even if it fails, would yield a rich harvest of
byproducts. On the other hand, since a numberof serious mathematicians
are thinking about the Riemann hypothesis, this may be worth including,
providing one places it in an informative context.

It is in general not easy to find problems which are both sharp andofcen-
tral interest. Usually, the sharp problemsare not obviously fundamental,
while the fundamental problemstend to be nebulous, waiting for the extrac-
tion of morespecific questions. We mayillustrate this situation by describ-
ing a few problems (or vague areas of research) suggested by mathematical
logic, which is a highly nonrepresentative branch of mathematics.

1. A more adequate axiom system ofset theory. Accentral questionis to
codify somehowthe notionofan arbitrary subsetofa given set, in particular,
of the set of positive integers, and the idea of possiblelevels of iterating the
power set operation. In a certain sense, we can never get a formal system
which is completely adequate. Butit might be possible to obtain a naturalfor-
mal system in which, for example, the continuum hypothesis is decidable.
Moreover,it is desirable to think of exact ways of relaxing the conceptof for-
mal systems to permit, say, a ‘semiformal’ system that would codify ade-
quately the powerset of the set of positive integers. A sharp formulation of
the quest for new axiomsis the study of axiomsfor large cardinals. Thereis
also considerable interest in trying to relate such axiomsto variousrestricted
forms of the axiom of determinateness (on infinite games).

2. Consistency of impredicative definitions. Often this is expressed as
the question of establishing the consistency of classical analysis. The com-
monly accepted axiom systemsfor classical analysis are, besides being in-
adequate (not providing enough real numbers), lacking in transparency on
accountof the acceptanceofsets introduced by impredicative definitions. It
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is desirable to find more articulate reasons for believing that they lead to

no contradictions.

3. Solvable and unsolvable problems. Theoretical work on algorithms

has madeit possible to prove general impossibility results. It is natural to at-

tempt to get such results in older mathematical disciplines. There have been

successes with the word problem for groups and Hilbert’s tenth problem (on

the integer solutions of Diophantine equations). There are attemptsto settle

Burnside’s problem in group theory and the equivalence problem of three-

dimensional topological manifolds. It is also likely that one could get

significant unsolvability results on the solution of differential equations, the

quadratic programming problem, and so on. Two specific problems which

are expected to get positive solutions are the concatenation analog of

Hilbert’s tenth problem and the Gédelcase of logical sentences with equal-

ity included.?-3

4. The mechanization of mathematical arguments. The attempt to use

computers as an aid to mathematical research would seem to lead to radically

new types of problem such as the efficiency of decision procedures, the

reorganization of our knowledge in a branch of mathematics, say number

theory, with emphasis on sharpclassifications of data, and formalization of

heuristics.

5, Feasible decidability. There is a good deal of interest in the com-

plexity of calculations. One looks for a natural and stable concept of feasi-

ble calculability according to which, for example, the traveling salesman

problem is undecidable. An exact definition of computational complexity

should also make it possible to give a sharp sense in which, for example,

multiplication is more complex than addition.

It is undeniable that fashions and strong personalities have their influences

in mathematics, as elsewhere. For example, many people feel unhappy over

the proliferation of the designing and building of mathematical structures and

blamethis in part on fashions. Onefeels that in the long run the generalline of

developmentis determined by more objective factors such as fundamentalap-

plications and intrinsic conceptualinterest.

The position of constructivists provides a concrete and sharp example.

The constructivists believe that they have the true or correct view of

mathematics. In addition, they sometimes predict that their position will

triumph. Here we find a close analogy with political views: we ought to

strive for the correct ideal and, in addition, the correct ideal will win out in

the long run anyhow.

On February 9, 1918, G. Polya and H. Weyl made a wager in Zurich with

twelve other mathematicians as witnesses.* Since the wager is formulated in

a particularly interesting way, we quoteit at length.

Concerning both the following theorems of contemporary mathematics:

(1) Every bounded set of numbers hasa least upper bound,

(2) Every infinite set of numbers has a countable subset,

Weyl prophesies:

A. Within 20 years (that is, by the end of 1937), Polya himself, or a majority

of the leading mathematicians, will admit that the concepts of number,set,
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and countability, which are involved in these theorems and upon which weto-

day commonly depend, are completely vague; and that there is no more use in

asking after the truth or falsity of these theorems in their currently accepted

sense than there is in considering the truth of the main assertions of Hegel’s

physics.

B. It will be recognized by Polya himself, or by a majority of the leading

mathematicians, that, in any wording, theorems(1) and (2) are false, accord-

ing to any rationally possible clear interpretation (either distinct such interpre-

tations will be under discussion, or agreement will already have been reached);

or that if it comes to pass within the allotted time that a clear intepretation of

these theoremsis found such that at least one of them is true, then there will

have been a creative achievement through which the foundation of mathe-

matics will have taken a new andoriginal turn, and the concepts of number

and set will have acquired meanings which we today cannot imagine. Weyl

winsif the prophecyis fulfilled; otherwise, Polya wins.

Polya relates that when the bet was called, in 1940, everybody, with one

exception (K. Gédel), said he (Polya) had won.

Morerecently, E. Bishop madea similar prophecy.5

This bookis a piece of constructivist propaganda, designed to show that there

doesexist a satisfactory alternative. To this end we develop a large portion of

abstract analysis within a constructive framework. . . . These immediate ends

tend to an ultimate goal—to hasten the inevitable day when constructive

mathematics will be the accepted norm.

There is a disagreement over the issue whether constructivism is ‘realist’

or ‘idealist.” On the one hand, classicists may be thought to berealists

because they seem to be more willing to envisage abstract entities. On the

other hand, Bishopprefers to call the classicists idealists since they tend to

forget the true (i.e. numerical) content of mathematical statements.

Another disagreement is whetherclassicial or constructive analysis is more

appropriate to applications in physics.

In many cases, doing a piece of mathematics is justified by appealing to

its intrinsic interest or its relevance to other interesting mathematics. This

can be contrasted with justifications in terms of the welfare or interest of

society and mankind.If satisfying the rational interest of mankindis to con-

stitute justification, we have to admit that there are different views of what

this rational interest consists in. It is easy to accept the justification that

knowledge is power or that knowledge makes man master and governor of

nature. In such terms, mathematicsis to be justified by its physical applica-

tions, actual and potential, and perhapsless directly by its disciplinary role

in scientific thinking. Thereis also the tradition of allowing practical justifi-

cations broader than theutilitarian one: knowledge asthe actualization of

humanreason, as a cultural value, as art, and so on.

Kantoffers an interesting contrast between practical and pathological in-

terests:®

The dependence of the power of appetition on sensationsis called an inclina-

tion, and thus aninclination always indicates a need. The dependence of a

contingently determinable will on principles of reason is called an interest.

151



152 HAO WANG

Henceaninterest is found only wherethere is a dependentwill which initself is

not always in accord with reason: to a divine will we cannot ascribe any in-

terest. But even the human will can take an interest in something without

therefore acting from interest. The first expression signifies practical interest

in the action; the second pathological interest in the object of the action. The

first indicates only dependenceofthe will on principles of reason byitself; the

second its dependence onprinciples of reason at the service of inclination—

that is to say, where reason merely supplies a practical rule for meeting the

need of inclination.

Even thoughthere is social support for mathematics in many societies,

this fact alone does not yield a practical justification. With regard to some

branches of mathematics, it may have been a mistaken belief in their prac-

tical value which has led to the support. Or a bad government could en-

courage mathematics with a view to keeping a group of people out of

mischief which would be, in the objective sense, valuable to social progress.

In fact, many contemporaryintellectuals have discovered an eternal con-

tradiction between the universal knowledge they search for andthe special

way of thinking they have acquired from the particular environments in

which they have been brought up. Hence, for each individual mathemati-

cian, the problem ofpractical justification is of a higher order of difficulty

than that for a particular area of mathematics.

NOTES

1. J.E. Littlewood, A mathematician’s miscellany, 1953, p. 50.
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5. Errett Bishop, Foundations of constructive analysis, 1967, pp. 1X-x.
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IMRE LAKATOS

What Does a Mathematical Proof Prove?!

Liakatos’s brief essay develops some of the topics introduced by Wang,
informal proofs andtherole of history in the philosophy of mathematics. Like
Wang, Lakatos gives examples of informal proofs which ‘intuitively’ show their
conclusions without explicit postulates or well-defined logical rules. Such proofs
are common in mathematical practice and they work. They are not generally
infallible, Lakatos observes, for they are occasionally refuted by some ‘“‘hitherto
unthought-ofpossibility.’’ So he calls this common method of establishing
mathematical facts ‘thought experiments’, a term that goes well with quasi-
empiricism.

One of Lakatos’s primary concernsis to relate informal proofs to formal
proofs. A standard assumption, which he wishes to argue against, is that informal
proofs have been superseded by formal proofs. Informal proofs, on this
assumption,are relics of less critical days, ‘mere persuasive arguments’, or
abbreviated formal proofs. Lakatos’s argument has two parts. On the one hand
he stresses the limited ways in which formal proofs supersede informal proofs. In
particular, formal proofs do not eliminate the possibilities of doubt or error, but
at best isolate them on the assumptions of the formal consistency of the
background theory and its material adequacy.

Secondly he argues that, in any case, formal proofs can be superseded by
informal proofs. On thebasis of formal results, we can give informal proofs not
formalizable in the original theory. Lakatoscalls these post-formal proofs. For
example, a formal proof that Fermat’s conjecture was undecidable could be used
in an informal proof that the conjecture is true. Lakatos’s argument at this point
is somewhatsketchy, but the following seems to be what he had in mind. If
Fermat’s conjecture is formally undecidable, then there aren’t any natural numbers
x, y, % nwithn > 2 and x" + y" = 2", Forif there were, the calculations of x’,
y", 2", and x” + y" would yield a formal proof that the conjecture is false,

 

Reprinted from the MATHEMATICS, SCIENCE AND EPISTEMOLOGY, by Imre
Lakatos by permission of Cambridge University Press. © Cambridge
University Press. September 1979, pp. 540-551.
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contrary to hypothesis. Thus Fermat’s conjectureis, if formally undecidable, both

true and informally provable! (That it is undecidable is explained by the presence

of nonstandard models of arithmetic in which the theorem is false. Its

undecidability implies that we could consistently add as a new axiom that

(Ex)(Ey)(Ez)(En > 2) (x" + y" = 2"), but that no standard numbers satisfy this

formula.)

Lakatos begins his paper by raising the question of historicism. His explanation

of the relation between informal and formal proofs presupposes a general pattern

of evolutionary or historical development of proof through pre-formal, formal

and post-formal stages. He confronts the prevalent objection of his day in the

question ‘‘Doesthis inject a disastrous historicism into sound philosophy of

mathematics?’’ Lakatos pleads guilty to historicism but not to any disastrous

effects. ‘‘I am quite convinced that even the poverty of historicism is better than

the complete absence.”’

It is important to be clear on what historicism meansin this context. It does

not mean the merecollection of historical facts nor the claim that such facts wear

their philosophical significance on their sleeves. It is a more abstract history that

is at issue here, like Wang’s organization of conceptual landmarks.In this

abstract sense of history it is difficult to do much philosophy of mathematics

without injecting some historicism. Even the formalist uses some history to

explain how formal proofs are to be seen as an improvement over informal

proofs. Lakatos’ point is that by ignoring history we are condemnedto a naive

historicism, and with a little consideration of historical issues, we could do much

better.

On the fact of it there should be no disagreement about mathe-

matical proof. Everybody looks enviously at the alleged unanimity of

mathematicians; but in fact there is a considerable amountof controversy in

mathematics. Pure mathematicians disown the proofs of applied mathema-

ticians, while logicians in turn disavow those of pure mathematicians.

Logicists disdain the proofs of formalists and some intuitionists dismiss

with contempt the proofs of logicists and formalists.

I shall begin with a roughclassification of mathematical proofs;I classify

all proofs accepted as such by working mathematicians or logicians under

three heads:

(1) pre-formal proofs

(2) formal proofs

(3) post-formal proofs.

Of these (1) and (3) are kinds of informal proofs.

Lam afraid that some ardent Popperite may alreadyberejectingall thatI

am aboutto say on account of myclassification. He will say that these mis-

nomersclearly prove that I really think that mathematics has some neces-

sary, or at least standard, pattern of historical development—pre-formal,

formal- and post-formal stages, and that I am already showing my hand—

that I want to inject a disastrous historicism into sound mathematical

philosophy.
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It will turn out in the course of my paperthatthis, in fact, is just whatI
should like to do: I am quite convinced that even the poverty of historicism
is better than the complete absence of it—always providing of course thatit
is handled with the care necessary in dealing with any explosives.

Asa consequence of the unhistorical conception of ‘formal theory’ there
has been a lot of discussion as to what constitutes a respectable formal system
out of the immense multitude of capriciously proposed consistent formal
systems which are mostly uninteresting games. Formalists had to disentangle
themselves from these difficulties. They could of course have donethis by
dropping their basic outlook, but they have tended to prefer complicated ad
hoc corrections. They look forcriteria distinguishing those formal systems
which are ‘interesting’ or ‘acceptable’ and so on, thus betraying their bad
consciences in accepting the pure formalist conception according to which
mathematicsis the set of all consistent formal systems. For instance, Kneale
says that a mathematical system should be‘interesting.’ His definition runs
as follows: ‘A possible—[possible means complying with some usual con-
cept of modern rigour—i.e. consistent] system is interesting mathematically
if it is rich in theorems and has many connections with other parts of mathe-
matics, and in particular with the arithmetic of natural numbers.2 Curry,
whois a most extremerepresentative of formalism, introduces the notion of
‘acceptability’. He says: ‘The primarycriterion of acceptability is empirical;
and the most important considerations are adequacy and simplicity.3 I fear
there is a point on whichI slightly disagree with their approach: they select
from a previously given set of formal systems those which are interesting or
acceptable. I should like to reverse the order: we should speak of formal
systems only if they are formalizations of established informal mathematical
theories. No further criteria are needed. There is indeed no respectable for-
mal theory which does not have in some way or another a respectable in-
formal ancestor.

NowI come backto ouroriginal subject: proofs. Most of the students of
the modern philosophy of mathematics will instinctively define proof ac-
cording to their narrow formalist conception of mathematics. That is, they
will say that a proofis a finite sequence of formulae of some given system,
where each formula of the sequence is either an axiom of the system or a
formula derived by a rule of the system from some of the preceding for-
mulae. ‘Pure’ formalism admits any formal system, so we must always
specify in which system S we operate; then we speak only about an S-proof.
Logicism admitsessentially only one large distinguished system, and so es-
sentially admits a single concept of proof.
One of the most outstanding features of such a formal proof is that we

can mechanically decide of any given alleged proofif it really was a proof or
not. |

But what about an informal proof? Recently there have been someat-
tempts by logicians to analyse features of proofs in informal theories.
Thus a well known modern text-book of logic says that an ‘informal
proof’ is a formal proof which suppresses mention of the logical rules of
inference and logical axioms, and indicates only every use of the specific
postulates.4
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Nowthis so-called ‘informal proof’ is nothing other than a proof in an

axiomatized mathematical theory which has already taken the shape of a

hypothetico-deductive system, but which leaves its underlying logic unspe-

cified. At the present stage of development in mathematical logic a com-

petent logician can grasp in a very short time what the necessary underlying

logic of a theory is, and can formalize any such proof without too much

brain-racking.

Butto call this sort of proof an informal proof is a misnomer and a mis-

leading one. It may perhapsbe called a quasi-formal proof or a ‘formal

proof with gaps’ but to suggest that an informalproofis just an incomplete

formal proof seems to me to be to make the same mistake as early educa-

tionalists did, when, assuming that a child was merely miniature grown-up,

they neglected the direct study of child behaviour in favour of theorizing

based on simple analogy with adult behaviour.

But now I should like to exhibit some truly informal, or, to be more pre-

cise, pre-formal proofs.

Myfirst example will be a proof of Euler’s well-known theorem on simple

polyhedra.’ The theorem is this: Let V denote the number of vertices, E the

numberof edges and F the numberoffaces of a simple polyhedron; then in-

variably

V-E+F=2.

By a polyhedron is meant a solid whose surface consists of a numberof

polygonal faces, and a simple polyhedron is one without ‘holes’, so that its

surface can be deformed continuously into the surface of a sphere. The

proof of this theorem runsasfollows:

Let us imagine a simple polyhedronto be hollow, with a surface made of

thin rubber (see Figure 1 (@)). Then if we cut out one of the faces of the

hollow polyhedron, we can deform the remaining surface until it stretches

out flat on a plane (see Figure 1 (b)). Of course, the areas of the faces and

the angles between the edges of the polyhedron will have changed in this

process. But the network of vertices and edgesin the plane will contain the

same numberofvertices and edges as did the original polyhedron, while the

number of polygons will be one less than in the original polyhedron, since

one face was removed. Weshall now show that for the plane network,

V —E+ F =1,so that, if the removed face is counted, the result is

V — E + F = 2 forthe original polyhedron.

 

 

 

     
   
 

(a) (b)

FIG.1
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We‘triangulate’ the plane networkin the following way: in some polygon
of the network whichis not already a triangle we draw a diagonal. The ef-
fect of this is to increase both FE and Fby 1 thus preserving the value of V —
& + F. We continue drawing diagonals joining pairs of points until the
figure consists entirely of triangles, as it must eventually (see Figure 2(a)).
In the triangulated network, V — E + Fhasthe value thatit had before the
division into triangles, since the drawing of diagonals has not changedit.
Someof the triangles have edges on the boundaryof the plane network. Of
these some, such as ABC,have only one edge on the boundary, while othertri-
angles may have two edges on the boundary. We take any boundarytriangle
and removethatpart of it which does notalso belong to someothertriangle.
Thus, from ABC we remove the edge ACand the face, leaving the vertices
A, B, C, and the two edges AB and BC[see Figure 2(a)]; while from DEFwe
removethe face, the two edges DFand FE,and the vertex F [see Figure 2(b)].
The removal of a triangle of type ABC decreases E and F by 1, while

V

is
unaffected, so that V — E+ F remains the same. The removal of a tri-
angle of type DEF decreases Vby 1, E by 2 and Fbyl,sothatV- E+F
again remains the same. By a properly chosen sequence of these operations
we can remove triangles with edges on the boundary (which changes with
each removal) until finally only one triangle remains, with its three edges,
three vertices and one face. For this simple network V — E + F = 3 — 3
+ 1 =1. But we haveseen that by constantly erasing triangles VV - E+ F
was not altered. Therefore in the original plane network V —E + F must
equal 1 also, and thus equals 1 for the polyhedron with one face missing.
We conclude that V — E + F = 2 for the complete polyhedron.
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FIG. 2

I think that mathematicians would accept this as a proof, and some of
them will even say that it is a beautiful one. It is certainly sweepingly con-
vincing. But we did not prove anything in any however liberally interpreted
logical sense. There are no postulates, no well-defined underlying logic,
there does not seem to be any feasible way to formalize this reasoning.
Whatwewere doing wasintuitively showing that the theorem was true. This
is a very common way of establishing mathematical facts, as mathemati-
clans now say. The Greekscalled this proces deikmyne and I shall call it
thought experiment.

Nowis this a proof? Can wegive a definition of proof which would allow
us to decide at least practically, in most cases, if our proofis really a proof
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or not? I am afraid the answeris ‘no’. In a genuine low-level pre-formal

theory proof cannot be defined; theorem cannot be defined. There is no

method ofverification. As a strict logician like Dr. Nidditch would surely

say, it is—I quote—‘mere persuasive argumentation, rhetorical appeal,

reliance on intuitive insight or worse’.®

But if there is no methodofverification, there is certainly a methodof fal-

sification. We can point out somehitherto unthought of possibilities. For in-

stance assume that we had omittedto stipulate that the polyhedron be simple.

We maynot have thought of the possibility of the polyhedron having a hole

in it (in which case the theorem would be subject to many counterexamples).’

Actually Cauchy made this ‘mistake’.® This is the frequently occurring phe-

nomenon of mathematical theorems being ‘stated in a false generality’.

For the sake of a better and simplerillustration let me quote another fam-

ous thought experimentwith a celebrated falsification. The problemis to find

the two points Pand Q thatareasfar apart as possible on the surface or boun-

dary of any triangle. The answeris easy to guess; P and Q arethe endsof the

longest side. This can easily be proved by the sort of thought experiment

which wejust used; no axioms, no rules, but convincing force. Let us see:

If one of the points, say P, lies on the inside of the triangle, then PQ ob-

viously does not have its maximum length. For on the extension of the line

PQ there is obviously a point P’ that is further from Q than Pis, andthatis

still inside the triangle. If both P and Q lie on the boundary of the triangle,

but one of them,say P, is not a vertex, then we can obviously find a nearby

point P’ on the boundary that is further from QO than the distance PQ.

Therefore PO can be a maximumonly if both P and Q are vertices; other-

wise it certainly is not. Thus PQis a sideofthe triangle and must obviously

be the longestside.

It is obvious that the same thought experiment can be accomplished for

polygonsto ‘prove’ the following theorem:in order that two points on the

surface of a polygonbe farthest apart, they must be two of the vertices that

are farthest apart.

I think this should be quite convincing. Nevertheless there is an un-

thought-of possibility which may spoil our pleasure. Apply the same thought-

experimental procedureto this figure:

B
PN

ipa
FIG.3

 

 

 
Suppose P and Q lie anywhereinside the figure or on the boundary,evenin-

cluding the possibility that they may be at any of the four vertices A, B, C,

D. {Unless PQ is exactly the side AB, a nearby point P’ can be found within

the figure such that the distance P' Q is greater than the distance PQ.] Just

as in the earlier cases, for each pair of points P, Q we can finda nearby pair

that are further apart in every case except when the pair is A, B. No pair
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other than A, B can give a maximum.If we now follow the previous argu-

mentstrictly, we must conclude that AB is the maximum.

The falsification of our argument ran along the samelines as in the case

of Euler’s theorem for all polyhedra. We thought we showed more than we

actually did. In our second case, we showed only that the maximum must be

such and such if the maximum exists at all. In the case of Eurler’s theorem

we only showedthetruth of the theorem for the case where our rubbersheet

could really be stretched out to the plane without any holesin it.

I should like to emphasize that the correction of such mistakes can be ac-

complished onthe level of the pre-formal theory, by a new pre-formal theory.

The thought experiments I have just presented constitute only one type of

pre-formal proof. There are others, basically different; ones for instance

with the rather exciting property that in a certain sense we maysaythat con-

trary to the thought experiments we havejust considered, they may beveri-

fied but notfalsified. They give quite an insight into the nature of rules in a

pre-formal theory and in pre-formal rigour.?

But now let us turn to axiomatized theories. Up to now no informal
mathematical theory could escape being axiomatized. We mentioned that
when a theory has been axiomatized, then any competentlogician can for-
malize it. But this means that proofs in axiomatized theories can be sub-
mitted to a preemptory verification procedure, and this can be done in a
foolproof, mechanical way. Does this mean that for instance if we prove
Euler’s theorem in Steenrod’s and Eilenberg’s fully formalized postulate
system!it is impossible to have any counterexample? Well, it is certain that
we won’t have any counterexample formalizable in the system [assuming
the system is consistent]; but we have no guarantee at all that our formal
system contains the full empirical or quasi-empirical stuff in which we are
really interested and with which wedealt in the informal theory. Thereis no
formal criterion as to the correctness of formalization.
Well-known examples of‘falsified’ formalizations are (1) the formaliza-

tion of the theory of manifolds by Riemann, wherethere is no account of
Mobius-strips; (2) the Kolmogorov-axiomatization of probability theory, in
which you cannot formalize such intuitive statements as ‘every numberturns
up in the set of natural numbers with the same probability’.!! As a final but
most interesting example I should mention (3) Gédel’s opinion that the
Zermelo-Fraenkel and kindred systems of formalized set theory are not cor-
rect formalizations of pre-formal set theory as one cannot disprove in them
Cantor’s continuum-hypothesis. !2

I will show with a trivial example howlittle formalization may add to the
demonstrative or convincing force of informal thought experiments. You
rememberthe proof of Euler’s theorem? A formalist will certainly reject it.
Butit won’t be easy for him to reject the following ‘proof’: set up a formal
system, with one axiom: A; no rules [except that all axioms are theorems!].
The interpretation of A is Euler’s theorem. This system I think complies
with the strictest demands of formalism.

Doesall this mean that proof in a formalized theory does not add anything
to the certainty of the theorem involved? Notat all. [In the informal proofit
may turn out that we failed to make some assumption explicit which results
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in there being a counterexample to the theorem. But, on the other hand,if

we manageto formalize a proof of our theorem within a formal system, we

know that there will never be a counterexample to it which could itself be

formalized within the system, as long as that system is consistent.] For in-

stance, if we had a formal proof of Fermat’s last theorem, then if our for-

malized numbertheoryis consistent it would be impossible for there to be a

counterexample to the theorem formalizable within the system.

Nowweseethat if formalization (we shall use this term from now on as

essentially having the same meaning as axiomatization) conforms with some

informal requirements, such as enoughintuitive counterexamples being for-

malized in it and so on, we gain quite lot in the value of proofs. But if we

try to formalize a pre-formal theory too early, there can be unfortunatere-

sults. | wonder that would have happenedif probability theory had been ax-

iomatized just in order to supply ‘foundations’ for probability theory, be-

fore the discovery of Lebesgue-measure. Or, to take another example,it is

clear that it would have been wasted time and effort to formalize meta-

mathematicsat the time offinitary illusionism, becauselater it turned out that

the only useful methods must reach not only just beyond finitary tools but

even beyond the object-theory in question. In an immaturely axiomatized

algebra—axiomatizedso as not to allow for complex numbers, say—we could

never prove for instance that an equation of nth degree cannot have more

than n real roots. Sometimes a well-formed formula of a theory JT may be

undecidable in the theory, but it may well be decided if suitably interpreted

in a different theory, which may not even be an extension of the original

theory. It is very difficult to decide in which theory a mathematical state-

mentis really provable: for instance just take some theorems formalizable

in the theory of real functions but provable only in the theory of complex

functions, or theorems formalizable in measure theory, but provable only in

the theory of distributions and so on. Even after a theory has been fruitfully

axiomatized, there mayarise issues which can bring about a changein axlo-

matization. This is now going on in probability theory. Axiomatizationis a

big turning pointin the life of a theory, and its importance surpasses its 1m-

pact on proofs; but its impact on proofs is immensein itself. While in an in-

formal theory there really are unlimited possibilities for introducing more

and more terms, more and morehitherto hidden axioms, more and more

hitherto hidden rules in the form of new so-called ‘obvious’ insights, in a

formalized theory imaginationis tied downto a poorrecursiveset of axioms

and somescanty rules.

Let mefinally turn to the third part of myclassification: to post-formal

proofs. Here I shall just make a few programmatic remarks.

Two types of post-formal proofs are well-known. Thefirst type is repre-

sented by the Duality Principle in Projective Geometry which says that any

properly-worded valid statement concerning incidences of points and lines

on a projective plane gives rise to a second valid statement when the words

‘point’ and ‘line’ are interchanged. For instance if the statement ‘Any two

distinct lines in the same plane determine a uniquepoint’ is valid, then so 1S

the statement ‘Any twodistinct points in the same plane determine a unique
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line’. But then in proving the second statement we use a theorem ofthe sys-

tem and another theorem, a meta-theorem, which we cannot specify, and

still less prove, without specifying the concepts of provability in the system,

theorem in the system and so on. This meta-theorem which weuse like a

lemmain our proof of an informal mathematical theory is not just about

lines or points but aboutlines, points, provability, theoremhood andso on.

Although projective geometry is a fully axiomatized system, we cannot

specify the axioms andrules used to prove the Principle of Duality, as the

meta-theory involved is informal.

The second class of post-formal proofs I should mention is the class of

proofs of undecidability. As students of mathematical logic know, in the

last few years it has turned out that formal proofs really prove much more

than we want them to prove. Namely, to put it very roughly indeed, axioms

in the most important mathematical theories implicitly define not just one,

but quite a family of structures. For instance, Peano’s axioms maybesat-

isfied not only by our familiar natural numbers, but by some quite queer

structures, Skglem’s functions, which are far from being isomorphic with

the set of natural numbers. Thusit turns out that when wefight hard to

prove an arithmetical theorem, we prove at the same time some theorem in

this other absolutely unintended structure. Now there are always

statements, which are true in one structure but false in the other. Such

statements are undecidable in the common formal structure. Are we

helpless in such a situation? To see the pointbetter, let us take a concrete,

though hypothetical example. If we could prove that Fermat’s theory is

undecidable, then are we forever helpless to say anything aboutthe truth of

Fermat’s theorem? Notat all. We mayagain call informal reasoning to our

help, and try to operate informally only in the intended model. A concrete

example of this is Gédel’s proof [that his undecidable sentencesare true(i.e.

true in the standard model)]. But such post-formal proofs are certainly in-

formal andso they are subject to falsification by the later discovery of some

not-thought-of possibility.

Now at the present stage of our mathematical knowledge undecidable

sentences occur only in ratherartificial examples and do not affect the

bulk of mathematics. But this situation may turn out similar to the case of
transcendental numbers, which occurred first rather as exceptions and
later turned out to be the moregeneral case. So post-formal methods may
gain in importance as undecidability encroaches more and more on

mathematics. !3

And nowa brief summary. We saw that mathematical proofs are essential-
ly of three different types: pre-formal; formal; post-formal. Roughly the
first and third prove something about that sometimes clear and empirical,
sometimes vague and ‘quasi-empirical’ stuff, which is the real though
rather evasive subject of mathematics. This sort of proof is always liable
to some uncertainty on account of hitherto unthought-of possibilities. The
second sort of mathematical proof is absolutely reliable; it is a pity that it
is not quite certain—although it is approximately certain—what it is
reliable about.
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NOTES |

This paper seems to have been written some time between 1959 and 1961 for

Dr. T.J. Smiley’s seminar at Cambridge. Lakatos’s own copy contains several hand-

written corrections; some by himself and some by Dr. Smiley. We have incorporated

them into the text.. There is no indication that Lakatos ever returned to this paper

after 1961. He subsequently changed his mind on someofthe points madein the

paper and had no plansto publish it himself (eds., Worrall and Curne).

2.

. Curry [1958}, -p. 62.

. Suppes [1957], p. 128.

. For a full discussion of the history of this theorem, see Lakatos [1976c].

. Nidditch [1957], p. S.

. One such counterexample is the ‘picture frame’ (Lakatos [1976c], p. 19) (eds. ).

. Cauchy [1813].

. We have been unable to find out what Lakatos had in mind here(eds.).

10.

11.

12.

O
o
a
o
n

na
n

~”
A

f
k
W

Kneale [1955], p. 106.

Eilenberg and Steenrod [1952].

See Renyi [1955] (eds.).

For more detail on this point and references to Gédel’s opinions, see

Lakatos’ earlier paper in this volume.

13. This has begun to happen, notably with the Paris-Harrington results. See

their paper ‘‘A mathematical incompleteness in Peano Arithmetic’’ in J. Barwise,

ed., Handbook of Mathematical Logic (Amsterdam: North-Holland, 1977).



PHILIP J. DAVIS

Fidelity in Mathematical Discourse:

Is One and One Really Two?

The discovery of mathematical logic convinced many mathematicians

and philosophers that this was the royal road to foundations. Thus convinced, they

were anxiousto rid philosophy of mathematics of all empirical considerations.

None was more adamant than Gottlob Frege who in his masterpiece The

Foundations of Arithmetic not only sketched the logical deduction of arithmetic

but inveighed against psychologism andhistoricism in philosophy. Frege remarked

in passing

A delightful example of the way in which even mathematicians can confuse the

grounds of proof with the mental or physical conditions to besatisfied if the proof

is to be given is to be foundin E. Schroder. Under the heading ‘Special Axiom’ he

produces the following: ‘‘The principle I have in mind might well be called the

Axiom of Symbolic Stability. It guarantees us that throughout all our arguments and

deductions the symbols remain constant in our memory—orpreferably on paper”’

and so on.!

Frege’s repudiation of ‘psychologism’ has been so influential that it is with some

surprise we find Davis, nearly a century after Frege, considering a principle very

similar to Schroder’s Special Axiom.

Distinct Symbols can be Created. Instances of a given symbol can becreated.

Symbols can be processed and reproduced and concatenated with absolutefidelity.

Symbols can be recognized as distinct or identical as the case warrants.

Moresurprising is Davis’s view that it is the Fregean Platonist who must make

this assumption! Most surprising, and a sign of the radical new directions in

philosophy of mathematics, is Davis’ contention that this principle is false!

Of course Davis is aware that an orthodox foundationalist would deny the
relevance of symbolic stabilty insofar as mathematics is conceived to exist without
physical carriers such as flesh and blood mathematicians. However our only
entrance into such pure mathematics is through the practice of the mathematicians

 

Reprinted, with permission, from AMERICAN MATHEMATICAL MONTHLY, Vol. 79,
No. 3, March 1972, pp. 252-263.
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who deliver it for philosophical inspection in the first place. Even the Platonist

must relate his or her abstraction to the practice from which it is derived: we must

not saw off the branch on which wearesitting. Nor will it suffice, as Frege

thought, to attempt to distinguish between the grounds of a proof and the mental

or physical conditions to be satisfied if the proof is to be given. For as Frege

constantly stressed, the groundsof a proof are revealed only by following through

the proof step by step in completely rigorous fashion. It is just those operations

which are necessary to follow a proof that are the concern of Davis. Contrary to

Frege, he suggests with considerable plausibility that such operations are never

absolutely certain, but performable only with a certain probability of success. There

is no perfect fidelity in mathematics, only sufficiently good approximations.

The upshot of this is that Davis discovers a new question in philosophy of

mathematics—‘‘whatis the mathematics of error?’’ Frege himself tried to outlaw

this question. Committed to the view that mathematical knowledge was a priori,

he could announce that the very idea of mathematical (i.e., a priori) error is ‘‘as

complete a nonsense as, say, a blue concept.’’ Frege’s position is reminiscent of

the neo-scholastic distinction between the Church Visible and the Church

Invisible. The Church Visible is what the layperson sees, a humaninstitution

subject to the vicissitudes of human error. The Church Invisible is the real church

whose purity is guaranteed by God. The possibility of an error in the workings of

the ChurchInvisible is as complete a nonsense as, say, a blue angel. Whateverits

merits in theology, this attitude distorts our perception of mathematics. It forces

us to ignore those many components of mathematical practice that serve to

minimize error as outside real ‘mathematics’.

Perhaps the major consequence of admitting mathematical errors into

philosophy is the different conception of proofit suggests. In the presence of

potential error the authenticity of a mathematical proof itself ceases to be

absolute and becomesonly probabilistic. Davis offers a suggestive analogy with

regard to computer proofs.

A parallel with relativity theory can be madehere. Newtonian mechanics grew up in

a regime oflow velocities and hence norelativity correction (1 — (v/ v.)?)!/?is

necessary. Conventional (precomputer) mathematics grew up in a regime in which

prooflengths were sufficiently low so that fidelity could be considered absolute and the

laws of information theory areirrelevant. It is also possible that mathematics might

moveinto a period and into a corpus of material where the proof aspect ceases to have

classical significance and where onecanlive intimately with less than perfect fidelity.

Computer proofs are discussed elsewhere in this anthology, but as Davis points

out, they are not the only source of possible error in mathematics. The informal

proofs considered by Wang and Lakatosare not only subject to some unthought-of

possibility for counterexample, but, in many respects, are much better adapted to

survive small errors than formal proofs in which each step is on a par. The

outline of the informal proof offers us a scaffolding from which we can patch up

details, but a formal proof, a line by line deduction, consists only of details.

There remains much to be said about probabilistic proofs and errors in

mathematics, but Davis provides us with a stimulating beginning.

NOTE

1. The Foundations of Arithmetic, Basil Blackwell, Oxford (1968), viii-ix.
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‘*T wanted certainty in the kind of way in which people wantreligious faith.

I thought that certainty is more likely to be found in mathematics than else-

where. But I discovered that many mathematical demonstrations, which my

teachers expected me to accept, were full of fallacies, and that, if certainty

were indeed discoverable in mathematics, it would be in a newfield of mathe-

matics, with more solid foundations than those that had hitherto been thought

secure. But as the work proceeded, I was continually reminded of the fable

about the elephant and the tortoise. Having constructed an elephant upon

which the mathematical world could rest, I found the elephant tottering, and

proceeded to construct a tortoise to keep the elephant from falling. But the

tortoise was no more secure than the elephant, and after some twenty years of

very arduoustoil, I came to the conclusion that there was nothing morethatI

could do in the way of making mathematical knowledge indubitable.’’

BERTRAND RUSSELL,

Portraits from Memory

1 PLATONIC MATHEMATICS

The twentieth century has not yet delineated definitively the working prin-

ciples and the broad articles of faith of what has cometo becalled ‘‘Pla-

tonic mathematics’’. Amongthese principles might be listed:

1. The belief in the existence of certain ideal mathematical entities such

as the real number system.

2. The belief in certain modes of deduction.

3. The belief that if a mathematical statement make sense, then it can be

proven true or false.

4. The belief that fundamentally, mathematics exists apart from the

human beings that do mathematics. Pi is in the sky.

These beliefs have been questioned; and in the last century a numberof

distinguished mathematicians have raised their voices against one or more

of them. These mathematicians include Kronecker, Borel, Brouwer, Gédel,

Weyl, and in morerecent times, E. Bishop. One objection raised by some

materialists is that the physical world may be completely finite, and this is

hard to accommodate to aninfinity of integers. Other objections have to do

with the axiom of choice, the axiom of the excluded middle,etc.

Asfar as No. 3 is concerned, the work of Gédel and the Logical School

has put the coup de grace onthis principle; yet-and by no meansstrangely-

it persists as a psychological prop in one’s daily work. I once asked a very

distinguished number theoretician whether he thought that Fermat’s Last

Theorem was one of the unprovable statements in the sense of Gédel. His

answer was quick and definite: ‘‘It is not. We are just too dumbto find the

proof.’’ The truth of the matter is that if mathematics were everto enterin-

to a region whereit is frustrated by too manyinteresting but unprovable

statements, then this would cast a blight on the methodologyandritual sur-

rounding the notion of proof.

The questioning of Platonic mathematics has led to other types of mathe-
matics variously called intuitionistic mathematics, constructivistic mathe-
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matics, recursive mathematics, and other names. Someof these are subsets

of the usual mathematics. The computing machine has undoubtedly reop-

ened and reinforced some of the arguments. The reception given to non-

Platonic mathematics rangesall the way from coolnessto indifference. One

recalls the story of Kronecker in the 1880s. Someone cameto him andtold

him that Lindemann had just proved that pi was a transcendental number.

‘‘Very interesting,’’ said Kronecker, ‘‘but pi doesn’t exist.’’ This skepticism

was largely ignored. At a series of recent lectures on non-Platonic mathe-

matics, a typical comment was ‘‘Well presented, but irrelevant. Let’s get

back to our (Platonic) drawing boards.’’ Undoubtedly in 1971, one can earn

a living with Platonic mathematics, and if mathematician A spouts some

Platonism to mathematician B andthelatter responds in kind, then thereis

at least humansignificance in the act. The emperor maybe walking around

in his underwear, but if the court is also, they can make life together.

It is the object of this essay to present additional aspects of the non-Pla-

tonicity of mathematics.

Several years ago I did some experiments using the computer to prove and

derive theorems in elementary analytic geometry.2 These experiments in-

evitably led to speculation on the difference in the level of credibility of a

theorem which has been proved or derived by machine as opposed to one

which has been ‘‘hand crafted’’ in the traditional fashion. This essay is an

outcomeof this experience. The particular arguments made here have not

been put forth elsewhere at any length, and lead to the conclusion that

mathematics, in some ofits aspects, takes on the nature of an experimental

science.

2 SYMBOLS

It is commonplace that mathematics is done with symbols. Figures, words,

graphs, special symbols ofall sorts litter the mathematical page. The most

common modeofoperation is from the sheet of paper, the blackboard,the

sandpit in the case of Archimedes, the TV computer screen in the case of a

latter day Archimedes, into the brain through the eye and the optic nerve.

Presumably, when this symbolic information enters the brain, it leaves a

physical trace there. The symbols are then processed by the brain and hard

copy output may be madevia hand or mouth.If there were never any oral

or written or action output (such as with the educated horse who when cued

stamps with his foreleg in answerto arithmetic problems) then mathematics

might exist, but not in the manner in which we know it.

The principal symbol of mathematics, then, is the graphical symbol, per-

ceived by the eye. There are blind mathematicians of first rank (such asL.

Pontryagin) and it would be interesting to hear whathe hasto say abouthis

manner of symbol formulation, manipulation, and space percepton. I am

not aware of any mathematicians whoare blind and deaf mutes, but I pre-

sume that Helen Keller who graduated from Radcliffe coyld do sums.

If one believes in Platonic mathematics, then it is possible to free mathe-

matics from the symbols that carry it. After all, the spoken word ‘‘two’’

and the Arabic symbol‘‘2’’, the Braille symbol for two, have a common in-
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terpretation. Hence, there must be, so the argument goes, a concept of

twoness whichis symbol-free. As Plato put it, mathematical objects are per-

ceived by the soul. Bethis as it may, I cannot give a simple instance of sym-

bolless, soul mathematics. Even if I knew one, how could I communicateit,

short of telepathy?

3 PROOF

One of our most precious inheritances from Greek mathematics is the no-

tion of proof. Certain statements are derivable from other statements by

means of ‘‘pure reason’’, and a corpus of connected material can be built

up in whichall statements are derived from a few fundamental statements

known as axioms. This is the program set forth in Euclid, and this, after

2300 years, remains the beau ideal of mathematical exposition. In fact,

some authorities believe that this is the hallmark of mathematics. Now,

whatis the purpose of a proof and howis a proof carried out? If you read

Plato (Meno, 87) you find Socrates going through a derivation with a slave

boy. Using the famous Socratic method,he leads the boy by the nose,so to

speak, to the result that in a 45°, 45°, 90° triangle, the area of the square on

the hypothenuse has double the area of the square on the short side. This

dialogue creates the impression first of all of the derivation of new knowl-

edge ex nihilo (or ex very little), and secondly of establishing firmly on the

basis of a few easily accepted premises a statement whichis far less trans-

parent. To proveis to establish beyond the question of doubt, and mathe-

matics has been thought capable of just such a thing. History does not prove,

sociology does not prove, physics does not prove, philosophy does not prove,

religion (if we can forget the church’s unrequited seven hundred year love

affair with Aristotelianism) does not prove. Mathematics alone proves, and

its proofs are held to be of universal and absolute validity, independent of

position, temperature or pressure. You may be a Communist or a Whig or a

lapsed Muggletonian, but if you are also a mathematician, you will

recognize a correct proof when you see one.

These two aspects of Socrates’ teaching: proof as a program ofcertifi-

cation—let’s not call it establishing truth—and proof as a program ofdis-

covery and of new mathematics formation are present in today’s mathe-

matics. The most charming instance of success of the first part of Euclid’s

program is undoubtedly contained in John Aubrey’sbrief life of the phi-

losopher Thomas Hobbes:

He (Thomas Hobbes) was 40 years old before he looked on Geometry; which

happenedaccidentally. Being in a Gentleman’s Library, Euclid’s Elements lay

open,and ‘twasthe 47 El. libri I. He read the Proposition. ByG . . . , sayd he

(he would now and then sweare an emphatical Oath by way of emphasis) thisis

impossible! So he reads the Demonstrationof it, which referred him back to a

Proposition, which Proposition he read. That referred him back to another,

which he also read. Et sic deinceps [and so on] that at last he was demon-

Stratively convinced of that trueth. This made him in love with Geometry.

But the facts of the matter are somewhatdifferent. If you think you could

talk to your favorite bartender and lead him bythe nose 4 la Socrates and
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have him arrive at the Stone-Weierstrass theorem, think again. The path

would turn him off the way I am turned off by Spinoza’s proofsin ethics.

As Poincaré observed, the ability to follow a mathematical argument is

spread unevenly through the populace. For the professional mathematician,

proof may be less a matter of convincing oneself psychologically of the

truth of a statement than of merely assigning the tags ‘true’ or ‘false’ to the

statement. But a balance must be struck. For as N. Bourbaki has written,

**Indeed, every mathematician knowsthat a proof has not been ‘understood’

if one has done nothing more than verify step by step the correctness of the

deductions of which it is composed and hasnottried to gain a clear insight into

the ideas which haveled to the construction of this particular chain of deduc-

tions in preference to every other one.”’

Secondly, mathematics can and has been donein a ‘‘proofless’’ atmos-

phere. The Egyptians and Babylonians hadpiled up a considerable body of

mathematics before even the Greeks came along with their proofs. If one

reads Ptolemy one sees how proofless material can exist side by side with the

mathematics of proof. In today’s world, the physicist and engineer often

work in absence of proof, it being sufficient to work formally and sym-

bolically and have the work backed by a physical intuition or by an experi-

mental confirmation.

Despite these two mathematical worlds, which have for a long time ex-

isted side by side, mathematicians, and in particular mathematical logicians

have over the past century systematized and madeprecise the notion of a

proof. Without attempting the technicalities, the matter seems to come

downto this. The axioms,i.e., the primitive statements or assumptions are

representable as certain strings of atomic symbols. The theoremsare rep-

resentable as certain other strings of atomic symbols. Proving is the process

of passing form an axiom string to a theorem string by a finite sequence of

allowable elementary transformations. To verify that the next man’s

putative theorem is, in fact, the theorem heclaimsit to be, is merely to

verify that the sequence of string transformations are in order. The whole

thing is in principle perfectly mechanizable and is work for a slave boy or

our modern equivalent, the computer. From this point of view to verify an

advanced statement is similar to establishing the arithmetic theorem

123 +456 = 579. We merely process the data. Proofis at once the glory of

mathematics and its least human aspect.

A proof can be compared with a program. The axiomsare analogous to

the input. The theorem is analogousto the output while the proofis the pro-

gram. To find a proof consists of finding a program. Toverify a given proof

we need only rerun the program.

4 FIDELITY

I come nowto the nub of my argument. Mathematics, as we haveseen, pro-

ceeds through symbols and symbol manipulation. It therefore assumesthat

we can create distinct symbols, recognize strings of symbols, reproduce

symbols, concatenate symbols. A symbol hasa physical trace. It is a blob of
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ink or a vibration in the air, etc. If I mark down two 1’s these 1’s may be
identical on the macroscopic level, but not at the microscopic. It is impos-
sible to create identical symbols. Like snowflakes, they are all different. If
they are ‘‘nearly’’ identical, they maybe perceived variously. The eye may
be dim,the ear heavy, the brain fatigued. The computer mayslip a pulse,its
voltages may drop, it may be communicated with over a noisy channel.

Aspart of the assumptions of Platonic mathematics we should therefore
list:

IIA A TIT D4
FIG. 1. Are all the symbols above instances of the same symbol?
Asof 1971, high fidelity recognition by machine of hand written
characters has proved to bedifficult.

0. Distinct Symbols can be Created. Instances of a given symbol can be
created. Symbols can be processed and reproduced and concatenated with
absolute fidelity. Symbols can be recognized as distinct or identical as the
case warrants.

An orthodox Platonist might say the aboveis unnecessary insofar as
mathematics exists without physical carriers. A non-Platonist, particularly
one who has been exposed to communication theory, will say this is non-
sense. We can dothesethings only with a certain probability of success. The
probability maybe very high indeed, but there may be occasionalfailure.
Whatis the mathematics of failure? Without making too manydistinctions,
let us agree indifferently to call an act of recognizing, reproducing, or pro-
cessing one symbol ‘an operation.’ Let the probability of carrying out an
operation with perfect fidelity be p. The number p satisfies the inequality

O<p<l

and weshall think of p as being very close to 1. A realistic value of p de-
pends upon whoor whatis doing the symbol processing and under whatcir-
cumstances. I know that in doing sumsor in typing up an IBM card myper-
sonal probability may be around

p= 1 —-10-2,

I have heard figures around

p=~1-— 10-%top = 1 — 10-2

quoted for computing machines. Nowif the probability of success in one
elementary operationis p, then, assuming independence, which may or may
not be true, the probability of success in a sequence of n operationsis p”.
Thusif 7 is very large, this probability goes down considerably. Now what
probability of failure will you tolerate? One in a thousand? Then you want

p" = 1 —- 10-3 orn log p = log (1 — 10-3),
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Ifnow p=1 - i,
m

then we want

log (G — 1)
1000°

log (G —~)

Since log (1 — h) ~ — A for small h, we need

 

mn
1000

n=z=

In other words, to keep within the required confidence limits, we should not

carry out more than m/1000 operations. Now the number of operations

which go on inside a computer are enormous, so that the chance offailure is

not infinitesimal in terms oflifetime probabilities. (In ‘“Computer Program-

ming for Accuracy,’’ Proceeding of the 1968 Army Numerical Analysis Con-

ference, U.S. Army Research Office, Durham, North Carolina, J.M. Yohe

lists 38 types of errors that may occur in carrying out a computer computa-

tion. These are grouped under seven major categories as follows: Errors due

to hardware limitations, errors due to software limitations, errors due to

hardware failure, errors due to software failure, errors due to program

failure, errors due to faulty operation, errors due to inadequate planning. A

similar list for mathematics produced in the conventional handcrafted

fashion would surely be interesting.)

Repeating a computation by way of check helps, of course. If a compli-

cated computation is carried out with a probability of success of 1 — 1/r

(r > 1), and is performed independently »v times, then the probability of at

least one success in the » blocks of computation is 1 — (1/r)’. Thus, the

level of confidence is raised.

Consider then simple addition of numberscarried outin the usual way. If

there are too many digits in the numbers, then the probability of a com-

putation being accurate (or of discovering which of a block of indepen-

dently arrived at answers is the correct one) might be small. The reader need

only insert his favorite probabilities for himself and for his machinein the

above formulas. Perhaps we need to take a numberof over a million digits

or over a billion digits to make success unlikely. No matter. Platonic

mathematics guarantees an unlimited numberof integers and each integer

has a decimal representation.

Ordinary arithmetic is one of the most elementary of the mathematical

disciplines. Among the theoremsof arithmetic are the various sums.Hereis

a theorem in arithmetic: 12345 + 54321 = 66666. If this theorem does not

excite you particularly, this is your value judgment andis extraneousto the

mathematical structure. It might excite a Kabalist or an incometax consul-

tant. Now, as we have observed,the arithmetic of excessively large numbers

can be carried out only with diminishing fidelity. As we get away from trivial
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sums, arithmetic operations are enveloped in a smog of uncertainty. The
sum 12345 + 54321 is not 66666. Itis not a number.It is a probability dis-
tribution of possible answers in which 66666is the odds-on favorite. (A some-
whatless transparent example is this. Consider the popularsolitaire game
called ‘‘Canfield’’. If the rules are fixed, and theline of play specified un-
ambiguously, then the expected value of Canfield constitutes a mathemati-
cal theorem which is of considerable interest in some quarters. As far as I
am aware, because of the complexity of Canfield, no one has been able to
use the elementary textbook theorems on combinatorial probability to ar-
rive at the expected value. Yet, all we have to do in principle is to examine
each of the 52! gamesthat are possible and averagetheir values.)

Thereis a parallel with the limitations of physical measurement. Thereis
wisdom in the primitive counting system one, two,three, many, myriads.

PROBLEM: Given

A = 11777777711171717171777171 1717111111177717177711771 1771717171717771717771717171717771411717111111717777111717171111717177171

B= PTTTIVIAVTVATTTTTTTAAL LALA LAT7TAIVTATITITVIVTITITALATATLL LAIVI1171717771111111717177777777111717177771111777117177771

Find A + B.

The numbers 4 and B cannot be reproduced with perfectfidelity, let alone added.

5 FIDELITY IN PROOFS

The authenticity of a mathematica] proofis established by verifying that a
sequenceof transformations of atomic symbolstringsis legitimate. In point
of fact, proofs are not written in terms of atomic strings. They are written ina
mixture of commondiscourse and mathematical symbols. Definitions are
madeto serve as abbreviations for longer combinations of words and sym-
bols. Lemmasare introduced as temporary platformsandscaffoldings from
which one can arguewith less fatigue and hence greater security. Corollaries
are introduced for the psychologicallift of obtaining deep theoremscheaply.

Splicing two theoremsis standard practice. In the course of a proof, onecites Euler’s Theorem, say, by way of authority. The onus is now on thereader to supply the particular theorem of Euler that the authoris talkingabout andto verify that all the conditions (in their most modern formulation)which are necessary for the applicability of the theorem are, in fact, present.
If splicing is commonto lend authority, then skipping is even more com-mon. By skipping, I mean the failure to supply an important argument.Skipping occurs becauseit is necessary to keep downthelength of a proof,because of boredom (you cannot really expect meto go througheverysinglestep, can you ?), superiority (the fellows in myclub all can follow me) or outof inadvertence. Thus, far from being an exercise in reason, a convincingcertification of truth, or a device for enhancing the understanding, a proofin a textbook on advanced topics is often a stylized minuet which the authordanceswith his readers to achieve certain social ends. What begins as reasonsoon becomesaesthetics and winds up as anaesthetics.
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To go from the foundations of mathematics to any of the advancedtopics

on the frontier can be done in about 5 or 6 books. Perhaps 1500 pages of

proof text of current style. This is humanely broken into smaller bits. The

lengths of these smaller bits vary from discipline to discipline. Perhaps

numbertheory hasthe longest individual proofs. I know one proof in Lan-

dau which is over a hundred pages long. I have before me a book on ad-

vancedtopics in analysis just off the press. The average length of the proofs

seems to be about 10 lines. This mirrors the sitzfleisch of the contemporary

reader.

I do not know many people who would volunteer to check a fifty page

proof. Value judgments would enter; it would depend on whatis at stake. A

purported proof of the Riemann Hypothesis might attract more checkers

than the sum of two excessively long integers. But one doesn’t have to deal

with fifty page proofs: most proofs in research papers are unchecked other

than by the author. But then, most theoremsare withoutissue: the last of a

line of noble thought. They remain uncheckedin the light of usage. They

are loaded with errors.

If computing machines are employed either to check manipulation worked

out by hand, or as has been done in some instances, to develop new theo-

rems, the same remarksapply, but the probabilities may be altered. An in-

teresting aspect of the problem of fidelity arises in programming. There are

programswhich are hundreds of thousands of words and instructions long.

Such programsare frequently written by batteries of programmers and the

parts are spliced together. Now the problem is this: what in fact does the

program do? Well, ask the programmers whatit does. ‘“My part works,”’

says the first programmer over the phone from a laboratory 2000 miles

away wherehe hasjust taken a new job. ‘‘So does mine,”’ says the second

programmerwhoisstill around but whose program is loaded with bugs that

have not yet emerged. The third programmer: alas for flesh and blood, he

died several months ago.

The program itself is the only complete description of what the program

will do. This assumes that you know howthe machineitself interprets a pro-

gram—andthisis not always the case. There may be no absolutely complete

description of what the machine will do in a given instance. Andall of this

assumes that the machinetreats its electronic symbols with perfect fidelity.

(To add to the indeterminacy, in a poorly designed computational system,

the way the computer processes, my input may depend upon what my col-

league downthehall is doing on his terminal. Of the concepts of fuzzy lan-

guages, algorithms, and environments,see, e.g., Zadeh.*) This leads one to

the pragmatic solution: run the program and you will see. You may learn

that the performanceis acceptable. In other cases you may not even be able

to judge the quality of the output rationally. It may be a matter of faith.

Extremely long programsrepresent theorems of a kind. They maybefar

less trivial than some current frontier mathematics of conventional sort in

terms of their distance from atomic symbolisms. But the problem is that we

do not know and cannot know what the theorem says.

The upshotof this discussion is that the authenticity of a mathematical

proofis not absolute, but only probabilistic. Proofs have attached to them-
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selves lists of discoverers, sponsors, users, checkers, authenticators, rear-
rangers, generalizers, simplifiers, rediscoverers, swamis, communicants,
and historians. Theselists are all incorporated into the scholarly apparatus
of publication and in the constant exposure that goes on the blackboard.

Proofs cannot be too long, else their probabilities go down and they
baffle the checking process. To put it in another way: all really deep
theoremsare false (or at best unproved or unprovable). All true theorems
are trivial.
A parallel with relativity theory can be made here. Newtonian mechanics

grew up in a regime of low velocities and hence no relativity correction
(1 — (v/v,)2)1is necessary. Conventional (precomputer) mathematics grew
up in a regime in which proof lengths were sufficiently low so that the fj-
delity could be considered absolute and the laws of information theory are
irrelevant. It is also possible that mathematics might moveinto a period and
into a corpus of material where the proofaspect ceases to havetheclassical
significance and where onecanlive intimately with less than perfectfidelity.

6 ON THE OBSERVED INCIDENCE OF ERROR
WhatI haveto say hereis largely a collection of gossip. Since the subjectistouchy, I shall begin at home.

0
9

FIG. 2. A digitalized Santa is a mathematical object and its
transformations are analogousto theorems. Theaesthetic appeal
of such theorems mayhave a different basis than thatof classical
mathematics. Less than perfect fidelity in processing is probably
not very damaging.

The original printing of Davis, Interpolation and Approximation, con-tained at least 4 typewritten pages of errata. These range all the way fromminortyposto errors of more mathematical substance. Thereis at least onebad proof and one theorem erroneously worded whichif taken literally, isfalse. Davis and Rabinowitz, Numerical Integration, a smaller book whosegalleys were proofread by both authors, has about a typewritten pageofer-rors. One formulais just plain wrong. It was copied, without checking fromthe original author who worked it out wrong. Othererrors areless easilyalibied.
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Theoriginal printing of A Handbook ofMathematical Functions, a thou-

sand page compendium of formulas and tables which was put out by the

National Bureau of Standards and which has sold more than 100,000 copies

to date, contained more than several hundrederrors. In the old days, when

table making was a handcraft, some table makers felt that every entry in a

table was a theorem (andsoit is) and must be correct. Others took a relaxed,

quality control attitude. One famous table maker used to put in errors de-

liberately so that he would beable to spot his work when others reproduced

it without his permission.

I have before me a highly important book on advancedtopics on analysis

published about 15 years ago. After the book appeared, the author circu-

lated to his friends an errata sheet of about 10 pages.

I have before mealso the mimeographed1925 notes of E.H. Moore of the

University of Chicago on Hermitian matrices. One hundred eighty pages of

notes are followed by 26 pages oferrata.

There is a story to the effect that when B.O. Peirce’s popular A Table of

Integrals had just appeared, Professor Peirce offered a dollar to any student

who discovered an error in it. Allowing an inflation rate of 3 or 4to 1, I

doubt whether any prudent author today would make

a

similar offer for his

book. (D.E. Knuth has an open offer of this sort for his series of books on

the art of computer programming.)

A recent issue of the Notices of the American Mathematical Society ran

abstracts of about 130 papers: Five papers werelisted as ‘Withdrawn.”’

Presumably some of them had mistakes.

The Mathematical Reviews of December 1970, reports a paper entitled

“The Decline and Fall of a Theorem of Zarankiewicz.”’

A past editor of the Mathetical Reviews once told me—somewhat in

jest—that 50% of all mathematics papers printed are flawed.

A colleague reports refereeing a paper whose main theorem wasinvalid

because the author spliced onto an erroneously stated theorem in a major

reference book in topology. The words ‘closed’ and ‘open’ had inadver-

tently been interchanged in the reference.

There is a book entitled Erreurs de Mathématiciens by Maurice Lecat,

published in 1935 in Brussels. This book contains more than 130 pages of

errors committed by mathematicians of the first and second rank from antiq-

uity to about 1900. There are parallel columns listing the mathematician,

the place where his error occurs, the man whodiscovers the error and the

place where the error is dicussed. For example, J.J. Sylvester committed an

error in ‘‘On the Relation between the Minor Determinant of Lineraly

Equivalent Quadratic Factors,’’ Philos. Mag., (1851) pp. 295-305. This er-

ror was corrected by H.E. Baker in the Collected Papers of Sylvester, Vol.

I, pp. 647-650.

In 1917 H.W. Turnbull calculated a system of 125 invariants of two quater-

nary quadratic forms. In 1929 Williamson found that three were reducible.

In 1946, Turnbull himself found that five more were reducible, while in

1947, J.A. Todd found a further reducible one. Does it matter?

A mathematical error of international significance may occur every twenty

years or so. By this I mean the conjunction of a mathematician of great
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reputation and a problem ofgreat notoriety. Such a conjunction occurred
around 1945 when H. Rademacher thought he had solved the Riemann Hy-
pothesis. There wasa report in Time magazine. Another instance was around
1860 when Kummer, following in the erroneous footsteps of Cauchy and
Lamé, thought he had solved the Fermat Last Theorem.

7 CONCLUSIONS

Symbols and operations do not have a precise meaning, but only a proba-
bilistic meaning.
A derivation of a theorem or a verification of a proof has only proba-

bilistic validity. It makes no difference whetherthe instrumentof derivation
or verification is man or a machine. The probabilities may vary, but areroughly of the same order of magnitude when comparedwith cosmic prob-
abilities.

E. Borel once suggested that the following chances constitute an unobservable
event:

On the humanscale: 1 chance in 106
Ontheterrestrial scale: 1 chance in 10!5
On the cosmic scale: 1 chance in 105°
Absolute zero: 1 chance in 105

Mathematics has some of the aspects of an experimental science. We aresaved from chaos by the Stability of the universe which implies the repeat-ability of experiments and the self-correcting features of usage.
Mathematics has been Platonic for years. Does this rob it of a certainfreedom andvitality which might be obtained by openly recognizing itsprobabilistic nature?
It is possible that a new type of mathematics might develop in which the*‘Derivations’’ or the ‘“processes’’ are so enormously long that the proba-bilistic nature of the result will be an integral feature of the subject.
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The Ideal Mathematician

W. conclude the general introduction to mathematical practice with adelightful account of how it sometimes appears “from the inside’, as it were. Manymathematicians will recognize their colleagues in the picture, and perhaps eventhemselves. The rest of us will recognize many ofthe theoretical issues discussed inthis section presented in a very immediate way. Thepresentation is lighthearted, butthe questions thatit raises are often very sobering. I am reminded ofan example ofWittgenstein’s concerning a tribe of people who taughttheir children how to countup to a certain numberexplicitly, by rote. When they had learned to do this thechildren were then encouraged to ‘go on’ to count even higher by a suggestive sign.Mostof the children did catch on and learned to countthis way but, Wittgensteinominously adds, “‘If a child does not respond to the suggestive gesture,it isseparated from the others and treated as a lunatic’’.!
Manypeople are put off by the bleakness of Wittgenstein’s vision. Matters cannot be so accidental or arbitrary, they want to say. Surely there is a more solidgrounding to mathematics than the ability to ‘catch on’ to suggestive gestures andthe threat of ostracism.? Butlisten carefully to the ideal mathematician. To besure, he does not dismiss people as ‘lunatics’, but he does dismiss them as‘mathematically untalented’, with the simple justification that he is best qualifiedto judge. ‘‘If not me’’, he says, ‘‘who?’’ This excerpt is taken from the authors’The Mathematical Experience.

NOTES

1. The Blue and Brown Books, Basil Blackwell, Oxford (1960), 93.
2. Could Wittgenstein, for all his bleakness, be correct? For a detailedconsideration of this point, see S. Kripke’s Wittgenstein on Rules and PrivateLanguage, Harvard University Press, Cambridge (1982).

W. will construct a portrait of the “ideal mathematician.’ Bythiswe do not meantheperfect mathematician, the mathematician without
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defect or limitation. Rather, we mean to describe the most mathematician-

like mathematician, as one might describe the ideal thoroughbred

greyhound, or the ideal thirteenth-century monk. We will try to construct

an impossibly pure specimen, in order to exhibit the paradoxical and prob-

lematical aspects of the mathematician’s role. In particular, we want to

display clearly the discrepancy between the actual work andactivity of the

mathematician and his own perception of his work andactivity.

The ideal mathematician’s work is intelligible only to a small group of

specialists, numbering a few dozen or at most a few hundred. This group

has existed only for a few decades, and there is every possibility that it may

become extinct in another few decades. However, the mathematician

regards his workas part of the very structure of the world, containing truths

which are valid forever, from the beginning of time, even in the most re-

mote corner of the universe.

Herests his faith on rigorous proof; he believes that the difference be-

tween a correct proof and an incorrect one is an unmistakable and decisive

difference. He can think of no condemnation more damningthan to say of

a student, ‘‘He doesn’t even know what a proofis.’’ Yet heis able to give no

coherent explanation of what is meant by rigor, or whatis required to make

a proof rigorous. In his own work,the line between complete and incom-

plete proof is always somewhat fuzzy, and often controversial.

To talk about the ideal mathematician at all, we must have a name for his

‘‘field,”’? his subject. Let’s call it, for instance, ‘‘non-Riemannian hyper-

squares.”’

Heis labeled by his field, by how much he publishes, and especially by

whose work heuses, and by whosetaste he followsin this choice of problems.

Hestudies objects whose existence is unsuspected byall except a handful of

his fellows. Indeed, if one who ‘s not an initiate asks him what he studies, he

is incapable of showing or telling whatit is. It is necessary to g0 through an

arduous apprenticeship of several years to understand the theory to which he

is devoted. Only then would one’s mind be prepared to receive his explana-

tion of what he is studying. Short of that, one could be given a ‘‘definition,”’

which would be so recondite as to defeat all attempts at comprehension.

The objects which our mathematician studies were unknown before the

twentieth century; mostlikely, they were unknown even thirty years ago.

Todaytheyare the chief interest in life for a few dozen (at most, a few hun-

dred) of his comrades. He andhis comrades do not doubt, however, that

non-Riemannian hypersquares have a real existence as definite and objec-

tive as that of the Rock of Gibraltar or Halley’s comet.In fact, the proof of

the existence of non-Riemannian hypersquares is one of their main achieve-

ments, whereas the existence of the Rock of Gibraltar is very probable, but

not rigorously proved.

It has never occurred to him to question what the word ‘‘exist’” means

here. One could try to discover its meaning by watching him at work and

observing what the word ‘‘exist’’ signifies operationally.

In any case, for him the non-Riemannian hypersquare exists, and he pur-

sues it with passionate devotion. Hespendsall his days in contemplatingit.

His life is successful to the extent that he can discover new facts aboutit.
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Hefindsit difficult to establish meaningful conversation with that large
portion of humanity that has never heard of a non-Riemannian hypersquare.
This creates grave difficulties for him; there are two colleagues in his de-
partment who know something about non-Riemannian hypersquares, but
one of them is on sabbatical, and the otheris much moreinterested in non-
Eulerian semirings. He goes to conferences, and on summervisits to col-
leagues, to meet people whotalk his language, who can appreciate his work
and whoserecognition, approval, and admiration are the only meaningful
rewards he can ever hopefor.
At the conferences, the principaltopic is usually “‘the decision problem’’

(or perhaps ‘‘the construction problem”’ or ‘“‘the classification problem’’)for non-Riemannian hypersquares. This problem wasfirst stated by Pro-
fessor Nameless, the founder of the theory of non-Riemannian hypersquares.It is important because Professor Namelessstated it and gave a partial solu-tion which, unfortunately, no one but Professor Nameless wasever able tounderstand. Since Professor Nameless’ day, all the best non-Riemannianhypersquarers have worked on the problem, obtaining manypartialresults.
Thus the problem has acquired great prestige.
Our hero often dreams he has solved it. He has twice convinced himselfduring waking hoursthat he had solved it but, both times, a gapin his reason-ing was discovered by other non-Riemannian devotees, and the problem re-mains open. In the meantime, he continues to discover new and interestingfacts about the non-Riemannian hypersquares. Tohis fellow experts, he com-municates these results in a casual Shorthand. “‘If you apply a tangentialmollifier to the left quasi-martingale, you can get an estimate better thanquadratic, so the convergencein the Bergstein theorem turns out to be of theSame order as the degree of approximation in the Steinberg theorem.’’
This breezy style is not to be found in his published writings. There hepiles up formalism on top of formalism. Three pages of definitions are fol-lowed by seven lemmas and, finally, a theorem whose hypothesestake halfa page to state, while its proof reduces essentially to ‘‘Apply Lemmas1-7 todefinitions A-H.”’
His writing follows an unbreakable convention: to conceal any sign that theauthoror the intended readeris a humanbeing.It gives the impression that,from the stated definitions, the desired results follow infallibly by a purelymechanical procedure. In fact, no computing machine has ever been built thatcould accepthis definitions as inputs. To read his proofs, one must be privy toa whole subculture of motivations, standard arguments and examples,habitsof thought and agreed-upon modes of reasoning. The intended readers (alltwelve of them) can decodethe formal presentation, detect the new idea hid-den inlemma4,ignore the routine and uninteresting calculations oflemmas1,2, 3, 5, 6, 7, and see what the authoris doing and whyhe doesit. But for thenoninitiate, this is a cipher that will neveryield its secret. If (heaven forbid)the fraternity of non-Riemannian hypersquares should ever die out, ourhero’s writings would becomeless translatable than those of the Maya.Thedifficulties of communication emerged vividly when the ideal mathe-matician [IM]received

a

visit from a public information officer [PIO] of theUniversity.
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PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

IM:

PIO:

PHILIP J. DAVIS AND REUBEN HERSH

I appreciate your taking time to talk to me. Mathematics was

always my worst subject.

That’s O.K. You’ve got your job to do.

I was given the assignment of writing a press release about the

renewal of your grant. The usual thing would be a one-sentence

item, ‘‘Professor X received a grant of Y dollars to continue his

research on the decision problem for non-Riemannian hyper-

squares.’’ But I thought it would be a good challenge for me to

try and give people a better idea about what your workreally in-

volves. First of all, what is a hypersquare?

I hate to say this, but the truth is, if I told you whatit 1s, you would

think I was trying to put you down and make you feel stupid.

The definition is really somewhat technical, and it just wouldn’t

mean anything at all to most people.

Would it be something engineers or physicists would know about?

No. Well, maybe a few theoretical physicists. Very few.

Even if you can’t give me the real definition, can’t you give me

someidea of the general nature and purpose of your work?

All right, I’ll try. Consider a smooth function | on a measure space 0

taking its value in a sheaf of germs equipped with a convergence

structure of saturated type. In the simplest case...

Perhaps I’m asking the wrong questions. Can you tell me something

about the applications of your research ?

Applications ?

Yes, applications.

I’ve been told that some attempts have been made to use non-

Riemannian hypersquares as models for elementary particles in

nuclear physics. I don’t know if any progress was made.

Have there been any major breakthroughs recently in your area?

Any exciting new results that people are talking about?

Sure, there’s the Steinberg-Bergstein paper. That’s the biggest ad-

vance in at least five years.

What did they do?

I can’t tell you.

I see. Do you feel there is adequate support in research in your

field?

Adequate? It’s hardly lip service. Someof the best young people in

the field are being denied research support. I have no doubt that

with extra support we could be making much more rapid prog-

ress on the decision problem.

Do you see any way that the work in your area could lead to

anything that would be understandable to the ordinary citizen of

this country?

No.

How about engineers or scientists ?

I doubt it very much.

Among pure mathematicians, would the majority be interested in

or acquainted with your work?
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IM:

PIO:

IM:

PIO:

IM:
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No, it would be a small minority.
Is there anythingat all that you would like to say about your work?
Just the usual one sentencewill be fine.
Don’t you wantthe public to sympathize with your work and sup-

port it?

Sure, but not if it means debasing myself.
Debasing yourself?
Getting involved in public relations gimmicks, that sort of thing.
I see. Well, thanks again for your time.
That’s O.K. You’ve got a job to do.

Well, a public relations officer. What can one expect? Let’s see how our
ideal mathematician made out with a student [S] who cameto him with a
Strange question.

S:

IM:

S:

IM:

S:

IM:

IM:

IM:

Sir, what is a mathematical proof?
You don’t know that? Whatyear are you in?
Third-year graduate.
Incredible! A proof is what you’ve been watching me doat the board

three times a week for three years! That’s what a proofis.
Sorry, sir, I should have explained. I’m in philosophy, not math.

I’ve never taken your course.
Oh! Well, in that case—you have taken some math, haven’t you?
You knowthe proof of the fundamental theorem of calculus—or
the fundamental theorem of algebra?

I’ve seen argumentsin geometry and algebra and calculus that were
called proofs. What I’m asking you forisn’t examples of proof,
it’s a definition of proof. Otherwise, how can I tell what ex-
amples are correct?

Well, this whole thing was cleared up by the logician Tarski, I
guess, and someothers, maybe Russell or Peano. Anyhow, what
you dois, you write down the axioms of your theory in a formal
language with a givenlist of symbols or alphabet. Then you write
down the hypothesis of your theorem in the same symbolism.
Then you showthat you can transform the hypothesis step by step,
using the rules oflogic,till you get the conclusion. That’s a proof.

Really? That’s amazing! I’ve taken elementary and advanced cal-
culus, basic algebra, and topology, and I’ve never seen that done.

Oh, of course no one every really does it. It would take forever!
You just show that you could doit, that’s sufficient.

But even that doesn’t sound like what was donein mycourses and
textbooks. So mathematicians don’t really do proofs, afterall.Of course we do! If a theorem isn’t proved,it’s nothing.

Then whatis a proof?Ifit’s this thing with a formal language andtransforming formulas, nobody ever proves anything. Do youhave to knowall about forma] languages and formal logic before
you can do a mathematical proof?

Of course not! Theless you know,the better. Thatstuff is all ab-Stract nonsense anyway.
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S: Then really what is a proof?

IM: Well, it’s an argument that convinces someone who knowsthe sub-

ject.

S: Someone who knowsthe subject? Then the definition of proofis

subjective; it depends on particular persons. Before I can decide

if something is a proof, I have to decide who the experts are.

Whatdoes that have to do with proving things?

IM: No, no. There’s nothing subjective about it! Everybody knows

what a proofis. Just read some books, take courses from a com-

petent mathematician, and you’ll catch on.

S: Are you sure?

IM: Well—it is possible that you won’t, if you don’t have any aptitude

for it. That can happen, too.

S: Then you decide what a proof is, and if I don’t learn to decide in

the same way, you decide I don’t have any aptitude.

IM: If not me, then who?

Then the ideal mathematician met a positivist philosopher [PP].

PP: This Platonism of yours is rather incredible. The silliest under-

graduate knows enoughnotto multiply entities, and here you’ve

got not just a handful, you’ve got them in uncountable infinites!

And nobody knowsabout them but you and your pals! Who do

you think you’re kidding?

IM: I’m notinterested in philosophy, I’m a mathematician.

PP: You’re as bad as that character in Moliére who didn’t know he was

talking prose. You’ve been committing philosophical nonsense

with your ‘‘rigorous proofs of existence.’’ Don’t you know that

what exists has to be observed, or at least observable?

IM: Look, I don’t have time to get into philosophical controversies.

Frankly, I doubt that you people know what you’re talking

about; otherwise you could state it in a precise form so that I

could understandit and check your argument. Asfar as my being

a Platonist, that’s just a handy figure of speech. I never thought

hypersquares existed. WhenI say they do,all I mean is that the

axioms for a hypersquare possess 4 model. In other words, no

formal contradiction can be deduced from them, and so,in the

normal mathematical fashion, we are free to postulate their ex-

istence. The whole thing doesn’t really mean anything,it’s just a

game,like chess, that we play with axioms and rules of inference.

PP: Well, I didn’t mean to be too hard on you.I’m sure it helps you in

your research to imagine you’re talking about somethingreal.

IM: I’m nota philosopher, philosophy bores me. You argue, argue and

never get anywhere. My job is to prove theorems, not to worry

about what they mean.

The ideal mathematician feels prepared, if the occasion should arise, to

meet an extragalactic intelligence. His first effort to communicate would
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be to write down(or otherwise transmit) the first few hundred digits in the
binary expansion of pi. He regards it as obvious that any intelligence
capable of intergalactic communication would be mathematical and thatit
makes sense to talk about mathematical intelligence apart from the
thoughts and actions of human beings. Moreover, he regardsit as obvious
that binary representation and the real number pi are both part of the in-
trinsic order of the universe.

Hewill admit that neither of them is a natural object, but he will insist
that they are discovered, not invented. Their discovery, in something like
the form in which we know them, is inevitable if onerises far enough above
the primordial slime to communicate with other galaxies (or even with other
solar systems).
The following dialogue once took place between the ideal mathematician

and a skeptical classicist [SC].

SC: You believe in your numbers and curves just as Christian mission-
aries believed in their crucifixes. If a missionary had goneto the
moon in 1500, he would have been waving his crucifix to show
the moon-men that he was a Christian, and expecting them to
have their own symbolto waveback.! You’re even more arrogant
about your expansionofpi.

IM: Arrogant? It’s been checked and rechecked, to 100,000 places!
SC: I’ve seen howlittle you have to say even to an American mathema-

tician who doesn’t know your game with hypersquares. You
don’t get to first base trying to communicate with a theoretical
physicist; you can’t read his Papers any more than he can read
yours. The research papers in your ownfield written before 1910
are as dead to you as Tutankhamen’s will. Whatreason in the
world is there to think that you could communicate with an ex-
tragalactic intelligence?

IM: If not me, then who else?
SC: Anybody else! Wouldn’t life and death, love and hate, joy and de-

Spair be messages more likely to be universal than a dry pedantic
formula that nobody but you and a few hundred of your type will
know from a hen-scratch in a farmyard?

IM: Thereason that my formulas are appropriate for intergalactic com-
munication is the same reason they are not very suitable for ter-
restrial communication. Their contentis not earthbound.It is
free of the specifically human.

SC: I don’t suppose the missionary would have said quite that abouthis
crucifix, but probably something rather close, and certainly no
less absurd andpretentious.

The foregoing sketches are not meantto be malicious; indeed, they wouldapply to the present authors. Butit is a too obvious and therefore easily for-gotten fact that mathematical work, which, no doubt as a result of longfamiliarity, the mathematician takes for granted, isa mysterious, almostin-explicable phenomenon from the point of view of the outsider. In this case,
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the outsider could be a layman,a fellow academic, or even a Scientist who

uses mathematics in his own work. .

The mathematician usually assumes that his own view of himself is the

only one that need be considered. Would weallow the same claim to any

other esoteric fraternity? Or would a dispassionate description of its ac-

tivities by an observant, informed outsider be morereliable than that of a

participant who may be incapable of noticing, not to say questioning, the

beliefs of his coterie?

Mathematicians know that they are studying an objective reality. To an

outsider, they seem to be engaged in an esoteric communion with them-

selves and a small clique of friends. How could we as mathematicians prove

to a skeptical outsider that our theorems have meaning in the world outside

our own fraternity?

If such a person accepts our discipline, and goes through two or three

years of graduate study in mathematics, he absorbs our way of thinking,

andis no longerthecritical outsider he once was. In the same way,a critic

of Scientology who underwentseveral years of ‘‘study’’ under ‘‘recognized

authorities’? in Scientology might well emerge a believer instead ofa critic.

If the student is unable to absorb our way of thinking, we flunk him out,

of course. If he gets through our obstacle course and then decides that our

arguments are unclear or incorrect, we dismiss him as a crank, crackpot, or

misfit.

Of course, none of this proves that we are not correct in our self-percep-

tion that we have a reliable method for discovering objective truths. But we

must pause to realize that, outside our coterie, much of what we do is in-

comprehensible. There is no way we could convince a self-confident skeptic

that the things we are talking about makesense, let alone ‘‘exist.”’

NOTE

1. Cf. the description of Coronado’s expedition to Cibola, in 1540: « . . there

were about eighty horsemenin the vanguard besides twenty-five or thirty foot anda

large numberof Indian allies. In the party went all the priests, since none of them

wished to remain behind with the army. It was their part to deal with the friendly In-

dians whom they might encounter, and they especially were bearers of the Cross, a

symbol which . . . had already cometo exert an influence over the natives on the

way’’ (H.E. Bolton, Coronado, University of New Mexico Press, 1949).



The Evolution of Mathematical Practice

RAYMOND WILDER

The Cultural Basis of Mathematics

Raymond Wilder, an accomplished mathematician, was oneofthefirstpeople to appreciate howattention to mathematical practice could further ourunderstanding of mathematics. For over three decades, he has been working todescribe mathematics as an evolving cultural system. His work had been largelyignored by most philosophers who,after all, were committed to some form offoundationalism. It was only after they began to question foundations and tomove towards quasi-empiricism that Philosophers could appreciate the philosophicalsignificance of Wilder’s ideas. Once weattend to mathematical practice, we canrecognize that like any other sophisticated human activity it is a cultural product.Mathematical practice, subject to internal pressures and to external pressures,isconstantly evolving. Some of our Philosophical perplexities can be answered,Wilderrealized, by learning how mathematics changes; howit came to be whatitis today, given what it was in the past.
Such an approach to philosophical understanding is sometimescalledevolutionary epistemology. A central project of evolutionary epistemologyis tounderstand how mathematica] knowledge improves or grows. This view standsinsharp contrast to foundationalism whosecentral epistemological projectis tojustify mathematical knowledge once and for all, starting from scratch. Afoundationalist is forced to divide mathematical developmentinto two basicperiods; that preceding and that following the discovery of foundations. Duringthe pre-foundational period, mathematicians work gropingly towards the truthwith questionable methods. After the discovery of foundations, mathematicsdevelops moreorless automatically, by accumulating rigorously proved theorems.There is no room for interesting evolution in mathematics.

In ‘‘The Cultural Basis of Mathematics,’’ Wilder develops the idea thatmathematics is, in part, a cultura] product. Hetries to apply to it the methods ofthe social sciences, especially anthropology, sociology andhistory. Mathematicalknowledge comesto be seen as a collective possession, that is, as essentiallypublic knowledge.It is the development and communication of this publica
Reprinted from Vol. I, PROCEEDINGS OF THE INTERNATIONAL CONGRESSOF MATHEMATICIANS, 1950, pp. 258-271.
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knowledgethat is the focus of Wilder’s cultural approach. Thehistory of

mathematics comes to the foreground as a topic of interest. To repeat a point

made by Wang, however, it is not history as a record of particular episodes but

as a more conceptual record of landmarks that is relevant.

In later works Wilder has developed detailed suggestions for characterizing the

conceptual evolution of mathematics. In this early essay (published first in 1950), he is

concerned to portray mathematics as subject to the generalprinciples of cultural

evolution. The essay stresses the more general kindsof influence that its cultural

setting can have on mathematics. It does not address the internal factors that we find

at work in mathematical evolution. Other essaysin this section take up the slack, as

does Wilder himself in his excellent monograph, Mathematics As a Cultural System. !

NOTE

1. Mathematics as a Cultural System, Pergamon Press, Oxford (1981).

I presumethat it is not inappropriate, on the occasion of an In-

ternational Mathematical Congress which comesat the half-century mark,to

devote a little time to a consideration of mathematics as a whole. The ad-

dresses and papers to be given in the various conferences and sectional

meetings will in general be concerned with special fields or branches of

mathematics. It is the aim of the present remarks to get outside mathematics,

as it were, in the hopeof attaining a new perspective. Mathematics has been

studied extensively from the abstract philosophical viewpoint, and some

benefits have accrued to mathematics from such studies—although generally

the working mathematicianis inclined to look upon philosophical speculation

with suspicion. A growing number of mathematicians have been devoting

thought to the Foundations of Mathematics, many of them men whose con-

tributions to mathematics have won them respect. The varying degrees of

dogmatism with which some of these have cometo regard their theories, as

well as the sometimes acrimonious debates which have occurred between

holders of conflicting theories, makes one wonderif there is not some vantage

point from which one can view such matters more dispassionately.

It has become commonplace today to say that mankindis in its present

‘‘deplorable’’ state because it has devoted so muchofits energy to technical

skills and so little to the study of man itself. Early in his civilized career,

man studied astronomy and the other physical sciences, along with the

mathematics these subjects suggested; but in regard to such subjects as

anatomy, for example, it was not easy for him to be objective. Man himself,

it seemed, should be considered untouchableso far as his private person was

concerned.It is virtually only within our ownera that the study of the even

more personal subjects, such as psychology, has become moderately re-

spectable! But in the study of the behavior of man en masse, we have made

little progress. This is evidently due to a variety of reasons such as (1) in-

ability to distinguish between group behavior and individual behavior, and

(2) the fact that although the average person may grudgingly give in to being

cut open by a surgeon, or analyzed by a psychiatrist, those group institu-
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tions which determine his System of values, such as nation, church,clubs,etc., are still considered untouchable.
Fortunately, just as the body of the executed criminal ultimately becameavailable to the anatomist, so the ‘primitive’ tribes of Australia, the Pa-cific Islands, Africa, and the United States, becameavailable to the anthro-pologist. Using methods that have now become so impersonal and objectiveas to merit its being classed among the natural sciences rather than withsuch social studies as history, anthropology has made great advances withinthe past 50 years in the Study of the group behavior of mankind. Its devel-opmentof the culture concept and investigation of cultural forces will, per-haps, rank amongthe greatest achievements of the human mind, and de-spite opposition, application ofthe concept has madestridesin recent years.Not only are psychologists, psychiatrists, and sociologists applying it, butgovernments that seek to extend their control over alien peoples have recog-nized it. Manifold human suffering has resulted from ignorance of the con-cept, both in the treatment of colonial peoples, and in the handling of theAmerican Indian, for example.
Now I am notgoingto offer the culture concept as an antidote forall theills that beset mathematics. But I do believe that only by recognition of thecultural basis of mathematics will a better understanding ofits nature beachieved; moreover, light can be thrown on various problems, particularlythose of the Foundations of Mathematics. I don’t mean that it can solvethese problems, but thatit can point the way to solutionsas well as show thekinds of solutions that may be expected. In addition, many things that wehave believed, and attributed to some kind of vague “‘intuition,’’ acquire areal validity on the cultural basis.
For the sake of completeness, I shall begin with a rough explanation of theconcept. (For a more adequate exposition, see [10; Chap. 7] and [18].* Ob-viously it has nothing to do with culture spelled with a ‘*K’’, or with degreesfrom the best universities or inclusion in the “‘best’’ social circles. A culture isthe collection of customs,rituals, beliefs, tools, mores, etc., which we maycall cultural elements, possessed by a group of people, such as a primitivetribe or the people of North America. Generally it is not a fixed thing butchanging with the course of time, forming what can becalled a “‘culturestream.’’ It is handed down from one generation to another, constituting aseemingly living body oftradition often more dictatorial in its hold thanHitler was over Nazi Germany; in some primitive tribes virtually every act,even such ordinary ones as eating and dressing, are governed by ritual. Manyanthropologists have thought of a culture as a super-organic entity, havinglaws of developmentallits own, and most anthropologists seem in practice totreat a culture as a thing in itself, without necessarily referring (exceptfor cer-tain purposes) to the group or individuals possessing it.

We“‘civilized’’ people rarely think of how much we are dominatedby ourcultures—wetake so muchof our behavioras ‘‘natural.’’ But if you were toPropose to the average American male that he should wear earrings, you

*References in brackets are to the bibliography at the end of the paper. Thefirstnumberin a bracketrefers to the corresponding numberin the bibliography,the sec-ond numberto pages, chapter, or volume of the work indicated.
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might, as you picked yourself off the ground,reflect on the reason for the

blow that you have just sustained. Was it because he decided at some pre-

vious date that every time someone suggested wearing earrings to him he

would respond with a punch to the nose? Of course not. It was decided for

him and imposed on him by the American culture, so that what he did was,

he would say, the ‘‘natural thing to do.’? However, there are societies such

as Navajo, Pueblo, and certain Amazon tribes, for instance, in which the

wearing of earrings by the males is the ‘‘natural thing to do.’” What we call

‘chuman nature’’ is virtually nothing but a collection of such culturetraits.

Whatis ‘‘human nature’ for a Navajo is distinctly different from whatIs

‘‘human nature’’ for a Hottentot.

As mathematicians, we share a certain portion of our cultures which is

called ‘‘mathematical.’’ We are influenced by it, and in turn we influence it.

As individuals we assimilate parts of it, our contacts with it being through

teachers, journals, books, meetings such asthis, and our colleagues. We

contribute to its growth the results of our individual syntheses of the por-

tions that we have assimilated.

Nowto look at mathematics as a cultural element is not new. Anthropolo-

gists have doneso, but as their knowledge of mathematicsis generally very lim-

ited, their reactions have ordinarily consisted of scattered remarks concerning

the types of arithmetic found in primitive cultures. An exception is an article

[17] which appeared aboutthree years ago, by the anthropologist L.A. White,

entitled The locus ofmathematicalreality, which wa
s inspired by the seemingly

conflicting notions of the nature ofmat
hematics as expressed by various mathe-

maticians and philosophers. Thus, there is the belief expressed by G.H. Hardy

[8; pp. 63-64] that° ‘mathematicalreality lies outside us, and that our function

is to discover or observeit, and that the theorems which we prove, and which we

describe grandiloquently as our ‘creations’ are simply ournotes of our observa-

tions.’? On the other hand there is the point of view expressed by P.W. Bridg-

man [3; p. 60] that “‘it is the merest truism, evident at once to unsophisticated

observation, that mathematics is a human invention.” Although these

statements seem irreconcilable, suchis not the case whenthey are suitably inter-

preted. For insofar as our mathematicsis a part of our culture, it is, as Hardy

says, ‘‘outside us.”’ Andinsofar as a culture cannot exist except as the product

of human minds, mathematics is, as Bridgmanstates, a ‘Chuman invention.”’

As a body of knowledge, mathematics is not something I know, you

know, or any individual knows: It is a part of our culture, our collective

possession. We may even forget, with the passing of time, some of our own

individual contributionstoit, but these may remain, despite our forgetful-

ness, in the culture stream. As in the case of many other cultural elements,

we are taught mathematics from the time when we are able to speak, and

from the first we are impressed with what we call its ‘‘absolute truth.’’ It

comes to have the same significance and type of reality, perhaps, as their

system of gods and rituals has for a primitive people. Such would seem to be

the case of Hermite, for example, who according to Hadamard [7; p. xii]

said, ‘‘Weare rather servants than masters in Mathematics;’’ and who said

[6; p. 449] in a letter to KOnigsberger, ‘“‘—these notions of analysis have

their existence apart from us—they constitute a whole of which only a part
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is revealed to us, incontestably although mysteriously associated with thatother totality of things which weperceive by way ofthe senses.”’ EvidentlyHermite sensed the impelling influence of the culture stream to which hecontributed so much!
In his famous work Der Untergang des Abendlandes [15], O. Spenglerdiscussed at considerable length the nature of mathematics andits impor-tance in his organic theory of cultures. And under the influence ofthis work,C.J. Keyser published [9] some views concerning Mathematics as a CultureClue, constituting an exposition and defense of the thesis that ‘‘The type ofmathematics found in any major Culture is a clue, or key, to the distinctivecharacter of the Culture taken as a whole.” Insofar as mathematics is a partof and is influenced by the culture in whichit is found, one may expect tofind somesort of relationship between the two. As to how good a “*key’’ itfurnishes to a culture, however, I shall express no opinion; this is really aquestion for an anthropologist to answer. Since the culture dominates itselements, andin particularits mathematics, it would appearthat for mathe-maticians it would be more fruitful to study the relationship from this pointof view.

Let us look for a few minutes at the history of mathematics. | confess Iknow verylittle about it, since I am not a historian. I should think, how-ever, that in writing a history of mathematics the historian would be con-Stantly faced with the question of what sort of material to include. In orderto makea clearercase, let us suppose that a hypothetical person, A, sets outto write a complete history, desiring to include all available material on the““history of mathematics.”’ Obviously, he will have to accept some materialand reject other material. It seemsclear thathis criterion for choice mustbebased on knowledge of what constitutes mathematics! If by this we mean adefinition of mathematics, of course his task is hopeless. Manydefinitionshave been given, but none has been chosen; Judging bytheir number,it usedto be expected of every self-respecting mathematician that he would leave adefinition of mathematics to posterity! Consequently our hypotheticalmathematician A will be guided, I imagine, by whatis called *‘mathematics”’in his culture, both in existing (previously written) histories and in workscalled ‘“‘mathematical,”’ as well as by whatsort of thing people whoarecalled“‘mathematicians’’ publish. Hewill, then, recognize what we have alreadyStated, that mathematicsis a certain part of his culture, and will be guidedthereby.
For example, Suppose A were a Chinese historian living about the year1200 (S00 or 1500 would do as well). He would include a great deal aboutcomputing with numbers and solving equations; but there wouldn’t be anygeometry as the Greek understoodit in his history, simply becauseit hadnever been integrated with the mathematics of his culture. On the otherhand, if A were a Greek of 200 a.p., his history of mathematics would bereplete with geometry, but there would belittle of algebra or even of com-puting with numbers as the Chinese practiced it. Butif A were one of ourcontemporaries, he would include both geometry and algebra because bothare part of what wecal] mathematics. I wonder what he would do aboutlogic, however?
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Here is a subject which, despite the dependence of the Greeks on logical

deduction, and despite the fact that mathematicians, such as Leibnitz and

Pascal, have devoted considerable time to it on its own merits, has been given

very little space in histories of mathematics. As an experiment, I looked in two

histories that have been popular in this country; Ball’s [1] and Cajori’s [5],

both written shortly before 1900. In the index of Ball’s first edition (1888)

there is no mention of ‘‘logic;’’ but in the fourth edition (1908) ‘‘symbolic and

mathematical logic’’ is mentioned with a single citation, which proved to bea

reference to an incidental remark about George Boole to the effect that he

‘“was one of the creators of symbolic or mathematical logic.’’ Thus symbolic

logic barely squeezed underthe line because Boole was a mathematician! The

index of Cajori’s first edition (1893) contains four citations under ‘‘logic’’, all

referring to incidental remarksin the text. None of these citations is repeated

in the second edition. (1919), whose index has only three citations under

‘logic’? (two of which also constitute the sole citations under ‘‘symbolic

logic’’), again referring only to brief remarksin the text. Inspection of the text,

however, reveals nearly four pages (407-410) of material under the title

‘sMathematicallogic,”’ although there is no citation to this subject in the index

noris it cited under‘‘logic’’ or ‘““symbolic logic.’’ (it is as though the subject

had, by 1919, achieved enough importance for inclusion as textual material in

a history of mathematics although notfor citation in the index!)

I doubtif a like situation could prevail in a history of mathematics which

covers the past 50 years! The only such history that covers this period, that I

am acquainted with, is Bell’s Development of Mathematics [2]. Turning to

the index of this book, I found so manycitations to ‘logic’ that I did not

care to count them. In particular, Bell devotes at least 25 pages to the de-

velopment of what he calls ‘‘mathematical logic.’’ Can there be any possible

doubt that this subject, not considered part of mathematics in our culture in

1900, despite the pioneering work of Peano and his colleagues, is now in

such ‘‘good standing”’ that any impartial definition of mathematics must be

broad enoughto include it?

Despite the tendency to approach the history of mathematics from the

biographical standpoint, there has usually existed some awareness of the

impact of cultural forces. For example, in commencing his chapter on

Renaissance mathematics, Ball points out the influence of the introduction

of the printing press. In the latest histories, namely the work of Bell already

cited, and Struik’s excellent little two volume work [16], the evidence is

especially strong. For example, in his introduction, Struik expresses regret

that space limitations prevented sufficient ‘‘reference to the general cultural

and sociological atmosphere in which the mathematics of a period matured

__or wasstifled.’’ And he goes on to say ‘‘Mathematics has been influenced

by agriculture, commerce and manufacture, by warfare, engineering and

philosophy, by physics and by astronomy. The influence of hydrodynamics

on function theory, of Kantianism and of surveying on geometry, of elec-

tromagnetism on differential equations, of Cartesianism on mechanics, and

of scholasticism on the calculus could only be indicated [in his book];—yet

an understanding of the course and content of mathematics can be reached

only if all these determining factors are taken into consideration.”’ In his
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third chapter Struik gives a revealing account oftherise of Hellenistic mathe-matics, relating it to the cultural conditions then prevailing. I hope thatfuture histories of mathematics wil] similarly give moreattention to mathe-matics as a cultural element, placing greater emphasis onits relations to thecultures in which it is imbedded.
In discussing the general culture concept, I did not mention the two majorprocesses of cultural change, evolution and diffusion. By diffusion is meantthe transmission of a culturaltrait from one cultureto another, as a resultof some kind of contact between groups of people; for example, the diffu-sion of French language and customsinto the Anglo-Saxonculture follow-ing the Norman conquest. As to how much of whatwecall cultural progressis due to evolution and how much to diffusion, or to a combination of both,is usually difficult to determine, since the two processes tend so much tomerge. Consider, for example, the counting process. This is what the an-thropologist calls a universal trait—what I would prefer to call, in talking tomathematicians, a cultural invariant—it is found in every culturein at leasta rudimentary form. The “‘base’’ maybe 10, 12, 20, 25, 60—all of these arecommon, and are evidently determined by other (variable) culture ele-ments—but the counting processin its essence, as the Intuitionist speaks ofit, is invariant. If we consider more advancedcultures, the notion of a zeroelement sometimes appears. As pointed out by the anthropologist A.L.Kroeber, whoin his Anthropology calls it a ‘“‘milestone of civilization,” asymbolfor zero evolved in the cultures of at least three peoples; the Neo-Babylonian (who used a sexagesimal system), the Mayan (who used avigesimal system), and the Hindu (from whom our decimal System is de-rived) [10; pp. 468-472]. Attempts by the extreme‘‘diffusionists”’ to relatethese have not yet been successful, and until they are, we can surmise thatthe concept of zero might ultimately evolve in any culture.

The Chinese-Japanese mathematics is of interest here. Evidently, aspointed out by Mikami [13] and others, the Chinese borrowed the zero con-cept from the Hindus, with whom they established contactat least as earlyas the first century, a.p. Here we have an exampleofits introduction bydif-fusion, but without such contacts, the zero would probably have evolved inChinese mathematics, especially since calculators of the rod type wereemployed. The Chinese mathematicsis also interesting from another Stand-pointin thatits development seems to have been so much due to evolutionwithin its own culture and su little affected by diffusion. Throughthe cen-turies it developed along slender arithmetic and algebraic lines, with no hintof geometry as the Greeks developed it. Those who feel that without thebenefit of diffusion a culture will eventually stagnate find some evidenceperhapsin the delight with which Japanese mathematicians ofthe 17th and18th centuries, to whom the Chinese mathematics had come bythe diffu-sion process, solved equations of degrees as high as 3000 or 4000. Oneistempted to speculate what might have happenedif the Babylonian zero andmethod of position had been integrated with the Greek mathematics—wouldit have meant that Greek mathematics might have taken an algebraic turn?Its introduction into the Chinese mathematics certainly was not productive,Other than in the slight impetusit gave an already computational tendency.
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That the Greek mathematics was a natural concomitant of the other

elements in Greek culture, as well as a natural result of the evolution and

diffusion processes that had produced this culture in the Asia Minorarea,

has been generally recognized. Not only was the Greek culture conducive to

the type of mathematics that evolved in Greece, butit is probable that it re-

sisted integration with the Babylonian method of enumeration. For if the

latter became knownto certain Greek scholars, as some seem to think, its

value could not have been apparent to the Greeks.

Weare familiar with the manner in which the Hindu-Arabic mathematical

cultures diffused via Africa to Spain and then into the Western European

cultures. What had become stagnant came to life—analytic geometry ap-

peared, calculus—and the flood was on. The mathematical cultural devel-

opmentof these times would be a fascinating study, and awaits the cultural

historian who will undertakeit. The easy explanation that a number of

‘‘supermen’’ suddenly appeared on the scene has been abandonedbyvirtu-

ally all anthropologists. A necessary condition for the emergence of the

‘‘sreat man’’ is the presence of suitable cultural environment, including op-

portunity, incentive, and materials. Who can doubt that potentially great

algebraists lived in Greece? But in Greece, although the opportunity andin-

centive may have been present, the cultural materials did not contain the

proper symbolic apparatus. The anthropologist Ralph Linton remarked

[12; p. 319] “‘The mathematical genius can only carry on from the point

which mathematical knowledge within his culture has already reached. Thus

if Einstein had been born into a primitive tribe which was unable to count

beyond three, life-long application to mathematics probably would not

have carried him beyond the development of a decimal system based on

fingers and toes.”’ Furthermore, the evidence points strongly to the suffi-

ciency of the conditions stated: Thatis, suitable cultural environment is suf-

ficient for the emergence of the great man. If your philosophy depends on

the assumption of free will, you can probably adjust to this. For certainly

yourwill is no freer than the opportunity to express it; you maywill a trip to

the moon this evening, but you won’t make it. There may be potentially

great blancophrenologists sitting right in this room, but if so they are des-

tined to go unnoticed and undeveloped because blancophrenologyis not yet

one of our cultural elements.

Spenglerstates it this way (15tr; vol. II, p. 507]: ‘“We have not the free-

dom to reach to this or to that, but the freedom to do the necessary OF to do

nothing. And a task that historic necessity has set will be accomplished with

the individual or against him.’? As a matter of fact, when a culture or

cultural element has developed to the point where it is ready for an impor-

tant innovation, the latter is likely to emerge in more than one spot. A

classical example is that of the theory of biological evolution, which had

been anticipated by Spencer and, had it not been announced by Darwin,

was ready to be announced by Wallace and soon thereafter by others. And

as in this case, so in most other cases,—and you can recall many such in

mathematics—onecan after the fact usually go back and map out the evolu-

tion of the theory by its traces in the writings of men in the field.
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Whyare so many giving their lives to mathematics today; why have thepast 50 years been so productive mathematically? The mathematica]groundworklaid by our predecessors, the universities, societies, founda-tions, libraries, etc., have furnished unusual Opportunity, incentive, andcultural material. In addition, the processes of evolution anddiffusion havegreatly accelerated. Of the two,the latter seems to have played the greaterrole in the recent activity. For during the past 50 years there has been anexceptional amountof fusion of different branches of mathematics, as youwell know. A most unusual cultural factor affecting the development ofmathematics has been the emigration of eminent mathematicians from Ger-many, Poland, and other countries to the United States during the past 30years. Men whoseinterests had been in different branches of mathematicswere thrown together and discovered how to merge these branches to theirmutual benefit, and frequently new branches grew out of such meetings.The cultural history of mathematics during the past 50 years, taken inconjunction with that of mathematics in ancient Greece, China, andWestern Europe, furnishes convincing evidence that no branch of mathe-matics can pursue its course in isolation indefinitely, without ultimatelyreaching a static condition.
Of the instruments for diffusion in mathematics, noneis more important,probably, than the journals. Withoutsufficient outlet for the results of re-search, and proper distribution of the same, the progress of mathematicswill be severely hampered. And any movethat retards international contactsthrough the medium of journals, such asrestriction to languages not widelyread,is distinctly an anti-mathematicalact. Forit has becomea truism thattoday mathematicsis international.
This brings us to a consideration of symbols. For the so-called ‘‘Inter-national character’’ of mathematics is due in large measureto the standard-ization of symbolsthat it has achieved, thereby stimulating diffusion. With-out a symbolic apparatusto convey ourideas to one another, and to pass onOurresults to future generations, there wouldn’t be any such thing as mathe-matics—indeed, there would be essentially no cultureat all, since, with thepossible exception of a few simple tools, culture is based on the use of sym-bols. A good case can be made for the thesis that manis to be distinguishedfrom other animals by the way in which heuses symbols [18; II]. Man pos-sesses what we mightcall symbolic initiative; that is, he assigns symbols tostand for objects or ideas, sets up relationships between them, and operateswith them as though they were physical objects. So far as we can tell, noOther animalhasthis faculty, although many animals do exhibit what wemightcall symbolic reflex behavior. Thus, a dog can be taught to lie downat the command “‘Lie down,”’ and of course to Pavlov’s dogs, the bellssignified food. In a recent issue of a certain popular magazine a psycholo-gist is portrayed teaching pigeons to procure food by pressing certain com-binations of colored buttons. All of these are examples of symbolic reflexbehavior—the animals do not create the symbols.

As an aspect of our culture that dependsso exclusively on symbols, aswell as the investigation of certain relationships between them, mathematics
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is probably the furthest from comprehension by the non-human animal.

However, much of our mathematical behavior that was originally of the

symbolic initiative type drops to the symbolic reflex level. This is apparently

a kind of labor-saving device set up by our neural systems.It is largely due

to this, I believe, that a considerable amount of what passes for ‘‘good”’

teaching in mathematics is of the symbolic reflex type, involving no use of

symbolic initiative. I refer of courseto the drill type of teaching which may

enable stupid John to geta required credit in mathematics but bores the

creative minded William to the extent that he comesto loathe the subject!

Whatessential difference is there between teaching a human animalto take

the square root of 2 and teaching a pigeon to punch certain combinationsof

colored buttons? Undoubtedly the symbolic reflex type of teachingis justi-

fied when the pupil is very young—closerto the so-called ‘‘animal’’ stage of

his development, as we say. But as he approaches maturity, more emphasis

should be placed onhis symbolic initiative. | am remindedhere of a certain

mathematician who seems to have an uncanny skill for discovering mathe-

matical talent among the undergraduatesathis university. But there is noth-

ing mysterious about this; he simply encourages them to use their symbolic

initiative. Let me recall parenthetically here what I said about the perennial

presence of potential “‘great men;’’ there is no reason to believe that this

teacher’s success is due to a preference for his university by the possessors

of mathematical talent, for they usually have no intention of becoming

mathematicians when they matriculate. It moves one to wonder how many

potentially great mathematicians are being constantly lost to mathematics

because of ‘“‘symbolic reflex’’ types of teaching.

I want to come now to a consideration of the Foundations of Mathemat-

ics. We have witnessed, during the past 50 years, what we might call the

most thorough soul-searching in the history of mathematics. By 1900, the

Burali-Forti contradiction had been found andthe Russell and other antin-

omies were soon to appear. The sequel is well known: Best knownarethe

attempt of Russell and Whitehead in their monumental Principia Mathe-

matica to show that mathematics can be founded, in a mannerfree of con-

tradiction, on the symbolically expressed principles and methods of what

were at the time considered universally valid logical concepts, the formula-

tion, chiefly at the hands of Brouwerandhis collaborators, of the tenets of

Intuitionism, which although furnishing a theory evidently free of contra-

diction, introduces a highly complicated set theory and a mathematics radi-

cally restricted as compared with the mathematics developed during the

19th century; and the formalization of mathematics by Hilbert and his col-

laborators, together with the development of a metamathematical proof

theory which it was hoped would lead to proofs of freedom from contra-

diction for a satisfactory portion, at least, of the classical mathematics.

None of these ‘foundations’? has met with complete success. Russell and

Whitehead’s theory of types had to be bolstered with an axiom which they

had to admit, in the second edition of Principia Mathematica, has only

pragmatic justification, and subsequent attempts by Chwistek, Wittgen-

stein, and Ramsey to eliminate or modify the use of this axiom generally led

to new objections. The restricted mathematics known as Intuitionism has
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wononly a small following, although someofits methods, such as those ofa finite constructive character, seem to parallel the methods underlying thetreatment of formal systemsin symbolic logic, and someofits tenets, es-pecially regarding constructive existence proofs, have found considerablefavor. The possibility of carrying out the Hilbert program seems highlydoubtful, in view of the investigations of Gédel and Others.
Nowthe cultural point of view is not advanced as a substitute for suchtheories. In mytitle I have used the word ‘‘basis”’ instead of ‘‘foundations”’in order to emphasize this point. But it seems probable that the recognition ofthe cultural basis of mathematics would clear the air in Foundation theoriesof most of the mystical and vague philosophical arguments which are offeredin their defense, as well as furnish a guide and motive for further research.The points of view underlying various attempts at Foundations of Mathe-matics are often hard to comprehend. In most cases it would seem thatthe proponents have decided in their own minds just what mathematics IS,andthatall they have to do is formulateit accordingly—overlooking entirelythe fact that because ofits cultura] basis, mathematics as they know it may benot at all what it will be a century hence. If the thought underlying theirendeavorsis that they will succeed in trapping the elusive beast and confiningit within bounds which it will never break, they are exceedingly optimistic. Ifthe culture concepttells us anything, it should teach us that the first rule forsetting up any Foundation theoryis that it should only attempt to encompassspecific portions of the field asitis knownin ourculture. At most, a Founda-tion theory should be considered as a kind of constitution with provision forfuture amendments. Andin view of the situation as regardssuch principles asthe choice axiom,for instance, it looks at present as though no such constitu-tion could be adopted by a unanimousvote!

I mentioned ‘‘mysticism and vague philosophical arguments”’ and theirelimination on the cultural basis. Consider, for example, the insistence ofIntuitionism that all mathematics should be founded on the natural num-bers or the counting process, and that the latter are “intuitively given.’There are plausible arguments to support the thesis that the natural num-bers should form the starting point for mathematics, but it is hard to under-stand just what “intuitively given’? means, or whytheclassical conceptionof the continuum, which the Intuitionist refuses to accept, should not beconsidered as ‘“intuitively given.’’ It makes one feel that the Intuitionist hastaken Kronecker’s much-quoted dictum that “‘The integers were made byGod, but all else is the work of man’’ and substituted ‘Intuition’? for‘““God.’’ However, if he would substitute for this vague psychological no-tion of ‘‘intuition’’ the viewpoint that inasmuch as the counting process is acultural invariant, it follows that the natural numbers form for everyculture the most basic part of what has been universally called ‘“mathemat-ics,’’ and should therefore serve as the starting point for every Foundationstheory; then I think he would have a much sounder argument. I confess thatI have not studied the question as to whether he can find further culturalsupport to meetall the objections of opponents of Intuitionism. It wouldseem, however, that he would have to drop his insistence that in construc-tion of sets (to quote Brouwer[4; p. 86]) ‘‘neither ordinary language nor
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any symbolic language can have any other role than that of serving aS a non-

mathematical auxiliary,’’ since no cultural trait on the abstract level of

mathematics can be constructed other than by the use of symbols. Further-

more, andthis is a serious objection, it appears to ignore the influence that

our language habits have on our modes of thought.

Or consider the thesis that all mathematics is derivable from what some

seem to regard as primitive or universal logical principles and methods.

Whence comesthis ‘‘primitive’’ or ‘universal?’ character ? If by these termsit

is meant to imply that these principles have a culturally invariant basis like

that of the counting process, then it should be pointed out that cultures exist in

which they do not have any validity, even in their qualitative non-symbolic

form. For example, in cultures which contain magical elements (and such

elements form an extremely important part of some primitive cultures), the

law of contradiction usually fails. Moreover, the belief that our forms of

thoughtare culturally invariantis no longer held. As eminent a philosopher as

John Stuart Mill stated,[14; p. 11], ‘<The principles andrules of grammarare

the means by which the formsof languageare madeto correspondwith the

universal formsof thought.”’ If Mill had been acquainted with other than the

Indo-European language group, he could not have made such an error. The

Trobriand Islanders, for example, lack a cause-and-effect pattern of thought;

their language embodies no mechanism for expressing a relationship between

events. As Malinowski pointed out [11; p. 360], these people have no concep-

tion of one event leading up to another, and chronological sequenceis unim-

portant. (Followers of Kant should note that they can count, however.) ButI

hardly need to belaborthe point. As Lukasciewicz and others have observed,

not even Aristotle gave to the law of the excluded middle the homagethatlater

logicians paid it! All I want to do in this connectionis to indicate that on the

cultural basis we find affirmation of whatis already finding universal accep-

tance among mathematical logicians, I believe; namely, that the significance

and validity of such materialas that in Principia Mathematica is only the same

as that of other purely formal systems.

It is probably fair to say that the Foundations of Mathematics as con-

ceived and currently investigated by the mathematical logicians finds great-

est support on the cultural basis. For inasmuch as there can exist, and have

existed, different cultures, different forms of thought, and hence different

mathematics, it seems impossible to consider mathematics, as I have already

indicated, other than man-made and having no more of the character of

necessity or truth than other cultural traits. Problems of mathematical ex-

istence, for example, can never be settled by appeal to any mathematical

dogma. Indeed, they have no validity except as related to special founda-

tions theories. The question as to the existence of choice sets, for instance,is

not the same for an Intuitionist as for a Formalist. The Intuitionist can

justifiably assert that ‘‘there is no such problem as the continuum problem’’

provided he adds the words ‘‘for an Intuitionist’’—otherwise heis talking

nonsense. Because of its cultural basis, there is no such thing as the absolute

in mathematics; there is only the relative.

But we must not be misled by these considerations and jumpto the con-

clusion that what constitutes mathematics in our cultureis purely arbitrary;
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that, for instance, it can be defined as the ‘science of p implies q’’, or thescience of axiomatic systems. Althoughthe individual personin the culturalgroup may have somedegree of variability allowed him,heis at the sametime subject to the dominanceofhis culture. The individual mathematiciancan play with postulational systems as he will, but unless and until they arerelated to the existing state of mathematics in his culture they will only beregarded as idiosyncrasies. Similar ties, not so obvious however, joinmathematics to other cultural elements. And these bonds, together withthose that tie each and every one of us to our separate mathematical inter-ests, cannot be ignored even if we will to do so. They mayexert their in-fluence quite openly, as in the case of those mathematicians who have re-cently been devoting their time to high speed computers, or to developingother new and unforeseen mathematics induced by the recent wartime de-mands of our culture. Or their influence may be hidden, as in the case ofcertain mathematical habits which were culturally induced and have reachedthe symbolic reflex level in our reactions. Thus, although the postulationalmethod mayturn outto be the most generally accepted mode of founding atheory, it must be used with discretion; otherwise the theories producedwillnot be mathematics in the sense that they will [not] be a part of the mathe-matical component of our culture.
Butit is time that I closed these remarks. It would be interesting to studyevidence in mathematics of Styles and of cultural patterns; these wouldprobably be interesting subjects of investigation for either the mathema-tician or the anthropologist, and could conceivably throw some light on theprobable future course of the field. I shall have to pass on, however, to abrief conclusion:
In man’s various cultures are found certain elements which are calledmathematical. In the earlier days of civilization, they varied greatly fromone culture to another so much so that what wascalled ‘mathematics’? inone culture would hardly be recognized as suchin certain others. With theincreasein diffusion due,first, to exploration and invention, and, secondly,to the increase in the use of suitable symbols and their subsequent stan-dardization and disseminationin journals, the mathematica] elements of themost advanced cultures gradually merged until, except for minor culturaldifferences like the emphasis on geometryin Italy, or on function theoryinFrance, there has resulted essentially one element, common to all civilizedcultures, known as mathematics. This is not a fixed entity, however, butissubject to constant change. Notall of the change represents accretion ofnew material; someofit is a shedding of material no longer, due to influen-tial cultural variations, considered mathematics. Some so-called **border-line’? work, for example, is difficult to place either in mathematics or out-side mathematics.

From the extension of the notion of numberto the transfinite, during thelatter half of the 19th century, there evolved certain contradictions aroundthe turn of the century, and as a consequence the study of Foundationsquestions, accompanied by a great developmentof mathematicallogic, hasincreased during the last 50 years. Insofar as the search for satisfactoryFoundation theories aimsat any absolutecriterion for truth in mathematics
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or fixation of mathematical method, it appears doomed to failure, since

recognition of the cultural basis of mathematics compels the realization ofits

variable and growing character. Like other culture traits, however, mathe-

matics is not a thoroughly arbitrary construction of the individual mathe-

matician, since the latter is restricted in his seemingly free creations by the

state of mathematicsandits directions of growth duringhis lifetime, it being

the latter that determines whatis considered ‘“‘important’’ at the given time.

In turn, the state and directions of growth of mathematics are determined

by the general complex of cultural forces both within and without mathe-

matics. Conspicuous among the forces operating from without during the

past 50 years have been the crises through which the cultures chiefly con-

cerned have been passing; these have brought about a large exodus of

mathematicians from Western Europe to the United States, thereby setting

up new contacts with resulting diffusion and interaction of mathematical

ideas, as well as in the institution of new directions or acceleration of direc-

tions already under way, such as in certain branches of applied mathematics.

Whatthe next 50 years will bring, 1 am not competentto predict.In his

Decline of the West, Spengler concluded [15tr; pp. 89-90] that in the notion

of group, Western ‘‘mathematic’’ had achieved its “last and conclusive cre-

ation,’’ and he closed his second chapter, entitled “The meaning of num-

bers,’’ with the words: ‘¢__the time of the great mathematicians is past. Our

tasks today are those of preserving, rounding off, refining, selection—in

place of big dynamic creation, the same clever detail-work which character-

ized the Alexandrian mathematic of late Hellenism.’’ This was published in

1918—32 years ago—andI leave it to your judgment whether he wasright

or not. It seems unlikely that the threatened division into two opposing

campsof those nations in which mathematical activity is chiefly centered at

present will be of long enough duration to set up two distinct mathematical

cultures—although in other fields, such as botany, such a division appears

to be under way. Nevertheless, as individual mathematicians we are just as

susceptible to cultural forces as are botanists, economists, or farmers, and

long separation in differing cultures can result in variations of personality

that cannot fail to be reflected in our mathematical behavior. Let us hope

that at the turn of the century 50 years hence, mathematics will be as active

and unique a cultural force as it is now, with that free dissemination of ideas

which is the chief determinant of growth andvitality.
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JUDITH V. GRABINER

Is Mathematical Truth

Time-Dependent ?

iF her essay, Grabiner echoes points made by Lakatos and Hersh. She
begins by speaking of errors discerned in the course of history and concludes with
a vision of mathematics as subject to ongoing revolution.

Mathematics grows in two ways: not only by successive increments, but also by
occasional revolution. Only if we accept the possibility of present error can we hopethat
the future will bring a fundamental improvementin our knowledge.

To be sure, foundationalists could acknowledgethe existence of past revolutions
in mathematics, but this was ancient history. Present mathematicsis supposedly
shielded from them by the Great Revolution, the solution to the crises and the
discovery of foundations. Grabiner, by contrast, suggests that the future will be
rather like the past, that revolutions are part of mathematical practice in the long
run. Thus, her thesis is very close to Thomas Kuhn’s theory that scientific
revolutions are a fundamental part ofscientific development. However, while
Kuhn exempted mathematics from his thesis Grabinerinsists:

Mathematics is not the unique science without revolutions. Rather mathematicsis that
area of humanactivity which has at once the least destructive andstill the most
fundamental revolutions.

The body ofheressay investigates a particular mathematical revolution,the shift
in standards of rigor between eighteenth- and ninteenth-century mathematicians’
approachesto the calculus. Herthesis is that the shift was due in part to a change of
attitudes (Kuhn speaks of world view) shaped by both internal and external factors
but played out in the arena of mathematics. Someofthe internal factors are widely
recognized: the need to avoid errors which became more pressing as mathematics
developed into more complex areas, the desire to generalize and unify results, and
the aspirations to Euclidean rigor. Less widely recognized is the changing economic
circumstances of mathematicians. Grabiner Suggests that mathematicians ceased to
be patronized by courts or to be independently wealthy and, in the main, cameto
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earn their living by teaching. Thus, teaching, particularly in a university setting,

came to be a main componentof mathematical practice and brought with it new

standards of mathematical explanation. This, Grabiner argues, was the final

catalyst in the change of attitudes.

Grabiner proceeds to show how some of the principles used by eighteenth-

century mathematicians were transformed by their successors. The principles at

issue were those dealing with approximations, both the actual approximation

procedures and the computation of error estimates. Wherethe eighteenth-century

mathematicians had assumed solutions without proof and had concentrated on

procedures for approximating those solutions, the nineteenth-century

mathematicians took these approximating procedures and built them into

existence proofs.
|

Of course, one case study, however suggestive, does not by itself ground

general conclusions. But it can exemplify a new approach to understand-

ing mathematics based on a judicious mixture of practice and theory, mathemat-

ical techniques and historical understanding. Grabiner’s essay does this very

well.

1 INTRODUCTION

Is mathematical truth time-dependent? Our immediate impulse is to answer

no. To be sure, we acknowledge that standards of truth in the natural

sciences have undergone change; there was a Copernican revolution in

astronomy, a Darwinian revolution in biology, an Einsteinian revolution in

physics. But do scientific revolutions like these occur in mathematics?

Mathematicians have most often answered this question as did the

nineteenth-century mathematician Hermann Hankel, who said, ‘‘In most

sciences, one generation tears down what another has built, and what one

has established, the next undoes. In mathematics alone, each generation

builds a new story to the old structure.’’ [20, p. 25.]

Hankel’s view is not, however, completely valid. There have been several

major upheavals in mathematics. For example, consider the axiomatization

of geometry in ancient Greece, which transformed mathematics from an

experimental science into a wholly intellectual one. Again, consider the dis-

covery of non-Euclidean geometries and non-commutative alegbras in the

nineteenth century; these developments led to the realization that

mathematics is not about anything in particular; it is instead the logically

connected study of abstract systems. These were revolutions in thought

which changed mathematicians’ views about the nature of mathematical

truth, and about what could or should be proved.

Another such mathematical revolution occurred between the eighteenth

and nineteenth centuries, and was focussed primarily on the calculus. This

change wasa rejection of the mathematics of powerful techniques and novel

results in favor of the mathematics of clear definitions and rigorous proofs.

Because this change, however importantit may have been for mathematicians

themselves, is not often discussed by historians and philosophers,its revolu-
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tionary character is not widely understood. In this paper, I shall first try to
show that this major change did occur. Then, I shall investigate what
broughtit about. Once we have donethis, we can return to the question asked
in the title of this paper.

2 EIGHTEENTH-CENTURY ANALYSIS: PRACTICE
AND THEORY

To establish what eighteenth-century mathematical practice waslike, let us
first look at a brilliant derivation of a now well-knownresult. Here is how
Leonhard Euler derived the infinite series for the cosine of an angle. He
began with the identity

(cos z + isin Z)" = cos nz + isin nz.

He then expanded the left-hand side of the equation according to the
binomial theorem. Taking the real part of that binomial expansion and
equating it to cos nz, he obtained

cos mZ = (cos Zz)" — ae) (cos z)"-%(sin z)?

1 n(n — 1)\(n — 2)(n -

4!

Let z be an infinitely small arc, and let n be infinitely large. Then:

Neos z)r-4(sin z)# — 2... 

cosz = 1, sinz=z, n(n— 1) =n, n(n — 1)(n — 2)(n — 3) = 74, etc.

The equation now becomesrecognizable:

2neg, nize
2! 4!

Butsince Z is infinitely small and

n

infinitely large, Euler concludes that nz
is a finite quantity. So let nz = v. The modern reader may beleft slightly
breathless; still, we have

cosnz = 1 —-

y2 y4
cos v = 1 —~—-+— -

2! 4!

(See [16, sections 133-4] and [32, pp. 348-9].)
Now that we have worked through one example, weshall be able to ap-

preciate some generalizations about the way many eighteenth-century
mathematicians worked.First, the primary emphasis was on getting results.
All mathematicians know many of the results from this period, results
which bear the names of Leibniz, Bernoulli, L’HO6pital, Taylor, Euler, and
Laplace. But the chances are good that these results were originally obtained
in waysutterly different from the ways we prove them today. It is doubtful
that Euler and his contemporaries would have been able to derive their
results if they had been burdened with our standards of rigor. Here, then,is
one major difference between the eighteenth-century way of doing mathe-
matics and our way.

Whatled eighteenth-century mathematicians to think that results might
be more important than rigorous proofs? Onereason is that mathematics

203



204 JUDITH V. GRABINER

participated in the great explosion in science known as the Scientific

Revolution [19]. Since the Renaissance, finding new knowledge had been a

major goal of all the sciences. In mathematics, ever since the first major

new result—the solution to the cubic equation published in 1545—increas-

ing mathematical knowledge had meant finding new results. The invention

of the calculus at the end of the seventeenth century intensified the drive for

results: here was a powerful new method which promised vast new worlds to

conquer. One can imagine few moreexciting tasks than trying to solve the

equations of motion for the whole solar system. The calculus wasan ideal

instrument for deriving new results, even though many mathematicians

were unable to explain exactly why this instrument worked.

If the overriding goal of most eighteenth-century mathematics wasto get

results, we would expect mathematicians of the period to use those methods

which producedresults. For eighteenth-century mathematicians, the end

justified the means. And the successes were many. New subjects arosein the

eighteenth century, each with its own range of methodsandits own domain

of results: the calculus of variations, descriptive geometry, and partial dif-

ferential equations, for instance. Also, much greater sophistication was

achieved in existing subjects, like mathematical physics and probability

theory.

The second generalization we shall make about eighteenth-century

mathematics and its drive for results is that mathematicians placed great

reliance on the power of symbols. Sometimesit seems to have been assumed

that if one could just write down something which was symbolically

coherent, the truth of the statement was guaranteed. And this assumption

was not applied to finite formulas only. Finite methods were routinely ex-

tended to infinite processes. Many important facts about infinite power

series were discovered by treating the series as very long polynomials [30].

This trust in symbolism in the eighteenth century is somewhat anomalous

in the history of mathematics, and needs to be accounted for. It came both

from the success of algebra and the success of the calculus. Letus first con-

sider algebra. General symbolic notation of the type we now take for

granted was introduced in 1591 by the French mathematician Francois Viéte

[6, pp. 59-65] and [32, pp. 74-81]. This notion provedto be the greatest in-

strument of discovery in the history of mathematics. Let us illustrate its

power by one example. Consider the equation

(2.1) (x-alx—-b)x-c) =x - (a+ b+ 0)x? + (ab + ac + bc)x — abe.

Symbolic notation lets you discover what dozens of numerical examples may

not: the relation between the roots and the coefficients of any polynomial

equation of any degree. Equation (2.1), furthermore, has degree three, and

has three roots. Relying onresults like (2.1), Albert Girard in 1629 stated that

an nth degree equation had n roots—thefirst formulation of what Gausslater

called the Fundamental Theorem of Algebra.

But whyare algebraic formulas like (2.1) considered true by eighteenth-

century mathematicians? Because, as Newtonputit, algebrais just a ‘‘univer-

sal arithmetic’’ [29]. Equation (2.1) is valid because it is a generalization about

valid arithmetical statements. What, then, aboutinfinite arguments, like the
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one of Euler’s we examined earlier? The answeris analogous. Just as there

is an arithmetic of infinite decimal fractions, we may generalize and create

an algebra of infinite series [28, p. 6]. Infinite processes are like finite

ones—except that they take longer.

The faith in symbolism nourished by algebra was enhanced further by the

success of the calculus. Leibniz had invented the notations dy/dx and ydx

expressly to help us do our thinking. The notation serves this function well;

we owea debt to Leibniz every time we change variables underthe integral

sign. Or, suppose y is a function of x and that x is a function of t; we want

to know dy/dt. It is not Leibniz, but Leibniz’s notation that discovers the

chain rule:

dy/dt = (dy/dx)(dx/dt).

The success of Leibniz’s notation for the calculus reinforced mathemati-

cians’ belief in the power of symbolic arguments to give true conclusions.

In the eighteenth century, belief in the power of good notation extended

beyond mathematics. For instance, it led the chemist Lavoisier to foresee a

*“‘chemical algebra,’’ in the spirit of which Berzelius in 1813 devised chem-

ical symbols essentially like those we use today. Anybody whohas balanced

chemical equations knows how the symbols do someof the thinkingforus.

The fact that the idea of the validity of purely symbolic arguments spread

from mathematics to other areas shows us how prevalent an idea it must
have been.

What has been said so far should not lead the reader to believe that

eighteenth-century mathematicians were completely indifferent to the foun-

dations of analysis. They certainly discussed the subject, and at length. I

shall not here summarize the diverse eighteenth-century attempts to explain

the nature of dy/dx, of limits, of the infinite, and of integrals, during a cen-

tury that Carl Boyerhasrightly called ‘‘the period of indecision’’ as far as

foundations were concerned [7, Chapter VI]. What must be emphasized for

our present purposesis that discussions of foundations were not the basic

concern of eighteenth-century mathematicians. Thatis, discussions of foun-

dations do not generally appear in research papersin scientific journals;in-

stead, they are relegated to Chapter I of textbooks, or found in populariza-

tions. More important, the practice of mathematics did not depend on a
perfect understanding of the basic concepts used. But this was no longer the
situation in nineteenth-century mathematics, and, of course, is not the
situation today.

Nineteenth-century analysts, beginning with Cauchy and Bolzano, gave
rigorous, inequality-based treatmentsof limit, convergence, and continuity,
and demandedrigorousproofs of the theorems about these concepts. We
know whatthese proofs werelike; westill use them. This new direction in
nineteenth-century analysis is not just a matter of differences in technique.
It is a major change in the way mathematics was looked at and done. Now
that we have sketched the eighteenth-century approach, weare readyto deal
with what are—from the historical point of view—the most interesting
questions of this paper. What made the change between the old and new
views occur? How did mathematics get to be the wayit is now?
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Twothings were necessary for the change. Most obviously, the techniques

needed for rigorous proofs had to be developed. Weshall discuss the history

of some major techniques in Section 4, below. But also, there had to be a

changein attitude. Without the techniques, of course, the changein attitude

could never have borne fruit. But the changein attitude, though notsuffi-

cient, was a necessary condition for the establishment of rigor. Our next task,

accordingly, will be to explain the change in attitude toward the foundations

of the calculus between the eighteenth and nineteenth centuries. Did the very

nature of mathematics force this change? Or was it motivated by factors out-

side of mathematics? Let us investigate various possibilities.

3 WHY DID STANDARDS OF MATHEMATICAL

TRUTH CHANGE?

The first explanation which may occurto usis like the one weuseto justify

rigor to our students today: the calculus was maderigorousto avoid errors,

andto correct errors already made. But this is not quite what happened.In

fact, there are surprisingly few mistakes in eighteenth-century mathematics.

There are two main reasons for this. First, some results could be verified

numerically, or even experimentally; thus, their validity could be checked

without a rigorous basis. Second, and even more important, eighteenth-

century mathematicians had an almost unerring intuition. Though they

were not guided by rigorous definitions, they nevertheless had a deep

understanding of the properties of the basic concepts of analysis. This con-

clusion is supported by the fact that many apparently shaky eighteenth-

century arguments can be salvaged, and maderigorousby properly specify-

ing hypotheses. Nevertheless, we must point out that the need to avoid

errors became more important near the end of the eighteenth century, when

there was increasing interest among mathematicians in complex functions,

in functions of several variables, and in trigonometric series. In these sub-

jects, there are manyplausible conjectures whosetruthis relatively difficult

to evaluate intuitively. Increased interest in such results may have helped

draw attention to the question of foundations.

A second possible explanation which may occurto usis that the calculus

was maderigorousin spirit of generalization. The eighteenth century had

produced a massof results. The need to unify such a massof results could

have led automatically to a rigorous, axiomatic basis. But there had been

large numbers of results for a hundred years before Cauchy’s work. Be-

sides, unifying results does not always make them rigorous; moreover, the

function of rigor is not just to unify, but to prove.Still, there is something

to be said for the hypothesis that the calculus became rigorouspartly to

unify the wealth of existing results. At the end of the eighteenth century,

several mathematicians thought that the pace of getting new results was

decreasing. This feeling had some basis in fact; most of the results ob-

tainable by the routine application of eighteenth-century methods had been

obtained. Perhaps, if progress was slowing, it was time to sit back and

reflect about what had been done [31, pp. 136-7]. This feeling helped get

some mathematicians interested in the question of rigor.
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A third possible explanation depends on the prior existence of rigor in
geometry. Everybody from the Greeks on knew that mathematics was sup-
posed to be rigorous. One might thus assumethat mathematicians’ con-
sciences began to trouble them, and that as a result analysts returned their
new methodsto the old standards.In fact, Euclidean geometry did provide
a model for the new rigor. But the old ideas of rigor were not enoughin
themselves to make mathematicians strive to make the calculus rig-
orous—as the hundred andfifty years from Newton to Cauchy shows. This
is true even though the discrepancy between Euclidean standards and the ac-
tual practice of eighteenth-century mathematicians did not go unnoticed.
George Berkeley, Bishop of Cloyne, attacked the calculus in 1734, on the
perfectly valid grounds that it was not rigorous the way mathematics was
supposed to be. Berkeley wanted to defend religion against the attacks of
unreasonableness levelled against it by eighteenth-century scientists and
mathematicians. Berkeley said that his Opponents did not even reason well
about mathematics. He concededthattheresults of the calculus werevalid,
but attacked its methods. Berkeley’s attack, The Analyst, is a masterpiece
of polemics [32, pp. 333-338] and [3]. He said of the ‘‘vanishing in-
crements’’ that played so crucial a role in Newton’s calculus, ‘‘And what
are these . . . vanishing increments? Theyare neitherfinite quantities, nor
qualities infinitely small, nor yet nothing. Maywenotcall them the ghosts
of departed quantities ?’’ Berkeley’s attack—which included point-by-point
mathematical criticisms of some basic arguments of Newton’s calcu-
lus—provoked a number of mathematicians to write refutations. However,
neither Berkeley’s attack nor the replies to it produced the changein at-
titude toward rigor which weare trying to explain. First of all, the replies
are not very convincing [8]. Besides, the subject of foundations wasstill not
considered serious mathematics. Berkeley did get people thinking, more
than they would have without him, about the problem of foundations. The
discussions of foundations by Maclaurin, D’Alembert, and Lagrange were
all at least somewhat influenced by Berkeley’s work. Nevertheless,
Berkeley’s attack in itself was not enough to cause foundations to become a
major mathematical concern.

In bringing about the change, there is one other factor which, thoughsel-
dom mentioned in this connection, was important: the mathematician’s
need to teach. Nearthe end ofthe eighteenth century, a major social change
occurred. Before the last decades of the century, mathematicians were often
attached to royal courts; their job was to do mathematics and thus add to
the glory, or edification, of their patron. But almostall mathematicians
since the French Revolution have madetheir living by teaching [31, p. 140]
[2, p. 95,108].

This change in the economic circumstances of mathematicians had other
causes than the decline of particular royal courts. In the eighteenth century,
science was expanding. This was the ‘‘age of Newton’’ and the success of
Newtonian science. Governments and businessmenfelt that science was im-
portant and could be useful; scientists encouraged them in these beliefs. So
governments founded educationalinstitutions to promotescience. Military
schools were founded to provide prospective officers with knowledge of
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applied science. New scientific chairs were endowedin existing universities.

By far the most important new institution for scientific instruction, one

which served as a model to several nationsin the nineteenth century, was the

Ecole polytechniquein Paris, foundedin 1795 by the revolutionary govern-

ment in France.

Why might the new economic circumstances of mathematicians—the

need to teach—have helped promote rigor? Teaching always makes the

teacher think carefully about the basis for the subject. A mathematician

could understand enough abouta conceptto use it, and could rely on thein-

sight he had gained through his experience. But this does not work with

freshmen, even in the eighteenth century. Beginners will not accept being

told, ‘‘After you have worked with this concept for three years, you'll

understandit.’’

Whatis the evidence that teaching helped motivate eighteenth and nine-

teenth century mathematicians to make anlaysis rigorous? First, until the

end of the eighteenth century, most work on foundations did not appear in

scientific journals, apparently because foundations were not considered to

pose major mathematical(as opposed to philosophical) questions. Instead,

such work appeared in courses of lectures, in textbooks, or in populariza-

tions. Even in the nineteenth century, when foundations hadbeenestablished

as essential to mathematics, their origin was often in teaching. The work on

foundations of analysis of Lagrange [23,26], of Cauchy [10,11], of Weier-

strass [21, pp. 283-4] [7, pp. 284-7], and of Dedekind [14, p. 1], all

originated in coursesof lectures.

Each of the points we have made so far helps explain what motivated

mathematicians to shift from the result-oriented view of the eighteenth cen-

tury to the more rigorous standardsof the nineteenth. One more catalyst of

the change should be identified: Joseph-Louis Lagrange. Lagrange’s own

interest in the problem of foundations wasfirst engaged by having to teach

the calculus at the military school in Turin [24]. In 1784, by proposing the

foundations of the calculus as a prize problem for the Berlin Academy of

Sciences, he stimulated the first major booklength contributionsto founda-

tions of the calculus written on the Continent. (See [27] [9] [7, p. 254-255]

and [18, pp. 149-150].) Above all, Lagrange’s lectures at the Ecole

polytechnique, published in two widely influential books, attempted to give

a general and algebraic framework for the calculus [26] [23]. Lagrange did

not correctly solve the problem of foundations—wecan no longer accept his

definition of f'(x) as the coefficient of # in the Taylor series expansion of

f(x + h). Nevertheless, his vision of reducing the calculus to algebra

decisively influenced the work of Bolzano [5] and—as weshall see—of

Cauchy.

The changein attitude we have been discussing was not enoughinitself to

establish rigor in the calculus—as the example of Lagrange shows. Having

decided that we want to makea subject rigorous, what else do we need?

Two morethings are required:the right definitions, and techniques of proof

to derive the known results fom the definitions. We must now answer

another question: where did the required definitions and proofs come

from?
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Fighteenth-century mathematicians themselves had developed many of
the techniques, and isolated many of the basic defining properties—even
though they did not knowthat this is what they were doing.It is amazing
that so manyof the techniques used by Cauchyin rigorous arguments had
been aroundfor so long. This fact showsthat a real changein point of view
was required for the rigorization of analysis; it was not an automatic
development out of eighteenth-century mathematics.

4 THE EIGHTEENTH—CENTURYORIGINS OF
NINETEENTH-CENTURY RIGOR

Weshall illustrate the eighteenth-centuryorigins of nineteenth-century rigor
by giving several examples of eighteenth-century work which was trans-
formed into nineteenth-century definitions and proofs. The principal area
of eighteenth-century mathematics weshall investigate is the study of ap-
proximations. Eighteenth-century mathematicians, whether solving alge-
braic equations or differential equations, developed many useful ap-
proximation methods. When the goalis results, an approximate result is
better than nothing. Paradoxically, eighteenth-century mathematicians
were most exact when they were being approximate; their work with ine-
qualities in approximations later became the basis for rigorous analysis.

Weshall discuss twoclasses of eighteenth-century approximation work: the
actual working out of approximation procedures, and the computation of error
estimates. Let us see what use nineteenth-century analysts madeofthese.

Onenewwayin which nineteenth-century mathematicians looked at eigh-
teenth-century approximations was to see the approximate solution as a
construction of that solution, and therefore as a proofofits existence. For
instance, Cauchy did this in developing what is now called the Cauchy-
Lipschitz method of proving the existence of the solution to a differential
equation; the proof is based on an approximation method developed by
Euler [15, pp. 424-5] [12, p. 399 ff]. Similarly Cauchy’s elegant proof of the
intermediate-value theorem for continuous functions was based on an eigh-
teenth-century approximation method [22, pp. 260-1] [25, sections 2,6] [10,
pp. 378-80]. For a continuous function f(x), Cauchy took J(a) and f(b) of
opposite sign, divided the interval [a,b] into n parts, and concluded that
there were at least two values of x on [a,b], differing by (b — a)/n, which
yielded opposite sign for f(x). He then repeated the procedure ontheinter-
val between these two newvalues, on aninterval of length (b — a)/n, which
gives two morevalues, differing by (b — a)/n2, and so on. Where Lagrange
had used this technique to approximate to the root & of a polynomial in-
cluded between x = a and x = b, Cauchyusedit to argue for the existence
of the number & as the commonlimit of the sequences of values of x which
gave positive sign for f, and negative sign for f. The origin of Cauchy’s proof
in algebraic approximationsis further demonstrated by the context in which
he gave it: a ‘‘Nofe’’ devoted to discussing the approximate solution of
algebraic equations [10, p. 378 ff].
Another example of the conversion of approximationsinto existence proofs

is given by Cauchy’s theory ofthe definite integral. In the eighteenth century,
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it was customaryto define the integralas the inverse of the derivative. It was

known, however, that the value of the integral could be approximated by a

sum. Cauchy took Euler’s work on approximating the values of definite in-

tegrals by sums[15, pp. 184-7], and lookedatit from an entirely new point

of view. Cauchy defined the definite integral as the limit of a sum, proved

the existence of the definite integral of a continuous (actually, uniformly

continuous) function, and then used his definition to prove the Fundamen-

tal Theorem of Calculus [11, pp. 122-5, 151-2].

Now let us consider another type of result in eighteenth-century approx-

imations: approximations given along with an error estimate. These results

took a form like this: given some 7, the mathematician could compute an up-

per bound on the error made in taking the mth approximation for the true

value. Near the end ofthe eighteenth century, the algebra of inequalities was

exploited with great skill in computing such error estimates [13, pp. 171-183]

and [25, pp. 46-7, p. 163]. Cauchy, Abel, and their followers turned the ap-

proximating process around. Instead of being given n and finding the greatest

possible error, we are given what isin effect the ‘‘error’’—epsilon—and,pro-

vided that the process converges, we can always find n such thatthe error of

the nth approximationis less thanepsilon. (This seemsto be the reasonforthe

use of the letter ‘“‘epsilon’’ in its usual modernsense by Cauchy [10, pp. 64-5 et

passim].) [1] [10, pp. 400-415]. Cauchy’s definition of convergence—whichis

essentially ours—is based onthis principle [10, Chapter VI].

Another way in which nineteenth-century mathematicians changed eigh-

teenth-century views of results using inequalities was to take facts knownto

eighteenth-century mathematiciansin special cases and to makethemlegiti-

mate in general. For instance, D’Alembert and others had shownthat some

particular series converged by showing that they were, term-by-term,less than

a convergent geometric progression [13]. Guass in 1813 usedthis criterion to

investigate, in a rigorous manner, the convergence of the hypergeometric

series [17]. Cauchy used the comparison ofa given series with a geometric one

to derive and to prove somegeneraltests for the convergenceofany series; the

ratio test, the logarithm test, and the roottest [10, pp. 121-127].

Let us look at one last example—a very important one—ofan eighteenth-

century result which became something different in the nineteenth century:

the property of the derivative expressed by

(4.1) f(x + h) = f(x) + f(x) + AV,

where V goes to zero with h. As we have remarked, Lagrange had defined

f' (x) as the coefficient of A in the Taylor expansion of f(x + h). He then

‘‘derived’’ (4.1) from that Taylor series expansion, considering V to be a

convergentinfinite series in h. Lagrange used (4.1) to investigate many prop-

erties of the derivative. To do this, he interpreted ‘‘ V goesto zero with h’’ to

meanthat, for any given quantity D, we can find h sufficiently small so that

f(x + h) — f(x) ‘‘will be included between’’ A[f’ (x) — D] and Aff’ (x) +

D] [23, p. 87]. First Cauchy, and then Bolzano and Weierstrass, made (4.1)

and its associated inequalities into the definition off' (x). (Cauchy’s defini-

tion was actually verbal, but he translated it into the language of ine-

qualities in proofs.) [11, pp. 44-5; 122-3], [4, Chapter 2] and [7, pp. 285-7].
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This definition made legitimate the results about J’ (x) that Lagrange had
derived from (4.1)—for instance, the mean-value theorem for derivatives.
(Except, we must note, for a few errors, especially the confusion between
convergence and uniform convergence, which was not cleared up until the
1840s.)

Of course, we do not mean to imply that Gauss, Cauchy, Bolzano, Abel, and
Weierstrass were not original, creative mathematicians. They were. To show
that major changesin point ofview occurin mathematics, we haveconcentrated
in this section on what these men owedto eighteenth-century techniques. But,
besides transforming whatthey borrowed, they contributed much of their own
that was new. Cauchy,in particular, devised beautiful proofs about convergent
powerseries in real and complex variables, about real and complex integrals,
and, of course, contributed toa variety of subjects besides analysis. Neverthe-
less, for our present purposes, we need the biased sample we have chosen—
things accomplished either by taking what the eighteenth century knewforpar-
ticular cases and makingit general, or by taking whatthe eighteenth century had
derived for one purpose and puttingit to a more profounduse.
Much effort was needed to transform eighteenth-century techniques in

the ways wehave discussed. But it was more than just a matter of effort. It
took asking the right questions first; and then using—and expanding—the
already existing techniques to answer them. It took—and was—a major
change in point of view. The reawakeningofinterest in rigor was just as
necessary as the availability of techniques to produce the point of view of
Balzano and Cauchy—thepoint of view which has been with us eversince.
Mathematics requires not only results, but clear definitions and rigorous
proofs. Individual mathematicians maystill concentrate on the creation of
fruitful methods andideas to be exploited, but the mathematical commun-
ity as a whole can no longer beindifferentto rigor.

5 CONCLUSION

We began by asking whether mathematical truth was time-dependent.
Perhaps mathematical truth is eternal, but our knowledgeof it is not. We
have nowseen an example of howattitudes toward mathematical truth have
changed in time. After such a revolution in thought, earlier work is re-
evaluated. Some is considered worth more; some, worthless.
Whatshould a mathematician do, knowingthat such re-evaluations occur?
Three courses of action suggest themselves. First, we can adopt a sort of

relativism which has been expressed in the phrase ‘‘Sufficient unto the day
is the rigor thereof.’? Mathematical truth is just what the editors of the
Transactionssayit is. This is a useful view at times. Butthis view,if univer-
sally adopted, would mean that Cauchy and Weierstrass would never have
come along. Unless there were the prior appearanceof major errors, stan-
dards could never improve in any important way. Sotheattitude ofrelativ-
ism, which would have counselled Cauchyto leave foundationsalone,will
not suffice for us.

Second, we can attemptto set the highest conceivable standard: never use
an argument in which we do not completely understand whatis going on,
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dotting all the i’s and crossing all the t’s. But this is even worse. Euler, after

all, knew that there were problems in dealing with infinitely large and in-

finitely small quantities. According to this high standard, which textbooks

sometimes urge on students, Euler would never have written a line. There

would have been no mathematical structure for Cauchy and Weierstrass to

make rigorous.

So I suggest a third possibility: a recognition that the problem I have raised

is just the existential situation mathematicians find themselves in.

Mathematics grows in two ways: not only by successive increments, but also

by occasional revolutions. Only if we accept the possibility of present error

can we hopethat the future will bring a fundamental improvement in our

knowledge. We can be consoled that most of the old bricks will find places

somewhere in the new structure. Mathematics is not the unique science

without revolutions. Rather, mathematics is that area of human activity

which has at once the least destructive and still the most fundamental

revolutions.

ACKNOWLEDGMENTS

This paper was originally delivered at the Mathematical Association of America,

Southern California Section, March 1972. The author wishesto thank Elmer Tolsted

for encouragement and suggestions.

NOTES

1. N.H. Abel, Recherchessurla série

1+ (m/1)x +[m(m—- 1)/1.2]x? + [m(m — 1)(m - 2)/1.2.3]x?> +...

Oeuvres completes, Vol. I, Christiania, 1881.

2. J. Ben David, The Scientist’s Role in Society, Prentice-Hall, Englewood

Cliffs, 1971.

3. G. Berkeley, The Works of George Berkeley, Vol. IV, ed. A.A. Luce and

T.E. Jessop, Edinburgh, 1948-1957.

4. B.Bolzano, Functionenlehre, Schriften, Band I, Prague, 1930.

5. ______, Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei

Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reelle

Wurzel der Gleichung liege, 1817, Englemann,Leipzig, 1905.

6. Carl Boyer, History of Analytic Geometry, Scripta Mathematica, New York,

1956.

7, ______, History of the Calculus and its Conceptual Development, Dover,

New York, 1959.

8. F. Cajori, A History of the Conceptions of Limits and Fluxionsin Great Brit-

ain from Newton to Woodhouse, Open Court, Chicago, 1931.

9. L.N.M. Carnot, Réflexions sur la métaphysique du calcul infinitésimal,

Duprat, Paris, 1797.

10. A.-L. Cauchy, Cours d’analyse de ]’école royale polytechnique, Imprimerie

royale, Paris, 1821, in Oeuvres Completes, Series 2, Vol. III, Gauthier-Villars, Paris,

1897.



IS MATHEMATICAL TRUTH TIME-DEPENDENT? 213

11. A.-L. Cauchy, Résumé des lecons données a l’école royale polytechnique sur
le calcul infinitésimal, Imprimerie royale, Paris, 1823, in Oeuvres Completes, Series
2, Vol. IV, Gauthier-Villars, Paris, 1899,

12. A.-L. Cauchy, Exercises d’analyse, 1840, in Oeuvres, Series 2, Vol. XI.
13. Jean D’Alembert, Réflexions sur les suites et sur les racines imaginaires,

Opuscules mathématiques, vol. V, Paris 1768, pp. 171-215.

14. Richard Dedekind, Essays on the theory of numbers, Dover, New York, 1963.
15. Leonhard Euler, Institutiones calculi integralis 1768, Opera Omnia,Series l,

vol. XI, Teubner, Leipzig and Berlin, 1911.

16. _C,s«sIntroductio in analysin infinitorum 1748, Opera Omnia,Series,
1, vols. 8-9.

17. K.F. Gauss, Disquisitio generales circa seriem infinitam

a’ 6 a(a + 1)B(6 + 1) ala + I)(a + 2)B(B + 1)(6 + 2)
xX +

2
X3+..,,l-y 1:2: y(y + 1) 1-2°3-y(yv + Illy + 2)

 1+

[1813], Werke, Vol. 3, pp. 123-162; German translation, Berlin, 1888.

18. C.C. Gillispie, Lazare Carnot Savant, Princeton, 1971.

19. A.R. Hall, The Scientific Revolution, 1500-1800, Beacon, Boston, 1966.

20. H. Hankel, Die Entwicklung der Mathematik im letzten Jahrhundert, 1884,
quoted by M. Moritz, On Mathematics and Mathematicians, Dover, New York,
1942, p. 14.

21. F. Klein, Vorlesungen tiber die Entwicklung der Mathematik im 19. Jahr-
hundert, 1926, reprinted by Chelsea, New York, 1967.

22. J.-L. Lagrange, Lecons élémentaires surles mathématiques, données a l’école
normale en 1795. Oeuvres, VIII, Gauthier-Villars, Paris, 1867-1892, pp. 181-288.

23. _________, Legonssurle calcul des fonctions, 2d edition, 1806, Oeuvres, X.

24, ____+=ssss, Letter to Euler, 24 November 1759, Oeuvres, XIV, pp. 170-174.

25. +s, Traité de la résolution des équations numeériques de tous les
degrés, 1808, Oeuvres, VIII.

26. ss, Théorie des fonctions analytiques, 2d. edition, 1813, Oeuvres, IX.

27. S. L’Huilier, Exposition élémentaire des principes des calculs supérieurs,
Decker, Berlin, 1787.

28. Isaac Newton, On the analysis by equations of an infinite number of terms,
1669, in D.T. Whiteside, ed., The Mathematical Worksof Isaac Newton, Johnson
Reprint, London and New York,1964, vol. I.

29. Isaac Newton, Universal Arithmetic, 1707, in D.T. Whiteside ed., The
Mathematical Works of Isaac Newton,vol. II, Johnson, London and New York,
1970.

30. R. Reiff, Geschichte der unendlichen Reihen, Tubingen, 1889.

31. D.J. Struik, Concise History of Mathematics, Dover, New York, 1967.

32. D.J. Struik, ed., A Source Bookin Mathematics, 1200-1800, Harvard, Cam-
bridge, 1967.



PHILIP KITCHER

Mathematical Change and
Scientific Change

Witaer and Grabiner encourage us to look at mathematics in a new
way, as a social or cultural practice that evolves over time. Such a viewpoint on
mathematics might seem strangeat first. However, it seemed a strange approach
to natural science at one time, yet now it is a standard position in the philosophy
of science. Can the philosophy of mathematics learn anything from the philosophy
of science in this regard? The answer depends onthesimilarities between science
and mathematics. No one hasinvestigated the relation between these two fields
more thoroughly than the philosopher, Philip Kitcher. The following selection,
“‘Mathematical Change and Scientific Change,’’ is the seventh chapter of his
recent book, The Nature of Mathematical Knowledge.

In his essay, Kitcher compares mathematics to science with regard to their pat-
terns of development. He begins by considering what appear to be major dif-
ferences between mathematical change andscientific change. Oneis the idea that
science changesessentially by making new observations and that observation is ir-
relevant to mathematics. Kitcher argues that both parts of this idea are incorrect.
A second apparent difference is that mathematical change seems cumulative in

a waythat scientific change does not. After criticizing several preliminary for-
mulations of the cumulative aspect of mathematics, Kitcher admits a sense in
which mathematics is cumulative. Mathematics has a mechanism of reinterpretation
that resolves threats of competition. For example, the discovery of non-Euclidean
geometries did not force mathematicians to choose between these and Euclidean
geometry. Instead mathematicians reinterpreted geometry so that both the Eucli-
dean and non-Euclidean varieties could be included in a systematic relation.

I suggest in passing that Kitcher might have pressed his case further by observing
reinterpretation at work in the natural sciences. Newtonian physics has not been
displaced byrelativity theory in anything like the way in which the phlogiston
theory or Lamarkian evolution have been discarded. Quite the contrary, Newtonian
physics continues to be taught and used today, reinterpreted as a ‘special case’ of
 

Reprinted from The Nature of Mathematical Knowledge by Philip
Kitcher. © 1983 by Oxford University Press, Inc. Reprinted with
permission.
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relativity theory. Perhaps manynaturalsciences could be better interpreted as the

development of alternative models (like geometry) rather than as competitions to

settle on a single correct model.

In any case, the parallels between mathematics and scienceare sufficiently

strong to induce Kitcher to apply somelessons from the philosophy of science to

the philosophy of mathematics. He begins this project in the third section of his

essay. From the philosophy ofscience, Kitcher obtains the Kuhnian notion of a

paradigm, which he in turn analyzes in terms of practice and changesin practices.

The notion of a paradigm is important insofaras it offers a richer conception of

a field than the conception of a field as merely a set of statements. Paradigms

include practice and methodology, both general principles and concrete exemplars.

However, Kuhntied his concept of a paradigm to the existence of scientific

revolutions. For Kuhn, normal science proceeds under a stable set of paradigms,

while scientific revolutions occur whenscientists switch paradigms. Kitcher is able

to sidestep the controversial distinction between normalscience and revolutionary

science by focusing on the practices of a discipline at any given time and examining

the kinds of changes such practices can undergo. We can leave it to the historians

to decide which changes weretruly revolutionary and which changes were merely

continuous developments.

Whatever the merits of analogizing mathematics to science, it has the drawback

of importing into the philosophy of mathematics some of the ongoing controversies

of the philosophy of science. The controversy that Kitcher contends with in section

four of his essay might be labeled as the dilemma between stupidity and

incommensurability. Let me sketch the dilemmaas it might apply to mathematics.

The problem arises when we try to compare the mathematics of different eras.

From a foundational perspective, pre-foundational mathematicians were quite

primitive, if not quite stupid. (This is a point Lakatos often makes.) Where

pre-twentieth-century mathematicians did hit on correct results, the foundationalists

would say, their reasoning was often hopelessly inadequate when measured by

modern standards. In short this view characterizes other mathematics as better, or

more often worse, approximations to ours. Analternative to this rather chauvinistic

attitude is to regard other mathematicians as not primitive or stupid, but as

expert practitioners of a practice of mathematics that differs from ours.

Unfortunately, this has the effect of supposing that other mathematicians lived in a

different mathematical world from us. We no longer can interpret them as lucky

guessers—because we can no longerinterpret them atall! Previous mathematicsis

not comparable to ours. Obviously, neither horn of the dilemmais very palatable.

Kitcher attempts to resolve the puzzle by introducing the conceptof ‘reference

potential’. He broadens the philosophically popular causal theory of reference to

include attention not just to the actual referent a term might have, but also the

potential reference of particular uses.

In the final section of his essay, Kitcher uses the concept of reference potential to

help explain such major shifts in mathematics as the introduction of complex

numbers andthe introduction of transfinite numbers. Regardless of one’s opinion

of the details of Kitcher’s analysis, there can be no doubt, I think, that he

demonstrates the technical feasibility of a rigorous and uniform presentation of

quasi-empiricism.
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The existence of mathematical change is obvious enough. Contemporary
mathematicians accept as true statements which our predecessors did not
accept. In 1400, the members of the mathematical community did not
believe that every polynomial equation with rational coefficients has roots;
their nineteenth-century descendants did. Conversely, later writers
sometimes abandon claims which have been espoused earlier. Leibniz and
some of his followers believed that 1-1+1-—1+4+1... = 1/2.
Cauchy and Abel scornfully rejected this and kindred Statements. Yet the
shifting allegiance to some statements is only one facet of mathematical
change. Equally evident are alterations in mathematical language, varia-
tions in style and standards of reasoning, changes of emphasis on kinds of
problems, even modifications of views about the scope of mathematics. The
fact of mathematical change provokes a series of questions. Why do
mathematicians propounddifferent statements at different times? Why do
they abandoncertain forms of language? Whydo certain questions wax
and wanein importance? Whyare standards and styles of proof modified?
In short, what kinds of changes occurin the development of mathematics,
and what general considerations motivate them?
To raise these questions is to begin to investigate the methodology of

mathematics, in a way whichis parallel to recent and contemporary inquiries
about the methodology of the natural sciences. Neglect of the methodology
of mathematics stems from distrustof the parallel. In turn, that distrust gains
powerful support from mathematical apriorism. Yet, even if we reject the
apriorist conception of mathematical knowledge, we may still wonder
whether the development of mathematical knowledgeis analogousto that of
natural scientific knowledge. My goal in this chapter is to investigate the
similarities and differences between mathematical change and scientific
change. By doing so, I hope to dispose of some myths about mathematical
change and to use the comparison with natural science to formulate more
sharply the enterprise of investigating the methodology of mathematics.

Suspicion about the kinship of mathematical change and scientific
change, whenit is not simply a by-productof apriorist doctrine, is prompted
by two important observations. One apparent major difference between the
growth ofscientific knowledge and the growth of mathematical knowledgeis
that the natural sciences seem to evolve in response to experience. As obser-
vations and experiments accumulate, we find ourselves forced to extend and
modify our corpus ofbeliefs. In mathematics, however, the observation of
previously unobserved phenomena andthe contrivance of experiments seem
to play no importantrole in stimulating change of belief. So we are easily led
to conclude that the springs of change are different in the two cases. A second
feature of the growth of mathematical knowledge is the appearance of cu-
mulative development in mathematics in ways which seem absent in the
natural sciences. Because contemporary mathematics appears to preserve so
much more of what was accepted by the mathematicians of the past, it is
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tempting to suppose that the manner in which mathematical knowledge

evolves must be fundamentally different from that in which scientific

knowledge grows. Mathematical methods must be more sure-footed than

those used by naturalscientists.

In this section, I want to considerthefirst of these apparent disanalogies. I

shall consider the issue of the cumulative character of mathematical knowl-

edge in Section II. Ourfirst task will be to uncoverthe picture of scientific

change which underlies the complaint that, unlike the natural sciences,

mathematics does not grow by responding to observation and experiment.

Consider the simplest empiricist view of the growth ofscientific knowl-

edge.! Accordingto this picture, the statements accepted bythescientists of

a given period can be divided into two classes: there are observationstate-

ments (O-statements) and theoretical statements (T-statements); the former

are accepted on the basis of observation and are unrevisable; the latter are

adopted on the basis of inference from the accepted O-statements, indeed

on the basis of inferences which accord with principles of the ‘‘logic of sci-

entific inquiry,’’ principles which hold for all scientists at all times.* As

science develops, the change in the corpus of O-statements is by accumula-

tion. New O-statements are added, but old O-statements are never deleted.

However, amendmentofthe class of T-statements is not by accumulation.

Even though a particular set of T-statements may have been justified in the

light of the limited set of O-statements adoptedat an earlier stage, extension

of the corpus of O-statements can force usto retract what we formerly be-

lieved, substituting a quite different set of T-statements in its place. There

are two features of this picture of scientific change to which I wish to draw

attention: (i) the match between observation and theory at any stage in the

history of science is assumedto be perfect(the adopted O-statementsjustify

the accepted T-statements in the light of the universal principles of the

‘logic of scientific inquiry’’); (ii) addition of new O-statements can disrupt

the match, forcing the modification of the corpus of T-statements to ac-

commodate the broader class of O-statements. Together, these features

combine to distinguish observation as the source of scientific change.

Without new observations, science would bestatic.

I do not know whether anyonehasheld exactly this picture of scientific

change, but something very close to it seems to be implicit in the writings of

manylogical empiricist philosophers of science. A variety of considerations

makesit clear that this simple empiricist picture of scientific change cannot

be sustained.

In the first place, there have been severe (and, to my mind, conclusive) at-

tacks on the thesis that there is a class of unrevisable reports of observation,

with consequent denial that the history of science can be viewed asa Series

of responses to an observational corpus which develops cumulatively.? Yet

this critique, in and of itself, does not compelus to abandonthose features

of the simple empiricist picture which generate the view that observation is

the source of scientific change, and thereby foster our suspicion that mathe-

matical change is importantly different from scientific change. We may

continue to suppose that the science of an epochis a collection of statements

determined jointly by the stimuli which have so far impinged upon those
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who adoptit and the canonsofscientific inquiry. New stimuli canstill be
viewed as the sole inducers of modification of the corpus of beliefs, even
though we agree that there is no level at which modification must be
cumulative.
A second major assault on the simple empiricist picture challenges us to

understand the large upheavals in science—such ‘‘revolutions”’ as the tran-
sition from Aristotelian cosmology to Copernician cosmology, the over-
throw of the phlogiston theory, and the replacement of Newtonian physics
with the special and general theories of relativity—using the terms which
simple empiricism supplies.4 Can we account for these episodes as consist-
ing in the modification of a corpus of statements in the light of new stimuli
and a set of universal canonsofscientific inquiry? A numberof writers,
most notably Paul Feyerabend, Stephen Toulmin, and Thomas Kuhn, have
argued that we cannot, andtheir writings have provoked several attempts to
offer a view of scientific change which will do justice to scientific revolutions.
Amongthese writers I shall take Kuhn as the most importantrepresentative,
since his views are at once most systematic and most sensitive to the history
of science. Kuhn’s seminal book, The Structure of Scientific Revolutions,
argues for a conception ofscientific revolutions which is at odds with simple
empiricism and which has been muchdiscussed by philosophers. On Kuhn’s
account, scientific revolutions involve: conceptual changes, which can
render impossible the formulation of prerevolutionary and postrevolution-
ary theories in a commonlanguage; perceptual changes, which produce new
ways of seeing familiar phenomena; and, perhaps most important, method-
ological changes, which, by amendingtherules of justification for scientific
theories, makethe rational resolution of the differences between earlier and
later theories impossible. The simple empiricist picture of science as devel-
oping by rational adjustment to observation is completely undeterminedif
this account of revolutions is accurate. Scientists engaged in revolutionary
debate do not share enoughrulesofjustification to reach agreement, even if
they could begin from shared observations. But they do not begin from
shared observations. Moreover, their rival claims cannot be formulated in a
common language. Small wonder, then, that, in one of the mostcited dis-
cussionsin his much-quoted book, Kuhntalksofscientific decision in terms
of “‘conversion experience’’ and ‘‘faith.’’5

Despite the fact that Kuhn’s accountofrevolutionsis obviously impor-
tant, what concerns meis not the correctness of the view of revolutions just
sketched, but whether that view alters our previous estimate of the distinc-
tion between mathematical change andscientific change.I think it does not.
For, as I have so far presentedit, the central thrust of the viewis that obser-
vation does notrationally compel us to modify ourscientific beliefs. Unless
we yearn for a changeof fashion,faith in the old corpus can be maintained.
To accept this thesis is not to abandon the claim that observation is the
source of scientific change, but only to contend that not even new obser-
vation need provokeus to amend ourold ways.

Yet my presentation of thehistorically inspired attack on the simple em-
piricist picture of scientific change has been deliberately one-sided. In the
last paragraph I have briefly rehearsed the view which most philosophers
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have found in The Structure ofScientific Revolutions.’ However, besidesits

apparent commitmentto the thesis that scientific revolutions can only bere-

solved ‘‘by faith,’? Kuhn’s book contains another very important claim,

which not only controverts the simple empiricist picture but is also relevant

to our project here. To put the point in its simplest terms, Kuhn contends

that almost all theories are falsified at almostall times. Thus, contrary to

feature (i) which wedistilled from the simple empiricist picture, the match

between theory and observation is not perfect. In the discrepancy between

theory and observation, or, more generally, between different parts of

theory, Kuhn finds the source of the problems which occupyscientists for

most of their careers. On this account, scientists (justifiably) accept a gen-

eral form for theory-construction in a particular field, adopting particular

pieces of work as paradigmatic, selecting certain questions as important,

choosing rules for answering those questions, and so forth. Given this set of

background views, they put forward proposals, modifying and articulating

them so as to achieve, insofar as possible, successful conformity both to the

canons which governall scientific activity and to the rules of their own par-

ticular enterprise. Discrepancies are always with them, presenting challenges

even in the absence of new observations.’ The problems may be more orless

empirical (for example, puzzles about unanticipated experimental data) or

they maybe highly theoretical. The latter are of especial concern to us. Sci-

entists are frequently challenged to answer a question posed by existing

theory. Newton struggled with theissue of whetherhis theory of gravitation

could be reconciled with the thesis that all action is by immediate contact.

Darwin was confronted with thedifficulty of resolving conflicts between his

account of rates of evolution and geophysical estimates of the age of the

Earth. Wegener and his early adherents were challenged to propose a

mechanism which could move the continents. Contemporary evolutionary

theorists have exhibited considerable ingenuity in devising theoretical models

to show how apparently maladaptive traits may become fixed in a popula-

tion. Molecular biologystill faces the problem of reconciling our knowledge

of the differential developmentof the cells of an embryo with our under-

standing of the synthesis of intracellular products. The examples could be

multiplied almost indefinitely. They show that the simple empiricist picture

of scientific change is badly mistaken. Even withoutthe provocation of new

observations, factors to stimulate scientific change are always present.

Weare now in a position to become clearer about the complaint from

which we began.It would be futile to deny that observation is one source of

scientific change. The burdenofthe last paragraph is that observation is not

the only such source. There are always ‘internal stresses’’ in scientific the-

ory, and these provide a spur to modification of the corpusofbeliefs. I pro-

pose to think of mathematical change as akin to this latter type of modifi-

cation.® Just as the natural scientist struggles to resolve the puzzles gener-

ated by the current set of theoretical beliefs, so too mathematical changes

are motivated by analogous conflicts, tensions, and mismatches.

To oversimplify, we can think of mathematical change as a skewed case

of scientific change: all the relevant observations are easily collected at the

beginning of inquiry; mathematical theories develop in response to these
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and all the subsequent problems and modificationsare theoretical. This is
an oversimplification because new observations are sometimes important
even in mathematics. The efforts of the inhabitants of KOnigsberg to cross
all of the famous seven bridges without retracing their steps suggested to
Euler a mathematical problem, for which he found a solution, integrated by
later mathematicians into a new branch of mathematics. Nor is this an
isolated case. Pascal’s investigations in probability theory, the study of
possibilities of map coloring, and the recent work in catastrophe theory
(whatever its merits) can all be viewed as mathematical responsesto observ-
able features of everydaysituations. Moreover, as with the natural sciences,
the ‘“‘new’’ observation is often concerned with some familiar phenomenon
whosesignificance has not hitherto been appreciated.

Before leaving the issue of the relation between observation and mathe-
matical change, we should take note of the indirect ways in which experi-
ment and observation mayaffect the development of mathematics. Some-
times difficulties in mathematical concepts or principles are first recognized
when trouble arises in applying them in scientific cases. Thus in the eigh-
teenth- and nineteenth-century study of functions, variational problems,
and differential equations, modification both of physical theory and the
mathematics presupposed byit go hand in hand. Weshall examine one ex-
ample of this interplay in Chapter 10.

Ourinitial concern was that an account of mathematical change must be
very different from an accountofscientific change in that the main force of
scientific change is the pressure of new observations. I have responded to
this in two different ways. The last two paragraphsindicate that new ob-
servations may berelevant(directly or indirectly) to the evolution of mathe-
matical knowledge. But myprincipal point is that the concern thrives on a
misunderstanding of scientific change. Many important episodes in the
evolution of scientific knowledge are best viewed not as responses to new
observations but as attempts to resolve pre-existing intra-theoretic tensions.
The same applies to mathematics—and applies with a vengeance. Later in
this chapter, I shall try to explain howthis idea of intra-theoretic stress can
be conveniently represented. Before I do so, I want to examine the second
concern voiced above, the worry that mathematical change is cumulative in
ways that scientific changeis not.

IT

In whatsense is the development of mathematics cumulative and the devel-
opmentof science not? Theidea that there is a difference here can receive a
number of formulations: (a) there are no ‘revolutionary debates”’ in the
history of mathematics; when mathematicians engage in dispute at least one
party is being irrational or stubborn;9 (b) many mathematical truths have
been accepted since antiquity; (c) when mathematical statements are ac-
cepted at one time andrejected at a later time, those whooriginally accepted
the statements were unjustified in doing so. In each case the formulation
suggests a contrast with the natural sciences. Since reading Kuhn, Feyera-
bend, and others, philosophers have recognized that those episodes during
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which the natural sciences seem to maketheir greatest advance are marked

by disputes in which the conservative protagonists cannot simply be labelled

as ‘‘prejudiced,”’ ‘‘irrational,’’ or ‘“‘stubborn.’’ Moreover, increasing un-

derstanding of the history of science has enabled usto see that many of the

scientific concepts and principles of our predecessors have been discarded

or modified. Finally, our study of science finds room for the notion of a

justifiable mistake. We are prepared to admit that the scientists of earlier

ages held justified false beliefs. Hence each of the theses (a), (b), (c) can

serve to expose a contrast between the cumulative development of mathe-

matics and the non-cumulative development of natural science.

These ideas of an important contrast stem from the available historical

studies. Hence an appropriate first response to them is to suggest that the

appearance of harmonyandstraightforward progress may be an artifact of

the histories of mathematics which have so far been written. Until the

history of natural science came of age, it was easy to believe that the course

of true science ever had run smooth. Unfortunately the history of mathe-

matics is underdeveloped, even by comparison with the history of science. !°

Only in the last few years have there appeared studies which advanced be-

yond biographical details and accounts of names, dates, and majorachieve-

ments. One difficulty for the historian has been the prevailing philosophical

view of the nature of mathematics, with its emphasis on mathematics as a

body of a priori knowledge. That emphasis has diverted attention from the

rejected theories, the plausible but unrigorous pieces of reasoning,theinter-

theoretical struggles.

Even the most cursory look at some primary sources will dispose of a very

naive conception of the cumulative character of mathematics, the idea that

mathematicsliterally proceeds by accumulation, that new claims are added

but old claims are never abandoned. Eighteenth-century analysis abounds

with statements that we have rejected. The history of the investigation of

the distribution of prime numbers contains many false starts and blind

alleys. Other cases are more subtle. If one compares a contemporary text in

analysis with a classic text of the early part of the century (say Whittaker

and Watson’s Course of Modern Analysis) it is impossible to regard the

later work as a simple extension of the earlier. True, there is significant

overlap in material, but the modern text approaches the subject from

a

dif-

ferent perspective, generalizing the treatment of some theorems and omit-

ting other topics altogether. Jn some sense, most of nineteenth-century

analysis survives in the contemporary treatment, but it does not do so in any

straightforward way: we no longer care for the systematic exploration of

special functions which our Weierstrassian predecessors loved so well.

The formulations I have given to the idea that mathematicsis cumulative

in a way that natural science is not are more sophisticated than the position

just considered, andless easy to dismiss. Nevertheless, we can pointto epi-

sodes from the history of mathematics which call each of them into ques-

tion. Just as there are protracted disputes in the history of science in which

we are reluctant to characterize any of the protagonists as stupid or wrong-

headed, so too in mathematics there are parallel controversies. Consider,

for example, some of the debates which surround the early calculus. New-
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tonians and Leibnizians each proclaimed the superiority of their method to
that practiced by the rival tradition. The Leibnizians pointed proudly to
their problem-solving efficiency; Newtonians emphasized their ability to
preserve important features of previous mathematics. We should no more
castigate Newton and his successors for clinging to a style of mathematics
which the calculus was eventually to transform than we should condemn
Priestley for his attempt to salvage the phlogiston theory and to useit to ac-
count for his own experimental results. As a further illustration, we can
turn to the late nineteenth-century dispute about the legitimacy of various
construals of the real numbers and of Cantor’s transfinite set theory. We
disagree with those, like Kronecker, whoinsisted on a literal application of
the slogan that analysis should be arithmetized. Yet we would find it just as
hard to convict Kronecker of irrationality and dogmatism as to press the
same charges on the more subtle of the Aristotelians who debated Galileo.
HenceI conclude that we should notarticulate the contrast between mathe-
matics and natural science along thelines Suggested by (a).

Let us now examine (b). Even if we grant that standard presentations of
the history of mathematics conceal the existence of genuine disputes and
noncumulative changes, it appears at first that vastly more of ancient
mathematics than of ancient science has survived intact into the present. We
have not abandonedthe truths of arithmetic, or Euclid’s theorems, or the
solutions to quadratic equations obtained by the Babylonians. Doesthis not
indicate an important difference between the development of mathematics
and the developmentofscience? It is crucial here to find the right scientific
analogs for these mathematical results. Let us recognize that manystate-
ments have in fact persisted through the history of science. We continue
to share with our ancestors a wealth of beliefs about the ordinary prop-
erties of ordinary things. To claim that there is no privileged level of obser-
vational reporting, that all our observation statements are revisable, is quite
consistent with the admission that many of the claims we makeon thebasis
of observation coincide with judgments that have been made for centuries.I
anticipate an objection. When we say, for example, that feathers float on
water or that the sunrises in the east, can we really be taken to agree with
our predecessors? Perhapsthe translation of their utterances by these sen-
tences of ours blurs important conceptual differences which Separate us
from them.I believe that such worries are unfounded. Whenthe notion of
conceptual changein scienceis properly understood,wesee thatit is possi-
ble to allow for the existence of conceptual differences between ourselves
and our ancestors while claiming that we can record some of their beliefs in
sentences of contemporary language to which we would assent. However,
even if this were not so, the objection would not be pertinent to our present
discussion. For any argument for shifts in our concepts of the ordinary
things around us andoftheir ordinary properties could be mirrored by an
argument for parallel shifts in our concept of number. If, for example, we
suppose that our concept of water has been transmuted by the discovery
that matter is discontinuous, so too we may take our concept of number to
have beenaltered by the introduction of negative, rational, real, complex,
and transfinite numbers. Hence it would be wrong to claim that our arith-
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metical beliefs have been preserved through the centuries, while our every-

day physical beliefs have not.

Finally, we must address the suggestion that mathematicians, unlike

natural scientists, cannot justifiably hold false beliefs (the suggestion offered

by (c)). Were we to adopt this suggestion we would be forced to some harsh

judgments concerning those mathematicians who have advancedinductively

based conjectures about formulas for generating prime numbers. More im-

portantly, we would fail to do justice to the numerousoccasions on which

acceptance of a simplified principle paves the way for the development of

concepts which can be used to correct that principle. Euler and Cauchy

justifiably believed, for example, that trigonometric series representations

of arbitrary functions could not be given. Only in the wake of Cauchy’sat-

tempt to articulate the reasons which he drew from Euler could it become

apparent howthe claim wasincorrect. To develop the concepts required to

correct Cauchy’s mistake took approximately a quarter of a century. Here,

and in many other cases, we find mathematicians making the best use of

their epistemic situations to advance false claims, whosefalsity only be-

comes understood throughthe efforts of those very mathematiciansto ar-

ticulate their reasons. If we accept (c) we shall not only divorce the notion of

justification in mathematics from justification in other fields, but also make

the progressive uncovering of subtle errors look like a sequence of blunders

which culminates, miraculously, in apprehension of the truth.

So far, then, we have failed to discover a sense in which the growth of

mathematical knowledge is cumulative and the growth of scientific knowl-

edge is not. However, I believe that there is something to the suggestion that

we have so far failed to credit. Mathematical theories seem to have a far

higher rate of survival than scientific theories. Newton’s ‘“‘method of flux-

ions’’ is very different from contemporary calculus, and Hamilton’s theory

of quaternions is by no means identical with modern linear algebra; yet, in

some sense, both Newton’s and Hamilton’sideas live on in modern mathe-

matics. Obviously, similar remarks can be made about some past scientific

theories. What we do not seem to find in mathematicsare the analogs of the

discarded theories of past science: there appear to be no counterparts of

Aristotle’s theory of motion, the phlogiston theory of combustion, or

theories of blending inheritance. I shall now try to explain whythis is so.

Consider the difference between the developmentof non-Euclidean ge-

ometry and the (roughly contemporary) development of the oxygen theory

of combustion. In the former case, after nearly two millennia of attempts to

prove Euclid’s fifth postulate (which is equivalent to the statement that,

given a line in a plane and a point of the plane which doesnotlie on theline,

there is a unique line through the point which is parallel to the given line),

three mathematicians, Lobatschevsky, Bolyai, and Gauss, decided to inves-

tigate the consequences of adding to the first four postulates a statement as-

serting the existence of many parallels. Their efforts produced the non-

Euclidean geometry we call ‘Tlobatschevskian.’’ Once they became con-

vinced that the new geometry wasconsistent, mathematicians acceptedit as

part of mathematics, and they set about proving Lobatschevskian theorems,

trying to find characteristics which would distinguish Lobatschevskian ge-
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ometry from Euclidean geometry, attempting to generalize geometrical
theories, and so forth. As far as mathematics is concerned, there was no
need to choose between Lobatschevsky and Euclid (although tradition
credits Gauss with an investigation designed to determine if space is Eu-
clidean). Contrast this course of events with the debate over theories of com-
bustion. The phlogiston theory claimed that something—phlogiston—is
emitted from substances when they burn. Lavoisier’s oxygen theory con-
tends that combustion involves not emission but absorption of a constituent
of the air. By 1800, thescientific community had decided in favor of the ox-
ygen theory, and, after Priestley’s death in 1804, no majorscientist explored
further consequences of the phlogiston theory.
What appearsat first to be mathematical competition issues in peaceful

co-existence. By contrast, scientific competition ends in the death of one
theory. Lobatschevsky’s geometrysits alongside Euclid’s in the pantheon of
mathematical theories, because for the mathematician both theories are cor-
rect descriptions of different things; Lobatschevsky, Bolyai, and Gausspro-
vided an accurate account of a particular kind of non-Euclidean space;
Euclid’s geometry remains the correct theory of Euclidean space; the ques-
tion of which kind of geometrical spaceis realized in physical space is given
to the physicists (or, if the apocryphal story about Gaussis true, to mathe-
maticians moonlighting as physicists). Yet we should appreciate that this
distinction of questions is a consequenceofthe construction of non-Euclid-
ean geometry. Both geometries survive because both are interpreted dif-
ferently from the way in which geometry had previously been construed.
Between the time of Descartes and the investigations of Lobatschevsky,
Bolyai, and Gauss, mathematicians did not distinguish geometrical space
from physical space. Euclid’s geometry was, at once, part of mathematics
and part of physical science. The mathematical investigation showed that
there was (apparently) a rival theory of physical space.!! The mathemati-
clans equipped boththe old and the new geometry with a newstyle ofinter-
pretation, andleft the physicists to determine which theory was true on the
old construal.
The moveis typical of mathematics, especially of the recent history of

mathematics. Yet the rootidea is readily comprehensible in termsof a divi-
sion of labor which began in ancient science. !2 Initially, mathematics in-
cluded optics, astronomy, and harmonics as well as arithmetic and geom-
etry: our contemporary division of fields doeslittle justice to theclassifi-
catory system of the ancient world. What has occurredsinceis a continued
process of dividing questions amongspecialists. The old mathematical in-
vestigations of light, sound, and space are partitioned into explorations of
the possibilities of theory construction (the province of the mathematician)
and determinations of the correct theory (the province of the natural sci-
entist). This division of labor accountsfor the fact that mathematics often
resolves threats of competition by reinterpretation, thus giving a greater im-
pression of cumulative development than the natural sciences.

Consider this practice in light of the picture of mathematical reality ad-
vanced in the last chapter. Mathematics begins from studying physical
phenomena,butits aim is to delineate the structural features of those phe-
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nomena. Our early attempts to produce mathematical theories generate

theories which, we later discover, can be amendedto yield theories of com-

parable richness and articulation. When this occurs, we regard both the

original theory andits recent rival as concerned with different structures,

handing over to our scientific colleagues the problem of deciding which

structure is instantiated in the phenomena weset out to investigate. Our

consideration of ‘‘neighboring”’ structures is scientifically fruitful both for

enabling us to formulate andtest scientific hypotheses about which struc-

tures are instantiated in the actual world, and for advancing our un-

derstanding of those structures which are instantiated.

The case of Lobatschevskian geometry is worth examining at slightly

greater length, for it may appear that the status of that geometry is prob-

lematic. After all, someone may complain, Lobatschevskian geometry does

not apply to the world, and so howcanit be claimed that, in developing that

geometry, Lobatschevsky, Bolyai, and Gauss were unfolding part of the

mathematical structure of reality? My answer draws on the interpretation

of the thesis that mathematics describes the structure of the world which I

gave in the last chapter. Mathematics consists in a series of specifications of

the constructive powers of an ideal subject. These specifications must be

well grounded,that is, they must be successful in enabling us to understand

the physical operations which we can in fact perform upon nature. What

makes an idealization appropriateis its relation to prior idealizations and,

ultimately, to the concrete manipulations in which we engage. Weattribute

to the ideal mathematical subject a power to perform Lobatschevskian as

well as Euclidean operations because, by doing so, we are able to enhance

our understanding of powers which have alreaady been attributed. It is

important to emphasize that, in doing this, we adopt an inclusive policy of

attributing powers to the ideal subject. Weextend our account of the

powers of that subject in any way whichis illuminating or fruitful. Thus

whether or not Lobatschevskian geometry finds instances in the physical

world, that geometry counts as part of mathematics because it is an ap-

propriate idealization to introduce in our inquiries into the physical world,

and what makes it an appropriate idealization is its relation to prior

idealizations which were themselves properly grounded.

There is a tendency to be drawn in one of two directions. On the one

hand, someone may suggest that mathematics is the investigation of the

consequencesof arbitrary stipulations." This proposal has the advantage of

accounting for those episodes in which prior mathematical theories are

reinterpreted to resolve the problem of a threatened dispute. Yet, as I have

already argued at somelength,it fails to be epistemologically satisfactory.

Moreover, one might note that the historical develpoment of mathematics

does not reveal a random set of investigations of the consequences of ar-

bitrary stipulations. The opposite pull is to anchor mathematics in whatac-

tually exists, to suggest that mathematics describes those entities (Platonic

objects, structures, operations) which the world contains. I have offered

what I hope is a middle course. Mathematics consists in idealized theories of

ways in which we can operate on the world. To produce an idealized theory

is to make somestipulations—but they are stipulations which must be ap-
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propriately related to the phenomena oneis trying to idealize. I maintain
that the idealizations which have been offered in the course of the history of
mathematicssatisfy this latter condition, and, in taking the methodology of
mathematicsseriously, I shall try to understand in whatthe satisfaction of
that condition consists.
Mathematics is cumulative in a way that natural scienceis not, because

threats of competition are often resolved by reinterpretation. Furthermore,
this important role of reinterpretation does indicate the significance of
stipulation in mathematics. Yet we should not conclude from this that
mathematical methodis simple, that all the mathematician has to dois set
down his stipulations and work out the consequences. The powerto stipu-
late is constrained by canons of mathematical method, akin to those which
govern the practice of natural science. Hence my concession to the thesis
that mathematics is cumulative should not be taken to invalidate the project
of describing mathematical methodology. Nor, since science also proceeds
by achieving idealizations, should it convince us that parallels between sci-
entific change and mathematical change are not worth pursuing.

II

The previous sections of this chapter have attempted to clear some ground.
Mynextstep will be to use recent insights aboutscientific changeto pose in
a more precise form the question of how mathematica] knowledge grows.
One of the most important contributions of those philosophers of science
whohavebeensensitive to the historical details of scientific change has been
their recognition that the great clashes of Opposing views involve more than
a simple opposition of theoretical statements, and that, by the same token,
the developmentofa field of science during periods ofrelative calm pro-
ceeds against the background of shared extratheoretical assumptions which
expedite the resolution of disagreements.'4 The simple empiricist picture (as
well as the most obvious refinements of it) aims to understandscientific
change by finding principles which govern the modifications of sets of
theoretical statements in response to observational changes. One waytore-
ject this pictureis to give up its view of the units of change. So, for example,
we might replace empiricist talk of modifications of theory with Kuhnian
talk about articulations and changes of *“paradigms.”’
The concept of a paradigm is as Suggestive as it is unclear.'5 It would be

tangential to my main themeto offerdetailed exegesis of Kuhn’s discussions
of paradigms. What I wish to emphasizeis that the notion of a paradigm is
designed to fulfil two different philosophical purposes. First, and perhaps
most obviously, his references to paradigms enable Kuhn to divide the
history of science into large segments. Thedistinction between normal and
revolutionary science separates those periods in which paradigmsare ar-
ticulated from those in which paradigms are abandoned,and,takenat face
value, Kuhn’s book encouragesus to apply this distinction throughout the
history of science. However, in the linguistic move from the empiricist
mode of discussing scientific change as theory change to the Kuhnian idiom
of paradigm change, wefind a second function which paradigmsserve. Kuhn
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intends to deny that we can understandthe history of science simply by talk-

ing about modifications of the set of statements which thescientists of an

era accept. To chart the developmentofa field we need moreindicesofits

state at any given time. Hence, Kuhn introduces the richer—and vaguer—

notion of a paradigm in place of the empiricist concept of a theory or cor-

pus of beliefs.

Thefirst point I wish to makeis that the second function of the paradigm

conceptis independentofthefirst. It is quite possible for someoneto be scep-

tical about the possibility of subsuming all episodes in the history of science

under Kuhn’s normal/revolutionary distinction while consistently mnaintain-

ing that scientific change should be understood in terms of the modification

of more than a set of accepted statements. To suppose that the science of a

time is to be regarded as multi-faceted is not to endorse the idea that the

history of science must reveal discontinuities, or that changes in some com-

ponents of the science are so fundamental that those changes should be hailed

as revolutionary. We can disregard Kuhn’s doctrines about the segmentation

of history, while retaining his insight that the units of change are more com-

plicated than empiricists have traditionally supposed.

Let me elaborate on this point by drawing an analogy between an evolu-

tionary account of human knowledge and the evolutionary theories which

have been propounded in the natural sciences. With any evolutionary

theory, there is a danger that one will fail to isolate the principles which

govern the developmentof the system under study because onehasfailed to

pick out all the relevant variables. A physicist whotried to chart the changes

in pressure of a gas by attending only to temperature variations, or an

ecologist who studied the career of a population by considering only food

supply and neglecting threats posed by predators, would be engaged in a

hopeless enterprise. Evolutionary theories, whether they are concerned with

the thermal behavior of gases, the modification of organic phenotypes or

the development of human knowledge, hopeto understandthestate of the

system at later times by relating it to previousstates of the system by laws of

development, and to achieve their goal they must provide a sufficiently

detailed characterization of the states of the system.

I interpret Kuhn’schallenge to simple empiricism as applying this point to

the growth of scientific knowledge. Kuhn denies that we can understand

scientific change by focusing simply on the shifts in allegiance to theoretical

principles. Instead we must view what changes as a Scientific practice with

many components: language, theoretical principles, examples of experimen-

tal and theoretical work which are deemed worthy of emulation, approved

methods of reasoning, problem-solving techniques, appraisals of the impor-

tance of questions, metascientific views about the nature of the enterprise,

and so forth. Unfortunately, Kuhn fuses this important idea with a claim that

certain types of changes in practice are intrinsically different from others, so

that the notion of a paradigm is expected to cover those sequences of prac-

tices in which no ‘‘fundamental’’ transitions occur.’°

I wish to salvage the notion of a practice and jettison the concept of a

paradigm which Kuhn generates from it. One of Kuhn’s majorinsights

about scientific change is to view the history of a scientific field as a sequence
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of practices. I propose to adopt an analogous thesis about mathematical
change. I suggest that we focus on the development of mathematical prac-
tice, and that we view a mathematical practice as consisting of five com-
ponents: a language, a set of accepted statements, a set of accepted reason-
ings, a set of questions selected as important, and a set of metamathematical
views (including standards for proof and definition and claims about the
scope and structure of mathematics). As a convenient notation, I shall use
the expression ‘‘<L,M,Q,R,S>’’ as a symbol for an arbitrary mathemati-
cal practice (where L is the language of the practice, M the set of metamathe-
matical views, Q the set of accepted questions, R the set of accepted rea-
sonings, and S the set of accepted statements). The problem of accounting
for the growth of mathematical knowledge becomesthat of understanding
what makesa transition from a practice < L,M,Q,R,S> to an immediately
succeeding practice <L’,M’,Q’,R’,S’> a rational transition.

In regarding a mathematical practice as a quintuple ofthis kind, I have
selected those features of mathematical activity which seem to undergosig-
nificant change. Obviously it is possible that I may have chosen more com-
ponents than I need or, conversely, that other features of mathematical ac-
tivity need to be included if we are to obtain an adequate understanding of
mathematical change.If I have erred in the former direction then we should
find that it is possible to understand changes in some subset of the com-
ponents without appealing to components which do not belong to this
subset. A mistake of the latter type should be reflected in inability to
reconstruct certain kinds of mathematical change. Later chapterswill pro-
vide support for my analysis, both by showing how important types of
mathematical change involve interconnections among all the componentsI
have listed, and by demonstratingits capacity for handling a range of ex-
amples.

Let me concludethis section by using my reformulation of the problem of
mathematical change to present moreprecisely the points aboutthe similar-
ities and differences between mathematical andscientific change which were
madein Sections I and II. In the first place, scientific practices can change
in response to new observations. But they can also change asthe result of
the existence of discrepancies amongthe various components of the prac-
tice. To exploit the analogy with developing systems, we maysaythat the
movement to a new practice may result from the fact that the old practice
was notin equilibrium. This type of changeis the rule in mathematics. As
we shall see, the components of a mathematical practice are never in com-
plete harmony with one another, and the striving for concordance generates
mathematical change. Second, we shall accountfor the apparently greater
cumulative development of mathematics, by recognizing the existence of a
particular type of linguistic change in mathematics which enables the resolu-
tion of apparent conflicts. So, where in the case of science we find the re-
placementof one theory by another (as in the case of the replacementof the
phlogiston theory by the oxygen theory), in the mathematical case thereis
an adjustment of language and a distinction of questions, so that the
erstwhile ‘‘rivals’’ can coexist with each other. Mathematical changeis
cumulative in a way thatscientific changeis not, because of the existence of
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a special kind of interpractice transition. As I have already suggested, this

type of transition is found in mathematics because the task of the mathe-

matician is to unfold the possibilities for theory construction, a task which

consists in advancing appropriate stipulation of the powers of the ideal

mathematical subject. We engage in this task by following an inclusive

policy of attributing powers, further articulating our account of the subject

in any ways which advance our understanding of the attributions already

made.!’

IV

I have used the comparison between mathematical change andscientific

changeto offer a very general hypothesis about the growth of mathematical

knowledge. Mathematical knowledge develops through the rational modifi-

cation of mathematical practices, and mathematical practices are to be

understood as having five components. I now want to examine one type of

interpractice transition which is especially important. To fill out the specific

details of my hypothesis, we shall need to pay attention to the question of

how mathematical language develops.

One of the principal obstacles to a satisfactory account of scientific

knowledge has been the difficulty of understanding conceptual change in

science. Any adequate study of the history of science must come to terms

with the fact that the language used in the samefield of science at different

times seems to undergo subtle shifts. We find our predecessors using the

words we use, but when wetry to translate them we discover that it is dif-

ficult to record their beliefs without attributing blatant errors to them. A

radical response to this predicamentis to declare that the languages used in

the samefield at different times (at times separated by a revolution) are in-

commensurable, that statements made in one cannot be adequately

translated by statements made in the other.!* I believe that we can do justice

to our predicament without makingthis radical response. I shall try to pro-

vide an account of conceptual change whichwill avoid the declaration ofin-

commensurability, applying this account to cope with the problem asit

arises in mathematics. As will becomeclear in later chapters, my discussion

will not only help us to understand that type of interpractice transition

which consists in the modification of mathematical language. It will be im-

portant in explaining other types of interpractice transition as well.

In this section, I shall investigate the general topic of conceptual change.

Let us begin with the problem which leads some writers to talk of incom-

mensurability. When we consider the language of Aristotelian physics or of

phlogiston theoretic chemistry, we encounter difficulty in giving an ade-

quate translation for central expressions of the language. The standard of

adequate translation invokedhereis relatively straightforward: an adequate

translation for an expression is one which would specify the referent of that

expression. Trouble arises from the fact that we do not countenancetheenti-

ties to which proponentsofthe old theory seem to have intended to refer, so

that obvious attempts to translate their utterances construe their claims as

completely false. When wereflect that the old theory seems to have been
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useful in developing its successor, this blanket dismissal is disconcerting.
Consider, for example, the language of the phlogiston theory. Weare in-
clined to say that there is no phlogiston, that ‘phlogiston’ fails to refer, and
that in consequence the complex expressions ‘phlogisticated air’ and
“dephlogisticated air’ fail to refer.!9 We are then embarrassed to find that
phlogiston theorists apparently recorded manytrue claims about oxygen us-
ing the term ‘dephlogisticated air’ and that their achievements in this area
were important in the development of Lavosier’s theory of combustion.
Howcan weavoid the unfortunate conclusion that a// phlogiston-theoretic
claimsare false because the phlogiston theorists were not talking about any-
thing—without embracing the unhelpful suggestion that they were talking
about the occupants of ‘‘another world’’ or that their theory has a different
ontology from ours?

Myansweris to retain the idea that adequate translation of the language
of past science should specify the referents of the expressions which were
formerly used, but to articulate that idea in the light of recent work on the
theory of reference. I shall first review some contemporary insights about
reference. This will lead meto a resolution of the problem posedin thelast
paragraph, and to a general account of conceptual changein science. The
application to mathematics will be undertaken in the next section.

Recent studies of reference for proper names and natural kind terms have
made it clear that one can refer to an object (or set) without being able to
produce any description which identifies the object (or gives the condition of
membership in the set) in a nontrivial way. People regularly refer to Ein-
stein without being able to say any more about him than that he was (is!) a
physicist, and we can refer to aluminum without knowing any criterion
which woulddistinguish it from molybdenum (or other metals). How is this
possible? The first thing to recognize is that many of our references are
parasitic on those of others. We refer to an object by intending to refer to
that to which ourfellows refer. Better, we acquire an ability to refer using a
particular term from others whoalready have anability to refer using that
term. But how does the chain of reference originally start? Here, it is
natural to think that the original user attaches the term to its referent either
by providing a description of the referent or by applying it to a presented
object. Thus we obtain the picture of reference as initiated by a baptismal
ceremony in which the expression is fixed to its referent; thereafter, the
ability to refer spreads through a community of speakersin virtue of inten-
tions to concur in the references of other speakers (including, ultimately,
the original user of the term). Baptismal ceremonies themselves divided into
two types, ostensive and descriptive. In cases of the latter type, the referent
is originally singled out by description, and, even though we do not assume
that the description is knownbyall those who use the term,thereareatleast
some membersof the community whocan give an identifying description of
the referent. For terms introduced byostensive baptismal ceremonies, how-
ever, it may happen that none of the subsequentusersis able to provide an
identifying description of the referent.
The history of science supplies a numberof examples of terms which ap-

pear to be introduced byan ostensive baptismal ceremony. Consider, for
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example, terms for kinds of substances, such expressionsas ‘gold,’ ‘water,’

and ‘acid.’ It is tempting to adopt the hypothesis that the current use of the

expressions descends from occasions on which original speakers attached

expressions (not necessarily the terms ‘gold,’ ‘water,’ and ‘acid’) to samples

of gold, water, and acid respectively, intending thereby to pick out the kind

of thing to which the present sample belonged. During the subsequentcen-

turies, their successors struggled to find descriptions which would correctly

characterize the kinds to which they were referring, sometimes advancing

incorrect descriptions whose shortcomings were exposed by further research.

Finally, we have achieved sufficient knowledge of the properties of there-

ferents to be able to give descriptions which identify them correctly.

I think that this picture of the reference of somescientific terms has much

to recommendit, but it needs to be refined in two different waysif we are to

have an account whichwill solve the problem of conceptual change.First,

we need to allow for the possibility that the links between words and the

world may be constantly renewed so that, in time, a term becomes asso-

ciated with a complex apparatus of referential ties, with the result that dif-

ferent tokens mayrefer differently. Second, some of theinitial links be-

tween words and the world, or some of the subsequent connections, may be

made by description. Recognition of the role of ostensive baptismal cere-

monies should notlead us to neglect the fact that sometimes reference is fixed

differently.

Both points are illustrated by the example considered above. The term

‘phlogiston’ wasoriginally introduced into the language of chemistry by a

declaration that phlogiston is to be the substance which is emitted in com-

bustion. The description which is used here to fix the reference of ‘phlo-

giston’ is not satisfied by anythingat all, so that, given this original estab-

lishment of its usage, the term fails to refer. As a result, insofar as the

referent of ‘phlogiston’ is fixed through the description initially given, the

term ‘dephlogisticated air,’ which abbreviates the phrase ‘‘the substance ob-

tained when phlogiston is removed from theair,”’ also fails to refer. How-

ever, when tokensof ‘dephlogisticated air’ occur in the writings of theorists

such as Priestley and Cavendish, the best interpretation of their remarksis

often to construe those tokensas referring to oxygen, a gas which Priestley

was the first to isolate. For example, Priestley recounts that dephlogisti-

cated air supports combustion better than ordinaryair, that mice thrive in

it, and that breathing dephlogisticated air is quite pleasant. Thereis a nat-

ural explanation for such remarks. Having isolated oxygen, Priestley mis-

identified it as ‘‘dephlogisticated air.’’ On this occasion the referent of his

token of ‘dephlogisticated air’ had its referent fixed in the old way:thatis,

dephlogisticated air is the substance remaining when the substance emitted

in combustion is removed from theair (hence the tokenfails to refer). How-

ever, Priestley’s misidentification set the stage for a new usage. Thereafter,

he sometimes produced tokensof ‘dephlogisticated air’ whose referenceis

fixed via the misidentification (or perhaps via subsequent misidentifica-

tions), tokens which refer to the kind of substance which Priestley had iso-

lated, namely to oxygen. Thusthe .erm fype ‘dephlogisticated air’ came to

acquire two different modesof reference. Thereference of its tokens could
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be fixed through the original ‘‘ceremony’’ in which phlogiston was picked

out as the substance emitted in combustion or through encounters with ox-

ygen. Let us call the ‘‘ceremony’’ through which the referent of a token is

fixed the initiating event for that token. Then our conclusionis that tokens

of ‘dephlogisticated air’ have initiating events of two different kinds. The

fact that tokens of ‘dephlogisticated air’ possess different kinds ofinitiating

events reflect the belief, explicit in Priestley’s work and accepted by his

fellow phlogistonians, that the different initiating events pick out the same

entity. We can generalize the example by defining the reference potential of

a term type as the set of events which can serve as initiating events for

tokens of the type. The theoreticalpresupposition of a term is the thesis that

all the initiating events which belong to the reference potential pick out the

same entity. After Priestley’s work, ‘dephlogisticated air’ had a hetero-

geneous reference potential and a false theoretical presupposition.

I want to use this general approach to account for conceptual changein the

natural sciences, in general, and in mathematics, in particular. I suggest that

weidentify concepts as reference potentials and chart changes in concepts by

following the modifications of reference potentials. If this approachis to suc-

ceed weshall need a firmer grasp on the conceptof the fixing of the reference

of a token througha particular event, a concept presupposed by mynotion of

reference potential.

What does it mean to claim that an eventis the initiating event for a par-

ticular token? The question naturally arises when wetry to apply the view

of reference which I have offered. Attention to the case of Priestley helps us

to see how to answerit. We take someof Priestley’s tokens to havetheir re-

ferents fixed through his encounters with oxygen because, by doing so, we

achieve the best explanation of whyhe said whathe did. In this we emulate

the professional historian. To understand the dicta of our predecessors, we

conceive of them by analogywith ourselves, attributing to them the kinds of

cognitive faculties we possess and using our knowledge of the stimuli im-

pinging upon them to project the content of their beliefs. We do not expect

them always to agree with us, for, despite the similarity of their faculties to

ours, the experiences they have may be very different. What we do expect to

find is a similar pattern of relationships amongbeliefs, desires, intentions,

experience, and behavior. Claims which identify particular events as theini-

tiating events for particular tokens should be understood in this light. We

are proposing that the identification offers the best explanation of the

remarks in which weare interested, where the standards for goodnessof ex-

planation are fixed by the expectation of similar psychological relations.

It will be helpful for our future discussions to recognize three main types

of explanations of a speaker’s token. Thefirst is whatI will call a conformity

explanation, when weattribute to the speaker a dominantintention to agree

with others and trace the referent of his token to an initiating event involv-
ing some other speaker. Although the vast majority of cases of language use
require this type of explanation, many of the mostinteresting cases demand
something different. Historical studies of mathematics and science are fre-
quently concerned with the pioneers, those who authored new patterns of
usage. Sometimes, when weattend to the utterances of a great mathema-
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tician orScientist, it is appropriate to explain her remarks by supposing that

the initiating event for her tokens is an event in which she singled out a

paradigm object (or paradigm objects) with the dominantintention to refer

to a kind exemplified by the paradigm. I shall call these present paradigm

explanations. They contrast with cases in which our best explanationis to

take the remarksas initiated by an event in whichthe speakersingles out the

referent by description, explanations which I shall call stipulational expla-

nations. The difference between the present paradigm and stipulational

types can easily be dramatizedbya fictitious attribution of soliloquy. When

we give a present paradigm explanation, our conception of the speaker’s

psychological stance is that she should sayto herself, ‘‘I do not care whether

or not the descriptions I am inclined to give are misdescriptions—what is

important is that I am picking out a genuine kind.’’ On the other hand,

when we advancea Stipulational explanation it is as if we conceived of the

speaker as saying to herself, ‘‘It does not matter whether or not I am pick-

ing out a genuine kind—whatis importantis that the referent should satisfy

these descriptions.’’ I think that it is worth emphasizing that the attitudes

manifested in thesefictitious attributions are both reasonable in appropri-

ate contexts. Amongthe goals of inquiry are the developmentof a language

which will divide the world into kinds (that is, a language which will permit

the formulation of simple laws) and the achievementof descriptions which

will accurately characterize the referents of our terms. To sacrifice the

former goal for thelatter is to risk creating cumbersome theories, while the

contrary sacrifice courts the danger of vague andill-understood language.It

is sometimes reasonable in theinterests of clarity to stipulate explicitly that

the referent of a wordis to satisfy a particular description.”! On other occa-

sions, it is equally reasonable to allow that all of one’s attempts to identify

one’s referent may be premature. I conjecture that many scientific and

mathematical expressions pass through a period during whichit is correct to

give present paradigm explanations of the production of some tokens and

stipulational explanations of the production of others.

To sum up, conceptual change in science is to be understood as the

modification of reference potentials. The reference potential of a term type

is the class of events which can initiate the production of tokensof the type.

An event counts as the initiating event for the production of a token if the

hypothesis that the speaker referred to the entity singled out in that event

provides the best explanation for her saying what she did. We can recognize

a number of different forms of explanation, two of which, present para-

digm explanations and stipulational explanations, will be especially impor-

tant in applying my account to mathematics.

This approach solves the problem about conceptual change from which

we began. Proponents of incommensurability have recognized that reference

potentials of terms used by formerscientists need not match the reference

potentials of any terms in the language oflater science. Yet it is wrong to

concludethat the referents of the individual tokens are not specifiable in the

other language, or that, in some mysterious sense, the two groupsofscien-

tists are responding to different worlds. I shall now return from my general

discussion to the specific case of mathematics, showing howto resolve some
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difficulties about the development of mathematical concepts and how to

make sense of an important type of interpractice transition.

V

I proposeto think of the language componentof a mathematicalpractice as

consisting of a syntax coupled with a semantics which includes a set of

reference potentials. Some kinds of changes in this componentarerelatively

trivial. Anyone who hasattained a modest degree of sophistication in mathe-

matics understands the point of introducing notation to abbreviate expres-

sions of the existing language. To make a proof more perspicuous, or simply

to avoid the tedium of writing the samelong string of symbols again and

again, one decides to adopt an abbreviatory convention, and sometimesthe

convention spreads through the mathematical community. If such cases

were the only kindsof linguistic change which occurred in the development

of mathematics, we should need no elaborate account of conceptual

change. For these examples are readily understood as occasions on which
the syntax of the language is changed by adding a new expression and the
semantics is augmented byfixing the referent of the expression through ex-

plicit stipulation in previously available terms.

Although these simple changes are very common,the history of mathe-
matics presents us with at least two other types of linguistic change. When
we lookat the history of analysis, we are inclined to say that the concepts of
function, continuity, integrability, and series summation change during the
eighteenth and nineteenth centuries; similarly, the history of algebra seems
to show the evolution of the concept of a group.I shall attempt to explain
what occurs in these examples by using the approach to conceptual change
developed in thelast section. I shall also consider a more worrying type of
case. Sometimes it appears that a new expression is introduced into mathe-
matical language by a stipulation which violates previously accepted
theorems. This seems to occur, for example, both with theinitial usage of
expressions for complex numbers and with Cantor’s term ‘w.’ Such cases
are the mathematical analogs of those episodes which, like the phlogiston-
theoretic example of the last section, provoke philosophersofscience to ap-
peal to incommensurability. If my approachcanyield insight into them then
that should count strongly in its favor.

Initially I shall discuss these cases from an ontologically neutral stand-
point, without invoking the picture of mathematical reality which I pre-
sented in Chapter 6. I shall simply assume that mathematical expressions
typically refer and inquire into their modeof reference without adopting my
favored view of their referents. There are two advantagesto this procedure.
First, it will show that the thesis about linguistic change defended here can
be accepted independently of any particular picture of mathematical reality.
Second, discussion of the examples will be focussed more precisely by con-
centrating on the types of referential links between wordsandentities with-
out worrying about the nature ofthe entities to which the wordsare linked.
However, I shall conclude my discussion by explaining one example from
the perspective of the ontological view of the last chapter.
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A first approximation to an accountof those conceptual changes typified

by the evolution of the concepts of function, continuity, integrability, series

summation, and group can be given as follows. Originally the reference of

the associated terms was fixed through paradigms. Later discussions show a

sequence of attempts to give a descriptive characterization of the entities

which had previously been picked out. Consider, for example, the concept

of function. Leibniz began from the idea that the functions of a curve were

such thingsas its length or area, and that the functions of a point ofa curve

were such things as the tangent to the curve at that point. Thus the term

‘function’ originally had its reference fixed through certain paradigms. As

the calculus was developed by Leibniz’s successors, the set of things recog-

nized as belonging to the same kind cameto include entities which were not

obviously subject to characterization in geometrical terms. Euler achieved a

partial descriptive characterization of the referent of ‘function.’ In a

famous sentence he announced that a function is any expression however

made up of variables and constants. I call this a ‘‘partial descriptive char-

acterization’’ to highlight the fact that Euler’s statementitself contains an

expression whosereference is fixed through paradigms. The notion of an

expression’s ‘‘being made up of variables and constants’’ hasits reference

fixed by the paradigms of expression formation used in constructing poly-

nomial expressions. Further work was required to determine if ‘‘functions”’

given only by integral or infinite series representation belong to the same

kind, and to arrive at the modern general characterization of a function.

This kind of story obviously runs parallel to the accounts we would offer

concerning the evolution of the natural scientific concepts of acid, water,

and so forth. Weregard the evolution of the concepts as consisting in the

replacement of reference by way of paradigms with a descriptive charac-

terization of the referent. Although this brings out the main features of the

developmentof the concept, it can be improved by drawing on some of the

ideas of the last section. Specifically, we can recognize that the referents of

some tokens of the expression under study are fixed through initiating

events in which a description which is ultimately rejected as an appropriate

characterization is used to single out the referent. In short, the reference

potentials of these terms are heterogeneous, and the evolution of the con-

cepts showsan interesting interplay between the addition of new paradigms

for use in initiating events and the discarding of descriptions which had pre-

viously been taken to give adequate characterizations of the referents.

Continuing the example used above, I suggest that some tokens of ‘func-

tion’ which appear in the writings of eighteenth- and nineteenth-century

analysts have their reference fixed descriptively. Thus, for example, the

dispute between Euler and d’Alembert concerning complete solutions to par-

tial differential equations (in particular, the equation of motion of the

vibrating string) turns in part on their having two different conceptions of

function.22 D’Alembert offers a specification of the referent of ‘function’

which excludes entities regarded by Euler as belonging to the same kind as

those which serve both men as paradigms. The eventual resolution of the

dispute involved modification of the reference potential of ‘function,’ aban-

doning d’Alembert’s favored description as an approrpiate meansof fixing

the reference of tokens of ‘function.’
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The cases which are mostdifficult are not those in which we can discern a
clear pattern of development towards characterization of a previously un-
characterized referent, overlaid with occasional uses of whatturn out to be
inadequate preliminary descriptions, but those in which, from the begin-
ning, there is an apparently crucial obstacle to the provision of a descriptive
characterization of the referent of the newly introduced expression. Some-
times it seems that a new symbol, or complex of symbols, has its reference
fixed in such a waythat, from the perspective of the mathematics of the
time, it can have noreferent. I shall examine two examples of this type in a
little more detail, since the problematic character of such cases provides the
best way of exposing the strength of my account of conceptual change.

Consider first Cantor’s initial introduction of symbols for transfinite or-
dinals in 1883. Cantorfixed the referent of his symbol ‘w’ by declaring that
w is to be the first number immediately following the series 1,2, 3,... .33
Cantor seemsto have useda description belonging to the previous language
of mathematics to fix the referent of a new symbol. Yet it would be wrong
to assimilate Cantor’s specification to those trivial cases of abbreviation
which I noted at the beginning ofthis section. Many of Cantor’s contem-
poraries were puzzled—and some were outraged—byhis procedure. Their
response wasbased on an appealto an alleged ‘‘theorem”’ to the effect that
nothing followsthe entire series 1,2,3,...,a ‘“‘theorem’”’ that depends on
the prima facie plausible premises that the series of natural numbers does
not come to an end andthat it makes no sense to speak of somethingfol-
lowing an entire series unless the series comes to an end.
When weconsider this example without employing the distinctions in-

troduced in the last section we appear to have two options. If we suppose
that Cantor used antecedently available language successfully to refer to a
transfinite ordinal, then we shall find ourselves with the task of explaining
how so many of his contemporaries viewed his specification as deeply puz-
zling. If, on the other hand, wecredit them with a correct understanding of
the old language, taking the referents of the expressions Cantor employed
to be fixed so as to preclude the possibility that anything satisfies his
specification, we shall have trouble seeing how he could have launched him-
self into the transfinite. The remedyis to recognize the expressions which
figure in Cantor’s characterization of w as having heterogeneousreference
potentials. Consider first the ways in which the referent of ‘number’ could
be fixed. One wayto specify the numbersis to take them to be the complex
numbers. Thus we can imaginea late nineteenth-century mathematicianfix-
ing the referent of ‘number’ by saying: ‘‘A numberis anything denoted by
an expression ‘a + ib’ where ‘a,’ ‘b’ are decimal expressions.’’ Our mythi-
cal mathematician would obviously be puzzled by Cantor’s claims, since
nothing of the kind picked out by this specification followsall the natural
numbers. An alternative wayto fix the referent of ‘number’ would be to
suppose that numbersare entities on which one can perform certain kinds
of operations(saying, for example, that numbersare those things which can
be added, subtracted, multiplied, and divided). Given this method of fixing
the referent the question of the existence of transfinite numbers is an open
question. Tosettle it, one needs to show how it is possible to define recog-
nizable analogs of the standard operations on ordinary numbers which can
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be applied to transfinite numbers. The naive methods of introducing

transfinite arithmetic—such as the extension of ordinary division to allow

division by zero—had been explored long before Cantor, and shownto lead

to paradox. Thus Cantor had to turn back

a

serious challenge to the pos-

sibility of extending arithmetic into the transfinite. Transfinite arithmetic

plays so large a role in his papers because Cantor’s extension of arithmetical

operations showsthat the challenge can be met. Cantor produces an analog

of ordinary arithmetic, thereby demonstrating that his transfinite numbers

are indeed numbers, thatis, entities to which arithmetical operationsare ap-

plicable.*4

Yet this is only to touch on one aspect of the problem involved in ex-

tending mathematical language to include reference to the transfinite. So

far, I have addressed the worry that Cantor’s specification of w cannot

characterize a number, but I have not examined the deeper anxiety thatit

fails to pick out anything at all. This anxiety has its source in the idea, to

which I alluded above, that it only makes sense to speak of an entity as

following an entireseries if the series comes to an end. One wayto explicate

this idea would beto takethe referent of ‘® follows all the members of the

series @’ to be fixed in such a waythatit only includes pairs whose second

memberis a series with a last member. Perhaps some of Cantor’s contem-

poraries fixed the referent of the expression in this way, and thus concluded

that Cantor’s characterization of w must inevitably be empty. Their objec-

tion could be turned back by showingthat there are paradigmsof succession

in which all the membersofa series are succeeded even thoughtheseries has

no last member. In general, points of accumulation (limit points) for in-

finite open pointsets will provide examples. (A specific instance is given by

noting that 1 follows all the membersofthe infinite series <1/2, 3/4,...,

1 — 1/2", ... >.) Hence Cantor could appeal to paradigmsof succession

to rebut the complaint that I have reconstructed, and, once again, he would

face the challenge of showing that the notion of succession used in his treat-

ment of the transfinite is sufficiently similar to the paradigms in which he

would anchorthereference of ‘@ followsall the membersofthe series @.’

Quite evidently, I have not given a detailed historical reconstruction of

the way in which Cantor’s extension of mathematical language generated

perplexity among his contemporaries and how he was able to dissolve that

perplexity. What I have tried to show is that my approach to conceptual

change allows us to see how the mathematicians of Cantor’s time might

have seen his work as conceptually confused; how, nonetheless, Cantor

could use the existing mathematical language to refer to transfinite num-

bers; and,finally, how he could argue for replacementof those concepts of

number and succession on which opposition to his specifications is based.

We maynote, in passing, that Cantor’s papers in fact employ the strategies

I have attributed to him. The introduction of transfinite ordinals is linked to

the theory of infinite point sets and to a transfinite arithmetic.”

Let me nowconsider a last example, which will reinforce the points that

have just been made. Mathematicians of the late sixteenth century began to

use expressions for the square roots of negative numbers. Thus expressions

like ‘\/—1’ (and cognate terms) became relatively commonin writings on
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algebraic equations, and, later, in the early integral calculus. Now,since
‘\/—1’ is an abbreviation for the expression ‘‘the number whose product
with itself is — 1,’’ an expression which is a syntactically well formed ex-
pression of the old language, we face a similar dilemmato that whichwe en-
countered in the case of Cantor’s ‘w.’ To what does ‘,/—1’ refer? Two
hypotheses present themselves: first, ‘\/—1’ refers to i; second, ‘\/—1’ fails
to refer. The first hypothesis has the advantage of making it clear how
reference to complex numbers become possible. The language of mathe-
matics always had the resources to refer to these numbers. But the
hypothesis fails to explain the deep and longlasting suspicion of complex
numbers andthe strenuous efforts which were made to understand them.
By contrast, the second hypothesis enables us to account for the resistance
to complex numbersat the cost of making it mysterious how we ever came
to be in a position to refer to them. ‘./—1’ fails to refer, we might say,
because, in the way in which ‘number’ wasusedat the time of the alleged in-
troduction of complex numbers, there is no number whose product with
itself is — 1. The opposition to the numbers was so intense because
mathematicians were all acquainted with a theorem to this effect.

Neither hypothesis is correct, but both have captured part of the story.
One way to fix the referent of ‘number’ is to use the available para-
digms—3, 1, — 1, 2, x, and so forth—torestrict the referent to the reals.
Given this mode of reference fixing, the theorem that there is no number
whose product with itself is — 1 is almost immediate. (Any numberis
positive, negative, or zero. The product of a positive number with itself is
positive, the product of a negative numberwith itself is positive, the prod-
uct of zero withitself is zero.) Given a different way offixing the referent of
‘number,’ numbersare entities on which arithmetical operations can be per-
formed. Here, from the point of view of medieval and renaissance
mathematics, it is an open question whether one can find recognizable
analogs of the paradigm operations which allow for the Square of a
‘“‘number’’ to be negative. In effect, Bombelli and the other mathematicians
who allowedexpressions of the form ‘./— v’ to enter their calculations were
fixing the referent of ‘number’ in this second way, and were referring to
complex numbers. What neededto be doneto showthat the morerestrictive
modeofreference fixing should be dropped from the reference potential of
‘number’ was to allay fears that recognizable analogs of ordinary
arithmetical operations could not be found. During the seventeenth and
eighteenth centuries, algebraists, analysts, and geometers responded suc-
cessfully to such fears. Gradual recognition of the parallels between com-
plex arithmetic andreal arithmetic led to repudiation of the morerestrictive
mode of reference fixing, so that the reference potential of ‘./—1’ came to
include only events in which i was identified as the referent.

In considering this exampleit is helpful to drop the stance of ontological
neutrality which I have been adopting. One special feature of the concern
about complex numbers wasthe felt need for a concrete interpretation of
them. (Thus the metamathematical views of the practices of mathematicians
up to the end of the eighteenth century contained a requirement that, for
any kind of number, some statements about the numbers of that kind must
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admit of concrete construal.)?6 An important episode in the acceptance of

complex numbers was the development, by Wessel, Argand, and Gauss, of

a geometrical modelof the numbers. We can obtain a clear view about what

was being demanded and howthe demand wassatisfied if we adoptthe pic-

ture of mathematical reality given in Chapter 6. Prior to the work of

Bombelli and his successors, the referent of ‘number’ was fixed with respect

to paradigms of number operations. Each of the paradigm number opera-

tions could be given a construalin concrete physical terms: natural number

operations obtained their physical interpretation in the process of counting;

real number operations found theirs in the process of measurement.

Bombelli can be regarded as suggesting thatthere is a type of numberopera-

tion which had not hitherto been recognized. To eliminate from the

reference potential of ‘number’ the restrictive mode of fixing the reference

to the familiar kinds of numberoperation,it was not sufficient to show that

the new operations would submit to recognizably arithmetical treatment.

Proponents of complex numbershad ultimately to argue that the new oper-

ations shared with the original paradigms a susceptibility to construal in

physical terms. The geometrical models of complex numbers answered to

this need, construing complex addition in terms of the operation of vector

displacement and complex multiplication in terms of the operation of rota-

tion.

In general, of course, I want to suggest that all the examples of concep-

tual change in mathematics should be understood by integrating the central

idea of shifting reference potentials with my picture of mathematicalreality

as constituted by the operations of an ideal subject. It should be easy to see

how the integration is to be accomplished. At any stage in the history of

mathematics, mathematical language will contain expressions referring to

or qualifying the operations of the ideal subject. These expressions may

have their reference fixed through paradigmsof such operations or through

descriptive characterizations. They may even have a heterogeneousrefer-

ence potential. In modifying the reference potentials, mathematiciansat-

tempt to achieve a more adequate theory of the ideal activity of the con-

structive subject. Thus, to translate the point of the examples of transfinite

and complex numbers, modes offixing the referents of mathematical ex-

pressions which unnecessarily restrict that activity come to be abandoned.

NOTES

1. The view I shall present appears to accord with the central ideas of such think-

ers as Carnap, Hempel, and Feigl. Since these thinkers do not consider the question

of providing a philosophical reconstruction of the historical developmentof natural

sciences, it is no surprise that their writings contain no explicit endorsementof the

view.

2. It should be clear from this characterization of them that T-statements are not

necessarily couched in a special (‘‘theoretical’’) vocabulary. The distinction I am

drawinghereis that between the alleged foundations of scientific knowledge and the

theoretical superstructure erected upon them. Thelatter includes what are sometimes
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called ‘‘empirical laws’’ as well as the principles which are expressed in the technical
language of theories.

3. The loci classici of the attacks are W.V. Quine, ‘‘Two Dogmas of
Empiricism’? (sections 5 and 6), and W.Sellars, ‘“‘Empiricism and the Philosophy of
Mind.”’ For earlier doubts about the observational foundations of scientific
knowledge, see Karl Popper, The Logic ofScientific Discovery, chapter 5 (especially
p. 111), and, for a clear recent presentation of the majorcriticism, Michael Williams,
Groundless Belief.

4. See, for example, T.S. Kuhn, The Structure of Scientific Revolutions; P.K.
Feyerabend, ‘‘Explanation, Reduction and Empiricism,”’ ‘‘Problems of Empiri-
cism,’’ Against Method, and Science in a Free Society; N.R. Hanson, Patterns of
Discovery; S. Toulmin, Human Understanding.

5. The Structure of Scientific Revolutions, pp. 150-59.

6. In particular, this interpretation of Kuhn’s work is advanced by Dudley
Shapere, Israel Scheffler, and Carl Kordig. See Dudley Shapere, ‘‘Meaning and
Scientific Change’’; Israel Scheffler, Science and Subjectivity; Carl Kordig, The
Justification of Scientific Change.

7. The Structure of Scientific Revolutions, chapters 3-5.

8. The type of view presented here has somekinship with that advanced by R.L.
Wilder in his Evolution ofMathematical Concepts. Wilder is one of the few people
to have considered seriously the question of mathematical change, and, though he
modestly disclaimsall intentions to philosophize, I think that his work is morerele-
vant to philosophical understanding of mathematics than many of the books and
papers to which philosophers of mathematics give their attention. Some of Wilder’s
ideas are extended further in Michael Crowe’s ‘‘Ten ‘Laws’ Concerning the History
of Mathematics.’’ I hope that the accountI shall advance in this and the ensuing
chapters will provide a general framework within which the suggestive observations
of Crowe and Wilder can be embedded.

9. This conception of revolutionary debates stems from the works of the writers
cited in note 4—particularly Kuhn and Feyerabend.

10. This remark needs

a

little qualification. Excellent work on Greek mathematics
and pre-Greek mathematics has been done by Heath, Neugebauer, and others. But,
with the exception of a few insightful essays by Philip Jourdain and Ernest Nagel,
the history of mathematics from the seventeenth century on has been much less
sophisticated than the general history of science until quite recently.

11. Here, and in what follows, I ignore the issues raised by the apparent ‘‘con-
ventionality’’ of geometry as a theory of physical space. For classic discussion of
these issues, see H. Reichenbach, The Phillosophy of Space and Time. Excellent re-
cent treatments are available in L. Sklar, Space, Time and Space-Time, chapter 1,
and C. Glymour, ‘‘The Epistemology of Geometry.”’

12. See T.S. Kuhn, ‘‘Mathematical versus Experimental Traditions in the De-
velopment of Physical Science,’’ especially p. 37.

13. Historically, this position has taken the development of non-Euclidean ge-
ometry as its primary example. Fora fine discussion of the merits and shortcomings of
the position, see Michael Resnik, Frege and the Philosophy ofMathematics, chapter 3.

14. This applies not only to the work of Kuhn but also to others. For Kuhn, a
revolution consists in a clash between rival paradigms, notrival theories, and ‘‘nor-
mal science’’ is always governedbya single paradigm, even though, during periods
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of normalscience, the field may employ a succession of theories. Similar conceptions

can be found in the writings of Toulmin, Laudan, and Imre Lakatos.

15. Kuhn’s conception of paradigm (or ‘‘disciplinary matrix’’ as he now prefers

to call it) is well known for the difficulty of analysing it. (See Margaret Masterman,

‘The Nature of a Paradigm,’’ and Kuhn, ‘‘Second Thoughts on Paradigms.’’)

16. Moreover, the two theses I have distinguished here are themselves intertwined

with passages in which Kuhnsuggests a subjectivism about science, which has excited

some readers and received most of the attention of hiscritics. (See the workscited in

note 6.) I think it is worth pointing out that, when heis interpreted in the way I

favor, Kuhn’sview is not inevitably subjectivist. It is one thing to say that some of

the components ofscientific practice involve judgments of value, and quite another

to say that such judgmentsare arbitrary.It would be compatible with the position I

have ascribed to Kuhn to propose that the value judgments whichscientific com-

munities make about the merits of various kinds of theories, explanations, problem-

solutions, and so onare rationally explicable. Moreover, in some cases, the rational

explanation of these judgments could trace them to reflection upon the elements of

prior practices.

17. For further discussion of the rationale of this type of transition, see Chapter

9, especially Section IV.

18. This is the term favored by Kuhn and Feyerabend. In what follows,I shall

adopt, without argument, a fairly straightforward reading of their claims aboutin-

commensurability. However, I want to note explicitly that there are remarks in the

writings both of Kuhn and of Feyerabend which suggest that all they wish to main-

tain is the type of innocuous incommensurability that my account will ultimately

allow.

19. Here, and in subsequentdiscussions, my use of the phlogiston theory example

draws on material I have presented in more detail in ‘‘Theories, Theorists and

Theoretical Change.’”’

20. See Saul Kripke, Naming and Necessity; Hilary Putnam, ‘“‘Meaning and Ref-

erence,’? ‘‘Explanation and Reference’’; Keith Donnellan, ‘‘Proper Names and

Identifying Descriptions,’’ ‘‘Speaking of Nothing.’’

21. Hence I believe that the program of operationalism should not be dismissed as

completely wrongheaded. There are contexts in which the ultimate aims of science

are best served by requiring that an ‘‘operational definition’’ (better: a descriptive

fixing of the referent of a token) should be given. That is not, of course, to assert

that all contexts are of this type, or even that a majority of them are.

22. Anexcellent account of the dispute is provided in Ivor Grattan-Guinness, The

Developmentof the Foundations of Analysis from Euler to Riemann, chapter1.

23. See Cantor, Gesammelte Abhandlungen, p. 195. Cantor later defined the

symbols for transfinite ordinals differently, but these later definitions rested on a

new analysis of the concept of number. The later definitions can also be understood

by applying my approach to conceptual change.

24. For further discussion of this example, see Section IV of Chapter 9.

25. See J. Dauben, Georg Cantor, chapters 3-5.

26. The presence of this requirementalso helps us to understand the opposition to

negative numbers, apparent even in Descartes. (See Part III of the Géométrie.)



Computers and Mathematical Practice:

A Case Study

THOMAS TYMOCZKO

The Four-Color Problem and Its

Philosophical Significance

Computers have been intruding upon mathematics for several decades.
In the 1950s, Wang programmed a computer to prove many elementary theorems
of Principia Mathematica. The mathematician Hans Zazzenhaus was using
computers to discover conjectures by testing the hypotheses on many cases. When
each instance of a conjecture turned out to be true, Zazzenhaus would attempt a
traditional proof of the conjecture. In 1969 Davis and Cerutti programmed a
computer to produce proofs in elementary geometry and it ‘found’ an unusual
proof of an old theorem. A few mathematical topics were relegated entirely to
‘computer mathematics’, such as the search for the largest known primeor the
longest decimal expansion ofpi.

Nevertheless, the mathematical legitimacy of computer use remained an open
and contested question. Many mathematicians denied that computers could figure
in proofs ‘in the strict sense of proof’. Recall that Thom was openlycritical of

computer proofs in his essay earlier in the anthology. The mathematicians

Whitney and Tutte actually proved the negation of a certain computer based
result and only afterwards learned that the original program wasin error. They
warned mathematicians against shifting the burden of proof from a few pages of
closely reasoned text to a computer.!

The suspicion of computer proofs makes most sense in a foundational milieu

where mathematical proofs are expected to be a priori constructions which
guarantee their conclusions. The canonical method of checking such proofs,
reading them over, and verifying that each inferenceis correct simply does not
apply to interesting computer proofs. Hard copies of such proofs might be
practically unobtainable due to the amount of computertime required to print them
out. Even if obtained, the hard copies mightfill several library rooms and so would
be useless to mathematicians.

So what evidence could there be that such a computerresult was correct ? Well,
we could run the program several times on several machines andverify that the
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sameresult is obtained each time. Perhaps our efforts could be analogized to the

replication of key experiments in natural science. Moreover, we could construct

different programs, run them, and obtain the same result. This would belike

scientists conducting variations of an original experiment. Finally, we could consider

the general approach behind the computer program in order to assess the reliability

of the latter. This is like scientists evaluating the design of an experiment.

Quite obviously, all such evidence is quasi-empirical and notatall like the a

priori constructions to which foundationalists restrict mathematical proofs. It is

not surprising that some foundationalists refuse to admit computer proofs to

normal mathematics on the groundsthat it would change the fundamental

character of mathematics. Nor is it surprising that quasi-empiricists admit

computer proofs as normal mathematics on the grounds that normal mathematics

was quasi-empirical all along. However, this debate could remain purely

speculative, or philosophical, as long as computer proofs did not enter

mainstream mathematics.

Thepractical setting of this debate was dramatically changed in 1976 when

Appel, Haken, and Koch offered what was accepted as a proof of the Four-Color

Theorem. The Four-Color Conjecture—that four colors suffice to color every

map—wasa longstanding conjecture well knownto every mathematician. It was

clearly in the mainstream of mathematics. However, Appel, Haken, and Koch’s

proof wasessentially dependent on computer use. Excise all mention of

computers, and there is an unbridged gap in the proof. Thus the debate about

computer proofs was shifted from the realm of speculation to that of actual

practice. The theoretical question of the legitimacy of computer proofs became

tied to the practical question of whether mathematicians had in fact solved the

Four-Color Conjecture.

The following essay describes the computer proof of the Four-Color Theorem

and traces out its philosophical significance. The central argument of the paper1s

that acceptance of such computer proofs forces us to adopt a quasi-empirical

account of mathematics. This essay has engendered somediscussion among both

mathematicians and philosophers. Much ofthe criticism focuses on the author’s

claim that ‘‘the 4CT is the first mathematical proposition to be known a

posteriori.’’ Someof the critics admit that the 4CT is known a posteriori but

argue that mathematics was quasi-empirical all along and had always admitted

empirical elements.” Other critics deny that the 4CT is known only a posteriori

and try to interpret computer proofs to be consistent with the doctrine that

mathematical knowledgeis a priori.

There is considerable variation amongthe a priori interpretations of computer

proofs. One suggestion is that computer proofs can be converted to

demonstrative proofs by adding a new axiom.? Unfortunately the relevant axiom

is left unspecified. Another proposalis that the computer just is a mathematician

and it knowsthe result it has deductively proved.* Unfortunately, the computer

has at best proved a lemma, B, while we humans have proved the conditional, ‘If

B then 4CT’. We cannot account for the 4CT simply by admitting computers into

the American Mathematical Society.

Onecritic attempted to discount the philosophical relevance of computer

proofs with the explanation that their introduction is ‘no more significant’ than

was the introduction of written proofs into mathematics in the far distant past.>

This is absurd as a counter to an argument for the importance of computer

proofs in the philosophy of mathematics. Writing completely changed the practice

of mathematics. If computer proofs are only half as significant, they will change

mathematics far more than we can even envisage.
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Other apriorists prefer more linguistic solutions. For example, pre-computer
mathematics is redescribed in terms of programs, algorithms, and implementing
devices; and then it is noted that computers fit right into this description.® Of
course this can be done, but what does it show:that computer proofs are a
prori? or that classical mathematics was quasi-empirical? In desperation, perhaps,
onecritic simply redefined ‘a priori’ to include computer proofs and other
experiments!’ Well yes, but if you redefine ‘horses’ to fall under ‘wishes’, then
beggars would ride. Under currentdefinitions, however, beggars don’t ride, nor
are computer proofs a priori.

Despite the proliferation of a priori alternatives, I continueto find the quasi-
empirical interpretation of computer proofs to be the more plausible. I continue to
count the 4CT as knownonlya posteriori on the basis of experimental and corrigible
evidence. However, I would concedethatit is not the first theorem known only a
posteriori, and that mathematics was quasi-empirical before computer proofs. On the
other hand,the very variety ofa priori interpretations of computer proofs does
strengthen the central claim of this essay, that such proofs pose an important
challenge to the philosophy of mathematics. I would only stress that this
philosophical question can not be answered apart from a pressing mathematical
question. Since not everything that claims to be a computer proof can be accepted as
valid, what are the mathematicalcriteria for acceptable computer proofs?
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The old four-color problem was a problem of mathematics for over
a century. Mathematicians appearto have solvedit to their satisfaction, but
their solution raises a problem for philosophy which we might call the new
four-color problem.
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The old four-color problem was whether every map on the plane or

sphere can be colored with no more than four colors in such a way that

neighboring regions are never colored alike. This problem is so simple to

state that even a child can understand it. Nevertheless, the four-color prob-

lem resisted attempts by mathematicians for more than one hundred years.

From veryearly on it was provedthatfive colors suffice to color a map, but

no map was ever found that required more than four colors. In fact some

mathematicians thought that four colors were notsufficient and were work-

ing on methods to produce a counterexample when Kenneth Appel and

Wolfgang Haken,assisted by John Koch, published a proof that four colors

suffice.! Their proof has been accepted by most mathematicians, and the

old four-color problem has given way in mathematicsto the new four-color

theorem (4CT).

The purpose of these remarksis to raise the question of whether the 4CT

is really a theorem.This investigation should be purely philosophical, since

the mathematical question can be regardedasdefinitively solved. It is not

my aim to interfere with the rights of mathematicians to determine whatis

and whatis not a theorem.I will suggest, however, that, if we accept the 4CT

as a theorem, we are committed to changing the sense of ‘theorem’, or, more

to the point, to changing the sense of the underlying concept of ‘‘proof.’’ So,

by raising the question of whether the 4CT hasreally been proved, I will be

trying to elucidate the concept of proof and not attempting an evaluation of

the mathematical work of Appel and Haken.

Whatreasonis there for saying that the 4CT is not really a theorem or

that mathematicians have not really produced a proof of it? Just this: no

mathematician has seen a proof of the 4CT, nor hasany seen a proofthatit

has a proof. Moreover, it is very unlikely that any mathematician will ever

see a proof of the 4CT.

Whatreasonis there, then, to accept the 4CT as proved? Mathematicians

know thatit has a proof according to the most rigorous standards of formal

proof—a computer told them! Modern high-speed computers were used to

verify some crucial steps in an otherwise mathematically acceptable argu-

ment for the 4CT, and other computers wereusedto verify the work of the

first.

Thus, the answer to whether the 4CT has been proved turns on an ac-

count of the role of computers in mathematics. Even the most natural ac-

count leads to serious philosophical problems. According to that account,

such use of computers in mathematics, as in the 4CT, introduces empirical

experiments into mathematics. Whetheror not we chooseto regard the 4CT

as proved, we must admit that the current proofis no traditional proof, no

a priori deduction of a statement from premises. It is a traditional proof

with a lacuna, or gap, whichisfilled by the results of a well-thought-out ex-

periment. This makes the 4CT thefirst mathematical proposition to be

known a posteriori and raises again for philosophy the problem of

distinguishing mathematics from the natural sciences.

The plan of the argumentis as follows. The paper begins with a preliminary

analysis of the concept of ‘proof’ in order to extract certain features thatwill
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be useful to us later. Then the work of Appel, Haken, and Kochis described.
The mostnatural interpretation of this work, I will argue, is that computer-
assisted proofs introduce experimental methods into pure mathematics.
This fact has serious implications not only for the philosophy of mathe-
matics, but for philosophy in general, and we will examine some of these
implications.

I

Whatis a proof? In this section three major characteristics of proofs will be
considered:

(a) Proofs are convincing.

(b) Proofs are surveyable.

(c) Proofs are formalizable.

(a) Proofs are convincing. This fact is key to understanding mathe-
matics as a humanactivity. It is because proofs are convincing to an arbi-
trary mathematician that they can play their role as arbiter of judgment
in the mathematical community. On a very stark and skeptical position,
such as is sometimes suggested in Wittgenstein’s Remarks on the Founda-
tions ofMathematics, this is all that there is to proofs: they are convincing

to mathematicians. This is to be taken as a brute fact, something for which

no explanation can be given and noneis necessary. Most philosophers are

unhappywith this position and instead feel that there must be some deeper

characterization of mathematical proofs which explains, at least to some ex-

tent, why they are convincing. That proofs are surveyable and that they are

formalizable are two such characterizations.

(b) Proofs are surveyable. Proofs are the guarantees of mathematical

knowledge and so they must be comprehended by mathematicians. A proof

is a construction that can be looked over, reviewed, verified by a rational

agent. We often say that a proof must be perspicuous, or capable of being

checked by hand.It is an exhibition, a derivation of the conclusion, andit

needs nothing outsideofitself to be convincing. The mathematician surveys

the proof in its entirety and thereby comes to knowthe conclusion. Hereis

an example of a proof, attributed to the young Gauss, which helps to con-

vey the idea of surveyability. It is a proof that the sum of the first one hun-

dred positive numbers is 5050. Write down those numbers in two rows of
fifty columns as shown:

1] 2 3 4 ve 49 50
100 99 98 97 wee 52 51

Observe that the sum of the two numbers in each columnis 101 and that
there are SO columns. Conclude that the sum of the first one hundred
positive numbersis 5050.
We now know that 1 + 2... + 99 + 100 = 5050. We have surveyed

the proofin its entirety and become convinced. If someone actually attempted
to add the numbers by hand andarrived at the sum 5048, we would say that he
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added wrong. The construction that we surveyed leaves no room for doubt.

So it is with all mathematical proofs; to say that they can be surveyed is to

say that they can be definitively checked by members of the mathematical

community. Of course, some surveyable proofs are very long. They might

take months for even a trained mathematician to review and work out—an

example is Walter Feit and John G. Thompson’s famous proof thatall

groups of odd orderare solvable.”

Genius in mathematics lies in the discovery of new proofs, not in the

verification of old ones. Ina sense, the concept of surveyability provides for

the democratization of mathematics by making proofs accessible to any

competent mathematician. A teacher of mine, a very good mathematician

but no genius, once remarked that there were only a few proofs that he

couldn’t understand, but that there were nonethat he could notfollow.

Surveyability is an important subjective feature of mathematical proofs

which relates the proofs to the mathematicians, the subjects of mathe-

matical investigations. It is in the context of surveyability that the idea of

‘lemma’ fits. Mathematicians organize a proof into lemmasto makeit more

perspicuous. The proof relates the mathematical known to the mathe-

matical knower, and the surveyability of the proof enables it to be com-

prehended by the pure powerof the intellect—surveyed by the mind’s eye,

as it were. Because of surveyability, mathematical theoremsare credited by

some philosophers with a kind of certainty unobtainable in the other

sciences. Mathematical theorems are knowna priori.

(c) Proofs are formalizable. A proof, as defined in logic, is a finite se-

quence of formulas of a formal theory satisfying certain conditions. It is a

deduction of the conclusion from the axioms of the theory by meansof the

axioms andrules of logic. Most mathematicians and philosophers believe

that any acceptable proof can be formalized. We can always find an ap-

propriate formal language and theory in which the informal proof can be

embedded and‘‘filled out’’ into a rigorous formal proof.

Formal proofs carry with them a certain objectivity. That a proofis for-

malizable, that the formal proofs have the structural properties that they

do, explains in part why proofs are convincing to mathematicians.

We’ve noted three features of proofs: that they are convincing, surveyable,

and formalizable. The first is a feature centered in the anthropology of

mathematics, the second is the epistemology of mathematics, and the third

in the logic of mathematics. The latter two are the deep features. It is

because proofs are surveyable and formalizable that they are convincing to

rational agents.

Surveyability and formalizability can be seen as two sides of the same

coin. Formalizability idealizes surveyability, analyzes it into finite reitera-

tions of surveyable patterns. Certainly when the twocriteria work together,

mathematicians do not hesitate to accept or reject a purported proof. Nev-

ertheless the two ideas spring from such different sources that we can

wonder whether they will always work together. Can there be surveyable

proofs that are not formalizable or formal proofs that cannot be surveyed ?
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Are all surveyable proofs formalizable? Most mathematicians and
philosophers would assent, but not all. Someintuitionists deny that the ac-
tual proof constructions of mathematics can be completely captured byfor-
mal systems.? Intuitionism aside, however, it is well known that no single
theory is sufficient to formalize every proof. Given anysufficiently rich
theory, we can find a surveyable proofof a statementofthat theory which has
no formal proof. Such a statement can be a Gédel statement which, when
properly interpreted, says that it has no formal proof. Of course the survey-
able proof can be formalized in a new and more powerful formal theory; but
that theory, in turn,will yield new surveyable proofs that it cannot formalize.
At best, formalizability is a local characteristic of proofs, not a global

one. There is not one system in which any proof can be formalized; but
rather, given any proof, there is some appropriate formal system in whichit
can be formalized. The point that formalizability is a local and not a global
phenomenonis made by René Thom wherehe notes the general significance
of this distinction for the philosophy of mathematics.4 However since our
concern will not be with surveyable proofs that cannot be formalized, let us
turn to the second question.
Are all formalizable proofs surveyable? Considerfirst the simpler ques-

tion: Are all formal proofs surveyable? Here the answeris an easy no. We
know that there must exist formal proofs that cannot be surveyed by
mathematicians if only because the proofs are too long or involve formulas
that are too long. Here ‘‘too long’’ can be taken to mean ‘‘can’t be read
over by a mathematician in a humanlifetime.’’ Soit is logically possible
that mathematicians could comeacross a statement with no surveyable proof
but with a formalized proof.
However, if we stop to think abutthis situation, it appears unlikely that

this logical possibility can ever be realized. How is a mathematician to know
that a statement has a formal proof? On the one hand, the mathematician
mightactually survey or look over the formal proof and checkit for correct-
ness. On the other hand, the mathematician can derive the existence of the
required formal proof, in effect, by presenting a surveyable proof that the
formalproof exists. This sort of thing is standard practice in proof theory,
where we find, for example, general surveyable arguments that any proof
in, say, elementary arithmetic can be formalized in Zermelo-Fraenkelset
theory. Hence it begins to appear that, in practice, at least, mathematicians
come to know formal proofs only through the mediation of surveyable proofs.
Fither the formal proofs are simple enough to be surveyed themselves and
verified to be proofs, or their existence is established by meansof informal
surveyable arguments.

It is not really surprising that we should come to knowthe existence of
specific formal proofs only through some moreprimitive concept of proof,
surveyable proof. After all, in the last analysis, formal proofs are abstract
mathematical objects. They can be represented bysets of natural numbers,
Goédel numbers, without any loss of information. To state that there is a
formal proof of a formula is very muchlike stating that there is a number
with a certain property; and how are we to cometo knowthelatter state-
ment except by a proof?
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In summary, although formal proofs outrun surveyable proofs, it is not

at all obvious that mathematicians could come across formal proofs and

recognize them as such without being able to survey them.

Nevertheless, it is the contention of this paper that the current proof of

the 4CT does drive a wedge between the criteria of surveyability and for-

malizability. In fact, there is no surveyable proof, no proof in the tradi-

tional sense, of the 4CT,noris there likely to be one. Still Appel, Haken,

and Koch’s work provides mathematically convincing grounds for the 4CT.

What can be surveyed, what is presented in their published work,is like a

mathematical proof where a key lemmais justified by an appeal to the

results of certain computer runs or, as we might say “‘by computer.’’ This

appeal to computer, whether we countit as strictly a part of a proof or asa

part of some explicitly non-proof-theoretic component of mathematical

knowledge, is ultimately a report on a successful experiment. It helps

establish the 4CT (actually, the existence of a formal proof of the 4CT) on

groundsthat are in part empirical.

The idea that a particular proposition of pure mathematics can be estab-

lished, indeed must be established, by appealing to empirical evidence is

quite surprising. It entails that many commonly held beliefs about mathe-

matics must be abandoned or modified. Consider:>

1. All mathematical theorems are knowna priori.

2. Mathematics, as opposed to natural science, has no empirical content.

3. Mathematics, as opposed to natural science, relies only on proofs,

whereas natural science makes use of experiments.

4. Mathematical theoremsare certain to a degree that no theorem of

natural science can match.

In orderto assess such claims, let us quickly review the proof of the 4CT.

I

Sooneror later any discussion of the 4CT must begin talking of graphs in

place of maps, so we mightas well begin at once.® We can think of a planar

graph as finite collection of points in the plane, called vertices, which are

joined to each otherbylines, called edges, such that no edges meet except at

vertices. The number of edges meeting at any vertex is called the degree of

the vertex, and vertices joined by an edgeare said to be neighboring, or ad-

jacent. A graph is 4-colorable if every vertex can be colored by one of four

colors in such a way that neighboring vertices never receive the samecolor.

If every planar graph can be 4-colored, then every planar map can be.

This is because every map determines a graph,its dual graph, as follows:

place one vertex (capital city) in each region (country) of the map and join

the capitals of neighboring regions by an edge (road) that crosses their com-

mon border. Obviously, the resulting graph is 4-colorable if and onlyif the

original mapis.

Next we restrict our attention to graphs in a standard form. Wecan delete

any parallel edges, edges joining two vertices already joined by another

edge, without affecting 4-colorability. Graphs without parallel edges or
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loopsare called simple graphs. Moreover, we can add edges by a process of
triangulation. Given any region or polygonof the graph that is bounded by
four or more edges, there will be at least two non-adjacent vertices on the
boundary. Wecan join such vertices by a new edge across the region which
does not intersect any other edge (exceptat the vertices). Continuing in this
way, we can completely triangulate a graph until all regions have three
sides. Since triangulation can only make 4-coloring moredifficult becauseit
restricts the possible colorings of a graph,it suffices to prove the 4CT for
triangulated graphs.

Now anyplanartriangulation has onlyfinitely manyvertices; so the way
to prove that all such graphs can be 4-coloredis by induction on the number
v of vertices. In case v < 4, the triangulation can be 4-colored. So we
assume as induction hypothesis that any planar triangulation G' with n or
fewer vertices if 4-colorable. We wish to show that, if G is a planar
triangulation with n + 1 vertices, then G can be 4-colored.
There is a well-known formula relating the number of vertices a tri-

angulation can have to the degrees of the individual vertices. If v, is the
numberof vertices of degree i and if n is the maximum degree of any vertex
in the triangulation, then Euler’s formulastates that

33; + V4 t+ Vs + Oove — vz — 2¥, — 3¥, — «+» — (m — 6)v, = 12

Atleast one of v3, v,, v; must be nonzero; so any triangulated graph has a
vertex with five or fewer edges. Incidentally, this fact suffices to prove, by
induction, that any graph can be 6-colored. Look at the triangulation G and
delete a vertex of degree 5 along with its edges. The resulting graph has one
less vertex and, when triangulated, it can be 6-colored, by the induction
hypothesis. However, the missing vertex has at most five neighbors, so one
color will be left to colorit.

To prove that any graph G can be 4-colored, we consider the following
cases.

Case 1. Gcontains a vertex of degree 3; i.e., v,# 0.
Then,if we delete the vertex along with its adjacent edges, we get a graph

with n vertices which can be 4-colored by assumption. Since the missing
vertex has only three neighbors, it can be colored by the remainingcolor.

Case 2. v, = 0 but v, # 0; the graph G contains a vertex of degree 4.
Again, delete the vertex of minimal degree, call it v,, and its adjoining

edges, to obtain a smaller graph whichis 4-colorable.

Subcase 2a. Ifthe four neighbors of the missing vertex are colored by only
three colors, then v, can be colored the remaining color.

Subcase 2b. The four neighbors of v, are each colored differently. This
coloring cannot be extendedto G directly, but mustfirst be modified. Call the
neighborsof v, v,', v,’, v;', v,’, and supposethat they are respectively col-
ored, a, b, c, d. Look at the smaller graph G’ (G — V,), and consider the
subgraph of G' determined byall vertices colored a orc along with any edges
connecting two suchvertices. One of two alternatives mustarise. Either there
is an a-c chain of points and edges connecting v,' to v,', or there is not.
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Subcase 2bi. If there is no such path between v, and v,, we say that v, and

v, belong to separate a-c components of G’. In this case reverse the colors

in the a-c componentcontaining v,’. All vertices in this component formerly

colored a are now colored c, and vice-versa. Theresulting coloringis still a

4-coloring of G' since no neighboring vertices are colored the same,but the

vertex v,’ is now colored a. The color cis not used to color any neighborof

Vo; so c can be used to color Vo.

Subcase 2bii. If there is such an a-c path connecting v,’ and v,’, then these

vertices belong to the same a-c componentof G’, and reversing the colors

won’t help. However,in this case there cannot be a b-d path connecting v,’

and v,’, for any such pathis blocked by the a-c path connecting v,’ and v,".

Thus v,' and v,' belong to separate b-d components of G', and by reversing

the colors in the b-d componentcontaining v,’, we obtaina 4-coloring of G'

in which v,’ and v,' are both colored J,leaving d to color Vp.

In either case the 4-coloring of G’ can be modified and extended to a

4-coloring of G. The argument used in subcase 2b is called a Kempe chain

argument. Incidentally, this type of argument can be applied to a vertex of

degree 5 to show that any graph can be 5-colored.

If Ghas a vertex of degree 3 or 4, then Gis 4-colorable; so we may assume that

v,; = 0 = v,, and thus we cometo case 3.

Case3. v, # 0, the minimum degree of any vertex in Gis 5. In this case the

simple proof breaks down; Kempechain arguments do not suffice if we delete

a single vertex of degree 5. Instead of deleting a single vertex, we musttry to

delete configurations, or systems of interconnected vertices. If we remove a

configuration from

a

triangulation weare left with a graph witha ‘‘hole’’ init.

Thevertices of the remaining graph which are adjacentto the hole form

a

cir-

cuit, or ring around the configuration. Thesize of thering is determined by

the numberofvertices init. A configuration can be moreprecisely defined as a

subgraph with specifications of the numberof vertices, vertex degrees, and

the mannerin whichit is embeddedin the original triangulation.

A configuration is reducible if the 4-coloring of any planar graph contain-

ing it is deducible from the 4-colorability of any graph with fewervertices.

Reducible configurations transmit 4-colorability upwards. Conversely, if Gis

a graph that requires five colors and if G containsthe reducible configuration

C, then the subgraph (G-C)requires five colors. By 1913, George Birkhoff

had investigated the general methods of showing that a configuration was

reducible.’ In outline what must be provedis that every 4-coloring of the ring

around a given configuration caneither be extended toa 4-coloring of the con-

figuration, or modified first by one or more Kempe interchanges and then ex-

tended, or modified by suitable identification of distinct vertices and then ex-

tended. A natural plan for attacking the four-color problem suggests itself.

We cantryto finda set of reducible configurations which is sufficiently large

so that every triangulation contains a configuration from that set. Such an

unavoidable set of configurations would enable us to complete the induction

step in case 3. This plan runs into two related problems: the potential size of
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the unavoidable set andthe potential size of the reducible configurationsin it.
As Haken observes, the amount of work required to prove that a configura-
tion is reducible increases considerably with thering size. Fora ring ofsize 14,
the numberof possible colorations is 34 + 3 (about 2 x 105). In principle,
each one of these colorations must be examined in showing that the con-
figuration is reducible. On the other hand EdwardF. Moorefounda triangu-
lation that does not contain any known reducible configuration of ring size
less than 12. Thus, in orderto find enoughreducible configurationstofill out
an unavoidableset, we will have to include some with large ring size.

In order thento establish case 3, we mustfind a finite list of reducible con-
figurationssuch that every graph containsatleast one configuration from the
list. Building on some workof Heinrich Heesch, Appel and Haken developed
a theory of discharging procedures any of which produces an unavoidableset
of configurations, i.e., a set that notriangulation (v; = v, = 0) can avoid.
Heesch had noticed that certain kinds of configurations were reduction
obstacles in that they could not be reduced by known methods. In a pre-
liminary study, Appel and Haken developed a discharging procedurethat
produced an unavoidable set of configurations which excluded two of the
three major reduction obstacles of Heesch. This set the Stage for the final
assault on the four-color conjecture.
Appel and Haken began with a discharging algorithm andtested forre-

ducibility the configurations in the resulting unavoidable set. Whenever a
configuration in the list could not be shown reducible, the discharging
algorithm was modified to produce a new unavoidableset that excluded the
recalcitrant configuration although generally it included new configura-
tions. The configurations of the new set were checked for reducibility, and
so on. Although the discharging procedure and the reducibility checks on
individual configurations went hand in hand, and computer work was in
practice necessary to develop both, whenthey hadfinished, the work of Ap-
pel, Haken, and Kochfell nicely into two parts.
The authors could specify a discharging procedure and prove in a mathe-

matically rigorous fashion that this procedure produced an unavoidable set
U of 1834 configurations (in fact, only 1482 of these configurationsarereally
necessary). Although computer work was used to develop the procedure
and the resulting set U, once the set was producedit could be surveyed andis
listed in figures 1 to 63 of Appel, Haken, and Koch. Moreover, one can give
a surveyable proof that this set U is unavoidable (see the Discharging
theorem and corollary in Appel, Haken, and Koch, 460).
However, to complete the proof of case 3, we need the lemma: Every con-

figuration in U is reducible (actually, we need somethinga little stronger,
but this version will suffice for our purposes. See Appel, Haken, and Koch
on immersion reducibility). The proof of this lemma cannot be surveyed in
detail. That these configurations are reducible is established by programming
a computerto test for reducibility and running the program on the configura-
tions in U. Since most of the configurations have large ring size (13 or 14), the
use of computers to check reducibility is ‘‘unavoidable.’’ Appel and Haken
define a measure of complexity according to which the complexity of

253



254
THOMAS TYMOCZKO

a proof of the D-reducibility of a 13-ring configuration will exceed 10°

although other reductions (C-reducibility) of the same configuration mightbe

of muchless complexity (p. 487). In any case, no computer has printed out the

complete proof of the reducibility lemma, nor would such a printout be of

muchuse to human mathematicians. Over 1200 hours of computer time were

required for the proof. Because ofthe complexity and time required, any proof

of the reducibility lemma along its present lines must include an appealto

computer analysis. Thus it must presuppose the legitimacy of that appeal.

In its over-all outlines, the logic of the four-color proof is easy to see. It is

a proof by induction which requires several cases. The first case is trivial,

the second has several subcases, and the third has over a thousand subcases

most of which cannot be handled except by high-speed computers. I would

like to remove any impression that Appel and Haken’s work is simply a

‘‘brute force’ argument. To a certain extent, the appeal to computers might

be regarded as ‘‘brute force,’’ but it makes sense only whenset in the con-

text of a novel and sophisticated theory developed by the authors. However,

establishing a theorem by introducing a novel and sophisticated theory is

not in itself a novel mathematical procedure. The appeal to computers in

order to ground key lemmasis.

To be sure, the use of computers in mathematics, even very sophisticated

use, is not unfamiliar. We can cite programsfor solving differential equa-

tions or the program of Hao Wangto prove theorems of propositional

logic. What makes the use of computers in the 4CT so dramatic is thatit

leads to a genuine extension of our knowledgeof pure mathematics. It is not

merely calculation, but yields a proof of a substantial new result.

Let us conclude this section with some general remarks on the complexity of

the mathematical argument. Is the above proof of the 4CT,including com-

puter work, the simplest or shortest proof of the 4CT? Might a surveyable

proof be found some day?

Obviously some simplification is possible. Between the write-up of the

proof and its publication it was found that 429 configurations could be

eliminated from the set U. Further reduction could no doubtbe achieved by

modifying the discharging procedure. Nevertheless, it seems that any

significant simplification of one part of the proofis likely to be matched

with an increase in the complexity of another part of the proof. The current

consensus among mathematicians is that the present proofis reasonably

close to the simplest proof.® If this is so, then the appeal to computers

would be essential to any mathematical justification of the 4CT.

Of course, no one can completely rule out the possibility that some

mathematician will one day come up with a ten-page proofof the 4CT along

lines currently unimaginable. (Although even here there are some grounds

for skepticism; see Kainen and Saaty, 96.) Still, from a philosophical point

of view such a discovery would have to be regarded as mere luck. The philo-

sophical point at issue, obviously, is not simply the status of the 4CT, but

the status of computer-assisted proofs in general. The work of Appel,

Haken, Koch, and IBM 370-168 guarantees that the possibility of com-

puter-assisted proofsis a real possibility.
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Ill

The materials for our problem have been assembled. Wehave discussed
some general features of proofs and somedetails of the proof of the 4CT.
We can nowask whetherthe 4CTis really a theorem.Let us considerit with
regard to the three characteristics of proofs.

(a) Is the proof of the 4CT convincing? Yes, most mathematicians have
accepted the 4CT, and none, to my knowledge, has argued againstit. Still,
it should be noted that Appel and Haken themselves have recognized that
there could be someresistanceto their work, particularly from those mathe-
maticians ‘‘educated before the development of high-speed computers”’
(Appel and Haken, 121). In any case, that an argument is convincingis not
sufficient reason to accept it as a proof.

(b) Has the 4CT a surveyable proof? Here the answeris no. No mathe-
matician has surveyed the proofin its entirety; no mathematician has
surveyed the proofofthe critical reducibility lemma. It has not been checked
by mathematicians, step by step, as all other proofs have been checked. In-
deed, it cannot be checked that way. Now Appel, Haken, and Kochdid pro-
duce something that was surveyable in the sense that it could be looked
over. Their work, as we havesaid, is very muchlike a surveyable proof with
a lacuna where a key lemmais justified by nontraditional means—by com-
puter. Incidentally, we must be wary of verbal entanglements here. Of
course, if we call the appeal to computers a ‘‘new method of proof’’ in the
strictest sense, then, trivially, the 4CT will have a surveyable proof. But the
notion of proofitself will have shifted to accommodate the new method.
More serious is the objection that the appeal to computers is not a

method of proof at all and that the idea that it is arises from a confusion
between a proof and a description of a proof. Often mathematicians forgoa
complete proof and makedowith a description or a sketch of the proof suf-
ficiently detailed for their purposes. In such descriptions, mathematicians
may justify a lemma byreference to some already published work,byin-
dicating the general method (e.g., ‘‘by diagonalizing’’) or by simply leaving
the proof of the lemma asan exercise for the reader. Of course, these are
not necessarily new methods of proof; in point of fact, they are morelike
shorthand, a brief way of indicating a proof. These devices belong to the
description of the proof and notto the proofitself. The objection suggests
that we regard Appel, Haken, and Koch’s papersas descriptions of a proof
(which they are) and try to assimilate the appeal to computersto the prag-
matic shortcuts we’ve just noted.
The objection fails because there is a major difference between the cases.

Traditionally any such abbreviation has been backed by a surveyable proof,
even more, by a surveyed proof. Some mathematician and usually several
mathematicians have surveyedthereal thing andverifiedit. In principle this
surveyable backingis available to any memberof the mathematical commun-
ity, either directly, as when the mathematicians can workit out for themselves,
or indirectly, when they lookit up in the archives, to use Wittgenstein’s phrase.
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Butit is just this surveyable backing that is lacking in the 4CT! Mathemati-

cians cannot work out the missing steps for themselves, not even in a life-

time of work;andit is nowhere recorded in the archives. Whatis recordedis

the evidence that a computer once worked outthe missing steps. So it would

be a grave mistake to classify the appeal to computers as a theoretically

dispensable convenience, like the appeal to published journalarticles. Of

course the appeal ‘“‘by computer’’ does mark an abbreviation, and later we

will consider it in more expanded form. The point at hand, however, is that

surveyability is preserved in traditional descriptions of proofs, but not in

the appeal to computers.

Let us consider a hypothetical example which provides a much better

analogy to the appeal to computers.It is set in the mythical community of

Martian mathematicians and concernstheir discovery of the new method of

proof ‘‘Simonsays.’’ Martian mathematics, we suppose, developed pretty

muchlike Earth mathematics until the arrival on Marsof the mathematical

genius Simon. Simon proved many new results by moreorless traditional

methods, but after a while began justifying new results with such phrases as

‘“‘Proof is too long to include here, but I have verified it myself.’ At first

Simon used this appeal only for lemmas, which, although crucial, were

basically combinatorial in character. In his later work, however, the appeal

began to spread to more abstract lemmasand even to theorems themselves.

Oftentimes other Martian mathematicians could reconstruct Simon’s

results, in the sense of finding satisfactory proofs; but sometimes they could

not. So great was the prestige of Simon, however, that the Martian mathe-

maticians accepted his results; and they were incorporatedinto the body of

Martian mathematics under the rubric ‘‘Simonsays.’’

Is Martian mathematics, under Simon,a legitimate developmentof stan-

dard mathematics? I think not; I think it is something else masquerading

under the name of mathematics. If this point is not immediately obvious,it

can be made so by expanding on the Simonparable in any numberof ways.

For instance, imagine that Simonis a religious mystic and that among his

religious teachings is the doctrine that the morally good Martian, whenit

frames the mathematical question justly, can alwayssee the correct answer.

In this case we cannot possibly treat the appeal ‘‘Simon says’’ in a purely

mathematical context. What if Simon were a revered political leader like

Chairman Mao? Under these circumstances we might have a hard time de-

ciding where Martian mathematics left off and Martian political theory

began.Still other variations on the Simon themeare possible. Suppose that

other Martian mathematicians begin to realize that Simonized proofs are

possible where the attempts at moretraditional proofs fail, and they begin

to use ‘‘Simon says’? even when Simon didn’t say! The appeal ‘*Simon

says’ is an anomaly in mathematics;it is simply an appeal to authority and

not a demonstration.

The point of the Simon parable is this: that the logic of the appeals

‘Simon says’? and ‘“‘by computer’? are remarkably similar. There is no

great formal difference between these claims: computersare, in the context

of mathematical proofs, another kind of authority. If we choose to regard

one appealas bizarre and the other aslegitimate, it can only be because we
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have somestrong evidence for the reliability of the latter and none for the
former. Computers are not simply authority, but warranted authority.
Since we are inclined to accept the appeal to computersin the case of the
4CTandto reject the appeal to Simon in the hypothetical example, we must
admit evidenceforthe reliability of computers into a philosophical account
of computer-assisted proofs. The precise nature of this evidence will con-
cern us later. For now it suffices to note that, whatever the evidenceis, it
cannot take the form ofa traditional, surveyable proof. Otherwise Appel
and Haken would havegiven that proof and dispensed with the appeal to
computers altogether.
The conclusion is that the appeal to computers does introduce a new

method into mathematics. The appealis surveyable, but what it appeals to
is not.

(c) Has the 4CT a formalizable proof? Most mathematicians would con-
cur that there is a formal proof of the 4CT in an appropriate graphtheory.
Wecan describe the formal proof in somedetail, actually exhibit sections of
it, calculate the total length, and so on. Nevertheless, this belief in the for-
mal proof cannotbe usedto legitimize the appeal to computers. Rather, we
believe that the formal proof exists only because we accept the appeal to
computersin the first place. It is important to get the order of justification
correct. Some people might be tempted to accept the appeal to computers
on the groundthat it involves a harmless extension of human powers. On
their view the computer merely traces out the steps of a complicated formal
proofthatis really out there. In fact, our only evidence for the existence of
that formal proof presupposesthereliability of computers.

This point can be clarified by the Simon parable. Martian mathemati-
cians could say that ‘‘Simon says’’ incorporates no new method of proof
and say that any Martian proof wasstill formalizable. They could claim
that all of Simon’s work was formalizable, only they themselves couldn’t
always provide the formalization. This is much the sameposition we claim
to be in with respect to the appeal to computers. The comparison makes
clear that formalization comesin only after the fact. It cannot be used as the
criterion for accepting computer-assisted proofs.

In summary, the proof of the 4CT, although muchlike a traditional proof,
differs in certain key respects. It is convincing, and there is a formal proof.
But no knownproofof the 4CTis surveyable, and there is no known proof
that a formal proof exists. The crucial difference between the 4-color proof
and traditional proofs is that the 4-color proof requires the appeal to com-
puters to fill the gap in an otherwise traditional proof. The work of the
computeris itself not surveyable. However, there are very good groundsfor
believing that this computer work hascertain characteristics, e.g., that it in-
stantiated the pattern of a formal proof of the reducibility lemma. Let us
consider these grounds.
What does the appeal to computers amount to? Remember, we are now

considering the appeal in the context of justifying a mathematicalresult,
not yet in the context of discovery. We have a given mathematical question:
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Are the configurations in the unavoidableset U reducible? As part of the

question, we are given proceduresfor testing configurations for reducibil-

ity. Second, we have a given machine with such and such characteristics.

On the basis of our question and the machine’s characteristics we con-

struct a program of instruction for the machine. In this case the program

is intended to ‘‘cause’’ the machine to ‘‘search’’ through the set U,testing

each configuration for reducibility and reporting yes or no as the case may

be. Finally we run this program on the computer and note the results. The

appeal to computers, in the case of the ACT,involves two claims: (1) that

every configuration in U is reducible if a machine with such and such

characteristics when programmedin such and such a way produces an af-

firmative result for each configuration, and (2) that such a machine so

programmed did produce affirmative results for each configuration. The

second claim is the report of a particular experiment. It has been ex-

perimentally established that a machine of type J when programmed by P

will give output O.

But even the conditional conjunct is, at best, an empirical truth and not

subject to traditional proof. Its trust depends on twointerrelated factors, the

reliability of the machine andthereliability of the program. Thereliability of

the machineis ultimately a matter for engineering and physics to assess. Itisa

sophisticated natural science that assures us that the computer‘‘does whatit’s

supposed to’? in much the same way that it assures us that the electron

microscope ‘‘does whatit’s supposed to.’’ Of course, even if we grant that the

machine does whatit is supposed to—follow the program—there remainsthe

question of whether the program does what it is supposed to. This question

can be difficult to answer. The task of evaluating programsis a topic of com-

puter science, but at present there are no general methods for accomplishing

it at this level. Programs themselves are written in special ‘‘languages,’’ and

many of them can be quite complex. They can contain ‘“‘bugs,’’ or flaws that

go unnoticed for a long time. The reliability of any appeal to computers must

ultimately rest on such diffuse grounds as these.

In the case of the 4CT, most mathematiciansfeel that the reliability is suf-

ficiently high to warrant a qualified acceptance of the theorem. In the first

place, the problem was reducible to computer-manageable complexity.

Thereis a very clear idea of what the computer is supposed to be doing—we

have a good understanding of reduction techniques. Moreover, there is a

great deal of accumulated evidence for the reliability of computers in such

operations, and the work of the original computers was checked by other

computers. Finally, there is good reason to believe that the theorem could

not be reached by any other means.It is natural for mathematicians,at least

for those educated after the development of high-speed computers and

pocket calculators, to accept the truth of the 4CT. Thereliability of the

ACT, however, is not of the same degree as that guaranteedbytraditional

proofs, for this reliability rests on the assessment of a complex set of em-

pirical factors.

A digression onthereliability of computer-assisted proofs. No detailed esti-

mate of this reliability, nor a general account of how suchestimates should
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be madeis offered here. Instead,let us try to probe our own subjective idea
of computer reliability in mathematics by means of the following
hypothetical examples.

In the case of the 4CT we understand the general shape of the computer
proof. Would webe preparedto rely on computers even when we could not
perceive the general shape of their work? Suppose that advances in com-
puter science lead to the following circumstances. We can program a com-
puter to initiate a search through various proof procedures, with sub-
programs to modify and combine procedures in appropriate circumstances,
until it finds a proof of statement A. After a long time, the computer
reports a proof of A, although we can’t reconstruct the general shape of the
proof beyond the bare minimum (e.g., by induction). Perhaps we could
describe this hypothetical example by saying that the supercomputer found
a human-assisted proof. Mathematicians served to aim the computer in a
certain direction, to provide it with certain techniques, and it went on to
find a cumbersome patchwork proof consisting of thousands of cases.
Again, the question is whether mathematicians would have sufficient faith
in the reliability of computers to accept this result.
The idea that a computer program cansurpriseits Originatorsis not really

very farfetched. The Appel-Haken program did Surprise them.

It was working out compoundstrategies based onall thetricks it had been
taught, and the new approacheswere often muchcleverer than those we would
have tried. In a sense the program was demonstrating superiority not only in
the mechanical parts of the task but in someintellectual areas as well (Appel
and Haken, 117).

Suppose somesuch supercomputerwereset to work on the consistency of
Peano arithmetic and it reported a proof of Inconsistency, a proof which
was so long and complex that no mathematician could understandit beyond
the most general terms. Could we havesufficient faith in computers to ac-
cept this result, or would we say that the empirical evidence for their
reliability is not enough? Would such

a

result justify a mathematician’s
claim to know that Peano arithmetic was inconsistent, and would such a
mathematician have to abandon Peano arithmetic? Theseare bizarre ques-
tions, but they suggest that the reliability of computer-assisted proofs in
mathematics, though easy to accept in the case of the 4CT, might some day
be harderto swallow.

In conclusion, we have seen whyit is reasonable to accept the 4CT even the
crucial reducibility lemma. There is no surveyable proof of the lemma, but we
know that there is a formal proof. Our knowledge of this is grounded, in
part, in the results of a well-conceived computer experiment. A wedge has
been driven between the two explanations of proof in terms of surveyability
and formalizability. In addition, a new technique has been developedfores-
tablishing mathematical truths.It is largely a matter of notational convention
whether we chooseto describe the new technique—appeal to computers—asa
method ofproofor refuse to call it a proof andinsist on describing it as an
experiment. In the former case, we would count the 4CT as a bona fide
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theorem. In the latter case we would not countit a theorem in thestrict

sense but admit it as a new kind of mathematical knowledge. Merechoice of

labels cannot mask the underlying reality, which is an unavoidable reliance

on computer experiments to establish the 4CT. Let us nowturn to the con-

sequences of this fact for philosophy.

IV

The acceptance of the 4CT is significant for philosophy at a numberof

points. In the first place,it is relevant to philosophyin general, especially to

the theory of knowledge. Obviously, it is relevant to the details of any

philosophy of mathematics. Finally, it is relevant to someissues in the

philosophy of science.

Mathematics has always been important to philosophical theorizing

about knowledge and reason, of course, both because mathematics stands

as one of the pinnacles of human reason and rational thought and because

mathematical knowledge can appear so perplexing if not actually mysterious.

Thescience of pure mathematics, in its modern developments, may claim to

be the most original creation of the human spirit. !°

The apparent contrast between the indefinite flux of sense-impressions and

the precise and timeless truths of mathematics has been among the earliest

perplexities and problemsnot of the philosophy of mathematics only, but of

philosophyin general.'!

A widely shared assumption among philosophersis that there is a signifi-

cant gulf between mathematics and mathematical knowledge on the one

hand, and naturalscience andscientific knowledge onthe other. Thorough-

going empiricists have denied that this gulf exists and havetried to explain

mathematical truth, for example as Mill did, as a very general type of em-

pirical truth. Such explanations have not been very persuasive, and, in

general, philosophy has assumed that the gulf between mathematics and

natural science exists and has tried to characterize the different kinds of

knowledge involved by some contrasting pair, e.g., a priori, a posteriori; in-

nate, learned; formal, empirical; certain, dubitable; analytic, synthetic.

Once established, these characterizations become philosophical tools that

can be applied elsewhere in the theory of knowledge. Mathematical

knowledgeplaysa role in establishing these characterizations by serving as a

paradigm of one pole in the dichotomy. The proof of the 4CT, however,

undercuts this role. Knowledge of the 4CT does not have any of the charac-

teristics that the paradigm suggests. Let us examine the case of the a

priori/a posteriori distinction; the other cases proceed along similar lines.

Traditionally, a priori truths are those truths which can be known in-

dependently of any experience and a posteriori truths are those which can be

knownonly on the basis of particular experiences. Ana priori truth might

be immediately evident, stipulated by convention, or, most common, known

by reason independently of any experience beyond pure thought.It is plausi-

ble to maintain that such theorems as the mini-theorem that the sum of the

first one hundred positive numbers is 5050 are knownby reason alone—we
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all know it and could demonstrateits truth if we desired. However,it is not
plausible to maintain that the 4CT is known by reason alone.
By reason alone, we knowthat the reducibility lemma implies the 4CT;

but our knowledge of the reducibility lemma does not take the form of a
proof. Our knowledge rests on general empirical assumptions about the
nature of computers andparticular empirical assumptions about Appel and
Haken’s computer work. Moreover,it is unlikely that anyone could know
the 4CT by reason alone. The only route to the 4CT that we can ever take
appears to lead through computer experiments. Thus the 4CTis an a post-
eriori truth and not an a priori one; mathematicians, I suggest, will never
know the 4CTby a priori means. !2

It is with the claim that the 4CTis not a priori that I differ from the posi-
tion suggested taken by Saul Kripke when he considers the example of a
computer verification that some very large number is a prime.'3 Kripke
argues that such a theorem would be known a posteriori for the same
reasons that I give that the 4CT is known a posteriori. But he leaves open
the question of whether his theorem can be known a priori. I have argued
that the 4CT cannot be knowna priori by us.
The 4CTis a substantial piece of pure mathematics which can be known by

mathematicians only a posteriori. Our knowledge must be qualified by the
uncertainty of our instruments, computer and program. There surely are
truths from electrical engineering about current flow through switching net-
works which have a higher degree of certainty than the 4CT. The demonstra-
tion of the 4CTincludes not only symbol manipulation, but the manipulation
of sophisticated experimental equipment as well: the four-color problem is
not a formal question. In fact, the argument for the 4CTis very like an argu-
ment in theoretical physics where a long argument can suggest a key experi-
ment which is carried out and used to complete the argument.

This is a bit of a puzzle. In thefirst place, it blurs the intuitive distinction
between mathematics and natural science which we began with. In the second
place, we are left with the question of how to explain the role of experiment
in pure mathematics. It is easy to see how experiments play role in the
arguments of physical theory. The physical theory can predict phenomena
of space-time which equipmentcan be designed to register. Are we to say
that the computerregistered a phenomenon of mathematical space? If not,
then howelse are we to explain the role of experiment in mathematics? Such
puzzles are one aspect of what I havecalled ‘‘the new four-color problem.”’
I will not attempt any solutions to the puzzles here, but simply note these
puzzles as among the consequencesof the 4CT.
Not every way of characterizing the difference between mathematics and

natural science falls to the 4CT. Following Kripke, we can argue that all
mathematical truths, even the 4CT, are necessary, or true in all possible ©
worlds. The 4CT, we might say, records an essential property of planar
maps. (The truths of natural science, on the other hand, might be counted
as contingent, or true in our world but false in some possible world.) In this
case the 4CT would be an important example of an a posteriori necessary
truth and, a fortiori, a counterexample to the claim that all known neces-
sary truths are knowna priori.
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The new four-color problem then might serve as a stimulus to general

philosophy to rethink the commonly accepted relations among knowledge,

reason, and experience. Nevertheless, the most significant impact of the

ACTin philosophy obviously will concern the details of our philosophy of

mathematics.

Accepting the 4CT forces us to modify our concept of proof. We can

modify it by admitting a new method (computer experiment) of establishing

mathematical results in addition to proofs. Or we can modify it by allowing

proof to include computer-assisted proofs. I prefer the latter terminology.

Either way,the details of this new method can have a substantial impact on

the way mathematics is done.

This points to one of the most exciting aspects of Appel, Haken, and

Koch’s work, but one we have not touched on yet. So far we have been con-

cerned with the 4CT only in the context ofits justification: given the pur-

ported proof, does it prove the theorem? Wehave nottreated it in the con-

text of discovery. Any conclusions based only on discovery would have in-

vited the Fregean retort that what matters to philosophyis justification and

not genesis. It is time to widen our perspective; for there is much ofinterest

about the discovery of the 4CT both to mathematics and to philosophy.

How does one decide to attempt a computer experimentin mathematics ?

Even where questions of the form P(”) are decidable and we have the

techniques to program a computer to check the instances, we cannot simply

run the computer as long as it will go, hoping that it finds, say, that

(Ax)P(x) before the computer reaches its limits. There must be some

reason to expect that the computer will stop with an answer within a

reasonable time. In the case of the 4CT we can ask why anyone thought that

an unavoidable set of reducible configurations each of ring size less than or

equal to 14 could be found. From the outside, 14 looks no more probable as

a bound than 20 or 50 or even 100. Yet, if the minimum ring size were 20 or

more, the required proof experiment could not be conducted at present!

From the other direction, we know because of Moore’s map that we must

include configurations whosering size is at least 12. Perhaps Moore would

discover a map requiring the minimum ring size to be 20. Why did Appel

and Haken think that a computer experiment could work?

What happened was that they developed a sophisticated probabilistic

argument, not a proof, that the ring size could be restricted to 17 orless,

and that the restriction to 14 was a good bet. They provided an argument

that invested statements of the form ‘‘There is an unavoidable set of reduci-

ble configurations each of which hasa ring size less than or equal to n’’ with

a probability derived from the ratio of the numberof vertices in the con-

figuration to the ring size n (Haken, 202). With n = 14, the statement was

very likely. Together with this probabilistic argument was an argument that

the required techniques could be programmed into a computer. Koch did

muchof the work on the programming,andin their earlier paper Appel and

Haken had showed that there was an unavoidable set of geographically

good configurations of manageablesize. These two arguments madeit feas-

ible to conduct the experiment.
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The first type of argumentis especially interesting. It is a new kind of
argument endowing mathematical statements with a probability. This prob-
ability cannot be accounted forin ontological terms according to which any
Statementis true, or false, in all possible worlds. Having modified the con-
cept of proof to include computer-assisted proofs, we might want to modify
it again to include the kind of probabilistic argument required to set up a
computer experiment. In practice this would amount to permitting
mathematicians to make such arguments as part of their mathematical
work. That is, it might be counted as a significant mathematical step if
someone were to argue that a certain statement is very likely to be true,
while leaving it to someoneelse to design and run the actual computerex-
periment. We musttakethis possibility much more seriously after the work
of Appel and Haken,whoestablished that such probabilistic arguments can
have an important function in mathematics.
On the other hand, such probabilistic arguments inevitably contain the

possibility of error; they can go wrong in a waystrict proofs cannot.

To use the computeras anessential tool in their proofs, mathematicians will
be forced to give up hopeof verifying proofs by hand,just as scientific observa-
tions made with a microscope or telescope do not admit direct tactile confir-
mation. By the same token, however, computer-assisted mathematica] proof
can reach a much larger range of phenomena.Thereis a price for this sort of
knowledge. It cannot be absolute. But the loss of innocence has alwaysentailed
a relativistic world view; there is no progress without risk of error (Kainen and
Saaty, 98).

These shifts in the concept of proof initiated by the 4CT force us to
reevaluate the role of formal proofs in the philosophy of mathematics. Of
course such shifts cast no doubt whatever on the legitimacy of formal proof
theory as a branch of mathematical logic. Formal proofs, as idealized
abstraction,still figure in our account of the 4CT. Nevertheless, after the
4CT, formal proofs cannot continue to serve the philosophy of mathe-
matics as the sole paradigm of mathematical activity. Philosophers and
mathematicians have already notedthe limitations of the formal paradigm,
but the 4CT aggravates these limitations to the point of a problem.'* The
old idea that a proof is a thought-experiment suggests itself here. Thereis
not such an apparent gulf between thought-experiments and computer-
experiments as there is between formal proofs and experiments. On the
other hand, there is not such a gulf between thought-experiments in
mathematics and thought-experiments in physicseither.
The primary impact of the new four-color problem in the philosophy of

mathematics is on the concept of proof. We have discussed someofthe con-
sequenceshere.!>

The relevance of the new four-color problem to the philosophyof science
is largely a reworking of the earlier consequences.It is especially relevant to
that branch of the philosophy of science which looks upon science as
diachronic, or developing over time. In particular, it is relevant to the con-
cept of paradigm outlined by Thomas Kuhn.'!6 Paradigms, according to
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Kuhn,arescientific achievements that some scientific community accepts as

supplying a foundation for its further practice. To qualify as a paradigm,

the achievement must be both ‘‘sufficiently unprecedented to attract an en-

during group of adherents away from competing modesofscientific activ-

ity” and ‘‘sufficiently open-ended to leave all sorts of problems for the

redefined groupof practitioners to resolve’’ (10). The concept of paradigms

plays an important role in Kuhn’s explanation of the development of

science. It is natural to wonder whether the methodologyleading to the 4CT

can serve as a paradigm in mathematics: Kainen and Saaty have suggested

that it will. ‘‘In fact, the Appel-Haken methodology suggests a new para-

digm for mathematics. This paradigm includes the traditional elements of

intuition and standard logic, as well as heuristic and probabilistic tech-

niques combined with the high order computational abilities of a modern

computer’’ (96).

Looking at the 4CT from the viewpoint of paradigmsandthereby placing

it in a historical perspective can be very illuminating. I suggest that if a

‘‘similar’’ proof had been developed twenty-five years earlier, it would not

have achieved the widespread acceptance that the 4CT has now. The hypo-

thetical early result would probably have been ignored, possibly even at-

tacked (one thinks of the early reaction to the work of Frege and of

Cantor). A necessary condition for the acceptance of a computer-assisted

proof is wide familiarity on the part of mathematicians with sophisticated

computers. Now that every mathematician has a pocket calculator and

every mathematics department has a computer specialist, that familiarity

obtains. The mathematicial world was ready to recognize the Appel-Haken

methodologyas legitimate mathematics.

Before we can satisfactorily describe the 4CT in terms of paradigms,

however, there are two obstacles that must be overcome. The concept of

paradigm has been developed primarily for the natural sciences with some

extensions to the social sciences. We would first have to extend the notion

of paradigm to mathematics, both by example and by explanation of the

nature of mathematical paradigms.'? Many philosophers would resist the

extension of paradigms to mathematics, of course. In the current philos-

ophy of mathematics, mathematics is viewed solely as a synchronic or

timeless structure. Against this position it might be arguedthatit is simply

working out of another paradigm of mathematics, the formal paradigm

provided by Cantor, Frege, Russell, and Hilbert. The controversy will be

decided, in part, by whether the paradigm model of mathematics can pro-

vide a moresatisfactory account of achievementslike the 4CT than can the

formal model.

A second difficulty in extending the notion of paradigm to mathematicsis

historical. Paradigms are defined in terms of their past performance; they

are achievements that had a major effect on the developmentoftheir fields.

It is one thing to characterize an achievementas a paradigm on the basis of

the historical record. It is quite another to predict that a recent achievement

will function as a paradigm onthebasisof the limited data currently avail-

able. It is clear that claims of the second kind must be much more tentative.

However, if any such claims succeed, they are likely to provide much more
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information to the metatheory of paradigmsthanis provided by the simple
classification based onthe historical record. Althoughthereare obstacles to
treating the 4CT as providing a new paradigm for mathematics, anyat-
tempts to solve these problems can be importantexercises in the philosophy
of science.

Mathematicians have solved their four-color problem, but there is a new
four-color problem that has arisen for philosophy. I have tried to explain
what this problem is and howit arises. I have argued for it philosophical
significance by noting some of the consequences that our acceptance of the
4CT hasfor the theory of knowledge, the philosophy of mathematics, and
the philosophy of science.
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RICHARD DE MILLO, RICHARDLIPTON,
ALAN PERLIS

Social Processes and Proofs of

Theorems and Programs

D. Millo, Lipton and Perlis approach the topic of computers and
mathematics from a very different direction than the previous essay. Their
immediate topic is the developing discipiine of program verification. The often
espoused aim of that discipline is to develop general techniques for proving
programs, that is, for giving mathematical proofs that particular programsare
correct, or incorrect. Hence, philosophical conceptions of what mathematicsis
can shape conceptions of what program verification should be. According to the
present authors, many, if not most, exponents of program verification adopt a
foundational, especially a formalist account of mathematics.
These authors, in contrast, adopt a quasi-empirical account of mathematics

although they do notlabel it as such. Instead they do describe mathematical
proof in terms of general features of mathematical practice, a description that
owes much to Lakatos. Their account, thoughbrief, is quite suggestive and has
occasioned considerable comment among mathematicians. De Millo, Lipton, and
Perlis proceed to use their quasi-empirical account of mathematics to argue for an
alternative approach to program verification. Their suggestion is that program
verification is more like engineering andless like mathematical logic than is
usually supposed. The fundamental aim of program verification, according to
these authors, should be to make programs morereliable rather than to prove
that programsare (absolutely) correct or incorrect.
The motivating insight of the essay is that proofs—the actual proofs that

appear in mathematical practice—must be convincing; otherwise they wouldn’t be
recognized. It is hardly a new insight. In 1739, Humewrotethat

There is no Algebraist nor Mathematician so expert in his science, as to place entire
confidence in any truth immediately uponhis discovery of it, or regard it as any
thing, but a mere probability. Every time he runs over his proofs, his confidence
encreases; butstill more by the approbation of his friends; andis rais’d to its utmost
perfection by the universal assent and applauses of the learned world.!

 

From Communications of the ACM,Vol. 22, No. 5, May 1979, pp.
271-280. Copyright 1979, Association for Computing Machinery,Inc.,
reprinted by permission.
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Despite its apparent obviousness, this social aspect of proofs is often dismissed as

philosophically irrelevant. It is objected that almost anything could count as

convincing in the right set of circumstances—just imagine suitable reinforcements,

propaganda, prejudice, and so on.In reply, the present authors argue that

conviction in mathematics is obtained by a highly evolved set of processes with

very little arbitrariness about them. These general features of mathematical

practice winnow out bad proofs. They include aninitial series of checks on

publications, which still manage to issue in roughly 200,000 theorems peryear,

some false and most eminently forgettable. After thatseries, another complex set

of processes are applied to select useful theorems, attractive theorems,or at least

memorable theorems.

Such processes are an integral part of mathematical practice and are familiar to

every mathematician. Of course they don’t appear in the idealized accounts of

practice that foundationalists accept. Moreover, the social processes are arranged

so as to confer a very high degree of probability to any proofs that survive all the

stages. In fact, we can argue that they yield proofs that are actually more reliable

than formal proofsstrictly conceived. Any formal proofis invalid if even one

single step is illegitimate. Since strict formal proofs are quite long and lacking in

perspicuity, the potential for error can be quite large. In addition, even a

rigorously correct formal proof must presuppose the consistency of the

overarching formal system for the truth ofits conclusion (Frege’s Bane). Once

again, even a slight error in the system can invalidate all proofs containedinit.

Onthe other hand, good informal proofs, those meeting the criteria set forth by

De Millo, Lipton, and Perlis, are very ‘resilient’ and well suited to surviving

various kindsof errors.

Having recognized ‘convincingness’ as an essential feature of mathematical

proofs, the authors go onto criticize the naive goal of proving programs. Evenif

suitable formal proofs of programsexisted in theory,it is argued, they could not

possibly serve to convince anyone of the correctness of the programs in question.

Perhaps the merits of this conclusion are best left to computer scientists to

decide, but the conception of mathematics that motivates it has a claim on all

readers of this volume.

NOTE

1. Hume, A Treatise ofHuman Nature, Oxford University Press, Oxford (1964),

180-181.

I should like to ask the same question that Descartes asked. You are proposing

to give a precise definition of logical correctness whichis to be the same as my

vagueintuitive feeling for logical correctness. How do you intend to show that

they are the same?

_. . The average mathematician should not forget that intuition is the final

authority.

J. BARKLEY ROSSER

Many people have argued that computer programming should strive to

become more like mathematics. Maybe so, but not in the way they seem to
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think. The aim of program verification, an attempt to make programming
more mathematics-like, is to increase dramatically one’s confidence in the
correct functioning of a piece of software, and the device that verifiers use to
achieve this goal is a long chain of formal, deductive logic. In mathematics,
the aim is to increase one’s confidence in the correctness of a theorem, and
it’s true that one of the devices mathematicians could in theory use to achieve
this goal is a long chain of formallogic. Butin fact they don’t. Whatthey use
is a proof, a very different animal. Nor does the proofsettle the matter; con-
trary to what its namesuggests, a proofis only onestep in the direction of
confidence. Webelieve that, in the end,it is a social process that determines
whether mathematicians feel confident about a theorem—and webelieve
that, because no comparable social process can take place among program
verifiers, program verification is bound to fail. We can’t see how it’s going to
be able to affect anyone’s confidence about programs.

Outsiders see mathematics as a cold, formal, logical, mechanical, mono-
lithic process of sheer intellection; we argue that insofar asit is successful,
mathematicsis a social, informal, intuitive, organic, human process, a com-
munity project. Within the mathematical community, the view of mathe-
matics as logical and formal was elaborated by Bertrand Russell and David
Hilbert in the first years of this century. They saw mathematics as proceed-
ing in principle from axioms or hypotheses to theorems by steps, each step
easily justifiable from its predecessors by

a

strict rule of transformation,the
rules of transformation being few and fixed. The Principia Mathematica
was the crowning achievement of the formalists. It was also the deathblow
for the formalist view. There is no contradiction here: Russell did succeed in
showing that ordinary working proofs can be reduced to formal, symbolic
deductions. Buthe failed, in three enormous, taxing volumes,to get beyond
the elementary facts of arithmetic. He showed whatcan be donein principle
and what cannot be donein practice. If the mathematical process werereally
one ofstrict, logical progression, we wouldstill be counting on ourfingers.

BELIEVING THEOREMS AND PROOFS

Indeed every mathematician knowsthat a proofhas not been “‘understood”’ if
one has done nothing more than verify step by step the correctness of the
deductionsof which it is composed and hasnottried to gain a clear insight into
the ideas which haveled to the construction ofthis particular chain of deduc-
tions in preference to every other one.

N. BouRBAKI

Agree with meif I seem to speak thetruth.

SOCRATES

Stanislaw Ulam estimates that mathematicians publish 200,000 theorems
every year [20]. A numberof these are subsequently contradicted or other-
wise disallowed, others are thrown into doubt, and mostare ignored. Only a
tiny fraction come to be understood and believed by any sizable group of
mathematicians.
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The theorems that get ignored or discredited are seldom the work of

crackpots or incompetents. In 1879, Kempe [11] published a proof of the

four-color conjecture that stood for eleven years before Heawood [8] un-

covered a fatal flaw in the reasoning. Thefirst collaboration between Hardy

and Littlewood resulted in a paper they delivered at the June 1911 meeting

of the London Mathematical Society; the paper was never published be-

cause they subsequently discovered that their proof was wrong [4]. Cauchy,

Lamé, and Kummerall thought at one time or another that they had proved

Fermat’s Last Theorem [3]. In 1945, Rademacher thought he had solved the

Riemann Hypothesis; his results not only circulated in the mathematical

world but were announced in Time magazine[3].

Recently we found the following group of footnotes appendedto a brief

historical sketch of some independenceresults in set theory [10]:

(1) The result of Problem 11 contradicts the results announced by Levy

[1963b]. Unfortunately, the construction presented there cannot be com-

pleted.

(2) The transfer to ZF wasalso claimed by Marek [1966] but the outlined

method appears to be unsatisfactory and has not been published.

(3) A contradicting result was announced and later withdrawn by Truss

[1970].

(4) The example in Problem 22 is a counterexample to another condition

of Mostowski, who conjecturedits sufficiency and singled out this example

as a test case.

(5) The independenceresult contradicts the claim of Felgner [1969] that

the Cofinality Principle implies the Axiom of Choice. An error has been

found by Morris (see Felgner’s corrections to [1969]}).

The author has no axe to grind; he has probably never even heard of the cur-

rent controversy in programming; anditis clearly no part of his concern to

hold his friends and colleagues up to scorn. There is simply no way to

describe the history of mathematical ideas without describing the successive

social processes at work in proofs. The pointis not that mathematicians make

mistakes; that goes without saying. The point is that mathematicians’ errors

are corrected, not by formal symbolic logic, but by other mathematicians.

Just increasing the number of mathematicians working ona given problem

does not necessarily insure believable proofs. Recently, two independent

groups of topologists, one American, the other Japanese, independently an-

nounced results concerning the same kind of topological object,a thing called

a homotopy group.Theresults turned out to be contradictory, and since both

proofs involved complex symbolic and numerical calculation, it was notat all

evident who had goofed. But the stakes were sufficiently high to justify press-

ing the issue, so the Japanese and American proofs were exchanged. Ob-

viously, each group washighly motivated to discover an error in the other’s

proof; obviously, one proof or the other was incorrect. But neither the

Japanese nor the American proof could be discredited. Subsequently, a third

group of researchers obtained yet another proof, this time supporting the

American result. The weight of the evidence now being against their proof,

the Japanese haveretired to consider the matter further.
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There are actually two morals to this story. First, a proof does not in
itself significantly raise our confidence in the probable truth of the theorem
it purports to prove. Indeed, for the theorem aboutthe homotopygroup,
the horribleness of all the proffered proofs suggests that the theorem itself
requires rethinking. A second point to be madeis that proofs consisting en-
tirely of calculations are not necessarily correct.
Even simplicity, clarity, and ease provide no guarantee that a proof is

correct. The history of attempts to prove the Parallel Postulate is a particu-
larly rich source of lovely, trim proofs that turned out to be false. From
Ptolemy to Legendre (whotried time and time again), the greatest geometri-
cians of every age kept rammingtheir heads against Euclid’s fifth postulate.
What’s worse, even though we now knowthat the postulate is indemon-
strable, many of the faulty proofs arestill so beguiling that in Heath’s
definitive commentary on Euclid [7] they are not allowed to stand alone;
Heath marks them up withitalics, footnotes, and explanatory marginalia,
lest some young mathematician, thumbing through the volume, be misled.
The idea that a proofcan,at best, only probably express truth makes an

interesting connection with a recent mathematical controversy. In a recent
issue of Science [12], Gina Bari Kolata suggested that the apparently secure
notion of mathematical proof may be duefor revision. Here the central
question is not ‘‘How do theoremsget believed?’’ but ‘“Whatis it that we
believe when webelieve a theorem?” There are two relevant views, which
can be roughly labeled classical and probabilistic.
The classicists say that when one believes mathematical statement A, one

believes that in principle there is a correct, formal, valid, step by step, syn-
tactically checkable deduction leading to A in a suitable logical calculus
such as Zermelo-Fraenkel set theory or Peano arithmetic, a deduction of A
a la the Principia, a deduction that completely formalizes the truth of A in
the binary, Aristotelian notion of truth: “A propositionis trueif it says of
whatis, that it is, and if it says of whatis not, that it is not.’’ This formal
chain of reasoning is by no means the same thing as an everyday, ordinary
mathematical proof. The classical view does not require that an ordinary
proof be accompaniedby its formal counterpart; on the contrary, there are
mathematically sound reasons for allowing the gods to formalize most of
our arguments. One theoretician estimates, for instance, that a formal
demonstraiton of one of Ramanujan’s conjectures assumingset theory and
elementary analysis would take about two thousand pages; the length of a
deduction from first principles is nearly inconceivable [14]. But the classicist
believes that the formalizationis in principle a possibility and that the truth
it expresses is binary, either so or not so.
The probabilists argue that since any very long proof can at best be viewed

as only probably correct, why not state theorems probabilistically and give
probablistic proofs? The probabilistic proof may have the dual advantage
of being technically easier than the classical, bivalent one, and mayallow
mathematiciansto isolate the critical ideas that give rise to uncertainty in
traditional, binary proofs. This process may even lead to a moreplausible
classical proof. An illustration of the probabilist approach is Michael
Rabin’s algorithm for testing probable primality [17]. For very large integers
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N, all of the classical techniques for determining whether N is composite

become unworkable. Usingeven the most clever programming,the calcula-

tions required to determine whether numbers larger than 1010* are primere-

quire staggering amounts of computing time. Rabin’s insight wasthat if you

are willing to settle for a very good probability that N is prime (or not

prime), then you canget it within a reasonable amount of time—and with

vanishingly small probability of error.

In view of these uncertainties over what constitutes an acceptable proof,

whichis after all a fairly basic elementof the mathematical process, how is

it that mathematics has survived and been so successful? If proofs bearlittle

resemblance to formal deductive reasoning, if they can stand for genera-

tions and thenfall, if they can contain flaws that defy detection, if they can

express only the probability of truth within certain error bounds—if they

are, in fact, not able to prove theoremsin the sense of guaranteeing them

beyond probability and, if necessary, beyondinsight, well, then, how does

mathematics work? How does it succeed in developing theorems that are

significant and that compelbelief?

First ofall, the proof of a theorem is a message. A proofis not a beautiful

abstract object with an independent existence. No mathematician grasps a

proof, sits back, and sighs happilyat the knowledge that he can now becer-

tain ofthetruth of his theorem. Herunsoutinto the hall and looks for some-

oneto listen to it. He bursts into a colleague’s office and commandeers the

blackboard. He throwsaside his scheduled topic and regales a seminar with

his new idea. He drags his graduate students away from their dissertations

to listen. He gets onto the phone and tells his colleagues in Texas and

Toronto.In its first incarnation, a proof is a spoken message, or at most a

sketch on a chalkboard or a paper napkin.

That spokenstage is thefirst filter for a proof. If it generates no excite-

mentor belief amonghis friends, the wise mathematician reconsiders it. But

if they find it tolerably interesting and believable, he writes it up. After it

has circulated in draft for a while,if it still seems plausible, he does a polished

version and submits it for publication. If the referees also findit attractive

and convincing, it gets published so that it can be read by a wider audience.

If enough membersofthat larger audiencebelieveit andlike it, then after a

suitable cooling-off period the reviewing publications take a more leisurely

look, to see whether the proofis really as pleasing as it first appeared and

whether, on calm consideration, they really believeit.

And what happensto a proof whenit is believed? The most immediate

process is probably an internalization of the result. That is, the mathemati-

cian whoreads andbelieves a proofwill attempt to paraphraseit, to put it in

his own terms,to fit it into his own personal view of mathematical knowl-

edge. No two mathematiciansare likely to internalize a mathematical concept

in exactly the same way,so this process leads usually to multiple versions of

the same theorem, each reinforcing belief, each adding to the feeling of the

mathematical community that the original statement is likely to be true.

Gauss, for example, obtained at least half a dozen independentproofs ofhis

‘law of quadratic reciprocity’’; to date over fifty proofs of this law are

known. Imre Lakatos gives, in his Proofs and Refutations[13], historically
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accurate discussions of the transformations that several famous theorems
underwent from initial conception to general acceptance. Lakatos demon-
Strates that Euler’s formula V — EF + F = 2 was reformulated again and
again for almost two hundredyearsafterits first statement, until it finally
reached its current stable form. The most compelling transformation that
can take placeis generalization. If, by the same social process that works on
the original theorem, the generalized theorem comesto be believed, then the
original statement gains greatly in plausibility.

A believable theorem gets used. It may appear as a lemmainlargerproofs;
if it does not lead to contradictions, then we are all the more inclined to be-
lieve it. Or engineers mayuseit by plugging physical values into it. We have
fairly high confidencein classical stress equations because wesee bridges that
stand; we have some confidencein the basic theorems of fluid mechanics be-
Cause wesee airplanesthatfly.

Believable results sometimes make contact with other areas of mathemat-
ics—important ones invariably do. The successful transfer of a theorem or a
proof technique from one branch of mathematics to another increases our
feeling of confidencein it. In 1964, for example, Paul Cohen used a technique
called forcing to prove a theorem in set theory [2]; at that time, his notions
were so radical that the proof was hardly understood. But subsequently other
investigators interpreted the notion of forcing in an algebraic context, con-
nected it with more familiar ideas in logic, generalized the concepts, and
found the generalizations useful. All of these connections (along with the
other normal social processes that lead to acceptance) madethe idea of forc-
ing a good deal more compelling, and today forcing is routinely studied by
graduate students in set theory.

After enough internalization, enough transformation, enough generaliza-
tion, enough use, and enough connection, the mathematical community
eventually decides that the central concepts in the original theorem, now
perhaps greatly changed, have an ultimate stability. If the various proofs feel
right and the results are examined from enough angles, then the truth of the
theorem is eventually considered to be established. The theorem is thought to
be true in the classical sense—that is, in the sense that it could be demon-
strated by formal, deductive logic, although for almostall theorems no such
deduction ever took place or everwill.

THE ROLE OF SIMPLICITY

For whatis clear and easily comprehended attracts; the complicated repels.

DAviID HILBERT

Sometimesonehasto saydifficult things, but one oughtto say them as simply as
one knows how.

G.H. Harpy

273



2/4 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

As arule, the most important mathematical problemsare clean and easy to

state. An important theorem is much morelikely to take form A than form B.

A: Every ----- iS a ----- ,

B: If ----- and ----- and ----- and ----- and ----- except for

special cases

a) -----

b) -----

C) “ee ’

then unless
1) ----- or

li) ----- or

iii) ----- ;

every ----- that satisfies ----- is a ----- ,

The problems that have most fascinated and tormented and delighted

mathematicians over the centuries have been the simplest onestostate. Ein-

stein held that the maturity of a scientific theory could be judged by how

well it could be explained to the man onthestreet. The four-color theorem

rests on such slender foundations that it can be stated with complete preci-

sion to a child. If the child has learned his multiplication tables, he can

understand the problem of the location and distribution of the prime num-

bers. And the deep fascination of the problem of defining the concept of

‘“number’’ might turn him into a mathematician.

The correlation between importance and simplicity is no accident. Sim-

ple, attractive theorems are the ones most likely to be heard, read, inter-

nalized, and used. Mathematicians use simplicity as the first test for a proof.

Only if it looks interesting at first glance will they consider it in detail.

Mathematicians are not altruistic masochists. On the contrary, the history

of mathematics is one long search for ease and pleasure and elegance—in

the realm of symbols, of course.

Even if they didn’t want to, mathematicians would have to use the cri-

terion of simplicity;it is a psychological impossibility to choose any butthe

simplest and most attractive of 200,000 candidates for one’s attention. If

there are important, fundamental concepts in mathematics that are not sim-

ple, mathematicians will probably never discover them.

Messy, ugly mathematical propositions that apply only to paltry classes

of structures, idiosyncratic propositions, propositions that rely on inordi-

nately expensive mathematical machinery, propositions that require five

blackboardsor a roll of paper towels to sketch—these are unlikely ever to

be assimilated into the body of mathematics. And yet it is only by such

assimilation that proofs gain believability. The proof by itself is nothing;

only whenit has been subjected to the social processes of the mathematical

community does it becomebelievable.

In this paper, we have tended tostress simplicity aboveall else because

that is the first filter for any proof. But we do not wish to paint ourselves

and our fellow mathematicians as philistines or brutes. Once an idea has
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met the criterion of simplicity, other standards help determineits place
among the ideas that make mathematicians gaze off abstractedly into the
distance. Yuri Manin [14] has putit best: A good proofis one that makes us
wiser.

DISBELIEVING VERIFICATIONS

On the contrary, I find nothing in logistic for the discoverer but shackles. It
does nothelp usat all in the direction of conciseness, far from it; andif it re-
quires twenty-seven equationsto establish that 1 is a number, how manywill it
require to demonstrate a real theorem?

HENRI POINCARE

One of the chief duties of the mathematician in acting as an advisorto sci-
entists...is to discourage them from expecting too much from
mathematics.

NORBERT WEINER

Mathematical proofs increase our confidence in the truth of mathe-
matical statements only after they have been subjected to the social
mechanisms of the mathematical community. These same mechanisms
doom the so-called proofs of software, the long formal verifications that
correspond, not to the working mathematical proof, but to the imaginary
logical structure that the mathematician conjures up to describe his feeling
of belief. Verifications are not messages; a person who ran out into the
hall to communicate his latest verification would rapidly find himself a
social pariah. Verifications cannot really be read: a reader can flay himself
through one of the shorter ones by dint of heroic effort, but that’s not
reading. Being unreadable and—literally—unspeakable, verifications can-
not be internalized, transformed, generalized, used, connected to other
disciplines, and eventually incorporated into a community consciousness.
They cannot acquire credibility gradually, as a mathematical theorem
does; one either believes them blindly, as a pure act of faith, or not at
all.

At this point, some adherents of verification admit that the analogy to
mathematics fails. having argued that A, programming, resembles B,
mathematics, and having subsequently learned that B is nothing like what
they imagined, they wish to argue instead that A is like B’, their mythical
version of B. We then find ourselves in the peculiar position of putting
across the arugmentthat wasoriginally theirs, asserting that yes, indeed, A
does resemble B; our argument, however, matches the terms up differently
from theirs. (See Figures 1 and 2.)

Mathematics Programming

theorem... program

proof... verification

FIG. 1. The verifiers’ original analogy.
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Mathematics Programming

theorem ... specification

proof ... program

imaginary

formal

demonstration ... verification

Fig. 2. Our analogy.

Verifiers who wish to abandon the simile and substitute B’ should as an aid

to understanding abandonthe language of B as well—in partiuclar, it would

help if they did not call their verifications ‘‘proofs.’’ As for ourselves, we

will continue to argue that programmingis like mathematics, and that the

samesocial processes that work in mathematical proofs doom verifications.

There is a fundamentallogical objection to verification, an objection on

its own ground of formalistic rigor. Since the requirement for a program is

informal and the program is formal, there must be a transition, and the

transition itself must necessarily be informal. We have been distressed to

learn that this proposition, which seemsself-evident to us, is controversial.

So we should emphasize that as antiformalists, we would not object to veri-

fication on these grounds; we only wonderhowthis inherently informalstep

fits into the formalist view. Have the adherents of verification lost sight of

the informal origins of the formal objects they deal with? Is it their asser-

tion that their formalizations are somehow incontrovertible? We must con-

fess our confusion and dismay.

Then there is anotherlogical difficulty, nearly as basic, and by no means

so hair-splitting as the one above: The formal demonstration that a pro-

gram is consistent with its specifications has value only if the specifications

and the program are independently derived. In the toy-program atmosphere

of experimentalverification, this criterion is easily met. But in reallife, if

during the design process a programfails, it is changed, and the changesare

based on knowledgeofits specifications; or the specifications are changed,

and those changes are based on knowledge of the program gained through

the failure. In either case, the requirement of having independentcriteria to

check against each other is no longer met. Again, we hope that no one

would suggest that programs andspecifications should not be repeatedly

modified during the design process. That would be a position of incredible

poverty—the sort of poverty that does, we fear, result from infatuation

with formal logic.

Back in the real world, the kinds of input/output specifications that ac-

companyproduction software are seldom simple. They tend to be long and

complex and peculiar. To cite an extreme case, computing the payroll for

the French National Railroad requires more than 3,000 pay rates (one up-

hill, one downhill, and so on). The specifications for any reasonable com-

piler or operating system fill volumes—and no onebelieves that they are

complete. There are even some cases of black-box code, numerical algo-

rithms that can be shown to workin the sense that they are used to build real

airplanesordrill real oil wells, but work for no reason that anyone knows;

the input assertions for these algorithms are not even formulable, let alone

formalizable. To take just one example, an important algorithm with the
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rather jaunty name of Reverse Cuthill-McKee was knownforyearsto be far

better than plain Cuthill-McKee, known empirically, in laboratory tests and

field trials and in production. Only recently, however, has its superiority

been theoretically demonstrable [6], and even then only with the usualin-
formal mathematical proof, not with a formal deduction. Duringall of the
years when Reverse Cuthill-McKee was unproved, even thoughit auto-
matically made any program in which it appeared unverifiable, program-
mers perversely went on using it.

It might be countered that while real-life specifications are lengthy and
complicated, they are not deep. Their verifications are, in fact, nothing
more than extremely long chains of substitutions to be checked with the aid
of simple algebraic identities.

All we can sayin responseto this is: Precisely. Verifications are long and
involved but shallow; that’s what’s wrong with them. Theverification of
even a puny program can run into dozensof pages, and there’s not a light
momentor a spark of wit on any of those pages. Nobodyis going to run in-
to a friend’s office with a program verification. Nobodyis going to sketch a
verification out on a paper napkin. Nobodyis going to buttonhole a col-
leagueinto listening to a verification. Nobodyis ever going to read it. One
can feel one’s eyes glaze over at the very thought.

It has been suggested that very high level languages, which can deal di-
rectly with a broad range of mathematical objects or functional languages,
whichit is said can be concisely axiomatized, might be used to insure that a
verification would beinteresting and therefore responsiveto a social process
like the social process of mathematics.

In theory this idea sounds hopeful; in practice, it doesn’t work out. For
example, the following verification condition arises in the proof of a fast
Fourier transform written in MADCAP,a very high level language [18]:

IfSe{1, — 1}, b = exp (27iS/N), ris an integer, N = 2’,
(1) Ce= {2j:0 s j < N/4} and

(2) a= <a: a, = brn) | 0 < r < N/2 > and

(3) A = {j: jmodN < N/2,0 < j < N} and

(4) A*={7:0 sj < N} — A and

(8) F= < Sf, = ch, k (baa limoaw), R, = iG — 1)
mod(N/2) = 0} > andk <r

then

(1) AM (A + 2°-k-1) = {x2 xmod 2'-* < 2-*-1,0 <x < Nj
(2) < a9 @ > = < asa = bemoan?) 0 <r < N/2>

(3) << Pansat + Fijosicm-anas2r-k-b) (<a >

*(Panasor-k-)) + Fijnsjem—an(asy-k-D)) >

<Sicf, = 2 k(bw2'-*Nimoan),
R, = (7:G -— rymod2--*-1 = O0}>
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(4) <p(F, + F,)ba*(F, — FyJ> = <fef, = ne,
r-1k,(be? ImodN) |

R, = {i:G — r)ymod(N/2) = 0}>

This is not what we would call pleasant reading.

Someverifiers will concede that verification is simply unworkable for the

vast majority of programs but argue that for a few crucial applications the

agony is worthwhile. They pointto air-traffic control, missile systems, and

the exploration of space as areas in which therisks are so high that any ex-

penditure of time and effort can be justified.

Evenif this were so, we wouldstill insist that verification renounceits claim

on all other areas of programming;to teach students in introductory pro-

gramming courses how to do verification, for instance, ought to be as far-

fetched as teaching students in introductory biology how to do open-heart

surgery. But the stakes do notaffect our belief in the basic impossibility of

verifying any system large enough and flexible enoughto do any real-world

task. No matter how high the payoff, no onewill ever be able to force himself

to read the incredibly long, tediousverificationsofreal-life systems, and un-

less they can be read, understood,and refined,the verifications are worthless.

Now,it might be argued thatall these references to readability and inter-

nalization are irrelevant, that the aim of verification is eventually to con-

struct an automatic verifying system.

Unfortunately there is a wealth of evidence that fully automated verifying

systems are out of the question. The lower bounds on the length of formal

demonstrations for mathematical theorems are immense [19], and there is

no reason to believe that such demonstrations for programs would be any

shorter or cleaner—quite the contrary. In fact, even the strong adherents of

program verification do not take seriously the possibility of totally auto-

mated verifiers. Ralph London, a proponentof verification, speaks of an

out-to-lunch system, one that could be left unsupervised to grind out verifi-

cations; but he doubts that such a system can bebuilt to work with reason-

able reliability. One group, despairing of automation in the foreseeable

future, has proposed that verifications should be performed by teams of

‘‘orunt mathematicians,’’ low level mathematical teams who will check

verification conditions. The sensibilities of people who could makesuch a

proposal seem odd, but they doserve to indicate how remotethe possibility

of automatedverification must be.

Suppose, however, that an automatic verifier could somehow be built.

Suppose further that programmers did somehow cometo have faith in its

verifications. In the absence of any real-world basis for such belief,it would

have to be blind faith, but no matter. Suppose that the philosopher’s stone

had been found,that lead could be changed to gold, and that programmers

were convinced of the merits of feeding their programsinto the gaping jaws

of a verifier. It seems to us that the scenario envisioned by the proponents

of verification goes somethinglike this: The programmerinserts his 300-line

input/output package into the verifier. Several hours later, he returns.

There is his 20,000-line verification and the message ‘““VERIFIED.”’
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There is a tendency, as we begin to feel that a structureis logically, prov-

ably right, to remove from it whatever redundancies weoriginally built in

because of lack of understanding. Takento its extreme, this tendency brings

on the so-called Titanic effect; when failure does occur, it is massive and un-

controlled. To put it another way, the severity with which a system fails is

directly proportional to the intensity of the designer’s belief that it cannot

fail. Programs designed to be clean and tidy merely so that they can be

verified will be particularly susceptible to the Titanic effect. Already wesee

signs of this phenomenon.In their notes on Euclid [16], a language designed

for program verification, several of the foremostverification adherentssay,

‘*Because we expect all Euclid programs to be verified, we have not made
special provisions for exception handling ... Runtime software errors
should not occur in verified programs.’’ Errors should not occur? Shades
of the ship that shouldn’t be sunk.

So, having for the momentsuspendedall rationaldisbelief, let us suppose
that the programmergets the message ‘‘VERIFIED.’’ And let us suppose
further that the message does notresult from a failure on the part of the
verifying system. What does the programmer know? He knowsthathis pro-
gram is formally,logically, provably, certifiably correct. He does not know,
however, to whatextentit is reliable, dependable, trustworthy, safe; he does
not know within whatlimits it will work; he does not know what happens
whenit exceeds those limits. And yet he has that mystical stamp of ap-
proval: ““VERIFIED.”’ We can almostsee the iceberg looming in the back-
ground over the unsinkable ship.

Luckily, there is little reason to fear such a future. Picture the same pro-
grammer returning to find the same 20,000 lines. What message would he
really find, supposing that an automatic verifier could really be built? Of
course, the message would be ‘SNOT VERIFIED.”’ The programmer would
make a change, feed the program in again, return again. ‘““NOT VERIFIED.”’
Again he would make a change, again he would feed the program to the
verifier, again ‘NOT VERIFIED.” A program is a humanartifact; a real-life
program is a complex humanartifact; and any humanartifact of sufficient
size and complexity is imperfect. The message will never read ‘“VERIFIED.”’

THE ROLE OF CONTINUITY

Wemaysay, roughly, that a mathematical idea is ‘‘significant”’ if it can be con-
nected, in a natural andilluminating way, with a large complex of other mathe-
matical ideas.

G.H. Harpy

The only really fetching defense ever offered for verification is the scaling-up
argument. As best we can reproduceit, here is how it goes:

(1) Verification is now in its infancy. At the moment, the largest tasksit
can handle are verifications of algorithms like FIND and model programslike
GCD.It will in time be able to tackle more and more complicated algorithms
and trickier and trickier model programs. Theseverifications are comparable
to mathematical proofs. They are read. They generate the same kindsofin-
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terest and excitement that theorems do. They are subject to the ordinary

social processes that work on mathematical reasoning, or on reasoning in

any other discipline, for that matter.

(2) Big production systems are made up of nothing more than algo-

rithms and model programs. Onceverified, algorithms and model programs

can make uplarge, workaday production systems, and the (admittedly un-

readable) verification of a big system will be the sum of the manysmall,at-

tractive, interesting verifications of its components.

With (1) we have no quarrel. Actually, algorithms were proved and the

proofs read and discussed and assimilated long before the invention of com-

puters—andwith a striking lack of formal machinery. Our guessis that the

study of algorithms and model programswill develop like any other mathe-

matical activity, chiefly by informal, social mechanisms, verylittle if at all

by formal mechanisms.
It is with (2) that we have our fundamental disagreement. We arguethat

there is no continuity between the world of FIND or GCD andthe world of

production software,billing systems that write real bills, scheduling systems

that schedule real events, ticketing systems that issue real tickets. And we

argue that the world of production softwareis itself discontinuous.

No programmerwould agree that large production systems are composed

of nothing more than algorithmsand small programs. Patches, ad hoc con-

structions, bandaids and tourniquets, bells and whistles, glue, spit and

polish, signature code, blood-sweat-and-tears, and, of course, the kitchen

sink—the colorful jargon of the practicing programmerseemsto be saying

something aboutthe nature of the structures he works with; maybe theoreti-

cians oughtto be listening to him. It has been estimated that more than half

the codein any real production system consists of user interfaces and error

messages—ad hoc, informalstructures that are by definition unverifiable.

Even the verifiers themselves sometimes seem to realize the unverifiable

nature of most real software. C.A.R. Hoare has been quoted [9] as saying,

‘‘In many applications, algorithm plays almost no role, and certainly pre-

sents almost no problem.’’ (We wish we could report that he thereupon

threw up his hands and abandonedverification, but no such luck.)

Or look at the difference between the world of GCD andthe world of pro-

duction software in another way: Thespecifications for algorithms are con-

cise and tidy, while the specifications for real-world systems are immense, fre-

quently of the same order of magnitude as the systems themselves. The

specifications for algorithms are highly stable, stable over decades or even

centuries; the specifications for real systems vary daily or hourly (as any pro-

grammer can testify). The specifications for algorithms are exportable,

general; the specifications for real systemsare idiosyncratic and ad hoc. These

are not differences in degree. They are differences in kind. Babysitting for a

sleeping child for one hour does notscale up to raising a family of ten—the

problemsareessentially, fundamentally different.

And within the world of real production software there is no continuity

either. The scaling-up argument seems to be based on the fuzzy notion that

the world of programmingis like the world of Newtonian physics—made up
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of smooth, continuous functions. But, in fact, programs are jagged andfull

of holes and caverns. Every programmer knowsthataltering a line or some-

times even a bit can utterly destroy a program or mutilate it in ways that we

do not understand and cannot predict. And yet at other times fairly sub-

stantial changes seem to alter nothing; the folkloreis filled with stories of

pranks and acts of vandalism that frustrated the perpetrators by remaining

forever undetected.

There is a classic science-fiction story about a time traveler who goes back

to the primeval jungles to watch dinosaurs and then returns to find his own

time altered almost beyond recognition. Politics, architecture, language—

even the plants and animals seem wrong,distorted. Only when he removeshis

time-travel suit does he understand what has happened. Onthe heel of his

boot, carried away from the past and therefore unable to perform its function

in the evolution of the world, is crushed the wing of a butterfly. Every pro-

grammer knowsthe sensation: A trivial, minute change wreaks havoc in a

massive system. Until we know more about programming, wehad better for

all practical purposes think of systems as composed, not of sturdy structures

like algorithms and smaller programs, but of butterflies’ wings.

The discontinuous nature of programming sounds the death knell for
verification. A sufficiently fanatical researcher might be willing to devote
two or three years to verifying a significant piece of software if he could be
assured that the software would remainstable. Butreal-life programs need
to be maintained and modified. There is no reasonto believe that verifying
a modified program is any easier than verifying the original the first time
around. There is no reason to believe that a big verification can be the sum
of many small verifications. There is no reason to believe that a verification
can transfer to any other program—not even to a program only onesingle
line different from the original.

Andit is this discontinuity that obviates the possibility of refining verifi-
cations by thesorts of social processes that refine mathematical proofs. The
lone fanatic might construct his own verification, but he would never have
any reason to read anyoneelse’s, nor would anyoneelse ever be willing to
read his. No community could develop. Even the most zealous verifier
could be inducedto read a verification only if he thought he might be able
to use or borrow or swipe something from it. Nothing could force him to
read someoneelse’s verification once he had grasped the point that no
verification bears any necessary connection to any otherverification.

BELIEVING SOFTWARE

The program itself is the only complete description of what the program will do.

P.J. DAVIS

Since computers can write symbols and move them about with negligible
expenditure of energy, it is tempting to leap to the conclusion that any-
thing is possible in the symbolic realm. But reality does not yield so easily;
physics does not suddenly break down.It is no more possible to construct
symbolic structures without using resources than it is to construct material
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structures without using them. For even the most trivial mathematica! the-

ories, there are simple statements whose formal demonstrations would be

impossibly long. Albert Meyer’s outstanding lecture on the history of such

research [15] concludes with a striking interpretation of how hard it may be

to deduce even fairly simple mathematical statements. Suppose that we en-

code logical formulas as binary strings and set out to build a computerthat

will decide the truth of a simple set of formulas of length, say, at most a

thousand bits. Suppose that we even allow ourselves the luxury of a tech-

nology that will produce proton-size electronic components connected by

infinitely thin wires. Even so, the computer we design must densely fill the

entire observable universe. This precise observation about the length offor-

mal deductions agrees with our intuition about the amount of detail embed-

ded in ordinary, workaday mathematical proofs. We often use ‘*Let us

assume, withoutloss of generality . . . ’’ or ‘‘Therefore, by renumbering,if

necessary...’ toreplace enormous amounts of formaldetail. To insist on

the formal detail would be silly waste of resources. Both symbolic and

material structures must be engineered with a very cautious eye. Resources

are limited; time is limited; energy is limited. Not even the computer can

changethefinite nature of the universe.

Weassumethat these constraints have prevented the adherentsof verifica-

tion from offering what might be fairly convincing evidence in support of

their methods. The lack at this late date of even a single verification of a

working system has sometimes been attributed to the youth of the field. The

verifiers argue, for instance, that they are only now beginning to understand

loop invariants. At first blush, this sounds like another variant of the scaling-

up argument. Butin fact there are large classes ofreal-life systems with virtu-

ally no loops—they scarcely ever occur in commercial programming applica-

tions. And yet there has never beena verification of, say, a Cobol system that

prints real checks; lacking even one makesit seem doubtful that there could at

sometime in the future be many. Resources, and time, and energyarejust as

limited for verifiers as they are for all the rest of us.

We must therefore come to grips with two problems that have occupied

engineers for many generations: First, people must plunge into activities that

they do not understand. Second, people cannotcreate perfect mechanisms.

How then do engineers manageto create reliable structures? First, they

use social processes very like the social processes of mathematicsto achieve

successive approximations at understanding. Second, they have a mature

andrealistic view of what ‘‘reliable’’ means; in particular, the one thingit

never meansis ‘‘perfect.’? There is no way to deducelogically that bridges

stand, or that airplanes fly, or that powerstations deliver electricity. True,

no bridges would fall, no airplanes would crash, no electrical systems black

out if engineers would first demonstrate their perfection before building

them—true because they would never be built atall.

The analogy in programmingis any functioning, useful, real-world sys-

tem. Take for instance an organi-chemical synthesizer called SYNCHEM

[5]. For this program,thecriterion ofreliability is particularly straightfor-

ward—if it synthesizes a chemical, it works;if it doesn’t, it doesn’t work.

No amountof correctness could ever hope to improve on this standard;in-
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deed, it is not at all clear how one could even begin to formalize such a stan-
dard in a way that would lenditself to verification. But it is a useful and
continuing enterprise to try to increase the number of chemicals the pro-
gram can synthesize.

It is nothing but symbol chauvinism that makes computerscientists think
that our structures are so much more important than material structures
that (a) they should be perfect, and (b) the energy necessary to make them
perfect should be expended. Wearguerather that (a) they cannot be perfect,
and (b) energy should not be wastedin the futile attempt to make them per-
fect. It is no accident that the probabilistic view of mathematical truth is
closely allied to the engineering notion ofreliability. Perhaps we should
make a sharp distinction between program reliability and program perfec-
tion—and concentrate our efforts on reliability.
The desire to make programscorrect is constructive and valuable. But the

monolithic view ofverification is blind to the benefits that could result from
accepting a standardof correctness like the standard of correctness for real
mathematical proofs, or a standard ofreliability like the standard forreal
engineering structures. The quest for workability within economic limits,
the willingness to channel innovation by recycling successful design, the
trust in the functioning of a community of peers—all the mechanismsthat
make engineering and mathematics really work are obscuredin the fruitless
search for perfect verifiability.
Whatelements could contribute to making programming morelike engi-

neering and mathematics? One mechanism that can be exploited is the crea-
tion of general structures whose specific instances become morereliable as the
reliability of the general structure increases.! This notion has appeared in
several incarnations, of which Knuth’s insistence on creating and under-
standing generally useful algorithms is one of the most important and en-
couraging. Baker’s team-programming methodology[1] is an explicit attempt
to expose software to social processes. If reusability becomesa criterion for
effective design, a wider and wider community will examine the most com-
mon programming tools.

The concept of verifiable software has been with us too long to beeasily
displaced. For the practice of programming, however,verifiability must not
be allowed to overshadowreliability. Scientists should not confuse mathe-
matical models with reality—andverification is nothing but a model of be-
lievability. Verifiability is not and cannot bea dominating concern in soft-
ware design. Economics, deadlines, cost-benefit ratios, personal and group
style, the limits of acceptable error—all these carry immensely much more
weight in design than verifiability or nonverifiability.
So far, there has beenlittle philosophical discussion of making software

reliable rather than verifiable. If verification adherents could redefine their
efforts and reorient themselves to this goal, or if another view of software
could arise that would draw onthe social processes of mathematics and the
modest expectations of engineering, the interests of real-life programming
and theoretical computer science might both be better served.
Even if, for some reason that we are not now able to understand, we

should be proved wholly wrong and theverifiers wholly right, this is not
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the momentto restrict research on programming. We knowtoolittle now to

sense what directions will be most fruitful. If our reasoning convinces no

one, if verificationstill seems an avenue worth exploring, so be it; we three

can only try to argue against verification, not blast it off the face of the

earth. But we implore ourfriends and colleagues not to narrow their vision

to this one view no matter how promising it may seem.Letit not be the only

view, the only avenue. Jacob Bronowski has an important insight about a

time in the history of anotherdiscipline that may be similar to our own time

in the development of computing: ‘‘A science which orders its thought too

early is stifled . . . The hope of the medieval alchemists that the elements

might be changed wasnotas fanciful as we once thought. Butit was merely

damaging to a chemistry which did not yet understand the composition of

water and commonsalt.”’
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NOTE

1. This process has recently come to be called ‘‘abstraction,’’ but we feel that for a

variety of reasons‘‘abstraction”’ is a bad term.It is easily confused with the totally dif-
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ferent notion of abstraction in mathematics, and often whathas passed for abstraction
in the computerscienceliterature is simply the removal of implementation details.
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GREGORY CHAITIN

Information-Theoretic Computational

Complexity

and

Gédel’s Theorem and Information

The following two papers by Chaitin draw together many of the
themes of this anthology. In these essays Chaitin blends standard mathematical
logic with a computer-oriented information theory to obtain a new version of
Godel’s fundamental result. This investigation, he argues, clarifies the significance
of Gédel’s incompleteness theorem, showing that it is not an isolated paradox but
a natural consequence of the constraints imposed by information theory. ‘‘From
the point of view of information theory . . . [Gédel’s theorem] seems simply to
suggest that in order to progress, mathematicians, like investigators in other
sciences, must search for new axioms.’’!
The second essay, ‘‘Gédel’s Theorem and Information,”’ is the more general of

the two and makes the argument for whatI’ve called ‘quasi-empiricism’. Chaitin
compares mathematics to physics and suggests that mathematicians should adopt
a more flexible attitude toward new axioms and methods of proof. ‘‘Perhaps
number theory should be pursued moreopenly in the spirit of experimental
science!’’ Early on in this anthology, Putnam had argued for a similar reading of
Gédel’s theorem. In the intervening essays, we have been exploring mathematical
practice, informal proofs and the continuum between mathematics and science.
Weare now in a muchbetter position to put flesh on the bones of the Chaitin-
Putnam proposal.

Whatis distinctive about Chaitin’s argumentis his technical variation on
Gédel’s theorem. Thefirst essay, ‘‘Information-Theoretic computational
Complexity,’’ provides the necessary technical backgroundto his argumentsin a
reasonably accessible fashion. For a more detailed exposition of the results, the
readeris referred to Chaitin’s ‘‘Information-Theoretic Limitations of Formal
Systems’’.? In the remainder ofthis introduction, I’ll try to provide some
philosophical background to Chaitin’s work by developing an analogy. Chaitin’s
theorem stands to Berry’s paradox in muchthe samerelation that Gddel’s
theorem stands to the liar paradox (also known as Tarski’s paradox). Let’s begin
with the two better-known elements of the analogy.
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The liar paradox concerns the following sentence.

(S1) This sentence is not (true.

If Si is true, then what it asserts must be the case, so it is false. Yet if S1 is not

true, then it asserts what is the case, so S1 is true. Tarski proved that every

componentof the paradox could be formalized in arithmetic, save one—a

predicate ‘‘is true’’ of sentences satisfying the condition: ‘S’ is true <=> S, for

every sentence S. Tarski resolved the paradox by concluding that sufficiently rich

languages cannot formalize the concept of truth for their sentences.?

Earlier Godel had skirted paradox by considering the following sentence.

(S2) This sentence is not provable.

In contrast to truth, provability can be formalized, at least whenitis relativized

to provability within a particular formal system. Thus S2, unlike S1, has a formal

analogue in arithmetic. Let us consider the status of this formal analogue. If S2

were true, then it would be unprovable and the underlying formal system would

be incomplete. There would be arithmetical truths not provable in it. Next

suppose that S2 yields a false statement of arithmetic. Then it would be provable

and its negation, which asserts that S2 is provable, would be both true and

provable! A proof of S2 (‘‘This sentence is not provable’’) would demonstrate

that not-S2 (That is, S2 is provable)! So the underlying formal system would be

actually inconsistent. Notice that there is no paradox here. Instead we have a

demonstration of the fundamental limits to any formal proof procedure: either it

is inconsistent or it is incomplete.

Nowlet us turn to Berry’s paradox. It concerns the phrase P1.

(P1) the least number not denoted by a phrase with fewer than fourteen words

Given a fixed and finite vocabulary, there can be only a finite number of phrases

with fewer than fourteen words. Consequently only finitely many numbers can be

denoted by such phrases andsothereis a least number, n, not so denoted. P1

seems to pick this number out, yet P1 has only thirteen wordsso it cannot denote

n. As in the case of the liar paradox, we can formalize each component of

Berry’s paradox in arithmetic save one; the relation of denotation between terms

and numbers. So like the liar paradox, Berry’s paradoxis avoided by denying

that sufficiently rich languages can formalize the concept of denotation for their

terms. According to onetraditional distinction, both paradoxes are semantic

paradoxes, not logical paradoxes, and so they cause trouble for linguistics, but

not for mathematics.4

Chaitin and others skirt Berry’s paradox by considering an analogous phrase,

P2.

(P2) the least number not computed by a program of complexity less than n

(In order to smooth out the analogy I have departed from Chaitin somewhat by

continuing to talk of numbers where he talks of binary strings, but I hope that

the gist of his idea is preserved.) Chaitin argues that relative to certain natural

background assumptions, this phrase can be formalized in arithmetic and actually

determines a computer program for searching out such a number.Let us say that

a numberis random relative to 7 if it isn’t computed by any program of

complexity less than n. Even if we choose 7 to be very large, say 10 to the 100th

power, wecanstill prove that (infinitely) many numbers must be random.

Nevertheless, the search procedure corresponding to P2 can not produce a single
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example of a random numbersince that program can be shown to have complexity

much less than 10 to the 100th power. We cannot discover a number of

complexity greater than n by any procedure of complexity less than n.

Berry’s paradox is avoided by denying that a key concept in it, denotation, can

be formalized. A major part of Chaitin’s work is devoted to showing that the

concepts relevant to his phrase can be formalized. Thus, he proves that the

resulting program does not halt with a correct output. The conclusion he drawsis

that ‘‘If we use the methodsof reasoning accepted by Hilbert, there is an upper

bound to the complexity that it is possible to prove that a particular string [of 0’s

and 1’s] has.’’ Actually the moral is more general: insofar as we precisely and

consistently specify the methods of reasoning permitted, we determine an upper

bound to the complexity of our results. (This upper boundis the information-

theoretic limit imposed by Gédel’s theorem.) To put the matter the other way

around, if mathematicians wish to prove more complex results, they will have to

continually introduce new axioms or new methods. Hence, progress in

mathematics would appear to be much morelike progress in the natural sciences

than hitherto expected.

Chaitin concludes his presentation by comparing the roles of complexity in

mathematics andin science.

NOTES

1. “Randomness and Mathematical Proof,’’ Scientific American, 232 (May
1975), 52.

2. ‘‘Information-Theoretic Limitations of Formal Systems,’? Journal of the
ACM,21 (1977), 403-424.

3. Of course Tarski did give a formally correct definition of truth for sentences in
a languagerelative to a model. The point is that there is no predicate T(x) in the
language whichis true ofall and only the true sentencesin the language (relative toa
given model).

4. This distinction was first made by F.P. Ramsey in 1925. See his collected
papers, The Foundations of Mathematics, Littlefield, Adams and Co., Patterson,
New Jersey (1960), 20-21.

Information-Theoretic Computational
Complexity

This field’s fundamental concept is the complexity of a binary
string, that is, a string of bits, of zeros and ones. The complexity of a binary
String is the minimum quantity of information needed to define the String.
For example, the string of length n consisting entirely of ones is of
complexity approximately log, n, because only log, n bits of information are
required to specify 7 in binary notation.
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However, this is rather vague. Exactly what is meant by the definition of

a string? To make this idea precise a computer is used. Onesays that a

string defines another whenthefirst string gives instructions for construct-

ing the secondstring. In other words, onestring defines another whenitis a

program for a computerto calculate the secondstring. The fact that a string

of n ones is of complexity approximately log, n can now be translated more

correctly into the following. There is a program log, n + c bits long that

calculates the string of m ones. The program performsa loop forprinting

ones n times. A fixed numberc of bits are needed to program the loop, and

log, n bits more for specifying n in binary notation.

Exactly how are the computer and the concept of information combined

to define the complexity of a binary string? A computer is considered to

take one binary string and perhaps eventually produce another. Thefirst

string is the program that has been given to the machine. The secondstring

is the output of this program;it is what this program calculates. Now con-

sider a given string that is to be calculated. How much information must be

given to the machineto do this? That is to say, whatis the length inbits of

the shortest program for calculating the string? This is its complexity.

It can be objected that this is not a precise definition of the complexity of

a string, inasmuch as it depends on the computerthat one is using. More-

over, a definition should not be based on a machine, but rather on a model

that does not have the physical limitations of real computers.

Here wewill not define the computer usedin the definition of complexity.

However, this can indeed be done with all the precision of which mathe-

matics is capable. Since 1936 it has been knownhowto define an idealized

computer with unlimited memory. This was donein a very intuitive way by

Turing and also by Post, and there are elegant definitions based on other

principles [2]. The theory of recursive functions (or computability theory)

has grown up around the questions of what is computable and whatis not.

Thusit is not difficult to define a computer mathematically. What remains

to be analyzedis which definition should be adopted, inasmuch as some com-

puters are easier to program than others. A decade ago Solomonoff solved

this problem [7]. He constructed a definition of a computer whose programs

are not much longer than those of any other computer. More exactly,

Solomonoff’s machine simulates running a program on another computer,

whenit is given a description of that computer together with its program.

Thusit is clear that the complexity of a string is a mathematical concept,

even though here we have notgiven a precise definition. Furthermore,it is a

very natural concept, easy to understand for those who have worked with

computers. Recapitulating, the complexity of a binary string is the infor-

mation neededto defineit, that is to say, the numberof bits of information

that must be given to a computerin orderto calculate it, or in other words,

the size in bits of the shortest program for calculating it. It is understood

that a certain mathematical definition of an idealized computeris being used,

but it is not given here, because asa first approximationit is sufficient to

think of the length in bits of a program for a typical computer in use today.

Now we wouldlike to consider the most important properties of the com-

plexity of a string. First of all, the complexity of a string of length 7 is less
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than 1 + c, because anystring of length n can be calculated by puttingit

directly into a program asa table. This requires 1 bits, to which must be
added bits of instructions for printing the table. In other words,if nothing
better occurs to us, the string itself can be usedasits definition, and this re-
quires only a few morebits than its length.

Thus the complexity of each string of length 7 is less than n + c. More-
over, the complexity of the great majority of strings of length n is approxi-
mately n, and very few strings of length n are of complexity muchless than
n. The reasonis simply that there are much fewer programsof length appre-
ciably less than n than strings of length n. More exactly, there are 2” strings
of length n, and less than 2”-* programs of length less thann — k. Thus the
numberofstrings of length m and complexity less than n — k decreases ex-
ponentially as k increases.

These considerations have revealed the basic fact that the great majority
of strings of length n are of complexity very close to n. Therefore, if one
generates a binary string of length n by tossing a fair coin n times and noting
whethereachtoss gives headortail, it is highly probable that the complexity
of this string will be very close to n. In 1965 Kolmogorov proposed calling
random thosestrings of length n whose complexity is approximately n [8].
We madethe sameproposal independently [9]. It can be shownthat a string
that is random in this sense hasthestatistical properties that one would ex-
pect. For example, zeros and ones appearin such strings with relative fre-
quencies that tend to one-half as the length of the strings increases.

Consequently, the great majority of strings of length n are random, that
is, need programs of approximately length 7, that is to say, are of complex-
ity approximately n. What happensif one wishes to show that a particular
string is random? What if one wishes to prove that the complexity of a
certain string is almost equalto its length? What if one wishes to exhibit a
specific example of a string of length n and complexity close to n, and
assure oneself by means of a proof that there is no shorter program forcal-
culating this string?

It should be pointed out that this question can occur quite naturally toa
programmerwith a competitive spirit and a mathematical way of thinking.
At the beginning of the sixties we attended a course at Columbia University
in New York. Each time the professor gave an exercise to be programmed,
the students tried to see who could write the shortest program. Even though
several times it seemed very difficult to improve uponthe best program that
had been discovered, we did not fool ourselves. Werealized that in order to
be sure, for example, that the shortest program for the IBM 650 that prints
the prime numbershas, say, 28 instructions, it would be necessary to prove
it, not merely to continue for a long time unsuccessfully trying to discover a
program with less than 28 instructions. We could never even sketch a first
approachto a proof.

It turns out that it was not our fault that we did notfind a proof, because
we faced a fundamental limitation. One confronts a very basic difficulty
when onetries to prove that a string is random, when one attempts to es-
tablish a lower bound onits complexity. We will try to suggest why this prob-
lem arises by means of a famous paradox,that of Berry [1, p. 153].
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Consider the smallest positive integer that cannot be defined by an English

phrase with less than 1 000 000 000 characters. Supposedly the shortest

definition of this number has 1 000 000 000 or more characters. However,

wedefined this numberby a phrase muchless than 1 000 000 000 characters

in length when wedescribedit as ‘‘the smallest positive integer that cannot

be defined by an English phrase with less than 1 000 000 000 characters!”’

Whatrelationship is there between this and proving thata string is com-

plex, that its shortest program needs more than n bits? Consider the first

string that can be proven to be of complexity greater than 1 000 000 000.

Here once more we face a paradox similar to that of Berry, because this

description leads to a program with muchless than 1 000 000 000 bits that

calculates a string supposedly of complexity greater than 1 000 000 000.

Whyis there a short program for calculating ‘‘the first string that can be

proven to be of complexity greater than 1 000 000 000 ?”’

The answer depends on the concept of a formal axiom system, whose im-

portance was emphasized by Hilbert [1]. Hilbert proposed that mathematics

be made as exact and precise as possible. In order to avoid arguments be-

tween mathematicians about the validity of proofs he set downexplicitly the

methods of reasoning used in mathematics. In fact, he invented an artificial

language with rules of grammar andspelling that have no exceptions. He

proposed that this language be used to eliminate the ambiguities and un-

certainties inherent in any natural langauge. The specifications are so pre-

cise and exact that checking if a proof written in this artificial languageis

correct is completely mechanical. We would say today that it is so clear

whether a proofis valid or not that this can be checked by a computer.

Hilbert hoped that this way mathematics would attain the greatest possible

objectivity and exactness. Hilbert said that there can no longer be any doubt

about proofs. The deductive method should be completely clear.

Suppose that proofs are written in the language that Hilbert constructed,

and in accordance with his rules concerning the accepted methodsof rea-

soning. We claim that a computer can be programmedto printall the theo-

rems that can be proven.It is an endless program that every now and then

writes on the printer a theorem. Furthermore, no theorem is omitted. Each

will eventually be printed, if one is very patient and waits long enough.

How is this possible? The program worksin the following manner. The

language invented by Hilbert has an alphabet with finitely many signs or

characters. First the program generates the strings of characters in this

alphabet that are one character in length.It checks if one of these strings

satisfies the completely mechanical rules for a correct proof andprintsall

the theorems whose proofsit has found. Then the program generates all

the possible proofs that are two characters in length, and examines each of

them to determineif it is valid. The program then examines all possible

proofs of length three, of length four, and so on. If a theorem can be

proven, the program will eventually find a proof for it in this way, and

then printit.

Consider again ‘‘the first string that can be proven to be of complexity

greater than 1 000 000 000.’’ To find this string one generatesall the theo-

remsuntil one finds the first theorem that states that a particular string is of
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complexity greater than 1 000 000 000. Moreover, the program for finding

this string is short, because it need only have the number 1 000 000 000

written in binary notation log, 1 000 000 000 bits, and a routine of fixed

length c that examinesall possible proofs until it finds one that a specific

string is of complexity greater than 1 000 000 000.

In fact, we see that there is a program log, n + c bits long that

calculates the first string that can be proven to be of complexity greater

than n. Here we have Berry’s paradox again, because this program of

length log, n + c calculates something that supposedly cannot be

calculated by a program oflength less than or equal to n. Also, log, n + c

is much less than n for all sufficiently great values of n, because the
logarithm increases very slowly.

What can the meaning of this paradox be? In the case of Berry’s original
paradox, one cannot arrive at a meaningful conclusion, inasmuch as oneis
dealing with vague concepts such as an English phrase’s defining a positive in-
teger. However our version of the paradox deals with exact concepts that
have been defined mathematically. Therefore, it cannot really be a contra-
diction. It would be absurd for a string not to have a program oflength less
than or equalto n for calculating it, and at the sametime to have such a pro-
gram. Thus wearrive at the interesting conclusion that such a string cannot
exist. For all sufficiently great values of n, one cannot talk about “‘thefirst
string that can be proven to be of complexity greater than n,’’ because this
string cannot exist. In other words, for all sufficiently great values of n,it
cannot be proven that a particular string is of complexity greater than n. If
one uses the methods of reasoning accepted by Hilbert, there is an upper
bound to the complexity that it is possible to prove that a particular string
has.

This is the surprising result that we wished to obtain. Most Strings of
length n are of complexity approximately n, and a string generated by toss-
ing a coin will almost certainly have this property. Nevertheless, one cannot
exhibit individual examples of arbitrarily complex strings using methods of
reasoning accepted by Hilbert. The lower bounds on the complexity of spe-
cific strings that can be established are limited, and we will never be mathe-
matically certain that a particular string is very complex, even though most
strings are random.!

In 1931 Gédel questioned Hilbert’s ideas in a similar way [1], [2]. Hilbert
had proposed specifying once and forall exactly what is accepted as a proof,
but Gédel explained that no matter what Hilbert specified so precisely,
there would always be true statements about the integers that the methods
of reasoning accepted by Hilbert would be incapable of proving. This
mathematical result has been considered to be of great philosophical im-
portance. Von Neumann commentedthat the intellectual shock provoked
by the crisis in the foundations of mathematics was equaled only by two
other scientific events in this century: the theory of relativity and quantum
theory [4].

We have combined ideas from information theory and computability
theory in order to define the complexity of a binary string, and have then
used this conceptto give a definition of a random string and to show that a
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formal axiom system enables one to prove that a random string is indeed

random in only finitely many cases.

Now we would like to examine someother possible applications of this

viewpoint. In particular, we would like to suggest that the concept of the

complexity of a string and the fundamental methodological problems of

science are intimately related. We will also suggest that this concept may be

of theoretical value in biology.

Solomonoff [7] and the author [9] proposed that the concept of

complexity might makeit possible to precisely formulate the situation that

a scientist faces when he has made observations and wishes to understand

them and makepredictions. In order to do this the scientist searches for a

theory that is in agreement with all his observations. We consider his

observations to be represented by a binary string, and a theory to be a pro-

gram that calculates this string. Scientists consider the simplest theory to

be the best one, and that if a theory is too ‘‘ad hoc,”’’ it is useless. How

can we formulate these intuitions about the scientific method in a precise

fashion? The simplicity of a theory is inversely proportional to the length

of the program that constitutes it. That is to say, the best program for

understanding or predicting observations is the shortest one that repro-

duces what the scientist has observed up to that moment. Also, if the pro-

gram has the same numberofbits as the observations, then it is useless,

because it is too ‘‘ad hoc.”’ If a string of observations only has theories

that are programs with the samelength as the string of observations, then

the observations are random, and can neither be comprehended nor

predicted. They are whatthey are, andthatis all; the scientist cannot have

a theory in the propersense of the concept; he can only show someoneelse

what he observed andsay ‘‘it was this.”’

In summary,the value ofa scientific theory is that it enables one to com-

press many observationsinto a few theoretical hypotheses. Thereis a theory

only whenthe string of observations is not random,that is to say, whenits

complexity is appreciably less than its length in bits. In this case the scientist

can communicate his observations to a colleague much more economically

than by just transmitting the string of observations. He doesthis by sending

his colleague the program that is his theory, and this program must have

much fewerbits than the original string of observations.

It is also possible to make a similar analysis of the deductive method,that

is to say, of formal axiom systems. This is accomplished by analyzing more

carefully the new version of Berry’s paradox that was presented. Here we

only sketch the three basic results that are obtainedin this manner.?

(1) Ina formal system with n bits of axiomsitis impossible to prove

that a particular binary string is of complexity greater thann + c.

(2) Contrariwise, there are formal systems with n + c bits of axioms in

which it is possible to determine each string of complexity less than n and

the complexity of each of thesestrings, andit is also possible to exhibit each

string of complexity greater than or equal to 7, but without being able to

know by how muchthe complexity of each of these strings exceeds n.

(3) Unfortunately, any formal system in which it is possible to deter-

mine each string of complexity less than n has either one grave problem or
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another. Either it has few bits of axioms and needsincredibly long proofs,

or it has short proofs but an incredibly great number of bits of axioms. We

say “‘incredibly’’ because these quantities increase more quickly than any

computable function of n.

It is necessary to clarify the relationship between this and the preceding

analysis of the scientific method. Thereare less than 2” strings of complexity

less than n, but some of them are incredibly long. If one wishes to com-

municate all of them to someoneelse, there are twoalternatives. Thefirst is

to directly show all of them to him.In this case one will have to send him an

incredibly long message because some ofthese strings are incredibly long.

Theotheralternative is to send him a very short message consisting of 7 bits

of axioms from which he can deduce whichstrings are of complexity less

than n. Although the messageis very short in this case, he will have to spend

an incredibly long time to deduce from these axiomsthestrings of complex-

ity less than n. This is analogous to the dilemmaof a scientist who must

choose betweendirectly publishing his observations, or publishing a theory

that explains them, but requires very extended calculationsin order to dothis.

Finally, we would like to suggest that the concept of complexity may pos-

sibly be of theoretical value in biology.

At the end of his life von Neumanntried to lay the foundation for a
mathematics of biological phenomena.Hisfirst effort in this direction was
his work Theory of Games and Economic Behavior, in which he analyzes

whatis a rational way to behavein situations in which there are conflicting
interests [3]. The Computer and the Brain, his notesfor a lecture series, was
published shortly after his death [5]. This book discusses the differences and
similarities between the computer andthebrain,as first step to a theory of
how the brain functions. A decade later his work Theory of Self-Reproduc-
ing Automata appeared, in which von Neumannconstructs anartificial uni-
verse and within it a computer that is capable of reproducingitself [6]. But
von Neumann points out that the problem of formulating a mathematical
theory of the evolution oflife in this abstract setting remains to be solved;
and to express mathematically the evolution of the complexity of organ-
isms, one must first define complexity precisely.2 We submit that ‘‘organ-
ism’’ must also be defined, and have tried elsewhere to suggest how this
might perhaps be done[10].

Webelieve that the concept of complexity that has been presented here
may be the tool that von Neumannfelt is needed. It is by no meansacci-
dental that biological phenomenaareconsidered to be extremely complex.
Consider how a human being analyzes what hesees, or uses natural lan-
guages to communicate. We cannot carry out these tasks by computerbe-
cause they are as yet too complex for us-the programs would be too long.4

APPENDIX

In this Appendix wetry to give a moredetailed idea of how theresults con-
cerning formal axiom systemsthat were stated are established.°
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Two basic mathematical concepts that are employed are the concepts of a

recursive function and a partial recursive function. A functionis recursiveif

there is an algorithm for calculating its value when oneis given the value of

its arguments, in other words,if there is a Turing machine for doingthis. If

it is possible that this algorithm never terminates and the function is thus

undefined for some values of its arguments, then the functionis called par-

tial recursive.®

In what follows we are concerned with computations involving binary

strings. The binary strings are considered to be ordered in the following

manner: A ,0,1,00,01,10,11,000,001,010, .. . . The natural number 7 is

represented by the nth-binary string (7 = 0,1,2,...). The length of a

binary string s is denoted lg(s). Thus if s is considered to be a natural

number, then lg(s) = [log,(s + 1)]. Here [x] is the greatest integer =< x.

Definition 1: A computeris a partial recursive function C(p). Its argu-

ment p is a binary string. The value of C(p)is the binary string output by

the computer C whenit is given the program p. If C(p) is undefined, this

meansthat running the program p on C produces an unending computation.

Definition 2: The complexity I(s) of a binary string s is defined to be the

length of the shortest program p that makes the computer C outputs,i.e.,

I(s) = ming), lg (p). If no program makes C outputs, then J.(s) is de-

fined to beinfinite.

Definition 3: A computer is universal if for any computer C and any

binary string s, I,(s) < I,(s) + c, where the constant c depends only on C.

It is easy to see that there are universal computers. For example, consider

the computer U such that U(O‘lp) = Cp), where C; is the ith computer,

i.e., a program for U consists of two parts: the left-hand part indicates

which computer is to be simulated, and the right-hand part gives the pro-

gram to be simulated. We now supposethat someparticular universal com-

puter U has been chosen as the standard one for measuring complexities,

and shall henceforth write /(s) instead of J,fs).

Definition 4: The rules of inference of a class of formal axiom systemsis

a recursive function F(a,h) (a a binary string, # a natural number) with the

property that F(a,h)C F(a, h + 1). The value of F(a,h) is the finite

(possibly empty) set of theorems that can be proven from the axioms a by

meansof proofs < h/ characters in length. F(a) = U, F(a,h)is the set of

theorems that are consequencesof the axioms a. The ordered pair <F,a>,

which implies both the choice of rules of inference and axioms, iS a par-

ticular formal axiom system.

This is a fairly abstract definition, but it retains all those features of for-

mal axiom systems that we need. Note that although one may not be inter-

ested in some axioms(e.g., if they are false or incomprehensible),it is stipu-

lated that F(a,h) is always defined.

Theorem 1: a) There is a constant c such that J(s) s lg (s) + c for all

binary strings s. b) There are less than 2” binarystrings of complexity less

than n.

Proof of a): There is a computer C such that C(p) = p for all programs

p. Thusforall binary strings s, J(s) = I,(s) + c = Ig (s) + «.
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Proofof b): As there are less than 2” programsoflength less than n, there

must be less than this numberof binary strings of complexity less than n.

Q.E.D.

Thesis: A random binary string s is one having the property that

I(s) = lg (s).

Theorem 2: Consider the rules of inference F. Suppose that a proposi-

tion of the form ‘‘J(s) = n’’ is in F(a) only if it is true, i.e., only if

I(s) = n. Then a proposition of the form ‘‘J(s) = n’’ is in F(a) only if

n = lg (a) + c, where c is a constant that depends only on F.

Proof: Consider that binary string s, having the shortest proof from the

axioms a that it is of complexity > lg (a) + 2k. We claim that I(s,) <

lg (a2) + k +c’, where c’ depends only on F. Taking k = c’', we con-

clude that the binary string s,, with the shortest proof from the axioms a

that it is of complexity > lg (a) + 2c’ is, in fact, of complexity

<= lg (a) + 2c’, which is impossible. It follows that s, doesn’t exist for

k = c’, that is, no binarystring can be proven from the axioms a to be of

complexity > lg (a) + 2c’. Thus the theorem is proved with c = 2c’.

It remainsto verify the claim that J(s,) s lg (a) + k + c’'. Considerthe

computer C that does the following when it is given the program 01a.It

calculates F(a,h) for h = 0,1,2, . . . until it finds the first theorem in F(a,h)

of the form ‘‘J(s) = n’’ with n> Ig (a) + 2k. Finally C outputs the binary

string s in the theorem it has found. Thus C(0*/a)is equal to s,, if s, exists.
It follows that I(s,) = 1(C(**la)) < I(C(1a)) + c" s lg (Ola) + c"
=Ig(a)+k+(c"+)D=lIhg(a+kic’. Q.E.D.

Definition 5: A, is defined to be the Ath binarystring of length n, where
k is the numberof programsp of length < n for which U(p)is defined,i.e.,
A,, has n and this number k codedintoit.

Theorem 3: There are rules of inference F' such thatfor all n, F'(A,) is
the union ofthe set of all true propositions of the form ‘‘J(s) = k’’ with
k < nandthesetofall true propositions of the form ‘‘J(s) = n.”’

Proof: From A, one knows n and for how manyprogramsp of length
<n U(p)is defined. One then simulates in parallel, running each program
p of length <n on U until one has determined the value of U(p)in all those
cases in which U(p) is defined. Knowing the value of U(p) for each p of
length <n for which U(p) is defined, one easily determines each String of
complexity <7 and its complexity. What’s more,all other strings must be
of complexity =n. This completes our sketch of howall true propositions
of the form ‘‘J(s) = k’? with k < n and of the form ‘‘J(s) = n’’ can be
deduced from the axiom A,. Q.E.D.

Recall that we consider the nth binarystring to be the natural number n.

Definition 6: The partial function B(n)is defined to be the biggest natural
numberof complexity <7, i.e., B(n) = MaX;y<,K = MAaXiy<,U(p).

Theorem 4: Letfbea partial recursive function that carries natural numbers
into natural numbers. Then B(n) = f(n)for all sufficiently great values of 71.
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Proof: Consider the computer C such that C(p) = /(p) for all p. I(f("))

< I.(f(n)) + c s Ig (n) +c = [log, (n + 1] + c <n for all suffi-

ciently great values of n. Thus B(n) = /f(n) for all sufficiently great values

of 7. Q.E.D.

Theorem 5: Consider the rules of inference F Let F, = U,F(a,B(n)),

wherethe unionis taken overall binary strings a of length < B(n), i.e., F, is

the (finite) set of all theorems that can be deduced by meansofproofs with

not more than B(n) characters from axioms with not more than B(n)bits.

Let s, be the first binary string s not in any proposition of the form “‘I(s) =

k’’? in F,. Then I(s,) < n + c, where the constant c depends only on F.

Proof: We claim that there is a computer C such that if U(p) = B(n),

then C(p) = s,. As, by the definition of B, there is a p) of length <7 such

that U(p,) = B(n), it follows that J(s,) s I(s,) + c= c = I(C(D))

+ c S lg(p,) + c S n + c, which wasto be proved.

It remainsto verify the claim that there isa Csuch thatif U(p) = B(n), then

C(p) = s,.Cworksasfollows. Given the programp,C first stimulates running

the programpon U. Once Chasdetermined U(p),it calculates F(a, U(p)) forall

binary strings a such that lg (a) < U(p), and forms the union of these

2U¥)+! — 1 different sets of propositions, whichis F,if U(p) = B(n). Finally

C outputs the first binary string s not in any proposition of the form

‘“I(s) = k’’ in this set of propositions; sis s,if U(p) = B(n). Q.E.D.

Theorem 6: Consider the rules of inference F. If F(a,h) includesall true

propositions of the form ‘‘I(s) = k’’ withk < n + c, then either lg (a) >

B(n) or h > B(n). Here c is a constant that depends only on F.

Proof: This is an immediate consequence of Theorem 5. Q.E.D.

The following theorem gives an upper bound onthesize of the proofs in

the formal systems <F',A,> that were studied in Theorem 3, and also

shows that the lower bound on thesize of these proofs that is given by

Theorem 6 cannotbeessentially improved.

Theorem 7: There is a constant c such thatfor all n F'(A,, B(m + c)) in-

cludes all true propositions of the form ‘‘J(s) = k’’ withk < n.

Proof: We claim that there is a computer C such that for all n,

C(A,) = the least natural number / such that F'(A,, h) includes all true

propositions of the form ‘‘J(s) = k’’ with k < n. Thusthe complexity of

this value of his <lg (A,) + c = n + c, and B(n + c) is = this value of

h, which wasto be proved.

It remains to verify the claim. C worksas follows whenit is given the pro-

gram A.. First, it determines each binary string of complexity <n andits

complexity, in the mannerdescribed in the proof of Theorem 3. Thenit cal-

culates F'(A,,A) for h = 0,1,2, ... until all true propositions of the form

“I(s) = k’? with k < n are included in F'(A,,h). The final value of h iS

then output by C. Q.E.D.

NOTES

1. This is a particularly perverse example of Kac’s comment[13, p. 18] that ‘as is

often the case, it is much easier to prove that an overwhelming majority of objects
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possess a certain property than to exhibit even one such object.’’ The most familiar

example of this is Shannon’s proof of the coding theorem for a noisy channel; while

it is shown that most coding schemes achieve close to the channel capacity, in prac-

tice it is difficult to implement a good coding scheme.

2. See the Appendix.

3. In an important paper [14], Eigen studies these questions from the point of

view of thermodynamics and biochemistry.

4. Chandrasekaran and Reeker[15] discuss the relevance of complexity to artifi-

cial intelligence.

5. See [11], [12] for different approaches.

6. Full treatments of these concepts can be foundin standard texts, e.g., Rogers

[16].
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Gédel’s Theorem and Information

1 INTRODUCTION

To set the stage, let us listen to Hermann Weyl (1946), as quoted by Eric

Temple Bell (1951):

Weareless certain than ever about the ultimate foundations of (logic and)

mathematics. Like everybody and everything in the world today, we have our

‘‘crisis.’? We have had it for nearly fifty years. Outwardly it does not seem to

hamperourdaily work, and yet I for one confess that it has had a considerable

practical influence on my mathematicallife: it directed myinterests to fields I

considered relatively ‘‘safe,’’ and has been a constant drain on the enthusiasm

and determination with which I pursued my research work. This experienceis

probably shared by other mathematicians whoare notindifferent to whattheir

scientific endeavors mean in the context of man’s whole caring and knowing,

suffering and creative existence in the world.

Andthese are the words of John von Neumann (1963):

_. . there have been within the experience of people now living at least three

serious crises . . . There have been two such crises in physics—namely, the

conceptual soul-searching connected with the discovery of relativity and the

conceptual difficulties connected with discoveries in quantum theory . . . The

third crisis was in mathematics. It was a very serious conceptualcrisis, dealing

with rigor and the proper wayto carry out a correct mathematical proof. In

view of earlier notions of the absolute rigor of mathematics, it is surprising

that such a thing could have happened, and even moresurprising thatit could

have happened in these latter days when miracles are not supposed to take

place. Yet it did happen.

At the time of its discovery, Kurt Gédel’s incompleteness theorem was a

great shock and caused much uncertainty and depression among mathema-

ticians sensitive to foundational issues, since it seemed to pull the rug out

from under mathematical certainty, objectivity, and rigor. Also, its proof

was considered to be extremely difficult and recondite. With the passage of

time the situation has been reversed. A great many different proofs of

Gédel’s theorem are now known,andtheresult is now considered easy to

prove and almostobvious:It is equivalent to the unsolvability of the halting

problem, or alternatively to the assertion that there is an r.e. (recursively

enumerable) set that is not recursive. And it has had nolasting impact on

the daily lives of mathematicians or on their working habits; no one loses

sleep over it any more.

G6del’s original proof constructed a paradoxical assertion that is true but

not provable within the usual formalizations of numbertheory. In contrast

I would like to measure the powerofa set of axioms and rules of inference.

I would like to be able to say that if one has ten pounds of axiomsand a
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twenty-pound theorem, then that theorem cannotbe derived from those ax-

ioms. And I will argue that this approach to Gédel’s theorem does suggest a

change in the daily habits of mathematicians, and that Gédel’s theorem

cannot be shrugged away.

To be morespecific, I will apply the viewpoint of thermodynamics and

Statistical mechanics to Gddel’s theorem, and will use such concepts as

probability, randomness, entropy, and information to study the incomplete-

ness phenomenon andto attempt to evaluate how widespread it is. On the

basis of this analysis, I will suggest that mathematics is perhaps more akin to

physics than mathematicians have been willing to admit, and that perhaps a

more flexible attitude with respect to adopting new axioms and methods of

reasoning is the proper response to Gédel’s theorem. Probabilistic proofs of

primality via sampling (Chaitin and Schwartz, 1978) also suggest that the

sources of mathematical truth are wider than usually thought. Perhaps

number theory should be pursued more openly in the spirit of experimental

science (Polya, 1959)!

I am indebted to John McCarthy and especially to Jacob Schwartz for
making merealize that Gédel’s theorem is not an obstacle to a practical AI
(artificial intelligence) system based on formal logic. Such an AI would take
the form of an intelligent proof checker. Gottfried Wilhelm Liebnitz and
David Hilbert’s dream that disputes could be settled with the words ‘‘Gen-
tlemen, let us compute!’’ and that mathematics could be formalized, should
still be a topic for active research. Even though mathematicians andlogicians
have erroneously dropped this train of thought dissuaded by Gédel’s
theorem, great advances have in fact been made‘‘covertly,’’ under the ban-
ner of computer science, LISP, and AI (Cole etal., 1981; Dewaret al., 1981;
Levin, 1974; Wilf, 1982).

To speak in metaphors from Douglas Hofstadter (1979), we shall now
stroll through an art gallery of proofs of Gédel’s theorem, to the tune of
Moussorgsky’s pictures at an exhibition! Let us start with sometraditional
proofs (Davis, 1978; Hofstadter, 1979; Levin, 1974; Post, 1965).

2 TRADITIONAL PROOFS OF GODEL’S THEOREM

Gédel’s original proof of the incompleteness theorem is based on the paradox
of the liar: ‘‘This statement is false.’ He obtains a theorem instead of a
paradox by changingthisto: ‘‘This statementis unprovable.’’ If this assertion
is unprovable, thenit is true, and the formalization of number theory in ques-
tion is incomplete. If this assertion is provable, then it is false, and the for-
malization of numbertheory is inconsistent. The Original proof was quite
intricate, much like a long program in machine language. The famoustech-
nique of Gédel numbering statements was but one of the many ingenious
ideas brought to bear by Gédel to construct a number-theoretic assertion
whichsays ofitself that it is unprovable.

Gédel’s original proof applies to a particular formalization of number
theory, and wasto be followed by a paper showing that the same methods ap-
plied to a muchbroaderclass of formal axiomatic systems. The modern ap-
proach in fact applies to all formal axiomatic systems, a concept which could
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not even be defined when Godel wrotehis original paper, owing to the lack

of a mathematical definition of effective procedure or computeralgorithm.

After Alan Turing succeeded in defining effective procedure by inventing a

simple idealized computer now called the Turing machine (also done in-

dependently by Emil Post), it became possible to proceed in a more general

fashion.
Hilbert’s key requirement for a formal mathematical system was that

there be an objective criterion for deciding if a proof written in the language

of the system is valid or not. In other words, there must be an algorithm, a

computer program, a Turing machine, for checking proofs. And the com-

pact modern definition of formal axiomatic system is a recursively enumer-

able set of assertions is an immediate consequence if one uses the so-called

British Museum algorithm. One applies the proof checkerin turn toall pos-

sible proofs, and prints all the theorems, which of course would actually

take astronomical amounts of time. By the way, in practice LISP is a very

convenient programminglanguagein which to write a simple proof checker

(Levin, 1974).

Turing showed that the halting problem is unsolvable, thatis, that there is

no effective procedure or algorithm for deciding whether or not a program

ever halts. Armed with the general definition of a formal axiomatic system as

an r.e. set of assertions in a formal language, one can immediately deduce a

version of Gédel’s incompleteness theorem from Turing’s theorem. I will

sketch three different proofs of the unsolvability of the halting problem in a

moment;first let me derive Gédel’s theorem from it. The reasoning is simply

that if it were always possible to prove whether or not particular programs

halt, since the set of theoremsis r.e., one could usethis to solve the halting

problem for any particular program by enumerating all theorems until the

matteris settled. But this contradicts the unsolvability of the halting problem.

Here comethree proofs that the halting problem is unsolvable. One proof

considers that function F(N) defined to be either one more than the value of

the Nth computable function applied to the natural number N, or zero if

this value is undefined because the Nth computer program does nothalt on

input N. F cannot be a computable function, for if program N calculatedit,

then one would have F(N) = F(N) + 1, which is impossible. But the only

way that F'can fail to be computable is because one cannot decide if the Nth

program ever halts when given input N.

The proof I have just given is of course a variant of the diagonal method

which Georg Cantorused to show that the real numbers are more numerous

than the natural numbers (Courant and Robbins, 1941). Something much

closer to Cantor’s original technique can also be used to prove Turing’s

theorem. The argumentrunsalongthe lines of Bertrand Russell’s paradox

(Russell, 1967) of the set of all things that are not members of themselves.

Consider programs for enumerating sets of natural numbers, and number

these computer programs.Define

a

set of natural numbersconsisting of the

numbers of all programs which do notinclude their own numberin their

output set. This set of natural numbers cannot be recursively enumerable,

for if it were listed by computer program N,onearrives at Russell’s paradox

of the barber in a small town who shavesall those and only those who do
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not shave themselves, and can neither shave himself nor avoid doing so. But

the only waythat this set can fail to be recursively enumerableis if it is im-

possible to decide whether or not a program everoutputs a specific natural

number, and this is a variant of the halting problem.

For yet another proof of the unsolvability of the halting problem, con-
sider programs which take no input and which either producea single nat-
ural number as output or loop forever without ever producing an output.
Think of these programs as being written in binary notation, instead of as
natural numbers as before. I now define a so-called Busy Beaver function:
BB of N is the largest natural number output by any program less than N
bits in size. The original Busy Beaver function measured program size in
terms of the numberofstates in a Turing machineinstead of using the more
correct information-theoretic measure, bits. It is easy to see that BB of N
grows more quickly than any computable function, and is therefore not com-
putable, which as before implies that the halting problem is unsolvable.

In a beautiful and easy to understand paper Post (1965) gave versions of
Gédel’s theorem based on his concepts of simple andcreative r.e. sets. And
he formulated the modern abstract form of Gédel’s theorem, whichis like a
Japanese haiku: there is an r.e. set of natural numbersthatis not recursive.
This set has the property that there are programsfor printing all the mem-
bers of the set in some order, but not in ascending order. One can eventually
realize that a natural number is a memberofthe set, but there is no algo-
rithm for deciding if a given numberis in the set or not. Thesetis r.e. butits
complementis not. In fact, the set of (numbersof) halting programsis such
a set. Now consider a particular formal axiomatic system in which one can
talk about natural numbers and computer programs and such, and let X be
any r.e. set whose complementis not r.e. It follows immediately that notall
true assertions of the form ‘‘the natural number

JN

is not in the set X”’ are
theoremsin the formal axiomatic system. In fact, if X is what Post called a
simple r.e. set, then only finitely many of these assertions can be theorems.
These traditional proofs of Gédel’s incompleteness theorem show that

formal axiomatic systems are incomplete, but they do not Suggest ways to
measure the power of formal axiomatic systems, to rank their degree of
completeness or incompleteness. Actually, Post’s conceptof a simple set con-
tains the germ of the information-theoretic versions of Gédel’s theorem
that I will give later, but this is only visible in retrospect. One could some-
how choose a particular simple r.e. set X and rank formal axiomatic SYS-
tems according to how manydifferent theorems of the form ‘“‘N is not in
X”’ are provable. Here are three other quantitative versions of Gédel’s in-
completeness theorem which do sortof fall within the scope of traditional
methods.

Consider a particular formal axiomatic system in which itis possible to
talk about total recursive functions (computable functions which have a
natural numberas value for each natural number input) and their running
time computational complexity. It is possible to construct a total recursive
function which grows more quickly than any function which is provably
total recursive in the formal axiomatic system. It is also possible to con-
Struct a total recursive function which takes longer to compute than any
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provably total recursive function. That is to say, a computer program which

produces a natural number output and then halts wheneverit is given a

natural number input, but this cannot be proved in the formal axiomatic

system, because the program takestoo long to produceits output.

It is also fun to use constructive transfinite ordinal numbers (Hofstadter,

1979) to measure the power of formal axiomatic systems. A constructive or-

dinal is one which can be obtainedasthe limit from below of a computable

sequence of smaller constructive ordinals. One measures the powerofa for-

mal axiomatic system bythefirst constructive ordinal which cannot be proved

to be a constructive ordinal within the system. This is like the paradox of the

first unmentionable or indefinable ordinal number (Russell, 1967)!

Before turning to information-theoretic incompleteness theorems, I must

first explain the basic concepts of algorithmic information theory (Chaitin,

1975b, 1977, 1982).

3 ALGORITHMIC INFORMATION THEORY

Algorithmic information theory focuses on individual objects rather than

on the ensembles and probability distributions considered in Claude Shan-

non and Norbert Wiener’s information theory. How manybits doesit take

to describe how to compute an individual object? In other words, whatis

the size in bits of the smallest program for calculating it? It is easy to see

that since general-purpose computers (universal Turing machines) can simu-

late each other, the choice of computer as yardstick is not very important

and really only corresponds to the choice of origin in a coordinate system.

The fundamental concepts of this new information theory are: algorith-

mic information content, joint information, relative information, mutual

information, algorithmic randomness, and algorithmic independence.

These are defined roughly as follows.

The algorithmic information content /(X) of an individual object X 1S

defined to be the size of the smallest program to calculate X. Programs

must be self-delimiting so that subroutines can be combined by concatenat-

ing them. The joint information J(X, Y) of two objects X and Y is defined

to be the size of the smallest program to calculate X and Y simultaneously.

Therelative or conditional information content J(X| Y) of X given

Y

is de-

fined to be the size of the smallest program to calculate X from a minimal

program for Y.

Note that the relative information content of an object is never greater than

its absolute information content, for being given additional information can

only help. Also, since subroutines can be concatenated,it follows that joint

information is subadditive. That is to say, the joint information contentis

bounded from aboveby the sum ofthe individual information contents of the

objects in question. The extent to whichthejoint informationis less than this

sum leads to the next fundamental concept, mutual information.

The mutual information content J(X: Y) measures the commonality of X

and Y:it is defined as the extent to which knowing X helps oneto calculate

Y, whichis essentially the same as the extent to which knowing Y helps one

to calculate X, which is also the same as the extent to whichit is cheaper to
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calculate them together than separately. That is to say, 1(X:Y) = I(.X)-

I(X|Y) = I(Y) - I(Y|X) = I(X) + I(Y) —- I(X,Y). Note that this im-

plies that 1(X, Y) = I(X) + I(Y|X) = I(Y) + I(X|Y).

I can now define two very fundamental and philosophically significant

notions: algorithmic randomnessand algorithmic independence. These con-

cepts are, I believe, quite close to the intuitive notions that go by the same

name, namely, that an object is chaotic, typical, unnoteworthy, without

structure, pattern, or distinguishing features, and is irreducible informa-

tion, and that two objects have nothing in common andare unrelated.

Consider, for example, the set of all N-bit long bit strings. Most such

strings S have J(S) approximately equal to N plus J(N), whichis N plus the

algorithmic information contained in the base-two numeral for N, whichis

equal to N plus order of log N. No N-bit long S has information content

greater than this. A few haveless information content; these are strings with

a regular structure or pattern. Thosestrings S of a given size having greatest

information content are said to be random orpatternless or algorithmically

incompressible. The cutoff between random and nonrandom is somewhere

around /(S) equal to N if the string S is N bits long.

Similarly, an infinite binary sequence such as the base-two expansion of

pi is random if and only ifall its initial segments are random,thatis, if and

only if there is a constant C such that noinitial segment has information

content less than C bits below its length. Of course, pi is the extreme oppo-

site of a random string: it takes only J(N) whichis order of log N bits to

calculate pi’s first N bits. But the probability that an infinite sequence ob-

tained by independenttosses of a fair coin is algorithmically randomis unity.

Two strings are algorithmically independentif their mutual information
is essentially zero, more precisely, if their mutual information is as small as
possible. Consider, for example, two arbitrary strings X and Y each N bits
in size. Usually, X and Y will be random to each other, excepting the fact
that they have the same length, so that /(X:Y) is approximately equal to
I(N). In other words, knowing one of them is no help in calculating the
other, excepting that it tells one the other string’s size.
To illustrate these ideas, let me give an information-theoretic proof that

there are infinitely many prime numbers (Chaitin, 1979). Suppose on the con-
trary that there are only finitely many primes, in fact, K of them. Consider
an algorithmically random natural number N. On the one hand, we know
that J(N) is equal to log, N + order of loglog N, since the base-two
numeral for Nis an algorithmically random (log, N)-bit string. On the other
hand, N can becalculated from the exponents in its prime factorization,
and vice versa. Thus J(N) is equal to the joint information of the K expo-
nents in its prime factorization. By subadditivity, this joint informationis
bounded from abovebythe sum ofthe information contents of the K indi-
vidual exponents. Each exponentis of order log N. The information content
of each exponentis thus of order loglog N. Hence J(N) is simultaneously
equal to log, N + O(loglog N) andless than or equal to KO(loglog N),
which is impossible.

The concepts of algorithmic information theory are madeto orderfor ob-
taining quantitative incompleteness theorems, andI will now give a number
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of information-theoretic proofs of Gédel’s theorem (Chaitin, 1974a, 1974b,

197Sa, 1977, 1982; Chaitin and Schwartz, 1978; Gardner, 1979).

4 INFORMATION-THEORETIC PROOFS OF
GODEL’S THEOREM

I propose that we consider a formal axiomatic system to be a computer pro-

gram for listing the set of theorems, and measureits size in bits. In other

words, the measureof the size of a formal axiomatic system that I will useis

quite crude. It is merely the amount of space it takes to specify a proof-

checking algorithm and how to apply it to all possible proofs, whichis

roughly the amountof space it takes to be very precise aboutthe alphabet,

vocabulary, grammar, axioms, and rules of inference. This is roughly pro-

portional to the number of pages it takes to present the formal axiomatic

system in a textbook.

Hereis the first information-theoretic incompleteness theorem. Consider

an N-bit formal axiomatic system. There is a program of size N which does

not halt, but one cannot prove this within the formal axiomatic system. On

the other hand, N bits of axioms can permit one to deduce precisely which

programsofsize less than N halt and which ones donot. Here are two dif-

ferent N-bit axioms whichdothis. If God tells one how manydifferent pro-

gramsofsize less than N halt, this can be expressed as an N-bit base-two

numeral, and from it one could eventually deduce which of these programs

halt and which do not. Analternative divine revelation would be knowing

that program ofsize less than N whichtakeslongest to halt. (In the current

context, programs haveall input contained within them.)

Another way to thwart an N-bit formal axiomatic system is to merely toss

an unbiased coin slightly more than N times. It is almost certain that the

resulting binary string will be algorithmically random,butit is not possible

to prove this within the formal axiomatic system. If one believes the

postulate of quantum mechanics that God plays dice with the universe

(Albert Einstein did not), then physics provides a means to expose the

limitations of formal axiomatic systems.In fact, within an N-bit formal ax-

iomatic system it is not even possible to prove that a particular object has

algorithmic information content greater than N, even though almostall(all

but finitely many) objects have this property.

The proof of this closely resembles G.G. Berry’s paradox of ‘‘the first

natural number which cannot be namedin less than a billion words,”’

published by Russell at the turn of the century (Russell, 1967). The version

of Berry’s paradox that will do the trick is ‘‘that object having the shortest

proof that its algorithmic information content is greater than a billion

bits.’? More precisely, ‘‘that object having the shortest proof within the

following formal axiomatic system that its algorithmic information content

is greater than the information content of the formal axiomatic system:

. ,”? where the dots areto befilled in with a complete description of the

formal axiomatic system in question.

By the way,the fact that in a given formal axiomatic system one can only

prove that finitely many specific strings are random,is closely related to
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Post’s notion of a simple r.e. set. Indeed, the set of nonrandom or com-

pressible strings is a simple r.e. set. So Berry and Post had the germ of my

incompleteness theorem!

In order to proceed, I must define a fascinating algorithmically random

real number between zero and one, which I like to call omega (Chaitin,

1975b; Gardner, 1979). Omegais a suitable subject for worship by mystical

cultists, for as Charles Bennett (Gardner, 1979) has argued persuasively, in

a sense omegacontainsall constructive mathematical truth, and expressesit

as concisely and compactly as possible. Knowing the numerical value of

omega with N bits of precision, that is to say, knowing the first N bits of

omega’s base-two expansion, is another N-bit axiom that permits one to

deduceprecisely which programsof size less than N halt and which ones do

not.

Omegais defined as the halting probability of whichever standard general-

purpose computer has been chosen,if each bit of its program is produced by

an independenttoss of a fair coin. To Turing’s theorem in recursive function

theory that the halting problem is unsolvable, there corresponds in

algorithmic information theory the theorem that the base-two expansion of

omegais algorithmically random. Therefore it takes N bits of axioms to be

able to prove whatthe first N bits of omega are, and these bits seem com-

pletely accidental like the products of a random physical process. One can

therefore measure the power of a formal axiomatic system by how much of

the numerical value of omegait is possible to deduce from its axioms. Thisis

sort of like measuring the power of a formal axiomatic system in terms of

the size in bits of the shortest program whosehalting problem is undecidable

within the formal axiomatic system.

It is possible to dress this incompleteness theorem involving omega so

that no direct mention is made of halting probabilities, in fact, in rather

straightforward number-theoretic terms making no mention of computer

programsat all. Omega can berepresented as the limit of a monotonein-

creasing computable sequence of rational numbers.Its Nth bit is therefore

the limit as T tends to infinity of a computable function of N and T. Thus

the Nth bit of omega can be expressed in the form Exists X Forall Y (com-

putable predicate of X, Y, and N). Complete chaos is only two quantifiers

away from computability! Omega canalso be expressed via a polynomial P

in, say, one hundred variables, with integer coefficients and exponents

(Davis et al., 1976): the Nth bit of omegais a 1 if and only if there are in-

finitely many natural numbers K such that the equation P(N, K,

X,, ...»Xog) = O has a solution in natural numbers.
Of course, omega has the very serious problem that it takes much too

long to deduce theoremsfrom it, and this is also the case with the other two

axioms we considered. So the ideal, perfect mathematical axiom is in fact

useless! One does notreally want the most compact axiom for deducing a

given set of assertions. Just as there is a trade-off between program size and

running time,there is a trade-off between the numberof bits of axioms one

assumes andthesize of proofs. Of course, random orirreducible truths can-
not be compressed into axioms shorter than themselves. If, however, a set
of assertions is not algorithmically independent, then it takes fewer bits of
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axioms to deduce them all than the sum of the numberof bits of axioms it

takes to deduce them separately, and this is desirable as long as the proofs

do notget too long. This suggests a pragmatic attitude toward mathematical

truth, somewhat morelike that of physicists.

Ours has indeed been a longstroll through a gallery of incompleteness

theorems. Whatis the conclusion or moral? It is time to makea final state-

ment about the meaning of Gédel’s theorem.

5 THE MEANING OF GODEL’S

THEOREM

Information theory suggests that the Gédel phenomenonis natural and

widespread, not pathological and unusual. Strangely enough, it does this

via counting arguments, and without exhibiting individual assertions which

are true but unprovable! Of course, it would help to have more proofsthat

particular interesting and naturaltrue assertions are not demonstrable within

fashionable formal axiomatic systems.

The real question is this: Is Gédel’s theorem a mandate for revolution,

anarchy, andlicense?! Can one give up after trying for two months to prove

a theorem, and addit as a new axiom? This soundsridiculous, butit is sort

of what numbertheorists have done with Bernhard Riemann’szeta conjec-

ture (Polya, 1959). Of course, two monthsis not enough. New axioms should

be chosen with care, because of their usefulness and large amountsof evi-

dence suggesting that they are correct, in the same careful manner, say, in

practice in the physics community.

Gédel himself has espoused this view with remarkable vigor andclarity,

in his discussion of whether Cantor’s continuum hypothesis should be added

to set theory as a new axiom (Gédel, 1964):

.. . even disregarding the intrinsic necessity of some new axiom,and even in

case it has no intrinsic necessity at all, a probable decision about its truth is

possible also in another way, namely, inductively by studyingits ‘‘success.’’ Suc-

cess here meansfruitfulness in consequences, in particular in ‘‘verifiable’’ conse-

quences, i.e., consequences demonstrable without the new axiom, whose proofs

with the help of the new axiom, however, are considerably simpler and easier to

discover, and makeit possible to contract into one proof manydifferent proofs.

The axiomsfor the system of real numbers, rejected by intuitionists, have in this

sense been verified to some extent, owing to the fact that analytical number

theory frequently allows one to prove number-theoretical theorems which,in a

more cumbersome way, can subsequently be verified by elementary methods. A

much higher degree of verification than that, however, is conceivable. There

might exist axioms so abundantin their verifiable consequences, shedding so

muchlight upon a wholefield, and yielding such powerful methodsfor solving

problems (and even solving them constructively, as far as that is possible) that,

no matter whether or not they are intrinsically necessary, they would have to be

accepted at least in the same sense as any well-established physical theory.

Later in the same discussion Godel refers to these ideas again:

It was pointed out earlier . . . that, besides mathematical intuition, there

exists another (though only probable) criterion of the truth of mathematical
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axioms, namely their fruitfulness in mathematics and, one mayadd,possibly

also in physics . . . The simplest case of an application of the criterion under

discussion arises when some. . . axiom has number-theoretical consequences

verifiable by computation up to any given integer.

Gédel also expresses himself in no uncertain terms in a discussion of

Russell’s mathematical logic (Gédel, 1964):

The analogy between mathematics and a natural science is enlarged upon by

Russell also in another respect . . . axioms need not be evident in themselves,

but rather their justification lies (exactly as in physics) in the fact that they

makeit possible for these ‘‘sense perceptions’’ to be deduced . . . I think that

. .. this view has been largely justified by subsequent developments, anditis

to be expected that it will be still more so in the future. It has turned out that

solution of certain arithmetical problems requires the use of assumptionses-

sentially transcending arithmetic . . . Furthermoreit seemslikely that for de-

ciding certain questions of abstract set theory and even for certain related

questions of the theory of real numbers new axioms based on somehitherto

unknownidea will be necessary. Perhaps also the apparently unsurmountable

difficulties which some other mathematical problems have been presenting for

many years are due to the fact that the necessary axioms have not yet been

found. Of course, under these circumstances mathematics may lose a good

deal of its ‘‘absolute certainty;’’ but, under the influence of the moderncriti-

cism of the foundations, this has already happened to a large extent...

I end as I began, with a quotation from Weyl (1949): ‘‘A truly realistic

mathematics should be conceived, in line with physics, as a branch of the

theoretical construction of the one real world, and should adopt the same

sober and cautious attitude toward hypothetic extensions of its foundations

as is exhibited by physics.’’

6 DIRECTIONS FOR FUTURE RESEARCH

(a) Prove that a famous mathematical conjecture is unsolvable in the

usual formalizations of number theory. Problem: if Pierre Fermat’s ‘‘last

theorem’’ is undecidable thenit is true, so this is hard to do.

(b) Formalize all of college mathematics in a practical way. One wants

to produce textbooks that can be run through a practical formal proof

checker and that are not too muchlarger than the usual ones. LISP (Levin,

1974) and SETL (Dewaret al., 1981) might be goodforthis.

(c) Is algorithmic information theory relevant to physics, in particular,

to thermodynamicsandstatistical mechanics? Explore the thermodynamics

of computation (Bennett, 1982) and determine the ultimate physical limita-

tions of computers.

(d) Is there a physical phenomenon that computes something noncom-

putable? Contrariwise, does Turing’s thesis that anything computable can

be computed by a Turing machineconstrain the physical universe weare in?

(e) Develop measures of self-organization and formal proofs that life

must evolve (Chaitin, 1979; Eigen and Winkler, 1981; von Neumann, 1966).

(f) Develop formaldefinitions of intelligence and measuresof its various

components; apply information theory and complexity theory to AI.
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