
RICHARD DE MILLO, RICHARDLIPTON,
ALAN PERLIS

Social Processes and Proofs of

Theorems and Programs

D. Millo, Lipton and Perlis approach the topic of computers and
mathematics from a very different direction than the previous essay. Their
immediate topic is the developing discipiine of program verification. The often
espoused aim of that discipline is to develop general techniques for proving
programs, that is, for giving mathematical proofs that particular programsare
correct, or incorrect. Hence, philosophical conceptions of what mathematicsis
can shape conceptions of what program verification should be. According to the
present authors, many, if not most, exponents of program verification adopt a
foundational, especially a formalist account of mathematics.
These authors, in contrast, adopt a quasi-empirical account of mathematics

although they do notlabel it as such. Instead they do describe mathematical
proof in terms of general features of mathematical practice, a description that
owes much to Lakatos. Their account, thoughbrief, is quite suggestive and has
occasioned considerable comment among mathematicians. De Millo, Lipton, and
Perlis proceed to use their quasi-empirical account of mathematics to argue for an
alternative approach to program verification. Their suggestion is that program
verification is more like engineering andless like mathematical logic than is
usually supposed. The fundamental aim of program verification, according to
these authors, should be to make programs morereliable rather than to prove
that programsare (absolutely) correct or incorrect.
The motivating insight of the essay is that proofs—the actual proofs that

appear in mathematical practice—must be convincing; otherwise they wouldn’t be
recognized. It is hardly a new insight. In 1739, Humewrotethat

There is no Algebraist nor Mathematician so expert in his science, as to place entire
confidence in any truth immediately uponhis discovery of it, or regard it as any
thing, but a mere probability. Every time he runs over his proofs, his confidence
encreases; butstill more by the approbation of his friends; andis rais’d to its utmost
perfection by the universal assent and applauses of the learned world.!

From Communications of the ACM,Vol. 22, No. 5, May 1979, pp.
271-280. Copyright 1979, Association for Computing Machinery,Inc.,
reprinted by permission.

267

268 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

Despite its apparent obviousness, this social aspect of proofs is often dismissed as

philosophically irrelevant. It is objected that almost anything could count as

convincing in the right set of circumstances—just imagine suitable reinforcements,

propaganda, prejudice, and so on.In reply, the present authors argue that

conviction in mathematics is obtained by a highly evolved set of processes with

very little arbitrariness about them. These general features of mathematical

practice winnow out bad proofs. They include aninitial series of checks on

publications, which still manage to issue in roughly 200,000 theorems peryear,

some false and most eminently forgettable. After thatseries, another complex set

of processes are applied to select useful theorems, attractive theorems,or at least

memorable theorems.

Such processes are an integral part of mathematical practice and are familiar to

every mathematician. Of course they don’t appear in the idealized accounts of

practice that foundationalists accept. Moreover, the social processes are arranged

so as to confer a very high degree of probability to any proofs that survive all the

stages. In fact, we can argue that they yield proofs that are actually more reliable

than formal proofsstrictly conceived. Any formal proofis invalid if even one

single step is illegitimate. Since strict formal proofs are quite long and lacking in

perspicuity, the potential for error can be quite large. In addition, even a

rigorously correct formal proof must presuppose the consistency of the

overarching formal system for the truth ofits conclusion (Frege’s Bane). Once

again, even a slight error in the system can invalidate all proofs containedinit.

Onthe other hand, good informal proofs, those meeting the criteria set forth by

De Millo, Lipton, and Perlis, are very ‘resilient’ and well suited to surviving

various kindsof errors.

Having recognized ‘convincingness’ as an essential feature of mathematical

proofs, the authors go onto criticize the naive goal of proving programs. Evenif

suitable formal proofs of programsexisted in theory,it is argued, they could not

possibly serve to convince anyone of the correctness of the programs in question.

Perhaps the merits of this conclusion are best left to computer scientists to

decide, but the conception of mathematics that motivates it has a claim on all

readers of this volume.

NOTE

1. Hume, A Treatise ofHuman Nature, Oxford University Press, Oxford (1964),

180-181.

I should like to ask the same question that Descartes asked. You are proposing

to give a precise definition of logical correctness whichis to be the same as my

vagueintuitive feeling for logical correctness. How do you intend to show that

they are the same?

_. . The average mathematician should not forget that intuition is the final

authority.

J. BARKLEY ROSSER

Many people have argued that computer programming should strive to

become more like mathematics. Maybe so, but not in the way they seem to

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

think. The aim of program verification, an attempt to make programming
more mathematics-like, is to increase dramatically one’s confidence in the
correct functioning of a piece of software, and the device that verifiers use to
achieve this goal is a long chain of formal, deductive logic. In mathematics,
the aim is to increase one’s confidence in the correctness of a theorem, and
it’s true that one of the devices mathematicians could in theory use to achieve
this goal is a long chain of formallogic. Butin fact they don’t. Whatthey use
is a proof, a very different animal. Nor does the proofsettle the matter; con-
trary to what its namesuggests, a proofis only onestep in the direction of
confidence. Webelieve that, in the end,it is a social process that determines
whether mathematicians feel confident about a theorem—and webelieve
that, because no comparable social process can take place among program
verifiers, program verification is bound to fail. We can’t see how it’s going to
be able to affect anyone’s confidence about programs.

Outsiders see mathematics as a cold, formal, logical, mechanical, mono-
lithic process of sheer intellection; we argue that insofar asit is successful,
mathematicsis a social, informal, intuitive, organic, human process, a com-
munity project. Within the mathematical community, the view of mathe-
matics as logical and formal was elaborated by Bertrand Russell and David
Hilbert in the first years of this century. They saw mathematics as proceed-
ing in principle from axioms or hypotheses to theorems by steps, each step
easily justifiable from its predecessors by

a

strict rule of transformation,the
rules of transformation being few and fixed. The Principia Mathematica
was the crowning achievement of the formalists. It was also the deathblow
for the formalist view. There is no contradiction here: Russell did succeed in
showing that ordinary working proofs can be reduced to formal, symbolic
deductions. Buthe failed, in three enormous, taxing volumes,to get beyond
the elementary facts of arithmetic. He showed whatcan be donein principle
and what cannot be donein practice. If the mathematical process werereally
one ofstrict, logical progression, we wouldstill be counting on ourfingers.

BELIEVING THEOREMS AND PROOFS

Indeed every mathematician knowsthat a proofhas not been “‘understood”’ if
one has done nothing more than verify step by step the correctness of the
deductionsof which it is composed and hasnottried to gain a clear insight into
the ideas which haveled to the construction ofthis particular chain of deduc-
tions in preference to every other one.

N. BouRBAKI

Agree with meif I seem to speak thetruth.

SOCRATES

Stanislaw Ulam estimates that mathematicians publish 200,000 theorems
every year [20]. A numberof these are subsequently contradicted or other-
wise disallowed, others are thrown into doubt, and mostare ignored. Only a
tiny fraction come to be understood and believed by any sizable group of
mathematicians.

269

270 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

The theorems that get ignored or discredited are seldom the work of

crackpots or incompetents. In 1879, Kempe [11] published a proof of the

four-color conjecture that stood for eleven years before Heawood [8] un-

covered a fatal flaw in the reasoning. Thefirst collaboration between Hardy

and Littlewood resulted in a paper they delivered at the June 1911 meeting

of the London Mathematical Society; the paper was never published be-

cause they subsequently discovered that their proof was wrong [4]. Cauchy,

Lamé, and Kummerall thought at one time or another that they had proved

Fermat’s Last Theorem [3]. In 1945, Rademacher thought he had solved the

Riemann Hypothesis; his results not only circulated in the mathematical

world but were announced in Time magazine[3].

Recently we found the following group of footnotes appendedto a brief

historical sketch of some independenceresults in set theory [10]:

(1) The result of Problem 11 contradicts the results announced by Levy

[1963b]. Unfortunately, the construction presented there cannot be com-

pleted.

(2) The transfer to ZF wasalso claimed by Marek [1966] but the outlined

method appears to be unsatisfactory and has not been published.

(3) A contradicting result was announced and later withdrawn by Truss

[1970].

(4) The example in Problem 22 is a counterexample to another condition

of Mostowski, who conjecturedits sufficiency and singled out this example

as a test case.

(5) The independenceresult contradicts the claim of Felgner [1969] that

the Cofinality Principle implies the Axiom of Choice. An error has been

found by Morris (see Felgner’s corrections to [1969]}).

The author has no axe to grind; he has probably never even heard of the cur-

rent controversy in programming; anditis clearly no part of his concern to

hold his friends and colleagues up to scorn. There is simply no way to

describe the history of mathematical ideas without describing the successive

social processes at work in proofs. The pointis not that mathematicians make

mistakes; that goes without saying. The point is that mathematicians’ errors

are corrected, not by formal symbolic logic, but by other mathematicians.

Just increasing the number of mathematicians working ona given problem

does not necessarily insure believable proofs. Recently, two independent

groups of topologists, one American, the other Japanese, independently an-

nounced results concerning the same kind of topological object,a thing called

a homotopy group.Theresults turned out to be contradictory, and since both

proofs involved complex symbolic and numerical calculation, it was notat all

evident who had goofed. But the stakes were sufficiently high to justify press-

ing the issue, so the Japanese and American proofs were exchanged. Ob-

viously, each group washighly motivated to discover an error in the other’s

proof; obviously, one proof or the other was incorrect. But neither the

Japanese nor the American proof could be discredited. Subsequently, a third

group of researchers obtained yet another proof, this time supporting the

American result. The weight of the evidence now being against their proof,

the Japanese haveretired to consider the matter further.

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

There are actually two morals to this story. First, a proof does not in
itself significantly raise our confidence in the probable truth of the theorem
it purports to prove. Indeed, for the theorem aboutthe homotopygroup,
the horribleness of all the proffered proofs suggests that the theorem itself
requires rethinking. A second point to be madeis that proofs consisting en-
tirely of calculations are not necessarily correct.
Even simplicity, clarity, and ease provide no guarantee that a proof is

correct. The history of attempts to prove the Parallel Postulate is a particu-
larly rich source of lovely, trim proofs that turned out to be false. From
Ptolemy to Legendre (whotried time and time again), the greatest geometri-
cians of every age kept rammingtheir heads against Euclid’s fifth postulate.
What’s worse, even though we now knowthat the postulate is indemon-
strable, many of the faulty proofs arestill so beguiling that in Heath’s
definitive commentary on Euclid [7] they are not allowed to stand alone;
Heath marks them up withitalics, footnotes, and explanatory marginalia,
lest some young mathematician, thumbing through the volume, be misled.
The idea that a proofcan,at best, only probably express truth makes an

interesting connection with a recent mathematical controversy. In a recent
issue of Science [12], Gina Bari Kolata suggested that the apparently secure
notion of mathematical proof may be duefor revision. Here the central
question is not ‘‘How do theoremsget believed?’’ but ‘“Whatis it that we
believe when webelieve a theorem?” There are two relevant views, which
can be roughly labeled classical and probabilistic.
The classicists say that when one believes mathematical statement A, one

believes that in principle there is a correct, formal, valid, step by step, syn-
tactically checkable deduction leading to A in a suitable logical calculus
such as Zermelo-Fraenkel set theory or Peano arithmetic, a deduction of A
a la the Principia, a deduction that completely formalizes the truth of A in
the binary, Aristotelian notion of truth: “A propositionis trueif it says of
whatis, that it is, and if it says of whatis not, that it is not.’’ This formal
chain of reasoning is by no means the same thing as an everyday, ordinary
mathematical proof. The classical view does not require that an ordinary
proof be accompaniedby its formal counterpart; on the contrary, there are
mathematically sound reasons for allowing the gods to formalize most of
our arguments. One theoretician estimates, for instance, that a formal
demonstraiton of one of Ramanujan’s conjectures assumingset theory and
elementary analysis would take about two thousand pages; the length of a
deduction from first principles is nearly inconceivable [14]. But the classicist
believes that the formalizationis in principle a possibility and that the truth
it expresses is binary, either so or not so.
The probabilists argue that since any very long proof can at best be viewed

as only probably correct, why not state theorems probabilistically and give
probablistic proofs? The probabilistic proof may have the dual advantage
of being technically easier than the classical, bivalent one, and mayallow
mathematiciansto isolate the critical ideas that give rise to uncertainty in
traditional, binary proofs. This process may even lead to a moreplausible
classical proof. An illustration of the probabilist approach is Michael
Rabin’s algorithm for testing probable primality [17]. For very large integers

271

272 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

N, all of the classical techniques for determining whether N is composite

become unworkable. Usingeven the most clever programming,the calcula-

tions required to determine whether numbers larger than 1010* are primere-

quire staggering amounts of computing time. Rabin’s insight wasthat if you

are willing to settle for a very good probability that N is prime (or not

prime), then you canget it within a reasonable amount of time—and with

vanishingly small probability of error.

In view of these uncertainties over what constitutes an acceptable proof,

whichis after all a fairly basic elementof the mathematical process, how is

it that mathematics has survived and been so successful? If proofs bearlittle

resemblance to formal deductive reasoning, if they can stand for genera-

tions and thenfall, if they can contain flaws that defy detection, if they can

express only the probability of truth within certain error bounds—if they

are, in fact, not able to prove theoremsin the sense of guaranteeing them

beyond probability and, if necessary, beyondinsight, well, then, how does

mathematics work? How does it succeed in developing theorems that are

significant and that compelbelief?

First ofall, the proof of a theorem is a message. A proofis not a beautiful

abstract object with an independent existence. No mathematician grasps a

proof, sits back, and sighs happilyat the knowledge that he can now becer-

tain ofthetruth of his theorem. Herunsoutinto the hall and looks for some-

oneto listen to it. He bursts into a colleague’s office and commandeers the

blackboard. He throwsaside his scheduled topic and regales a seminar with

his new idea. He drags his graduate students away from their dissertations

to listen. He gets onto the phone and tells his colleagues in Texas and

Toronto.In its first incarnation, a proof is a spoken message, or at most a

sketch on a chalkboard or a paper napkin.

That spokenstage is thefirst filter for a proof. If it generates no excite-

mentor belief amonghis friends, the wise mathematician reconsiders it. But

if they find it tolerably interesting and believable, he writes it up. After it

has circulated in draft for a while,if it still seems plausible, he does a polished

version and submits it for publication. If the referees also findit attractive

and convincing, it gets published so that it can be read by a wider audience.

If enough membersofthat larger audiencebelieveit andlike it, then after a

suitable cooling-off period the reviewing publications take a more leisurely

look, to see whether the proofis really as pleasing as it first appeared and

whether, on calm consideration, they really believeit.

And what happensto a proof whenit is believed? The most immediate

process is probably an internalization of the result. That is, the mathemati-

cian whoreads andbelieves a proofwill attempt to paraphraseit, to put it in

his own terms,to fit it into his own personal view of mathematical knowl-

edge. No two mathematiciansare likely to internalize a mathematical concept

in exactly the same way,so this process leads usually to multiple versions of

the same theorem, each reinforcing belief, each adding to the feeling of the

mathematical community that the original statement is likely to be true.

Gauss, for example, obtained at least half a dozen independentproofs ofhis

‘law of quadratic reciprocity’’; to date over fifty proofs of this law are

known. Imre Lakatos gives, in his Proofs and Refutations[13], historically

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

accurate discussions of the transformations that several famous theorems
underwent from initial conception to general acceptance. Lakatos demon-
Strates that Euler’s formula V — EF + F = 2 was reformulated again and
again for almost two hundredyearsafterits first statement, until it finally
reached its current stable form. The most compelling transformation that
can take placeis generalization. If, by the same social process that works on
the original theorem, the generalized theorem comesto be believed, then the
original statement gains greatly in plausibility.

A believable theorem gets used. It may appear as a lemmainlargerproofs;
if it does not lead to contradictions, then we are all the more inclined to be-
lieve it. Or engineers mayuseit by plugging physical values into it. We have
fairly high confidencein classical stress equations because wesee bridges that
stand; we have some confidencein the basic theorems of fluid mechanics be-
Cause wesee airplanesthatfly.

Believable results sometimes make contact with other areas of mathemat-
ics—important ones invariably do. The successful transfer of a theorem or a
proof technique from one branch of mathematics to another increases our
feeling of confidencein it. In 1964, for example, Paul Cohen used a technique
called forcing to prove a theorem in set theory [2]; at that time, his notions
were so radical that the proof was hardly understood. But subsequently other
investigators interpreted the notion of forcing in an algebraic context, con-
nected it with more familiar ideas in logic, generalized the concepts, and
found the generalizations useful. All of these connections (along with the
other normal social processes that lead to acceptance) madethe idea of forc-
ing a good deal more compelling, and today forcing is routinely studied by
graduate students in set theory.

After enough internalization, enough transformation, enough generaliza-
tion, enough use, and enough connection, the mathematical community
eventually decides that the central concepts in the original theorem, now
perhaps greatly changed, have an ultimate stability. If the various proofs feel
right and the results are examined from enough angles, then the truth of the
theorem is eventually considered to be established. The theorem is thought to
be true in the classical sense—that is, in the sense that it could be demon-
strated by formal, deductive logic, although for almostall theorems no such
deduction ever took place or everwill.

THE ROLE OF SIMPLICITY

For whatis clear and easily comprehended attracts; the complicated repels.

DAviID HILBERT

Sometimesonehasto saydifficult things, but one oughtto say them as simply as
one knows how.

G.H. Harpy

273

2/4 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

As arule, the most important mathematical problemsare clean and easy to

state. An important theorem is much morelikely to take form A than form B.

A: Every ----- iS a ----- ,

B: If ----- and ----- and ----- and ----- and ----- except for

special cases

a) -----

b) -----

C) “ee ’

then unless
1) ----- or

li) ----- or

iii) ----- ;

every ----- that satisfies ----- is a ----- ,

The problems that have most fascinated and tormented and delighted

mathematicians over the centuries have been the simplest onestostate. Ein-

stein held that the maturity of a scientific theory could be judged by how

well it could be explained to the man onthestreet. The four-color theorem

rests on such slender foundations that it can be stated with complete preci-

sion to a child. If the child has learned his multiplication tables, he can

understand the problem of the location and distribution of the prime num-

bers. And the deep fascination of the problem of defining the concept of

‘“number’’ might turn him into a mathematician.

The correlation between importance and simplicity is no accident. Sim-

ple, attractive theorems are the ones most likely to be heard, read, inter-

nalized, and used. Mathematicians use simplicity as the first test for a proof.

Only if it looks interesting at first glance will they consider it in detail.

Mathematicians are not altruistic masochists. On the contrary, the history

of mathematics is one long search for ease and pleasure and elegance—in

the realm of symbols, of course.

Even if they didn’t want to, mathematicians would have to use the cri-

terion of simplicity;it is a psychological impossibility to choose any butthe

simplest and most attractive of 200,000 candidates for one’s attention. If

there are important, fundamental concepts in mathematics that are not sim-

ple, mathematicians will probably never discover them.

Messy, ugly mathematical propositions that apply only to paltry classes

of structures, idiosyncratic propositions, propositions that rely on inordi-

nately expensive mathematical machinery, propositions that require five

blackboardsor a roll of paper towels to sketch—these are unlikely ever to

be assimilated into the body of mathematics. And yet it is only by such

assimilation that proofs gain believability. The proof by itself is nothing;

only whenit has been subjected to the social processes of the mathematical

community does it becomebelievable.

In this paper, we have tended tostress simplicity aboveall else because

that is the first filter for any proof. But we do not wish to paint ourselves

and our fellow mathematicians as philistines or brutes. Once an idea has

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

met the criterion of simplicity, other standards help determineits place
among the ideas that make mathematicians gaze off abstractedly into the
distance. Yuri Manin [14] has putit best: A good proofis one that makes us
wiser.

DISBELIEVING VERIFICATIONS

On the contrary, I find nothing in logistic for the discoverer but shackles. It
does nothelp usat all in the direction of conciseness, far from it; andif it re-
quires twenty-seven equationsto establish that 1 is a number, how manywill it
require to demonstrate a real theorem?

HENRI POINCARE

One of the chief duties of the mathematician in acting as an advisorto sci-
entists...is to discourage them from expecting too much from
mathematics.

NORBERT WEINER

Mathematical proofs increase our confidence in the truth of mathe-
matical statements only after they have been subjected to the social
mechanisms of the mathematical community. These same mechanisms
doom the so-called proofs of software, the long formal verifications that
correspond, not to the working mathematical proof, but to the imaginary
logical structure that the mathematician conjures up to describe his feeling
of belief. Verifications are not messages; a person who ran out into the
hall to communicate his latest verification would rapidly find himself a
social pariah. Verifications cannot really be read: a reader can flay himself
through one of the shorter ones by dint of heroic effort, but that’s not
reading. Being unreadable and—literally—unspeakable, verifications can-
not be internalized, transformed, generalized, used, connected to other
disciplines, and eventually incorporated into a community consciousness.
They cannot acquire credibility gradually, as a mathematical theorem
does; one either believes them blindly, as a pure act of faith, or not at
all.

At this point, some adherents of verification admit that the analogy to
mathematics fails. having argued that A, programming, resembles B,
mathematics, and having subsequently learned that B is nothing like what
they imagined, they wish to argue instead that A is like B’, their mythical
version of B. We then find ourselves in the peculiar position of putting
across the arugmentthat wasoriginally theirs, asserting that yes, indeed, A
does resemble B; our argument, however, matches the terms up differently
from theirs. (See Figures 1 and 2.)

Mathematics Programming

theorem... program

proof... verification

FIG. 1. The verifiers’ original analogy.

275

276 RICHARDDE MILLO, RICHARD LIPTON, ALAN PERLIS

Mathematics Programming

theorem ... specification

proof ... program

imaginary

formal

demonstration ... verification

Fig. 2. Our analogy.

Verifiers who wish to abandon the simile and substitute B’ should as an aid

to understanding abandonthe language of B as well—in partiuclar, it would

help if they did not call their verifications ‘‘proofs.’’ As for ourselves, we

will continue to argue that programmingis like mathematics, and that the

samesocial processes that work in mathematical proofs doom verifications.

There is a fundamentallogical objection to verification, an objection on

its own ground of formalistic rigor. Since the requirement for a program is

informal and the program is formal, there must be a transition, and the

transition itself must necessarily be informal. We have been distressed to

learn that this proposition, which seemsself-evident to us, is controversial.

So we should emphasize that as antiformalists, we would not object to veri-

fication on these grounds; we only wonderhowthis inherently informalstep

fits into the formalist view. Have the adherents of verification lost sight of

the informal origins of the formal objects they deal with? Is it their asser-

tion that their formalizations are somehow incontrovertible? We must con-

fess our confusion and dismay.

Then there is anotherlogical difficulty, nearly as basic, and by no means

so hair-splitting as the one above: The formal demonstration that a pro-

gram is consistent with its specifications has value only if the specifications

and the program are independently derived. In the toy-program atmosphere

of experimentalverification, this criterion is easily met. But in reallife, if

during the design process a programfails, it is changed, and the changesare

based on knowledgeofits specifications; or the specifications are changed,

and those changes are based on knowledge of the program gained through

the failure. In either case, the requirement of having independentcriteria to

check against each other is no longer met. Again, we hope that no one

would suggest that programs andspecifications should not be repeatedly

modified during the design process. That would be a position of incredible

poverty—the sort of poverty that does, we fear, result from infatuation

with formal logic.

Back in the real world, the kinds of input/output specifications that ac-

companyproduction software are seldom simple. They tend to be long and

complex and peculiar. To cite an extreme case, computing the payroll for

the French National Railroad requires more than 3,000 pay rates (one up-

hill, one downhill, and so on). The specifications for any reasonable com-

piler or operating system fill volumes—and no onebelieves that they are

complete. There are even some cases of black-box code, numerical algo-

rithms that can be shown to workin the sense that they are used to build real

airplanesordrill real oil wells, but work for no reason that anyone knows;

the input assertions for these algorithms are not even formulable, let alone

formalizable. To take just one example, an important algorithm with the

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

rather jaunty name of Reverse Cuthill-McKee was knownforyearsto be far

better than plain Cuthill-McKee, known empirically, in laboratory tests and

field trials and in production. Only recently, however, has its superiority

been theoretically demonstrable [6], and even then only with the usualin-
formal mathematical proof, not with a formal deduction. Duringall of the
years when Reverse Cuthill-McKee was unproved, even thoughit auto-
matically made any program in which it appeared unverifiable, program-
mers perversely went on using it.

It might be countered that while real-life specifications are lengthy and
complicated, they are not deep. Their verifications are, in fact, nothing
more than extremely long chains of substitutions to be checked with the aid
of simple algebraic identities.

All we can sayin responseto this is: Precisely. Verifications are long and
involved but shallow; that’s what’s wrong with them. Theverification of
even a puny program can run into dozensof pages, and there’s not a light
momentor a spark of wit on any of those pages. Nobodyis going to run in-
to a friend’s office with a program verification. Nobodyis going to sketch a
verification out on a paper napkin. Nobodyis going to buttonhole a col-
leagueinto listening to a verification. Nobodyis ever going to read it. One
can feel one’s eyes glaze over at the very thought.

It has been suggested that very high level languages, which can deal di-
rectly with a broad range of mathematical objects or functional languages,
whichit is said can be concisely axiomatized, might be used to insure that a
verification would beinteresting and therefore responsiveto a social process
like the social process of mathematics.

In theory this idea sounds hopeful; in practice, it doesn’t work out. For
example, the following verification condition arises in the proof of a fast
Fourier transform written in MADCAP,a very high level language [18]:

IfSe{1, — 1}, b = exp (27iS/N), ris an integer, N = 2’,
(1) Ce= {2j:0 s j < N/4} and

(2) a= <a: a, = brn) | 0 < r < N/2 > and

(3) A = {j: jmodN < N/2,0 < j < N} and

(4) A*={7:0 sj < N} — A and

(8) F= < Sf, = ch, k (baa limoaw), R, = iG — 1)
mod(N/2) = 0} > andk <r

then

(1) AM (A + 2°-k-1) = {x2 xmod 2'-* < 2-*-1,0 <x < Nj
(2) < a9 @ > = < asa = bemoan?) 0 <r < N/2>

(3) << Pansat + Fijosicm-anas2r-k-b) (<a >

*(Panasor-k-)) + Fijnsjem—an(asy-k-D)) >

<Sicf, = 2 k(bw2'-*Nimoan),
R, = (7:G -— rymod2--*-1 = O0}>

277

278 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

(4) <p(F, + F,)ba*(F, — FyJ> = <fef, = ne,
r-1k,(be? ImodN) |

R, = {i:G — r)ymod(N/2) = 0}>

This is not what we would call pleasant reading.

Someverifiers will concede that verification is simply unworkable for the

vast majority of programs but argue that for a few crucial applications the

agony is worthwhile. They pointto air-traffic control, missile systems, and

the exploration of space as areas in which therisks are so high that any ex-

penditure of time and effort can be justified.

Evenif this were so, we wouldstill insist that verification renounceits claim

on all other areas of programming;to teach students in introductory pro-

gramming courses how to do verification, for instance, ought to be as far-

fetched as teaching students in introductory biology how to do open-heart

surgery. But the stakes do notaffect our belief in the basic impossibility of

verifying any system large enough and flexible enoughto do any real-world

task. No matter how high the payoff, no onewill ever be able to force himself

to read the incredibly long, tediousverificationsofreal-life systems, and un-

less they can be read, understood,and refined,the verifications are worthless.

Now,it might be argued thatall these references to readability and inter-

nalization are irrelevant, that the aim of verification is eventually to con-

struct an automatic verifying system.

Unfortunately there is a wealth of evidence that fully automated verifying

systems are out of the question. The lower bounds on the length of formal

demonstrations for mathematical theorems are immense [19], and there is

no reason to believe that such demonstrations for programs would be any

shorter or cleaner—quite the contrary. In fact, even the strong adherents of

program verification do not take seriously the possibility of totally auto-

mated verifiers. Ralph London, a proponentof verification, speaks of an

out-to-lunch system, one that could be left unsupervised to grind out verifi-

cations; but he doubts that such a system can bebuilt to work with reason-

able reliability. One group, despairing of automation in the foreseeable

future, has proposed that verifications should be performed by teams of

‘‘orunt mathematicians,’’ low level mathematical teams who will check

verification conditions. The sensibilities of people who could makesuch a

proposal seem odd, but they doserve to indicate how remotethe possibility

of automatedverification must be.

Suppose, however, that an automatic verifier could somehow be built.

Suppose further that programmers did somehow cometo have faith in its

verifications. In the absence of any real-world basis for such belief,it would

have to be blind faith, but no matter. Suppose that the philosopher’s stone

had been found,that lead could be changed to gold, and that programmers

were convinced of the merits of feeding their programsinto the gaping jaws

of a verifier. It seems to us that the scenario envisioned by the proponents

of verification goes somethinglike this: The programmerinserts his 300-line

input/output package into the verifier. Several hours later, he returns.

There is his 20,000-line verification and the message ‘““VERIFIED.”’

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

There is a tendency, as we begin to feel that a structureis logically, prov-

ably right, to remove from it whatever redundancies weoriginally built in

because of lack of understanding. Takento its extreme, this tendency brings

on the so-called Titanic effect; when failure does occur, it is massive and un-

controlled. To put it another way, the severity with which a system fails is

directly proportional to the intensity of the designer’s belief that it cannot

fail. Programs designed to be clean and tidy merely so that they can be

verified will be particularly susceptible to the Titanic effect. Already wesee

signs of this phenomenon.In their notes on Euclid [16], a language designed

for program verification, several of the foremostverification adherentssay,

‘*Because we expect all Euclid programs to be verified, we have not made
special provisions for exception handling ... Runtime software errors
should not occur in verified programs.’’ Errors should not occur? Shades
of the ship that shouldn’t be sunk.

So, having for the momentsuspendedall rationaldisbelief, let us suppose
that the programmergets the message ‘‘VERIFIED.’’ And let us suppose
further that the message does notresult from a failure on the part of the
verifying system. What does the programmer know? He knowsthathis pro-
gram is formally,logically, provably, certifiably correct. He does not know,
however, to whatextentit is reliable, dependable, trustworthy, safe; he does
not know within whatlimits it will work; he does not know what happens
whenit exceeds those limits. And yet he has that mystical stamp of ap-
proval: ““VERIFIED.”’ We can almostsee the iceberg looming in the back-
ground over the unsinkable ship.

Luckily, there is little reason to fear such a future. Picture the same pro-
grammer returning to find the same 20,000 lines. What message would he
really find, supposing that an automatic verifier could really be built? Of
course, the message would be ‘SNOT VERIFIED.”’ The programmer would
make a change, feed the program in again, return again. ‘““NOT VERIFIED.”’
Again he would make a change, again he would feed the program to the
verifier, again ‘NOT VERIFIED.” A program is a humanartifact; a real-life
program is a complex humanartifact; and any humanartifact of sufficient
size and complexity is imperfect. The message will never read ‘“VERIFIED.”’

THE ROLE OF CONTINUITY

Wemaysay, roughly, that a mathematical idea is ‘‘significant”’ if it can be con-
nected, in a natural andilluminating way, with a large complex of other mathe-
matical ideas.

G.H. Harpy

The only really fetching defense ever offered for verification is the scaling-up
argument. As best we can reproduceit, here is how it goes:

(1) Verification is now in its infancy. At the moment, the largest tasksit
can handle are verifications of algorithms like FIND and model programslike
GCD.It will in time be able to tackle more and more complicated algorithms
and trickier and trickier model programs. Theseverifications are comparable
to mathematical proofs. They are read. They generate the same kindsofin-

279

280 RICHARDDE MILLO, RICHARDLIPTON, ALAN PERLIS

terest and excitement that theorems do. They are subject to the ordinary

social processes that work on mathematical reasoning, or on reasoning in

any other discipline, for that matter.

(2) Big production systems are made up of nothing more than algo-

rithms and model programs. Onceverified, algorithms and model programs

can make uplarge, workaday production systems, and the (admittedly un-

readable) verification of a big system will be the sum of the manysmall,at-

tractive, interesting verifications of its components.

With (1) we have no quarrel. Actually, algorithms were proved and the

proofs read and discussed and assimilated long before the invention of com-

puters—andwith a striking lack of formal machinery. Our guessis that the

study of algorithms and model programswill develop like any other mathe-

matical activity, chiefly by informal, social mechanisms, verylittle if at all

by formal mechanisms.
It is with (2) that we have our fundamental disagreement. We arguethat

there is no continuity between the world of FIND or GCD andthe world of

production software,billing systems that write real bills, scheduling systems

that schedule real events, ticketing systems that issue real tickets. And we

argue that the world of production softwareis itself discontinuous.

No programmerwould agree that large production systems are composed

of nothing more than algorithmsand small programs. Patches, ad hoc con-

structions, bandaids and tourniquets, bells and whistles, glue, spit and

polish, signature code, blood-sweat-and-tears, and, of course, the kitchen

sink—the colorful jargon of the practicing programmerseemsto be saying

something aboutthe nature of the structures he works with; maybe theoreti-

cians oughtto be listening to him. It has been estimated that more than half

the codein any real production system consists of user interfaces and error

messages—ad hoc, informalstructures that are by definition unverifiable.

Even the verifiers themselves sometimes seem to realize the unverifiable

nature of most real software. C.A.R. Hoare has been quoted [9] as saying,

‘‘In many applications, algorithm plays almost no role, and certainly pre-

sents almost no problem.’’ (We wish we could report that he thereupon

threw up his hands and abandonedverification, but no such luck.)

Or look at the difference between the world of GCD andthe world of pro-

duction software in another way: Thespecifications for algorithms are con-

cise and tidy, while the specifications for real-world systems are immense, fre-

quently of the same order of magnitude as the systems themselves. The

specifications for algorithms are highly stable, stable over decades or even

centuries; the specifications for real systems vary daily or hourly (as any pro-

grammer can testify). The specifications for algorithms are exportable,

general; the specifications for real systemsare idiosyncratic and ad hoc. These

are not differences in degree. They are differences in kind. Babysitting for a

sleeping child for one hour does notscale up to raising a family of ten—the

problemsareessentially, fundamentally different.

And within the world of real production software there is no continuity

either. The scaling-up argument seems to be based on the fuzzy notion that

the world of programmingis like the world of Newtonian physics—made up

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

of smooth, continuous functions. But, in fact, programs are jagged andfull

of holes and caverns. Every programmer knowsthataltering a line or some-

times even a bit can utterly destroy a program or mutilate it in ways that we

do not understand and cannot predict. And yet at other times fairly sub-

stantial changes seem to alter nothing; the folkloreis filled with stories of

pranks and acts of vandalism that frustrated the perpetrators by remaining

forever undetected.

There is a classic science-fiction story about a time traveler who goes back

to the primeval jungles to watch dinosaurs and then returns to find his own

time altered almost beyond recognition. Politics, architecture, language—

even the plants and animals seem wrong,distorted. Only when he removeshis

time-travel suit does he understand what has happened. Onthe heel of his

boot, carried away from the past and therefore unable to perform its function

in the evolution of the world, is crushed the wing of a butterfly. Every pro-

grammer knowsthe sensation: A trivial, minute change wreaks havoc in a

massive system. Until we know more about programming, wehad better for

all practical purposes think of systems as composed, not of sturdy structures

like algorithms and smaller programs, but of butterflies’ wings.

The discontinuous nature of programming sounds the death knell for
verification. A sufficiently fanatical researcher might be willing to devote
two or three years to verifying a significant piece of software if he could be
assured that the software would remainstable. Butreal-life programs need
to be maintained and modified. There is no reasonto believe that verifying
a modified program is any easier than verifying the original the first time
around. There is no reason to believe that a big verification can be the sum
of many small verifications. There is no reason to believe that a verification
can transfer to any other program—not even to a program only onesingle
line different from the original.

Andit is this discontinuity that obviates the possibility of refining verifi-
cations by thesorts of social processes that refine mathematical proofs. The
lone fanatic might construct his own verification, but he would never have
any reason to read anyoneelse’s, nor would anyoneelse ever be willing to
read his. No community could develop. Even the most zealous verifier
could be inducedto read a verification only if he thought he might be able
to use or borrow or swipe something from it. Nothing could force him to
read someoneelse’s verification once he had grasped the point that no
verification bears any necessary connection to any otherverification.

BELIEVING SOFTWARE

The program itself is the only complete description of what the program will do.

P.J. DAVIS

Since computers can write symbols and move them about with negligible
expenditure of energy, it is tempting to leap to the conclusion that any-
thing is possible in the symbolic realm. But reality does not yield so easily;
physics does not suddenly break down.It is no more possible to construct
symbolic structures without using resources than it is to construct material

281

282 RICHARD DE MILLO, RICHARDLIPTON, ALAN PERLIS

structures without using them. For even the most trivial mathematica! the-

ories, there are simple statements whose formal demonstrations would be

impossibly long. Albert Meyer’s outstanding lecture on the history of such

research [15] concludes with a striking interpretation of how hard it may be

to deduce even fairly simple mathematical statements. Suppose that we en-

code logical formulas as binary strings and set out to build a computerthat

will decide the truth of a simple set of formulas of length, say, at most a

thousand bits. Suppose that we even allow ourselves the luxury of a tech-

nology that will produce proton-size electronic components connected by

infinitely thin wires. Even so, the computer we design must densely fill the

entire observable universe. This precise observation about the length offor-

mal deductions agrees with our intuition about the amount of detail embed-

ded in ordinary, workaday mathematical proofs. We often use ‘*Let us

assume, withoutloss of generality . . . ’’ or ‘‘Therefore, by renumbering,if

necessary...’ toreplace enormous amounts of formaldetail. To insist on

the formal detail would be silly waste of resources. Both symbolic and

material structures must be engineered with a very cautious eye. Resources

are limited; time is limited; energy is limited. Not even the computer can

changethefinite nature of the universe.

Weassumethat these constraints have prevented the adherentsof verifica-

tion from offering what might be fairly convincing evidence in support of

their methods. The lack at this late date of even a single verification of a

working system has sometimes been attributed to the youth of the field. The

verifiers argue, for instance, that they are only now beginning to understand

loop invariants. At first blush, this sounds like another variant of the scaling-

up argument. Butin fact there are large classes ofreal-life systems with virtu-

ally no loops—they scarcely ever occur in commercial programming applica-

tions. And yet there has never beena verification of, say, a Cobol system that

prints real checks; lacking even one makesit seem doubtful that there could at

sometime in the future be many. Resources, and time, and energyarejust as

limited for verifiers as they are for all the rest of us.

We must therefore come to grips with two problems that have occupied

engineers for many generations: First, people must plunge into activities that

they do not understand. Second, people cannotcreate perfect mechanisms.

How then do engineers manageto create reliable structures? First, they

use social processes very like the social processes of mathematicsto achieve

successive approximations at understanding. Second, they have a mature

andrealistic view of what ‘‘reliable’’ means; in particular, the one thingit

never meansis ‘‘perfect.’? There is no way to deducelogically that bridges

stand, or that airplanes fly, or that powerstations deliver electricity. True,

no bridges would fall, no airplanes would crash, no electrical systems black

out if engineers would first demonstrate their perfection before building

them—true because they would never be built atall.

The analogy in programmingis any functioning, useful, real-world sys-

tem. Take for instance an organi-chemical synthesizer called SYNCHEM

[5]. For this program,thecriterion ofreliability is particularly straightfor-

ward—if it synthesizes a chemical, it works;if it doesn’t, it doesn’t work.

No amountof correctness could ever hope to improve on this standard;in-

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

deed, it is not at all clear how one could even begin to formalize such a stan-
dard in a way that would lenditself to verification. But it is a useful and
continuing enterprise to try to increase the number of chemicals the pro-
gram can synthesize.

It is nothing but symbol chauvinism that makes computerscientists think
that our structures are so much more important than material structures
that (a) they should be perfect, and (b) the energy necessary to make them
perfect should be expended. Wearguerather that (a) they cannot be perfect,
and (b) energy should not be wastedin the futile attempt to make them per-
fect. It is no accident that the probabilistic view of mathematical truth is
closely allied to the engineering notion ofreliability. Perhaps we should
make a sharp distinction between program reliability and program perfec-
tion—and concentrate our efforts on reliability.
The desire to make programscorrect is constructive and valuable. But the

monolithic view ofverification is blind to the benefits that could result from
accepting a standardof correctness like the standard of correctness for real
mathematical proofs, or a standard ofreliability like the standard forreal
engineering structures. The quest for workability within economic limits,
the willingness to channel innovation by recycling successful design, the
trust in the functioning of a community of peers—all the mechanismsthat
make engineering and mathematics really work are obscuredin the fruitless
search for perfect verifiability.
Whatelements could contribute to making programming morelike engi-

neering and mathematics? One mechanism that can be exploited is the crea-
tion of general structures whose specific instances become morereliable as the
reliability of the general structure increases.! This notion has appeared in
several incarnations, of which Knuth’s insistence on creating and under-
standing generally useful algorithms is one of the most important and en-
couraging. Baker’s team-programming methodology[1] is an explicit attempt
to expose software to social processes. If reusability becomesa criterion for
effective design, a wider and wider community will examine the most com-
mon programming tools.

The concept of verifiable software has been with us too long to beeasily
displaced. For the practice of programming, however,verifiability must not
be allowed to overshadowreliability. Scientists should not confuse mathe-
matical models with reality—andverification is nothing but a model of be-
lievability. Verifiability is not and cannot bea dominating concern in soft-
ware design. Economics, deadlines, cost-benefit ratios, personal and group
style, the limits of acceptable error—all these carry immensely much more
weight in design than verifiability or nonverifiability.
So far, there has beenlittle philosophical discussion of making software

reliable rather than verifiable. If verification adherents could redefine their
efforts and reorient themselves to this goal, or if another view of software
could arise that would draw onthe social processes of mathematics and the
modest expectations of engineering, the interests of real-life programming
and theoretical computer science might both be better served.
Even if, for some reason that we are not now able to understand, we

should be proved wholly wrong and theverifiers wholly right, this is not

283

284 RICHARD DE MILLO, RICHARD LIPTON, ALAN PERLIS

the momentto restrict research on programming. We knowtoolittle now to

sense what directions will be most fruitful. If our reasoning convinces no

one, if verificationstill seems an avenue worth exploring, so be it; we three

can only try to argue against verification, not blast it off the face of the

earth. But we implore ourfriends and colleagues not to narrow their vision

to this one view no matter how promising it may seem.Letit not be the only

view, the only avenue. Jacob Bronowski has an important insight about a

time in the history of anotherdiscipline that may be similar to our own time

in the development of computing: ‘‘A science which orders its thought too

early is stifled . . . The hope of the medieval alchemists that the elements

might be changed wasnotas fanciful as we once thought. Butit was merely

damaging to a chemistry which did not yet understand the composition of

water and commonsalt.”’

ACKNOWLEDGMENTS

Weespecially wish to thank those who gaveus public forums—the 4th POPL

program committee for giving us our first chance; Bob Taylor and Jim

Morris for letting us express our views in a discussion at Zerox PARC; L.

Zadeh and Larry Rowe for doing the same at the Computer Science De-

partmentof the University of California at Berkeley; Marvin Dennicoff and

Peter Wegner for allowing us to address the DOD conference on research

directions in software technology.

Wealso wish to thank Larry Landweber for allowing us to visit for a

summerthe University of Wisconsin at Madison. The environment and the

support of Ben Noble andhisstaff at the Mathematics Research Center was

instrumental in letting us work effectively.

The seeds of these ideas were formed out of discussions held at the DOD

Conference on Software Technology in 1976 at Durham, North Carolina.

We wish to thank in particular J.R. Suttle, who organized this conference

and has been of continuing encouragement in our work.

Wealso wish to thank our manyfriends who havediscussed these issues

with us. They include: Al Aho, Jon Barwise, Manuel Blum, Tim Budd,

Lucio Chiaraviglio, Philip Davis, Peter Denning, Bernie Elspas, Mike

Fischer, Ralph Griswold, Leo Guibas, David Hansen, Mike Harrison, Steve

Johnson, Jerome Kiesler, Kenneth Kunen, Nancy Lynch, Albert Meyer,

Barkley Rosser, Fred Sayward, Tim Standish, Larry Travis, Tony Wasser-

man and Ann Yasuhara.

Wealso wish to thank both Bob Grafton and Marvin Dennicoff of ONR

for their comments and encouragement.

Only those who haveseen earlier drafts of this paper can appreciate the

contribution made by our editor, Mary-Claire van Leunen. Were it the cus-

tom in computerscienceto list a credit line “As told to... ,’’ that might

be a better description of the service she performed.

NOTE

1. This process has recently come to be called ‘‘abstraction,’’ but we feel that for a

variety of reasons‘‘abstraction”’ is a bad term.It is easily confused with the totally dif-

SOCIAL PROCESSES AND PROOFS OF THEOREMS AND PROGRAMS

ferent notion of abstraction in mathematics, and often whathas passed for abstraction
in the computerscienceliterature is simply the removal of implementation details.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

REFERENCES

Baker, F.T. Chief programmer team management of production program-
ming. IBM Syst. J. 11, 1 (1972), 56-73.

Cohen, P.J. The independenceof the continuum hypothesis. Proc. Nat. Acad.
Sci., USA. Part I, vol. 50 (1963), pp. 1143-1148; Part II, vol. 51 (1964), pp.
105-110.

Davis, P.J. Fidelity in mathematical discourse: Is one and one really two? The
Amer. Math. Monthly 79, 3 (1972), 252-263.
Bateman, P., and Diamond, H. John E. Littlewood (1885-1977): An informal
obituary. The Math. Intelligencer 1, 1 (1978), 28-33.
Gelerenter, H., et al. The discovery of organic synthetic roots by computer.
Topics in Current Chemistry 41, Springer-Verlag, 1973, pp. 113-150.
George, J. Alan. Computer Implementation of the Finite Element Method.
Ph.D. Th., Stanford U., Stanford, Calif., 1971.

Heath, Thomas L. The Thirteen Books of Euclid’s Elements. Dover, New
York, 1956, pp. 204-219.

Heawood, P.J. Map colouring theorems. Quarterly J. Math., Oxford Series 24
(1890), 322-339.

Hoare, C.A.R. Quoted in Software Management, C. McGowan and R.
McHenry, Eds.; to appear in Research Directions in Software Technology,
M.1.T. Press, Cambridge, Mass., 1978.

Jech, Thomas J. The Axiom of Choice. North-Holland Pub. Co., Amster-
dam, 1973, p. 118.

Kempe, A.B. On the geographical problem of the four colors. Amer. J. Math.
2 (1879), 193-200.

Kolata, G. Bari. Mathematical proof: The genesis of reasonable doubt.
Science 192 (1976), 989-990.

Lakatos, Imre. Proofs and Refutations: The Logic of Mathematical Discov-
ery. Cambridge University Press, England, 1976.
Manin, Yu. I. A Course in Mathematical Logic. Springer-Verlag, 1977, pp.
48-51.

Meyer, A. The inherent computational complexity of theories of orderedsets:
A brief survey. Int. Cong. of Mathematicians, Aug. 1974.
Popek, G., et al. Notes on the design of Euclid, Proc. Conf. Language Design
for Reliable Software, SIGPLAN Notices (ACM) /2, 3 (1977), pp. 11-18.
Rabin, M.O. Probabilistic algorithms. In Algorithms and Complexity: New
Directions and Recent Results, J.F. Traub, Ed., Academic Press, New York,
1976, pp. 21-40.

Schwartz, J. On programming. Courant Rep., New York U., New York, 1973.
Stockmeyer, L. The complexity of decision problemsin automata theory and
logic. Ph.D. Th., M.I.T., Cambridge, Mass., 1974.
Ulam, S.M. Adventures of a Mathematician. Scribner’s, New York, 1976, p.
288.

285

