THE DANGERS OF COMPUTER-SCIENCE THEORY*

DONALD E. KNUTH
Stanford University, Stanford, Calif., USA

The text of my sermon today is taken from Plato (the Republic, vii) who
said, “I have hardly ever known a mathematician who was able to reason”.
If we make an unbiased examination of the accomplishments made by
mathematicians to the real world of computer programming, we are forced
to conclude that, so far, the theory has actually done more harm than good.
There are numerous instances in which theoretical ‘advances’ have actually
stifled the development of computer programming, and in some cases they
have even made it take several steps backward! I shall discuss a few such
cases in this talk.

Last week at the IFIP 71 Congress in Ljubljana, I presented a lecture
which had quite a different flavor: I spoke pro-Computer-Science, and I
extolled the virtues of the associated mathematical theory. Today, however,
I must consider the Methodology and Philosophy of Computer Science,
and so I feel it necessary to right the balance and to give an anti-Computer-
Science talk. (I hope that by showing the other side of the coin I will not
prejudice the sales of the books I have written.)

Perhaps the most famous example of misdirected theory has occurred
in connection with random-number generation, Many of you know that
sequences of pseudorandom numbers are often generated by the rule

Xny1 = (ax,) mod m

for some multiplier ¢ and some modulus m. For many years such sequences
were used successfully, with multipliers a chosen nearly at random. The
numbers passed empirical tests for randomness, but no theoretical reason
for this was known except that number theory was able to predict that the

! The preparation of this paper was supported in part by the National Science Foun-
dation and the National Research Council. My wife and I wish to thank our Rumanian
hosts for their extraordinary hospitality.



190 D. E. KNUTH

sequence has a very long period before it begins to repeat. Finally, the
first theoretical advance was made: It was proved (cf. GREENBERGER, 1961)
that the serial correlation between adjacent members of the sequence,
averaged over the entire period, is bounded by

4 16a+28
Ir(xsy x4 0)] < ’y + —m

As youknow, a correlation coefficient of + 1 or —1 indicates a strong depen-
dency, while a random sequence should have 0 correlation. According to
this new theorem, if we choose the multiplier to be

axym

we can guarantee a small serial correlation.

As I said, this was the first real theorem about the multiplicative con-
gruential sequences; because of it, people changed the random-number
generators they were using, and the result was catastrophic (cf. GREENBER-

GER, 1965). A multiplier near |/ m is always bad when other tests for random-
ness are considered. For example, the correlation is indeed nearly zero
when averaged over the entire period, but the theory did not take into
account the fact that the correlation is nearly +1 over half the period and
—1 over the other half! It turns out that almost all multipliers are better

than those near )/m. Yet the horrible sequence
Xnp1 = (2'9+3)x, mod 2°*

is still being supplied by IBM as the standard random-number generator
for use on its System /360 computers.

Such misapplications of theory have been with us since the beginning.
From a historical point of view I believe that the very first work on what is
now called the theory of computational complexity was the Ph, D. disser-
tation of DEMUTH (1956), who made a theoretical study of the problem
of sorting numbers into order. From a mathematical standpoint, Demuth’s
thesis was a beautiful piece of work; he defined three classes of automata,
and he found reasonably tight bounds on how fast each of these classes of
machines is able to sort. But from a practical standpoint, the thesis was of
no help.

In fact, one of Demuth’s main results was that in a certain sense ‘bubble
sorting’ is the optimum way to sort. During the last three years I have
been studying the sorting problem in great detail, and I have therefore
analyzed about 30 different sorting methods inciuding the bubble sort.



DANGERS OF COMPUTER-SCIENCE THEORY 191

It turns out that the other 29 methods are always better in practice, in spite
of the fact that Demuth had proved the optimality of bubble sorting on
a certain peculiar type of machine.

Unfortunately, people still play the same game today with computational
complexity theory: Instead of looking for the best way to solve a problem,
we first think of an algorithm, and then we look for a sense in which it is
optimum!

Traditionally the problem in finding an optimum sorting method is to
minimize the number of comparisons between data elements while the
sorting takes place. The best method, in the sense that it takes fewer com-
parisons than any other known scheme, was invented by L. R. Forp and
S. M. JoHNsON (1959). But their approach has fortunately never been used
by programmers, because the complex method used to decide what compar-
ison to make costs much more time than the comparisons themselves.

The three most commonly known methods of sorting with magnetic
tapes are the balanced merge (MAUCHLY, 1946), the cascade merge (BETZ and
CARTER, 1959), and the polyphase merge (GILSTAD, 1960). Cascade merging.
with n tapes is based on an (n— 1)-way merge, (n—2)-way merge, ..., 2-way
merge, while polyphase is apparently an improvement since it uses (n— 1)-way
merging throughout. But DAviD FErRGUSON (1964, p. 297) noticed that
cascade merging is surprisingly better than polyphase on a large number
of tapes: Given N records to sort on n tapes, the following asymptotic
formulas for the tape read/write time are valid when N and n are large:

balanced merge, NlogN/log(n/2);
cascade merge, NlogN/log(nn/4);
polyphase merge, NlogN/log4.

This is all very fine in theory but almost worthless in practice. In the
first place, the number of tapes n must be large; but tapes are very unreliable,
I have never seen more than about six tape units simultaneously in working
condition! More seriously, these formulas are valid only as N goes to
infinity, yet all N records must fit on one finite reel of tape. Commercial
tape reels are never more than 2400 feet long, and this means that other
factors suppressed in the above formulas actually are more important than
the leading terms. For practical sizes of N it turns out therefore that poly-
phase is superior to cascade, contrary to the formulas.

Incidentally, Professor Karp of Berkeley has proved a beautiful theorem
which shows that cascade merging is optimum in the sense that it minimizes
the number of phases, over all possible tape merging patterns. But unfortu-



192 D. E. KNUTH

nately this theoretical notion of a ‘phase’ has no physical significance, it is
not the sort of thing anyone would ever want to minimize.

This leads me to quote from Webster’s dictionary of the English language
(pre-1960), where we find that the verb ‘to optimize’ means “to view with
optimism.”

A few months ago I computed the effect of tape rewind time, which the
above formulas exclude, and I discovered to my great surprise that the
old-fashioned balanced merging scheme was actually better than both
polyphase and cascade on six tapes! Thus the theoretical calculations which
have been so widely quoted have caused an inferior method to be used.

An overemphasis on asymptotic behavior has often led to similar abuses.
For example, some years ago I was preparing part of an operating system
where it was necessary to determine whether or not a given record called
a ‘page’ was in the high-speed computer memory. I had just learned the
very beautiful method of balanced binary trees devised by the Russian
mathematicians ADEL’SON-VEL’skil and LANDIS (1962), which guarantees
that only O(logn) steps are needed to find a particular page if n pages are
present. After I had devised a complicated program using this method,
I remembered that the computer T was using had a special search instruction
which would do the same job by brute force in O(n) steps. Since this instruc-
tion operated at hardware speed, and since the memory size guaranteed
that # would never exceed 1000, the brute force method was much faster
than the sophisticated logn method.

Now I should say a few words about automata theory. For many years
the theory of automata was developing rapidly and solving problems which
were ostensibly related to computers; but real programmers could not care
less about the automaton theorems because Turing machines were so
different from real machines. However, one result was highly touted as the
first contribution of automata theory to real programming, an efficient
algorithm that was discovered first by the theoreticians, namely, the HENNIE-
STEARNS (1966) construction which showed that a k-tape Turing machine
can be simulated by a 2-tape machine with only a logarithmic increase in
the execution time. This meant for example that sorting could be achieved
on two tapes in O(N(logN)?) steps, which was much better than the O(N?)
methods known for two tapes. Well, once again the theory did not work in
practice; the Hennie-Stearns construction involves writing in the middle
of a magnetic tape, which is rather difficult, and it includes a lot of unused
blank space on the tape. As I mentioned before, a single tape is only 2400’
long; so the asymptotic formulas do not tell the story. When the Hennie-



DANGERS OF COMPUTER-SCIENCE THEORY 193

Stearns method is actually applied to a tape full of data, almost 40 hours
are required, compared with only about 8 hours for the asymptotically
slow method.

The theory of automata is slowly changing to a study of random-access
computations, and this work promises to be more useful. Last week in
Ljubljana, S. A. Cook presented his interesting theorem which states in
essence that any algorithm programmable on a certain kind of pushdown
automaton can be performed efficiently on a random-access machine, no
matter how slowly the pushdown program runs. When I first heard about his
theorem last year, I was able to use it to find an efficient pattern-match-
ing procedure; this was the first time in my experience that I had learned
something new about real programming by applying automata theory.
(Unfortunately I found out that Morris, 1970, had independently dis-
covered the same algorithm, a few weeks earlier, without using automata
theory at all.)

Is there any area (outside of numerical analysis) where mathematical
theory has actually helped computer programmers? The theory of languages
springs to mind; surely the development of programming languages has
been helped by the highly sophisticated theory of mathematical linguistics.
But even here the theory has not been an unmixed blessing, and for several
years the idea of top-down parsing was unjustly maligned because of
misapplied theory. Furthermore, too many problems in mathematical
linguistics have been shown to be unsolvable in certain levels of generality,
and this has tended to make people afraid to look for solvable subproblems.
We tend to forget that every problem we solve is a special case of some
recursively unsolvable problem!

Another difficulty with the theory of languages is that it has led to an
overemphasis on syntax as opposed to semantics. You all know the old
joke about the man who was searching for his lost watch under the lamppost.
His friend came up to him and said, “What are you doing?”

“I’m looking for my watch.”

“Where did you lose it?”

“QOh, over there, down the street.”

“But why are you looking for it here?”

“Because the light is much better here.”

For many years there was much light on syntax and very little on semantics;
so simple semantic constructions were unnaturally grafted onto syntactic
definitions, making rather unwieldy grammars, instead of searching for
theories more appropriate to semantics.



194 D. E. KNUTH

Of course you know that the theory of languages has by now become
ultrageneralized so that it bears little relation to its practical origins. This
is not bad in itself, although sometimes it reminds me of a satirical article
published a few years ago by AUSTIN (1967); paraphrasing this article,
we should not be surprised to find someday a paper entitled “On triply-
degenerate prewaffles having no proper normal subwaffle with the pseudo-A,
property, dedicated to A.B. Smith on his 19th birthday.” Sometimes
theories tend to become very baroque! The tendency of modern mathematics
to be ‘modern’ in the sense of ‘modern art’ has been aptly described in
an extraordinary article by HAMMERSLEY (1968) which should be required
reading for everyone.

At this point I would like to quote from some lectures on Pragmatism
(Chapter 2) given by the philosopher William James at the beginning of
this century:

When the first mathematical, logical, and natural uniformities, the
first laws were discovered, men were so carried away by the clearness,
beauty and simplification that resulted, that they believed themselves to
have deciphered authentically the eternal thoughts of the Almighty.

You see that computer science has been subject to a recurring problem:
Some theory is developed which is very beautiful, and too often it is therefore
thought to be relevant.

An article has recently been published by CHRISTOPHER STRACHEY of
Oxford University, entitled “Is Computing Science?” (1970). He presents
two tables, one which ranks topics now considered part of computer science
in order of their relevance to real programming, and another which ranks
those same topics in order of their present state of theoretical development.
As you might suspect, the two rankings are in opposite order.

Perhaps this is the way things should be. Maybe theories are more
beautiful and more worthy of development if they are further from reality.
Some of the examples I have mentioned suggest in fact that it is dangerous
even to fry to develop any theory which is relevant to actual computer
programming practice, since the record shows that such theories have
usually been misapplied.

Well, I must confess that I have had my tongue in my cheek, in many
of the above remarks. When I first prepared this talk, sitting in beautiful
Cigmigiu Park, I was not intending to write it down for the published
proceedings, and I could not resist the temptation to have some fun giving
an unexpected ‘methodology’ lecture. L have stated the case against comput-
er-science theory as well as I could; but as many of you probably suspect,



DANGERS OF COMPUTER-SCIENCE THEORY 195

I do not really believe everything I said. It is true that theory has often
been irrelevant and misapplied; but so what? We get enjoyment and stimula-
tion from abstract theories, and the mental concepts we learn to manipulate
as we study them often give us practical insights and skills. On the other
hand, practical considerations do not necessarily lead to awkward mathe-
matical problems that are inherently impure or distasteful. In fact I have
been spending many years preparing a series of books which attempt to
show that there is a great deal of beautiful mathematics which is directly
helpful to computer programmers. My experience has been that theories
are often more structured and more interesting when they are based on real
problems; somehow they are more exciting than completely abstract
theories will ever be.

References

Anenscon-Bensckuit- T. M., Jlauauc, E. M., 1962, Odun ancopugx opzanuszayuu
ungopuayuu, DAH CCCP, 1. 146, cTp. 263-266

AusTiN, A. K., 1967, Modern research in mathematics, Mathematics Gazette, vol. 51,
pp. 149-150

Berz, B. K. and W, C. CARTER, 1959, New merge sorting techniques, in: Preprints of
Summatries of Papers Presented at the 14th National Meeting, Association for Com-
puting Machinery (Association for Computing Machinery, Cambridge, Mass.)

DemutH, H. B., 1956, Electronic data sorting, Ph. D. dissertation, Stanford University

FERGUSON, D. E., 1964, More on merging, Communications of the Association for Com-
puting Machinery, vol. 7, p. 297

Forp, L.R., Jr. and S. M. JOuNSON, 1959, A tournament problem, American Mathe-
matical Monthly, vol. 66, pp. 387-389

GiLsTAD, R. L., 1960, Polyphase merge sorting, an advanced technique, Proceedings
Joint Computer Conference, vol. 18, pp. 143-148

GREENBERGER, M., 1961, An a priori determination of serial correlation in computer
generated random numbers, Mathematics of Computation, vol. 15, pp. 383-389

GREENBERGER, M., 1965, Method in randomness, Communications of the Association
for Computing Machinery, vol. 8, pp. 177-179

HAMMERSLEY, J. M., 1968, On the enfeeblement of mathematical skills by ‘Modern
Mathematics® and by similar soft intellectual trash in schools and universities, Bulletin
of the Institute for Mathematics and Its Applications, vol. 4, pp. 66-85

Hennig, F. C. and R. E. STEARNS, 1966, Two-fape simulation of multitape Turing ma-
chines, Journal of the Association for Computing Machinery, vol. 13, pp. 533-546

MaucHLy, J. W., 1946, Sorting and collating, in: Theory and Techniques for the Design
of Electronic Digital Computers, ed. G. W. Patterson, vol. 3, lecture 22

Mornris, J. B., Jr. and V. PRATT, 1970, A4 linear pattern-matching algorithm, Technical
Report No. 40, University of California, Berkeley, Computation Center

STRACHEY, C., 1970, Is computing science?, Bulletin of the Institute for Mathematics
and Its Applications, vol. 6, pp. 80-82





