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Correlations Between Characters

The phenotypic values of different traits in the same individual are often found
to be correlated. In humans, for example, individuals that are tall also tend to
have large feet. Such phenotypic correlations can arise from two causes. First,
the expression of two characters may be modified by the same environmental
factors operating within individuals. Some environmental factors may influence
both characters in the same direction, e.g., variation in resource availability during
development may influence the growth of all organs. Others may have opposite
effects, as when an environmental cue to initiate the allocation of resources to
reproduction causes a curtailment of growth. The joint influences of all such fac-
tors determine whether a within-individual environmental correlation will exist
between the traits. Such a correlation cannot be assumed to be a species-specific
constant. Just as the magnitude of the environmental variance for a trait can de-
pend on the nature of the environment in which a population is assayed (Chapter
6), so can the covariance of environmental deviations for two traits.

Second, genetic correlations between characters can arise by two mecha-
nisms. As a result of complex biochemical, developmental, and regulatory path-
ways, a single gene will almost always influence multiple traits, a phenomenon
known as pleiotropy (Wright 1968). The direction of pleiotropy may differ among
genetic factors. Thus, at least in principle, strong pleiotropy need not result in a
strong genetic correlation between characters if the pleiotropic effects from dif-
ferent loci cancel each other. A second possible source of genetic correlation is
gametic phase disequilibrium between genes affecting different characters, i.e.,
the tendency of genes with like effects on two characters to be positively or neg-
atively associated in the same individuals. Since the pleiotropic effects of genes
may be influenced by their genetic background, and since the degree of gametic
phase disequilibrium will be a function of the past history of populations, care
should also be taken in extrapolating estimates of the genetic correlation across
populations or across time.

A knowledge of the mechanisms underlying the correlations between dif-
ferent traits is fundamental to understanding the degree of integration of the
phenotype and to resolving the constraints imposed on evolutionary processes.

Depending on their sign, genetic correlations between two characters can either
facilitate or impede adaptive evolution. A conflict arises when two negatively ge-
netically correlated traits are both selected in the same direction, as the selective

advance of each character tends to pull the other character in the opposite direc-
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tion. A perfect genetic correlation between two traits is equivalent to an absolute
evolutionary constraint, since no change in either character can occur without a
parallel change in the other.

Deciphering the relative contributions of environmental and genetic factors
to phenotypic correlations is one of the most powerful and revealing applications
of quantitative genetics. However, as we will see below, the estimation of genetic
correlations is also an extremely demanding enterprise, requiring substantially
larger sample sizes than are necessary in univariate analysis. For many purposes,
a simple knowledge of the sign of a genetic correlation can be very revealing,
and with the appropriate effort, is certainly achievable. However, as in the case
of heritability analysis, completely unambiguous estimates of the causal sources
of covariance are not usually possible, e.g., it is generally not possible to obtain
a completely unbiased estimate of the genetic correlation due to additive genetic
factors, any more than it is possible to obtain an absolutely clean estimate of 0%
by heritability analysis.

In this chapter, we first show how additive genetic covariances between traits
can be approximated by a simple extension of the methods already developed
for variance-component analysis of single traits. Combining these covariances
with estimates of the additive genetic variances of the traits provides a basis for
estimating the genetic correlation. Subtracting the genetic components of variance
and covariance at the genetic level from those at the phenotypic level yields the
environmental components, which can then be used to estimate the environmental
correlation. Following a consideration of issues associated with statistical analysis
and hypothesis testing, we present several examples of the impact that genetic
correlation analysis is having on evolutionary thinking.

THEORETICAL COMPOSITION OF THE GENETIC COVARIANCE

Assuming the contribution from gametic phase disequilibrium to be negligible,
Mode and Robinson (1959) showed how the genetic covariance can be subdivided
into various components. Their work is a straightforward extension of the results
of Cockerham (1954) and Kempthorne (1954) for single characters. In order to
simplify the presentation, recall the procedure used in Chapter 5 for decomposing
the total genotypic value of a trait influenced by two loci. For characters 1 and 2,
we have

Gi=pg1+ |air+a;1 +arp1+ap1]+ (051 + kil
+ [(@@)ik1 + (@a)i1 + (@a) e + (@a);i]
+ [(@b)irr1 + (@d)jri1 + (ad)ijk1 + (ad)ijia] + (60)ijri1 + - (21.1a)
Go = ugo+ a0+ ajo+age+ a2+ [0ij2 + Ok1.2]
+ [(Of&)ik;._,z T (Q“Oé)?:zg -+ (OéOé)jm T (Of(l’)jl,,Q:
+ [(@d)iki2 + (ad) jki 2 + (ad)iji 2 + (ad)iji 2] + (00)ijk1,2 + -+ (21.1b)
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As in Chapter 5, a and ¢ denote additive and dominance effects, i and j denote
alleles at locus 1, and £ and [ denote alleles at locus 2. The genotypic values of
each trait are composed of six components: the mean genotypic value for the
population, the total deviation from this mean due to the additive effects of the
four alleles, the additional deviations due to the dominance effects at the two lodi,
and additive x additive, additive x dominance, and dominance x dominance
epistatic etfects. Although they are written in terms of only two loci, the above
expressions can be generalized to any number of loci.

Recalling that unlike terms (those having different subscripts) in Equations
21.1a,b are uncorrelated under random mating and gametic phase equilibrium
(Chapter 5), the genetic variances for each trait can be written as

06(1) =03(1) +op(1) + 0%4(1) + 0%4p(1) + 05 5(1) +---  (21.2a)
& 12) +05(2) + 0534(2) + 045 (2) +0BHp(2) + -+ (21.2b)

The genetic covariance can also be partitioned into components. Using Equations
21.1a,b and noting again that unlike terms are uncorrelated,

Ug(l, 2) — O'A(l, 2) -+ O'D(l, 2) + O'AA(l, 2) + O'AD(l, 2) + O'DD(l, 2) + .- (21.3)
where, for example,

0a(1,2) = o(ain, ai2) +o(aj1, a;2) + o(ag. ag2) + o1, 002)+ -

is the additive genetic covariance between characters 1 and 2. The second compo-
nent of Equation 21.3 is attributable to the covariance of dominance effects, and
so on for the epistatic components of variance. Note that when the two traits are
the same, Equation 21.3 reduces to 21.2a.

In the past several chapters, numerous methods for the estimation of variance
components were covered. All of these methods are based on the same principle
— that the expected phenotypic covariances between various kinds of relatives
can be expressed as linear functions of causal components of genetic, and in some
cases environmental, variance. These principles extend naturally to the estimation
of causal components of phenotypic covariance, except that instead of comparing
the same traitin two relatives, two different characters are compared —one in each
relative. The expected phenotypic covariance of character 1 in individual = and

character 2 in individual y follows naturally from the formulations of Cockerham
(1954) and Kempthorne (1954):

O'(;(LL., Zy) = 2@$yO'A(1, 2) + Aa;yO'D(l, 2) -+ (Q@xy)QO'AA(l, 2)
+ 20,,A,,04p(1,2) +A§y0‘DD(1,2) + - (21.4)

where O, is the coefficient of coancestry, and A, is the coefficient of fraternity of
r and y (both defined as in Chapter 7). Note that when x = y. then 20,, = A,, =
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1, and Equation 21.4 reduces to the total genetic covariance given in Equation
21.3.

ESTIMATION OF THE GENETIC CORRELATION

All of the regression and ANOVA techniques for estimating components of vari-
ance reviewed in the last four chapters extend readily to the decomposition of the
covariance between two traits, as first recognized by Hazel (1943). Three of the
most frequently used approaches will be covered here.

Pairwise Comparison of Relatives

We start with a method that is both conceptually and computationally simple,
requiring only that data are available for pairs of relatives. Suppose, for example,
that measures of traits 1 and 2 have been obtained for both midparents (denoted
by x) and offspring means (denoted by y). Four types of phenotypic covariances
can then be computed: trait 1 in midparents and offspring, trait 2 in midparents
and offspring, trait 1 in midparents and 2 in offspring, and vice versa. The first two
of these relate to the genetic variances of the traits, the second two to the genetic
covariance between the traits. Ignoring possible contributions from common en-
vironmental effects, their expected values are respectively:

(210 21,) = 0%2(1) . Uiz(l) 4. - (21.5a)
0 (222, 22y) = 0*242(2) Il 0?42(2) + - (21.5b)
0(21z, 22y) = -%—(-2}—7-——2—) + UAAELL 2) .. (21.5¢)
0 (222, 21y) = g—‘%—%}- 0 -gA——“lfllﬂ + - (21.5d)

These expressions are arrived at by use of Equation 21.4, after substituting the
midparent-offspring measures of relatedness, ©,, = 1 /4 and A, = 0. Assum-
ing negligible epistatic effects, the sum of the “cross-covariances,” (212, 22y) +
0(22z,21y), 18 equal to the additive genetic covariance. Each additive genetic

variance is equivalent to twice the respective within-character covariance, 1.e.,
0% (1) = 20(214, 214). Thus, an approximation of the additive genetic correlation

based on midparent-otfspring analysis 1s

0(21:5, ZQy) T U(sz, Z1y) (21.6&)

DA =
2 U(lea Zly) ' O'(ng, ZQy)

Substitution of observed for expected covariances yields the estimate 4. An al-
ternative to Equation 21.6b involves the geometric (rather than arithmetic) mean
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covariance,

O-(leca ZQy) ' 0-(223:3 Zly)

21.6b
O-(lea Zly) ' O'(ng, ZQy) ( )

PA =

However, there are two reasons why this estimator is less desirable than Equation
21.6a. First, since geometric means are always less than arithmetic means, Equa-
tion 21.6b will tend to yield biased correlation estimates that are closer to zero
than those generated with Equation 21.6a. Second, if one estimate of the genetic
covariance 1s negative and the other positive, Equation 21.6b is undefined.

Equation 21.6a is general in that, as a first approximation, it applies to any
set of relatives with constant degrees of relationship. For example, z and y could
represent the two members of a pair of dizygotic twins. Alternatively, might
represent the mean of several members of a sib group and y that of the re-
maining (nonoverlapping) members. The sib groups can even consist of mix-
tures of half and full sibs, as is often the case in wild-caught gravid females.
This generality follows from the fact that the coefficient ©,, in the expressions
0(212y 21y)s 0(222, 22y), 0(214, 22y ), and o (z2z, 21, ) is always the same, and there-
fore cancels out in Equations 21.6a,b.

Nonetheless, the above formulation has the same kinds of uncertainties that
we have encountered in estimators of heritability. First, only in the absence of
nonadditive genetic variance and common environmental effects does Equation
21.6a reduce exactly to the additive genetic correlation, o 4(1,2)/ o4(1)oa(2)].
Bias from dominance can be eliminated entirely by using relatives with Ay, =0
(such as parent-offspring or half-sib pairs). The presence of epistatic genetic vari-
ance and / or common environmental effects in z and y will inflate the estimates of
the additive genetic variances, but since covariances can be positive or negative,
the same complications may bias estimates of the additive genetic covariance in
either direction. Thus, the directional effect of confounding factors on estimates
of the additive genetic correlation remains uncertain in most cases. A second

range ot +1, especially when sample sizes are small.

Nested Analysis of Variance and Covariance

The nested full-sib, half-sib design provides an alternative approach to estimat-
Ing genetic correlations. Recall that with this design, several different females
are mated to each sire, and a nested analysis of variance yields estimates of the
additive genetic variances (Chapter 18). A parallel analysis can also provide an
estimate of the additive genetic covariance. Analysis of covariance is identical in
form to analysis of variance except that the former employs mean cross-products
of the deviations of traits 1 and 2 rather than mean squared deviations of individ-

ual traits (Table 21.1). A lucid overview of the procedure is given by Grossman
and Gall (1968).
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Table 21.1 Summary of a nested analysis of covariance involving .\ sires, 1/, dams
within the ith sire, and n;; offspring within the #yth full-sib family.

Factor df Sums of Cross-products FE(MCP)
N M,
Sires N -1 Y Y nii(Z1 — 71)(Z2i — Z2) 0e(1,2) + koog(1,2)
v
+]€30'3(1, 2)
o N M;
Dams (SiI‘QS) N(Af — 1) Z Zn@j (Elij — 72?1?;)(22,,;3- — 22@:) O’e(l, 2) —I— klad(l, 2)
1)
N M, Nij

Sibs (dams) T — NM Z Z Z(Zlijk — Z1i) (22656 — Z2i5)  0el(1,2)
ik

J

N M, Ny

Total T -1 SO rigr — Z) (2 — 7)) 02(1,2)
() 9 K

os(12) > — —*+ 775

O’A(LQ) O'D(l,Q) BO'AA(LQ) O'AD(LQ) O'DD(l,Q)

1.2) ~ -

7a(1,2) T4 T 16 T s T 16

oall,?2 3op(l,2 3o44(1,2 Ifs] 1,2
52(1,2) ~ A(2 ) N Dfl ) N AA4( ) N AD8( )

150 1,2
L 1ooph2) | g g

16

Note: T is the total number of individuals in the experiment, and M the mean number
of dams/sire. For character 1, 21,1 is the observed phenotype of the kth offspring of the
jth dam mated to the ith sire, Z1;; is the mean phenotype of the jjth full-sib tamily, zy;
is the mean phenotype of all progeny of the ith sire, and Z; is the mean phenotype of all
individuals. Similar notation is used for character 2. MCP denotes a mean cross-product,
obtained by dividing a sum of cross-products by its respective degrees of freedom. The

coefficients k1, ko, and k3 are defined in Table 13.3.

Although most nested analyses are not perfectly balanced, itis usually prefer-
able to use only individuals for which measures of both characters are available
in the analysis, so that estimates of both the variances and the covariance are

based on the same sample. Obviously, when a large number of individuals are
missing one measure, this has the unfortunate side-effect of making the variance
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estimates less accurate than they would be otherwise, so in extreme cases it may
be preferable to use all of the data.

The nested analysis of variance (covariance) yields nine mean squares (cross-
products) — at the sire, dam, and progeny levels, for the variance of character
1, the variance of character 2, and the covariance of 1 and 2. From the observed
mean squares and cross-products, and the standard expressions for their expec-
tations (Table 21.1), estimates for the sire, dam, and within-family components of
variance and covariance can then be extracted by the method of moments (equat-
Ing mean squares with their expectations and solving). Recall from Chapter 18
that in a univariate analysis, the sire component of variance is equivalent to the
covariance of paternal half sibs, thereby providing an estimate of one-fourth the
additive genetic variance for the trait, assuming sources of epistatic variance are of
negligible significance. Similarly, in an analysis of covariance, the sire component
provides an estimate of one-fourth the additive genetic covariance between the
two traits. Thus, letting Var(s; ), Var(sz), and Cov(s;, s2) denote estimates of the
sire components of variance and covariance, the genetic correlation is estimated
by

COV(Sl, 82)

AT \/Var(s1)Var(ss)

(21.7)

As discussed in the previous section, this measure of the genetic correlation
can only be taken to be an approximation, since additive epistatic interactions
are potentially included in the estimates of the genetic variances and covariance.
However, the reliance on paternal half sibs should minimize the complications
that can arise from common-environment effects. Like regression analysis, anal-
ysis of variance can also yield estimates of the genetic correlation that are outside
the range of true possibilities (—1,1). The likelihood of this situation happening can
be substantial, as Hill and Thompson (1978) have shown for one-way (nonnested)
ANOVA of sib families. For example, if the intraclass correlations for both traits
are t = 0.0625 (assuming only additive genetic variance, this implies A2 = 0.25 or
0.125, depending on whether families consist of half or full sibs), and 160 families
of 5 sibs are analyzed, the probability of obtaining a genetic correlation or heri-
tability out of bounds is only about 0.06. However, if t = 0.025 (k2 = 0.10 or 0.05),
with the same sample sizes, the probability of obtaining an unrealistic estimate is
nearly 0.5.

In principle, as in the case of components of variance, the various components
of a genetic covariance can be extracted by comparison of the cross-covariances
between different types of relatives, e.g., full vs. half sibs in the nested design. It
would then be possible to procure estimates of genetic correlations due to dom-
Inance and various forms of epistasis in addition to additive effects. However,
previous chapters have amply demonstrated the difficulties in accomplishing
such partitioning with components of genetic variance with any reasonable de-

gree of accuracy. Since the sampling variance of cross-covariances is also very high
(see below), there appears to be little hope of a further dissection of the genetic
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correlation unless the number of families sampled is in the thousands.

Regression of Family Means

Because of technical difficulties in acquiring genetic correlation estimates and in
testing for their significance, a number of investigators have opted to use the
correlation between family mean phenotypes as a surrogate for estimating pa.
Here one simply regresses the family mean phenotype of character 1 on that of
character 2, using the same individuals to compute each mean. The rationale for
such an approach is that as the size of a family increases, the sampling error of
the mean becomes diminishingly small, leaving the family mean phenotype as
an estimate of the family mean genotypic value. However, if the heritability of
either trait is low, this approach can yield misleading results because the variances
and covariances of family means will be biased estimates of the additive genetic
expectations. Although we do not advocate this approach, we elaborate on it
somewhat to illustrate the interpretative difficulties that can arise.

Suppose each family consists of a group of n individuals, all related with
coefficient of coancestry © (for example, a group of paternal half-sibs), and let
Z1; be the mean phenotype of the ith family and z;;; be the phenotype of the jth
member of that family. Assuming that all of the resemblance between relatives
is a consequence of additive gene action (in particular, that there are no shared
environmental effects), the expected variance among family means for character
1 can then be expressed as

_ 1 1 n(n —1)
0% (Z1i) = ;L_Q.O—Q Z 2 | = 502(%) + ——5—0 (2115, 1ik)
1 2 2 2 -
= —[0:(1) —200%(1)] + 20034 (1) (21.8a)
Tl |

where 02(1) is the phenotypic variance of the trait. The same logic gives the

expected covariance between family means for traits 1 and 2 as

o (F15. %)) = %[Jz(l, 2) — 2004(1,2)] + 2004(1,2) (21.8b)

After some algebraic rearrangement, and continuing to ignore all sources of vari-
ation and covariation except those due to additive genetic effects, the correlation
of family means is found to be

0 (%1, Z2.0) _ Ohahs + (p2/pa)

(21.9)
(¢hi +1)(¢h3 + 1)

where ¢ = 20(n—1),h% = 64(1)/0?(1) and h3 = 05(2)/0=(2) are the heritabilities
of the traits, and p. is the phenotypic correlation. The quantity in brackets defines
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the factor by which the regression of family means deviates from the desired value
pa. The amount of bias can be seen to depend on ¢, h2, h%, and on the ratio of

phenotypic to genetic correlations.
- In the extreme case in which the heritabilities of both traits are equal to one,

the genetic and phenotypic correlations are equal (as there is no environmental
variance), and the correlation of family means provides an unbiased estimate of
the genetic correlation, i.e.,, pz = p4. However, such concordance is unlikely to
arise under any other circumstances. More generally, in order for the correlation
between family means to closely approximate the genetic correlation, both dhy
and ¢hs must be substantially larger than one and than | p-/pal. Even if the two
traits have moderately high heritabilities, the first condition requires large family
sizes. Consider, for example, the situation in which both traits have heritabilities
ot 0.5, 50 paternal half sibs (26 = 0.25) are sampled per family, and the phenotypic
correlation is five times larger than the genetic correlation. Substituting for the
quantities in the brackets, we find that the correlation of family means inflates the
estimate of the genetic correlation by a factor of 1.8.

A perceived advantage of the family-mean approach is that ps is a true
product-moment correlation. Thus, unlike the other estimators described above,
the correlation among family means cannot exceed +1. and its significance can
be evaluated in a straightforward manner using standard tables of critical values
for the sample correlation coefficient. However, the actual utility of this property
seems questionable, given the uncertainty of what p actually measures.

A more reasonable path to estimating the genetic correlation from family
means involves a combination of univariate ANOVA with covariance analysis,
as follows. If each family is divided into two independent groups, one used to
estimate the mean of character 1 and the other for character 2, the expected covari-
ance between means is simply 200 4(1,2). Assuming common family environ-
ment 1s not a significant source of variation, there is no bias from environmental
covariance because the two groups being compared contain different individuals.
Combining the resultant estimate of o 4(1, 2) with estimates of c5(1) and 0% (2)
obtained by ANOVA provides a basis for a relatively unbiased estimate of p 4.

COMPONENTS OF THE PHENOTYPIC CORRELATION

As noted in the introduction, phenotypic covariance between two traits arises
from both genetic and environmental causes. We have Jjust seen how the basic
machinery for estimating heritabilities can be extended to the estimation of genetic
correlations. However, the environmental correlation, pr. can only be calculated

directly under a very special set of circumstances. If a collection of genetically

homogeneous individuals (either a highly inbred line or a single clone) is used, so
there is no genetic variance among individuals within the group, the phenotypic
and environmental correlations are equivalent.
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Ordinarily, a more circuitous route to the estimation of pg 1s necessary. The
usual approach is to estimate the phenotypic and genetic correlations first, and
to extract the environmental correlation from the algebraic relationship between
the three quantities. The phenotypic correlation between two traits is easily ac-

quired, as it is simply the correlation of the measures of the two traits in the same
individual,
0.(1,2)
y = — 21.10

g 0.(1) - 0:(2) | )
where 0.(1) and ¢.(2) are the phenotypic standard deviations of the two traits
and o, (1, 2) is the covariance of traits 1 and 2 in the same individual. The relation-
ship between the three types of correlations is fairly easily derived. Noting that
covariances are additive (Chapter 3) and assuming that all covariance is due to
additive genetic and special environmental effects, 0. (1,2) = 04(1,2) + op(1, 2),
where

c4(1,2) = pac.(1)h10.(2)ho

Equation 21.10 then expands to

0, = hihopa + pey/ (1 —h3)(1 — h3) (21.11)
rearrangement of which leads to

Pz — hl hQPA

e 2112)

pPE =

(An alternative derivation based on path analysis is provided in Appendix 2.)
Estimates of the environmental correlation are obtained by substituting observed
for expected quantities in this expression.

The derivation of Equation 21.12 assumes zero covariance between the ge-
netic value of trait 1 in individual z and the environmental deviation of trait 2
in relative y, and vice versa, a reasonable assumption if maternal effects can be
ruled out. This problem aside, it should also be emphasized that because Equa-
tions 21.6, 21.7, and 21.9 only provide approximations of the additive genetic
correlation, Equation 21.12 yields only an approximation of the environmental
correlation. All of the nonadditive genetic variance and covariance that is not in-
cluded in the estimation of p 4 will contribute to p. For example, when the genetic
covariance is estimated by twice the covariance of offspring and midparents, the
actual composition of the excess “environmental” covariance 1S

CTAA(l, 2)
2 _

A(lvz)
2

o
0-2(172)_ O'A(LQ)—F } :O‘E(132)+O'D(1,2>—|— A +O'AD(1;~2)‘|'"'
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since any of the covariance terms can be positive or negative, estimates of en-
vironmental correlations can be biased in either direction by nonadditive gene

action.

Phenotypic Correlations as Surrogate Estimates of Genetic Correlations

Because of the inherent difficulties in estimating additive genetic correlations, it
is of great interest to know if these have a strong tendency to reflect the more
easily acquired phenotypic correlations in magnitude and/or sign. If this were
true, phenotypic correlations would provide useful, and more accessible, insight
into the directionality of constraints on multivariate evolution. Moreover, be-
cause phenotypic correlations can normally be estimated with a high degree of
accuracy, while genetic correlations usually have very large standard errors, if
the parametric values of genetic and phenotypic correlations tended to be equal,
then estimates of the phenotypic correlation could more closely approximate the
true genetic correlation than the genetic correlation estimate itself.

It has been noticed that estimates for genetic correlations tend to slightly
exceed phenotypic correlations in absolute magnitude (Searle 1961, Kohn and
Atchley 1988, Koots et al. 1994). But a broader analysis indicates that this may
be due to biases that arise with small sample sizes. When the “effective number
of families,” Nhihy, where N is the actual number of families, exceeds 50 or so,
the average difference between the two types of correlation becomes negligible
(Cheverud 1988).

Broad surveys of the literature have led Cheverud (1988, 1995) and Roff
(1995, 1996) to the conclusion that p. and p4 not only normally have the same
sign, but are also of the same magnitude (Figure 21.1). The pattern appears to be
- particularly clear for morphological (as opposed to life-history) characters (Roff
1996, Simons and Roff 1996). Few others have been bold enough to make the
assertion that p, ~ p4, and Willis et al. (1991) point out several reasons why the
generality of such a statement should be treated with caution. Certainly, itisstill an
Open question as to whether environmental factors thatjointly influence two traits
operate through the same biochemical/developmental pathways as pleiotropic
genetic factors, and cases do exist in which the estimates r, and r 4 differ in sign
(Mousseau and Roff 1987) and magnitude (Hébert et al. 1994). Nevertheless, the
similarities between existing estimates of genetic and phenotypic correlations
are striking. Because the latter is a function of the former, some correspondence is
expected just on the basis of sampling error, but it seems unlikely that this accounts

for the entire pattern. Further in-depth study of this fundamentally important
problem is certainly in order.

STATISTICAL ISSUES

As with any parameter estimates, it is useful to have measures of the sampling
variances and/or confidence intervals of the phenotypic, genetic, and environ-
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Figure 21.1 Comparison of genetic vs. phenotypic correlations for pairs of mor-
phological traits in the sand cricket, Gryllus firmus. Results are oiven for the two
sexes, raised in two environments that varied in temperature and photoperiod.

(From Roff 1995.)

mental correlations to aid in their interpretation. For the genetic and environ-
mental correlations, the problems here are considerable. The estimators for pa
and pg generally utilize a combination of results from different applications of
ANOVA and / or regression analysis, all employing data on the same individuals.
The sampling properties of functions of statistics derived from nonindependent
analyses are poorly understood.
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Hypothesis Tests

lesting tor a significant phenotypic correlation is straightforward, as it is a con-
ventional product-moment correlation, which can be evaluated against critical
values widely available in tables in statistics texts. For genetic correlations, the
simplest option for testing the hypothesis that p4 = 0 is based on the principle
that significant genetic covariance between two traits implies a significant genetic
correlation. With the pairwise-comparison method, the significance of the regres-
sion of character 2 in set y on character 1 in set -, and vice versa, can be evaluated
by the standard test for a regression slope.

Methods for evaluating the significance of an environmental correlation are
less well developed. However, with the nearly universal availability of high-speed
computers, a simple procedure enables simultaneous tests for all three types of
correlation (r,, 74, and 7). Bootstrapping and jackknifing over families (Chapter
18) are being relied upon increasingly to generate empirically derived sampling
distributions of the desired statistics (Dorn and Mitchell-Olds 1991, Brodie 1993,
Paulsen 1994, Roff and Preziosi 1994). For each quasisample of the data set, the
estimates r, and r 4 are computed directly, and then rg is obtained by use of Equa-
tion 21.11. After randomly generating numerous sets of such estimates, one can
construct confidence intervals for the three parameters from their observed sam-
pling distributions. With the paired-comparison method, an alternative procedure
is to randomize members of the set y with respect to those of set z, evaluating the
probability (under the null hypothesis of no correlation) of obtaining a correlation
coetficient as extreme as that observed with the true data set. A similar approach
can be applied to the nested design, by randomizing full-sib families with respect
to sires and dams.

tinally, we note that studies of genetic correlation usually involve the si-
multaneous analysis of several characters, not just two, resulting in tables of
correlations between all possible pairs of characters. Care then needs to be taken
S0 as not to overinterpret the significance levels attached to single correlations.
For example, suppose that one were studying a set of N traits, none of which are
actually correlated. The probability that none of the N(N — 1)/2 observed corre-
lations is significant (at level a) is (1 — a)N(V=1)/2 The probability that at least
one correlation would appear, by chance, to be significant at the level & or smaller
1s one minus this quantity. This probability can be substantial — if N = 7, there
1s a .19 probability that at least one of the 21 correlations will spuriously appear
to be significant at the P = 0.01 level, and a 0.66 probability at the o = 0.05 level.
Adjusting significance tests to account for multiple comparisons is straightfor-
ward when the different tests involve independent data (Rice 1989: see Chapter
14). However, in the analysis of correlated characters, the nonindependence of
data renders conventional multiple-comparison procedures invalid, and to our
knowledge no satisfactory solution to the problem exists.
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Standard Errors

By Taylor expansion (Appendix 1), Reeve (1955) first obtained an expression for
the approximate large-sample variance of 74 for the single parent-offspring re-
oression, and Hammond and Nicholas (1972) subsequently generalized this to
include all types of parent-otfspring combinations:

V&I‘(?"A) ™~ —]—% (1___2__?:_24)_2 -+ Mgl__________jz)(ww + QA(BTAkﬂ CTZ)Q
_}.ww (21_13)

where A = 1 or 2 for regressions involving midparents or single parents (respec-
tively), B = [(1/h%)+(1/h2)]/2, C = 1/(h1hs), N is the number of families, n is the
number of offspring /dam in each family, and k is the number of offspring/sire
in each family. For midparent-offspring regressions, n = k is the family size,
whereas in the regression of paternal half-sibs on fathers, n = 1 and k is the num-
ber of dams/sire. Reeve (1955) provides an expression for n for use in unbalanced
designs, and VanVleck and Henderson (1961) present an equation for the case in
which only a single character is measured in each individual (such as character 1
in parents and character 2 in offspring).

The preceding formula serves as a useful guide in choosing an adequate
experimental design. If the constraint on the investigator is the total number of
individuals that can be measured, T = Nk, then it can be seen that Var(r,) is
minimized by maximizing the number of families (/V). (This approach minimizes
the first term in the equation, while the remaining terms, whose denominators
are T = Nk, are unaffected.) Thus, the optimal design for estimating a genetic
correlation is to measure a single offspring from as many families as possible.
This recommendation is similar to that for heritability estimation based on parent-
offspring regression (Chapter 17).

VanVleck and Henderson (1961) and Brown (1969) used simulation studies to
evaluate the degree of accuracy in using Equation 21.13 to estimate the standard
error of a genetic correlation by substituting observed for expected quantities. For
N < 100, they found that estimates from Equation 21.13 are biased downwards
and may underestimate the true sampling variance by as much as an order of
magnitude with appreciable frequency. However, if N is on the order of 1,000,
“and the true value of 74 is not very nearly +1.0, Equation 21.13 1s quite accurate.

VanVleck and Henderson (1961) and Brown (1969) also examined the sam-
pling distribution of r 4. Provided gene action is additive, Equation 21.6a appears
to yield an unbiased estimate of 4, and provided the true value p 4 1s not very
nearly £1.0, the sampling distribution of 4 approximates normality as sample

sizes become large. Thus, when N is large, 2,/Var(r4) usually can be taken as
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Figure 21.2 Sampling distributions of the additive genetic correlation estimated
with regression of single offspring on N single parents, using simulated data
sets. In all cases, both characters have heritabilities equal to 0.4. Values of the
underlying parameters are: (A) p, = 0.0, p4 = 0.0, N = 200; (B) p, = 0.0.
pa = 0.0, N = 1000; (C) p, = 0.5, pg = 0.5, N = 200; (D) p, = 0.5.
pa = 0.5, N = 1000. (From Brown 1969.)

an estimate of the 95% confidence interval for r 4. It is clear from Figure 21.2 that
unless the number of families analyzed is on the order of 1,000 (for single parent-
single offspring regressions), the standard error of r 4 will be quite large. Cer-
tainly, experiments that involve fewer than several hundred individuals should
be avoided if at all possible (see also Klein 1974).

several attempts have also been made to obtain expressions for the large-
sample variance of correlation coefficients obtained from nested full-sib, half-sib
analyses (Mode and Robinson 1959, Robertson 1959Db, Tallis 1959, Scheinberg 1966,
Abe 1969, Grossman 1970, Hammond and Nicholas 1972, Grossman and Norton
1974). The algebra is quite tedious, and a number of the early papers contain errors
or are rather restrictive in their applicability. The most general expression, derived
by Hammond and Nicholas (1972), is rather complex, but can be summarized as

2)2 ( a®S b D W )

e df, + 2 i df; + 2 i df,, + 2 (21'14(&)

Var(r;) ~ 2 (
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where i denotes z. A. or F depending on which type of correlation is being con-
sidered, and df;. df,, and df,, refer to the degrees of freedom at the sire, dam, and
progeny levels. The terms S, D, and 11" are of the form

71 Zia\° [(Zy Zia\" 7 7 7 7
( 1 1,}2) +(__2__ 1.2) +2( 12 22 ) ( 12 2 ) (91 14b)
Vi Cio Vo Cho Vi C1.2 Vo o Cho

where Z,, Z5, and Z; » refer to the mean squares and cross-products of characters
1 and 2 at the level of sires (when calculating S), dams (when calculating D),
and replicates (when calculating 117). V;, V5, and C 2 denote the estimates of the
variances and covariances at the phenotypic, genetic, and environmental levels,
depending upon which correlation is being dealt with; these estimates are derived
by the usual route of the method of moments. Finally, the constants a, b, ¢, and e
depend upon the nature of the correlation as follows:

a b C €
Phenotypic kl kg — ]{'2 ]CQ — ]{1 —+ kg(k‘l — 1) klkg
Genetic 1 —/fg/kl (kQ — kl)/kl ]{3/4
Environmental — 2 ng/kl [(lﬁ — /{2)/]{1] + kg kg

with the k; coefficients being defined in Table 18.3.

Robertson (1959b) and Tallis (1959) have considered the optimal design for
estimating the genetic correlation from a nested analysis of variance and covari-
ance, concluding that the design that minimizes the sampling variance of the
heritabilities also applies to the genetic correlations. Thus, the recommendations

of Chapter 18 may be referred to.
The important message of this section is that attaining a reasonable degree

of confidence in any study of genetic correlation requires a very substantial data
base. Often, with sample sizes less than a few hundred individuals, the strongest
statement that can be made is whether the correlation is significantly positive or
negative. The conventional approach in regression analysis, and the one that we
focused on in the preceding paragraphs, is to take p = 0 as the null hypothesis.
For genetic studies concerned with constraints on the evolutionary process, an
alternative is to let p4 = +1 be the null hypothesis and to evaluate it against the
observed data using resampling procedures.

Bias Due to Selection

Selection in the parental generation on the characters of interest or any other
characters correlated with them can lead to biased estimates of the genetic corre-

lation by altering the variances and covariances relative to the expectations prior

to selection (Van Vleck 1968, Robertson 1977b, Meyer and Thompson 1984). In
principle, this problem can be significant in studies of wild populations exposed
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to natural selection. Here we consider how serious the bias can be and how it
might be corrected for.

Utilizing an early result of Pearson (1903), Lande and Price (1989) showed
how the bias can be eliminated under the assumption that the joint distribution
of the characters in parents and offspring is multivariate normal in the absence of
selection. Under those conditions, the partial regression coefficients in a multiple
regression of ottspring on parent characters are unaffected by selection, provided
all of the characters under selection are actually included in the analysis. Letting C
denote the matrix of covariances between characters in unselected offspring and
parents, and P be the phenotypic variance-covariance matrix in the unselected
parents, then Pearson’s result implies

CP~ ' =C,P.! (21.15a)

with the subscript s denoting matrices after selection. (Recall from Chapter 8
that partial regression coefficients are obtained as the product of the covariance
matrix involving predictor and response variables and the inverse of the variance-
covariance matrix for the predictor variables.) Rearranging, the matrix of covari-
ances between unselected parents and offspring can be expressed as

C =C,P_'P (21.15Db)

The genetic correlations that we wish to estimate are pa(t,j) = Cij//CiiCj;,
where C;; denotes the element in row i and column j of C.

The above relationship shows that the observed covariances in C. can be
transtformed into the desired elements of C if the phenotypic variance-covariance
matrices before (P) and after (P,) selection are known. The latter is what we ob-
serve from the sampled parents. Lande and Price (1989) suggest that the elements
of P might be obtained from the unselected offspring (of the selected parents)
since a single generation of selection rarely causes a significant alteration in the
phenotypic covariance structure of populations. Obviously, this approach is pos-
sible only if the forces of selection operating on the parents can be removed from
the offspring, and no new ones are added, and if the sources of environmental
variation contributing to P in the offspring generation can be kept the same as

those in the parental generation. Such conditions may be difficult to achieve in
many empirical settings.

the genetic correlation that can be induced by selection, suppose that the variance
of the first of two characters under Investigation has been reduced by a fraction &
by selection such that the phenotypic variance in the observed (selected) parents
is 0(1) = (1 — k)o2(1), where o2(1) is the phenotypic variance of character 1
before selection. Assume further that selection did not Ooperate on any other cor-
related traits. Since the regression of character 2 on 1 accounts for a fraction p= of
the variance of character 2 (Equation 3.17), a change in the variance of character 1
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Expected p;

k (Fractional change in variance of trait 1)

Figure 21.3 Bias in the expected genetic correlation between two characters
when the phenotypic variance of character 1 in the parents has been modified

to (1 — k)oZ(1) but has been unaccounted for in the analysis. Solid circles: cor-

relation based on covariance of offspring character 2 on parent character 1; open
squares: correlation based on covariance of offspring character 1 on parent charac-

ter 2: solid line: average. Left: h? = 0.3, h3 = 0.7. Right: h7 = 0.7, hs = 0.3.
The true value p4 is 0.5 in both examples. (From Lande and Price 1989.)

equal to —ko?(1) must induce a change in the variance of character 2 equal to
—kp202(2). Therefore, the phenotypic variance for character 2 in the parents atter
selection is 02(2) = (1 — kp?)o?(2). From Pearson’s result, we know that selection
does not change the regression coefficient, so if selection reduces the phenotypic
variance of character 1 by the factor k, it must reduce the phenotypic covariance
by the same factor, ie., 05(1,2) = (1 — k)o.(1,2). Substituting these quantities
into P, and solving C, = CP~!P,, we obtain the expected covariances between

parents (p) and offspring (o) atter selection,

2
1
0s(210, 21p) = UAQ( ) (1 — k) (21.16a)
= (2 kpapsh
O'S(ZQO, ng) — JAQ( ) (1 — _@}%__{) (2116b)
1,2 ko.h
O-s(zloa ZQp) — 9-_‘_412_____)_ (1 — pih;) (2116(3)
CTA(I,Q)

(1 — k) (21.16d)

O s (Z207 le) —

assuming that additive effects are the only source of covariance between relatives.
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These expressions illustrate several important points about estimates of ge-
netic correlations in selected populations (Figure 21.3). First, selection that causes
a change in the phenotypic variance of the parents will usually induce changes
in all four of the covariances between parents and offspring.

Second, selection causes the two covariances between characters 1 and 2 to
be unequal, i.e., 04(21,,22,) # 0s(21p, 220). In some cases, especially when the
heritability of the unselected trait is relatively low, the two measures of genetic
covariance may actually differ in sign; this requires that p.h;/(pahs) > 1/k. In
principle, this property could provide a way of assessing whether selection has
caused a significant bias in the parent sample, provided maternal effects can be
ruled out. However, in light of the difficulties in procuring accurate estimates of
covariances, such a test is not likely to be very powerful. In general, averaging the
two types of covariances (Equations 21.16¢ and d) does not improve the situation
much, since both are often biased in the same direction (Figure 21.3).

Third, in extreme cases, the expected value of the genetic correlation, as defined
by Equation 21.6a, can exceed its theoretical limits of +1 (Figure 21.3). Combining
this problem with the substantial sampling variance of genetic correlations, wildly
unrealistic genetic correlations are possible with selected populations.

It any generalization can be drawn from these results, it is that the direction
and magnitude of selection bias on the estimation of p4 is difficult to assess in
the absence of prior information on the composite parameter kp.hi/hs and on p 4
itself. (The situation is worse, of course, if selection is acting on both traits and /or
on additional correlated traits.) Clearly, in situations where selection is likely to
be a problem, application of Equation 21.15b prior to analysis is highly desirable.

The most feasible way to eliminate selection bias is to assay the study pop-
ulation in a highly protective environment, but this approach raises another fun-
damental issue. If the characters under investigation are sensitive to genotype x
environment interaction (Chapter 22), then a change in environment may induce
a real shift in p4, so that one is no longer estimating the correlation of inter-
est. Simons and Roff (1996) found that patterns of genetic correlations among
morphological characters in crickets are essentially the same when estimated in
constant laboratory vs. variable field conditions, although the correspondence
among correlations involving life-history traits is less pronounced. On the other
hand, Gebhardt and Stearns (1988) found that the genetic correlation between
development time and weight at eclosion in Drosophila mercatorum changed sign
from one environment to another. This issue is of special concern when one is
most interested in quantifying genetic constraints in harsh environments, where
selective mortality may be quite high and genetic constraints may play their most
important role. Clearly, more work is needed on the degree to which genetic
correlations (and covariances) respond to environmental changes.
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APPLICATIONS

These warnings are not meant to be totally discouraging. Studies that are appro-
priately designed and meet with the appropriate precautions can yield substantial
insight into the constraints on the evolution of multivariate phenotypes. The fol-

lowing examples will provide a feeling for the diversity of problems that can be
evaluated with a genetic covariance analysis.

Genetic Basis of Population Differentiation

Ecologists are well aware that different populations of the same species often
exhibit rather different diets. To a large extent this may simply reflect shifts in the
relative availabilities of prey types in different areas. An alternative possibility 1s
the existence of genetic differences in feeding behavior. Arnold (1981a—c) studied
this issue in garter snakes (Thamnophis). In California, coastal populations of this
snake are primarily terrestrial predators of slugs, while inland populations prey
more exclusively on fish and amphibians. A dietary shift between these two areas
is clearly necessary, since slugs are absent from inland habitats. Arnold made
several observations that were consistent with genetic differences in the feeding
habits of coastal and inland snakes. For example, about 75% of naive, newborn
snakes from the coast would attack slugs in laboratory experiments, while only
about 35% of the inland snakes would do so. The slug-refusing individuals were
quite persistent in their decision, starving to death unless alternate prey were
offered.

A standard laboratory test was devised to evaluate whether the divergence
in prey preference was due to genetic differences in chemoreceptive responses.
Cotton swabs were either rubbed on different prey or soaked in their extracts
and presented to naive, newborn snakes. The number of tongue flicks/minute
was then taken to be a measure of chemoreceptive response. As expected, the
coastal population was much more receptive to slugs (Table 21.2). On the other
hand, the inland population was not significantly more responsive to fish and
amphibian odors than was the coastal population. Furthermore, the coastal snakes
exhibited a much stronger response to leeches than did the inland snakes. This
latter point was surprising, since leeches are unknown in the diets of coastal
snakes.

Some insight into these results was provided by a genetic analysis of full-
sib families obtained from field-collected gravid females (19 females with a total
of 211 young in the inland population and 20 females with 102 young from the
coast). Because of the full-sib design, the genetic variances and covariances may
be biased by the presence of dominance, but common environmental eftects were
ruled out on the basis of prior experiments. Estimates for the heritabilities of
chemoreceptive responses are given in Table 21.2 and for the genetic correlations

in Table 21.3.
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Table 21.2 A comparison of chemoreceptive responses to prey odors by newborn garter
snakes, Thamnophis elegans, from coastal and inland California.

Mean Tongue-tlick Rate Heritability
Coast Inland Ditference Coast Inland
Slugs 30.9 4.3 1.72 0.2 0.2
Leeches 11.8 2.5 1.24 0.6 0.3
Salamanders 9.0 (.4 0.21 0.4 0.2
Frogs and tadpoles 30.5 2.8 0.17 0.4 0.3
—(J.26 0.0 0.1

Control 1.4 1.6

Source: Arnold (1981a,c¢).

Note: The difference between population mean phenotypes is in units of standard devia-
tions of In-transformed values.

The estimated genetic correlation between responses to leeches and slugs is
0.9 for both populations. Thus, any evolutionary change in one of these responses
1s expected to cause a similar shift in the other through pleiotropy. This result helps
explain the increase in receptivity to leeches for the coastal population, which has
evolved in the direction of slug specialization. Arnold further suggests that the
dichotomy between the two populations may be magnified by an evolutionary
reduction in receptivity to leeches in the inland population. There is no positive
selection for slug predation in this population because there are no slugs. There
are leeches, however, and their consumption may be deleterious, since they often
pass through the snake’s gut alive, causing some damage in the process.

Table21.3 A comparison of the genetic correlations for chemoreceptive responses to prey

odors in coastal (above diagonal) and inland (below diagonal) populations of Thamnophis
elegans.

S1 Le Sa Fr Co
Slugs — 0.9 1.0 0.9 0.0
Leeches 0.9 — 0.8 0.9 0.2
Salamanders 0.5 0.8 — 0.9 0.6
Frogs and tadpoles 0.6 0.4 0.2 — 0.2
Controls -0.4 0.0 0.3 -0.3 —

Source: Arnold (1981b).

Note: Standard errors of the estimates are on the order of 0.3. S] — slugs, Le = leeches, Sa
— salamanders, Fr = frogs and tadpoles, and Co = control.
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[f the hypothesized selective pressures due to slugs and leeches are correct,
then the similarities in responses to salamanders and frogs in the two populations
can also be clarified. In the coastal population, chemoreceptive responses to slugs,
salamanders, and frogs are almost perfectly genetically correlated so the relatively
strong response to vertebrates may be largely a pleiotropic effect of selection
for predation on slugs. The responses to leeches, salamanders, and frogs have
lower, but still positive, genetic correlations in the inland population. Thus, an
antagonism would exist between positive selection for predation on vertebrates
and selection for avoidance of leeches.

This kind of reasoning would not have been reached had Arnold relied solely

on phenotypic correlations. The phenotypic correlations between the various

chemoreceptive responses were uniformly low in both populations, < 0.3 in all
but one case.

The Homogeneity of Genetic Covariance Matrices Among Species

As noted in the previous example, characters evolve in response to natural selec-
tion as a direct consequence of the forces of selection operating on the characters
themselves and as an indirect consequence of selection operating on all geneti-
cally correlated traits (see Chapter 8). Thus, any attempt to project the long-term
consequences of selection on specific characters is highly dependent on the degree
of constancy of the genetic covariances over time. Such constancy is also required

if much progress is to be made in retrospective evaluations of the evolutionary
forces that may be responsible for observed changes in the fossil record (Reyment

1991). One approach to evaluating the stability of the genetic covariance matrix is
to perform temporal surveys of genetic variances and covariances in individual
populations. But such comparisons cannot usually be made on very long time
scales. An alternative is to compare the genetic covariance structure of isolated
populations or species. Similarity in this case would be consistent with long-term
stability.

Lofsvold (1986) used the latter approach in an analysis of skull morphology
in the white-footed mouse (Peromyscus leucopus) and two subspecies of the deer
mouse (P. maniculatus bairdii and P. m. nebrascensis). The specimens were obtained
from a museum collection of preserved skulls obtained from full-sib families ot
wild-caught individuals bred in the laboratory of L. R. Dice in the 1930s. Fit-
teen cranial characters were measured with calipers. After adjusting for sexual
dimorphism (Chapter 24), the additive genetic variances and covariances were
estimated from regressions of offspring means on paternal phenotype. Lotsvold
used three approaches to compare the genetic covariance matrices. Two of these
are explained relatively easily, while the third requires a rather advanced under-
standing of multivariate statistics and will not be considered here.

The first approach was to treat the corresponding elements of two genetic
covariance matrices as paired observations and compute the ordinary correlation
coefficient, r;, between them. An r,; equal to 1.0 would then indicate pertect pro-




CORRELATIONS BETWEEN CHARACTERS 651

portionality between the two matrices, while rj; = 0.0 would indicate a complete
lack of correspondence. This is not a test of the absolute equality of two matrices,
since rj; = 1.0 would arise if one matrix were simply a product of the second and
a constant. Moreover, since the statistical distribution of r,; is unknown, it is not
possible to attach any degree of confidence to r;.

Lofsvold’s second approach eliminates these difficulties, but in a rather arbi-
trary fashion. An index of similarity, v, was computed by taking the sum of the
cross-products of the corresponding elements of the two genetic covariance matri-
ces being compared. The off-diagonal elements of one matrix were then randomly
rearranged by rows, and a new index computed for the randomized matrix and the
other, unaltered, matrix. The randomization procedure was repeated many times,
yielding an empirical distribution of v for randomly constructed matrices. The
significance of the observed v was then determined from the cumulative distribu-
tion of the randomly generated values of ~. For example, if a randomly generated
y greater than the observed v arose at a frequency less than 5%, the hypothesis that
the observed similarity is no greater than that expected by chance was rejected
at the 0.05 level. Although this and other procedures involving the permutation
of matrix elements have been used frequently to compare variance/covariance
structures, the statistical and biological justification for their use has not been
established.

The three different approaches taken in this study yielded essentially the
same conclusions. While the genetic covariance structures for the two P. manicu-
latus subspecies were similar (proportionally), comparisons between P. leucopus
and P. maniculatus indicated pronounced differences. Thus, for this genus, the
assumption of constant genetic covariance structure cannot be extended beyond
the species level. The potential response of one Peromyscus species to selection
cannot be extrapolated from information on the genetic covariance of another.

Several other attempts have been made to test the hypothesis that closely
related populations or taxa have similar genetic covariance and/or correlation
matrices (Cheverud 1988, 1989; Kohn and Atchley 1988; Cheverud et al. 1989;
Venable and Buarquez 1990; Wilkinson et al. 1990: opitze et al. 1991; Platenkamp
and Shaw 1992; Brodie 1993; Paulsen 1994), most of them failing to detect S1g-
nificant differences, probably because of low statistical power. Many statistics
beyond those mentioned above have been employed in these studies, e.g., the
sum of squared differences between like elements, the difference between matrix
determinants or between dominant eigenvalues, and the correlation between the
elements of the leading eigenvectors. The statistical properties of most of these
tests are poorly understood, if not completely unknown (Cowley and Atchley
1992, Shaw 1992). Consequently, most investigators apply several different tech-
niques to their data in hopes that a consistent message will emerge, and that has

usually been the case. However, such results may be a bit misleading, since the
ditferent methods are clearly not independent.

Prior to the application of any test for covariance matrix similarity, a funda-
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mental issue that needs to be dealt with is measurement scale. If there is an asso-
ciation between means and variances, two taxa can exhibit different covariance
structures simply because they ditfer in mean phenotypes. Methods for dealing
with this type of problem have been covered in Chapter 11. An equally serious
issue is the fact that different characters are often measured on fundamentally
different scales (e.g., length vs. volume). Without some kind of transformation,
the contributions of different characters to matrix similarity indices will depend
on the different measurement scales. The problem cannot be eliminated by simply
standardizing all characters to have equal variances, since that would be contrary
to the goal of the analysis. Spitze et al. (1991) suggest that each scale of measure-
ment be transformed such that the variance of all characters measured on that
scale averages to one across populations. This approach has the effect of stan-
dardizing different scales with respect to each other, while preserving differences
in variance among characters within and between populations.

Resampling procedures (Chapter 16) seem to provide areasonable alternative
means for the comparison of covariance matrices (Spitze et al. 1991). Once the data
have been transformed, the information from both populations can be pooled
into one synthetic population. Then two quasipopulations can be constructed by
randomly selecting families from the synthetic population, and allocating them
such that the two quasipopulations have the same number of families as the
true population samples. This procedure is repeated a thousand or so times, and
the similarity index of interest is computed for each pair of quasipopulations,
generating a null distribution of the statistic against which the observed value for
the true populations is tested. One can then evaluate whether the observed value
is significantly greater than (or less than) what would be obtained by drawing
two samples from a common population. In addition to making no assumptions
about the distribution of phenotypes, this bootstrap procedure has the advantage
of applying to any similarity index.

If one is willing to assume that the characters under consideration have a
multivariate normal distribution, a maximum likelihood method is available for
testing the hypothesis that any element (or group of elements) of the covariance
matrices differ between two populations (Shaw 1991). Unfortunately, simulations
have shown the power of this test to be quite low. For example, considering only
the univariate case, if the additive genetic variances in two populations ditfer by
a factor of 2.5, a nested sib analysis involving 100 sires/ population, 3 dams/sire,
and 3 offspring /dam would detect the difference at the 0.05 level of significance
only about 50% of the time. With the same design but only 40 sires, the difference
would go undetected 80% of the time. Such results should not be too surprising.
We have seen repeatedly that the procurement of accurate variance/covariance
estimates demands large sample sizes; detecting a significant difference between
two separate estimates can only be more difficult. It remains to be seen whether
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Figure 21.4 Intraspecific lines of allometric growth for brain:body size vs. the
interspecific pattern. (Solid lines give the regression, and solid dots the means,
for individual species; the dashed line is the regression of the species means.)

the power of the bootstrap and other randomization tests exceeds that of the
maximum likelihood procedure.

Evolutionary Allometry

As noted in Chapter 11, the scaling of anatomical features to body size (allom-
etry) has long been recognized as an important contributor to shape differences
between species. Because of our unusually large heads, a great deal of attention
has been focused upon the relationship of brain size to body size. When log-
transformed adult brain weights are regressed on log-transformed adult body
weights for members of the same species, a linear relationship is observed with
the slope generally on the order of 0.2 to 0.4. Usually, this also applies to the
mean phenotypes of different species in the same genus. However, when adults
of distantly related species (e.g., different genera within an order) are compared,
a higher slope of about 0.6 is obtained (Figure 21.4).

The different slopes at different taxonomic levels has long been a perplex-
ing problem (Lande 1979, 1985). Drawing from extensive laboratory work, Riska

and Atchley (1985) suggested -an attractive hypothesis to account for these dif-
terences. Using a nested sib design with cross-fostering (to factor out maternal

effects; Chapter 23), they analyzed approximately 500 laboratory rats and 1,500
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Figure 21.5 Reduction with age of the genetic correlation between final adult
brain and age-specific body weights. (From Riska and Atchley 1985.)

mice (Atchley and Rutledge 1980, Atchley et al. 1984). The experimental design
provided estimates of the genetic correlations between brain size, body size, and
body growth during different age intervals. In both species, the correlation be-
tween eventual adult brain weight and age-specific body weight declines with
age (Figure 21.5). This reduction was found to be due to an increasingly negative
correlation between brain weight and growth increment late in life. Thus, the
positive genetic correlation between brain and body size is primarily a function
of genes that are active in prenatal and early postnatal growth.

Riska and Atchley pointed out that mammalian growth can be partitioned
roughly into an early phase in which cell numbers of most organs are increasing
and a late phase in which cell numbers are nearly constant but cell sizes are
increasing in different organs to different degrees. Thus, genes that influence early
ocrowth have general pleiotropic effects on the size of most organs, while those
operating later in life have more specific targets. In artificial selection experiments
for body size in mice, a large proportion of the response is due to changes in cell
size (Falconer et al. 1978), indicating that late-acting genes with relatively mild
pleiotropic effects are selected upon. Based on the pattern in Figure 21.5, such
selection would be expected to yield a relatively mild change in brain weight,
as observed in intraspecific studies. In contrast, body size ditterences between




CORRELATIONS BETWEEN CHARACTERS 655

distantly related species are due almost entirely to variation in cell numbers (Raff
and Kaufman 1983), suggesting that diversification at this taxonomic leve] is
largely a consequence of evolutionary changes in the early phase of growth where
the correlated response of brain size to selection on body size would be expected

to be strong.

example, in a study of wing color patterns in two species of butterflies, after cor-
recting for size differences among individuals, Paulsen (1994) found extremely
high genetic correlations between various wing venation measures, between var-
10us “eye-spot” diameters, and between various “eye-spot” positions. The lack
of correlation between characters in different trait sets implies that the three sets
are free to evolve independently in response to natural selection, and helps ex-
plain the pathways by which butterfly wing color diversification takes place.
In a similar study with Drosophila, Cowley and Atchley (1990) found that traits
derived from the same imaginal disc during development are more closely cor-
related genetically than are those from different discs. In wild radish ( Raphanus
raphanistrum), genetic correlations are much higher within than between func-
tionally related groups of characters (flowers vs. leaves) (Connor and Via 1993).
Similarly, in studies of primate cranial morphology, genetic correlations are con-
sistently higher among functionally related traits (cranial vault vs. oral cavity)
than among unrelated traits Cheverud (1982, 1989, 1995). In all of these cases,
it 1s reasonable to hypothesize that the observed patterns of correlation are a
consequence of pleiotropy, i.e., of functionally similar traits sharing the same
developmental pathways.

Consider, however, Brodie’s (1989, 1993) study of the garter snake Thamnophis
ordinoides, which revealed a strong genetic correlation between color pattern and
antipredator behavior. Although not impossible, the coupling of these two traits
via the pleiotropic effects of gene action seems implausible. An alternative hy-
pothesis is that selection for adaptive combinations of color pattern and behavior
lead to the build-up of gametic phase disequilibria among pairs of polymorphic
loci. A simple test of this hypothesis would be to randomly mate the snakes for
several generations and maintain them under relaxed selection. If the associa-
tion between behavior and color pattern were a consequence of gametic phase
disequilibrium, the genetic correlation should decline over Hme

Evolution of Life-history Characters

A widespread belief in evolutionary ecology is that negative genetic correlations

between fitness characters are the rule in natural populations. Indirect and direct
evidence of such tradeoffs have indeed been recorded trequently (see reviews in

Reznick 1985, Partridge and Harvey 1985, Bell and Koufopanou 1986, Scheiner



656 CHAPTER 21

et al. 1989), but a number of clear cases of positive genetic correlations have also
been reported (e.g., Giesel and Zettler 1980, Hegmann and Dingle 1982, Mitchell-
Olds 1986, Rausher and Simms 1989, Spitze et al. 1991). In a broad review of the
literature, Roff (1996) found that genetic correlations between fitness characters
tend to be lower than those between morphological characters. However, there
is a broad degree of overlap in the distributions, and the majority of life-history
correlations are still positive.

Positive genetic correlations between fitness characters can be artifactual
(Rose 1984, Service and Rose 1985, Clark 1987) — a consequence of using in-
bred lines, some of which suffer from inbreeding depression more than others,
or of performing assays in a novel laboratory environment to which populations
are not adapted. But not all of the data seem to be explained so easily.

The usual argument for the negative correlation hypothesis is that alleles
that simultaneously improve several traits tend to be advanced rapidly by selec-
tion, while those with several negative effects tend to be eliminated (Falconer and
Mackay 1996, Rose 1982). Such a sorting process 1s expected to leave circulating a
pool of alleles with favorable effects on some fitness traits but unfavorable effects
on others, i.e., a set of alleles with equivalent effects on total fitness. Curtsinger
et al. (1994) have cast doubt upon this seductively simple hypothesis, pointing
out that the conditions for the maintenance of stable polymorphisms by antag-
onistic pleiotropy are quite restrictive. However, their argument is not entirely
satisfying, since they only considered the maintenance of variation by balancing
selection, ignoring the recurrent introduction of new alleles by mutation. As noted
in Chapter 12, polygenic mutation introduces variance for quantitative characters
at a high enough rate that substantial genetic variance can be maintained by a
balance with purifying selection, and this is likely to be true for genetic covariance
as well.

van Noordwijk and de Jong (1986) and Houle (1991) have shown how the sign
of a genetic correlation between fitness characters can depend on the pleiotropic
properties of mutations. If no genetic variation exists for the ability to acquire re-
sources, then there will necessarily be a genetic tradeoff in the amount of resources
that can be allocated to two competing processes. Suppose, however, that genetic
variation exists for acquisition ability so that some individuals acquire more total
esources and therefore are able to allocate more to both characters. A positive
genetic correlation between the two characters would then be possible. As noted
above, selection would be expected to eliminate such variation by fixing favor-
able genes, but if deleterious mutation continuously generated individuals with
low acquisition abilities, a positive genetic correlation between fitness characters
would be maintained by selection-mutation balance. Given that most mutations
tend to be deleterious (Chapter 12), such a situation is not out of the realm of pos-
sibility, assuming that many more mutations influence acquisition than allocation
of resources. Resolution of these issues will require a deeper understanding of the
pleiotropic effects of mutations than is currently available.




