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lutionary inference, even in the absence of
genetic data. In this report, I compare the
level and pattern ofgenetic and phenotypic
correlation in order to determine the prac­
tical importance of obtaining genetic-cor­
relation estimates for the purpose ofmaking
inferences about the coordinated evolution
of traits. If phenotypic values can be sub­
stituted for genetic ones in some instances,
the growing body of evolutionary quanti­
tative-genetic theory can be applied more
widely than it is today.

There are two reasons one might expect
genetic and phenotypic correlations to be
similar. First, under the usual additive
model, phenotypic correlations are the sum
of genetic and environmental components,
the causal correlations being weighted by
the relative importance of heritable and
nonheritable effects, respectively:
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Abstract. -Genetic variances and correlations lie at the center ofquantitative evolutionary theory.
They are often difficult to estimate, however, due to the large samples of related individuals that
are required. I investigated the relationship ofgenetic- and phenotypic-correlation magnitudes and
patterns in 41 pairs of matrices drawn from the literature in order to determine their degree of
similarity and whether phenotypic parameters could be used in place of their genetic counterparts
in situations where genetic variances and correlations cannot be precisely estimated. The analysis
indicates that squared genetic correlations were on average much higher than squared phenotypic
correlations and that genetic and phenotypic correlations had only broadly similar patterns. These
results could be due either to biological causes or to imprecision of genetic-correlation estimates
due to sampling error. When only those studies based on the largest sample sizes (effective sample
size of 40 or more) were included, squared genetic-correlation estimates were only slightly greater
than their phenotypic counterparts and the patterns of correlation were strikingly similar. Thus,
much of the dissimilarity between phenotypic- and genetic-correlation estimates seems to be due
to imprecise estimates of genetic correlations. Phenotypic correlations are likely to be fair estimates
of their genetic counterparts in many situations. These further results also indicate that genetic
and environmental causes of phenotypic variation tend to act on growth and development in a
similar manner.

Received July 24, 1987. Accepted March 10, 1988

The level and pattern of correlation, or
covariance, between traits has repeatedly
been investigated by evolutionary biologists
and is ofspecial concern for those interested
in the basis and role of morphological in­
tegration in evolution (Huxley, 1932; Olson
and Miller, 1958; Cheverud, 1982, 1988a,
1988b; Reyment et al., 1984). It has become
apparent to evolutionary biologists over the
past several years that, due to pleiotropy
and linkage disequilibrium, knowledge of
genetic correlations (and covariances) is
crucial for an understanding of coordinate
evolution through correlated responses to
selection (Lande, 1979; Falconer, 1981;
Cheverud, 1982, 1984). Genetic correla­
tions and variances are difficult to measure
even in the best circumstances, however,
and are utterly impossible to measure in
many instances, such as in paleontology or
in neontological studies of rare, difficult-to­
breed species. If genetic- and phenotypic­
correlation levels and patterns are typically where h represents the square root of the
similar to one another and if genetic and heritability, e represents the square root of
phenotypic variances are often proportional the proportion of phenotypic variance due
to one another (or there is little variation in to environmental factors, and r is a corre­
heritability among traits), perhaps evolu- lation with subscripts P, G, and E repre­
tionary inferences can be made from phe- senting phenotypic, genetic, and environ­
notypic correlations and variances alone, mental correlations, respectively, for traits
thus providing a basis for some level ofevo- X and Y (Falconer, 1981). Thus, ifboth her-
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itabilities approach one, genetic and phe­
notypic correlations must be similar by def­
inition, and phenotypic correlations may be
substituted for their genetic counterparts in
evolutionary analysis. Unfortunately, her­
itabilities are rarely high.

If genetically and environmentally based
phenotypic variations are produced by sim­
ilar disruptions ofdevelopmental pathways,
genetic and environmental correlations
should be similar (Cheverud, 1984), given
that the pattern of developmental relation­
ships among traits structures the pattern of
correlation. Since phenotypic correlations
are the weighted sums of genetic and en­
vironmental components, genetic and phe­
notypic correlations in this situation will also
be similar, regardless of the level of herita­
bility. This hypothesis must be tested using
similarity of phenotypic- and genetic-cor­
relation estimates, rather than estimated ge­
netic-environmental similarity because en­
vironmental correlations are routinely
computed as differences between phenotyp­
ic- and genetic-correlation estimates from
the relationship defined in Equation (1). En­
vironmental correlations between traits are
typically not estimated directly, due to the
difficulty in identifying and directly mea­
suring all the important environmental fac­
tors affecting trait variation and covaria­
tion. Even so, particular sources of
environmental variation, such as maternal
effects, are sometimes directly estimated
(Falconer, 1981).

Differences between genetic- and phe­
notypic-correlation estimates could arise due
to disjunction between patterns of environ­
mental and genetic effects on the developing
phenotype and/or due to random sampling
error present in estimates oftrue population
values. Actual population genetic correla­
tions are particularly difficult to estimate
accurately, because the calculated estimates
reported in the literature are really only
functions ofordinary statistical estimates of
true population values rather than direct
statistical estimates. For example, in a
quantitative-genetic analysis using a half­
sib design, each set of four paternal half­
sibs is a sample drawn from all of the fa­
ther's potential offspring and thus is only an
estimate of his additive genetic (breeding)
value rather than a measurement of it. The

fathers, in turn, are also sampled from the
population as a whole (see Arnold [1981]
for a brief discussion). There is a two-level
sampling problem, because number of off­
spring per family and number of families
are both important in determining the sam­
pling variation ofgenetic estimates (see Fal­
coner [1981] for optimal balance between
family size and number offamilies). For this
reason, quantitative-genetic studies require
fairly large sample sizes relative to pheno­
typic studies, even with standard statistical
designs (Klein, 1974). It has even been sug­
gested (Williams, 1962a. 1962b) that, in
particular instances, estimates of genetic
variance and covariance not be used in con­
structing selection indices for agricultural
breeding programs because errors in the es­
timates can be so large that their inclusion
may lead to less actual realized economic
gain than would have been achieved from
using the unmodified economic weights
alone. In this situation, poor genetic esti­
mates might actually be misleading.

Gill and Jensen (1968) investigated the
probability of obtaining negative heritabil­
ity estimates (true population heritabilities
cannot be negative by definition) as a func­
tion of sample size and found this proba­
bility to be considerable. Hill and Thomp­
son (1978) determined the probability of
obtaining negative semidefinite genetic-co­
variance or genetic-correlation matrices
(matrices with ordinary or partial correla­
tions greater than one or less than negative
one and thus containing linear combina­
tions with negative heritability), given cer­
tain sample sizes, numbers of traits, and
levels of heritability, and found that the
probability can approach 100% even for
fairly large samples. The probability of ob­
taining such estimates, corresponding to
theoretically impossible sets of genetic co­
variances, increases dramatically as the
number of traits included in the analysis
increases but decreases with increasing sam­
ple size and heritability of the characters.
Indeed, positive definite genetic-correlation
matrices are found only rarely in the liter­
ature (see Cheverud and Leamy, 1985).

While estimates ofindividual genetic cor­
relations may not be biased, Hill and
Thompson's work (1978; also see Hayes and
Hill [1981]) indicates that the overall level
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of correlation among sets of traits (as rep­
resented by the inverse of the correlation
matrix's determinant, its level ofintegration
[Cheverud et al., 1983], the variance of its
eigenvalues, or the average squared corre­
lation) will tend towards larger values. Thus,
the estimated level of overall genetic co­
variance or correlation among a set oftraits
is likely to be extreme, relative to the true
population value, due to sampling error
when the number oftraits is high, the sam­
ple size is low, and the heritabilities are low.
Likewise, the standard errors considered si­
multaneously for many related genetic-cor­
relation coefficients are likely to be very high,
making the signal-to-noise ratio unfavor­
able and making it difficult to detect actual
population genetic-correlation patterns. The
effects ofsuch errors in estimation are much
less extreme for phenotypic correlations.

A lack ofcorrelation between genetic- and
phenotypic-correlation estimates could be
due to lack ofprecision in estimating genetic
correlations. Also, genetic-correlation mag­
nitudes may be extreme, relative to their
phenotypic counterparts, due to small sam­
ple sizes and/or low heritabilities.

From Equation (1) and the discussion
above, it is apparent that the level of her­
itability potentially affects the similarity of
phenotypic- and genetic-correlation levels
and patterns in two ways. Higher heritabil­
ities increase the proportional contribution
of genetic to phenotypic correlation [see
Equation (1)] and thus will result in greater
similarity of population phenotypic and ge­
netic correlations. Higher heritabilities will
also increase the overall accuracy ofgenetic­
correlation estimates (Klein, 1974; Hill and
Thompson, 1978), resulting in greater sim­
ilarity of phenotypic- and genetic-correla­
tion estimates when population values are
similar.

When heritabilities are high, we expect
little difference in the overall level and pat­
tern ofgenetic and phenotypic correlations.
When heritabilities are moderate to low and
the magnitude and pattern of genetic and
phenotypic correlations are similar, it is like­
ly that the effects of genetic and environ­
mental factors are channeled through a
common, relatively invariant, develop­
mental system. When heritabilities are
moderate to low and the overall level of

genetic correlation is greater than pheno­
typic correlation and genetic correlations
follow a different pattern from their phe­
notypic counterparts, either the genetic pa­
rameters are not sufficiently well estimated
(see above), or genetically and environmen­
tally based phenotypic variations do not
share the same developmental basis.

Previous results on the similarity of ge­
netic and phenotypic correlations have been
mixed. It has typically been found that ge­
netic correlations exceed their phenotypic
counterparts, although no systematic survey
has been attempted since Searle (1961).
Some empirical studies have indicated sim­
ilarity between genetic- and phenotypic­
correlation patterns (Bailey, 1956; Heg­
mann and DeFries, 1970; Leamy, 1977;
Atchley et al., 1981; Arnold, 1981), while
others have stressed the observed differ­
ences (Atchley and Rutledge, 1980; Cheve­
rud, 1982).

MATERIALS AND METHODS

In order to test for similarities between
genetic and phenotypic correlations, a total
of 41 pairs of phenotypic- and genetic-cor­
relation matrices from 23 different studies
were collected from the agricultural genetic
and evolutionary literature (see Appendix).
Animals included range from human to am­
phipod, while traits analyzed range from
morphological to cognitive. Only studies in­
cluding five or more traits were included in
the compilation. This sample of 41 matrix
pairs is not exhaustive, nor are the pairs
independent of one another. Several well
studied populations, such as the rodent pop­
ulations originating in the University of
Wisconsin's animal laboratory (Numbers
1-7,9-10,12-19,27, and 30-31 in the Ap­
pendix) are represented multiple times. This
lack ofindependence among the matrix pairs
complicates statistical analysis, so that the
statistical probabilities reported here are
likely to be too low. In these 41 studies,
genetic variances and correlations were es­
timated in a variety of ways using various
kinds of relatives and a variety of experi­
mental, and nonexperimental, statistical de­
signs. A compensating advantage of these
studies is that all authors published their
genetic- and phenotypic-correlation matri­
ces.
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The overall magnitude of correlation in
each matrix was measured by the average
R2 value; more extreme values are always
relatively higher on this scale, as opposed
to a strict correlation scale. In order to cal­
culate the average R2 value, each individual
off-diagonal correlation value was squared,
and the squared correlations were summed
and then divided by the number of off-di­
agonal elements in the matrix. Squared cor­
relations were used because the intention
here is to compare magnitudes of correla­
tion, rather than their patterns. These over­
all magnitudes were compared by subtract­
ing phenotypic from genetic average R2'S to
generate a variable labelled "difference."

The patterns of genetic and phenotypic
correlation are compared using a matrix
correlation, an element-wise Pearson prod­
uct-moment correlation between all com­
parable, nonredundant genetic- and phe­
notypic-matrix elements. A high positive
matrix correlation indicates a strong simi­
larity of correlation pattern. The statistical
significance of this matrix correlation is
tested with a quadratic-assignment proce­
dure (Dow and Cheverud, 1985; Cheverud
and Leamy, 1985; Hubert, 1987; Dow et
al., 1987a, 1987b), sometimes referred to
as a Mantel test (Mantel, 1967; Smouse et
al., 1986). In quadratic assignment, the ob­
served matrix correlation is compared to an
empirically derived distribution based on a
null hypothesis of no association between
genetic and phenotypic matrices. The dis­
tribution of matrix correlations under the
null hypothesis is generated iteratively by
repeatedly (200 repetitions per comparison)
correlating the phenotypic matrix with the
genetic matrix, after first having random­
ized the rows (and corresponding columns)
of the genetic matrix.

In order to examine the possibility that
differences between genetic- and phenotyp­
ic-correlation magnitudes and patterns are
due to poorly resolved genetic-correlation
estimates, the geometric mean heritability
(H) and number of families (N) used in de­
riving genetic estimates were recorded for
each pair of matrices. The reliability of ge­
netic-correlation estimates depends on both
of these factors in combination (Turner and
Young, 1969). Thus, a measure referred to
as effective sample size (Nes ) was calculated

as the product of number of families and
heritability and taken as a very rough esti­
mate ofthe true sample size used in deriving
genetic-correlation estimates. The varied
designs and estimation techniques make this
measure one of the few that are at least
coarsely comparable across these diverse
studies. Spearman rank-order correlations
and Mann-Whitney U tests are used to eval­
uate the relationship between the reliability
of genetic-correlation estimates and differ­
ences between genetic- and phenotypic-cor­
relation matrices.

RESULTS

Over the entire set of studies, heritabili­
ties tend to be moderate (see Table 1; simple
average h2 = 0.35 [SD = 0.15]) with only
six values greater than 0.50. Thus, Equation
(I) does not inherently imply close similar­
ity of genetic- and phenotypic-correlation
estimates in this sample. The average R2
values for the set of genetic- and phenotyp­
ic-correlation matrices are also presented in
Table 1. The average squared genetic cor­
relation over the whole sample is 0.49, while
the average squared phenotypic correlation
is 0.29, yielding an average difference of
0.20. Phenotypic squared correlations ex­
ceed genetic ones in only four cases, and
three of these four involve trivial differ­
ences. Clearly, squared genetic-correlation
estimates are more extreme than their phe­
notypic counterparts. This may represent a
real difference in true population values for
the average squared correlations or the ef­
fects of small effective sample sizes for ge­
netic estimation.

The difference between average genetic
and phenotypic squared correlations is sig­
nificantly negatively correlated with herita­
bility and effective sample size (see Table
2), indicating that the greater magnitude of
squared genetic-correlation estimates is due
to lack ofprecision caused by small samples,
although it is also possible that greater sim­
ilarity ofcorrelation magnitudes with higher
heritability is due in small part to the def­
initional relationship given in Equation (1).
These negative correlations are not large,
but given the imperfect manner in which
the variables used relate to the precision of
genetic-correlation estimates, they appear
to be considerable. The difference in cor-
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TABLE 2. Spearman rank-order correlations between
factors affecting the reliability of genetic-correlation
estimates (average heritability [H], number offamilies
[N], and effective sample size [Nes]) and differences in
magnitude (Dill) and pattern (Corr) between genetic­
and phenotypic-correlation matrices.

TABLE I. Comparison of pairs of genetic- and phe­
notypic-correlation matrices. The sources are identi­
fied by number in the Appendix. H is the geometric
mean heritability for the trait set, R2 p and R2G are the
average squared phenotypic and genetic correlations,
respectively, "Diff" is the difference between R2 val­
ues, "Corr" is the matrix correlation between pheno­
typic- and genetic-correlation matrices, N is the num­
ber offamilies used in the study, and Nes is the effective
sample size (HN).

H
N
Nes

Diff

-0.39*
-0.22
-0.35*

Corr

0.39*
0.36*
0.52*

• Correlation significantly greater than zero at the 0.05 level, as deter­
mined by the quadratic assignment procedure.

relation level is plotted against effective
sample size in Figure 1. It is especially no­
table that the difference between estimates
ranges widely when effective size is less than
40. This is not surprising, given that each
study includes at least five traits.

I 0.32 0.59 0.61
2 0.27 0.29 0.65
3 0.26 0.38 0.67
4 0.23 0.20 0.97
5 0.30 0.67 0.69
6 0.42 0.42 0.61
7 0.31 0.44 0.61
8 0.13 0.55 0.53
9 0.28 0.58 0.55

10 0.36 0.59 0.70
II 0.41 0.44 0.05
12 0.24 0.50 0.84
13 0.25 0.61 0.90
14 0.26 0.53 0.87
15 0.25 0.32 1.17
16 0.34 0.27 0.37
17 0.33 0.31 0.64
18 0.27 0.30 0.63
19 0.14 0.27 0.96
20 0.83 0.34 0.37
21 0.70 0.08 0.16
22 0.48 0.21 0.35
23 0.34 0.19 0.20
24 0.36 0.23 0.45
25 0.18 0.21 1.00
26 0.57 0.11 0.16
27 0.60 0.31 0.48
28 0.52 0.02 0.61
29 0.43 0.16 0.14
30 0.40 0.18 0.21
31 0.45 0.15 0.22
32 0.55 0.24 0.42
33 0.46 0.06 0.13
34 0.39 0.05 0.12
35 0.26 0.06 0.27
36 0.37 0.22 0.37
37 0.32 0.11 0.13
38 0.25 0.22 0.39
39 0.41 0.38 0.40
40 0.13 0.03 0.11
41 0.18 0.06 0.27

Diff

0.02
0.36
0.29
0.77
0.02
0.19
0.17

-0.02
-0.03

0.11
-0.39

0.34
0.29
0.34
0.85
0.10
0.33
0.33
0.69
0.03
0.08
0.14
0.01
0.22
0.79
0.05
0.17
0.59

-0.02
0.03
0.07
0.18
0.07
0.07
0.21
0.15
0.02
0.17
0.02
0.08
0.21

Corr

0.50*
0.66*
0.76*
0.37
0.71*
0.95*
0.56*

-0.14
0.97*
0.95*
0.80*
0.27
0.56*
0.08

-0.25
0.82*
0.46
0.03

-0.54
0.62*
0.50*
0.72*
0.74*
0.51*
0.37*
0.81*
0.77*
0.26*
0.75*
0.71*
0.82*
0.71*
0.86*
0.85*
0.72*
0.50*
0.96*
0.65*
0.43
0.70*
0.81*

N Nes

108 34
108 29
108 28
108 24
108 32
92 38
92 28
22 2

345 96
345 124

30 12
108 25
108 27
108 28
48 12

108 36
108 35
60 16
60 8
27 22
31 21
22 10
21 7
18 6
12 2

300 171
92 55
55 28

200 86
92 36
92 41

124 68
200 92
250 97
66 17
63 23

565 180
150 37

1,300 533
19 2
10 2

'"Correlation significantly different from zero at the 0.05 level.

If the studies are arbitrarily divided in
two, so that those with effective sizes less
than and greater than 40 are separated (N
= 30 and N = 11, respectively), there is a
highly significant disparity (P < 0.01, ac­
cording to Mann-Whitney U test) in
squared-correlation difference between the
low and high effective-sample-size sets (low
set: average difference = 0.25; high set: av­
erage difference = 0.06). There is also a slight
but statistically significant difference in her­
itability between sets, with the high effec­
tive-sample-size group showing a slightly
higher average heritability (h2 = 0.44) than
the low effective-sample-size group (h2 =
0.33). However, even given the part-whole
relationship between genetic and pheno­
typic correlations, this small difference in
heritability is not sufficient to explain the
relatively large difference in squared-cor­
relation magnitude between the two groups
ofstudies. With relatively large samples, the
average difference between genetic and phe­
notypic squared correlations is only about
0.06. Therefore, it is likely that, for actual
population values, genetic correlations may
be only slightly larger than their phenotypic
counterparts.

The patterns of genetic- and phenotypic­
correlation estimates seem broadly similar,
with an average matrix correlation across
the studies of 0.57 (see Table 1). As deter­
mined by quadratic-assignment procedures,
78% of the matrix correlations are statisti­
cally significantly different from zero at the
5% level. Higher matrix correlations are sig­
nificantly associated with higher heritabil­
ities, sample sizes, and effective sample sizes
(see Table 2 and Figure 2), as expected from
Equation (1) and considerations ofestimate
precision. Better estimated genetic-corre-
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FIG. I. Difference between average genetic and phenotypic coefficients of determination (R2) compared to
the effective sample size for 41 pairs of genetic- and phenotypic-correlation matrices.

lation matrices are more similar in pattern
to their phenotypic counterparts than are
poorly estimated matrices. Again dividing
the sample into those studies with effective
sizes greater than and less than 40, there is
a highly significant difference (P < 0.00 1)
in the level of matrix correlation (low-set
matrix correlation = 0.48; high-set matrix
correlation = 0.81) between the groups. The
best estimated genetic-correlation matrices
are quite similar to their phenotypic coun­
terparts, sharing about 64% of the variation
in correlation values. It seems likely that
actual population genetic- and phenotypic­
correlation matrices are also quite similar,
although not necessarily identical.

The lack of independence of matrix pairs
and the potential lack of comparability of
the measured family-size variable among
various designs, calls into question the pre­
cise probabilities reported above. However,

all of the trends reported concerning the
similarity of genetic and phenotypic corre­
lations were also evident within three sets
(Numbers 1-5, 12-19, and 21-25 in the Ap­
pendix) ofrelated matrix pairs. Within each
of these sets, a single population (although
sample sizes were not the same for each
genetic matrix) and common design were
used to obtain genetic estimates.

DISCUSSION

The overall level of integration evident
in estimated genetic-correlation matrices
tends to be higher than in the paired phe­
notypic matrices, and genetic correlations
show a moderate degree ofsimilarity in pat­
tern to their phenotypic counterparts. The
effective sample size is significantly corre­
lated with the differences between matrix
pairs in both pattern and magnitude, how­
ever, indicating that some of the inconsis-
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FIG. 2. Matrix correlation between paired genetic- and phenotypic-correlation matrices compared to the
effective sample size.

tency between matrices is due to inaccurate
estimates ofgenetic-correlation parameters.
It seems likely that actual population values
for genetic and phenotypic correlations are
quite similar. The level of similarity in ac­
tual population values may be grossly de­
termined from the studies that provide the
most accurate genetic estimates. For these
studies, genetic-correlation estimates slight­
ly exceed their phenotypic counterparts (R2
difference = 0.06) and show a similar pat­
tern of correlation (matrix correlation =
0.81).

The broad similarity ofgenetic- and phe­
notypic-correlation matrices indicates that
genetic and environmental effects on de­
velopment typically produce similar pat­
terns ofphenotypic variation. This is prob­
ably the physiological basis for common
phenocopies of genetic mutants and points
out the importance of investigating envi­
ronmentally generated teratologies for stud­
ies of development and evolution (Wad-

dington, 1961). Most environmentally
caused phenotypic variants should have ge­
netic counterparts and vice versa.

The generality ofthese results depends on
the character of the studies included in the
analysis. Most matrices contained traits of
a single type, morphometric, reproductive,
or behavioral, with a predominance ofmor­
phometric studies in the sample. It is pos­
sible that concentration on other kinds of
traits, which are not typically subjected to
stabilizing selection, or on matrices con­
taining mixtures of morphological, behav­
ioral, and life-history traits, might produce
different results. However, in these in­
stances, the number of traits per study is
often low (less than five) making it difficult
to define a correlation pattern.

The results of this study also point out
the importance of using large sample sizes
in quantitative-genetic studies, especially if
multiple characters are being considered. It
seems that an effective sample size ofat least
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where R is a vector of changes in means, G
is the genetic-variance/covariance matrix,
and P is the selection gradient defining di­
rect selection on traits. Such a substitution
will allow retrospective studies of differen-

40 should be used. Crudely, for a set ofchar­
acters with a geometric mean heritability of
0.33, at least 120 families seem to be in­
dicated. In laboratory experiments with
standard lab-bred species, this can be ac­
complished by using more space and mon­
ey. Those working with other species do not
always have the option of very large sam­
ples, however, due to difficulties in breeding
and raising the organisms in the laboratory
or due to the limited population size and
amount of information available for feral
populations. In these cases, new techniques,
such as the use of symmetric squared dif­
ferences (Grimes and Harvey, 1980; Bruck­
ner and Slanger, 1986a, 1986b) or restricted
maximum-likelihood estimation tech­
niques (Shaw, 1987), designed to make the
most of the genetic relatedness available in
a population will prove helpful, although
larger samples will always be desirable. Ma­
trix manipulations, such as matrix "bend­
ing" (Hayes and Hill, 1981), may also be
useful if they can generally increase the ac­
curacy of genetic-correlation estimates.
Further theoretical statistical work in both
of these areas will help improve the utility
of quantitative genetics for evolutionary
studies.

Given the general similarity of genetic­
and phenotypic-correlation matrices, it
seems that phenotypic correlations may be
substituted for genetic ones when genetic
correlations are unavailable or not precisely
estimated. While substitution ofphenotypic
for genetic correlations will certainly lead to
errors in evolutionary inference in specific
instances, the use ofphenotypic correlations
may be justified as being the best available
estimates of genetic correlations in some
cases. They may even be more precise than
genetic-correlation estimates derived from
small samples.

When evolutionary inferences are de­
sired, one could substitute phenotypic val­
ues for the genetic ones identified in the
following equation from Lande (1979),

R=Gp (2)

tiation by natural selection and prediction
of response to hypothetical or imposed se­
lection regimes with phenotypic data. Phe­
notypic- or genetic-variance/covariance
matrices are related to their respective cor­
relation matrices by the following transfor­
mation,

(3)

where C is the correlation matrix, S is the
variance/covariance matrix, and V-I is the
inverse ofa diagonal matrix ofstandard de­
viations. The results presented here indicate
that, when patterns of genetic and pheno­
typic correlation are fairly similar and ge­
netic and phenotypic variances are propor­
tional (VoVo' = kVpVp', where k is the
heritability and there is little or no variation
in heritability among traits), the phenotyp­
ic-variance/covariance matrix may be sub­
stituted for the genetic-variance/covariance
matrix after a proportional reduction based
on the level of heritability. If more infor­
mation on variation in the level of herita­
bility among traits is available (heritabilities
are more precisely estimated than genetic
correlations), the constant k may be re­
placed by a diagonal matrix, K, with the
individual trait heritabilities along the di­
agonal, when reconstructing the genetic­
variance/covariance matrix from pheno­
typic values.

For example, morphometric character sets
tend to have average heritabilities of about
0.30-0.40 (see Table I) and rarely show sta­
tistically significant differences among traits.
Thus, the genetic-variance/covariance ma­
trix may be roughly estimated by 0.35P
where 0.35 represents a typical level of her­
itability for morphometric traits and P is
the phenotypic-variance/covariance ma­
trix. Life-history traits tend to have lower
heritabilities than morphometric traits (Fal­
coner, 1981; Gustaffson, 1986), and thus a
lower level of heritability should be used in
estimating genetic variances and covari­
ances given phenotypic life-history statis­
tics. The very rough estimates proposed here
are bound to introduce error relative to full
quantitative-genetic analysis but may ac­
tually reduce error in evolutionary infer­
ences drawn from purely phenotypic data.
Also, while the overall magnitude and pat­
tern of genetic and phenotypic correlation
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represented in a matrix may be similar, it
is quite possible that individual pairs ofval­
ues could be quite different from one
another. It is impossible, based on pheno­
typic data alone, to determine which cor­
relations within a phenotypic matrix are
good and which ones are bad estimates of
the corresponding genetic correlation.

Several points can be made concerning
the results of this analysis. First, while ge­
netic correlations playa central role in the­
ories of phenotypic evolution, they are dif­
ficult to estimate accurately. More
theoretical work needs to be done on the
statistical analysis of quantitative-genetic
data from natural populations in order to
improve the precision of genetic-variance
and genetic-correlation estimates. Pheno­
typic correlations between characters may
be estimated with much greater precision
and are also much simpler to obtain than
are their genetic counterparts. When genetic
correlations are well estimated, they tend
not to be very different in either magnitude
or pattern from their phenotypic counter­
parts. Thus, when reliable genetic estimates
are unavailable, phenotypic correlations and
scaled variances may be substituted for their
genetic counterparts in evolutionary models
of phenotypic evolution. From the analysis
presented here, this would seem to be an
acceptable solution to serious problems in­
volved in obtaining genetic estimates in
many instances. While the substitution of
phenotypic for genetic parameters in evo­
lutionary studies will undoubtedly intro­
duce error and can only lead to provisional
solutions, relative to situations where pre­
cise genetic-correlation estimates are avail­
able, substitution will increase the rigor of
evolutionary inferences drawn from phe­
notypic data compared to current ad hoc
methods. These results do not indicate that
quantitative-genetic studies are unneces­
sary but, rather, that quantitative evolu­
tionary theory can be cautiously applied
even when one is so unfortunate as to only
have phenotypic data available.
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APPENDIX

The following is a list of sources for paired phenotypic- and genetic-correlation matrices in the present study.
For each reference, type of organism, type of trait, and number of traits are also given.

I) Leamy and Cheverud, 1984; mouse; age-specific
weights; 6 traits

2) Leamy and Cheverud, 1984; mouse; age-specific
head lengths; 6 traits

3) Leamy and Cheverud, 1984; mouse; age-specific
trunk lengths; 6 traits

4) Leamy and Cheverud, 1984; mouse; age-specific
trunk circumferences; 6 traits

5) Leamy and Cheverud, 1984; mouse; age-specific
tail lengths; 6 traits

6) Cheverud et aI., 1983; rat; age-specific weights; 6
traits

7) Cheverud et aI., 1983; rat; age-specific tail lengths;
6 traits

8) Trail et aI., 1971; cattle; age-specific weights; 8
traits

9) Riska et aI., 1984; male mouse; age-specificweights;
9 traits

10) Riska et aI., 1984; female mouse; age-specific
weights; 9 traits

II) Mavrogenis et aI., 1980; sheep; age-specificweights;
6 traits

12) Cheverud and Leamy, 1985; mouse; 17-day live­
body traits; 5 traits

13) Cheverud and Leamy, 1985; mouse; 24-day live­
body traits; 5 traits

14) Cheverud and Leamy, 1985; mouse; 3 I-day live­
body traits; 5 traits

15) Cheverud and Leamy, 1985; mouse; 38-day live­
body traits; 5 traits

16) Cheverud and Leamy, 1985; mouse; 45-day live­
body traits; 5 traits

17) Cheverud and Leamy, 1985; mouse; 52-day live­
body traits; 5 traits

18) Cheverud and Leamy, 1985; mouse; 59-day live­
body traits; 5 traits

19) Cheverud and Leamy, 1985; mouse; 66-day live­
body traits; 5 traits

20) Grant, 1983; finch; live-body traits; 5 traits
21) D. Fong and D. Culver, unpubl.; amphipod; 20­

day live-body traits; 8 traits
22) D. Fong and D. Culver, unpubl.; amphipod; 40­

day live-body traits; 8 traits
23) D. Fong and D. Culver, unpubl.; amphipod; 60­

day live-body traits; 8 traits
24) D. Fong and D. Culver, unpubl.; amphipod; 80­

day live-body traits; 8 traits
25) D. Fong and D. Culver, unpubl.; amphipod; 100­

day live-body traits; 8 traits
26) Black, 1982; human; live-body traits; 27 traits
27) Leamy and Atchley, 1984; rat; skeletal traits; 19

traits
28) Cheverud and Buikstra, 1981; macaque; skeletal

traits; 13 traits
29) Leamy, 1977; mouse; skeletal traits; 18 traits
30) Atchley et aI., 1981; rat; skeletal traits; 18 traits
31) Atchley, 1983; rat; skeletal traits; 9 traits
32) Koch, 1978; cattle; production traits; 10 traits
33) Smith et aI., 1962; pig; production traits; 32 traits
34) Smith and Ross, 1965; pig; production traits; 26

traits
35) Mason et aI., 1972; cattle; production traits; 16

traits
36) Benyshek and Little, 1982; cattle; reproductive

traits; 6 traits
37) Burfening et aI., 1978; cattle; reproductive traits;

6 traits
38) O'Ferrall, 1976; sheep; reproductive traits; 8 traits
39) Plomin and DeFries, 1979; human; behavioral

traits; 5 traits
40) Arnold, 1981; inland garter snake; behavioral traits;

12 traits
41) Arnold, 1981; coastal garter snake; behavioral

traits; 12 traits


