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Threshold Characters

While the analytical procedures discussed in previous chapters are applicable to
essentially all continuously distributed traits, the states of many charactersfall
into discrete categories. Important “all-or-none” or dichotomouscharacters in-
clude survivorship and the expression of congenital malformations. Polychoto-
moustraits, meristic traits that can be partitioned into more than two discrete
classes, include numbers of reproductive events, numbers of vertebrae or other

skeletal parts, and so forth. Although the expression of some discrete traits, such
as gender, may be a consequence of the expression of a single segregating factor,
multiple loci are often involved. Thus, general genetic models for discrete pheno-
typic states need to be consistent with an underlying multifactorial basis for the
characterofinterest.

The incidence of a character amongtherelatives of individuals expressing a
trait relative to the incidence in the entire population is generally referred to as
the relative recurrence risk (Chapter 16). For a character with no heritable basis,
we expect this ratio to be equal to one. Asthe relative recurrence risk increases,
it becomes more plausible that the variance of the character has a genetic basis.
But how can such information be translated into a more conventional estimate of
heritability?

A possible solution to this problem wasfirst offered by Wright (1934c,d) ina
study on digit numberin guinea pigs. While guinea pigs normally haveonly three
hind toes, four-toed (polydactylous) individuals occasionally appear in laboratory
stocks, and the incidence of the trait can be increased to 100% by selection and
inbreeding (Castle 1906). Through a carefully designed breeding program with
initially homozygousstrains, Wright rejected the hypothesis that polydactyly has
a simple genetic basis. The most compelling evidence camefrom the observation
that when different strains that bred true for the three-toed condition were mated
to the same pure four-toedstrain, very different proportions of four-toed progeny
were obtained. These results and other oddities were shownto be consistent with
a model in which the developmentof a fourth toe depends onthelevel of a
continuously distributed underlying trait. Wright suggested that the four-toed
condition would only arise if the total contribution of genes and environmentto
the underlying trait exceeded a certain threshold (Figure 25.1).

Attributes that are categorical on an outward (observed)scale but believed
to be continuous on an underlying (unobserved) scale are knownas threshold
(Wright 1934c,d) or quasi-continuous (Grtineberg 1952) characters. The threshold
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Figure 25.1 Wright’s (1934c,d) explanation for how theincidence of a dichoto-
mouscharacter can vary in crosses between parents of two types. Individuals
from both types of parental strains are assumed to be normally distributed with
respect to some underlying determinant of the dichotomoustrait. However, the -
three-toed line in the lower panel is assumed to have a mean phenotype on the
underlying scale that is closer to the threshold than that in the upper panel. The
mean phenotypeof the F; progeny is assumed to be intermediate between that
of the parents, and progeny whose underlying measure exceeds the threshold
exhibit the four-toed condition (shadedareas).

model assumesa stepwise risk function for phenotypes on the underlying scale
(Figure 25.2). Allindividuals with underlying phenotypic values abovethe thresh-
old exhibit the trait; all those below it do not. A stepwise risk function on the
underlying phenotypic scale implies a sigmoid risk function on the underlying
genotypic scale, provided the environmental deviations on this scale are normally
distributed (Smith 1971, Curnow 1972, Mendell and Elston 1974). Individuals with

genotypic values above the threshold are at less than 100% risk because someof
them have underlying phenotypes below the threshold. Likewise, someindivid-
uals with genotypic values below the threshold have phenotypic values aboveit.
The greater the environmental contribution to the variance of the trait, the more
gradual the risk function on the genotypic scale (Figure 25.2).

Since the nature of the underlyingtrait is almost always unknown,theinter-
pretation of categorical data with a threshold model may appearto require an ex-
tremeact of faith. However, there are a numberofwaystotest the general validity
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The relationship between phenotypic and genotypicrisk functions
and the environmental componentof variance for the trait on the underlying
scale. The stepwise phenotypic risk functionis given in the upper panel. The next
lower panel showsconditional phenotypic distributions for two genotypes; in-
dividuals in the portionsof the distributionsto the right of the threshold exhibit
the trait, and their incidence representstherisk for their respective genotype. The
bottom twopanels plot genotypic risk as a function of genotypic value, where
the latter is simply the mean of the genotype-specific conditional distribution.
As the conditional genotype distributions become narrower(i.e., environmental
variances becomesmaller), the genotypic risk function converges on the pheno-
typic risk function, whereas high environmental variance inducesa flat genotypic
risk function.
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of the model. In Chapter11, for example, we showed howthreshold developmen-
tal maps provide plausible models for phenomenaranging from canalization to
genetic assimilation. Moreover, in certain situations, the underlying determinant
of character expression may be revealed through careful experimentation. For
example, Alberch and Gale (1985) suggested that the numberof primordial cells
in the amphibian limb bud determinesthe digital structure. Throughthe useof
mitotic inhibitors and promoters, they showed that. below a certain threshold
numberof cells, complete loss of a digit may occur. A similar mechanism may
have been operating in Wright’s guineapigs. Finally, as will be demonstrated be-
low,the validity of a threshold model can be evaluated through the comparison
of phenotypesof varioustypesofrelatives.

Threshold models are used extensively in genetic counseling to predict the
risk of congenital malformations and psychiatric disorders in offspring ofaffected
relatives (Carter 1965, 1969; James 1971; Smith 1971; Gershonetal. 1976). General
mathematical/ statistical reviewsof the theory have been written by Curnow and
Smith (1975) and Gianola (1982). Evolutionary problemsthat have recently been
investigated with threshold models include limb loss in tetrapods (Lande 1978),
environmental sex determination (Bulmerand Bull 1982), and mating preference
(O’Donald and Majerus 1985).

HERITABILITY ON THE UNDERLYING SCALE

If the phenotype distribution on the underlyingscale is treated as a standard nor-
mal (with mean = 0 andvariance = 1), a relatively simple approachis available
for estimating heritability on the underlying scale. The technique was indepen-
dently developed by Crittenden (1961) and Falconer (1965b), both of whom saw

an analogy between the phenotypes of affected parents and the responseof a
populationto truncation selection. Both authors were concerned with the inheri-
tance of genetic disorders in humans.For that reason, Falconer (1965b)called the
underlying scale liability and the affected individuals propositi. For reference,
werefer to the grand meanforliability in the base population as 4, = 0 and the
meanliability of propositi as , (Figure 25.3). For the mostpart, for simplicity, we
assumethe propositi to be parents and their relatives to be offspring. However,
the following analysis can be readily extended to any degree of relatedness.

Asfor any quantitative trait, the unobserved underlying character (liability)
can be treated as the sum of a genotypic value and an environmental deviation,
and assumingthat itis normally distributed, the regressionforliability in different
sets of relatives will be linear. Further assumingthat there is no change in the mean
environmental contributionto liability between generations and noselection, the
meanliability amongall offspring will equal that for the base population (,).
This value provides one point on the expected parent-offspring regression. Now

suppose that affected parents (with meanliability u,,) produce offspring with
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Figure 25.3 Upperpanel: The phenotypedistribution of a parental population
on the underlying scale, assumed to be normal. The dashed line denotes the
parental mean phenotype,/1,,, whereasthe solid line denotes the threshold above
whichthe character is expressed. A fraction ©, of the population exhibitsthetrait,
and the mean phenotypeof such individualsis jz,,. Lower panel: The phenotype
distribution for a class of relatives of affected parents, e.g., progeny. Due to the
nonzero heritability of the trait, this conditional distributionis shifted to the right
([to > [p) and showsa higher‘incidence ®,.

expected liability 4,. These values provide a second point on the regression.It
followsthat the slope of the parent-offspring regression is Gop = (Mo — Mp)/(Lw —
Lp), Which reduces further to Gop = Uo/[w since we havescaled the distribution
of liability in the base population such that ., = 0. This definition of 3.) has
the usual interpretation of a regression between parents and offspring. Thatis,

2Bop = [o% + (0%4/2) + |/o2.
Thus, the problem of estimating heritability on the underlying scale reduces

to obtaining estimatesofthemeanliabilities in affected parents andtheir offspring,
[tw and po. Neither of these is directly observable, but from the properties of a
normal distribution, estimates of them are obtainable from the incidence of the
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disorder in the population (,) and the proportion of offspring of propositi that
are affected (®,). First, we note that the estimated mean Z, can also be written
as (Lp — Zo), where x, and x, are the estimated distances of the threshold from
the meanliability in the two samples (Figure 25.3). Given the observations ®,
and ®,, values for x, and x, are readily obtained from a table of the standard
normaldistribution (Chapter 2). These valuesare in units of phenotypic standard
deviations on the underlyingscaleofliability. Second, the meanliability of affected
membersof the base population, Z,,, can be determined by useof the equation for
the meanofthe tail of a normal distribution. From Equation 2.15, Z,, = p(tp)/®p,
where p(x») = (27)~'/? exp(—zx?/2) is the height of the standardized normal
distribution at the threshold in the base population. Thus, the estimated parent-
offspring regression on the underlyingscale is

Zo (Lp — Lo)®,bop = = =+ 25.1aP Zw p(Lp) ( )

Note that this expression generalizes to any setof relatives (r) by writing —

(Lp — L,)®
bpp = ~S— 25.1bPp p(Lp) ( )

The large-sample variance estimate for b,,, derived by Taylor expansion,is

1 *1®,(1-©,)] ,(1—6,)
Var(bop) ~ —— — bop(Zw — aK * 25.1

(op) Zw o "| | Np p? (Xp) | r 24, Nop? (zo) S-te)

where N, and N,are, respectively, the sample sizes for total individuals in the
parental generation and offspring of affected individuals.

Becauseofits elegance and simplicity, the Crittenden-Falconer technique has
been utilized widely. However, the reader should be aware of two assumptions

madein the preceding derivation.First, in relying on a linear model, we assumed
implicitly that the distribution of liability is normal in both the affected parents
and their offspring. Clearly, this is not true for the affected parents, which are a
truncated sample from a normal distribution (Figure 25.3), noris it likely to be
exactly true for their offspring. The second simplifying assumption is that both
the base population andthe relatives of propositi have unit varianceforliability.
However, if the character is heritable, the variance of liability in offspring of
affected parents will be less than one since they represent only a subset of the
population.

Although Crittenden (1961) and Falconer (1965b) were aware of thesediffi-

culties, they left their solution to later investigators. Utilizing statistical theory that
had been developed muchearlier by Pearson (1900) and Everitt (1910), Edwards
(1969) and Smith (1970) showed howthe preceding problemscan be eliminated

by consideringall possible pairs of parents and offspring rather than just affected
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Figure 25.4 The bivariate distribution of parent and offspring phenotypes on the
underlying scale. The threshold valuefor the character is indicated by the dashed
lines. The region denoted d marks combinationsof parents and offspring that are
unaffected, b denotes affected parents and offspring, a denotes unaffected parents

and affected offspring, and c denotes affected parents and unaffected offspring.

In the ideal case with no selection, the portions of the curves denoted a and c

should be equal.

parents. This allows the entire joint distribution of parents and offspring to be
partitioned into four types of pairs: both affected, both unaffected, parents af-
fected but offspring unaffected, and vice versa (Figure 25.4). Given this informa-
tion, the exact phenotypic correlation between parents and offspring on the un-
derlying standard bivariate normal scale can be extracted from tables provided by
Pearson (1900) and Everitt (1910) or from integral equations derived by Curnow
(1972). Both proceduresare a bit tedious, but a useful approximation has been
given by Edwards(1969),

0.57 Ink

—In(®,) — 0.44Ink — 0.18

where k = ©,/®,. An analytical approximation that accounts for the change in
variance across generations but not for the nonnormality of the affected parents
wasderived by Reichetal. (1972),

Lyn — Xo — (x? — x? — (Lp/Zw Vf
Top =eelh (25.3)

Top = bop ~ h?/2 = (25.2)

whereagain 2, = p(Lp)/Pp.
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Table 25.1 Estimatesof the heritability of three human congenital disorders obtained by
the methodsof Crittenden-Falconer (Equation 25.1a), Edwards (Equation 25.2), and Reich
et al. (Equation 25.3), as described in thetext.
eee

  

Incidence Heritability

Disease ®, ®,. Lp Ly P(Lp) (25.1a) (25.2) (25.3)
NN

Harelip 0.001 3.090 0.003
MZ | 0.500 0.000 1.03 0.99 1.03
1st degree 0.040 1.751 0.89 0.90 0.86
2nd degree 0.007 2.457 0.84 0.81 0.83
3rd degree 0.003 2.748 0.91 0.86 0.90

Club Foot 0.001 3.090 0.003
MZ 0.325 0.454 0.88 0.88 0.86
Ist degree 0.021 2.034 0.70 0.70 0.68
2nd degree 0.006 2.512 0.77 0.74 0.75
3rd degree 0.002 2.878 0.57 0.53 0.56

Schizophrenia 0.010 2.326 0.027
MZ 0.443 0.143 0.81 0.92 0.83
1st degree 0.077 1.426 0.67 0.75 0.74
2nd degree 0.027 1.927 0.59 0.63 0.63
3rd degree 0.016 2.144 0.54 0.56 0.56

 

Note: Incidence data are from Carter (1965, 1969) and McGueetal. (1983). ®, and ©,
are, respectively, the incidences of the disorders in the population andin relatives ofaf-
fected individuals. MZ denotes monozygotic twins; first-degree relatives include parent-
offspring and full-sibs; second-degreerelatives include aunt (uncle)-niece (nephew); and
third-degreerelativesare first cousins. Each of the methodsgivesanestimate of the regres-
sion betweenrelatives for inferred phenotypes on the underlying scale. The heritabilities
are computed by dividing the estimated regression by twice the coefficient of coancestry
(1,1/2,1/4, and 1/8 for monozygotic twins,andfirst-, second-, and third-degree relatives,
respectively).

 

The degree of inaccuracy that results from the use of the Crittenden-Falconer
equation can be seen in Table 25.1, where the heritabilities of three humandisor-
ders are calculated using Equations 25.1-3. For each attribute, data are available
for several degreesof relationship and samplesizes are large (several hundredsto
thousands). There is no strong evidence for dominance genetic variance for these
traits, so different types of relatives of the same degree have been pooled.

Three important observations can be gleaned from this table. First, for all
three traits, the incidence in affected relatives (®,) is substantially higher than
that in the population at large (®,). Thus, regardless of the model or the class of
relatives employed in the computationofh?,it is clear that the variable expression
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of these traits has a genetic basis. Second, the high estimatesof h7,all in excess of

0.5, arise despite the fact that the incidences of the disorders in the population are

very low. Thus, the incidenceofa trait in a population provides no information

aboutits heritability. Third, the equation of Reich et al. (1972) produces results

that are essentially the same as those of Edwards (1969) formula, indicating that

the nonnormality correctionis of negligible significance. More remarkable is the

excellent agreement between the results of the Crittenden-Falconer model and

those from the more exact treatments. In no case dothe estimates differ by more

than 10%.

Lessclear is whyall three approachesyield lowerheritability estimates with
increasing distance of relationship. One possibility is that significant sources of
epistatic variance contribute to the expression of these traits. All components of
epistatic genetic variance are completely confounded with the additive genetic

variance in the case of monozygotic twins (Chapter19), i-e., the heritability esti-

mate derived for monozygotic twins is more appropriately described as a broad-
sense heritability. However, epistatic components of variance make diminish-

ingly smaller contributions to the covariance betweenrelatives as the coefficient
of coancestry declines (Chapter 7; also see Equation 16.49d). Another potential
explanation is that shared environmental effects contribute disproportionately
to the resemblance between close relatives. Still a third possibility is that rela-
tionships in humans(other than twins) are sometimes less than expected due to
uncertain paternity.

 

Example1. For the case in which individuals can be clonally replicated, a simple
method exists for estimating the broad-sense heritability on the underlyingscale.
Supposethat n individuals are scored for the character in each of N clones, and
let n; be the number of affected individuals in the ith clone. The incidence of
the trait in the population is then ®, = }>n,;/(Vn). Within a clone exhibiting
affected individuals, the incidence of affected relatives is estimated by (n; —
1)/(m — 1), since an affected individual has (n — 1) sibs, (n; — 1) of which are
also affected. Thus, an estimate of the incidence amongrelatives is ®, = >(n; —
1)/|Na(n—1)], where N, is the numberofclones with affected individuals, and
the summationis over such clones. The broad-senseheritability can be estimated
by using ®, in place of ®, in the solution of Equations 25.1a, 25.2, or 25.3. The
regression coefficient provides an estimate of h? since 20 = 1 for clonemates.

 

Asin all attempts to estimate heritability from the resemblance betweenrela-
tives, an important assumption of the above proceduresis that selection does not
alter the relative incidenceofthetrait in different pairs of relatives (i-e., the values
of a, b, c, and d in Figure 25.4) prior to their assessment. Selection may be a serious
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source of bias for certain typesof relatives and characters. In the case of human
genetic disorders, for example, affected individuals may fail to reproduce for
physiological reasons or, as a responseto genetic counseling, may differentially
abortaffected fetuses. Comparisonsoffull sibs do not necessarily provide a solu-
tion to such problems. For example, individuals whosefirst offspring is affected
may tendto decide against havingfutureoffspring, in which case they would be
eliminated from the analysis. With appropriate medical records, correction might
be madeforsuchbias, but it would notbe

a

trivial task.

MULTIPLE THRESHOLDS

In principle, the model developed above can be extended to any numberofthresh-
olds. Indeed, in his original analyses of digit number in guinea pigs, Wright
(1934c,d) actually considered three classes of individuals: those with the usual
three toes, those with an incomplete fourth toe, and those with four complete dig-
its. The computations becomerather lengthy for more than three character states,
but a two-threshold model, which wewill focus uponhere, is fairly straightfor-
ward.

There are two very useful attributes of multiple threshold models.First, they
provide a meansfor evaluating the relative means and variancesofliability in
different populations. Second, by providing several estimates of the regression
betweenrelatives, they provide an internal check on the consistency of the model.

With a three-character state model, there are two thresholds (Figure 25.5). We
will refer to these as T; and T>, the wide and narrow thresholds, respectively. With
this notation, individuals are classified as normal(characterstate 1, with liability
less than T;), wide (character states 2 and 3, with liability exceeding T;), or narrow
(character state 3, with liability exceeding T). From above, we know that zp2, the
distance of T> from the meanin standard deviations, can be extracted from tables

if the incidence of character state 3 is known.Similarly, xis obtainable from the
total incidence of character states 2 and 3. The absolute distance between the two
thresholds, (xp2 — %pi)o, may then be defined as one threshold unit, implying
that the standard deviation in threshold units is 0 = 1/(x,2 — tpi). The mean,
measured as the deviation from the wide threshold, is then7, = —z,10. Thus,
if different populations can be assumed to have their thresholds located at the
same position on the phenotypicscale for liability, this simple approach allowsa
comparison of the meansandstandard deviationsof their underlying phenotypic .
distributions (in threshold units).

The two-threshold model provides four routes to estimating the heritability
of liability (Reich et al. 1972). First, by ignoring one of the thresholds, the standard
single-threshold model can be applied to the data. In this case, individuals having
character states 2 and 3 canbe treated as the same (normalvs. wide), or individuals
with character states 1 and 2 can be aggregated (narrow vs. not narrow). Either
way, the population is divided into twoclasses of individuals.
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Figure 25.5 Upper panel: The phenotypedistribution of a parental population
on the underlying scale, assumed to be normal, with two thresholds determining

the expression of three character states. The dashed line denotes the parental
mean phenotype, {1,, whereas the two solid lines denote the thresholds. In the
lower panel, the distribution on the left refers to offspring from parents above
the wide threshold 7), whereasthat on the right refers to offspring from parents
above the narrow threshold 75.

Relatives of
J narrow propositi  

Twoestimatesof heritability can also be obtained from information on “cross
prevalence.” Consider, for example, the propositi to be parents with character
state 3. From their incidence, we obtain an estimate of x2. The affected offspring
of these parents can be scoredasall individuals exhibiting characterstates 2 or3.
The normal deviate for these individuals, z/,, (Figure 25.5), refers to the widely
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affected offspring of narrowlyaffected parents. Similarly, x15 is obtained from the
narrowly affected offspring of widely affected (characterstate 2 or 3) parents (as
the distance of the mean of these offspring from the upper threshold). From this
information, two additional estimators of the parent-offspring regression are:

Lind — o2\/ 1— (x2. — vo [1 — (Tp1/a1)]

  

bo = 7 2 A° a, +23(a1 — Zp1) (25.4a)

Epi — Lo44/1— (x2, —2£4)(1 - (Zp2/a2)|bop = = (25.4b)

where a; = p(%p1)/®p1 and az = p(xp2)/®p2. If the assumptionsof the threshold
model have been met, then all four estimates of bop Should be similar.

a

Example 2. The application of the two-threshold modelcanbeillustrated with
data on the incidenceof diabetes in the Edinburgh population (Smithet al. 1972).
Considerable variation exists for the age of onset of diabetes, and the authors
wanted to know whether early-onset vs. late-onset diabetes simply represent
different levels of liability. Through interviews of diabetics attending a clinic,
information on the incidenceof the diseasein first-degree relatives was obtained.
The affected individuals were partitioned into those first exhibiting the disease
before andafter age 25 years. Thus, the narrowly affected individuals were those
affected between ages 0 and 25.Alarge survey estimatedthe incidence ofnarrowly
affected individuals to be Ono = 0.0006, whereasthetotal (or wide) incidence of
the disease was ®,; = 0.0039. From table of the standard normaldistribution,
Lp2 = 3.24, Lp) = 2.66, ag = 3.51, and a, = 2.97. Thus, the wide and narrow
thresholds are approximately 2.7 and 3.2 standard deviations above the mean on
the liability scale, and the distance between the two thresholdsis (%p1 — Lp2) =
0.58 standard deviations.

Data on the incidence of late- and early-onset diabetes in first degree relatives
are given in the table at the top of the following page. If early-onset patients
representa subsetof the population with more extremegenetic valuesfor liability
than late-onset patients, the total incidence of the disease should be higherin the
relatives of the former than the latter. The data show this to be true — first-
degree relatives of early- and late-onset patients have total incidences of 0.0520
and 0.0312, respectively.

Converting the incidences of disease in relatives to their respective Z values, the

four possible heritability estimates (twice the regression coefficients) range from
0.46 to 0.76. From Equation 25.1b, the standard errors of h* based on narrow
propositi and relatives and on wide propositi and relatives are found to be ap-
proximately 0.10 and 0.03, respectively. Thus, with one possible exception, the
four estimates are in approximate agreement, leading to an overall estimate of
h? = 0.56fortheliability.
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Incidence

Propositi Relatives Among Relatives: bop Equation

Narrow Narrow 0.0205 Log = 2.044 0.38 (25.3)

Wide 0.0315 x’, = 1.859 0.23 (25.4a)

Wide Narrow 0.0045 Lig = 2.612 0.24 (25.4b)

Wide 0.0267 (Lo. = 1.932 0.27 (25.3)

err
r

GENETIC CORRELATIONS AMONG THRESHOLDTRAITS

The various applications of genetic correlations encountered in previous chapters

are useful in many contexts with threshold traits. For example, in insects with

wing dimorphisms, wing developmentis often highly dependent on photoperiod

or other environmental conditions (Roff 1986, 1994). Salamanders in the genus
Ambystoma may develop cannibalistic morphs or exhibit paedomorphosis under

specific environmental conditions. Many species of zooplankton are known to

modify their morphologies in the presence of predators (Havel 1987). Situations
like these raise questions as to whether the genotypes that respondto onesetof
environmental cues are the sameas those that respond to a secondsetof stimuli.

Asnoted in Chapter 24, another application of the genetic correlation con-

cerns the expression of characters in the different sexes. For threshold characters,
it has often been noted that whenthe incidenceof affected individuals differs be-
tweenthe sexes, the sex with lower incidence has a higher frequencyof affected
relatives (Table 25.2). One potential explanation for such a reversal in frequencies
is that affected membersof the sex with the lower incidence tend to have a higher
liability due to a displacementof the thresholdto the right of the mean phenotype

_ on the underlyingscale.
Whenseparate data are available for the two sexes, four separate regressions

can be calculated using Equations 25.1a, 25.2, or 25.3: one for males only (bm),

Table 25.2 Incidence of pyloric stenosis in a human population.

Incidence AmongFirst-degree Relatives
Incidence in

Propositi Population Male Female.,

Male 0.005 0.050 0.022
Female 0.001 0.171 0.066

Source: Carter 1961.
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one for females only (br), one for male propositi and female relatives (berm),
and vice versa (by47). Ignoring nonadditive sources of variance and sex linkage,
and assuming an absence of common environmentaleffects, the male-male and
female-female regression coefficients will have expected values

_ 2007(Ay)

Sum =—a(ear) (25.5a)

_ 20c07(Ar)

Brr= len)(cr) (25.5b)

where0 is the coefficient of coancestry for the relatives, 0?(A,y) and o?(z,,) are
the additive genetic variance and phenotypic variance for males, and o? (Ar) and
o*(zp)are those for females. The regressionsof males on females and females on
males have expectations

2007(Ay, Ar)
GuMr= 52 (ap) (25.5c)

2

Gru = (Au, (25.5d)
Oo (zu)

where o7(Ay;, Ar) is the additive genetic covariance betweenthe sexes. The ge-
netic correlation across the sexes can be estimated as

bur:
rrmM(A) =4/ Bout

bee

— (25.6a)

The preceding expressions are completely generalizable. For example, in-
stead of pertaining to the expressionof a trait in male and female relatives in the
same environment, they mayrefer to male relatives in twodifferent environments,
to female relatives in different environments, or to male and female relatives in
different environments. Thus, a formula of the form of Equation 23.6a can be used
to estimate the genetic correlation across environmentsfor the expression ofa di-
chotomoustrait. Moreover, the same approach can be usedto obtain the genetic
correlation between two different dichotomoustraits, e.g., survivorship and the
presence / absence of a morphologicaltrait. For two characters x andy,

ray(A) = eeu (25.6b)
‘“

Finally, it is relatively straightforward to compute the genetic correlation between
a dichotomousand a continuously distributed character. Denoting twosuchtraits
as d and c, Equation 25.6bstill applies. The regression for the dichotomouschar-
acter (bgq) can be obtained by the methodsdiscussedearlier in this chapter, while
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the regression for the-continuously distributed trait (b..) can be obtained by con-

ventional methods outlined in previous chapters, e.g., parent-offspring regres-

sion. The regression involving the twotraits, b.g, can be obtained by dividing

the deviation of the mean of the continuously distributed trait in relatives of

affected individuals from the mean in the population at large (Z., — Zcp) by the

meanofthe affected individuals for the dichotomoustrait on the underlyingscale

(Zar = Lap — Ldo), With a similar definition applyingto bdc.

a

Example 3. The application of the preceding ideas will be illustrated with a fa-

miliar dichotomy in humans — handedness. The data base consists of responses

to questionnaires distributed to college undergraduates andservice recruits in

Scotland (Annett 1973). The incidences of left-handedness in males and females

are 0.118 and 0.114, so at least on the outward scale the two sexes have essen-

tially identical phenotype distributions. In the following analyses, we assume

that the variances for both sexes are also equal on the underlyingscale. The table

summarizesthe incidencesof left-handednessin brothers and sisters of male and

female propositi and the associated probit (x) scores. The regression coefficients
are computed by use of Equation 25.3.

Propositi Relatives IncidenceinRelatives 12 2b Expectation

Males Brothers 0.143 1.067 0.15 h2,
Sisters 0.114 1.208 —0.02 pruhuyhr

Females Brothers 0.135 1.103 012 pry(A)hyhr

Sisters 0.156 1.010 0.24 hz,

Averaging over the two sexes, the heritability estimate for liability to left-
handednessis approximately 0.20. By use of Equation 25.6b, we obtainrpy (A) =
0.26. Thus, the genetic correlation across the sexes appears to be small. In light
of these results and the fact that the study population consisted of full sibs, a
reasonableinterpretation is that handednessis primarily a chance eventof devel-
opment, with genetics playing a minorrole, and perhaps a small contribution of
the variance coming from commonenvironmentaleffects.

 

HERITABILITY ON THE OBSERVED SCALE

The question often arises as to why heritabilities of dichotomous characters are
measured on an unobservable underlying scale rather than on the directly ob-
served scale. The latter approach wasactually taken by most early investigators
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(Lushet al. 1948, Robertson and Lerner 1949, Dempster and Lerner 1950, VanVleck
1971). Assuming additivity, a simple expression for heritability on the observed
scale can be obtained as follows. Supposethe characterof interest is survivorship
to a certain age. Then all nonsurvivors can be scored as 0 andall survivors as1.
The frequencyof survivors in the populationis simply the incidence ®,, and the
phenotypic varianceis the familiar variance of a binomialdistribution,

o2 = &,(1—G,) (25.7)

It follows that the heritability on the observedscale is

2 A )

p2 =

—7

(Ao)

_

25.828,(1 = 6) 8)
where the subscript o denotes the observed scale, and o2(A,) is the additive
genetic variance on the observedscale. In an appendix to Dempster and Lerner
(1950), Robertson showedthat 0?(A,) ~ [p(zp)]?h?, whereh?is the heritability on
the unobservedscale ofliability. Thus, the relationship between theheritabilities
on the underlying and observedscalesis

2_ 72 [p(zp)]?pane {eae) 58)
Examination of this formula reveals several undesirable properties of heri-

tability estimates on the observedscale: |

1. h2 is a function of the incidence in the population (Figure 25.6). With
constant phenotypic variance on the liability scale, h? changes with a
shift in meanliability because this induces a changein ©,.

2. The maximum possible value of h? is 2/7 ~ 0.64, which arises when
h? = 1, ®, = 0.5, and p(x,) = (27)~1/?. This implies that a substantial
proportion of the genetic variance on the observed scale is nonadditive
even if all of the genetic variance on the liability scale is additive. The
reason for this relationship has been outlined in Figure 25.2 — there-
gression of risk on liability of genotypesis necessarily nonlinear since the
probability of expressing the trait is bounded between 0 and 100%.

3. For this same reason, genotypic values and environmental deviations are
not independenton the observedscale.

Sometimesit is more practical to initially calculate heritability on the ob-
served scale and then compute h? indirectly by rearranging Equation 25.8b. Any
of the procedures described in earlier chapters can be used for this purpose, ap-
plying the analysis to the 0, 1 variables. One problem with this approach, pointed
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Figure 25.6 Theratio of heritabilities on observable (h) and underlying (h?)

scales as a function of the incidenceof expression in the population (®,).

out by VanVleck (1971), is that the relationship between h? and h* depends on

the incidence ©, in a nonlinear fashion. Consequently, the substitution of sample

estimates of ®, into Equation 25.8b results in a biased conversion between the two

heritabilities.

(rrr

Example 4. In mapturtles, the average sex ratio (% males)of clutchesis closely

coupled with the temperature at which the eggs are incubated. A rather tight

threshold exists at 29.2°C. Below 28°C,virtually all eggs develop into males,

while above 30°Cclutches are entirely female (see the accompanying figure be-

low). In effect, the response curve is a phenotypic risk function if temperatureis

viewed as the underlyingscale ofliability.

Bull et al. (1982) were interested in determining the extent to which variation in

offspring sex at the intermediate temperature was dueto genetic variation among

females. Twenty gravid femaleswere collectedin the field and induced to lay eggs

in the laboratory. Ten eggs from each mother were then randomlydistributed in an

incubator maintained at 29.2 - 29.3°C. The offspring were sexed uponhatching
and scored as 0 if female and 1 if male. A one-way ANOVAwasthen performed

on the full-sib family data.

The additive genetic variance on the observed scale was estimated to be 0.13

from the among-family componentof variance. As an estimate of 07(A,), this
among-family variance could be inflated by dominance genetic variance for the
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sex determination mechanisms,butthe influence of common-family environment
should have been eliminated by the random design. The total proportion of male
hatchlings was0.41. Heritability on the observedscale is therefore approximately
0.13/[0.41(1 — 0.41)] = 0.54. Using ®, = 0.41, z» = 0.228 and DP(Lp) =
0.389, from Equation 25.8b, heritability on the underlying scale is estimated to
be h? ~ (0.54)(0.41)(1 — 0.41)/(0.389)? = 0.86.

The authors note that the above computation assumesa constant incubation tem-
perature for all females.In the field, however, different females will inevitably
place their eggs in areas of somewhatdifferent temperatures. Let the phenotypic
variancein liability at a constant temperature(asin the laboratory experiment)
be o2. In thefield, the phenotypic variance is 72 + 0,, where o%, is the additional
variancein liability resulting from a variable environment. Thus, the heritability
in thefield is h*[o2/(o2 + 02.)]. For the study population, roughestimates of a2
and o%, were 0.09 and 1.0, reducing the expectedheritability in the field to only
0.06.
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