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Abstract In this chapter we review the evidence for and against three claims: that
(1) there is a substantial chance we will create human-level AI before 2100, that (2) if
human-levelAI is created, there is a good chance vastly superhumanAIwill followvia
an ‘‘intelligence explosion,’’ and that (3) an uncontrolled intelligence explosion could
destroy everything we value, but a controlled intelligence explosion would benefit
humanity enormously if we can achieve it. We conclude with recommendations for
increasing the odds of a controlled intelligence explosion relative to an uncontrolled
intelligence explosion.

The best answer to the question, ‘‘Will computers ever be as

smart as humans?’’ is probably ‘‘Yes, but only briefly’’.

Vernor Vinge

Introduction

Humans may create human-level1 artificial intelligence (AI) this century. Shortly
thereafter, we may see an ‘‘intelligence explosion’’ or ‘‘technological singularity’’—
a chain of events by which human-level AI leads, fairly rapidly, to intelligent
systems whose capabilities far surpass those of biological humanity as a whole.
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1 We will define ‘‘human-level AI’’ more precisely later in the chapter.
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How likely is this, and what will the consequences be? Others have discussed
these questions previously (Turing 1950, 1951; Good 1959, 1965, 1970, 1982;
Von Neumann 1966; Minsky 1984; Solomonoff 1985; Vinge 1993; Yudkowsky
2008a; Nilsson 2009, Chap. 35; Chalmers 2010; Hutter 2012a); our aim is to
provide a brief review suitable both for newcomers to the topic and for those with
some familiarity with the topic but expertise in only some of the relevant fields.

For a more comprehensive review of the arguments, we refer our readers to
Chalmers (2010, forthcoming) and Bostrom (Forthcoming[a]). In this short chapter
we will quickly survey some considerations for and against three claims:

1. There is a substantial chance we will create human-level AI before 2100;
2. If human-level AI is created, there is a good chance vastly superhuman AI will

follow via an intelligence explosion;
3. An uncontrolled intelligence explosion could destroy everything we value, but

a controlled intelligence explosion would benefit humanity enormously if we
can achieve it.

Because the term ‘‘singularity’’ is popularly associated with several claims and
approaches we will not defend (Sandberg 2010), we will first explain what we are
not claiming.

First, we will not tell detailed stories about the future. Each step of a story may
be probable, but if there are many such steps, the whole story itself becomes
improbable (Nordmann 2007; Tversky and Kahneman 1983). We will not assume
the continuation of Moore’s law, nor that hardware trajectories determine software
progress, nor that faster computer speeds necessarily imply faster ‘‘thought’’
(Proudfoot and Copeland 2012), nor that technological trends will be exponential
(Kurzweil 2005) rather than ‘‘S-curved’’ or otherwise (see Modis, this volume),
nor indeed that AI progress will accelerate rather than decelerate (see Plebe and
Perconti, this volume). Instead, we will examine convergent outcomes that—like
the evolution of eyes or the emergence of markets—can come about through any
of several different paths and can gather momentum once they begin. Humans tend
to underestimate the likelihood of outcomes that can come about through many
different paths (Tversky and Kahneman 1974), and we believe an intelligence
explosion is one such outcome.

Second, we will not assume that human-level intelligence can be realized by a
classical Von Neumann computing architecture, nor that intelligent machines will
have internal mental properties such as consciousness or human-like ‘‘intention-
ality,’’ nor that early AIs will be geographically local or easily ‘‘disembodied.’’
These properties are not required to build AI, so objections to these claims (Lucas
1961; Dreyfus 1972; Searle 1980; Block 1981; Penrose 1994; Van Gelder and Port
1995) are not objections to AI (Chalmers 1996, Chap. 9; Nilsson 2009, Chap. 24;
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McCorduck 2004, Chaps. 8 and 9; Legg 2008; Heylighen 2012) or to the possi-
bility of intelligence explosion (Chalmers, forthcoming).2 For example: a machine
need not be conscious to intelligently reshape the world according to its prefer-
ences, as demonstrated by goal-directed ‘‘narrow AI’’ programs such as the leading
chess-playing programs.

We must also be clear on what we mean by ‘‘intelligence’’ and by ‘‘AI.’’
Concerning ‘‘intelligence,’’ Legg and Hutter (2007) found that definitions of
intelligence used throughout the cognitive sciences converge toward the idea that
‘‘Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.’’ We might call this the ‘‘optimization power’’ concept of intelli-
gence, for it measures an agent’s power to optimize the world according to its
preferences across many domains. But consider two agents which have equal
ability to optimize the world according to their preferences, one of which requires
much more computational time and resources to do so. They have the same
optimization power, but one seems to be optimizing more intelligently. For this
reason, we adopt Yudkowsky’s (2008b) description of intelligence as optimization
power divided by resources used.3 For our purposes, ‘‘intelligence’’ measures an
agent’s capacity for efficient cross-domain optimization of the world according to
the agent’s preferences. Using this definition, we can avoid common objections to
the use of human-centric notions of intelligence in discussions of the technological
singularity (Greenfield 2012), and hopefully we can avoid common anthropo-
morphisms that often arise when discussing intelligence (Muehlhauser and Helm,
this volume).

2 Chalmers (2010) suggested that AI will lead to intelligence explosion if an AI is produced by
an ‘‘extendible method,’’ where an extendible method is ‘‘a method that can easily be improved,
yielding more intelligent systems.’’ McDermott (2012a, b) replies that if P=NP (see Goldreich
2010 for an explanation) then there is no extendible method. But McDermott’s notion of an
extendible method is not the one essential to the possibility of intelligence explosion.
McDermott’s formalization of an ‘‘extendible method’’ requires that the program generated by
each step of improvement under the method be able to solve in polynomial time all problems in a
particular class—the class of solvable problems of a given (polynomially step-dependent) size in
an NP-complete class of problems. But this is not required for an intelligence explosion in
Chalmers’ sense (and in our sense). What intelligence explosion (in our sense) would require is
merely that a program self-improve to vastly outperform humans, and we argue for the
plausibility of this in section From AI to Machine Superintelligence of our chapter. Thus while
we agree with McDermott that it is probably true that P=NP, we do not agree that this weighs
against the plausibility of intelligence explosion. (Note that due to a miscommunication between
McDermott and the editors, a faulty draft of McDermott (McDermott 2012a) was published in
Journal of Consciousness Studies. We recommend reading the corrected version at http://cs-
www.cs.yale.edu/homes/dvm/papers/chalmers-singularity-response.pdf.).
3 This definition is a useful starting point, but it could be improved. Future work could produce a
definition of intelligence as optimization power over a canonical distribution of environments,
with a penalty for resource use—e.g. the ‘‘speed prior’’ described by Schmidhuber (2002). Also
see Goertzel (2006, p. 48, 2010), Hibbard (2011).
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By ‘‘AI,’’ we refer to general AI rather than narrow AI. That is, we refer to
‘‘systems which match or exceed the [intelligence] of humans in virtually all
domains of interest’’ (Shulman and Bostrom 2012). By this definition, IBM’s
Jeopardy!-playing computer Watson is not an ‘‘AI’’ (in our sense) but merely a
narrow AI, because it can only solve a narrow set of problems. Drop Watson in a
pond or ask it to do original science, and it would be helpless even if given a
month’s warning to prepare. Imagine instead a machine that could invent new
technologies, manipulate humans with acquired social skills, and otherwise learn
to navigate many new social and physical environments as needed to achieve its
goals.

Which kinds of machines might accomplish such feats? There are many possible
types. A whole brain emulation (WBE) would be a computer emulation of brain
structures sufficient to functionally reproduce human cognition. We need not
understand the mechanisms of general intelligence to use the human intelligence
software already invented by evolution (Sandberg and Bostrom 2008). In contrast,
‘‘de novo AI’’ requires inventing intelligence software anew. There is a vast space of
possible mind designs for de novo AI (Dennett 1996; Yudkowsky 2008a). De novo
AI approaches include the symbolic, probabilistic, connectionist, evolutionary,
embedded, and other research programs (Pennachin and Goertzel 2007).

From Here to AI

When should we expect the first creation of AI? We must allow for a wide range of
possibilities. Except for weather forecasters (Murphy and Winkler 1984) and
successful professional gamblers, nearly all of us give inaccurate probability
estimates, and in particular we are overconfident of our predictions (Lichtenstein
et al. 1982; Griffin and Tversky 1992; Yates et al. 2002). This overconfidence
affects professional forecasters, too (Tetlock 2005), and we have little reason to
think AI forecasters have fared any better.4 So if you ave a gut feeling about when
AI will be created, it is probably wrong.

But uncertainty is not a ‘‘get out of prediction free’’ card (Bostrom 2007). We
still need to decide whether or not to encourage WBE development, whether or not
to help fund AI safety research, etc. Deciding either way already implies some sort
of prediction. Choosing not to fund AI safety research suggests that we do not
think AI is near, while funding AI safety research implies that we think AI might
be coming soon.

4 To take one of many examples, Simon (1965, p. 96) predicted that ‘‘machines will be capable,
within twenty years, of doing any work a man can do.’’ Also see Crevier (1993).
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Predicting AI

How, then, might we predict whenAI will be created?We consider several strategies
below.

By gathering the wisdom of experts or crowds. Many experts and groups have
tried to predict the creation of AI. Unfortunately, experts’ predictions are often
little better than those of laypeople (Tetlock 2005), expert elicitation methods have
in general not proven useful for long-term forecasting,5 and prediction markets
(ostensibly drawing on the opinions of those who believe themselves to possess
some expertise) have not yet been demonstrated useful for technological fore-
casting (Williams 2011). Still, it may be useful to note that none to few experts
expect AI within five years, whereas many experts expect AI by 2050 or 2100.6

By simple hardware extrapolation. The novelist Vinge (1993) based his own
predictions about AI on hardware trends, but in a 2003 reprint of his article, Vinge
notes the insufficiency of this reasoning: even if we acquire hardware sufficient for
AI, we may not have the software problem solved.7

Hardware extrapolation may be a more useful method in a context where the
intelligence software is already written: whole brain emulation. Because WBE
seems to rely mostly on scaling up existing technologies like microscopy and
large-scale cortical simulation, WBE may be largely an ‘‘engineering’’ problem,
and thus the time of its arrival may be more predictable than is the case for other
kinds of AI.

Several authors have discussed the difficulty of WBE in detail (Kurzweil 2005;
Sandberg and Bostrom 2008; de Garis et al. 2010; Modha et al. 2011; Cattell and
Parker 2012). In short: The difficulty of WBE depends on many factors, and in
particular on the resolution of emulation required for successful WBE. For
example, proteome-resolution emulation would require more resources and tech-
nological development than emulation at the resolution of the brain’s neural net-
work. In perhaps the most likely scenario,

WBE on the neuronal/synaptic level requires relatively modest increases in microscopy
resolution, a less trivial development of automation for scanning and image processing, a
research push at the problem of inferring functional properties of neurons and synapses,
and relatively business-as-usual development of computational neuroscience models and
computer hardware. (Sandberg and Bostrom 2008, p. 83)

5 Armstrong (1985), Woudenberg (1991), Rowe and Wright (2001). But, see Parente and
Anderson-Parente (2011).
6 Bostrom (2003), Bainbridge (2006), Legg (2008), Baum et al. (2011), Sandberg and Bostrom
(2011), Nielsen (2011).
7 A software bottleneck may delay AI but create greater risk. If there is a software bottleneck on
AI, then when AI is created there may be a ‘‘computing overhang’’: large amounts of inexpensive
computing power which could be used to run thousands of AIs or give a few AIs vast
computational resources. This may not be the case if early AIs require quantum computing
hardware, which is less likely to be plentiful and inexpensive than classical computing hardware
at any given time.
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By considering the time since Dartmouth. We have now seen more than 50 years
of work towardmachine intelligence since the seminal Dartmouth conference on AI,
but AI has not yet arrived. This seems, intuitively, like strong evidence that AI won’t
arrive in the next minute, good evidence it won’t arrive in the next year, and sig-
nificant but far from airtight evidence that it won’t arrive in the next few decades.
Such intuitions can be formalized into models that, while simplistic, can form a
useful starting point for estimating the time to machine intelligence.8

By tracking progress in machine intelligence. Some people intuitively estimate
the time until AI by asking what proportion of human abilities today’s software
can match, and how quickly machines are catching up.9 However, it is not clear
how to divide up the space of ‘‘human abilities,’’ nor how much each one matters.
We also don’t know if progress in machine intelligence will be linear, exponential,
or otherwise. Watching an infant’s progress in learning calculus might lead one to
infer the child will not learn it until the year 3000, until suddenly the child learns it
in a spurt at age 17. Still, it may be worth asking whether a measure can be found
for which both: (a) progress is predictable enough to extrapolate; and (b) when
performance rises to a certain level, we can expect AI.

By extrapolating from evolution. Evolution managed to create intelligence
without using intelligence to do so. Perhaps this fact can help us establish an upper
bound on the difficulty of creating AI (Chalmers 2010; Moravec 1976, 1998,
1999), though this approach is complicated by observation selection effects
(Shulman and Bostrom 2012).

By estimating progress in scientific research output. Imagine a man digging a
10 km ditch. If he digs 100 meters in one day, you might predict the ditch will be
finished in 100 days. But what if 20 more diggers join him, and they are all given

8 We can make a simple formal model of this evidence by assuming (with much simplification)
that every year a coin is tossed to determine whether we will get AI that year, and that we are
initially unsure of the weighting on that coin. We have observed more than 50 years of ‘‘no AI’’
since the first time serious scientists believed AI might be around the corner. This ‘‘56 years of no
AI’’ observation would be highly unlikely under models where the coin comes up ‘‘AI’’ on 90 %
of years (the probability of our observations would be 10^-56), or even models where it comes up
‘‘AI’’ in 10 % of all years (probability 0.3 %), whereas it’s the expected case if the coin comes up
‘‘AI’’ in, say, 1 % of all years, or for that matter in 0.0001 % of all years. Thus, in this toy model,
our ‘‘no AI for 56 years’’ observation should update us strongly against coin weightings in which
AI would be likely in the next minute, or even year, while leaving the relative probabilities of ‘‘AI
expected in 200 years’’ and ‘‘AI expected in 2 million years’’ more or less untouched. (These
updated probabilities are robust to choice of the time interval between coin flips; it matters little
whether the coin is tossed once per decade, or once per millisecond, or whether one takes a limit
as the time interval goes to zero). Of course, one gets a different result if a different ‘‘starting
point’’ is chosen, e.g. Alan Turing’s seminal paper on machine intelligence (Turing 1950) or the
inaugural conference on artificial general intelligence (Wang et al. 2008). For more on this
approach and Laplace’s rule of succession, see Jaynes (2003), Chap. 18. We suggest this
approach only as a way of generating a prior probability distribution over AI timelines, from
which one can then update upon encountering additional evidence.
9 Relatedly, Good (1970) tried to predict the first creation of AI by surveying past conceptual
breakthroughs in AI and extrapolating into the future.
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backhoes? Now the ditch might not take so long. Analogously, when predicting
progress toward AI it may be useful to consider not how much progress is made
per year, but instead how much progress is made per unit of research effort, and
how many units of research effort we can expect to be applied to the problem in the
coming decades.

Unfortunately, we have not yet discovered demonstrably reliable methods for
long-term technological forecasting. New methods are being tried (Nagy et al.
2010), but until they prove successful we should be particularly cautious when
predicting AI timelines. Below, we attempt a final approach by examining some
plausible speed bumps and accelerators on the path to AI.

Speed Bumps

Several factors may decelerate our progress toward the first creation of AI. For
example:

An end to Moore’s law. Though several information technologies have pro-
gressed at an exponential or superexponential rate for many decades (Nagy et al.
2011), this trend may not hold for much longer (Mack 2011).

Depletion of low-hanging fruit. Scientific progress is not only a function of
research effort but also of the ease of scientific discovery; in some fields there is
pattern of increasing difficulty with each successive discovery (Arbesman 2011;
Jones 2009). AI may prove to be a field in which new discoveries require far more
effort than earlier discoveries.

Societal collapse. Various political, economic, technological, or natural disas-
ters may lead to a societal collapse during which scientific progress would not
continue (Posner 2004; Bostrom and Ćirković 2008).

Disinclination. Chalmers (2010), Hutter (2012a) think the most likely speed
bump in our progress toward AI will be disinclination, including active prevention.
Perhaps humans will not want to create their own successors. New technologies
like ‘‘Nanny AI’’ (Goertzel 2012), or new political alliances like a stable global
totalitarianism (Caplan 2008), may empower humans to delay or prevent scientific
progress that could lead to the creation of AI.

Accelerators

Other factors, however, may accelerate progress toward AI:
More hardware. For at least four decades, computing power10 has increased

exponentially, roughly in accordance with Moore’s law.11 Experts disagree on how

10 The technical measure predicted by Moore’s law is the density of components on an integrated
circuit, but this is closely tied to the price-performance of computing power.
11 For important qualifications, see Nagy et al. (2010), Mack (2011).
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much longer Moore’s law will hold (Mack 2011; Lundstrom 2003), but even if
hardware advances more slowly than exponentially, we can expect hardware to be
far more powerful in a few decades than it is now.12 More hardware doesn’t by
itself give us machine intelligence, but it contributes to the development of
machine intelligence in several ways:

Powerful hardware may improve performance simply by allowing existing ‘‘brute force’’
solutions to run faster (Moravec 1976). Where such solutions do not yet exist, researchers
might be incentivized to quickly develop them given abundant hardware to exploit. Cheap
computing may enable much more extensive experimentation in algorithm design,
tweaking parameters or using methods such as genetic algorithms. Indirectly, computing
may enable the production and processing of enormous datasets to improve AI perfor-
mance (Halevi et al. 2009), or result in an expansion of the information technology
industry and the quantity of researchers in the field. (Shulman and Sandberg 2010)

Better algorithms. Often, mathematical insights can reduce the computation
time of a program by many orders of magnitude without additional hardware. For
example, IBM’s Deep Blue played chess at the level of world champion Garry
Kasparov in 1997 using about 1.5 trillion instructions per second (TIPS), but a
program called Deep Junior did it in 2003 using only 0.015 TIPS. Thus, the
computational efficiency of the chess algorithms increased by a factor of 100 in
only six years (Richards and Shaw 2004).

Massive datasets. The greatest leaps forward in speech recognition and trans-
lation software have come not from faster hardware or smarter hand-coded
algorithms, but from access to massive data sets of human-transcribed and human-
translated words (Halevi et al. 2009). Datasets are expected to increase greatly in
size in the coming decades, and several technologies promise to actually outpace

‘‘Kryder’s law’’ (Kryder and Kim 2009), which states that magnetic disk storage
density doubles approximately every 18 months (Walter 2005).

Progress in psychology and neuroscience. Cognitive scientists have uncovered
many of the brain’s algorithms that contribute to human intelligence (Trappenberg
2009; Ashby and Helie 2011). Methods like neural networks (imported from neu-
roscience) and reinforcement learning (inspired by behaviorist psychology) have
already resulted in significant AI progress, and experts expect this insight-transfer
from neuroscience to AI to continue and perhaps accelerate (Van der Velde 2010;
Schierwagen 2011; Floreano andMattiussi 2008; de Garis et al. 2010; Krichmar and
Wagatsuma 2011).

Accelerated science. A growing First World will mean that more researchers at
well-funded universities will be conducting research relevant to machine

12 Quantum computing may also emerge during this period. Early worries that quantum
computing may not be feasible have been overcome, but it is hard to predict whether
quantum computing will contribute significantly to the development of machine intelligence
because progress in quantum computing depends heavily on relatively unpredictable insights
in quantum algorithms and hardware (Rieffel and Polak 2011).
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intelligence. The world’s scientific output (in publications) grew by one third from
2002 to 2007 alone, much of this driven by the rapid growth of scientific output in
developing nations like China and India (Royal Society 2011).13 Moreover, new
tools can accelerate particular fields, just as fMRI accelerated neuroscience in the
1990s, and the effectiveness of scientists themselves can potentially be increased
with cognitive enhancement pharmaceuticals (Bostrom and Sandberg 2009) and
brain-computer interfaces that allow direct neural access to large databases (Groß
2009). Finally, new collaborative tools like blogs and Google Scholar are already
yielding results such as the Polymath Project, which is rapidly and collaboratively
solving open problems in mathematics (Nielsen 2011).14

Economic incentive. As the capacities of ‘‘narrow AI’’ programs approach the
capacities of humans in more domains (Koza 2010), there will be increasing
demand to replace human workers with cheaper, more reliable machine workers
(Hanson 2008, Forthcoming; Kaas et al. 2010; Brynjolfsson and McAfee 2011).

First-mover incentives. Once AI looks to be within reach, political and private
actors will see substantial advantages in building AI first. AI could make a small
group more powerful than the traditional superpowers—a case of ‘‘bringing a gun
to a knife fight.’’ The race to AI may even be a ‘‘winner take all’’ scenario. Thus,
political and private actors who realize that AI is within reach may devote sub-
stantial resources to developing AI as quickly as possible, provoking an AI arms
race (Gubrud 1997).

How Long, Then, Before AI?

We have not yet mentioned two small but significant developments leading us to
agree with Schmidhuber (2012) that ‘‘progress towards self-improving AIs is
already substantially beyond what many futurists and philosophers are aware of.’’
These two developments are Marcus Hutter’s universal and provably optimal AIXI
agent model (Hutter 2005) and Jürgen Schmidhuber’s universal self-improving
Gödel machine models (Schmidhuber 2007, 2009).

Schmidhuber (2012) summarizes the importance of the Gödel machine:

[The] Gödel machine… already is a universal AI that is at least theoretically optimal in
certain sense. It may interact with some initially unknown, partially observable environ-
ment to maximize future expected utility or reward by solving arbitrary user-defined
computational tasks. Its initial algorithm is not hardwired; it can completely rewrite itself
without essential limits apart from the limits of computability, provided a proof searcher

13 On the other hand, some worry (Pan et al. 2005) that the rates of scientific fraud and
publication bias may currently be higher in China and India than in the developed world.
14 Also, a process called ‘‘iterated embryo selection’’ (Uncertain Future 2012) could be used to
produce an entire generation of scientists with the cognitive capabilities of Albert Einstein or
John von Neumann, thus accelerating scientific progress and giving a competitive advantage to
nations which choose to make use of this possibility.
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embedded within the initial algorithm can first prove that the rewrite is useful, according
to the formalized utility function taking into account the limited computational resources.
Self-rewrites may modify/improve the proof searcher itself, and can be shown to be
globally optimal, relative to Gödel’s well-known fundamental restrictions of provability
(Gödel 1931)…
All of this implies that there already exists the blueprint of a Universal AI which will

solve almost all problems almost as quickly as if it already knew the best (unknown)
algorithm for solving them, because almost all imaginable problems are big enough to
make the additive constant negligible. Hence, I must object to Chalmers’ statement [that]
‘‘we have yet to find the right algorithms, and no-one has come close to finding them yet.’’

Next, we turn to Hutter (2012b) for a summary of the importance of AIXI:
The concrete ingredients in AIXI are as follows: Intelligent actions are based on

informed decisions. Attaining good decisions requires predictions which are typi-
cally based on models of the environments. Models are constructed or learned from
past observations via induction. Fortunately, based on the deep philosophical

insights and powerful mathematical developments, all these problems have been
overcome, at least in theory: So what do we need (from a mathematical point of
view) to construct a universal optimal learning agent interacting with an arbitrary
unknown environment? The theory, coined UAI [Universal Artificial Intelligence],
developed in the last decade and explained in Hutter (2005) says: All you need is

Ockham, Epicurus, Turing, Bayes, Solomonoff (1964a, 1964b), Kolmogorov (1968),
Bellman (1957): Sequential decision theory (Bertsekas 2007) (Bellman’s equation)
formally solves the problem of rational agents in uncertain worlds if the true envi-
ronmental probability distribution is known. If the environment is unknown,
Bayesians (Berger 1993) replace the true distribution by a weighted mixture of
distributions from some (hypothesis) class. Using the large class of all (semi)mea-
sures that are (semi)computable on a Turing machine bears in mind Epicurus, who
teaches not to discard any (consistent) hypothesis. In order not to ignore Ockham,
who would select the simplest hypothesis, Solomonoff defined a universal prior that
assigns high/low prior weight to simple/complex environments (Rathmanner and
Hutter 2011), whereKolmogorov quantifies complexity (Li and Vitányi 2008). Their
unification constitutes the theory of UAI and resulted in… AIXI.15

AIXI is incomputable, but computationally tractable approximations have
already been experimentally tested, and these reveal a path to universal AI16 that
solves real-world problems in a variety of environments:

15 In our two quotes from Hutter (2012b) we have replaced Hutter’s AMS-style citations with
Chicago-style citations.
16 The creation of AI probably is not, however, merely a matter of finding computationally
tractable AIXI approximations that can solve increasingly complicated problems in increasingly
complicated environments. There remain many open problems in the theory of universal artificial
intelligence (Hutter 2009). For problems related to allowing some AIXI-like models to self-
modify, see Orseau and Ring (2011), Ring and Orseau (2011), Orseau (2011); Hibbard
(Forthcoming). Dewey (2011) explains why reinforcement learning agents like AIXI may pose a
threat to humanity.
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The same single [AIXI approximation ‘‘MC-AIXI-CTW’’] is already able to learn to play
TicTacToe, Kuhn Poker, and most impressively Pacman (Veness et al. 2011) from scratch.
Besides Pacman, there are hundreds of other arcade games from the 1980s, and it would be
sensational if a single algorithm could learn them all solely by trial and error, which seems
feasible for (a variant of) MC-AIXI-CTW. While these are ‘‘just’’ recreational games, they
do contain many prototypical elements of the real world, such as food, enemies, friends,
space, obstacles, objects, and weapons. Next could be a test in modern virtual worlds…
that require intelligent agents, and finally some selected real-world problems.

So, when will we create AI? Any predictions on the matter must have wide
error bars. Given the history of confident false predictions about AI (Crevier 1993)
and AI’s potential speed bumps, it seems misguided to be 90 % confident that AI
will succeed in the coming century. But 90 % confidence that AI will not arrive
before the end of the century also seems wrong, given that: (a) many difficult AI
breakthroughs have now been made (including the Gödel machine and AIXI), (b)
several factors, such as automated science and first-mover incentives, may well
accelerate progress toward AI, and (c) whole brain emulation seems to be possible
and have a more predictable development than de novo AI. Thus, we think there is
a significant probability that AI will be created this century. This claim is not
scientific—the field of technological forecasting is not yet advanced enough for
that—but we believe our claim is reasonable.

The creation of human-level AI would have serious repercussions, such as the
displacement of most or all human workers (Brynjolfsson and McAfee 2011). But if
AI is likely to lead to machine superintelligence, as we argue next, the implications
could be even greater.

From AI to Machine Superintelligence

It seems unlikely that humans are near the ceiling of possible intelligences, rather
than simply being the first such intelligence that happened to evolve. Computers
far outperform humans in many narrow niches (e.g. arithmetic, chess, memory
size), and there is reason to believe that similar large improvements over human
performance are possible for general reasoning, technology design, and other tasks
of interest. As occasional AI critic Jack Schwartz (1987) wrote:

If artificial intelligences can be created at all, there is little reason to believe that initial
successes could not lead swiftly to the construction of artificial superintelligence able to
explore significant mathematical, scientific, or engineering alternatives at a rate far
exceeding human ability, or to generate plans and take action on them with equally
overwhelming speed. Since man’s near-monopoly of all higher forms of intelligence has
been one of the most basic facts of human existence throughout the past history of this
planet, such developments would clearly create a new economics, a new sociology, and a
new history.

Why might AI ‘‘lead swiftly’’ to machine superintelligence? Below we consider
some reasons.
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AI Advantages

Below we list a few AI advantages that may allow AIs to become not only vastly
more intelligent than any human, but also more intelligent than all of biological
humanity (Sotala 2012; Legg 2008). Many of these are unique to machine intel-
ligence, and that is why we focus on intelligence explosion from AI rather than
from biological cognitive enhancement (Sandberg 2011).

Increased computational resources. The human brain uses 85–100 billion
neurons. This limit is imposed by evolution-produced constraints on brain volume
and metabolism. In contrast, a machine intelligence could use scalable computa-
tional resources (imagine a ‘‘brain’’ the size of a warehouse). While algorithms
would need to be changed in order to be usefully scaled up, one can perhaps get a
rough feel for the potential impact here by noting that humans have about 3.5
times the brain size of chimps (Schoenemann 1997), and that brain size and IQ
correlate positively in humans, with a correlation coefficient of about 0.35
(McDaniel 2005). One study suggested a similar correlation between brain size
and cognitive ability in rats and mice (Anderson 1993).17

Communication speed. Axons carry spike signals at 75 meters per second or
less (Kandel et al. 2000). That speed is a fixed consequence of our physiology. In
contrast, software minds could be ported to faster hardware, and could therefore
process information more rapidly. (Of course, this also depends on the efficiency
of the algorithms in use; faster hardware compensates for less efficient software.)

Increased serial depth. Due to neurons’ slow firing speed, the human brain
relies on massive parallelization and is incapable of rapidly performing any
computation that requires more than about 100 sequential operations (Feldman and
Ballard 1982). Perhaps there are cognitive tasks that could be performed more
efficiently and precisely if the brain’s ability to support parallelizable pattern-
matching algorithms were supplemented by support for longer sequential pro-
cesses. In fact, there are many known algorithms for which the best parallel
version uses far more computational resources than the best serial algorithm, due
to the overhead of parallelization.18

Duplicability. Our research colleague Steve Rayhawk likes to describe AI as
‘‘instant intelligence; just add hardware!’’ What Rayhawk means is that, while it
will require extensive research to design the first AI, creating additional AIs is just
a matter of copying software. The population of digital minds can thus expand to
fill the available hardware base, perhaps rapidly surpassing the population of
biological minds.

Duplicability also allows the AI population to rapidly become dominated by
newly built AIs, with new skills. Since an AI’s skills are stored digitally, its exact

17 Note that given the definition of intelligence we are using, greater computational resources
would not give a machine more ‘‘intelligence’’ but instead more ‘‘optimization power’’.
18 For example see Omohundro (1987).
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current state can be copied,19 including memories and acquired skills—similar to
how a ‘‘system state’’ can be copied by hardware emulation programs or system
backup programs. A human who undergoes education increases only his or her
own performance, but an AI that becomes 10 % better at earning money (per
dollar of rentable hardware) than other AIs can be used to replace the others across
the hardware base—making each copy 10 % more efficient.20

Editability. Digitality opens up more parameters for controlled variation than is
possible with humans. We can put humans through job-training programs, but we
can’t perform precise, replicable neurosurgeries on them. Digital workers would
be more editable than human workers are. Consider first the possibilities from
whole brain emulation. We know that transcranial magnetic stimulation (TMS)
applied to one part of the prefrontal cortex can improve working memory (Fregni
et al. 2005). Since TMS works by temporarily decreasing or increasing the
excitability of populations of neurons, it seems plausible that decreasing or
increasing the ‘‘excitability’’ parameter of certain populations of (virtual) neurons
in a digital mind would improve performance. We could also experimentally
modify dozens of other whole brain emulation parameters, such as simulated
glucose levels, undifferentiated (virtual) stem cells grafted onto particular brain
modules such as the motor cortex, and rapid connections across different parts of
the brain.21 Secondly, a modular, transparent AI could be even more directly
editable than a whole brain emulation—possibly via its source code. (Of course,
such possibilities raise ethical concerns).

Goal coordination. Let us call a set of AI copies or near-copies a ‘‘copy clan.’’
Given shared goals, a copy clan would not face certain goal coordination problems
that limit human effectiveness (Friedman 1994). A human cannot use a hun-
dredfold salary increase to purchase a hundredfold increase in productive hours per
day. But a copy clan, if its tasks are parallelizable, could do just that. Any gains
made by such a copy clan, or by a human or human organization controlling that
clan, could potentially be invested in further AI development, allowing initial
advantages to compound.

Improved rationality. Some economists model humans as Homo economicus:
self-interested rational agents who do what they believe will maximize the ful-
fillment of their goals (Friedman 1953). On the basis of behavioral studies, though,
Schneider (2010) points out that we are more akin to Homer Simpson: we are
irrational beings that lack consistent, stable goals (Stanovich 2010; Cartwright

19 If the first self-improving AIs at least partially require quantum computing, the system states
of these AIs might not be directly copyable due to the no-cloning theorem (Wooters and Zurek
1982).
20 Something similar is already done with technology-enabled business processes. When the
pharmacy chain CVS improves its prescription-ordering system, it can copy these improvements
to more than 4,000 of its stores, for immediate productivity gains (McAfee and Brynjolfsson
2008).
21 Many suspect that the slowness of cross-brain connections has been a major factor limiting the
usefulness of large brains (Fox 2011).
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2011). But imagine if you were an instance of Homo economicus. You could stay
on a diet, spend the optimal amount of time learning which activities will achieve
your goals, and then follow through on an optimal plan, no matter how tedious it
was to execute. Machine intelligences of many types could be written to be vastly
more rational than humans, and thereby accrue the benefits of rational thought and
action. The rational agent model (using Bayesian probability theory and expected
utility theory) is a mature paradigm in current AI design (Hutter 2005; Russel and
Norvig 2009, Chap. 2).

These AI advantages suggest that AIs will be capable of far surpassing the
cognitive abilities and optimization power of humanity as a whole, but will they be
motivated to do so? Though it is difficult to predict the specific motivations of
advanced AIs, we can make some predictions about convergent instrumental
goals—instrumental goals useful for the satisfaction of almost any final goals.

Instrumentally Convergent Goals

Omohundro (2007, 2008, this volume) and Bostrom (Forthcoming[a]) argue that
there are several instrumental goals that will be pursued by almost any advanced
intelligence because those goals are useful intermediaries to the achievement of
almost any set of final goals. For example:

1. An AI will want to preserve itself because if it is destroyed it won’t be able to
act in the future to maximize the satisfaction of its present final goals.

2. An AI will want to preserve the content of its current final goals because if the
content of its final goals is changed it will be less likely to act in the future to
maximize the satisfaction of its present final goals.22

3. An AI will want to improve its own rationality and intelligence because this
will improve its decision-making, and thereby increase its capacity to achieve
its goals.

4. An AI will want to acquire as many resources as possible, so that these
resources can be transformed and put to work for the satisfaction of the AI’s
final and instrumental goals.

Later we shall see why these convergent instrumental goals suggest that the
default outcome from advanced AI is human extinction. For now, let us examine
the mechanics of AI self-improvement.

22 Bostrom (2012) lists a few special cases in which an AI may wish to modify the content of its
final goals.
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Intelligence Explosion

The convergent instrumental goal for self-improvement has a special consequence.
Once human programmers build an AI with a better-than-human capacity for AI
design, the instrumental goal for self-improvement may motivate a positive
feedback loop of self-enhancement.23 Now when the machine intelligence
improves itself, it improves the intelligence that does the improving. Thus, if mere
human efforts suffice to produce machine intelligence this century, a large popu-
lation of greater-than-human machine intelligences may be able to create a rapid
cascade of self-improvement cycles, enabling a rapid transition to machine
superintelligence. Chalmers (2010) discusses this process in some detail, so here
we make only a few additional points.

The term ‘‘self,’’ in phrases like ‘‘recursive self-improvement’’ or ‘‘when the
machine intelligence improves itself,’’ is something of a misnomer. The machine
intelligence could conceivably edit its own code while it is running (Schmidhuber
2007; Schaul and Schmidhuber 2010), but it could also create new intelligences
that run independently. Alternatively, several AIs (perhaps including WBEs) could
work together to design the next generation of AIs. Intelligence explosion could
come about through ‘‘self’’-improvement or through other-AI improvement.

Once sustainable machine self-improvement begins, AI development need not
proceed at the normal pace of human technological innovation. There is, however,
significant debate over how fast or local this ‘‘takeoff’’ would be (Hanson and
Yudkowsky 2008; Loosemore and Goertzel 2011; Bostrom Forthcoming[a]), and
also about whether intelligence explosion would result in a stable equilibrium of
multiple machine superintelligence or instead a machine ‘‘singleton’’ (Bostrom
2006). We will not discuss these complex issues here.

Consequences of Machine Superintelligence

If machines greatly surpass human levels of intelligence—that is, surpass
humanity’s capacity for efficient cross-domain optimization—we may find our-
selves in a position analogous to that of the apes who watched as humans invented
fire, farming, writing, science, guns and planes and then took over the planet. (One
salient difference would be that no single ape witnessed the entire saga, while we
might witness a shift to machine dominance within a single human lifetime).

23 When the AI can perform 10 % of the AI design tasks and do them at superhuman speed, the
remaining 90 % of AI design tasks act as bottlenecks. However, if improvements allow the AI to
perform 99 % of AI design tasks rather than 98 %, this change produces a much larger impact
than when improvements allowed the AI to perform 51 % of AI design tasks rather than 50 %
(Hanson, forthcoming). And when the AI can perform 100 % of AI design tasks rather than 99 %
of them, this removes altogether the bottleneck of tasks done at slow human speeds.
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Such machines would be superior to us in manufacturing, harvesting resources,
scientific discovery, social aptitude, and strategic action, among other capacities.
We would not be in a position to negotiate with them, just as neither chimpanzees
nor dolphins are in a position to negotiate with humans.

Moreover, intelligence can be applied in the pursuit of any goal. As Bostrom
(2012) argues, making AIs more intelligent will not make them want to change
their goal systems—indeed, AIs will be motivated to preserve their initial goals.
Making AIs more intelligent will only make them more capable of achieving their
original final goals, whatever those are.24

This brings us to the central feature of AI risk: Unless an AI is specifically
programmed to preserve what humans value, it may destroy those valued struc-
tures (including humans) incidentally. As Yudkowsky (2008a) puts it, ‘‘the AI
does not love you, nor does it hate you, but you are made of atoms it can use for
something else.’’

Achieving a Controlled Intelligence Explosion

How, then, can we give AIs desirable goals before they self-improve beyond our
ability to control them or negotiate with them?25 WBEs and other brain-inspired
AIs running on human-derived ‘‘spaghetti code’’ (Marcus 2008) may not have a
clear ‘‘slot’’ in which to specify desirable goals. The same may also be true of
other ‘‘opaque’’ AI designs, such as those produced by evolutionary algorithms—
or even of more transparent AI designs. Even if an AI had a transparent design
with a clearly definable utility function,26 would we know how to give it desirable
goals? Unfortunately, specifying what humans value may be extraordinarily dif-
ficult, given the complexity and fragility of human preferences (Yudkowsky 2011;
Muehlhauser and Helm, this volume), and allowing an AI to learn desirable goals

24 This may be less true for early-generation WBEs, but Omohundro (2008) argues that AIs will
converge upon being optimizing agents, which exhibit a strict division between goals and
cognitive ability.
25 Hanson (2012) reframes the problem, saying that ‘‘we should expect that a simple
continuation of historical trends will eventually end up [producing] an ‘intelligence explosion’
scenario. So there is little need to consider [Chalmers’] more specific arguments for such a
scenario. And the inter-generational conflicts that concern Chalmers in this scenario are generic
conflicts that arise in a wide range of past, present, and future scenarios. Yes, these are conflicts
worth pondering, but Chalmers offers no reasons why they are interestingly different in a
‘singularity’ context.’’ We briefly offer just one reason why the ‘‘inter-generational conflicts’’
arising from a transition of power from humans to superintelligent machines are interestingly
different from previous the inter-generational conflicts: as Bostrom (2002) notes, the singularity
may cause the extinction not just of people groups but of the entire human species. For a further
reply to Hanson, see Chalmers (Forthcoming).
26 A utility function assigns numerical utilities to outcomes such that outcomes with higher
utilities are always preferred to outcomes with lower utilities (Mehta 1998).
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from reward and punishment may be no easier (Yudkowsky 2008a). If this is
correct, then the creation of self-improving AI may be detrimental by default

unless we first solve the problem of how to build an AI with a stable, desirable
utility function—a ‘‘Friendly AI’’ (Yudkowsky 2001).27

But suppose it is possible to build a Friendly AI (FAI) capable of radical self-
improvement. Normal projections of economic growth allow for great discoveries
relevant to human welfare to be made eventually—but a Friendly AI could make
those discoveries much sooner. A benevolent machine superintelligence could, as
Bostrom (2003) writes, ‘‘create opportunities for us to vastly increase our own
intellectual and emotional capabilities, and it could assist us in creating a highly
appealing experiential world in which we could live lives devoted [to] joyful
game-playing, relating to each other, experiencing, personal growth, and to living
closer to our ideals.’’

Thinking that FAI may be too difficult, Goertzel (2012) proposes a global
‘‘Nanny AI’’ that would ‘‘forestall a full-on Singularity for a while, …giving us
time to figure out what kind of Singularity we really want to build and how.’’
Goertzel and others working on AI safety theory would very much appreciate the
extra time to solve the problems of AI safety before the first self-improving AI is
created, but your authors suspect that Nanny AI is ‘‘FAI-complete,’’ or nearly so.
That is, in order to build Nanny AI, you may need to solve all the problems
required to build full-blown Friendly AI, for example the problem of specifying
precise goals (Yudkowsky 2011; Muehlhauser and Helm, this volume) and the
problem of maintaining a stable utility function under radical self-modification,
including updates to the AI’s internal ontology (de Blanc 2011).

The approaches to controlled intelligence explosion we have surveyed so far
attempt to constrain an AI’s goals, but others have suggested a variety of
‘‘external’’ constraints for goal-directed AIs: physical and software confinement
(Chalmers 2010; Yampolskiy 2012), deterrence mechanisms, and tripwires that
shut down an AI if it engages in dangerous behavior. Unfortunately, these solu-
tions would pit human intelligence against superhuman intelligence, and we
shouldn’t be confident the former would prevail.

Perhaps we could build an AI of limited cognitive ability—say, a machine that
only answers questions: an ‘‘Oracle AI.’’ But this approach is not without its own
dangers (Armstrong, Sandberg Forthcoming; Bostrom forthcoming).

Unfortunately, even if these latter approaches worked, they might merely delay
AI risk without eliminating it. If one AI development team has successfully built
either an Oracle AI or a goal-directed AI under successful external constraints,
other AI development teams may not be far from building their own AIs, some of
them with less effective safety measures. A Friendly AI with enough lead time,
however, could permanently prevent the creation of unsafe AIs.

27 It may also be an option to constrain the first self-improving AIs just long enough to develop a
Friendly AI before they cause much damage.
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What Can We Do About AI Risk?

Because superhuman AI and other powerful technologies may pose some risk of
human extinction (‘‘existential risk’’), Bostrom (2002) recommends a program of
differential technological development in which we would attempt ‘‘to retard the
implementation of dangerous technologies and accelerate implementation of
beneficial technologies, especially those that ameliorate the hazards posed by other
technologies.’’

But good outcomes from intelligence explosion appear to depend not only on
differential technological development but also, for example, on solving certain
kinds of problems in decision theory and value theory before the first creation of
AI (Muehlhauser 2011). Thus, we recommend a course of differential intellectual
progress, which includes differential technological development as a special case.

Differential intellectual progress consists in prioritizing risk-reducing intellec-
tual progress over risk-increasing intellectual progress. As applied to AI risks in
particular, a plan of differential intellectual progress would recommend that our
progress on the scientific, philosophical, and technological problems of AI safety
outpace our progress on the problems of AI capability such that we develop safe

superhuman AIs before we develop (arbitrary) superhuman AIs. Our first super-
human AI must be a safe superhuman AI, for we may not get a second chance
(Yudkowsky 2008a).With AI as with other technologies, wemay become victims of
‘‘the tendency of technological advance to outpace the social control of technology’’
(Posner 2004).

Conclusion

We have argued that AI poses an existential threat to humanity. On the other hand,
with more intelligence we can hope for quicker, better solutions to many of our
problems. We don’t usually associate cancer cures or economic stability with
artificial intelligence, but curing cancer is ultimately a problem of being smart
enough to figure out how to cure it, and achieving economic stability is ultimately
a problem of being smart enough to figure out how to achieve it. To whatever
extent we have goals, we have goals that can be accomplished to greater degrees
using sufficiently advanced intelligence. When considering the likely conse-
quences of superhuman AI, we must respect both risk and opportunity.28

28 Our thanks to Nick Bostrom, Steve Rayhawk, David Chalmers, Steve Omohundro, Marcus
Hutter, Brian Rabkin, William Naaktgeboren, Michael Anissimov, Carl Shulman, Eliezer
Yudkowsky, Louie Helm, Jesse Liptrap, Nisan Stiennon, Will Newsome, Kaj Sotala, Julia Galef,
and anonymous reviewers for their helpful comments.
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Chapter 2A

Robin Hanson on Muehlhauser and Salamon’s

‘‘Intelligence Explosion: Evidence and Import’’

Muehlhauser and Salamon [M&S] talk as if their concerns are particular to an
unprecedented new situation: the imminent prospect of ‘‘artificial intelligence’’ (AI).
But in fact their concerns depend little on how artificial will be our descendants, nor
on how intelligence they will be. Rather, Muehlhauser and Salamon’s concerns
follow from the general fact that accelerating rates of change increase intergener-
ational conflicts. Let me explain.

Here are three very long term historical trends:

1. Our total power and capacity has consistently increased. Long ago this enabled
increasing population, and lately it also enables increasing individual income.

2. The rate of change in this capacity increase has also increased. This acceler-
ation has been lumpy, concentrated in big transitions: from primates to humans
to farmers to industry.

3. Our values, as expressed in words and deeds, have changed, and changed faster
when capacity changed faster. Genes embodied many earlier changes, while
culture embodies most today.

Increasing rates of change, together with constant or increasing lifespans,
generically imply that individual lifetimes now see more change in capacity and in
values. This creates more scope for conflict, wherein older generations dislike the
values of younger more-powerful generations with whom their lives overlap.

As rates of change increase, these differences in capacity and values between
overlapping generations increase. For example, Muehlhauser and Salamon fear
that their lives might overlap with

[descendants] superior to us in manufacturing, harvesting resources, scientific discovery,
social charisma, and strategic action, among other capacities. We would not be in a
position to negotiate with them, for [we] could not offer anything of value [they] could not
produce more effectively themselves. … This brings us to the central feature of
[descendant] risk: Unless a [descendant] is specifically programmed to preserve what [we]
value, it may destroy those valued structures (including [us]) incidentally.

The quote actually used the words ‘‘humans’’, ‘‘machines’’ and ‘‘AI’’, and
Muehlhauser and Salamon spend much of their chapter discussing the timing and
likelihood of future AI. But those details are mostly irrelevant to the concerns
expressed above. It doesn’t matter much if our descendants are machines or bio-
logical meat, or if their increased capacities come from intelligence or raw
physical power. What matters is that descendants could have more capacity and
differing values.

Such intergenerational concerns are ancient, and in response parents have long
sought to imprint their values onto their children, with modest success.

Muehlhauser and Salamon find this approach completely unsatisfactory. They
even seem wary of descendants who are cell-by-cell emulations of prior human

2 Intelligence Explosion: Evidence and Import 41



brains, ‘‘brain-inspired AIs running on human-derived ‘‘spaghetti code’’, or
‘opaque’ AI designs…produced by evolutionary algorithms.’’ Why? Because such
descendants ‘‘may not have a clear ‘slot’ in which to specify desirable goals.’’

Instead Muehlhauser and Salamon prefer descendants that have ‘‘a transparent
design with a clearly definable utility function,’’ and they want the world to slow
down its progress in making more capable descendants, so that they can first
‘‘solve the problem of how to build [descendants] with a stable, desirable utility
function.’’

If ‘‘political totalitarians’’ are central powers trying to prevent unwanted
political change using thorough and detailed control of social institutions, then
‘‘value totalitarians’’ are central powers trying to prevent unwanted value change
using thorough and detailed control of everything value-related. And like political
totalitarians willing to sacrifice economic growth to maintain political control,
value totalitarians want us to sacrifice capacity growth until they can be assured of
total value control.

While the basic problem of faster change increasing intergenerational conflict
depends little on change being caused by AI, the feasibility of this value totali-
tarian solution does seem to require AI. In addition, it requires transparent-design
AI to be an early and efficient form of AI. Furthermore, either all the teams
designing AIs must agree to use good values, or the first successful team must use
good values and then stop the progress of all other teams.

Personally, I’m skeptical that this approach is even feasible, and if feasible, I’m
wary of the concentration of power required to even attempt it. Yes we teach
values to kids, but we are also often revolted by extreme brainwashing scenarios,
of kids so committed to certain teachings that they can no longer question them.
And we are rightly wary of the global control required to prevent any team from
creating descendants who lack officially approved values.

Even so, I must admit that value totalitarianism deserves to be among the range
of responses considered to future intergenerational conflicts.
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