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One of the most startling economic facts of recent years has been the reversal in the 

long-standing catch-up of Europe’s productivity level with the United States. American 

labor productivity growth slowed after the early 1970s Oil Shocks but accelerated 

sharply after 1995. Although European productivity growth experienced the same 

slowdown, it has not enjoyed the same rebound (see Figure 1).1 For example, Inklaar, 

Timmer, and van Ark (2008) show that US GDP per hour growth accelerated from 1.3 

percent 1980–1995 to 2.2 percent 1995–2006, whereas in Europe productivity growth 

slowed from 2.3 percent to 1.4 percent. Although some part of the observed European 

slowdown may be due to labor market reforms getting less skilled workers into jobs, 

1 Examples of early studies include Jorgenson (2001) and Oliner and Sichel (2000). Looking at more recent data, 
Jorgenson, Ho, and Stiroh (2008) document that average annual US labor productivity growth was similar in the 
2000–2006 period to the 1995–2000 period (and well above the 1.5 percent of 1973–1995). Only after 2005 is there 
any sign of a return to more “normal” levels of productivity growth as IT prices declines have slowed.
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most analysts agree there was still a substantial gap in productivity growth between 

the United States and European Union that has persisted. Nor has the recent recession 

changed this picture: US productivity growth appears to have continued to outstrip that 

in Europe (Gordon 2010).
Decompositions of US productivity growth show that a large fraction of this 

recent growth occurred in those sectors that either produce IT (information tech-

nologies) or intensively use IT. Closer analysis has shown that European countries 

had a similar productivity acceleration as the United States in IT-producing sectors 

(such as semiconductors and computers) but failed to achieve the spectacular levels 

of productivity growth in the sectors that used IT intensively—predominantly mar-

ket service sectors, including wholesale, retail, and financial services (e.g., van Ark, 

O’Mahony, and Timmer 2008). In light of the credit crunch, the measured produc-

tivity gains in finance may prove illusory—which is why we focus on  nonfinancial 

firms in the article—but the productivity gains in other sectors like retail and whole-

sale are likely to be real and persistent. Consistent with these trends, Figure 2 shows 

that IT intensity appears to be substantially higher in the United States than in 

Europe, and this gap has not narrowed over time. Given the common availability of 

IT throughout the world at broadly similar prices, it is a major puzzle why these IT 

related productivity effects have not been more widespread in Europe.

There are at least two broad classes of explanation for this puzzle. First, there may be 

some “natural advantage” to being located in the United States, enabling firms to make 

better use of the opportunity that comes from rapidly falling IT prices. These natu-

ral advantages could be tougher product market competition, lower regulation, better 

access to risk capital, more educated2 or younger workers, larger market size, greater 

2 For example, if IT is complementary with human capital, then the larger stock of college educated workers 
in the United States than Europe may mean that productivity grows faster in the United States when IT prices are 
falling rapidly.
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Figure 1. Output per Hour in Europe and the United States, 1980–2005

Notes: Productivity measured by GDP per hour in 2005 US$ PPPs. The countries included in the “EU15” group 
are: Austria, Belgium, Denmark, Finland, France, Germany, United Kingdom, Greece, Italy, Ireland, Luxembourg, 
Portugal, Spain, Sweden, and Netherlands. Labor productivity measured as GDP per hour worked in 2005 US$.

Source: The Conference Board and Groningen Growth and Development Centre, Total Economy Database.
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geographical space, or a host of other factors. A second class of explanations stresses 

that it is not the US environment per se that matters but rather the way that US firms 

are managed that enables better exploitation of IT (“the US management hypothesis”).3

These explanations are not mutually exclusive. In this article we sketch a model that 

has elements of both (see online Appendix B and Bloom, Sadun, and Van Reenen 2007). 
Nevertheless, one straightforward way to test whether the US management hypothe-

sis has any validity is to examine the IT performance of US owned organizations in a 

European environment. If US multinationals partially transfer their business models to 

their overseas affiliates—and a walk into McDonald’s or Starbucks anywhere in Europe 

suggests that this is not an unreasonable assumption—then analyzing the IT perfor-

mance of US multinational establishments in Europe should be informative. Finding a 

systematically better use of IT by American firms outside the United States suggests that 

we should take the US management hypothesis seriously. Such a test could not be easily 

performed with data only on plants located in the United States, because any findings 

of higher efficiency of plants owned by US multinationals might arise because of the 

advantage of operating on the multinational’s home turf (“home bias”).4

In this article, we examine the differences in IT related productivity between 

establishments owned by US multinationals, establishments owned by non-US 

multinationals, and purely domestic establishments. We exploit two distinct rich 

3 Another possibility is international differences in productivity measurement (Blanchard 2004). This is pos-
sible, but the careful work of O’Mahony and Van Ark (2003) focusing on the same sectors in the United States and 
European Union, using common adjustments for hedonic prices, software capitalization, and demand conditions, 
still finds a difference in US-EU relative productivity growth rates.

4 Doms and Jensen (1998) find that plants owned by US multinationals have higher productivity than those of 
non-US multinationals. But since this study was based only on those located in the United States, it could just be a 
reflection of home bias.
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Figure 2. IT Capital per Hour in Europe and the United States, 1980–2005

Notes: IT capital stock (in unit dollars) per hour worked. IT capital stock measured using perpetual inventory 
method and common assumptions on hedonics and depreciation. 2005 US$ PPPs. The countries included in the 
“EU15” group are: Austria, Belgium, Denmark, Finland, France, Germany, UK, Greece, Italy, Ireland, Luxembourg, 
Portugal, Spain, Sweden, and the Netherlands. Labor productivity per hour worked in 2005 US$ using PPPs.

Source: Timmer, Ypma, and Ark, “IT in the European Union: Driving Productivity Convergence?” Research 
Memorandum GD-67, Groningen Growth and Development Centre, October 2003, Appendix Tables, updated 
June 2005.
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and original panel datasets. The first is from the UK Census Bureau (the Office 

of National Statistics (ONS)) and contains over 11,000 establishments. The UK 

is a useful testing ground because (a) it has extensive foreign ownership with fre-

quent ownership changes and (b) the UK Census Bureau has collected panel data 

on IT expenditure and productivity in both manufacturing and services since the 

mid-1990s. The second dataset is a firm-level panel covering seven European coun-

tries and combines our own international survey of management practices, a private-

sector IT survey, and company accounting data. Although this European dataset is 

smaller, the use of observable measures of management practices allows a more 

direct test of the theory.

We report that foreign affiliates of US multinationals appear to obtain higher pro-

ductivity than non-US multinationals (and domestic firms) from their IT capital and 

are also more IT intensive. This is true in both the UK establishment-level dataset 

and the European firm-level dataset. These findings are robust to a number of tests, 

including an examination of establishments before and after they are taken over by 

a US multinational compared to those taken over by a non-US multinational. Using 

our new international management practices dataset, we then show that American 

firms have higher scores on “people management” practices defined in terms of 

promotions, rewards, hiring, and firing.5 This holds true for both domestically based 

US firms as well as US multinationals operating in Europe. Using our European 

firm-level panel, we find these management practices account for most of the higher 

output elasticity of IT of US firms. This appears to be because people management 

practices enable US firms to better exploit IT.

Our article is related to several other literatures. First, there is a large body 

of work on the impact of IT on productivity at the aggregate or industry level.6 

Second, there is growing evidence that the returns to IT are linked to the internal 

organization of firms. On the econometric side, Caroli and Van Reenen (2001); 
Bresnahan, Brynjolfsson, and Hitt (2002); and Crespi, Criscuolo, and Haskel 

(2007) find that internal organization and other complementary factors, such as 

human capital, are important in generating significant returns to IT. On the case 

study side, there is also a large range of evidence.7 Third, in a reversal of the 

Solow Paradox, the firm-level productivity literature describes returns to IT that 

are larger than one would expect under the standard growth accounting assump-

tions. Brynjolfsson and Hitt (2003) argue that this is due to complementary 

 investments in “organizational capital” that are reflected in the coefficients on IT 

capital. Fourth, there is a literature on the superior establishment-level productiv-

ity of US multinationals versus non-US multinationals, both in the United States 

and in other countries.8 We suggest that the main reason for this difference is the 

way in which US multinationals use new technologies more effectively than other 

multinationals. Finally, our article is linked to the literature on  multinationals 

5 It is plausible that higher scores reflect “better” management, but we do not assume this. All we claim is that 
American firms have different people management practices than European firms, and these are complementary with IT.

6 See, for example, Basu et al. (2003) and Stiroh (2002, 2004).
7 Blanchard et al. (2002) discuss a number of industry-specific examples. Baker and Hubbard (2004) is an excel-

lent example of applying econometric techniques to a case study of on-board computers in the US trucking industry.
8 See, for example, Doms and Jensen (1998) on US plants; Haltiwanger, Jarmin, and Schank (2003) on German 

plants; Criscuolo and Martin (2009) on British plants; and Benfratello and Sembenelli (2006) on Italian plants.
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and comparative advantage. A recent body of theoretical work emphasizes the 

importance of firm-level comparative advantage in multinationals.9 In these mod-

els firms have some productivity advantage, which their multinationals transplant 

to their overseas affiliates. Our evidence on the systematically different people 

management practices of US overseas affiliates provides empirical support for 

this assumption. Interestingly, these results are also consistent with the litera-

ture reporting that US multinationals appear to be earning extremely high rates 

of return abroad from intangible capital (“dark matter”), particularly since the 

mid-1990s (e.g., McGrattan and Prescott 2008). Our results suggest one factor 

could be that the management practices of US multinationals enable them to more 

effectively use IT.

The structure of this article is as follows. Section I describes the empirical 

framework, the UK establishment-level data is described in Section II, and the 

results from this panel are presented in Section III. The European firm-level data is 

described in Section IV, and the results from this panel are presented in Section V. 

Section VI offers some concluding remarks. Appendices are all available on the 

AER website.

I. Empirical Modeling Strategy

We sketch our basic modeling strategy with more formal details in online Appendix 

B. Here, Section A describes the basic approach, and Section B describes the equa-

tions we can estimate when we do not directly observe management practices, as is 

standard in most economic datasets (this is the case for our UK establishment-level 

panel). By contrast, Section C describes the equations we are able to estimate when 

we do directly observe management practices (this can be implemented on our pan-

European firm-level panel).

A. Basic Empirical Model

Consider the following production function:

(1)  Q it  =  A it   O  it  
 α O    C  it  

 α     
C +σ O it    L  it  

 α     
L −σ O it    K  it  

 α     
K    M  it  

 α     
M  ,

where Q denotes gross output of establishment (or firm) i in year t. A is a Hicks-

neutral efficiency term, M denotes materials/intermediate inputs, L denotes labor, K 

denotes non-IT capital, C denotes computer/IT capital, and O is a measure of the 

firms’ management/organizational capital that is complementary with IT capital. This 

specification of the production function in equation (1) is a simple way of capturing 

the notion that IT (C) and management (O) are complementary if σ > 0 (Bresnahan 

et al. 2002). Equation (1) should be regarded as an approximation of a more flexible 

production function: we examine these more general production functions (such as 

the translog) in the empirical section and show that equation (1) is consistent with the 

9 For example, Helpman, Melitz, and Yeaple (2004); Antras, Garicano, and Rossi-Hansberg (2008); and Burstein 
and Monge-Naranjo (2009).
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empirical results.10 We assume that all the exponents on the factor inputs are bounded 

by zero and unity to make sure the firm’s optimization problem is well behaved 

(i.e., 0 ≤ { α L  − σO,  α C  + σO,  α K ,  α M ,  α O } ≤ 1). This means the value of σ,  α L , and  α C  

are dependent on the scaling of O, so that, for example, doubling the units on O would 

halve the units on σ. Note that  α O  could be equal to zero, so that increasing O would 

have no direct effect on firm output. Finally, we will generally consider O to be fixed 

in the short run (Section D relaxes this assumption).
We use lower case letters to indicate that a variable is transformed into natural log-

arithms, so  q it  ≡ ln  Q it  , etc., and consider parameterizing the establishment-specific 

efficiency in equation (1) as  a it  =  a i  + γ′ z it  +  ξ kt  +  u it  , where z are other observable 

factors influencing productivity—e.g., establishment age, region, and whether the 

establishment is part of a multiplant group. The  ξ kt  are industry-time specific shocks 

that we will control for with a full set of three-digit industry (k) dummies interacted 

with a full set of time dummies.11 Under these assumptions, equation (1) can be written

(2) (q − l ) it  =  α C  (c − l ) it  +  α K  (k − l ) it  +  α  M  (m − l ) it  

  + ( α C  +  α L  +  α  M  +  α K  − 1) l it 

  + σ [(c − l ) it  ×  O it )] +  α O  ln  O it  +  a i  + γ′ z it  +  ξ kt  +  u it .

Note that we choose to normalize on labor, as this makes it straightforward to test 

for constant returns by examining whether the coefficient on labor in equation (2) is 

significantly different from zero. In online Appendix C and Bloom, Sadun, and Van 

Reenen (2007) we consider the nonnormalized version (as in footnote 10) showing 

similar results.

Another implication of the idea that IT capital is complementary with specific 

types of management practices is that, ceteris paribus, firms with higher levels of O 

will have a greater demand for IT capital. We consider the IT intensity equation:12

(3) (c − l ) it  =  β  O   O it  + φ′  w it  +  ς kt  +  e it ,

where  w  it  are controls,  ς kt  are the industry-time shocks,  e it  is an error term, and 

we expect  β  O  to be positive under complementarity of IT and O. It is worth not-

ing that the estimates of equations (2) and (3) embody alternative identification 

10 A more flexible translog production relationship would be

ln Q =    ∑ 
J={O, M, L, K, C}

  

 

    α  J   ln  X  J  +    ∑ 
J={O, M, L, K, C}

  

 

     (   ∑ 
Z={O, M, L, K, C}

  

 

    α  J Z   ln  X  J  ln  X  Z ),

where a superscript denotes a factor input so  X  L  = L = labor, etc. The second term on the right-hand side of this 
equation contains the term ln( X  O ) × ln( X  C  ), the interaction between management and IT, which we find to be 
crucial in the empirical work.

11 We also experimented with year-specific four-digit dummies and explicit measures of output prices (up to the 
five-digit level) which generated very similar results to our baseline model with year-specific three-digit industry 
dummies.

12 This is a first-order approximation to the nonlinear factor demand equation (B7) for IT in online Appendix B 
where the factor prices are common across firms in an industry for a given year. If σ > 0 then  β  O  > 0.
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assumptions. For example, assume that there is exogenous variation in  O  i  across 

firms, but no exogenous variation in IT capital. Complementarity will imply that the 

factor demand equation for IT is a positive, but deterministic, function of  O  i  . Thus, 

equations of the form of (3) are useful to identify complementarity. By contrast, it 

will not be possible to identify the coefficient on IT capital (nor σ, the coefficient 

on its interaction with  O  i ) in the production function because IT capital has no firm-

level variation conditional on  O  i  . In practice, however, the production function coef-

ficients can be identified from adjustment costs or shocks to IT capital arising from 

falling prices and optimization errors (see online Appendix C). But examining the 

IT demand equation is a useful cross check on these results.

A key idea in this article is that   
_

 O   USA  >    
_
 O   MNE  >    

_
 O   dOM , where    

_
 O   USA  is the mean level 

of management in US firms,    
_
 O   MNE  the mean level in non-US multinationals and    

_
 O   dOM , 

the mean level in domestic firms. We describe below two different empirical strategies 

to test this hypothesis, which vary according to the availability of data on O.

B. Testing the Model when O is Unobserved

Basic Production Function.—When O is unobserved, given its complementar-

ity with IT, we expect to see systematic differences in the elasticity of output with 

respect to IT capital in equation (2) between US and other firms. In order to test this 

hypothesis we estimate the following production function for different sectors (e.g., 

IT intensive and non–IT intensive):13

(4)  (q − l ) it  =  α  C, dOM  (c − l ) it  +  α  K  (k − l ) it  +  α  M  (m − l ) it 

  + ( α  C, dOM  +  α  L  +  α  M  +  α  K  − 1) l it 

  +  α  C, USA [(c − l) ×  d USA  ] it 

  +  α  C, MNE  [(c − l) ×  d MNE  ] it  +  a i  +  δ USA   d  it  
USA 

  +  δ     
MNE   d  it  

MNE  + γ′ z it  +  ξ kt  +  u it  ,

where  d  it  
USA  denotes that the establishment is owned by a US firm in year t and  

d  it  
MNE  denotes that the establishment is owned by a non-US multinational enterprise 

(the omitted base is that the establishment belongs to a nonmultinational domestic 

firm denoted “dOM”).14 If our model is correct, then empirically when we estimate 

equation (4) we should find     α   C, USA  >     α   C, MNE  >     α   C, dOM , i.e., a greater productiv-

ity effect of IT in US multinationals than in non-US multinationals or domestic  

13 In the robustness section we estimate equation (4) separately across different two- and three-digit industries.
14 We could not reject the hypothesis that UK multinationals had the same productivity and output elasticity of 

IT capital as other non-US multinationals.
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establishments.15 Note that the final inequality (    α   C, MNE  >     α   C, dOM ) is less of a clean 

test as domestic firms may be quite different from multinationals on a number of 

dimensions, whereas non-US multinationals are a more credible “control group” for 

US multinationals. A related hypothesis is that US multinationals are more produc-

tive than non-US multinationals and domestic firms, i.e.      δ   
C, USA

  +     α   C, USA (c − l ) it   
>     δ   

C, MNE
  +     α   C, MNE (c − l ) it  >     δ   

C, dOM
  +     α   C, dOM (c − l ) it . This has to be evaluated at 

a particular level of IT intensity, but since the overall mean of ln(C/L) is close to 

zero, a test of the equality of the multinational dummies is presented at the base of 

every table.

Another implication of the idea that US firms have an advantage in the use of IT 

is that, ceteris paribus, they will have a greater demand for IT capital. Consequently, 

we estimate the IT intensity equation equivalent to equation (3):

(5) (c − l ) it  =  β  USA   d  it  
USA  +  β  MNE   d  it  

MNE  + φ′ w  it  +  ς kt  +  e it  ,

where  w  it  are controls,  ς kt  the industry-time shocks, and  e it  is an error term. The 

hypothesis of interest is, of course, whether     β   
USA

  >     β   
MNE

  > 0 with a focus on the 

first inequality,     β   
USA

  >     β   
MNE

 .

Since the significance of the US × ln(C/L) interaction (the  α  C, USA  coefficient in 

equation (4)) may capture unobservable factors beyond managerial differences, we 

perform an extensive range of tests to check the robustness of our results. These are 

detailed below.

Subsample of Establishments that are Taken Over.—One concern with our empiri-

cal strategy is that US firms may “cherry pick” the establishments with the highest IT 

productivity. This would generate a higher IT coefficient for American firms, but this 

would only be due to positive selection. To tackle this issue we focus on a subsample 

of UK establishments that have been taken over at some point in the sample period. 

Prior to the takeover we find no evidence of differential coefficients on IT in establish-

ments subsequently targeted by US firms versus non-US firms. But after the takeover 

we find that establishments acquired by US firms have significantly higher IT produc-

tivity than those taken over by other firms.

Unobserved Heterogeneity.—In all specifications, we choose a general structure 

of the error term that allows for arbitrary heteroskedasticity and autocorrelation over 

15 A more general form of the production function is one where we allow all the factor inputs ( x  it  
J
  ) to differ by 

ownership status:

 q it  =    ∑ 
J={M, L, K, C}

  

 

    α  J, dOM    x  it  
J
   +     ∑ 

J={M, L, K, C}

  

 

    α  J, USA   d  it  
USA   x  it  

J
   +     ∑ 

J={M, L, K, C}

  

 

    α  J, MNE    d  it  
MNE   x  it  

J
   +  a i  

 +  δ  USA   d  it  
USA  +  δ  MNE   d  it  

MNE  + γ′ z it  +  ξ kt  +  u it  .

Note that although we will estimate this equation in some specifications, empirically the interactions between 
the non-IT factor inputs and ownership status are not significantly different from zero. The one interaction that does 
stand out is between the US ownership dummy and IT capital: the coefficient on IT capital is significantly higher for 
US establishments than for other multinationals or domestic establishments. We also cannot reject the hypothesis 
that all ownership types have the same return to scale parameter so we generally impose this.
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time. But there could still be establishment-specific unobserved  heterogeneity. So, 

we also generally include a full set of establishment-level fixed effects (the “within-

groups” estimator). The fixed-effects estimators are more demanding, as they con-

trol for unobservable omitted variables correlated with IT that generate an upward 

bias for the coefficient on IT capital.

One aspect of unobserved heterogeneity is establishment-specific prices that will 

not be fully controlled for by the fixed effects and the industry dummies interacted 

with time dummies (see Foster, Haltiwanger, and Syverson 2008). Empirically, the 

dependent variable in equation (4) is revenue, not physical units, so we are estimat-

ing “revenue productivity” equations rather than physical productivity equations, 

and we should interpret the coefficients on the factor inputs as reflecting both the 

technological parameters and a mark-up term.

To investigate this, we will estimate the “revenue productivity function,” allow-

ing for monopolistic competition following Klette and Griliches (1996) and De 

Loecker (2011). Essentially this implies including additional terms for four-digit 

output interacted by ownership type to the empirical analog of equation (4). Note, 

however, differential mark-ups for American firms cannot easily explain one of our 

findings that the coefficient on IT is significantly larger for US firms, but the other 

factor coefficients appear to be the same across multinationals types. If US firms 

are able to command a higher output price for IT capital, this is consistent with the 

idea that IT improves quality (rather than simply increasing output) by more for 

American multinationals than other multinationals. This higher IT-related quality 

would be reflected in a firm-specific higher mark-up for IT-intensive US firms. This 

is consistent with our theoretical story.

Endogeneity of the Factor Inputs.—We take several approaches to check the 

robustness of our results to the endogeneity issue, accepting that there is no “magic 

bullet” to this problem, which is still an active area of econometric research (see 

Ackerberg et al. 2008, for a survey). In particular, we present results using a version 

of the Olley-Pakes estimator (1996) allowing for multiple capital inputs, and the 

“System GMM” estimator of Blundell and Bond (1998, 2000). In both cases we find 

a much higher IT coefficient for US firms in the production function. We also pres-

ent IT intensity equations derived from the first-order conditions of the model and 

find that US firms have significantly higher IT capital intensities than other firms, 

especially in the IT-intensive sectors.

Heterogeneity in the Coefficients by Industry.—We allow for considerable hetero-

geneity by including fixed effects and industry effects interacted with time dummies. 

But the fact that the gap in US-EU productivity growth is so concentrated in the so-

called “IT-intensive sectors” suggests breaking down the regression estimates along 

these lines. We follow exactly the same classification as Stiroh (2002) to divide our 

sample into those which intensively use IT versus the rest of the sample (he based 

these on the flow of IT services in total capital services). These are predominantly 

service sectors such as wholesale, retail, and business services but also include sev-

eral manufacturing sectors such as printing and publishing (see online Table A1). 
We interpret this sectoral breakdown as indicating which sectors in Europe have the 

greatest potential (i.e., highest σ) to benefit from IT enabled innovations if firms are 



176 THE AMERICAN ECONOMIC REVIEW FEBRUARy 2012

able to adopt the appropriate complementary organizational practices.16 Blanchard 

(2004) and Blanchard et al. (2002) give many examples of these from various in-
depth case studies. One could argue, for example, whether or not Stiroh was correct 

in classifying retail in the IT-intensive sector, but this is beside the point—retail 

is a sector that had fast productivity growth in the United States post-1995, and 

not in Europe. Our hypothesis is that part of this difference was due to different 

management practices which enabled US retailers to efficiently exploit IT enabled 

innovations in retail.17 If that was the case, then estimating equation (4) by differ-

ent industry sectors should reveal a much stronger US × ln(C/L) interaction in the 

“IT-intensive sectors” than in the other industries. We also go further, estimating 

the production functions separately by each two-digit sector, in particular breaking 

down the IT-intensive sector into subindustries such as retail and wholesale.

C. Testing the Model Using direct Measurement of Firm Management Practices

A more direct way to test whether US firms have higher levels of O (i.e.,    
_
 O  USA   

>    
_
 O  MNE ) is to use explicit measures of management. For this purpose, we collected 

our own data on management practices based on the methodology in Bloom and Van 

Reenen (2007). We empirically measure O by an index of the “people management” 

in the firm which combines indicators of best practice in hiring, promotions, pay, 

retention, and removing underperformers (see below and online Appendix A). We 

focus on these people management aspects of firm organization because the econo-

metric and case-study evidence suggest that these features are particularly important 

for IT. The successful deployment of IT requires substantial changes in the way that 

employees work, including the ability to decentralize decision making so employees 

can experiment. High outcomes on our people management scores will reflect this.18

We show that this index of people management is higher in US multinationals than 

in non-US multinationals (and domestic firms). In particular, US firms tend to be 

more aggressive in promoting and rewarding high performing workers and remov-

ing underperforming workers.19 We combine the measures of people  management 

with firm-level panel data from accounting information and an alternative source 

16 We think this division is most appropriate as it does not rely on our subjective judgement. We consider other 
sectoral breakdowns such as using the industry level IT services share in Europe rather than the US and the IT to 
value added ratio. We obtain similar results from this. We also looked at a finer level of disaggregation by industry 
(such as splitting out retail and wholesale—see Section III).

17 Retailing has shifted from a low-tech industry focused on shifting boxes from producer to consumer to an 
industry whose main activity is trading information by matching goods to consumer demand on a near continuous 
basis, where IT is an integral part of this process.

18 For example, the organizational measure in Bresnahan, Brynjolfsson, and Hitt (2002) covers six measures 
which relate to the way that employees are managed (three questions on teamwork, two on decentralization over 
pace and methods of work, and one on employee involvement).

19 The econometric and case-study evidence suggest that these features of people management are particularly 
important for IT. The successful deployment of IT requires substantial changes in the way that employees work, 
which is highly intensive in people management. For example, Hunter et al. (2001) describe how IT radically 
changed the organization of US banks in the 1980s. The introduction of ATMs substantially reduced the need for 
tellers. At the same time PCs allowed staff to locate on the bank floor and directly sell customers mortgages, loans, 
and insurance, replacing bank managers as the primary sales channel for these products. IT also enabled regional 
managers to remotely monitor branches. This led to a huge reduction in branch-level management, an extensive 
realignment of job responsibilities, and major human-resources reorganization for senior bank managers. We dis-
cuss in more detail the empirical measures in the online Data Section.
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of IT data described below. Using this new European firm-level panel database we 

estimate an augmented form of equation (4):

(6)  (q − l ) it  =  α  C, dOM  (c − l ) it  +  α K  (k − l ) it  +  α  M  (m − l ) it 

  + σ [(c − l ) it  ×  O i )] +  α O  ln  O i  

  + ( α  C, dOM  +  α  L  +  α K  +  α  M  − 1)  l it 

  +  α  C, USA  [(c − l) ×  d USA ) ] it  +  α  C, MNE [(c − l) ×  d MNE   ] it 

 +  a i  +  δ USA   d  it  
USA  +  δ MNE   d  it  

MNE  + γ′ z it  +  ξ kt  +  u it  .

If our hypothesis is correct that the higher coefficient on IT in the production function 

for US multinationals is due to their management practices, then we would predict that 

σ > 0 and that  α  C, USA , the coefficient on the interaction between IT intensity and the 

US multinational dummy, [(c − l) ×  d USA ) ] it , would be insignificant once we condi-

tion on [(c − l ) it  ×  O i )]. We will show that this is indeed the case in our European panel 

dataset. Note that this does not imply that management is unimportant without IT, nor 

that management matters only in certain sectors. Rather we are arguing these practices 

may be particularly important when combined with IT enabled innovations in the high 

productivity growth sectors of the “productivity miracle” period.

D. Models of Adjusting Management Practices

To what extent does O change over time at the firm level? There is limited empiri-

cal evidence here, but many case studies suggest that management practices are 

difficult to change for incumbents. Microeconometric studies of responses to exter-

nal shocks such as deregulation (e.g., Olley and Pakes 1996) or trade liberalization 

(e.g., Pavcnik 2002) suggest that much aggregate change in productivity is driven 

by reallocation, entry, and exit rather than simply incumbent plants increasing their 

productivity. Some theoretical models are built on the assumption that the efficiency 

of establishments is fixed at birth (e.g., Jovanovic 1982; Melitz 2003). So, in the 

short run, the assumption of quasi-fixed management practices seems plausible, and 

we exploit this in our estimation.

In the longer run, however, management practices are variable to some degree. 

Online Appendix B discusses some formal models where we allow management 

practices to be endogenously chosen by the firm. The first extension is to allow 

practices to be transferred when one firm takes over another firm. As with recent 

trade theory (e.g., Antras, Garicano, and Rossi-Hansberg 2008), we assume that a 

multinational can transfer its management practices overseas (subject to some cost). 
This generates predictions of a distinctive dynamic pattern for the productivity-IT 

relationship for establishments taken over by US multinationals, which we find in 

the takeover subsample (see Section IB).
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Online Appendix B also discusses allowing management practices to be adjust-

able even for establishments that are not taken over (with and without adjustment 

costs) and shows that the key predictions are robust to this extension. We also dis-

cuss how our modeling structure relates to Basu et al. (2003), who also consider a 

formal model of productivity dynamics when there is complementarity between IT 

and organization.20

II. Establishment-Level Panel Data from the UK Census

We use two main datasets in the article which are drawn from several sources. A 

full description of the datasets appears in online Appendix A. The first is an origi-

nal UK establishment-level panel constructed from combining multiple datasets 

within the UK Census Bureau. We present results from this data in Section III. The 

second is a firm-level panel dataset across seven European countries. This com-

bines our own survey of management practices, an establishment-level IT panel, 

and European firm-level accounting data. We describe the data in detail in Section 

IV and present the results in Section V. Both datasets are unbalanced panels—i.e., 

we do not condition on the subsample of firms that are alive throughout the time 

period.

The basis of the UK data is a panel of establishments covering all sectors of the 

UK private sector called the Annual Business Inquiry (ABI). It does not include 

financial services, which is a virtue given the difficulty of measuring productivity 

in these sectors, as the financial crisis has amply demonstrated. The ABI is similar 

in structure and content to the US Annual Survey of Manufacturing (ASM), and it 

contains detailed information on revenues, investment, employment, and material/
intermediate inputs. However, unlike the US ASM, it also covers the nonmanufac-

turing sector from the mid-1990s onward. This is important, because the majority 

of the sectors responsible for the US productivity acceleration are outside manu-

facturing, such as retailing and wholesaling.21 We were also able to obtain access 

to several surveys of establishment-level IT expenditure conducted annually by the 

UK Census Bureau, which we then matched into the ABI using the establishment’s 

reference number. The dataset is unique in containing such a large sample of estab-

lishment-level longitudinal information on IT and productivity.

We build IT capital stocks from IT expenditure flows using the perpetual inven-

tory method and following Jorgenson (2001), keeping to US assumptions about 

depreciation rates and hedonic prices. We considered several experiments by 

changing our assumptions concerning the construction of the IT capital stock 

using alternative assumptions over depreciation rates and initial conditions.22 

20 In Appendix B of Bloom, Sadun, and Van Reenen (2007) we show how IT adjustment costs could help ratio-
nalize these TFP dynamics. See also Basu et al. (2003).

21 The new US Longitudinal Business Database includes services but does not have information on IT or non-IT 
investment (see Davis et al. 2006).

22 First, because there is uncertainty over the exact depreciation rate for IT capital, we experimented with a 
number of alternative values. Second, we do not know the initial IT capital stock for ongoing establishments the 
first time they enter the sample. Our baseline method is to impute the initial year’s IT stock using as a weight the 
establishment’s observed IT investment relative to the industry IT investment. An alternative is to assume that the 
plant’s share of the industry IT stock is the same as its share of employment in the industry. All methods gave 
similar results.
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Furthermore, we present results using an entirely different measure of IT usage 

based on the number of workers in the establishment who use computers (taken 

from a different survey, the E-Commerce Survey). Qualitatively similar results 

were obtained from all methods.

Our final dataset runs from 1995 through 2003, but there are many more observa-

tions after 1999. After cleaning, we are left with 21,746 observations with positive 

values for all the factor inputs. The results are robust to conditioning on three con-

tinuous time series observations per firm but are weaker if we start conditioning on 

many more observations as we induce increasing amounts of selection bias.

There are many small and medium-sized establishments in our sample23—the 

median establishment employs 238 workers. The establishments are larger than 

average for the UK economy because the sampling frames for the ABI and, in par-

ticular, the IT surveys, deliberately oversample larger units. We did not find evidence 

that this causes any sample selection bias for a comparison of US multinationals to 

non-US multinationals.24 Average IT capital is about 1 percent of gross output at 

the unweighted mean (1.5 percent if weighted by size) or 3 percent of value added. 

These estimates are similar to the UK economywide means in Basu et al. (2003).
We have large numbers of multinational establishments in the sample. We can 

identify ownership using the Annual Foreign Direct Investment registry, which we 

also use to identify takeovers (from changes in ownership). About 8 percent of the 

establishments are US owned, 31 percent are owned by non-US multinationals, and 

61 percent are purely domestic. Multinationals’ share of employment is even higher, 

and their share of output higher still. Table 1 presents some descriptive statistics 

23 Online Table A2 sets out the basic summary statistics of the sample.
24 See Section A8 in online Appendix A. There was some evidence that response rates were lower for small 

domestic firms, however, suggesting we have a disproportionate number of the larger domestic firms. Since these 
larger establishments are likely to be more productive, it will be harder to reject our hypothesis that domestic 
establishments have lower productivity than multinationals. Nevertheless, we are more confident in the comparison 
within the multinational set (i.e., US versus non-US) than between multinationals and domestic establishments.

Table 1—UK Descriptive Statistics Broken Down by Multinational Status 
(normalized to 100 for the 3-digit SIC and year average)

Employment
Value added 
per employee

Gross output 
per employee

Non-IT capital 
per employee

Materials per 
employee

IT capital per 
employee

US multinationals
 Mean 162.26 127.96 123.63 129.61 123.81 152.13
 Standard deviation 297.58 163.17 104.81 133.91 123.35 234.41

 Observations 569 569 569 569 569 569

Other multinationals
 Mean 148.58 113.71 115.22 120.65 116.02 119.58
 Standard deviation 246.35 107.87 86.50 126.83 107.63 180.34

 Observations 2,119 2,119 2,119 2,119 2,119 2,119

UK domestic
 Mean 68.78 89.86 89.69 86.33 89.29 83.95
 Standard deviation 137.72 104.50 102.09 127.16 129.37 188.30

 Observations 4,433 4,433 4,433 4,433 4,433 4,433

Note: These are 2001 values from our sample of 7,121 establishments in the UK data (ABI matched with IT data 
from QICE, BSCI, and FAR).
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for the different types of ownership, all relative to the three-digit industry aver-

age. Labor productivity, as measured by output per employee, is 24 percent higher 

than average for US multinational establishments and 15 percent higher than aver-

age for non-US multinational establishments. This suggests a 9 percentage point 

productivity premium for US establishments as compared to other multinationals. 

But US establishments also look systematically larger and more intensive in their 

non-labor input usage than other multinationals. US establishments have 14 percent-

age points more employees, use about 8 percentage points more intermediate inputs 

per employee, and 9 percentage points more non-IT capital per employee than other 

multinationals. Most interesting for our purposes, though, the largest gap in factor 

intensity is for IT: US establishments are 32 percentage points more IT intensive 

than other multinationals. Hence, establishments owned by US multinationals are 

notably more IT intensive than other multinationals in the same industry.

III. Results from the UK Establishment Panel

A. Main Results

In Table 2 we examine the output elasticity of IT in the standard production function 

framework described in Section II (these are all different implementations of equation 

(4)). Column 1 estimates the basic production function, including dummy variables for 

whether or not the plant is owned by a US multinational (“USA”) or a non-US multi-

national (“MNE”) with domestic establishments being the omitted base. US establish-

ments are 7.1 percent more productive than UK domestic establishments, and non-US 

multinationals are 3.9 percent more productive. This 3.2 percent (= 0.0712 − 0.0392) 
difference between the US and non-US multinationals coefficients is also significant at 

the 5 percent level (p-value = 0.021) as reported at the base of the column.25

The second column of Table 2 includes the IT capital measure. This enters 

positively and significantly and reduces the coefficients on the ownership dum-

mies. US establishments are more IT intensive than other establishments, but 

this accounts for only about 0.2 percentage points of the initial 3.2 percent pro-

ductivity gap between US and non-US multinational establishments. Column 3 

includes two interaction terms: one between IT capital and the US multinational 

dummy, and the other between IT capital and the non-US multinational dummy. 

These turn out to be very revealing. The interaction between the US dummy and 

IT capital is positive and significant at conventional levels. According to col-

umn 3, doubling the IT stock is associated with an increase in productivity of 

6.3 percent (= 0.0428 + 0.0202) for a US multinational but only 4.6 percent 

(= 0.0428 + 0.0036) for a non-US multinational. Note that non-US multination-

als are not significantly different from domestic UK establishments in this respect: 

we cannot reject the possibility that the coefficients on IT are equal for domestic 

UK establishments and non-US multinationals. It is the US establishments that are 

distinctly different. The reported US × ln(C/L) interaction tests for significant 

25 This implies that about two-thirds (6 percentage points of the 9 percentage point gap) of the observed labor 
productivity gap between US and other multinationals shown in Table 1 can be accounted for by our observables, 
such as greater non-IT capital intensity in the US establishments, but a significant gap remains.
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differences in the output-IT elasticity between US multinationals and UK domes-

tic establishments. The key test, however, is whether the IT coefficient for US 

multinationals is significantly different from the IT coefficient for other multi-

nationals. The row at the bottom of Table 3 reports the p-value of tests on the 

equality between the US × ln(C/L) and the MNE × ln(C/L) coefficient (i.e.,  

H0:  α  C, USA  =  α  C, MNE ), showing that the coefficients are significantly different at 

the 5 percent level.

To investigate the industries that appear to account for the major-

ity of the productivity acceleration in the United States we split the sam-

ple into “IT using intensive sectors” in column 4 and “Other sectors” in 

column 5. Sectors that use IT intensively account for most of the US pro-

ductivity growth between 1995 and 2003. These include retail, wholesale, 

business services, and high-tech manufacturing like printing/publishing.  

The US interaction with IT capital is much stronger in the IT-using sectors, and 

it is not significantly different from zero in the other sectors (even though we 

Table 2—Estimates of the UK Production Function Allowing the IT Coefficient  
to Differ by Ownership Status

ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln(Q/L) ln (Q/L) ln (Q/L)
Dependent variable: (1) (2) (3) (4) (5) (6) (7) (8)

Sectors
All 

sectors
All 

sectors
All 

sectors

IT using 
intensive 
sectors

Other 
sectors

All 
sectors

IT using 
intensive 
sectors

Other 
sectors

Fixed effects NO NO NO NO NO YES YES YES 

USA × ln (C/L) 0.0202*** 0.0380*** 0.0120 0.0093 0.0368*** −0.0060
USA ownership × IT capital  
 per employee

(0.0072) (0.0128) (0.0084) (0.0085) (0.0144) (0.0098)

MNE × ln (C/L) 0.0036 −0.0011 0.0062 0.0010 −0.0003 0.0008

Non-US multinational  × IT  
 capital per employee

(0.0045) (0.0062) (0.0060) (0.0042) (0.0064) (0.0053)

ln (C/L) 0.0457*** 0.0428*** 0.0373*** 0.0457*** 0.0152*** 0.0123** 0.0157***
IT capital per employee (0.0024) (0.0029) (0.0038) (0.0039) (0.0030) (0.0051) (0.0036)

ln (M/L) 0.5575*** 0.5474*** 0.5477*** 0.6216*** 0.5067*** 0.4031*** 0.5018*** 0.3606***
Materials per employee (0.0084) (0.0083) (0.0083) (0.0142) (0.0104) (0.0178) (0.0279) (0.0210)

ln (K/L) 0.1388*** 0.1268*** 0.1268*** 0.1106*** 0.1459*** 0.0900*** 0.1056*** 0.0666***
Non-IT capital per employee (0.0071) (0.0068) (0.0068) (0.0093) (0.0092) (0.0159) (0.0228) (0.0209)

ln (L) −0.0052* −0.0112*** −0.0111*** −0.0094** −0.0121*** −0.1986*** −0.1279*** −0.2466***
Labor (0.0027) (0.0027) (0.0027) (0.0037) (0.0036) (0.0217) (0.0319) (0.0279)

USA 0.0711*** 0.0641*** 0.0733*** 0.0440** 0.0892*** 0.0214 0.0451 −0.0070
USA ownership (0.0140) (0.0135) (0.0144) (0.0213) (0.0189) (0.0224) (0.0366) (0.0242)

MNE 0.0392*** 0.0339*** 0.0372*** 0.0149 0.0441*** 0.0081 0.0173 −0.0008
Non-US multinational (0.0079) (0.0078) (0.0093) (0.0134) (0.0124) (0.0103) (0.0172) (0.0126)

Observations 21,746 21,746 21,746 7,784 13,962 21,746 7,784 13,962

Test USA × ln (C/L) = MNE 
 × ln (C/L), p-value

0.0320 0.0035 0.5272 0.3622 0.0094 0.5210

Test USA = MNE, p-value 0.0206 0.0232 0.0113 0.1755 0.0151 0.5545 0.4301 0.8145

Notes: The dependent variable in all columns is the log of gross output per employee. The time period is 1995–2003. 
The estimation method in all columns is OLS. Columns 6 to 8 include establishment-level fixed effects. Standard 
errors in brackets under coefficients in all columns are clustered by establishment (i.e., robust to heteroskedasticity  
and autocorrelation of unknown form). All columns include a full set of three-digit industry dummies interacted 
with a full set of time dummies and as additional controls: dummies for establishment age (interacted with a manu-
facturing dummy), region, multiestablishment group (interacted with ownership type), and a dummy for IT survey. 
See online Table A1 for definition of IT using intensive sectors. “Test USA × ln(C/L) = MNE × ln(C/L)” is a test 
of whether the coefficient on USA × ln(C/L) is significantly different from the coefficient on MNE × ln(C/L), etc.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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have twice as many observations in those industries). The final three columns 

include a full set of establishment fixed effects. The earlier pattern of results is 

repeated; in  particular, column 7 demonstrates that US establishments appear 

to have a  significantly higher coefficient on their IT capital stocks than other 

Table 3—Robustness Tests of the UK Production Function

(1) (2) (3) (4) (5) (6)

Experiment
Baseline 

specification
Value 
added

All inputs 
interacted 

Alternative 
IT measure

Full “translog” 
interactions

EU and non-
EU MNEs

Dependent variable: ln (Q/L) ln (VA/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L)
USA × ln (C/L) 0.0368** 0.0681** 0.0328** 0.0672** 0.0334** 0.0376***

USA ownership × IT capital per employee (0.0144) (0.0319) (0.0141) (0.0258) (0.0140) (0.0145)

MNE × ln (C/L) −0.0003 −0.0179 0.0002 0.0070 −0.0012
Non-US multinational × IT capital per employee (0.0064) (0.0166) (0.0065) (0.0126) (0.0062)

Ln (C/L) 0.0123** 0.0290*** 0.0126** 0.0262*** 0.0330 0.0120**
IT capital per employee (0.0051) (0.0110) (0.0050) (0.0082) (0.0460) (0.0051)

USA × ln (M/L) 0.0334

USA ownership × materials per employee (0.0376)

MNE × ln (M/L) 0.0080

Non-US multinational × materials per employee (0.0236)

USA × ln (K/L) 0.0241

USA ownership × non-IT capital per employee (0.0368)

MNE × ln (K/L) −0.0142
Non-US × non-IT capital per employee (0.0134)

EU MNE 0.0063
EU ownership (0.0198)

Non-EU MNE −0.0603
Non-EU-non-USA ownership (0.0489)

EU MNE × ln (C/L) 0.0016

EU ownership × IT capital per employee (0.0064)

Non-EU MNE × ln (C/L) −0.0140
Non-EU-non-USA × IT capital per employee (0.0157)

Observations 7,784 7,784 7,784 2,155 7,784 7,784

Test USA × ln (C) = MNE × ln (C), p-value 0.0094 0.0103 0.0224 0.0216 0.0138

Test USA = MNE, p-value 0.4301 0.9638 0.3620 0.2244 0.3852
Test on joint significance of all the interaction  
 terms, excluding IT interactions (p-value)

0.3752

Test on joint significance of all the US interaction 
 terms, excluding IT per employee (p-value)

0.6216

Test on all the other MNE’s interaction terms,  
 excluding IT per employee (p-value)

0.2723

Test on additional “translog” terms, p-value 0.0000

Test USA = EU, p-value 0.3216

Test USA = non-EU, p-value 0.0815

Test [USA × ln (C/L)] = [EU × ln (C/L)],  
 p-value

0.0120

Test [USA × ln(C/L)] = [non-EU × ln (C/L)],  
 p-value

0.0123

Notes: The dependent variable in all columns is the log of gross output per employee, except (2) which is value-
added per employee. All columns are for only the sectors that use IT intensively (see online Appendix A1). The time 
period is 1995–2003. The estimation method is OLS. All columns also include (the log of) non-IT capital per worker 
(K/L), materials per worker (M/L) and labor (L). All columns except 4 include establishment fixed effects. Standard 
errors in brackets under coefficients are clustered by establishment (i.e., robust to heteroskedasticity and autocor-
relation of unknown form). All columns include a full set of three-digit industry dummies interacted with a full set 
of time dummies and as additional controls: dummies for establishment age (interacted with a manufacturing sector 
dummy), region, multiestablishment group (interacted with ownership type), and IT survey (except column 4). The 
IT measure in column 4 is the ln(fraction of workers using computers). Column 5 includes all the pairwise interac-
tions of materials, labor, IT capital, and non-IT capital, and the square of each of these factors. “Test USA × ln (C/L) 
=MNE × ln (C/L)” is a test of whether the coefficient on USA × ln (C/L) is significantly different from the coef-
ficient on MNE × ln (C/L), etc.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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 multinationals (and domestic firms).26 A doubling of the IT capital stock is associ-

ated with 1.2 percent higher productivity for a domestic or non-US multinational,  

but 4.9 percent higher productivity for an establishment owned by a US 

multinational.27

Quantification.—The results in column 7 of Table 2 report a US coefficient on 

IT capital stock that is about 3.7 percent higher than for domestic firms or non-US 

multinationals. Given that IT intensity over the period of 1995 to 2004 was rising 

at about 22 percent per year in both the US and EU (Timmer and van Ark 2005), 
this implies a faster growth rate of labor productivity of US establishments in the 

IT-intensive sector of about 0.81 percentage points per year (= 0.22 × 3.7 percent). 
IT-intensive industries account for about half of aggregate employment so that this 

higher coefficient—if applied to the US economy—would imply that aggregate 

US labor productivity would rise at about 0.4 percent a year faster than in Europe 

(= 0.5 × 0.81) between 1995 and 2004. Since actual US labor productivity growth 

over this period was at least 0.8 percent higher than in Europe, this coefficient would 

suggest that about half of the US productivity miracle was related to the stronger 

relationship between productivity and IT in the US than in Europe.

B. Robustness Tests of the Production Function Results

Table 3 presents a series of tests showing the robustness of the main results—we 

focus on the fixed effects specification, which is the most demanding, and on the 

IT intensive sectors, which we have shown to be crucial in driving our result. The 

first column represents our baseline production function results from column 7 in 

Table 2. The results are similar if we use value-added-based specifications (see col-

umn 2), so we stay with the more general specification using gross output as the 

dependent variable.

Transfer Pricing and Mark-Ups.—Since we are using multinational data, could 

transfer pricing be a reason for the results we obtain? If US firms shifted more of their 

accounting profits to the United Kingdom than other multinationals this could cause 

us to overestimate their productivity. But this would suggest that the factor coefficients 

on other inputs, particularly on materials, would also be systematically different for 

US establishments (see the discussion on establishment-specific prices above). To test 

this, column 3 estimates the production function with a full set of interactions between 

the US multinational dummy and all the factor inputs (and the non-US multinational 

dummy and all the factor inputs). None of the additional non-IT factor input interac-

tions are individually significant, and the joint test at the bottom of the column of the 

additional interactions shows that they are jointly insignificant.28 We cannot reject the 

26 We were also concerned that the IT interaction could be driven by the presence of labor in the denominator 
of both the dependent variable and the interaction, so we reestimated without normalizing any of the variables by 
labor. The US interaction with IT was still significantly different from the non-US multinational interaction with IT 
(p-value = 0.040). See also the results in Bloom, Sadun, and Van Reenen (2007).

27 At the overall sample mean of IT intensity, the implied productivity premium of US multinationals over non-
US multinationals is 2.6 percent, but this rises to 5.0 percent when evaluated at the IT intensity of the average US 
multinational establishment.

28 For example, the joint test of the all the US interactions except the IT interaction has a p-value of 0.62.
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specification of equation (4) in column 1 of Table 3 as a good representation of the 

data versus the more general interactive models of column 3.29 This experiment also 

rejects the general idea that the productivity advantage of the United States is attribut-

able to differential mark-ups, because then we would expect to see significantly differ-

ent coefficients on all the factor inputs, not just on the IT variable.

As a second test of differential mark-ups we follow Klette and Griliches (1996) 
and De Loecker (2007) by controlling for four-digit industry output (disaggregated 

by ownership type). The estimated mark-ups (inverse elasticities of demand) were 

significantly higher for multinationals than domestic firms, but the US multination-

als did not have significantly higher mark-ups than nonmultinationals (p-value of 

difference = 0.404). More importantly, the US IT coefficient remained significantly 

greater than the non-US multinational coefficient (p-value of difference = 0.010).30

Mismeasurement of IT Capital Stock?—One concern is that we may be underes-

timating the true IT stock of US multinationals and this could generate a positive 

coefficient on the interaction term, because of greater measurement error for the US 

establishments. For example, US multinationals may pay lower prices for IT than 

non-US multinationals. To tackle this issue we turn to an alternative IT survey (the 

E-commerce Survey, see online Appendix A) that has data on the proportion of work-

ers in the establishment who are using computers. This is a pure “stock” measure so 

it is unaffected by the initial conditions concern.31 In column 4 we replace our IT 

capital stock measure with a measure of the proportion of workers using a computer. 

Reassuringly, we still find a positive and significant coefficient on the US interaction 

with computer usage.

Functional Forms.—We tried including a much broader set of interactions and 

higher order terms (a “translog” specification), but these were generally individually 

insignificant. Column 5 shows the results of including all the pairwise interactions 

of materials, labor, IT capital, and non-IT capital and the square of each of these 

factors. The additional terms are jointly significant, but the key US interaction with 

the IT term remains basically unchanged (it falls slightly from 0.0368 in the baseline 

specification to 0.0334) and remains significant.

Stronger Selection Effects for US Multinationals because of Greater distance 

from the UK?—A further issue is that US firms may be more productive in the 

United Kingdom because the United States is geographically further away than the 

average non-US multinational (in our data most foreign multinationals are European 

if they are not American). This would generate a strong US selection bias if only 

29 The p-value = 0.38 on this test. We also investigated whether the coefficients in the production function 
regressions differ by ownership type and sector (IT intensive or not). Running the six separate regressions (three 
ownership types by two sectors) we found that the F-test rejected at the 1 percent level the pooling of the US mul-
tinationals with the other firms in the IT-intensive sectors. In the non–IT-intensive sectors, by contrast, the pooling 
restrictions were not rejected. Details are available from the authors on request.

30 See online Appendix Table A7.
31 The initial conditions concern is that our estimate of the initial IT capital stock could be systematically incor-

rect for US multinationals relative to other multinationals. Our IT capital stock measure is theoretically more 
appropriate as it is built analogously to the non-IT stock and is comparable to best practice existing work. The 
E-Commerce Survey is available for three years (2001 to 2003), but the vast majority of the sample is observed only 
for one period, so we do not control for fixed effects.
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the most productive firms are able to overcome the greater fixed costs of distance. 

To test this we divide the non-US multinational dummy into European versus 

 non-European firms. Under the distance argument, the non-European firms (e.g., 

Japanese multinationals) would have to be more productive to be able to set up 

greenfield establishments in the UK. According to column 6, however, the IT coef-

ficient for the US multinationals is significantly higher than the IT coefficient for 

the non-European multinationals ( p-value = 0.012), as well as higher than the IT 

coefficient on the European multinationals. Again, it is the US multinationals that 

appear to be different.

Industry Heterogeneity.—We allow for industry heterogeneity by including fixed 

effects, industry dummies interacted with time dummies, and estimating separately 

for IT-using sectors. We also considered further heterogeneity of the IT coefficients 

by estimating the production functions separately by each two-digit and three-digit 

industry but did not find much further systematic heterogeneity.32 For example, in the 

two-digit estimations, 70 percent of the IT-using sectors had positive US × ln(C/L) 
interactions compared to only 42 percent of the “non-IT sectors.”33

One experiment was to estimate separately for the retail and wholesale sector, 

which have been large contributors to faster US productivity growth since 1995. 

For these 3,846 observations, the coefficient on the US × ln(C/L) interaction is 

0.0413 with a standard error of 0.0208.34 In the remaining IT-intensive sectors out-

side retail/wholesale the coefficient on the US × ln(C/L) interaction is 0.0347 with 

a standard error of 0.0181. Consequently, our results are not simply driven by the 

retail and wholesale sector.35

Controlling for Endogenous Inputs.—We are also concerned about the endoge-

neity of the factor inputs attributable to unobserved transitory shocks. It is worth 

noting, however, that for endogeneity to rationalize our empirical results this would 

need to arise: (i) only for IT capital and not the other factor inputs; (ii) only for 

US multinationals; and (iii) only in the sectors responsible for the US productiv-

ity miracle. Such a bias is possible, of course, but it is not obvious what alternative 

hypothesis would induce exactly these types of correlations.

Nevertheless, we reestimated the production functions using a version of the Olley-

Pakes estimator (1996) that allows for two observable capital stocks, IT and non-IT (a 

straightforward extension of the basic model as discussed in Ackerberg et al. 2008). 

32 We also estimated production functions separately for the IT-producing sectors (see Appendix Table A1). We 
could not reject that these could be pooled with the non–IT-intensive sectors when estimating the baseline specifica-
tion ( p-value = 0.619).

33 Furthermore, the only significantly negative interactions between IT and the US multinational dummy were 
for some non-IT–using sectors. See online Appendix Table A8.

34 This is reassuring, as manipulating the transfer prices of intermediate inputs is more difficult in retail/whole-
sale than in manufacturing, as intermediate inputs generally are purchased from independent suppliers.

35 See columns 1 and 2 of online Appendix Table A9. Another possible explanation for the apparently higher 
productivity of IT is that US multinationals may be disproportionately represented in specific industries in which 
the output elasticity of IT is particularly high. The interaction of IT capital with the US dummy then would capture 
omitted industry characteristics rather than a “true” effect linked to US ownership. To test for this, we include 
in our regression as an additional control the percentage of US multinationals in the specific four-digit industry 
and its interaction with IT. The interaction was positive but statistically insignificant, and the coefficient on the 
US × ln(C/L) interaction remains significant and largely unchanged with a coefficient (standard error) of 0.035 
(0.015).
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We also used the “System GMM” estimator of Blundell and Bond (1998, 2000), which 

relies on a different set of identification assumptions to address the endogeneity of the 

factor inputs. These estimators are discussed in online Appendix C with the results 

presented in online Appendix Table C1. In both cases the main finding—that the out-

put-elasticity of IT for US multinationals is much larger than the output-elasticity of 

IT for non-US multinationals—is robust, even though the coefficients are estimated 

less precisely than under our baseline within-groups estimates.36

Multiple Establishments Belonging to the Same Parent.—Some establishments 

may belong to the same multinational (or domestic) corporation, even at a point 

of time. As a robustness test we allowed the standard errors to be clustered at this 

higher level, with little difference to the results (e.g., the p-value on the test of the 

difference in the US × ln (C/L) interaction effects was 0.004). We also collapsed 

the data to this higher level of aggregation and reestimated, which again gave similar 

results.37 This is unsurprising, as 84 percent of the observations were single-firm 

establishments.

Unmeasured Software Inputs for US Establishments.—Could the US × ln (C/L) 
interaction reflect greater unmeasured software inputs for US establishments? 

Although this is certainly possible when we compare US multinationals with 

domestic establishments, it is less likely when we compare US multinationals with 

non-US multinationals because a priori there is no reason to believe that they have 

higher levels of software. It could, however, be a problem if US firms were glob-

ally larger than other multinationals (software has a large fixed cost component so 

will be cheaper per unit for larger firms than smaller firms). To address this issue, 

we included a measure of the “global size” of the multinational parent of our estab-

lishments. In our UK ABI data, US and non-US multinationals are similar in their 

median global employment size. As a more direct test, we introduce an explicit 

interaction term between the global size of the parent firm (defined as the log of the 

total number of worldwide employees) and IT capital in a specification identical to 

baseline specification in column 1 of Table 3. The interaction between global size 

and IT is insignificant, and the US interaction with IT remained significant (at the 

1 percent level) and significantly different from the non-US multinational interac-

tion with IT at the 10 percent level.38 So this does not appear to support a large role 

for software inputs driving the superior US productivity of IT.39 Nevertheless, to 

36 The coefficient on the US × ln(C/L) interaction in the GMM system estimator is 0.0524 with a standard error 
of 0.0192, and this is significantly different from the non-US multinational interaction at the 10 percent level. The 
underlying theoretical model of Olley-Pakes does not easily allow us to simply include interactions, so we estimated 
the production function separately for the three ownership types (US multinationals, non-US multinationals and 
domestic UK establishments). The output-IT elasticity for US multinationals is twice as large as that of non-US 
multinationals.

37 For example, the coefficient (standard error) on the key US and IT interaction in column 1 of Table 3 was 
0.0456 (0.183).

38 The global size variable was available only for a subsample of 2,205 observations (from the baseline sample 
of 7,784). When we reran the baseline specification on this smaller subsample, the US interaction with IT was 0.042 
(instead of 0.037 in the baseline) and significant at the 1 percent level. When we included the global size term the 
point estimate rose to 0.043 (the point estimate on the global size × IT interaction was −0.0015, insignificant at 
conventional levels). See online Appendix Table A9, column 5.

39 We also used a measure of software capital constructed analogously to our main IT capital variable (see online 
Appendix A). In our data, software expenditure includes a charge for software acquired from the multinational’s 
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address this issue more directly we will use explicit measures of management prac-

tices in Section IV.

C. Estimation of the IT Intensity Equation

Table 4 examines the regressions where the dependent variable is IT intensity (the 

log of the IT capital stock per worker). Column 1 shows that IT intensity is signifi-

cantly higher in US firms than in both domestic firms and non-US multinationals, 

as was already suggested by Table 1. Column 2 presents the same regression for the 

sectors that intensively use IT, and column 3 for the other sectors. The difference 

between US and non-US multinationals is significant at the 10 percent level for 

the IT-using industries, but insignificant for the other sectors. The last three col-

umns repeat the specifications but include a longer list of controls. The same pattern 

emerges: US firms are more IT intensive, especially in the IT-using sectors.

Our estimates of the production function and IT demand equation generates 

the same finding—US firms appear to have some advantage in their use of IT as 

revealed both by the higher coefficient on IT in the production function and their 

greater usage of IT capital.

parent. The IT capital interaction is robust to the inclusion of this measure of software capital (and its interaction 
with ownership status). For example, when we added software capital to a specification identical to column 1 of 
Table 4 the standard IT interaction with the United States remained positive and significant. In the pan-European 
database in the next section we have explicit measures of software applications such as ERP and Databases and also 
find our results robust to using these measures of software.

Table 4—UK IT Intensity Equations

(1) (2) (3) (4) (5) (6)

Dependent variable: ln (C/L) ln (C/L) ln (C/L) ln (C/L) ln (C/L) ln (C/L)
Sectors

All 
sectors

IT-using 
intensive 
sectors

Other 
sectors

All 
sectors

IT-using 
intensive 
sectors

Other 
sectors

USA 0.2629*** 0.3393*** 0.2085*** 0.2406*** 0.3129*** 0.1927***
USA ownership (0.0461) (0.0717) (0.0600) (0.0463) (0.0717) (0.0604)

MNE 0.1632*** 0.2117*** 0.1332*** 0.1506*** 0.1939*** 0.1228***
Non-US multinational (0.0287) (0.0440) (0.0375) (0.0291) (0.0452) (0.0380)

Additional controls NO NO NO YES YES YES

Observations 21,746 7,784 13,962 21,746 7,784 13,962

Test USA = MNE, p-value 0.0310 0.0758 0.2108 0.0528 0.0970 0.2508

Notes: The dependent variable in all columns is the log of IT capital per employee. The time period is 1995–2003. 
The estimation method in all columns is OLS. Standard errors in brackets under coefficients in all columns are 
clustered by establishment (i.e., robust to heteroskedasticity and autocorrelation of unknown form). All columns 
include a full set of three-digit industry dummies interacted with a full set of time dummies and the log of gross out-
put. Additional controls include dummies for establishment age (interacted with a manufacturing dummy), region, 
multi-establishment group (interacted with ownership type) and IT survey. See online Table A1 for definition of 
IT using intensive sectors. “Test USA = MNE” is test of whether the coefficient on USA is significantly different 
from the coefficient on MNE.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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D. US Multinational Takeovers of UK Establishments

One concern with our empirical strategy is that US firms may “cherry pick” the 

best UK establishments. In other words, it is not the US multinational’s management 

that generates a higher IT coefficient but rather that American firms  systematically 

take over UK establishments with higher output-IT elasticities. To look at this issue, 

we examined the subsample of establishments that were, at some point in our sam-

ple period, taken over by another firm in the IT-intensive sectors. We considered 

both US and non-US acquirers.40

Note that the identification assumption here is not that establishments that are 

taken over are the same as establishments that are not taken over. We condition 

on a sample of establishments that are all taken over at some point in the sample 

period. Thus, we assume that US multinationals are not systematically taking over 

establishments that are more productive in their use of IT than non-US multi-

nationals. We can empirically test this assumption by examining the character-

istics—such as the IT level, IT growth, and IT productivity—of establishments 

that will be taken over by US multinationals in the pretakeover period relative to 

non-US multinationals. We will show that there is no evidence of such positive 

selection.41

In column 1 of Table 5, we start by estimating our standard production functions 

for all establishments that are eventually taken over in their pretakeover years (this 

is labeled “before takeover”). The coefficients on the observable factor inputs are 

similar to those for the whole sample in column 2 of Table 3. Unlike the full sample, 

though, the US and non-US ownership dummies are insignificant, suggesting that 

the establishments taken over by multinationals are not ex ante more productive than 

those acquired by domestic UK firms.

In column 2 of Table 5 we interact the IT capital stock with a US and a non-US 

multinational ownership dummy, again estimated on the pretakeover data. We see 

that neither interaction is significant—that is, before establishments are taken over 

by US firms they do not have unusually high IT coefficients. So, US firms also do not 

appear to be selecting establishments that already provide higher IT productivity. In 

column 3 we estimate production function specifications identical to column 1 but 

on the posttakeover sample. The US multinational ownership coefficient has now 

moved from being negative in the pretakeover period to being positive, implying a 

change in productivity of 10.1 percent. By contrast the non-US multinational coef-

ficient hardly changes (it actually falls by 2 percent).

40 We have a larger number of observations “posttakeover” than “pretakeover” as there was a takeover wave at 
the beginning of our sample in the late 1990s associated with the stock market bubble and high-tech boom. For 
these establishments, we necessarily have a lot more posttakeover information than pretakeover information. We 
drop takeovers which resulted in no change of ownership status (e.g., a US multinational taking over another US 
multinational subsidiary—see online Appendix A).

41 If US multinationals have higher IT productivity, why do we not observe some systematic selection of US 
firms taking over particular UK establishments? We show there is some weak evidence of negative selection which 
is consistent with a simple model (discussed below and in online Appendix B) of international transfer of manage-
ment practices with fixed costs. It is likely this incentive is small in magnitude compared to the many other causes 
of international mergers and acquisitions. Statistically, the only variable which was significant in a takeover model 
was size: US multinationals were more likely to take over larger plants than non-US multinationals. IT and other 
factors were insignificant.
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Column 4 is the posttakeover version of column 2 where we allow the coef-

ficient on IT to differ by ownership status. As in the earlier results of Table 2, 

the  interaction between IT and US ownership is positive and significant at the 5 

percent level (and is significantly different from the IT coefficient of non-US mul-

tinationals at the 10 percent level). The test of the difference of the US × ln(C/L) 
interaction before and after the takeover is significant at the 10 percent level 

( p-value = 0.097).42

The fifth column of Table 5 breaks down the post takeover period into the first year 

after the takeover and the subsequent years.43 The greater productivity of IT capital 

42 We examined whether the US productivity advantage was because American firms were more aggressive at 
closing down less efficient establishments. Foster, Haltiwanger, and Krizan (2006) show that almost all aggregate 
US retail labor productivity growth in their sample is through this type of restructuring. In our data, although multi-
nationals did close down more establishments post takeover than domestic takeovers, American firms did not seem 
to do this significantly more than other multinationals.

43 Note that throughout the table we drop the takeover year itself as we cannot determine the exact timing within 
the year when the takeover occurred.

Table 5—UK Production Functions before and after Takeovers

(1) (2) (3) (4) (5) (6)

Sample
Before 

takeover
Before 

takeover
After 

takeover
After 

takeover
After 

takeover
After 

takeover
(drop UK 
domestic 
acquirers)

Dependent variable:  
 ln (output per employee)

ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L)

USA × ln (C/L) −0.0672 0.0541**

USA takeover × IT capital per employee (0.0749) (0.0273)

MNE × ln (C/L) −0.0432 0.0073
Non-US multinational takeover  
 × IT capital per employee

(0.0463) (0.0150)

USA −0.0661 −0.1055 0.0353 0.0619
USA takeover (0.0663) (0.0863) (0.0402) (0.0461)

MNE 0.0321 −0.0009 0.0117 0.0205
Non-US multinational takeover (0.0565) (0.0710) (0.0298) (0.0342)

USA × ln (C/L) one year after takeover 0.0192 0.0191

(0.0378) (0.0562)

USA × ln (C/L) two and three years 0.0661** 0.1303**

 after takeover (0.0294) (0.0573)

MNE × ln (C/L) one year after takeover −0.0091
(0.0197)

MNE × ln (C/L) two and three years 0.0115

 after takeover (0.0162)

USA one year after takeover 0.0019 0.0014

(0.0542) (0.0716)

USA two and three years after takeover 0.0934* 0.0942

(0.0485) (0.0856)

MNE one year after takeover −0.0178
(0.0411)

MNE two and three years 0.0327

 after takeover (0.0361)

(Continued)
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in establishments taken over by US multinationals is revealed only two and three 

years after takeover (this interaction is significant at the 5 percent level, whereas the 

interaction in the first year is insignificant). This is consistent with the idea that US 

firms take some time to reorganize before obtaining higher productivity gains from 

IT. Domestic and other multinationals again reveal no pattern, with all the dummies 

and interactions remaining insignificant.

The sample in Table 5 includes some multinational firms that are taken over by 

domestic UK firms, so a stronger test is to drop these observations and consider 

only takeovers by multinational firms. In column 6 we replicate the specification of 

column 5 for this smaller sample and again find that establishments taken over by 

US multinationals have a significantly higher coefficient on IT capital after two or 

more years than nonmultinational takeovers.

Although there is no evidence that US firms are “cherry picking” the better UK 

establishments, it is noticeable that the point estimates in columns 1 and 2 are   

Table 5—UK Production Functions before and after Takeovers 
 (Continued)

(1) (2) (3) (4) (5) (6)

ln (C/L) 0.0744** 0.0935** 0.0395*** 0.0287*** 0.0288*** 0.0282
IT capital per employee (0.0299) (0.0432) (0.0079) (0.0088) (0.0088) (0.0224)

ln (M/L) 0.5486*** 0.5487*** 0.6871*** 0.6892*** 0.6886*** 0.7323***
Materials per employee (0.0489) (0.0481) (0.0173) (0.0173) (0.0172) (0.0292)

ln (K/L) 0.1759*** 0.1718*** 0.0350** 0.0350** 0.0353** −0.0108
Non-IT capital per employee (0.0343) (0.0335) (0.0160) (0.0159) (0.0159) (0.0431)

ln (L) −0.0185 −0.0215 −0.0117 −0.0111 −0.0112 −0.0358*
Labor (0.0292) (0.0276) (0.0108) (0.0108) (0.0107) (0.0213)

Observations 261 261 1,006 1,006 1,006 241

Test USA × ln (C/L)   
 = MNE × ln (C/L), p-value

0.7037 0.0965

Test USA = MNE, p-value 0.1637 0.1773 0.5979 0.4056

Test (USA one year) × ln (C/L) = 0.4948

(MNE one year) × ln (C/L), p-value
Test (USA two plus years) × ln (C/L) = 0.0734

(MNE two plus years) × ln (C/L),  
 p-value
Test USA one year = MNE one year,  
 p-value

0.7463

Test USA two plus years = MNE two  
 plus years, p-value

0.2481

Notes: The sample is all establishments in the IT-intensive sectors (online Table A1) who were taken over at some 
point (omitted base is “domestic takeovers”—UK firms taking over another firm). We drop takeovers that do not 
result in a change of ownership category (e.g., US takeovers of US firms, non-US MNE takeovers of non-US MNEs 
and domestic takeovers of domestic firms). The dependent variable is the log of gross output per employee. The 
time period is 1995–2003. The estimation method is OLS. Standard errors in brackets under coefficients are clus-
tered by establishment. A takeover is defined as a change in the establishment foreign ownership marker or—for UK 
domestic establishment—as a change in the enterprise group marker. The “before” period is defined as the interval 
between one and three years before the takeover takes place. The “after” period is defined as the interval between 
one and three years after the takeover takes place. The year in which the takeover takes place is excluded from the 
sample. All columns include a full set of two-digit industry dummies interacted with time dummies and as addi-
tional controls: age, region dummies, a multiestablishment group dummy, an IT survey dummy, and controls for 
total takeover activity over the sample period. “Test USA × ln(C/L) =MNE × ln(C/L)” is a test of whether the 
coefficient on USA × ln(C/L) is significantly different from the coefficient on MNE × ln(C/L), etc.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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consistent with the idea that US firms may select the UK establishments that have 

lower IT coefficients in the production function, a form of negative selection. 

Although these point estimates are statistically insignificant, negative selection is 

consistent with a model where US firms are able to transfer their management prac-

tices to the plants they acquire. If this transfer has an element of fixed disruption 

cost, US firms will have a greater incentive to reorganize firms after takeover and so 

will be more willing to purchase badly managed firms that they can “turn around.” 

Online Appendix B discusses an extension to our basic model that has this feature.

IV. Firm-level Panel Data from Seven European Countries

A disadvantage of the UK establishment-level panel is that it does not contain 

direct information on management practices. To remedy this we constructed a sec-

ond panel dataset across seven European countries that combined three main sources: 

the Center for Economic Performance (CEP) management survey, the Harte-Hanks 

IT panel, and the Amadeus database of firm accounts.

The CEP Management Survey.—In the summer of 2006 a team of 51 interviewers 

ran a management practices survey from the CEP in London on 4,003 firms across 

Europe, the United States, and Asia. In this paper we use data on the 1,633 firms 

from seven European countries (France, Germany, Italy, Poland, Portugal, Sweden, 

and the United Kingdom). Online Appendix A provides a detailed data description 

for the full sample, but we summarize relevant details here.

The management data were collected using the survey tool developed in Bloom 

and Van Reenen (2007). This survey collects information on 18 questions grouped 

into four broad areas of management practices. In this paper we focus on the four 

people management questions covering promotions, rewards, hiring, and fixing/
firing bad performers. The reason for this focus is because of the case study and 

econometric evidence that effective use of IT requires changing several elements 

of the way that people are managed. First, there is an abundance of empirical evi-

dence that IT is on average skill-biased and requires shedding less skilled workers, 

hiring more skilled workers and retraining incumbent workers. In addition to this 

skill upgrading, IT-enabled improvements usually require more worker flexibility 

inside the firm, with workers taking on new roles. Second, some theoretical work 

emphasizes that when there is uncertainty over how best to use a new technology, 

giving more discretion to employees with higher-powered rewards may be a way 

to efficiently exploit their private knowledge. Prendergast (2002) emphasized that 

higher-powered incentives (such as output-based remuneration rather than flat-

rate salary) may be more common when the principal has uncertainty over what 

tasks an agent should be performing. Daron Acemoglu et al. (2007) argue that 

delegation becomes more attractive when there is uncertainty about the best way 

to use a new technology.

To operationalize these ideas we focus on four questions designed to pick up man-

agerial attention to fixing/firing underperformers, aggressively promoting higher 

effort/ability employees (rather than just using tenure), offering higher-powered 

incentives to employees, and management effort in hiring talent. The questions 

emphasize the management of human capital similarly to the questions used by 
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Bresnahan, Brynjolfsson, and Hitt (2002). We also present robustness tests looking 

at other forms of management and organization (such as lean techniques, target-

setting, and monitoring) and show that it is really people management that seems to 

matter for IT.

Firms are scored from a 1-to-5 scale on each question, with the scores then normal-

ized into z-scores using the complete sample44 so the questions can be aggregated 

together. Although it is plausible that higher scores reflect “better” management, 

we do not assume this. All we claim is that American firms have, on average, dif-

ferent people-management practices than European firms, and these types of prac-

tices are complementary with IT. The survey uses a double-blind technique to try to 

obtain unbiased accurate responses to the management survey questions. One part 

of this double-blind methodology is that managers were not told they were being 

scored during the telephone survey. This enabled scoring to be based on the inter-

viewer’s evaluation of the firm’s actual practices, rather than their aspirations, the 

manager’s perceptions, or the interviewer’s impressions. To run this “blind” scor-

ing we introduced the exercise as an interview about management practices, using 

open questions (e.g., “can you tell me how you promote your employees?”), rather 

than closed questions (e.g., “do you promote your employees on tenure [yes/no]?”). 
Furthermore, these questions target actual practices and examples, with the discus-

sion continuing until the interviewer can make an accurate assessment of the firm’s 

typical practices based on these examples. Bloom and Van Reenen (2007) present 

extensive tests of the reliability of these management measures and their robustness 

to many different forms of psychological bias.45

The Harte-Hanks Establishment-Level IT Panel.—We use an establishment-

level IT data panel that comes from the European Ci Technology Database (CiDB) 
produced by the marketing and information company Harte-Hanks (H-H).46 The 

H-H data has been collected annually for over 160,000 establishments across 14 

European countries since the mid-1990s. They target all firms with 100 or more 

employees, obtaining about a 45 percent response rate. We use the data only for the 

firms we matched to those in the management survey (i.e., in France, Germany, Italy, 

Poland, Portugal, Sweden, and the United Kingdom). Bresnahan, Brynjolfsson, and 

Hitt (2002); Brynjolfsson and Hitt (2003); and Forman, Goldfarb, and Greenstein 

(2009), among others, have also previously used the US H-H data, typically match-

ing the US data to a subsample of large publicly quoted firms in Compustat.

The H-H survey contains detailed hardware, equipment, and software informa-

tion at the establishment level. We focus on using computers (PCs plus laptops) 
per worker as our key measure of IT intensity because this is available for all the 

establishments and is measured in a comparable way across time and countries. 

44 The scores are normalized to have a mean of zero and a standard deviation of one across the sample of 4,050 
firms.

45 An alternative and complementary way to measure management is the “organizational capital” approach of 
Corrado, Hulten, and Sichel (2005). This follows the approach of cumulating inputs (such as managerial time) 
analogously to the way we construct the IT capital stock for the UK establishment data.

46 H-H is a multinational that collects IT data primarily for the purpose of selling on to large producers and sup-
pliers of IT. The fact that H-H sells this data on to major firms like IBM and Cisco exerts a strong market discipline 
on the data quality. Major discrepancies in the data are likely to be rapidly picked up when H-H customers’ sales 
force place calls using the survey data.
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This computer-per-worker measure of IT has also been used by other papers in the 

microliterature on technological change (e.g., Beaudry, Doms, and Lewis 2006) and 

is highly correlated with other measures of IT use like the firm’s total IT capital 

stock per worker.47 We aggregate across establishments to form an estimate of the 

firm-level number of computers per worker.

The AMAdEUS Firm-Level Accounts Panel.—The AMADEUS accounts database 

provides company accounts on essentially the population of public and private firms 

in Europe. It has information for most companies on sales, employment, and fixed 

assets and has been used in previous papers to estimate production functions (e.g., 

Bloom and Van Reenen 2007, and de Loecker 2011). AMADEUS is constructed 

primarily from the mandatory national registries of companies.

The Combined European Firm-Level Panel dataset.—We match 720 of the firms 

in our management survey to the H-H data and accounting data. There appeared to 

be no sample selection bias in comparing US versus non-US multinationals (see 

online Appendix A). In particular, better managed firms and more productive firms 

were no more likely to be in the IT subsample compared to the rest of the CEP 

survey. We estimate our regressions over the years 1999 to 2006. Panel C of online 

Table A2 presents some descriptive statistics. As with the UK establishment data-

base, compared to other multinationals, US multinationals are larger, more produc-

tive, and have higher IT intensity. They also tend to have better people management 

scores (see next Section). We also have information on the proportion of college 

educated workers, which is also higher in the US than elsewhere. Consequently, 

as a robustness check for technology-skill complementarity, we control for human 

capital and its interaction with IT in some regressions.

V. Results from a Cross-European Firm-Level Panel

The results so far suggest that US-owned establishments have a higher elasticity 

of output with respect to IT, even after taking over existing establishments. This 

implies there may be an unobserved factor that is more abundant in American firms 

and that is complementary with IT. In this section we explore the idea that peo-

ple-management practices constitute this previously unobserved factor and use our 

survey instrument to measure it. In the first subsection we discuss some descriptive 

statistics, and in the second subsection we offer some econometric results consistent 

with our key hypothesis.

A. People Management in US Firms Compared to Other Countries’

Before we present the results it is worth considering some supporting evidence on 

the different internal management of American firms compared to those in Europe 

and Asia. Remember that we choose these people-management aspects because 

the econometric and case-study evidence suggest that these features of the firm are 

47 For example, in our establishment-level data a regression of ln(IT capital stock per employee) on the 
ln(proportion of employees using computers) gives a coefficient of 0.63.
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 particularly important for effectively using IT, which frequently requires substantial 

changes in the way that employees work.

In Figure 3, panels A and B provide new evidence on the people-management 

scores of 4,050 firms in the United States, Asia, and Europe. In Figure 3 panel A, 

we see that firms based in the United States have much higher scores than firms in 

other countries—over half a standard deviation on average. In Figure 3 panel B we 

examine a subsample of the data, plotting the average people-management scores 

of subsidiaries located in our seven European countries by multinational origin.48 

Interestingly, the affiliates of US multinationals in Europe tend to have much higher 

people-management scores than those of other countries. This is consistent with the 

idea that US firms are able to transfer some of their practices overseas to their sub-

sidiary operations.49 Local labor market regulations influence people-management 

practices but do not completely determine them (Bloom et al. forthcoming). If they 

did, there would be no systematic difference in the management practices of US 

subsidiaries in Europe compared to other firms.

B. Results

Basic Results.—Table 6 contains the results from the European panel. In col-

umns 1 to 6 we estimate the production function, and in the final two columns the 

48 A multinational source country had to have at least 25 subsidiaries in the sample to be included in the graph.
49 The high people-management ratings for some countries such as Germany may appear surprising given their 

high degree of labor market regulation. This arises because the average scores for management practices as a whole 
in Germany are high (although they are relatively higher in operations). Bloom and Van Reenen (2007) relate this 
to a combination of relatively high skill levels and few primogeniture family firms.
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Figure 3

Notes: In Figure 3, panels A and B, the “People-management z-score” is the average z-score score for the 4 man-
agement practices on people management, covering “Managing human capital,” “Rewarding high performance,” 
“Removing poor performers,” and “Promoting high performers.” This is normalized to have a firm-level mean 
of zero standard deviation of 1. The sample in panel A is all 4,050 firms sorted according to country of location. 
The sample in panel B is the subset of 618 multinational subsidiaries located in France, Germany, Italy, Poland, 
Portugal, Sweden, and the United Kingdom, sorted accorded to country of origin and plotted only for origin coun-
tries with at least 25 firms in the sample.  
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IT intensity equation. Column 1 estimates a basic productivity equation controlling 

only for capital, labor, ownership status, and some basic controls (country  dummies 

interacted with time dummies, three-digit industry dummies, and listing status). As 

with the UK establishment data, US multinational subsidiaries have higher mea-

sured total factor productivity than other multinationals (and domestic firms). The 

data is consistent with constant returns to scale (i.e., the coefficient on labor is insig-

nificant). The point estimates are much larger than for the establishment-level data 

because materials are not included as an explanatory variable, as this information 

Table 6—European Firm-Level Panel Data with Direct Measures of Management

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (Q/L) ln (C/L) ln (C/L)

Fixed effects NO NO NO NO YES YES NO NO

USA × ln (C/L) 0.1790** 0.0784 0.0518 0.0192

USA ownership × computers  
 per employee

(0.0733) (0.0720) (0.0713) (0.0785)

MNE × ln (C/L) −0.0263 −0.0235 0.0218 0.0235

Non-US multinational ×  
 computers per employee

(0.0586) (0.0553) (0.0547) (0.0550)

People management 0.0271 0.0271 0.1268***

(0.0219) (0.0219) (0.0353)

People management × ln (C/L) 0.1451*** 0.1404*** 0.1284* 0.0994*

People management ×  
 computers per employee

(0.0331) (0.0344) (0.0773) (0.0581)

ln (K/L) 0.2401*** 0.1838*** 0.1782*** 0.1791*** 0.2347** 0.2316***
Non IT capital per employee (0.0163) (0.0284) (0.0276) (0.0276) (0.0926) (0.0882)

ln (L) −0.0182 0.0421 0.0421 0.0409 −0.2182 −0.2347
Labor (0.0162) (0.0360) (0.0344) (0.0349) (0.2600) (0.2497)

ln (C/L) 0.1256*** 0.1430*** 0.1463***−0.0493 −0.2282
Computers per employee (0.031) (0.0284) (0.0303) (0.0596) (0.1738)

USA 0.2548*** 0.0779 0.1111** 0.0837* 0.2601*** 0.2150***
USA ownership (0.0438) (0.0481) (0.0446) (0.046) (0.0742) (0.0732)

MNE 0.1909*** 0.1597*** 0.1604*** 0.1618*** 0.0492 0.0367
Non-US multinational (0.0304) (0.0363) (0.0355) (0.0357) (0.0596) (0.0591)

ln (degree) 0.0433** 0.0375** 0.0370** 0.0585** 0.0359
Percentage employees with a  
 college degree

(0.0183) (0.0184) (0.0184) (0.0293) (0.0296)

ln (degree) × ln (C/L) 0.0700
Percentage employees with a  
 college degree × computers  
 per employee

(0.0484)

Observations 9,463 2,555 2,555 2,555 2,555 2,555 2,555 2,555

Test USA × ln (C/L) =
MNE × ln (C/L), p-value 0.0189 0.2419 0.6360 0.9565

Test USA = MNE, p-value 0.1789 0.1206 0.3094 0.1264 0.0095 0.0253

Notes: The dependent variable in columns 1 to 6 is the log of sales per employee, and in columns 7 and 8 is the log 
of computers per employee. The time period is 1999–2006, containing data from France, Germany, Italy, Poland, 
Portugal, Sweden, and the UK. The estimation method in all columns is OLS. Columns 5 and 6 include firm-level 
fixed effects. Standard errors in brackets under coefficients in all columns are clustered by firm (i.e., robust to het-
eroskedasticity and autocorrelation of unknown form). All columns include a full set of three-digit industry dum-
mies, country dummies interacted with a full set of time dummies, and a public listing indicator. Columns 2 to 8 
are weighted by the survey coverage rate in the Harte-Hanks data, plus include a fifth-order Taylor expansion for 
the coverage ratio to control for any potential survey bias. “Test USA × ln(C/L) = MNE × ln(C/L)” is a test of 
whether the coefficient on USA × ln(C/L) is significantly different from the coefficient on MNE × ln(C/L), etc. 
720 firms in all columns except column 1 where there are 1,828 firms.

*** Significant at the 1 percent level.
 ** Significant at the 5 percent level.
  * Significant at the 10 percent level.
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is not available in most company accounts. If materials are included, the point esti-

mates on the subsample look similar to those for the establishment-level data.50

The second column of Table 6 uses the subsample of the data where we observe 

IT (i.e., the sample that overlaps with the H-H dataset). First we follow Table 2 and 

simply interact the ownership dummies with the IT measure. Exactly as we saw 

in the UK establishment panel, the coefficient on IT is significantly higher for US 

multinationals compared to non-US multinationals (and also to domestic firms). 
Column 3 replaces the multinational interactions with IT with our measures of peo-

ple-management practices and their interaction with IT intensity. As the model pre-

dicts, there is a positive and significant interaction between people management and 

IT intensity. Column 4 is the key column that includes both sets of interactions. We 

find that conditional on the management interactions, the coefficient on the interac-

tion of IT and US ownership has dropped by more than half in magnitude and is 

now insignificantly different from zero. This is a key result: it suggests that the rea-

son that we observed a higher coefficient on IT for US multinationals in column 2 

was because: (i) they have higher levels of people management and (ii) there is a 

complementarity between IT and people management.51

Column 5 of Table 6 repeats the specification from column 4 but now includes a 

full set of firm fixed effects. The pattern is broadly the same, although the precision 

of the estimates has fallen, as would be expected when we rely solely on within-firm 

variation.52 The interaction between IT and people management remains significant 

at the 10 percent level, whereas the coefficient on the interaction between IT and US 

ownership is now only 0.052 and completely insignificant.

The final two columns of Table 6 present the regressions where IT intensity is 

the dependent variable. Column 7 shows that US firms are much more IT intensive 

than other multinationals and domestic firms. The people-management variable also 

has a strong and positive correlation with IT intensity as shown in the column 8. In 

this final column the US coefficient falls from 0.260 to 0.215, indicating that part 

of the higher IT intensity in US multinationals is due to the higher levels of people 

management.

Technology-Skill Complementarity.—There is a large literature showing that 

new technologies are complementary with skills (e.g., Autor, Katz, and Krueger 

1998). If US firms have higher levels of skills, could this simply explain our results? 

Fortunately, the CEP management survey contained a measure of the proportion of 

employees with college degrees. We include this variable throughout Table 6 and 

find it to be consistently positive in the production function, as we would expect 

from basic human capital theory. In column 6 we also include the interaction of this 

human capital measure with IT. The IT × skills interaction enters with a positive but 

50 For example, including materials in column 1 specification reduces the sample size to 4,577 observations. 
The coefficient (standard errors) on capital, US and non-US multinational ownership, and materials were 0.1106 
(0.0135), 0.1128 (0.0421), 0.0574 (0.0220), and 0.5269 (0.0229), respectively. If computers are included in the 
regression, the coefficient (standard error) on this variable is 0.0254 (0.0185).

51 If we drop the interactions and ownership variable, the people management score in levels is positively and 
significantly related to productivity at the 10 percent level: a coefficient of 0.039 with a standard error of 0.023.

52 Note that the management and ownership status variables are cross-sectional, so the linear terms are absorbed 
by the fixed effects, even though their interaction with IT is still identified.



197BLOOM ET AL.: AMERICANS dO IT BETTERVOL. 102 NO. 1

insignificant coefficient, but the management interaction with IT remains robust to 

this extra interaction.

In the UK establishment panel the main control for labor quality is the inclusion 

of establishment-specific fixed effects, as we have no direct measure of skill. As an 

alternative, we assume that wages reflect marginal products of workers, so that con-

ditioning on the average wage in the establishment is sufficient to control for human 

capital.53 When entered into a specification identical to that of column 1 of Table 3, 

the average wage is highly significant, and the interaction between the average wage 

and IT capital is positive and significant at the 10 percent level, consistent with tech-

nology-skill complementarity. The interaction between the US dummy and average 

wages in the establishment is significant at the 10 percent level (a coefficient of 

0.0119 and a standard error of 0.0063). Nevertheless, even in the presence of these 

skills controls, the coefficient on the US ownership and IT interaction remains sig-

nificantly positive (0.0279 with a standard error of 0.0133). Consequently, we do 

not believe that our results reflect only technology-skill complementarity.

Other dimensions of Management Practice.—We argued on ex ante grounds that 

people management was likely to be an organizational feature complementary to 

IT. In Table C2 in the online Appendix we examine the interactions of IT with other 

aspects of management such as shopfloor operations, targets, monitoring, and com-

binations across all 18 questions. Although these interactions are positive, none is 

significant or as strong as the people-management interaction.

Other Confounding Factors.—We checked for a large number of other con-

founding factors that could be correlated with management practices and be driv-

ing the results on the interaction with IT. These included average hours worked, 

union strength, and different types of software (e.g., Enterprise Resource Planning). 
Although these were systematically different in European and US firms, they did not 

change the IT and management results.

So in summary, the evidence from the European panel has the same basic pattern 

of results we saw in the UK establishment panel. US firms appear to have some 

advantage in IT. The new piece of information is that this advantage appears to 

be linked with their superior people-management practices that are complementary 

with IT, and this explains the higher coefficient on IT for US firms observed in the 

earlier tables.

VI. Conclusions

Why did Europe not follow the American IT-led productivity acceleration after 

1995? We provide econometric evidence in line with the hypothesis that US people-

management practices were a reason for this difference, as has been suggested by 

Blanchard (2004) and others. Using two rich micropanels, we show robust evidence 

53 The problem is that wages may control for “too much,” as some proportion of wages may be related to non-
human capital variables. For example, in many bargaining models, firms with high productivity will reward even 
homogenous workers with higher wages (for example, see Van Reenen 1996, on sharing the quasi-rents from new 
technologies).
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that US multinationals obtain higher productivity from IT than non-US multination-

als (or domestic firms) in Europe. In the first dataset (of UK establishments), we 

found that the stronger association of IT with productivity for US firms is focused 

in the same “IT-using intensive” industries, such as retail and wholesale, that largely 

accounted for the US productivity acceleration since the mid-1990s. These results 

were robust to examining establishments that were taken over by other firms: US 

firms that took over establishments have significantly greater IT productivity rela-

tive to non-US multinationals that took over statistically similar establishments. In 

the second dataset of firms across seven European countries, we showed that US 

firms had higher levels of people management (which was complementary with IT) 
and this accounted for the American advantage in IT use.

Taken together, this suggests that part of the IT-related productivity gains underly-

ing the post-1995 period is related to the management practices of US firms rather 

than simple natural advantage (geographical, institutional, or otherwise) of being 

located in the US environment. US firms appear to have transplanted these manage-

ment practices abroad, so that their overseas subsidiaries also enjoyed a productivity 

miracle. Back of the envelope calculations suggest that we can account for about 

half of the US-EU difference in productivity growth in the decade after 1995 using 

our estimates.

There remain many outstanding issues and research questions. First, understand-

ing what are the determinants of the heterogeneous management practices between 

firms, industries, and nations is a vitally important question. Theory has outrun 

econometric work here, but this is currently an area of our active research.

A second and related question is why do US firms have different people-man-

agement practices from European ones? One result from Bloom and Van Reenen 

(2007) is that US firms are “better managed” in general, because of the higher lev-

els of competition in their domestic markets and the more limited involvement of 

primogeniture family firms (family-owned firms where, in the second generation 

or beyond, the CEO is the eldest son). But US firms also appear to be particularly 

strong on people management. One reason seems to be the greater supply of human 

capital in the United States. Across firms and industries the intensity of graduate-

level employees is strongly associated with better people-management practices. 

Another reason seems to be lower levels of labor market regulation in the US: labor 

flexibility is significantly and positively correlated with better people-management 

across countries in our data.54

This management gap also appears to be a long standing phenomenon. For exam-

ple, the Marshall Plan productivity mission of 1947 wrote: “Efficient management 

is the single most significant factor in the American productivity advantage.” This 

implies the US productivity surge was the effect of a rapid increase in IT intensity, 

driven by the accelerating fall in IT prices since 1995, which better suited US firms 

with their strong people-management skills. The rate of decline of IT prices appears 

to have slowed since 2005, and this may have brought an end to the US productiv-

ity miracle. If this period is historically specific, then the wave of US takeovers 

54 See Botero et al. (2004), Gust and Marquez (2004), and Bloom et al. (forthcoming) on cross-country labor 
regulations. In our data we find a cross-country correlation of 0.71 between the World Bank index of employment 
flexibility and people-management practices.
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in Europe may slow down or be reversed. Alternatively, if another wave of rapid 

technological change occurs, then our results suggest that US firms may once again 

enjoy a period of accelerated productivity growth as their people-management prac-

tices allow them to better exploit new technologies.

A final remark is that our framework has implications for firms outside Europe. For 

example, we would expect to see the same US productivity advantage in IT for American 

multinationals in the US (or indeed Asia) compared to non-US multinationals.

Despite this need for further research we believe our article has made some inroads 

into one of the most puzzling episodes in the last two decades: the explanation of the 

US “productivity miracle.”
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