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ROBUST INCENTIVES FOR TEAMS
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‘We show that demanding team incentives to be robust to nonquantifiable uncertainty
about the game played by the agents leads to contracts that align the agents’ interests.
Such contracts have a natural interpretation as team-based compensation. Under bud-
get balance they reduce to linear contracts, thus identifying profit-sharing, or equity, as
an optimal contract absent a sink or a source of funds. A linear contract also gives the
best profit guarantee to an outside residual claimant. These contracts still suffer from
the free-rider problem, but a positive guarantee obtains if and only if the technology
known to the contract designer is sufficiently productive.
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1. INTRODUCTION

THE STANDARD CONTRACT-THEORETIC approach to motivating teams, pioneered by
Holmstrém (1982), emphasizes informational aspects of the problem. It holds that any
signal informative of an agent’s action be used to determine his compensation. A rec-
ognized shortcoming of this approach is that it leads to contracts that are sophisticated
and highly context-dependent. Moreover, because the focus is on individual performance,
team-based pay that aligns the agents’ compensation emerges only under very specific as-
sumptions about technology. This contrasts with incentive schemes observed in practice,
which tend to be simpler and often include team-based compensation even if information
about individual performance may be available. For instance, partnerships commonly op-
erate under profit-sharing agreements, firms use team incentives to motivate employees,
and academic economists share credit equally for coauthored papers.

In this paper, we investigate foundations for such simple incentive schemes by consid-
ering contracts that are robust to nonquantifiable uncertainty about the game played by
the agents. Our model is based on the classic team production problem, where the agents
take costly unobservable actions, which jointly determine a stochastic contractible out-
put. Our main specification assumes all parties to be risk-neutral and that the agents are
protected by limited liability, but allows for a general production technology.

The game is common knowledge among the agents, perhaps by virtue of their expertise,
or because it is simply evident now that they have been called to act. However, inspired
by Carroll’s (2015) work on the foundations of linear contracts in principal-agent prob-
lems, we assume that the principal designing the contract only knows some of the actions
available to each agent, and hence she only knows some of the action profiles in the game.
Realizing that the game may be bigger than she thinks, but not having a prior on the set of
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possible games, the principal evaluates contracts based on their guaranteed performance
across all games consistent with her knowledge.

Our first result shows that guaranteeing good performance either in terms of the ex-
pected surplus for a budget balanced team, or in terms of the principal’s profit if she is
the residual claimant, requires the contract to align the agents’ interests. That is, each
agent’s compensation should covary positively and linearly with the compensation of all
other agents. Such a contract is affine in some one-dimensional aggregate of the output
(but not necessarily in the output itself), so it can be naturally interpreted as prescribing
team-based pay. Thus, team-based compensation emerges even though richer measures
of performance may be available under the action profiles known to the principal.

The necessity of interest alignment derives from the fact that when a contract induces
disagreement about the ranking of (stochastic) outputs among the agents, then—should
the game provide an opportunity for it—an agent may seek individual gain at a social
cost. We show that for essentially any contract that fails to align the agents’ interests,
there is a game where such selfish actions create a “race to the bottom,” with the unique
equilibrium output distribution concentrated at the worst possible output. In a sense, the
construction generalizes the well-known problematic incentive properties of rank-order
tournaments (e.g., Lazear (1989)), showing that for robustness, they are the overriding
concern. While the result is reminiscent of Carroll’s (2015) linearity result, the two are
logically independent. On one hand, the definition of interest alignment only involves the
payments to the agents, so every contract trivially aligns the agents’ interests in the single-
agent case. On the other hand, a contract that aligns the agents’ interests need not be
linear in the value of output.

For contracts that are budget balanced among the agents, interest alignment is equiv-
alent to paying each agent a fixed share of the output’s monetary value. We show that
some such linear contract achieves the best surplus guarantee subject to budget balance,
thus singling out profit-sharing, or equity, as an optimal arrangement. Along the way, we
characterize the optimal guarantee, which is made tractable by the fact that any contract
that aligns interests induces a potential game among the agents.

We also show that a linear contract achieves the best guarantee for the principal’s profit.
By our first result, we can focus on contracts that align the agents’ interests. The candi-
date optimal contracts can then be represented as consisting of a function specifying the
agents’ total compensation for each output, and of shares determining how it is divided
among the agents. We show that, holding the shares fixed, total compensation should be
linear in the output’s value, and so the contract should be linear overall. Heuristically,
a linear contract aligns interests across all parties, including the principal.

Whether the optimal guarantees for surplus and profit are positive depends on the
severity of the free-rider problem. Unlike in the case of one agent, it is not enough that
some known action profile generates a positive surplus. Instead, the condition that char-
acterizes known production technologies for which the optimal guarantees are nontrivial
requires a social planner to be able to generate positive surplus in a model where the
agents’ costs are appropriately inflated to account for the robustness concern. Thus, even
absent setup costs, only sufficiently profitable teams are worth forming.

While our results are the strongest with risk-neutrality, Section 6 shows that nontriv-
ial performance guarantees require team-based compensation also when agents are risk-
averse. The agents’ interests must then be aligned in the utility space, which translates to
monetary payments that covary positively across agents in the sense that if one agent’s
pay increases, so does the pay of all other agents. Thus, the basic logic holds irrespective
of risk attitudes. Even collinearity of payments can be recovered for a subset of CRRA
preferences.
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The question of foundations for linear contracts has received a great deal of attention
in the one-agent case, starting with Holmstrom and Milgrom (1987). See Carroll (2015)
for a review of this literature. As we focus on the contracts’ guaranteed performance,
our work belongs to the literature studying worst-case optimal contracts in various set-
tings; see, for example, Hurwicz and Shapiro (1978), Chung and Ely (2007), Chassang
(2013), Frankel (2014), Garrett (2014), Yamashita (2015), Carroll (2017), Carroll and Se-
gal (2019), and Marku and Ocampo Diaz (2019).! Similar robustness concerns motivate
the work on robust mechanism design following Bergemann and Morris (2005), and the
analysis of approximately optimal contracts in locally misspecified models by Madarasz
and Prat (2017).

Theoretical explanations for the use of profit-sharing and for the prevalence of part-
nerships as an organizational form have been put forth by Garicano and Santos (2004)
and Levin and Tadelis (2005), among others. Che and Yoo (2001) show that team-based
pay can be a part of the optimal mix of formal and relational incentives in a repeated
partnership problem where the agents can monitor each others’ actions.

Finally, the need to align the agents’ interests resonates with some themes in the ex-
tensive management literature on teams. For example, Hackman (2002) posits that a key
enabling condition for work-team effectiveness is the existence of a compelling direction
that should specify ends but not means. Interpreting the “means” as the agents’ actions
and the “ends” as the contractible output, a contract that aligns the agents’ interests pro-
vides just that.?

2. MODEL

We consider a principal motivating a team consisting of one or more agents, indexed
byi=1,...,I. The team’s observable output y is an element of a finite set Y held fixed
throughout the analysis. Its intrinsic value is denoted v(y). For example, v(y) may be the
expected market value of the team’s production conditional on the signal y, or it may
reflect how the principal aggregates different dimensions of performance. We denote by
Y the least desirable output and set its value to zero: v(y;) = minv(Y) = 0. (Output y,
can be chosen arbitrarily among the minimizers if there are many.) To avoid trivialities,
we assume that maxv(Y) > 0.

A (production) technology for the team is a tuple (A4, ¢, F), where 4 := x!_, A; is the fi-
nite set of action profiles, ¢ : 4 — R! is the profile of cost functions, and F : 4 — A(Y) is
the family of output distributions. We restrict attention to technologies where each agent’s
cost depends only on his own action, that is, ¢;(a) = ¢;(a;). Any technology describes a
version of the classic moral-hazard-in-teams problem: every agent takes an unobservable
action a; € A; at a private cost ¢;(a;) > 0, and the resulting action profile a = (ay, ..., a;)
determines the output distribution F(a) € A(Y).

The principal can motivate the agents with monetary rewards contingent on the real-
ized output. We assume that the agents are protected by limited liability, meaning that
payments to them have to be nonnegative. An incentive scheme, or a contract, is thus
a function w: Y — R! that specifies a payment profile w(y) = (wi(y), ..., w;(y)) for

The literature has continued to grow since our paper was first circulated. Most closely related are Carroll
and Walton (2021) who give an alternative proof for going from our aligned-interest contracts to a linear
principal-optimal contract, and Kambhampati (2022) who studies robust performance evaluation of agents
who are known to be operating identical unknown technologies, but who cannot affect each others’ output.

“This is true quite literally: the parameter d in our Lemma 3.1(iii) is the direction of the ray in R’ along
which all payment profiles lie.
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each output y. Agent i’s net payoff is then w;(y) — c¢;(a;), with the principal receiving
v(y) — Y, w;(y). All parties are assumed risk neutral, but we discuss risk-averse agents in
Section 6.

We say that the contract w is budget balanced if the value of output is shared by the
agents, that is, if ), w;(y) = v(y) for all y.

The principal designs the contract either to maximize surplus subject to budget balance,
or to maximize her profits. However, she does so without full knowledge of the game
played by the agents. Specifically, we assume that the true technology is common knowl-
edge among the agents, but the principal only knows of some technology (A4°, ¢°, F%),
referred to as the known technology. The principal believes that the true technology may
be any technology (A4, ¢, F) such that 4 2 A° and (c, F)| 0 = (°, F"). That is, the true
technology contains the action profiles known to the principal, and the true costs and out-
put distributions associated with these profiles conform with the principal’s knowledge.
To simplify notation, we suppress the cost functions and output distributions, writing A4°
and A for the known and the true technology, respectively.

We assume that the known technology A° contains a zero-cost action for each agent.
This simplifies some of the arguments without affecting our results qualitatively.’ As we
assume nothing about the associated output distributions, the loss in scope is minimal.

A contract w and the (true) technology A induce a normal form game I'(w, A), where
agent i’s expected payoff is u;(a; w, A) := Ep[wi(y)] — ci(a;). We write £(w, A) for its
set of mixed strategy Nash equilibria. An equilibrium exists because 4 was assumed finite.
In case there are many, we adopt the usual partial-implementation assumption from con-
tract theory and focus on the equilibrium that is best for the principal’s objective.* Thus,
the expected surplus induced by the contract w given technology A4 is

S(w, A) := max (Ep((,) [v(»)] - Za(a) ZQ‘(“;’))a

oeE(w,A)

where F (o) is the outcome distribution induced by F and the strategy profile . Similarly,
the principal’s expected profit from the contract w given technology A is

V(w, A) := max )EF((,) |:v(y) - Zw,(y)]

oe&(w, A

Faced with the uncertainty about the game played by the agents, the principal ranks
contracts according to their guaranteed expected performance over all possible (finite)
technologies. For the surplus and profits, these guarantees are, respectively,

S(w) := inf S(w, A) and V(w):= inf V(w, A).
A2A40 A240

3See the working paper version (Dai and Toikka (2018)), where we did not make this assumption.

*This minimizes the departure from the standard model and ensures the existence of an optimal contract.
However, essentially the same results hold under the alternative assumption that the agents play the worst
equilibrium for the principal among equilibria that are not strictly Pareto dominated for the agents, but in this
case optimal contracts may only exist in the sense of a limit. We omit the details in the interest of space. In
contrast, simply selecting the worst equilibrium for the principal does not work as then all contracts only have
a trivial guarantee. This is because we can simply add a profile a of zero-cost actions such that (1) a leads
to output y, for sure, and (2) so does any profile where only one agent has deviated from a. Then a is an
equilibrium with output y, no matter the contract or what other actions are available.
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We say that a contract is team-optimal if it maximizes S(w) over all budget-balanced con-
tracts. A contract is principal-optimal if it maximizes V' (w) over all contracts. Note that
S(w) > 0, since each agent can ensure a zero payoff by playing a zero-cost action in A’
given any technology 4 2 A°. On the other hand, the zero contract w = 0 yields a nonneg-
ative expected profit from any technology, and hence V7 (0) > 0.

Some remarks regarding the formulation are in order. It is worth noting that we have
deliberately assumed that a contract can only condition on the outcome y. This assump-
tion captures the essence of our robustness exercise: we are interested in the performance
of a fixed contract in varying circumstances. We thus explicitly rule out the possibility of
tailoring the contract to the technology by asking the agents to report it to the principal.’

The most immediate interpretation is that the principal is designing a contract for a
single team, not fully aware of the game the agents are playing. This could reflect the
agents’ superior knowledge of the situation, or be due to the principal having to design
the contract before the details, or the team’s members, are known. The principal can,
however, envision and evaluate all possible outputs that may arise as a result of the team’s
activities, that is, she knows the set Y and the mapping v: Y — R. That Y is held fixed is
not restrictive as our main results do not require output distributions to have full support.

An alternative interpretation is that the contract is to be used in a number of different
situations, perhaps by different teams, and we want it to guarantee good performance in
all of them. For the profit guarantee, an example might be a large firm utilizing multiple
self-managed teams. The realized situation (captured by 4) may be apparent to the team,
but too costly to communicate or verify. Hence, the firm resorts to designing a contract
based only on the aspects common to all situations (captured by A4°).

For team-optimal contracts, the principal corresponds to a “social planner” designing
a robustly optimal budget balanced contract. While we are agnostic about the interpreta-
tion, perhaps the most natural one is to view this as a normative exercise. The multiteam
interpretation could then have us looking, for instance, for a standardized contract for dif-
ferent kinds of partnerships. An example of such a contract is a profit-sharing agreement
common in professional services.

3. NECESSITY OF INTEREST ALIGNMENT

We start the analysis by showing that for a contract to have a meaningful surplus or
profit guarantee, it is essentially necessary for it to align the agents’ interests in the fol-
lowing sense.

DEFINITION 3.1: A contract w aligns the agents’ interests if for every pair of agents i and
J, and every pair of output distributions F and G on Y, Ex[w;(y)] > Eg[w;(y)] implies

Er[w;(y)] = E¢[w;(y)]-

That is, if some agent strictly prefers output distribution F to output distribution G
under contract w (gross of costs), then so does any other agent (at least weakly).

SIf asking the agents to report the technology were allowed, then with two or more agents it would be
possible to partially implement the Bayesian profit-maximizing contract for the true technology by using a
mechanism that chooses the Bayesian optimal contract for the reported technology whenever the agents’ re-
ports agree, and which “punishes” the agents with the zero contract if any reports disagree. With three or
more agents, the Bayesian surplus-maximizing contract could be implemented similarly. But as is typical in
the implementation literature, the two-agent case is more difficult because then it is not obvious to tell who
deviated when reports disagree, and budget balance prevents punishing both agents simultaneously. As this
issue is orthogonal to our analysis, we do not pursue it further.
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FIGURE 1.—The set W = co(w(Y')) for I =2. (a) A contract that aligns the agents’ interests. (b)-(d) Con-
tracts that fail to align the agents’ interests.

A contract that does not satisfy Definition 3.1 is said to fail to align the agents’ interests.
Any constant contract, such as the zero contract, aligns the agents’ interests. Note also

that all contracts satisfy Definition 3.1 vacuously if the team consists of just one agent.
We will use the following geometric characterization of interest alignment.

LEMMA 3.1: The following four properties of a contract w are equivalent:
(i) The contract w aligns the agents’ interests.
(if) For all pairs of agents i and j, the set w; ;(Y) :={(w;(y), w;(y)) : y € Y} is contained
inarayin R, thatis, w; ;(Y) C{w,; +di;t : t € R,} forsome w, ;, d;; € R%.
(iii) All payment profiles are contained in a ray in R., that is, w(Y) C{w +dt:t € R}
for some w,d e R! .
(iv) There exist outputs y and y with w(y) > w(y) such that, for every output y € Y, we

have w(y) = (1 — A)w(z)ti- Aw(Yy) for some A € [0, 1].

We provide a more detailed proof in the Appendix, but Lemma 3.1 follows essentially
just by observing that the set of possible expected payment profiles under contract w is

W :=co(w(Y)) ={x e R, : x =Es[w(y)] for some F € A(Y)}.

Therefore, w aligns the agents’ interests in the sense of Definition 3.1 if and only if for
all x,x" e W, x; > x; implies x; > x/ for all agents i and j, or equivalently, if W (and
hence w(Y')) is contained in a ray in R’ . A contract that aligns the agents’ interests thus
prescribes team-based compensation in a strong sense: the agents’ payments covary posi-
tively and linearly. Moreover, the parameter A = A(y) in Lemma 3.1(iv) can naturally be
interpreted as measuring the team’s performance on a scale from zero to one.

Figure 1 depicts the set W for some contracts that do or do not align the agents’ inter-
ests in the case of two agents. Panel (b) corresponds to a tournament where the agents’
interests are diametrically opposed—the antithesis of interest alignment.

It is worth noting that Definition 3.1 only concerns the agents, and so it is silent on how
the payments relate to the value of output v(y). For example, while any contract where
each w; is linear in v(y) aligns the agents’ interests, so does a contract that pays a bonus
b; to all agents conditional on some output y and that otherwise pays nothing. Thus,
Definition 3.1 does not imply linearity in output value in general, but the next lemma
shows that it does do so under budget balance.

LEMMA 3.2: A contract w is budget balanced and aligns the agents’ interests if and only if
there are shares (ay, ..., a;) € [0, 1) such that Y, 0; = 1 and w;(y) = a;v(y) forall i and y.
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PROOF: Clearly, a contract of this form is budget balanced and aligns the agents’ in-
terests. For the converse, note that by budget balance we can take y € argmax v(y) and
y = in Lemma 3.1(iv). Fixing y, we sum over i and use budget balance again to get
v(y) =2 wi(y) = (1=2) 35 wi(yo) + A2, wi(y) = (1= A)v(30) +Av(y) = Av(y). Hence,
A =v(y)/v(y). Noting that w;(y,) = 0 by limited liability and budget balance, we thus have
w;(y) = (w:(y)/v(y))v(y), so taking a; = w;(¥) /v(y) yields the result. Q.E.D.

Our first main result shows that any contract that fails to align the agents’ interests can
be easily improved upon regardless of whether we are interested in profits or surplus.

THEOREM 3.1: If a contract w fails to align the agents’ interests, then V (w) <V (0). If,
in addition, w is budget balanced, then S(w) < S(w') for every contract w' that is budget
balanced and aligns the agents’ interests.

That is, the profit guarantee of a contract that fails to align the agents’ interests is no
better than that of the zero contract. And if the contract is also budget balanced, then
its guaranteed expected surplus is weakly worse than the guarantee obtained by arbitrar-
ily distributing shares to the agents. These results imply, inter alia, that we can restrict
attention to contracts that align the agents’ interests when searching for optimal ones.

Before turning to the proof, we note that Theorem 3.1 can be strengthened under a
mild restriction on the known technology A4°. We say that an action profile a € A° satis-
fies full support if either F(a) has full support on Y, or F(a) equals 8,,, the Dirac mea-
sure at the worst output y,. We say that the action profile a satisfies costly production it
Er@[v(y)] > 0implies ¢;(a;) > 0 for some agent i. The next result shows that under either
assumption, interest alignment is a necessary condition for a contract to improve on the
trivial guarantee.

THEOREM 3.2: Suppose that each action profile in the known technology satisfies full sup-
port or costly production. If a contract w fails to align the agents’ interests, then V (w) <0
and S(w) <0.

We note for future reference that if w is budget balanced, then the necessity of interest
alignment obtains under an even milder condition, requiring only that any action profile
that yields the maximum output value with certainty not be costless to all agents.

LEMMA 3.3: Suppose that for all a € A°, supp F(a) C argmax,, v(y) implies c;(a) >0
for some agent i. If a budget balanced contract w fails to align the agents’ interests, then
S(w) <0.

Of course, the above results are silent on whether contracts that do align the agents’
interests actually improve on the trivial guarantees. We address this question in Sec-
tions 4 and 5, which consider, respectively, team-optimal and principal-optimal contracts.

The key idea behind Theorem 3.1 is that when a contract fails to align the agents’ inter-
ests, it is possible to use the agents’ disagreement over output distributions to add actions
to the game so as to eliminate any equilibria in known actions and to drive the equilibrium
output to y,. The next example illustrates this in essentially the simplest non-trivial case:
a rank-order tournament with two agents.



1590 T. DAI AND J. TOIKKA

A ay
A et
ay | b,—ca(al) | b/2,b/2

FIGURE 2.—The game I'(w, A) for Example 3.1. To see that a’ is the unique equilibrium, fix a mixed strategy
equilibrium ¢. If the support of o is contained in A4°, then some agent i’s expected payoff is at most b/2,
whereas deviating to a; yields b for sure. Hence, a; must be in the support of o; for some agent i. But then a’;
is the unique best response for agent —i, and thus o_;(a’;) = 1. This in turn implies o0;(a;) = 1. Therefore, o
is the pure-strategy profile a'.

EXAMPLE 3.1: Let [ =2. An output is a pair (y;, y») € Y CR2, with Y ={0,1,..., y}
for some integer y > 0. Let v(y) = y; + y» so that the worst output is y, = (0, 0). The
known technology A° can be arbitrary. Say, one could assume that any a? € A? only affects
the distribution of y;.

A tournament is a contract w that gives a prize b to the agent who produces the most,
and splits the prize equally in case of a tie. That is, w;(y) = b > 0if y; > y_;, w;(y) = b/2 if
yi =y, and w;(y) =0if y; < y_;. See Figure 1(b). As is well known, this motivates agent i
to not only increase y;, but also to reduce y_; via refusing help, stealing, or sabotage (e.g.,
Lazear (1989)). Formally, consider a technology 4 D A° such that A4, := A" U {a} with
ci(a))=0fori=1,2. Let F(a,, a}) = 84, and F(a, ay) =8, forall a) € A?,i=1,2.
Then playing the new action @ wins the tournament for sure against any a°; € A ;. Finally,
let F(a’) = 8,0) so that nothing is produced if both agents play the new action.

Figure 2 shows that a’ is the unique equilibrium of the game I'(w, A) induced by the
technology A. Thus, V(w, A) =v(0,0)—b=—band V(w) < V(w, A) =—-b <0<V (0),
that is, the zero contract has a better guarantee than the tournament, consistent with
Theorem 3.1.

3.1. Proof of Theorems 3.1 and 3.2

The main part of the proof is showing that for essentially any contract that fails to align
the agents’ interests, one can find a game whose unique equilibrium output distribution
assigns arbitrarily high probability to the worst output y,. This is Lemma 3.5 below, which
generalizes Example 3.1 by using a more elaborate construction than the one used for the
tournament. However, there is a “nuisance case” that has to be treated separately, and we
do so first in Lemma 3.4. The theorems are then shown to follow from these two lemmas.

Given a contract w, let

1
Y* = ﬂ argmaxw;(y).

i=1 yeY
By definition, any y € Y* simultaneously maximizes the payment to every agent. The set
Y* may be nonempty even if w fails to align the agents’ interests (see Figure 1(d), where
Y* consists of the outputs that map to the tip of the pointy end of the set ). The nuisance
case arises if the agents can ensure that the output is in Y* at zero cost to all agents as
there is then in general no way to drive the output to y,. The next lemma shows that such
contracts are nevertheless uninteresting as they perform worse than the zero contract
or any budget balanced contract that aligns interests, and that under the assumptions of
Theorem 3.2 they have at most a zero profit guarantee and cannot satisfy budget balance.
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LEMMA 3.4: Let w be a contract different from the zero contract. Suppose there exists
a* € A such that supp F(a*) C Y* and c(a*) = 0. Then the following properties hold:
(1) V(w) <V(0).

(ii) If w fails to align the agents’ interests and if each action profile in the known technol-
ogy has full support or costly production, then V (w) < 0.

(iii) If w is budget balanced, then S(w) < S(w') for every contract w' that is budget bal-
anced and aligns the agents’ interests.

(iv) If each action profile in the known technology has full support or costly production,
then w is not budget balanced.

We relegate the proof to the Appendix, but the idea is straightforward: As the action
profile a* in Lemma 3.4 gives the agents their maximum payments under contract w at
zero cost, it is an equilibrium given any technology 4 2 A°. This may potentially yield a
positive profit or surplus guarantee. However, as c(a*) = 0, the agents would be happy to
play a* also under the zero contract, which of course would give even more profit. This
observation underlies part (i) of Lemma 3.4. The assumptions in part (ii) strengthen the
conclusion from V' (w) < V' (0) to V' (w) < 0 as they imply that the value of output given
a* is zero. Part (iii) follows by observing that under budget balance, the outputs in Y*
must maximize the value of output. Thus, a* yields maxv(Y) at zero cost, and hence it
is a surplus-maximizing equilibrium under any contract that pays a fixed share to each
agent, no matter what other actions are available. Finally, part (iv) follows as generating
maxv(Y') with certainty at zero cost is inconsistent with full support or costly production.

With Lemma 3.4 out of the way, the proof comes down to the following result.

LEMMA 3.5: Let w be a contract that fails to align the agents’ interests. Suppose that for
all a € A°, supp F(a) C Y* implies c(a) # 0. Then there exists a sequence of technologies
A" 2 A°, each with a unique equilibrium output distribution F" € A(Y), such that F" — §,,,.

Before turning to the proof, let us verify that Theorems 3.1 and 3.2 indeed follow from
the preceding two results. Observe first that under the assumptions of Lemma 3.5, we have
V(w) <V(w, A") < Ep[v(y)] = 0 and S(w) < S(w, A") < Ep[v(y)] — 0. Therefore,
Theorem 3.1 follows by noting that any contract that fails to align the agents’ interests is
covered by either parts (i) and (iii) of Lemma 3.4, or by Lemma 3.5. As for Theorem 3.2,
the assumption about 4° matters only in the case covered by Lemma 3.4, where part (ii)
then gives V' (w) < 0, and part (iv) shows that that case is then impossible under budget
balance. Hence, we have V' (w) <0 and S(w) <0.

It remains to establish Lemma 3.5. Throughout the proof, we fix a contract w that fails
to align the agents’ interests, and assume that, for all a € A°, supp F(a) C Y* implies
c(a) # 0. Observe that w fails Lemma 3.1(ii) for some pair of agents. Relabeling if neces-
sary, we assume without loss of generality that this is agents 1 and 2.

We proceed in two steps. First, we construct a preliminary technology that eliminates
equilibria in known actions. We then amend it to drive the equilibrium output to y,.5

®The proof has a “divide and conquer” flavor, making it similar in spirit to Abreu and Matsushima (1992).
However, as we construct the worst-case game separately for each contract, the designer of the game knows
the agents’ preferences here. Hence, viewed as an implementation problem, ours is nontrivial only because of
the existence of the known actions, which have no counterpart in the implementation literature. Thus, even
setting aside the different solution concepts, Abreu and Matsushima’s construction cannot be applied in our
setting, nor can ours be applied in theirs.
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Preliminary Technology A*. Define the technology A* > A° as follows. For each
agent i, let A7 := A? U{a;} and ¢;(a7) = 0. Note that a; is a least-cost action for agent
i. It will be helpful to think of a} as an action that allows agent i to “veto” any outcome
that could arise under the known technology.

We define output distributions for action profiles in A* \ A° by specifying first the cor-
responding expected payment profiles with the help of the following lemma.

LEMMA 3.6: There exist (not necessarily all distinct) points z', ..., z! in W such that
sz > ZEF(a)[wi(y) —ci(a;)] forallae A, (3.1)
z; >z, forall je{1,2},ie{l,..., [} withi# j, and (3.2)
Zl>z foralli,je{3,..., I} (3.3)

J

That is, each agent j prefers z/ to any other point z* (strictly so if j € {1, 2}), but it is
infeasible for all agents to simultaneously get their preferred payoff z; under the known
technology.

To sketch the proof of Lemma 3.6, consider the case of two agents so that condition
(3.3) holds vacuously. Let z! and z* be agent 1’s and agent 2’s favorite points in W. On
one hand, if z! and z* are distinct as in Figures 1(b) and (c), then (3.1) and (3.2) are
clearly satisfied. On the other hand, if z! = z?, then Y* # (d and W must have a nonempty
interior so that it resembles Figure 1(d). We can then choose z! and z? in the interior of
W to satisfy (3.2). Moreover, since any a with supp F(a) € Y* has ¢;(a;) > 0 for some i
by assumption, choosing z' and z* close enough to the pointy end will also satisfy (3.1).
The proof in the Appendix provides the details and also covers the case of more than two
agents.

Now fix points z', ..., z/ in W satisfying (3.1)—(3.3). For each a € A*\ A°, let

Z/ if (a1, a,) # (a},a}) and j =min{i : a, = a}},
*(@): x* = 1z1 + 1.7:2 if (a1, ay) = (a}, a3), (34)
2 2
and let the corresponding output distribution be any distribution F(a) € A(Y) with
Er@[w(y)] = x(a). This completes the description of the technology A*.

Continuing with the interpretation of a’ as a veto action, (3.4) says that any agent j
can veto the play and force the payment profile z/ if all other agents play known actions.
If multiple agents veto, then the tie is broken in favor of the agent with the lowest index,
expect when both agents 1 and 2 veto, in which case x*, the average of z! and z2, is chosen.

The next lemma lists some key properties that any 4 © A* inherits from A*.

LEMMA 3.7: Every technology A 2 A* satisfies the following properties:
(i) If o is a mixed strategy profile with supp o C A, then there exists an agent i for whom
u(a:,o_i;w, A) > u;(o; w, A).
(i) wi(a;,a_;w, A)>u(a?,a_;; w, A) forall i,all a? € AY,and all a_; € A*,\ A°,.
(iii) The inequality in part (i) is strict for i =1, 2.

Part (i) rules out equilibria in known actions. It follows because, by (3.4), any agent i
who unilaterally deviates from o to a} earns z! (as ¢;(a;) = 0), whereas the sum of the
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agents’ expected payments under o is less than ), z! by (3.1). Part (ii) shows that a}
weakly dominates any known action @ if at least one other agent plays the veto action,
and part (iii) shows that this dominance is strict for agents 1 and 2. Both claims follow by
inspection of (3.4) given our choice of z!, ..., z/; see the proof in the Appendix for the
details.

The “tie-breaking” built into (3.4) in case multiple agents play af favors agents 1 and
2. This can be shown to imply that in any equilibrium of I'(w, A*), agents 1 and 2 play
(aj, a3). More generally, for all suitably chosen A O A*, at least one of them forgoes all
actions in A4°:

LEMMA 3.8: Suppose A D A* is a technology where A; = A? for all i > 2 and where
ui(at,a_;w, A) > u;(al,a_;w, A) foralli,all a} € A}, andall a_;€ A_;\ A*,. (3.5)
Then a,(AY)0»(A3) =0 for every o € E(w, A).

The proof in the Appendix uses Lemma 3.7(i) and the weak dominance conditions in
Lemma 3.7(ii) and (3.5) to first show that if all agents assign positive probability to known
actions, then a} strictly dominates all a? € A? for some agent i, which contradicts agent
i assigning positive probability to A". Thus, some set of agents must play known actions
with probability zero. We then use Lemma 3.7(iii) to show that this set contains agent 1
or 2.

We are now in a position to prove Lemma 3.5. There are two cases to consider depend-
ing on how the profile x* defined in (3.4) is located relative to w(y;).

Case 1: w;(yo) > xj for some j € {1,2}. Without loss of generality, assume w;(yo) > xJ.
To ensure strict incentives, fix ¢ € (0, 1) and take F, € A(Y) such that F.()y) > 1 — ¢ and
Ep,[wi(y)] > x}. This is feasible for any & > 0 as x] = 1z} +1z{ < z{ < maxw,(Y) by (3.2).

Define the technology ADA* > A° by letting A, = A; U{a,} with ¢;(a;) =0, and
letting A; := A; for i # 1. Let F(a) := F, for all a € 4 such that a; = a,. That is, agent
1 is the only one who has an additional action a; beyond the actions in the preliminary
technology A*. By playing a;, agent 1 can unilaterally force the distribution F,, and he
will do so in every equilibrium:

LEMMA 3.9: If o is an equilibrium of T'(w, A), then o(a,) = 1.

PROOF: We verify first that technology A satisfies (3.5). It suffices to consider i # 1 as
A_1\ A*, = 0. Note that if i # 1, then every a_; € A_; \ A*, has a; = a,. Thus, for any
such a_;, we have u;(a;, a_; w, A) —u;(a’, a_;; w, A) = ¢;(a?) > 0 as agent i cannot affect
the output if agent 1 plays a;. Thus, Lemma 3.8 applies, and we have o;(A%)o,(A)) =0
forall o € £(w, A).

Suppose first that 0,(A9) = 0 so that agent 2 plays a3 with probability 1. We then have
ui(ay, a3, a2 w, A) = Ep [wi(p)] > x7 = wi(aj, a3, a_q 23w, A) > wi(ay, a3, a_p ;
w, A) forall a) € AY and all a_; 5, € A_; 2, where the last inequality is by Lemma 3.7(iii).
Therefore, a, is agent 1’s unique best response and o7(a;) = 1 as desired.

Suppose then that oy(A4Y) =0, but 0y(a,) < 1. Then oy(at) =1 — oy(a;) > 0 and we
have u, (a3, 02, w, A) — us(ay, o2 w, A) = o1(a1)c2(a3) + o1 (a}) (x5 — z3 + 2(a9)) > 0
for all aj € A9, where the strict inequality follows as x3 — z} = 1(z3 — z}) > 0 by (3.2). This
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implies 0, (A%) = 0, which was shown above to imply o,(a,) = 1, contradicting oy(a,) < 1.
We conclude that oy(a;) =1 as desired. O.E.D.

Lemma 3.9 implies that the unique equilibrium output distribution in T'(w, A) is F,,
which converges to 6,, as ¢ — 0. This establishes the claim in Lemma 3.5 for Case 1.

Case 2: wi(y) < xj forall j €{1,2}. In this case, W, := co(w;»(Y)) has a nonempty
interior relative to R?, denoted int(W, ,). (Otherwise, as w fails Lemma 3.1(ii) for agents 1
and 2 by assumption, W, , must be a strictly decreasing line segment. But then w,; ()y) < x7
implies w,(yo) > x3.) Given any x € R’ write x;, := (x1, x,) € R2.

We construct a technology A> A* > A" as follows. Let A, := A for each agent i > 2.
Let 1211 = A U{ai, aj,..., af‘l}, where K > 2 is an even number to be specified below,
and let A, := A3 U{a3, a5, ...,a5} Let ¢;(a¥) =0 for i € {1,2} and 1 < k < K. That is,
only agents 1 and 2 have additional actions beyond those in the preliminary technology
A*, and hence most of the arguments that follow will only involve the two of them.

We will next specify expected payment profiles in W, which will be used to define the
output distributions associated with action profiles involving new actions. Figures 3 and 4
illustrate schematically the projections of these profiles to agents 1 and 2, and how they
are assigned to their actions; it may be helpful to refer to them along the way.

By perturbing it if necessary, we can assume that xj, € int(W;,).” We approximate
w(y) € W by fixing ¢ > 0 and taking F, € A(Y) to be a distribution with full support
on Y such that F,(yy) > 1 — e. Then w{, (%) := Ef,[wi2(y)] € int(W2), and for & small

Wy
i X2
2
X2
k-2 Ly . *i2
X1
)
&
wi (%)
° .
e
K1
X2
o Lo
w;
FIGURE 3.—Construction of the sequence (x}, = x},,x},,..., x5, x5, = w{,(y)) in the proof of

Lemma 3.5. (Here, K = 6.) The shaded area is L.

"Conditions (3.1) and (3.2) involve finitely many strict inequalities. Thus, when int(W, ;) is nonempty, we
can perturb z' and z” so that z{ , and 2 , lie in int(W, ). Then x} , = 3z;, + 3z}, € int(W, ) by convexity of
W. Moreover, for small enough perturbations, we continue to have w;(y) < x; for all j € {1, 2}.
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A a; a? as ceakT? ake
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FIGURE 4.—Assignment of expected payment profiles to action profiles @ € A such that a; ¢ A or a, ¢ AS.
Note that for such a, the expected payment profile depends only on a; and a,. Furthermore, we have
ci(ay) = c,-(af.‘) =0for i e{1,2} and 1 < k < K. Thus, this matrix also directly shows u;(a;, az, a_; 2; w, A)
for ay ¢ A? and le(al, az, d_g2y; W, A) for a, ¢ Ag

enough, we have x}, > w{,(y), which we assume to be the case henceforth. Moreover,
we can then fix x € W such that x, , € int(W, ) and x, , <w?,()-

Let L be the line segment connecting x}, and w,(y) in R2. Given A > 0, let L, be
the A-neighborhood of L, that is, L, :={x;, € Ri 2 lx12 — z12]l < A for some z;, € L}.
Because x7, > wi,(%) > x, , and all three points lie in the convex open set int(W, ),
we can take A > 0 small enough so that L, € int(W],) and X, <zipforall z;, € Ly. We

then choose the even number K > 2 and points x| ,, ..., x}," in L, such that the sequence
(=] X1 s XS L XY, = wi,()) satisfies the following conditions:
1. Among any two consecutive points, agent 1 prefers the odd one: for all k£ odd,

¥ > and x> X!

2. Agent 2 has the opposite preference: for all £ odd,

xb < x5 and  xh < xf
See Figure 3 for an illustration. We map each point x},, 0 < k < K, to a point x* in W
by letting x° = x* and xX = w?*(y) := Er, [w(y)], and by taking x* for k ¢ {0, K} to be any
point in W whose image in W, , is x} ,.

We will need another sequence (1, ..., n%/?) in W with 0}, < --- < 9%’ <x,,. Such
a sequence can be found, because x, , € int(W,,). Note that we have n} , < x, , < x|, for
all k and I, because each x{ , was chosen from L,, which dominates x, ,.

To complete the description of technology A, we assign the above expected payment
profiles to action profiles in A\ A according to Figure 4