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Abstract—Working memory (WM) training has been shown

to lead to improvements in WM capacity and fluid intelli-

gence. Given that divergent thinking loads on WM and fluid

intelligence, we tested the hypothesis that WM training

would improve performance and moderate neural function

in the Alternate Uses Task (AUT)—a classic test of divergent

thinking. We tested this hypothesis by administering the

AUT in the functional magnetic resonance imaging scanner

following a short regimen of WM training (experimental con-

dition), or engagement in a choice reaction time task not

expected to engage WM (active control condition). Partici-

pants in the experimental group exhibited significant

improvement in performance in the WM task as a function

of training, as well as a significant gain in fluid intelligence.

Although the two groups did not differ in their performance

on the AUT, activation was significantly lower in the experi-

mental group in ventrolateral prefrontal and dorsolateral

prefrontal cortices—two brain regions known to play disso-

ciable and critical roles in divergent thinking. Furthermore,

gain in fluid intelligence mediated the effect of training on

brain activation in ventrolateral prefrontal cortex. These

results indicate that a short regimen of WM training is asso-

ciated with lower prefrontal activation—a marker of neural

efficiency—in divergent thinking. Crown Copyright

� 2013 Published by Elsevier Ltd. on behalf of IBRO. All

rights reserved.
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INTRODUCTION

Divergent thinking is defined as thinking that can lead in

various directions (Guilford, 1967; Runco, 1999).

Historically, divergent thinking ability has been

measured using tasks that instruct participants to

generate multiple solutions to open-ended problems.
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For example, a classic task from the divergent thinking

literature is the Alternate Uses Task (AUT), in which

participants are asked to generate as many uses as

possible in response to prompts of common objects

(e.g., brick). These responses can then be scored in

relation to various indices of interest, including fluency

(number of responses), originality (statistical infrequency

of responses), or flexibility (categorical variability of

responses), among others. Divergent thinking tasks are

among the most commonly used in studies of creativity

because their scores are considered to reflect estimates

of potential creative thought (Plucker and Renzulli,

1999), and are predictive of real-life creativity (Plucker,

1999). However, in accordance with Guilford’s (1967)

original formulation, divergent production should not be

viewed as a singular index of creativity, but rather as

one of the mental operations that contribute to the

structure of the intellect.

Recently, creativity researchers have begun to

reexamine the link between divergent thinking on the

one hand, and working memory (WM) and fluid

intelligence on the other hand. It seems reasonable to

suspect that divergent thinking would load on WM

capacity, given that divergent thinking requires the

maintenance and manipulation of relevant concepts in

the span of attention (Vartanian, 2011).1 One would also

expect divergent thinking to load on fluid intelligence—

defined as the ability to adapt to new situations and to

perceive new patterns and relationships (Cattell, 1963;

Unsworth and Engle, 2005). Indeed, recent evidence has

shown that divergent thinking requires executive functions

in the service of interference resolution and strategy

application (Gilhooly et al., 2007). In addition, there is

now evidence to support the loading of divergent thinking

on fluid intelligence (Nusbaum and Silvia, 2011), as well

as the loading of creativity on fluid intelligence (Sligh

et al., 2005). The data from this literature suggest that

fluid intelligence (and executive functions) contributes to

divergent thinking ability (and creativity).

Given the aforementioned findings relating divergent

thinking to executive functions and fluid intelligence, our

aim in this experiment was to test the hypothesis that a

short but temporally concentrated WM training regimen

would translate into better performance on a divergent

thinking task. This hypothesis was motivated by two
alf of IBRO. All rights reserved.

1 WM capacity is necessary to establish attentional control for
focused cognition, although creativity thrives as a function of flexible
switching between focused and defocused modes of cognition in
relation to task demands (Vartanian, 2009; Wiley and Jarosz, 2012).
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strands of evidence. First, a substantial body of evidence

has accumulated to demonstrate that targeted and

repeated WM training can increase WM capacity (for

reviews see Klingberg, 2010; Morrison and Chein,

2011). To the extent that divergent thinking ability draws

on WM capacity, increases in the latter should

contribute to improvements in the former. Second, WM

training has also been shown to improve fluid

intelligence (Jaeggi et al., 2008, 2010; for a review see

Buschkuehl and Jaeggi, 2010). This suggests that the

benefits of WM training on divergent thinking could take

two routes: either directly by increasing WM capacity, or

indirectly by way of improving fluid intelligence. In the

latter sense, WM training can be viewed as an

intervention strategy to boost fluid intelligence in the

service of improving divergent thinking.

In addition to the hypothesized behavioral effects, we

were also interested in examining the neural system that

would underlie the transfer effects. If successful transfer

from WM training to divergent thinking is a function of the

goodness-of-fit between capacities enhanced during WM

training and the cognitive requirements of the target

activity, then the neural localization of the transfer may be

predicted based on the extent of overlap between brain

systems known to underlie WM (training task), fluid

intelligence, and divergent thinking (target of transfer

task). There is now strong evidence to suggest that the

ventral and dorsal aspects of the prefrontal cortex (PFC)

underlie the expression of intelligence (Duncan et al.,

2000; Jung and Haier, 2007; Deary et al., 2010), WM

(Prabhakaran et al., 2000; Baddeley, 2003), and

divergent thinking (Goel and Vartanian, 2005; Fink et al.,

2009). Thus, one would predict that the impact of WM

training on divergent thinking (possibly mediated by fluid

intelligence) should be localizable in the PFC.

However, neurally, the direction of the effect

underlying transfer from WM training to target tasks

remains unknown. This is because there are at least

two different ways in which this effect could be realized

in the PFC. On the one hand, there is reason to believe

that improving fluid intelligence as a function of WM

training should result in enhanced neural efficiency—

operationalized here and elsewhere as a lower blood

oxygenation-level dependent (BOLD) signal—in the

PFC. This prediction is consistent with the inverse

relation observed between fluid intelligence and

metabolic rate in the parieto-frontal network using a

variety of cognitive tasks that tap fluid intelligence

(Neubauer et al., 2002, 2005; Jung and Haier, 2007;

Deary et al., 2010; see also van der Heuvel et al.,

2009), as well as indications that this inverse relation is

most likely to be observed in the frontal cortex

(Neubauer and Fink, 2009). On the other hand, there is

also evidence for a positive correlation between neural

activity and fluid intelligence (Gray et al., 2003; Lee

et al., 2006; Luders et al., 2009), as well as data

demonstrating an increase in PFC activity following WM

training (Olesen et al., 2004). In conjunction, the current

evidence suggests that while the impact of WM training

on fluid intelligence is likely to manifest itself in the PFC,

the direction of this effect is difficult to predict.
Despite the heterogeneous nature of the findings

linking WM training to fluid intelligence, Klingberg (2010)

noted a consistent pattern such that short periods of

WM training (<3 h) had been shown to result in

decreased brain activity, whereas long periods of WM

training had been shown to result in a mixture of

increased and decreased brain activity. He suggested

that the decreases in activation can occur as a result of

strategy learning, priming during encoding, and time-on-

task effects. In turn, during longer WM training these

reductions would be co-occurring with increases in

capacity correlated with activity in the intraparietal

cortex, middle and superior frontal gyri, and the caudate

nucleus. Thus, duration of training may be an important

moderator of the relation between WM training and

brain activation. However, in their own review of the

literature on the neural effects of WM training,

Buschkuehl et al. (2012) argued against Klingberg’s

(2010) categorization of the effects based on training

duration, calling for additional data to understand the

impact of WM training on neural function.
Present study and hypotheses

In the present study we tested the effect of WM training on

behavioral performance and neural function in the context

of the AUT in the functional magnetic resonance imaging

(fMRI) scanner. We also examined the possible mediating

role of fluid intelligence in the transfer process. Practice

durations and frequencies in previous studies involving

WM training have varied greatly, ranging from one 20-

or 30-min session to 20 h spread over 10 weeks (see

Buschkuehl et al., 2012, Table 1; Klingberg, 2010,

Table 2; see also Morrison and Chein, 2011). In

contrast, studies involving WM training to improve fluid

intelligence have typically employed short training

sessions (i.e., �17–25 min) administered with high

frequency (8–20 sessions) (Jaeggi et al., 2008, 2010).

We opted to test the impact of three closely spaced 20-

min training sessions on performance and neural

function. Our decision to focus on a short and

concentrated regimen of WM training was motivated by

our desire to assess the feasibility of WM training as an

intervention strategy in applied professional and

educational settings where the implementation of

lengthy training regimens might be impractical. We

implemented a short time lag between the completion of

WM training and the assessment of divergent thinking

ability to maximize the likelihood of observing short-term

transfer effects.

We tested four hypotheses: (1) we predicted an

increase in WM capacity in participants enrolled in the

experimental condition who trained on the n-back task;

(2) compared to participants enrolled in an active control

condition, we predicted that participants enrolled in the

experimental condition would exhibit improvement in

fluid intelligence; (3) compared to participants enrolled in

an active control condition, we predicted better

performance on the AUT for participants in the

experimental condition; and, finally; (4) we expected to

observe variation in the BOLD response in the ventral



Table 1. Main effects for generating uses and recalling characteristics in the Alternate Uses Task

Task and contrast Structure BA x y z T-score k

Generating uses—ITI DLPFC 46/45 �50 28 14 14.85 8297

Anterior PFC 10 �10 66 22 6.08 9

Uses parameter OFC 10 4 44 �2 10.40 3553

Recalling characteristics—ITI DLPFC 46/45 �48 20 26 9.72 4730

SII 1 50 �32 6 5.53 375

Characteristics parameter SMA 6 2 �28 44 7.91 5326

Notes. BA = Brodmann Area, k= cluster size (number of contiguous voxels), ITI = inter-trial interval (rest), DLPFC= dorsolateral prefrontal cortex, OFC= orbitofrontal

cortex, SMA= supplementary motor cortex, SII = secondary somatosensory cortex. The coordinates are reported in MNI space. These structures represent only a subset

of structures that survived a voxel-level intensity threshold of p< .05, corrected for multiple comparisons using the Bonferroni family-wise (whole-brain) correction (see

Methods). Each reported contrast activated other structures that did not survive this strict cut-off.

Table 2. Areas of significantly lower activation in the trained group in the Alternate Uses Task

Contrast Structure BA x y z T-score k

Generating uses VLPFC 47 40 24 �24 5.86 195

Number of uses DLPFC 46 52 42 10 4.41 15

Notes. BA = Brodmann Area, k= cluster size (number of contiguous voxels), VLPFC= ventrolateral prefrontal cortex, DLPFC= dorsolateral prefrontal cortex. The

coordinates are reported in MNI space. These structures represent only a subset of structures that survived a voxel-level intensity threshold of p< .05, corrected for multiple

comparisons using the Bonferroni family-wise (whole-brain) correction (see Methods). The activation in DLPFC involves ROI analysis (see Results). Each reported contrast

activated other structures that did not survive this strict cut-off.
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and/or dorsal PFC as a function of WM training. We were

particularly interested in these two regions because the

ventral and dorsal right PFC had been linked to (a)

generating responses and (b) frequency (i.e., number)

of generated responses respectively in divergent

thinking (Goel and Vartanian, 2005). Although the

location of the transfer effect was specified a priori,

the direction of that effect was unspecified given the

variability observed in previous studies of WM training

(Klingberg, 2010; Buschkuehl et al., 2012).

EXPERIMENTAL PROCEDURES

Participants

The experimental protocol was approved by Defence R&D

Canada’s Human Research Ethics Committee and by the

Research Ethics Board of Sunnybrook Health Sciences Centre.

The participants were 34 neurologically healthy right-handed

volunteers (M= 30.79 years, SD= 7.06) with normal or

corrected-to-normal vision recruited from the Greater Toronto

Area. Handedness was assessed using a standard self-report

questionnaire (Oldfield, 1971). The participants were assigned

randomly to the experimental (N= 17) and active control

groups (N= 17), and matched for sex (13 females, 4 males)

and age, t(32) = .46, p= .65, d= .17.2

Materials and procedure

Cognitive training. All participants completed three training

sessions individually on separate days. Average lag time

between successive sessions was 1.51 days (SD= 3.75).

There was no significant difference between the two groups in

the lag time between sessions, t(32) = 1.12, p= .27, d= .38.

The duration of each session was 20 min (excluding time
2 Throughout the manuscript Cohen’s d is used as a measure of
effect size for t tests, adjusted for whether the t test is based on
dependent or independent samples (Cohen, 1988). We used the
following online calculator for calculating d: http://www.cognitiveflexi-
bility.org/effectsize/.
required to read the instructions, which was self paced).

Training was administered using the Cognitive Test Software
(North York, ON, Canada) (Grushcow, 2008) installed on laptops.

Participants in the experimental group completed the n-back
task. Although both the n-back task and the dual n-back task

have been used in previous training studies, they have been

shown to have comparable efficacy in improving WM capacity

and fluid intelligence (Jaeggi et al., 2010). Each session

consisted of four blocks—two blocks of 2-back and two blocks

of 3-back—administered in alternating order and always

starting with 2-back. Each letter was presented for 500 ms.

Inter-stimulus interval (ISI) was a blank screen, presented for

2500 ms. Participants pressed the spacebar whenever they

detected a match.

Participants in the active control group completed the 4-

choice reaction time (RT) task. On each trial of this task one of

four adjacent locations on the computer screen was highlighted

randomly. Participants were instructed to press one of four

keys (1–4) corresponding to the highlighted location on each

trial. We selected this task specifically for three reasons. First,

it is not considered a WM task, but rather an attention task.

Second, whereas performance on the n-back task should be

predictive of fluid intelligence, performance on the 4-choice RT

task should be unrelated to fluid intelligence. Third, based on

previous data collected in our lab, we expected performance to

be at ceiling in all sessions. Specifically, a previous study

(N= 20) had demonstrated that accuracy across three

sessions (1 week apart) was 99% (SD= 1), 98% (SD= 2),

and 97% (SD= 3) respectively (Nakashima et al., 2011). This

would ensure that unlike in the experimental group that trained

on the n-back task, cognitive exertion would be minimal for

participants in the active control group completing the control

task. Note that because of the aforementioned features, this

active control task should be construed as a condition

controlling for task engagement.

Fluid intelligence. Our measure of fluid intelligence was

Raven’s Advanced Progressive Matrices (RAPM) (Raven et al.,

1998). RAPM was divided into two parallel forms based on

even and odd items (see Jaeggi et al., 2008). Each form

contained 18 problems. Upon recruitment, one part was

administered to calculate baseline fluid intelligence. The second

part was administered following the completion of training to

http://www.cognitiveflexibility.org/effectsize/
http://www.cognitiveflexibility.org/effectsize/
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calculate gain. All participants were tested individually on the

RAPM, and given 10 min to complete as many problems as

possible.

Target tasks. Following training, participants completed the

AUT in the fMRI scanner.3 There was no significant difference in

lag time (days) between the completion of training and data

collection in the fMRI scanner between the experimental

(M= 2.94, SD = 1.97) and active control (M= 3.18,

SD= 1.29) groups, t(32) = .55, p = .59, d = .15. The AUT is a

classic divergent thinking task from the creativity literature

(Guilford, 1967). The scanner version of the AUT was modeled

after Fink et al. (2009). The task was presented in two blocks

(i.e., uses and characteristics), the order of which was

counterbalanced across participants. Each of the 20 trials in the

uses block had the same structure. During the generation phase

participants were presented with the name of a common object

(e.g., knife) and instructed to think of as many uses for it as

possible for 12,000 ms. In this phase the name of the object

appeared in black ink. The response phase followed immediately

afterward during which participants were given 3000 ms to enter

the number of generated uses.4 In this phase the name of the

object appeared in green. This color change acted as a prompt

to enter the response as quickly as possible. This was followed

by an inter-trial interval (ITI) varying randomly between 4000 and

6000 ms. Each trial in the characteristics block had an identical

structure, except that participants were instructed not to generate

uses, but instead to recall from long-term memory physical

features characteristic of the object. For example, possible

physical features for ‘‘knife’’ could be solid, sharp, metallic, etc.5

fMRI acquisition. A 3-Tesla MR scanner with an 8-channel

head coil (Discovery MR750, 22.0 software, GE Healthcare,

Waukesha, WI) was used to acquire T1 anatomical volume

images (.86 � .86 � 1.0 mm voxels). For functional imaging,

T2⁄-weighted gradient echo spiral-in/out acquisitions were used

to produce 26 contiguous 5-mm thick axial slices (repetition

time [TR] = 2000 ms; echo time [TE] = 30 ms; flip angle

[FA] = 70�; field of view [FOV] = 200 mm; 64 � 64 matrix;

voxel dimensions = 3.1 � 3.1 � 5.0 mm), positioned to cover

the whole brain. The first five volumes were discarded to allow

for T1 equilibration effects. The number of volumes acquired

was 418.

fMRI analysis. Data were analyzed using Statistical

Parametric Mapping (SPM8) (www.fil.ion.ucl.ac.uk/spm/). Head

movement was less than 2 mm in all cases. All functional

volumes were spatially realigned to the first volume. A mean

image created from realigned volumes was spatially normalized

to the MNI EPI brain template using nonlinear basis functions.

The derived spatial transformation was applied to the realigned

T2⁄ volumes, and spatially smoothed with an 8-mm full-width at

half-maximum (FWHM) isotropic Gaussian kernel. Time series

across each voxel were high-pass filtered with a cut-off of

128 s, using cosine functions to remove section-specific low-

frequency drifts in the BOLD signal. Condition effects at each

voxel were estimated according to the general linear model

(GLM) and regionally specific effects compared using linear

contrasts. The BOLD signal was modeled as a box-car,
3 Two additional tasks (psychomotor vigilance task and delayed
matching-to-sample task) were completed in the same scanning
session in counterbalanced order. The results involving those tasks
will be reported elsewhere.
4 Although responses to divergent thinking tasks can be scored in

multiple ways, fluency (i.e., the number of generated solutions)
accounts for the majority of variance in divergent thinking tasks
(Plucker and Renzulli, 1999).
5 The characteristics block was included to mimic Fink et al.’s (2009)

design as closely as possible. We had no hypotheses involving the
effect of cognitive training on recall from long-term memory.
convolved with a canonical hemodynamic response function.

Each contrast produced a statistical parametric map consisting

of voxels where the z-statistic was significant at p< .001.

Using a random-effects analysis, reported activations survived

voxel-level intensity threshold of p< .05, corrected for multiple

comparisons using the Bonferroni family-wise (whole-brain)

correction.
RESULTS

Cognitive training

We conducted two separate within-subjects ANOVAs for

the experimental and active control groups, with session

(1,2,3) as the within-subjects variable and percentage

accuracy on the trained task as the dependent variable.

There was a significant effect of session for the

experimental group, F(2,32) = 35.61, p< .000001,

partial g2 = .69 (Fig. 1). Exploring this effect further,

paired t tests demonstrated that there was a significant

increase in accuracy between session 1 and session 2

(t[16] = 5.35, p= .000065, d= 1.30) and between

session 2 and session 3 (t[16] = 2.26, p= .038,

d= .55). In contrast, as predicted (see Nakashima

et al., 2011), for the active control group performance

was at ceiling across three sessions, F(2,32) = 2.34,

p= .112, partial g2 = .13 (Fig. 1).
Fluid intelligence

There was no significant difference between the

experimental (M= 10.35, SD= 2.62) and active control

groups (M= 11.29, SD= 2.64) in baseline RAPM

scores, t(32) = 1.04, p= .31, d= .36. A mixed-model

ANOVA demonstrated a significant group (experimental

vs. active control) � time point (pre- vs. post-training)

interaction, F(1,32) = 5.90, p= .021, partial g2 = .16.

Specifically, for the experimental group there was a

significant improvement in RAPM scores following

training (M= 11.18, SD= 2.53) compared to baseline,

t(16) = 2.46, p= .026, d= .60. In contrast, in the
Fig. 1. Impact of training on performance (% accuracy) across three

training sessions. Notes. For the experimental condition, the gray

bars represent accuracy (%) on the n-back task. For the active control

condition, the white bars represent accuracy (%) on the choice RT

task. Error bars represent standard error. All three levels correspond-

ing to the experimental condition are significantly different from one

another, whereas none of the levels corresponding to the active

control condition differ from one another (see Results).

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 2. Performance on n-back (experimental task) but not 4-choice RT (active control task) predicted baseline RAPM scores. Notes. In the Choice

RT figure, the removal of the two outliers (to the left) increased R2 Linear to 0.114; however, choice RT scores did not predict RAPM scores,

b = .34, p= .218.
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active control group no change was observed following

training (M= 10.41, SD= 2.24) compared to baseline,

t(16) = �1.43, p= .17, d= �.35.6
To test our theoretical prediction that performance on

the n-back task should be related to fluid intelligence

whereas performance on the 4-choice RT task should

be unrelated to fluid intelligence, we ran two regressions

in which we regressed baseline RAPM scores onto n-

back or 4-choice RT scores (collected at session 1),

separately depending on the condition in which

participants were (experimental or active control). The

results demonstrated that n-back performance linearly

predicted RAPM scores, b = .69, p= .002, accounting

for almost 47% of the observed variance in baseline

fluid intelligence (linear R2). In contrast 4-choice RT

performance did not predict RAPM scores, b = .17,

p= .522, accounting for less than 3% of the observed

variance in baseline fluid intelligence (Fig. 2). This adds

weight to our task analysis and the argument that

training on the n-back task is more likely to affect RAPM

scores than engagement in the 4-choice task.
Target task
Behavioral effects. Average RT for generating uses

was 1105 ms (SD= 716), and average number of

generated uses was 4.61 (SD= 1.76). There was no

significant difference in the number of uses (t[31] = .77,

p= .45, d= .27) or RT (t[31] = .02, p= .98, d= .01)

between the experimental and active control groups.

Average RT for recalling characteristics was 1364 ms

(SD= 629), and the average number of recalled
6 Another way to conduct this analysis involves conducting an
ANCOVA in which group (experimental vs. active control) is entered as
the independent variable, RAPM scores following training as the
dependent variable, and RAPM scores at baseline as the covariate.
Consistent with the analysis reported above, this analysis also
demonstrated a significant effect for group, F(1, 31) = 4.54,
p = .041, partial g2 = .13.
characteristics was 4.70 (SD= 1.57). There was no

significant difference in the number of recalled

characteristics (t[31] = .40, p= .69, d= .14) or RT

(t[31] = .24, p= .81, d= .08) between the two groups.

Neural effects. Using an event-related design, we

specified regressors corresponding to the generation

phase (coupled with the parameter indicating number of

uses or characteristics generated—depending on the

condition), and ITI. The ITI phase, which varied

randomly between 4000 and 6000 ms, was treated as a

rest phase against which key contrasts were run.

Although incorporated into the design, response phase

and motor response were modeled out of the analyses

by assigning null weights to their regressors. The

generating uses—ITI contrast was computed by

assigning a weight of ‘‘1’’ to the regressor corresponding

to the generation phase and a weight of ‘‘�1’’ to the

regressor corresponding to ITI in the uses run (a weight

of ‘‘0’’ was assigned to all other regressors). Across all

participants, generating uses—ITI activated the left

dorsolateral PFC and anterior PFC (Table 1). Similarly,

the recalling characteristics—ITI contrast was computed

by assigning a weight of ‘‘1’’ to the regressor

corresponding to the characteristics phase and a weight

of ‘‘�1’’ to the regressor corresponding to ITI phase in

the characteristics run (a weight of ‘‘0’’ was assigned to

all other regressors). Across all participants, recalling

characteristics—ITI activated the left dorsolateral PFC

and right secondary somatosensory cortex (Table 1).

The uses parameter was computed by assigning a

weight of ‘‘1’’ to its corresponding regressor and a

weight of ‘‘0’’ to all other regressors. This analysis

activated right orbitofrontal cortex (Table 1). Similarly,

the characteristics parameter was computed by

assigning a weight of ‘‘1’’ to its corresponding regressor

and a weight of ‘‘0’’ to all other regressors. This analysis

activated the right supplementary motor cortex

(Table 1). We also ran the generating uses—recalling

characteristics contrast by assigning a weight of ‘‘1’’ to



Fig. 3. Impact of WM training on neural activation in divergent thinking. Notes. (a) There was lower activation in right ventrolateral prefrontal cortex

(BA 47) in the experimental group when generating uses in the Alternate Uses Task; (b) there was lower activation in right dorsolateral prefrontal

cortex (BA 46) in the experimental group in relation to the number of generated solutions in the Alternate Uses Task based on an ROI analysis (see

Results). SPM rendered into standard stereotactic space and superimposed onto sagittal MRI in standard space. Each bar represents the

corresponding T-score.

−

Fig. 4. Beta values for the mediator model of the effect of training on brain activation in right ventrolateral PFC (standard errors in parentheses).

Notes. VLPFC = Ventrolateral prefrontal cortex. ⁄p= .021, ⁄⁄p= .002.
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the regressor corresponding to the generating uses phase

and a weight of ‘‘�1’’ to the regressor corresponding to

the recalling characteristics phase (a weight of ‘‘0’’ was

assigned to all other regressors). This contrast did not

reveal any area of activation that survived our statistical

threshold.

An independent-groups t test revealed that generating

uses (versus ITI) resulted in significantly lower activation

in right ventrolateral PFC (BA 47) in the experimental

than active control group (p= .024) (Fig. 3 and

Table 2). The reverse contrast revealed that no region

was activated more in the experimental than active

control group. We also compared the generating uses—

recalling characteristics contrast between the

experimental and active control groups using an

independent-groups t test. This contrast did not reveal

any area of activation that survived our statistical

threshold.

Given that training (experimental vs. active control)

was associated with variation in (a) fluid intelligence and

(b) activation in right ventrolateral PFC, we tested the

hypothesis that gain in fluid intelligence mediated the

link between training and activation in right ventrolateral

PFC. As shown in Fig. 4 and consistent with behavioral

results presented earlier, training (experimental vs.

active control) predicted gain in fluid intelligence (i.e.,

post–pre RAPM scores) such that participants in the

experimental condition had greater gain in fluid

intelligence than participants in the active control

condition. In addition, gain in fluid intelligence predicted

activation in right ventrolateral PFC such that greater

gain in fluid intelligence was related to lower activation

in the right ventrolateral PFC. For each participant,
activation in the right ventrolateral PFC was calculated

by creating a sphere with a 15-mm radius around the

coordinate that was activated at the group level (x= 40,

y= 24, z= �24), and extracting the T-score
corresponding to the local maximum. Critically, the

effect of training on activation in right ventrolateral PFC

through the mediator (i.e., fluid intelligence) was

significant, Sobel-test z= 1.99, p= .046 (Preacher and

Hayes, 2004).

In addition, previously Goel and Vartanian (2005) had

shown that activation in right dorsolateral PFC (BA 46)

covaries as a function of the number of generated

solutions in a divergent thinking task. We therefore

conducted another independent-groups t test based on

the parameters relating brain activation to the number of

generated solutions (i.e., a parametric analysis).

However, because of our interest in the right

dorsolateral PFC, we used Small Volume Correction in

SPM8 to conduct a region-of-interest (ROI) analysis by

creating a sphere with a 15-mm radius around the

maximum activated in Goel and Vartanian (2005)

(x= 48, y= 38, z= 24). The result revealed

significantly lower activation in right dorsolateral PFC

(BA 46) in the experimental than active control group in

relation to the number of generated uses, corrected for

multiple comparisons using the Bonferroni family-wise

correction within the ROI (p= .007) (Fig. 3 and

Table 2). The reverse contrast revealed that no region

was activated more in the experimental than active

control group.

No significant differences were observed between the

experimental and active control groups for recalling

characteristics.
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DISCUSSION

We set out to test four hypotheses. First, we predicted an

increase in WM capacity in participants enrolled in the

experimental condition who trained on the n-back task.

This prediction was confirmed as participants in the

experimental group who trained on the WM task exhibited

12% improvement in performance in the WM task

between the first and third sessions. Second, compared

to participants enrolled in the active control condition, we

predicted that participants enrolled in the experimental

condition would exhibit improvement in fluid intelligence.

This prediction was confirmed as unlike participants in the

active control condition who exhibited no change in fluid

intelligence, participants in the experimental condition

exhibited an 8% improvement in fluid intelligence at the

end of training compared to baseline. Third, compared to

participants enrolled in an active control condition, we

predicted better performance on the AUT for participants

in the experimental condition. This prediction was not

supported. Fourth, we expected to observe variation in

the BOLD response in the ventral and/or dorsal PFC as a

function of WM training. This prediction was supported as

activation in ventrolateral PFC (BA 47) was significantly

lower during the generation phase of divergent thinking,

as was activation in dorsolateral PFC (BA 46) in relation

to the number of generated solutions in the task.

Furthermore, although not hypothesized a priori, we also

found that the effect of training on activation in right

ventrolateral PFC was mediated by gain in fluid

intelligence. This finding sheds light on the mechanism

relating training to divergent thinking. These results

demonstrate that although small gains made in WM

capacity and fluid intelligence following a short and

concentrated regimen of WM training did not transfer to

better performance in divergent thinking, participants who

underwent training exhibited neural efficiency during

engagement in divergent thinking, and that this effect was

mediated by gains in fluid intelligence. The extent to

which the observed effect on neural efficiency is

moderated by sex is an important question (see

Neubauer et al., 2005), although it could not be

addressed here because of the discrepancy between

males and females recruited for the study. Furthermore,

given that the generating uses—recalling characteristics

contrast between the experimental and active control

groups did not reveal any area of activation suggests that

the effect of WM training on neural function was not

specific to AUT.

Particularly interesting is the specificity of the

observed reductions in activation in the ventrolateral

(BA 47) and dorsolateral (BA 46) PFC exclusively. Goel

and Vartanian (2005) investigated the generation of

solutions using the Matchstick Task—another well-

known measure used in the divergent thinking literature

(Guilford, 1967). They reported activation in right

ventorlateral PFC (x= 34, y= 16, z= �16) when

participants solved matchstick problems successfully,

and in right dorsolateral PFC (x= 48, y= 38, z= 24)

in relation to the number of generated solutions. The

results of the present study indicate that WM training

was associated with lower activation specifically in the
two regions that are implicated in two dissociable

aspects of divergent thinking. Because ventral and

dorsal PFC are key parts of the neural correlates of

WM, fluid intelligence, and divergent thinking, the

specificity of the observed activations suggests that the

ventral and dorsal aspects of PFC are the likely loci

where transfer effects between WM training and

divergent thinking could be observed.

An important consideration for interpreting the results

of the present experiment involves the features of the

response collected on each trial of the generation

phase—a single digit indicating the number of generated

uses (i.e., fluency). Although fluency scores account for

the largest portion of the variance in divergent thinking

tests (Plucker and Renzulli, 1999), they should be

treated as one of several possible proxy measures of

divergent thinking rather than a single measure of

creative idea generation ability. This is especially true in

light of recent evidence showing that whereas earlier

responses in divergent thinking tasks tend to be

retrieved from memory and are less likely to be creative,

later responses tap executive functions and are more

likely to be creative (Gilhooly et al., 2007; Beaty and

Silvia, 2012). Obtaining a single response that

represents a combination of early and late responses

does not allow one to distinguish between more and

less creative uses in response to the same prompt.

Although obtaining verbal or written responses in the

fMRI scanner is technologically challenging, promising

new devices should enable researchers to obtain

responses that can later be scored for various outcome

measures of interest beyond fluency, such as originality,

flexibility, elaboration, and creativity (Tam et al., 2010).

These innovations will also enable researchers to score

responses in novel ways (Silvia et al., 2008).

Furthermore, a response on any given trial represents

the outcome of at least three different co-occurring

processes. First, the participant must maintain in WM

each generated use. Second, the participant must keep

track of successful and unsuccessful attempts so that

only instances of the former are added to the to-be-

reported total at the end of each trial. Finally, there is a

burden on conflict detection and/or resolution abilities

because as each additional use is generated, there is a

requirement to resolve the conflict between the earlier

total that is no longer correct and the new updated

response. There is ample evidence demonstrating that

the PFC is involved in all aforementioned processes,

namely maintenance functions in WM, monitoring of

sub-goal processes, and conflict detection and/or

resolution (see Goel and Vartanian, 2005). Therefore,

the observed activations reflect not only the core

processes related to divergent thinking, but also co-

occurring ‘‘support’’ processes. However, these

processes likely also affect responding in the

characteristics phase, although perhaps to a different

extent than they do in the generation phase.

Limitations

The present experiment had a number of limitations. First

and foremost, because we did not collect pre-training
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behavioral and neural data for AUT, one cannot argue

that WM training causes increased neural efficiency in

divergent thinking. Using the logic of a between-subjects

design (with respect to AUT), the present results

warrant further investigation to determine the extent to

which the variance observed in neural efficiency can be

attributed to the treatment effect using a within-subjects

design (with respect to AUT) in future studies.

Second, there is tremendous diversity in the tasks that

have been used in active control conditions in previous

WM training studies (see Buschkuehl and Jaeggi, 2010;

Klingberg, 2010; Morrison and Chein, 2011; Buschkuehl

et al., 2012). We selected our task specifically because

(a) it is not considered a WM task, (b) its scores are not

predictive of fluid intelligence, and (c) it is cognitively

minimally taxing. However, arguably an active control

task should have the exact same attributes as the WM

training task, with the only exception being demand on

WM. It is therefore important to remember that the task

used in the present experiment in the active control

condition differed from the n-back task used in the

experimental condition in other attributes than demand

on WM exclusively.

Third, following Jaeggi et al. (2008), we administered

the RAPM within a time limit (10 min). Scores derived

using this timed procedure have been criticized by some

as an incorrect representation of fluid intelligence

(Moody, 2009; but see Raven et al., 1998). It is possible

that the gain observed in fluid intelligence as a function

of WM training was due to the specific way in which

RAPM was administered and scored, although it is

important to keep in mind that gains in fluid intelligence

as a function of WM training have been observed using

a diversity of measures, and administration and scoring

procedures in previous studies (see Klingberg, 2010;

Morrison and Chein, 2011; Buschkuehl et al., 2012).

Fourth, although our results demonstrated an

increase in performance on the n-back task from the

first to the third session (Fig. 1), it is arguable that part

of this improvement might have been due to increased

familiarity with the n-back task, rather than improvement

in WM per se. This concern in interpreting WM training

effects is not unique to this setting (see Klingberg,

2010), and addressing it will require assessments of

how changes in performance in the trained task

correlate with measures of WM capacity and/or span at

each training session. Particularly useful in contributing

to this effort are studies on the correlation between the

tasks used to implement WM training and measures of

WM span (Jaeggi et al., 2010).

Implications

Our results should be considered within the contemporary

view of intelligence as an emergent product of functional

brain networks (Langer et al., 2012). This view is

consistent with the two leading theoretical frameworks

of the neuroscience of intelligence: The neural efficiency

hypothesis, according to which there is an inverse

relation between psychometric intelligence and brain

metabolism (Neubauer and Fink, 2009), and the

Parieto-Frontal Integration Theory (P-FIT), according to
which intelligence is instantiated within a distributed

parietal and frontal network (Jung and Haier, 2007), and

correlated with brain activation during tasks varying in

their loadings on general intelligence (Haier et al.,

2003). Indeed, our result show that the effect of training

on brain function is evident within the P-FIT network

(i.e., VLPFC and DLPFC), consistent in direction with

the neural efficiency hypothesis. In an exciting new

contribution to the literature, Jung and Haier (in press)

have recently proposed a Frontal DisInhibition Model

(F-DIM) for creativity, which is neuroanatomically largely

dissociable from P-FIT. We expect the examination of

the interplay between P-FIT and F-DIM to be a major

contributor to research on the neuroscience of creativity

in the years ahead.

In terms of the broader cognitive training literature, the

results are also relevant for the debate about the relation

between duration of WM training and the direction of the

observed neural effects (Klingberg, 2010; Buschkuehl

et al., 2012). In the present study a relatively short

duration of training was associated with a lower BOLD

signal post training. However, the lower BOLD signal is

difficult to explain in terms of strategy learning and

priming during encoding, because the training task (i.e.,

n-back) was different than the target task (i.e., AUT). It

is also difficult to explain using time-on-task effects,

because our design included an active control condition

in which participants engaged in a different task but for

an identical duration. In fact, our results demonstrated

that the effect of training on activation in PFC was

mediated by gain in fluid intelligence. This is an

important new finding that sheds light on the possible

mechanism relating training to divergent thinking. It is

also possible that the correlation between neural

efficiency and cognitive training was a function of the

degree of overlap (i.e., specificity) of trained and target

neural regions. This causal hypothesis remains to be

tested in future studies.
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