
Programmer Information Needs after
Memory Failure

Chris Parnin
Georgia Institute of Technology

Atlanta, Georgia USA

chris.parnin@gatech.edu

Spencer Rugaber
Georgia Institute of Technology

Atlanta, Georgia USA

spencer@cc.gatech.edu

Abstract—Despite its vast capacity and associative powers, the
human brain does not deal well with interruptions. Particularly
in situations where information density is high, such as during a
programming task, recovering from an interruption requires ex-
tensive time and effort. Although modern program development
environments have begun to recognize this problem, none of these
tools take into account the brain’s structure and limitations. In
this paper, we present a conceptual framework for understanding
the strengths and weaknesses of human memory, particularly
with respect to it ability to deal with work interruptions. The
framework explains empirical results obtained from experiments
in which programmers were interrupted while working. Based
on the framework, we discuss programmer information needs
that development tools must satisfy and suggest several memory
aids such tools could provide. We also describe our prototype
implementation of these memory aids.

I. INTRODUCTION

Despite human memory‘s remarkable abilities, memory

limitations inhibit programmer productivity. In particular, work

interruption devastates memory and makes tasks take twice as

long to perform and have twice as many errors [1]. Unfortu-

nately, such interruptions are common—developers rarely are

able to program in long continuous sessions [2]. Instead, a

developer’s day is fragmented into many short sessions (15-

30 minutes) interspersed with occasional longer ones (1-2

hours). Further, at the start of each of the longer sessions, a

programmer often spends a significant amount of time (15-30

minutes) recovering before resuming coding.

Yet, almost no current programming tool is built based on

a modern understanding of the strengths and weaknesses of

human memory. Current software development environments

and their accompanying tools are based on tool design frame-

works decades old, founded on psychology research that is

even older. As one of the authors of a prominent framework

recently stated, “These models are being used long-past their

shelf-life” [3].

The overall thesis of our research is that programmer

recovery from interruption can be improved by making use

of tools specifically designed to address the limitations of

human memory. To validate this thesis, we must demonstrate

the effects of interruption on a programmer and casually

relate them to limitations of human memory, i.e., explain

programmer performance problems in terms of memory limi-

tations. Further, we need to devise strategies for overcoming

these memory limitations and contextualize them in terms of

programmer information needs.

In this paper, we describe programmer information needs

in terms of the cognitive neuroscience of human memory.

In so doing, we abstract out key concepts and principles of

human memory from modern neuroscience literature. Finally,

we describe how these information needs can be realized

with new tools and relate them to shortcomings in existing

programming tools.

II. THE COGNITIVE NEUROSCIENCE OF MEMORY

Memory is both fragile and resilient. Why do we seem

unable to remember the simplest of things like a phone number

for more than a few moments but are able to recite the gist

of conversations or complicated movie plots in vivid detail

many years later? Previously, we provided a general review of

the psychological and cognitive neuroscience research on the

brain and memory [4]. In the current paper, we synthesize our

findings in terms of five different types of human memory that

are heavily used during programming. Our categories, derived

Fuster’s [5] and Morris and Frey’s [6] accounts of memory,

are the following: prospective, attentive, associative, episodic,

and conceptual (summarized in Figure 1).

PROSPECTIVE MEMORY

Prospective memory holds reminders to perform future

actions in specific circumstances (e.g., to buy milk on the way

home from work) [7]. Prospective memory is located in the

anterior prefrontal cortex (lateral Brodmann area 10) of the

brain and is supported by memory processes distinct from

those supporting other types of memory [8]. When forming

a prospective memory, both an intended action and a retrieval

cue are stored. Subsequently, perceptual processes monitor

the environment for the cue, retrieve the memory, and bring

cognitive attention to the intended action.

Given the complexity of the process for storing into and

recalling from prospective memory, naturally there are several

points of failure [9]: When an intention is held in prospective

memory, a monitoring process continually scans for the condi-

tions for acting upon the intention. These monitoring processes

compete with other cognitive resources, leaving prospective

memory susceptible to monitor failure, failure to act on an

applicable intention. When a condition is realized, prompting

978-1-4673-1216-5/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany123

processes must also compete against active goals in order

for the intention to receive conscious attention. Therefore,

prospective memory is also susceptible to engage failure, a

failure to acquire conscious attention.

ATTENTIVE MEMORY

Attentive memory holds conscious memories that can be

freely attended to. Within it, goals, plans, and task-relevant

items can be sustained for substantial periods of time. At-

tentive memory is found in the ventrolateral and dorsolateral

prefrontal cortex (PFC) (Brodmann areas 8, 9, 44, 45, 46, and

lateral 47), a region situated in the most anterior (forehead)

portion of the brain’s frontal lobe. Attentive memory has two

complementary operations: focusing and filtering.
Attentive memory is highly volatile and prone to frequent

failures. When a programmer is actively engaged in a pro-

gramming task, attentive memory allows a programmer to

maintain focus on particular programming elements or goals

that are relevant to a programming task. Although residuals of

previously attended items can be found after switching atten-

tion [10], task switches often result in concentration failure,

a failure to maintain focus on an item. Attentive memory can

only provide reliable focus on a few consciously accessible

items at a time. Constraints imposed by phase coherence and

modality separation frequently induce limit failure, a failure to

hold the required number of items. Moreover, interruption is

very likely to disrupt a programmer’s maintenance of attended

items, such as a programming location being edited.

HIPPOCAMPAL NETWORK

The next two types of memory make use of the same

pathway of the brain, called the hippocampal network. The

hippocampal network is responsible for many specialized

memory activities such as remembering item familiarity, spa-

tial location, temporal order, contextual details, and general as-

sociations. The hippocampal network includes the hippocam-

pus, parahippocampus, and entorhinal cortex.
The hippocampus network is used by two main memory

components: associative memory and episodic memory. When

a stimulus reaches the hippocampus, several stages of pro-

cessing and memory formation occur. In the earliest stage,

the hippocampus determines the familiarity of the stimulus

and, if deemed interesting enough, reinforces pathways that

form basic associations. In later stages, events are formed into

experiences, higher-level episodic formations, by integrating

with information held in the prefrontal cortex.

ASSOCIATIVE MEMORY

Associative memory holds a set of non-conscious links

between manifestations of co-occurring stimuli. Associative

memory is located within the limbic system, in the perforant

pathway of the hippocampus. Associative memories are essen-

tial for the “automatic recording of attended experience” [6].

The reason why the brain evolved the ability to record such ac-

tivity is that many important events cannot be anticipated and

do not recur, and therefore traces and features of experiences

must be recorded in real-time.

Despite the raw power of associative memory, it has several

weaknesses. When an associative memory is born in the

hippocampus, it is still fragile, and its expected lifetime is

only a few hours. Formation of an association is determined by

uncontrollable factors such as uniqueness, novelty, or interest.

For example, in brain imaging studies of subjects memorizing

words, the experimenters could predict which words would

be forgotten based on their activation strength in associative

memory [11]; that is, forgotten words did not produce a strong

enough response to engage associative memory during the

memorization period. In such cases, the result is a retention

failure. To combat this failure, people often form intentional

associative memories though internal speech (activation of

speech motor systems and speech comprehension [12]), which

is nearly equivalent to hearing ourselves speak aloud and may

subsequently excite auto-associative mechanisms [13].

Other times, an associative memory is formed, but with

weak or missing associations. For example, it is common

to associate with the visual features of an item, but fail to

associate with other attributes such as its name, limiting our

ability to recall it. This phenomenon is evident when someone

says, “I’ll recognize it when I see it”. As a result, association

failure, a failure to form complete or strong associations,

frequently occur.

Motor

Perceptions

Perceptual

Abstractions

Executive

Abstractions

Attentive

Memory

Prospective

Memory

Episodic

Memory Associative

Memory

Conceputal

Memory

Fig. 1: Memory types in sagittal view of brain.

EPISODIC MEMORY

Tulving, an influential memory researcher, describes

episodic memory as the recollection of past events [14].

Whereas associative memory provides the facility for soaking

up raw experiences, episodic memory involves a much more

complex network of memory processes. Located in the entorhi-

nal cortex (Brodmann areas 28 and 34), episodic memories

involve highly processed input from every sensory modality,

as well as input relating to ongoing cognitive processes.

124

Additionally, as the brain develops over time, the ability to

learn and anticipate complex forms of episodic structures

enables more concise representations of experiences to be

retained [15].

In order to form episodic memories cognitive resources are

required, and when those resources are otherwise engaged

(on a hard programming task, for example), memory failure

can occur. For example, episodic memory requires processes

in the lateral prefrontal cortex for maintaining information

about recency and ordering about events retained in the

hippocampus [16]. As a result, when learning new experiences

it is common to incur a recollection failure, a failure to

recall a sequence of events in a complete and orderly fashion.

However, research has shown that episodic cues can assist

in improving episodic memory, even in memory-impaired

patients [17].

Episodic memory is not as fully automatic as the spatio-

temporal and perpetual components of associative memory

can be easily disrupted [18]. For example, a person may

remember the experience of hearing sentences being read

aloud; but forget details such as whether the voice was male

or female or the specific order of the sentences. Therefore,

experiences requiring heavy cognitive load are susceptible to

source failure, a failure to recall contextual details associated

with an experience.

CONCEPTUAL MEMORY

How does the brain remember objects such as a hammer and

concepts such as tool? The brain first learns basic features

of encountered stimuli such as the wood grains and metal

curves of a hammer and then organizes those features into

progressively higher levels of abstraction. In this way, con-

ceptual memory is best understood as a continuum between

perceptions and abstractions.

In Fuster’s account of the brain [5], the continuum of

conceptual memory is ingrained in the physical organization of

the brain. Fuster divides the brain into two major components:

the perceptual region and the executive region. Within the

perceptual region, starting in the most posterior (rear) region

of the brain, banks of highly tuned neurons fire in response to

basic perceptions, such as color or lines. Continuing forward,

more complex perceptions such as orientation or movement are

processed. Eventually, perceptions such as a bouncing sphere

give way to concepts such as a ball and so on.

The executive region exhibits the same pattern of abstrac-

tions as its perceptual counterpart. It contains abstractions

over action: acts, plans, programs, and goals. Starting in the

premotor area, with responsibility for planning basic actions

such as phyletic motor movements, the level of abstraction

increases as one moves onward, ending at the most frontal

regions of the brain containing the most abstract concepts such

as goals.

A process called repetition suppression enables the brain

to retain memory of previously seen perceptions by slowing

the firing rate of the neurons related to those perceptions.

This effect can last for days as perceptions become more

abstract. Repetition suppression causes certain perceptions to

be primed. Priming occurs when suppression of certain brain

areas short-circuit the processing of information, allowing the

response to become more probable.

There are several failures possible when remembering per-

ceptions. As a result of priming perceptions and abstractions in

conceptual memory, associative and attentive memory become

more effective over time in successfully forming associations

and increasing focusing capability. However, perceptions must

be continually refreshed due to the short duration of repetition

suppression. Further, this information is exceedingly low-level

and non-conscious. To recall a forgotten perception, one would

have to rely on residual effects such as priming, which is

error-prone and involuntary. In general, the state of unprimed

memory results in activation failure, an inefficient state of

conceptual memory. Interruption may reduce the effect of

priming of concepts needed for a programming task, requiring

that the programmer refresh his/her memory.

There are also weaknesses possible when remembering

abstractions. One weakness is that several exposures may

be required before an abstraction can be formed. That is, a

person may not be able to incorporate an abstraction directly

into the processing and remembering of instances of that

abstraction until after systematic consolidation has situated

that abstraction in the processing pathway. Because the for-

mation of abstractions in conceptual memory rely on systemic

consolidation, it is common to experience formation failure,

a failure to form an abstraction. Interruption may reduce the

ability for a programmer to hold together newer ideas that do

not yet have conceptual memory support.

III. PROGRAMMER INFORMATION NEEDS

In this section, for each memory type, we first describe a

programming activity and how it greatly stresses that type.

We then demonstrate how various memory failures affect

developers in practice, and the mechanisms they use to cope

with those memory failures. Finally, we then generalize these

behaviors as information needs that each correspond to a

particular memory failure. In Table I, we give a summary of

the information needs that result after memory failure. The

table displays the different memory types and their memory

failures. In support of the memory failures and corresponding

information needs, memory aids are derived.

A. Prospective Memory Support

1) Task: Resuming a Blocked Programming Task: Devel-

opers often become blocked on a task: i.e., being in a state

where no progress can be made until an external constraint

is resolved. For example, developers can become blocked

when coordinating with other developers (waiting for a busy

teammate to become available again or finish a task) [19].

Other reasons include holding off on a task due to an unex-

pected shift in scheduling priority or server/database down-

time [2]. Regardless of how the developer became blocked,

the consequence is the same: A blocked developer must

125

TABLE I: INFORMATION NEEDS AND MEMORY AIDS FOR DIFFERENT MEMORY FAILURES.

MEMORY PROGRAMMING ACTIVITY FAILURE INFORMATION NEED MEMORY AIDS

prospective Resuming blocked tasks Monitor failure Support monitoring applicability smart reminders

Engage failure Provide multi. levels of engagement

attentive Refactoring large code Concentration failure Provide persisted and stateful focus touch points

Limit failure Facilitate multiplicity

associative Navigating unfamiliar code Retention failure Provide distinguishable features associative links

Association failure Support indexing by multi. modalities

episodic Learning new API Source failure Store context code narratives

Recollection failure Support narrative

conceptual Forming concepts Activation failure Support priming memlets

Formation failure Support abstraction

remember to perform a task after a potentially lengthy interval.

Unfortunately, prospective memory’s ability to prompt us at

the appropriate time can be quite unreliable.

2) Developer Studies: Various studies have described how

developers have tried to cope with prospective memory fail-

ures. For example, developers often leave TODO comments

throughout code [20]. To leave a TODO comment, a devel-

oper writes a comment beginning with the text “// TODO:

Remember to fix ...”, which can later be seen in a list of

TODOs collected in a tool view such as the Task List. A

drawback of this mechanism is that there is no impetus

for viewing these reminders. Instead, to force a prospective

prompt, developers may intentionally leave a compile error

to ensure they remember to perform a task [2]. A problem

with compile errors is that they inhibit the ability to switch

to another task on the same codebase. Finally, developers also

do what other office workers do [21]: leave sticky notes and

emails to themselves [2].

3) Information Needs: Monitor failures are a common

reason why programmers fail to act on applicable prospective

actions. Monitoring can be a cognitively demanding and

distracting activity, especially in cases requiring polling an

external condition, such as another team member’s progress.

Information Need 1 - Programmers need facilities for moni-

toring and polling the status of external constraints inhibiting

prospective actions.

Engage failures are a common reason why programmers

fail to recognize the reminder for a prospective action. Passive

reminders, such as sticky notes or comments in the code often

fail to engage conscious attention.

Information Need 2 - Programmers need facilities for mod-

ulating their levels of engagement in prospective actions.

To address the shortcomings of existing coping mecha-

nisms, we introduce the concept of a smart reminder, which

compensates for prospective memory failures by providing

facilities for monitoring and polling external conditions and

for modulating levels of engagement.

B. Attentive Memory Support

1) Task: Tracking Refactoring Changes: Some program-

ming tasks require developers to make similar changes across

a codebase. For example, if a developer needs to refactor code

in order to move a component from one location to another or

to update the code to use a new version of an API, then that

developer needs to systematically and carefully edit all those

locations affected by the desired change. Unfortunately, even

a simple change can lead to many complications, requiring

the developer to track the status of many locations in the

code. Even worse, after an interruption to such as task, the

tracked statuses in attentive memory quickly evaporate and

the numerous visited and edited locations confound retrieval.

2) Developer Studies: Studies examining refactoring prac-

tices of programmers have found several deficiencies in tool

support [22].One essential deficiency is the lack of ability

to track the statuses of many locations in code. As a work-

around, developers abandon refactoring tools and instead rely

on compile errors that were introduced when refactoring.

Interactive compile errors (which appear or disappear auto-

matically as a programmer makes changes) can represent the

task well in an automated fashion: A correct change removes

the compile error, whereas an incorrect change arising from

a complication adds more compile errors. A programmer

can be interrupted in this state and still have a means to

continue the task. Unfortunately, using compile errors to track

changes is not a general solution and can still lead to incorrect

refactorings [23].

3) Information Needs: Concentration failures arise when

programmers need to shift attention away from a programming

task. Interruptions to tasks can cause programmers to lose

126

track of the status of previously attended locations of code.

Information Need 3 - Developers need support for persistent

and stateful focus on program locations.

Limit failures occur when programmers need to hold many

items related to a programming task in attentive memory.

Such tasks can often involve hundreds of program locations,

a number well beyond the handful of items that attentive

memory can support.

Information Need 4 - Developers need support for attending

to numerous program locations.

In support of tasks that heavily tax attentive memory with

many points of attention, we introduce the concept of touch

points, which supports maintaining status across many loca-

tions in code.

C. Supporting Associative Memory

1) Task: Navigating Unfamiliar Code: Some programming

tasks require developers to explore and understand unfamiliar

code. For example, if a developer newly joins a project or

is assigned to fix a bug in an unfamiliar region of code,

then he must quickly absorb and familiarize himself with

the code. This includes learning new identifiers, locations,

relationships, conventions, and behaviors. Such a task deeply

taxes associative memory.

2) Developer Studies: Observations of developers suggest

they frequently rely on associations with environmental cues,

interface elements of the programming environment, for nav-

igating and understanding new code. For example, Ko et

al. [24] observed that programmers used cues, such as open-

document tabs and scrollbars, for maintaining context during

their programming tasks. However, these cues are often in-

sufficient: The act of navigation often disturbs the state of

environmental cues, and the paucity of interface elements, such

as tabbed panes, which often only contain a file name, starves

associability. In studies of developer navigation histories, a

common finding is that developers frequently flip through open

tabs because they fail to associate the tabs with desired code

locations [25].

3) Information Needs: Retention failures occur when envi-

ronmental stimuli do not offer sufficient features to trigger

associative mechanisms in the hippocampus. Unfortunately,

for programmers, source code text is often visually repetitive,

lacking highly distinguishing visual features. Further, interface

elements, such as tabs, only provides one consistent associative

feature: a file name (tab position is frequently unstable, making

spatial positioning an unreliable associative feature for tabs).

Information Need 5 - Developers need support for diverse and

distinguishable features for building associations with code

locations.

Association failures occur when incomplete or weak as-

sociations are formed. For example, when programmers are

interrupted after exploring new code, it is common for devel-

opers to associate a block of a code with semantic information,

such as its functionality, but fail to form strong associations

with details such as its name or location [26]. As a result,

developers often spend significant time locating code after an

interruption [2].

Information Need 6 - Developers need support for indexing

into associative memory via multiple modalities in order to

recall code locations.

To address these needs, we provide associative links, which

are memory aids that provide distinguishable features and

indexing by multiple modalities. Specially, we give an exam-

ple of how a code tab can be made more associable with

alternative modalities.

D. Episodic Memory Support

1) Task: Learning a New API: Developers must often learn

how to use new programming language features or APIs. For

example, if a developer wanted to plot tweets obtained from

the Twitter API onto a map using the Google Maps API, she

would have to learn how to deal with the many concepts

and quirks associated with both of the APIs. The difficulty

of learning new APIs is often compounded by the fact that

documentation, when it exists, is often of poor quality and

lacks sufficient examples and explanations [27]. As a result,

programmers can become derailed from their original task,

when unresolved understanding [28] blocks progress. They

must often piece together their learning experiences from many

hours or days of frustrating coding attempts and false starts,

sprinkled with occasional moments of triumph.
2) Developer Studies: A common strategy developers use

for recovering from episodic memory failures is to use source

control history in order to perform a systematic review of

previously made changes [2]. However, developers complain

of the problems they have with using existing diff tools

including: The information provided is unordered, verbose,

time-consuming, and cognitively demanding.

Studies of programmers have found that presenting in-

formation about a past programming session in an episodic

manner [29], [26], [30], improves recall of a past programming

task. Similarly, studies that examined recall of life experiences

have shown that when a sequential presentation of events

(pictures) from a past experience is given, that presentation

can be more effective at stimulating recall than when other

contextual details (names or locations) are given [29], [17].

Also, recall is boosted when the pictures are combined with

more contextual elements (such as street locations on a map).

Finally, psychology studies have shown that presenting infor-

mation in a narrative form is an optimal learning strategy for

intermediate learners [31].
3) Information Needs: Source failures are common when

learning new experiences. For example, a programmer may

undergo a source failure if she knows that she copied code

from an online example, but cannot recall the origin of the

example.

Information Need 7 - Developers need support in retaining

contextual details about their programming experiences.

127

Developers often need to recollect a past programming

experience. After returning to an interrupted learning ex-

perience, a developer may need to reflect on her current

status. Developers also need to tell stories in different ways.

For example, developers occasionally need to relate their

programming experiences to colleagues who want to perform

similar tasks. In both cases, it is difficult to provide a faithful

account of how the programming task was done, resulting in

recollection failures.

Information Need 8 - Developers need support in recollecting

personal and social narratives of their learning experiences.

To address episodic memory failures, we introduce the

concept of a code narrative, which support developers in

retaining and recollecting contextual details and narratives

about their learning experiences.

E. Supporting Conceptual Memory

1) Task: Forming Concepts: Developers are expected to

maintain expertise in their craft throughout their careers.

Unfortunately, the path to becoming an expert is not easily

walked: For a novice, evidence suggests this can be a 10

year journey [32]. And for experts trying to become experts

in new domains, like the desktop developer becoming a web

developer, there are many concepts that must be put aside and

new ones learned.

Studies examining the difference between an expert and a

novice find that performance differences arise from differences

in brain activity. Not only do experts require less brain activity

than novices, they also use different parts of their brains [33]:

Experts use conceptual memory whereas novices use attentive

memory. That is, experts are able to exploit abstractions

in conceptual memory, whereas novices must hold primitive

representations in attentive memory.

2) Developer Studies: Studies suggest that sketching, di-

agramming, and note-taking are important ways for devel-

opers to capture and conceptualize development knowledge.

Sketches are used throughout the lifetime of a project, ex-

panding to include different facets and migrating to different

media along the way [34]. Diagrams are used to form and

retain early concepts [35]. Note-taking is a also common

strategy to retain information about a programmed task when

interrupted; however, such notes can often be incomplete and

lead to resumption failures [26].

3) Information Needs: Formation failures occur when a

concept has not been consolidated into conceptual memory,

which may require several months to form. Until that time,

developers use intermediary devices such as notes or sketches

to assist in viewing and reasoning about concepts. However,

these devices are generally constructed on media that are

neither long-lasting nor linked into the software system.

Information Need 9 - Developers need support in annotating

and abstracting code as intermediaries to forming concepts.

Activation failures occur when a concept has not been

used recently, lessening a programmer’s ability to use that

learned concept. Developers that have been interrupted during

a programming task need to refresh the concepts associated

with the task before resuming work.

Information Need 10 - Developers need support in reviewing

relevant concepts in order to promote priming.

To address conceptual memory failures, we introduce the

concept of a memlet, which support developers in abstracting

and refreshing concepts in source code.

IV. TOOLS FOR PREVENTION OF AND RECOVERY FROM

MEMORY FAILURE

In this section, we describe tools we have devised that

address the information needs articulated in the previous

section. Each tool is presented in terms of the information

needs served and the way in which it address the needs.

A. Smart Reminders for Prospective Memory

1) Information Needs: A smart reminder is a prospective

memory aid that enables a programmer to condition the

timing and modulate the level of engagement provided by

a reminder. A smart reminder is composed of three parts: a

reminder condition, a notification mechanism, and a reminder

message. The reminder condition is an objective determining

the applicability of a reminder. The notification mechanism is

a device in which the reminder is conveyed to the user. The

reminder message is a textual notification.
To support Information Need 1, a smart reminder can be

created with a reminder condition that monitors applicability.

Studies of prospective memory show that using conditions,

such as entrance to the physical space related to a task,

can be an effective strategy [36]. To support such strategies,

we have created proximity conditions, which condition the

display of a reminder based on proximity to relevant locations

such as a class or namespace path. To support monitoring of

external conditions, we have devised several domain-specific

conditions that check on things such as task completion in a

task tracker and checkins of source files into source control

systems. Ultimately, a rich space of reminder conditions are

possible, tailorable to different types of programming environ-

ments, team compositions, personal preferences, and software

development processes.
To support Information Need 2, a smart reminder can be

created with a notification mechanism that varies in strength.

Passive notifications do not force attention, but remain passive

until dismissed. For example, we have created smart reminders

that are persistently visible in the lower righthand corner of

the editor viewport (the viewport is always visible regardless

of scroll position of the editor). In contrast, obstructive no-

tifications force immediate attention of a programmer until

they are explicitly dismissed. Constrictive notifications do not

directly force attention, unless a programer attempts to proceed

with a certain activity. For example, smart reminders can be

shown when a developer attempts to perform an activity such

as a checkin, program build or program execution. Finally, it

is possible to design notifications that blend these different

levels.

128

2) Related Devices:

• TagSea: a set of hierarchical tags on annotated source

code lines [37].

• Roadblock: an intentional compile error that must be

addressed before compiling a program.

Todo comments often get treated as documentation, with its

known limitations, and not as prospective reminders. TagSea

support representing and organizing reminder messages, but

do not support engaging a user’s attention or conditioning the

display of the reminder. Roadblocks can be viewed as constric-

tive notifications but not as the other various configurations of

a smart reminder.

B. Touch Points for Attentive Memory

1) Information Needs: Touch points are attentive memory

aids that enables a programmer to maintain persistent and

stateful attention to programming elements. A programming

element is a named entity such as a class or a method. A

programming element can also refer to a statement with an

internally specified name.

To support Information Need 3, a touch point tracks infor-

mation about an element’s state and can be further highlighted

and annotated. To keep track, a touch point maintains internal

state about recency of edits and visits. This internal state

enables programmers to track and filter touch points that have

not been attended to, and review the ones that have. Finally,

highlighted and annotated track points enable developers to

preserve a long-term focus on problematic areas of code.

To support Information Need 4, touch points can be hi-

erarchically organized and grouped. Touch points can be

expanded and collapsed based on the structure of the tracked

programming elements. Groups of touch points can be created,

merged, and split to reflect different investigations.

Finally, there are several ways to automatically create touch

points. A group of touch points can be created interactively

from the result of keyword or structured searches or based on

the recently recorded programming activity.

2) Related Devices:

• bookmarks: statements that have been flagged by the user.

• task context: a tree-like collection of programming ele-

ments, excluding statements, weighted by frequency of

activity [38].

Bookmarks are designed to indicate points of interest but

do not scale well, whereas touch points are designed to

handle ephemeral explosions of demand on attentive memory.

Like task context, touch points can be manually specified

or automatically generated from programming activity. Touch

points differ in that they are sets of a tree-like collection of

programming elements, including statements indicating activ-

ity, annotations, and issues. That is, they support managing

multiple locations and tracking progress.

C. Associative Links for Associative Memory

1) Information Needs: An associative link is a memory

aid that helps a programmer form and recall associations

by providing distinctive features and multimodal indexing. In

addition to a code location, an associative link has a modal

property. A modal property is information about the code

location or an event undertaken by the programmer at the

code location that emphasizes a specific aspect of interest.

Some examples of modalities include:

• lexical: alphabetic combinations, i.e., identifiers.

• structural: position in program element organization.

• spatial: visible position in programming interface.

• operational: user action taken at the source code location.

• syntactical: grammatical role of the source code element.

For supporting navigation within unfamiliar code, we

demonstrate how associative links can be used to improve

the accessibility of a tabbed pane containing code. In most

program development environments, a tabbed pane provides

only a lexical association to a code location. That is, the name

might be a method name or a file name. To improve access,

three additional associative links are added to tabbed panes:

operational, syntactical, and structural. The operational asso-

ciative link provides information about the last programming

action that the programmer undertook at the code location,

such as an edit or a search. The syntactical associative link

provides a thumbnail of the code in the current document

viewport. The structural associative link provides a subset

of the programming element hierarchy containing the code

location. Overall, the presence of the additional modalities

are more likely to encourage the formation of associative

memories, as there are more distinctive elements present

during the act of navigation.

To support Information Need 6, modal queries can be

used to recall code locations. For example, it is common

for several tabbed panes to be opened after performing a

search or when stepping through a program while debugging.

Using associative queries based on operational associations,

a programmer can filter out tabbed panes that were used for

debugging and show only the ones that were visited from a

search. By scanning the list of thumbnails in the tab bar, a

programmer can use syntactical associations to recall the code

location. By examining the partial hierarchy of programming

elements, the programmer can use structural associations, such

as the namespace or project location, to recall the desired code

location. Overall, the associative links allow multiple modes

of indexing into code locations to improve access.

2) Related Devices:

• NavTracs: a set of files associated by frequent co-

visitation [25].

• Code Canvas: a fixed layout of source code content,

associating each file with a spatial position on a zoomable

plane [39].

• Code Bubbles: a dynamic layout of source code frag-

ments, associating each fragment with a spatial position

on a scrollable plane [40].

There are several related devices that exhibit characteristics

similar to associative links. NavTracs provide ways of indexing

into code locations via operational modality, specificly naviga-

129

tion actions. By redesigning the entire programming interface,

both Code Canvas and Code Bubbles provide ways of indexing

into code locations via spatial modality. Nevertheless, none of

these devices systematically consider which modal properties

to support in the context of forming associative memories or

provide multiple modalities for improving access.

D. Code Narratives for Episodic Memory

1) Information Needs: A code narrative is an episodic

memory aid that helps a developer recall contextual details and

the history of programming activity. It is composed of a stream

of programming events woven into a narrative structure. A

programming event is an action performed in a programming

environment, such as an edit, a search or a run-time exception.

A narrative structure provides a schema for anticipating and

organizing the events of a story. Narrative structures are

socially constructed [15], meaning certain groups, such as de-

velopers, have their own learned narrative structures. Based on

our study of how developers present their learning experiences

on blogs, we found two common narrative structures used by

developers: overcoming obstacles and teaching tutorials [41].

To support Information Need 7, a programming environe-

ment is heavily instrumented, such that, in addition to record-

ing a stream of programming events, contextual details such

as code snapshots, search terms and results, addresses of code

samples, and stack traces are retained.

To support Information Need 8, the stream of events is

organized into a series of episodes. An episode is an ab-

straction of a series of events, as defined by the narrative

structure’s schema. For the obstacle narrative structure, the

following details are populated: setting, conflict, investigation,

and resolution. The setting is an overview of files encountered

and programming tasks undertaken. The conflict is the encoun-

tered problem, such as a runtime exception, that prevented

a task from being completed. The investigation is the series

of programming events used to discover the problem. The

resolution is the series of programming events that solved the

conflict.

For the tutorial narrative structure, the following details are

populated: setting (a series of alternations between procedure

and code snippet) and conclusion. The procedure is a textual

description of how code is changed and where the change

was made. The code snippet is a set of source code lines that

was created as a result of the procedure. The conclusion is a

textual description of limitations or future directions related

to the procedure. We have prototyped algorithms that semi-

automatically populate a series of programming events into a

tutorial-style narrative and publish it as a blog post.

Finally, a distinction is made between personal and shared

narratives. When a narrative is shared, more care must be taken

so that it is understandable by others, who may lack context.

Therefore, shared narratives tend to have a flat structure, as

events must be related in strict order. In contrast, personal

narratives can leverage existing episodic memories, enabling

a programmer to move fluidly through his own experiences.

In support of personal narratives, we allow coding details

to be organized hierarchically, by clustering and grouping

programming events into programming activities, supporting

improved indexing.

2) Related Devices:

• information quests: are a collection of files visited, anno-

tated with an information seeking goal and shared with

others [42].

• code replays: are a stream of change events that can be

replayed and shared with others [30]

Information quests, provide a mechanism for sharing and

visiting files during a programming experience, but not for

relating a general narrative or contextual details about the

experience. Code replays and code narratives both share a

stream of change events. However, code narratives include

additional programming events, such as navigation and search,

and further organize those events into a narrative structure.

Code replays provide an excellent mechanism for recollecting

an coding experience as a “flash-bulb experience”. However,

for a programming task that can span several days, a code

replay can overwhelm a programmer with an excessively long

and unstructured sequence of code changes.

E. Memlets for Conceptual Memory

1) Information Needs: A memlet is an conceptual memory

aid that helps a programmer form and prime concepts by

supporting abstraction and reviewing concepts that need to be

refreshed. A memlet is composed of a programming element,

an overlay, and a set of workspaces. A overlay is a visual

plane that contains a set of annotations projected onto the

programming element. An workspace, is a visual plane that

contains an alternative representation of the programming

element, such as a sketch or diagram.

To support Information Need 9, annotations and abstrac-

tions are provided. Annotations can be viewed in conjunction

with the programming element. Workspaces can be shared

with other programming elements, enabling a programmer to

represent abstractions between programming elements.

To support Information Need 10, code that has not been

recently viewed can be toggled to auto-display annotations.

Additionally, visual cues indicating non-recency can be used

to encourage reviewing relevant workspace.

2) Related Devices:

• ConcernMapper: a set of concerns organizing projections

of programming elements [43].

• Code folding: a set of hierarchical compiler directives

organizing source code lines.

In ConcernMapper, a concern allows a single abstraction to

be built over many programming elements; whereas memlets

allow abstractions to happen at a finer granularity. Code

folding interleaves organization with source code; whereas

memlets provide overlays and alternative workspaces. In con-

trast with memlets, these devices do not integrate developer’s

sketching-like behavior, nor consider which organized knowl-

edge may need to be primed.

130

V. DISCUSSION

A look at the mechanisms of the brain and its capacity

for memory gives us a renewed perspective into our existing

theories about programmer cognition. Consider, the classic

work of Shneiderman and Mayer: When programmers were

asked to recite recently viewed programs, they describe se-

mantic and not syntactic contents [44]. However, consider-

ing the underlying mechanisms of the brain, an alternative

explanation is that semantics (abstractions) are more easily

primed in conceptual memory than syntactics (perceptions),

and are therefore easier to freely recall. Further, the conclusion

that syntactic information is not retained can also be given

an alternative explanation: Syntactics are retained, but not

directly; instead an association forms between semantic and

syntactic information, explaining the difficulty in freely recall-

ing the syntactics. This also suggests that in future viewings

of the code, syntactics plays a role in associatively recalling

semantics related to the block of code without a renewed

comprehension effort.

Other frameworks of programming information needs, such

as the one described by Storey et al. [45], build on theo-

ries such as Shneiderman and Mayer’s to provide means of

supporting program comprehension and reducing cognitive

overload. Overall, the guidance from such frameworks is

sound, but ultimately limited. For example, Storey et al.’s

information needs are limited to exploration tasks and do not

incorporate memory failures and resulting information needs

reflected in everyday programming tasks.

Developers use many coping mechanisms to ward off mem-

ory failures. For example, developers send email messages

to themselves as prospective reminders, use compile errors

as attentive points of focus and use source code history to

reconstruct a narrative of their work. Our aim is not to

discount the value of these mechanisms, but to instead use their

existence as evidence for the importance of understanding the

corresponding memory failures. We propose that by using this

understanding, we can build a tool framework that supports

the many fragile facets of human memory, ultimately leading

to better tools for software development.

Understanding memory types may also help us better under-

stand our research tools. For example, two research tools, Code

Canvas and Code Bubbles, support a similar modality: spatial.

But what appears similar on the surface may actually support

different memory types. Code Bubble’s fluid and dynamically

changing landscape likely promotes temporary spatial associ-

ations that last a few hours; whereas the stable layout of Code

Canvas likely promotes a longer-term, conceptual memory of

spatial abstractions.

Our framing and presentation of the cognitive neuroscience

of memory has several limitations. We, do not include litera-

ture on reasoning or problem solving. We also do not discuss

interactions among memory types. For example, prospective

memory cooperates with associative memory to hold long-term

intentions. Finally, there are other information needs yet to be

found that the community can seek.

VI. CONCLUSION

In this paper, we have examined the previously explored lit-

erature of cognitive neuroscience of human memory and struc-

tured the results in terms of five memory types particularly

relevant to programmers: attentive, prospective, associative,

episodic, and conceptual memory. We describe how failures

in these memory types can be related to empirical evidence

of programmers information seeking and preservation needs.

Finally, we present five memory aids—touch points, smart re-

minders, associative links, code narratives, and memlets—that

address these information needs and can inspire future tool

development.

We have prototyped a set of tools, called worklets, including

the five examples in the paper, as extensions for Visual

Studio. More details on implementation of code narratives 1

and associative links 2 can be found online. We are in the

process of refining the tools for evaluation and designing a

series of laboratory and field experiments for evaluating the

effectiveness of the tools in managing interruptions.

REFERENCES

[1] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in CHI ’04: Proceedings of the SIGCHI

conference on Human factors in computing systems. New York, NY,
USA: ACM Press, 2004, pp. 175–182.

[2] C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-
gramming tasks,” Software Quality Journal, vol. 19, pp. 5–34, 2011,
10.1007/s11219-010-9104-9.

[3] M.-A. Storey, “an interactive visualization environment for exploring
java programs,” 2011, plenary presentation: International Conference
on Program Comprehension. [Online]. Available: http://www.slideshare.
net/mastorey/icpc-2011-storey-8471063

[4] C. Parnin, “A cognitive neuroscience perspective on memory for pro-
gramming tasks,” in In the Proceedings of the 22nd Annual Meeting of

the Psychology of Programming Interest Group (PPIG), 2010.
[5] J. M. Fuster, “The prefrontal cortex–an update: time is of the essence.”

Neuron, vol. 30, no. 2, pp. 319–333, May 2001. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/11394996

[6] R. G. Morris and U. Frey, “Hippocampal synaptic plasticity: role in
spatial learning or the automatic recording of attended experience?”
Philosophical transactions of the Royal Society of London. Series B,

Biological sciences, vol. 352, no. 1360, pp. 1489–1503, 1997. [Online].
Available: http://dx.doi.org/10.1098/rstb.1997.0136

[7] E. Winograd, Practical Aspects of Memory: Current Research and

Issues. Chichester: Wiley, 1988, vol. 2, ch. Some observations on
prospective remembering, pp. 348–353.

[8] J. R. Reynolds, R. West, and T. Braver, “Distinct neural circuits
support transient and sustained processes in prospective memory
and working memory.” Cerebral cortex (New York, N.Y. : 1991),
vol. 19, no. 5, pp. 1208–1221, May 2009. [Online]. Available:
http://dx.doi.org/10.1093/cercor/bhn164

[9] K. Kondo, M. Maruishi, H. Ueno, K. Sawada, Y. Hashimoto, T. Ohshita,
T. Takahashi, T. Ohtsuki, and M. Matsumoto, “The pathophysiology of
prospective memory failure after diffuse axonal injury - lesion-symptom
analysis using diffusion tensor imaging,” BMC Neuroscience, vol. 11,
no. 1, pp. 147–157, November 2010.

[10] J.-S. Provost, M. Petrides, F. Simard, and O. Monchi, “Investigating
the Long-Lasting residual effect of a set shift on frontostriatal
activity,” Cerebral Cortex, Dec. 2011. [Online]. Available: http:
//dx.doi.org/10.1093/cercor/bhr358

1http://blog.ninlabs.com/2011/11/auto-blogging-publishing-a-
coding-task-to-wordpress-5/

2http://blog.ninlabs.com/2011/10/napkin-idea-code-tabs/

131

[11] L. L. Eldridge, B. J. Knowlton, C. S. Furmanski, S. Y. Bookheimer,
and S. A. Engel, “Remembering episodes: a selective role for
the hippocampus during retrieval.” Nature neuroscience, vol. 3,
no. 11, pp. 1149–1152, November 2000. [Online]. Available:
http://dx.doi.org/10.1038/80671

[12] G. Hickok, K. Okada, and J. T. Serences, “Area Spt in the Human
Planum Temporale Supports Sensory-Motor Integration for Speech Pro-
cessing,” Journal of Neurophysiology, vol. 101, no. 5, pp. 2725–2732,
May 2009.

[13] C. McGettigan, J. E. Warren, F. Eisner, C. R. Marshall, P. Shanmu-
galingam, and S. K. Scott, “Neural correlates of sublexical processing
in phonological working memory.” Journal of cognitive neuroscience,
vol. 23, no. 4, pp. 961–977, April 2011.

[14] E. Tulving, Organization of memory. New York: Academic Press, 1972,
ch. Episodic and semantic memory, pp. 381–403.

[15] S.-Y. Kim, “The Effects of Storytelling and Pretend Play on Cognitive
Processes, Short-Term and Long-Term Narrative Recall.” Child Study

Journal, vol. 29, no. 3, pp. 175–91, 1999. [Online]. Available:
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ605419

[16] E. L. Glisky, M. R. Polster, and B. C. Routhieaux, “Double dissociation
between item and source memory,” Neuropsychology, vol. 9, pp. 229–
235, 1995.

[17] S. Hodges, E. Berry, and K. Wood, “SenseCam: A wearable camera
that stimulates and rehabilitates autobiographical memory.” Memory

(Hove, England), vol. 19, no. 7, pp. 685–696, Oct. 2011. [Online].
Available: http://dx.doi.org/10.1080/09658211.2011.605591

[18] I. Kahn, A. Pascual-Leone, H. Theoret, F. Fregni, D. Clark, and
A. Wagner, “Transient disruption of ventrolateral prefrontal cortex dur-
ing verbal encoding affects subsequent memory performance.” Journal

of neurophysiology, vol. 94, no. 1, pp. 688–698, July 2005.

[19] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in ICSE ’07: Proceedings of the 29th

international conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344–353.

[20] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or to
bug: exploring how task annotations play a role in the work practices of
software developers,” in ICSE ’08: Proceedings of the 30th international

conference on Software engineering. New York, NY, USA: ACM, 2008,
pp. 251–260.

[21] V. Bellotti, B. Dalal, N. Good, P. Flynn, D. G. Bobrow, and N. Duche-
neaut, “What a to-do: studies of task management towards the design of
a personal task list manager,” in CHI ’04: Proceedings of the SIGCHI

conference on Human factors in computing systems. New York, NY,
USA: ACM, 2004, pp. 735–742.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 99, no.
PrePrints, 2011.

[23] X. Ge and E. Murphy-Hill, “Reconciling manual and automatic refactor-
ing,” in ICSE ’12: Proceedings of the 34th International Conference on

Software Engineering. Washington, DC, USA: IEEE Computer Society,
2012, p. to appear.

[24] A. J. Ko, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software
maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–
987, 2006, senior Member-Myers, Brad A.

[25] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software maintenance,” in ICSM ’05: Proceedings of the 21st IEEE

International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 325–334.

[26] C. Parnin and R. DeLine, “Evaluating cues for resuming interrupted
programming tasks,” in Proceedings of the 28th international

conference on Human factors in computing systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 93–102. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753342

[27] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE Softw., vol. 26, pp. 27–34, November 2009.

[28] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in Proceedings of the 2004 IEEE Symposium

on Visual Languages - Human Centric Computing, ser. VLHCC ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 199–206.
[Online]. Available: http://dx.doi.org/10.1109/VLHCC.2004.47

[29] I. Safer and G. C. Murphy, “Comparing episodic and semantic interfaces
for task boundary identification,” in CASCON ’07: Proceedings of the

2007 conference of the center for advanced studies on Collaborative

research. ACM, 2007, pp. 229–243.
[30] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu, “Software evolution

comprehension: Replay to the rescue,” in Program Comprehension

(ICPC), 2011 IEEE 19th International Conference on, june 2011, pp.
161 –170.

[31] M. B. W. Wolfe and J. A. Mienko, “Learning and memory of
factual content from narrative and expository text,” British Journal of

Educational Psychology, vol. 77, no. 3, pp. 541–564, 2007. [Online].
Available: http://dx.doi.org/10.1348/000709906X143902

[32] M. T. H. Chi, R. Glaser, and E. Rees, Expertise in problem

solving. Erlbaum, 1982, vol. 1, pp. 7–75. [Online]. Available:
http://www.public.asu.edu/∼mtchi/papers/ChiGlaserRees.pdf

[33] J. Milton, A. Solodkin, P. Hlustı́k, and S. L. Small, “The mind
of expert motor performance is cool and focused.” Neuroimage,
vol. 35, no. 2, pp. 804–813, Apr. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.neuroimage.2007.01.003

[34] J. Walny, J. Haber, M. Dork, J. Sillito, and S. Carpendale, “Follow that
sketch: Lifecycles of diagrams and sketches in software development,” in
Visualizing Software for Understanding and Analysis (VISSOFT), 2011

6th IEEE International Workshop on, sept. 2011, pp. 1 –8.
[35] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to

the whiteboard: how and why software developers use drawings,” in
CHI ’07: Proceedings of the SIGCHI conference on Human factors in

computing systems. New York, NY, USA: ACM, 2007, pp. 557–566.
[36] M. R. McGee-Lennon, M. K. Wolters, and S. Brewster, “User-centred

multimodal reminders for assistive living,” in Proceedings of the 2011

annual conference on Human factors in computing systems, ser. CHI
’11. New York, NY, USA: ACM, 2011, pp. 2105–2114. [Online].
Available: http://doi.acm.org/10.1145/1978942.1979248

[37] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and
M. Muller, “How software developers use tagging to support reminding
and refinding,” IEEE Trans. Softw. Eng., vol. 35, pp. 470–483, July 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1591903.1592342

[38] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in SIGSOFT ’06/FSE-14: Proceedings of the 14th

ACM SIGSOFT international symposium on Foundations of software

engineering. New York, NY, USA: ACM, 2006, pp. 1–11.
[39] R. DeLine and K. Rowan, “Code canvas: zooming towards better

development environments,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 207–210. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810331

[40] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr.,
“Code bubbles: rethinking the user interface paradigm of integrated
development environments,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 455–464. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806866

[41] C. Parnin and C. Treude, “Measuring api documentation on
the web,” in Proceedings of the 2nd International Workshop

on Web 2.0 for Software Engineering, ser. Web2SE ’11. New
York, NY, USA: ACM, 2011, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/1984701.1984706

[42] A. Guzzi, M. Pinzger, and A. van Deursen, “Combining micro-blogging
and ide interactions to support developers in their quests,” in Software

Maintenance (ICSM), 2010 IEEE International Conference on, sept.
2010, pp. 1 –5.

[43] M. P. Robillard and F. Weigand-Warr, “Concernmapper: simple view-
based separation of scattered concerns,” in Proceedings of the 2005

OOPSLA workshop on Eclipse technology eXchange, ser. eclipse ’05.
New York, NY, USA: ACM, 2005, pp. 65–69. [Online]. Available:
http://doi.acm.org/10.1145/1117696.1117710

[44] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in
programmer behavior: A model and experimental results,” International

Journal of Parallel Programming, vol. 8, pp. 219–238, 1979,
10.1007/BF00977789. [Online]. Available: http://dx.doi.org/10.1007/
BF00977789

[45] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” J. Syst. Softw., vol. 44, pp. 171–185, January 1999.
[Online]. Available: http://dx.doi.org/10.1016/S0164-1212(98)10055-9

132

