gitas of Oblique Maps:

A COLLEGTION OF LANDFORM PORTRAYALS OF SELECTED AREAS OF THE WORLD

U.S. Geological Survey Miscellaneous Investigations Series I-1799

Atlas of Oblique Maps:

A COLLECTION OF LANDFORM PORTRAYALS OF SELECTED AREAS OF THE WORLD

By Tau Rho Alpha, Janis S. Detterman, and James M. Morley

This folio comprises scale-accurate, obliquely viewe maps compiled from 1961 to 1986 that portray the
physiography of selected areas of the ocean floor and continents.

DEPARTMENT OF THE INTERIOR
DONALD PAUL HODEL, Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

Library of Congress-Card No. 86-600549

INTERIOR-GEOLOGICAL SURVEY, RESTON, VIRGINIA-1988-G85453

PREFACE

Oblique maps portray the surface of the Earth as if viewed from above at an oblique angle (usually about 30°). This atlas is a collection of more than 100 oblique maps that were compiled from 1961 to 1986. In cooperation with scientists of the U.S. Geologica Survey, all but one of these maps were designed for a specific scientific purpose and
publication, and the geographic area, orientation, angle of view, scale, and size of the publication, and the geographic area, orientation, angle of view, scale, and size of the
area portrayed in each map differed with each intended purpose. Some of these maps area portrayed in each map differed with each intended purpose. Some of these maps landforms. The purpose of this atlas is to present these oblique maps in one publication with these maps, and to supply a bibliography for the individually published maps.

CONTENTS

Preface

Introduction 1
Characteristics of oblique maps 1
History 1
A. K. Lobeck 1
E. J. Raisz 2
P. B. King 2

Oblique-map methods used for maps in this atlas $\mathbf{3}$
Conclusion 3
Acknowledgments 3
References 3
How to measure horizontal distances on oblique maps 4
Collection of oblique maps
Alaska and North Pacific 5
Pacific Northwest 39
California 67
Hawaii and South Pacific 95
Caribbean and Gulf of Mexico 105
Other places 113
127

Bibliography 135

Index to oblique maps, in alphabetical order 137
Index to oblique maps, in geographic order 137

NTRODUCTION

We are a consequence of our environment: the sun, the air, the water, the earth. We have alway been close to the earth; we feel the ground, we value the land, and we are familiar with the landscape
around us. As observers of our environment, we know the landscape, and we know when the landscape is well represented by a painting or a map.

The chalenge for cartographers is to portray landforms realistically. Usually the landscape is porrayed from above il a vertical view, but a more understandable approach is to portray the
landscape as it is nomally observed, from an angle that is oblique to the surface of the Earth. These oblique maps show the surface of the Earth in terms of landforms, their dimensions, relative relief
slopes, and surface materials. Specific oblique maps may be called physiographic diagrams, landform slopes, and surface materials. Specific oblique maps may be called physiographic diagrams, landion
maps, or orthographic drawings. A physiographic diagram emphasizes the origin, or geologic structure of landforms, a landform map emphasizes a realistic portrayal of surface features, and an orthographic drawing refers to the method of projecting the Earth's surface onto a map.
The oblique portrayal of landforms requires the representation of the surface. This representation includes the interpretation and portrayal of the shansens upon a flae continuity, and surface material of the landforms. Surface features shown on an oblique map are more interretative and descriptive than those shown on a contour map at the same scale Geologoic cross
sections can be drawn on the sides of an oblique map, making correlations posible between the sections can be drawn on the sides of an oblique map, making correlations possible between the
geologic structure and the landforms. One disadvantage of any oblique portrayal is that the far side of the landform is not seen, just as only the fron-facing slopes are actually seen when viewed from the ground.
Oblique

Oblique maps generally fit into one of two categories: (1) the portrayal of a specific area of the Earth's surface at a specific time and (2) the representation of a natural process through time. A
oblique map of a specific area at a spectic obique map of a specific area at a specific time is usually a single map, while a map portraying a
natural process through time usually requires a series of interpretative oblique maps accompanied by a supporting text. Areas with historically active processes, such as volcanoes, sand dunes, and coastines, can be effectively portray
the geologic process that is involved.
The techniques used to create the oblique maps in this atlas are a combination of the methods
of Armin K. Lobeck, Erwin J. Raiss, and Philip B. King all of whom greatly nifluenced the portrayal of Armin K . Lobeck, Erwin. . Rasz, and
of landforms. The techniques used to create the oblique maps in this atlas are a combination of the methods. The maps and their supporting texts are presented in alphabetical order within regional
collections. Each region includes an index map. Te coonnitive drawings are srouped together because collections. Each region includes an index map. The cognitive drawings are grouped together because
they illustrate a concept or process that is based on research, and they may not portray a speciti they iliustrate a conc
geographic location.

CHARACTERISTICS OF OBLIQUE MAPS

Oblique maps have several advantages over vertically viewed maps. They are more realistic in appearance, and the overall setting or physiography is as easy to comprehend as the individual components or landorms. Obique maps are more expressive than other kinds of maps at the same
scale; they give more information and leave less to the imagination. All of these attributes are effective in a black and white publication.
The main disadvantage of oblique maps is that the landrorms are planimetrically displaced: on land, the top of a mountain is displaced; on the floor of the occan, the base of a seamount is
displaced. The planimetric displacement allows the front-facing slopes of the landform to be reaisitically portrayed while the back slopes are hidden from view. Oblique maps do not portray exact elevations; precise locations and elevations are best obtained from vertically viewed contour maps.
The most important factor in landform interretation is the outline or shape of the
The most important factor in landform interpretation is the outiine or shape of the landform. Other factors are form, continuity, surrace material, and depth (fig. 1). Shape relates to the outine features
of the landform (fig. AA). Form describes the volume of the landform (fig. 1B). If an oblique map lacks form, each landform appears flat. Continuity prescribes that there is no interruption from one part of a landform to another part, or from one landform to another landform (fig. 1 IC). If there is no
continuity, the individual parts of the oblique map do not make a whole map. Surface material includes the rock types (such as soft sedimentary rocks or harder metamorphic or igneous rocks) and cover material (alluwium) of the landform (fig. 1D). Depth in the oblique map is the distance away from the viewer. Several methods can be used to develop depth in an oblique map: direction of view,
use of angular perspective, overlapping of landforms, and the use of thicker lines in the foreground Portrayal of the physiography is accomplished with variations in the character of form lines (fig. 1). The form lines that compose landform portrayal are lines that represent the direction of maximum slope, and the thickness and spacing of these lines indicate reief. Form lines are used to develop light
and dark slopes (a form of shading) by assuming an imaginary light source from above usually from the upper left corner of the oblique map. This results in slopes that reflect light if they face the upper left and slopes that are in the shadow if they face the lower right. Attached shadows shadows attached to the landform) are used because a cast shadow may fall on a neighboring landform, making its
depiction difficult. Contrast in an oblique map can be developed by use of light and shadow, textural differences in surface material, thick and thin lines, and orientation and direction of form lines.
In the past, Armin K. Lobeck called oblique maps "physiographic diagrams" (Raisz, 1962, p. 97)
because he considered the maior structural and surface-matenial difterences to be the main core of the because he considered the major structural and surface-matenal differences to be the main core of the
oblique map. Erwin Raisz coined the phrase "physiographic method" Raisz 1931, p. 297) which is the process of compliing oblique maps, and he called the result "landform portrayal maps", Physiographic diagrams emphasize the origin, or geologic structure, of landforms, and landform maps emphasize the shape and form of the landforms. In compiling the oblique mans in this attas, we core the geologic structure and to
Two principal types of perspective methods are used to project a vertically viewed map into an parallel lines on the oblique map converge toward vanishing points on the horizon. Objects that are the same size are portrayed larger in the foreground and smaller in the background. Parallel
perspective results when parallel lines on the oblique map are truly parallel, and objects that are the same size are portrayed the same size in foreground and background. Angular perspective allows a realistic portrayal because this is how we actually view the landscape, however, Measuring (scaling) is difficult because the foreground is foreshortened less than the background. Parallel perspective
allows uniform scaling throughout the oblique map but is less reaisitic in appearance. For further allows unitorm scaling throughout the oblique map but is
information see the section on measuring horizontal distances.
Four main steps are necessary to produce an oblique map that is compiled to scale: (1) transfer
of horizontal contours from vertically viewed maps onto a perspective base; (2) interperetation of landforms; (3) inking of the physiography; and (4) printing.
The easiest way to transfer a standard vertically viewed contour map to a parallel-perspective oblique map is with a machine colled a a isticmetrograph (Dufour, 1917). This tool produces a
framework of foreshortened contours faster than other transer methosd and peserves all of the ramework of foreshortened contours faster than other transter methods and preserves all of the
minute detail of the original contour map. In the future, improvements in programming may enable minute detain of the onginal contour map. In the future,

The next step is to interpret the landforms, and data for this interpretation are obtained in several ways. On land, the data are collected from contour maps, aerial photographs, satellite images, geologic
maps, and fieldwork. For the underwater features, the data usually
come maps, and fieldwork. For the underwater features, the data usualy come from bathymetric maps,
precision depth recorders, acoustic profiles, and geologic structure maps. These data are interpeted to dentify the dimension, orientation, shape, form, structure, and surface. materenials of each landform.
With this knowledge and the framework of foreshotened contours With this knowledge and the framework of foreshortened contours produced by the isometrograph,
he inking of the obilique map begins. Landforms are portrayed by controling the direction, thickness, he inking of the orilique map begins. Landiorms are portrayed by controling the direction, thickness,
density, and character of the lines. The finished oblique map is an ink drawing that can be printed in black and white or further enchanced by color.
On all oblique maps, objects that appear to
On all oblique maps, objects that appear to be vertical, in reality, are vertical, and objects that appear to be horizontal, in reality, are horizontal. It is paradoxical that the up direction on the oblique map represents elevation and depth (distance away from the viewer, fig. 2). Oblique maps seem lacking.

HISTORY

The earliest known oblique maps (2800 B.C.) were recorded on clay tablets on which mountains were portrayed in outtine (Raisz, 1962, p. 3 and 4). During the great westers surveys in the latter part of the last century, a landmark of landscape sketching was achieved by artist-geologist W. H. Holmes
Dutton, 1982). His landscape sketches have simplicity and boldness that emphasizes reailism. The evolution from landscape sketches to oblique maps that have a geoologic cross section was first fontispiece).
As a teacher of geomorphology (the study of the configuration and evolution of landforms), W.
M. Davis compiled oblicue maps of specific landforms and used obliue M. Davis compiled oblique maps of specific landorms and used oblique maps of hypothetical landforms to communicate ideas or geomorphic processes (Davis, 1909). He effectively used a series
of oblique maps to depict changes in landforms through time. This technique is oriented more toward depicting erosional processes than toward showing surface material or geologic structure.
With the acceptance of W. M. Davis' publications, oblique maps became a n integral part of earth
science. As the use of oblique maps increased, D. W. Johnson, a student of W. Mavis, influenced science. As the use of oblique maps increased, D. W. Johnson, a student of W. M. Davis, influenced
wo of his own students, A. K. Lobeck, a geologist, and E. J. Raisz, a geographer. These two along two of his own students. A. K. Lobeck, a geologist, and E. J. Raiss, a geographer. These two, along
with P. B. King of the U.S. Geological Survey, were instrumental in developing and using the
lechnique of obliue maps Lebeck related the euttine and volume of landorms to lechnique of oblique maps. Lobeck related the eutline and volume of landforms to simple geometric
solids and developed a geometric system by which landforms could be portrayed. He excelled in solids and developed a geometric system by which landforms could be portrayed. He excelled in
depicting geologic structure and surface material in his physiographic diagrams (Lobeck, 1958). As a

Figure 1. - Form lines are used to develop the landforms of an oblique map.
to \boldsymbol{D} are discussed in text.

figure 2. - The up direction on an
obique map mar.
teacher of geography, E. J. Raisz systematically organized small-scale or regional oblique maps by treating landforms as symbols; that isf he showed ike features in a siminiar way. He strived for realism oblique mans with the aid of an isomedtrograph and used landscape sketches to convey geolog conceptsin his professional papers.

ARMIN K. LOBECK
In the realm of oblique maps, the most comprehensive book on the techniques of landform the concepts of shape and form by relating them to simple geometric solids and then progressing fro these simple forms to complex landforms. Lobeck's theme is that the knowledge of geology
physiography, and geomorphology should be ecual to the knowledge of drawing technigues, physiography, and geomorphology should be equal to the knowledge of drawing techniques,
marriage of geology and draftsmanship.

Each map author is encouraged to develop his own individual landform technique. The book ncludes chapters on constructional landforms, plains and plateaus, dome mountains, and destructiona
andforms developed by streams, glaciers, and waves and shows examples from North America and Europe.
In the technique developed by Lobeck for his physiographic diagrams at small scales (large areas) the landorms are portrayed by symbols and are based on spot elevations (Lobeck, 1958, p. . 511 -
155). At large scales (small areas), his diagrams are based on spot elevations or a framework of
contours (Lobeck 1955 . contours (LLobeck, 1958, , p. 139-1455). Shape, form, depth, and octinuity within the lanedorm are
developed by the use of form lines that represent the geologic structure or rock type Lobeck's use of angular perspective (parallel lines that converge toward vanishing points on the horizon) to create blocks of earth adds depth to his oblique maps. Other techniques of landform portrayal usually use an imaginary light source from the upper left corner of the map to enhance shape, form, and dep
by the use of shadows. This results in thick, closely spaced lines on the slopes that in the shadow and by the use of shadows. This resulis in thick, closely spacee lines on the slopes that in the shadow and
thin, widely spaced lines on the slopes that reflect light. In the landform technique that Lobeck developed, the thickest lines are used to portray steep slopes, regardless of their orientation to the ligh source. Contrast in this landform technique is used to differentiate between surface materials, which
are portrayed with form lines, and horizontal plains, which are portrayed without lines. Patterns (ruled or stippled) are highly developed to represent surface structure. Crystalline rocks are represented by crinkly lines drawn freehand, and sedimentary rocks are represented by ruled horizontal lines (Lobeck,
1948)

9. Plateau with advanced dissection in arid regions (Badlands) (South Dakota)	
10. Plateau with more advanced dissection in arid regions (Mesaland) (Raton Mesaregion)	s.,
11. Folded mountains (peneplaned and redissected) (Newer Appalachians)	
12. Dome mountains (Black Hills, S.D.)	
13. Block mountains (Great Basin)	
14. Complex mountains, high (Big Smoky Range)	
15. " " glaciated (Alpine mts) (Grand Teton)	
16. " medium (Adirondacks)	
$\text { 17. " low (Matureland) }{ }_{\text {(SE.New England) }}$	
18. " rejuvenated (K/amath Mts)	N
19. Peneplane (Finland)	$\frac{2 c^{5}}{2}$
20. Peneplane rejuvenated (Piedmont)	
21. Lava plateau, young (Snake R. Plateau)	$\left[\begin{array}{cc} 3 \\ -\gg 1 \end{array}\right.$
22. ". ${ }^{\text {a }}$ dissected (Columbia Plateau)	andan
23. Volcanoes (Java)	

ERWIN J. RAISZ

Erwin J. Raisz named his approach to landform portrayal the "physiographic method". He systemaicuad from 45° above the horizon, were scaled to spot elevations, and located on a wertically are viewed. Ris's symbol illustrate the general landform types and do not claim to delineate every
viewed map. Raize landform. They vary in size because the symbols are used in a logarithmic proportion that emphasizes the smaller landforms. This technique was successfully a and to areas covered only by reconnaissance surveys.
Assuming a light source from the upper left corn outline of the landform with fine lines on the slopes that reflect light and with dark areas on the slopes that have attached shadows facing away from the light. The dark areas enhance the form of the
landform and make a bold representation, but at the cost of descriptive line that could portray surface material or texture (see fig. 3, No. 15).
Continuity exists in the enyssiographic symbols by the use of form ines. In his regional obique
maps, flat plains are left blank without form lines (fig. 3, No. 13). Patterns and line texture are used maps, flat plains are leff blank without form lines (fig. 3, No. 13). Patterns and line texture are used
mainly to develop drainage patterns rather than surface texture (Raisz, 1957). Raisz does develop
 maps, depth was indicated by using blocks on the side of the oblique maps.
Raisz was a strong advocate of realism and believed that drawing ob

Raisp was a strong advocate of realism and believed that drawing oblique maps was the highest

form of cartographic art. He tended to frown on using lettering on a map since ir interfered with that alism. With this technique he PHIIP B. KING
As a geologist for the U.S. Geological Survey, Philip B. King made field sketches and oblique maps of his study areas and used them as integral parts of his publications (King, 1968, p. 5. 17, 20) ublished by the U.S. Department of the Army (1960). His mans emphasize knowledge of geolos and terrain features and show the care King used in compiling oblique maps. Most of these oblique maps are onented with north at the top. An isometrograph framework was used for maps at large ceales, and spot elevations were used for maps at small scales.
maior departure of Kinss technique from that of others is the location of the light source in Apper itthe con the King developed the shape of a landform by using lines of varying texture, using hicker outtines in the foreground. He achieved form with few lines, and even fewer lines on lightrefecting slopes. Continuity was achieved in field sketches and large-scale oblique maps by unbroken
form lines on the landforms and by stream patterns in small-cale oblique maps. Surface texture in the large-scale oblique maps resulted from patterns and form lines, while surface texture in small-scal maps was portrayed with descriptive lines, dots, and dashes. In landscape sketching, depth was achieved

A

The techniques used by King for drawing landforms are organized into "An Album of Terrain The tecchiques used by King for drawing landiorms are organized into "An Album of Terrain
Types" (U.S. Department of the Army, 1160), which contains xamples of underwater features,
shoreline features, lowlands, and highlands. Figure 4 is an example from that album and illustrates how the same framework of addisted contuours (A) can produce two very dififerent large-scale obliques
maps: one which shows no geologic interretation (B) and one which comines maps: one which shows no geologic interneretaion (B) and one which combines knowledge of geology
with the presentation of relief (C). When the framework of contours is interperede geologically knowledge of the types of rocks underlying the surface of the ground allows different surface textures to be portrayed, which results in a more complete portrayal.
King (U.S. Department of the Ammy, 1960) also illustrates
King (U.S. Department of the Army, 1960) also illustrates with the use of six oblique maps some unsaistactory, techniques for drawing landiorms. monotonous repeetition, lack of quality, insufficien
detail, stereotyped technique, excessive shading in lowlands, and excessive use of horizontal lines
Com Comparison of these unsatisfactory examples with the satisfactory oblique maps is an excellent was

OBLIQUE-MAP METHODS USED FOR MAPS IN THIS ATLAS

The technique of landform portrayal used on the maps in this atlas is based on a combination
the methods of Lobeck Raisz and King This technique is still evolving as we strive for realism hrough the use of a minimum of form lines. In our experience, the ability to draw is not paramoun in developing a realistic landform-portrayal technique. Excellent oblique maps can be produced if a minimal effort is made to learn drawing skills in addition to acquirnng some knowledge of geology.
All but one of the oblique maps in this atlas were compiled between 1962 and 1986 for the U.S Geological Survey. The early obligue were hased Geeological Survey. The early oblique maps were based on angular perspective, and the landiorm
lechnique is weak in continuity form, and surface texture (see oblique map of Mount Whitney and
vicity) The technique impored with time vicinity). The tecchnique improved with time, particularly in the decreased number of form lines neede show the continuity, form, and surface texture of the landform.
Most of the maps in this atias focused initially on a particula
scientist. The optimum angle of view was chosen to portray a single landform of the study area, suct as a submarine canyon or a volcano. Oblique maps are easier to understand if the direction of view allows the higher landorms to be located in the background.
This up-slope orientation gives landforms strong outines and profiles and means that the
convention of placing north at the top of the map was not always adhered to orientation depends on the landform to be portrayed, although the process that developed the andiorm must often be considered. The selection of horizontal scale depends on the size of the area
to be included. Generally, more area is portrayed than just the andor egional geologic enviranment is inmoortant to the description of that landform. If possible, offshore
隹 Velique maps included the sh
Vertical scales are impor
Vertical scales are important in compiling oblique maps. Regional maps at small scales require more vertical exaggeration than do large-scale maps in order to develop realistic physiography. The xaggeration for a realisicic portrayal. As an examample, in the portrayal of an Hewaiian shield volcano
low $\left(20^{\circ}\right)$ angle Iow 20° angle of view requires ititle vertical exaggeration. Generally, oblique maps are drawn at
viewing angle of 30° above angle. One of the advantages in compiling oblique maps with the isometrograph is that the angle Tan e e changed for different oblique maps.
The isometrograph develops a parallel-perspective framework from a vertically viewed contour distance or space between contours. Starting with a vertically viewed contour map, and given the angle of view from the horizon, and the direction of view, the machine can be set up to produce an
bbique contour he same time the distance between the contours (vertical scale) is either left the same or is vertically exaggerated.

B
Figure 4. - The value of knowledge of geology and terrain features. The same framewor
of adiusted contours (A) can produce two very different large-scale obligue maps hows no geologic intervetation (B) and one combines knowledge of geology with the presentation of relief (C). From U.S. Department of the Army (1960).

In setting up the isometrograph, the vertical scale is positioned on a calibrated bar (fig. 5). A
vertically viewed contour map of the area to be portrayed is oriented so that the direction of view is parallel to the calibrated bar. The angle of view from the horizon is adjusted by the placement of the bars that hold the pencil (fig. 5). The stylus is moved along the highest contour of the vertically viewed isometrograph is moved on the vertical scale to the next lower contour, and the process is repeated until all of the contours have been traced. We estimate that a framework of foreshortened contours by the sol

Figure 5. - Isometrograph.
All pertinent data are assembled before an oblique map is prepared. In the ideal case, the cartographers can visit the area and take photographs from the chosen angle of view. Unfortunately,
this is not always the case, particularly when the subject is an underwater feature or an inaccessable this is not always the case, particularry when the subject is an underwater feature or an inaccessable
area on land For example during the initial lomilation of oblique mans of Mount St area on land. artas only the observations of geologists and newspaper photographs were available
(included in this atlas) For specific data on elevation, dimension, relative relief, slopes, and surface material, the best sources are maps and photographs, but for some data experts on the area need to be consulted.
The landform-portrayal techniques used in this atlas depend on the use of form解 also the use of space. In the figure-ground relation the form line is the figure and the space that surrounds the figure is the ground. The ground reflects the traits that make up the form lines. If the
form lines lack character direction, and density then the ground lacks definition, and it predominates. The ground is most noticeable when there is a lack of continuity in the landform-portrayal technique. A realistic portrayal technique represents the landorms by using a minimum number of expressive ines and leting the ground support the expressive lines.
This figur--ground relation is aftected when the oblique map is printed in color. Although printing
costs are higher, color can be peplied to form tines costs are higher, color can be applied to form lines and the ground. Contrast is lost when the form
lines and the ground are printed in color (sometimes called relief shading), a process that results in
a less descriptive landform technique.

C

CONCLUSION

Because oblique maps are instructive and easy to read, they help the scientist communicate with The layman concerming our envirirnment, especially those areas, such as the sea floor, that are not enis communication will become ever greater. Fortunately, in the near future, with new techniques and with the use of computers, the cartographer will be able to respond to this demand and to creat

ACKNOWLEDGMENTS

This unusual atlas was a joy to compile. Its uniqueness, however, required a flexible and who, since 1962, have seen the value of oblique maps and used them in studies and publications Helpful discussions and constructive ideas for this atlas were provided by John Aaron, Peter W. Barmes, May Lou Callas, Pat Earnest, Arthur B. Ford, Ralph E. Hunter, David McCulloch, Willis Rieser, and Rose Trombley

REFERENCES

Davis, W. M., 1909, Geographical essays: Boston Mass. Ginn and Co.i; reprinted, 1954, New York Dover Publications, 777 Dufour, P. T., 1917, Les perspectives
Librarie Delagrave, v. 8 no. 4.38
Libraire Delagrave, v. 8, no. 4, 38 p. (Reiel in perspective): Paris, Revue de Géographie history of the Grand Canyon district, with atlas: U.S. Geological Survey Gilbert, G. K., 1877, Report on the geology of the Henry Mountains, United States geographical and geological surveys of the Rocky Mountain region: Washington, D.C., U.S. Govermment Printing
Office 160 p., 5 pls. Office 160 p .5 pls
King, P. B., Neuman, R. B., Hadley, J. B., 1968, Geology of the Greas Smoky Mountains National
Park, Tennessee and North Carolina U.S. Geoological Survey Professional Paper 587,23 p.
 Cechoslovakia, 264 Lobeck, A. K.. 1944, Physiographic diagram of North A
Geographical Press, scale approximately $1: 12,000,000$.
1958. Block diagrams and other graphic methods used in Ambers, Mass, Emerson-Trussel Boak ${ }^{2} 2 \mathrm{P}$ Raiss, E. J., 1931, The physiographic method of representing scenery on maps: Geographical Review
v. 21, no. 2, p. 197-304. V. 21, 1957, Map of the landforms of the United States, 6th edit: privately printed by E. J. Raisz originally pubbished in Atwood, W. W., 1944, Physisographic provinces of North Americia: also
printed 1952 by International Geological Congress, 17th, Washington, D. . .scale approximate printed 1952
1:4,500,000.
1959, Landform maps - a method of preparation: Office of Naval Research, part 1 of Final Report, Contract Nonr $2339(00)$ Geography Branch, 23 p.
${ }^{1962, \text {, Principles of cartography: New York, McGraw-Hill Book Co. Inc., } 315 \mathrm{p} .} \mathrm{Schuster}, \mathrm{Matthauis}, \mathrm{1954} ,\mathrm{Das} \mathrm{geographische} \mathrm{und} \mathrm{geologische} \mathrm{Blockbild;} \mathrm{eine} \mathrm{Eintuhrung} \mathrm{in} \mathrm{dessen}$
Erzeichnung Igeographical and geological block diagrams; an introduction to its display): Beriin
U.S. Department of the Army (prepared by P. B. King), 1960, Preparation of terrain diagrams

HOW TO MEASURE HORIZONTAL DISTANCES ON THESE OBLIQUE MAPS

> Two types of oblique maps are shown in this atlas: (1) angular perspective, based on one- or two-point perspectives, and (2) parallel perspective, produced by the isometrograph (see text for description of the isometrograph).

ANGULAR PERSPECTIVE
Measuring horizontal distances on an oblique enap that is based on an angular perspective
is difificult because the scale decreases away tram the viewer. Often a scale accompanies this kind
of map, but this scale represents only one location on the oblique map, usually the corner nearest of map, but
the viewer.

PARALLEL PERSPECTIV
Measuring horizontal distances on an oblique map that is based on a parallel perspective is
difficult because the scale is consistent throughou the

 on the map, note the number of units between the two points of interest, and then move it to
the zero point on the elliptical scale, keeping the instrument parallel to its original alignment on
the two map points. Read the distance from the elliptical scale.

LOCATION OF OBLIQUE MAPS IN ALASKA AND THE NORTH PACIFIC

This regional oblique map of the Gulf of Alaska is based on an orthographic map projection, which allow the Earth to be portrayed as if viewed from space. This map was compiled to compare the submarine and
subaerial topography of the Gulf of Alaska and northwestern North America. The physiography of both areas subaerial topography of the Gulf of Alaska and northwestern North America. The physiography of both areas
is the result, in part, of plate tectonics: the Pacific plate is coliding with and sliding under the North American plate (Howell and others, 1980, p. 4 . This . This knowledge was used to emphasize the topography and the
sediment depicted in the adjacent basins, slopes, fans, and trenches. This map has been published in Alpha, Gerin, and Joyce (1980); Howell and others (1980, p. 48, 49).

OBLIQUE MAP OF THE GULF OF ALASKA
By
Tau Rho Alpha, Marybeth Gerin, and James M. Joyce

THE ALEUTIAN-KAMCHATKA CONVERGENCE, NORTH PACIFIC OCEAN

This oblique map covers the Aleutian Islands from Unalaska Island on the east to Attu Island on the west
and from the Pacific seafloor and Aleutian Trench on the south to Bowers Ridge on the north. This dual map
is unique because it was drawn to view both the north and south sides of the Aleutian Island arc. The Aleutian
Islands are tops of volcanoes that sit on a submarine platorm that lies only about 200 feet (61 meters) beneat
the surface of the ocean (Marlow, 1973, p. 1567). The northern and southem views of this map have been
published in Alpha (1970) and Marlow and others (1973, fig. 1); the southern view in Shepard (1973, p. 245):
hed in Apha (197) and Marlow and others
CENTRAL ALEUTIAN ARC, ALASKA

EASTERN ALEUTIAN TRENCH AND NORTHERN GULF OF ALASKA
${ }^{\text {By }}$
Tau Rho Alpha and Charles I. Winegard
1969

AMLIA CORRIDOR, ALASKA
Tau Rho Alpha, David W. Scholl, and T. L. Vallier

Viewed toward the southwest, this oblique map shows Point Barrow on the
northernmost tip of Alaska and Barrow Canyon extending out across the continental shelf
 the Beaufort shelf to the eeast and the Chukchi shelf to the west. Sediment waves and furrows
are depicted on the eortriwest flank of the canyon. Barow Canyon becomes deeper and V -
shaped as are depicted on the northwest flank of the canyon. Barrow Canyon becomes deeper and V-
shaped as it traverses the continental slope to the floor of the AActic Occan, were it is about
9,482 feet (3,000 meters) deep (Shepard, 1973 , p. 273). This map has been published in Alpha, Eittreim, and Morley (1981).

ORIZONTAL SCALE, IN KLLOMETERS

BARROW CANYON, ALASKA

horizontal scale, in statute mles

IN METERS

horzontal scale, in klometers

OBLIQUE MAP OF THE BEAUFORT SEA AND THE BROOKS RANGE OF ALASKA

This view of the Earth's crust takes in most of the Bering Sea, which is named for Vitus Bering, a Danish navigator who sailed on it in 1728. The sea is bounded on the south by the Aleutian Island arc and Aleutian
Trench (foreground), on the west by Kamchatka Peninsula, to the north by Siberia, and on the east by Alaska The delta of the Yukon River can be seen in the upper right corner. Offshore from the Siberia is Shirshov Ridge,
which extends southward (left center) to nearly touch the tight curve of Bowers Ridge, which joins the Aleutian Island arc near the center of the map.
The Pacific plate, represented by
believed to underthnust the North American plate at the arc's east end (Marlow and onthers, 1973, p. 1555) At the arc's west end, however, the Pacific plate appears to be sliding west past the North American plate and to underthrust the Eurasian continental margin resulling in the Kuril Trench (lower leff cormer) (Buffington,
1973, p. 180). This map has been published in Alpha (1974b); Scholl and others (1974).

OBLIQUE MAP OF THE BERING SEA

LAND
VERICAL EXAGGERATION XI

Horizontal scale, in klometers VERTICAL EXAGGERATION X 50
oblique man is unique because of the extreme vertica exaggeration (X50) used for underwater features comparext to the vertical exaggeration used for features on land (X10). The view is southeast over
the tip of Siberia's Chukotka Peninsula toward the west coast of laska, where Norton Sound is located at the center of the map. At the left is the Seward Peninsua, at the upper right the Yukon River delta, and at the
lower right St. Lawrence Island forms the southern end of the Chirikov
Basi Basin.
Uncharted offshore areas are blank regions on this oblique map. The
offshore underwater features were formed by is acial offshore underwater features were formed by glacial erosion and
depositional processes durng periods of lower sea level, and now they are
being changed by submarine erosion and deposition Dusing the ast ce being changed byss sumarine erosion and deposition. During the last ice
age approximately 20.000 years ago, land was exposed between the age approximately 20,000 years ago, land was exposed between the
Chukotka and Seward Peninusulas, enabling migrations between North America and Asia to take place. This map represents how this area looked
at that time (Hopkins and others, 1976, p. B6). It has been published in at that time (Hopkins and others, 1976, p. B6) It has been published in
Alpha (1972); Hopkins and others (1976, pl. 2).

NORTHERN BERING SEA
Tau Rho Alpha
1972
 have been eroded by ancestral rivers from Alaska during a time of lowered sea
level (Scholl and others, 1970, p. 204). This map was the basis for two derivative oblique maps of the Bering Se
shelf that are shown on the following twa pages. This map has been published in Marlow and others (1975)

PHYSIOGRAPHY
BERING SEA SHELF, ALASKA
${ }_{\mathrm{By}}^{\mathrm{By}}$
uho Alpha
1975

PHYSIOGRAPHY AND CROSS SECTIONS
BERING SEA SHELF, ALASKA

PRE-TERTIARY ROCKS

BERING SEA SHELF, ALASKA

detailed oblique map of the pre-Tertiary surface was compiled from new seismic data for Athe pre-Tertiary rocks (more than 65 million years old) near St . Matthew Island. Th depth to the pre-Tertiary surface is shown by contours (in kilometers) and augmented by
form lines. In the foreground, form lines portray the surface, although no contour lines are Present. The relatively shallow but iresular bertray the surfacke, although no contour ine ines are
pt. Matthew Island and
St Lawrence Island top center) contrasts with the deeo bedrock sutfce on the let of the St. Lawrence Island (top center) contrasts with the deep bedrock surface on the left of the
map. This deep bedrock surface is the southerm part of Navarin Basin. See the map on the map. This deep bedrock surface is the so
previous page. This map is unpublished.

BULDIR DEPRESSION, ALEUTIAN ISLANDS, ALASKA

Viewed toward the northeast, the Emperor Seamount chain stretches in a nearly straight
line for 1,200 statute miles $(1,931$ kilometers) extending from the lower right of the map to line for 1,200 statutue miles (1,931 kilometers), extending from the lower right of the map to its intersection with the Aleutian Trench on the upper left. Many of the seamounts were once
islands; they are capped by carbonate deposits, which indicates they acquired coral reefs just below sea level. Many stages of seamount development are represented on this oblique map-Grom youthful, sharp-pointed volcanic peaks to mature flat-topped guyots that have
well-developed lagoons and carbonate banks (Greene and others, 1980, p. 759, 760). This well-developed lagoons and carbonate banks (Greene and others, 1980, p.
map has been published in Alpha (1999a); Greene and others (1980, pl. 1).

vertical exaggeration x15

EMPEROR SEAMOUNTS, NORTH PACIFIC OCEAN

OBLIQUE MAP OF HESS RISE AND VICINITY, NORTH-CENTRAL PACIFIC OCEAN
Tau Rho Alpha and T. L. Vallier
1981

This angular-perspective oblique map of Icy Bay and Mount St. Elias, viewed toward the northeast, demonstrates the use of oblique maps in a historical context. The coastline on the 1798 map is based on a sketch
map made of George Vancouver's visit in 1794. Icy Bay in 1950-1952 map made of George Vancouver's visit in 1794. Icy Bay in 1950-1952
is based on a U.S. Geological Survey 1:250,000-scale topographic map is based on a U.S. Geological Survey $1: 250,000-$ scale topographic map,
and Icy Bay in 1972 shows the configuration of the bay as seen LANDSAT imagery of September 21, 1972. These oblique maps illustrate the idea that Icy Bay developed in the past 175 years as the ice front of the Guyot an Tyndall glaciers receded. The maps also suggest that the Guyot an Tyndall glaciers receded. The maps also suggest that filled with glacial outwash (Alpha, 1975, p. 4; Shepard and Wanless 1971, p. 415). This map has been published in Alpha (1975, p. 6-7); Shepard (1977, p. 105); Shepard and Wanless (1971, p. 410)

ICY BAY, ALASKA
By
Tau Rho Alpha

KAYAK TROUGH, GULF OF ALASKA
By
Tau Rho Alpha
1978

PAMPLONA RIDGE, GULF OF ALASKA

PASSAGE CANAL, ALASKA
By
au Rho Alpha

PRIBILOF CANYON, BERING SEA, ALASKA
By
Rho Alph
1970 (exploded, and geologic cross sections have been added. Sedimentary rocks rise unit and
main layered sequence) younger than 65 milion years veerie olde pre-Tertiary rocks
(acoustic basement). The cross sections show that the upper part of the T-shaped canyon (acoustic basement). The cross sections show that the upper part of the T-shaped canyon
is controlled by structural depressions that parallel the edge of the continental shelf (Scholl, 1970, p. 196, 198). A similar kind of structural control is seen in Zhemchug Canyon to the northwest (see Zhemchus Canyon, Bering Sea, Alaska, this atas). This map has been
published in Scholl and others (1970, p. 2000 1976, p. 110).

This parallel-perspective oblique map of Pribilof Canyon and St. George Island, viewed toward the northwest is a morer recent version of the Prybibilof Canyon maps on the preveious
two pages and is based on data cauquired through 1973. The upper part of the T parallels two pages and is based on data acquired through 1978. The upper part of the T parallels
the edge of the continental shelf, similar to the head of neighboring Zhemchug Canyon to the northwest. This upper part of the T may be the result of downfaulting on the side nearest
the the break in the continental shelf (Scholl and others, 1977 , p. . 196 , 198). Erosion of the
canyon may have been caused by large rivers flowing from westem Alaska during times of canyon may have been caused by large rivers flowing from western Alaska during times of
lowered sea levels. A leveed channel system can be raced from the headwaters of the

REVISED
PRIBILOF CANYON, BERING SEA, ALASKA

By u Rho Alpha
 1978

 bars (Reimnitz and Bar

DIVING OBSERVATION DIAGRAM OF REINDEER ISLAND, ALASKA

RESURRECTION BAY, ALASKA
By
au Rho Alpha
1964

PORT VALDEZ, ALASKA
By
au Rho Alpha

ZHEMCHUG CANYON, BERING SEA, ALASKA

EXPLODED DIAGRAM

ZHEMCHUG CANYON, BERING SEA, ALASKA

ASTORIA CANYON, OREGON-WASHINGTON

By Rho Alpha

CAPE BLANCO, OREGON

This oblique map of Mount Baker and the town of Concrete was compiled rapidly fo a newspaper press release on a potential mudflow issuing from Sherman Crater on the
summit of Mount Baker. Atter a long dormancy Sherman Crater hegan to remit heat hat gas. The concern, which fortunately never developed, was that a mudflow would swee down Boulder Creek into Baker Lake and thereby produce waves that would spill over breach the dams of Baker Lake and Lake Shannon and destroy the town of Concrete (Alph

MOUNT BAKER, WASHINGTON
By
Tau Rho Alpha
1975
introduction to the series of oblique maps THAT PORTRAY MOUNT ST. HELENS
The next series of physiographic diagrams portray Mount St. Helens from it The next series of physiographic diagrams portray Mount St. Helens from its
eruption in 1980 to 1983 . The maps may be divided into two groups: (1) those tha show changes in the summit crater on a yearly basis, arranged chronologically and (2) those that interpret the eruption and devastation, ending with
comparative study between Crater Lake, Oregon, and Mount St. Helens. Washington.
While most of the oblique maps in this atlas are based on contour maps, only sketch contour maps of the altered crater and debris avalanche were available whe the oblique maps of Mount St. Helens were being compiled. These oblique map
of Mount St. Helens are based on the sketch contour maps, oblique and vertica aerial photographs, personal communication with experts on the area, an
fieldwork.

Summer 1979

May 26, 1980

The view is toward the south in these three oblique maps of Mount St. Helens. The first represents the olcano in the summer of 1979 before the volcanic activity became visible. The second portrays the volcano on May 15, 1980, two days before the eruption. The summit phreatic crater (a crater formed by the explosion
of steam, mud, or other material due to the heating and consequent expansion of water by an underying heat source) and the extent of the growing bulge are emphasized (Rosenfeld and Cooke, 1982, p. 22). On May 18, 1980, Mount St. Helens erupted, devastating an area of 232 square miles (600 square kilometers). Th May 26, 1980, this oblique map represents eyewitness accounts by geologists working on the volcano and media accounts, usually in the form of newspaper pictures. The third map was compiled in a short span of time and these maps were on display during President Carter's briefing and tour of the devastated area. This map has been published in Alpha, Moore, and Jones (1980a, b, cl.

SEQUENTIAL PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON 1979-80

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS AND VICINITY, WASHINGTON, 1980

By

Tau Rho Alpha, James G. Moore, James M. Morley, and David R. Jones 1980

Pre-eruption

Effects of eruption through June 1980

A PART OF THE PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS AND VICINITY, WASHINGTON, 1980

Viewed toward the west, this sequence of diagrams illustrates the complex series of events that culminated in the catastrophic eruption of Mount St. Helens on the morning of May 18, 1980 .
The volcano. dormant since the middle of the last century (A), began a series of small eruptions on March 27,1180, which excavated a small summit crater (B). This crater grew slowle prior to May 18 , as did a
prominent bulge on the north flank, which rose as much as 42 feet (150 meters). The bulge was produced prominent bulge on the north flank, which rose as much as 492 feet (150 meters). The bulge was produced
by intrusion of new igneous rock inta a cryptolome heay stiple) by intrusion of new igneous rock into a cryptodome (heavy stipple) beneath an old summit dome (light stipple).
Immediately after an earthquake at 08:32:11 a.m. (P.d.t.), the oversteepened bulge failed and became a landslide composed of two giant blocks (C) (Alpha and Moore, 1981).
Removal of material by landsliding exposed and depressurized the cryptodome on the steep headwall
between the blocks. This pressure reduction caused a massive explosion and a laterally directed blast to issue
from the cryptodome system (C). A few seconds later, fracturing of the upper landslide block permitte explosions to rise vertically from the area of the previous summit crater (D). (Rosenfeld and Cooke, 1982 ,
5). The initial explosions from the exposed cryptodome combined to produce a second and much larger latera blast that swept down the north flank (E), overtook the moving landslide, and eventually devastated an area of about 232 s square miles (600 square kiliometers) to the north of the mountain.
Landsiding and explosions eventually exposed the main volcanic conduit beneath the previous summit, and a massive column of steam, ash, and rock debis rose from it for several hours. By the afternoon of May
11 , the removal of approximately 0.72 square miles 3 square kilometers) of material by the landside and eruption had produced the large amphitheater crater (F). This map has been published in Alpha and Moore
(1981).

PHYSIOGRAPHIC DIAGRAMS OF THE MAY 18, 1980, LANDSLIDE-ERUPTION
OF MOUNT ST. HELENS, WASHINGTON

By

Tau Rho Alpha and James G. Moore

Viewed toward the south, these physiographic diagrams show two Cascade Range volcanoes that have had their summits destroyed-Mount St. Helens in 1980 and Mount Mazama (now occupied by Crater Lake) about 6,800 years ago.
The 1980 eru
on the north side of the mountain. A violent, north-directed blast destroyed trees over a fan-shaped area covering more than 232 square miles (600 square sile kiomeetedrs). Following the landslide a and blaste a vertical
eruption threw ash into the air for more than 32 miles (20 kilometers), and winds carried it hundreds of miles eruption triew eshinto nd air for more than
to the east (Rosenfeld and Cooke, 1982, p. 5)
Crater Lake half fills the large, basin-Shaped caldera of Mount Mazama, which was a volcano much larger
than Mount St. Helens. During the climatic eruption of Mount Mazama, hot mudflows rushed down valleys, than Mount St. Helens. During the climatic eruption of Mount Marama, hot mudflow rushed down valleys,
and pumice and ash were deposited over a large area. As magma was removed from the chamber beneath and pumice and ash were deposited over a large area. As magma was removed from the chamber beneath
the volcano and ejected at the surface, Mount Marama collapsed, forming a caldera (Rosenfeld and Cooke, 1982, p. 49). This caldera was flooded by rainwater and snowmelt and formed Crater Lake. As spectacular
and devastating as the 1980 eruption of Mount St. Helens was, it was a minor event compared to the and devastating as the 1980 eruption of Mount St. Helens was, it was a minor event compared to the
catacclysmic destruction of Mount Mazama (Alpha and Morle, 1982a). This map has been pubbished in Alpha and Morley (1982a).

COMPARATIVE PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS,
WASHINGTON, AND CRATER LAKE, OREGON
By
Tau Rho Alpha and James M. Morley
1982

VERTICAL SCALE,
IN NEET

No vertical exaggeration

horzontal scale, In klometers

location map

The large oblique map, which is viewed toward the south, portrays Mount St. Helens The large obilique map, which is viewed toward the sourh, portrays Mount St. Helens
and local landforms as they appeared on July 1, , 1980. The dome and debris avalanche can
be seen inside the crater Spinit Lake, debris avalanche and Coldwater Ridge are in the be seen inside the crater. Spint Lake, debris avalanche, and Coldwater Ridge are in the
oreground. Two significant changes occurred in the crater after the eruption on May 18 , 1980: (1) the development of the dome and (2) the erosion of the crater. These changes The portrayed at a larger scale on the accompanying four oblique maps of the summit crater.
This map has been published in Alpha, Moore, and others (1981). Part of this map the Summit crater) has been published in Moore and others (1981, p. 543).

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON, SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1980

By
Tau Rho Alpha, James G. Moore, James M. Morley, and David R. Jones 1981

JULY 1, 1980
PhYsiographic diagrams of mount st. helens, washington, showing changes in its summit crater, summer 1980-Continued

JUNE 5, 1980

AUGUST 1, 1980

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON, SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1980-Continued

In a continuation of the 1980 oblique mapping, the large oblique map portrays Mourt St. Helens and local landforms as they appeared on July 1, 1981, looking south into the
crater. Many eruption-related features on Mount St. Helens now carry names: Dome, Steps. Pumice Plain, pumice pond, and Debris Avalanche. Comparison with the previous 1980 obique map shows that the Dome is larger, the amphitheater and the Steps have eroded
and drainage patterns are developing on the Pumice Plain and Debris Avalanche The soul and dranage patterns are developing on the Pumice Plain and Detis Avalanche cine sour maps portray significant changes in the Dome and crater during 1981. This map has bee
published in Alpha. Morley and others (1982)

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON,
SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1981
By
Tau Rho Alpha, James M. Morley, Bobbie Myers, and Terry Leighley

JULY 1, 1981

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON, SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1981-Continued

JANUARY 13, 1981

FEBRUARY 10, 1981

scales for summit craters

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON, SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1981-Continued

These 1982 obique maps of Mount St. Helens are a continuation of the oblique mapping done in 1980 and 1981, portraying the same area at the same scale and in the same direcion of view. Eresion coniniues its work on the crater, Strps, Pumice Plain, and
Debris Avalanche. A well-defined drainage system has developed from the crater down to the Debris Avalanche, and the south shore of Spirit Lake has encroached farther toward Mount St. Helens. The five larger scale oblique maps portray significant changes in the dom
and crater during 1982. The dome has grown in its longest dimension from 2,460 feet (750 meters) in March to 2,952 feet (900 meters) in August and has increased in its shorte
dimension from 1,968 feet (600 meters in March to 2,460 feet (750 meters in Augus. Th ension from 1,968 feet (600 meters)

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1982

PHYSIOGRAPHIC DIAGRAMS OF MOUNT ST. HELENS, WASHINGTON, SHOWING CHANGES IN ITS SUMMIT CRATER, SUMMER 1982-Continued

By

Tau Rho Alpha

PHYSIOGRAPHIC DIAGRAM OF THE SEVEN DEVILS MOUNTAINS AND HELLS CANYON, IDAHO AND OREGON

By
Tau Rho Alpha and William A. Austin
1982

Island are portrayed looking toward the southeast. The Olympic Mountains were formed by glaciers that eroded a broad anticline or domeof older rocks that were overlain by younger rocks. The younger rocks are of older rocks that were overlain by younger rocks. The younger rocks ardshown with heavy, dense form lines: these rocks surround the north and east sides of the Olympic Mountains. The older rocks are portrayed by lighter, less dense form lines. The Strait of Juan de Fuca, long, straight, and steep walled, is a glacial trough that extends to the southwest across the continental shelf (Shepard and Wanless, 1971, p. 380). This map has been published in Alpha (1973).	

Figure 1.-Index map

This oblique map of sand dunes south of the Umpqua River on the Oregon Coast is viewed toward the southeast. These dunes are part of the Coos Bay dune field, which is th
largest dune field on the west coast fif. 1: Shepard and Wanless, 1971, p. 362). The dunes largest dune field on the west coast (fig. 1; Shepard and Wanless, 1971, p. 362). The dunes
on the oblique map (tig. 2) are drawn by using form lines to represent the physiography and the coastal mountains are portrayed by using the location and density of lines to represent trees. These large dunes move to the north at an average rate of 14.5 feet (55
meters) per year (Alpha, Hunter, and Richmond, 1980, sheet 2). The foredune ridge (fig meters) per year (Alpha, Hunter, and Richmond, 1980, sheet 2). The foredune ridge (fig
3) is a grass-covered, hummocky ridge immediately inland from the beach. The transvers dunes (fig. 4) have long wavy crests and are oriented approximately at right angles to the
winds that form them. They are too small less than 10 feet (3 meters) in height) to be ilustrated on the obique map (fig. 2). The oblique dunes (fig. 5) ise as high as 180 feet slope is a littel less steep, and sand is deposited as small dunes on the south side.
The precipitation ridge (fig. 6) forms most of the dunes along the east edge of the dune field and stands $30-80$ feet $(9-24$ meters) above the forested land to tee east Perabolic
dunes (fig. 7) that are formed by the winter winds develop at the northeast edge of the dune dunes (tig. 7) that are formed by the winter winds develop at the northeast edge of the dune
field, and parabolic dunes that are formed by the summer winds develop at the southeast edge of the dune field. This map has been published in Alpha, Hunter, and Richmond

LANDFORMS OF THE UMPQUA SOUTH AREA, THE OREGON DUNES NATIONAL RECREATION AREA, OREGON

Figure 3.-Foredune ridge, formed in winter and 3.-Foredune idge, formed in win
summer along first beach ridge.

Figure 4.-Transverse dune field. A, Winter, dunes flatten. B, Summer, dunes grow.

Note: Relative scale for figures 3-2

Figure 6.-Precipitation ridge

Figure 7.-Parabolic dunes. A, Formed by winter winds. B, Formed by summer winds

OBLIQUE MAP OF WILLAPA BAY, WASHINGTON

PHYSIOGRAPHIC DIAGRAM OF THE UPPER CARMEL CANYON AND POINT LOBOS, CALIFORNIA

CENTRAL SAN FRANCISCO BAY
By
Tau Rho Alpha
1970

structurat of long valley, californa

Viewed toward the northwest, Long Valley is located on the east side of the Sierra Nevada and on the west edge of the Basin and Range province. The town of Mammoth
Lakes is a resort community that has a population of about 4,000 and a tourist population of 20,000 during the winter ski season. Long Valley is a volcanic depression called Long Valley caldera, which erupted about 700,000 years ago. The south and west edges of the
caldera are defined by the faults of the eastern front of the Sierra Nevada, and the north caldera are defined by the fauts of the eastern front of the Siera Nevada, and the north
and east edges are defined by the faults that flank Glass Mountain. Recently in the western part of the caldera near the town of Mammoth Lakes, a broad uplift called the Resurgent dome has been bulging upward, and several series of earthquakes have occurred. The An inferred new intrusion, which may be the cause of the earthquakes, can be seen toward An ilefred side of the cross section. This map has been published in Alpha, Bailey, and others

PHYSIOGRAPHIC DIAGRAMS OF LONG VALLEY, MONO AND INYO COUNTIES, CALIFORNIA
(1)

The view is toward the northeast in this oblique map of the Monarch Divide area of Kings Canyon National Parrd in the Sierra N Nevada. Monarch Divide is the
drainage divide between the Midde and Sưt Forks of the Kings River. The
canyons of the Middde and South Forks were carved by glaciers, producing canyons of the Midade and South Forks were carved by glaciers, producing
canyons with steep sides. The deepest part of the Kings River canyon (left faryons with steep sides. Mhe deepest part ou the Kngs kiver canyon (leer
foreground is from the summot Sopanis Mountain to the Kings inver, where
the canyon is 7,900 feet (2,400 meters) deep. This map is unpublished.

MONARCH DIVIDE
KINGS CANYON NATIONAL PARK

OBLIQUE MAP OF MONO-INYO CRATERS, CALIFORNIA

By

Tau Rho Alpha, Roy A. Bailey, and James M. Morley
1983

 The area includes the south half of Monterey Bay, the delta of the Salinas River,
and Monterey Canyon. Several slumps can be noticed on both walls of the canyon (Shepard, 1973, p. 315). The sotfer sedimentary y deposits wats form the
delta of the Salinas River and the harder resistant delta of the Salinas River and the harder resistant granitic rocks that form the two different tupes of rocks in shide of the canyon which has been reoded along a fault. This map has been published in Alpha (1970); Greene
1970, pl. 5).

SOUTHERN MONTEREY BAY

Orthographic drawing by Tau Rho Alpha
Geologic interpretation by H. Gary Greene

Viewed toward the northeast, this oblique map portrays the surface of the basement (granitic) rocks of the Monterey Bay region. These granitic rocks are
exposed on land in the Santa Cruz Mountains to the north of Santa Cruz and exposed on land in the Santa Cruz Mountains to the north of Santa Cruz and
in the Santa Lucia Mountains to the south of Monterey (Greene, 1977a, p. .71).

BASEMENT TOPOGRAPHY, MONTEREY BAY REGION, CALIFORNIA
By

The direction of the view is toward the northeast in this oblique map of Monterey Canyon. Monterey Canyon, starting in the center of Monterey Bay and extending westward
for over 56 miles (90 kilometers) to the Monterey fan, has been eroded deeply into the flat

MONTEREY CANYON

EXPLANATIONTERTIARY ROCKS, UNDIFFERENTIATED TERTIARY MONTEREY FORMATION mesozoic granite \rightleftharpoons FAULT - Showing relative direction of moveme

- SLUMP - Showing direction of movemen

This page-size oblique map, viewed toward the northeast, displays the slumping that
occurs in the upper part of Monterey Canyon. Youthful to mature stages of sump occurs in the upper part of Monterey Canyon. Youthful to mature stages of slump
development are portrayed. The slumps that were interpreted from seismic profiles have welldeveloped headward scarss, hummocky topography, and identifiable toes (Greene, 1977 a,
. 96 . The cause of the numerous slumps may be due to underutitin and erosion of the Canyon walls. This map has been published in Greene (1970, p. 42; 1977a, p. 99).

DIAGRAM SHOWING DIFFERENT STAGES OF SLUMPING IN MONTEREY CANYON AND RELATION TO WATER-BEARING ROCKS

MOUNT WHITNEY AND VICINITY, TULARE AND INYO COUNTIES, CALIFORNIA

Tau Rho Alpha

NDEX MAP

EASTERN MURRAY FRACTURE ZONE AND TRANSVERSE RANGES

vertical exaggeration xu
OBLIQUE MAP OF THE NORTHERN CALIFORNIA CONTINENTAL MARGIN Mountains. On the west (leftr) of South Forran, Mountain is Ruth Lase Lidges in the Mad Riverat; on the east (right) is the South Fork of the Thinity River. This oblique map was originally
published with a transparent color overrint which hhowed geologic units and structural
features (Ilwin and others, 1974) This

COMPILATION OF THE OBLIQUE MAP OF SEQUOIA AND KINGS CANYON NATIONAL PARKS
\qquad Kigs Canyon National Parks that appears on the following pages. The isometgrograph was used perspective framework of foreshortened contours (fig. 2). This contour map is viewed at an angle 30° above the surface of the Earth, and the veritical scale has been doubled. Then, with the highly glaciated physigography of this area were interpreted with the aid, of oblique aerial
photographs, field visits, and consultations with experts on the area, producing the final oblique map (fig. 3). Please see page 3 for further discussion of these techriques,

National Parks. Published in four colors by U. S. Geological Survey, 1958. Scale 1.125,000

OBLIQUE MAP OF SEQUOIA AND KINGS CANYON NATIONAL PARKS, FRESNO AND TULARE COUNTIES, CALIFORNIA

OBLIQUE MAP OF SOUTHERN CALIFORNIA, SANTA BARBARA TO SAN DIEGO
By

index map

VERTICAL ScAL
IN FEET

horizontal scale, in feel

The direction of view of is toward the northwest in this map of the offshore area between
Santa Barbara and Los Angeles. The delta and valley of the Santa Clara River near the city Santa Barbara and Los Angeles. The delta and valley of the Santa Clara River near the city
of Ventura is shown, bordered by mountains of the Transverse Ranges. Offshore, the of Ventura is shown, bordered by mountains of the Transverse Ranges. Oishore, the
distinctive patter of the isolated banks and basins of the borderand are shown. Numerous
canyons are portrayed cutting into the steep sides of the basins. These canyons are a maior canyons are portrayed cutting into the steep sides of the basins. These canyons are a major
source for the sediment deposited on the floor of the basins (Field and Edwards, 1980, p. 183). This map has been published in Alpha (1978a); Field and Edwards (1980, p. 178).

SOUTHERN CALIFORNIA BORDERLAND OBLIQUE MAP OF THE NORTHWESTERN PART

SUPRAFAN, PART OF THE NAVY SUBMARINE FAN, CALIFORNIA CONTINENTAL BORDERLAND
${ }_{0}^{0} \underset{1000}{2000}$

EXPLANATION

Viewed toward the northeast, the area portrayed by this oblique map is part of the east-west-trending Transverse Ranges physiographic province (Greene and others, 1978, p. 1). The Ventura-Oxnard plain is the delta of the Santa
Clara River, which can be seen between the cities of Ventura and Oxnard. In he foreground, five submarine canyons with steep walls and flat floors are
shown. This is one of the few oblique maps in this atlas that portrays geologic sown. This is one of the few oblique maps in this atlas that portrays geologic
tructure on the sides of the map. This map has been published in Alpha (1972); structure on the sides of the map. This map has been published in Alpha (1)
Durrenberger and Johnson (1976, p. 19); Greene and others (1978, p.13).

VENTURA-OXNARD OFFSHORE

OBLIQUE MAP OF YOSEMITE NATIONAL PARK, CENTRAL SIERRA NEVADA, CALIFORNIA

YOSEMITE NATIONAL PARK, TIOGA-AGED GLACIATION

LOCATION OF OBLIQUE MAPS IN HAWAII AND THE SOUTH PACIFIC
 the horizon was used rather than the usual angle of 30°. Relatively flat landforms, such as
these shield volcanoes, are easier and hopefully better portrayed at this lower angle of view. these shield volcanoes, are easier and hopefuly better portrayed at this lower angle of view.
This map has been published in Alpha (1972a); Fornari and others (1979, part of map p.
240); ㄱilling and others (1976, p. 31).

ISLAND OF HAWAII, HAWAII

OBLIQUE MAP OF LOIHI SEAMOUNT AND PAPAU LANDSLIDE, HAWAII
By
Tau Rho Alpha, James M. Morley, Christina E. Gutmacher, and William A. Austin

OBLIQUE MAP OF RABAUL, PAPUA NEW GUINEA
By
Tau Rho Alpha and H. Gary Greene

Index map of the southwest pacific

OBLIQUE MAP OF THE SOLOMON ISLANDS, SOUTHWEST PACIFIC

By

Tau Rho Alpha, William A. Austin, and James M. Morley

INDEX MAP OF THE SOUTHWEST PACIFIC

horizontal scale

OBLIQUE MAP OF SOUTHWEST PACIFIC

OBLIQUE MAP OF KINGDOM OF TONGA, SOUTHWEST PACIFIC

horizontal scale

OBLIQUE MAP OF THE REPUBLIC OF VANUATU, SOUTHWEST PACIFIC

 beyond the city of Campeche on the west coast of the Yucatan Peninsula is
shown. Offshore in the Gulf of Mexico northeast of Veracruz, a belt of paralle ridges, which reflect folds in sedimentary rocks on the sea floor, is portrayed
(Moore, 1974, 616) (Moore, 1974, p. 616). In the center of the oblique map between the ridges and
Compeche is. an area of salt diapirs. Between the diapirs and Campeche is the Campeche is an area of sait diapirs. Between the diapirs and Campeche is the
continental slope of Yucatan, which is composed of limestone. This map has been published in Alpha (1972); Moore and del Castillo (1974, p. 608).

BAHÍA DE COMPECHE

Horizontal scale in klometers
VERTICAL EXAGGERATION X

UNDEFORMED SEDIMENTARY ROCKS deformed sedimentary rocks intercalated sedimentary and volcanic rocks

rolcanc rocks intermediate crust lower crust discontinuity (mantle beneath)

The Lesser Antilles, viewed toward the northwest, are located in the northeastern part
the Caribbean Sea. Some of the islands of the chain can be discerned on the elet and of the Caribbean Sea. Some of the islands of the chain can be discermed on the left, and
the Puerto Rico Trench is seen to the right. The islands farther to the left are composed of younger volcanic rocks, and the islands along the edgee of the plattorm are composed of older
volcanic rocks that are capped by limestone and have coral reefs near sea level (Marlow and volcanic rocks that are capped by limestone end have coral reefs near sea level Marsow ond and
others, 1974, p. 289). The Puerto Rico Trench has a thick accumulation of sediment (Marlow and others, 1974, p. 291). This map has been published in Marlow and others (1974, p.
300).

This regional oblique map of the Gulf of Mexico is viewed toward the northeast. Part of Mexico is shown in the foreground, and the southeastern United States can be seen in the background. Near the certie of the map is sthe delta of the Mississippi River. Offshore, one branch of the delta extends toward the Florida peninsula, and a second branch stretches
to the flat floor of the Gulf of Mexico (Shepard, 1973, p. 397). An orthographic map projection was compiled using this specific angle of view and elevation in order to obtain an blique base map for this large region of the Earth's surface. This map has been published Maher and Applin (1968, pl. 1): Smith (1974, cover).

VENEZUELAN BORDERLAND

OTHER PLACES

1 Almeria, España
2 Atlantic Coastal Plain
3 Atlantic continental margin
4 Bahama Banks
5 Blake Escarpment
6 East Pacific Rise
7 Falkland Plateau region
8 Huascarãn Mountain, Perú
9 Hudson Canyon
10 Mid-Atlantic Ridge
11 Rio Balsas Canyon, Mexico
12 Ross Sea Continental Shelf
13 Verde River, Arizona

ALMERIA, ESPAÑA

PHYSIOGRAPHIC DIAGRAM OF ATLANTIC COASTAL PLAIN AND CONTINENTAL SHELF OF NORTH AMERICA
By

A northwest view of the Atlantic continental margin. Because this map was prepared for a a newspaper r ress s release, it was compilied in a short time on a
map base of unknown projection rather than on a base developed with the map base of unknown projection rather than on a base developed with the
sometrograph. This regional map was compiled to illustrate the relation between published in Edgar (1979).

EXPLANATION
oldest rocks recovered in cores AND TOWS
\odot
Pleistocene sediments containing
Pleistocene sediments
Cretaceous material
Neogene sediments
© Limestone rock of unknown age

$$
\overbrace{\substack{\text { APPROXIMATE SCALE } \\ \text { VERTICAL EXAGGERATION } \times 4}}^{25}
$$

Viewed toward the southwest, the Bahama Banks are shown in this angular perspective map. Andros Island at top center is elevated above the oblique map to show a test well and other geologic data. The trough in front of Andros Island
is the Tongue of the Ocean, and as the trough turns toward the viewer it is called is the Tongue of the Ocean, and as the trough turns toward the viewer it is called
the Great Bahama Canyon. Andros Island, as with all the Bahama Islands, is located on a limestone reet (Maher, 1971, p. 13). The Blake Plateau lies at the located on a imestone reet (Maher, $197, \mathrm{p}$. 13 . The Blake Pateau ties at the
lower right of the oblique map, and part of the Florida peninsula is at the upper right. This map has been published in Maher (1971, p. 14)

PHYSIOGRAPHIC DIAGRAM OF BAHAMA BANKS, BAHAMAS

PHYSIOGRAPHIC DIAGRAM OF THE BLAKE ESCARPMENT OFF SOUTHEASTERN UNITED STATES

OBLIQUE MAP OF THE FALKLAND PLATEAU REGION
 vertical fall of more than 13,000 feet (4,000 meters) (Plafker and Ericksen, 1978, p. 279). We have attempted to depict the route of the devastating avalanche, the craters (see arrows) made by the ice and rocks, and the
destroyed towns of Yungay and Ranrahirca. This map has been published in Alpha (1979c); Plafker and destroyed towns of Yun
Ericksen (1978, p. 283).

OBLIQUE MAP OF THE MAY 31, 1970, DEBRIS AVALANCHE, HUASCARĀN MOUNTAIN, PERÚ

By

index map

vertical exaggeration about x6

Viewed toward the west, the Hudson Canyon is one of the longest and deepest canyons along the Atlantic Continental Shelf. A shallow valley across the shelf connects the head of the canyon with the Hudson River. Step-like erosional surfaces on the canyon walls may
correlate with wave erosion during lower stages of sea level (Maher, 1971, p. 15 and 16). The Hudson Canyon ends on the continental rise in a submarine fan. This map has been in Maher (1971, p. 16).

HUDSON CANYON, NORTH ATLANTIC OCEAN

index map

This oblique map shows a section of the rift valley of the Mid-Atlantic Ridge. Heavy undulating lines represent the track lines of the submersible research vessel. The Mid-Atlantic Ridge is part of the Mid-Oceanic Ridge system that winds its way along the plate boundaries on the floor of the ocean. The central rift valley
of the Mid-Oceanic Ridge system is a spreading center where new ocean floor is continually being produced. This new ocean floor, composed mostly of pillow basalt (Moore and others, 1974, p. 437), appears in the oblique map as the central ridge of volcanic hills that are darker in line weight. Two o pills named Mount Venus
and Mount Pluto show on the ridge (Cekinina and others. 1976, and Mount Pluto show on the ridge (Hekinian and others, 1976, p. 844 . In this area, the west (liff of the ne nit
valley is nearly 1,000 feet (300 meters) high. This map has been pubished in Moore and others (1974, p. 439) Hekinian and others (1976, p. 107); Perlman (1976, p. 4).

MID-ATLANTIC RIDGE AT LATITUDE $36^{\circ} 48^{\prime}$ NORTH, NORTH ATLANTIC OCEAN

The Rio Balsas River is on Mexico's Paciific coast and is one of the largest rivers in Central America Offshore, Cañon de la Necesidad is the main tributary of the Rio Balsas submanine canyon system. This block the head of Cañon de la Necesidad are illustrated on the block diagram by the use of arrows. The shaded arrows represent longshore and rip currents, the black arrow indicates the location of the strongest longshore current, and the open arrows show the seaward flow of fresh water from the river. A bottom turbidity current
is shown in the canyon between the two sets of arrows. This map has been published in Reimnity (1971, p. 855; Reineck and Singh (1973, p. 381).

SCHEMATIC BLOCK DIAGRAM OF THE HEAD OF THE RIO BALSAS CANYON, CANON DE LA NECESIDAD, MEXICO

OBLIQUE MAP OF THE ROSS SEA CONTINENTAL SHELF, ANTARCTICA

The development of a cirgue at the head of a mountain glacier.

meandering V -shaped valley is changed into a straightened U -shaped valley.

Glacial ice moving over jointed and uniointed rock produces a Roche Montonnée.

GLACIAL EROSION

$\begin{aligned} & \text { The evolution of the southern Moroccan Continental Shelf is } \\ & \text { portrayed in a series of angular-perspective oblique maps. This perspective }\end{aligned}$
portrayed in a series of angular-perspective oblique maps. This perspective
The maps, starting at the top, portray (1) the development of the
$\begin{aligned} & \text { continental shelf in Permian time when the North American and Atrican } \\ & \text { plates were infted apart; (2) the formation of new oceanic crust starting in }\end{aligned}$
he Early Jurassic; and (3) the subsidence of the continental-margin
$\begin{aligned} & \text { the Early Jurassic; and (3) the subsidence of the continenta-margin } \\ & \text { basement blocks while sediment was deposited over them from the } \\ & \text { Jurassic to the present (Dillon 1974, p. 135-137). This map has been }\end{aligned}$
Jurasic to the present (Dillon,

DEVELOPMENT OF THE SOUTHERN MOROCCAN
CONTINENTAL SHELF

A series of cognitive drawings show the microrelief produced by ice keels under pressure ridges, floebergs, or floes that scrape the ocean floor. The linear features are called ice gouges and are formed in high latitudes in shallow seas. Individual ice gouges may change shape and direction duuy to the rotation of the floes. Floebergs
or floes can wobble creating regularly spaced bottom topographic features. Flat-bottom floebergs create flat or floes can wobble, creating regularly spaced bottom topographic features. Flat-bottom floebergs create flaz
bottom gouges. Multi-prong ice keels rake the ocean bottom, creating parallel gouges (Reimnitz and others bottom gouges. Multi-prong ice keels rake the ocean bottom, creating paralel gouges (Reimnitz and others,
1973). This map has been published in Reinnitand others (1973); part of the map was published in Reimnitz
and Barmes (1974a, p. 20, 22, 23, and 38); National Research Council (1979, p. 40).

SEA ICE AND SUBMARINE TOPOGRAPHY

The direction of view is toward the southeast in these congnitive drawings of an imagined area on the coast of the Beaufort Sea. During the fall, fast ice (ice that is attached to the coast) grows seaward from the coast until it interacts with the poiar pack ice along barier islands and submarine shoals. The resulting belt of
grounded pressure ridges (stamukhi zone) along the islands and shoals protect and stabilize the fast ice from the western-drifting polar pack ice during the winter and spring. This protection from the difiting polar pack ice is applicable to planned offshore development, such as docks and offshore drilling equipment (Reimnitr and
others, 1978a, p. 185-189). This map has been published in Reimnitz and others (1978a, p. 186-187; 1978b, p. 983): Stringer (1978, p. 22).

SEA-ICE ZONATION IN RELATION TO BOTTOM MORPHOLOGY, BEAUFORT SEA, ALASKA

RELATION OF ORE BODIES TO SURFACE OF TINTIC QUARTZITE, EAST TINTIC DISTRICT, UTAH

FAULT MOVEMENT
Normal faulting. A wave created by a rapid near-vertical offset along a normal fault.

FAULT MOVEMENT
Thrusting. A wave produced by a rapid near-horizontal offset along a thrust fault.

An impulsive wave is a sudden motion of water of short duration that is caused by earth movement. Such
movement commonly occurs during or is triggered by an earthquake . Three of the oblique mans show how movement commonly occurs during, or is triggered by, an earthquake. Three of the oblique maps show how
different fault mechanisms can produce impulsive waves. Arows indicated the relative direction of movement along the fault. A fourth map shows how such waves can be caused by ground motion during an earthguake in an enclosed body of water without ground failure. Other oblique maps demonstrate the generation of impulivive waves by different kinds of ground failures and mass movement, such as slumps, gravity flows, giddes,
and rock talls, which can be inititeded either above or undemeath the surface of the water. This map has been published in Alpha and Greene (1982).

FAULT MOVEMENT
Transcurrent faulting. A wave generated by a rapid offset along a strike-slip fault.

SELECTED TYPES OF IMPULSIVE WAVE GENERATION

By Tau Rho Alpha and H. Gary Greene

Submarine detachment. Wave produced by glide that begins below water leve.

SLUMP
Rotational slumping. Wave produced by a slump that begins below water level.

Mass movement. Wave produced by a slide that has subaerial and submarine detachment.

ROCK FALL
Submarine. Disaggregated rock falling through the water may create waves at water surface.

\section*{BIBLIOGRAPHY}
 COMPILED BY PETRINA MAO

Allen, Robert Lloyd, Jr, 1982, The impact of tectonic activity in the development of Monterey
Submarine Canyon: Monterey, Calif. Naval Postgraduate School, thesis. [Oblique map of Monterey Canyon, p. 8]
Alpha, Tau Rho, 1970 Physiographic diagrams of part of the continental borderands of California and
Alaska: U.S. Geoological Survey open-file report $70-5 \overline{1}, 12$ sheets. [Oblique maps of southern CalifAlaska: U.S. Geological Survey open-file report ormia borderland, eastern Murray Fracture Zone and Transverse Ranges, southern Monterey Bay,
Monterey Canyon, central San Francisco Bay, Pribilof Canyon, Zhemchus Canyon, Bering Canyon, Buldir depression, Nuka Bay, and central Aleutian arcl.
1971, Physiographic diagram of southern California, in Elder, W. A., ed., Geological
excursions in southern Califoria: Geological Society of America Meeting, Cordilleran Section, excursions in southern California: Geological Society of America Meeting, Cordilleran Section,
Univessity of California, Riverside, Calif, 1971, (Oblique map of southern California borderland, cover and back plate.
1972, Physiograp
1972, Physiographic diagrams for Ventura-OXnard offshore (California), Astoria Canyon and
\tan (Oregon), Newport (Oregon), norther Bering Sea (Alaska), the Aleutian-Kamchatka tan (Oregon), Newport (Oregon), northern Bering Sea (Alaska), the Aleutian-Kamchatka,
convergence (Alaska), Caribbean arc-Hispaniola to Guadeloupe, Bahía de Campeche (Mexico), Brisish Honduras (Belize), and Venezuelan borderland: U.S. Geological Survey open-file report
Bent [72-5], 9 sheets.
1973, Ortho
Geological Survey open-file 1974a, [Orthographic drawing of] Almeria, España: U.S. Geological Survey open-file report
\qquad 1974b, Oblique map of the Bering Sea: U.S. Geoological Survey open-file report [74-1005]. Mapping Division, Topo West, v. 9, no. 5. [Map p. 3. available from U.S. Geoological Survey ibrary, 345 Middlefield Road, Menlo Park, Calift 94025].
1975b, The evolution of Icy Bay, Alaska, in Carson, P. R., Conomos, T. J., Janda, R. J and Peterson, D. H., eds., Principal sources and dispersal patterns of suspended particuluate matter
 Division, Topo West, V. 9. no. 2. [Map p. 10, 11; availabil from U.S. Geological Survey Library,
345 Middlefield Road, Menlo Park, Caifi. 94025) 345 Middlefeield Road, Menlo Park, Calif. 94025
1977a, Physiography of the island of Hawaii and its submarine slopes: U.S. Geological
Survey Open-File Report 77-814. _ 1977b, Oblique map of Se
Sequoia Natural History Association. 1978a, Southern California borderland, oblique map of the northwestern part: U.S.
Geological Survey Open-File Report $78-967$. - 1978b, Oblique map of the Kayak trough
U.S. Geological Survey Open-File Report 78-1978c, Oblique map of Monterey Bay: U.S. Geological Survey Open-File Report 78-681. 1978e, Oblique map of the Ross Sea Continental shelf: U.S. Geological Survey Open-File Report 78-563.
1978, Oblique map of Willapa Bay: U.S. Geological Survey Open-File Report 78-1015.
Report $79-372$, Oblique map of the Falkland Plateau region: U.S. Geological Survey Open-File Report 79-372.
1979c, Oblique map of the May 31, 1979, debris avalanche, Huascarán Mountain, Peru: U.S. Geological Survey Open-Fiie Report 79-373

Counties, Califiquia: U.S. Geological Survey Open-File Report $82-306$, Oblial
Coumes, California: U.S. Geological Survey Open-File Report 82-306. 1983 , Physiographic diagrams of Mount St. Helens, Washingo and Tulare summit crater, 1982: U.S. Geological Survey Miscellaneous Field Studies Map MF-1608.
Apha, Tau Rho, and Austin, William A., 1982, Physiographic diagram of the Seven Devils Mountains
and Hells Canyon, Idaho and Oregon: U.S. Geologich Survey Open Fie Repo Alpha, Tau Rho, Austin, William A., and Moriey, James M.., 1982a, Oblique map of the Solomon islands, Southwest Pacific: U.S. Geological Survey Open-File Report $82-530$
1882b, Oblique map of the Kingdom of Tonga, Southwest Pacific: U.S. Geological Survey
Open-File Report $82-699$. Open-File Report 82 -669.
1982 c , Oblique map of the Republic of Vanuatu, Southwest Pacific: US. Geoiogical Survey
Alpha, Tau Rho, Bailey, Roy A., Lajoie, Kenneth R., and Clark, Malcolm M., 1983, Physiographic diagrams of Long Valley, Mono and Inyo Counties, California: U.S. Geological Survey
Miscellaneous Field Studies Map MF-1659, 2 sheets. Ipha, Tau Rho, Bailey, Roy A., and Morley, James M., 1
Alpha, Tau Rho, Bailey, Roy A., and Morley, James M., 1983,
California: U.S. Geoologica Survey Open-File Report $83-230$
Alpha, Tau Rho, Boore, Sara A., and Austin, William A., 1983, Olique mot Guinea: U.S. Geological Survey Open File Report 83-229. James M., 1981, Physiographic diagram of the upper Carmel Canyon and Point Lobos, California: U.S. Geological Survey Open-File Report $81-440$.
Alpha, Tau Rho, Eittreim, Stephen, and Morrey, James M., 1981, Barrow Canyon, Alaska [oblique Alpha, Tau Rho, and Gerin, Marybeth, 1980a, Oblique map of the Beaufort Sea and Brooks Range,
Alask: US Geolegicl Surey Alaska: U.S. Geological Survey Open-File Report $80-455$.
1980b, Oblique map of the northern California continental margin: U.S. Geological Survey
Alpha, Tau Rho, Gerin, Marybeth, and Joyce, James M., 1980, Oblique map of the Gulf of Alaska:
U.S. Geological Survey Open-File Report 80-601. U.S. Geological Survey Open-File Report 80-601.
Alpha, Tau Rho, and Greene, H. Gary, 1982 , Selected types of impulsive wave generation: U.S. Apha, Tau Rho, and Greene, H. Gary, 1982, Selected types of impulsive wave generation: U.S.
Geoological Survey Open-File Report $82-992$.
1985, Obligue map of Rabaul, Papua Guinea: U.S. Geological Survey Miscellaneous Field Map MF-1778.
Alpha, Tau Rho, H.
Map MF-1778.
Alpha, Tau Rho, Huber, N. King, and Wahrraftig, Clyde, 1986, Olique map of Yosemite National
Park, Central Sierra Nevada, California: U.S. Geological Survey Miscellaneous Investigations

Alpha, Tau Rho, Hunter, Ralph E., and Richmond, Burce M., 1980, Maps showing landforms of the Umpqua south area, the Oregon Dunes National Recreation Area, Oregon: U.S. Geological Survey Miscellaneous Field Studies Map MF-1205, 2 sheets.
Alpha, Tau Rho, and Lewis, Stephen D., 1978, Revised oblique map of Pribilof Canyon: U.S Alpha, Tau Rho, and Lewis, Stephen D., 1978, Revised oblique map of Phior Cano:
Geoological Survey Open-File Report 78-214. Alpha, Tau Rho, and Moore, James G., 1981 , Physiographic diagrams of the May 18, 1980, landslide eruption of Mount St. Helens, Washington: U.S. Geological Survey Miscellaneous Field Studies
Map MF-1289.
Alpha, Tau Rho, Moore, James, G., and Jones, David R., 1980a, Sequential physiographic diagrans pha, Tau Rho, Moore, James, G., and Jones. David R., 1980a, Sequential physiographic diagrams
of Mount St. Helens, Washington, 1979-80: U.S. Geological Survey Open-Filie Report 80-792.
1980, Sequential physiographic diagrams of Mount St. Helens, Washington, 1979-80: U.S.
 p. 7. [Avail
$94025]$.

1980, Sequential physiographic diagrams of Mount St. Helens, Washington, 1979-80: San
Francisco Chronicle, Saturday, June 14, 1980, no. 124, p. 5 . Alpha, Tau Rho, Moore, James G., Morley, James M., and Jones, David R., 1980, Physiographic diagrams
$80-920$.

- 1981, Physiographic diagrams of Mount St. Helens, Washington, showing changes in its

Alpha, Tau Rho, and Morley James M. 1982a, Compares Helens, Washington, and Crater Lake, Oregon: U.S. Geological Survey Miscellaneous Field Studies Map MF-1403
1982b, Oblique map of Southwest Pacific: U.S. Geological Survey Open-File Report 82
, map of Loihi Seamount and Papau landside, Hawaii: US. Geological Survey Open-File Repo

Alpha, Tau Rho, Morley, James M, Myers, Bobbie, and Leighley, Tery, 1982, Physiographic diagrams of Mount St. Helens, Washington, showing changes in its summit crater, 1981: U.S
Geoological Survey Miscellaneous Field Studies Map MF-1420. Geological Survey Miscellaneous Field Studies Map MF-1420
Tau Rho, Scholl, D W and Vallier T L 1981, ,
Alpha, Tau Rho, Scholl, D. W., and Valier, T. L, 1981, Amia coridor, Alaska: US. Geological
Survey Open-File Report 82-138. Ocean: U.S. Geological Surey Open-File Report 81 -441.
Alpha, Tau Rho, and Winter, R. E., 1971, Quantitative physiographic method of landform portrayal

 Sxtent of 20,000 -year-old (Tioga) glaciers, Yosemite
Barker, P. F., and others, eds., 1976 Initial reports of the Deep Sea Drilling Project: Washington, D.C Government Pinting Onc, $.36,180$ p in back pocket]
Buffington, E. C.,
1973, Aleutian-Kamchatka Trench convergence: An investigation of lithospheric
nate interation in the light of modern geotectonic theory: Los Angeles, Calif., University of plate interaction in the light of modern geotectonic theory: Los Angeles, Calit., University of
Southem Caifornia, Ph. D. dissertation, 364 p. [Frontispiece]
. Map floor of cental ${ }^{100}$ Francisco Ba
Carlson, P. R., and Molina, Bruce F., 1977, Submarine fauts and slides on the continental shel northern Gulf of Alaska: Marine Geotechnology, v. 2, p. 275-290. [Oblique map of part of the Kayak trough, Alaska, p. 287]
1975: U.S. Geological Survey Circular 733,72 p. IOblique map of the Kayak troush, Alaska, 1965:
Sillon,
Mill
Marine
Dillon, William P., 1974, Structure and development of the southern Moroccan Continental Shel Marine Geology, v. .6, p. 121-193. [Map p. 136]
Hond., Dobson, B. Mark, Ploessel, Michael R., and Campbell, Kerry J. 1982. Engineering geologic. condition deepwater areas: McClelland Engineers, Soundings, v. 4, no. 1. IOblique map of Zhemchug Canyon, Bering Sea]
Wallace G., 1978, Petroleum source beds on continental slopes and rise: American Association Petroleum Geologists Bulletin, v. 62, no. 9, p. 1584-1606.
Durrenberger, Robert W., and Johnson, Robert B., 1976, California, patterns on the land, 5th ed
Palo Alto Calif. Mayield Pubishing Co 134 p. IOblique maps of central San Francisco Bay Palo Alto, Calif., Maytield Pubisishing Co., 134 p. (Oblique maps of central San Francisco Bay, p. 19$]$ P. Edgar, N. Terence, and Bayer, Kenneth C., 1979, Assessing oil and gas resources on the U.S
continental margin: Oceans, v. 22, no. 3, p. 13-22. IOblique map of Atantic continental margin of North America, p. 15] . Borderland, a reesime of mass transport, in Field, M. E., Bouma, A. H., Colburn, I. P., Douglas,
R. . and Ingle, J. C., eds., Quaternary depositional environments of the Pacific coast Los
 Angeles, Caifi, Society
184. [Map p. 178]
Ford, A. B., and Barett, Peter J., 1975 , Basement rocks of the south-central Ross Sea, site 270, Deep
Sea Dilligg Project Leg 28, in Hayes, D. E., and others, eds., Initial report of the Deep Sea Sea Drilinin Project, Leg 28, in Hayes, D. E., and others, eds., Initial report of the Deep Sea
Drilling Project: Washington, D. C., Government Printing Office, v. 28, p. 861-878. [Map p. 862]
 [Physiography of the Island of Hawaii, part of map p. 240]
Gnibidenko, G. E., and others, 1980, Tectonics of Kuril-Kamchatka deepwater trench: Moscow, map p. 14]
reene, H. G., 1970, Geology of southern Monterey Bay and its relationship to the ground-wate basin and salt-water intrusion: U.S. Geological Survey open- file report [70-142], 50 Monterey Canyon, stages of slumping, map p. 42; southerm Monterey Bay, pl. 5)

1977a, Geology of the Monterey Bay region: U.S. Geological Survey Open-File Report 77 7. 1847 p . Coblique maps of the Monterey Canyon, pl. 1 and frontispiece; Monterey Bay, pl .
2, Monterey Bay region, basement topography, pl. 4; Monterey Canyon, stages of slumping, p

1977b, Monterey submarine canyon: California Geology, v. 30, no. 5, p. 112-113. IOblique map p. 112$]$
Greene, H. G., Clague, D. A., and Dalrymple, G. B., 1980, Seismic stratigraphy and vertical tectonics
of the Emperor Seamounts, Deep Sea Driling Proiect Lee 55, in Jackson E. D, and others of the Emperor Seamounts, Deep Sea Drilling Project, Leg 55, in Jackson, E. D., and others
Initial reports of the Deep Sea Dilling Project. Washingon , D. U. . Governent Prining Initial Ieports of the Deep Sea
Office, v. 55, p. 759-788. [PI. 1$]$
Greene, H. Gary, Wolf, Steve C.. and Blom, Ken G., 1978, The marine geology of the eastern Santa
Barbara Channel with particular emphasis Barbara Channel with particiclar emphasis on the ground-water basins ofsthore from the Oxnard
plain, southerm Californiai U.S. Geological Survey ODen-File Report $78-305$. [Maps of souther plain, southen Colifornia: U.S. Geological Survey Open-File
California borderland; p. 23; Ventura-Oxnard offshore, p. 13]
Greene, H. Gary, and Wong, Florence L., 1983, Hydrocarbon resource studies in the Southwes
Pacitic, 1982: U.S. Geological Survey Open-File Report $83-293$.Map pu
Pacific, 1982: U.S. Geological Survey Open-File Report 83-293. [Map p. 3, 21]
Hekinian, R., Moore, J. G., and Bryan, W. B., 1976, Volcanic rocks and processes of the Mid-Atlantic
Ridge ifft valley near $36^{\circ} 49^{\prime}$ N.: Contributions to Mineralogy and Petrology, v. 58 , p. 83-110 (Mage in valle
Hill, Mary. 1984,
Hill, Mary, 1984, California landscape, origin and evolution: California Natural History Guide 48
Berkeley, Calif. University of California Press, 262 p. IOblique maps of the southern Califormia borderland, p. 170, and Monterey Canyon, p. 174]
Howell, David G., Alpha, Tau Rho, and Joyce, James M., 1980, Plate tectonics, physiography, and
sedimentation of the Northeast Pacific Region in Field, M, sedimentation of the Northeast Paciic Region, in Field, M. E., Bonma, A. H., Colburn, I. P,
Douglas, R. G., Inge, J. C., eds., Quaternary depositional environments of the Pacitic Coast Lo Douglas, R. . . . Inge, J. C., eds., Quaternary depositional environments of the Pacific Coast Los
Angeles, Calif,, Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 43-53 [Oblique map of the Gulf of Alaska, p. 48, 49]
owell. D. G., and Normark, W. R. 1982 , Sedim
Howell, D. G., and Normark, W. R., 1982, Sedimentology of submarine fans, in Scholle, Peter A.
and Spearing. Darwin, eds., Sandstone depositional environments. Tulsa, Olla, America and Spearing, Darwin, eds., Sandstone depositional environments: Tulsa, Okla,, American
Association of Petroleum Geologits, p. 365 - 404 . [Oblique map of the Navy Submarine fan, Association of Petroleum Geologists, p . 36
California Continental Borderiand, p. 375]
Hopkins, D. M., Nelson, C. H., Bery, R. B. B, and Alpha, Tau Rho, 1976, Physiographic subdivisions
of the Chirikov Basin, northern Bering Sea: U.S. Geological Survey Professional Paper 759-B pi. 2. (Oblique map of the northern Bering Seal
Ingle, James C., Jr., 1970, Itinerary, field trip No. 3, marine geology facilities, central California
Geological Society of America, Cordilleran Section, 66 Anth Annual Meeting, Hayward, Calif, March 25, 1970, 6 p. [Oblique map of Monterey Canyon, California, p. 6] 25, 1970,6 p. [Oblique map of Monterey Canyon, California, p. 6 .
Irwin, W. P., Wolfe, E. W.,., Blake, M. C. Jr., and Cunninham, C. . . Jr., $1974 ;$ Geiogic map of
the Pickett Peak quadrangle, Trinity County, California: U.S. Geological Survey Geologic the Pickett Peak quadrangle
Quadrangle Map GQ-1111.
Johnson, G. L., Vanney, J. R., and Hayes, D., 1982. The Antarctic Continental Shelf - review paper B, no. 4, p. 995-1002. [Obliqueremap of the Ross Sea, Antarctica, p. 1001$]$
Magnan, G. A., ed., 1970, Northerm California's TIMA [Technical Illustrators Management Association
5 exhibit, in IAM IIdustrial Art Methods: New York, N.Y., Syndicate Magaines, Inc., v. 9 , no. 6, p. 20-25. [Oblique map of central San Francisco Bay, p. 21] Maher, J. C.,. 1965, Correlations of subsurface Mesozoic and Cenozoic rocks along the Atlantic coas
Tulsa, Okla., American Association of Petroleum Geologists, 18 p. (Oblique map of the Atlantic ential of the Alantic Coastal Plain and 1971, Geologic framework and petroleum potential of 1 . 18 p . COblique maps of the Atlantic Coastal Plain and continental shelf of North America, pl. 3; Bahama Banks, p. 14
Hudson Canyon, p. 16]
Maher, J. C., and Applin, E. R., 1968, Correlation of subsurface Mesozoic and Cenozoic rocks along the eastern Gulf Coast: Tulsa, Okla, American Association of Petroleum Geologists, 29
[Oblique map of the Gulf of Mexico, pl. 1] [Oblique map of the Gulf of Mexico, pl. 1]
Marlow, M. S., Alpha, Tau Rho, Scholl, D. W., and Buffington, E. C., 1975, Bering Sea shelf, Alaska U.S. Geological Survey Open-File Report 75-1, 2 sheets. Marow, M. S., Garison, L. E., Martin, R. G., and others, 1974, Tectonic transition zone in the
notheastem Caribbean: U.S. Geological Survey Journal of Research, v. 2, no. 3, p. 289-302 [Oblique map of the northeast Caribbean Sea, p. 300]

Bufington, E. C., and Alpha, Tau Rho, 1973, Tectonic history of the westerm Aleutian arc: Geological Society of America Bulletin, v. 84, p. 1555-1574. [Fig. 11
Marlow, M. S., Scholl, D. W., Buffington, E. C. Boyce. R. E. Alpha, Tau Rho. Smith, P. J., an Shipek, C. J., 1970, Buldir depression - a late Tertiary graben on the Aleutian Ridge, Alask Morni, Be Geology, v. 8, p. p. 85-108. [Map p. 86]
Gulf of, Carson, P. R., and Bruns, T. R., 1977, Large submarine slide in the Kayak trough, Gulf of Alaska: Geological Society of America, Reviews in Engineering Geology, v. 3, p. 137 148. [Map p. 147$]$
ore, G. W., and del Castillo, Luis, 1974, Tectonic evolution of the southerr Gulf of Mexico Moore, G. W., and del Castillo, Luis, 1974, Tectonic evolution of the southern Gulf of Mexice
Geologic Society of America Bulletin, v. 85, p. $607-618$. IOblique map of Bahia de Campeche Mexico, p. 6.88]
Moore, James G., Fle
Moore, James G., Fleming, S. H., and Phillips, J. D., 1974, Preliminary model for extrusion and nifiting
at the axis of the Mid-Atlantic Ridge. Geology at the axis of the Mid-AAtantic Ridge: Geology, v. 2, no. 9, p. 437.404. [Map p. 439]
Moore, James G., Lipman, Peter W.. Swanson, Donald A., and Alpha, Tau Rho, 1981, Growth of lava domese in the crater, June-.COtober 1980, in Lipman, Peter W.,. and Mullineaux, Don R ., eds.
1981, The 1980 eruption of Mount St. Helens: U.S. Geological Survey Professional Paper 1250 [Map p. 543$]$
Moore, J. G., Nokleberg, W. J., Chen, J. H., Grity, G. H., and Saieeby, J. B., 1979, Geologic guic Moore, J. G., Nokleberg, W. J., Chen, J. H., Grity, G. H., and Saleeby, J. B,, 1979 , Geelogic guide
to the Kings Canyon Highway, central Sierra Nevada, California: Geoological Society of America Cordilieran Section, Annual Meeting, San Jose, Calif., April 1979. [Oblique map of the Sequo Moris, H. T., and Lovering, T. S., 1979, General geology and
 Moss Landing Marine Laboratories, 1976, Information brochure: Moss Landing, Calif., 25 p. [Oblique map of Monterey Bay, frontispiece)
problems: Washington, D.C., National Academy of Sciences, 302 p. .Oblique map of the Aleutian-Kamchataka convergence, north Pacific Ocean, p. 30, southerm California borderland, 31: sea ice and submarine topography p. 40: Astoria Canyon, Oregon-Washington, p. 41]

Nelson, C. H., Carlson, P. R., Byrne, J. V., and Alpha, Tau Rho, 1970, Development of the Astoria Canyon-tan physiography, and comparison with similar systems: Marine Geology, v. 8, no. 3-4 p. 259-291. [Map p. 260

Nelson, C. F., and Nilson, Tor H., 1976, Depositional trends of modern and ancient deep-sea fans
in Whitaker, J. Pennsylvania, Dowden, Hutchinson, and Ross, Inc., Benchmark Papers in Geology, v. 24, 388-410. [Oblique map of Astoria Canyon, Oregon-Washington, p. 390]
mern, Studies Map MF-1135.
Normark, W. R., Alpha, Tau Rho, Hess, G. R., and Lichtman, G. S., 1978 , Map showing the cres of the East Pacitic Rise near the mouth of the Gulf of California: U.S. Geological Survey Open
File Report $78-350,1$ sheet File Report 78-350
mark, W. R., and Hess, G. R., 1980 , Quaternary growth patterns of California submarine fans
in Field, M. E., Bouma, A. H., Colb needa, M.E., Bouma, A. H., Colburn, I. P., Douglas, R. G., Ingle, J. C., eds., Quaternary and Mineralogists, Pacific Section, p. 201-210. IOblique map of the Navy fan,

Normark, W. R., Piper, D. J. W., and Hess, G. R., 1979, Distributary channels, sand lobes, and
mesotopography of Navy submarine fan, Califormia borderland, with applications to ancient fan mesotopography of Navy submarine fan, $\mathbf{7 7 4}$. Mia borderlana, with applicaions to ancient fa sediments: Sedimentology, v. 26, p. 749-774. [Map p. 764]
Perlman, David, 1976, Report on sea exploration - earth's encircling wound: San Francisco
Chronicle, Thursday, February 19, 1976, p. 4. IObliaue map of the Mid-Atlantic Ridge, North Atlantic Ocean]
Peck, D. L., 1984, The U.S. Geological Survey programs and plans in the EEZ, chap. 6,in Symposium Proceedings: A National Program for the Assessment and Development of the Mineral Resources
of the United States Exclusive Economic Zone, November 15-17, 1983: U.S. Geoogical Survey of the United States Exclusive EConomic Zone, November 11-1
Circular 929, p. $55-81$. [Oblique map of the southers California borderland, p. 64]
éwé Troy 1975 Outernary geology of Alaska: US Gelogical Survey Protessional Paper 835 ,
[Obique map of Nuka Bay, Alaska, p. 33]
phenomena v. 1 of of Voight. Barry., ed., Rockslides and avalanches. Amsterdam Holland Elseiver, p. 277-314. [Map p. 283]
Quiterno, Paula, Carlson, P. .., and Molnia, Bruce F., 1980, Benthonic foraminifers from the easter Gulf of Alaska, in Field, H. E., Bouma, A. H., Colburn, I. P., Douglas, R. G., Ingle, J. C., eds., Quaternary depositional environments of the Paciific Coast. Los Angeles, Calif., Society of
Economic Paleontologists and Mineralogists, Pacific Section, p. 13-21. [oblique maps of part of Kayak trough. Gulf of Alaska, p. 18; Pamplona Ridge, Gulf of Alaska, p. 19]
Reimnit, Erk., 1971, Surf-beat origin for pulsating bottom currents in the Rio Ba
Canyon, Mexico: Geological Society of America Bulletin, v. 82, p. 81-90. [Map p. 85] Reimnita, Erk, and Barnes, P. W., 1974a, Sea ice as a geologic agent on the Beaufort Sea shell, Research, San Francisco, Calif. IObblique map of sea ice and submarine topography, p. 20, 22, 23, 38]
1974b, Sea ices as a geologic agent on the Beaufort Sea shelf of Alaska, in Reed, J. C., ed., The coast and shelf of the Beaufort Sea: Arlington, Virginia
Reimnitr, Erk, Barnes, P. W., and Alpha, Tau Rho, 1973, Bottom feature and difting ice on the Arctic shelf, Alaska: U.S. Geological Surve)
Reimnitz, Erk, Toimil, Larry, and Barnes, P. W., 1978a, Arctic continental shelf morphology related
to sear to sea-ice zonation, Beaufort Sea, Alaska: Marine Geology, v. 28, no. 3-4, p. 179-210. [Oblique
map of sea ice zonation, p. 186-187] map of sea ice zonation, p. 186-187]
1978b, Stamukhi Zone proces
Journal of Petroleum Technology, v. 30, p. 982 - 986 . [Oblique map of sea ice zonation, p. 983$]$ Journal of Petroleum Technology, v. 30 , p. 982 -986. [Oblique map of sea ice zonation, p. 983$]$
Reineck, H. E., and Singh, Z. B., 1973, Depositional sedimentary environments: Berin, Germany Springer-Veraa
Roberts, Albert E., 1975, Selected geologic literature on the California Continental Borderland and adiacent areas to January 1, 1975: U.S. Geological Survey Circular 714, 116 p . [Southern
California borderland cover]
Rosenfeld, Charles, and Cooke, Robert, 1982, Earthirie, The eruption of Mount St. Helens Cambridge, Mass., Massachusetts Institute of Technology Press, 155 p. [Oblique map of part of
Mount St. Helens, Washington, p. 1] Rutledge, Jim, 1975, Physiography of the southern California Outer Continental Shelf: Los Angeles, Ruttedge, Jim, 1975, Physiography of the southern California Outer Contin
Calif,. Dames and Moree, Elements, v. 4, no. 1, 19 p. [Map p. 10-11]
Calif, Dames and Moore, Elements, , v. 4, no. 1, 19 p. [Map p. $10-11$]
Salitore. Evelyn D., ed., 1975 , Calfornia yearbook, bicentennial edition: California Almanac
Comany Company, 384 p. [Oblique emap of the southern California borderland, p. 168]
Scholl, D. W., Alpha, Tau Rho, Marlow, M.S. and Buffington, E. C. 1974, Base

Coll, D. W., Alpha, Tau Rho, Marlow, M.S., and Buffington, E. C., 1974 , Base map of the Aleutian-
Bering Sea region: U.S. Geoological Survey Miscellaneous Investigations Map L-879, scale
1.250 Bering Sea region: U.S. Geological Survey
$1: 2,500,000$. [Oblique map of the Bering Sea]

Schoil, D. W., Buffington, E. C., Hopkins, D. M., and Alpha, Tau Rho, 1970 , The structure and ongin Oblique mans of Bering Canyon, 191. Pribiof Canyon p. 197. 7. . . no. 3-4, p. 187-21 exploded diagram of Pribilof Canyon, p. 200; exploded diagram of Zhemchug Canyon, p. 203] 1976, The structure and origin of the large submarine canyons of the Bering Sea, in Whitaker J. H., ed., Submarine canyons and deep-sea fans, moderm and ancient: Stroudsburg,
Pa., Dowden, Hutchinson, and Ross, Inc., Benchmark Papers in Geology, v. 24, p. $97-121$ Pa., Dowden, Hutchinson, and Ross, Inc., Benchmark Papers in Geology, v. 24, p. $97-12$
Obbique maps of Bering Canyon, p. 101; Pribiliof Canyon, p. 107; Zhemchug Canyon, p. 107, exploded diagram of Pribilof Canyon, p. 110; exploded diagram of Z Lhemechus Canyon, p. 1313
and
exploded diagram or Pnolor Canyon, p. A0, exploded caiagram or 2emchug Canyon, p. 1 .
Scholl, D. W., Hein, J. R., Marlow, M., and Buffington, E. C., 1977, Meiii sediment tongue: North
P Pacific evidence for limited movement between the Pacific and North American Plates: Geological
Society of America Bulletin, v. 88, no. 11, p. 1567-1576. IOblique map of Aleutian-Kamchatka convergence, north Pacific Ocean, p. 1570]
[Scientific staff], 1971, Deep Sea Drilling Project, Leg 18: Geotimes, v. 18, no. 10, p. 12-15. [Oblique map of the Aleutian trench, p. 15]
States, v. 8, no. 4, p. 169-170 ine southern ocean, 1972-1973: Antarctic Journal of the United 1973b, Les 28, Deep sea drilling in the southerm ocean: Geotimes, v. 18, no. 6, p. 10-24 TOAD Francis P 1973 Submanine geolo, 1 N. 20, 21]
of southern California borderland, p. 234; central Aleutitian arc, p. 245; Monterey Canyon, p. 316 Astoria Canyon, p. 318]
epard Francis P., 1977, Ge
Shepard, Francis P., 1977, Geological oceanography: New York, N.Y., Crane Russak, and Co., Inc.,
214 p. Oblique maps of lcy Bay Alaska, p. 105 ; southem Californa borderland p. 120, 140 , 214 p. DObique maps of lcy Bay Alaska, p. 105;
Bering Canyun, p. 172; Monterey Canyon, p. 174]
Shepard, Francis P., and Wanless, H. R.. 1977, Our changing coastlines: New York, N.Y., McGraw
Hill, 579 p. [Obilique map of Icy Bay Alaska, p. 410] Silver, Eli A., Case, James E., and MacGillavary, H. J. J., ver, Eli A., Case, James E., and MacGillavry, H. J., 1975, Geophysical study of the Venezuel
borderland: Geological Society of America Bulietin, v. 86, p. 213-266. [Map p. 216, 217]

Smith, Robert E., ed., 1974, Proceedings of marine environmental implications of offshore driling in the eastern Gulf of Mexico: State University System of Flonia, Insitute of Oce ograph
\qquad Snavely, P. D., and MacLeod, N. S., 1971, Visitor's guide to the geology of the coastal area near
Beverly Beach State Park, Oregon: Ore Bin v. 33, no. 5, p. 85-105. [Oblique map of Newport Oregon, part of map p. 88]
Stewart, Richard J., 1977, Neogene tubbidite sedimentation in Komandor Ber Sea: American Association of Petroleum Geologists Bulletin, v. 61, no. 2, p. 192-206. [Oblique map of the Aleutian-Kamchatka convergence, north Pacific Ocean, p. 193]
1978, Neogene volcaniclastic sediments from Atka Basin, Aleutian Ridge: America Aleutian arc, part of map p. 88
Stowe, Keith S., 1983 , Ocean Science: New
of the Monterey Canyon, Calif, p. 971
of the Monterey Canyon, Calif, p. 97$]$. Stringer, William J., 1978, Fast ice terminology, in Arctic sea ice, part 1, report G-D-Z, Glaciologica Tilling, Robert LI., Koyanagi, Robert Y., Lipman, Peter W., Lockwood, John P.., Moore, James G., an Sawson, Donald A., 1976, Earthquake and related catastrophic events, Island of Hawaii November 291975 - a prelinay report. US. Geological Survey Circular 740, 33 p . IOblique map of the Island of Hawaii, Hawaii, p. 31 l
von Huene, R., 1969, Geologic structure between the Murray Fracture Zone and the Transvers Ranges: Marine Geology v. 7. no. 6, p. 475-499. [Oblique map of the Murray Fracture Zone fig. 2]. R, and Shor, G. G., 1969, The structure and tectonic history of the eastern Aleutian
von Huene, R,
Trench. Geological Society of America Bulleetin, v. 80, no. 10, p. 1889-1902. Oblique map of the eastern Aleutian Trench, pl. 2] Wool, Fender J., 1971, Monterey Bay faces two earthquakes hazards: Monterey Peniinsula Herald Tuesday, March 16, 1971, p. 5. [Oblique map of Monterey, Canyon, Calif.]

Index to oblique maps, in alphabetical orde

```
ALASKA AND NORTH PACIFIC
7 Alaska, Gulfof
Aleutian-Kamchatka convergence
Aleutian arc, central 
Aleutian Trench, part of eastern
Amlia coridor
Beaufort Sea and Brooks Range
l
Bering Sea, northern
Bering Sea shelf, physiography
Bering Sea shelf, physiography and cross sections
l
Buldir depression
Emperor Se
Icy Bay, Alaska
Kayak Trough, Alaska
Pamplona Ridge, A
Passage Canal, Alaska
Pribilof Canyon, Bering Sea 
Problof anyon, exploded
Reindeer Island, Alaska
MResurection Bay, Ala
l
Zhemchus Canyon, Bering Sea 
```

39 PACIFIC NORTHWEST
41 Astoria Canyon, Oregon-Washington
Cane Blanco, Oregon
Mount Baker, Washington
Mount Baker, Washington
Mount St. Helens, Washington, 1979-80, sequential diagrams

```
Mount St. Helens and vicinity, 1980
    Mount St. Helens, effects of the eruption through June 1980
    Mount St. Helens,, landslide-eruption of May 18, 1980
Mount St. Helens, changes in its summit crater, summer 1980
Mount St. Helens, changes in its summit crater 1981
Mount St. Helens, changes in its summit crater 1982
Newport, Oregon
Strait of Juan de Fuains and Hells Canyon, Idaho and Oregon
Strait of Juan de Fuca and Olympic Mountains, Washington
Umpqua south dune field, Oregon
```

 egon, comparative diagrams
 67 CALIFORNIA
69 Carmel Canyon and Point Lobos
Central San Francisco Bay
Long Valley, Mono and Inyo Counties
Long Valley, Mono and Inyo Counties
Monarch Divide, Kings Canyon National Park
Mono-Inyo Craters
Monterey Bay
Monterey Bay
Monterey Bay, souther
Monterey Bay region, basement topography
Monterey Bay regi
Monterey Canyon
Monterey Canyon
Mount Whitney and vicinit
Muray Fracture Zone
Muray Fracture Zone
Northern California
Northern California continental margin
Pickett Peak quadrangle
Sequoia and Kings Canyon National Parks, compilation techniques
Sequoia and Kings Canyon National Parks,
Sequoia and Kings Canyon National Parks
Sequoia and Kings Canyon Natic
Southern California borderland
Southern California borderland
Southern California, Santa Barbara to San Diego
Southern California, Sonta Barbara to San Diego
Suprafan, California Continental Borderland
Ventura-Oxnard offshore
Yosemite National Park
Yosemite National Park, Tioga-aged glaciation
95 HAWAll AND TH
$\begin{array}{lll}97 & \text { Island of Hawaii } \\ 98 & \text { Loihi Seamount and Papau landslide, Hawai }\end{array}$
Loini Seamount and Papau la
Rabaul, Papua New Guinea
Solomon ISlands
Southwest Pacific
Tong
$\begin{array}{ll}102 & \text { Southwest Pacific } \\ \text { Tonga, Kingdom of } \\ \text { 103 } & \text { Vanuatu, Republic of }\end{array}$
105 CARIBBEAN AND GULF OF MEXICO
$\begin{array}{cc}105 & \text { CARIBBEAN AND GULF OF } \\ \mathbf{1 0 7} & \text { Bahía de Campeche, Mexico } \\ \mathbf{1 0 8} & \text { British Honduras }\end{array}$
$\begin{array}{ll}108 & \text { British Honduras } \\ 109 & \text { Caribean arc - Hispaniola to Guadaloupe } \\ 110 & \text { Caribbean Sea nottheast }\end{array}$
110 Caribbean Sea, northeast
111 Mexico, Gulf of
112 Mexico, Gulf of
13 other places
$\begin{array}{ll}114 & \text { Almeria, España } \\ 115 & \text { Atiantic Coastal Plain and continental shelf of North America }\end{array}$
$\begin{array}{ll}115 & \text { Altantic Coastal Plain and } \\ 116 & \text { Atlantic continental margin } \\ 117\end{array}$
$\begin{array}{ll}117 & \text { Atantic contine } \\ 118 \\ \text { Bahama Banks }\end{array}$
$\begin{array}{ll}117 & \text { Bahama Banks } \\ 118 & \text { Blake Escarpment } \\ 119 & \text { East Pacific Rise }\end{array}$
119 East Pacarificment
120 Fise
121 Falkland Plateau regio
$\begin{array}{ll}120 & \text { Falkland Plateau region } \\ 121 & \text { Huascarán Mountain, Peru }\end{array}$
122 Huascarán Mountain, Peru
$\begin{array}{ll}123 & \begin{array}{l}\text { Hudson Canyon, } \\ \text { Mid-Atlantic }\end{array} \\ \text { Ridge } \\ \text { Rio Balsas }\end{array}$
$\begin{array}{ll}124 & \text { Rio Balsas Canyon, Mexico } \\ 125 & \text { Ross Sea Continental Shelf, Antarctica }\end{array}$
126 Verde River, Arizona
127 COGNItIVE drawing

128	Glacial erosion
129	
129	

129 Moroccan Continental shelf
$\begin{array}{ll}129 & \text { Moroccan Continental shelf } \\ 130 & \text { Sea ice and submarine topography } \\ 131 & \text { Sea-ice zonation }\end{array}$
$\begin{array}{ll}1321 & \text { Sari-ice zonation } \\ 132 & \text { Tintic Mining District, Utah } \\ 133 & \text { Wave generation }\end{array}$

Index to oblique maps, in geographic order

5 ALASKA AND NORTH PACIFIC
7
17 $\begin{aligned} & \text { Gulf of Alaska } \\ & \text { Bering Sea }\end{aligned}$
Aleutian-Kamchatka convergence
Emperor Seamounts
Emperor Seamounts
Hess Rise
Hess Rise
Amlia corrido
Bering Sea shelf (3 maps)
Bering Sea shelf, southern
Eastern Aleutian trench
Eastern Aleutian trench
Bering Sea, northern
Beaufort Sea and Brooks Range
Barrow Canyon
Reindeer Island, Alaska
Zhemchug Canyon, Bering Sea (2 maps)
Pribilof Canyon, Bering Sea (3 maps)
31 Pribilof Canyon, Bering Sea (3 maps)
16 Bering Canyon, Aleutian Islands
11 Aleutian Trench, part of eastern
Aleutian Trench, part of easte
Resurrection Bay, Alask
Passage Canal, Alaska
Port Valdez, Alaska
Porr Valdez, Alaska
Kayak Trough, Alaska
Pamplona Ridge, Alaska
Pamplona Ridge, A
Icy Bay, Alaska
Buldir dell
${ }^{23} \quad$ Buldir depression
${ }_{43}^{62}$ Strait of Juan de Fuca and Olympic Mountains, Washington Mount Baker, Washington Astoria Canyon, Oregon-Washington
Willapa Bay Washingto Newport, Oregon

44	Mount St. Helens, Washington (8 maps)
63	Umpqua south dune field, Oregon
42	Cape Blanco, Oregon
61	Seven Devils Mountains and Hells Canyon, Idaho and Oregon
67 CALIFORNIA	CALIFORNIA
83	Northern California continental margin
84	Pickett Peak quadrangle
7	Central San Francisco Bay
79	Monterey Canyon
76	Monterey Bay
77	Monterey Bay, southern
78	Monterey Bay region, basement topography
80	Monterey Canyon, stages of slumping
69	Carmel Canyon and Point Lobos
71	Long Valley, Mono and Inyo Counties
75	Mono-Inyo Craters
93	Yosemite National Park
94	Yosemite National Park, Tioga-aged glaciation
86	Sequoia and Kings Canyon National Parks
74	Monarch Divide, Kings Canyon National Park
81	Mount Whitney and vicinity
88	Southern California borderland
82	Murray Fracture Zone
89	Southern California, Santa Barbara to San Diego
90	Southern California borderland, northwestern part
92	Ventura-Oxnard offshore
91	Suprafan, California Continental Borderland
hawail and the south pacific	
97	Island of Hawaii
98	Loihi Seamount and Paupau landslide, Hawaii
01	Southwest Pacific

99
100
103
Rabaul, Papua New Guin
103 Vanuatu, Republic
Tonga, Kingdom of

105 CARIBBEAN AND
111 Gulf of Mexico
108 Bahia de Campeche, Mexico
109 Caribbean arc - Hispaniola to Guadaloupe
110 Caribbean Sea, northeast
110 Caribbean Sea, northeast
113 OTHER PLACES
115 Atlantic Coastal Plain and continental shelf of North America
$\begin{array}{ll}116 & \text { Atlantic coantinental margin } \\ 117 & \text { Bhama Banks }\end{array}$
$\begin{array}{ll}117 & \text { Bahama Banks } \\ 118 & \text { Blake Escarpment }\end{array}$
$\begin{array}{ll}118 & \text { Blake Escarpment } \\ 122 & \text { Hudson Canyon, } \\ 114 & \text { Almeria, } \\ 10 \text { España }\end{array}$
$\begin{array}{ll}114 & \text { Almeria, España } \\ 119 & \text { East Pacific Rise }\end{array}$
$\begin{array}{ll}119 & \text { East Pacific Rise } \\ 121 & \text { Falkland Plateau } \\ 121 & \text { Huascarañ } \\ & \end{array}$
121 Huascarán Moutntain,
123 Mid-Atlantic Ridge
124 Rio Balsas Canyon, Mexico
$\begin{array}{ll}125 & \begin{array}{l}\text { Ross sea Continental Shellf, Antarctica }\end{array} \\ 126 & \text { Verde River, Arizona }\end{array}$
127 COGNITIVE DRAWINGS
Geographic continuity is not applicable because the drawings illustrate a concept or process, and they may or may not represent a specific
geooraphic place. geographic place.

