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ABSTRACT This study suggests an algorithm that creates ASCII art from a binary image. Our approach aims

to generate ASCII art in a short period of time using multi-threaded local optimizations for a text placement

method instead of a global optimization. To generate ASCII art from various images, the original image

is first converted into a thinned black and white image suitable for generating ASCII art. We then extract

the pixel orientations from the input image and introduce a character similarity scheme that considers these

orientations. We also propose a novel text placement algorithm to complete ASCII art in a swift manner. Our

final system suggested here can generate ASCII art using a variety of proportional fonts. The results of the

experiments of this study show that the suggested system can generate ASCII art much faster than existing

state-of-the-art techniques using proportional fonts.

INDEX TERMS ASCII arts, black-and-white image, grayscale image, image processing.

I. INTRODUCTION

Frequent transmission of large-sized images consumes a large

amount of data on networks and websites. Under a slow

Internet environment, using ASCII art images can be of great

use. Since ASCII art images consist of text, the data size

is much smaller than that of general bitmap-based images.

In addition, since ASCII art is a text-based image which

also allows users to easily edit and make various revisions

to it. Thanks to these characteristics, ASCII art is frequently

used in web pages that do not support image uploading, and

some artists create cartoon-style art by properly arranging the

ASCII art images and text.

ASCII art can largely be classified into two sectors:

structure-based and tone-based (see Figure 1). Structure-

based ASCII art mainly represents the structure of 2D line

drawing images articulated with outlines. Tone-based ASCII

art, on the other hand, expresses the brightness or color of

a reference image in a more realistic manner. In general,

the structure-based method is a more complicated scheme

than the tone-based method, as it is necessary to understand

the structure of the reference image to create the ASCII art

The associate editor coordinating the review of this manuscript and

approving it for publication was Lefei Zhang .

FIGURE 1. Example of structure-based ASCII art (a) and tone-based ASCII
art (b). Example of tone-based ASCII art was taken from Markuš et al. [1].

images. In this study, we propose a system for generating

structure-based ASCII art.

When artists manually create a structure-based ASCII

art image, they usually place the appropriate characters on

top of the original image. This is a time consuming and

tedious task. Thankfully, there are several ways to convert

reference images to structure-based ASCII art on behalf of

the artists [2]–[5]. Although some of these systems show

decent quality in the output, it takes a long time to run the

system. Recently, an ASCII art synthesis system using a
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Convolutional Network (CNN) was proposed [6]. Based on

machine learning, the system can reproduce the ‘style’ of the

artist-created reference images. However, machine learning

based system cannot reproduce a style that system did not

learn. This means that a set of reference images are necessary

for every font type or size.

In this paper, we suggest a new automatic ASCII art

generation system that complements the shortcomings of

other conventional methods. Our system aims to achieve the

following:

• Quality: The system can create ASCII art of high quality.

• Efficiency: The results are created in a short period of

time so that the artist can edit them immediately.

• Adaptability: The system can create ASCII art stably

regardless of the font type or size.

Two algorithms are at the heart of our system: one is to

extract the orientation features of the input image and use

it for matching the most suitable characters, and another is

to place such character on the input image stripes, which

is called the text placement algorithm. The text placement

suggested in this study was inspired by how artists manually

make ASCII art. The suggested system does not just place the

character images from the left to the right side of the input

image stripes. Instead, it places the most suitable character

in the local optimum location of the stripe and repeats the

process. With this greedy algorithm, the suggested system

can generate ASCII art in a short period of time using a multi-

threaded implementation. Since the suggested algorithm does

not use a neural network or machine learning, it can immedi-

ately respond to changes in font type or font size, or changes

in the type or number of characters used.

The results generated from the suggested algorithm were

compared with a state-of-the-art ASCII art generation sys-

tem [5] and the CNN-based system [6]. The results show

that the suggested system can generate ASCII art at a much

faster rate than the existing system. Our contributions can be

summarized as follows:

• A novel character-image matching algorithm extracts

orientation features from the image and finds the

most suitable characters through comparison with such

features.

• An efficient text placement algorithm places characters

on the stripes of the image. This algorithm allows us to

generate ASCII art from a 512 × 512 input image in up

to 8.7 seconds.

II. RELATED WORKS

A. STRUCTURE-BASED ASCII ART SYNTHESIS

There have been several studies on ASCII art generat-

ing methods. Xu et al. [2] created ASCII art from an

input image using the alignment-insensitive shape simi-

larity (AISS) metric and constrained deformation model.

Miyake et al. [3], proposed real-time ASCII art genera-

tion based on the glyph matching method using Normalized

Cross-Correlation (NCC) or Histogram of OrientedGradients

(HOG). However, these methods can only be used in envi-

ronments where fixed-width fonts are used: not in an envi-

ronment using proportional fonts. To create ASCII art in

a proportional font environment, a similarity metric and

dynamic programming-based optimal placement method

using multi-orientation phase congruency model is suggested

(Xu et al. [4]). Xu et al. [5] further improved the output qual-

ity using non-classical receptive field (non-CRF) modulation

to extract structures from an image to create ASCII art. The

system can generate ASCII art from natural photographs as

well as from line drawing images. However, it takes much

time to create ASCII art of a decent quality with this system.

To tackle this issue, we suggest a new similarity metric and a

fast text placement method in this study.

Akiyama suggested an ASCII art generating method using

a CNN [6]. This study used the ASCII art created by a human

artist and a rough sketch converted from the ASCII art to train

the network. Although this method was able to produce art of

good quality, the network was not trained with hand-drawn

original images but instead with system-generated images.

Such a bias in the dataset may decrease the adaptability of

the learned network, for example, when the original image

has a dark background. Moreover, only particular fonts-based

ASCII art can be generated.

B. STRUCTURE LINE DETECTION

To produce structure-based ASCII art, it is necessary to detect

the structure lines from the input image. One of the simplest

ways of structure line detection is to use an edge detector

such as the canny edge detector [7]. However, edge detectors

depend largely on the contrast and scale of the image. Several

studies have proposed methods to extract structure lines from

input images. Kang et al. [8] used a flow-based difference

of gaussian (DoG) filter to create a line drawing style image

from an input image. Arbelaez et al. [9], proposed a con-

tour detector that combines multiple local cues with a spec-

tral clustering-based globalization framework. Kokkinos [10]

proposed a boundary detection system using a deep CNN.

Simo-Serra [11] suggested a CNN-based framework that con-

verts a pencil drawn rough sketch to a clean line drawing

image. Li et al. [12], proposed a deep network model that

can remove the texture from a manga image with screen

patterns and extract structural lines from it. This study used

the method employed by Kang et al. [8] in generating a

structure line image from an original image.

C. GENERATING FEATURES

The structure line detection algorithm can extract the struc-

ture lines of the original image, but it is difficult to use those

lines for ASCII art synthesis. The thinning algorithm can be

used to facilitate the comparison between structure lines and

ASCII characters. Studies on thinning have been around for

several decades, with a variety of thinning algorithms being

proposed [13]–[16].

An image similarity metric can be used in matching the

structure lines with the ASCII characters. For example, SSIM
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and its extensions compare the luminance, contrast, and struc-

ture of an image to calculate the similarity [17]–[20]. Mean-

while, a phase congruency-based similarity metric has also

been proposed [21]. Phase congruency is a technique used for

the state-of-the-art technique of ASCII art synthesis [4], [5].

The SIFT [22] identifies key points from gaussian differences

of an image for image matching. In this study we used an

image’s pixel orientation-based similarity metric [23]. This

method can identify the orientation of the pixels with accu-

racy using the surrounding pixels’ data, and can be applied to

fingerprint recognition, etc [24].

D. IMAGE STYLIZATION
Research regarding image stylization, which translates input

images into different styles of images, has been conducted for

several years and considerable advances have been achieved.

Decarlo and Santella [25] converted an input image to a

line-drawing style image through image segmentation and

edge detection, while Lu et al. [26] generated a pencil

drawing style image from a natural image. Kim et al. [27] pre-

sented a GAN-based system that uses color tag information

to paint the image, Chen et al. [28] suggested a fully convolu-

tional network to perform various advanced image processing

operations, Fischer et al. [29] presented stylization of an

augmented reality screen, and Lin et al. [30] proposed an

abstraction layout that generates a flat design style black and

white image in the 3D model. However, few studies on image

hatching into hundreds of image patches, such as ASCII

art synthesis, have been reported. This study aims to divide

the input image into various types of rectangular character

images.

III. IMAGE PREPROCESSING

A. STRUCTURE LINE EXTRACTION
In general, the font characters used for ASCII art are a one-

pixel-width binary image. However, most of the input images

are not binary images. Therefore, it is necessary to extract

the structure lines from the input image and convert those

to one-pixel-width binary images. In this study, the method

employed by Kang et al. [8] was used in extracting structure

lines from the input image. Using this method, the edge tan-

gent flow and flow-based DoG filter can be used to generate a

line drawing style image preserving the structure of the input

image. For this study, the parameters were adjusted properly

to generate the binary image.

B. THINNING
Since the structure line image is not a one-pixel-width image,

a thinning operation is required tomake it easier to comparing

with font characters. However, before the thinning operation,

the noise of the structure lines should first be removed.

We used the pre-thinning method employed by Dong et al.

[14] for this de-noising operation. Under this pre-thinning

method, the value of the p changes according to the value

of its eight neighboring pixels (see Figure 2). The p value

FIGURE 2. Labelling 8 neighboring pixels of p.

FIGURE 3. Qk template for mt score calculation (k ∈ [1..4]).

changes as follows:

Bodd (p) = p1 + p3 + p5 + p7. (1)

p′ =











0 (Bodd (p) < 2)

1 (Bodd (p) > 2)

p otherwise

(2)

Jang and chin [31] suggested mt scores to measure the

convergence of a thinned image Sm. mt can be defined as

follows:

mt = 1 −

(

Area
[
⋃

k∈[1..4] SmQ
k
]

Area [Sm]

)

, (3)

where Area[] counts the number of one-pixels of the skeleton

and Qk is the pattern given in Figure 3. This means that the

fewer Qk patterns that Sm has, the closer the Sm is to the

perfect unit skeleton. In this study, KMM thinning [15] was

used since the results of the thinning had fewer Qk patterns.

Figure 4 shows the results of several thinning algorithms.

IV. OVERVIEW

Our system generates ASCII art from the input image of a

one-pixel-width binary image. To generate ASCII art, the

suggested system uses additional character data. The system

can generate ASCII art from various proportional fonts. In our

lab environment, the font chosen for ASCII art was Saitamaar

[32] of 16px height, which is a font frequently used for

displaying ASCII arts.

As illustrated in Figure 5 below, the suggested system

consists of five algorithms. In the feature extraction step,

the local orientation of each pixel is calculated from the

input image. The stripe segmentation step divides the input

image and features into stripes of specified pixel height. The

character score estimation step calculates the character score

for each location of the stripes, and in the text placement

step, character scores are used to place a character on the

stripes. Finally, the ASCII art completion step combines all

the text stripes to create one ASCII art. Details of each step

are described in Section 5 below.
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FIGURE 4. Various thinning operation results: (a) Original (b) Red box of
original (c) Zhang and Suen [13] (d) Dong, et al. [14] (e) KMM [15]
(f) K3M [16].

V. ALGORITHM

This section covers the algorithms of the suggested sys-

tem in detail. Section 5.1 describes the feature extraction,

Section 5.2 the character score estimation, and Section 5.3 the

text placement. The stripe segmentation and ASCII art com-

pletion step simply divides the image and combines it again.

A. FEATURE EXTRACTION

To create ASCII art, a human artist compares an original

image with a character image. To mimic a human artist, the

suggested system extracts features from the input image. The

state-of-the-art technique for generating ASCII art uses a

6-way phase congruency using these features [5]. For sophis-

ticated character score calculations, the suggested system

calculates pixel orientation.

We used the method suggested in [23] for pixel orientation

calculation. First, gaussian blur was applied to the input

image I . We created a blurred image I ′ using a gaussian blur

filter. We set parameters of the gaussian filter as 3 × 3 size

and σ = 0.7 through experiments. The local orientation of the

pixel p on the blurred image I ′ is as follows:

Vx (p) =
∑

(u,v)∈W

Gx
2 (u, v) − Gy

2 (u, v) , (4)

Vy (p) =
∑

(u,v)∈W

2Gx (u, v)Gy (u, v) , (5)

θ ′ (p) =
1

2
tan−1

(

Vy (p)

Vx (p)

)

, (6)

θ (p) =

{

θ ′ (p) +
π

2
, (Vx (p) ≥ 0)

θ ′ (p) , (otherwise)
(7)

where Gx and Gy are the gradients in the x-axis and y-axis

direction of the image andW is an image block containing p.

In this study, we used the scharr filter as a gradient value

and W was set as a square block of 5 × 5 centered around

p. Figure 5 (b) shows an example of the visualized pixel

orientation of the input image. Pixel orientation for every

pixel in I ′ was calculated.

B. CHARACTER SCORE ESTIMATION

For text placement, the character score measures the sim-

ilarity between the character and the image on top of the

image stripes. If the character and the image are perfectly

matched, the pixel value and the pixel orientation value will

be identical. The character match scores can be calculated

based on this idea; however, the pixel orientation can be

defined only around the foreground pixels, not among the

background pixels. Therefore, this study defined the character

match score Sm(c) only when the pixels pc of the character

image c are foreground pixels. Sm(c) is defined as follows:

Sm (c) =
∑

pc∈Wc

Sm (pc, c) , (8)

Sm (pc, c) =











0, (pc /∈ Fc)

0, (pc /∈ Tc)

1p (cos (1θ) + 1) , (otherwise)

(9)

1p =
∣

∣p′
i − p′

c

∣

∣ , (10)

1θ =
∣

∣θ
(

p′
i

)

− θ
(

p′
c

)∣

∣ , (11)

where p′
i and p

′
c are a blurred pixel value of the input image

and the character image, respectively,Wc is a character image

area,Fc is a set of foreground pixels on c, and Tc a set of pixels

on c having a valid 1θ (p) value.

However, if only the character match score is used, other

characters that are not suitable may be matched due to the

overmatched score. As such, we designed the algorithm to

prevent overmatching by introducingmismatch scores. As the

difference between the character pixel value and image pixel

value becomes greater, as well as that between the character

pixel orientation and image pixel orientation, the mismatch

score becomes higher. As with the match score, for the mis-

match score, pc is always 1 because pc is defined only when

among the foreground pixels. Therefore, the mismatch score

Su(c) and character score S(c) are defined as follows:

S (c) = ωuSu (c) − ωmSm (c) , (12)

Su (c) =
∑

pc∈Wc

Su (pc, c) , (13)

Su (pc, c) =











0, (pi /∈ Fc)

2 − p′
i, (pc /∈ Tc)

1 − p′
i + sin (1θ) . (otherwise)

(14)

Here,ωu andωm are weight parameters. The user can easily

control the style of ASCII art by changing these parameters.

Awide range of weighting parameters works reasonablywell.

We set the weight values as ωu = 0.65 and ωm = 1 through

experiments.

C. TEXT PLACEMENT

Placing the text on the image stripes can be a true challenge.

One simple way is to place the characters, one-by-one, from
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FIGURE 5. Overview of our system.

the left to the right of the stripes. This method is intuitive

and simple, but quality may degrade due to differences in

character widths. In order to create ASCII art in a propor-

tional font environment, preceding studies suggest character

placement schemeswhich use dynamic programming [4], [5].

A dynamic programming-based scheme is used for obtain-

ing an optimal solution of the specific quality objective

of the ASCII art [4], [5]; however, this particular class of

dynamic programming algorithms cannot easily be imple-

mented using parallel processing due to data dependencies

between sub-problems.

Therefore, this study proposes a stripe-based text place-

ment algorithm that can generate ASCII art faster through

parallelization. Our algorithm creates ASCII art text stripes

from the stripes of the input image. The stripes of the input

image are obtained by slicing the input image horizontally

into several small images with width w and height h, where

w is the width of the input image, and h(= 16px) is the

font-height in pixel units. The number of stripesN is obtained

by dividing the height of the input image by a stride value

(= 18px) slightly higher than the font-height h to express

gaps between text lines.

The text placement algorithm approach works similar to

the divide and conquer process. To create text stripes, the

character score table calculated in Section 5.2 was used as

input values. For the input score table S[0,W ], the system

divides the table into three subsequences: S[0, l], C , and

S[r,W ]. For each subsequence, text stripes were then repeat-

edly created, where W is each input stripe width, C is the

character with the smallest character score in the score table,

and l and r , are the left and right positions of C , respectively.

If C is a space character, the system checks whether S can be

filled with only space characters, instead of dividing S into

three subsequences.

During the repetitive operations, the system may not be

able to generate text stripes for the subsequence S. For exam-

ple, if the width of the S is 2px and the minimum width of the

C is 3px, the text stripes for S cannot be created. In this case,

the system generates text stripes for another subsequence that

contains the second smaller character C ′ instead of C of the

original subsequence. Since the right-side boundary of the

ASCII art is often not perfectly aligned, it is assumed that

if the input subsequence contains the right-side boundary of

the original sequence, the text stripes can always be created.

Algorithm 1 is the pseudocode of the algorithm proposed in

this study.

Figure 6 compares the results of left-to-right text placement

with that of the proposed algorithm. For the left-to-right algo-

rithm, the structure of the input image may not be reflected

to the same degree as achieved with the suggested algorithm.

For example, if there is a space on the left side of the image,

the ASCII art created will have a discrepancy. The proposed

algorithm, however, places the characters with awell-retained

structure first owing to the use of character scores; hence,

no discrepancy will be found in the generated ASCII art.

VI. RESULTS

The suggested system in this study generates ASCII art from

a one-pixel-width binary image. As the input images, the

Danbooru dataset [33] and Akiyama’s input data [6] were

used. The original image was converted to a one-pixel-width

binary image via the preprocessing described in Section 3.

A total of 752 characters of 16px height Saitamaar font [32]

were used to create ASCII art. Figure 7 below shows the

original image, the preprocessed image, and the ASCII art

generated by the suggested system.

A. PERFORMANCE

The suggested ASCII art generating system was built using

C++, OpenCV library [34]. Our lab environment was a

PC with an AMD Ryzen 7 3700MHz, 32GB main memory,

and NVIDIA Geforce GTX 1080Ti. The system performance

was measured by randomly selecting images with a 512 ×

512 pixel resolution. Table 1 shows the runtime for each

step of the system. The total runtime of the system is shown

in Table 4. The suggested system can generate ASCII art

from the input image in an average of 45.5 seconds under a

single-threaded environment and 10.3 seconds under a multi-

threaded environment.

B. COMPARISON

This section compares our suggested system with the exist-

ing, state-of-the-art ASCII art generation algorithm. For

comparison, the system proposed by Xu, et al., [5] and
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FIGURE 6. Comparison of the left-to-right text placement method and proposed algorithms: (a) Input (b) Left-to-right (c) Proposed algorithm.

Algorithm 1 Overview of Proposed Text Placement

Algorithm

Input: character score table S[0,W ], boundary boolean b

Output: text stripe T

Initialization:

b = true,

B = {‘ ’, ‘ ’}. (half-width and full-width white-space

characters)

1: function GenAA(S[0,W ], b)

2: C = minscore(S[0,W ])

3: while C /∈ B do

4: l, r = location(C)

5: L = GenAA(S[0, l], false)

6: R = GenAA(S[r,W ], b)

7: lf = Filled(L)

8: rf = Filled(R) ∨ b

9: if lf ∧ rf then

10: T = L ⊕ C ⊕ R

11: return T

12: else

13: C = nextcharscore(S[0,W ])

14: end if

15: end while

16: T = FillBlank(S[0,W ])

17: return T

18: end function

Akiyama [6] (as the state-of-the-art process) were used. Even

though it was not possible to obtain the source code or

executable program for Xu et al.’s system, a brief perfor-

mance summary for the system was available. For Akiyama’s

system, we ran the program on a PC having the same lab

environment as ours.

The performance of the Xu et al. system was measured on

a PC with a 2GHz CPU, and 8GB memory. Table 2 compares

the performance of the suggested systemwith that of Xu et al.

TABLE 1. Execution time (milliseconds) of the proposed system by stage:
(a) Feature extraction (b) Stripe segmentation (c) Character score
estimation (d) Text placement (e) ASCII art completion.

TABLE 2. Timing statistics and comparison with the Xu et al. system.

1024× 1024 pixel resolution was used for the input image in

this comparison. Although the CPU clock performance under

our lab environment was only 1.85 times greater than that of

Xu et al., the suggested system was about six times faster,

even with more than 2.4 times more character types.

Figure 8, Table 3, and Table 4 show the compari-

son between Akiyama’s system and our suggested system.

Akiyama employed a system that uses a CNN to create

ASCII art. It generates several ASCII artworks by moving

the original image by one pixel. However, in the suggested

system, the original image is fixed and only one ASCII art

is generated. An image with a 512 × 512 pixel resolution

was used as the input image. According to the results, our

system obtained better Peak Signal-to-Noise Ratio (PSNR)

and Structural Similarity (SSIM) scores than the Akiyama’s

system. This indicates that our system can preserve both the

content and the structure of the input image better than the
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FIGURE 7. Results of the proposed algorithm: (a) Original [33] (b) Structural lines obtained using Kang, et al. [8] (c) Thinned structural
lines (d) Generated ASCII art.

existing system. However, we also notice that the Akiyama’s

system reserves the thin lines of the input image better than

our system in some parts of the image, although this was not

quantitatively reflected in the scores. Since the Akiyama’s

system is a CNN-based algorithm, it relies on many exam-

ples and additional training procedures are required if the
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FIGURE 8. Comparison with the CNN-based method: (a) Input (b) Akiyama’s [6] (c) Ours.

execution environment changes (e.g., when using a different

font). Our suggested system can respond immediately to

changes in the execution environment. Our system also runs

faster; in particular, in a multi-threading environment, ASCII
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FIGURE 9. Generated ASCII art with two different fonts.

TABLE 3. PSNR and SSIM score comparison with Akiyama’s system.

TABLE 4. Timing statistics and comparison with Akiyama’s system.

art can be generated within 12 seconds. This would allow

human artists to make additional edits in a short time.

C. USING DIFFERENT FONTS

In this section, we experimentally show the robustness of the

proposed algorithm using two different fonts (the Satiamaar

and Afta Sans fonts). The Afta Sans font environment uses

380 characters of 16px height. Figure 9 shows the original

image, an ASCII image created with Saitamaar font, and an

ASCII image created with Afta sans font.

VII. CONCLUSION AND LIMITATION

In this paper, we propose a new method for generating ASCII

art in an environment using proportional fonts. Our method

generates ASCII art using a character-image matching algo-

rithm based on pixel orientation feature and a greedy text

placement algorithm. The proposed method can generate

ASCII art from an input image in a short time, regardless

of the type of font or the character set. In particular, our

algorithm can generate high quality ASCII art from images

with many vertical lines or straight lines.

FIGURE 10. Example of a failed attempt to create ASCII art for a human
face.

In addition, our experiments show that ASCII art can be

generated in an average of 10.3 seconds from an image with

a resolution of 512 × 512 pixels in an environment using

multithreading. This timing performance helps the artist to

quickly obtain a high-quality result, allowing the user to add

additional texts or highlighting effects on the fly.

A. DISCUSSION

Using different kinds of characters can improve the quality

of ASCII art. Ideally, the best quality would be achieved

when using many kinds of unicode characters. However,

using too many typefaces can adversely affect the time it

takes to compare them with the input image. Using several

types of similarly shaped characters may bring insignificant

improvement in quality compared to increased calculation

time. Also, some font types do not contain some characters.

These constraints must be considered when determining the

character set to be used in the creation of ASCII art.

B. LIMITATIONS AND FUTURE WORK

Our algorithm expresses the linear structure of an image

well; however, there are structures that the algorithm does

not handle well. For example, detailed and complex curved

structures, such as human eyes, are particularly difficult to

express well. Figure 10 shows the structure line input and the

VOLUME 10, 2022 40685



M. Chung, T. Kwon: Fast Text Placement Scheme for ASCII Art Synthesis

generated ASCII art for an actual human face. The algorithm

expressed the overall structure of the input image relatively

well, but some facial features were missed.

Also, our current system cannot express the tone of the

image. In the case of an artist, ASCII art often includes not

only the structure of the image, but also the tone of the image.

Developing a scheme for subtle tonal representation would be

an interesting future research topic.

Another possible topic for future research is the devel-

opment of real-time creation and authoring tools that can

reflect user constraints. For example, an artist maywant to put

together several ASCII art pieces in an image, or pre-arrange

certain characters in a specific location as a guide. These

authoring tools can enable users to obtain desired results more

quickly and intuitively.

We are also interested in combining the advantages of

machine-learning-based methods. There have already been

studies related to CNN-based ASCII art creation [6]. Meth-

ods, such as online transfer learning, may be able to quickly

produce a network applicable to a new font-set.
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