' 15780240
AT&T Bell Laboratories Document Cover Sheet
for Technical Memorandum

Title: Crabs: the bitmap terror

Author Location Ext. Dept.
Luca Cardelli MH 2C-458 5707 11271
Document No. Filing Case No. Work Project No.
11271-850701-10TMS 39188-11 311403-0101

Abstract

Crabs is a graphic demo which violates most of the assumptions underlying well-structured
window systems. It illustrates both the raw power of bitmap graphics and the restrictions which are
usually imposed on its usage.

Pages of Text 23 Other Pages 2 Total 25
No. Figs. 0 No. Tables 0 No. Refs. 2

AT&T B i — PROPRIETARY
_ U uant o 3

MCSL (11/05/84)

Initlal Distribution Specifications A 11271-850701-10TMS (page i of i)

Compiste Copy Cover Sheet Only
Executive Directors 112 A A Penzias
Directors 112 1127 MTS
Department Heads 1127 f. B. Ardis
MTS 11271
Cl-il Review

This document does not contain any of the types of information listed below and, in accordance with Cl-ll, may be
fumished to AT&T-IS.

mmm-mmmmwmuummuamndwbmm@meumor&mmm
tion of cusiomer premises equipment with ATAT Cammunications network(s) by meens of which requisied cerrier services are fumished.

mmmmurmm.m-wmmmmmmammmmmumumm
wmmwwATlTMmmlmymdmwmmnmﬂInm-hung(-.g..wmbndocrmu
khaNwﬂ-dbMWmm&Wbme«hﬂmﬂmmMnéwmdmMﬂdm\m.

Nongeneric Sciware for Custorner Premises Equipment (CPE) or Enhanced Services « Any software that s of use by Systerns in CPE products or
snhancsd services and that is not generic sotware. /?
Approval: :E' :5 1 7 6
A. G. Fraser Director
Author Signature
Lo Codd /N
Luca Cardelli
For Use by Reciplent of Cover Sheet: _
Computing network users may ordes copies vie the Jbrwy commaend; . Itemal Technical Dacument Service
for information, type “men Rbrary” sfter logon. .
Otherwies: . () AK 2N-02 () HTX-101
() ALC 18-102A () MV 10-40
1 Enter PAN If ATAT-BL (or SS¢ 1 non-ATAT-BL). () C81C-338 () RD 20D-218
2 Fold thia aheet In hall with this side out. () HO 4112 () WH
3 Chack the addreas of your local Intemal Technical Document Service
‘uw;m.mmmnzuomm Please send a compiete O microfiche O paper copy of this document o

Indicsie whether microfiche or paper copy s desired. the address shown on the other side.

S Y M ey e . a—— e Ae chtm S e A% e M i et et TEmemOtRe aw A - @ e

=
=L -

AT&T BELL LABORATORIES — PROPRIETARY
Use pursuant to G.E.|. 2.2

Subject: Crabs: the bitmap terror date: July 1, 1985
Work Program- 311403-0101 - File- 39199-11

from: Luca Cardelli
™: 11271-850701-10TMS

TECHNICAL MEMORANDUM

Laws and violations

A bitmap screen is a graphic universe where windows, cursors and icons live in harmony,
cooperating with each other to achieve functionality and esthetics. A lot of effort goes into making
this universe consistent, the basic law being that every window is a self contained, protected world.
In particular: (1) A window shall not be affected by the internal activities of another window. (2) A
window shall not be affected by activities of the window system not concerning it directly, i.e (2.1)
it shall not notice being obscured (partially or totally) by other windows or obscuring (partially or
totally) other windows, (2.2) it shall not see the image of the cursor sliding on its surface (it can
only ask for its position). '

: Of course it is difficult to resist the temptation to break these rules. Violations can be

.> destructive or non-destructive, useful or pointless. Useful non-destructive violations include
programs printing out an image of the screen, or magnifying part of the screen in a lens window.
Useful destructive violations are represented by the pen program, which allows one to scribble on
the screen. Pointless non-destructive violations include a magnet program, where a moving picture
of a magnet attracts the cursor, so that one has to continuously pull away from it to keep working.
The first pointless, destructive program we wrote was crabs.

History

The history of crabs is presented here with dates, times and people. Not that we kept notes, of
course. The dates and times were reconstructed months later by looking at the creation date of files,
and by what we could remember.

Prologue: Peek

Crabs was written by Mark Manasse and me in November 1982, and evolved in about two
days to its present form. The basic principies of law-violation were investigated a few months .
earlier (August 5, 1982) when Bart Locanthi brought in a Smalltalk videotape. It featured, among
other things, a peek demo. This is a program which looks at a rectangular portion of the screen
(controlled by moving the cursor around) and replicates it in its own screen space in real time.
Beautiful self-referential effects are obtained when this window peeks at itself, or part of itself.
This is a digital version of a video-camera looking at its own tv screen.

Copying data from another window, as peek does, can already be considered a violation of the
rules. But what peek does is even worse because, for a given window, peek will only copy that
part of the window which is visible on the screen (i.e. not obscured by other windows). This
cannot be done by asking a window to access its data: a window is not aware of what parts are
visible. This is stealing data directly from the screen. A well-structured graphics interface will not
allow this, and one has to use low-level routines which are not meant to be used by normal
people. Needless to say, Bart and Mark rushed to implement it. :

1

Step 1: QIX

November 16, 1982, dinner time. Mark wanted to implement the QIX video game for our Blit
terminals [AT&T 85] (knowledge of QIX is assumed here). A QIX screen can get very
complicated, and there are complex rules about how things are allowed to move. Mark started
figuring out clever data structures and algorithms to compute fast line operations. After a while I
said, "Wait a second. Atari is selling arcade QIX machines and there is no way they can have
enough memory to run those algorithms. How are they doing it?" After some thinking: "I bet they
don't keep line segments in data structures, but they draw lines on a bitmap and (gosh!) they just
look at what is in the bitmap to determine line intersections. Gee, this is awful.” Although this was
repulsive to our trained algorithmic minds, that was the germ of the crabs collision-detection trick.
We never implemented QIX.

Step 2: Measles

November 16, later. After a while Mark was convinced and we started implementing. We
decided to start with a single QIX (i.e. a single line with two bouncing dots at the ends) for
simplicity, and to use window boundaries to test the line intersection trick. Mark started dictating
code and I typed it down. This was still a bit too hard, so we simplified it further: forget the QIX,
let's just have little balls floating in the grey area between windows and bouncing against window
borders. We would look at the raw screen bits to determine where a window border was (is there
grey there?). Mark kept dictating, and after a while it was working. It was just about one page of
code. Mark called this measles; we had a lot of measles bouncing around the screen. They were
also bouncing off each other for free because they would see non-grey and change direction. This
was very cheap and convenient: normally one would have to test the position of every measle
against the position of every other measle to determine whether there is a collision.

Step 3: Angry Measles

November 17, very early. Now a problem came up. We have all these measles bouncing
around, and you create a new window and slap it on top of them. Suddenly those poor trapped
measles have nowhere to go, no grey area to run to. They are frozen, paralyzed with terror, and
buried underneath a window. Mark didn't like that at all, and came up with the concept of angry
measles. When a measle gets buried underneath a window, it starts flashing so that it is visible
through the window, as if saying "Hey, get that window off me". It turns out that little flashing
things are very annoying to the human eye, and you would take the window away just to shut them
up. At this point, tired and satisfied, we went to sleep.

Step 4: Hungry Measles

November 17, late morning. 1 slept a lot less then Mark did. When I came in, I started showing
measles to people. They thought it was cute stuff. Some objected to the flashing measles solution.
We had considered many alternatives the night before, and I wasn't totally satisfied with that
solution either. Dave MacQueen said something like "they should eat their way out.” I thought that
was a possibility, only sillier than most. After he left, however, that idea kept coming back. I went
to look at the code (as I said, Mark did the dictating because he was more familiar with Blits then I
was), and discovered that I could implement Dave's suggestion by changing a single line of code.
That seemed to be easy enough, so I did it. When a measle was confronted with a non-gray area, it
would change a little bit of that area to grey. Trapped measles could then build up grey regions and
eventually escape.

The new version, hungry measles, had quite a different character. It wasn't cute, it was
awesome. Those little balls would eat away your windows. If trapped, they would escape, leaving
you wounded. There was no protection against them. You could set up barricades of windows to
protect a part of the screen you wanted to work in, and they would erode them. They would
infiltrate along the borders of the screen, where you are not allowed to put windows. You couldn't
keep them all under control: they were too many, too quick. You couldn't get distracted.

Step 5: Crabs

November 17, afternoon. 1 went up to the unix room and started the program on a terminal.
People gathered, and several expressions of disgust were heard. Jim Weythman said "they look
like crabs!".

Everybody knew instantly that that was the right name for it. I went back to my room and
designed the basic crab icon. Mark came back. With his help, we prepared the crab icon so that it
would look nice on a grey background. We made it so that crabs would move sidewise, and would
turn around according to their prevalent direction. Crab legs would appear to move, because of an
unexpected optical interaction with the grey background. We made the crabs window self-destruct
so that there was no way of stopping crabs, short of rebooting the terminal. Finally, we allowed the
crabs to see the image of the cursor on the screen, so that you could use the cursor to poke them
(they would bite it, but the cursor regenerates). We showed it to Rob Pike again. He said "That's
it, don't touch it any more”.

Impact :

In the next few days, unaware people were exposed to crabs in the comfort of their own
terminal ("Let me show you something..."). The question would always come up: "How do you
stop them?" "You can't" "Yes, but how do you stop them?" Crabs could be downloaded remotely,
on somebody else's terminal, while he was working. They could be left dormant (Rob's idea)
during the lunch hour, to suddenly come up in the middle of the afternoon. They could be timed to
start in the middle of an important demonstration. Once, Rob got them to eat (irrecoverably) part of
a picture an artist was drawing on a Blit. The artist was offended, not by the damage picture, but by
such inexplicable violation of what she considered to be laws of nature. Very soon, nobody could
pass by Bell Labs without being exposed to crabs.

Programs were written to fight crabs on their own grounds. The idea was to run a program
which would neutralize the crabs and allow you to keep working, without rebooting the terminal.
Those program were either unsuccessful, or partially neutralized the crabs but made the Blit
practically unusable. One day we got a program in the mail, called squishcrabs. It would poke the
process table looking for a process which looked like crabs, and kill it. On top of that it would
squish every crab on the screen to a black blob. That was cheating, but it worked. However,
squishcrabs was too dependent on the process and program structure, and stopped working in later
versions of the system.

In the following months Mark and I wrote many crab-like programs. Although interesting in
their own way, none came close to the appeal crabs have. The best use we have for them is to make
them fight overnight against crabs for screen territory, and watch the result in the morning. Crabs
are still undefeated; they either wipe out the opposition, or come to a stable situation with crabs in
one region of the screen and opponents in the other.

Crab Rules
1. Crabs live on grey screen areas.

2. On grey areas they move around randomly, but smoothly. The orientation of the crab icon
is determined by its direction of movement, so that they always appears to move sidewise.

3. When they bump into non-grey areas (including other crabs) they bite them by changing a
little non-grey region into a grey region. After that they bounce off in a new random direction.

The crab-like (or insect-like) random motion on grey areas is obtained as follows. Every crab
step is, in first approximation, determined by the current velocity. Every step has a probability (e.g.
one in seven) of being subject to a deviation. If the deviation takes place, it is a small random
perturbation (e.g. -1, 0 or +1) of the current velocity, independently chosen for the x and y
components. There is a maximum speed (e.g. 7 pixels per step).

Every crab does the following: _
0. Draws itself in the initial position. Starts with a random direction and velocity.
1. Removes itself from the old position (by drawing itself in XOR mode).
2. Determines its new position, based on its current direction and velocity.
3. Looks to determine whether it is about to move on a grey area:
Yes:
3.1. Moves there. Goes to 4.
No:
3.2. Makes the new position grey by drawing a 4x4 grey pattern.
3.3. Does not move. Picks a new random velocity, independent of the current velocity.
Continues at 4.
4. Draws itself (in XOR mode) in the new position, as determined in 3.1 or 3.3.
5. Adds a random deviation to its velocity, as described above.
6. Back to 1.

Crab icons must be drawn in XOR mode, to be able to restore the background when the crab
moves away. Unfortunately, if one draws a crab icon in XOR mode on a gray background, the
crab itself gets greyed.To avoid that, crab icons are prepared so that they will look right when
greyed. This is done by greying them beforehand (two XOR greying operations cancel) in all
possible relative positions of the crab and the grey background. For the grey pattern we use, which
repeats every two pixels vertically and every four pixels horizontally, there are 8 possible relative
positions. :

Some of the black pixels of the background immediately adjacent to a crab icon stick to it,
visually. Depending on the speed of movement, this produces an optical illusion so that the crab
legs appear to move.

0.25 +9.01

Thirty crabs start at the top, threatening the window with pictures of me and mark.
Center: magnified crabs on grey, in all possible displacements w.r.t. the background.

5

B?D TTY STAT TIME
0965 :

ptl4 9:
ptl4
ptl4

pti4
ptl2
pt10
pti9
ptos

NMESIIOOOOSO® OO
QHSB2RB2IRE 8B

I
I
I
]
I
I
I
I
]
R
I
I
S
R

sh .
fusr/jerq/bin/3pi
sh —c /fusr/jerq/bin/321d /usr/jerq/mbin/pads.

égsr/jerq/bin/EZld /usr/jerq/mbin/pads.m

sh
3pi
sh
sh

PSs
sh

sh
/usr/jerq/bin/visman -1
mux

congratulations for the beautiful 3pi feature of shifting the scree

n around.

How did you think of that?

Crabs start eating the top window.

peek ttya7
.nexs_time dead. letter

pen tuid
.profile emacs

peter ufos
Alloc_mod2 faces

player@. icon unixlicence
DavidJordan fie

qix upenn
Mamber guest.profile

referee valis
ToGregHager icon

regexp vaxwrite

On the bottom left there is a "lens" window magnifying an area at the top of the screen.

6

macguts
machines
macHr ite
mail
malloc

mbox

TTY STAT TIME COMMAND

pt14 9:00 sh

ptl4 0:00 /usr/jeraq/bin/3pi

ptl4 9:99 sh —c /usr/jerq/bin/321d /usr/jerq/mbin/pads.

pt%; usr/jera/bin/321d /usr/jerq/mbin/pads.m
p

ptlo
ptlo

L5R55E558

/usr/jerq/bin/vismon -1
mux

I
I
I
S
I
I
I
I
S
R
I
I
S
R

NPPPOOOIO0Q

LNSS222I8E

congratﬁlations for the beautiful 3pi- feature of shifting the scree
n around.
How did you think of that?

peek tty6/

-news_t ime dead. letter macguts
pen twid

.profile emacs machines
peter ufos

Alloc_mad?2 faces macur ite
player®. icon unixlicence

DavidJordan fie mail
qQix upenn

Mamber guest.profile malloc
referee valis

ToGregHager icon mbox
regexp vaxurite

Killer crabs start eating their authors. o
The top part of the screen is full of crab-dirt (a by-product of crab collisions).

7

STAT TI';:; COMMAND

0; /usr/jerq/bin/3pi .
-c /fusr/jerq/bin/321d /usr/jera/mbin/pads.

sr/jerq/bin/321d /usr/jerq/mbin/pads.m

g

89> 4

L8R 55955

~

usr/jerq/bin/vismon -1

I
I
I
S
I
I
I
I
S
R
1
I
S
R

NeoeeOOOOO® ®
JRBB22EEE

2
%

congratglat'ons for the beautiful 3pi feature of shifting the scree
n around.
How did you think of that?

ttyd?
.nens_t ime dead. letter macguts
pen tuwid
.profile emacs machines
peter ufos
Alloc_mod2 faces - macwrite
player®. icon unixlicence
DavidJordan fie mail
upenn
guest.profile malloc
valis
icon mbox
vaxwr ite

A new window is placed on top of three crabs.
The crabs start eating the window from underneath.

8

>
=
-

SRS82282ISE I3

COMMAND

sh
/usr/jerq/bin/3pi
sh -c /usr/jerq/bin/321d /usr/jerq/mbin/pads.

éﬂsr/jerq/bin/BZld /usr/jerq/mbin/pads.m

sh
3pi
ps

sh
Jusr/jerq/bin/vismon -1
mux

ST
I
I
I
S
I
I
I
I
S
R
I
I
S
R

NEXOORIROPO® OO®—

: mail tac .
congratulations for the beautiful 3pi feature of shifting the scree
n around.

How did you think of that?

peek tty@?

-news_t ime dead. letter macguts
pen tuwid ’

.profile emacs machines
peter ufos

Alloc_modZ2 faces macwr i te
player®d. icon unixlicence

DavidJdordan fie mail
qix upenn

Mamber guest.profile malloc
referee valis

ToGregHager icon mbox
regexp vaxwrite

The three trapped crabs are now almost fully visible. This effect of eating from underneath is a
totally unexpected non-obvious consequence of the crabs drawing algorithm.

9

sr/jerq/binlapi
-t Jusr/jerq/bin/321d /usr/jerq/mbin/pads. .

usr/jerq/bin/321d /usr/jera/mbin/pads.m

s 58

B4R 55955

~

usr/jerq/bin/vismon -1

JR8B22Z=2B8 83

I
I
I
S
1
I
I
I
S
R
I
I
S
R

2
X

: mail tac

cunyatglatiuns for the beautiful 3pi feature of shifting the scree
n around. : :

How did you think of that?

ttydr
dead. letter
twid
emacs
ufos
- faces
player@. icon unixlicence
DavidJordan fie
qix upenn
guest.profile
referee- valis
ToGregHager icon
regexp i

vaxwrite

The lens has been moved to show text being eaten away.

10

mac.sdts
machines
macwrite
mail
malloc
mbax

ps
sh
sh E :

usr/jerq/bun/vném_ori -1 .

Js
a:
9:
9:
9:
9:
Q=
°H

Eventually, crabs dominate the screen.
The lens window is almost unharmed because it regenerates.

11

Tracks

A few other crabs-related programs deserve mention. Tracks gives the illusion of invisible
creatures walking on your windows and leaving footprints. There are cats, birds, unicorns and little
people.

Tracks are not left on the background, only on windows. However tracks can cross grey
regions and continue on another window. The random motion is obtained as in crabs, with-slightly
different parameters.

Tracks was written by myself as a crabs spin-off.

12

Ox3E7C ,0x0000, <%
A

€ & O

#*)Feet, 32/WORDSIZE.{{0.,0}.{32.16}} ?:a *
*)Bird, 32/WORDSIZE.{{0,0}.{32.16}}}; "
map bear Word *)Bear, 32/WORDSIZE.,{{0.8},{32.16}}}#
Bitmap horse a {(Word *)Horse,32/WORDSIZE,{{0.0},{32.16}}};

Rectangle ltrackup = {{0,0>.{B,B}}; ©
Rectangle rtrackup = {{8,0}.{16.8}); o
Redtangle ltrackdown = {{8.83,{16.16}>;

A

IENEREN]

A few tracks appear.
Bottom left: magnified track icons.

13

re A2V HIRDS AR, (00}, (32161081 o o'

v

g3y
q{e’a 4818}}’*,‘4\

3 ¥
gt e (Y050 X105 SN
Ptackdg -ﬁ(@?ﬁ&,;ﬁ%};ﬁ
Y

- A "

2

Many, many more tracks.

14

Pogo Sticks

Pogo-sticks is another crabs-related program, written by Mark Manasse. A pogo stick is a pair
of bouncers (dots) connected by a stick (line). Pogo sticks (or "pogos”, for short) hate grey, and
love any other color. In non-grey areas, the bouncers float freely, until they bump into grey areas.
When that happens, the bouncers change direction and bounce off. The opposite bouncers of a
pogo loosely attract each other.

A bouncer may overshoot a boundary between non-grey and grey, because of inertia, and get
temporarily trapped in a grey area. In this situation the bouncer is continuously bouncing against
grey, and assumes a kind of brownian motion. Fortunately, the opposite bouncer will very likely
pull it out of trouble. If both bouncers are trapped in grey, the pogo may randomly wander in grey
areas for a long time, looking like it is in an epileptic fit. A pogo in a large white space (like a
window) tends to stay there; it is unlikely that it will have both bouncers outside at the same time
and on the same side, so that they can wander off. It is likely that pogos will eventually migrate to
the largest window available, and stay there most of the time.

When a bouncer is trapped in grey, it tries actively to make itself a home by turning all the grey
it touches into black. Eventually this can create large black areas where the pogo can again float
free.

15

Layer #17
r’,Jri’P:)laggr;
while (1=>front)
1l =]=->front;
layerblt (1,

(r.corn
(r.origi
(l=drect pogo-c: 153 main(argc=1,arqgv=0x744E
(l=->rect

layerblt(1l.r)
Layer *];
%ectangle r;

if (1)

LI} AT U=

" layerblt(1-dback, Rpt(ro.Pt(re.x,1

Three pogos started at the top. Two of them have migrated to the lower window.

16

Screen Wars

Different screen organisms, like crabs, tracks and pogo sticks, can interact in interesting ways
when run concurrently. Each screen organism lives on some kind of screen territory and attacks
some other kind of screen territory. When many organisms are present at the same time, they may
fight for territory. An organism wins if it ends up controlling the whole screen and the other
organisms loose all their natural territory. More often, some kind of equilibrium is reached and the
screen is divided into domains of influence. '

Crabs vs Pogos

The following pictures show a 12-hour fight of crabs against pogo sticks for control of the
screen. Eventually equilibrium is reached.

Other fights :

Tracks do not stand a chance against crabs, because tracks do not attack crab territory (unless
they happen to step on a crab, in which case they leave a footprint there, but this is infrequent),
while crabs attack tracks territory. Eventually, tracks loose their "footing”.

Tracks and pogos cooperate, and the result is a totally black screen.

17

er *1;
P=>layer:;
le (1->front)
1 = 1->front;
erblt(1l,

r .corner|
(r.origid
(1->rect.

(1->rect Process: P=0x730138
HAL

TED:
layerblt(l.,r) pogo.c:153 main(arg

Layer x1; rocess: P=0x/35/D
Rectangle r ERROR STATE: proce
if (1)

" layerblt(1->back.
0.y)));

The crabs have eaten half of the upper window and have attacked the large window. Meanwhile the
pogos have sprinkled black at the perimeter of the large window.

18

s#define SLEEPTIME 1@
s#tundef bitblt
ef

N

N

oI o TR g R Tr—orrrr—oni 111, O

4 . :
ox1111, 0x‘1-‘1-1'1/>4 Ox1111, Ox444%, Ox1111., Bx+444, Ox1111, 0,<

Pogos have control of the center and top left of the screen, except for a crab trapped in the top left
which maintains its own grey territory, and another crab which goes deeper in the large window.

19

3PS | INENUM 3
adef ine SLEEPTIME 1@

#undef Hitblt

ORI TITYV OXTTTT?VI ORIIIXY OATTTTIYF OXITIXIY OFTTTTY

Bx1111, Ox4444, Bx1111, Bx4t44t, 8x1111, Oxt444.

M

The crabs have control of the bottom and right side of the screen, which is now full of crab-dirt.
The prisoner crabs keep working on their escape corridors. The pogos slowly gain territory.

20

W | INENUM 3 ¥
sdefine SLEEPTIME 19 v

s#undef bitblt
/* #undef

Ox4444, 0x1111, Ox4444,

One of the prisoners has escaped. It is not clear why the prisoners move almost éoherently in one
direction; maybe there is a slight bias in the random walk algorithm. (At this point I went to sleep)

21

-

K

W | INENUM
udefine SLEEPTIME 19
sundef bitblt

def

ﬂde-"—_l

Seven hours later the situation hasn't changed much. The other prisoner crab has escaped. The
boundary between crabs and pogos is sharp and stable. The whole process took 12 hours.

22

MH~11271=-LC-unix

Atts.
References (1-2)
Appendix (I)

23

L. Cardelldi

MH~11271-LC-unix

Atts.
References (1-2)
Appendix (I)

23

L. Cardelldi

CRABS (9.6) Eighth Edition CRABS(9.6)

NAME
crabs — graphical marine adventure game
SYNOPSIS
crabs [=i] [—s duration] [=v velocity] [number]
DESCRIPTION 7
In crabs, difficult situations are encountered in trying to kill or capture crustaceans swarming in a
murky sea. You will have to work very rapidly to keep your territory free of seabed intruders. At

first, you may even find it hard to keep a clear view of your surroundings, but later discoveries about
the spirit of the game will suggest a solution.

There are several options.
- causes the intruders to play intelligently, allowing them to avoid detection.

-3 simplifies the game for the first duration time intervals. Default is 0. 5-10 is recommended
for beginners, although you may want to forgo this option the first time, just to see how

interesting it can get.
-y adjusts the velocity of the crabs, 1 being fastest. Default is 5.
Number specifies the number of intruders. Default is 30.
FILES
/usr/jerq/mbin/crabs.m - terminal program
CRUSTACEANS
Can be frustrating.

Page | February 14, 1985

25

Oct 22 16:40 1984 genesis.txt Page 1

Crab Genesis

Introduction: laws and violations.

A bitmap screen is a graphic universe where windows, cursors and icons
live in harmony, cooperating with each other to achieve functionality

and esthetics. A lot of effort goes into making this universe consistent,
the basic law being that every window is a self contained, protected world.
In particular: (1) A window shall not be affected by the internal
activities of another window. (2) A window shall not be affected by
activities of the window system not concerning it directly, i.e

(2.1) it shall not notice being obscured (partially or totally) by other
windows or obscurigg (partially or totally) other windows, (2.2) it shall
not see the ximage# Pf the cursor sliding on its surface (it can only ask
for its position).

Of course it is difficult to resist the temptation of breaking these
rules. Violations can be destructive or non-destructive, useful or
pointless. Useful non-destructive violations include programs printing
cut an image of the screen, or magnifying part of the screen in a "lens"
window. Useful destructive violations are represented by the "pen"
program, which allows one to scribble on the screen. Pointless
nen-destructive violations include a "magnet" program, where a moving
picture of a magnet attracts the cursor, so that one has to
continuously pull away from it to keep working. The first pointless,
destructive program we wrote was crabs.

The history of crabs is presented here with dates, times and people.

Not that we kept notes, of course. The dates and times were reconstructed
months later by looking at the creation date of files, and by what we
could remember.

Prologue: Peek

Crabs was written by Mark Manasse and me in November 1982, and evolved

in about two days to its present form. The basic principles of
law-violation where investigated a few months earlier (August 5, 1982)

when Bart Locanthi brought in a Smalltalk videctape. It featured, among
other things, a "peek" demo. This is a program which looks at a rectangular
portion of the screen (controlled by moving the cursor around) and
replicates it in its own screen space in real time. Beautiful
self-referential effects are cbtained when this window peeks itself, or
part of itself. This is a digital version of a video-camera looking at

its own tv screen.

Copying data from another window, as peek does, can already be considered
a viclation of the rules. But what peek does is even worse because, for

a given window, peek will only copy that part of the window which is
visible on the screen (i.e. not obscured by other windows). This cannot
be done by asking a window to access its data: a window is not aware

of what parts are visible. This is stealing data directly from the screen.
A well-structured graphics interface will not allow this, and one has to
use low-level routines which are not-meant-to-be-used-by-normal-people.
Needless to say, Bart and Mark rushed to implement it.

Oct 22 16:40 1984 genesis.txt Page 2

Step 1:

Step 2:

Step 3:

Step 4:

QIX

(November 16, 1982y dinner time) Mark wanted to implement the QIX
video game for ourTg}it terminals (knowledge of QIX is assumed here).
A QIX screen can get very complicated, and there are complex rules
about how things are allowed to move. Mark started figuring out

clever data structures and algorithms to compute fast line operations.
After a while I said, "Wait a second. Atari is selling arcade QIX
machines and there is no way they can have enough memory to run those
algorithms. How are they doing it?" After some thinking: "I bet they
don’t keep line segments in data structures, but they draw lines on a
bitmap and (goshl) they just look at what is in the bitmap to determine
line intersecticns. Gee, this is awful." Althcugh this was repulsive
to our trained algorithmic minds, that was the germ of the crabs
collision~-detection trick. We never implemented QIX.

Measles

(November 16, later) After a while Mark was convinced and we

started implementing. We decided to start with a single QIX

(i.e. a single line with two bouncing dots at the ends) for simplicity,
and to use window boundaries to test the line intersection trick.

Mark started dictating code and I typred it down. This was still a

bit too hard, so we simplified it further: forget the QIX, let’s just
have little balls floating in the grey area between windows and bouncing
against window borders. We would look at the raw screen bits to determine
where a window border was (is there grey there?). Mark kept dictating,
and after a while it was working. It was just about one page of code.
Mark called this "measles"; we had a lot of measles bouncing around

the screen. They were also bouncing off each other for free because they
would see non-grey and change direction. This was wery cheap and
convenient: normally you would have to test the position of every measle
against the position of every cther measle to determine whether there

is a collision.

Angry Measles

(November 17, very early) Now a problem came up. We have all these measles
bouncing around, and you create a new window and slap it on top of them.
Suddenly those poor trapped measles have nowhere to go, no grey area to
run to. They are frozen, paralyzed with terror, and buried underneath

a window. Mark didn’t like that at all, and came up with the concept

of "angry measles". Wien a measle gets buried underneath a window, it
starts flashing so that it is wvisible through the window, like saying
"Hey, get that window off me". It turns out that little flashing things
are very annoying to the human eye, and you would take the window away
just to shut them up. At this point, tired and satisfied, we went to
sleep.

Hungry Measles e

(November 17, late morning) I slept a lot less then Mark did. When I

came in, I started shcwing measles to people. They though it was cute stuff.
Some objected to the flashing measles solution. We had considered many
alternatives the night before, and I wasn’t totally satisfied with that

Oct 22 16:40 1984 genesis.txt Page 3

Step 5:

solution either. Dave MacQueen said something like "they should eat
their way out". I thought that was a possibility, only sillier than most.
After he left, however, that idea kept coming back. I went to look at
the code (as I said, Mark did the dictating because he was more familiar
with blits then I was), and disccovered that I could implement Dave’s
suggestion by changing a single line of code. That seemed to be easy
enough, so I did it. When a measle was confrcocnted with a non-gray

area, it would change a little bit of that area to grey. Trapped measles
could then build up grey regions and eventually escape.

The new version "hungry measles" had quite a different character.

It wasn’t cute, it was awesome. Those little balls would eat away your
windows. If trapped, they would escape, leaving you wounded. There was
no protection against them. You could set up barricades of windows to
protect a part of the screen ycu wanted to work in, and they would ercde
them., They would infiltrate along the borders of the screen, where

you are not allowed to put windows. You couldn’t keep them all under
control: they were toc many, too quick. You couldn’t get distracted.

Crabs

(November 17, afternocn) I went up to the machine room and started the
program on a terminal. People gathered, and several expressions of
disgust were heard. Jim Weythman said "they look like crabsl".

Everybody knew instantly that that was the right name for it. I went
back to my room and designed the basic crab icon. Mark came back.

With his help, we prepared the crab icon so that it would look nice on
a grey background. We made it so that crabs would move sidewise, and
would turn around according to their prevalent direction. We made the
crabs window self-destruct so that there was no way of stopping crabs,
short of rebocting the terminal. Finally, we allowed the crabs to see
the image of the cursor on the screen, so that you could use the cursor
to poke them (they would bite it, but the cursor regenerates).

We showed it to Rob Pike again. He said "That’s it, don’t touch

it any mecre".

Conclusions

In the next few days, unaware people were expcsed to crabs in the
comforl of their own terminal ("Let me show you scmething...").

The question would always come up: "How do you stop them?" "you can’t"
"yes, but how do you stop them?". Crabs could be downloaded remotely,
on somebody else’s terminal, while he was working. They could be left
dormant (Rob’s idea) during the lunch hour, to suddenly come up

in the middle of the afternocon. They could be timed to start in the
middle of an important demonstration. Once, Rob got them to eat
(irrecoverably) part of a picture an artist was drawing on a blit.

The artist was offended, not by the damage picture, but by such
inexplicable violation of what she considered to be laws of nature.
Very soon, nobedy could pass by Bell Labs without being exposed to crabs.

Programs were written tc fight crabs on their own grounds. The idea was
to run a program which would neutralize the crabs and allow you to
keep working, without rebooting the terminal. These program were either
unsuccessful, or partially neutralized the crabs but made the blit

Oct 22 16:40 1984 genesis.txt Page 4

practically unusable. One day we got a program in the mail, called
"squishcrabs". It would poke the process table looking for a process
which looked like it may be crabs, and killed it. On top of that

it would "squish" every crab on the screen to a black blob. That was
cheating, but it worked. However, squishcrabs was too dependent on the
process and program structure, and stopped working in later versions
of the system.

In the following months Mark and I wrote many crab-like programs. Although
interesting in their own way, none came close to the appeal crabs have.
The best use we have for them is to make them fight overnight against
crabs for screen territory, and watch the result in the morning.

Crabs are still undefeated; they either wipe cut the opposition, or

come to a stable situation with crabs in one region of the screen and
opponents in the other.

Luca Cardelli

Oct 21 19:13 1984 crabs.txt Page 1

Rules:

(1) Crabs live on grey screen arc¢as.

(2) On grey areas they move around randomly, but smocthly.
The orientation of the crab icon is determined by its direction of movement,
so that they always appears to move sidewise.

(3) When they bump into non-grey areas (including other crabs) they "bite" them
by changing a little non-grey region into a grey region. After that they
bounce off in a new random direction.

The crab-like (or insect-like) random motion on grey areas is obtained as follows.
Every crab step is, in first approximation, determined by the current velocity.
Every step has a probability (e.g. one in seven) of being subiject to a

deviation. If the deviation takes place, it is a small random deviation

(e.g. =1, 0 or +1) of the current velocity, independently chosen for the x and y
components. There is a maximum crabs speed (e.g. 7 pixels per step).

Every crab does the following:

0. Draws itself in the initial position.
Starts with a random direction and velocity.

1. Removes itself from the old position (by drawing itself in XOR mode).
2. Determines its new positicn, based on its current direction and velocity.
3. Loocks to determine whether it is about to move on a grey area:
Yes: 3.1. Moves there. Goes to 4.
No: 3.2. Makes the new position grey by drawing a 4x4 grey pattern.

3.3. Does not move. Picks a new randcem velocity, independent
of the current velocity. Continues at 4.

4. Draws itself (in XOR mode) in the new position, as determined in 3.1 or 3.3.
5. Adds a random deviation to its velocity, as described above.

6. Back to 1.

Note: Crab icons must be drawn in XOR mode, to be able to restore the background
when the crab moves away. Unfortunately, if one draws a crab icon in XOR
mode on a gray background, the crab itself gets "greyed”.

To avoid that, crab icons are prepared so that they will leok right
when greyed. This is done by greying them beforehand (two XOR greying
operations cancel) in all possible relative positions of the crab and
the grey background. For the grey pattern we use, which repeats every
two pixels vertically and every four pixels horizontally, there are 8
possible relative positions,

Oct 21 19:13 1984 crabs.txt Page 2

Note: Some of the black pixels of the background immediately adjacent to
a crab icon "stick" to it, visually. Depending on the speed of
movement, this produces an optical illusion so that the crab legs
appear to move.

Luca Cardelli

Crabs was written by myself and Mark Manasse on November 16 and 17, 1982.

Figures:

(Figure Crabs.0)

Top Right: crab icons in two orientations.

Top Left: greyed-out crabs.

Bottom: upward-looking crabs on grey, in all possible relative
displacements w.r.t the background.

(Figure Crabs.1) Thirty crabs start at the top of the screen, threatening
the top window with pictures of me and Mark.

(Figure Crabs.2) Crabs start eating the top window. On the bottom left there is
a "lens" window magnifying an area at the top of the screen.

(Figure Crabs.3) Killer crabs start eating their authors. The top part of the
screen is full of crab-shit, a by-product of crab collisions.

(Figure Crabs.4) A new widow is placed cn top of three crabs. The crabs start
eating the window from underneath.

(Figure Crabs.5) The three trapped crabs are now almost fully visible. This

effect of "eating from underneath" is a totally unexpected non-obvious consequence
of the crabs drawing algorithm.

(Figure Crabs.6) One of the trapped crabs breaks loose.

(Figures Crabs.7 .. Crabs.9) Mores scenes of cannibalism and destruction.

(Figure Crabs.10) The lens has been moved to show text being eaten away.

(Figures Crabs.11 .. Crabs.14) More of the same. The lens window is almost
unharmed because it regenerates.

B
s
i
i

TTY STAT TIME
ptid 0:09

pti4
ptl4

pti14
pti2
pti0
pti0
ptosg
pto4
pto4
ptoo
pt0o
ptoo
14

: mail tac

FOLT bt e T LS5 b b b e) o e bl

0:60
0:00

9:00
0:00
0:00
9:01
0:00
0:01
9:01
0:00
0:00
0:55
5:17

COMMAND
sh

fusr/jerq/bin/3pi
sh =c /Jusr/jerq/bin/321d /usr/jerg/mbin/pads.

/ﬁsr/jerq/bin/SZld Jusr/jerq/mbin/pads.m
=

Shi
=
sh

ps
sh
sh
Jusr/jerq/bin/vismon =1
mux

congratulations for the beautiful 3pi feature of shifting the scree

n around.

dHow did you think of that?

peek tty9?
.neus_t ime dead. letter

pen tuid
.profile

peter
Alloc_mod2
player®. icon unixlicence
iDavidJordan fie
i upenn
quest.profile
valis
ToGregHager icon
regexp vaxwrite

macguts
machines
macwr i te
mail
malloc

mbox

TTY STAT TIME
ti14 I 0:00
0:00
0:09

8:00
0:80
9:00
6:01
8:00
0:81
8:061
0:00
0:00
9:55
5:17

I
I
)
I
I
I
I
S
R
I
I
S
R

: mail tac

9.34 -0.46

sh
fusr/jerq/bin/3pi
sh —c /usr/jerq/bin/321d /usr/jera/mbin/pads.

/ﬂsr/jerq/bin/321d fusr/ jerq/mbin/pads.m
=5

sh

3pi

sh

sh

Jusr/jerg/bin/vismon -1
mux

congratulations for the beautiful 3pi feature of shifting the scree

gin around.

iiHow did you think of that?

peek tty@?
-news_t ime dead. letter macguts
pen tuwid
.profile emacs machines
ufos

peter
Alloc_mod2 faces macwr ite
player®. icon unixlicence
Daviddoerdan fie mail
i upenn
guest.prefile malloc
valis
ToGregHager icon mbox
regexp vaxurite

D TTY STAT TIME
pti14 0:00

pti4
pti4

pti4
ptiz
ptl10
pti0
ptB8
pto4
pt84
ptGo
e
P

14

ZIS bt b T LS b bt b o () e et e

0:00
0:00

0:90
0:00
0:00
09:01
0:00
0:01
0:01
0:080

S

fusr/jerq/bin/3pi
sh —c /usr/jerq/bin/321d /usr/jerq/mbin/pads.

/ﬁsr/jerq/bin/321d fusr/jerq/mbin/pads.m
=

fusr/jerq/bin/vismon -1
mux

congratulaticns for the beautiful 3pi feature of shifting the scree

n around.

How did you think of that?

peek tty0?
.news_t ime dead. letter
pen twid
.profile emacs
peter ufos
Alloc _mod2 faces
player®. icon unixlicence
IDavidJordan fie
i upenn
quest.profile
valis
ToGregHager icon
regexp vaxur ite

macguts
machines
macwr i te
mail
malleoc

mbox

5:33 0.34 -0.03

COMMAND

sh

fusr/jerq/bin/3pi

sh =c fusr/jerq/bin/321d /usr/jerq/mbin/pads.
/ﬁsr/jerq/bin/321d /usr/jerg/mbin/pads.m

ol

sh

3pi

sh

sh

Jusr/jerq/bin/vismon -1
mux

I
I
S
1
I
I
I
S
R
I
1
S
R

congratglatinns for the beautiful 3pi feature of shifting the scree
n arocund.
jHow did you think of that?

peek Y
news_t ime dead. letter
pen tnid
.profile emacs
ufos

peter
Alloc_mod?2 faces
player®. icon unixlicence
#DavidJordan fie

qQix upenn
amber guest.profile
referee valis
& ToGreaHager icon
regexp vaxur ite

macguts
machines
macwr i te
mail
malloc

mbox

15:34 0.55 +9.22

STAT TIME COMMAND
0:69

sh
0:080 fusr/jerq/bin/3pi
0:80 sh -c fusr/jerq/bin/321d /usr/jerq/mbin/pads.

0:88 fusr/jerq/bin/321d Jusr/jerq/ubin/pads.m
8:60 sh

9:80 sh

2:81 3Ei

8:00 s

0:81 sh

8:91 ps

8:60 sh

s
fusrfjerq/bin/vismon -1
mux

I
I
I
S
I
I
I
1
S
R
I
I
S
R

: mail tac

congratglations for the beautiful Zpi feature of shifting the scree
in around.

ow did you think of that?

reek Y
1. nens_t ime dead. letter macguts
pen tuid
.profile emacs machines
peter ufos
Alloc_mod2 faces macwr ite
player®. icon unixlicence
i Baviddordan fie mail
i upenn
guest.profile malloc
valis
oCGregHager icon mbox
resexp vaxuwrite

15:37 6.88 +0.05

TTY STAT TIME COMMAND

t14 0:00 sh

8:00 Jusr/jerq/bin/3pi

9:80 sh =c /usr/jerq/bin/321d /usr/jerq/mbin/pads.

0:90 /fusr/jerq/bin/321d fusr/jerq/mbin/pads.m
0:8@ sh

0:80 sh

8:01 3pi

9:00 sﬁ

8:01 sh

6:01

0:00

0:00

0:55 fusr/jerqg/bin/visanon =1
5:17 mux

I
I
I
S
I
I
I
I
S
R
I
1
S
R

congratﬁlations for the beautiful 3pi feature of shifting the scree
n around.
How did you think of that?

peek tty0?

.news_t ime dead. letter macguts
pen tuid

.profile emacs machines
peter ufos

Alloc_mod2 faces macwr ite
player®. icon unixlicence

i Daviddordan fie mail

‘ i upenn

guest.profile malloc
valis

ToGregHager icon mbox

regexp . vaxurite

i15:40 1.01 +0.52

COMMAND
sh

fusr/jerq/bin/3pi
sh =c /usr/jeraq/bin/321d /usr/jerq/mbin/pads.

/ﬂsr/jerq/bin/321d Jlusr/jerq/mbin/pads.m
=
sh

fusr/jerq/bin/vismon -1
mux

1
I
S
I
i
I
1
)
R
I
I
S
R

: mail tac

congratﬁlations for the beautiful 3pi feature of shifting the scree
in around. l
{How did you think of that?

[Y :

nens_t ime dead. letter macguts
pen tui

.profile emacs machines

peter

Alloc_mod2 macwr ite
player®. icon unixlicence

M Davidlordan fie mail
qix upenn

amber guest.profile malloc

referee valis

i ToGregHager icon mbox

¥ regexp vaxWrite

COMHMAND

sh

Jusr/jerq/bin/3pi

sh =¢c Jusr/jerq/bin/321d /usr/jerg/mbin/pads.

/asr/jerq/bin/BZld Jusr/jerq/mbin/pads.m
s

sh
3pi
sh
sh
ps
sh

sl
fusr/jerq/bin/vismon -1
mux

I
I
I
S
I
I
1
I
S
R
I
1
S
R

oo e®

HM&&OO@QO@%
NUIOORREGREO®

congratulations for the beautiful 3pi feature of shifting the
an around.
i{How did you think of that?

peek tty0?
.news_t ime dead. letter macguts
pen twid
.profile emacs machines
peter ufos
Allec_mod2 faces macwr i te
player®. icon unixlicence
DavidJordan fie mail
i upenn
guest.profile malloc
valis
ToGregHager icon mbox
regexp vaxur ite

h
Jusr/jerq/bin/3pi]
sh =c /usr/jerq/bin/321d /usr/jerq/mbin/pads.{

/ﬁsr/jerq/bin/321d /usr/jerq/mbin/pads.m
=

sh
3oi
sh
sh

fusr/jerq/bin/vismon =1
mux

g
I
I
I
S
I
I
I
I
S
R
I
I
S
R

: mail tac

congratulations for the beautiful 3pi feature of shifting the scree
in arcund.

How did you think of that? J

pee yO7
news_t ime dead. letter
pen tuid
.profile emacs
peter ufos
Alloc_mod2 faces
player8.icon unixlicence
#Dav idJordan fie

upenn
quest.profile
valis
icon

macguts
machines
macwr ite
mail
malloc

mbox

I
I
I
S
I
I
I
I
S
R
I
I
S
R

HOSLISOORRER 2es

h
lusr/jerq/bin/3pi
sh —c /usr/jerq/bin/321d /usr/jerq/mbin/pads

/ﬁsr/jerq/bin/321d fusr/jerq/mbin/pads.m
=

fusr/jerq/bin/vismon -1
mux

cengratulations for the beautiful 3pi feature of shifting the scre

n around.

How did think of that?

16658
9795

y0
dead. letter
tuwid
emacs machines
ufos
faces macwr i te
player®. icon unixlicence
i Daviddordan fie mail
qix upenn
amber guest.profile malloc
referee valis
aGregHager icon mbox
regexp vaxuwrite

b b] et L) e]

fusr7 jerq/bin/3pi

sh -¢ /usr/jerq/bin/321d /usr/jera/mbin/pads
/ﬂsr/jerq/bin/SZld fusr/ jerq/mbin/pads.m

=

sh

gﬁl

sh

sh
fusr/jerq/bin/vismon -1
muX

oY aPY o

I
S
I
I
I
I
S
R
I
I
S
R

cnngratﬁlations for the beautiful 3pi feature of shifting the scree
n around. o,
How did you think of that?

machines

macwr ite
player®. icon unixlicence
% DavidJordan fie mail
i upenn
guest.profile malloc
valis
icon mbox

Fi/us /Jerq/bln/321d /usr/ jerq/mbin/pads
/usr/jerq/bin/QZld fusr/jerq/mbin/pads.m
=h

fusr/jerq/bin/vismon =1
mux

4]
0:
0
0:
@
Q:
0
0
9:
0
9
(4]
5

\JWGQ'—“H‘QH®®8 8

HU‘?QQ@Q&QQ&

ratglations for the beautiful 3pi feature of shifting the scre
ound.
did you think of that?

Wit
emacs machines
ufos
faces macur i te
playerB.icon unixlicence
tDavidlordan fie mail
qix upenn
amber guest.profile malloc
referee valis
oGregHager icon mbox
regexp axwr ite

id /usr/jerq/mbin/pads.m

u think of that?

cence
mail

Lapenn
guest.profile malloc

mbo

=i
1
c
=]
[
i
>

~
c

jerg/b

jer

5 fusr/
7 mux

Oct 20 10:50 1984 tracks.txt Page 1

"Tracks" gives the illusion of animals walking on your windows and
leaving footprints. There are cats, birds, unicorns and little pecple.

Tracks are not left on the background, only on windows. However tracks can
cross grey regions and continue on another window.
The random motion is obtained as in crabs, with slightly different parameters.

Luca Cardelli

Tracks was written by myself as a crabs spin-off.

{ Ux2244,0xEGG] -
0x8069.@x?81§-

1Y; 4 & ¢ U

: by _
Bitmap feet = {(Word *)Feet, 32/MORDSIZE.{{8.0},{32,16}31}5 ¢
|Bitmap bird = {(Word *x)Bird., 32/KORDSIZE,{{0,0},{32,16}}}:° & «
'Bitmap bear = {(Kord *)Bear, 32/WORDSIZE,{{0,6},{37,163}}

itmap horse = {(Hord *)Horse,32/WORDSIZE,{{0,0},432,16}3};

Rectangle ltrackup = {{90.0}.,{8.83}}; o

Rectangle rtrackup = {{8,0},{i6,8}}; i
Re¢tangle 1trackdown = {{8.8}.,{16,16}};

ik
-

R
IEEENEENEREE |

| 5 i O

C,0x0008, ¢%
T, OxPB1E, #¢
3C6900xEGB?2, 4

Ox7FFE,Dx7B1E, O , "

Ox3E 7C /0x6000 a vy

43; : go_, N = & (‘-:
Bitmap feet = {({oPd*¥)Feet, 32/WORDSIZE.{(0.0},{32M63)3}; ¢
Bitmap bird = s{(lord *%Bird, 37/MORDSIZE,{{0,0}.{32,15}3};%
;Bﬂ;map bean a= {(MWord *JBear, 32/WORDSIZE.{{0,63}.,{32.,163}3}»
Bitmapyhgrse = {(Hord *)Horse,32/WORDSIZE,{{0,0},432,163}); ,

Rectingle ltrackup = {{0,0% «(8,8)};
Rectangle rtrackup = {{8.,0} ~{16,83}3};
Red{:tangle ltrackdoun = {{8,8}»{16,16}3};

A

"L, 9x0008, «%
E,Ox/8B1E, M€
OxG3CE POKELE?, 4
0x4182 {90083, +
?4-182 »0%CBB3 4

2241, 9xCAB3, 4
xéZ‘M »BxEBE R,

B ® » 9@9*
IxBEED , Bx 781L » o : ¢ » T 5o »
00060, 0x 2BIE » : = T BT T
Ox2244 ,0xEBG? 0 i k) o ; A €%
| o o
A uu <€
A T
L3 4¢
5y » nﬂ By 5 A v ' o
a S » ‘:’ P '} .J'-(-Q

A 3
Bitmap feet = {(Mebdk)Feet, 32/UORDSIZE,®(9.0}.{32 163335 ¢
Bitmap bird =jf3lord *IBird, 32/WORDSIZE.L{0,0),€32,16)3};"
Bi'tndp beam # L (Hord *)Bear, 32/MORDSIZE,{{8%0},{32,163}33»
B:jtmap.-,hqrss.g {{Word *)thse.32/ldDRDSI* .{{%%,{32,18}}};-0
i ¥

RettBngladtrackdh = 40,03 48,833 4+ Y © v
'ﬁkg:tangi,e rtrackupt= {{8,0)}n(16,83};, Y =
Red;tfﬁgg e ltrackdown = {{8,8¥n{16,{6}};¥ o

g}% %oaf W n’*”

. {32 S}H i

c;‘.f

¢ W
L¥3

Oct 20 11:51 1984 pogo.txt Page 1

A pogo stick is a pair of bouncers (dots) connected by a stick (line).
Pogo sticks (or "pogos", for short) hate grey, and love any other

color. In non-grey areas, the bouncers float freely, until they bump into
grey areas. When that happens, the bouncers change direction and

bounce off. The opposite bouncers of a pogo loosely attract each other.

A bouncer may overshoot a boundary between non-grey and grey, because of inertia,
and get temporarily trapped in a grey area. In this situation the bouncer is
continuously bouncing agains grey, and assumes a kind of brownian motion.
Fortunately, the opposite bouncer will very likely pull it out of trouble.

If both bouncers are trapped into grey, the pogo may randomly wander in grey
areas for a long time, looking like it is in a epileptic fit.

However, when a bouncer is trapped in grey, it tries actively to make itself a
home but turning all the grey it touches into black. Eventually this can create
large black areas where the pogo can again float free.

Luca Cardelli

Pogo was written by Mark Manasse, as a crabs spin-off.

Layer *1;
1 = P->layer;
while (1=->front)

1 = 1->front;
layerblt (1.,

>

fidefine re (r.corner P=9x7301338

define ro (r.origir
#tdefine lc (1=)>rect
#idefine lo (1->rect

1layerblt(1,r)
ayer ¥*1;
.%ectangle r;

if (1)

o=

"layerblt(1-dback, Rptiro.Ptlrc.x,1

#Ly
r’,lfﬂ’p:>layer;
while (1=>front)
1 = 1=>front;
layerblt (1,

dttdefine rc (r.cornes
tidefine ro (r.origir
tidefine lc (1->rect
#idefine lo (l=->rect

layerblt(1,r)
Layer *1;
Rectangle r;

if (1)

LAY I *

"layerblt (1->back, Rpt(ro.Ptlrc.x.1

wrote pogo.c

Oct 20 12:25 1984 screenwars.txt Page 1

Screen Wars

- -

Here we see crabs fighting against pogo sticks for the control of the screen.
(Figure Pogo.1) Three pogo sticks start at the top of the screen.

(Figure Pogo.2) Two pogos have migrated to the lower window.

A pogo in a large white space tends to stay there for long periods, because it is
very unlikely that it will have both bouncers outside at the same time and on the
same side, so that they can wander off. It is likely that pogos will

eventually migrate to the largest window available.

(Figure ScreenWars.1) The third pogo also migrated to the large window, and at the
top of the screen there are new intruders: crabs.

(Figure ScreenWars.2) Here the crabs have eaten half of the upper window and have
attacked the large window. Meanwhile the pogos have sprinkled black at the
perimeter of the window.

(Figure ScreenWars.3) A pogo wandered in the top left corner, aquiring a lot

of black territory. At the same time a single crab was trapped inside the large
window by the black stuff pogos drop, and deeply eroded it. The crabs have totally
eaten the top window and have invaded the lower regicns of the screen.

The pogos are gaining territory around the window, where the black stuff

keeps the crabs away.

(Figure ScreenWars.4) Pogos have control of the center and top left of the screen,
except for a crab trapped in the top left which maintains its own grey territory,
and another crab which goes deeper and deeper in the large window. The crabs have
control of the bcttom and right side of the screen, which is now full of

crab-shit (crab-shit is the product of a crab biting another crab; it is a
non-obvious side-effect of the crabs drawing algorithm).

(Figure Scree¢nWars.5) More of the same.

(Figure ScreenWars.6) The pogos keep slowly gaining territory. One of the
prisoner crabs has escaped, the other one is moving to the right. It is not
clear why these crabs are moving coherently, over large periods, in one
direction; maybe there is a slight bias in the random walk algorithm.

(At this point I went to sleep)

(Figure ScreenWars.7) Seven hours later the situation hasn’t changed much,
except that the other priscner crab has escaped. The bcundary between crabs
and pogos is sharp and stable. The whole process took 12 hours.

Other fights:

Tracks do not stand a chance against crabs, because tracks do not attack crab
territory (unless they happen to step on a crab, in which case they leave a
foctprint there, but this is unfrequent), while crabs attack tracks territory.
Eventally, tracks loose their "footing".

Oct 20 12:25 1984 screenwars,.txt Page 2

Tracks and pogos cooperate, and the result is a totally black screen.

Luca Cardelli

P.S. some inconsistencies in the figures, e.g. windows appearing and disappearing,
are due to the fact that I have to use a couple of windows to print out the
screen dumps, and I have to fight pcgos and crabs while doing that.

Layer *1;
1 = P=>layer:;
while (1->front)

1 = I=>front;
layerblt (1,

e rc (r.corner
ro (r.origit

= P=0x738138

y HALTED:
Wpogo.c:153 mainlarg
Process: P=0x?357D

LTE
pc=7/653392 ?()

_/-'“"J
TT XTO-y X I0-y7 T
layerkbitTi=>hack, Rpt(ro,Ptlrc.x.,1

aver *1;
P->layer;
le (1->front)

1 = l=>frofits
erblt(l,
11r.cornej
(r.origi

fidef ineblc (1=>rect
#idefine lo (1->rect

layerblt(1.r)

Layer *1;
%ectangle rs

if (1)

LINENUM 3
SLEEPTIME 16

#undef bitblt
texture

ORLXIIV OXTTTTV JOXKTIIXY ‘%\'lll' URILIITY OUNTT T VY vl\llll'

ex1111, €x%444, Ox1111, Ox444%, €x1111. Ox1444, Ox1111,

ORIIILYV OXTT T 1Y

XTIV

rrrroRrTrr—osTrrrr—oexiill,

i #undef bitblt

%

?:undef_ texture *
£ ;

Bx1111, 1444, Bx1111, 2x4144, OA111,

axﬂ«;/@

PO90.C__

i

Liudef ine SLEEPTIME 16
[ivundef bitblt

0.98 -0.66 chbosgd!enl

S aia s
rabBlit(p,v)
Point p,v;
{

int X,y,index;
Bitmap *whichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y}) {
if (v.x>0) whichcrab = Rupcrabmap;
else whichcrab = &downcrabmap;
} else {
if (v.y>8) whichcrab = 2rightcrabmap;
else whichcrab = Rleftcrabmap;

= p.y
index = (y<<{2)+x;
bitblt (uhichcrab,Rect (index<<3.0, (index+1)

<£3,8) ,&screen,p,F_X0OR);

Point p,v;
.

int x,y,index;
Bitmap *whichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>0) whichcrab = Rupcrabmap;
else whichcrab = fdowncrabmap:;

} else {
if (v.y>0) whichcrab = &rightcrabmap;

else whichcrab = &leftcrabmap;

lndex = (y<<2)+x.
bitblt (whichcrab,Rect (index<<3,0, (index+1)

4<<3,8) ,&screen,p,F_XOR);

23:12 1.61 -0.55 cbosgd!ewl

3
it(p,v
Point p,v;
{

int x,y,index;
Bitmap *whichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>0) whichcrab = Rupcrabmap;
else whichcrab = &downcrabmap;
} else
if (v.y>0) whichcrab = &rightcrabmap;
else whichcrab = &leftcrabmap;

l p.x % 4;
p-y % 2;
ndex = (y<<2)+x;
itblt (whichcrab,Rect (index<<3,0, (index+1)

<<£3.,8 screen,p,F_XOR);

Point p,v;
£

int x,y,index;
Bitmap #*wuhichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>8) whichcrab = Rupcrabmap;
else whichcrab = &downcrabmap;
} else {
if (v.y>8) whichcrab = &rightcrabmap;
else whichcrab = Rleftcrabmap;

= p.y

index = (y<<{2)+x;
bitblt (whichcrab,Rect (index<<3,0, (index+1)

<<3,8),&screen,p,F_X0R);

int x,y,index;
Bitmap #*whichcrab;
if (visible) {
if (abs(v.x)>=abs(v.y)) {
if (v.x>0) whichcrab = Rupcrabmap;
else whichecrab = fdouncrabmap;
} else {
if (v.y>0) whichcrab = &rightcrabmap;
else whichcrab = Rleftcrabmap;

p-x % 4;
=py % 23
index = (y<<2)+x;
bitblt (whichcrab,Rect (index<<3,0, (index+1)

<<3,8) ,&screen,p,F_XOR);

