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a b s t r a c t

Life is confronted with computation problems in a variety of domains including animal behavior, single-
cell behavior, and embryonic development. Yet we currently do not know of a naturally existing biolog-
ical system that is capable of universal computation, i.e., Turing-equivalent in scope. Generic finite-
dimensional dynamical systems (which encompass most models of neural networks, intracellular signal-
ing cascades, and gene regulatory networks) fall short of universal computation, but are assumed to be
capable of explaining cognition and development. I present a class of models that bridge two concepts
from distant fields: combinatory logic (or, equivalently, lambda calculus) and RNA molecular biology.
A set of basic RNA editing rules can make it possible to compute any computable function with identical
algorithmic complexity to that of Turing machines. The models do not assume extraordinarily complex
molecular machinery or any processes that radically differ from what we already know to occur in cells.
Distinct independent enzymes can mediate each of the rules and RNA molecules solve the problem of
parenthesis matching through their secondary structure. In the most plausible of these models all of
the editing rules can be implemented with merely cleavage and ligation operations at fixed positions rel-
ative to predefined motifs. This demonstrates that universal computation is well within the reach of
molecular biology. It is therefore reasonable to assume that life has evolved – or possibly began with –
a universal computer that yet remains to be discovered. The variety of seemingly unrelated computa-
tional problems across many scales can potentially be solved using the same RNA-based computation
system. Experimental validation of this theory may immensely impact our understanding of memory,
cognition, development, disease, evolution, and the early stages of life.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

It may be argued that computation is the most fundamental
aspect of life. Any problem that involves converting inputs to out-
puts where the informational content – rather than the material
content – defines the problem is a problem of computation. Some
examples of computation in biology include: using vision to guide
wing movement in insect flight, language acquisition in humans,
decision-making in single-celled ciliates (Dexter et al., 2019;
Gershman et al., 2021), and embryonic development, the deci-
sional process of beginning with a single cell and coordinating
across daughter cells to produce a complex finely-detailed three-
dimensional structure. Even though the computations that occur
in these settings are poorly understood, it is generally assumed
that the mechanistic building blocks that carry out computation
in biology have already been identified. In the domain of animal
behavior, these building blocks are believed to be neurons and
neural networks. And in the domains of cell behavior and embry-

onic development, they are thought to be chemical cascades, gene
regulatory networks, non-neuronal electric signaling (Levin, 2014;
McLaughlin and Levin, 2018), and signal transduction pathways.
But the adequacy of these building blocks is disputable and is
not rooted in the theory of computation. In fact, if we are to take
the theory of computation seriously, it is reasonable to consider
that there may exist a computation system that remains undiscov-
ered in biology.

For every computation system, there are problems that it can
solve and problems that it cannot. The set of problems that a sys-
tem can compute is its scope. Measurement of scope is agnostic to
how the system works; the components of the system can be ana-
log or digital, discrete or continuous, stochastic or deterministic.
Biological computation systems are no exception. They can be ana-
lyzed in the framework of the theory of computation (see Fig. 1). A
system is said to be at least as powerful as another if the former
can simulate the latter (i.e., solve all of the problems in the other’s
scope). For example, combinatorial logic circuits (i.e., circuits con-
sisting of boolean gates) are equivalent to look-up tables; both sys-
tems are capable of solving any problem defined over finite input/
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output domains. Finite state automata are strictly more powerful
than either of those systems and can solve problems that are
defined over infinitely large input/output domains (e.g., the prob-
lem defined by ‘‘given an arbitrarily large number as a string of dig-
its, return the remainder of that number when divided by 7”). But
there are some problems that finite state automata cannot solve
(e.g., the problem defined by ‘‘given a string of open/close paren-
theses, determine whether it is balanced”). (See Boker and
Dershowitz, 2005; Boker and Dershowitz, 2006; Boker et al.,
2008 for a framework for comparing systems that operate on dif-
ferent domains).

One of the most profound mathematical discoveries of the 20th
century was that there is a fundamental limit to computational
scope (Church, 1936; Dershowitz and Gurevich, 2008; Kleene,
1936; Turing, 1936; Turing, 1937; Turing, 1937), meaning that
there are some definable problems that are uncomputable; no
effective computation system with finite means can solve them
(see Appendix A for a discussion on what is meant by ‘‘effective
computation” or ‘‘finite means” and why this is relevant to biol-
ogy). Many abstract systems achieve that scope of computation.
Such systems are said to have universal scope and are able to com-
pute any computable function. Turing machines are one such sys-
tem. There are many other universal computation systems, some of
which were developed independently and do not resemble Turing
machines in any obvious way. All of the universal computation sys-
tems listed in Fig. 1C are capable of simulating one another, but it
is common to define universal computation by referring to Turing
machines. A computation system is universal, or "Turing-
equivalent", if and only if it can simulate any Turing machine.

1.1. The universal computer is missing in biology

Finite-dimensional dynamical systems are the dominant com-
putational paradigm in biology, encompassing neural networks,
biochemical signaling cascades, and gene regulatory networks. In
these models the state of the system is described in terms of a
number of physical quantities (such as membrane potentials of dif-
ferent cells or phosphorylation rates of certain proteins, or binding
occupancy at various DNA sites). These quantities can positively or

negatively influence one another. Network models are special
cases of dynamical systems where the variables are represented
by nodes and the interdependencies are sparse and can be drawn
as a network. But physically relevant finite-dimensional dynamical
systems are not known to be capable of universal computation.
This claim may appear to contradict common wisdom since it
was shown in the early 1990s that dynamical systems can simulate
Turing machines (Moore, 1990; Moore, 1991; Siegelmann and
Sontag, 1991). Based on those results it has been incorrectly
asserted that chemical and neural networks are Turing-
equivalent (Hjelmfelt et al., 1991; Sterling and Laughlin, 2015;
Cabessa and Song, 2019). But in every instance where a finite-
dimensional dynamical system has been shown to be capable of
simulating Turing machines, that system lacked structural stability
(Asarin et al., 1995; Branicky, 1995; Cabessa and Song, 2019; Fages
et al., 2017; Koiran et al., 1994; Koiran and Moore, 1999; Moore,
1990, 1991; Siegelmann and Sontag, 1991; Šíma and Orponen,
2003; Graça et al., 2005; Pérez et al., 2019; Reif et al., 1990). Struc-
tural instability renders a system physically unrealizable. It means
that even if the system is noiseless and the internal state variables
have infinite precision, any arbitrarily small amount of error in the
differential equations will lead to a radically different system that
does not resemble the intended dynamics. (Structural stability is a
distinct concept from chaos; chaotic systems are realizable and
physically relevant).

Moore, who was the first to show that finite-dimensional
dynamical systems are capable of simulating Turing machines
(Moore, 1990; Moore, 1991), argued that structural stability is a rea-
sonable criterion for determining whether a dynamical system
may be possible to build or found to occur in nature and he conjec-
tured that ‘‘finite-dimensional dynamical systems that are struc-
turally stable (or generic by any other reasonable definition) are
incapable of universal computation” (Moore, 1998). Moore’s con-
jecture still stands today and we do not know of any biologically
plausible network model capable of universal computation. (See
Appendix B for a discussion on computational power of physically
relevant dynamical systems).

Another common misconception is that the implementation of
a universal logic gate (e.g. NAND or NOR) is sufficient for universal

Fig. 1. Basic Concepts from the Theory of Computation (A) A computation problem is a partial mapping between an input domain and an output domain. For instance the
problem of squaring a number is a mapping from numbers to their squared values. (B) A general-purpose computation systemmust be able to solve – not just one, but – many
problems. Which problem it is to solve is determined by its descriptor. The descriptormay specify program instructions or the physical configuration that determines how the
system works. For example, in a neural network computation system the description is the set of nodes, connections, weights, activation functions, etc. (C) A diagram
depicting the computational scope of various systems. Computation systems very often emulate one another. The inner-most scope is the weakest form of computation and
the outer scope includes all universal (i.e., Turing-equivalent) computers. There are many other scopes not shown in the diagram. These computation systems are all
‘‘transducers” rather than ‘‘recognizers”; their output domains are strings or natural numbers rather than binary values (i.e., accept/reject).
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computation (i.e. Turing-equivalence) (Magnasco, 1997; Scarle,
2009). It is quite easy to construct logic circuits with already iden-
tified bio-molecular building blocks (Benenson, 2012). But combi-
natory logic (not to be confused with ‘‘combinatory logic”) is the
weakest of the computation systems in Fig. 1C.

But why would life need a universal computer? Or what advan-
tages might it have to be favored by natural selection? Perhaps liv-
ing organisms get by without universal computation and the
currently conceived network models are sufficiently powerful to
address the problems and opportunities they face. This proposition
is difficult to accept given the richness and complexity of life, par-
ticularly given how simple it is to achieve universal computation. It
is not uncommon to accidentally stumble upon universality in sys-
tems where memory usage can expand. Notable examples are Con-
way’s game of life (Rendell and Adamatzky, 2002), Wolfram’s Rule
110 (Cook, 2004), Wang Tiles (Lafitte et al., 2008), and
Schönfinkel’s/Curry’s combinatory logic (Cardone and Hindley,
2006; Schönfinkel, 1924). A powerful computing device would
immensely benefit organisms that struggle to survive and repro-
duce. We know evolution is capable of designing remarkably
sophisticated systems according to principles of optics, mechanics,
chemistry, and thermodynamics. So why not principles of compu-
tation? There is nothing about universal computers that make
them generally more costly, less efficient, or harder to maintain
in comparison to weaker computation systems. In fact, the history
of human technology suggests quite the opposite; analog non-
universal systems are increasingly being replaced by digital micro-
processors in devices and machines even though they do not
strictly need universal computation for their purposes. (Micropro-
cessors implement the von Neumann architecture which is a uni-
versal computation system capable of simulating any Turing
machine).

Let us entertain the possibility that a universal computer exists
in biology but has not yet been found. The most obvious principle
that may guide us towards finding such a system is memory expan-
sion. A necessary [but not sufficient] condition for universality is
that memory usage (in systems where ‘‘memory usage” can be
defined) not be bounded by the system’s descriptor (see Fig. 1B).
In other words, the system should be able to recruit more memory
space when needed during the process of computation or after it is
given an input. (Memory usage in finite state automata, a weaker
non-universal computation system, is bounded by the system’s
descriptor irrespective of the input). In the context of neuroscience
and cognition, the importance of separating memory from compu-
tation and the need for a read-write mechanism has been explicitly
raised by Gallistel & King as a critique of the network paradigm
(Gallistel and King, 2009).

Network models cannot easily be reconciled with the memory
expansion condition. The solution adopted in the Turing-
equivalent dynamical systems discussed above is to expand mem-
ory by using the numerical digits of a variable as a string of sym-
bols (Moore, 1990; Moore, 1991; Siegelmann and Sontag, 1991).
This method has a severe practical limitation; realistically, less
than a few dozen bits of memory can be recruited and, more
importantly, it leads to structural instability which renders it
impossible to build or find in nature. Another solution is to assume
that the network can grow in its number of variables. This can be
achieved by either having the system physically grow through
the construction of new components during computation (e.g., by
the generation of new neurons or creation of entirely new
molecules/genes according to specific rules) or by assuming there
is an arbitrarily large reservoir of silent or dormant dimensions
(e.g., implemented by repetitive network architectures) that serve
as general purpose units of memory and can be accessed for stor-
age and retrieval. Crucially, the number of memory units should

not be part of the system’s descriptor that determines the problem
that is supposed to be solved.

There has been notable progress in recent years toward building
network models that use architectural motifs (instead of numerical
digits of a physical quantity) as a memory tape. Papadimitriou et al.
implemented the memory tape component of Turing machines
using neuronal assemblies, but an exogenous agent was needed
to carry out the logic of the Turing machine’s tape head
(Papadimitriou et al., 2020). Graves et al. implemented the Turing
machine’s tape head as a neural network but their memory tape
was a not implemented with a neural network (Graves et al.,
2014). It remains to be shown whether a fully neuronal model
can combine all the components of a Turing machine together in
a biologically plausible manner.

Another potentially promising direction is to search for imple-
mentations of cellular automata in biology (Ermentrout and
Edelstein-Keshet, 1993). Cellular automata are potentially univer-
sal in scope; depending on the transition rules, it may be possible
to use them to compute any computable function (although they
may incur non-linear slow-downs relative to Turing machines).
For instance, Oku & Aihara modeled a neural network implementa-
tion of Rule 110, a Turing-equivalent linear cellular automata (Oku
and Aihara, 2010). (What makes this model different from standard
neural network models is that the size of the network is not
bounded by the descriptor; the descriptor can be defined to only
specify the initial activity pattern without specifying the full net-
work that that pattern is embedded in). Alternatively, reaction–dif-
fusion systems can be used to implement cellular automata in a
non-neural system (Baluška and Levin, 2016). A natural implemen-
tation of cellular automata presupposes repeating motifs (e.g. bio-
logical cells, or repeating network architectures) which contain
activity patterns that are invariant to spatial shifts; the evolution
of an activity pattern in time should not depend on where that pat-
tern is located in the substrate. This is a key property of cellular
automata that allows it to fulfill the memory expansion condition.
A pattern can recruit more memory units by expanding in the sur-
rounding space and every computational program can be described
independent of the physically available memory capacity. It is yet
to be determined whether cellular automata bear any utility in
understanding how biology might achieve universal computation.

Perhaps the most promising place to search for a universal com-
puter is in the molecular biology of polynucleotides. Memory
expansion is trivial in a system that uses the precise sequence com-
position of polynucleotides as memory. It can be accomplished
through the addition of nucleotides, either by insertion or tail
extension. The resemblance of polynucleotides to strings of com-
putation theory is hard to ignore. In Turing’s attempt to formalize
the notion of computation he wrote: ‘‘Computation is normally done
by writing certain symbols on papers. . . I think that it will be agreed
that the two dimensional character of paper is no essential of compu-
tation. I assume then that the computation is carried out on a one-
dimensional paper, i.e., on a tape divided into squares. I shall also sup-
pose that the number of symbols which may be printed is finite. . . The
effect of this restriction on the number of symbols is not very serious. It
is always possible to use sequences of symbols in the place of a single
symbol” (Turing, 1936).

Polymer sequences consisting of an alphabet of only four
nucleotide symbols A, C, T (or U), and G elegantly fit this descrip-
tion. This striking resemblance was perhaps first noticed in the
1970s by Bennett who later proposed a blueprint for a RNA/DNA
based Turing machine (Bennett, 1982; Bennett, 1973). Apart from
their string-like structure, polynucleotides possess many proper-
ties that make them ideal vehicles for biological computation,
e.g., thermodynamic stability, spatial compactness, and their
capacity to be modified with low energy cost (Gallistel, 2017;
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Langille and Gallistel, 2020). It is not surprising that these mole-
cules are considered to be potentially useful in data storage tech-
nology (Ceze et al., 2019; Grass et al., 2015) and biomolecular
computing (Benenson, 2012; Ruben and Landweber, 2000; Chen
and Wood, 2000). DNA/RNA computation has been used in labora-
tory settings to solve a number of challenging tasks including the
Hamiltonian path problem (Adleman, 1994), the travel salesman
problem (Lee et al., 2004), the boolean satisfiability problem
(Lipton, 1995; Liu et al., 2000; Sakamoto et al., 2000), and the
knight placement problem (Faulhammer et al., 2000).

Already, a number of DNA/RNA-based computation models
have been proposed that are universal in their computational
scope. One approach is to have DNA strands self-assemble into
two-dimensional structures that obey the laws of Wang tiles or lin-
ear cellular automata (Mao et al., 2000; Rothemund et al., 2004;
Winfree et al., 1998; Woods et al., 2019). In this approach, memory
expansion is achieved through the growth of an aperiodic crystal.
Another general approach is to use DNA strand displacement to
build a chemical reaction network (Cardelli, 2011; Soloveichik
et al., 2010; Soloveichik et al., 2008; Qian et al., 2011). It has been
suggested that chemical reaction networks can be used to imple-
ment counter machines (which are Turing-equivalent) by relying
on the exact number of molecules that are present (Soloveichik
et al., 2008). A third theoretical approach is to use DNA strand dis-
placement to implement stack machines or Turing machines (Qian
et al., 2011; Yahiro et al., 2016; Lakin et al., 2011), where memory
expansion is achieved by the lengthening of the DNA strand at its
ends. A fourth approach is to enzymatically modify the content of a
DNA strand that serves as a Turing machine memory tape (Bennett,
1982; Shapiro, 2012; Shapiro and Karunaratne, 2001; Varghese
et al., 2015). Applying this same approach to chromatin can yield
a chromatin computer where DNA and histone modification rules
can implement a Turing-machine (Bryant, 2012). A more recent
approach is to exploit the complexity of folding pattens of RNA
molecules during transcription (Geary et al., 2019; Geary et al.,
2017). Rothemund’s approach, which may be the earliest detailed
Turing-equivalent model, was based on restriction enzymes acting
on a circular double stranded DNA, where complementary DNA
overhangs are ligated (Rothemund et al., 1996).

Although one of the goals of DNA/RNA based computation has
been to implement it in living cells (Shapiro and Gil, 2008; Win
and Smolke, 2008; Shapiro and Benenson, 2006; Siuti et al.,
2013; Benenson, 2009; Benenson, 2009), it would be hard to make
the case that any of these Turing-equivalent models already exist
in nature as a general purpose computation system. The above
body of work has been design-oriented, not discovery-oriented
(perhaps with the exception of Bryant, 2012). The question I
would like to raise here is not whether it is feasible to artificially
implement a universal computation system using polynucleotides,
but whether it is reasonable to consider that nature may have
already done so. This question will lead us to an RNA-based model
that looks very different from the ones that have been proposed to
date.

Recent developments in molecular biology suggest the possibil-
ity that non-protein-coding RNA have a yet undiscovered critical
role. Approximately 1.74% of the human genome ends up in
mature mRNA and more than half of that consists of untranslated
regions that do not encode proteins (Piovesan et al., 2016). This is
while it is has been found that the vast majority of the human gen-
ome is actively transcribed (ENCODE Project Consortium et al.,
2007; Kapranov and St. Laurent, 2012; Clark et al., 2011). The dis-
covery of pervasive transcription was met with controversy
(Kapranov and St. Laurent, 2012; Clark et al., 2011; van Bakel
et al., 2011; Cheng et al., 2005; Dinger et al., 2009; Kapranov

et al., 2010; Palazzo et al., 2014) and the functional significance
of the non-coding portion of the transcriptome is being intensely
debated (Palazzo et al., 2014; Doolittle, 2013; ENCODE Project
Consortium, 2012; Freedman et al., 2011; Graur et al., 2013; Lee
et al., 2019; Linquist et al., 2020; Mattick and Dinger, 2013; Niu
and Jiang, 2013; Palazzo and Lee, 2015; Pheasant and Mattick,
2007). Proponents of the ‘‘junk DNA” hypothesis estimate that no
more than 15% of the human genome can have functional signifi-
cance, and the rest leads to ‘‘transcriptional noise” when tran-
scribed (Graur, 2017; Ponting and Hardison, 2011; Rands et al.,
2014). The opposing viewpoint argues that most of the human gen-
ome may be functional and that sequence conservation is not a
necessary condition for functional relevance (Lee et al., 2019;
Mattick and Dinger, 2013; Pheasant and Mattick, 2007; Aprea
and Calegari, 2015) and that there are many other indicators of
function such as conservation of secondary structure (Smith
et al., 2013; Washietl et al., 2005), conservation of promoters
sequences (Derrien et al., 2012; Guttman et al., 2009; Kutter
et al., 2012; Ponjavic et al., 2007; Stephen et al., 2008), cell-
specificity in expression levels (Derrien et al., 2012; Cabili et al.,
2011; Gloss and Dinger, 2016; Ravasi et al., 2006), subcellular orga-
nization (Mercer et al., 2008; Sone et al., 2007), and temporal reg-
ulation during embryonic development (Li et al., 2020; Pauli et al.,
2012). Genome-wide association studies show that more than 70%
of the genetic loci associated with traits and diseases fall in inter-
genic or intronic regions (Freedman et al., 2011). These regions
have been found to be abundantly transcribed (Bartonicek et al.,
2017; St. Laurent et al., 2014) in a highly cell-type specific manner
consistent with their associated traits (Hon et al., 2017). Across
organisms the non-protein-coding to protein-coding ratio of the
genome scales with organism complexity, while the number of
protein-coding genes as well as the total length of protein-coding
sequences plateaus (Liu et al., 2013; Mattick, 2004; Taft et al.,
2007). While there are many indicators suggestive of function,
the mechanistic roles of non-coding RNA remain to be discovered.
The question of non-coding RNA function has even been described
as ‘‘the most important issue in genetics” (Kapranov and St. Laurent,
2012). I propose the theory that the non-protein-coding portion of
genome and transcriptome contains the data and programming
material of an undiscovered universal computation system in
biology.

2. Natural RNA-based universal computation is plausible

In support of the theory of natural universal computation
through polynucleotides I demonstrate that universal computation
through RNA is in principle attainable without assuming extraordi-
narily complex molecular machinery. A molecular machine that
implements a universal Turing machine would be extraordinary
and implausible, as it would require large enzymes operating in a
far more elaborate manner than the ribosome. Even if such a sys-
tem were molecularly feasible, it is hard to imagine how it could
have gone undetected. I present an alternative class of models
based on k-calculus and combinatory logic. Computation in these
models is a decentralized process where distinct enzymes make
local modifications to RNA molecules according to just a handful
of editing rules. The specific details of the models are somewhat
arbitrary and only meant to be used as a proof a principle, demon-
strating that it is possible to implement a universal computation
system through basic molecular operations on RNA. I argue that
the models are plausible and that it is conceivable such a system
may have evaded detection throughout the many decades of
research in molecular biology.
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2.1. Combinatory logic and k-calculus as computation systems

k-Calculus and its predecessor, combinatory logic (CL), are two
nearly identical universal computation systems. The entities
defined in these systems are functions that take functions and
return functions. No distinction is made between programs and
data and everything is constructed as a function. There is a one-
to-one equivalence between lambda functions (called ‘‘k-terms”)
and combinatory functions (called ‘‘combinators”). The difference
lies in the elementary operations that are used to compute things.
k-calculus computes using variable substitution and variable
renaming. CL uses applications of primitive combinators. (I will
only briefly introduce CL here. For a more complete introduction
to both systems see Appendix C).

The identity combinator I is defined as Ix = x. It returns what-
ever it is given. The combinator K is defined as Kxy = x. It takes
two arguments and returns the first. C takes three inputs and
swaps the second and third, Cxyz = xzy. B is defined as Bxyz = x
(yz),W is defined asWxy = xyy (see Fig. 2A for more primitive com-
binators). (Combinators are capitalized and variables are in lower-
case). Let us evaluate the term CIBW. At every step we apply the
left-most combinator. Applying C results in IWB. Next we apply I
to get WB, which cannot be evaluated further because application
of W requires two inputs. So the final result is WB. Let us try
another example, this time with a variable: CKCx = KxC = x. Like
the I combinator, CKC returns x given any x. This shows that I
can be constructed using C and K. Finally, let us evaluate an exam-
ple with parentheses: BCKIW(KK)KC. First we apply B to get C(KI)
W(KK)KC. To apply C we swap the second and third arguments, W
and (KK), to get (KI)(KK)WKC. We can always remove the paren-
theses around the left-most term because CL is by convention
left-associative. Doing so, we get KI(KK)WKC. Applying K we get
IWKC = WKC = KCC = C. So BCKIW(KK)KC = C.

Remarkably, the set of primitive combinators B, C, K, and W,
constitute a universal computation system. Using only these four
combinators, it is possible to simulate Turing machines and com-
pute any computable function. Not only is it possible to compute
boolean logic circuits (see Fig. 2B), but CL can implement data
structures and recursive algorithms (see Appendix C). For example
C(C(B(BK))z)(C(C(B(BK))y)(C(C(B(BK))x)(KI))) can be interpreted
as a stack containing three elements x, y, and z. And B(WI)(BWB)
(B(B(C(B(B(B(C(BC)I)(BC(CI)))(BC)))(BC(C(B(BK)))))B)B)(KI) is a

recursive program that takes a stack of any size and reverses the
order of its elements. (To see how I constructed these terms see
Appendix C). CL can implement numbers and arithmetics. The
most popularized number systems are unary (e.g., Church numer-
als). This has given k-calculus and CL a reputation for being slow.
But it is not difficult to implement efficient arithmetic operations
with binary numeral or in any base of choice (Mogensen et al.,
2001). k-calculus and CL are as powerful and expressive as any
functional programming language, and can simulate Turing machi-
nes with linear slow-down (see Appendix C for proof).

2.2. Combinatory logic can be implemented through RNA editing rules

In CL, terms are usually represented as strings of characters.
Nucleotide sequences can trivially be used to represent strings.
There is already a precedent for this in protein coding sequences
where each triplet represents an amino-acid. Similarly, each prim-
itive combinator can be encoded using sequence motifs. (Open and
close parentheses can also be represented by unique motifs, but
this is not the method used in the models I present below.) Not
all nucleotide sequences must represent a combinator (some can
be neutral fillers) and combinator motifs need not be unique (there
may be redundancy similar to amino-acid codons). A small enough
primitive combinator set, like S and K, can make it possible to use
just one nucleotide per combinator. Non-canonical bases and
nucleotides modifications like methylation may also be involved
in the representation scheme. I refrain from speculating over the
motifs for the combinators, but I only remark that if the codes
for the primitive combinators are all of the same length, it can
make molecular implementation of the combinator rules simpler.

To evaluate a term, it is sufficient to recursively apply the left-
most combinator, as illustrated in the examples above, until it is no
longer possible to reduce the term. This can be accomplished by
distinct and independent enzymes, each responsible for imple-
menting one of the primitive combinators. (The enzymes need
not be proteins; they can be other RNA strands or even self-
cleaving/self-ligating RNA elements). For example, if there are four
primitive combinators there can be four distinct and independent
enzymes that each apply one of the combinators by first recogniz-
ing the left-most motif that encodes for it and then applying appro-
priate changes to the RNA strand. These applications can be carried

Fig. 2. Implementation of a combinatorial logic circuit using combinatory logic – (A) Definitions of some commonly used primitive combinators. Outlined are two common
universal systems: SK and BCKW. (B) A combinatory term was constructed using combinators B, C, K, and I to compute a circuit with five boolean inputs. Here, Church’s
boolean encoding is used, where K represents true and KI represents false. At each step, either the parentheses enclosing the left-most term are deleted or the left-most
combinator is applied. The 61 omitted steps only rearrange the five inputs and assemble the circuit. Evaluation of the AND gate was automatically skipped since the first input
to the NOR gate was true. The final result is KI, equivalent to false. Combinatory logic must not be confused with combinatorial logic. The latter is the weakest of the systems
in Fig. 1C (equivalent to look-up tables), whereas the former is a universal computer (equivalent to Turing machines).
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out in an uncoordinated fashion and there is no need for a central
entity to direct these operations.

If we take nucleotide sequences to represent CL terms, it seems
more reasonable to assume that they are parsed and edited at the
30-end. The 50-end is typically capped and protected whereas the
30-end is highly dynamic and amenable to additions or removals
of nucleotides; RNA synthesis occurs by polymerization at the 30-
end and the poly(A) tail (a stretch of up to 200 adenine bases at
the 30-end) can lengthen or shorten even after an RNA is exported
to the cytoplasm (McFleder et al., 2017; Udagawa et al., 2012).
Additionally, RNAs exhibit high diversity in their 30 splice site.
The same RNA transcript can be cleaved and polyadenylated at dif-
ferent sites depending on the context (Elkon et al., 2013; Flavell
et al., 2008). The variability of the 30-end is especially pronounced
in the brain where 30UTRs of mRNA are lengthened beyond the
annotated ends (Guvenek and Tian, 2018; Miura et al., 2013) and
where miRNA show extensive sequence modifications at their 30-
end (Martí et al., 2010). For these reasons I will assume that RNA
strands are parsed as combinatory terms in the 30-to-50 direction.
Respecting the standard nomenclature, I refer to the direction of
the 50-end as ‘‘upstream” and the direction of the 3’-end as
‘‘downstream”.

What sort of RNA modifications are required to implement
combinator applications? The answer depends on the primitive
combinator set. B, C, K, and W are sufficient for universality. So
is the smaller set of only two combinators S and K. (All four com-
binators B, C, K, andW, can be constructed using only S and K – see
Appendix C). There are infinitely many valid basis sets that would
produce a universal computation system. Fortunately, we can eval-
uate the plausibility of the model without assuming the exact basis
set. For any set of primitive combinators to achieve universal com-
putation, it must have at least one combinator that deletes terms
(deletion), at least one that reorders terms (reordering), at least
one that duplicates terms (duplication), and at least one that adds
parentheses (nesting). (This is easy to prove by showing that none
of these operations can be mediated by the other three. Without
deletion the number of combinators cannot shrink. Without dupli-
cation the number of combinators cannot grow. Without reorder-
ing the ordering of terms remains invariant. And without nesting
the number of parentheses – in, say, left-associative representa-
tions – cannot grow). In the BCKW system, each of the four combi-
nators fulfills exactly one of the four conditions. In the SK system,
the S combinator fulfills the last three conditions and the K combi-
nator fulfills the first. We can examine the plausibility of each of
these four operations separately.

Deletion: The enzyme responsible for implementing the dele-
tion operation needs to excise a segment of RNA. Splicing is one
of the most common RNA modifications and many enzymes are
known to mediate it. Splicing involves cleavage and ligation but
even a single cleavage operation is sufficient to completely fulfill
the deletion condition. For instance, the F combinator, equivalent
to Church boolean false, is a combinator that takes two inputs
and returns the second (Fxy = y). An enzyme responsible for imple-
menting F only needs to cleave the RNA one term upstream of the F
motif (corresponding to deletion of ‘‘Fx” in ‘‘Fxy”). (The K combina-
tor, defined as Kxy = x, can be constructed as K = CF and no longer
needs to be in the basis set). RNA strands that are excised through
this method must be immediately discarded and not interpreted as
representing combinatory terms. This can be trivially implemented
since excised strands lack a 5’-cap and are susceptible to exonucle-
ase degradation.

Reordering: The enzyme responsible for implementing the
reordering operation only needs to conduct something as simple
as swapping two elements corresponding to successive terms,
e.g., as in Cxyz = xzy. Similar RNA modifications are already known
to occur in cells. Post-transcriptional re-ordering of exons was first

observed in the early 1990s (Cocquerelle et al., 1992; Nigro et al.,
1991). At first, it was thought to be rare, expressed at low levels,
and confined to circular RNAs. But several recent studies suggest
that it may occur abundantly, occurring in polyadenlyated tran-
scripts at expression levels comparable to that of their canonically
spliced counterparts (Al-Balool et al., 2011; Dixon et al., 2005;
Hamilton, 2012; Horiuchi and Aigaki, 2006; Kong, 2005; Shao
et al., 2006). Transposable elements in DNA, RNA’s sister molecule,
frequently move around changing locations with the help of trans-
posase enzymes that mediate their cleavage and ligation. Opera-
tionally it only requires three cleavages and three ligations to
fulfill the reordering condition, both of which many native
enzymes like the spliceosome are capable of (Al-Balool et al.,
2011). It is therefore plausible to assume other enzymes may exist
that are capable of reordering RNA elements.

Duplication: Duplication is not as trivial as deletion or reorder-
ing. Example combinators that require duplication are are
Wxy = xyy and Mx = xx. The term that needs to be duplicated
may either be a motif for a single combinator or a nested (i.e.,
parenthesized) sequence of arbitrary length. Duplication of arbi-
trarily long sequences requires an enzyme that can synthesize a
copy of an RNA element. RNA dependent RNA polymerases (RdRp),
the enzymes that can directly synthesize RNA from an RNA tem-
plate, are common in viruses and have also been found in plants
and nematodes. But many species including humans and fruit flies
lack endogenous RdRp. Are there any known methods of RNA
sequence duplication that may exist in all cells? One method is
through reverse transcription (i.e., DNA synthesis from an RNA
template) followed by transcription, (RNA synthesis from a DNA
template). Reverse transcriptase and RNA polymerase, exist abun-
dantly across the plant and animal kingdom, although, most bacte-
ria species lack reverse transcriptase (Lim and Maas, 1989; Simon
and Zimmerly, 2008) and reverse transcriptase is thought to be
inactive in many – if not most - cells of multicellular eukaryotes.

But a more promising candidate enzyme for mediating
sequence duplication in the model is RNA polymerase (RNAP).
RNAP is the crucial transcription enzyme, abundantly present in
all living organisms, that normally synthesizes RNA from DNA tem-
plates. In special cases, RNAP can polymerize RNA solely from RNA
templates (Lehmann et al., 2007). RNA replication through RNAP is
the method used by viroids that infect plants, the hepatitis delta
virus (HDV) that infects humans, and several other related RNA
based viruses that lack their own polymerase enzyme (Chang
et al., 2008; Chang et al., 2019; Lai, 2005; Tseng and Lai, 2009).
These viruses rely on native RNAP in host cells for RNA replication.
In the case of viroids and HDV, the replicated RNA is circular and
replication is understood to happen through a rolling circle mech-
anism (Tseng and Lai, 2009; Flores et al., 2011). RNA replication of
non-circular RNA strands has been demonstrated in vitro
(Biebricher and Luce, 1996; Biebricher and Orgel, 1973; Jain
et al., 2020; Kakimoto et al., 2015; Konarska and Sharp, 1989;
Konarska and Sharp, 1990; Wettich and Biebricher, 2001) Remark-
ably, this mode of replication is dependent on the existence of a 30-
GG. . . or 30-CC. . . motif on the template, begins synthesis immedi-
ately after the motif, and can generate concatemers from linear
(non-circular) templates (Jain et al., 2020; Konarska and Sharp,
1989). This is already quite close to what would be expected of
an enzyme responsible for implementing the W or M combinators.
(It must first recognize the motif that codes for W or M, begin syn-
thesis immediately upstream of the motif, and produce a strand
with two copies of the term that is intended for duplication). At
any rate, the hypothetical duplication enzyme may still be
unknown to us and there is considerable evidence that direct
RNA duplication through unknown mechanisms occurs endoge-
nously (Dixon et al., 2005; Dixon et al., 2007; Frantz et al., 1999;
Kapranov et al., 2010; Rigatti et al., 2004). (In the next section
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we will revisit the problem of RNA duplication and show that it can
be outsourced to DNA-based RNA transcription).

Nesting: A nesting operation composes two terms as a single
nested term. For example, B defined as, Bxyz = x(yz), nests its sec-
ond and third arguments as a single term (xyz is interpreted as
((xy)z) in left-associative CL). If parentheses are encoded by
sequence motifs, as suggested earlier, the enzyme responsible for
implementing B needs to insert predefined open and close motifs
one and three terms upstream of the motif for B. But this method
brings out a complication that we have ignored until now: paren-
thesis matching.

Parenthesis matching is critical for the model because all of the
enzymes that apply combinators need to recognize and count
whole terms. For example, if the hypothetical deletion enzyme is
confronted with an open parenthesis at the position of a term that
is supposed to be deleted, it must delete the entire stretch of
nucleotides between that open parenthesis and its matching close
parenthesis (which can include other open/close parentheses).
How can an enzyme when confronted with the start of a term find
the correct ending nucleotide? This is not a simple task. A parsing
algorithm that implements parenthesis matching needs to keep
track of the parenthesis depth, incrementing with every ‘‘(‘‘, decre-
menting with every ‘‘)”, and stopping whenever the calculated
depth reaches zero. A molecular implementation of this algorithm
does not appear plausible; I cannot conceive of an implementation
of this algorithm without invoking extraordinarily complex hypo-
thetical molecular machinery. Fortunately, there is an elegant solu-
tion to this problem using the base pairing properties of RNA.

Similar to DNA, RNA molecules can form double stranded
helices with their complementary sequences. Base pairing can also
occur within the same strand. When an RNA molecule contains
two sequences that are inverse complements of one another, those
sequences physically come together to form a stem-loop (Fig. 3A).
Stem-loops can occur inside other stem loops and the entire base-
pairing organization of an RNA molecule is referred to as the sec-

ondary structure. RNA strands typically have intricate secondary
structures that involve many layers of nested stem loops (Fig. 3B-D).

If open and close parentheses are represented by reverse com-
plementary sequences, RNA molecules naturally solve the problem
of parenthesis matching by physically bringing matching paren-
theses together in space. It is then enough for the combinator
enzymes to treat the base of a stem as a single term, just as they
would for a primitive combinator motif. For example, a hypothet-
ical enzyme that implements Fxy = y must cleave one term
upstream of the F motif. If a stem loop appears in the place of x,
it can delete the entire stem loop by cleaving at the base of the
stem. This model suggests a very general role for RNA secondary
structure that is more fundamental than anything presently con-
ceived (Wan et al., 2011).

In light of this solution, let us evaluate the plausibility of a nest-
ing operation. To implement nesting, there must be a method of
adding new stem loops into RNA strands. This can be done through
insertion of RNA duplexes. Double stranded RNA (dsRNA) is known
to exist in cells and its over-expression or under-expression can be
lethal (Liddicoat et al., 2015; White et al., 2014). The enzyme
responsible for implementing nesting may recruit these dsRNAs,
or possibly recycle duplexes that have been removed in previous
CL operations, and insert them in place. (A basic operation that
the model needs is parenthesis removal. If the left-most term is
enclosed in parenthesis, the parentheses should be removed.
Removed duplexes can be reused in the same strand for nesting
operations). Insertion of RNA duplexes has not been documented
in cells, but it would only involve simple cleavage and ligation
operations.

Now that we take stems to represent parentheses, it is possible
to provide a set of concrete RNA editing rules that can, in theory,
implement combinatory logic. The five rules depicted in Fig. 4
implement left-associative CL based on four arbitrarily chosen
combinators. In left-associative CL abcde is interpretted as (((ab)
c)d)e. A variant of these rules can be constructed by implementing

Fig. 3. RNA Secondary Structure – (A) RNA stem-loops form when the nucleotides of two segments of an RNA strand pair with one another. The region containing base-pairs is
the stem and region in between the stem is the loop. Base pairing in RNA follows the canonical Watson-Crick rules where A pairs with U and G pairs with C but can also
include less stable wobble pairs such as G-U. (B-D) Examples of secondary structure of some non-protein-coding RNAs exhibiting many levels of nested stem loops. (B) 200-nt
BCYRN1 transcript, expressed in neuronal dendrites and implicated in memory loss and cancer (Samson et al., 2018). Secondary structure was obtained using RNAfold
minimum free energy prediction (Mathews et al., 2004; Gruber et al., 2008; Lorenz et al., 2011). (C) 683-nt lncTCF7 transcript, implicated in cancer. Secondary structure was
obtained from (Owens et al., 2019). (D) 2148-nt HOTAIR transcript, expressed in peripheral tissues and implicated in epidermal differentiation and development. Secondary
structure was obtained from (Somarowthu et al., 2015). All figures were drawn using VARNA (Darty et al., 2009).
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right-associative CL (see Fig. 5) where abcde is interpreted as a(b(c
(de))). In right-associative CL, the operation rules can be imple-
mented anywhere along the RNA strand, whereas the rules written
for left-associative CL were designed to be implemented at the 30-
end of the strand only. It is sufficient for these editing rules to be
implemented by distinct enzymes in an uncoordinated fashion to
achieve a universal computation system.

The method of nesting terms through RNA stem loops presents
an opportunity to implement addressable memory and variable
substitution. One such implementation is illustrated in Fig. 6. In
this model, each variable is assigned an address (specified by a
unique sequence of nucleotides). An RNA strand containing that
address sequence at its 50-end stores the value of that variable. A
variable can be referred to by other RNA strands using a reference

sequence defined as the reverse complementary sequence of the
address sequence. Simple cleavage/ligation operations can substi-
tute the reference sequence with the value of the corresponding
variable as a nested term as shown in Fig. 6. (For this system to
work with the left-associative CL model (Fig. 4), the address and
reference sequences must themselves fold into stem loops).

An addressable memory system with variable substitution has
many advantages. First it allows longer strands to be broken down
to shorter ones while maintaining a link between the strands. This
overcomes some of the physical limits on the lengths of RNA pro-
grams and parallelizes computation. Second, it allows coordination
across many programs that share the same memory space. A pro-
gram can write the result of a computation in a designated
memory address that another program uses as an input. Third, it

Fig. 4. Model I – A set of RNA editing rules that mimic the operational rules of left-associative CL based on combinators B, C, F andW. In all the rules, RNA elements x, y, and z
must either be single combinator motifs (codes that represent B, C, F or W) or stem loop bases. The fifth rule corresponds to parenthesis removal when the left most term is
enclosed in parentheses. All edits are designed to be applied on the 30-end of RNA strands.
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Fig. 5. Model II – A set of RNA editing rules that mimic the operational rules of right-associative CL based on combinators B, C, F and K. In all the rules, RNA elements x, y, and z
can be any non-empty sequence representing primitive or composite combinator terms. The fifth rule corresponds to parenthesis removal when a single combinator is
enclosed in parentheses. In contrast to Model I (Fig. 4) editing can happen anywhere along an RNA strand, even multiple locations at once. If multiple locations can be edited,
the order of operations does not affect the final result (according to the Church-Rosser theorem).

Fig. 6. Addressable Memory – An example mechanism that can implement variable substitutions through RNA, assuming stem loops hold nested terms. First two distinct RNA
strands come together, one containing the address and content of a variable and the other containing a reference sequence that base-pairs with the address sequence. One
cleavage and two ligations as illustrated is sufficient to incorporate the content of the variable as a stem loop at the location it is referenced. This process in reverse can also be
used to excise a loop from a stem-loop, while maintaining the link across two strands.
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can be more efficient to work with variable representations. For
example, if a nested term is to be duplicated only to have one copy
deleted, it is more efficient to have it represented by a short refer-
ence sequence and duplicate the reference sequence. And fourth,
term permutations can be done much quicker using addresses
and references. The first 61 steps of the program in Fig. 2B only
rearranges the inputs, but can be accomplished with only 5 vari-
able substitution operations.

2.3. Standard DNA-dependent transcription eliminates the need for
RNA duplication

Above, we evaluated the plausibility of deletion, reordering, du-
plication, and nesting in RNA molecules. Deletion, reordering, and
nesting can be done with O(1) number of cleavage/ligation opera-
tions, but duplication requires RNA synthesis and its number of
operations is proportional to the length of the element that is being
duplicated. Furthermore, RNA replication from RNA templates is
not yet known to occur widely across all cells of all lifeforms. In
this section I show that RNA directed RNA replication is not strictly
required for universal computation. To make this possible I will
abandon pure combinatory logic as this model requires an address-
ing system where self-referencing (or cycles in the reference
graph) is permitted.

Strictly speaking, it is not permitted to define a function in
terms of itself in k-calculus or CL. For instance the function f = C
(C(BC(CC)))(CK) f must be redefined in terms of the Y combinator
as f = Y C(C(BC(CC)))(CK) = B(WI)(BWB)C(C(BC(CC)))(CK) (see
Appendix C). (The founders of k-calculus/CL were concerned with
creating a sound foundation for mathematics that avoids contra-
dictions and ill-defined self-referencing terms). But if we relax this
constraint it becomes possible to achieve universal computation
without any duplicating combinators (such as W or M). Instead,
the three combinators B, C, and K alongside an addressing system
is sufficient to simulate any Turing machine with linear slowdown
(see Appendix C for a constructive proof that uses B, C, and K, and
self-reference to linearly implement any Turing machine). Note
that in the model of right-associative CL (Fig. 5) applications of B,
C, K, and parenthesis removal can be fully accomplished by merely
cleaving and ligating RNA at predetermined positions relative to
the combinator motif. Except for the application of theM combina-
tor (which is no longer needed for universality), the number of
duplexes (i.e., parentheses) on both sides of the rules are the same.
Therefore, even duplex insertion is not strictly required.

We can combine the addressing system of Fig. 6 with the right
associative model of Fig. 5, excluding the M combinator – which is
the combinator that cannot be implemented purely by cleavage
and ligation. The resulting model relies on perpetual transcription
of RNA strands from static genomic templates. The transcripts can
then be recursively inserted into one another guided by an
addressing system.

In order to prevent infinite loops of self-insertion where multi-
ple copies of a self-referencing transcript get inserted into one
another, the value substitution mechanism of Fig. 6 can be refor-
mulated to only occur when a reference is at the left-most position
(the 30-end of the strand) or when it is enclosed in parentheses on
both sides. An alternative solution is to split a reference sequence
into two subsequences only to have them joined when value sub-
stitution is needed in the algorithm.

2.4. Simulating an example Program: Addition of two arbitrarily large
numbers

To better illustrate the idea of computation through RNA, I will
explain how to perform arithmetic addition using the RNA model
described in section 2.3. Note that the problem of adding two

bounded numbers (say two 8 bit numbers, between 0 and 256)
can be solved using a static memory-less circuit of boolean logic
gates. But our example demonstrates how to use recursion to solve
addition with no bounds on the input size, apart from resource
constraints like time, space, and energy.

In our example, a numbers is represented as a strand with dis-
tinct RNA elements for binary digits 1 and 0. (Examples of the
numbers 6 and 2, respectively (110 )2 and (10)2 in binary form,
are depicted in Fig. 7C). Two RNA strands shown in Fig. 7A & 7B
need to be perpetually transcribed from DNA templates. These
two transcripts (hereon referred to as transcripts A and B) have
unique address sequences at the 50-end and can be referred to by
the reverse complementary sequence of those address sequences.
For instance the RNA strand in Fig. 7C has a reference to transcript
A near its 30-end which should lead to transcript A being inserted at
that location through the rule illustrated in Fig. 6. Additionally,
transcript A has a reference to itself and a reference to transcript
B. Transcript B also has a reference to itself.

Here, we only use three combinators: B, C, and K. The rules for
applying them are shown in Fig. 5. Except for the rule for applying
the M combinator (which we make no use of), all of the editing
rules in Fig. 5 can be implemented by only cleavage and ligation
at fixed positions relative to the combinator motifs. It is assumed
that hypothetical enzymes detect these motifs and collectively
implement these rules in any order. To see the full derivation of
the addition program, refer to Appendix C section 6.1.

To calculate 6 + 2 = 8, at least 4 copies of transcript A and 5
copies of transcript B need to be present. The final product is an
RNA strand that contains four RNA elements corresponding to dig-
its (1000)2 which represents the number 8. The strength of this
method becomes evident when examining how the number of
operations scales with the size of the input. By simulating the edit-
ing rules for inputs up to 106 I show that the number of operations
scales logarithmically relative to the input (Fig. 7D). This would not
have been possible had I used a unary encoding like Church
numerals. (See supplementary data for simulation code).

The addition program in Fig. 7 has arbitrary details and conven-
tions (how to represent a number, which primitive combinators to
use, etc). I constructed it for illustration purposes only and it is not
intended to resemble how arithmetics is done in real biological
cells. This example shows a recursive program can be computed
with purely cleavage, ligation, and transcription from static tem-
plates. A detailed proof (Appendix C section 7) shows that any
computable function can be similarly computed using the same
framework.

3. Discussion

This paper proposes a class of theoretical RNA-based models
that are able to compute any computable function with identical
algorithmic complexity to that of Turing machines. There is plenty
of flexibility in the details of the models. The choice of primitive
combinators is arbitrary and there are an infinite variety of primi-
tives that lead to universal scope (e.g. SKI basis set or the BCKW
basis set). There is also some freedom in other aspects of the
model, such as the parenthesis convention (Figs. 4 and 5 imple-
ment left-associative and right associative, respectively).

In one variation, I use an address/reference system to circum-
vent the requirement of duplicating RNA elements (which is
needed for implementing the M or W combinators). Appendix C
contains a proof that this model (which – strictly speaking – devi-
ates from CL and k-calculus because of its use of unbounded vari-
ables) is Turing-equivalent in scope and in algorithmic complexity
(runtime and memory). A recursive function f, defined in terms of
itself, can be executed by self-insertion of an RNA transcript repre-
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senting f. In the process of computing f up to a depth of n, exactly n
copies of the transcript are consumed and degraded. In a sense, the
RNA-based RNA duplication of the purely CL models can be out-
sourced to the more plausible DNA-based RNA transcription. We
already know the biological processes for perpetual RNA transcrip-
tion from static genomic templates. In order to validate this model,
what is left to discover are the specific enzymatic reactions that
detect motifs and carry out the local cleavage/ligation operations
at fixed positions relative to those motifs.

The components that are needed to implement these models
are so familiar and unsophisticated that it appears plausible that
nature may have already achieved an RNA-based universal compu-
tation system. In contrast to previous DNA/RNA-based models that
achieve Turing-equivalence (Bennett, 1982; Bryant, 2012; Geary
et al., 2019; Lakin and Modelling, 2011; Mao et al., 2000; Qian
et al., 2011; Rothemund, 1996; Rothemund et al., 2004; Shapiro,
2012; Varghese et al., 2015; Winfree et al., 1998; Woods et al.,
2019; Yahiro and Hagiya, 2016; Geary et al., 2017; Shapiro and
Karunaratne, 2001), these new models that bridge combinatory
logic with RNA molecular biology are an attempt to conceive of a
computation system within the limits of what may already exist

in cells. This work motivates us to search for nature’s universal
computer at the molecular level and suggests some guiding details
that may aid us in its discovery.

3.1. Challenges to the theory

The formation of stem loops is an indispensable component of
the models presented in this paper as it solves the otherwise diffi-
cult problem of parenthesis matching. But RNA secondary struc-
ture is not necessarily fixed or unique. The same RNA strand can
change shape and fold into different kinetically stable structures
(Marek et al., 2011). An estimated 20–50% of mRNAs assume alter-
nate conformations (Lu et al., 2016). This can be a problem for a
model that depends on stems representing parentheses because
it makes RNA sequences ambiguous in their representations of CL
terms. Even randomly generated nucleotide sequences lead to
complex secondary structures that resemble some of the statistical
properties of naturally occurring secondary structure, including
non-local duplexes joining regions near the 30 and 50 ends (Fang
et al., 2018; Yoffe et al., 2011). Additionally, even if an RNA strand
starts off in a highly stable state, local edits may radically change

Fig. 7. Implementation of Addition – An RNA program was constructed to add arbitrarily large numbers in logarithmic time using the editing rules of Model II (Fig. 5) and an
address/reference system similar that of Fig. 6. This program involves two transcripts that are perpetually transcribed from static genomic templates and contain references
to themselves. Since the M combinator is not used, the rules can be implemented by merely cleaving and ligating RNA strands at predefined positions. Combinator motifs
were assumed to be 4-nt long and duplexes are each 6-bp. (A) Self-referencing 2518-nt transcript responsible for addition that also contains a reference to transcript B. (B)
Self-referencing 202-nt transcript responsible for reversing the content of a stack (or equivalently reversing the digits of a number). (C) an RNA program that computes 2 + 6
by referencing transcript A. (D) Simulation of the operation rules demonstrate that the number of operations increase logarithmically relative to the larger addend. (See
Appendix C for derivations of the transcripts A and B).
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the thermodynamic energy landscape and lead to changes in sec-
ondary structure that do not reflect the intended operation rules
of CL. Stable and controlled secondary structure is a critical part
of the model.

How can the theory be reconciled with the unfettered nature of
RNA structure? There are many factors that can influence the sta-
bility of secondary structure. Translation has a destabilizing effect
on structure in mRNA (Mustoe et al., 2018). So non-protein-coding
RNA that are not subject to translation may be more stable than
the estimates we have for mRNA. RNA binding proteins or other
factors may, in theory, stabilize stem loops as an RNA is being pre-
pared to undergo CL modifications. Also, some sequences form
more stable duplexes than others and it may be the case that only
highly stable duplexes are treated as parentheses. G-C bonds are
stronger than A-U bonds (Mathews et al., 2004) and restrictions
on the kinds of motifs that constitute parentheses can disam-
biguate them from the motifs that represent primitive combina-
tors. And finally, there are many ways to construct the same CL
term using primitive combinators. Semantically inconsequential
variations to syntactic representation of terms can also be used
to prevent the formation of unintended duplexes. For example,
any number of identity combinators can be inserted after an open
parenthesis without altering the intended computation, and that
by itself may stabilize secondary structure. Importantly, none of
the above models rely on strand displacement or the unwinding
of already formed RNA duplexes. Once a RNA stem is formed, it
never needs to come apart until that stem is excised and degraded.
This makes RNA binding proteins an excellent candidate for stabi-
lizing duplexes for the lifetime of an RNA strand. Conformational
heterogeneity of RNA strands does pose a challenge to these mod-
els, but not an unsurmountable one.

Stochasticity may also occur at the level of primary structure.
This can be dealt with by error-correction strategies. The most
obvious error-correction method is programmatic error-
correction, e.g. the use of check-sums or verification of program
outputs. Additionally, an RNA based program can spawn many
copies of the same sub-program in parallel. Some fraction of the
programs may accumulate errors during computation but the
overseeing program can select the most frequently occurring
result. Combinatory logic is as powerful as any typical program-
ming language and is capable of implementing any of the
software-based error-correction strategies adopted in modern
computing technology.

Another challenge for a solely RNA based molecular engram
theory is RNA stability. If a molecule were to serve as a memory
engram it must at least exhibit stability over similar time periods
as cognitive memories. RNA molecules have an average half-life
of around 7 hrs (Clark et al., 2012; Tani et al., 2012). DNA, how-
ever, can last for a lifetime and RNA information can be converted
back to DNA through reverse transcription. In recent decades, we
have learned that different cells of the same individual very often
have differences in their DNA (Biesecker and Spinner, 2013). Neu-
rons exhibit exceptionally high DNA diversity in what is known
as neuronal somatic mosacism (Cai et al., 2014; McConnell et al.,
2013; Upton et al., 2015; Westra et al., 2010). Various forms of
DNA modifications exist in neurons, including single nucleotide
variations, duplications, copy number variations, rearrangements,
and aneuploidy. The quantitative extent of somatic mosaicism in
the brain is currently under scrutiny (Evrony, 2016; Treiber and
Waddell, 2017) but it is especially pronounced in the human
frontal cortex where average DNA content is enlarged by an esti-
mated 4% (Westra et al., 2010) with a substantial fraction of neu-
rons possessing unique massive copy number variations, on the
scale of millions of basepairs long (McConnell et al., 2013). An
important driver of somatic genomic diversity is retrotransposition

(Coufal et al., 2009), the process of transcription from DNA to
RNA and subsequent reverse transcription from RNA back to
DNA, resulting in duplications of specific genes. Until recently,
it was not known if retrotransposition was restricted to mitotic
progenitor cells, i.e., cells that divide to create more cells, or
whether it also occurs naturally in post-mitotic cells (Bodea
et al., 2018; Rohrback et al., 2018). This is important because
reverse transcription is unlikely to facilitate cognitive memory
storage unless it is widespread in healthy post-mitotic brain cells.
Remarkably, somatic gene recombination, the process that has so
far only been found in immune cells, was recently reported in
post-mitotic healthy human frontal cortex neurons (Chai and
Gleeson, 2018; Lee and Chun, 2019; Lee et al., 2018). The validity
of this study is under debate and the results have not yet been
independently replicated (Lee et al., 2020; Kim et al., 2020). But
an independent group has recently demonstrated retrotransposi-
tion in post-mitotic cultured neuronal cells (Macia et al., 2017).
These findings support the idea that RNA-based computation sys-
tem can store the results of computation back into the form of
DNA sequences as long-term memory. This idea was previously
formulated, leading to the prediction that ‘‘individual neural cell
will have distinctive spatially and temporally defined genomic
sequences and chromatin structure” (Mattick and Mehler, 2008).
In fact, most long non-coding RNA are localized in the nucleus
and chromatin-associated (Guttman et al., 2009; Khalil et al.,
2009; Mattick, 2018; Tsai et al., 2010). Beyond neurons and lym-
phocytes, RNA-mediated genomic editing is known to occur in
single-celled eukaryotes (Chen et al., 2014; Nowacki et al.,
2008) and prokaryotes (Mohanraju et al., 2016). The long-term
and short-term categorization of memory may be a reflection of
two forms of RNA-based and DNA-based memory storage
(Mattick and Mehler, 2008).

Can RNA modifications occur fast enough to potentially facili-
tate cognition? Two of the most well-studied RNA processes are
transcription and translation. RNA Polymerase II transcribes
RNA molecules at a rate of 18–100 nt/s equivalent to 36–200
bits/s (Darzacq et al., 2007; Koš and Tollervey, 2010;
Landenmark et al., 2015; Malinen et al., 2012; Milo et al.,
2010). And the ribosome translates RNA to protein at a speed of
roughly 5–11 aa/s equivalent to 30–66 bits/s (Milo et al., 2010;
Guet et al., 2008; Olofsson et al., 1987; Siwiak et al., 2013;
Wang et al., 2013). It is difficult to quantify how fast animals
think but studies of different languages show that the informa-
tion rate of human speech is roughly on the order of 40 bits/s
(languages that are spoken faster have lower bits per syllable
than languages that are spoken slower) (Coupé et al., 2019). These
two information rates are within the same order of magnitude
and also consistent with the spike rates of typical neurons (up
to 100–200 Hz). This means that RNA operations can in principle
be fast enough to encode/transmit ideas communicated in speech
as single RNA molecules. (See Glaser et al., 2013 for a discussion
on the feasibility of recording spiking activity in the form of syn-
thetic polynucleotides from an engineering perspective, rather
than an evolutionary one). It remains to be shown that modifica-
tions of RNA molecules can occur fast enough to execute compu-
tation programs that underly animal cognition. In the models
described in this paper, addition of two numbers requires on
the order of 104 cleavage/ligation operations. We do not know
the speed at which these hypothetical editing rules may be
implemented. But the spliceosome, which implements two cleav-
ages and one ligation, takes an estimated 30 s to slice out an
intron (Hnilicová and Staněk, 2011; Huranová et al., 2010). For
an RNA-based computation system to facilitate cognition, either
more efficient RNA programs must exist or RNA modifications
must occur at extremely rapid rates.
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3.2. Conclusion

I propose the theory that an RNA-based computation system
exists in living cells that is Turing-equivalent, i.e., capable of com-
puting any computable function. This is significant because life is
confronted with problems of computation almost everywhere we
look, from animal cognition, to single-cell decision-making and
embryonic development. We have internalized the adequacy and
the generality of universal computation in technology as we equip
almost every device with a microprocessor. Likewise, an RNA-
based universal computation system may be used to solve the
many seemingly dissimilar problems of biology.

The specific models outlined in this paper are meant as a proof
of principle that universal computation is well-within the reach of
molecular biology without needing to invoke implausible molecu-
lar processes. The models implement combinatory logic through
RNA molecules. Algorithmic complexities are identical to that of
Turing machines (e.g., see Fig. 7D). Parentheses are represented
by reverse complementary sequences and RNA secondary struc-
ture elegantly solves the problem of parenthesis matching which
is crucial to the operations of CL and k-calculus. Universal compu-
tation is achieved through a decentralized process where distinct
memory-less enzymes make local modifications to RNA molecules
according to basic rules. The modifications can happen in parallel
across many RNA strands – even at multiple locations within the
same strand – and the order of operations do not matter. The sys-
tem does not require a central processing unit or anything resem-
bling a Turing machine tape head. No component of the model
approaches the complexity of the ribosome. Instead, computation
is carried out collectively by uncoordinated enzymes, which may
themselves be catalytic or self-cleaving/self-ligating RNAs.

The fact that it is easy to imagine a universal computation sys-
tem using RNA, while it is difficult to do so using network models,
is highly suggestive that life’s universal computation system – if
there is one – resides in the subcellular domain and involves
polynucleotides. An RNA-based computation system may have
evolved in the very early stages of life – possibly before the evolu-
tion of DNA and proteins, consistent with the RNA-World theory
(Gilbert, 1986; Higgs and Lehman, 2015). (The third model depends
on DNA-based transcription. But the first two models (Figs. 4 & 5)
do not necessarily depend on DNA or protein. Instead, they rely
on RNA-dependent RNA replication, which is thought to have
existed in the hypothetical RNA World). It is quite easy to stumble
upon universal computation in systems that use a symbolic sub-
strate that can grow in its number of symbols (Rendell and
Adamatzky, 2002; Cook, 2004; Cardone and Hindley, 2006;
Schönfinkel, 1924). Once a universal computation system is estab-
lished it is hard to see why it would be discarded throughout evo-
lution. It is possibly the case that the RNA-based computation
system is the very engine of evolution (Mattick, 2009), optimizing
mutations of offspring, consistent with recent evidence surround-
ing intergenerational inheritance of acquired traits (Benito et al.,
2018; Wang et al., 2017).

Two major evolutionary events can be reinterpreted in the con-
text of this theory. First, the evolution of complex multicellular
organisms – which requires intracellular communication and
sophisticated schemes of cooperation and division of labor (Brunet
and King, 2017; Cavalier-Smith, 2017; Knoll, 2011; Niklas and
Newman, 2013) – potentially involved a general method of coordi-
nation across the RNA-based computation systems of different cells
of the same somatic lineage. If the language of computation is
encoded as RNA, it is reasonable to consider the theory that themes-
sages conveyed across these cells are primarily in the form of RNA
molecules. This is consistent with recent evidence on extracellular
trafficking of RNA (Ashley et al., 2018; Bär et al., 2019; Bayraktar
et al., 2017; Dinger et al., 2008; Pastuzyn et al., 2018). Second, the

evolution of neurons and brains –which is thought to have occurred
in independent lineages in metazoans (Burkhardt and Sprecher,
2017; Moran et al., 2015; Moroz, 2009; Moroz and Kohn, 2016) –
may have served the purpose of rapid communication across cells,
rather than serving as an entirely parallel computation system. Elec-
trical/ionic signaling permits fast information transfer and coordi-
nated motility in large multicellular organisms and has even
evolved in plants for fast movement and decision-making based
on information collected from sources that are many millimeters
apart (Böhm et al., 2016; Choi et al., 2016; Fromm and Lautner,
2007; Hedrich and Neher, 2018). If prior to neurons the language
of intracellular signaling was in the form of RNA, it is reasonable to
consider the theory that neural signals encode RNA sequences that
would have otherwise taken too long to export to downstream tar-
get cells. In this view, computation is primarily mediated through
subcellular RNA-based processes, and the results of computations
are then synaptically transmitted between cells to be used in other
computations. This is consistent with the idea that the memory
engram is in the form of polynucleotides – not synaptic plasticity
(Gallistel and King, 2009; Gallistel, 2017). Of course, this is also con-
sistent with the existence of purely network based computations
that do not directly involve RNA; network models can augment an
RNA-based computation system.

The idea that polynucleotides are the substrate of memory can
be traced back to the 1960s, when the discovery of DNA inspired
a new scientific approach rooted in the hypothesis that thememory
engram is a macromolecule (Eigen and de Maeyer, 1966; Gaito,
1961; Gaito, 1963; Hechter and Halkerston, 1964; Hydén, 1961;
Behavior et al., 1967; Landauer, 1964; Schmitt, 1962; Schmitt,
1966; Schmitt, 1967). It was hypothesized that ‘‘every idea is repre-
sented uniquely by a macromolecule with particular composition
and sequence of monomer constituents” (Schmitt, 1967) and that
‘‘learning and memory depend on changes in genic material (or
the by-products of genic activity) either in the nucleus or the cyto-
plasm of the nerve cell soma” (Gaito, 1961), and that electrical sig-
nals in the nervous system are converted into nucleotide sequences
through a hypothetical RNA transduction mechanism (van Sickle
and McCluer, 1966). It was even suggested at the time that the
molecular processes that underlie learning and encode new mem-
ories may be ‘‘continuous across the phyla (as genetic codes are) and
therefore would be reasonably similar for a protozoan and a mammal”
(Gershman et al., 2021; Gelber, 1962). These ideas were largely
abandoned in the 1970s (Gaito, 1976; Glassman, 1969; Ungar,
1973; Uphouse et al., 1974) but have been rekindled in recent years
(Gallistel, 2017; Langille and Gallistel, 2020; Mattick and Mehler,
2008; Abraham et al., 2019; Gallistel, 2018; Gallistel and Balsam,
2014; Queenan et al., 2017). The recent revival is rooted in the
sobering realization that current theories of synaptic plasticity
and network activity cannot explain learning, memory, and cogni-
tion (Gallistel and King, 2009; Gallistel and Matzel, 2013) and that
several lines of evidence bring into question the theory that synap-
tic strengthening/weakening is the primary form of long-term
information storage in the brain (Gallistel, 2017; Cai et al., 2012;
Daou and Margoliash, 2020; Jirenhed et al., 2017; Johansson et al.,
2014; Johansson et al., 2015; Pearce et al., 2017; Poo et al., 2016;
Ryan et al., 2015; Santin and Schulz, 2019; Zhao et al., 2019).

Recently, combinatory logic was proposed as an example of an
"assembly language for cognition" (Piantadosi, 2021). While there
are a number of challenges in explaining cognition using an RNA-
based model of CL, this theory is well-posed to resolve some of the
challenges that current network models of cognition face in neuro-
science. (See Langille and Gallistel, 2020 for a comparison of the
challenges of the connectionist/associative theories of memory and
computational/representational theories of memory). One of the
major criticisms of symbolic computation models of cognition is that
they imply that computation is sequential and single-threaded,
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rather than parallel and distributed (Rumelhart and McClelland,
1986). But the models I have presented are unique in that while
easily allowing recursion and nested structures, they are also highly
parallel. Thanks to the Church-Rosser theorem, a program can be
split into numerous RNA strands, or even distributed along of the
same RNA strand to be computed in parallel. In principle, an RNA
implementation of CL allows for unbounded parallelization with
no theoretical limit to the number of threads; modern-day comput-
ers, on the other hand, are limited by the number of their CPU cores.

The theory of natural RNA-based universal computation makes
the falsifiable prediction that RNA molecules are modified in ways
that radically deviate from their genomic templates and that these
modifications are causally involved in cognition, cell-behavior,
and/or development. Lengthening of RNA strands, through either
duplication of RNA elements or integration of one strand into
another, appears to be inevitable for fulfilling memory expansion
(which is a necessary condition for any universal computation sys-
tem in which memory usage is well-defined). We currently have
very limited evidence for the existence of endogenous RNA
sequences that cannot be mapped to the genome or accounting
for through known RNA processing mechanisms. Some examples
include widespread single-nucleotide variations (that cannot be
attributed to ADAR or APOBEC enzymes) (Li et al., 2011; Wang
et al., 2014), non-genomically encoded 50-poly(U) tails (Kapranov
et al., 2010), exon repetition (Dixon et al., 2007; Frantz et al.,
1999; Rigatti et al., 2004), post-transcriptional exon shuffling (Al-
Balool et al., 2011; Dixon et al., 2005), and chimeric transcripts
resulting from post-transcriptional fusion of RNA molecules
(Goymer, 2008; Li et al., 2008; Singh et al., 2020; Tang et al.,
2019), although some of these results have been controversial (Li
et al., 2012; Kleinman and Majewski, 2012; Lin et al., 2012;
Pickrell et al., 2012). The scarcity of evidence for extensive RNA
editing is not definitive; detection of RNA sequences that are
cell-specific or expressed in low numbers is notoriously difficult
with current technology (Gloss and Dinger, 2016). RNA sequence
analysis pipelines typically discard reads that cannot be mapped
to the genome or, in the case of de novo transcript assembly, dis-
card aberrant reads that do not match other reads. It may be pos-
sible to discover the editing motifs of the hypothetical RNA-based
system by careful examination of RNA sequencing data where
unexpected editing patterns occur at low frequency. This is per-
haps the simplest and most obvious first step for empirically test-
ing the theory. To ultimately validate the theory, one needs to
show that specific non-protein-coding RNA species are causally
necessary for cognition and/or development, such that novel mod-
ifications to their sequences will have predictable effects in animal
behavior and/or ontogeny. Conversely, the theory can be falsified if
it is shown that the non-protein-coding content of the genome is
mostly dispensable or can be replaced with random sequences
without completely disrupting cognition, development, and cell
function. Even if the RNA-based theory is disproved, the fact that
universal computation is molecularly feasible and within the reach
of evolution suggests that we must then search for life’s universal
computation system elsewhere.
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